
A Gift from Pandora's Box: 

The Software Crisis 

Maria Eloina Peläez Valdez 

PhD 
University of Edinburgh 
1988 

.x 
ý. lull 

ýh 



Abstract 

The thesis is an exploration in the history of software development. Its aim is 

to understand how and why software has developed the way that it has. 

The thesis singles out major themes in the development of software. It begins 

by analysing the early separation of hardware and software and the development of 

the first high level languages, focusing particularly on the attempt to establish an 

international standard language and the conflict that arose between the proponents 

of ALGOL and the supporters of FORTRAN. The issues and themes which emerge at 

this stage are traced through an analysis of the development in the 1960s of third 

generation computers, and particularly the dramatic history of the IBM 360. The 

problems of software development during the 1960s created an awareness of how 

important and difficult programming was. Software was recognised not just as an 

appendage of hardware, but as a force in its own right. This was reflected in the 

commodification of software and In a growing sense of a "software crisis". This 

feeling of crisis gave rise to conscious attempts to provide solid theoretical 

foundations for the development of programming. Two main approaches emerged, 

structured programming and software engineering, and the tensions between these 

two approaches can be traced back to the early days of software development. 

It is argued that the patterns and tensions to be found throughout the whole 

development of software are not accidental: they arise not simply from academic 

controversies but from the very nature of software and from the social 

circumstances of its production and use. It is concluded that there is no easy 

solution to the software crisis. 



I declare that this thesis has been composed by me and is my own work. 

OAJV\C 



Contents 

Acknowledgements 

Introduction 

Chapter 1. Contract with the Devil 1 

Chapter 2. The $5,000,000,000 Gamble 41 

Chapter 3. The Producers 61 

Chapter 4. The Users 109 

Chapter 5. The Commodification of Software 141 

Chapter 6. The Software Crisis 172 

Chapter 7. Closing the Lid? 192 

References 243 

List of Interviews Cited 257 

List of Abbreviations 258 

Appendix: The GOTO Letter 261 

A Note on Other Sources 263 



Acknowledgements 

It seems violent to claim this thesis as entirely my own work when I know 

how much others have contributed. In Donald MacKenzie and Stuart Anderson I 

have been very fortunate in having the perfect combination of supervisors, and I 

am extremely grateful to both of them not just for their contributions and 

commitment to this work, but also for their friendship and support: iMuchisimas 

graciasl 

Many thanks too to John Holloway for debugging my English and for the many 

exciting discussions on the algorithmisation of life and the vitalisation of 

algorithms; to the people in the Science Studies Unit for providing me with a 

friendly and supportive environment; and to my family and friends for 

everything. 

I wish to express my gratitude to the people I interviewed in the course of this 

work and to the Program in Science, Technology and Society of the Massachusetts 

Institute of Technology, who provided me with hospitality during the summer of 

1984. This research has been made possible by the financial support of the 

University of Edinburgh, the Consejo Nacional de Ciencia y Tecnologla and the 

Committee of Vice-Chancellors and Principals of the Universities of the United 

Kingdom. 



Introduction 

This thesis is an exploration in the history of software development. Its aim is 

to understand how and why software has developed the way that it has. 

It is an exploration in the sense that it attempts to move into what is very 

largely uncharted territory. There are accounts by computer scientists of 

particular events or particular innovations in programming, and these accounts 

are extremely valuable, but they do not attempt to provide any systematic 

analysis of why things have developed the way that they have. There are occasional 

comments on the role of commercial interests in shaping the development of 

programming languages or expressions of concern about implications of software 

failure in relation to nuclear weapons, but, on the whole, the discussion remains 

purely internal to the field of computer science. 

At the other extreme, in those few cases where an attempt has been made to 

look at software from a critical social perspective, relatively little attention has 

been paid to the issues actually involved in software development. These writings, 

of which the most influential are those by Kraft (1977) and by Greenbaum 

(1979), focus on the labour process of computer programmers. They argue, 

following in the tradition of Braverman (1974), that the labour process of 

computer programmers is subject to the general tendency to deskilling inherent 

in capitalist society. Developments in programming are seen in the context of a 

constant struggle between programmers and their managers for control over the 

labour process of programmers. Developments such as high-level languages or 



structured programming and software engineering, for example, are seen as 

managerial strategies to deskill their workforce. 

