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Abstract 

A selection experiment with Hereford cattle to study the 

efficiency of lean production was established by the Animal Breeding 

Research Organisation (now Institute of Animal Physiology and 

Genetics Research). There were two replicated selection lines, one 

selected for lean growth rate (LGR)' from birth to 400 days and the 

other for lean food conversion ratio (LFCR) from 200 to 400 days of 

age. 	Bulls were selected on their performance on a complete diet of 

dried grass and barley fed ad libitum for 7 years. 	A control line 

and an open line bred by frozen semen from foundation bulls and 

superior progeny tested Hereford bulls respectively were also 

maintained. 

Responses in the selection lines were evaluated by 3 

methods : deviation from control line, prediction of progeny breeding 

value and Restricted Maximum Likelihood (REML). 

Generation interval was about 2.4 years in both selected 

lines. Cumulative selection differentials were 59g/day for LGR and 

-3.2kg feed/kg lean gain for LFCR in their respective lines. 

Average sire selection differential (primary) per generation were 1.3 

and -1.4 standard deviation units for LGR and LFCR respectively. A 

high percentage of the maximum potential selection differential was 

achieved in both lines. 

The estimates of direct annual genetic change using 

deviations from control were 5.0±1.6g/day for LGR and -0.13±0.08kg 

feed/kg lean gain for LFCR. 	Corresponding estimates from REML were 

similar but more precise. 	The correlated response for LFCR in the 

LGR line was higher than the direct response for LFCR. 	Significant 
responses 

correlated occurred in growth rate, food conversion ratio (FCR) in 
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the LGR line and in lean percent for both lines. 	Selection in both 

lines was not accompanied by adverse correlated responses in 

reproductive traits. 

Realised heritabilities were 0.53+0.14 for LGR and 0.38±0.13 

for LFCR using the control. Corresponding estimates from REMLwere 

0.47+0.11 and 0.29+0.16. Genetic correlations between selected 

traits and other economic traits were estimated. 

In a crossbred trial involving 5 bulls from the four lines 

mated at random to Holstein/Friesian cows, about 66% of the expected 

response from the purebred performance was observed in the crossbreds 

for LGR. A non-significant negative response was observed for LFCR, 

consistent with predictions from the purebred. 

Relative to the initial differences between the open and 

control lines, significant genetic trends were observed in the open 

line for LGR, LFCR, FCR and growth rate although standard errors of 

estimates were high. 

In conclusion, the observed response for LGR was consistent 

with the predicted theoretical possible rate of genetic change for 

growth traits in beef cattle. The importance of design and effective 

selection on rates of response achieved in practice was discussed. 

The use of alternative selection criteria to improve efficiency of 

lean production was examined. 
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CHAPTER I 

INTRODUCTION 



Selection constitutes one of the main methods utilised by 

breeders to change livestock populations; consequently traits of 

economic importance have been the main objectives in most selecti,on 

experiments. In beef cattle, majority of selection experiments have 

centred on growth rate, the selection criteria commonly being weaning 

and yearling weight. This is due to the high association of growth 

rate with economy of gain (Irgang, Dillard, Tess and Robison, 1985a) 

and growth rate is also easy to measure. However, several workers 

have recently expressed doubt about improving bio-economic efficiency 

of beef cattle by increasing growth rate, especially in breeds that 

function as maternal breeds. This is because increased growth rate 

may be accompanied by increased mature body size, fatness and reduced 

fertility (Scholtz and Roux, 1984). These effects are important in 

beef cattle because of the low reproductive rate so that the costs of 

rearing and maintaining adult breeders are spread over few young 

(Dickerson, 1982). 

Moreover, the most dominant trend in consumers' demand over 

the past few years has been for leaner meat (Bailey, 1986). This is 

due probably to the implication of the saturated fat in causing 

coronary heart diseases. Today's typical beef carcass contains 

about 22% of fat but the continued pressure for leanness implies that 

producers must aim for fat contents of about 18% (Fisher and 

Winstanley, 1986). Estimates of changes in carcass composition for 

cattle and pigs over the past decade in Britain showed a marked 

contrast between the fatness of pigs which has fallen dramatically 

and the fatness of cattle which has changed relatively very little 

(Kempster and Solly, 1988). A major reduction in fatness could be 

effected easily by restricted feeding or by earlier slaughtering at 
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lighter weights. 	However there is an optimum slaughter point for 

the current beef breed populations and production system at which the 

overall cost of producing and distributing lean meat to the point of 

consumption is minimised (Kempster and Solly, 1988). Therefore the 

above strategies may not be the best since reduction in fatness may 

be achieved at the expense of overall efficiency with which lean meat 

is produced. Jones and Kay (1986) mentioned that reduction in 

slaughter weight would lead to penalties due to loss of conformation 

and reduced economic return to the farmer. 

Dickerson (1982) and Barlow (1984) have suggested that the 

greatest scope for improving efficiency in cattle (other than through 

reproduction) is using faster growing lean terminal sire breeds. 

This is particularly important in countries like Britain and Ireland 

where up to 35 to 45 percent of the dairy herd may be crossed with 

beef breed sires for the production of crossbred calves. Similarly, 

for the biological efficiency of production of lean tissue, Fowler, 

Bichard and Pease (1976) proposed the improvement of lean tissue food 

conversion as a selection objective in pig breeding. It was 

suggested that the most suitable means of achieving this way by 

increasing lean tissue growth rate. 

Genetic improvement in beef cattle through selection is 

limited because of the high cost of keeping large herds, the long 

generation interval and by the problems of assessing carcass traits 

(such as leanness) in live animals. There are yet no experimental 

results on the effects of direct selection for lean content in beef 

cattle. However, positive responses for lean content have been 

observed in other species, in rats (Gosey, 1976; Notter, Dickerson 

and DeShazer, 1976) and in pigs (011ivier, 1980). Webster (1976) 



indicated that in animals fed ad libitum, protein deposition appears 

to have rigidly defined upper limits which are set by the intrinsic 

capacity of the individual for the synthesis of milk protein or lean 

body mass. 	These limits could only be modified by genetic selection 

or more directly by physiological in 	Improvement of the 

efficiency of lean meat production is therefore likely to be a 

long-time selection objective in beef cattle. 

This thesis is concerned with the evaluation of response in 

two lines of Hereford cattle selected respectively for lean growth 

rate (LGR) and lean food conversion ratio (LFCR) from the base year 

of 1978-79 to 1986. In 1977, a 200-cow pedigree Hereford was 

established by the then Animal Breeding Research Organisation now 

Institute of Animal Physiology and Genetics Research to provide 

information on selection for efficiency of lean meat production. 

Two selection lines were available, one selected for LGR 

from birth to 400 days and the other for LFCR from 200 to 400 days of 

age. 	Bulls were selected on their own performance on a pelleted 

dried grass and barley diet, fed ad libitum. 	In addition, there was 

a control and an open line bred by frozen semen from foundation bulls 

and superior Hereford bulls in artificial insemination centres 

respectively. 

Initially, selection experiments in beef cattle are reviewed 

with respect to design, analysis and responses achieved. This is 

followed by a description of the expeirmental materials, selection 

criteria and procedure. The analytical part of the thesis consists 

of six chapters: 

1. measurement of selection pressure applied. 
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direct and correlated responses for lean growth rate and lean 

food conversion ratio in the selected and open lines 

evaluation of correlated responses and genetic parameters for 

secondary traits measured in recorded bulls 

- 	4. correlated responses in body weight and measurements at various 

ages in all calves and reproductive performance in female 

calves 

5. evaluation of direct and correlated responses to selection for 

LGR and LFCR in crossbred progeny sired by bulls from selected 

and control lines and 

5. an alternative algorithm for incorporating the relationship 

matrix into Mixed Model equations for estimation for 

(co)variance components using Restricted Maximum Likelihood 

(REML) . Finally a general discussion of the results is 

presented with the efficacy of selection for LGR and LFCR in 

improving lean meat production examined. 

4. 



CHAPTER 2 

SELECTION EXPERIMENTS IN BEEF CATTLE. A REVIEW OF DESIGN, ANALYSIS 
AND RESPONSES 



2.1 	Introduction 

Compared with laboratory species, relatively few cattle 

selection experiments have been undertaken due to the high costs and 

the long generation interval. Most early studies were prompted by 

the effectiveness of selection experiments in laboratory animals and 

other larger species, such as the pig, which checked the theoretical 

predictions of artificial selection. Many early selection 

experiments in beef cattle were limited to measuring phenotypic time 

trends which could not be partitioned into the respective genetic and 

environmental components owing to lack of controls or proper design, 

and so had limitations. This is why Barlow (1978) observed that 

"the omission of control populations from most of the available 

experiments and the tendency towards multi-trait selection has 

resulted in genetic trends and realised paramters having to be 

recovered from the data, using varying techniques to measure 

environmental trends". 

Most reviews on selection experiments in beef cattle were 

concerned mainly with growth rate or weight for age (Barlow, 1978; 

Koch, Gregory and Cundiff, 1982; 	and Baker and Morris, 1984) and 

were therefore limited in scope. 	The review of Barlow (1978) was 

restricted to preweaning growth rate while Koch et al. (1982) mainly 

summarised the results of North American selection experiments on 

growth rate. 

In this review selection experiments in beef cattle are 

examined in the light of current principles of design with a view of 

assessing their value, and in highlighting the developments that have 

occurred in the design of beef selection experiments over the years. 

Secondly, the results of selection experiments on growth 
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rate and other traits are briefly summarised. 

2.2 	The design and analysis of beef selection experiment 

2.2.1 	Population size 

In a review of selection experiments in beef cattle, Dalton 

and Baker (1979) concluded that one of the major limitations 

associated with all early work on cattle prior to the 1970 was small 

population size. For example, Hoornbeek and Bogart (1966) selected 

in an Angus line consisting of about two sires and 20 females and 

three Hereford lines each consisting of one sire and 15 females on 

the basis of an index for preweaning gain, feed test gain, feed per 

unit of gain and conformation scores. Although selection 

differentials were positive, phenotypic trends were negative for all 

traits except score in the Hereford lines, but positive for all 

traits in the Angus line. The genetic trends were not estimated. 

In another case, Nelms and Stratton (1967) carried out selection for 

unadjusted weight at the end of a 268 day feed test in a small line 

of about 30 Hereford cows with response evaluated on 302 calves born 

during the selection period of 12 years. The design of the 

experiment did not permit the estimation of genetic trend. 

Similarly, Chevraux and Bailey (1977) carried out selection in a line 

of Hereford cattle consisting of one or two sires and about 25 to 30 

cows for post weaning growth rate from 1956 to 1977 and phenotypic 

response was evaluated on 390 calves born during the selection period 

of 19 years. 

Population size is important in artificial selection in two 

respects. Firstly, from the work of Robertson (1960), selection in 

small populations increases the chance of loss of desirable alleles 
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and hence leads to a lower limit to selection. 	Secondly, in small 

populations, genetic drift is an important source of variation among 

selected lines, producing not only variation in mean responses (Hill, 

1971) but also variation in within line additive genetic variance 

-  (Bulmer, 1976 and Avery and Hill 1977). Thus estimates of parameters 

from these early experiments with small sizes should have large 

standard errors. However, most of the reports did not give standard 

errors for the parameter estimates. 

Hill (1980) showed how the variance of response can be 

reduced by increasing the total size of the selection experiment. 

Using the expression for expected drift variance, Nicholas (1980) 

estimated the minimum size required to obtain a specified coefficient 

of variation of response to achieve a specified proportion of the 

expected response to selection. 	Recent selection experiments in 

beef cattle have been done with larger population size. 	For 

instance, Koch, Gregory and Cundiff (1974a) selected for weaning 

weight, yearling weight and an index consisting of yearling weight 

and niuSCt€ SCO' in 3 lines each consisting of 150 cows and 6 

sires. Similarly, Pacer, Razook, Trovo, Bonilha, Figueiredo, 

Nascimento, Pacola, Candido, Campos and Machado (1986) reported 

response for yearling weight in 2 lines of Nelore and Guzera cattle 

each consisting of 120 cows and 6 sires. 

2.2.2 	Levels of inbreeding 

Closely associated with the problem of small population size 

in early experiments was that of high levels of inbreeding. Many of 

these trials were concerned with the effectiveness of selection in 

lines which were already inbred (Armstrong, Stonaker, Sutherland and 
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Riddle, 1965; 	Hoornbeek and Bogart, 1966; Wwakolor, Brinks, 

Richardson, 1976) but in some cases selection and inbreeding occurred 

concurrently (Brinks, Clark and Kieffer, 1965; Nelms and Stratton, 

1967). In the inbred line, the average inbreeding coefficient ranged 

from 19% (Hoornbeek and Bogart, 1966) to 33% (Armstrong et al., 1965 

and Wwakalor et al. 1976). Working with populations which were not 

initially inbred, Brinks et al. (1965) and Nelms and Stratton (1967) 

reported average inbreeding coefficients of 12 and 5% respectively 

for dams and 16 and 11% respectively for calves. 

The expected response from selection is likely to be reduced 

by inbreeding as a result of a proportionate decline in the additive 

genetic variance of the traits. In addition traits associated with 

fitness may be directly depressed by moderate levels of inbreeding. 

Hill (1980) discussed ways of eliminating effects of 

inbreeding. Firstly, the use of lines with large population size in 

short duration experiments; secondly, the maintenance of a genetic 

control population with the same increment of inbreeding as the 

selected populations; thirdly, the maintenance of replicate lines 

which are crossed at the end of the experiment to estimate response, 

and fourthly, minimising inbreeding by maximum avoidance of mating 

between closely related individuals. 

In recent selection experiments in beef cattle the level of 

inbreeding has been effectively lowered by better design and 

increased population size. For example, the average inbreeding 

coefficients reported by Buchanan, Nielsen, Koch and Cundiff (1982a) 

and Irgang et al. (1985a) were 0.03 and 2.0 percent respectively for 

dams and 0.05 and 3.5 percent for calves in the lines selected for 

weaning weight. 
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2.2.3 Genetic change and realised heritabilities 

Generally, selection experiments are concerned with the 

estimation of selection 	response 	(genetic change), 	realised 

heritability and their precision. 	The estimates of response should 

be unbiased by environmental fluctuations. 	Techniques used for 

evaluating genetic trends in beef cattle include maintaining a random 

bred control population, repeat mating schemes, intra-year comparison 

of sire or dam birth-year progeny groups that differ in generations 

of selection or in birth year and semen storage with subsequent 

evaluation on a common tested herd (Smith, 1962; 	Dickerson, 1969; 

Koch et al., 1982). 	Few divergent (high and low) selection 

experiments have been carried out in beef cattle (Seifert, 1975a,b; 

Barlow, 1980). Estimates of genetic change can be achieved by 

contemporary comparison of such two divergent selection lines. 

Mixed model methodology (Henderson, 1973) as a means separating 

genetic trends from environmental trends has also been attempted by 

Sharma, Wilms, Hardin and Berg (1985). 

Most early beef selection experiments relied on repeat 

matings for the estimation of genetic change (Hoornbeek and Bogart, 

1966; 	Armstrong et al. 1965; 	Benson, Brinks, Knapp and Panhish 

1972; 	Nwakalor, et al. 1976). 	In some cases these repeat matings 

were not planned but were found and used in an attempt to separate 

the genetic and environment changes (Flower, Brinks, Urick and 

Willson, 1964; Brinks et al. 1965). Consequently, the number of 

repeat matings were small and it was not possible to estimate genetic 

change for some years or traits due to inadequate number of repeat 

matings. Response was taken as zero in those years with no repeat 

matings, it is therefore likely that these estimates of genetic 



change were biased. 	Also the sampling errors from the small number 

of repeat matings should be large. 	Hill (1972a) discussed the use 

of repeat matings in the estimation of genetic change. 	The possible 

sources of sampling error are drift variance, error of measurement 

and genotype by environment interaction. If a repeat mating design 

is established in the population, the drift variance can be 

eliminated and the interaction variance is minimised, but there is a 

substantial contribution of the measurement error variance to the 

sampling error. 	The method has the particular advantage that few or 

no facilities are devoted to estimating the change. 	However, to 

some extent, some loss of genetic response will be associated with 

structuring the herd to permit repeat mating comparisons. 

Bailey, Harvey, Hunter and Torrell (1971) and Chevraux and 

Bailey (1977) evaluated performance of progeny from different dam 

birth-year groups in estimating genetic change. Koch et al. (1982) 

found that estimates of genetic change from intra-year comparison of 

sire or dam birth year progeny groups are subject to large random 

errors because the number per group and the spans of generation or 

birth year are usually small. Also where comparison involves dams 

differing in age, genetic change is confounded with age of dam 

effects and the validity of the differences is highly dependent on 

accurate estimates of age of dam correction factors. The data of 

Chevraux and Bailey (1977) were associated with limited number of 

records in the younger dam age subclass and small variation in 

generation coefficients within years. 

Stanforth and Frahm (1975) used semen from foundation and 

advanced generation sires on a common tester to estimate genetic 

trend. The use of semen storage for the estimation of response could 
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be very efficient since there is no accumulation of drift variance in 

the control. However, only the additive component of change is 

estimated without bias (Hill, 1972a). 

The first beef selection experiment to feature a control 

line was that of Newman, Rahnefeld, and Fredeen (1973) in Canada on 

Shorthorn cattle. Their data demonstrated the usefulness of 

controls or other comparable methods of correcting for environment 

changes; without the control the effectiveness of selection would 

have been overestimated since more than half of the increase obtained 

in yearling weight (about 60%) resulted from environmental changes. 

More recently, Barlow (1980), Frahm, Nichols and Buchanan (1985a) and 

Irgang et al. (1985a) also used control populations in their 

experiments. In the case of Frahm et al. (1985a), the original 

design did not include an unselected control line. An Angus line 

which had previously undergone one generation of selection for 

yearling weight was used to start the control line. The adequacy of 

this Angus population as a control line for the selected Hereford 

lines rested on the absence of breed by environment interactions. 

Frahm etal. (1985a) indicated that analysis of data from early years 

of the study before selection showed that breed by year interactions 

were generally non significant on the traits measured. 

In experiments with control populations, response is 

measured as a deviation of the selected line from the control. The 

variance of response is the sum of the variances of the means of both 

selected and control lines, and the control might be set up to 

minimise its variance. 	This variance involves both variation of the 

selection differential (about zero) and the drift variance. 	By 

ensuring a selection differential of zero or nearly zero, the drift 
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variance can be reduced. 	Hill (1972a) showed how to construct a 

control such that the selection differentials are zero and the drift 

variance reduced. It essentially involves choosing breeding 

individuals such that their mean performance for some particular 

trait is close to the mean performance of all recorded individuals in 

that generation. In some of the selection experiments, some 

unintentional selection had been reported in the control lines 

(Newman et al., 1973; Irgang et al., 1985a). Frahm et al. (1985a) 

observed slight increases in their control line which was attributed 

to a small amount of selection that occurred during the early years 

in the population before conversion to a control line. Such 

directional change through natural or unintentional selection in the 

control would increase the variance of response (Hill, 1972a). 

A well designed control population in beef cattle selection 

is that used by Irgang et al. (1985a). Attempts were made to 

minimise genetic change from selection and genetic drift by random 

selection of replacement bulls within sire families and maintenance 

of low inbreeding levels by mating least-related individuals (see 

Hill, 1980). 

If several selection lines and a control have been 

maintained contemporaneously, these animals could be used in the 

analysis of any trait, explaining the response or correlated response 

in terms of cumulative selection differentials, genetic regressions 

and environmental effects. This could lead to more precise 

environmental estimates and hence of estimates of response than just 

when each selected line is compared with the control. The above 

methodology is essentially the multiple regression procedure of 

Richardson, Kojima and Lucas (1968), which has been widely used in 
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evaluating selection experiments in species with discrete generations 

(Leymaster, Swiger and Harvey, 1979; Quijandra, Zaldivar and 

Robinson, 1983). Recently the technique has been used in estimating 

response in beef cattle by Frahm et al. (1985b) and Irgang et al. 

(1985b) and they indicated that it resulted in a more precise 

estimate of response compared with estimates from deviation of 

selected lines from the control. This was attributed to the fact 

that the method uses all available information to estimate 

simultaneously environmental effects and selection responses. In 

addition correlations between genetic responses in selected lines due 

to substraction of a common control are avoided (Irgang et al., 

1985b). The procedure assumes, however, that the error variance 

structure in each generation is independent but this is not so. 

Selection experiments are stochastic processes and performance in a 

given generation is dependent on the genetic samples retained in 

previous generations (see Hill, 1972b). 

More recently the use of mixed model methodology (Henderson, 

1973) for the separation of genetic and environmental trends has been 

used in the analysis of selection experiments. Sharma et al. (1985) 

estimated genetic trends in a beef synthetic and a Hereford control 

line using the mixed model method. The method yielded estimates of 

sampling variances which were smaller than those from repeat matings 

or control population analysis. 

The use of mixed model analysis as a means of separating 

genetic trends from environmental trends was first suggested by 

Henderson, Kempthorne, Searle and Van Krosigk (1959) in dairy cattle 

subject to culling. Blair and Pollak (1984) used this technique to 

evaluate response using an assumed estimate of heritability to 
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predict genetic worth. 	The estimate of realised heritability was 

obtained by the regression of predicted yearly genetic means on 

cumulative selection differential. However Thompson (1986) has 

shown that the predicted yearly genetic means depends on the assumed 

value of heritability and not on the value of heritability in the 

population; 	in one example the estimated heritability was 

approximately three-quarters the assumed value. 	Hence the 

regression estimate is not an unbiased estimate of the population 

heritability. Utilising ,  a different approach, Sorensen and Kennedy 

(1984) have shown that mixed model analysis could be used to estimate 

genetic trends even after several cycles of selection if certain 

conditions are met: 

the genetic and non-genetic variances, or their ratios, of the 

trait before selection are known 

selection is a linear function of the records and 

the relationship matrix (A), is complete, that is, all animals 

involved in the selection decision regardless of whether they 

contribute offspring are used to derive A. 

The use of A allows relationships between individuals to be used and 

increases the accuracy of predictions of breeding values. The 

relationship matrix also circumvents the possible problems resulting 

from the reduction of genetic variance generated by gametic 

disequilibrium that builds up as a consequence of selection (Sorensen 

and Kennedy, 1984). 
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2.2.4 Precision of estimates of response 

The precision of estimated response to selection is -  a 

function of the design of the selection experiment. Hill (1980) has 

reviewed the appropriate features 'for the design of selection 

experiments. 

In most published early experiments in beef cattle, 

estimates of genetic changes and realised heritabilities were given 

without standard errors (Flower et al., 1954; 	Brinks et al., 1965; 

Koch et al., 1974b). 	So the reliability of their estimates of 

response and the value of such experiments are greatly reduced. 

However, Newman et al. (1973) estimated variance of genetic response 

from the variance of the weighted regression of cumulative response 

on cumulative selection. Chevraux and Bailey (1977) estimated 

response by linear regression of trait on dam birth year group and 

the variance of the regression coefficient (also variance o1 

response) was estimated by maximum likelihood. Frahm et al. (1985b) 

estimated variance of response from the variance of the regression of 

cumulated response on cumulative selection differential. Hill 

(1972b) has shown that the variance of the simple regression of 

cumulative response on cumulative selection differential is biased 

downwards because observations are assumed to have equal variance and 

to be uncorrelated, when in reality the variance of the population 

mean increased due to genetic drift as selection effects accumulate. 

Recently Atkins (1985) confirmed these observations from the analysis 

of a sheep selection experiment. Most analysis of selection 

experiments have neglected this component of the sampling variance. 

Irgang et al. (1985b) however reported standard errors of realised 

heritabilities for weaning weight and postweaning gain which included 
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the drift variance. 	Hill (1972b) and Sorensen and Kennedy (1983) 

have given formulae for estimating the drift variance. 

However, Johnson (1977) has indicated that the usual 

expression for drift variance is only asymptotically true, for 

overlapping generations. He has developed a more exact formula for 

this drift variance and shown the true drift in the early years of an 

experiment to be much larger than the apparent drift from'the 

approximate formula. Using the approach of Johnson (1977) and Hill 

(1972b) to estimate drift variance, Atkins (1985) found that the 

inclusion of the more appropriate formula of Johnson (1977) for 

overlapping generations had only a small influence on the variance of 

the regression in his experiment with five generations of selection. 

2.2.5 Replication 

Only few beef cattle selection experiments have included 

replication in their design (Newman et al., 1973; Irgang et al., 

1985b). Actually, the latter workers did not include replication in 

their initial plan but because selection was practised only in bulls 

and sire families were confounded with years and repeated every third 

year, the data were grouped into three replicates within each line to 

evaluate empirical variation in selection response. The variance 

among replicates represents the sum of genetic drift and random 

error. Except in the case of weaning weight for bull calves, the 

variance of response from the variance among replicates tended to be 

smaller than the variance from estimates of genetic drift and random 

error measurement obtained by approximate formulae. 

The theoretical variance of response to selection represents 

variance between conceptual replicated lines. 	Thus, the obvious 
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advantage of replication is that variance among lines can be 

estimated directly and independently of parameter estimates from the 

experiment (Hill, 1980). Unreplicated selection experiments are 

therefore confronted with a problem, in that they do not provide an 

estimate of the true variance of response. Although it is possible 

to estimate the variance of response using formulae of Hill (1980) it 

is only approximate and apply to populations with discrete 

generations. Moreover, while an estimate of drift variance can be 

made for directly selected traits the drift variance of correlated 

traits cannot be estimated in this way (Hill, 1980). Thus the need 

for adequate replication is emphasised in selection experiments in 

species with overlapping generations. 

However, the problem with the variance from replicates is 

that it requires a high degree of replication before it can be 

reliable. For instance, with r replicates, this variance will be 

estimated with r-1 degree of freedom, that is 1 or 2 df for r = 2 or 

3 respectively. 	Such an estimate of between line variance while 

unbiased, is not reliable. 	With limited facilities in beef cattle, 

a very high degree of replication may. not be possible for as 

individual lines rapidly become inbred. The best compromise as Hill 

(1980) suggested may be is to compute the total size of the 

experiment on the basis of the ratio of coefficient of variation of 

response of the mean of the replicates and then divide these 

facilities into as many replicates as inbreeding and practical 

considerations allow. Moreover, Muir (1986) has shown a precise 

method for estimating the variance about response even with limited 

replication. The method is based on a Satterwaite approximate which 

combines variance components estimated more precisely by other 
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sources of variation in the analysis of variance. 	Using variance 

components estimated by this procedure, Muir (1986) markedly improved 

the precision of the estimates of realised heritability. 

	

2.3 	Results of beef selection experiment 

The primary aim of the beef industry is the efficient 

production of meat. 	This is greatly dependent on traits related to 

growth. 	Emphasis on growth has narrowed the experience of selection 

in beef cattle compared with other species of farm livestock. Most 

selection experiments were directly concerned with improvement of 

growth rate and share similar features. A review of these 

experiments is given and a summary is presented in Table 2.1. 

Subsequently, experiments with alternative selection criteria or 

objectives are examined. 

2.3.1 Selection experiments on growth traits 

In order to have an understanding of what has been achieved, 

the experiments are discussed in several subsections: 

	

(1) 	Generations of selection and generation interval 

The generations of selection are usually determined by the 

formula of Brinks, Clark and Rice (1961): 

GC = (GC S+GCd)/2 + 1 

where GC is the generation coefficient of the calf and GC  and GC  

are generation coefficients of the sire and dam respectively. 

Foundation animals are assigned a GC of zero. 	The GC of an animal 
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after selection is the average number of Mendelian segregations in 

its pedigree and measures one more than the number of generations of 

selection. 	The number of generations of selection for published 

beef cattle experiments is given in Table 2.1. 	The average over all 

experiments is 2.89 generations, with a range of 1.8 (Koch et al., 

1974a; 	Irgang et al., 1985a) to 3.87 (Aaron, Frahm and Buchanan, 

1986a). 	The range of generation coefficients among calves within a 

year or line is about 1.7 generations (Koch et al., 1974a; Chevraux 

and Bailey, 1977; Frahm et al., 1985a). In short-term selection, 

response should be proportional to the generations of selection 

assuming linearity of response. 

Generation interval is the average age of the parents at the 

birth of their selected offspring. 	The generation intervals in the 

selection experiments reviewed are shown in Table 2.1. 	The overall 

average was 4.36 years. 	The average age for sires ranges from 2 

years (Baker, Carter and Hunter, 1980) to 4.3 years (Koch et al., 

1982) and the average for dams from 4.0 to 6.6 years (Bailey et al., 

1971; Baker etal., 1980). Most of these results were from natural 

mating herds and selection was on the basis of individual 

performance. The generation interval reported by Aaron et al. 

(1986a) when selection was based on combined individual and progeny 

performance in weaning weight was 5.6 years compared to 4.1 years 

obtained in a similar line selected for the same trait using 

individual performance alone. 

Koch et al. (1982) concluded that reducing average sire age 

from 3 to 2 years will improve annual selection differentials only 

marginally because of compensatory loss of selection intensity. 

However preliminary results of the experiment of Baker et al. (1980) 
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TABLE 2.1 

Summary of results from selection experiments on growth traits 

% F Annual Genetic 
Selection Differential** change*** 

Author(s) Period N GI 	GS Calf 	Dam 
Selection 
Criteria 

Mid- 
parent 

% realised 
through 

% of potential 
maximum 	Rate I of 

Method for 
estimating genetic 

mean 2 
hR change 

Sires 	Dams Sires 	Dams 

Flower et. 
al. 	(1964) 

1954-59 392 4 18 11W 0.15 81 	18 2.1 1.14 0.77 Repeat matings + 
PG 0.25 100 

Brinks et. 
al. 	(1965) 

1934-59 1594 4.9 16 	12 1111 0.13 85 	15 0.6 0.29 0.23* Repeat matings + 
115 0.10 80 	20 0.1 0.18 0.15* 

+ 

N) PG 0.22 100 

Nelms and 12 years 302 4.3 11 	5 VII 0.19 
Stratton 
(1967) 

Bailey et. 
al. 	(1971) 

1955-69 1488 4.7 PG 0.22 1.5 1.64 0.57 Regression on 
PG 0.13 2.2 2.40 1.00 dams birth 
FE 0.17 0.2 0.17 0.60 year 
FE 0.20 0.2 0.17 0.44 
VS 0.20 -0.1 -0.11 0 

Chapman et. 
al. 	(1972) 

1963-69 765 4.3 PG 0.29 83 	17 0.84 Deviation from 
1111 0.22 85 	15 0.33 herd of average 
VS - - 	- 0.22 performance 

Newman et. 
al. 	(1973) 

1960-69 3577 3.2 VII 0.33 69 	31 3.1 0.77 0.45 Control population 

Gasklns 
(1974) 

1947-69 1135 - 1111 
+ 0.7 Regression 

WS 
•' on dam birth 

-0.0 year + 
WA 0.0 
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TABLE 2.1 (continued) 

Summary of results from selection experiments on growth traits 

% F 	
Annual Genetic 

Selection Differential** 	 change*** 

Selection Mid- 	% realised % of potential 	 Method for Author(s) 	Period 	P1 	GI 	GS 	Calf Dam 	Criteria 	parent through 	maximum 	Rate % of 	
2 	estimating genetic 

	

mean 	h 	change 

Sires Dams Sires Dams 

Koch et. 	1960-70 	2956 	20 	 MW 	0.19 	79 	21 	77 	62 	1.1 	0.53 	0.27* 	Various regression al. (1914 	 18 	 YW 	0.21 	88 	12 	94 	50 	3.1 	0.74  a,b) 	 19 	 YW+MS 	0.18 	84 	16 	97 	71 	2.3 	- 	
0.28* 	methods 

 

Nwakolar 	1946-71 	3408 	 33 	21 	WW 	 1•9c 
et. al. 	 + 	 Repeat matings 
(1916) 	

FE+PG 
+ 

YG 

Chevraux A 1955-74 	390 	4.7 3.2 	 PG 	0.22 	83 	17 	92 	60 	4.3 	3.65 	0.35 	Regression on Bailey  
(1977) 	 dam birth year 

and generation 
coefficient 

Martin 	21 years 	2576 	4.0 	 YW 	 4.1 	 Modified Alenda  
(1982) 	 procedure of 

Smith (1962) 

Buchanan 	1963-77 	2125 	4.3 	0.0 	0.0 	MW 	0.23 	79 	21 	86 	66 et. al. 	 2098 	4.4 	 YW 	0.24 	84 	16 	95 	62 (1982) 	 2135 	4.4 	3.7 	 YW+MS 	0.21 	81 	19 	93 	74 

Frahm et. 1964-78 	627 	4.7 	3.2 	 MW 	0.21 	70 	30 	88 	70 	1.0 	0.55 	0.24 	Control populations al. (1985a, 	 605 	4.7 	3.2 	 YW 	0.23 	76 	24 	100 	67 	1.0 	0.32 	0.18 	and multiple b) 	
regression 

Irgang et. 1970-81 	2467 	3.8 	2.00 4 	2 	WW 	0.19 	 82 	0.8 	0.51 	0.25 	Control population al. (1985a 	 3.9 	1.9 	 PG 	0.14 	 89 	0.5 	0.43 	0.18 	and multiple b) 	
regression 
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TABLE 2.1 (continued) 

Summary of results from selection experiments on growth traits 

S F 	 Annual Genetic 
Selection Differential** 	 change*** 

Selection Mid- 	S realised 	S of potential 	 Method for Author(s) 	Period 	N 	131 	GS 	Calf Dam 	Criteria 	parent through 	maximum 	Rate S of 	
2 	estimating genetic 

	

mean 	h 	change 

Sires Dams Sires Dams 

Nicoll & 	1976-85 	458 	3.8 2.1 	 VI 	0.28 	 86 Johnson 
(1986) 

Aaron et. 	1964-79 	2249 	4.1 	3.9 
al. 	(1986a, 	 5.6 	2.7 

W14 0.23 67 33 94 	81 	1.5 	0.72 0.30 	Same method as 
b) 	 4.7 	3.7 

IWW 
YW 0.21 76 24 

	

 2.1 	1.04 
100 	64 	3.5 	1.06 

0.35 	used by Frahm et. 
al. 	(1985) 

Nwakolar 	1946-73 	4833 	4.1 	5.5 
et. 	a). 

36 	26 	WW 0.33 77 23 0•6c 
Regression of 

(1986) + PG 0.69 m 
offspring deviat- 

+ ions on generation  
FE 010m 

0.01 
number 

 
~ 

YG 

Pacer et. 	1980-84 	 4.8 
a). 	(1986) 

YW 0.24 75 25 3.2 	1.17 0.22* 	Control 	population YW 0.15 78 22 1.8 	0.69 

N 	Number of calves 
I 	Inbred line calves 

WS Weaning score 
M 	Males only W/A Weight per day of age 

C 	Corrected for inbreeding effects 
MS 
VS 

Musle score 
Yearling score GS 	Generations of selection YG Yearly grade G.I 	General 	Interval 

SF 	Percentage average inbreeding coefficient 
 VI 	= Yearling index composed of adjusted weaning and 

114W = 	Weaning weight (selection on the basis of individual and progeny 
yearling weight, cow 
weaning weight 

fertility and maternal 

performance 
FE 	Feed efficiency - kg gain/100 kg TON 	(Bailey et al., 1971) 

* 	= 
** Values were estimated 

units (Nwakalor et al., 	1986a,b) 
= Selection differential in standard units per year 
= Genetic change in kg/year for growth traits 



showed that mating of bulls selected on the basis of yearling weight 

(average age of sire 2 years) doubled with the rate of response 

compared to a scheme whereby bulls were selected on 18 months weight 

(average age of sire 3 years) with the same selection pressure 

applied. They did not indicate what proportion of the difference in 

response could be attributable to reduction of generation interval or 

to the difference in genetic variance between yearling and 18 months 

weights. Koch et al. (1982) mention that the average age of dams 

could be significantly reduced by use of multiple ovulation and 

embryo transfer. 

(ii) 	Selection differential 

Mid-parent selection differentials, converted to standard 

deviation units and expressed on an annual basis to allow comparisons 

of selection intensities for different traits and between 

experiments, are given in Table 2.1. In most experiments about 0.20 

standard deviation of selection per year had been reported for single 

trait selection on the basis of individual performance, about 2 

percent of the mean for traits with a coefficient of variation of 

10%. Sire selection accounted for about 70-85% of the total 

selection intensity achieved (Chevraux and Bailey, 1977; Buchanan et 

al., 1982a; Frahm et al., 1985a; Aaron et al., 1986a). 

The comparison of actual and maximum potential selection 

differential provides an evaluation of the effectiveness of selection 

that actually occurred relative to the maximum potential, that is, if 

the highest ranking' individuals were used as replacements. In 23 

experiments studied about 80% of the maximum selection differential 

for sires and dams was achieved. This was about 90 to 100 percent 
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in sires and 50 to 74 percent in dams. 	Inability to achieve the 

maximum possible selection differential has been attributed to 

unsoundness, colour markings, death before production of any 

offspring and failure of heifer to conceive. 

Some of the effects of natural selection on artificial 

selection can be assessed by the ratio of the actual selection 

differential in parents leaving progeny to that expected from 

individuals chosen for breeding (Falconer, 1981). Irgang et al. 

(1985a) selecting for weaning and post weaning gain, did not observe 

any effects of natural selection. 

Selection for growth at one stage of life either in a form 

of single trait or index is usually accompanied by positive secondary 

selection differentials for growth at other stage of life (Table 

2.2). From the reports of Koch et al. (1974a), Buchanan et al. 

(1982a), Frahm et al. (1985a) and Aaron et al. (1986a) the secondary 

selection differential obtained for weaning weight in lines selected 

for yearling weight was about 76% of the selection differential 

obtained by direct selection for weaning weight. On the other hand, 

the secondary selection differential for yearling weight in line 

selected for weaning weight was about 80% of the selection 

differential for yearling weight from direct selection. These 

figures could be attributed to the strong genetic correlation between 

weaning and yearling weights. Frahm et al. (1985b) reported a 

realised genetic correlation of 0.69 between weaning and yearling 

weights. The secondary selection differential obtained by Irgang et 

al. (1985a) for post weaning weight in the post weaning gain line was 

only 37 percent of the selection differential for weaning weight by 

direct selection. The realised genetic correlation for weaning and 
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post weaning gain was 0.63+0.16. 	The secondary annual selection 

differentials for birth weight resulting from selection on either 

weaning or yearling weights were of about the same magnitude (0.10 

standard deviation). Selecting on the basis of a yearling index 

composed of adjusted weaning and yearling weight, cow fertility, and 

maternal weaning weight, Nicoll and Johnson (1986) reported that 

secondary selection differential accumulated at the annual rate of 

0.17 and 0.25 standard deviation per year respectively for cow 

fertility and cow maternal weaning weight; which they claim to be 

probably the first estimates for these two traits in beef cattle. 

(iii) 	Genetic Change and Realised Heritability 

A summary of the various techniques used to evaluate genetic 

trends in beef cattle is given in section 2.2. Here, the various 

methods used by different workers and estimates of realised 

heritability (h2 
 ) obtained are presented in Table 2.1. 

Koch et al. (1982), from a review of selection experiments 

in beef cattle, concluded that the unweighted averages for h were in 

agreement with heritability (h 2 ) estimates from paternal half-sibs or 

offspring-sire regression. The average values of h they presented, 

and those from the summary of literature values reported by 

Wol dehawari at, Talamantes, Petty and Cartwright (1977) were 

respectively: birth weight 0.46 and 0.45, weaning weight 0.21 and 

0.26, postweaning gain 0.36 and 0.34, final weight 0.36 and 0.46 and 

gain efficiency 0.23 and 0.38. Most subsequent reports in the 

literature have been in agreement with these values. Frahm et al. 

(1985b) and Aaron et al. (1986b) respectively obtained pooled 

estimates of 0.24+0.04 and 0.30+0.03 for weaning weight and 0.14+0.05 
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and 0.34+0.03 for yearling weight. 	Irgang et al. (1985b) found a h 

of 0.25+0.11 and 0.18+0.09 for weaning weight and post weaning gain 

respectively by deviation from a control group. They however 

obtained a very low estimate of 0.05+0.05 for weaning weight using 

multiple regression procedures. 

The average rate of genetic change computed from reports in 

the literature (see Table 2.1) were 2.65, 1.15 and 2.21kg per year 

respectively for yearling weight, weaning weight and postweaning 

gain. The estimates were obtained from 9, 10 and 3 experiments 

respectively, where the traits were either selected on their own or 

in an index. Bailey et al. (1971) reported a rate of 0.17kg 

gain/lOOkg total digestible energy (TDN) per year for efficiency of 

gain. Following the example of Smith (1984) the annual genetic 

changes achieved by various workers were expressed as a percentage of 

the mean performance (Table 2.1). The average rate of genetic 

change averaged 0.63, 0.80 and 2.03% per year for weaning weight, 

yearling weight and postweaning gain respectively. Smith (1984) has 

indicated that the possible rate of genetic change in growth rate 

expressed as a percentage of the mean is 1.4% per year. Thus the 

achieved responses are somewhat lower than the possible responses in 

weaning and yearling weight, but higher for postweaning gain. The 

rates of genetic change from selection experiments are higher than 

those that have been realised in industry (see Smith, 1984). 

(iv) 	Correlated responses 

There is a positive correlation between growth at one stage 

of life and growth or body size at other stages. The estimates of 

genetic correlation among birth weight (BW), preweaning gain (WG) and 
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TABLE 2.2. 