This approach is unsatisfactory In several respects as an attempt to 

understand the forces that shape software. Software development Is seen as 

following a linear path, so that new developments In software mean nothing more 

than further attempts to deskill, routinise and fragment the labour process of 

programmers. This ignores the intense debates among computer scientists as to 

the nature of programming and all the conflicting interests that shape the 

development of software. 

Another problem with the labour process approach to an understanding of 

software is that it reduces the relation between software and society to a focus on 

one particular labour process, the process of writing computer programs. The 

obvious objection to that is that software Is not so simple: what shapes its 

development is not the struggle between one particular group of workers and their 

bosses, but the extremely complex interrelation between conflicts throughout the 

whole of society. It Is surely wrong to see software as being shaped simply by the 

conflict between programmers and their managers when software development 

plays such a central role In almost every single labour process (and much else 

besides) in society today. Software Is not an ordinary commodity. It cannot be 

treated as though it were a car or a table. 

The question of the forces shaping software thus runs into the question of: 

what is software anyway? Is it adequate to. think of it as a commodity? Is 

programming a branch of engineering? Or an aspect of mathematics? Is it an art, 



a craft or a science? 

This thesis approaches these issues historically. This does not mean that it is 

an attempt to write a comprehensive account of software development. The aim has 

been rather to focus on certain themes and certain turning-points that seem to be 

of particular significance, both in terms of their impact on software development 

and in terms of what they can tell us about the forces shaping that development. 

The first chapter begins by tracing the growing separation of hardware and 

software, and of producers and users, from the earliest post-war days through to 

the first high-level languages. A particular study of the features and history of 

two of those languages, FORTRAN and ALGOL, throws light on a web of conflicting 

theories, traditions and commercial interests (and, entangled in the web, a devil 

and a demon). The outcome of these conflicts shaped the way that computers would 

be programmed and the way that programming problems would be conceptualised 

for years to come. 

The conflicts which can be seen in the history of these two languages reappear 

in different forms in the events of the 1960s, of which the most momentous was 

the launching of the IBM 360 family of computers (second chapter). The advent of 

the 360, and of the third generation computers in general, and the far-reaching 

consequences for both computer producers and computer users are the theme of 

the third and fourth chapters. The enormous problems encountered in 

programming these new machines created an awareness for the first time of the 

importance of programming, an awareness crystallised in the commodification of 

software (the theme of the fifth chapter). 



That the situation was serious, that software was in crisis, that there was a 

need to give more solid foundations to software development, was openly 

recognised for the first time in two conferences sponsored by NATO in 1968 and 

1969 (the sixth chapter). However, even in the moment of greatest harmony, 

when it was unanimously agreed that something had to be done to change the way 

that computers were programmed, the conflicts reappeared: these conflicts 

continued to dominate both the theory and practice of programming in the years 

that followed, and continue to do so still (the seventh chapter). 

The examination of these themes and turning-points provides neither a 

definitive history nor a definitive theory of the forces shaping software 

development, but - to the extent that it is successful - it traces out the important 

connecting threads between apparently separate happenings. If the history of 

software is an uncharted territory, the aim of the thesis is to pick out the rivers 

and the mountains, the significant contours that can provide a basis for 

understanding what goes on in this most important territory, for what happens in 

that territory could, literally, decide the fate of the world. 



Chapter 1 

A Contract with the Devil 

What is software? The answer is not a simple one. The nature of software is 

changing and elusive; it has a history. In order to understand software now, it is 

necessary to look at what it was, at its historically changing nature. 

The history of software can be seen in terms of a dynamic tension between two 

poles: hardware development and user demand. Software is in the middle. It is the 

set of instructions given by computer users to the machine in order to obtain the 

solution to a particular problem. Inevitably software Is shaped at one end by the 

capacity and structures of the machine and, at the other, by the formulation of the 

problem to which the user requires a solution. 

The history of software has to be located within the context of the development 

of these two constraints. This does not mean that the development of hardware and 

the development of user requirements are of equal Importance at every stage of 

software development. On the contrary: the history of software is the history of 

its separation from the machine, its progressive removal to a higher and higher 

level, at which the formulation of the problem to be solved becomes more and 

more the focus of attention. 