Summary of correlated responses to selection on growth traits in beef cattle 

Realised 
genetic 

	

Secondary selection diffurential* 	 Correlated responses** 	 correlations 

Selection 
Author(s) 	criteria 	BW 	14W 	WG 	PG 	YW 	MS 	FE 	YS 	SW 	WW 	WG 	PG 	YW 	MS 	FE 	YS FAT 

Flower et. 	WWtPG 	0.09 	 0.13 	 0.44 
al. (1969) 

rQ 
Brinks et. 	WIftWS+PG 	0.08 	 0.16 	 0.18 	 0.20 -0.13 a). (1965) 

Bailey et. 	 PG 	 0.20 0.03 	 0.42 	 PG,FE 	0.98* a). (1971) 	 PG 	 0.09 	 0.05 	PGYS 	1.08* 

	

FE 	 0.14 	 0.04 	 1.12 

	

FE 	 0.17 	 0.92 

	

YS 	 0.05 	 0.04 	 1.23 0.11 

Frahm and 	 PG 	 0.05 0.48 
Lalande (1974) 

Anderson et. 	YW 	 0.03 0.71 
al. (1974) 

Koch et. 	 14W 	0.08 	0.19 0.09 0.18 0.04 	 0.18 	4.30 4.76 2.61 0.02 	 WW,yW 	Q • 34* 
a). (1974) 	 YW 	0.08 0.14 0.13 0.18 	0.10 	 0.22 0.77 2.76 7.82 	0.01 

	

YW+MS 	0.08 0.11 0.10 0.15 	 0.22 0.68 2.54 7.48 

Chevraux and 	PG 	 0.06 	 3.47 
Bailey (1977) 



WW 0.13 0.22 0.08 	0.20 	0.15 
YW 0.11 0.17 0.16 0.20 	0.10 

YW+MS 0.12 0.17 0.15 0.18 

WW 0.09 0.20 0.06 	0.17 
YW 0.11 0.85 0.17 0.17 

1414 
PG 

1414 0.10 0.23 0.03 	0.16 
11414 - - - - 

YW 0.10 0.16 0.15 0.18 

Buchanan et. 
al. (1982) 

11 

Frahm et a). 
(1985) 

irgang et. 
al. (1985) 

Aaron et. 
a). (1986) 

0.27 	3.83 	-1.6 1.51 0.55 
0.24 0.91 3.38 0.80 

-0.0 3.52 0.97 	0.23 
0.10 5.60 1.97 	0.02 

0.24 5.91 4.43 	2.10 
8.71 9.70 	3.50 

0.45 1.52 	5.21 12.34 

	

WW,YW 	0.69 

	

0.17 WW,PG 	0.63 
0.16 

	

14W,YW 	0.79 

TABLE 2.2. (continued) 

Summary of correlated responses to selection on growth traits in beef cattle 

Secondary selection differential* 

Realised 
genetic 

Correlated responses** 	 correlations 

Author(s) 

Martin and 
Alenda (1982) 

Selection 
criteria 	BW 	1414 	WG 	PG 	YW. 	MS 	FE 	YS 	OW 	14W 	14G 	PG 	YW 	MS 	FE 	YS 	FAT 

YW 	 0.14 	14.0 

* 	
Secondary selection differentials in Standard units per year -- 	
Correlated responses in kg/year for BW, 1414, YW, grams per day per year for 14G, PG sin per year for fat, feed/gain/year for FE (Irgang 
et al., 1986c) and kg gain/lOOkg TDN (Bailey et a)., 1971) 
Realised genetic correlations estimated from data 

See Table 2.1 for explanation of symbols for traits 



postweaning gain (PG) reported by Koch et al. (1982) from the 

literature were BW and WG, 0.34 to 0.36, BW and PG, 0.34 to 0.51, WG 

and PG, 0.16 to 0.22. Brinks et al. (1965) reported genetic 

correlations of 0.65, 0.55 and 0.79 between mature weight and weight 

at birth, weaning weight and 18 month weight. Thus selection for 

body weight at any age usually results in correlated responses in 

body weight at all other ages. A summary of correlated responses 

resulting from selection on growth rate is presented in Table 2.2 and 

is discussed below. 

a) 	Birth weight, calving difficulty and calf mortality 

One of the major criticisms of selection for growth rate is 

the associated problem of increased birth weight and in some cases an 

increased incidence of calving problems and calf mortality (Barlow, 

1978). It seems however that much criticism, especially concerning 

calving difficulty and calf mortality, has been based on reviews of 

correlations between growth rate and incidence of dystocia and not on 

empirical evidence from selection experiments. With the exceptions 

of Frisch (1981) and Bailey and Lawson (1986), positive correlated 

responses were reported by most other workers for BW. The average 

rates of correlated response in BW from single trait selection 

experiments for weaning weight and yearling weight respectively were 

0.17 and 0.21 (about 0.38 and 0.47% of the mean resectively). Thus 

the correlated response for BW resulting from direct selection for 

yearling weight is slightly higher than from selecting for weaning 

weight. Buchanan et al. (1982b) reported genetic correlations of 

0.56 and 0.63 between BW and weaning weight and yearling weight. 

In a trial to evaluate the effect of selection for growth 
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rate on calving difficulty and calf mortality, Koch et al. (1982) 

found that birth weights, calving difficulty and calf mortality 

increased significantly in offspring of 2-year old heifers in a line 

of Hereford selected for growth rate. In older cows, there was 

little difference in calving difficulty (Baker and Morris, 1984). 

However in the divergent lines of Angus cattle selected for growth 

rate in the Trangie Agricultural Research Station, Australia, there 

had not been any adverse effects on fertility or any calving problems 

in either heifers or cows in spite of 20 percent different in growth 

rate between the high and low lines (Baker and Morris, 1984). The 

high line was just as fertile as the control line and had fewer 

calving problems in heifers than the control. 	The ratio of birth 

weight and pelvic area has been identical in the 3 lines. 	Similar 

reproductive performance has been reported for the selection 

experiment for yearling or 18-months weight at Waikite, New Zealand 

(Baker etal., 1980). 

Frisch (1981), selecting a line of Hereford x Shorthorn 

cattle for higher growth rate under conditions of moderate to high 

environmental stress, reported that birth weight has declined in the 

selected line relative to the control while live weight at all other 

ages has increased significantly in the selected line. At the same 

time, calf mortality has been lower, with heifer calving rate higher 

in the selected line than in the control. These results were 

attributed to the effects of stress conditions of the tropical 

climate. More recently, Bailey and Lawson (1986) reported a 

significant decline in BW in a line of Hereford selected for 

increased postweaning gain for 12 years and no change in BW in an 

Angus line selected on the same criterion. Interestingly, 
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Luesakul-Reodecha, Martin and Nelson (1986) obtained a significant 

trend of -0.4 for dystocia score in an Angus line selected for 

yearling weight for 19 years. These trends seem to disagree with 

the commonly held opinion that selection for growth is accompanied by 

increased birth weight and dystocia. Recently, Kress, Nelvins, 

Anderson, Doornbos and Linton (1987) demonstrated how increases in BW 

can be restricted while selecting for increased body weight by means 

of an index. Using an index with a negative and positive weights on 

BW and yearling weight respectively, they reported an annual genetic 

change of -0.2kg/yr for BW and a positive trend of 2.8kg/yr for 

yearling weight in Hereford cattle. 

b) 	Other growth traits: 

The correlated response in weaning weight obtained from 

direct selection for yearling weight by Koch et al. (1974b) and Frahm 

et al. (1985b) was on average about 81% of the direct response for 

weaning weight. The correlated response reported by Aaron et al. 

(1986b) for weaning weight from direct selection for yearling weight 

was greater than the response from direct selection (1.52 vs. 1.45 

kg/year). On the other hand, the corresponding correlated response 

for yearling weight as a result of selection for weaning weight was 

about 67% of the direct response for yearling weight. It seems 

therefore that selection for yearling weight had resulted in more 

improvement in weaning weight than the reverse. 	The above results 

were from single trait selection experiments. 	Selecting for weaning 

weight on the basis of combined individual and progeny performance, 

Aaron et al. (1986b) reported that the correlated response for 

yearling weight was equal to the response from direct selection on 
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individual performance. 

The average annual correlated response for preweaning daily 

gain from reports in the literature were 4.30 and 3.63g/day 

respectively from selection for weaning weight and yearling weight. 

Corresponding annual estimates for post weaning growth rate were 4.30 

and 9.23g/day. 

There are not many reports on feed efficiency. 	Koch et al. 

(1982) reported that bulls from lines selected for growth rate had a 

significantly higher feed efficiency on test. The correlated 

responses in the weaning weight line and yearling weight line were 

0.39 and 0.57 kg per Mcal of metabolisable energy (ME) respectively. 

Irgang et al. (1985c) did not observe any significant correlated 

response for feed efficiency from selection for weaning weight or 

post weaning gain. 

Another criticism against selection on growth rate is that 

it is usually accompanied by increased mature cow size. Baker and 

Morris (1984) mentioned that evidence from experiments on correlated 

responses in cow weight is somewhat fragmentary. The only result 

they mentioned indicated that selection for early growth led to 

increased cow size. Luesakul-Reodecha et al. (1986) reported a 

positive but non significant trends of 0.35 and 4.12kg/year for 

205-day and 54-month weight in Angus line selected for 365-day 

weight. However, Morris and Wilton (1978) in a review of the 

association between cow size and biological efficiency of 

reproduction, concluded that where all postweaning food requirements 

were added to the cow herd food costs, herd efficiency was little 

affected by cow size unless reproduction performance has also 

changed. 
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c) 	Carcass traits 

The genetic correlation estimates from the literature 

predict that selection for increased weight should result in reduced 

fatness at constant weight (Koch et al., 1982). However, much 

experimental evidence seems to indicate no significant correlated 

response in carcass traits from selection for growth rate. 

Gallagher (1964) reported no significant differences between carcass 

traits for progeny of bulls selected for fast or slow growth. The 

only consistent and significant correlated response in carcass traits 

in the selection experiment for yearling weight in the Shorthorn 

reported by Anderson, Fredeen and Weiss (1974), was a higher 

percentage of bone and a lower lean to bone ratio. Almost similar 

results were reported by Martin and Alenda (1982) for Angus cattle. 

The data of Koch et al. (1982) indicated a correlated response of 

-0.19, -0.03 and 0.23 mm per year in fat thickness at 281 kg body 

weight respectively from selection on weaning weight, yearling weight 

and on an index combining yearling weight and muscle scope. But, 

Irgang et al. (1985c) reported significant correlated responses of 

0.13+0.04 and 0.16+0.4mm fat depth per year in lines selected for 

weaning weight and post weaning gain respectively. 

Perhaps the level of feeding during the finishing phase may 

affect these correlated responses (Baker and Morris, 1984). For 

example, mice selected for high 6-weeks weight on a low plane of 

nutrition had a lower fat percentage at that age than mice selected 

on the same basis with adequate nutrition, when both lines were 

placed on the same nutritional plane (Falconer, 1960). 
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d) 	Milk yield in beef cattle. 

From literature estimates of the genetic correlation between 

direct and maternal effects for weaning weight (r g  = -0.43), Barlow 

(1978) concluded that selection for weaning weight would reduce milk 

yield. However, as pointed out by Baker (1980) and discussed by 

Baker and Morris (1984), most of the estimates summarised by Barlow 

(1978) were from dam-offspring relationships and they could be 

seriously biased by negative environmental covariance caused for 

example by levels of feeding for heifers. Baker (1980) mentioned 

that high levels of feeding either pre-weaning (mainly from milk 

production of the dam) or post-weaning (particularly high energy 

levels) reduce the amount of secretary tissue in the udder of 

daughters and their milk production, hence affect the weaning weight 

of their calves. In the absence of such negative environmental 

covariance arising from dam-offspring relationships, the genetic 

correlation betweem direct and maternal effects for weaning weight is 

lower, ranging from -0.05 to -0.28. 

Frahm et al. (1985b) reported that milk production was not 

significantly different between progeny sired by bulls selected 

either for weaning weight or yearling weight. However, butter fat 

percentage was 0.4 higher for progeny of bulls selected for yearling - 

weight. Aaron et al. (1986b) also obtained a similar result but in 

addition the daily milk production of progeny sired by bulls selected 

for weaning weight was significantly higher than the control. This 

indicates that selection for weaning weight may not necessarily lead 

to a reduction in milk production as Barlow (1978) mentioned; the 

result is more consistent with the explanations of Baker (1980). 

Lawson (1978) indicated that selection on postwéañing gain on a high 
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plane (HP)or low plane (LP) of nutrition resulted in a significantly 

higher solid-not-fat-and protein in the milk content of animals on LP 

relative to the HP in Hereford cattle. Also Angus cows from a line 

selected for postweaning gain on a roughage diet exceeded those 

selected for the same criterion on a concentrate - diet in milk yield, 

fat %, solids-not-fat % and protein % by 5.1%, 7.6%, 7.8% and 12.5% 

respectively (Bailey and Lawson, 1986). The last two results 

illustrate the effects of high plane of nutrition in prepubertal 

heifers of reducing mammary development as Baker (1980) indicated. 

2.3.2 Other selection experiments 

Other selection experiments not primarily concerned with 

growth may be grouped by their objectives: 

(i) 	Comparison of alternative selection schemes or methods 

Carter (1971) investigated the effectiveness of sire 

selection on the basis of either corrected weaning weight, corrected 

final weight or postweaning gain, by evaluating the performance of 

their progeny in a test herd for a period of 10 years. The 

regression of the performance of progeny on the performance of sires 

indicated that selection on either weaning weight or yearling weight 

should result in appreciable genetic gains. On the other hand, 

sire's post-weaning gain was a poor indicator of progeny performance 

for any criteria. 

Baker et a1 (1980) compared the effectiveness of selection 

in Angus cattle on 13-month liveweight (AS1) followed by first mating 

of selected animals at 14 months of age, with selection on 18-month 

liveweight (AS2), with first mating as 2 year olds. A yearly mated 
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TABLE 2.3 

Direct and correlated genetic responses to selection on either 
13-month or 18-month body weight in cattle (kg/yr) (Baker et al., 

1980) 

Line Birth weight Weaning weight 	13-month weight 18-month weight 

HS1 0.08 + 0.04 	0.88 + 0.4 	1.65 + 0.56(D) 	3.10 + 1.39 

AS1 0.25 + 0.05 	0.98 + 0.38 	2.56 + 0.55(D) 	2.71 + 1.01 

AS2 0.04 + 0.06 	0.34 + 0.32 	1.22 + 0.65 	1.48 + 0.96(D) 

D 	- direct response 

HS1 - Hereford line selected on 13-month liveweight 

AS1 - Angus line selected on 13-month liveweight 

AS2 - Angus line selected on 18-month liveweight 
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Hereford herd selected on 13-month weight (HS1) and a control line of 

Angus with mating as 2 year olds (ACO) were also kept. 	Relative to 

the control line, AS1 and HS1 improved in both 13-month and 18-month 

weights at about twice the rate at which AS2 improved. 	A summary of 

the preliminary results are presented in Table 2.3. 	The advantage 

of the selection scheme in AS1 and HS1 relative to that in AS2 is 

that it allows heifers to be mated at 2 years rather than the 

traditional 3 years in Australia and this can result in increased 

calf production and permit early identification of less productive 

females. This coupled with selection and mating of yearling bulls 

should increase annual genetic progress through reduction of 

generation interval. 

(ii) 	Response in synthetics and purebreds 

Berg (1984) carried out selection on 2 synthetic cattle 

populations and a purebred Hereford line to identify any superiority 

in response of the synthetic lines over the pure Hereford line due to 

a broader genetic base. One of the synthetic lines was developed by 

crossing Charolais, Angus and Galloway (SY1) while the second 

consisted of 60% of large dairy breeds (Holstein, Brown Swiss, 

Simental) with 40% of beef breeds (SD). The selection criteria 

were preweaning and postweaning gain at one year of age in the 

synthetic lines while industrial bulls selected on the basis of 

superior performance or progeny test were used by artificial 

insemination in the Hereford herd each year. 	A summary of results 

is present in Table 2.4. 	There were higher trends for the synthetic 

lines in cow productivity, birth weight and 365-day weight. 

However, industrial bulls used in the Hereford line were not 
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TABLE 2.4 

Comparative performance of Hereford cattle and two synthetic lines 
selected for growth rate (1962-1982) 

Cattle 
Populations 

Trait 	 HE 	SY 	 SD 

Calf crop % 	 78 	83 	 82 

Phenotypic trend (1962-1982) 

Birth weight (kg/yr) 	 0.17 	0.25 	0.34 

365-day weight (kg/yr in males) 	2.02 	4.36 	5.18 

Average performance (1977-1980) 

Feed efficiency 5.17 5.37 5.76 
(kg feed/gain) 

Average daily gain (kg/day) 1.34 1.57 1.46 

Dressing % 58.5 60.4 58.9 

Fat cover (cm) 1.38 1.11 0.88 

Loin eye area (sq cm) 75.6 89.6 86.9 

HE 	= Hereford 
SY 	= Synthetic line composed of Charolais, Angus and Galloway 
SD 	= 60% dairy breeds and 40% beef cattle breeds 
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subjected to the same amount of selection pressure nor selected on 

the same criteria as those used in synthetic lines. These 

differences could have affected the results. 

An experiment with similar objective has been initiated at 

Wokalup, Western Australia, in 1979 to compare the performance. of 

purebred Hereford cattle to a synthetic (Wokalup Multibreed) line 

(Anonymous, 1985). 

Similarly, Sharma et al. (1985) compared genetic response in 

a purebred Hereford and a multibreed synthetic line which were 

treated in the same way. The main selection criterion was weight for 

age in bulls at one year of age. Genetic trends were estimated by 

deviation from a control population and the best linear unbiased 

predictor (BLUP) using MIVQUE (minimum variance quadratic unbiased 

estimates) variance components estimated from the population. 	The 

summary of the results are presented in Table 2.5. 	Briefly, the 

mean selection differential was higher in the synthetics, which was 

attributed to the larger genetic base and greater variation in the 

synthetic line. Sire variance components were higher in synthetics 

than in Hereford and non-genetic sources of variation seem to be more 

important in the Hereford. The estimated genetic trends were 

similar for preweaning traits but slightly higher for postweaning 

traits in the synthetic population. 

(iii) 	Selection for disease or parasite resistance 

A few selection studies concerned disease resistance in beef 

cattle. Wharton, Utech and Turner (1970) reported heritability 

estimates of 39 and 49 percent for tick resistance respectively from 

dam-calf and full-sib correlations in the Australian Illawara 

39. 



TABLE 2.5 

Estimated genetic response per year to selection in purebred 
Hereford and a synthetic population (1966-1978) (Sharma et al., 

1983) 

Trait Mean MSD 

Annual genetic change 
estimated by 

Control 
population 	BLUP 

Birth weight HE 33.1 0.3 0.06+0.21 0.08+0.06 
(kglyr) SY 35.1 0.8 0.29 -0.22 0.07V0.06 

Preweaning daily HE 874 29.4 9.6+5.4 4.2+1.20 
gain (g/day) SY 1077 33.2 7.5+4.9 4.8V2.30 

Weaning weight HE 194 5.3 1.80+0.03 1.10+0.21 
(kg/yr) SY 233 7.2 1.64O.92 0.86O.43 

Postweaning daily HE 1297 33.9 13.72+44 17.93+11 
gain (g/day) SY 1399 46.7 48.12+49 31.25+11 

Yearling weight HE 418 12.2 5.81+9.39 8.21+6.00 
(kg/yr) SY 471 13.8 11.31:i12.17 6.782.15 

18-month weight HE 376 0.3 7.54+4.93 -6.10+2.10 
(kg/yr) SY 408 0.2 7.52.36 -11.9+2.50 

HE = Hereford line 
SY = Synthetic line (composed of 35.7, 34.7, 21.7, 4.5 and 3.4% 

respectively of Angus, Charolais, Galloway Brown Swiss and 
others. 

MSD = Mean selection differential 

:1. Males only 
Females only 
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Shorthorn cattle and proposed that selection for tick resistance 

might be effective. 	lJtech, Seifert and Wharton (1978) carried out 

divergent selection for tick resistance in a population of the 

Australian Shorthorn. 	All the cattle acquired their resistance by 

exposure to field infestation. 	Selection was based on the number of 

semi-engorged female ticks on animals grazing together in naturally 

infested pastures for a period of at least 3 weeks and also on the 

number of female ticks maturing after artificial infestation with a 

known number of larvae to determine resistance level. The line 

selected for high resistance carried significantly fewer ticks than 

the low line at all times on exposure to naturally or artificially 

infested pastures. 

A similar divergent selection experiment for high and low 

resistance lines to helminths, in particular Cooperia and Haemonchus 

has also been initiated in Australia (Anonymous, 1985). 

d) 	Effectiveness of selection for twinning 

Heritability estimates for twinning, reviewed by Maijala and 

Syvajarvi (1977) were about 3 percent, with repeatability of 6 

percent. With such low values, most workers have dismissed 

selection for twinning as impracticable and undesirable (see Morris, 

1984). 	Land and Hill (1975) have shown the importance of having a 

high initial herd average. 	They demonstrated theoretically that 

selection with the assistance of superovulation and embryo transfer 

should achieve genetic progress of 0.42% and 1.10% per year for 

initial herd twinning frequencies of 2% and 16% respectively. 

Mechling and Carter (1964) reported selection for twinning 

over 30 years in Aberdeen Angus but concluded that little real 
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progress had been achieved. 	In a recent review, Morris (1984) 

reported a series of selection experiments on twinning in Australia, 

USA, France and Germany. The frequency of twinning for daughters 

from second or later calvings reported were 

Australia 	8 percent from 76 calvings (controls 0.6 percent) 

USA 	 6.8 percent from 176 calvirigs (including first calving) 

and 

France 	11 percent from 89 calvings 

In the German experiment, comparison of twin-born and control 

(single-born) females showed a difference of 0.94 percent in 

twinning. 

(iv) Genotype x environment (gxe) interaction 

When gxe interactions are important, response from selection 

in one environment is not likely to be fully transferred to other 

environments. Under such situations, genes governing performance in 

one environment are not all the same as those governing performance 

in another environment and it might be necessary that selection of 

stocks should be done under the specific environment in which progeny 

of stocks will be reared (Falconer, 1981). 

A series of beef selection experiments aimed at identifying 

important line by location interactions have been reported by Butts, 

Koger, Pahnish, Burns and Warwick (1971), Koger, Burns, Pahnish and 

Butts (1979), Burns, Koger, Butts, Pahnish and Blackwell (1979) and 

Pahnish, Urick, Burns, Butts, Koger and Blackwell (1985) in Hereford 

cattle. Butts et al. (1971) investigated gxe in 2 herds of Hereford 
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-- cattle, each consisting of 2 lines, one herd at Miles City, Montana 

and one at Brooksville, Florida. A 7 year period of selection was 

followed by reciprocal exchange of animals. The primary selection 

criterion was an index with equal emphasis on preweaning and 

postweaning growth in bulls. They observed significant line by 

location interactions in birth weight, weaning weight, yearling 

weight and in pregnancy and weaning percentages. 

Koger et al. (1979) and Burns et al. (1979) evaluated gxe in 

reproductive traits, birth weight, and weaning weight in 4 lines of 

cattle which were partly a continuation of the work by Butts et al. 

(1971). In addition to 2 lines which were developed independently 

in Montana and Florida (unrelated lines), they had another pair of 

lines which were developed from the same base population in Montana, 

before undergoing subsequent selection in the two different locations 

(related lines). There are significant line by location 

interactions in preweaning rate, weaning rate, birth weight, and 

daily gain in the unrelated and related lines. However, line by 

location interaction was not significant for survival rate in all 

lines. Pahnish et al. (1985) examined line x location interactions 

for postweaning traits in the same populations. Significant line by 

location interactions were observed in the unrelated line for post 

weaning daily gain, end of test weight and conformation score. 	The 

same result was obtained for the related lines. 	Investigations to 

understand the mechanism underlying these interactions identified 

differences in thyroid function of these animals which could not 

however be related to the results. 	There were no differences in 

milk production. 	However the degree of gxe was not quantified in 

terms of genetic correlation between the same traits in the different 
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locations. 

Frisch 	(1981) 	investigated 	factors 	underlying 	gxe 

interaction in growth rate under tropical conditions by studying 

correlated responses to selection for growth under stressful tropical 

conditions. A line of cattle selected for growth rate from 

1970-1975 and a control line with significant differences in 

liveweight, were exposed to several different levels of stress: 

plane of nutrition, high ambient temperature, infection with bovine 

infectious keratoconjunctivitus (BIK) or gastro-intestinal helminths 

(GIH). The selected line was shown to be more heat tolerant, to 

have lower maintenance requirement, greater resistance to infection 

with BIK and GIH and, consequently, always had higher growth rate in 

the presence of these stress factors. 	However, they did not have 

superior growth rate at low levels of these stress factors. 	Thus 

reversal of rank between selected and control lines for growth rate 

under conditions of high and low level of stress could be attributed 

to differences in resistance to environmental stress and not in 

growth potential. 

The results of Pacer et al. (1986) seem to indicate some 

degree of interaction between line and plane of nutrition. While 

the Angus line selected for postweaning growth on a concentrate diet 

was significantly different from foundation animals in postweaning 

gain, weight per-day-of-age and final weight, a similar line selected 

on a roughage diet did not differ significantly in any of the above 

traits. 

2.4 	Discussion and conclusions 

Most early selection experiments suffered from inadequate 

44. 



designs in terms of small population size, high levels of inbreeding 

and inadequate means of measuring genetic trend. Many reports were 

without estimates of error variance and in the others the drift 

variance was not included. 

-- More recent experiments have shown improvement in design 

with larger population size and lower inbreeding rates. In 

addition, control populations or divergent lines have been maintained 

to measure the genetic trends. 

The positive genetic trends reported for growth traits 

indicate that direct selection for the improvement of growth traits 

is effective. Correlated responses in other growth traits from 

direct selection on yearling weight.were generally larger than those 

from weaning weight selection. Thus if the main objective is to 

increase weight in sire lines, selection on yearling weight is 

preferable. Experimental evidence seem to disagree with the 

commonly held opinion that selection for growth is necessarily 

accompanied by increased birth weight and dystocia. 

The rate of genetic change so far achieved in growth traits 

is somewhat lower than the possible rate indicated by Smith (1984). 

The lower rates of genetic change achieved in practice in beef cattle 

have been attributed by Smith (1986) to: 

concern about other traits of uncertain economic importance 

conservati*mof breeders 

selection and generation turnover rates which are not optimal. 

Land and Hill (1975), Smith (1984) and Land (1985) have 

discussed the possible ways by which the present rate of selection 
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response could be improved. 	One of the major limitations to genetic 

improvement in beef cattle is the low female reproductive rate which 

has restricted selection intensity among females. If the 

reproductive rate of female cattle could be increased, it would be 

theoretically possible to double the selection intensity applied to 

the population as a whole and hence double the rate of genetic change 

(Land, 1985). For traits which can be measured in both sexes before 

reproductive age, the rate of genetic change could be increased by 

1.6 times, by using multiple ovulation and embryo transfer (MOET) 

compared with normal reproduction (Land and Hill, 1975). 

Two other routes to faster improvement may be the use of 

major genes and indirect selection on physiological traits. An 

example of a major gene currently being exploited in breeding 

programmes in cattle is the double muscling gene which results in a 

higher yield of lean meat. Hanset and Michaux (1985) reported about 

30% higher total muscle weight in veal calves of Belgian White and 

Blue cattle homozygous for the double muscling gene compared with 

normal homozygotes. It is, however, associated with calving 

difficulties. 

Selection on physiological traits or biochemical factors, 

indicating or controlling performance, may allow indirect selection 

for commercial traits. This could offer a great scope for reducing 

the generation interval as animals could be selected early in life 

and may also be useful in selecting young males for sex-limiting 

traits. Presently, no such technique is available in beef cattle. 

However, the high and low growth rate lines of the Trangie 

Agricultural Research Station, Australia present a great opportunity 

to examine the biochemical and physiological components of response 
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to selection for growth rate. 

The reports in the literature show that improvement of 

growth traits still continues to be the main selection objective in 

beef cattle experiments with very little emphasis on other traits. 

The increasing demand for lean meat also implies that 

selection objectives in beef cattle should be broadened to include 

efficiency of lean production. Apart from the consumer's view, it 

had been suggested that the greatest scope for improving bio-economic 

efficiency in beef cattle other than through reproduction, is by use 

of faster growing lean terminal sires (Dickerson, 1982 and Barlow, 

1984). Selection for efficiency of lean production in live animals 

is possible by ultrasonic measurement of fat depth or area. Simm 

(1983) reported a correlation coefficient of about 0.70 between lean 

content estimated from ultrasonic measurements and carcass 

evaluation. 
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CHAPTER 3 

DESCRIPTION OF EXPERIMENTAL METHODS 



3.1 	Introduction 

In 1977 the then Animal Breeding Research Organisation 

(ABRO), now Institute of Animal Physiology and Genetics Research 

(IAPGR) established a 200 cow research herd of purebred registered 

Hereford cattle at its experimental farm at Cold Norton, 

Staffordshire, aimed at providing information on selection for 

efficienof lean meat production. The Hereford breed was chosen 

because it was then the dominant beef breed in the United Kingdom. 

The cows were purebred and registered to make the results relevant 

and applicable to cattle breeders. 

3.2 	Objectives 

The mean goal of the project was to test and select for 

efficient production of lean meat. This biological selection 

objective is closely related to commercial goals and parallels the 

current trend in beef cattle production with demands for higher 

growth rates and lower fat cover. There were two selection lines 

each of about 75 cows selected respectively for lean growth rate 

(LGR) and lean food conversion ratio' (LFCR). In addition, there 

was a genetic control line (CTL) and an open line (OPL) which was 

bred by artificial insemination from selected progeny tested 

Hereford bulls. 

In addition to the main selection programme, a continuing 

series of complementary research trials were carried out. These 

included, 

(i) 	comparison of sources of stock; which was aimed at testing 

differences among 
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females from performance tested herds, weight recorded herds and 

non-recorded herds, and 

males from Milk Marketing Board (MMB) progeny tests, Meat and 

Livestock Commission (MLC) performance tests, MLC progeny tests, 

unrecorded bulls and Canadian Hereford bulls 

(ii) 	examination of the value of ultrasonics for estimation of 

carcass composition in live animals. 

(iii) 	assessment of the effects of pre-test environments on 

performance test results. 	Bulls were weaned at 3 ages (birth, 84 

and 168 days) to measure pre-test effects. 

However this thesis is mainly concerned with the evaluation 

of response in the selection programme. Most of the results of the 

complementary research trials have been reported by Simm (1983) and 

Aragon (1985). 

3.3 	Herd establishment and experimental design 

The foundation cows were purchased from 62 pedigree herds 

throughout the United Kingdom so as to get a broad cross section of 

the breed. Approximately one third of the females came from herds 

which were performance tested, one third from other MLC weight 

recording herds and the remaining one third from non-recording 

herds. 

During 1977-1978, the females were bred largely by 

artificial insemination (Al) from some 48 bulls standing in Al 
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stations and private herds. 	After the two initial year period, the 

herd was closed and cows randomly alloted to the two selection lines 

(LGR and LFCR lines). Beginning with the 1978 calf crop, all bulls 

were ranked in 1979 and 1980 for LGR and LFCR and the best 6 for 

each trait were selected and used for mating by natural service in 

their respective lines. Each of the selected lines consisted of 

three replicates, with about 25 cows and 2 bulls per replicate. 

The control line consisted of about 35-40 cows derived from 

cows not in-calf or returning to oestrus in the foundation years. 

These were bred by frozen semen taken from a fixed panel of some 25 

bulls born in the project during 1978-1979. These were 

representatives of the original breeding stocks and so set a fixed 

genetic base or control from which to measure genetic trends in 

selected lines. The bulls on the semen panel were mated to each 

others daughters in a rotational order to minimise inbreeding in the 

control line. The control was also made up of three replicates, 

each of about 12 cows. 

The open line consisted of about 30 cows which were bred by 

Al from selected progeny tested Hereford bulls. The objective of 

this line was to demonstrate how a breeder could use test results 

effectively and to measure the genetic gains achieved. 

3.4 	Herd management 

3.4.1 Feeding 

Cows and heifers grazed on pasture when possible and were 

housed and fed indoors in winter (November to mid-March). 	The 

ration consisted of hay and barley. 	The levels of stocking and 

winter feeding were such as to avoid overfatness. 	Bulls were 
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usually performance tested and their feeding regime is described 

later. 

3.4.2 Mating 

Mating in the selection lines was restricted to three 

oestrus periods in July and August for calving in April and May 

mainly out of doors. 	Cows of good reproductive performance were 

usually kept 4 to 5 years for breeding. 	Cows riot in-calf or 

returning to oestrus were used in the foundation years to build up 

the control and open lines. Most of these were culled after 

calving or weaning but some were retained for a further year. 

Heifers produced in all lines were saved as replacements and were 

mated at 13-14 months of age to calve first at two years of age. 

3.4.3 Calf management 

Calves were born from April to May each year. 	Within 24 

hours of birth, all calves were tagged and tattooed for 

identification and birth weight recorded. Calving difficulty 

scores were assigned to each calf at birth following the scoring 

system used at Clay Centre, Nebraska, United States of America on a 

scale of one (no difficulty) to five (caesarean birth). The full 

description of score scales is given in chapter seven (Table 7.11), 

where calving difficulty is analysed. 	Heifer calves were allowed 

to run with their dams on pasture and received no creep feed. 	Cows 

whose calves were weaned early (see below) were milked through the 

milking parlour. Such cows were dried off when daily milk yield 

was less than 3kg per day. Heifer calves were weaned at 168 days of 

age from 1978 to 1983 and thereafter either at 98 to 126 days of 
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age. 

The first six bull calf crops (1978-1983) from the selected 

lines were weaned at one of three ages: 	at birth (after getting 

colostrum), at 84 and 168 days. 	This was designed to evaluate the 

effect of pre-test treatment on performance test results. 	The 

analysis of this aspect of the experiment has been reported by Simm 

(1983). The bull calves weaned at birth were housed in groups and 

fed milk and milk replacement at least twice daily on a scale up to 

10 per cent of their liveweight. The temperature of the calf house 

was kept low (under 55 °F) and calves were offered dry feed from 

birth ad libitum, to get them started on a pelleted feed. Calves 

were completely weaned from milk and milk replacement at 10 weeks of 

age and trained to use the Calan Broadbent feed gates. 

The other two groups of bulls calves weaned at 84 and 168 

days were creep-fed and put directly onto the test ration and 

trained to use the electronic gates. The performance test for LFCR 

commenced at 200 + 4 days and normally continues until 400 + 4 days 

of age. 	The test ration was a complete grass/barley pelleted diet, 

offered ad libitum. 	Nutrition information on the diet is given in 

Table 3.1. 

After 1983, all bull calves were weaned at about 84 days of 

age and had a similar postweaning management to those weaned at that 

age prior to 1983. 

3.5 	Selection criteria and procedure 

Bulls were selected on the basis of performance test up to 

400 + 4 days of age for LGR andon a 200-400 + 4 days test for LFCR 

in their respective lines. The bulls were scanned by ultrasonics 
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TABLE 3.1 

Nutritional information on the dried grass/barley complete 

diet 

Dry matter (DM) (g/kg) 	 910.1 

Crude protein (g/kg DM) 	 154.7 

Fibre (g/kg DM) 	 155.7 

Digestibility of organic matter in DM 

(in vitro) (g/kg) 	 745.5 

Metabolisable energy (derived) (W/kg DM) 	 11.7 

Based on 14 samples (Simm, 1983) 

53. 



towards the end of test on two occasions usually in April and May at 

three sites: the 10th, 13th rib and 3rd lumbar vertebrae. The 

scanning was carried out by personnel from the MLC and repeatability 

across sites and occasions varied from 0.5 to 0.81. Bulls not 

selected for breeding in the first four years of the experiment were 

slaughtered and dissected by the MLC and the Institute of Food 

Research (FRI), Bristol at about 400 days of age. Using the 

scanning results and the dissectible carcass lean on these bulls, 

lean percent was predicted as: 

L = E+bLF[(F_(W_t)bFw) - 

where 

L 	= 	predicted lean percent 

C 	= 	mean of dissectible carcass lean percent at 400 days 

(about 60%) 

bL.F = 	regression coefficient of lean percent on fat area 

bFW = 	regression coefficient of fat area on body weight at 

scanning 

F 	= 	fat area (cm 2 ) as determined by the scanogram 

= 	yearly mean for fat area (cm 2 ) 

W 	= 	body weight of animal at scanning (kg) 

= 	yearling mean for body weight (kg) 

Lean percent (LEAN) predicted from the individual bull fat areas 

were averaged over the six measurements. 
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Lean growth rate and lean food conversion ratio were estimated 

respectively as: 

LGR = GRT up to 400 days x LEAN x killing out percent. 

where 

final weight at 400 days - birth weight 

GRT = growth rate = 

400 days 

LFCR = FCR/(LEAN x killing out percent) 

where 

food intake on test (200-400 days) 

FCR = food conversion ratio = 

final weight day - initial weight 
(400 days) 	(200 days) 

A constant killing out percent of 57.7 estimated from the bulls 

slaughtered in the initial years of the experiment was used in 

estimating LGR and LFCR. The estimated LGR and LFCR were then 

adjusted for the effects of date of birth, dam's age and weaning 

type within years using the LSML76 program (Harvey, 1977). In 

addition, LFCR was adjusted for differences in initial weight at the 

beginning of test. 

Selection was then based on the adjusted LGR and LFCR in 

their respective lines. The bulls were ranked by their 

standardised deviation within their test groups and those with the 
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largest favourable deviation were selected within sire families and 

replicates. Attempts were made to select one male progeny from 

each of the two sires in each replicate, however with only four to 

eight bulls per replicate, it was sometimes necessary to select two 

male progeny (half sibs) from the same sire if there was no 

alternative bull or no other with good performance record. This 

occurred about one-third of the time and occasionally the spare bull 

chosen from the other sire was used to avoid close inbreeding. 

Selected bulls were used for mating only for one year in most cases. 

	

3.6 	Performance records 

In addition to LGR and LFCR, performance data such as birth 

weight, growth rate, lean percent, food intake (FEED) and food 

conversion ratio on test were also measured in recorded bulls. All 

calves born in the project were recorded for body weight at about 

one month intervals in early life or two months at older ages up to 

about 13 months of age for males and 48 months of age for females. 

Body measurements taken over the same age periods on both male and 

female calves were: head length, first rib width, hook width, 

wither height, body length and rump height at at about two months 

intervals. 	Scrotal circumference was measured also in male calves 

and reproductive performance of all heifers recorded. 	The 

reproductive traits analysed in this thesis included conception 

rate, age at first calving, calving date, calving difficulty score, 

calf mortality and calving interval. 

	

3.7 	Statistical analyses 

The statistical analyses of the data was centred on two 
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main issues : namely, estimation of selection pressure applied and 

estimation of realised direct and correlated responses in the 

selected populations. The details of the various statistical 

techniques utilised are given in the appropriate chapters but the 

general procedures followed are briefly outlined below. 

3.7.1 Estimation of cumulative selection differential 

Cumulative selection differential was estimated by the 

method of Pattie (1965) (the incorrect method, James (1986)) and 

that of Newman et al. (1973) (the correct method). Using the 

incorrect method, the individual cumulative selection differential 

of bulls was computed as the sum of the individual bull's deviation 

from its contemporary group and the average of the total selection 

differential accumulating through its parents. The correct method 

differs in that the individual bull's deviation was added to the 

average cumulative selection differential of all parents of the 

contemporary group. 

3.7.3 Estimation of direct and correlated responses 

Responses to selection were evaluated by three methods: 

(i) 	Deviation of selected lines from control 

Direct response to selection for LGR and LFCR in their 

respective lines were calculated as the deviation of the mean 

phenotypic performance of each selection line from the mean 

performance of the control. The same procedure was used to estimate 

correlated responses in secondary traits measured in recorded bulls 

in each selection line. The variance-covariance matrix -of response 
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that accounted for drift variance was estimated approximately by 

means of the relationship matrix. Realised heritability was then 

obtained for each selected trait as a generalised least-squares 

solution of the regression of response on cumulative selection 

differential. 

Prediction of progeny breeding value. 

The method is concerned with prediction of breeding values 

of progeny from their own performance and that of their parents, 

with account being taken of the changes in the regression 

coefficient in each generation of selection. The heritability that 

minimises the sums of squares of deviations between predicted and 

observed progeny value is an estimate of realised heritability (Juga 

and Thompson, 1988). The method utilises both ancestral and 

contemporary information and is therefore a combination of the 

correct and incorrect methods for estimating cumulative selection 

differential. Estimates of realised heritabilities were calculated 

for LGR and LFCR using this technique. 

REML to estimate (co)variance components and estimate 

genetic trend 

Estimates of variance components, heritabilities and 

genetic change for selected traits were obtained by univariate REML 

analysis of each trait in their respective lines only or with the 

control, fitting an individual animal model. Correlated responses 

for secondary traits in each selection line were estimated by 

multivariate REML analysis. To account for selection bias (see 

Thompson and Meyer, 1986), such multivariate analysis involves the 
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selected trait and secondary trait of interest using only the 

selected line or with the control. Correlated responses estimated 

from all three lines, that is, both selected lines plus the control 

usually involved multivariate analysis on both selected traits and 

the secondary trait of interest. 
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CHAPTER 4 

MEASUREMENT OF SELECTION APPLIED 



4.1 	Introduction 

This chapter examines the amount of selection pressure 

applied in the selected lines. General information about the 

population in terms of means and standard deviation of traits, 

inbreeding and generation interval within lines is presented. The 

various methods of estimating cumulative selection differential with 

overlapping generations are examined. 

4.2 	Materials and methods 

4.2.1 	Management of animals 

The management of animals, the structure of the selected 

lines and the selection procedure have been given in chapter three. 

4.2.2 	Statistical analysis 

(i) Generations of selection, generation interval and 

inbreeding coefficient 

Generations of selection (GS) in both lines were obtained 

from generation coefficients which were calculated by the procedures 

developed by Brinks et al. (1961). The generation coefficient (GC) 

of an individual is the average number of Mendelian segregations in 

its pedigree back to ancestors in the foundation population and 

measures one more than the number of generations of selection, 

therefore, GS were obtained by subtracting one from the GC. Sires 

(s) and dams (d) utilised in the foundation population were given a 

GC of zero: 

GCS = GC  = 0, 

ip 



for selected bulls (b): 

GC  = 1 + 0.5 (GC 
S 

+ GC d ) 

For heifers (h) utilised in the breeding herd, since they were 

u n se 1 e c ted: 

GC  = 0.5 (GC5 + GC d ) 

Generation interval was calculated as the average age of 

parents when their progeny were born. Inbreeding coefficients of 

dams and calves were calculated directly from pedigree information 

from the base year of 1978. The GS, generation interval and 

inbreeding coefficients were all calculated within replicates and 

summarised per line. 

(ii) Selection differential 

(a) 	Adjustment for fixed environmental effects 

Least squares analysis of variance within years was carried 

out on each trait using the LSML76 program (Harvey, 1977) to adjust 

data for fixed effects. The fixed effects fitted were: 

1 	weaning type; at birth, 12 weeks and 24 weeks of age (see 

Chapter 	three), 

2 	dam age 	the age of dam at the time of her progeny's 

birth, which could be 2, 3, 4 to 6 or more than 6 

years of age and 

3 	birth date: 	which was fitted as a covariate. 
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All traits were adjusted for the above factors irrespective 

of significance of the effects. 	In addition LFCR, FCR and FEED 

were adjusted for initial weight at the beginning of test. 	In the 

first four years of the experiment, the dam age adjustment factors 

used were those derived from the analyses of each respective year's 

data. However in subsequent years, the dam age adjustment factors 

used were pooled estimates from the first four years of the 

experiment when the dams used consisted mainly of foundation cows. 

It was assumed that, because younger dams used in later years were 

progeny of selected bulls, adjustment for dam age may wrongly 

introduce a bias in selection response, since dam age is confounded 

with cumulative selection differential in females. The pooled dam 

age adjustment factors are shown in Table 4.1. The adjusted data 

were used in the calculation of selection differentials. 

(b) 	Cumulative selection differential 

The cumulative selection differential (CSD) measures the 

total amount of selection pressure applied up to a particular time. 

When compared with the total direct response for a particular trait, 

CSD can be used to evaluate the effectiveness of selection. In 

species with discrete generations, CSD can be calculated by simply 

adding selection differentials of successive generations. However, 

where there is considerable overlap in generations, a procedure 

which combines information across years is required, since the 

parents of any progeny crop will have different numbers of 

generations of selection behind them. 

Cumulative selection differentials for LGR and LFCR were 

estimated in both lines by two commonly used methods when 
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TABLE 4.1 

Pooled additive correction factors for age of dam used to adjust 
traits 

Traits 

Age of dam (yrs) BWT LP FEED GRT LGR FCR LFCR 

2 3.3 -0.5 2.0 15.0 2.3 3.0 1.0 

3 0 3.8 -7.5 3.25 4.8 -6.0 -1.25 

4-6 -2.3 2.8 20.8 -17.5 -2.8 7.0 0 

7 and above -1.5 -5.0 -15.0 -0.8 -1.0 -1.8 0 
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generations are overlapping: 

The technique used by Pattie (1965) and described by Turner 

and Young (1969); and 

The method of Newman et al. (1973). 

A contemporary group is defined as a group of calves of the same 

sex, born in the same year and line. Using Pattie's method, an 

individual selection differential (ISO) was calculated as the 

deviation of the individual's performance from its contemporary 

group. An individual cumulative selection differential (ICSD) was 

calculated as the sum of the ISO and the average of the cumulative 

selection differential of its parents, the selection differentials 

for parents of calves in the foundation herd being set to zero. 

Thus for selected bulls, 

ICSD = ISO + 0.5 (1CSD5 + ICSDd) 

and for heifers, 

ICSD = 0.5(ICSO5 + ICSDd) 

where 

ICSD 5  = individual cumulative selection differential of sire 

ICSDd = individual cumulative selection differential of dam 

The cumulative selection differential 	for each calf birth 
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year-line-sex subclass was calculated as the mean of the CSD of 

all calves of one sex born in the same line and year. 

The method of Newman et al . (1973) is similar to that of 

Pattie's except for estimating ICSD. The ICSD was calculated as 

the sum of the ISD and the mean accumulated selection differential 

(MAS) for the contemporary group, the MAS for the contemporary group 

being calculated as half of the weighted average CSD of all sires 

plus the average CSD of all dams which produced the contemporary 

group. The ICSD of an individual can be thought of as the average 

prior selection practised for the contemporary group plus the 

additional selection practised on the individual. Thus for 

selected bulls, 

ICSD = ISO + 0.5 (ICSD55 + IC ) dd) 

and for heifers, 

ICSO = 0.5 ( ICSD 5  + ICSDdd) 

where 

ICSD 55  = weighted average ICSD for all sires of the contemporary 

group 

ICSDdd = weighted average of the ICSD for all dams of the 

contemporary group 
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The same procedures were utilized to calculate cumulative selection 

differentials for 8W, LEAN, feed intake (FEED), growth rate (GRT) 

and food conversion ratio MR) (secondary cumulative selection 

differentials) resulting from the direct selection of LGR and LFCR 

in their respective lines. 

James (1986) showed that Pattie's method was biased upwards 

and tends to underestimate realized heritability. Atkins (1985) 

had earlier reported that the method of Pattie (1965) overestimated 

CSD by about 15 to 20 percent in lines of sheep divergently 

selected on an index of cannon bone length at 8 weeks of age 

adjusted for body weight. James (1986) showed that the ICSD 

estimated by the method of Pattie (1965) is essentially the sum of 

the individual's deviation and all of its parental deviations 

weighted by their genetic contribution to the individual. He 

argued that better parents in any generation will tend to have above 

average progeny and so will have more progeny than the average of 

those selected. Thus, their genetic contribution to the 

grand-progeny generation will be greater than to the progeny 

generation and so higher deviations will receive progressively more 

weight for some generations. 	The result will be an upwards bias in 

cumulative selection differential. 	James therefore considered the 

method of Newman et al. (1973) to be the correct method (CM) and 

that of Pattie's as incorrect (1CM) under situations where 

generations are overlapping. 

However, Juga and Thompson (1988) argued that both the 

correct and incorrect methods are compromises of a more general 

scheme or method. Although the correct result takes account of the 

genetic worth of the contemporaries that contribute to the selection 
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differential, it ignores individual parental values and it may not 

always be very clear how to group individuals with overlapping 

generations. The incorrect method on the other hand uses parental 

values but does not take account of the genetic worth of 

contemporaries. Juga and Thompson (1988) therefore proposed a 

general method which uses direct ancestoral information and 

resulting changes in regression coefficients each generation due to 

selection to predict breeding value of progeny which can be used to 

estimate realised heritability in populations with overlapping 

generations. 	The general method tends to the CM as heritability 

approaches one and to the 1CM as heritability goes to zero. 	Since 

the general method is essentially concerned with estimating realised 

heritability, a detailed account of the method is given in chapter 

five which deals with evaluation of selection response. 

(c) 	Actual and maximum potential selection differentials 

Actual (effective) selection differential (EFSD) per 

generation was calculated as the weighted average of the ISD of 

selected bulls, the weight given to each sire being his 

proportionate contribution to the individuals that were measured in 

the next generation. Expected (unweighted) selection differential 

(EXSD) was calculated by simple averaging of the ISD of selected 

bulls. 	The weighting of the selection differential partly accounts 

for the effects of natural selection; 	therefore a comparison of 

EFSD and EXSD may be used to discover whether natural selection is 

operative (Falconer, 1981). Annual selection differential (ASD) 

was calculated by dividing the weighted average of the ISD of 

selected bulls by their respective age at the birth of their 
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progeny. 

Maximum potential 	selection differential 	(MPSD) was 

calculated by averaging the ISD of bulls (the same as were actually 

selected) with the largest value for the primary criteria in each 

line. Comparing the EXSD and MPSD provides an estimate of the 

proportion of the possible selection that was applied towards the 

primary trait in each line. The EFSD, EXSD, ASD and MPSD were all 

estimated within replicates and summarised per line. 

4.3. 	Results 

4.3.1 	General 

Over the seven years of selection, a total of 175, 150, 77 

and 46 progeny were measured in the LGR, LFCR, CTL and OPL lines 

respectively. 	A classification of the number of male calves by 

year and line is shown in Table 4.2. 	Line means pooled across 

years and standard deviations calculated from sums of squares pooled 

across all line-year subclasses are presented in Table 4.3. 

4.3.2 	Generations 	of 	selection, 	generation 	interval 	and 

inbreeding coefficients 

The generation turnovers represented in the 1986 calves 

were 1.51 and 1.50 respectively in the LGR line and LFCR lines 

(Table 4.4). 	Thus the generations. of selection were the same in 

both selected lines. 	Similarly, generation interval was the same 

in both selected lines, 2.4 years; and showed very little variation 

from year to year during the duration of selection. Over the whole 

period of selection, the average age of sires was 2.01 years in the 

LGR line and 2.07 years in the LFCR line while corresponding average 
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TABLE 4.2 

Classification of number of recorded male 
animals recorded by year and line 

Calf 
birth 
Year LGRL 

Lines 

LFCRL CTL OPL 

1980 40 28 - - 

1981 20 26 9 2 

1982 19 31 12 1 

1983 32 22 8 6 

1984 22 18 17 7 

1985 19 7 13 10 

1986 23 18 18 20 
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TABLE 4.3 

Line means and pooled within line and year standard deviationfor traits 

Line mean 
Standard 
deviation 

Trait 	 LGRL 	LFCRL 	CTL 	OPL 

BW (kg) 33.67 33.69 32.71 32.79 3.19 

F 	 LEAN (%) 60.09 60.35 59.76 60.24 2.30 

FEED 	(kg) 1326 1350 1361 1262 122 

GRI (g/day) 9540 907.9 887.5 976.6 78.5 

LGR (g/day) 329.6 314.6 304.6 335.1 30.2 

FCR (kg feed/kg gain) 5.98 6.01 6.38 5.47 0.60 

LFCR (kg feed/kg lean gain) 17.03 17.22 18.39 15.54 1.74 



-J 

TABLE 4.4 

Generation interval, generations of selection and inbreeding per year 

L G RL 
	

L FC RL 

Year 

No. 
of 
Sires 

L 
GS 

FD FC 
% 

No. 
of 
sires 

L 
GS 

FD FC 

1980 5 2.02 0.50 0.0 0.0 5 2.08 0.50 0.0 0.0 

1981 5 2.06 0.50 0.0 0.0 6 2.23 0.48 0.0 0.0 

1982 6 2.52 0.80 0.0 0.88 8 2.59 0.75 0.0 0.34 

1983 6 2.61 0.87 0.0 1.98 6 2.40 0.85 0.0 1.24 

1984 6 2.66 1.13 0.20 2.66 6 2.63 1.09 0.30 1.55 

1985 6 2.73 1.26 0.75 4.04 6 2.47 1.25 0.83 3.32 

1986 8 2.44 1.51 1.83 2.58 6 2.51 1.50 1.53 3.58 

L = generation interval in years 
GS = generations of selection 
FD = darn inbreeding coefficient 
FC = calf inbreeding coefficient 



ages of dams were 2.86 and 2.76 years respectively. 

Inbreeding coefficients of dams were about the same in both 

lines but inbreeding coefficients of calves were slightly higher in 

the LFCR line compared with LGR line (2.58% versus 3.58%) in the 

final year of selection (Table 4.4). The average inbreeding 

coefficient of calves was unusually high in the LGR line in 1985 

(4.04%); this was due to the fact that the selected bulls and some 

of the dams used for mating in one of the replicates this year were 

paternal half sibs. 

4.3.3 	Selection differential 

(i) Cumulative selection differential 

The CSD for LGR and LFCR classified by year and line are 

presented in Tables 4.5 and 4.6; and are illustrated in Figures 4.1 

and 4.2. In the LGR line, cumulative selection differentials for 

LGR were 58.8g/day (1.97 standard deviation units (sDIJ)) and 

56.9g/day (1.90 SDtJ) by the correct and incorrect methods 

respectively, and corresponding estimates for LFCR in the LFCR line 

were -3.17kg feed/kg lean gain (-1.82 SDU) and -3.3kg feed/kg lean 

gain (-1.86 SDLJ). There was not much difference between estimates 

of CSD by the correct and incorrect methods but the estimates tend 

to be slightly lower for the incorrect (Figures 4.3 and 4.4). 

Similarly, estimates of primary CSD for LGR and LFCR obtained on a 

line basis, that is, ignoring replicates, did not differ much from 

estimates for each trait obtained as a weighted average of CSD 

calculated within replicates (Tables 4.5; 4.6 and Figures 4.5 and 

4.6). This indicates that selection within replicates did not 

drastically affect the total 	amount of selection applied. 
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TABLE 4.5 

Primary 	and secondary cumulative 	selection differentials for 	lean growth 
rate (g/day) 

LGR line LFCR line CTL 
line 

Calf  
birth b 
Year Pooleda Line basis Pooled Line basis Pooled 

CM 1CM CM 	1CM CM 1CM CM 1CM CM 

1980 19.13 19.13 19.13- 	19.13 20.00 20.00 20.00 20.00 - 

-I 

1981 28.68 28.68 28.63 	28.63 9.25 9.25 9.25 9.25 1.20 

1982 42.27 42.46 45.87 	46.45 12.62 13.46 13.05 13.63 9.60 

1983 36.25 35.97 35.65 	35.23 29.06 31.16 29.66 31.19 7.51 

1984 48.52 46.72 48.06 	46.91 17.17 17.74 16.02 17.38 4.97 

1985 53.14 51.74 53.63 	53.39 35.01 36.57 31.91 35.91 4.62 

1986 59.51 57.56 61.17. 	60.83 35.20 37.99 36.21 40.14 14.94 

weighted average of 3 replicates 
estimate ignoring replicates 

CM 	= correct method 
1CM = incorrect method 



TABLE 4.6 

Primary and secondary cumulative selection differentials for lean food 
conversion ratio (kg feed/kg lean gain) 

LGR line 	 LFCR line 	 CTL 
line 

Calf 
birth Pooled a 

b 
Line basis Pooled Line basis Pooled 

Year 

CM 1CM CM 1CM CM 1CM CM 1CM CM 

1980 0.16 0.16 0.16 0.16 -1.30 1.30 1.30 -1.30 - 

1981 -0.35 -0.38 -0.35 -0.35 -1.46 -1.46 -1.46 -1.46 0.17 

1982 -1.76 -1.74 -1.69 -1.90 -2.11 -2.02 -2.13 -2.06 0.13 

1983 -0.46 -040 -0.48 -0.39 -2.69 -2.69 -2.62 -2.52 -0.42 

1984 -2.18 -2.19 -2.15 -.225 -2.39 -2.22 -2.43 -2.25 -0.28 

1985 -1.33 -1.27 -1.39 -1.32 -2.51 -2.43 -2.53 -2.43 -0.10 

1986 -1.18 -1.89 -1.18 -1.90 -3.16 -3.22 -3.17 -3.24 -0.47 

a,b : see Table 4.6 for definition of symbols 
CM = correct method 
1CM = incorrect method 
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Fig. 4.1 Cumulative selection differentials (CM) 
for LGR by year and line. 

Fig. 4.2 Cumulative selection differentials for LFCR 
(CM) by line and year. 
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Fig. 4.5 Cumulative selection differentials for LOR, 
pooled and line estimates. 
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Fig. 4.6 Cumulative selection differentials for LFCR, 
pooled and line estimates. 
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Therefore all subsequent discussions on CSD are restricted to the 

pooled estimates calculated by the correct method. Direct sire 

selection accounted for 67% of the CSD fórLGR and 65% for LFCR in 

their respective lines, and the use of heifers which were progeny of 

previously selected bulls accounted for the rest. 

Regression 	coefficients 	of 	cumulative 	selection 

differentials on years in standard deviation unit indicating the 

rate of accumulation of selection pressures applied over the years 

are presented in Table 4.7. Cumulative selection differential 

increased at the rate of 0.21 SDU per year for LGR and -0.16 for 

LFCR in their respective line, indicating that the selection 

differential accumulated at a slightly faster rate for LGR. 

Secondary CSD for LGR in the LFCR line and LFCR in LGR line 

were 47% and 57% respectively of the primary CSD from direct 

selection for these traits in their respective lines. However the 

rate of increase of secondary CSD for LFCR in LGR line was of the 

same magnitude as the primary CSD for LFCR, but the pattern of 

accumulation was rather erratic (Table 4.7 and Fig. 4.2). 

Plots of mean CSD in standard deviation units for LGR and 

its component traits, growth rate and LEAN in the LGR line by calf 

birth year (Fig. 4.7) indicated that the pattern of accumulation of 

selection differential for LGR was much more similar to that of 

growth rate than to LEAN. In terms of SDJ, the secondary CSD for 

growth rate was 89% of the primary CSD for LGR, while that of lean 

was only 42%. 	This indicates that much of the selection pressure 

on LGR was on growth rate rather than on LEAN. 	Similar plots of 

mean standardised CSD for LFCR, FCR and LEAN (Fig. 4.8) showed a 

somewhat similar pattern of accumulation for LFCR and its component 



TABLE 4.7 

Regression coefficients of primary cumulative selection 
differentials on calf birth year in standard deviation units 

Traits 

Line 	BW 	LEAN 	FEED 	GRT 	LGR 	FCR 	LFCR 

LGRL -0.009 0.130 0.11 0.169 0.209 -0.112 -0.171 

LFCRL -0.014 0.138 -0.055 0.064 0.120 -0.118 -0.164 

CTL 0.020 0.043 -0.046 -0.037 0.05 -3.078 -0.063 

79. 



w 
C,) 
in 

LLJ 

LH 
LLJ 

LU 

cz 

3 

2 

1980 	1981 	1982 	1983 	1984 	1985 	1986 	1987 

CALF BIRTH YEAR 

Fig. 4.7 Cumulative selection differentials for LGR, 
GRT and LEAN in the LGR line. 

ED 



LU 
C,) 

CC 

Uj 

LU 

Uj 

CALF BERTH YEAR 

1980 	1981 	1982 	1983 	1984 	1985 	1986 	1987 

- - - 

-1 	 ••%. 

x 
- 

-2 

LIAN 

-.-..-.- 	FCR 

OCK--.-- 
-3  

Fig. 4.8 Cumulative selection differentials 
for LFCR, FCR and LEAN in the LFCR line. 

IJ 



traits: LEAN (although in the opposite direction) and FCR. 

However, the secondary CSD for FCR and LEAN in the LFCR line were 

70% and 51% of the primary CSD for LFCR. 

The secondary CS[) for growth rate in the LFCR line was 

only 41% of that realised in the LGR line (0.73 versus. 1.76 SDU) 

and the reverse was true for FCR in both lines. There was a 

difference of 37% between the secondary CSD for FCR realised in the 

LGR line and LFCR line, in favour of the latter. However secondary 

CSD for FEED and LEAN were about the same in b6th lines but were in 

opposite directions for FEED. 

In the control line, there was a slight amount of selection 

for LGR and LFCR. This was due primarily to the use of heifers 

which were progeny of bulls in the foundation herd as dams in the 

control line. 

(ii) Actual and maximum potential selection differentials 

The annual selection differentials for selected sires in 

actual and standard units are given in Table 4.8. About 0.648 and 

-0.680 standard deviation of selection have been applied on LGR and 

LFCR each year in their respective lines. Selection differentials 

on a generation basis (that is, EFSD) were about twice the annual 

selection differentials because sires had their progeny at about two 

years of age and were used once in most cases (Table 4.9). 

Comparison of the actual (effective) selection and 

expected selection differential (Table 4.10) indicates that actual 

selection differentials for LGR and LFCR were 100% and 83% 

respectively of their expected values in their respective lines. 

This seems to show that little natural selection was operating 
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TABLE 4.8 

Annual selection differentials for selected sires in actual 
units and standard measure 

In actual 
	

In standard 
measure 	 measure 

Trait 

LGRL 	LFCRL 	LGRL 	LFCRL 

BW (kg) 0.214 0.669 0.067 0.210 

LEAN (%) 0.473 0.651 0.206 0.283 

FEED (kg) 22.871 -25.16 0.187 -0.206 

GRT (glday) 46.16 22.917 0.588 0.292 

+LGR (g/day) 19.59 12.268 0.648 0.406 

FCR (kg feed/kg gain) -0.001 -0.280 -0.002 -0.465 

+LFCR (kg feed! -0.442 -1.180 -0.254 -0.680 
kg lean gain 

+ Primary selection differentials 
All other estimates are secondary selection differentials 



TABLE 4.9 

Mean selection differentials per generation for selected sires 
in actual units and standard measure 

Trait  

In actual 
measure 

LGRL 	LFCRL 

In standard 
measure 

LGRL 	LFCRL 

BW 0.415 1.460 0.130 0.457 

LEAN (%) 0.970 1.311 0.422 0.570 

FEED (kg) 46.49 -53.05 0.381 -0.434 

GRT (g/day) 92.71 44.45 1.182 0.567 

+LGR (g/day) 39.33 24.23 1.300 0.801 

FCR (kg feed/kg gain) -0.002 -0.597 -0.003 -0.993 

+LFCR (kg feed! -0.880 -2.478 -0.507 -1.428 
kg lean gain) 

+See Table 4.8 for explanation of symbol 



against LFCR. 

Similarly, 	comparison of the selection differential 

achieved and the maximum potential selection differential (MPSD) for 

each primary trait provides an evaluation of how effective actual 

selection was relative to the intended selection. 	The MPSD are 

presented in Table 4.10. 	Usually, most comparisons of the 

selection differentials realised and the maximum potential have been 

between the effective (weighted) selection differential (EFSD) and 

maximum potential calculated as the highest mean ISD possible (Frahm 

et al., 1985a; Aaron et al., 1986a). Since the weighting of the 

selection differential partly accounts for the effects of natural 

selection (Falconer, 1981), a comparison of the EFSD to the MPSD 

does not seem appropriate especially if natural selection is of 

importance. For instance, if natural selection is operating in 

favour of a trait through differences in fertility, the EFSD might 

be higher than the MPSD as high ranking individuals might tend to 

have more progeny. It seems therefore that a comparison of 

unweighted selection differential (EXSD) and MPSD might be more 

appropriate for evaluating the effectiveness of the selection 

achieved relative to the maximum possible. In the LGR line, the 

selection differential achieved for LGR was 97% of the maximum 

potential for sires on the basis of selection within replicates; 

while the corresponding estimate of LFCR was 89% in the LFCR line. 

A similar estimate was obtained for LFCR when the achieved selection 

differential was compared with MPSD calculated on the basis of 

selection within lines; however that of LGR dropped to 90%. This 

further confirms that selection within replicates rather than within 

lines did not drastically affect selection differentials achieved in 



TABLE 4.10 

Unweighted actual and maximum selection differential for 
selected sires in both lines 

Maximum 2 

Line 	Trait 
	

Actual' Pooled 
	

Line 

LGRL 	LGR g/day 
	

39.40 	40.69 
	

43.62 

LFCRL 	LFCR kg feed/ 
	

-2.054 	-2.312 
	

-2.346 
kg lean gain 

'Not weighted by the number of progeny contributed to the 
next generation 

2Maximum selection differential was calculated on two basis 
within replicates and pooled, and in overall line. 
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this experiment. 

4.4 	Discussion 

Although selection was applied only on males, the 

1.5 generations of selection observed in both selected lines, 

corresponding 4.67 years per generation, is similar to the results 

from other selection experiments in beef cattle with both bulls and 

heifers selected. After 15 years of selection, Frahm et al. 

(1985a) reported 3.22 and 3.21 generations of selection respectively 

for their weaning (WW) and yearling (YW) lines corresponding to 4.66 

and 4.67 years per generation respectively. Aaron et al. (1986a) 

reported slightly higher number of generations of selection 3.87 and 

3.72, for two lines of Angus selected for WW and YW respectively 

after 16 years of selection. Compared with the selected lines of 

Irgang et al. (1985a) in which selection was similarly applied only 

on males, the generation turnover observed in this study is much 

higher. They reported about 2.0 generations of selection in each 

of the two lines selected for weaning weight and post weaning gain 

after 12 years of selection, corresponding to about 6 years per 

generation. The rapid rate of generation turnover is due to the 

design of the experiment; selected bulls were used for breeding at 

an early age (about 1 year of age) and were used only once. In 

addition, heifers which were daughters of previously selected bulls 

were used early as replacement for foundation cows. 

The inbreeding coefficients for calves observed are higher 

than those reported by Buchanan et al. (1982a) and Irgang et al. 

(1985a), accounting for differences in the number of years animals 

have been selected. Although selection was similarly only on males 



and within sire family on the selected lines of Irgang et al. 

(1985a), selection was in addition within replicates in this study, 

with about 2 sires per replicate. This small number of sires per 

replicate may account for the slightly higher inbreeding 

coefficients of calves observed. However, inbreeding coefficients 

were much higher in the study of Nelms and Stratton (1967). 

Most reported estimates of cumulative selection 

differential in the literature are averages of sires' and dams' CSD 

(midparent CSD) and are usually expressed in terms of rate of 

increase per year (by regression on years of selection). Chevraux 

and Bailey (1977) reported a rate of 0.22 SDU per year for midparent 

CSD in the line selected for postweaning gain ; Buchanan et al. 

(1982a) reported increases of 0.24 SDtJ per year for both WW and YW 

and Aaron et al. (1986a) observed rates of 0.27 and 0.25 SDU 

respectively in their WW and YW lines. The rates of 0.21 SDU and 

-0.16 SDU per year observed respectively in the LGR line and LFCR 

line for the increase of CSD through only sire selection are similar 

to the estimates from the reports mentioned above, since sire 

selection accounted for about 70 to 84% of the selection pressure 

applied in those studies. 

Atkins (1985) and James (1986) have demonstrated that with 

overlapping generations, the Pattie (1965) (1CM) method for 

calculating CSD is biased upwards and tends to underestimate 

realised heritability, while the method of Newman et al. (1973) was 

correct. In this experiment, estimates of CSD by both methods were 

similar, although slightly lower for 1CM. Frahm et al. (1985a) 

have reported that D.S. Buchanan (unpublished data) obtained very 

similar average CSD for any particular year by both methods in the 
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Nebraska study. 	The similarity between estimates of CSD by both 

methods in this study could be attributed to the following reasons: 

As mentioned earlier, James (1986) showed that the total 

CSD estimated by the 1CM in any year is equivalent to weighting the 

phenotypic deviations of all previous parents by their proportionate 

genetic contribution to individuals in that year. 	He therefore 

argued that the better parents in any generation will tend to have 

above average progeny, and so will have more progeny than average 

selected. 	Thus their genetic contribution to the grand-progeny 

generation will be greater than to the progeny generation. 	The 

consequence is that higher deviation will receive progressively more 

weight for some generation resulting in CSD being biased upwards. 

However, in this study selection was within replicates and sire 

families, and with only two bulls per replicate, the contribution of 

male progeny to the next generation was not always higher in some 

years for the superior of the two bulls. The consequence is that 

1CM tends to underestimate CSD compared to the CM, as it does not 

take account of the worth of contemporaries. Actually, in one of 

the replicates (the second replicate) in the LGR line the estimate 

of CSD by the 1CM were about 17% lower than by the correct method. 

The pooled estimate of CSD by the 1CM for LGR in the LGR line was 

consistently about 2% lower than by the CM in the last 3 years. 

Secondly, a few years after the selection commenced, dams 

consisted of foundation cows and heifers which were progeny of 

previously selected bulls. 	If the selected bulls in any such year 

were progeny of foundation cows, the 1CM ignores the selection 



differential accumulating through the heifers, which are progeny of 

previously selected bulls, in calculating the CSE) for the next 

generation. The CM however incorporates such selection pressure in 

estimating CSD for the next generation, because it takes account of 

the genetic worth of all contemporaries of selected bulls. 

The above therefore indicates that 1CM, by ignoring the 

genetic worth of contemporaries in estimating CSD, could lead either 

to an upward or downward bias in CSD. The bias may not be apparent 

in this study because of the within sire family selection practised 

with only two sires per replicate, thereby limiting the range of 

selection. 

In practice, since selected individuals in most selection 

experiments of beef cattle are usually deviated from their 

contemporary line-year-sex mean rather than from the average of 

progeny of the individual's parents, most recent workers (Buchanan 

et al., 1982a; Frahm et al., 1985a; Irgang et al., 1985a; Nicholl 

and Johnson, 1986) have shown preference for and/or used the correct 

method in calculating CSD. 

In most beef selection experiments about 0.20 SDU of annual 

midparent selection differential has been reported on the basis of 

selection on individual performance. With sire selection 

accounting for about 70 to 80% of the selection applied, this 

is equivalent to approximately 0.30 SDU of annual selection 

differential applied through sires. Specifically, Koch et al. 

(1974a) reported an unweighted average annual selection differential 

of 0.31 for WW in the WW line and 0.38 for YW in the YW line through 

sire selection. Chevraux and Bailey (1977) reported 0.36 for 

postweaning gain. 	However, high values of 0.64 and 0.68 have been 
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observed for LGR and LFCR respectively in their individual lines. 

This may be attributed to the low average age of bulls in this 

study. The average age of sires was about 2.0 years compared to 

4.06, 3.37 and 3.0 reported respectively by Koch et al. (1974a), 

Chevraux and Bailey (1977) and Irgang et al. (1985a). The above 

seems to be confirmed by the fact that on a generation basis, the 

selection differentials observed are consistent with the reports of 

other workers. For instance, Chevraux and Bailey (1977) and 

Buchanan et al. (1982a) reported an average selection differential 

of 1.55 SDU per generation from direct sire selection for 

postweaning gain and weaning weight respectively. Koch et al. 

(1974a) reported a similar estimate of 1.51 SDU for WW and 1.18 for 

YW and Aaron et al. (1986a) 1.30 and 1.52 SDU for WW and YW 

respectively in their individual lines. Thus the selection 

pressure in this study are as intense as in most beef selection 

experiment but are higher on an annual basis because of the rapid 

generation turnover. The theoretical selection differentials for 

the top 6 bulls in a normally distributed population with n=20 is 

about 1.11 standard deviations (Falconer, 1981) and this is close to 

the estimates observed. 

One of the arguments against selection for growth rate in 

beef cattle is the problem of increased birth weight (BW) resulting 

in increased incidence of dystocia and calf mortality. It may be 

worthwhile to compare estimates of secondary selection differential 

for BW in this study to those obtained from direct selection for 

growth rate. The secondary selection differentials obtained per 

generation by Koch et al. (1974a), Buchanan et al. (1982a) and Frahm 

et al. (1986a) for 8W from sire selection for WW were 0.58, 0.90 and 
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0.59 SDU respectively. 	Corresponding estimates from YW selection 

were 0.58, 0.77 and 0.75 SDU respectively. 	In the LGR line, the 

secondary selection differential for BW per generation was much 

lower than the reported estimates; but in the LFCR line, the 

estimate was only slightly lower. This implies that the selection 

pressure on BW in the LGR line and LFCR line was not as intense as 

with direct selection for growth rate. 

As in most selection experiments on beef cattle, only a 

proportion of the maximum possible selection differential has been 

achieved in both selection lines. The proportions achieved are 

however similar to estimates by other workers (Irgang et al. 1985a; 

Nicholl and Johnson, 1986). Failure to realise the maximum possible 

selection differential was due to the within sire family selection 

practised. 
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CHAPTER 5 

DIRECT AND CORRELATED RESPONSES FOR LGR AND LFCR IN SELECTED AND OPEN 
LINES 



5.1 	Introduction 

Direct and correlated cumulative responses to selection for 

LGR and LFCR in selected and open lines are examined in this chapter. 

The annual rates of genetic change achieved and estimates of realised 

genetic parameters from various methods of analyses are reported. 

5.2 	Materials and methods 

5.2.1 Description of lines 

The structure of the two selected lines, the open and 

control lines, the management of animals and selection procedure have 

been described in Chapter three. 

5.2.2 Statistical methods 

Response to selection was evaluated using three methods: 

deviation from a control population, 

the recursive prediction of progeny breeding value and 

the estimation of (co)variance components and prediction of 

genetic trend by Restricted Maximum Likelihood. 

(a) 	Deviation from control population 

(i) Estimation of cumulative response 

Cumulative direct response to selection for LGR and LFCR 

each year in their respective lines were calculated as the deviation 

of the mean phenotypic performance of each selection line from the 

mean performance of the control line. To provide a measure of 

average response over time, yearly genetic responses were regressed 

on calf birth year as suggested by Falconer (1981). Usually in beef 

selection experiments these regressions are considered as the genetic 
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(time) trends with the variances equal to the estimated variances 

from the regressions fitted. This is based on the assumption that 

the variance of response is consistent over years and the responses 

are independent each year. This may be inappropriate, because Hill 

(1972b,c) has indicated that the variance of response increases each 

year due to drift and that responses in different years are 

correlated. Using a variance-covariance matrix developed for 

response (see equation ()), the variance of annual genetic change 

was estimated as: 

(X'X) 1 XV 	X(X'X) 1 	 (1) 

where 

X = vector of calf birth year 

V = variance-covariance matrix of response 

The same procedure was used to evaluate correlated responses. 

Since the open line was not derived from the same base 

population as the control, genetic trends estimated as for the 

selected lines would not be appropriate. The bulls used in the 

open line were superior bulls from Al stations and would be expected 

to be of higher genetic merit than the control even in the first 

year they were used. Genetic trends in the open line were 

therefore estimated relative to the difference between the open and 

control lines in the first year: that is, the deviation of the open 

line from the control in the first year was used as the intercept 

through which the regression of the deviations of the open from the 
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control on years was forced. 	This was carried out by fitting the 

following model using the Genstat statistical package on a data set 

consisting of the control and open line. 

'ijk 	
= 	U + t 1  + B.x1 + D.zjk + efk 	 (2) 

where 

ijk 	
= 	observations for the open and control lines 

u 	= 	overall mean 

t. 	= 	ith calf year effect 

x 	= 	a variate of ones representing the open line and zeros 

for the control lines 

Zik 	= 	a variate which was equal to one for the open line in 

the first year and increased linearly by one every 

subsequent year for the open line otherwise it was 

zero 

B 	= 	regression coefficient of Y on x, provides an 

estimate of the difference between open and control 

lines in the first year 

D 	= 	regression coefficient of V on z, estimates linear 

changes in the open relative to the control across 

years 

e ijk 	
= 	random error 

The D in the above model represents an estimate of genetic 

trend in the open line relative to the initial difference between 

the open and control lines. The above method was checked by 

actually deviating the open line from the control every year and 

regressing the deviations on years. Similar estimates were 
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obtained as when the above model was fitted, but the use of the 

model was preferred as standard errors were estimated from the 

actual observations rather from the mean of observations with 

account not being taken of number of records used to estimate the 

means. Using the model above, genetic trends were estimated for 

LGR and LFCR in the open line. 

(ii) 	Realised heritabilities 

Realised heritabilities for LGR and LFCR were estimated as 

the linear regression of cumulative direct response in each 

respective line on deviations of mean cumulative selection 

differential in each line from CSD in the control line. Because 

control animals were selected at random the mean CSD in this line is 

expected to be zero. 

Hill (1972c) showed that the variance of an unweighted 

regression of response on CSD is biased downwards since the 

individual year observations are assumed to have equal variance and 

to be uncorrelated, when in reality the variance of the population 

mean increases and are correlated due to genetic drift. In 

replicated selection experiments, an appropriate variance of 

response can be estimated directly from the variance among 

replicates (Hill, 1971). Such variance of response between 

replicates represents the sum of genetic drift and random error. 

However, with only three replicates per line, the variance that has 

to be estimated has only two degrees of freedom. Such an estimate 

of between line variance, although unbiased, is unreliable (Hill, 

1980) hence an alternative method was used to estimate the variance 

of response. 

In random mating populations, the process of genetic drift 



is well understood. 	Gene frequency changes due to genetic drift in 

different generations are independent, but cumulative drift in a 

particular generation is the result of the sum of random deviations 

in all previous generations. Hence, the variance of the genetic 

mean increases each generation and means of different generations 

become correlated. 

However in directionally selected lines, the variation 

between means is less well understood. Briefly, as stated by 

Sorensen and Kennedy (1983), selection leads to the following 

phenomena: 

	

(1) 	Selected individuals tend to be genetically more alike due 

to increase in homozygosity than randomly chosen ones and this tends 

to reduce the variance of response. 

The within-line genetic variance differs between lines due 

to finite population size (Avery and Hill, 1977) and results in real 

differences in response in different lines. 	This effect will tend 

to increase the variance between lines. 

Selection causes negative covariances of gene frequencies 

in gametes, that is, negative linkage disequilibrium. 	This leads 

to a reduction in the additive genetic variance within lines 

(Bulmer, 1971) and this will decrease variance between lines. 

Finally, directional selection causes changes in gene 

frequency, changes in gene frequency can have an effect on drift 

variance in either direction depending upon the initial distribution 

of gene effects and frequencies. 	All these phenomena have opposing 

effects on the variance of selection response and a simple 

operational compromise is to assume that they cancel each other out 
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approximately. 

The effect of drift on the genetic mean cannot be predicted 

in any one replicate but the magnitude of variances between lines 

due to genetic drift can be quantified from the knowledge of the 

population structure before the experiment is carried out. Hill 

(1971, 1972b,c) using this a priori approach, developed formulae for 

the estimation of the variance of response. 

However, Sorensen and Kennedy (1983) recently showed that 

the inclusion of the matrix of the additive genetic relationships 

among individuals (the relationship matrix) in the computation of 

sampling variance of estimates of genetic means accounts for 

variance due to drift (assuming an infinitesimal model and additive 

gene action). 	The relationship matrix (A) for a group of animals 

is defined as the matrix with the ijth off-diagonal element equal to 

the numerator of Wright's (1922) coefficient of relationship of the 

ith and jth animals and with the ith diagonal element equal to 

where F 1  is the coefficient of inbreeding of the ith animal. 	They 

indicated that the variance of - genetic mean in any particular 

generation that takes account of the correlated structure among 

observations can be estimated by the equation below: 

V(b) = ( X'x)_'x'zAz'x(x'x)'d + (x'x) - 6 2 (3) 

where 

b 	 = 	the vector of generation or year effects (means) 

X 	 = 	the incidence matrix of ones and zeros representing 

generations or years 
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Z =  

A =  

and 	= 

incidence matrix for number of records per 

individual; with one record per individual Z is 

ecual to I 

relationship matrix 

are the additive genetic and residual variances 

respectively in the base population 

The first term in expression (3) is due to drift and for a 

particular generation represents the average additive genetic 

variance and covariance between individuals in that generation. 

Sorensen and Kennedy (1983) stated that the use of the relationship 

matrix being essentially a retrospective approach accounts for 

reduction in effective population size due to selection (Robertson, 

1961) with associated increase in drift variance. 

Using the above approach, pedigrees consisting of each 

selected line and the control animals were set up and used to 

compute the relationship matrix. The variance and covariance 

matrix for the vector of phenotypic means of the ith and jth 

year-line combinations (i<j) was estimated using expression (3), 

which could also be written illustratively as 

a 11 	a12 
  

V(b) = r21 

	

a22  ... a2 
	

h 
2 
 6 + ( X'Xr'(1-h 2 )6 	 (4) 

I 	 I 
ja1 	a2 ... at4J 

= 	Ah26 + (X1X)-1(1h2)d2 	 (5) 



with 

b 	= 	vector of phenotypic mean for the year-line combinations 

X 	= 	incidence matrix for year-line combinations 

h2  = 	initial heritability from unweighted regression of response 

on CSD 

= 	phenotypic variance of trait estimated from within year 

analysis (Hill, 1972c) 

A 	= 	a symmetric matrix of the average additive genetic 

relationship between individuals in the ith and jth 

year-line combinations (i = 1 	... t; j = 1, ....t) ;   t 

equals twice the number of years of selection (m). 

Genetic response was however estimated as a deviation of the mean 

performance of the selected line from the control line. 	Therefore 

the variance of response, V(R), in the ith year was estimated as: 

1 	1 
V(R.) = (a. . + a. . 	 - 2a. . )h262  ~ (i 	+ i 	)6 

	

isis 	icic 	(1-h2 ) 	(6) 1 	isis 	icic 	isic 	p 

and the covariance of response in the ith and jth year (i<j) as, 

Cov(RR) = (a 	a isjs - isicaicjs + , a. 

	

cjc ) 26 	 (7) 

where s and c refer to the selected and control lines respectively 

and n is the number of animals in either of the lines. 

Using matrices, the variance-covariance matrix of response was 

estimated as, 
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V(R) = .(TPT')h 262  + ID ; ' + D]d(1-h2) 	 (8) 

= Gh26 + [D;' + D1]6(1-h2) 	 (9) 

where 

P= x'Ax 

1 

Tj+j-1' 2i= n is, - nic ; 1=1 to m (the number of years of selection) 

T.. 
1J 	= 0 otherwise 

= 

= 0 otherwise 

D cij =n ic  

= 0 otherwise 

Although expression (9) takes care of the genetic drift in 

estimating the variance of response, it has not however accounted 

for the regression fitted. The regression of cumulative response 

on cumulative selection differential is equivalent to the regression 

of the breeding value of offspring on that of either parents or on 

mid-parental mean, depending on the type of selection practised 

(Falconer, 1981). With only sires selected in this experiment, it 

is equivalent to regression of the breeding value of an offspring 

(a0 ) on that of its sire ( a s ) ,  which can be expressed as 

a0  = ( 1/2)a 5  + e 	 (10) 

where e has variance 62
which is the residual variance of an 

offspring given one parent. 	The residual variance 6 is equal to 
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(Thompson, personal communication): 

VP - VU1/2)a ); with V = phenotypic variance of offspring 	(11) 

= 62  + 62 - (1/4)h 4 (6 + 6Y 	 (12) e 	a 

= 	+ 02 -(1/4)6/(6 + ó) e 	a 

= o2 +(3/4) 6 + (1/4) 6 (1-h2) 	 (13) e 

where (3/4)6 is the contribution to the variance from dam and 

mendelian sampling and the contribution from the sire is reduced in 

proportion (1-h2 ). 

Incorporating the matrix G in expression (9), which 

represents the additive genetic relationship between response in 

different years, expression (13) can be written as, 

(G - 3141)62 (1-h 
2) 

+ (3/4)r6 + ro' 	 (14) 

approximately arguing that the covariance between relatives should 

be reduced by the same order as the reduction of the sire variance 

contribution to (13); this is an approximate argument for half sibs 

and for other relatives. 

Re-arranging expression (14) gives, 

G6(1-h2 ) + (3/4)h 26I + 16 
	

(15) 

The variance and covariance of response (expression 9) can now be 
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written as 

V(R) = G6(1-h 2 ) +[D 1+ D'C(3/4)h 26I + I61 	 (16) 

approximately with 6 and 62
being equivalent to 6(1-h 2 ) and h26 

respectively in expression (9). 

Compared to equation (9), the first term in equation (16) 

represents a decrease in the additive genetic variance and 

covariance (drift variance) between response in different years due 

to fitting the regression and the term (3/4)h 2 6I in the second part 

of the expression represents the contribution to the error variance 

from the fitted regression. Using the variance-covariance matrix 

developed in (16), an estimate of realised heritability (h) was 

obtained from a generalised least-squares solution of the regression 

of response on selection differential as, 

h = (X'VX)4X'VY 	 (17) 

and the variance of h was estimated as, 

= (X'VX) 	 .(18) 

where 

X = vector of cumulative selection differentials 

Y = vector of cumulative responses 

V = variance-covariance matrix of cumulative response from (16). 
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(iii) 	Realised genetic correlation 

A joint estimate of the genetic correlation (r g ) between 

LGR and LFCR was obtained (Falconer, 1981) as: 

*CRS 

	

[CRSLGR 	LFCR 	
1 12 

 

rg=[DRS 
	* LGR 	LFCR) 

DRS 	I 	 (19) 

where CRS and DRS represent estimated correlated and direct 

responses per year respectively. An approximate standard error for 

r  was calculated as suggested by Hill (1971), using the variances 

of heritabilities estimated from equation (18). 

(b) 	Prediction of progeny breeding values 

This method is essentially concerned with prediction of 

breeding values of progeny from their own performance and their 

parents with account being taken of the changes in the regression 

coefficient in each generation of selection. The heritability that 

minimises the sums of squares of deviations between predicted and 

observed progeny value is an estimate of realised heritability. As 

mentioned in chapter four, this method is a combination of the 

correct and incorrect methods for estimating cumulative selection 

differential. Both the correct and incorrect methods ignores the 

reduction in genetic variation due to selection and yield downward 

biased realized heritability estimates. This method accounts for 

the reduction in genetic variation and utilises both ancestral and 

contemporary information with the relative weight depending on the 

value of the heritability (Juga and Thompson, 1988). 
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We will briefly illustrate how the breeding value of 

progeny might be predicted from parental values and their values in 

a single generation and later on describe how this could be done 

recursively across several generations by means of BLUP. The 

details of the methodology are given by Juga and Thompson (1988). 