In the first digital computers of the 1940s, there was no clear distinction 

between hardware and software. In the earliest machines, attention was devoted 

1 



almost exclusively to the construction of the machine itself: it was at first 

assumed that programming the machine would present little difficulty. 

Programming itself was done by physically rewiring the machine each time a 

new program was to be run. The way in which a calculation was programmed 

depended very much on the structure of the particular machine. Thus, for 

example, in the ENIAC, one of the first electronic computers, the decimal 

structure of the machine led to a system of performing subtractions through 

addition (Goldstine 1972,159). 

At this stage, there was also no clear division between producer and user: 

machines were built with a specific purpose in mind and the prospective users 

were closely involved in the design and construction process. The computers were 

still one-of-a-kind machines used by government agencies, mainly for military 

purposes. 

With the transition to First Generation computers, usually dated from about 

1951/52 to the introduction of transistorised computers in 1958/59, software 

at first remained closely tied to the hardware. Computers at this stage were very 

large (having vacuum tubes as their basic component), more or less immobile and 

very expensive. By present standards, they were very slow, had a very limited 

memory capacity and broke down very frequently. 

Computers were now being produced commercially: the first Remington Rand 

UNIVAC was delivered to the Bureau of the Census in 1951 (at a purchase price of 

2 



about $1 million), and the first installations of the first IBM computer, the IBM 

701, were made in the spring of 1953. However, this does not mean that they 

were being produced In large quantities or for an open market. Around 1950 only 

a few customers - such as the military, the US Weather Bureau, intelligence 

agencies, defence contractors (especially aeroplane manufacturers), the Atomic 

Energy Commission and its subcontractors, and the Bureau of the Census - were 

considered to have the sort of computational needs which would justify 

expenditure on a computer. When IBM first announced Its 701 machine (initially 

called the Defense Calculator), It received 30 letters of Intent from prospective 

customers (defence and related agencies and companies), a number subsequently 

reduced to six when IBM announced a rise in the proposed price from $8,000 to 

$15,000 per month. The first private firm to acquire a computer (a UNIVAC) for 

non-government related purposes was General Electric in 1954. (Fisher et al. 

1983,8; Moreau 1984,48). 

In the early years of the First Generation, then, although production was 

being carried out by commercial companies rather than universities or research 

institutes, the relation between production and use was still a very close one. 

The relation between hardware and software was similarly close. The 

machines no longer needed to be programmed by rewiring, but the form in which 

the programs were written was still very closely tied to the structure of the 

machine. The early machines could be programmed only in machine language, in 

the ones and zeroes which correspond to the switches of the machine itself. For 

example, a very simple instruction might take the form: 

3 



001110 000000 000000 000000 100000 

meaning "Put into the accumulator register the contents of register 32" (Moreau 

1984,155). There was a very close correspondence between the structure of the 

program and the structure of the machine itself. Consequently, programmers 

required to know every detail of the structure and working of the machine they 

were programming and inevitably the focus in programming was on the 

formulation of the problem to fit the structure of the machine; the logic of the 

program was totally shaped by the structure of the machine. 

The use of machine language also meant that the formulation of even the 

simplest problem became a task requiring close attention to every detail and that 

even a momentary distraction could easily lead to a mistake, such as writing a0 

instead of"a 1 at some point in a long sequence. Programming was closely tied 

intellectually and physically to the machine itself. Just as the history of software 

is the history of the separation of hardware and software, so it is also the history 

of the physical and intellectual separation of the people programming the machine 

from the machine being programmed. 

The course of the 1950s saw a growing separation between producer and user, 

between hardware and software, between programmers and the computer. 

The development of the magnetic ferrite core memory, first marketed in 

1954 and probably the most important advance in hardware technology in the 

1950s, meant that the computers of the late 1950s were much more powerful and 

much more reliable. The increased capacity and reliability, and falling costs, of 

4 



the computers made them a more viable commercial commodity. 

Commercialisation advanced quickly during the 1950's. IBM's second computer, 

the smaller and cheaper 650, first delivered in 1954, turned out to be a great 

commercial success and over 1000 models were eventually produced and 

delivered, as compared with an original planned production of about fifty (Rosen 

1969,19). 