Suppose 	a sire is measured in year zero with a value of Y f  and an 

offspring with a value of Y is measured in year one. The mean of 

unselected animals in year i is assumed to be u.. 	Suppose the 

trait has variance 1, genetic variance and heritability h 2 ; the 

predictor of the breeding value of the sire is then 

AF = h2 (YF_u o ) 

and the predictor of the offspring from the sire is 

AGP = (AF)/2 , 

and using the offspring's own information 

AG = AGP + h(YG - Ui - AGP) 	 (20) 

with h = [(h2  - 0.25h4 )/(1-0.25h4 )] 

Expression (20) can be derived with a selection index or by noting 

that the genetic regression of Y G on Y F and YG_AGP  are h2/2 and h 

and that Y and YG_AGP  are uncorrelated. 

The argument can be extended to predict the breeding values 

of animals successively for each generation using individual 
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information and predictions from parents (based on their own and 

parental predictions). Using Best Linear Unbiased Prediction (BLUP) 

and mixed model arguments (Henderson, 1973) it is shown in the 

appendix that a predictor of an offspring with measurement Y in 

year i from sires only is: 

AG = AF/2 + h ( YG_uj_AF/2) with 	 (21) 

3h2 /4 + (1-h2 ) h/4 

1-h2 14 + (1-h2 ) h/4 

where AF  is the predictor of the sire value and h is the regression 

coefficient involved in deriving AF. 	In year zero, when h = h2 , 

= h. 	The coefficients h estimated every generation can be 

interpreted as genetic regression coefficient given ancestral 

information. In the early years of the experiment, when records 

were available only on progeny and sires, equation (21) was used for 

the prediction of progeny breeding value. However in later years 

when female progeny of selected bulls were used as dams, prediction 

of progeny breeding value also included information from grand 

maternal sires. Using similar arguments to the derivation of 

expression (21) it is shown in the appendix that the predictor of 

progeny breeding value from its own value, sire and grandmaternal 

values is: 

AG 	= (A M/4 + AF,2) + h 	-- (AM,4 + AF,2)) 	 (22) 
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11h  
+ (1-h2 ) (4h + h) 

with h = 

16-5h 2  + (1-h 2 ) (4h + h) 

where AM  and  AF  are predictors of grandmaternal sire and sire 

breeding values respectively and h and h are the regression 

coefficients in deriving AM and  AF. 

Using each selected line and the control line with an 

initial heritability input, equations (21) and (22) were used to 

predict progeny breeding value in each generation of selection and 

the heritability estimate (an estimate of realised heritability) 

which minimised the sums of squared residuals, that is, difference 

between predictions and observed values was found by iteration. 

A 97.5% confidence interval for the realised heritability 

estimate was constructed (Thompson, personal communication) as 

CI 	= F0975  x MSS(h 2 ) + RSS(h 2 ) 	 (23) 

where RSS 	= residual sums of squares, that is, the difference 

between progeny predicted and observed values 

MSS 

	

	= residual mean squares, that is, RSS divided by 

degrees of freedom 

F0975  = 2.5% F value 	from tabulated values of F 

distribution 

CI 	= lower and upper limits of confidence interval which 

are equal to the lower and higher h 2  respectively 

with RSS equal to the right hand side of (23). 
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(c) 	REML to estimate (co)variance components and predict 

genetic trend 

A full description of the principles and procedures of REML 

for the estimation of variance components has been given by 

Patterson and Thompson (1971) and only a few salient points as far a 

it relates to the model fitted are stated. 

The model 

y = Xb + Z 
1 
 u + e 
	

(24) 

where 

y = nxl vector of observations 
c.t.f &ii1ii J4' 

b = txl vector of fixed effects (Lage  of dam, rearing type, day of 

birth and initial weight on test (for LFCR only) 

u = qxl vector of random effects 

e = vector of random error effects 

X = the incidence matrix pertaining to b 

Z1  = the incidence matrix pertaining to U; Z 1 =1 since each animal 

had one record 

Let 

Xb 

E u = o 

e .0 

do 



u 	 A6 	o 

Var 	= 	- 

0 	 162  

V(y) = Z 1GZ + 16 

with G = A6 

It was thought that the use of dams for several years might 

induce maternal environmental covariances between performance of 

calves of the same dam across years. The data were initially 

analysed using the above model (equation 24) and the maximum 

likelihood was calculated for each trait, in a univariate analysis. 

Dams were then included in the model as a random effect which was 

absorbed with an initial input of oC , the ratio of the error 

variance (62  ) to the dam variance component (6). 

An estimate of the dam variance component therefore equals 

62 
 e 

IM 

If there is a high maternal environmental covariance between progeny 

of the same dam, then 62
which is estimate of the variance between 

families, would be large. Consequently, the maximum likelihood 

calculated should increase with decreasing values of CC for such a 

trait. One other other hand, when maternal environmental covariance 

is minimal, 6 will similarly be very low or negligible, therefore 
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the maximum likelihood should increase with increasing values of 

The likelihood was calculated with various values of ix . It was 

discovered that the likelihood increased for both selected traits as 

the value of aC increased and anvalue of 10,000 gave the maximum 

likelihood which was essentially the same likelihood obtained when 

no dams were fitted in the model. This implies that maternal 

environmental effects were not of significant importance in these 

traits and were dropped from the model. 

The mixed model equations (MME) pertaining to expression 

(24) are: 

1 -i 
XIX 	X 1 Z 1 	 b 	X'y 

= 	 (25) 

Z1 X 	ZZ1  + A- 1 	ii 	Zy 

with 	= 6/6. 

The objective is to estimate the variance between (6) and within 

(6) levels of the random effect. For an iterative estimation 

procedure, the numerator relationship matrix which describes the 

covariance structure between levels of the random effects can be 

incorporated into the design matrix so that the random effects are 

independently distributed, yielding an equivalent model to (24) 

(Quass, 1984). Under the equivalent model, variance components can 

be estimated as if animals were unrelated, reducing computational 

effort. The relationship matrix, being a covariance matrix, is 

(semi) positive definite, hence a lower tri.ngular matrix L always 

exists such that A=LL'. The variance of Y can be expressed as, 
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V(y) = ZLL'Z6 + 

Defining Z = Z 
1 
 L then yields an equivalent model to (24): 

y=Xb+Zu*+e 	 (26) 

with V(u*) = 16 2  and 

U* 	= L- lu 

The computational procedures involved in incorporating A as LL' to 

yield the equivalent model are fully described by Meyer (1987). A 

faster algorithm developed in the course of this work is presented 

in chapter nine. The MME pertaining to (25) for random effects 

absorbing fixed effects are: 

tZ'SL+ 	 u* =Z'Sy 

This gives solutions: 

= 	(Z'SZ +hI)l  Z'Sy = C Z' Sy 
	

(27) 

u 	= 	Zu* 

REML equations to estimate 6 and 6 using an EM-algorithm are 

(Meyer, 1987). 

62 = u*'u*/[ns - 'tr(C)] 
	

(28) 

= [y'Sy - Y'SZU* - 	1u*u*]/[n...r(X) - ns + I-l tr(N] 	(29) 
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where ns denote the number of levels of the random effect, n the 

number of observations and r(X) the rank of X. 

The analysis of data was carried out using univariate and 

multivariate programs written by Karn Meyer (see Meyer, 1983; 

1985). A univariate analysis was carried out for LGR and LFCR in 

their respective lines (LGRL or LFCRL) or in their respective lines 

plus the control (POP1 or POP2). For the estimation of variance 

and covariance components of LGR and LFCR a multivariate analysis 

was done firstly in each of the selected lines only, secondly in 

either of the selected line plus the control and thirdly in all 

three lines (POP3). From (24) it can be seen that the design 

matrices for LGR and LFCR are different, but Meyer's programs were 

for traits with equal design matrices. 	The weight at beginning of 

test (IWT) fitted as a covariate is only relevant to LFCR. 	To 

overcome this problem, an initial multivariate analysis was carried 

out for LGR, LFCR and IWT in POP3 with all other fixed effects 

fitted. 	This yielded estimates of genetic and phenotypic 

correlations between the three traits. 	The regression coefficient 

for the regression of LFCR on IWT was estimated from the phenotypic 

correlation between the two traits and their phenotypic standard 

deviations. The estimated regression coefficient was comparable to 

a pooled estimate from yearly estimates which were used for 

adjustment during the actual selection of animals. Using the 

regression coefficient estimated, LFCR was adjusted for the effects 

of IWT. This was followed by another multivariate analysis on LGR, 

adjusted LFCR and IWT to check if the adjustment was effective. 

The phenotypic correlation between the adjusted LFCR and IWI was 

essentially zero, indicating that the adjustment was effective. 
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The results reported were based then on the multivariate analysis of 

LGR and the adjusted LFCR. 

5.3 	Results 

5.3.1 Genetic change or response 

Direct and correlated cumulative responses for LGR and LFCR 

per year from deviation of selected lines from control method (1) 

are shown in Figures 5.1 and 5.3. 	Estimated linear genetic time 

trends are presented in Table 5.1. 	Direct genetic changes were 

5.0+1.6 g/day for LGR and -0.13+0.08 kg feed/kg lean gain for LFCR 

in their respective lines from method (1); only the former estimate 

was significant. Corresponding estimates from REML (method 3) 

represent means of predicted breeding values of animals in each year 

(Figs. 5.2 and 5.4) regressed on calf birth year (Table 5.1). 

Estimates of genetic trends from REML were similar to those from 

method (1) but were more precise and were over a 7-year period. 

The measurement of animals in the control line commenced in 1981, 

therefore estimated genetic trends from method (1) are over a 6-year 

period. 	Genetic trends from REML over the same time period as 

method (1) tended to be slightly higher. 	The variance of the 

annual genetic change from REML was estimated using a 

variance-covariance matrix developed from the average additive 

genetic (co)variance between animals (see equation 3) using 

expression (1). REML estimates of direct genetic change from the 

various populations from the univariate and multivariate analyses 

were similar, therefore the estimates presented were from a 

multivariate analysis, as they simultaneously estimate direct and 

correlated genetic changes. 
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TABLE 5.1 

Direct and correlated responses (per year) for LGR and LFCR 

Trait 	Line Method 1 Line only 

Method 3 

POP1 POP2 POP3 

LGR 	LGRL 4.96* 4.26** 4.00** 424** 
g/day (1.4) (0.45) (0.45) (0.40) 

(1.6) (0.84) (0.81) (0.81) 

LFCRL 0.202 0.130 1.04 1.10 
(1.38) (0.47) (0.23) (0.40) 
(1.54) (0.80) (0.77) (0.87) 

LFCR 	LGRL _0.173* -0.086 _0.150* _0.143* 
kg/feed! (0.06) (0.02) (0.02) (0.02) 
kg lean (0.08) (0.05) (0.05) (0.05) 
gain 

LFCRL -0.127 - -0.121 -0.111 
(0.13) (0.02) (0.02) 
(0.08) (0.05) (0.05) 

a Standard error of regression coefficient 

b Standard error estimate using the variance-covariance matrix of 
response from equation 16 

Method 1 = Deviation of selected lines from control line 
Method 3 = REML 

* P<0.05 
** P<0.01, the test of significance based on standard error 
estimates from variance-covariance of response 
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Data were only available for the open line in the last four 

years and from Figs. 5.1 and 5.3, it can seen that genetic change 

for LGR was negative in the first two years and it was almost the 

same for LFCR. Although genetic changes were negative and 

significant in the first year for LGR and LFCR, the genetic trends 

estimated in the open line relative to genetic changes in the first 

year were positive (Table 5.2). This indicates there was a slight 

improvement in LGR and LFCR in the open line over the years. 

Comparing the standard errors for genetic trends in the 

selected lines obtained from the variance of the regression and 

those from the variance-covariance of response indicates that the 

former are biased downwards. 

Correlated responses for LGR and LFCR were 0.202+1.54g/day 

and -0.173+0.08 kg feed/kg lean gain respectively in the LFCR and 

LGR lines from method (1); only the later estimate was significant. 

Corresponding estimates from REML were similar. Thus the 

correlated response in LFCR from selection for LGR was greater than 

the response obtained by selecting directly for LFCR. Expressed as 

a percentage of the mean (Smith, 1984), the direct rate of genetic 

change for LGR and LFCR in their respective lines were 1.51 and 

0.75% per year. 

5.3.2 Realised heritabilities 

The unweighted regression of cumulative response on 

cumulative selection differential gave realised heritability 

estimates of 0.533+0.110 and 0.349+0.178 for LGR and LFCR 

respectively (Table 5.3). Using the variance-covariance matrix of 

response generated from the relationship matrix (equation 9) and the 
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TABLE 5.2 

Estimates of genetic change per.year (and standard 
errors) for LGR and LFCR in the open line 

Trait 
	

al ntercept 	bGeneti c  change 

LGR 	 _38.72* 	 18.12** 

g/day 	 (18.75) 	 (6.06) 

LFCR 	 2.258* 	 -0.929 
kg feed! 	 (1.06) 	 (0.34) 
kg lean gain 

a Estimated difference between the open line and the 
control in the first year 

b Genetic change per year relative to the intercept 

* P<0.05 
** p<0.01 
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TABLE 5.3 

Realised heritability estimates (and standard 
errors) from the various regression methods 

Trait 

Regression method 	 LGR 
	

L FC R 

1 	 0.533 0.349 
(0.11) (0.18) 

2 	 0.533 0.380 
(0.17) (0.14) 

3 	 0.533 	 0.379 

	

(0.14) 	 (0.13) 

1 Unweighted regression of response on cumulative 
selection differential (CSD) 

2 General.ised least square solution for the 
regression of response on CSD using the 
variance-covariance matrix from equation (9). 

Generalised least square solution for the 
regression of response on CSD using the 
variance-covariance matrix from equation (16). 
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initial heritability estimate to account for drift variance, 

generalised least-squares estimates of 0.533+0.165 and 0.380+0.142 

were obtained for realised heritability respectively for LGR and 

LFCR. Accounting for the reduction in the sum of squares due to the 

regression fitted (equation 16) resulted in generalised 

least-squares estimates of 0.533+0.137 for LGR and 0.379+0.132. 

The above heritability estimates were from CSD estimated by the 

correct method. 	Using CSD estimated by the incorrect method 

resulted in slightly higher heritability estimate (Table 5.4). 	The 

very large standard error of the unweighted regression of cumulative 

response on CSD for LFCR seems difficult to explain. 	The same 

phenomenon was observed in estimating the variance of genetic trend 

(Table 5.1). 	It may be due to the small degrees of freedom used in 

estimating the variance. 	Generally yearly cumulative response in 

this line were subject to large fluctuations and declined gradually 

with selection (see Fig. 5.3). From Hill (1972a) the only factor 

contributing to the variance of response associated with the type of 

design in this experiment not yet considered is 

genotype-environmental interaction. With the selected line and 

control derived from the same base population the magnitude of the 

variance from genotype-environmental interaction is likely to be 

small. However, it may be possible that the significantly high 

(p<O.Ol) response observed at the initial stages of selection in 

this line (which is indicative of genetic difference between 

individuals in the selected and control lines) accompanied by a 

gradual decline in response resulting in reversal of rank between 

the LFCR and control lines in 1985, could result in some 

genotype-environment interaction (see Fig. 5.3). 
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TABLE 5.4 

Realised heritabilities and standard errors from 
methods (1) and (2) 

Trait 

Method 	 LGR 	 LFCR 

la 	 0.533 	 0.379 

	

(0.14) 	 (0.13) 

lb 	 0.542 	 0.394 

	

(0.14) 	 (0.14) 

II 	
c0443 	 d0219  

la cumulative selection differential used to 
estimate realised heritability calculated by the 
correct method. 

lb cumulative selection differential used to 
estimate realised heritability calculated by the 
incorrect method 

II generalised method; fixed effects corrected by 
estimates from REML 

C. lower and upper limits of 0.975% confidence 
interval for estimate = + 0.220 

d lower and upper limits of 0.975% confidence 
interval for estimate = + 0.260 
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Realised heritability estimates from method (2) were 0.443 

for LGR and 0.219 for LFCR (Table 5.4). Estimates of heritability 

by this method were more related to those from REML as expected, due 

to the similarity in adjustment factors for fixed effects, and both 

also account for reduction in genetic variance (assuming an 

infinitesimal model and additive gene action). However, estimates 

from REML should be more efficient as method (2) uses information 

only from offspring-parent relationships while REF1L uses all 

available relationships. Variance components and heritability 

estimates from REML using the various populations are shown in Table 

5.5. 	The estimates of heritabilities and variance components from 

POP3 were from a multivariate REML analysis. 	The results presented 

for each of the selected lines only or POP1 or POP2 are from 

univariate REML analysis. The univariate analysis for LFCR in LFCR 

line only yielded a zero estimate for the additive genetic variance 

component during the process of iteration and it was not possible 

therefore to achieve convergence. However a multivariate analysis 

for LGR and LFCR using only the LFCR line converged but yielded 

essentially a heritability estimate of zero for LFCR which seems to 

confirm the univariate analysis. 	The heritability estimates for 

LGR from the different populations were quite consistent. 	This is 

also true for LFCR except for the zero estimate from LFCR line only. 

Generally the precision of the heritability estimates from REML 

increased with population size. An approximate estimate of the gain 

in information associated with increase in population size can be 

calculated from the variances of the heritability estimates. In 

data with a simple structure such as offspring sire regression, the 

variance of heritability, V(h 2 ), is proportional to the inverse of 
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TABLE 5.5 

Variance components, heritability estimates and standard errors for 
LGR and LFCR from REML analysis 

Trait Population 

Variance 

Additive genetic 

components 

Residual Heritability 

LGRL 538.5 498.9 0.522 
(191) (150) (0.16) 

LGR POP1 460.8 518.8 0.470 
(g/day) (122) (99.7) (0.11) 

POP3 461.1 537.1 0.462 
(118) (93) (0.09) 

POP2 1.027 2.613 0.288 

LFCR 1 
(0.61) (0.55) (0.16) 

kg/feed 
kg lean 
gain 

POP3 1.264 2.727 0.317 
(0.43) (0.27) (0.10) 

Standard errors in brackets 

1 Analysis on LFCR line only could not converge as additive genetic 
variance became zero during iteration. 
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the number of records used in estimating the heritability: 

V(h 2 )1/n 

and an estimate of the amount of information (1/V(h 2 )) used is 

proportional to the number of records. Using the same approach, 

approximate estimates of the amount of information used in 

estimating heritability in the various populations in the analyses 

of LGR are indicated in Table 5.6. Including the control line in 

the analysis resulted in a gain of about 118% in information used in 

estimating heritability and its variance. Using POP3 in the 

multivariate analysis represent a gain of about 51% in information 

compared with using POP1. Partitioning the gain in information due 

to including only the control to the LGR line (using the numbers of 

animals in the different lines) indicated that about 26% of the gain 

in information is from the control line while 74% is from the 

contrast between the selected line and control. The 51% gain in 

information from using POP3 comes from the LFCR line, the contrast 

between LFCR and LGR lines, and the control line. 

5.3.3 Genetic correlations 

The joint estimate of realised genetic correlation from 

method (1) between LGR and LFCR was -0.235+0.21. Although this is 

consistent with little or no correlated response for LGR in the LFCR 

line (Table 5.1), it is inconsistent with the observed correlated 

response for LFCR in LGR line. 	Attempts were therefore made to 

estimate the genetic correlation within each of the lines. 	The 

regression of correlated response on CSD has the following 
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TABLE 5.6 

Estimates of information utilised from the variances of 
heritabilities for LGR 

Population n 3  se Variance Information 

LGRL 1  275 0.158 0.0250 40 

POP1 1  351 0.107 0.0114 87 

P0P32  500 0.087 0.0076 132 

se = standard errors (developed with the help of 
Robin Thompson) 

1 Standard errors are from second partial differentials 
of log likelihood utilising actual observations 
including residual sums of squares 

2 Standard errors are from quadratic approximation of 
log-likelihood 

3 Number of records, includes base population animals 
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expectations: 

b = rGhlh2o2/ol 

where 

rG 	= 	genetic correlation 

h 	= 	heritability of selected trait 

h 	= 	heritability of correlated trait 

01 	= 	phenotypic standard deviation of selected trait 

°2 	= 	phenotypic standard deviation of selected trait 

Estimates of genetic correlation between LGR and LFCR using the 

above equation were -0.176+0.211 in the LFCR line and -0.755+0.134 

in the LGR line. 	Falconer (1981) has commented on the problem of 

variation in estimates of genetic correlations. 	He mentioned that 

double selection experiments are often inconsistent in the estimates 

of the genetic correlation that they give which may be attributed to 

the fact that genetic correlations are strongly influenced by gene 

frequency changes and so may differ markedly in different 

populations. Secondly, genetic correlation estimates are often low 

in precision because they are subject to rather large sampling 

errors. The latter reason seems more likely in this situation due 

to the short duration of the experiment. 

The line differences in estimates of genetic correlation 

are consistent with the observed correlated responses. Moreover 

the estimate of genetic correlation from LGR line is consistent with 

estimates from POP2 and POP3 using REML. The covariance and 
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TABLE 5.7 

Covariance components, genetic and phenotypic correlations between 
LGR and LFCR from REML 

Covariance components Correlations 

Population Additive genetic Residual r 

LGR2 -12.90 -26.697 -0.531 -0.567 
(9.28) (8.04) (0.24) (0.05) 

POP1 -18.03 -18.02 -0.807 -0.565 
(7.31) (6.19) (0.15) (0.04) 

POP2 -9.89 -19.25 -0.579 -0.519 
(6.38) (5.81) (0.23) (0.04) 

POP3 -16.94 -18.92 -0.702 -0.568 
(5.84) (4.81) (0.12) (0.03) 

1 r 	= genetic correlations 

2 r 
	= phenotypic correlations 

Standard errors are in brackets 
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genetic correlations estimates from REML are shown in Table 5.7. 

The estimates of genetic correlations from POP1 and POP3 were 

similar, -0.807+0.151, -0.702+0.122 but slightly higher than 

estimates from the LGR line alone (-0.521+0.236) and POP2 

(-0.579+0.229). Again, the precision of genetic correlation 

estimates from REML increased with population size. 

5.4 	Discussion 

The rates of genetic change observed indicate that 

selection for LGR and LFCR has been effective. The annual rate of 

change of 1.5% for LGR is consistent with the possible rate of 1.4% 

for growth rate in beef cattle reported by Smith (1984). This high 

rate of change may be due to the effective selection practised (97% 

of the maximum possible selection differential was achieved) and the 

high heritability. The average percentage rate of change from a 

summary of selection experiments in beef cattle reported in the 

literature was about 0.63, 0.80 and 2.03 respectively for weaning 

weight, yearling weight and postweaning gain. Selection was 

however applied to both sires and dams in most of the experiments 

and in some cases, was on the basis of an index. 

Compared to LGR, response in LFCR was much lower. 	Most of 

the response in LFCR estimated from method (1) occurred in the first 

two years of selection (which were significant at 1% level of 

probability) and declined gradually in subsequent years, although 

the mean predicted breeding value per year from REML were more or 

less constant over the years of selection. The observed response in 

LFCR was only 66% of the predicted response using the genetic 

parameters from REML analysis, but the observed response in LGR was 
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consistent with predicted response (about 103%). 

Heritability estimates based on cumulative selection 

differentials estimated by the incorrect method were generally 

slightly higher than estimates obtained and calculated by the 

correct method. This is contrary to the indications of James 

(1986) and the simulation results of Juga and Thompson (1988) in 

which heritability estimates based on CSD calculated by the 

incorrect method were biased downwards. The contrary results 

obtained are due to the fact that the incorrect method 

underestimated CSD compared with the correct method and hence the 

upward bias in heritability estimates. The conditions under which 

the incorrect method can result in lower CSD estimates compared with 

the correct have been discussed in chapter four. 

Method (2) and REML account for changes in additive genetic 

variances due to selection assuming an additive genetic model with 

infinite number of loci and therefore give unbiased estimates of 

base population genetic parameters (Rothschild, Henderson and Quass 

1979; Thompson and Meyer, 1986; Juga and Thompson, 1988). Method 

(1) consistently gave higher heritability estimates compared with 

REML (although differences were not significant) and -method (2). 

Although Hill (1972c) showed that linear estimators of realised 

heritability such as regression of cumulative response on cumulative 

selection differential are efficient and unbiased over most relevant 

range of parameters, Falconer (1981) and Sorensen and Kennedy (1984) 

have indicated that they may not necessarily give unbiased estimates 

of base population heritability. In method (1), the estimator 

assumes that the response per unit selection differential applied is 

linear. This may not be applicable if variances change as a result 
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of selection, random drift and (or) gametic disequilibrium generated 

by selection. Due to the short duration of this experiment, the 

non-significant higher estimates of heritabilities from method (1) 

compared with those from REML and method (2) may result mainly from 

sampling error. 

Generally, the precision of genetic parameters from REML 

analyses increased with increases in population size, accompanied by 

substantial gains in information with which these parameters were 

estimated. If we assume that the total number of animals used in 

the LGR and control lines were used only in the LGR line, the gain 

in information would only be about 28% compared with 123% from POP1. 

The former was estimated by scaling the variance of heritability 

from only LGR line by the number of records in POP1. The above 

does indicate much. of the gain in information is from the contrast 

between the selected and control lines. 	This is consistent with 

the observation of Thompson (1986). 	Thus the intended use of REML 

or BLUP to evaluate genetic change should not exclude the 

establishment of control line from the design if facilities are 

available. 

Correlated response for LFCR in the LGR line was higher 

than the response from direct selection for LFCR. In view of the 

high cost involved in recording individual feed intake of animals, 

it might be argued that selection for LGR alone is adequate in 

increasing the rate and efficiency of lean gain, and selection for 

LFCR should be ignored. However, it is worthwhile to examine 

correlated responses to selection for LGR and LFCR before 

ascertaining whether selection for LFCR is necessary or not. In 

the next chapter, correlated responses in recorded secondary traits 
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in both selection lines are examined. 
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5.5. 	Appendix 

1. 	Predtction from progeny and sire values 

Suppose sires in generation zero have prediction AF  and let 

d  = 1/h2 . Then d  AM = YE_UO and BLIJP equations for the sire and 

its offspring can be written in the form 

d+g/3 	-2g/3 [AFG 
I 	f dEAM 

-2g/3. 	l+4 g/3 LAG 	i = L 	G - U 1j 	Al 

with g = (1-h2 )/h2 , and AFG  is a predictor for the sire 

incorporating the offspring value The g terms come from 

linking offspring to the sire when the inverse of the relationship 

matrix A is found. 

Re-arranging Al, we get 

rA 	1 

AFG I 	+4g/3 	+2g/3 	 dFAM 7 
AG 1= 1/D[+2g/3 	dF+g/3J 
	f G _Uij 	A2 

with D = d  + g/3 + (4g/3) d  = g13 + d  (1+4g/3) 

2/3dA + IdE + g/31 Y
G  - 

AG = 

d  + g/3 + (4g/3) d  

d  + g/3 

= AM/2 + 
	

- U1 - AM/2 ) 

+ g/3 + (4g/3) d  
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= AM!2 + h 	- l - AM!2) with 

3h 2/4 + (1-h2 ) h/4 

2 
hG 

1-h2 /4 + (1-h2 ) h/4 

which is equation (20). 

2. 	Prediction from grandmaternal sires, sires and progeny 

values. 	Using the same argument outlined for prediction from sire 

and progeny values, equations for grandmaternal sire, sire and their 

progeny are: 

- 

d  + g/ll 	2g/11 	-4g/11 	AMG 	
d 
M  A  M 

2g/11 	d  + 49/11 	-8g/11 	AFG 	= 	d F  A  F 	
A3 

-4g/11 	-8g!11 	1+16g/11 LAG J 	- 
where AMG  and  AEG  are predictors for grandmaternal sires and sires 

incorporating the offspring value The g terms again arise from 

inverting the relationship matrix between grandmaternal sires, sires 

and progeny. 

Re-arranging A3, predictors for the parents are 
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1• 

AMG 	 d  + 4g/11 	-2g/11 

= lID 

AFG 	-2g/ll 	 d+g/ll 

i S  
with D = dMdF + (g/ll) 14 d  + dE] 

dMAM + 4g/11 AG I 

d 
F  A 

 F + 8g/11 AG 

A4 

Absorbing the parents equations into offspring equation, we get 

+ dM)ID) 4/ll(A+2A) 

J 1+(16/ll)dMdF+/11(4dM+dF )' 1  

=L 	 JAG= 

D 

(YG_Ul )D+dd(4g/ll  )(AM+2AF) 

Substituting D and rearranging. 

[l+g/11(4/d + l/dF)YG - Li 1 	 + 2A F ) 

AG = 

1+16g/ll+g/ll ( 1 /dM+4 /dF) 	1+16g/ll+(g/11)(1/d+4/d) 

= (AM!4 + AF /2) + 1+9/11(4/d+1/d) 	(YG_Ul(AM/4+AF/2)) 

1+16g/ll+g/11 (4/dF+l/dM) 
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= (AM!4  + AF/2) + h (YG_Ul_(AM/4+AF/2)) 

with h 2 G = (11h2  + (1-h 2 )(4h + h) 

16-5h 2  + (1-h2 ) (4h + h) 

which is equation (21). 
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CHAPTER 6 

CORRELATED RESPONSES FOR SECONDARY TRAITS MEASURED ONLY IN RECORDED 
BULLS 



6.1 	Introduction 

In this chapter, realised correlated responses to selection 

in the LGR and LFCR lines for birth weight, lean percent, growth 

rate, feed intake and food conversion ratio in recorded bulls are 

considered. Using the estimated selection differentials and genetic 

parameters from REML (which represent base population parameters) 

correlated responses in the above traits were predicted and compared 

with realised correlated responses. 

6.2 	Material and methods 

6.2.1 	Management 

The management of animals, recording of traits and selection 

procedure have been described in chapter three. 

6.2.2 	Statistical methods 

Correlated responses in the two selection lines were 

evaluated by two methods: 

 Deviation of selected lines from control and 

 Multivariate REML analysis to estimate (co)variance 

components and predict rate of genetic change. 

The details of the two methods were as described in chapter 

five. The only exception was that the variances of annual correlated 

genetic changes from method (1) were estimated using variance 

components estimated by REML from POP3 in equation () (see chapter 

five). 

In method (2), FEED and FCR were adjusted for the effects of 
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initial weight as was described for LFCR. 	To account for selection 

bias, the multivariate analyses involved each of the secondary traits 

and the selected trait in POP1 and POP2, while in POP3, it was based 

on two of the selected traits and each of the secondary traits. 

However a multivariate analysis was also carried out on all selected 

and secondary traits in POP3, to estimate the genetic correlations 

between all traits. 

Correlated responses in each selection line were predicted 

Using the formula (Falconer, 1981) 

CR = i h 	r Y 	xxyApy 

where 

CR 	= correlated response in the secondary trait y 

hy 	= square root of the heritability of trait y 

h x 	= square root of the heritability of selected trait x 

ix 	= selection intensity of selected trait x 

rA 	= genetic correlation between x and y 

= phenotypic standard deviation of y 

Predicted correlated responses were expressed on an annual basis by 

dividing by the number of years per generation. 

Genetic change in the open line for the secondary traits 

considered were estimated by fitting a similar model as described for 

LGR and LFCR (see equation 2, chapter five). 
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6.3 	Results 

The cumulative correlated responses per year are shown in 

Figures 6.1 to 6.10 and the estimated correlated genetic trends are 

presented in Table 6.1. The heritability and genetic correlation 

estimates from REML used in the prediction of correlated response are 

shown in Tables 6.3 and 6.4 respectively. 	Correlated responses in 

both lines for BW were generally not significant. 	Estimates for 

lean percent were 0.103+0.12 and 0.267+0.12 for the LGR and LFCR 

lines respectively from method (1); only the latter was significant. 

Corresponding estimates from REML were 0.107±0.05 and 0.124+0.07 

respectively. 	The observed correlated responses for BW and lean 

were consistent with predicted values (Tables 6.1 and 6.2). 

The largest difference between both selected lines in terms 

of observed correlated response was in growth rate. A significant 

positive genetic trend of 12.23+4.34 g/day (method (1)) was observed 

in the LGR line while a negative but non-significant trend of 

-2.75+4.4 g/day was estimated in LFCR line. 	Estimates from REML 

were similar for the LGR line although more precise. 	The high 

correlated response for GRT in the LGR line could be attributed to 

the high genetic correlation between LGR and GRT, about 0.958+0.033 

in POP1, LGR being a product trait of GRT and LEAN. There was a 

high similarity in the rate of accumulation of direct response for 

LGR and correlated response in GRT in the LGR line (Fig. 6.11) 

compared with that of lean percent, which further confirms that much 

of the selection pressure in LGR has been through GRT as mentioned 

earlier in chapter four. 	The estimated genetic correlation between 

LFCR and GRT was -0.580+0.240 in POP2. 	The observed correlated 

response in GRI was therefore inconsistent with the estimated genetic 
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TABLE 6.1 

Correlated responses for secondary traits per year in both selected lines 

LGRL 
	

LFCRL 

Method 3 
	

Method 3 

Trait Method 1 LGRL POP! POP3 Method 1 11CR POP2 POP3 

BW(kg) 0.106 0.093 0.074 0.028 0.100 0.168 0.018 -0.004 
(0.11) (0.01) (0.01) (0.01) (0.05) (0.02) (0.01) (0.01) 
(0.14) (0.08) (0.07) (0.07) (0.15) (0.09) (0.09) (0.09) 

LEAN % 0.103 0.106* 0.107* 0.106 0.267* 0.016 0.124 0.172* 
(0.05) (0.05) (0.05) (0.06) (0.06) (0.01) (0.02) (0.02) 
(0.12) (0.05) (0.05) (0.06) (0.12) (0.05) (0.07) (0.07) 

GRT 12.23k* 13.43** 11.01 11.91k1 -2.748 0.499 2.611 2.00 
(9/day) (2.83) (1.48) (1.33) 1.20 (3.51) (0.94) (0.88) (1.12) 

(4.34) (2.42) (2.26) (2.24) (4.39) (2.33) (2.27) (2.41) 

FEED 5.913 5.03 0.175 2.108 -3.841 -7.066 -2.043 -1.826 
(kg) (3.36) (0.87) (0.02) (0.39) (2.61) (0.11) (0.03) (0.01) 

(5.31) (3.11) (2.70) (2.68) (5.91) (3.75) (3.32) (3.41) 

FCR -0.201 -0.165 _0.339* _0.295* -0.354 -0.023 -0.277 -0.238 
(kg 	feed! (0.27) (0.04) (0.06) (0.04) (0.51) (0.01) (0.07) (0.06) 

(0.27) (0.14) (0.15) (0.14) (0.28) (0.15) (0.16) (0.16) 

Standard error of regression coefficient 
Standard error estimated using 	the variance-covariance matrix of 	correlated 

responses  
* " P<0.01; 'P<0.05, test of significance  based on the second standard error (h) 
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TABLE 6.2 

Predicted annual correlated responses for 
secondary traits in selection lines 

Predicted correlated 
response 

Traits LGRL LFCRL 

BW (kg) 0.093 0.032 

LEAN 0.109 0.103 

GRT (g/day) 13.07 5.612 

FEED 	(kg) 0.311 -3.532 

FCR (kg feed! -5.648 -5.432 
kg gain) 
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TABLE 6.3 
Estimates of variance components (and standard errors) for secondary 

traits from REML analyses 

Variance components 

Trait Population Additive genetic Residual Heritability 

BW POP1 0.932 11.86 0.073 
(kg) (1.33) (1.54) (0.10) 

POP2 1.228 12.19 0.092 
(1.54) (1.72) (0.11) 

POP3 1.161 11.70 0.090 
(1.04) (1.21) (0.08) 

LEAN POP1 18.22 35.80 0.337 
(7.48) (6.62) (0.13) 

POP2 27.69 26.84 0.508 
(8.49) (6.73) (0.13) 

POP3 28.43 27.58 0.508 
(6.72) (5.11) (0.10) 

FEED POP1 1.143 22445 0.0001 
(kg) (34.52) (1732) (0.002) 

POP2 623.8 19406 0.0311 
(907) (1909) (0.04) 

POP3 725.3 19845 0.0365 
(988) (1451) (0.04) 

GRI POP1 3648 40.47 0.474 
(11.36) (910) (0.13) 

POP2 2480 4928 0.335 
(1066) (955) (0.13) 

POP3 3554 4171 0.460 
(906) (715) (0.10) 

FCR POP1 11.82 27.26 0.303 
(kg feed! (5.18) (4.73) (0.12) 
kg gain) 

POP2 10.52 26.51 0.284 
(5.17) (4.82) (0.13) 

POP3 9.97 28.13 0.262 
(3.85) (3.62) (0.10) 
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TABLE 6.4 

Covariance components, genetic and phenotypic correlations between secondary and selected traits from REML 
analysis 

Each selected line 	 Both selected lines 
plus control 	 plus control (POP3) 

Covariance components Correlations 	Covariance components 	Correlations 

Selected 	 Additive 	 . 	 Additive 
Trait 	trait 	lines 	genetic 	Residual 	rG 	r 	genetic 	Residual 	rG 	r 

BW LGR POP1 8.864 7.917 0.406 0.150 1.739 13.97 0.075 0.139 
(kg) (10.18) (9.54) (0.49) (0.05) (8.01) (7.53) (0.34) (0.04) 

LFCR POP2 -0.177 -0.612 -0.152 0.112 0.269 -1.205 0.211 -0.130 
(0.63) (0.64) (0.54) (0.06) (0.48) (0.48) (0.40) (0.05) 

Z 	LEAN LGR POP1 10.41 16.44 0.359 0.369 14.92 11.51 0.411 0.353 
o 	 (%) (7.84) (6.61) (0.22) (0.05) (6.70) (5.14) (0.15) (0.04) 

LFCR POP2 -0.556 -1.149 -0.323 -0.381 -1.081 -1.06 -0.551 -0.452 
• 	(0.50) (0.43) (0.24) (0.05) (0.42) (0.34) (0.15) (0.04) 

- 	 . 	 * 	 GRT LGR POP1 1252 1155 0.958 0.876 1217 12.53 0.951 0.898 
(g/day) (385) (304) (0.03) (0.01) (311) (242) (0.03) (0.01) 

• LFCR POP2 -31.44 -29.70 -0.580 -0.370 -40.54 -31.46 -0.603 -0.410 

: 
(18.2) (16.06) (0.24) (0.05) (15.3) (12.5) (0.15) (0.040) 

FEED LGR POP1 20.99 1564 0.919 0.339 172.8 1303 0.293 0.326 
• 	 (Kg) (373) (362) (2.50) (0.05) (300) (298) (0.47) (0.04) 

LFCR POP2 18.57 63.40 0.728 0.303 11.86 .67.90 	• 0.382 0.278 
(22.6) (24.02) ( 	 a 	) (0.05) (18.4) (19.5) (0.46) (0.04) 

• 	 FCR LGR POP1 -5.462 -4.184 -0.727 -0.492 -3.387 -5.269 -0.645 -0.500 
kg feed! (2.22) (1.84) (0.16) (0.04) (1.71) (1.44) (0.15) (0.04) 
kg gain 

LFCR • POP2 0.294 0.783 0.873 0.924 0.329 0.821 0.908 0.931 
(0.16) (0.15) (0.07) (0.01) (0.12) (0.11) (0.04) (0.01) 

• 	
• 	 Standard errors in brackets 

(a) 	standard error could not be estimated due to low additive genetic variance of feed intake (Table 6.3) 
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correlation probably due to the reduced feed intake which placed a 

limitation on rate of growth attained. Predicted genetic trends for 

GRT were 13.07 and 5.62 g/day in the LGR and LFCR lines respectively 

(Table 6.2). Correlated responses for FCR were about the same in 

both lines but were only significant in the LC1R line from REML 

analyses on POP1 and POP3. Although genetic trends for FEED were in 

opposite directions in LGR and LFCR lines, the estimates had large 

standard errors due probably to: (1) the large variation in estimates 

of correlated responses from method (1) (Fig. 6.7), and (2) the large 

residual variance associated with FEED; this point is further 

examined in the discussion (section 6.4). The difference between 

the two lines in terms of estimated genetic trend for FEED is much 

more apparent from REML analyses of the individual selected lines 

only. The estimated trends were 5.03+3.11 and -7.07+3.75kg/day 

respectively in the LGR and LFCR lines although none was significant 

due to the large standard errors. In terms of cumulative correlated 

response in FEED in the last year, the LGR line was 2% higher and 

LFCR line -1% lower than the mean of the control line. 

A summary of the heritability estimates and the genetic and 

phenotypic correlations between the selected traits and all secondary 

traits from a multivariate REML analyses on POP3 are presented in 

Table 6.5. These estimates might be useful in designing future 

improvement schemes for this herd and Hereford cattle in general. 

The heritability estimates obtained for GRT, LEAN and FCR 

were consistent with values reported by Simm (1983) in an extensive 

survey of literature. He reported average values of 0.41, 0.39 and 

0.42 for GRI, LEAN and FCR respectively from a total of 354, 14 and 

45 estimates from paternal half sib analyses or offspring parent 
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TABLE 6.5 

Estimates of heritabilities, genetic and phenotypic correlations and 
standard error for all traits 

1 2 3 4 5 6 7 

LGR 1 0.47 0.15 0.35 0.89 -0.57 0.32 -0.50 
(0.09) (0.04) (0.04) (0.01) (0.03) (0.04) (0.04) 

BWT 2 0.55 0.03 0.06 0.17 -0.14 0.06 -0.14 
(0.46) (0.03) (0.05) (0.04) (0.04) (0.05) (0.04) 

LEAN 3 0.44 -0.50 0.45 -0.04 - 0.45 -0.16 -0.11 
(0.15) (0.48) (0.10) (0.05) (0.04) (0.05) (0.05) 

GRI 4 0.95 0.78 0.14 0.43 -0.41 0.38 -0.48 
(0.02) (0.34) (0.18) (0.10) (0.04) (0.04) (0.04) 

LFCR 5 -0.71 -0.12 -0.54 -0.60 0.39 0.29 0.93 
(0.11) (0.57) (0.14) (0.14) (0.09) (0.04) (0.01) 

FEED 6 0.09 0.59 -0.47 0.25 0.62 0.15 0.26 
(0.23) (0.51) (0.21) (0.22) (0.16) (0.06) (0.04) 

FCR 7 -0.64 -0.34 -0.22 -0.64 0.94 0.53 0.32 
(0.13) (0.59) (0.19) (0.14) (0.30) (0.20) (0.09) 

Lower traingle : Genetic correlations 
Diagonal Heritabilities 
Upper triangle : Phenotypic correlations 
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regressions. 	However, the heritability estimate obtained for BW was 

very low compared with the average value of 0.46 he reported from 149 

estimates. 