During the 1950's IBM gradually built up a position of strength in the computer 

industry. It was originally very hesitant in making a commitment to the 

production of the new machines: it has been estimated that in 1951 Remington 

Rand had a five-year lead over IBM in the field. But with the help of Remington 

Rand's mistakes and particularly with the winning of the important SAGE contract 

in 1952/53, IBM strengthened its position considerably. SAGE (Semi-Automatic 

Ground Environment) was a computer-based air defence system commissioned by 

the US Air Force and designed to give early warning of Soviet attack. It was an 

enormous undertaking which considerably strengthened IBM's position on the 

market. During the 1950's more than half of IBM's domestic computer revenues 

came from Its work on SAGE and a B-52 programme undertaken during the Korean 

War (Fisher et al. 1983,30). 

The commercialisation of computer production meant an increasing 

separation between producer and user. Where producer and user had worked 

together in the design of the earliest computers, this relation was now established 

more and more through the market. The relation between producer and user was 

becoming more distant, more anonymous. 

5 



At the same time as the separation between production and use developed, 

there developed also a growing separation between the machine and the 

programming of the machine. To some extent these two processes were related: as 

the user became further and further removed from the production and design of 

the machine, the instructions required to use the machine acquired a distinct 

identity. 

As the commercialisation of computers grew, and as programming came to be 

seen as a distinct activity, there emerged also a group of people who specialised in 

programming the new machines and who gradually became known as 

programmers. Edsger Dijkstra, who was later to exercise an important influence 

on the development of computer science, recalls that when he got married in 

1957, "Dutch marriage rites require you to state your profession and I stated that 

I was a programmer. But the municipal authorities of the town of Amsterdam did 

not accept it on the grounds that there was no such profession. And, believe it or 

not, but under the heading 'profession' my marriage record shows the ridiculous 

entry 'theoretical physicist'l" (Dijkstra 1978,10) 

The clear separation of programming from the machine meant developing a 

way of writing programs other than in the Os and ls which corresponded to the 

switches of the particular computer. There were two elements to the problem, two 

difficulties which had to confronted. 

The first of these elements was the definition of an algorithmic language, 

sometimes referred to as an algebraic language. Programming requires the 

6 



concise formulation of instructions to the machine to perform a very large 

number of repetitious calculations. There must, for example, be a means of 

expressing concisely and precisely the instruction that a certain operation should 

be performed and repeated using different variables until certain conditions are 

satisfied. In other words, the instruction must describe an algorithmic 

procedure: "an algorithm is an iterative procedure, completed in a finite number 

of steps, for the purpose of solving a given problem. Note that 'iterative' is defined 

as 'step-by-step' where each step is dependent upon the preceding step - in other 

words, where the result of each process is the initial condition for the next" 

(Hilton 1963,138). Or, to put it another way: "we say that a procedure for 

solving a problem is algorithmic when it can be expressed as a sequence of 

statements of operations to be performed and when no knowledge or intelligence is 

required beyond what is strictly necessary in order to perform these operations" 

(Moreau 1984,5). 

Although mathematics had developed algorithms from the days of ancient 

Mesopotamia, an adequate notation for expressing them concisely had never been 

developed. Mathematicians had developed powerful notations for static functional 

relations, but they had never invented a good notation for dynamic processes 

(Knuth and Trabb Pardo. 1980,200). 

However, the definition of the language was not sufficient on its own. There 

must also be the second element, a means of translating the programming language 

into machine language, the Os and 1s which can be processed by the computer. It is 

necessary to devise a special program, called a compiler, to translate the 

7 



program, the source code written in the programming language, into object code 

which can be processed by the machine. 

The separation of programming from the machine did not follow a simple 

straight line. There were different emphases on the one or the other of the two 

elements mentioned, different directions taken. These different directions 

reflected both the force of material circumstances and different ideas about the 

nature of computers. 