In general LGR was positively genetically correlated with 

BW, GRT and LEAN but was negatively correlated with LFCR and FCR. 

LGR was not genetically correlated with FEED but the phenotypic 

correlation between both traits was 0.32+0.04. The situation was 

reversed for LFCR; it was negatively genetically correlated with BW, 

GRT and LEAN, but was positively correlated with FEED and FCR. 

In the open line, significant annual genetic changes were 

observed only for GRT and FCR (Table 6.6). A significant genetic 

trend of 50.9+16.4g/day was observed for GRT in the open line with 

respect to an initial significant difference of -116.0+51.0 (g/day) 

between the open and control lines. This is consistent with Fig. 6.5 

where deviations of the open line from the control line are plotted 

against calf birth year, correlated responses for GRT were negative 

in the first two years followed by a tremendous increase in later 

years. This is very similar to the pattern observed for LGR. FCR 

followed the same pattern, genetic change in the initial years were 

negative followed by a positive genetic in the later years (Table 6.6 

and Fig. 6.9). Since neither the initial difference between the 

open and the control lines for FEED was significant nor the genetic 

trend in the open line, the above implies that the genetic 

improvement in food conversion ratio was essentially through rapid 

growth rate, as animals could be assumed to be eating more or less 

the same amount of food over the years. 
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TABLE 6.6 

Annual genetic change in secondary traits in the open line 

Trait 'Intercept 2Genetic trend 

BW (kg) -1.320 0.786 
(2.11) (0.68) 

LEAN 8.50 -0.9.00 
(15.4) (4.96) 

GRT _116.0** 5090** 
(g/day) (51.0) (16.4) 

FEED 76.30 -20.3 
(kg) (78.8) (25.4) 

FCR 13.03** _5.36** 
(kg feed/kg gain) (6.09) (1.96) 

1,2 see table 5.1 for explanation of terms 

** P< 0.01 
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6.4 	Discussion 

In an extensive discussion on selection for growth rate and 

size in ruminants, Barlow (1984) concluded that selection for growth 

rate and leanness will continue to have a role in terminal sire 

breeds with the major reservation that strategies must be derived to 

minimise calving difficulties, which arises mainly from increased 

birth weight. Therefore the absence of correlated response in BW 

observed in both selected lines becomes very important in the light 

of his conclusions. This is more so in the LGR line where a 

significant correlated response in GRT was recorded. The correlated 

response in GRT observed in LGR line is similar to the estimate for 

the rate gain from birth to one year of age from direct selection on 

yearling weight reported by Aaron (1986b), lower than the estimate of 

Koch et al. (1974b) and higher than that of Frahm et al. (1986b) but 

higher correlated responses were however reported by these workers 

for BW (see Table 2.2). It does seem therefore that the inclusion 

of LEAN as a component trait in LGR acted as a check to increased 

correlated response in BW. The estimated genetic correlation 

between LEAN and 8W in this study was -0.50+0.48 from multivariate 

REML analyses on POP3. Although the standard error is very large, 

it does however indicate a negative genetic relationship between BW 

and LEAN, which could act as a check on 8W. The lower genetic 

correlation estimate of 0.55+0.46 between LGR and BW compared with 

0.78+0.34 between GRT and 8W in POP3 seems to confirm the above 

observation. However as pointed out in chapter two, not all 

selection experiments on growth rate have been accompanied by 

increased BW (see Frisch, 1981 and Bailey and Lawson, 1986). The 

magnitude and direction of change in BW as a result of selection on 
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growth traits might be influenced by environmental conditions, 

management and breed type. 

A high correlated response in FEED was expected in the LGR 

line in view of the high correlated response in GRT observed in this 

line and the reverse was expected for the LFCR line. However 

correlated responses were generally low for FEED in both lines. These 

low correlated responses might be due to the low proportion of 

additive genetic variance associated with FEED in this study as 

indicated by the very low heritability estimate, and genetic 

correlations between FEED and both selected traits. However 

phenotypic variance for FEED was quite high (standard deviation was 

143kg) which shows that a large proportion of variation in FEED was 

environmental (residual standard deviation equals 141kg) and could be 

related to variation in feed quality from year to year. A between 

year analysis on FEED, FCR and weight gain on test in the control 

line which represents environmental effects, showed a very 

significant (P<0.01) decline in total feed consumed and FCR in the 

last three years (1984 to 1986) of the experiment coupled with a very 

signifiàant (P<0.01) increase in weight gain in 1984 and 1985 (Fig. 

6.12). This might indicate a significant increase in feed quality 

in 1984 and 1985 which resulted in low feed consumption but in high 

weight gain. The environmental trend for FEED, FCR and weight gain 

estimated by regressing yearly means in the control line on years 

were -37.40+10.7 kg, -2.88+0.96kg feed/kg gain and 4.90+3.36kg, the 

standard errors being taken from the regression analysis. The high 

residual variation in feed may partly account for large standard 

errors associated with estimates of correlated annual genetic changes 

in both lines. 

.1 
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In summary, selection for LGR has been accompanied by 
and 0. de.c'easQ. i 

increases in growth rate, LEAN, 	 feed intake 	In the LFCR 

line, there has been an increase in LEAN, 	a reduction in feed 
Fcm 

intake,Land little or no change in growth rate. 	Considering the 

direct and correlated responses, the answer to the issue raised on 

the last chapter as to whether selection for LFCR is necessary for 

improving rate and efficiency of lean gain, seems dependent on the 

conditions under which animals are commercially reared. In 

situations where feed availability is not a limiting factor, 

selection for LGR seems adequate to increase the rate and efficiency 

of lean gain. However where feed availability is a constraint, LFCR 

seems a better alternative selection in improving lean meat 

production. 
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CHAPTER 7 

CORRELATED RESPONSES IN BODY WEIGHT AND MEASUREMENTS AT VARIOUS AGES 
AND REPRODUCTIVE TRAITS 



7.1 	Introduction 

Correlated responses in body weight and body measurements at 

various ages in male and female calves, and reproductive traits in 

females are examined in this chapter. The literature indicates that 

there has been a lot of interest in environmental factors which-are 

of importance in reproductive traits in beef cattle. The influence 

of various environmental factors on reproductive traits are therefore 

reported in addition to estimates of annual genetic change. 

7.2 	Materials and methods 

The details of management for male and female calves have 

already been given in chapter three. The data analysed consisted of 

body weight measured approximately at one to two month intervals over 

an age period of 2 to 13 and 48 months respectively for male and 

female calves. Birth weight for female calves was also available. 

Data on body measurements: head length, first rib width, hook width, 

wither height, rump height and body length for females and scrotal 

circumference in addition for males, taken at about two to three 

months intervals over the same age period as body weight, were also 

analysed. 

Reproductive traits studied included age at first calving, 

conception rate measured as the number of seasons mated divided by 

the number of successful pregnancies, calving date, calving 

difficulty score (score of 1 to 5; see Table 7.11 for definition of 

scores), calving and preweaning mortality rates and calving interval. 

Calving mortality rate was analysed as a binary trait with one 

assigned to darns whose calves died at birth or 24 hours after calving 

and zero to dams with calves surviving beyond 24 hours after calving. 
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Preweaning mortality rate was similarly analysed as a binary trait 

with one assigned to dams whose calves died at birth or before 

weaning; otherwise zero was assigned. All female records included 

female progeny born in the foundation years up to the 1985 calf crop, 

that is, over a six year period of selection. 

7.2.1 	Statistical analysis 

(1) Body weight and measurements 

Using a similar methodology as described in chapter five 

(equation 2), individual body weights and measurements at the various 

ages were adjusted for fixed effects and the deviations of the 

phenotypic means of the selected lines from the control each year 

regressed on calf birth year to obtain estimates of annual genetic 

change. The fixed effects fitted were calf birth year, weaning 

type, age of dam at the birth of their progeny, calving date and age 

at which body weights and measurements were taken. Weaning type and 

age of dam effects were classified as explained in section 4.2.2 

(chapter four). 	The analysis was carried out separately for males 

and female calves. 	In estimating annual genetic changes (genetic 

trends) the regressions of yearly deviations of the mean performance 

of the selected lines from the control were forced through zero, 

since the selected and control lines were derived from same base 

population. Annual genetic changes in the open line were estimated 

relative to the initial difference between the open and control lines 

as explained in chapter five. 

(ii) 	Reproductive traits 

The same methodology employed for body weight was used to 
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estimate genetic trends for the various reproductive traits 

considered, with the relevant fixed effects fitted in the model. The 

fixed effects fitted in the model were, for 

*age at first calving 

*conception rate 

*calving date 

*calving difficulty 

*calving and preweaning mortality 
rate 

*Calving interval 

year of birth, calving date, 
dam age, weaning type, birth 
weight and calving difficulty 
score. 

year of birth 

year of birth, year of 
calving, dam age, sex of 
calf, dam age by sex of calf 
interaction and birth weight 
of calf 

year of birth, year of 
calving, calving date, age of 
dam, sex of calf, dam age by 
sex interaction, and birth 
weight of calving 

same as for calving 
difficulty 

year of birth, year of 
calving, calving date, sex of 
previous calf, dam age at 
calving, birth weight of 
previous calf and calving 
score of previous calf 

Where appropriate, analyses of reproductive traits was carried 

initially utilising only first parity records and then over all 

available parities. For females born within the herd from the 

foundation year of 1978, records were available to a maximum of six 

parities. Analysis on only first parity performance involved about 

653 reproductive records while about 1875 records were available over 

all parities. 

The standard errors for the annual genetic changes for body 

weights and measurements, and reproductive traits were from the 
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regression analyses. 	They are therefore biased downwards as the 

variance due to drift has not been taken care of. 	Thus, the tests 

of significance based on these standard errors are only approximate. 

7.3 	Results 

7.3.1 Body weight and measurements 

Over the period of selection, a total of 159, 162, 70 and 50 

female progeny were measured for body weight and various body 

measurements in the LGR, LFCR, control and open lines respectively at 

12 months of age. A classification of the number of female calves by 

year and line is shown in Table 7.1. This classification and the 

total number of progeny recorded however vary from one age period to 

another. 	A similar classification of male progeny was presented in 

chapter four. 	Line means and standard deviations for body weight at 

approximately 6 and 12 months of age for male claves and 6, 12, 24, 

36 and 48 months of age for females are presented in Table 7.2. 

Similar information for body measurements at 12 months of age is 

presented in Table 7.3. 

(i) 	Body weight in male calves 

The estimates of correlated annual genetic change for body 

weight at several ages for male calves are given in Table 7.4 and 

illustrated in Fig. 7.1. A negative but non-significant genetic 

trend was observed for male calves in the LFCR line over the age 

period of 2 to 13 months. In the LGR line, estimated genetic trends 

for body weight were generally positive but were significant only 

from about 9 to 13 months of age. Generally, estimates of 

correlated annual genetic change for body weight in the LGR line 
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TABLE 7.1 

Classification of number of recorded female progeny 
at 12 months for body weight and measurements by 

year and line 

Calf birth year LGRL LFCRL GIL OPL 

1980 33 36 - 6 

1981 28 30 11 4 

1982 23 30 8 15 

1983 30 24 15 10 

1984 26 25 18 7 

1985 19 17 18 8 
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Line means and standard deviations 

TABLE 7.2 

for body weight (kg) 
at various ages 

for male (M) and female (F) calves 

Standard 
LGRL 	 LFCRL CTL OPL deviation 

Trait M 	F 	M F M F M 	F M 	F 

6 months 160.2 	144.2 	155.4 144.0 151.5 132.7 158.0 	141.7 32.57 	26.18 
body weight 

12 months 371.1 	277.8 	356.1 272.0 356.4 267.1 374.4 	275.7 42.01 	39.29 
body weight 

24 months - 	 401.6 	- 391.2 384.8 397.6 - 	 49.25 
body weight 

36 months - 	 466.6 472.3 447.8 467.6 - 	 51.50 
body weight 

48 months - 	 465.18 487.8 456.4 521.69 56.43 
body weight 
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TABLE 7.3 

Line means and standard deviations for various body measurements (mm x 10) at 12 and 13 
months of age respectively for male (M) and female (F) calves 

Standard 
LGRL LFCRL CTL OPL deviations 

Trait M F M F M F M F M 	F 

Head length 454.7 390.7 454.9 393.6 452.5 383.5 459.0 388.4 19.23 	17.90 

First rib 418.1 327.3 413.9 328.1 415.3 320.8 418.6 327.1 31.70 	32.40 width 

Hood width 456.9 390.9 446.2 390.4 446.5 382.2 453.6 390.0 25.25 	28.19 

Wither 1073 985.6 1064 985.7 1063 982.3 1104 998.6 42.50 	42.05 height 

Body length 1307 1159 1290 1148 1292 1136 1326 1164 67.29 	64.00 

Rump height 1146 105.6 1131 1053 1130 1042 1173 1070 46.25 	44.53 

Scrotal 354.3 - 352.3 - 350.0 - 358.0 - 25.30 circumference 



TABLE 7.4 

Correlated responses per year in body weight (kg) in 
males at various ages 

OPL 

Age (months) 	LGRL 	LFCRL 	INT 	GC 

2 

4 

12 

13 

-0.293 -0.318 
(0.23) (0.23) 

0.057 -0.328 
(0.35) (0.35) 

0.713 -0.297 
(0.57) (0.59) 

1.230 -0.774 
(0.715) (0.75) 

1.700* -0.794 
(0.78) (0.81) 

3.077** -0.197 
(0.91) (0.97) 

3.315** -0.412 
(0.94) (1.00) 

1.530 -0.824 
(3.07) (0.70) 

2.930 -0.420 
(4.65) (1.07) 

2.650 -0.700 
(8.58) (1.94) 

-13.60 2.460 
(10.8) (2.41) 

-1.900 1.25 
(10.3) (2.43) 

4.500 2.250 
(12.30) (2.88) 

-1.100 4.37 
(12.5) (2.95) 

INT = estimated difference between open line and control 
in the first year 

GC = genetic change per year relative to the initial 
difference 

* p<0.05 
** p<0.01 
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increased with age (Fig. 7.1). 

The correlated responses in body weight observed in the LGR 

line tended to be generally lower than estimates from most 

experiments involving direct selection for postweaning gain or 

yearling weight. The correlated annual genetic change expressed as 

a percentage of the mean reported for weaning weight at 205 days of 

age in Hereford cattle from direct selection for postweaning gain by 

Chevraux and Bailey (1977) was 1.9 percent. The estimate of annual 

rate of change reported by Aaron et al. (1986b) for weaning weight at 

205 days in bulls was 0.93 percent in Angus cattle selected for 

yearling weight. 	The annual rate of change for body weight observed 

at a similar age in the LGR line was 0.51 percent. 	At about one 

year of age, the correlated annual percentage rate of change for body 

weight in males in the LGR line was about 74% of the direct rate of 

change for yearling weight for bulls observed by Newman etal. (1973) 

and Aaron et al. (1986b) respectively in Beef Shorthorn and Angus 

cattle. 

None of the initial differences between the open and control 

lines or estimates of correlated genetic trend in body weight in 

males at the various ages were significant except at about 6 and 10 

months of age. The estimated differencesbetween the open and control 

lines in the first year at the two ages were 16.38 + 6.69 and -26.1 + 

12.5 kg respectively. 	Corresponding estimates of genetic trend were 

-4.02 + 1.61 and 5.76 + 2.80 kg/year. 	Most estimates of the genetic 

trend in the open line had very large sampling error. This might be 

due to the few animals in the open line and differences between 

various bulls used within and across years. The estimates of 

correlated responses for body weight at any particular age showed 
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great variation (Fig. 7.2). 

(ii) 	Body weight in female calves 

The estimated correlated annual genetic change for body 

weight at several ages are presented in Table 7.5 and illustrated in 

Fig. 7.3. In contrast to males, positive and significant correlated 

responses in body weight were observed in the LFCR line. In general, 

annual correlated responses for body weight were significant in both 

selected lines from about 2 months of age to 24 months. Over the 

various ages, correlated responses were similar in magnitude and 

trend in both selected lines, although they tended to be slightly 

higher in the LGR line. 

The correlated rate of change for weaning weight at 205 days 

reported for females from direct selection for yearling weight were 

0.55 and 0.71 percent by Frahm et al. (1985b) and Aaron et al. 

(1986b) respectively in Hereford and Angus cattle. These are similar 

to the correlated rates of change of 0.56% observed in the LFCR line 

and 0.78% in the LGR line at approximately the same age. However, at 

one year of age the correlated rate of change in body weight in the 

LFCR line was only 55 and 66% of estimates reported by Newman etal. 

(1973) and Aaron et al. (1986b) respectively from direct selection 

for yearling weight. In the LGR line, the rate of change was 

similar to the estimate of Newman et al. (1973) but was only 80% of 

that of Aaron et al. (1986b). 

From Figure 7.3, it seems that the reproductive cycle 

influenced magnitude of annual correlated responses for body weight 

in females. Annual correlated responses tended to increase up to 

600 days (20 months) of age and declines gradually, which coincides 
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TABLE 7.5 

Correlated responses per year in body weight (kg) in 
females at various ages 

Age (months) LGRL 

Lines 

LFCRL 

OP L 

INT GC 

0 0.079 0.048 -0.340 0.074 

(0.10) (0.10) (1.07) (0.35) 

2 0.882** 1.003** 2.010 0.950 

(0.32) (0.33) (3.42) (1.13) 

4 0.996* 1.351** -0.030 0.400 

(0.46) (0.48) (5.21) (1.68) 

6 1.096 0.781 -5.960 2.010 

(0.70) (0.71) (7.87) (2.54) 

12 2.179** 1.501 -3.4780 5.210 

(0.77) (0.79) (8.47) (2.76) 

14 2.632** 1.355** -8.02 7.46* 

(0.85) (0.88) (9.15) (3.04) 

24 4.210** 3.050* -0.900 8.080 

(1.35) (1.41) (13.6) (4.48) 

34 1.560 1.030 -15.00 8.340 

(2.09) (2.23) (22.5) (8.33) 

48 1.870 3.19 34.90 6.600 

(3.90) (3.9) (36.5) (15.6) 

HIT, GC = see Table 7.4 for explanation 

* p(005 
** P<0.01 
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with the, period of late pregnancy in first parity, calving and 

weaning. There was again another increase as from 850 days (28 

months) of age until about 977 days (32 months) followed by another 

decline, coinciding with the period of late pregnancy and calving in 

animals having their second parity. The next decline in correlated 

response seems again to coincide with calving at 4 years of age in 

animals having their third parity. The decline of correlated 

responses in body weight during the reproductive cycle in females, 

seems to suggest that body weight during reproductive and 

non-reproductive periods may not be influenced by the same genes to a 

very high degree. The phenotypic correlations between body weights 

during periods of high and low correlated annual genetic changes were 

fairly constant, about 0.50. This indicates that variation in body 

weight at the various periods may equally be due to permanent 

differences (both genetic and environmental) and special 

environmental variance between individuals. 

As for males, estimates of the initial difference between 

the open and control lines in body weight were generally not 

significant. However estimates of genetic trend relative to the 

respective initial differences between the open and control line were 

positive and significant from 14 to 23 months of age. The estimates 

of genetic trends at 16 and 23 months were 12.98 + 3.14 and 10.70 + 

3.94 kg/year respectively. Corresponding estimates for the initial 

difference between the two lines were -23.11 + 9.72, and -7.00 + 12.1 

kg. There was great variation in estimates of correlated responses 

for body weight in any particular age as in males (Fig. 7.4). 
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(iii) 	Body measurements in males 

In the LFCR line, annual correlated responses for all body 

measurements were not significant (Table 7.6). All significant 

correlated responses for body measurements in the LGR occurred at the 

age of 9 months or/and 13 months of age (Table 7.6). The trend in 

terms of magnitude of correlated responses for wither height and body 

length over various ages are illustrated in Figures 7.5 to 7.6 

respectively. Correlated responses for wither height and body 

length were only significant in the LGR line from 9 to 13 months of 

age and at 13 months of age for rump height and hook width. The 

significant correlated responses in the various body measurements in 

the LGR line occurred only over the same age period in which 

significant changes were observed for body weight. This coupled 

with the fact that insignificant correlated responses in body weight 

in the LFCR line were also associated with insignificant correlated 

changes in body measurements, seem to suggest that changes in body 

measurements might be dependent on changes in body weight. 

In the open line, the only significant genetic trends were 

in body length at 9 and 13 months, wither height and rump height at 

13 months of age (Table 7.6). 

(iv) 	Body measurements in female calves 

The results for correlated responses in females for body 

measurements are presented in Table 7.7 and illustrated for wither 

height and body length in Figures 7.7 and 7.8 respectively. 

The most marked difference between both selected line in 

terms of correlated responses in body measurement in females was in 

body length. The estimates of annual correlated responses were 
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TABLE 7.6 

Correlated responses per year for various body measurements (mm x 10) in males at different 
ages 

Head 	First rib Head 	Wither Body 	Rump 	Scrotal 3  Line 	Age 	 length 	width 	width 	height 	length 	height 	circumference 

6 	 -0.370 -0.721 0.962 1.036 0.130 1.131 
(0.44) (0.49) (0.89) (.131) (0.93) 

IGRI 	9 	 0.036 0.728 -0.378 1.766* 3.950** -0.990 
(0.45) (.070) (0.54) (0.90) (.134) (1.02) 

13 	 0.294 0.924 1.708* 1.894* 3.080* 3.067* 	1.501 
(0.41) (0.75) (0.57) (0.90) (1.51) (0.99) 	(0.56) 

6 -0.389 -0.744 0.596 -0.868 -0.764 -0.045 
(0.38) (0.67) (0.50) (0.93) (0.92) (0.97) 

LFCRL 	9 
14 

-0.231 -0.957 -0.209 -0.563 -1.020 -0.431 
(A) 

(0.48) (0.74) (0.45) (0.95) (1.18) (0.97) 

13 -0.146 -0.126 -0.207 0.326 -0.280 0.502 
(0.43) (0.74) (0.61) (0.95) (1.60) (0.99) 

6 	(1) 7.400 17.57 11.99 15.06 33.50 16.40 
(4.63) (8.06) (6.10) (11.2) (15.8) (14.2) 

(2) -1.850 -5.330 -2.270 -0380 -5.420 -1.300 
(1.12) (1.95) (1.47) (2.70) (3.81) (3.27) 

aPI 9 	(1) -2.110 13.39 7.210 9.600 -33.50 -1.400 
(6.04) (9.48) (6.89) (12.1) (1.18) (14.6) 

(2) 0.000 -2.680 -1.210 1.780 10.74* 4.580 
(1.43) (2.25) (1.64) (2.87) (4.27) (3.36) 

13 	(1) -1.110 1.230 6.330 10.00 -22.90 -5.200 
(5.80) (9.92) (7.60) (12.0) (1.60) (14.2) 

(2) 1.350 0.480 -0.560 6.320* 11.89 10.28** 
(1.39) (1.82) (1.82) (2.87) (4.79) (3.30) 

(1) Difference between open line and control in the first year 
 
 

Estimated genetic trend within the open line relative to the Initial difference Available only at 13 months of age *p< 0.05 
0.01 

0.642 
(0.56) 

-5.480 
(8.35) 

2.480 
(1.94) 
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TABLE 7.7 

Correlated responses per year for various body measurements in 
females at different ages 

Ages (months) 

Body measurement 
(mm x 10) 	Line 	6 
	

12 	24 	36 	46 

1.197* 1.093* 0.840 0.680 
(0.69) (0.50) (0.74) (1.06) 

1.687* 1.804** 1.093 0.85 
(0.50) (0.52) (0.50) (1.07) 

-3.130 -9.080 4.080 -2.530 
(4.35) (4.95) (9.90) (9.240) 

1.630 4.860** 3.310 6.040 
(1.42) (1.66) (3.68) (4.13) 

Head length 

LGRL 	0.822 
(0.49) 

LFCRL 	1.041* 
(0.50) 

OPL(1.) -16360 
(4.34) 

(2) 0.450 
(1.41) 

LGRL 1.079 0.694 2.235* 1.810 -0.110 
(0.83) (1.00) (0.91) (1.48) (1.96) 

LFCRL 0.840 1.230 1.885* 1.151 -0.22 
(0.85) (1.02) (0.94) (1.61) (1.97) First rib width 

OPL(1) -10.85 -2.700 -6.940 -11.200 -5.400 
(7.34) (8.84). (8.96) (15.8) (17.2) 

(2) 1.810 2.760 7.290* 2.910 0.440 
(2.39) (2.88) (3.00) (5.87) (7.67) 

LGRL 0.722 1.330 2.282* 1.240 2.390 
(0.63) (0.77) (0.85) (1.15) (1.81) 

LFCRL 0.714 1.376 1.984* 2.020 2.960 
(0.65) (0.79) (0.81) (1.25) (1.82) 

Hook width 
OPL(1) -9.480 -0.660 -5.640 -6.400 -1.700 

(5.56) (6.82) (8.02) (12.2) (1.57) 

(2) 2.470 2.800 5.320* 4.320 9.300 
(1.81) (2.22) (2.69) (4.55) (7.30) 
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TABLE 7.7 (continued) 

Ages (months) 

Body measurement 
(mm x 10) 	Line 6 12 24 36 46 

LGRL 1.450 1.230 3.170** 2.000 3.170 
(1.23) (1.27) (1.10) (1.81) (2.19) 

LFCRL 1.960 1.660 3.900** 2.260 2.130 
(1.26) (1.30) (1.14) (1.96) (2.20) 

Wither height 
OPL(1) -17.70 -3.600 -2.800 9.100 18.300 

(10.9) (11.2) (10.8) (19.2) (19.1) 

(2) 10.47 7.060 11.66 5.960 9.740 
(3.55) (3.65) (3.62) (7.15) (8.51) 

LGRL 	4.410** 6.740** 5.020** 6.120* 12.28** 

	

(1.64) 	(19.84) 	(1.84) 	(2.84) 	(3.95) 

LFCRL 	2.590 	3.540 	5.260** 5.380 	7.260 

Body length 	
(1.68) 	(1.89) 	(1.92) 	(3.09) 	(3.96) 

	

OPL(1) -12.50 	4.500 	-18.10 	-34.50 	-2.200 

	

(14.5) 	(16.3) 	(18.1) 	(30.6) 	(34.4) 

	

(2) 8.460 	8.810 	19.97** 27.70 	30.40* 

	

(4.73) 	(5.32) 	(6.08) 	(11.4) 	(15.4) 

LGRL 	3.810* 	7.070 

	

(1.58) 	(3.65) 

LFCRL 	4.570** 7.600* 

3 
Rump height 	

(1.62) 	(3.74) 

	

.OPL(1) -19.90 	-13.20 

	

(15.1) 	(34.5) 

(2) 11.47* 	8.800 

	

(4.64) 	(10.7) 

1 and 2 = As explained in Table 7.6. 
3 = Rump height measurements were availale only up to 12 months of 
age 
* P<0.05 
** P<0.01 
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positive and generally significant in the LGR line from about 6 to 48 

months of age. However in the LFCR line, correlated annual 

responses although positive were only significant at about 24 months 

of age. 

Annual correlated responses for most other body measurements 

first rib width, hook width and wither height were positive but 

only significant at about 24 months of age in both selected lines. 

Body measurements up to this age (24 months) were recorded in calves 

born in the project up to 1985 and therefore have the greatest amount 

of selection differential behind them. 

Similar to the two selected lines, estimates of annual 

correlated responses for the 5 body measurements in females were 

generally positive in the open line but were only significant mainly 

at 24 months of age. Body length was however still significant at 

36 and 48 months. 

7.3.2. Reproductive traits 

A possible source of bias in estimates of correlated 

responses in reproductive traits in both selected lines is the 

confounding effect of system of mating with lines. The LGR and LFCR 

lines were bred by natural mating while the control line was bred by 

artificial insemination. Thus estimates of correlated responses, 

which are deviations of each of the selected line from the control 

line, may be biased to the extent the system of mating influenced the 

reproductive traits studied. Line means and standard deviations for 

age at first calving, calving date, conception rate and calving 

interval are presented in Table 7.8. 
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TABLE 7.8 

Line means and standard deviations for age at first calving, calving 
date and calving interval 

Line means 

Standard 
Trait LGRL LFCRL CTL OPL deviation 

Age at first calving 750.0 743.6 776.6 819.4 103.2 
(days) (126) (133) (56) (44) 

Calving date 154.3 154.9 160.6 159.7 17.22 
(days in the year) (287) (316) (106) (88) 

Calving interval 373.1 381.9 377.4 382.0 63.65 
(days) (158) (180) (47) (44) 

Number of records shown in brackets 
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Ci) 	Age at first calving (AFC) 

The age at first calving was not significantly influenced by 

age of dam, calving date, sex of calf and calving difficulty score of 

the dam. 	The most significant source of variation in AFC was birth 

weight of the calf. 	The coefficient for the regression of AFC on 

birth weight of calf was 5.05 + 1.09 days/j0 Estimated correlated 

annual genetic change in AFC were -4.930 + 3.20 and -8.010 + 3.31 

days respectively in the LGR and LFCR lines; only the later was 

significant (Table 7.9). 

(ii) 	Conception rate 

Positive but insignificant genetic trends of 0.009+0.01 

and 0.001 + 0.01 were observed in the LFCR and LGR lines respectively 

(Table 7.9). Similarly, the initial difference between the open and 

control lines in the first year and the estimated genetic trend for 

the open line were not significant. 

Calving interval 

None of the fitted fixed effects except year of calving had 

any significant effect on calving interval. Although estimates of 

genetic trend were negative in both selected lines, they were not 

significant (Table 7.9). However, the trend within the open line 

was positive but also not significant. 

Calving date 

The most significant (P<0.01) source of variation in calving 

date was birth weight of the calf both in parity one and over all 

parities. The regression coefficient for calving date on birth 

im 



TABLE 7.9 

Correlated responses per year in conception rate, age at first 
calving and calving interval 

Lines 

Trait 
	

LGRL 	LFCRL 
	

OPL 

	

(1) 	(2) 
Conception rate 	 0.009 	0.001 	-0.045 	0.035 

(0.01) 	(0.01) 	(0.10) 	(0.03) 

Age at first calving -4.930 _8.010* 89.10** -18.90 
(days) (3.20) (3.31) (33.70) (10.9) 

Calving interval -2.290 -1.03 10.80 -1.800 
(days) (3.38) (3.49) (26.9) (11.7) 

(1) and (2) as explained in Table 7.6. 
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weight of calf was about 1.21 + 0.19 days/both in parity one and 

overall parities. Other fixed effects considered such as sex of 

calf and age of dam had no signficant effect on calving date. 

Annual correlated responses in calving date were not significant in 

both selected lines (Table 7.10). However, over all parities a 

significant positive trend of 1.139 + 0.47 days was observed in the 

LGR line. Neither the initial difference between the open and 

control lines in the first year nor the genetic trend within the open 

line were significant. 

(v) 	Calving difficulty score 

The percentage of calves in each class of calving difficulty 

score classified by line over all parities are shown in Table 7.11. 

The percentage of calves born unassisted (score = 1) was similar in 

all lines across all parities. 

The sex and birth weight of calf constituted the most 

significant sources of variation (P<0.01) in calving difficulty both 

in parity one and over all parities. An increase of 1kg in birth 

weight increased calving difficulty score by 0.058 + 0.009 and 0.027 

+ 0.004 units respectively in parity one and over all parities. 

Male calves were associated with more calving difficulties. Age of 

dam at calving was only significant (P<0.01) over all parities with 

calving difficulty being higher in dams aged 2 to 3 years or more 

than 6 years old relative dams of 4 to 6 years of age. The 

estimates of annual correlated genetic change in calving difficulty 

in both selected lines were insignificant and of about the same 

magnitude in first parity and over all parities; but the trend was 

negative in the LGR line (Table 7.10). In the open line, estimated 
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TABLE 7.10 

Correlated responses per year for calving date (days of the year), 
calving difficulty and calf mortality 

Calving Calving Calving Preweaning 
Line Parity date difficulty mortality mortality 

One 0.837 -0.108 0.023 0.110 
(0.59) (0.03) (0.013) (0.015) 

LGRL 
All 1.139* -0.015 0.009 0.005 

(0.147) (0.02) (0.008) (0.01) 

One -0.608 0.018 0.016 0.028 
(0.61) (0.03) (0.014) (0.016) 

L FC RL 
All 0.883 0.016 0.008 0.019 

(0.48) (0.02) (0.008) (0.011) 

One  5.620 0.037 0.095 0.172 
(6.34) (0.31) (0.115) (0.130) 

 -1.490 -0.080 -0.031 -0.052 
(4.27) (0.101) (0.037) (0.043) 

OPL 
All  -0.690 0.026 0.141* 0.204 

(2.04) (0.16) (0.060) (0.07) 

 0.180 -0.049 -0.049 -0.051 
(1.58) (0.058) (0.022) (0.028) 

(1) and (2); see Table 7.6 for explanation of symbols 
*p<005 
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TABLE 7.11 

Percent proportion of calves in each calving 
score scale classified by line 

Percentage proportion in each 
line 

Calving score 	LGRL 	LFCRL 	CTL 	OPL 

1 81 77 80 84 

2 7 9 2 5 

3 7 9 9 8 

4 4 4 7 2 

5 0.4 1 2 1 

1 = no difficulty - calves unassisted 

2 = little difficulty - assistance given by hand, but no 
jack or puller used 

3 = moderate difficulty - assistance given with jack or 
calf puller 

4 = major difficulty - calf jack used and major difficulty 
encountered 

5 = caesarean birth - performed after determining that 
calf could not be delivered with a calf-puller 
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genetic trends in first parity and over all parities were similarly 

not significant but were negative (Table 7.10). 

(vii) 	Calf mortality 

The percent calf mortality at calving and before weaning 

observed in each line in parity one and over all parities are 

presented in Table 7.12. 	Estimated genetic trends for calving and 

preweaning mortality rates are given in Table 7.10. 	In parity one, 

calving mortality was 5.5 and 5.1% higher in the LGR and LFCR lines 

compared with the control; 	but over all parities, there were no 

differences between lines. 	Calving mortality was similar in both 

open and control lines in parity one and over all parities. 	In 

terms of estimated genetic trend, positive but insignificant trends 

of 0.023 + 0.013 and 0.016 + 0.014 were obtained respectively in the 

LGR and LFCR lines is parity one. Calving difficulty had a very 

significant (P<0.01) positive relationship with calving mortality. 

The coefficient for the regression of calving mortality on calving 

difficulty was 0.116 + 0.01. 

However over all parities estimated genetic trend were 

generally positive but insignificant for both, selected lines. Most 

of the fixed effects were not significant except age of dam and birth 

weight which had a significant negative relationship (regression 

coefficient = -0.011 + 0.001) with calving mortality. Calving 

difficulty also significantly influenced (P<0.01) calving mortality 

in over all parities; the regression coefficient of calving 

mortality on calving difficulty was 0.099 + 0.01. 

In parity one, the initial difference between the open line 

and the control in calving mortality was positive but the estimated 
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TABLE 7.12 

Percent calf mortality at birth and before weaning 

Calving mortality (%) 	Preweaning calf mortality (%) 

Lines Parity one 
only 

Over all 
parities 

Parity one 
only 

Over all 
parities 

LGRL 19.05 11.15 20.63 14.98 

LFCRL 18.69 11.04 27.07 18.61 

GIL 13.56 11.21 18.64 15.89 

OPL 13.64 11.36 25.00 21.59 
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genetic trend was negative, however, none of them were significant. 

Corresponding estimates over all parities were similar to those 

obtained in parity one in terms of direction of change but were 

significant. 

Pre-weaning mortality was 2 and 8% higher respectively in 

the LGR and LFCR lines relative to the control line in one. Over 

all parities, the LGR line was 1% lower while the LFCR line was 3% 

higher than the control line in pre-weaning mortality (Table 7.12). 

Preweaning mortality was about 6% higher in the open line than in the 

control in parity one and over all parities. The estimates of 

genetic trend in parity one although positive in both selected lines, 

were insignificant (Table 7.10). 

Over all parities, birth weight was the most significant 

(P<0.01) source of variation in preweaning mortality. The effects 

of sex of calf, age at calving, age at calving by sex interaction and 

calving date were not significant. There was a significant positive 

relationship between calving difficulty and preweaning mortality rate 

in parity one and over all parities (regression coefficient = 0.117 + 

0.015). The estimates of genetic trend were positive but 

insignificant in both selected lines (Table 7.10). 

The initial difference between the open and control lines in 

preweaning mortality and the estimated genetic trend in the open line 

were not significant in parity one. However, the open line was 

initially slightly higher than the control line while the genetic 

trend was negative. Over all parities, the open line was 

significantly (P<0.01) higher than the control line in preweaning 

mortality but the estimated genetic trend though negative was not 

significant (Table 7.10). 
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7.4 	Discussion 

7.4.1 Body weight and measurements 

The positive annual correlated responses in body weight at 

various ages observed for females in the LFCR line in contrast to the 

negative genetic trend in males was unexpected and is difficult to 

explain. Firstly the standard errors for the estimates of genetic 

change in females did not include the drift variance and are 

therefore biased. 	The estimates of change may therefore be 

confounded with the effects of genetic drift. 	Irgang et al. (1986b) 

reported different rates of response in replicate lines selected for 

weaning weight, the realised heritability estimates they obtained in 

two different replicates were -0.21 and 0.41. The differences in 

rates of response between replicates was attributed to the random 

effects of genetic drift on gene frequencies. The marked difference 

in the pattern of correlated response for body weight in females 

compared with male calves may also be confounded with such effects of 

genetic drift. 

Secondly, differences in' rate of genetic change between 

sexes have been reported by most workers (Frahm et al., 1985b; Aaron 

et al., 1986b) even under similar conditions of nutrition or 

management. 	In this experiment females were not recorded for LFCR 

and hence the rate of genetic change is unknown. 	It is therefore 

not possible to determine to what extent the differences in 

correlated responses in body weight between sexes could be due to 

differences in rates of direct response for LFCR in male and female 

calves. 

And thirdly, male and female calves were reared on different 
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diets. 	Heifers were reared mainly on grass while bulls were 

performance tested on a pelleted diet consisting of grass and barley. 

The differences in genetic trend for body weight in bulls and heifers 

could partly be due to the difference in the type of diet fed. 

Pacer et al. (1986) reported that an Angus line selected for 

postweaning gain on a concentrate diet was signifciantly 

different from foundation animals in postweaning gain, weight per day 

of age and final weight. A similar line selected on a rouphage diet 

was not significantly different in any of the above traits from 

foundation animals. This seems to indicate the effect of genotype by 

feeding regime interaction on selection response. In this study the 

possible effects of genotype by feeding regime interaction on 

correlated responses in body weight are confounded by sex effects and 

cannot be estimated. 

While it is difficult to attribute the differences in the 

pattern of correlated responses for body weight in bulls and heifers 

to any one of the factors discussed above, the differences however 

highlight the possible influence of genotype by feeding regime 

interaction in beef selection experiments and is one of the areas 

where further research is needed. 

The positive and significant genetic trends obtained for 

males in body length and wither height at 9 and 13 months of age seem 

to indicate a positive genetic relationship between LGR and these 

body measurements. Growth rate being highly correlated with LGR, 

the above is consistent with the conclusion of Lush (1932) that 

the rate of gain is positively associated with body length and wither 

height. However, Black, Knapp and Cook (1938) reported a 

significant phenotypic correlation of -0.32 between gain and body 
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length and a non-significant correlation of -0.19 between wither 

height and gain working with dual purpose, beef, and dairy steers of 

unstated breeds. 	Kohli, Cook and Dawson (1951) obtained similar 

results with steers of Milking Shorthorn. 	Some of these 

inconsistent results may be differences in breeds and age at which 

measurements were taken. 

The correlated rates of genetic change for wither height and 

body length were 23 and 30% of the change observed for body weight at 

one year of age in bulls. 	Corresponding estimates for female were 

38 and 43%. 	In view of the high correlation between LGR and growth 

rate (or body weight), it seems the genetic correlation between LGR 

or growth rate and body measurements may not be very high. 

Selection for LGR or growth rate with some attention paid to physical 

appearances may reduce the maximum possible response. Estimates of 

genetic correlations between body measurements and production factors 

in beef cattle seem to be lacking in the literature. 

7.4.2 Reproductive traits 

The significant effects of age of dam and sex of calf on 

calving difficulty observed 'are similar to the reports of Brinks, 

Olson and Carroll, (1973). 	Male calves were associated with more 

calving difficulty. 	This has been attributed to higher differences 

in size, males having larger body dimensions (Philipsson, 1976) and 

higher average birth weight. In this study males were significantly 

(P<0.01) heavier than females at birth weight. 

The significant role of birth weight in causing calving 

difficulty and calf mortality has been widely reported by several 

workers (Brinks et al., 1973; Morris et al. 1986). 'Studying the 
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relationship between birth weight and dystocia incidence, Menissier 

(1975) reported that the frequency of dystocia rises sharply when 

birth weight exceeds a certain upper threshold value. However 

Morris et al. (1986) studying 3 herds of beef cattle in New Zealand 

did not observe any threshold but found a quadratic regression an 

adequate fit for their data. Fitting a quadratic regression for 

birth weight and calving difficulty did not improve the fit in this 

study. 	A similar result had been reported by Tong, Newman, 

Rahnefeld and Lawson (1988) for several breeds of cattle. 	Also a 

plot of the number of calves associated with of calving difficulty in 

each birth weight subclass as a percentage of total calves born in 

the herd against each birth weight subclass did not reveal any sharp 

increase in dystocia (Figure 7.9) but showed a gradual increase until 

about 30kg birth weight, peaked at 36kg birth weight and declined 

subsequently. Similarly, plotting the ratio of total dystocia score 

to total number of calves born within each birth weight (to account 

for severity of dystocia associated with each birth weight) against 

birth weight did not indicate any threshold. The highest incidence 

of dystocia occurred at 36kg, but this incidence was not subsequently 

sustained at higher birth weights (Figure 7.10). 

In view of the positive relationship between birth weight 

and calving difficulty, and calving difficulty and calf mortality, a 

positive relationship was expected between calf mortality and birth 

weight. 	However, a significant negative relationship was obtained 

between calf mortality and birth weight. 	Similar relationships 

between birth weight and calving difficulty, calf mortality and birth 

weight were obtained by Morris et al. (1986). 	They attributed this 

phenomenon to high death rates of calves at heavier weights due to 

191. 



3 

10 	 20 	 30 	 40 	 50 

BIRTH WEIGHT (kg) 

Fig. 7.9 Incidence of calving difficult within each birth weight as percentage 
of incidence in total number of calves born versus birth weight. 

192. 



P- 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0.01 	. 	lI • lI I l . U . I. 	I 

22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0 42.5 45.0 

BIRTH WEIGHT (kg) 

Fig. 7.10 Ratio of total calving difficulty score and number of calves 
born within each birth weight versus birth weight. 

193. 



dystocia and a similar high death rate for calves of lighter weights. 

The net result is a decreasing linear response in mortality as birth 

weight increased. Other workers have similarly reported increased 

calf mortality when birth weight dropped below a minimum value 

(Notter et al., 1978), indicating an optimum birth weight range for 

calf viability. Plots of percentage calf mortality calculated 

within each birth weight subclass against birth weight subclasses in 

these data showed a similar trend with higher percentages of calf 

mortality at both extremes of birth weight (Figure 7.11). Almost 

all calves below 19kg at birth died at calving in this experiment. 

However, calf mortality expressed as a percentage of the total number 

of calves born across all birth weight subclasses, showed an increase 

up to 30kg birth weight and an eventual decline from 36kg afterwards 

(Figure 7.12). 

The estimates of genetic trend obtained indicate that 

selection for LGR and LFCR was not accompanied by unfavourable 

correlated responses in the reproductive traits studied. 	Most of 

the genetic trends for reproductive traits were not significant. 	In 

a similar study on correlated responses in female reproductive traits 

resulting from direct selection for yearling weight in Angus cattle 

Luesakul-Roedech et al. (1986) concluded that selection for growth 
fl rQA&c4 

rate resulted inmature size, delayed sexual maturity and decreased 

dystocia. The negative genetic trend obtained for calving 

difficulty in the LGR line (though not significant) seems consistent 

with his conslusions but in the LFCR line, sexual maturity was 

enhanced. 

In order of importance, birth weight of'calf, age of dam and 

sex of calf seem to be the most important environmental factors 

I 	 194. 



100- -41-- CALVING MORTALITY 
- - e  - - PREWEANING MORTALITY 

80 

6o- 

LL  
-J  p 

L) 40- 'ft 

w 
0  Qt 

Lu 
CL 

2o- 

0- • 	I  

20 	 30 	 40 10 

BIRTH WEIGHT (kg) 

Fig. 7.11 Percentage calf mortality within each birth 
weight versus birth weight. 

2.00 

1 	

CALVING 	 1 MORTALITY 

1.75  
1 	PREWEANING MORTALIT 

-I 

1.50 
cc 
0 

1.25 
U- 
-J 

() 1.00 
I- 
w 
c. 	0.75 
cc 
w 
°- 0.50 

0.25 

0.00 - 

10 

I ft ' 
i 	e 
I 	\ / 

'I.  ~,/ 
20 	 30 	 40 	 50 

BIRTH WEIGHT (kg) 

Fig. 7.12 Calf mortality within each birth weight as percentage 
of total number of calves born versus birth weight. 

Ans 

195. 



affecting reproductive traits. 	This is consistent with the 

conclusion of Tong et al. (1988) that birth weight seems a valuable 

trait for indirect selection to reduce calving problems. 
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CHAPTER 8 

DIRECT AND CORRELATED RESPONSES TO SELECTION FOR LGR AND LFCR IN 
CROSSBREDS 



8.1 	Introduction 

Comparison of crossbred progeny sired by bulls from selected 

and control lines provides an additional way of evaluating genetic 

change in the selection lines. This chapter is concerned with the 

evaluation of the first year's trial of a two-year planned comparison 

between crossbred offspring of bulls in the selected, control and 

open lines. 

Some workers (Rowlands, Payne, Dew and Manston, 1974; 

Little, Kay, Manston, Rowlands and Start, 1977) have examined the 

possibility of using several blood metabolites measured early in life 

for predicting subsequent growth performance of calves. Finding a 

suitable predictor of subsequent calf performance would be of even 

greater importance for carcass traits, where one of the major 

problems associated with genetic improvement through selection is 

that of accurate assessment in live animals. While various in vivo 

carcass assessment techniques have been evolved, they suffer from a 

major limitation of not being able to give any indication of the 

potential of young animals for lean deposition a priori. 

Physiological predictors can have a major advantage over the other 

live animal techniques in that they may have the capacity to provide 

accurate estimates early in life of subsequent growth and carcass 

composition. Most previous studies on blood metabolites as possible 

predictors of subsequent calf performance have been in unselected 

populations and mainly involved trying to find significant 

correlations between growth rate or feed intake and various blood 

metabolites. These selected lines offer a unique opportunity to 

examine if there are marked differences in the concentration of 

metabolites between selected and control lines. In addition to 
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growth and feed data, various blood metabolites were sampled to 

examine any distinct line differences. 

8.2 	 Materials and methods 

8.2.1 Experimental plan and management procedure 

From the 1983 calf crop, 5 high ranking bulls from the LGR 

and open lines, 4 and 8 respectively from the LFCR and control lines 

were randomly mated to Holstein/Friesian cows in several herds to 

produce calves in 1986. 	The mating plan was such as to ensure an 

equal representation of each line in each herd. 	The calves were 

contract reared to 12 weeks of age before transportation to the 3 

trial locations : High Mowthorpe (HM), Drayton (DR) and Cold Norton 

(CN) for growing and finishing on an intensive silage beef system. 

The 80 calves performance tested in HM were group penned in two 

modules, by sex and within line with group feed recording. At DR 

and CN, calves were penned by sex across lines with individual feed 

recording. 	Across locations there were a total of 41, 43, 45 and 

46 calves in the LGR, LFCR, control and open lines respectively. 	A 

classification of number of animals by line and location is shown in 

Table 8.1. 

The steers were fed good quality grass silage ad libitum 

plus 2kg of concentrate consisting of rolled (or crushed) barley and 

white fishmeal in the ratio of 9 to 1, to a common age of 10 months. 

Thereafter the silage was supplemented with 2kg of mineralised rolled 

(or crushed) barley until slaughter. For heifers the silage was 

supplemented initially with 1.5kg of mineralised rolled barley which 

was adjusted as necessary depending on silage quality to achieve a 

daily live weight gain of at least 0.75kg/day. Steers and heifers 
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TABLE 8.1 

Number of animals according to line and 
location 

Station LGRL LFCRL CTL OPL 

HM 18 20 20 20 

DR 11 12 12 12 

CN 12 11 13 14 

Total 41 43 45 46 
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were sent for slaughter at a fixed age of about 400 and 420 days 

respectively at FRI, Bristol. 	A total of 40 animals were fully 

dissected while only sample joints were dissected for the remaining 

135 	animals. A 	regression equation was 	derived using the carcass 

information 	on the 	40 	fully dissected 	animals 	and 	on the carcass 

visual assessment of fatness and conformation based on the European 

Association for Animal Production (EAAP) system (De Boer et al., 

1974) to predict weight of lean as follows: 

Weight of lean in side (g) = 5799 + 4.46 ABDMUS -10.95 ABOMFOT + 

0.533 SIDEWT1 - 345FSC 

where 

ABDMIJS 	= 	weight of lean of lean in abdominal joint (g) 

ABDMOT 	= 	weight of intermuscular fat and other tissues in 

abdominal joint (g) 

SIDEWT1 = 	is the mean weight of the left and right sd€for each 

carcass expressed in grams. 	It also includes the 

kidney knob and channel fat 

FSC 	= 	EAAP fat score (1=minimum fatness and conformation and 

15 = maximum) 

Carcass lean percent was estimated by dividing the 

predicted lean weight by the sum of side weight 2 and cod fat 

weight. The sum of side weight 2 and cod fat weight approximates 

most closely to total tissue weight (total weight of items recovered 

from a full side dissection) obtained from full dissection (Fisher 
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and Bayntun, 1987). 	Side weight 2 is the same as side weight 1 but 

it does not include the kidney knob and channel fat. 

8.2.2 Performance records 

Full and 24 hour fasted liveweights at the start and the 

finish of the trial and full fed liveweight at 14 days intervals 

were recorded for each animal. The total amounts of feed consumed 

fortnightly were also recorded but these were on a pen basis for HM. 

The above information were used to calculate for each animal its 

daily gain (DG), daily feed intake (DEl) and food conversion ratio 

(FCR). Using the lean percent (LEAN) predicted for each animal and 

its killing out percent (KO), LGR and LFCR were estimated in the 

same manner as for the purebreds (see chapter three). 

In addition to the growth and feed data, two blood samples 

were taken at the three locations (HM, DR and CN) at an average age 

of 20 and 32 weeks and analysed for protein, albumin, urea, 

B-OH-butyrate (Butyrate) and globulin concentrations. However at 

HM additional blood samples were taken at 22, 41 and 52 weeks of age 

and analysed for the same blood metabolites. All blood samples 

from HM were, in addition analysed for glucose and haemoglobin 

concentrations. 

8.2.3 Statistical analysis 

(i) 	Growth and feed data 

The effects of age at start of test, days on test, sex of 

calf, location, line, sex by location and line by location 

interactions, pen and sires within lines were fitted for growth and 

feed variables. The line differences were tested using the sire 
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mean squares. 	The number of days animals were tested was omitted 

from the model in the analysis of initial weight at beginning of 

test. At HM, feed data were available on a pen basis, therefore 

pen means for DFI, LFCR and FCR were used in the analysis. 

Analyses were carried out for each location and combined over each 

location (a) giving equal weight to each observation and (b) for 
and 

traits associated with feed (DFI, LFCR and FCR)Lfor  traits in which 

the residual variance was not homogenous in the three locations 

(FWT, DG and LEAN) weighting each observation according to its 

variance found from the separate analysis. 

(ii) 	Blood parameters 

The same model used in the analysis of growth and feed data 

was fitted for blood metabolites except that age at beginning of 

test was replaced by age at blood sampling. The blood parameters 

sampled at about 20 and 32 weeks were analysed separately across all 

locations, followed by an analysis on the average of the two 

samples. A separate analysis was carried out for the blood data 

from HM as more blood samples and parameters were available. 

Correlations between blood parameters and DG and DEl at the age of 

blood sampling were estimated after adjusting all variations for 

important sources of variation using the models mentioned earlier. 

8.3 Results 

8.3.1 Growth and feed traits 

The average age of animals at start of test across 

locations was 18.5 weeks, with the average starting age at HM, DR 

and CN being 16.1, 19.0 and 20.4 weeks respectively. The number of 
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days on test across locations averaged 273.1 days but it was 289, 

267 and 255 days respectively for HM, DR and CN. A summary of 

growth and feed traits in terms of means and standard deviations are 

presented in Table 8.2. 

Least square means for lines from the combined analysis 

across locations are given in Table 8.3 and for each location in 

Table A8.3 in appendix 1. There were no significant differences 

between progeny of both selected lines, the open line and the 

control in LGR. 	The same was applicable to LFCR both in the 

unweighted and weighted analysis. 	However progeny from both 

selected lines were about 10 + 7g/day higher in LGR than progeny 

belonging to the control. This indicates that direct and 

correlated responses for LGR in the line LGR and LFCR lines 

respectively were of the same magnitude. The open line was about 4 

+ 7g/day higher than the control in LGR. 

Attempts were made to predict the expected direct and 

correlated responses in the crossbreds from the responses measured 

in the purebred progeny of 1985. The 1985 purebred progeny were 

sired by selected bulls from the 1983 bull calf crop out of which 

bulls used in the crossbred trial were also chosen. The expected 

responses in the crossbreds were predicted by multiplying the 

response measured in the 1985 purebred progeny by a proportion of 

the cumulative selection differential on these progeny that is 

accounted for by half of the individual selection differentials of 

their sires. These predictions are however only approximate 

because 

(1) 	not all selected bulls which contributed progeny to the 

1985 calf crop were used in the crossbred trial. 	On the other hand 
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TABLE 8.2 

Means and standard deviations for growth, feed and carcass 
data across all locations 

Trait 	 Means  

LGR (g/day) 314.6 

LFCR (kg feed/kg lean gain) 	(a) 17.18 
(b) 16.51 

LEAN 57.92 

KO 59.33 

IWT (kg) 114.7 

FWT (kg) 362.6 

DG (g/day) 914.0 

DFI 	(kg)  5.265 
 5.131 

FCR (kg feed/kg gain)  5.845 
 5.632 

Standard deviation 

53.9 

.19 
1.92 

3.63 

4.18 

17.97 

37.74 

117.0 

0.393 
0.047 

0.530 
0.124 

For only the two locations (DR and CN) where individual 
animal feed intake is recorded 

For ElM, where feed intake was recorded on pen basis. 
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TABLE 8.3 

Line effects for growth and feed variables from combined analysis 
of data from the three stations 

Variable LGRL LFCRL 

Lines 

CTL OPL SED 

LGR 281.5 282.5 272.1 276.3 6.97 
(giday) 

LFCR 16.14 15.98 15.93 16.28 0.36 
kg feed/kg lean(W) 	16.23 16.08 15.89 16.27 0.51 
gain 

LEAN 58.61 58.70 58.71 56.48 0.68 
(W) 	58.16 58.72 58.72 56.72 0.70 

KO 57.45 57.26 56.83 58.57** 0.54 

IWT (kg) 116.7 109.2 109.2 117.0** 2.57 

FWT (kg) 359.1 351.8 339.0 354.8** 4.87 
(W)359.0** 352.6** 340.8 353.0 3.84 

DG (g/day) 850.8* 848.8* 817.2 839.8 13.6 
(W)845.5** 847.8** 811.4 831.9 12.6 

DEl 4.905 4.891** 4.718 4.878** 0.050 
(kg/day) (W) 4.928**  4.807 4.680 4.788 0.078 

FCR 5.518 5.493 5.500 5.540 0.082 
(kg feed/kg (W) 	5.538 5.478 5.550 5.580 0.094 
gain 

SED 	= 	standard error of difference between each selected 
line, open line and control line 

(W) 	= 	weighted combined analysis 

* 	= 	significantly different from the mean of the control 
(P<0.05) 

= 	significantly different from the mean of the control 
(P<0.01) 
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some bulls used in the crossbred trial did not contribute progeny to 

the 1985 calf crop as they were not selected. Therefore any within 

line variation in bulls' breeding values will bias the predicted 

responses. 

it is assumed that there are no differences in breeding 

values between the Hereford cows and Holstein/Friesian cows used to 

produce the purebreds and crossbred progeny respectively in the 

traits considered. 	Any difference in breeding values between the 

Hereford and Holstein/Friesian cows will bias the predicted 

responses and 

lean percent was predicted in different manners in the 

purebred and crossbreds. 	The predictions in the crossbred were 

based on actual dissected carcass lean in contrast to the purebreds 

and may be more accurate. This might cause differences between 

predicted and observed responses in the crossbred for traits in 

which lean percent is a component. 

The predicted direct and correlated responses for the 

crossbreds are presented in Table 8.4. In the LGR line, the 

achieved and expected response in the crossbreds were not 

significantly different; the achieved response was about 66% of the 

expected. In terms of correlated response for LGR in the LFCR 

line, the positive genetic change observed was in sharp contrast to 

the expected negative change, however, both estimates were not 

significantly different. The negative direct response for LFCR in 

LFCR line observed in crossbred progeny is consistent with the 

expected value from the purebreds (Table 8.4). 

Similarly, crossbreds of both selected lines were not 

significantly different from that of the control in terms of killing 
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TABLE 8.4 

Predicted and observed direct correlated responses for the 
crossbreds from the purebreds 

Predicted 
	

Observed 

Trait 
	

LGRL 	LFCRL 	LGRL 	LFCRL 

14.25 -6.99 a(535) 
(905) 

-0.281 1.32 
(1.03) (1.46) 

0.382 0.611 
(0.73) (2.52) 

DEl 0.064 0.023 
(kg/day) (0.043) (0.099) 

GRT 28.98 -15.87 
(g/day) (8.48) (13.9) 

FCR -0.150 0.089 
(kg feed/kg gain) (0.90) (0.96) 

9.40 10.4 
(6.97) (6.97) 

0.40 0.100 
(0.52) (0.52) 

-0.56 
	

0.00 
(0.70) 
	

(0.70) 

0.248 
	

0.127 
(0.078) 
	

(0.078) 

34.10 
	

36.40 
(13.6) 
	

(13.6) 

-0.012 	-0.072 
(0.94) 
	

(0.94) 

LGR 
(g/day) 

LFCR 
kg feed/kg lean 
gain 

LEAN 

a Standard error in brackets 
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out percent or lean percent. 	This is consistent with the predicted 

correlated responses from the purebred. The weighted and unweighted 

analysis for LEAN, FWT and DG yielded similar results in terms of 

line differences (Table 8.3). The LGR line was significantly 

(P<0.05) higher than the control in initial weight at beginning of 

test but the LFCR line was not different from the control. However 

both lines were significantly higher than the control in FW and DG. 

The observed correlated response for DG was very similar to the 

predicted value (34.1+13.6 versus 28.98+8.5) in the LGR line. In 

the LFCR line, the observed positive correlated response in DG was 

significantly different from a negative genetic change of -15.87 + 

13.9g/day predicted from the purebreds. The open line was 

significantly higher than the control in IWT, FWT and KO but lower 

in LEAN. 

There were no line differences in FCR, both in the 

unweighted and the weighted analysis. The LGR line was 

significantly higher (P<0.01) than control in DEl both in the 

unweighted and weighted analysis but the open was not significantly 

higher in the unweighted analysis. 

8.3.2 Blood parameters 

A summary of blood parameters across locations in terms of 

means and standard deviations are presented in Table 8.5. Line 

effects on blood parameters at first and second samplings and 

averages of both samplings across locations are given in Table 8.6. 

No consistent and significant line differences were observed for any 

blood parameters at both samplings. The only significant line 

differences at the first sampling were : a lower urea concentration 
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TABLE 8.5 

Mean and standard deviation for blood parameters across all 
locations 

1 

Measurements 

2 	Average SDa 

Protein 	(gIl) 64.33 65.97 65.10 3.41 

Albumin 	(gIl) 33.72 32.91 33.27 2.07 

Urea 	(m.mol/l) 4.24 3.90 4.050 0.91 

Butyrate (m.mol/l) 0.438 0.387 0.411 0.10 

Globulin 	(gIl) 30.61 33.070 31.821 4.21 

bHaemoglobin (gil) - - 118.5 4.10 

bGlucose 	(g/l) - - 3.016 0.13 

a Standard deviation for the average of both measurements 

b Data only from HM; average of five samples 
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TABLE 8.6 

Line effects for blood parameters across all locations 

Variable 	Sampling 	LGRL 	LFCRL 	CII 	OPL 	SEDa 

Protein First 61.96 59.64 60.64 60.41 0.98 
(gil) Second 65.43 65.69 66.83 68.25 1.33 

Average 63.67 63.15 64.38 64.46 0.98 

Albumin First 33.22 33.21 32.89 34.00 0.33 
(g/l) Second 28.83** 30.17 30.54 31.33 0.51 

Average 31.17 31.50 31.61 32.67** 0.34 

Urea First 3.176** 3085** 3.863 3.489 0.22 
(m.mol/l) Second 3.012 2.790 2.830 2.805 0.27 

Average 2.980 2.810** 3.216 3.083 0.13 

Butyrate First 0.271* 0.304 0.333 0.336 0.023 
(m.mol/l) Second 0.363 0.378 0.370 0.309* 0.036 

Average 0.333 0.358 0.359 0.324 0.018 

Globulin First 25.26 22.94 24.26 22.92 1.19 
(g/l) Second 34.54 33.60 34.21 34.85 1.45 

Average 34.77 32.96 33.77 32.29 1.01 

astandard error of difference between each selected line, open 
line and control. 
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in both selected lines relative to the control line, a lower 

concentration of butyrate in the LGR line and a higher albumin 

concentration in the open line compared with the control. At the 

second sampling, the LGR and open lines had significantly lower 

albumin and butyrate concentrations compared with the control. 

The results of the analysis of the blood data from HM are 

given in Table 8.7. 	The results presented are from the analysis of 

blood parameters averaged across the five samplings. 	The results 

were quite consistent with those from the combined analysis across 

the three locations except there were higher albumin concentrations 

for both selected lines relative to the control. For the two 

additional blood parameters considered in this location, no line 

differences were observed for haemoglobin but the LGR and open lines 

were significantly lower in glucose concentration relative to the 

control line. An examination of the results from the separate 

analyses of the blood samplings from HM indicated that the 

significant line differences for urea occurred only in the first 

blood sampling. 

8.3.3 Correlations between blood parameters and growth rate and 

feed intake 

A summary of the correlations between blood parameters and 

daily gain estimated within sires are presented in Table 8.8. 

Correlation estimates between blood parameters from the first and 

second blood samplings and growth rate using only the HM data were 

generally similar to results from a across the three locations and 

were therefore not presented. There was a significant positive 

correlation of 0.239 between albumin concentration and DG up to 20 
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TABLE 8.7 

Effect of line on blood parameters (High Mowthorpe) 

LGR 	LFCRL 	CONTL 	OPENL 	SEDa 

Protein (gIl) 64.31 63.79 63.83 63.92 0.31 

Albumin (gil) 3495** 34.87* 34.46 35.19* 0.18 

Urea 	(m.niol.l) 3.485* 3.369** 3.652 3.537 0.08 

Butyrate (m.mol/l) 0.324** 0.362 0.374 0.359* 0.007 

Globulin (g/l) 27.40 27.00 27.38 26.70 0.34 

Haemoglobin (gil) 106.3 102.4 104.0 102.0 1.20 

Glucose (gil) 3•079* 3.101 3.149 3.063* 0.03 

a Standard error of difference between each selected line, open line 
control, 

P(OoOS 
P(O.3O 
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weeks of age (age at first blood sampling). 	However negative 

correlations of -0.369 and -0.191 were obtained between urea, 

globulin and DG respectively at 20 weeks of age. The significant 

relationships between albumin, urea and DG were maintained at 

subsequent ages with daily gain calculated at two week intervals up 

to 40 weeks. However the correlation between globulin and DG 

declined sharply at subsequent ages. 

Rowlands et. al. (1974) and Little et al. (1977) have also 

reported positive correlation coefficients of 0.38 and 0.48 

respectively between albumin and growth rate. The slightly larger 

correlation coefficients they obtained could be due to the fact they 

worked with relatively younger animals. 	These correlations seem to 

depend on the age at which blood constituents were sampled. 	This 

may partly account for the absence of significant correlations 

between daily gain and the blood parameters considered at 32 weeks 

of age. The same phenomenon was observed from the analysis of the 

HM blood data; most blood parameters from the second to the fifth 

sampling were not significantly correlated with daily gain. The 

two additional blood constituents considered in HM, glucose and 

haemoglobin, were not significantly related to daily gain. 

Adjusting daily gain of calves for differences in feed intake did 

not influence correlations in contrast with the observation of 

Little etal. (1977). They reported that adjusting weight gain for 

feed intake resulted in all correlations between weight gain and the 

blood parameters becoming insignificant. 

Correlation estimates between blood parameters and feed 

intake across the three locations are given in Table 8.8. There 

were significant negative correlations of -0.252 and -0.201 
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TABLE 8.8 

Correlations between blood parameters and daily gain and daily feed 
intake at 20 and 32 weeks of age (all locations) 

Daily gain Daily feed intake 

Blood metabolites 	20 wks 32 wks 20 wks 32 wks 

Protein 0.137 -0.011 -0.122 0.002 

Albumin 0.239** 0.051 0.009 0.182* 

Urea _0.368** 0.024 _0.252* 0.246** 

Butyrate -0.085 -0.036 0.201* 0.080 

Globulin _0.191* -0.017 -0.111 -0.060 

'Glucose -0.146 -0.035 -0.091 -0.183 

1 Haemoglobin -0.086 0.050 0.032 0.402 

* P<0.05 

** P<0.01 

1 Only from data from High Mowthorpe 
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respectively between urea, butyrate and daily feed intake at 20 

weeks of age. In the second blood sampling at 32 weeks of age, the 

relationship between urea and DFI has become positive and albumin 

has become positively correlated with DFI. The positive 

correlation between feed intake and albumin agrees with the findings 

of Little et al. (1977). However, most of the studies have not 

reported any significant relationship between feed intake and urea 

(Rowlands et al., 1974; Little etal., 1977). 

8.4 	Discussion 

In the LGR line, the observed direct and correlated 

responses in the crossbred progeny were in most cases consistent 

with expected values predicted from the purebred performance. 

Although direct response for LGR was not significant, 'which is 

similar to the results of the first crossbred trial of Frahm et al. 

(1986b) after six years of selecting for yearling weight, a high 

proportion of the response observed in the purebreds (66 percent) 

has been passed over to the crossbred progeny. After 14 years of 

selection, the response observed in the crossbred progeny by Aaron 

et al. (1986b) was about 60 percent 'of the cumulative direct 

response in the purebreds in two lines selected for weaning and 

yearling weight; although their estimates of responses were more 

precise. 

In the LFCR line correlated responses in LGR and daily gain 

were in sharp contrast with expected results from the pure breeds. 

This difference in the pattern of response between the crossbreds 

and the purebreds might reflect differences in the type and quality 

of •feed. Detail nutritional analysis of the diet fed to the 
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crossbreds was not available but it seems that a greater proportion 

of their diet consisted of grass silage. As in the case of 

correlated responses for body weight in females (chapter seven), the 

high correlated responses in LGR and DG in the crossbreds of the 

LFCR line seem indicative of the important role of genotype by 

feeding regime interaction on selection response. 

A major limitation in this study with respect to using the 

various blood metabolites sampled to predict subsequent calf 

performance in carcass traits was the unavailability of carcass 

information at the ages in which blood metabolites were sampled 

across all locations. It was therefore not possible to relate line 

differences in blood metabolites to differences in carcass 

information or the two selection traits at exactly the same age. 

Some of the blood metabolites measured are indicators of 

certain physiological processes in the body. Urea for instance is 

an indicator of amino acid metabolism (Davis, Carrigus and Hinds, 

1970), and glucose an indicator of energy balance. A decrease in 

blood urea concentration may be a consequence of a reduced rate of 

amino acid degradation to urea (Davis et al., 1970). The 

significant decrease in •urea concentration in both selected lines 

may be indicative of increased lean deposition in these lines 

relative to the control. Although the higher levels of LGR in both 

selected line were not significantly different from the control, a 

preliminary analysis of carcass data by Fisher and Bayntun (1987) 

showed the amount of carcass lean tissue to be significantly higher 

in both selected lines than in the control line. They reported 

lean tissue weights of 56.31, 55.26, 53.27 and 54.59kg respectively 

for the LGR, LFCR, control and open lines (with standard error of 
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the difference (SED) = 0.9). 	Angus (1987) working with three 

breeds of sheep, Oxford, East Friesian and Texel, reported that 

lambs of the leanest breed, Texel, had - the lowest blood 

concentration of urea and the fattest breed, Oxford, had the highest 

- amount of blood urea. Her results from the administration of 

recombinant bovine somatotroptn (rBST) further confirmed this 

relationship between lean deposition and blood urea concentration. 

The administration with rBST, which increases lean deposition led to 

further reduction of urea concentration in the treated group 

relative to the control. Increased nitrogen retention from the 

treatment of animals with growth hormone has also been demonstrated 

in Holstein steers (Moseley, Krabill and Olsen, 1982). In addition, 

the significantly higher daily gain and lower urea concentrations in 

both selected lines are consistent with the negative phenotypic 

correlation observed between daily gain and urea concentration. 

The above evidence seems to implicate urea as a suitable candidate 

for a physiological predictor of lean growth. Certainly, urea 

concentration in relation to rate of lean deposition warrants 

further investigation. 

The significantly lower concentrations of glucose in the 

LGR and open lines in the data from HM was associated with 

significantly higher daily gain in both lines at the same age. 

This might indicate a negative genetic relationship between daily 

gain and blood glucose level as the phenotypic correlation between 

both traits was not significant. Davis et al. (1970) reported an 

initial increase in blood level of glucose in lambs infused with 

growth hormone, reaching a peak in the first day but declined 

thereafter followed by another rise; which indicates a 
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non-consistent relationship between level of growth hormone and 

blood glucose. Angus (1987) did not observe any difference in 

blood glucose level between lambs administered with rBST and the 

control group. It may be inferred from the above that the 

relationship between growth rate and level of glucose observed in 

the LGR and open lines is not mediated through circulating levels of 

growth hormone but most probably through some other physiological 

processes or genetic factors. 

The results do indicate that a substantial proportion of 

the responses achieved, especially in growth traits in the LGR line 

were expressed in the crossbreds. The positive responses in LGR 

and DG in crossbreds of the LFCR do indicate the possible important 

role of genotype by feeding regime interaction in beef cattle 

selection experiment. Urea seems to be the only likely suitable 

physiological predictor of lean deposition of all the various blood 

metabolites sampled. 
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Appendix 1 
8.5 

TABLE A8.3 

Line effects for growth and feed variables in each station and in all 
stations combined 

Lines 

Variable 	Station LGRL 	LFCRL 	CTL 	OPL 	SED 

LGR HM 292.9 305.7 281.2 288.0 10.3 
(g/day) DR 303.3 273.4 283.0 281.1 15.58 

CM 274.48 282.5 277.8 283.1 16.17 
All 281.5 282.5 272.1 276.3 6.97 

LFCR HM 15.30 4.93 16.09 16.19 0.53 
kg feed! DR 15.32 16.20 15.01 15.52 1.09 
kg lean gain) CN 18.52 17.66 16.84 17.44 1.03 

All 16.14 15.98 15.93 16.28 0.36 
All 	(W) 16.23 16.08 15.89 16.27 0.51 

LEAN HM 59.22 59.89 59.76 56.67 0.88 
DR 59.64 59.78 58.53 58.82 1.23 
CN 56.79 59.38 60.86 57.78 1.82 
All 58.61 58.70 58.71 56.48 0.68 
All 	(W) 58.16 58.72 58.72 56.72 0.70 

KO HM 57.99 58.47 57.21 5992 1.05 
DR 58.60 56.06 59.32 58.86 1.41 
CM 57.92 58.65 56.80 58.63 0.87 
ALL 57.45 57.26 56.83 58.57 0.77 

IWT HM 113.2 111.1 108.8 116.1 4.63 
(kg) DR 128.3 110.3 120.6 121.5 4.14 

CM 108.6 100.3 96.26 111.8 4.60 
All 116.7 109.2 109.2 117.0 2.57 

FWT 	 HM 357.0 354.5 345.5 361.5 5.06 
(kg) 	 DR 359.6 330.1 334.0 333.9 5.53 

CM 324.0 310.6 294.0 325.7 10.5 
All 359.1 351.8 339.0 354.8 4.31 
All 	(W) 359.0 352.6 340.86 352.95 3.84 
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TABLE A8.3 (continued) 

Lines 

Variable Station LGRL LFCRL CTL OPL SED 

DG HM 857.8 876.7 831.2 867.6 19.62 
(g/day) DR 876.4 836.7 822.2 817.2 14.53 

CN 842.7 821.1 811.1 844.6 33.4 
All 850.8 848.8 817.2 839.8 13.58 
All 	(W) 845.5 847.8 811.4 831.9 12.6 

DEl HM 4.886 4.971 4.936 5.052 0.081 
(kg/day) DR 4.793 4.493 4.415 4.448 0.12 

CN 5.424 5.474 5.040 5.334 0.11 
All 4.905 4.891 4.718 4.878 0.050 
All 	(W) 4.923 4.807 4.680 4.788 0.078 

FCR HM 5.341 5.302 5.567 5.468 0.082 
(kg feed! DR 5.318 5.211 5.188 5.304 0.15 
kg gain) CN 6.307 6.424 6.047 6.174 0.25 

All 5.518 5.493 5.500 5.510 0.082 
All 	(W) 5.538 5.478 5.550 5.580 0.094 

220. 



CHAPTER 9 

AN ALTERNATIVE ALGORITHM FOR INCORPORATING THE RELATIONSHIPS BETWEEN 
ANIMALS IN ESTIMATING VARIANCE COMPONENTS 



9.1 	Introduction 

Linear models employed in the analysis of animal breeding 

data require the genetic relationships between animals to be 

incorporated. When data are available over several generations, 

the knowledge and the use of the relationships between animals can 

account for selection bias and result in more accurate estimates of 

variance components. 

Meyer (1987) has recently shown how to derive transformed 

mixed model equations (MME) that use relationships. The 

modification depended on the proportions of genes in common between 

individuals and their descendants. An alternative algorithm is 

presented that depends on the number of parent-offspring 

relationships and not on the total number of related animals and has 

been found to be substantially faster than that of Meyer (1987) in 

deriving transformed MME with the relationship between animals 

incorporated. 

9.2 	THe model 

Let us consider a univariate model with one random factor. 

Y = Xb+Zu+e 

where 

y 	= vector of observations 

b 	= vector of fixed effects 

u 	= vector of random effects 

e 	= vector of random residual error 

X,Z = incidence matrices 

(1.1) 
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Let 

E[u1=oj 	
v [: 	

A6 ] = [ 

V(y) = ZAZ'6 +I6 (1.2) 

The MME equations on absorption of fixed effects pertaining to (1.1) 

are 

(Z'SZ + A A-1  ) u=Z'Sy 	 (1.3) 

with 

S = I - X (X'X) - x' and A= o/o 

u = C 1 Z'SY where C = (Z'SZ + 7A) (1.4) 

The 	variance components 	to 	be 	estimated 	are 6 and 	6 	 which 

represent 	variance between 	and 	within 	levels of random 	effects 

respectively. Restricted 	maximum 	likelihood 	(REML) equations 	to 

estimate 	6 and 	6 	using 	an 	EM 	-algorithm and incorporating 

relationships are (Meyer, 1987). 

6 2 a = u A 1  u I [m -tr (AC)J 	 (1.5) 

6 2 e = (y'Sy - y'SZu -Au'AU)/1N - r(X) -m +tr (A_iC 4 )] 	(1.6) 
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where 

m 	= number of levels of u 

N 	= number of observations 

r(X) = rank of X. 

tr = trace 

9.3 	Equivalent model 

Henderson (1976) and Thompson (1977) have shown that when 

ordered such that parents precede their progeny, A can be written as 

the product of a lower triangular matrix T and the square of a 

diagonal matrix D as follows 

A = TDDT' 	 (1.7) 

Using (1.7), (1.2) can be expressed as 

V(y) = ZTD2T'Z'6 + 16 

Thus if we define Z 1  = ZTD, an equivalent model to (1.1) is (Quaes, 

1984) 

y = Xb + Z 
1  u 

 1 + e 

where 

U1 	= (TD) u  and 

V(u 1 ) = 16
2 
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V(y) = z z'62  + 16 
ha 

MME equations and variance component estimates from (1.8) 

corresponding to (1.3) to (1.6) above are 

CD'T'Z'SZTD +.I] U1  = D'T'Z'Sy 	 (1.9) 

C 1 u 1 =D'T'Z'Sy 	 (1.10) 

U 1  = C 1 D'T'Z'Sy 	 (1.11) 

6 = u1 1 u 1  / Cm - )ttr (C 1 fl 

= (y'Sy - y'SZTDu 1  -u1 1 u1 ) /1W - r(X)-m +;k (tr C 1 )] 	(1.12) 

By noting that L = ID and A = LL', where L is a lower triangular 

matrix, it can be seen that (1.9) can be expressed as (Meyer, 1987), 

(L'Z'SZL + A I)u = L'Z'Sy 	 (1.13) 

Henderson (1976) gave rules for obtaining L = ID recursively and 

Meyer (1987) suggested forming the terms in (1.13) by calculating 

each column of L in turn. However the algorithm being described in 

this note is based on (1.9). The matrix I describes the contribution 

of ancestors to be genotypes of their parents in a pedigree assuming 

parents are coded before their progeny. The rules for T are 
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T 1 	= 1, 

Tim = 1/2 (Tjm) if only one parent of 1, namely j is known, i>m, 

Tim = 1/2 Tjm + 1km )  ; j and k, parents of i are known, i>m, 

Tim = 0, m>i. 

1 can be thought of as the product of m matrices as 

Tm+1-i 

with T having ones on the diagonals and 0.5 in the i,j and i,k 

elements where j and k are parents of 1. The diagonal matrix D can 

be obtained by rules gives by QuaQs (1976) which does not require L 

to be stored in the memory. Let Z'SZ = Cm+l We require VC m+1 

T, it is demonstrated below that this can be set up using 

C. = TC
+1

T 1  , i = m to 1 

with m being the number of individuals in the pedigree. 

Let us consider as an example the pedigree used by Meyer (1987) 

where there were three animals whose progeny were measured for some 

trait. 
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Animal 

Si re 

Dam 

No of progeny 

Progeny Total 

300 400 500 

? 222 222 

111 111 300 

10 18 12 

800 1000 600 

From the above pedigree T and 0 are: 

Identity 

of animals 

1111=1 0 0 00 and fl= 100 0 	0 

222 0 1 0 00 010 0 	0 

300 1/2 0 1 0 0 0 0 0.866 0 	0 

400 1/2 1/2 0 1 0 0 0 	0 0.707 	0 

500 1/4 1/2 1/2 0 1 0 0 	0 0 	0.707 

I is the product of Ti,  i = m to 1 ; 

T1  = T2  = I 

T3 1 0000, 14 =1 0 00 Oand 

0 100 0 0 1 000 

1/2 0 1 0 0 0 0 100 

0 0 0 1 0 1/2 1/2 0 1 	0 

0 0001 0 0 00 
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T5  1 0 0 0 0 

0 1000 

0 0100 

0 0010 

to 1/2 1/2 0 1 

To form VC m+1 

form 	E 	 = 111C1 	 (1.15) 

and C 1  = E11 T 	 I = m + 1 to 2 
	

(1.16) 

Hence the j and k rows of E 1 _ 1  are the j and k rows plus half the 

1th row of C 1 . 

Illustrating with the example given earlier, the coefficient matrix 

Z'SZ (C 1 ) in the usual model (1.13) on absorbing overall mean as 

fixed effect, augmented to include ancestors is, C6 : 

0 0 0 0 0 

0 0 0 0 0 

0 0 7.5 -4.5 -3.0 

0 0 -4.5 9.9 -5.4 

0 0 -3.0 -5.4 8.40 

Applying (15) with I = 6 
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E 5  =T 5 1 C 	 = 0 	0 	0 
	

0 	0 

o 	0 	-1.5 -2.7 	4.2 

o 	0 	6.0 -7.2 	1.2 

0 	0 	-4.5 
	

9.9 -5.4 	 (1.17) 

0 	0 	-3.0 -5.4 	8.4 

It can be seen that the 2nd and 3rd rc ws of E 5  are the 2nd and 3rd 

rows of C6  plus half the 5th row of C 6 . Similarly, applying (1.16). 

15 1 0615  = E 5  T  5 = 	0 	0 	0 
	

0 	0 

0 	2.10 	0.6 -2.7 	4.2 

O 	0.6 	6.6 -7.2 	1.2 	 (1.18) 

0 -2.7 	-7.2 
	

9.9 -5.4 

0 	4.2 	1.2 -5A 	8.4 

Again the 2nd and 3rd columns of (1.18) are the 2nd and 3rd columns 

of (1.17) plus half the 5th column of (1.17). 

Applying the above principles, given any symmetric matrix C, 

T'C 1T can be set up recursively from a list of pedigree and Crn+i 

without forming I or I'I by forming C  = I C,,
+1  T 1, ( n = m, ... 1). 

As C. is a symmetric matrix then only the lower triangle needs to be 

formed. If C is the matrix Cn+i then C can be formed and again 

stored in C, by the following rules where j and k are the parents of 

the n-th individual (j < k). 
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C 1  = C 	+ (1/2) C ni 
	 (1 ,i <j) 

CC 	+ 	• 	nn jj = ii 	nJ 

C. = C ij  + (1/2)C 1 	 (j < I < m, i*k) 

Cki = CkI + (1/2)C1 	 (1 < I < k, ij) 

Ckj = Ckj + (1/2)C 	+ (1/2)Cflk + (1/4)Cnj 

Ckk = C kk 	nk + C 	+ (1/4)C nn 

Cik = Cik + ( l/2 )c flk 	 (k < I 	m) 

Concurrently if F = Z'Sy then T'Z'Sy can be found by at the n-th 

stage forming 

F = F 	+ (1/2) 

F  = F 	+ (1/2) F 

Finally D'T'Z'SZTD of (9) Is obtained by pre- and post- multiplying 

C set up above by D' and D respectively. And the transformation of 

the right hand side is completely achieved by pre-multiplying F by 

D'. 

An example: 

The example of Meyer (1987) stated earlier is used to 

illustrate the method. For ease of reference the pedigree could be 

1 	 229. 



recoded as 

Animal 	3 	4 	5 	 1 0 0 

200 

Sire 	? 	2 	2 or 	3 0 1 

Dam 	1 	1 	3 	 421 

523 

The coefficient matrix has earlier been given and the corresponding 

right hand side is 

0 

0 

200 

-80 

-120 

Commencing from the bottom of the pedigree and applying the rules 

stated above; 

C21  = C21  + (1/2) C 51  = 0 

C22  = C 22  + C 52  + (1/4)C 55  = 2.10 

C42  = C42  + (1/2)C45  = -2.7 

C52 = C52 + (1/2)C55 = 4.20 

.1 

230. 



C31  = C31  + (1/2)C51  = 0 

C32  = C32  + (112)C52  + (1/2)C53  + (1/4)C55  = 0.60 

C33  = C33  + C53  + (1/4)C 55  = 6.60 

C34  = C34  + (1/2) C45  = -7.20 

C 3 5 = C 35  + (1/2) C55  = 1.2 

The right hand side is correspondingly transformed as 

F2  = F2  + 1/2 (F5 ) = -60.0 

	

F3  = F3  + 1/2 (F5 ) = 	140 

The coefficient matrix and the right hand sides 

respectively are now 

0 	0 	0 	0 	0 	 0 

2.10 	0.60 -2.7 	4.20 	 -60 

	

6.60 -7.2 	1.2 	and 	140 

9.90 	-5.4 	 -80 

	

8.4 	 -120 
J 

Note that the coefficient matrix above is exactly what was obtained 

in (1.8). 
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Similar steps are employed for progeny 3 and 4 and the base animals 

are not considered since their dams and sires are not known. After 

processing progeny 3 and 4, VZ'SZT and TZ'SY becomes: 

0.525 	-0.375 	-0.30 	1.35 	-2.10 30 

1.875 	-3.00 	2.25 	1.50 -100 

6.60 	-7.20 	1.20 and 140 

9.90 	-5.40 - 80 

8.40 -120 

The diagonal matrix 0 for the pedigree has been given earlier. Pre 

multiplication of T'ZSZT and T'Z'SY with 0' and post multiplication 

of the former with 0 yields D'T'Z'SZTD and D'T'Z'SY of (1.9) as 

0.525 	0.375 	-0.260 	0.955 	-1.485 30.00 

1.875 	-2.598 	1.591 	1.061 -100.00 

4.950 	-4.409 	0.735 and 121.24 

4.950 	-2.70 - 56.57 

4.20 - 84.85 

9.4 	Comments 

The algorithm is computationally easy and does not require 

I or T'T to be formed, thus an additional storage facility is not 

required. The algorithm is substantially faster than that described 

by MEYER (1987) as it depends on the number of parent offspring 

relationships. For example, in the analyses of the LGR line plus the 

control, the CPU time required to incorporate A consisting of 509 
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progeny and 126 base animals was about 8 minutes using the algorithm 

of Meyer (1987). Incorporating A by the algorthm described above 

needed only about 2 minutes. 
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CHAPTER 10 

GENERAL DISCUSSSION AND CONCLUSIONS 



The national average increase in carcass lean of beef cattle 

reported by Kempster and Solly (1988) was 0.4 percent from 1975 to 

1986 in Britain. A corresponding estimate for pigs was 8 percent. 