The earliest attempt to develop a programming language was the work done in 

Germany by Konrad Zuse towards the end of the Second World War. Zuse had been 

building computers in Germany since 1936. When his computers were destroyed 

by Allied bombs, he fled from the advancing Allied troops with what remained of 

his machines and installed himself in a small Alpine village near the Austrian 

border. There he worked on the formulation of a programming language, the 

Plankalkül. His work was necessarily theoretical in its focus: 

it was unthinkable to continue practical work on the equipment; my 
small group of twelve co-workers disbanded. But it was now a 
satisfactory time to pursue theoretical studies. The Z4 Computer 
which had been rescued could hardly be made to run, and no especially 
algorithmic language was really necessary to program it anyway. 
Thus the- PK (Plankalkül) arose purely as a piece of desk-work, 
without regard to whether or not machines suitable for PK's 
programs would be available in the foreseeable future" (Zuse 1972, 
6, quoted by Knuth and Trabb Pardo 1980,202). 

Zuse also wanted to concentrate on theoretical work for another reason: 

"The first computers in Germany were exclusively designed for 
numerical calculations, and the limited financial basis and short time 
available for the construction did not allow any special features. Besides 

8 



that, the users of the computer did not see any necessity for a more 
sophisticated logical design in those days. But on paper there was no limit 
on further ideas, even during the war" (Zuse 1980,616). 

Zuse's emphasis was on the logical design of the computing process. From the 

earliest days of his involvement with computers, he had been interested in 

extending their use beyond numerical calculation to the handling of symbols, or 

logical values (Bauer 1980,513). 

His emphasis on logical design had led him to reject the idea of a stored 

program computer (in which instructions and data are kept in the same storage): 

"Since programs are like numbers built from bit sequences, it was 
obvious to store programs, too. Then one can perform conditional jumps 
and can calculate addresses... [The] feedback from the result of the 
calculation to the program flow can be established symbolically by a 
single wire. I hesitated to do this step" (Zuse 1970,99, quoted by Bauer 
1980,518). 

He rejected the stored program because he saw not only the increased efficiency it 

would bring, but also the potential for confusion: it "could influence the whole 

computer development in a very efficient but also very dangerous way" (Zuse 

1980,616). He feared that it would open Pandora's box (Bauer 1980,518): 

implementing the stored program computer "could mean making a contract with 

the devil. Therefore i hesitated to do so, being unable to overlook all the 

consequences, the good as well as the bad" (Zuse 1980,616). His "own designs 

for future machines on paper were much more structured with instructions 

stored independently and special units for the handling, of addresses and 

subroutines nested in several levels" (Zuse 1980,616). 

9 



The aim of the Plankalkül was, in the opening words of Zuse's description, "to 

provide a purely formal description of any computational procedure" (quoted in 

Knuth and Trabb Pardo 1980,203). The Plankalkül was a highly developed 

language, with many concepts that were adopted only much later, particularly its 

notion of hierarchically structured data. However, it was never implemented and 

was not published in full until 1972. Nevertheless, its influence, direct and 

indirect did much to establish a distinct European tradition in programming. 

Zuse's surviving Z4 computer eventually found its way to the Institute of 

Applied Mathematics in Zurich, where it was programmed by Heinz Rutishauser. 

Rutishauser certainly knew about the Plankalkül, and in 1952 he wrote a paper 

in which he described an algorithmic language, together with complete 

flow-charts for two compilers for that language. The most important feature of 

his language was the Introduction of a nonsequential control structure which 

bracketed off a sequence of statements Introduced by für and ending with ende. 

However, Rutishauser's language was not implemented, and the Idea of the 

für... ende bracket did not acquire practical significance until the end of the 

1950s. Similar work was also done, aithought not In ý conjuction with Rutishauser 

by an Italian postgraduate in Zurich, Corrado Böhm, but his language too remained 

unimplemented. 

In the United States the development of programming In the early years 

followed different lines. While the Europeans, through choice or force of 

circumstance, concentrated on the theoretical elaboration of algorithmic 

languages, the Americans tended to focus on the second element, the construction of 

10 



a means of translating symbols into machine code. 