Much of the improvement in carcass composition of pigs has been due 
- incrEaSQ 

to selection for reduced backfat thickness or lean growth rate and/or 

lean tissue conversion efficiency. 

An apparent question is whether the rapid rate of genetic 

improvement in carcass lean in pigs is possible in beef cattle? 

Hitherto, there has not been experimental evidence to provide an 

adequate answer to the above question. Firstly, there has been the 

problem of assessing carcass traits in live animals in beef cattle 

and secondly, estimates of genetic parameters to base such 

improvement programme on carcass lean, and to determine its effects 

on other traits of economic importance have been lacking. This 

experiment is therefore unique in providing answers to some of the 

problems confronting improvement of the efficiency of lean meat 

production in beef cattle. The estimates of genetic parameters for 

LGR and LFCR indicate that these traits are associated with a high to 

moderate degree of additive genetic variation and selection for both 

traits should be effective. This has been confirmed by the positive 

rates of response observed for both traits. 

Moreover this experiment has provided estimates of genetic 

parameters between LGR, LFCR and other economic traits in beef 

cattle. It has also been demonstrated that selection for LGR and 

LFCR has not be accompanied by undesirable correlated responses in 

reproductive traits. The estimates of genetic parameters would be 

useful in designing improvement programmes for beef cattle. 

Smith (1984) reported rates of annual genetic change 
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theoretically possible in beef cattle by selection. 	For growth 

traits he reported a value of 1.4 percent. One of the usefulness of 

selection experiments is that they provide a check on the predicted 

theoretical rates of response. The annual rate of genetic of 1.5 

- percent achieved in this experiment for LGR shows that the possible 

rate of genetic change indicated for growth traits is attainable with 

proper design (an issue discussed below) and primary attention 

focussed on the trait of interest (97 percent of the maximum possible 

selection differential was achieved). 

Compared with other experiments in beef cattle, the annual 

rate of genetic change for LGR is higher than reported for most 

selection experiments on body weight at weaning or yearling age, 

higher than the estimate for postweaning gain reported by Irgang et 

al. (1986b) in which only males were also selected, but lower than 

estimates of Bailey et al. (1971) and Chevraux and Bailey (1977) for 

postweaning gain. The percentage of the maximum possible selection 

differential achieved for LGR was slightly higher than estimates for 

most of the selection experiments on body weight. In addition, the 

low generation interval in this experiment (see Baker et al., 1980) 

and the slightly higher heritability estimate for LGR compared with 

that for weaning and yearling weight may be contributory factors to 

the high rate of annual change observed for LGR. It seems therefore 

that efficiency of selection in beef cattle for growth traits in 

terms of annual rate of change is influenced by the effectiveness of 

selection pressure applied, rate of generation turnover and the 

heritability of the trait on which selection is based. 

Early selection experiments in beef cattle suffered from 

inadequate design and it was not possible to obtain precise estimates 
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of genetic change. 	The first experiment to feature a control line 

(Newman et al., (1973) demonstrated the usefulness of control 

populations. The variance of response using a control line is the 

sum of the variance of the means of both selected and control lines. 

Thus there is obvious advantages in designing both the control and 

selected lines as to minimise their variances, especially the drift 

variance. Smith (1977) ranked the use of control lines consisting 

of frozen semen as the most efficient in estimating genetic change 

compared with maintaining a natural mating control population or 

using a repeat mating, since there is no accumulation of drift 

variance over time. Also the effects of relaxed selection which may 

occur in natural mating controls through selection are avoided. Thus 

the establishment of a control line consisting of frozen semen in 

this experiment has been valuable in terms of obtaining precise 

estimates of genetic change. 	This is quite important as Smith 

- 	(1988) mentioned poor methods of evaluation as one of the reasons why 

the predicted theoretical rates of genetic change are not realised in 

practice. 

Secondly, the selected and control line were derived from 

the same base population. This implies that (1) it was not 

necessary to estimate the initial differences between the selected 

lines and the control and (2) the possible magnitude of genotype by 

environment interaction is reduced and hence the magnitude of the 

variance arising from such interaction. In general, when the 

selected and control lines are derived from the same base population, 

the regression of response on time can be forced through the origin, 

hence comparison between the selected line and the control may not be 

necessary in early generations, saving on test facilities and the 
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number of animals in the control line can be kept as low, with a 

saving on breeding facilities until required for the final 

evaluations (Smith, 1988). 

The within sire family selection practised in the selection 

lines and the use of bulls for only one year in most cases may have 

helped in reducing the variance of family size and therefore the 

drift variance and the variance of response. 

Replication is of obvious advantage in selection experiments 

in providing a direct measure of the variance structure of observed 

responses. However the low degree of replication in this experiment 

did not make it possible to obtain reliable estimates of the variance 

of response from the variance among the replicate lines (see Hill, 

1980). Moreover the small size of the replicate lines resulted in 

slightly higher levels of inbreeding compared with estimates from 

recent beef selection experiments. In addition, the observed 

responses might have been influenced by the small size of the 

replicates. Nicholas (1981) showed that the expected response 

across a replicates is reduced from that expected in the total 

population as a single line because of the reduction in effective 

population size. Also in such small sized replicates, genetic drift 

could be of importance source of variation among the replicate lines, 

producing not only variation in mean response (Hill, 1971) and also 

variation in within-line additive genetic variance (Avery and Hill, 

1977). In the LGR line the rate of annual genetic change in 

replicates 2 and 3 were 80 and 41 percent lower than in replicate 1. 

In the LFCR line, rate of annual response in replicates 1 and 3 were 

60 and 50% lower than in replicate 2. Irgang et al. (1986b) have 

similarly reported different rates of response among replicate lines 
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selected for weaning weight and postweaning gain. 	It was attributed 

to the random influence of genetic drift on gene frequencies within 

the replicates. 

Thus the replicates have been of little or no value in this 

study. Usually with limited facilities in beef cattle, the high 

degree of replication required to obtain reliable estimates of the 

variance of response from the variance among replicate lines might be 

difficult. When facilities are clearly inadequate it might be 

advisable to leave out replication to avoid the risk of inbreeding. 

Statistical methods such as REML might be used to estimate the 

variance of direct and correlated responses. 

Biological indices such as LGR and LFCR do not involve 

economic calculations and are supposed to overcome some of the 

criticisms of economic indices (see Fowler et al., 1976). However 

they are still weighted according to the heritability, coefficient of 

variation (CV) of the component traits and the correlation between 

them (Smith, 1967). If there is a large imbalance in CV of 

component traits, the most variable trait will tend to dominate the 

biological index. From the estimates of cumulative selection 

differentials, direct and correlated responses and their pattern of 

accumulation for LGR, LFCR and their component traits, it seems much 

of the selection pressure and response accumulated through GRT and 

FCR respectively for LGR and LFCR, and little through LEAN. This 

indicates that more weight was given to GRT in LGR and FCR in LFCR 

compared with LEAN. 	Generally, GRT and FCR were more variable and 

higher in heritability than LEAN. 	The genetic correlation between 

GRT and LGR was 0.958+0.03 and between LEAN and LGR was 0.369+0.22. 

Corresponding estimates for FCR, LEAN and LFCR were 0.873+0.07 and 
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-0.323+0.24 respectively. 

Based on such similar estimates of phenotypic correlations 

from an analysis of data from initial stages of the experiment, Sinui 

(1983) questioned the value of estimating carcass composition. He 

argued that there is little loss in expected response in LGR or LFCR 

from indirect selection on their most variable components, GRT and 

FCR. 	Under such situations, in vivo estimation of carcass 

composition may not be cost-effective. 	He concluded that selection 

for LGR and LFCR may lead to genetic increases in birth weight and 

mature size and proposed the use of economic indices as a better 

alternative means of improving efficiency of lean meat production. 

Firstly, the observed correlated changes in birth weight 

(BW) were not as predicted by Simm (1983). In terms of standard 

deviation units, the secondary cumulative selection differentials for 

BW were about 80 and 35% lower in the LGR and LFCR lines respectively 

than estimates reported in most selection experiments in beef cattle 

on growth rate through sire selection. Correlated responses for BW 

in both lines were insignificant and generally lower compared with 

estimates reported from direct selection on growth rate. Although 

the correlated response in growth rate in the LGR line was similar to 

that of Aaron et al. (1986b) and even higher than that of Frahm et 

al. (1985b), these workers reported significant correlated responses 

for BW from selection on weaning and yearling weight. As mentioned 

in chapter six, it seems that the inclusion of LEAN as a component 

trait in LGR acted as a check to increased responses in BW. The 

genetic correlation between LEAN and BW is negative (-0.54+0.48) and 

the genetic correlation between LGR and 8W (0.55+0.46) was lower 

between GRT and BW (0.78+0.34). 
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Secondly, with respect to mature size, not much data is yet 

available for females in the project. However the correlated 

responses in body weight for females at 3 and 4 years of age in both 

selected lines were insignificant. The number of records used were, 

however, somewhat limited and these were progeny of bulls born 1983 

and have only about two cycles of selection behind them. 

Thirdly, although Simm (1983) indicated that there is little 

loss in expected response in LGR or LFCR from indirect selection on 

GRT or FCR, much experimental evidence (see chapter two, section 

2.3.1) seems to indicate little or no correlated responses in carcass 

traits due to direct selection for GRT. Although carcass evaluation 

for the purbred is not available, preliminary analysis of the carcass 

traits in progeny sired by 1983 bulls by Fisher and Bayntun (1987) 

showed the amount of carcass lean tissue to be significantly higher 

in both selected lines relative to the control. However the 

difference between the control and the open line was not significant. 

Moreover, it is worthwhile to note that the sires of these progeny 

had only two cycles of selection behind them. The on-going second 

phase of the crossbred trial involving progeny from sires with more 

selection pressure behind them might help in throwing more light on 

the effectiveness of selection for LGR and LFCR in changing carcass 

lean or composition. Although no cost-benefit analysis has been 

undertaken to determine if in vivo estimation of carcass lean is 

cost-effective, the above result is indicative that selection for LGR 

or LFCR is accompanied by some improvement in carcass lean. 

Similar to the suggestion of Simm (1983), the Meat and 

Livestock Commission (MLC) (Allen and Steane, 1985) has recently 

proposed the introduction of a beef selection index into its breeding 
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services as a more efficient means of selecting for an overall 

breeding objective. The Commission identified the general objective 

of beef production in Britain as the ability of each cow to produce a 

calf each year, calved easily and which gives the highest possible 

yield of saleable meat at the lowest feed cost. On the basis of the 

above general objective, an index was constructed with a specific 

objective to "maximise the financial margin between the value of 

saleable meat and the cost of feed, taking into account the cost of 

difficult calvings". The traits included in the index were weights 

at birth, 200 and 400 days, calving difficulty and muscling scores, 

feed intake and fat thickness (estimated by scanogram). The index 

was constructed using genetic parameter estimates for the above 

traits summarised from the literature and estimated economic weights 

for feed intake, saleable meat and calving difficulty. Predicted 

genetic response to the index using data on British breeds such as 

the Angus and Hereford indicated that animals would produce a greater 

value of saleable meat at the expense of some increase in total feed 

intake, but with a marginal decrease in calving difficulty. The 

predicted responses in the composite traits in the index showed that 

the change was mainly due to increases in 200 and 400 days weight, 

decreased fatness with increased birth weight and daily feed intake 

as second order effects. 

Notably, these responses are essentially the same as have 

been observed in the LGR line. There were significant positive 

correlated responses in growth rate up to 400 days and lean percent, 

positive correlated but insignificant response in feed intake and 

birth weight and a negative genetic trend in calving difficulty. 

Simm (1983) also constructed two economic selection indexes to 
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improve efficiency of lean meat production, with restriction placed 

on birth weight in one of the indices. The traits included in 

estimating the aggregate breeding value were birth weight, growth 

rate, feed conversion efficiency, killing out percent and carcass 

lean. The traits used in constructing indices were growth rate, 

feed conversion efficiency, ultrasonic fat and birth weight for the 

index in which it was restricted. The coefficients of the index 

indicated that much of the emphasis was on growth rate and feed 

conversion efficiency; 	removal of ultrasonic fats did not 

drastically affect the accuracy of the index. 	The correlations 

between the selection indices and the individual traits in the 

aggregate breeding value indicated that selection on these indices 

would actually lead to a little reduction in carcass lean but he 

argued that it would however increase the efficiency with which lean 

is deposited. 	The phenotypic correlations between LGR, LFCR and two 

of the indices were about 0.80. 	The observed direct and correlated 

responses in the LGR line were equally similar to the expected 

responses from the indices of Simm (1983). 

The predicted responses from the indices constructed by Simm 

(1983) and Allen and Steane (1985) did not demonstrate any clear 

advantage of such indices over selecting for LGR. They were only 

superior in growth rate over the LFCR line. However, the negative 

genetic trends in growth rate and feed consumption in the LFCR line 

coupled with increased lean feed conversion ratio might be very 

useful under situations were feed availability constitutes a 

constraint such as in tropical conditions. Considering the problems 

of obtaining reliable genetic parameters and economic weights, 

selection for LGR seems adequate in improving efficiency of lean meat 
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production under conditions where feed availability is not a limiting 

factor. However, when feed availability is a constraint, LFCR seems 

an alternative selection criterion for improving efficiency of lean 

meat production. Slightly more weight can be applied on LEAN in LGR 

and LFCR by standardising the component traits. 

In a review of correlated responses to direct selection for 

body weight in beef cattle, Baker and Morris (1984) identified the 

problem of genotype by environment interaction (gxe) as one of the 

areas to be emphasised in designing breeding programmes. The 

positive correlated responses for body weight in female calves on 

rouphage diet in the LFCR line, the similarity in correlated 

responses for growth rate in the crossbreds of the LGR and LFCR lines 

on a diet consisting mainly of silage in contrast to the purebred 

males on a diet high in concentrate, do highlight the possible 

influence of the type of diet on the pattern of response. This area 

needs further investigation to ascertain whether selection of stocks 

for improved growth rate should be carried out strictly under the 

same nutritional conditions in which they will be reared on 

commercial basis. This is quite important as contrasting results 

have been obtained for responses in birth weight as a result of 

selection for growth under temperate and tropical conditions (Baker 

and Morris, 1984). 

Annual correlated responses in body weight in female calves 

declined significantly during reproduction. This suggests that the 

extent to which body weight during reproduction and non-reproductive 

periods are influenced by the same genes may not be very high. The 

ratio of birth weight to cow weight may be an important factor 

affecting calf mortality in 2-year old heifers (Morris et al., 1986). 
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Further studies are needed in this area to determine whether direct 

selection will be necessary if the intention is to improve body 

weight during reproduction and what is likely to be the consequence 

of such selection on calving performance and overall cow size. 

Most of the correlated responses for the various body 

measurements were insignificant except for wither height and body 

length at some ages. The annual rates of genetic change for wither 

height and body length were much lower than observed for body weight 

(chapter seven). Considering all the various body measurements 

analysed and the low rates of annual genetic change for wither height 

and body length, the genetic correlations between LGR and the various 

body measurements are not likely to be very high. Selection 

experiments for LGR or growth rate (considering the high genetic 

correlation of 0.96 between the traits) with attention paid to 

physical appearances might result in not achieving the predicted 

theoretical rates of change for growth traits. 

Finding a suitable predictor of subsequent calf performance 

in early life would be of primary importance in beef cattle 

especially in carcass traits. The results from the crossbred 

analysis indicate a negative genetic relationship between urea and 

lean growth and seem to implicate urea as a likely suitable 

physiological predictor of lean growth. 	Certainly further studies 

are required in this area. 	The second phase of the crossbred trait 

with progeny from bulls born 1985 and therefore much selection 

pressure behind them would throw more light on the suitability of 

urea as a predictor of lean deposition. It may also be necessary to 

analyse blood samples from the purebred bulls in the different lines 

early in life to determine any line differences and how these relate 
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to the lean growth rate estimated at this time and later in life at 

400 days of age. 

The small number of animals in the open line makes it 

difficult to draw conclusions about the rate of genetic change 

available to breeders who rely on the use of superior progeny tested 

Hereford bulls. However, these results indicate that much of the 

change is in growth rate and feed efficiency with little in carcass 

lean. This underscores the need to include carcass leanness in 

national improvement programmes of the Hereford cattle. 

The results from this experiment indicate that although 

direct selection improved both LGR and LFCR, selection for LGR was 

more effective in increasing both traits. The design of the 

experiment was effective in providing precise estimates of realised 

genetic parameters. 
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The design and analysis of selection experiments in beef cattle are reviewed in the light of 
current principles on the design of breeding programmes. It was shown that most early 
selection work in beef cattle suffered from several limitations arising from the small size 
of the selection herds and high levels of inbreeding. Most experiments had no effective 
means of measuring genetic response, and the drift variance was not accounted for in the 
estimation of the variance of response. These results were therefore biased in one resp-
ect or the other, and may not be very reliable. Recent selection work has shown much 
improvement in design in terms of increased population size, low levels of inbreeding by 
planned mating schemes, and the maintenance of control populations or divergent lines 
for the separation of genetic trends. However, the majority of current experiments are 
still deficient in replication, and most estimates of residual variance neglect the drift 
variance. While it may be difficult in beef cattle with limited facilities to achieve the degree 
of replication required to obtain reliable estimates of the variance of response, the need 
for replication is emphasised, since- methods for estimating the drift variance in popul-
ations with . overlapping generations have not been properly developed. 

I. Introduction 

Compared with laboratory species, relatively few cattle selection experiments have been undertaken, 
due to the high costs and the long generation interval. Most early studies were prompted by the 
effectiveness of selection experiments in laboratory animals and larger species, such as the pig, which 
checked the theoretical predictions of artificial selection. Many cattle experiments were limited to 
measuring phenotypic time trends, which could not be partitioned into the, respective genetic and 
environmental components owing to lack of controls or proper design, and so had limitations. This is 
why Barlow (1978) observed that "the omission of control populations from most of the available 
experiments and the tendency towards multi-trait selection has resulted in genetic trends and realised 
parameters having to be recovered from the data, using varying techniques to measure environmental 
trends". 

Most reviews on selection experiments in beef cattle were concerned mainly with growth rate of 
weight for age (Barlow, 1978; Koch, Gregory and Cundiff, 1982; Baker and Morris, 1984), and were 
therefore limited in scope. The review of Barlow (1978) was restricted to preweaning growth rate, 
while Koch etal. (1982) mainly summarised the results of North American selection experiments on 
growth rate. 

In this review, selection experiments in beef cattle are examined in the light of current principles 
of design with a view to assessing their value, and to highlight the development trend in beef selection 
experiments. The results of selection experiments on growth rate and other traits are summarised in 
Part II of this paper. 

11. Population Size 

In a review of selection experiments in beef cattle, Dalton and Baker (1979) concluded that one of the 
major limitations associated with all work on cattle prior to 1970 was small population size. For 
example, Hoornbeck and Bogart (1966) selected in an Aberdeen-Angus line consisting of about 2 
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sires and 20 females and 3 Hereford lines each consisting of I sire and 15 females on the basis of an 

index for preweaning gain, feed test gain, feed per unit of gain and conformation scores. Although 
selection differentials were positive, phenotypic trends were negative for all traits except score in the 
Hereford lines, but positive for all traits in the Angus line. The genetic trends were not estimated. In 
another case, Nelms and Stratton (1967) carried out selection for unadjusted weight at the end of a 

268-day feed test in a line of about 30 Hereford COWS, with response evaluated on 302 calves born 

during the selection period of 12 years. The design of the experiment did not permit the estimation of 

genetic trend. Similarly, Chevraux and Bailey (1977) carried out selection, in a line of Hereford 

cattle consisting of one or two sires and about 25-30 cows, for postweaning growth rate from 1956 to 

1977, and phenotypic response was evaluated on 390 calves born during the selection period of 19 

years. 
Population size is important in artificial selection in two respects. First, from the work of 

Robertson (1960), selection in small populations increases the chance of loss of desirable alleles, and 
hence leads to a lower limit to selection. Second, in small populations, genetic drift is a important 
source of variation among selected lines, producing not only variation in mean responses (Hill, 197 1) 

but also variation in within-line additive genetic variance (Bulmer, 1976; Avery and Hill, 1977). 

Thus, estimates of parameters from these early experiments with small size are likely to have large 
standard errors. However, most of the reports did not give any standard errors for the parameter 

estimates. 
Hill(1980) showed how the variance of response can be reduced by increasing the total size of 

the selection experiment. Recent selection experiments in beef cattle have had larger population 
sizes. For instance, Koch, Gregory and Cundiff (1974) selected for weaning weight, yearling weight, 

and an index consisting of yearling weight and weaning weight in 3 lines, each consisting of 150 cows 

and 6 sires. Similarly, Pacer el al. (1986) reported response for yearling weight in 2 lines of Nelore 

and Guzerat cattle, each consisting of 120 cows and 6 sires. 

in. Inbreeding 

Closely associated with the problem of small population size in early experiments was that of high 
levels of inbreeding. Many of these trials were concerned with the effectiveness of selection in lines 

which were already inbred (Armstrong et al., 1965; Hoornbeck and Bogart, 1966; Nwakalor, Brinks 

and Richardson, 1976), but in some cases, selection and inbreeding occurred concurrently (Brinks, 

Clark and Kieffer, 1965; Nelms and Stratton, 1967). In the inbred lines, the average inbreeding 

coefficient ranged. from 19% (Hoornbeck and Bogart, 1966) to 33% (Armstrong et al., 1965; 

Nwakalor et al., 1976). Working with populations which were not initially inbred, Brinks et al. 

(1965) and Nelms and Stratton (1967) reported average inbreeding coefficients of 12 and 5% 

respectively for dams, and 16 and 11% respectively for calves. 
The expected response from selection is likely to be reduced by inbreeding as a result of a 

proportionate decline in the additive genetic variance of the traits. In addition, traits associated with 
fitness may be directly depressed by moderate levels of inbreeding. 

In recent selection experiments in beef cattle, the level of inbreeding has been effectively lowered 
by better design and increased population size. For example, the average inbreeding coefficients 

reported by Buchanan et al. (1982) and Irgang, et al. (1985a) were 0.03 and 2.0% respectively for 

dams, and 0.05 and 5.8% for calves. 

IV. Genetic Change and Realised Heritabilities 

Generally, selection experiments are concerned with the estimation of selection response (genetic 
change), realised heritability and their precision. The estimates of response should be unbiased by 
environmental fluctuations. Techniques used for evaluating genetic trends in beef cattle include 
maintaining a randombred control population, repeat mating schemes, intra-year comparison of sire 
or dam birth year progeny groups (that differ respectively in generations of selection or in birth 
year)l, and semen storage with subsequent evaluation on a common tested herd (Smith, 1962; 

Dickerson, 1969; Hill, 1972a,b, 1978; Koch et al., 1982). Few divergent (high and low) selection 

experiments have been carried out (Seifert, I 975a.b; Barlow, 1980). Estimates of genetic change can 

be achieved by contemporary comparison of such two divergent selection lines. 
Most early beef selection experiments relied on repeat matings for the estimation of genetic 

change (Hoornbeck and Bogart, 1966; Armstrong et al., 1965; Benson et al., 1972; Nwakalor et al., 

1976). 
In some cases, these repeat matings were not planned, but were found and used in an attempt 

to separate the genetic and environment changes (Flower et al., 1964; Brinks et al., 1965). Conse-

quently, the number of repeat matings was small, and it was not possible to estimate geneticchange 
for some years or traits due to inadequate number of repeat matings. Response was taken as zero in 
those years with no repeat matings; it is therefore likely that these estimates of genetic change were 
biased. Also, the sampling errors from the small number of repeat matings were large. Hill (1972a) 

1- 



eriments in Beef Cattle Part 1. 	 69 

discussed the use of repeat matings in the estimation of genetic change. The possible sources of 
sampling error are drift variance, error of measurement, and genotype by environment interaction. If 
a repeat mating design is- established in the population, the drift variance can be eliminated and the 
interaction variance is minimised, but there is a substantial contribution of the measurement error 

S 	 • 

 

variance to the sampling error. The method has the particular advantage that few or no facilities are 
devoted to estimating the change. . However, to some extent, some loss of genetic response will be 
associated with structuring the herd to permit repeat mating comparisons. 

Bailey et al. (1971) and Chevraux and Bailey (1977) evaluated performance of progeny from 
: different dam birth-year groups in estimating genetic change. Koch et al. (1982) found that 

estimates of genetic change from intra-year comparison of sire or dam birth year progeny groups are 
subject to large random errors because the number per group and the span of generations or birth 

• 	years are usually small. Also, where comparison involves dams differing in age, genetic change is 
• 	confounded with age-of-dam effects, and the validity of the differences is highly dependent on 

accurate estimates of age-of-dam correction factors. The data of Chevraux and Bailey (1977) were 
associated with a limited number of records in the younger dam-age subclass, and small variation in 
generation coefficients within years. 

The difficulties involved in accurately estimating genetic change in experiments with no control 
populations were clearly demonstrated by Koch, et al. (I 974b). They estimated response to selection 
for weaning weight, yearling weight, or an index of yearling weight and muscle score in Hereford 
cattle by the following 5 methods. 

From the selection differential of sire and dam indices, the genetic correlation between traits 
and their heritabilities, using the formula of Harvey and Bearden (1962). This was essentially 
evaluating the expected genetic change. 

Intra-year regression of offspring on generation coefficient, where generation coefficient • 	
refers to the average number of generations or segregations in the pedigree back to the foundation 

• 	- 	parents. • 	
(3) Intra-year regression of offspring on midparent cumulative selection differential. 

Partial regression of offspring deviations on midparent cumulative selection differentials. 
Regression of offspring on rnidparent in an unselected population. 

• 	 They indicated that none of the methods of estimation yielded a satisfactory result. Methods 1 
and 2 did not include maternal effects, which, to the extent they are genetically determined, form a 
valid part of estimated response, and they were also subject to large sampling errors. The other 
methods did not actually give estimates of overall response; method 3 utilises information on only one 
of the observed selection differentials in estimating response, while methods 4 and 5 were restricted to 
an evaluation of offspring response in each line. 

Stanforth and Frahm (1975) used semen from foundation and advanced generation sires on a 
common tester to estimate genetic trend. The use of semen storage for the estimation of response 
could be very efficient, since there is no accumulation of drift variance in the control. However, only 
the additive componment of change is estimated without bias (Hill, 1972a). 

• 	The first beef selection experiment to feature a control line was that of Newman, Rahnefeld and 
Fredeen (1973) in Canada on Shorthorn cattle. Their data demonstrated the usefulness of controls or 
other comparable methods of correcting for environment changes. Without the control, the effective- 
ness of selection would have been overestimated, since more than half of the increase obtained in 
yearling weight (about 60%) resulted from environmental changes. More recently, Barlow (1979), 
Frahm, Nichols and Buchanan (1985a) and Irgang et al. (1985a) also used control populations in 
their experiments. In the case of Frahm et al., (1985), the original design did not include an 
unselected control line. An Angus line which had previously undergone one generation of selection 
for yearling weight was used to start the control line. The adequacy of this Angus population as a 
control line for the selected Hereford lines rested on the absence of breed by environment interac- 
tions. They indicated that analysis of data from early years of the study before selection showed that 
breed by year interactions were generally non-significant for the traits measured. 

In experiments with control populations, response is measured as a deviation of the selected line 
from the control. The variance of response is the sum of the variances of the means of both selected 
and control lines, and the control might be set up to minimise its variance. This variance involves 
both variation of the selection differential and the drift variance. By ensuring a selection differential 
of zero or nearly zero, the drift variance can be reduced. Hill (1972a) showed how to construct a 
control such that the selection differentials are zero, and the drift variance reduced. It essentially 
involves choosing breeding individuals such that their mean performance for some particular trait is 
close to the mean performance of all recorded individuals in that generation. In some of the selection 
experiments, Some unintentional selection was reported in the control lines (Newman et al., 1973; 
Irgang etal., 1985a). Frahm etal., (1985a) observed slight increases in their control line, which were 

• 	
attributed to a small amount of selection that occurred during the early years in the population before 
conversion to a control line. Such directional change through natural or unintentional selection in the 

• - control would increase tA variance of response (Hill, 1972a). 
A well designed control population in beef cattle selection is that used by Irgang etal. (1985a). 

• Attempts were made to minimise genetic change from selection and genetic drift by random 
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• 	 selection of replacement bulls within sire families and maintenance of low inbreeding levels by 
mating least-related individuals (see Hill, 1980). 

If several selection lines and a control have been maintained contemporaneously, these animals 

	

• - 	. 	 could be used in the analysis of any trait, explaining the response or correlated response, in terms of 

	

• . 	 cumulative selection differentials, genetic regressions and environmental effects. This could lead to 
' more precise environmental estimates and hence more precise estimates of response than a compari-

son of each selected line with the control. This essentially is the multiple regression procedure 
(Richardson, Kojima and Lucas, 1968) which has been used in evaluating selection experiments in 
species with discrete generations (Leyrnaster, Swigerand Harvey, 1979; Quijandra, Zaldivar and 
Robinson, 1983). Recently, this technique has been used in estimating response in beef cattle by 
Frahm et al. (I 985b) and Irgang etal. (I 985b), and they indicated that it resulted in a more precise 
estimate of response compared with estimates from deviation of selected lines from the control. This 
was attributed to the fact that the method uses all available information to estimate simultaneously 
environmental effects and selection responses. In addition, correlations between genetic responses in 
selected lines due to use of a common control are avoided. 

The procedure, however, assumes that the error variance structure in each generation is indepen-
dent, but this is not so. Selection experiments are stochastic processes, and performance in a given 
generation is dependent on the genetic samples retained in previous generations (see Hill, 1 972b). 

More recently, the use of mixed model methodology (Henderson, 1973) for the separation of 
genetic and environmental trends has been used in the analysis of selection experiments. Sharma et 
al. (1985) estimated genetic trends in a beef synthetic and a Hereford control line using the mixed 
model method. The method yielded estimates of sampling variances which were smaller than those 
from repeat matings or control population analysis. 

The use of mixed model analysis as a means of separating genetic trends from environmental 
trends was first suggested by Henderson et al (1959) in dairy cattle subject to culling. Blair and 
Pollack (1984) used this technique to evaluate response using an assumed estimate of heritability to 
predict genetic worth. The estimate of realised heritability was obtained by the regression of 

• . • . predicted yearly genetic means on cumulative selection differential. However Thompson (1986) has 
shown that the predicted yearly genetic means depends on the assumed value of heritability and not 
on the value of heritability in the population; in one example, the estimated heritability was approxi-
mately three-quarters of the assumed value. Hence the regression estimate is not an unbiased 
estimate of the population heritability.,Utilising a different approach Sorensen and Kennedy (1984) 

• . . . have shown that mixed model analysis could be used to estimate genetic trends even after several 
cycles of selection if certain conditions are met: 

the genetic and non-genetic variances, or their ratios, of the trait before selection are known; 
selection is a linear function of the records; ............. • . . 	

(3) the relationship matrix (A), is complete, that is,all animals involved in the selection decision, 

	

• 	. . 	regardless of whether they contribute offspring, are used to derive A. 

	

• 	
. 	 The use of A allows relationships between individuals to be used, and increases the accuracy of 

predictions of breeding values. The relationship matrix also circumvents the possible problems 
resulting from the reduction of genetic variance generated by gametic disequilibrium that builds up 
as a consequence of selection (Sorensen and Kennedy, 1984). 

V. Precision of Estimates of Response 

The precision of estimated response to selection is a function of the design of the selection experiment. 
Hill (1980) has reviewed the appropriate features for the design of selection experiments. 

In most published early experiments in beef cattle, estimates of genetic changes and realised 
heritabilities were given without estimates of the variance of response (Flower et al., 1954; Brinks et 
al., 1965; Koch et al. 1974b). So the reliability of their estimates of response and the value of such 
experiments are greatly reduced. However, Newman et al. (1973) estimated variance of genetic 
response from the variance of the weighted regression of cumulative response on cumulative selected 
differential. Chevraux and Bailey (1977) estimated response by linear regression of trait on dam 
birth-year group, and the variance of the regression coefficient (also variance of response) was 
estimated by maximum likelihood. Frahm et al. (1 985b) estimated variance of response from the 
variance of the regression of cumulated response on cumulative selection differential. Hill (1972b) 
has shown that the variance of the simple regression of cumulative response on cumulative selection 
differential is biased downwards because observations are assumed to have equal variance and to be 

• uncorrelated, when in reality the variance of the population mean increases due to genetic drift as 
selection effects accumulate. Recently, Atkins (1985) confirmed these observations from the analysis 

• - ....• • - of a selection experiment. Most analysis of selection experiments have neglected this component of 
the sampling variance. Irgang et al. (198 5b), however, reported standard errors of realised heritabili-
ties for weaning weight and postweaning gain which included the drift variance. Hill (1972b) and 
Sorensen and Kennedy (1983) have given formulae for estimating the drift variance. 
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However, Johnson (1977) has indicated that the usual expression for drift variance for overlap-
ping generations is only asymptotically true. He has developed a more exact formula for this drift 
variance, and showed the true drift in the early years of an experiment to be much larger than the 
apparent drift from the approximate formula. Using the approach of Johnson (1977) and Hill 
(1 972b) to estimate drift variance, Atkins (1985) found that the inclusion of the more appropriate 
formula of Johnson (1977) for overlapping generations had only a small influence on the variance of 
the regression in his 5-generation selection experiment. 

VI. Replication 	 . 	 ... 	 .... - 	 - -.. 

Only a few beef cattle selection experiments have included replication in their design (Newman etal., 
1973; Irgang et al., 1985b). Actually, the latter workers did not include replication in their initial 
plan, but because selection was practised only in bulls, and sire families were confounded with years 
and repeated every third year, the data were grouped into three replicates within each line to evaluate 
empirical variation in selection response. The variance among replicates represents the sum of 
genetic drift and random error. Except in the case of weaning weight for bull calves, the variance of 
response from variance among replicates tended to be smaller than the variance from estimates of 
genetic drift and random error measurement. 

The theoretical variance of response to selection represents variance between conceptual repli-
cated lines. Thus, the obvious advantage of replication is that variance among lines can be estimated 
directly and independently of parameter estimates from the experiment (Hill, 1980). Unreplicated 
selection experiments do not provide an estimate of the true variance of response. Although it is 
possible to estimate the variance of response using formulae of Hill (1980) and Sorensen and 
Kennedy (1983), these are only approximate- apply to populations with discrete generations. 
Moreover, while an estimate of drift variance can be made for directly selected traits, the drift 

• 

	

	 variance of correlated traits cannot be estimated in this way (Hill, 1980). Thus, the need for 
adequate replication is emphasised in selection with overlapping generations. 

However, the problem with the variance from replication is that it requires a high degree of 
replication before it can be reliable. For instance, with r replicates, this variance will be estimated. 
with r- 1 degrees of freedom. Such an estimate of between-line variance, while unbiased, is not 
reliable. With limited facilities in cattle, a very high degree of replication may not be possible, for the 
individual lines rapidly become inbred. . The best compromise, as Hill (1980) suggested, may be to 
compute the total size of the experiment on the basis of the ratio of the coefficient of variation of 
response of the mean of the replicates, and then divide these facilities into as many replicates as 
inbreeding and practical consideration allow. Moreover, Muir (1986) has shown a precise method 
for estimating the variance about response,. even with limited replication. The method is based on a 

• 	-- Satterwaite approximation, which combines variance components estimated more' precisely by other 
• 	. 	sources of variation in the analysis of variance. Using variance components estimated by this 

procedure, Muir (1986) markedly improved the precision of the estimates of realised heritability. 

Vii. Conclusions 	 ' 

Most early selection experiments suffered from inadequate designs in terms of small population size, 
high levels of inbreeding, and inadequate means of measuring genetic trend. Many reports were 
without estimates of error variance, and in the others the drift variance was not included. More 
recent experiments have shown improvements in design, with larger population sizes and lower 
inbreeding rates. In addition, control populations or divergent lines have been maintained to measure 
the genetic trends. However, there is still the need for replication, especially since methods for 
estimating the variance of correlated response are not yet available in populations with overlapping 
generations. 
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Abstract The results of selection experiments on growth rate and other traits in beef cattle are 
• 	reviewed. In experiments directly concerned with improvement of growth, generations of 

- selection and average generation interval averaged 2.9 generations and 4.4 years respectively. 
• About 0.20 standard deviations of selection per year (2% of the mean) had been achieved 

for single-trait selection on the basis of individual performance, with sire selection account-
ing for about 70-85% of the total selection pressure. The annual rate of genetic change, 
expressed as a percentage of the mean performance, averaged 0.63, 0.80 and 2.03 per year 
respectively for weaning weight, yearling weight and postweaning gain. Estimates of realised 
heritabiities were generally in agreement with those obtained by paternal half-sub analysis. 
Correlated responses were, on average, positive for birth weight, preweaning growth rate, 
milk yield and composition, but in most cases there were none for carcass traits. Little 

	

- 	direct response has been achieved for twinning, but significant responses were obtained for 
• 	 tick resistance. There has been a higher response in growth traits in synthetic stocks 

	

• 	compared with purebreds, because of their broader genetic base. The possibility of improv- 
ing rate of genetic progress through multiple ovulation and embryo transfer and indirect 

• 	- - 
	selection are discussed.-  

1. Introduction 

The primary aim of the beef industry is the efficient production of meat. This is greatly dependent on 
traits related to growth. Emphasis on growth has narrowed the experiences of selection in beef cattle 
compared with other species of farm livestock. Most selection experiments were directly concerned 
with improvement of growth rate, and share similar features. A review of these experiments is given, 
and a summary is presented in Table 1. 

IL Selection Experiments on Growth Traits 

- 	This section examines selection experiments which have been primarily concerned with the improve- 
ment of growth traits. In order to have an understanding of what has been achieved, the experiments 
are discussed in several subsections. 

1. Generations of selection and generation interval  

The generations of selection are usually determined by the formula of Brinks, Clark and Rice 
(196 l):GC—(GC+GCdj/2+!, where GC is the generation coefficient of the calf and GC(s)and GCd  
are generation coefficients of the sire and dam respectively. Foundation animals are assigned a GC of 

- • - zero.- The GC of an animal after selection is the average number of Mendelian segregations in its 

a On study leave from University of Ife Nigeria 	- 	- 
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pedigree, and measures one more than the number of generations of selection. The number of 
generations of selectiàn for published beef cattle experiments is given in Table 1. The average over all 
experiments is 2.89 generations, with a range of 1.8 (Koch etal., 1974a; Irgang etal., 1985a) to 3.87 
(Aaron, Frahm and Buchanan, 1986a). The range of generation coefficients among calves is about 
1.7 generations (Koch etal., 1974a; Chevraux and Bailey, 1977; Frahm etal., 1985a). In short-term 
selection, response should be proportional to the generations of selection, assuming linearity of 
response.  

Generation interval is the average age of the parents at the birth of their selected offspring. The 
generation intervals in the selection experiments reviewed are shown in Table 1. The overall average 
was 4.36 years. The average age for sires ranges from 2 years (Baker, Carter and Hunter, 1980) to 
4.3 years (Koch et al., 1982), and the average for dams from 4.0 to 6.6 years (Bailey et al., 1971; 
Baker et al., 1980). Most of these results were from natural-mating herds, and selection was on the 
basis of individual performance. The generation interval reported by Aaron et al. (1986a) when 
selection was based on combined individual and progeny performance in weaning weight was 5.6 
years, compared with 4.1 years obtained in a similar line selected for the same trait using individual 
performance alone. 

Koch et al. (1982) concluded that reducing average sire age from 3 to 2 years will improve 
annual selection differentials (accumulated selection differential /years) only marginally because of 
compensatory loss of selection intensity. However, preliminary results of the experiment of Baker et 
al. (1980) showed that mating of bulls selected on the basis of yearling weight (average age of sire 
about 2 years) doubled the rate of response compared with a scheme in which bulls are selected on 18-
month weight (average age of sire 3 years) with the same selection pressure applied. They did not 
indicate what proportion of the difference in response could be attributed to reduction of generation 
interval or to the difference in genetic variance between yearly and 18-month weights. Koch et al. 
(1982) mention that the average age of dams could be significantly reduced by use of multiple 
ovulation and embryo transfer.  

2. Selection differential 	 . - - 

Midparent selection differentials, converted to standard deviation units and expressed on a annual 
basis to allow comparisons of selection intensities for different traits and between experiments, are 
given in.Table 1. In most experiments, about 0.20 of a standard deviation of selection per year has 
been reported for single-trait selection on the basis of individual performance, which constitutes 
about 2% of the mean for traits with a coefficient of variation of 10%. Sire selection accounted for 
about 70-85% of the total selection intensity achieved (Chevraux and Bailey, 1977; Buchanan et al., 
1982a; Frahm et al., 1985a; Aaron et al., 1986a). 

The comparison of actual and maximum potential selection differential provides an evaluation of 
the effectiveness of selection that actually occurred relative to the maximum potential, i.e. if the 
highest ranking individuals were used as replacements. In 23 experiments studied, about 80% of the 
maximum selection differential for sires and dams was achieved. This was about 90-100% in sires 
and 50-74% in dams. Inability to achieve the maximum possible selection differentials for perform-
ance has been attributed to unsoundness, selection on colour, death before production of any off-
spring, and failure of heifers to conceive. 

Some of the effects of natural selection on artificial selection can be assessed by the ratio of the 
actual selection differential in parents leaving progeny to that expected from individuals chosen for 
breeding (Falconer, 1981). Irgang et al. (1985a), selecting for weaning and postweaning gain, did 
not observe any effects of natural selection. 

Selection for growth at one stage of life, either for a single trait or an index, is usually 
accompanied by positive secondary selection differentials for growth at other stages of life (Table 2). 
From the reports of Koch etal. (1974a), Buchanan etal. (1982a), Frahm et al. (1985a) and Aaron et 
al. (1986a), the secondary selection differential obtained for weaning weight in lines selected for 
yearling weight was about 76% of the selection differential obtained by direct selection for weaning 
weight. On the other hand, the secondary selection differential for yearling weight in lines selected 
for weaning weight was about 80% of the selection differential for yearling weight from direct 
selection. These figures could be attributed to the strong genetic correlation between weaning and 
yearling weights. Frahm et al. (1985b) reported a realised genetic correlation of 0.69 between 
weaning and yearling weights. The secondary selection differential obtained by Irgang.et al. (1985a) 
for weaning weight in the postweaning gain line was only 37% of the selection differential for weaning 
weight by direct selection. The realised genetic correlation for weaning and post weaning gain was 
0.63 ± 0.16. The secondary annual selection differentials for birth weight resulting from selection on 
either weaning or yearling weights were of about the same magnitude, about 0.10 standard deviation 
(about 1% of the mean). Selecting on the basis of a yearling index composed of adjusted weaning and 
yearling weights, cow fertility and maternal weaning weight, Nicoll and Johnson (1986) reported 
that secondary selection differentials accumulated at the annual rates of 0.17 and 0.25 standard 
deviation per year for cow fertility and cow maternal weaning weight respectively, which they claim 
to be probably the first estimates for these 2 traits in beef cattle. 
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3. Genetic change and realised heritability 

A summary of the various techniques used to evaluate genetic trends in beef cattle is given in Part 1 of 
this review. Data on selection experiments, including estimates of realised heritability (h2R), are 

presented in Table 1. 
Koch et al. (1982), from a review of selection experiments in beef cattle, concluded that the 

unweighted averages for h 2 R were in good agreement with heritability (h2) estimates from paternal 

half-sibs or offspring-sire regression. The average values of h 2 R they presented, and those from the 

summary of literature values reported by Woldehawariat et al. (1977), were respectively: birth 
weight 0.46 and 0.45, weaning weight 0.21 and 0.26, postweaning gain 0.36 and 0.34, final weight 
0.36 and 0.46, and gain efficiency 0.23 and 0.38. Most subsequent reports in the literature have been 
in good agreement with these values. Frahm etal. (1985b) and Aaron etal. (1986b) obtained pooled 

h 2 R estimates of 0.24±0.04 and 0.30±0.03 respectively for weaning weight, and 0.14±0.05 and 

0.34±0.03 for yearling weight. Irgang et al. (1 98 Sb) found a h2R of 0.25 ± 0.11 and 0.18 ± 0.09 for 
weaning weight and postweaning gain respectively by deviation from a control group. However, they 
obtained a very low estimate of 0.05 ± 0.05 for weaning weight using multiple regression procedures. 

The average rate of genetic change computed from reports in the literature (see Table 1) were 
2.65, 1.15 and 2.21 kg per year for yearling weight, weaning weight and postweaning gain respec-
tively. The estimates were obtained from 9, 10 and 3 experiments respectively, where the traits were 
either selected on their own or in an index. Bailey et al. (1971) reported a rate of 0.17 kg per year for 
efficiency of gain. Following the example of Smith (1984), the annual genetic changes achieved by 
various workers were expressed as a percentage of the mean performance (Table 1). The average rate 
of genetic change was 0.63, 0.80 and 2.03% per year for weaning weight, yearling weight and 
postweaning gain respectively. Smith (1984) has indicated that the possible rate of genetic change in 
growth rate expressed as a percentage of the mean is 1.4% per year. Thus, the achieved responses are 
somewhat lower than the possible responses in weaning and yearling weight, but higher for postwean-
ing gain. The rates of genetic change from selection experiments are higher than those that have been 
realised in the livestock industry (see Smith, 1984). 

4. Correlated responses 

There is a positive correlation between growth at one stage of life and growth and size at other stages. 
The estimates of genetic correlation among birth weight (BW), preweaning gain (WG) and postwe-
aning gain (P0) reported by Koch etal. (1982) from the literature were: BW with WG, 0.34 to 0.36; 
BW with PG, 0.34 to 0.51; WG with PG, 0.16 to 0.22. Brinks et al. (1965) reported genetic 
correlations of 0.65, 0.55 and 0.79 between mature weight and weight at birth, weaning and 18 
months. Thus, selection for body weight at any age usually results in correlated responses in body 
weight at all other ages. A summary of correlated responses resulting from selection on growth rate is 
presented in Table 2, and is discussed below. 

(a) Birth weight, calving difficulty and calf mortality 

One of the major criticisms of selection for growth rate is the associated problem of increased birth 
weight, and in some cases an increased incidence of calving problems and calf mortality (Barlow, 
1978). It seems, however, that much criticism, especially concerning calving difficulty and calf 
mortality, has been based on reviews of correlations between growth rate and incidence of dystocia 
and not on empirical evidence from selection experiments. With the exceptions of Frisch (1981) and 
Bailey and Lawson (1986), positive correlated responses in birth weight were reported by all workers. 
The average rates of correlated response in birth weight from single-trait selection experiments for 
weaning weight and yearling weight were 0.17 and 0.21 respectively (about 0.38 and 0.47% of the 
mean). Thus, the correlated response in birth weight for yearling weight selection is slightly higher 
than for weaning weight selection. Buchanan et al. (1 982b) reported genetic correlations of 0.56 and 
0.63 between birth weight and weaning and yearling weights respectively. 

In a trial to evaluate the effect of selection for growth rate on calving difficulty and calf 
mortality, Koch et al. (1982) found that birth weight, calving difficulty and calf mortality increased 
significantly in offspring of 2-year old heifers in a line of Herefords selected for growth rate. In older 
cows, there was little difference in calving difficulty (Baker and Morris, 1984). However, in the 
divergent lines of Angus cattle selected for growth rate at the Trangie Agricultural Research Station, 
Australia, there had not been any adverse effects on fertility or any calving problems in either heifers 
or cows in spite of the 20% difference in growth rate between the high and low lines (Baker and 
Morris, 1984). The high line was just as fertile as the control line, and had fewer heifer calving 
problems than the controls. The ratio of birth weight to pelvic area was identical in the 3 lines. 
Similar reproductive performance has been reported for the selection experiment for yearling or 18-
month weight at Waikite, New Zealand (Baker et al., 1980) 

Frisch (1981), selecting a line of Hereford x Shorthorn cattle for higher growth rate under 
conditions of moderate to high environmental stress, reported that birth weight declined in the 
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Table 1. Summary of results from selection experiments on growth traits. 

Author(s) Duration N GI GS Inbreeding % Selection Selection differential" Annual genetic gain 
of 

Calf 	Dam 
Cfltefla  Midparent % realised % of Rate" % of mean Realised Method 

experiment 
through potential heritability 

maximum 

Sires Dams Sires Dams 

Flower etal. 1954-59 392 4 18 WW 0.15 81.4 18.6 2.07 1.14 0.77 Repeat matings 

(1964) + 
PG 0.25 1.00 

Brinks et al. 1934-59 1594 4.9 16.1 	11.7 WW 0.13 84.6 15.4 0.56 0.29 0.23' Repeat matings 
(1965) + 

WS 0.10 80 20 0.14 0.18 0.15' 
+ 

PG 0.22 100 

Nelms and 12 years 302 4.3 11.2 	5.1 YW 0.19 

Stratton 
(1967) . 

Bailey ci al. 1955-69 1488 4.7 PG 0.22 1.49 1.64 0.57 Regression on dam's 
(1971) PG 0.13 2.17 2.40 1.0 birth year 

FE 0.17 0.18 0.17 0.60 
- FE 0.20 0.17 0.17 0.44 

YS 0.20 -0.09 -0.11 0 

Chapman 1963-69 765 4.3 PG 0.29 83 17 0.84 Deviation from 

ci al. (1972) WW 0.22 85 IS 0.33 AV herd 
YS - - - 0.22 

Newman 1960-69 3577 3.2 YW 0.33 68.6 31.4 3.05* 1.12 0.77 0.45*0.06 Control population 

ci al. (1973) 

Gaskins 1947-69 1135 - WW 0.69 Regression on dam 

(1974) + .. birth year 
WS. -0.02 

+ 
W/A - 0.00 

Koch ci al. 1960-70 2956 4.6 2.0 WW 0.19 79 21 77 52 1.06 0.53 0.27* Various regression 

(1974a.b) 1.8 YW 0.21 88 12 94 50 3.05 0.74 0.28' methods 
1.9 YW+MS 0.18 84 16 97 71 2.34 - 

Nwakalor 1946-71 3408 33.1 21.8 WW 1.87* Repeat matings 

etal. (1976) + 
FE + PG 

+ 
YG 

Chevraux and 1955-74 390 4.7 3.2 PG 0.22 83 17 92 60 4.25 ±2.05 3.65 0.35 Regression on dam 
birth year and Bailey (1977) 	
generation coefficient 

(Cont'd) 
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Table 1. (Cont'd) 

Author(s) 	Duration 	N 	GI GS 	Inbreeding % Selection Selection differential" 	 Annual genetic gain 	 - 

- 
 

of 	 Calf 
Dam criteria 	

Midparent % realised 	% of 	- Rate"" 	% of mean Realised 	Method 
experiment 	 - 	 rough 	- 	potential 	 -- 	heritability 

maximum 

Sires Dams Sires Dams 

Marting and 21 years 2576 4.0 YW 

Alenda( 1980) 

Buchanan 1963-77 2125 4.3 	3.7 	0.05 0.03 WW 0.23 

ci al. (1982a) 2098 4.4 	3.6 YW 0.24 

2135 4.4 	3.7 YW+MS 0.21 

Frahm ci al. 1964-78 627 4.7 	3.2 WW 0.21 

(1985a.b) 605 4.7 	3.1 YW 0.23 

Irgang etal. 1970-81 2467 3.8 	2.00 	5.8 2.0 	WW 0.19 

(1985a.b) 3.9 	1.9 PG 0.14 

Nicoll and 1976-85 458 3.8 	2.1 Yl 0.28 

Johnson (1986) - 

Aaron etal. 1964-79 2249 4.1 	3.9 WW 0.23 

(1986a,b) 5.6 	2.7 IWW 

4.7 	3.7 YW 0.21 

Nwakalor 1946-73 4833 4.1 	5.5 	36.3 25.5 	WW 0.33 

etal. (1986) + 
PG 0.69m 

+ 
FE 0.10" 

+ 
YG 

N 	= Number of calves 

I 	= Inbred line calves 

M 	= Males only 

C 	= Corrected for inbreeding effects 

GS 	= Generations of selection 

GI 	= Generation interval (years) 

BW 	= Birth weight - 
WW = Weaning weight 
IWW = Weaning weight (selection on the basis of individual and progeny 

performance) 

PG 	= Postweaning gain 
YW 	= Yearling weight 

FE 	= Feed efficiency - kg gain/ 100 kg TDN (Bailey ci al. 
1971). Units (Nwakalor ci al. 1986a,b). 

4.06 Modified procedure 

of Smith ( 1962) 

79 21 86 66 

84 16 95 62 

81 19 93 74 

70 30 - 	88 70 1.03 0.55 0.24±0.04 Control population 

76 24 100 67 1.03 0.32 18.0±0.04 and multiple regression 

82 0.77 0.51 0.25±0.11 Control population 

89 0.48 0.43 0.18±0.09 and multiple regression 

86 

67 33 94 81 1.45 	-- 0.72 - 	0.30±0.13 Same method as used 

2.10 1.04 by Frahm ci al. 

76 24 100 64 3.50 1.06 0.35±0.03 (1985) 

77 23 - 0.56 Regression of 
- offspring deviations 

- - - on generation number 

- -0.03 	- - - 

	

3.19 	. 1.17 	0.22" 	Control population 

	

1.83 	0.69 - 

WS 	= Weaning score 
W/A = Weight per day of age 

MS 	= Muscle score 

YS 	= Yearling score 	- - - 
YG -- = Yearly grade 

Yl 	= Yearling index composed of adjusted weaning and yearling weight, 

cow fertility and maternal weaning weight 	- - 

AV 	= Herd average performance (for PG. WW and YS) 

• 	= Values were estimated 
** 	= Selection differential in standard units per year 

Genetic change in kg/yr for growth traits 

Pacer ci al. 	1980-84 	4.8 	 - - 	YW 	0.24 	75 - 	25 

(1986) 	 0.15 	- 	78 	22 
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Table 2. Summary of correlated responses to selection on growth traits in beef cattle. 	 - 

Author(s) 	- Selection 	Secondary selection differential 	- - Correlated responses Realised genetic correlations 

criteria 	BW WW WG PG YW MS FE YS BW WW WG PG 	YW MS FE YS FAT SW WW WG WS PG YW 	MS YS 	FE 

Flower WW + PG 0.09 	 0.13 0.44 

etal. (1969)  

Brinks et al. WW+WS 0.08 	 0.16 0.17 	 0.20 -0.13 -. 

(1965) +PG 	 - - 

Bailey ci al. PG 	 0.20 0.03 0.42 PG 	 0.98* 

(1(10 0.05 PG 	 1 .08 

FE 	 0.14 	 0.04 	 1.12 

FE 	 0.17 	 0.92 

YS 	 0.05 	0.04 	 1.23 0.11 

Frahm and 	PG 	 0.05 0.48 

Lalande 

(1974) 

Anderson 	YW 	 0.03 0.71 

etal. (1974) 

Koch etal. 	WW 	0.08 	0.19 0.09 0.18 0.04 	0.18 	4.3 	4.76 2.61 0.02 

(1974a.b) 	YW 	0.08 0.14 0.13 0.18 	0.10 	0.22 0.77 2.76 	7.82 	0.01 

YW+MS 0.08 0.11 0.100. 15 	 0.22 0.68 2.54 	7.48 

Chevraux and PG 	 0.06 	 3.47 

Bailey (1977) 

Martin and 	YW 	 0.14 	14.0 

Alenda (1980) 

Buchanan 	WW 	0.13 	0.22 0.08 0.20 0.15 

etal. (1982a) 	YW 	0.11 0.17 0.16 0.20 	0.10 

YW+MS 0.12 0.17 0.15 0.18 

Frahm etal. 	WW 	0.09 	0.20 0.06 0.17 	 0.27 	3.83 -1.51 1.55 

(1985o,b) 	YW 	0.11 0.85 0.17 0.17 	 0.2 4 0.91 3.38 	0.80 

Irgang et al. 	WW 	 0.00 	3.52 	0.97 0.23 

(1985c) 	PG 	 0.10 	5.60 	1.97 0.02 

Aaron etal. 	WW 	0.10 	0.23 0.03 0.16 	 0.24 	5.56 	3.52 2.10 

(1986a,b) 	WV!5 	 - 	7.08 	3.54 3.50 

YW 	0.10 0.16 0.15 0.18 	 0.45 1.52 4.76 	10.72 

WW 	 0.34*** 

	

WW 	 0.69 

	

0.17 WV! 	 0.63 

0.16 

	

WW 	 .. 0.79 

* 	= 	Secondary selection differentials in standard units per year 
** 	= 	Correlated responses in kg/year for BW, WW, YW, grams per day per year for WO; PG, mm per year for fat, feed/gain/year for FE (Irgang et al., 1985c) and kg 

gain/100 kg TDN (Bailey et al. 1971) 

= 	Realised genetic correlations estimated from data given in the papers 

SW 	= 	Birth weight 
WW = Weaning weight 

WG 	= 	Preweaning gain 

PG 	= 	Postweaning gain 

YW 	= 	Yearling weight 

MS 	= 	Muscle score 

FE 	= 	Feed efficiency 
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selected line relative to the control, while live weight at all other ages increased significantly in the 
selected line. At the same time, calf mortality has been lower, with heifer calving rate higher in the 
selected line than in the control. These results were attributed to the effects of stress from the tropical 

• climate. More recently, Bailey and Lawson (1986) reported a significant decline in birth weight in a 
line of Herefords selected for increased postweaning gain for 12 years, but no change in birth weight 
in an Angus line selected on the same criterion. Interestingly, Luesakul-Reodecha, Martin and • 	-. 	
Nelson (1986) obtained a significant trend of -0.4 for dystocia score in an Angus line selected for 
yearling weight for 19 years. These trends seem to disagree with the commonly held opinion that 
selection for growth is accompanied by increased birth weight and dystocia. 

- (b) Other growth traits 	- 

The correlated response in weaning weight obtained from direct selection for yearling weight by 
Koch et al. (1 974b) and Frahm et al. (1 985b) averaged about 81% of the direct response for weaning • 	weight. The correlated response reported by Aaron et al. (1986b) for weaning weight from direct 
selection for yearling weight was greater than the response from direct selection (1.52 vs. 1.45 kg per year). 

On the other hand, the corresponding correlated response for yearling weight as a result of 
selection for weaning weight was about 67% of the direct response for yearling weight. It seems, 
therefore, that selection for yearling weight had resulted in more improvement in weaning weight 
than the reverse. The above results were from single-trait selection experiments. Selecting for 
weaning weight on the basis of combined individual and progeny performance, Aaron et al. (1986b) 
reported that the correlated response for yearling weight was equal to the response from direct -' - 	
selection on individual performance. 

The average annual correlated response for preweaning daily gain from reports in the literature 
were 4.30 and 3.63 g per day from selection for weaning weight and yearling weight respectively. 
Corresponding annual estimates for postweaning growth rate were 4.30 and 9.23 g per day. 

There are not many reports on feed efficiency. Koch etal. (1982) reported that bulls from lines 
selected for growth rate had a significantly improved feed efficiency on test. The correlated responses 
in the weaning weight line and, yearling weight line were 0.39 and 0.57 kg per Mcal of metabolisable 
energy respectively. Irgang et al. (1 98 5c) did not observe any significant response for feed efficiency 
from selection for weaning weight of post weaning gain. 

(c) carcass traits 

• 	 The genetic correlation estimates from the literature predict that selection for increased body weight 
should result in reduced fatness at constant age (Koch et al., 1982). However, much experimental 
evidence seems to indicate no significant correlated response in carcass traits from selection for 
growth. rate. Gallagher (1964) reported no significant differences between carcass traits for progeny 

•, 	of bulls selected for fast or slow growth. The only consistent and significant correlated response in 
carcass traits in the selection experiments for yearling weight in the Shorthorn reported by Anderson 
et al. (1974) was a higher percentage of bone and a lower lean to bone ratio. Almost similar results 
were reported by Martin and Alenda (1980) for Angus cattle. The data of Koch et al. (1982) 
indicated a correlated response of -0-19,-0.03 and 0.23 mm per year in fat thickness at 281 kg body 
weight from selection on weaning weight, yearling weight and an index combining yearling weight 
and muscle score respectively. Irgang etal. (1985c), however, reported significant positive correlated 
responses of 0.13 ± 0.04 and 0.16 ± 0.4 mm fat depth per year in lines selected for weaning weight and 
postweaning gain respectively. 

Perhaps the level of feeding during the finishing phase may affect these correlated responses 
(Baker and Morris, 1984). For example, mice selected for high 6-week weight on a low plane of 
nutrition had a lower fat percentage at that age than mice selected on the same basis with adequate 
nutrition, when both lines were placed 'on the same nutritional plane (Falconer, 1960). 

(d) Milk yield in beef cattle 	 - 

From literature estimates of the genetic correlation between direct and maternal effects for weaning 
weight (r, = -0.43), Barlow (1978) concluded that selection for weaning weight would reduce milk 
yield. However, as pointed out by Baker (1980) and discussed by Baker and Morris (1984), most of 
the estimates summarised by Barlow (1978) were from dam-offspring relationships, and they could 
be seriously biased by negative environmental covariance caused, for example, by levels of feeding for 
heifers. When this relationship is avoided, the genetic correlation between direct and maternal 
effects for weaning weight is lower, ranging from -0.05 to -0.28. 

•V 	 Frahm et al. (1985b) reported that milk yield was not significantly different be 	progeny • - 	- 	- sired by bulls selected either for' weaning weight or yearling weight. However, milk fat percentage 
• 	- .• 	- 	was 0.4 higher for progeny of bulls selected for high yearling weight. Aaron et al. (1 986b) also 

obtained a similar result, but in addition, the daily milk yield of progeny sired by bulls selected for 
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weaning weight was significantly higher than that of the controls. Lawson (1978) indicated that 
selection on postweaning gain on a high plane (HP) or low plane (LP) of nutrition resulted in 
significantly higher solids-not-fat and protein percentages in animals on LP relative to the HP in 
Hereford cattle. Baker and Morris (1984) reported that preliminary results from the selection 
experiment of Carter (197 1) indicated that cows in the yearling weight selection line have a higher 
milk yield than cows of the postweaning gain selection line, as assessed by calf weaning weight. Also, 
Angus cows from a line selected for postweaning gain on a roughage diet exceeded those of cows 
selected for the same criterion on a concentrate diet in respect of yields of milk, fat, solids-not-fat and 
protein by 5.1, 7.6, 7.8 and 12.5% respectively (Bailey and Lawson, 1986). 

Another criticism against selection on growth rate is that it is usually accompanied by large 
mature cow size and increased fatness. Baker and Morris (1984) mentioned that evidence from 
experiments on correlated responses in cow weight is somewhat fragmentary. The only result they 
mentioned indicated that selection for early growth led to increased cow size. Luesakul-Reodecha et 
al. (1986) reported positive but non-significant trends of 0.35 and 4.12 kg per year for 205-day and 
54-month weight in an Angus line selected for 365-day weight. However, Morris and Wilton (1978), 
in a review of the association between cow size and biological efficiency of reproduction, concluded 
that when all postweaning food requirements are added to the cow herd food costs, herd efficiency is 

• 

	

	 little affected by cow size unless reproductive performance also changes. Experimental evidence 
indicating a major decline in fertility or increased fatness from selection for growth is rather limited. 

LII Other Experiments 

Other selection experiments not primarily concerned with growth may be grouped by their objectives. 

1. Comparison of alternative selection schemes or methods 

Carter (1971) investigated the effectiveness of sire selection on the basis of either corrected weaning 
• - weight, corrected final weight or postweaning gain, by evaluating the performance of progeny in a 

test herd for 10 years. The regression of the performance of progeny on the performance of sires 
indicated that selection on either weaning weight or yearling weight should result in appreciable 
genetic gains. On the other It sire's. postweaning gain was a poor indicator of progeny perform- 
ance for any trait. 

Baker et al. (1980) compared the effectiveness of selection of Angus cattle for 13-month live 
weight (AS 1), followed by first mating of selected animals at 14 months of age, with selection on 18-
month live weight (AS2), with first mating as 2-year-olds. A yearling-mated Hereford herd selected 
on 13-month weight (HS 1) and a control line of Angus with mating as 2-year-olds (ACO) were also 
kept. Relative to the control line, AS 1 and HS I improved in both 13-month and 18-month weights at 
about twice the rate at which AS2 improved. A summary of the preliminary results are presented in 
Table 3. The advantage of the selection scheme in AS 1 and HS 1 relative to that in A52 is that it 
allows heifers to be mated at 2 years rather than the traditional 3 years in Australia, and this can 
result in increased calf production and permit early identification of less productive females. This, 
coupled with selection and mating of yearling bulls, should increase annual genetic progress through 
reduction of generation interval. - 

Table 3. Direct and correlated genetic responses to selection on either 13-month or 18-month body weight in cattle (kg per 
yr) (Baker et at., 1980). 	 - 

Line 	 Birth weight 	 Weaning weight 	 13-month weight 	 18-month weight 

HSI 	 0.08*0.04 	 0.88±0.4 	 1.65±0.56 (D) 	 3.10±1.39 AS! 	 0.25*0.05 	 0.98±0.38 	 2.56±0.55 (D) 	 2.71±1.01 AS2 	 0.04*0.06 	 0.34*0.32 	 1.22 *0.65 	 1.48±0.96 (D) 

D - direct response 

HSI - Hereford line selected on 13-month live weight 
AS! - Angus line selected on 13-month live weight 
AS2 - Angus line selected on 18-month live weight 

2. Responses in synthetics and purebreds 

Berg (1984) carried out selection on 2 synthetic cattle populations and a purebred Hereford line to 
• 	 identify any superiority in response of the synthetic lines over the pure Hereford line due to a broader • 	• - 	genetic base. One of the synthetic lines was developed -by crossing Charolais, Angus and Galloway • 	 - - • 	(SY1), while the second consisted of 60% of large dairy breeds (Holstein, Brown Swiss and Sim- 

mental) with 40% of beef breeds (SD). The selection criteria were preweaning and postweaning gain 
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at one year of age in the synthetic lines, while industry bulls selected on the basis of superior 

• . 	 performance or a progeny test were used by artificial insemination in the Hereford herd each year. A 
• 	 summary of results is present in Table 4. There were higher trends for the synthetic lines in cow 

•--••• -•. 	productivity, birth weight and 365-day weight. However, industry bulls used in the Hereford line 
were not subjected to the same amount of selection pressure nor selected on the same criteria as those 
used in synthetic lines. These differences could have affected the results. 

Table 4. Compa,rative performance of Hereford cattle and two synthetic lines selected for growth rate (1962-1982). 

Cattle populations 
- Trait 	 .: 	•• 	HE' 	 SY 	 SD 

Calf crop % 	 78 	 83 	 82 
Phenotypic trend (1962-1982) 

Birth weight (kg per yr) 	. 	 0.17 	 0.25 	 0.34 
365-day weight (kg per yr in males) 	. . 	2.02 	• 	4.36 	 5.18 

Average performance (1977-1980) 

Feed efficiency (kg feed/gain) 	 5.17 	 5.37 	 5.76 
Average daily gain (kg per day) 	 1.34 	 1.57 	 1.46 
Dressing % 	 58.5 	 60.4 	 58.9 

•. 	Fat cover (cm) .  - 	 ... 	1.38 	•• 	1.11 	 0.88 
Loin-eye area (cm2) 	 75.6 	 89.6 	 86.9 

HE' = Hereford  
SY = Synthetic line composed of Charolais, Angus and Galloway 	. 
SD = 60% dairy breeds and 40% beef cattle breeds 	. 

• . 	- 	• 	An experiment with a similar objective was initiated at Wokalup, Western Australia, in 1979 to 
compare the performance of purebred Hereford cattle with a synthetic (Wokalup Multibreed) line 
(Anonymous, 1985). 	 .: ...... 

Similarly, Sharma et al. (1985) compared genetic response in a purebred Hereford and a 
.. multibreed synthetic line which were treated in the same way. . The main selection criterion was 

weight for age in bulls at one year of age. Genetic trends were estimated by deviation from a control 
population, using best linear unbiased prediction (BLUP) and MIVQUE (minimum variance quad-
ratic unbiased estimation) variance components estimated from the population. A summary of the 
results is presented in Table 5. Briefly, the mean selection differential was higher in the synthetics, 
which was attributed to the larger genetic base and greater variation in the synthetic line. Sire 
variance components were higher in synthetics than in Herefords, and non-genetic sources of varia-
tion seemed to be more important in the Hereford. The estimated genetic trends were similar in the 2 
populations for preweaning traits, but slightly higher for postweanng traits in the synthetic popula-
tion. •• . 

Selection for disease or parasite resistance 

A few selection studies concerned disease resistance in beef cattle. Wharton, Utech and Turner 
(1970) reported heritability estimates of 39 and 49% for tick resistance from dam-calf and full-sib 
correlations respectively in Australian Illawara Shorthorn cattle, and proposed that selection for tick 
resistance might be effective. Utech, Seifert and Wharton (1978) carried out divergent selection for 
tick resistance in a population of Australian Illawara Shorthorns. All the cattle acquired their 
resistance by exposure to field infestation. Selection was based on the number of semi-engorged 
female ticks on animals grazing together in naturally infested pastures for a period of at least 3 weeks, 
and also on the number of female ticks maturing after artificial infestation with a known number of 
larvae. • . 

The line selected for high resistance carried significantly fewer ticks than the low line at all 
times, on exposure to naturally or artifically infested pastures. 

A similar, divergent selection experiment for high and low resistance lines to helminths, in 
particular Cooperia and Haemonchus, has also been initiated in Australia (Anonymous, 1985). 

Effectiveness of selection for twinning 

Heritability estimates for twinning, reviewed by Maijala and Syvajarvi (1977) were about 3%, with a 
•. • repeatability of 6%. With such low values, most workers have dismissed selection for twinning as 

impracticable and undesirable (see Morris, 1984). Land and Hill (1975) have shown the importancà 
of having a high initial herd average. They demonstrated theoretically that selection with the 

. •.........• 

	

	. assistance of superovulation and embryo transfer should achieve genetic progress of 0.42 and 1.10% 
per year for initial herd twinning frequencies of 2 and 16% respectively. Mechling and Carter (1964) 
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Table 5. Estimated genetic response per year to selection in purebred Hereford and a synthetic population (1966-1978) 
(Sharma et al., 1983). 

- 

Trait 

- 

Mean MSD 

Annual genetic change estimated by 

Control population 	 BLUP 

Birth weight HE 33.1 0.3 0.06±0.21 0.08* 0.06 
(kg per yr) SY 35.1 0.8 0.29*0.22 0.07± 0.06 

Preweaning daily HE 874 29.4 9.6 ± 5.4 4.2 ± 	1.20 
gain (g per day) SY 1077 33.2 7.5 ± 4.9 4.8 ± 2.30 

Weaning weight HE 194 5.3 1.80* 0.03 1.10± 0.21 
(kg per yr) SY 233 7.2 1.64* 0.92 0.86± 0.43 

+ Postweaning daily HE 1297 33.9 13.72 ±44.3 17.93 * 11.32 
gain (g per day) SY 1399 46.7 48.12±49.4 	. 31.25* 11.15 

+ Yearling weight HE 418 12.2 5.81 * 9.39 8.21+ 6.00 
(kg peryr) SY 471 13.8 	. 11.31± 12.17 6.78± 2.15 

++ 18-month weight HE 376 0.3 7.54± 4.93 -6.10± 2.10 
(kg peryr) SY 408 0.2 7.52± 4.36 -11.90± 2.50 

HE 	= Hereford line 
SY 	=Synthetic line (composed of 35.7, 34.7, 21.7, 4.5 and 3.4% of Angus, Charolais, Galloway, Brown Swiss and others, 

respectively) 
MSD = Mean selection differential 
+ Males only . . ...... 	 . . 
+ + Females only . 	. . 	. 

reported selection for twinning over 30 years in Aberdeen-Angus herds, but concluded that little real 
progress had been achieved. 

In a recent review, Morris (1984) reported a series of selection experiments on twinning in 
Australia, USA, France and the German Federal Republic. The frequency of twinning for daughters 
from second or later calvings reported were: Australia, 8% from 76 calvings (controls, 0.6%); USA, 
6.8% from 176 calvings (including first calving); France, 11% from 89 calvings. 

In the German experiment, comparison of twin-born and control (single-born) females showed a 
difference of 0.94% in twinning. 

S. Genotype x environment (GE) interaction 

When GE interactions are important, response from selection in one environment is not likely to be 
fully transferred to other environments. Under such situations, genes governing performance in one 
environment are not all the same as those governing performance in another environment. It may be 
necessary to select stocks under the specific environment in which progeny of stocks will be reared 
(Falconer, 1981). 

Beef selection experiments aimed at identifying important line by location interactions have 
been reported by Butts (1911), Koger (1979), Burns (1979) and Pahnish (1985) in Hereford cattle. 
Butts et al. (1971) investigated GE interaction in 2 herds of Hereford cattle, each consisting of 2 
lines, one herd at Miles City, Montana, and one at Brooksville, Florida. A 7-year period of selection 
was followed by reciprocal exchange of animals. The primary selection criterion was an index with 
equal emphasis on preweaning and postweaning growth in bulls. They observed significant line by 
location interaction in birth weight, weaning weight, yearling weight, and pregnancy and weaning 
percentages. 

Koger et al. (1979) and Burns et al. (1979) evaluated GE interaction in reproductive traits, birth 
weight and weaning weight in 4 lines of cattle which partly originated in the work of Butts et al. 
(1971). In addition to 2 lines which were developed independently in Montana and Florida (unre-
lated lines), they had another pair of lines which was developed from the same base populations in 
Montana, before undergoing subsequent selection in the two different locations (related lines). There 
was significant line x location interaction in preweaning rate, weaning rate, birth weight and daily 
gain in the unrelated and related lines. However, the line x location interaction was not significant for 
survival rate. 

Pahnish et al. (1985) examined line x location interactions for postweaning traits in the same 
populations. Significant line by location interactions were observed in the unrelated line for postwe-
aning daily gain, weight at end of test, and conformation score. The same result was obtained for the 
related lines. Investigations to understand the mechanism underlying these interactions identified 
differences in thyroid function of these animals. There were no differences in milk yield. However, 
the degree of GE interaction was not quantified in terms of the genetic correlation between the same 
traits in the different locations - . 
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Frisch (1981) investigated factors underlying GE interaction in growth rate under tropical 
conditions, by studying correlated response to selection for growth under stressful tropical conditions. 
A line of cattle selected for growth rate from 1970 to 1975 and a control line, with significant 
differences in live weight, were exposed to several levels of stress: plane of nutrition, high ambient 
temperature, infection with bovine infectious keratoconjunctivitis (BIK) or gastro-intestinal hel-
minths (GIH). The selected line was shown to be more heat tolerant, to have a lower maintenance 
requirement, greater resistance to infection with BIK and GIH, and, consequently, higher growth 
rate in the presence of these stresses. However, cattle of the selected line did not have superior growth 
rate at low levels of stress. Thus, reversal of rank between selected and control lines for growth rate 
under conditions of high and low stress could be attributed to differences in resistance to environmen- 

...tal  stress and not in growth potential. .. 	 . 	 •.: 

• 	. . • 	 .- The results of Pacer et al. (1986) seem to indicate some degree of interaction between line and 
- plane of nutrition. While the Angus line selected for postweaning growth on a concentrate diet was 

significantly different from foundation animals in postweaning gain, weight per day of age and final 
weight, a similar line selected on a roughage diet did not differ significantly in any of above traits. 

IV. Conclusions and Discussion 

The positive genetic trends reported for growth traits indicate that selection for the improvement of 
• growth traits is effective. Correlated responses in other growth traits from direct selection on yearling 

weight were generally larger than those from weaning weight selection Thus if the main objective is 
to increase weight in sire lines, selection on yearling weight is preferable. Experimental evidence 
seems to disagree with the commonly held opinion that selection for growth is necessarily accompa-
nied by increased birth weight and dystocia. The literature reports show that improvement of growth 
traits still continues to be the main selection objective in beef cattle experiments, with very little 
emphasis on other traits. . •• . 

The rates of genetic gain so far achieved in growth traits are somewhat lower than the possible 
rates indicated by Smith (1984). The lower rates of genetic change achieved in practice in beef cattle. 
have been attributed by Smith (1986) to concern about other traits of uncertain economic impor-
tance, conservatism of breeders, and selection and generation turnover rates which are not optimal. 

Land and Hill (1975), Smith (1984) and Land (1985) have discussed the possible ways by which 
the present rate of selection response could be improved. One of the major limitations to genetic 
improvement in beef cattle is the low female reproductive rate, which restricts selection intensity 
among females. Land and Hill (1975) and Land (1985) have shown that if female reproductive rate 
could be increased, it would be theoretically possible to double the rate of genetic change for traits 
which can be measured in both sexes before reproductive age, and the rate of genetic change could be 
increased by 1.6 times by using multiple ovulation and embryo transfer rather than normal 
reproduction. 

Two other routes to faster improvement may be the use of major genes and indirect selection on 
physiological traits. An example of a major gene currently being exploited in breeding programmes 
in cattle is the double muscling gene, which results in a higher yield of lean meat. Hanset and 
Michaux (1985) reported about a 30% higher total muscle weight in Belgian White and Blue veal 
calves homozygous for the double muscling gene compared with normal homozygotes. Double 
muscling, however, is associated with calving difficulties. 

Selection on physiological traits or biochemical factors indicating or controlling performance 
may allow indirect selection for commercial traits. This could offer great scope for reducing the 
generation interval, as animals could be selected early in life. It might also be useful in selecting 
young males for sex-limited traits. Presently, no such technique is available in beef cattle. However, 
the high and low growth rate lines of the Trangie Agricultural Research Station, Australia present a 
great opportunity to examine the biochemical and physiological components of response to selection 
for growth rate. 

The increasing demand for lean meat also implies that selection objectives in beef cattle should 
be broadened to include carcass traits. Apart from the consumer's view, it has been suggested that 
the greatest scope for improving bio-economic efficiency in beef cattle, other than through reproduc-
tion, is by use of faster-growing, lean terminal sires (Dickerson, 1982; Barlow, 1984). Selection for 
leanness in live animals is possible by ultrasonic measurement of fat depth or area. Simm (1983) 
reported a correlation coefficient of about 0.70 between lean content estimated from ultrasonic 
measurements and by carcass analysis. -. 
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RESUME 
La rdponse a la selection est etudiée dans un trouPeau Hereford 

compreflant deux lignees sélectiOflnêes sur le taux de croisS81e de viande 
maigre (LOB) ou sur l'efficacité alimefltaire pour la production de viande 
maigre (LFR), ainsi qu'une lignée témoin (CL). La selection est faite de 
1979 a 1986, seulemeflt sur des males, et l'intervalle moyefl entre les 
generations dtait de 2,4 ans dans les deux lignées s6leCti06es. Les 
differentielles cumulatives de selection etaient 59 g par jour et -3,2 kg 
de fourrage par gain de kg de vihde maigre dans les lignées LGR et LFR 
respectivement. La réponse a la selection a ete estimée par deux méthodes 
(1) la difference par rapport a la lignée témoin et (2) le maximum de 

vraisemblaflce restreifit (REML). Sélo
n la premiere methode. l'héritabilite a 

été estiwée a 0.53±0.14 pour LGR et a 0.38±0.13 pour LFR. Les estimations 
de gain genetiqUe annuel etaient 5.0±1.6 g par jour pour la lignée LGR et - 
0.13±0.08 kg fourrage par kg de taux de croiSS&lce de muscle pour la lignée 
LFR. Les estimations de REML etaient a peu pres les mêmes que celles de la 

premiere methode, mais plus préciSeS. 

INTRODUCTION at, is indicative 
The current trend in consumer's attitude for lean me  

that selection for e
fficiency of lean meat production is likely to be a 

long-term objective in beef cattle. This study is concerned with the 

evaluation of response in two lines of Hereford cattle selected for lean 

growth rate (ICR) and lean food conversion ratio (LFR) from 1979 to 1986. 

MATERIALS AND METHODS 
In 1977, a foundation herd of 227 Hereford cows was established to 

study the efficiency of lean meat production. During 1977-1978, the 

females were bred by artificial insemination (Al) to 48 bulls at Al 

stations and in private herds. Beginning with the 1978 calf crops, all 

bulls were ranked for LGR and LFR and the best 6 to 8 were selected and 

alloted to the LGR and LFR lines 
respectively. 	

Each line consisted of 

three replicates with about 25 cows and 2 bulls per year. 
	There was also 

a control line (CL) co
nsisting of about 36 cows bred by frozen semen taken 

from some 25 bulls born in the foundation years. 
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Selection procedure and statistical methods 

Bulls were selected on the basis of performance test up to 400 days of 

age for LGR and for 200-400 day LFR in the respective lines. The bulls 

were scanned ultrasonically towards the end of test on two occasions at 

three sites to estimate fat area. 	Lean percent (LP) was predicted from 

the fat areas. 	LGR was then estimated as the product of growth rate up to 

400 days, LP and killing out percent (KO). 	LFR was estimated as food 

conversion ratio divided by LP and KO. 

Response to selection was evaluated by 2 methods (1) Deviation from CL 

and (2) Restricted Maximum Likelihood (REML). 

RESULTS AND DISCUSSION 

Selection differential 

The average age of parents was similar in both selected lines, about 

2.4 years. The cumulative selection differential (CSD) in 1986 were 

58.8g/day (2.0 standard deviation units(sdu)) for LGR in the LGR line and 

-3.2kg lean feed/kg gain (1.8 sdu) for LFR in the LFR line. The average 

sire selection differential per generation were 1.3 and 1.4 sdu for LGR and 

LFR in their respective lines. 

Responses and genetic parameters 

Realised heritabilities (h 2 ) from method (1) were estimated as the 

regression of response on CSD. Estimates of variance components and 

heritabilities from REML and genetic correlations (rg) are presented in 

Table 1. 	Heritabilities from method (1) were generally slightly higher 

than from REML. 	Inconsistent estimates of rg were obtained from the 

various lines (Table 1). 	Generally, precision of estimates from method 

(2) increased with population size. 	Comparing results for LGR on analyses 

based on LGR line alone, on the LGR and control and in all three lines 

(POP3), indicated a 123% gain in information from including the control and 

further 51% gain in information from including the LFR line. 

Estimates of genetic change achieved (Table 2) from method (1) and REML 

were similar although the latter were more precise. Annual rates of 

change observed were 1.5 and 0.75% for LGR and LFR respectively. 

I 



- 

TI. 	 365 -  

TABLE 1. 	Heritabilities, variance components (with standard errors) for 
LGR and LFR and genetic correlations between LGR and LFR. 

Method (1) 
	

Variance components (method 2) 

Trait 	Population 	h2 	rg 	VA 	VE 	h2 	rg 

LGR 	LOR + CL 	0.53 	_0.76** 	460.84 	518.79 	0.47 	-.0.81 
(g/day) 	 +0.14* 	+0.14 	+122.4 	+99.7 	+0.11 	+0.15 

POP3 	 _0.23*** 	461.19 	538.10 	0.46 	-0.70 
+0.21 +117.7 	+ 92.7 	+ 0.09 	+0.12 

LFR 	LFR+CL 	0.38 	-0.18 	1.03 	2.61 	0.29 	0.58 
Kg feed! 	 +0.13 	+0.21 	+ 0.6 	+ 0.55 	+0.- 

 16 	+0.23 
kg lean 

POP3 	 1.26 	2.75 	0.32 
+0.4 	+ 0.3 	-4- 0.10 

* standard errors incJuda drift variance 
** rg = (CR2/SD1)x01,'hxh2x02; 1 = selected trait; 2 = correlated trait 

SD=selection differential; 0 = standard phenotypic deviation 
= Square root of (CR1xCR2)/(R1xR2); CR=correlated response; 
R=response 

TABLE 2. 	Estimates of genetic change and standard errors for LGR and LFR 
per year 

Method 2 

Trait 	Line 	 Method 1 	LGR+CL 	LFR+CL 	POP3 

LGR 	 5.0 	 4.0 	 4.2 

	

+0.8 	 +0.8 

LGR 	LFR 	 0 	 in 	ii 
g/day +: +: 

LFR 	LGR -0.17 	-0.15 -0.14 
kg/feed +0.08 	+0.05 +0.05 
kg lean 
gain 	LFR -0.13 -0.12 	-0.11 

+0.08 +0.05 	+0.05 

standard errors 
include drift variance 