From the earliest post-war days, the US development took place within the 

context of the stored program computer, the idea which Zuse had explicitly 

rejected in Germany. Storing the program in the machine meant that both the 

instructions and the data which were the object of the instructions were stored 

together in the computers "memory". Before the stored program, the instructions 

to the machine were read directly from perforated paper tape or a deck of punched 

cards placed in the input unit; if some part of a program had to be repeated in the 

course of a calculation, the corresponding part of the tape or group of cards had to 

be reinserted by hand. Storing the instructions in the machine itself speeded up 

the process of calculation. Transfers between the memory and the calculating unit 

now involved only the passage of electric impulses rather than the mechanical 

reading of a card or tape. Moreover, "because the instructions could now be 

treated as data, it became possible to repeat a part of a program several times, 

operating each time on data from different parts of the memory, so that there was 

no longer any need to reinput the program. To indicate the new data to be used, it 

was only necessary to change the number in each elementary instruction giving 

the address of the memory location where its data were to be found" (Moreau 

1984,37). A further advantage was that it became possible to skip automatically 

over specified parts of the program. All, of these points made the computing 

process far more rapid, but, as Zuse had feared, ý storing instructions and data in 

the same memory also made the control of the process of execution of a program 

far more difficult. For the moment, however, attention was focused on the more 

immediate problem of making it easier to feed instructions into the computer. 

11 



The first step in the separation of programming from the machine was the 

replacement of the Os and 1s of the machine language by symbols for the 

convenience of the person programming the machine. Goldstine and von Neumann, 

two of the leading figures in the early development of computers in the United 

States, proposed such a symbolic notation as early as 1947. It was their practice 

to simplify the writing of programs by replacing a statement such as: 

00000010101111001010 

meaning "clear the accumulator and add number stored in location 10 into it", by 

a symbolic abbreviation: 

10c Aa 

These symbols would then have to be translated either by the person writing the 

program or by someone else Into machine language (Goldstinel972,334). 

Another contribution made by Goldstine and von Neumann was the proposal 

(also in 1947) of a system of representing algorithms pictorially through a 

series of boxes joined by arrows, called a flow diagram. Goldstine and von 

Neumann's approach to programming differed significantly- from Zuse's, for 

example in their emphasis on numerical calculation rather than on data 

structures. Their ideas proved very influential, far more influential than Zuse's, 

partly because they were obviously in a more powerful position than Zuse had 

been. Although their work was not published, it "was beautifully. 'varityped' and 

distributed in quantity to the vast majority of people involved with computers at 

that time" (Knuth and Trabb Pardo 1980,208). This was of considerable 

importance at a period when there was very little communication between people 

working In this area. 

12 



The next step in the separation of programming from the machine was to 

develop the idea of symbolic representation further by providing, from 1951 

onwards, for these symbolic instructions to be translated automatically into 

machine language. This was done by writing the special programs called compilers 

that would translate the symbols written by the programmer (the source 

program, written in the symbolic or assembly language) into machine language 

(the object program), which could then be processed by the machine. However, 

the structure of the instructions remained unchanged: the programmer was still 

required to produce a sequence of instructions very closely related to the 

structure of the machine. As a result, the structure of the machine still played a 

central role in the task of programming. The use of assembly language gained 

widespread acceptance in the United States and to some extent in Britain, but 

never became widely established in Continental Europe (Rutishauser 1967, 

quoted by Naur 1981,93). 

One problem in going beyond assembly language was the question of syntax. It 

was necessary that computers should be able to make simple syntactic analyses. 

This can be seen if one takes the example of a very simple expression (Moreau 

1984,159): 

A-B+(C*D) 

In order to evaluate this, one must first multiply C and D and then add this to B; 

the sum is then placed in the memory in the location corresponding to A. This can 

only be done after a syntactic analysis has shown the order in which the 

operations are to be performed. In the early 1950s, many specialists believed 

that it would be impossible for a computer to perform even a simple syntactic 

13 



analysis at adequate speed, or in other words that the process of translating such 

an expression would be too slow to be of any use (Moreau 1984,159). 

The first language that could be called a "higher level" language, in the sense 

that the program did not simply mirror the structure of the machine, to be 

implemented on a computer was a system devised by Laning and Zierler for the 

WHIRLWIND computer at MIT in 1953. The principal significance of this language 

lay in the fact that it showed that it was possible to overcome the problem of 

syntactic analysis. The immediate practical impact of the language was limited, 

partly because It was designed for a specific computer, but also because it did not 

make very efficient use of the machine. Laning and Zierler reported a "reduction 

of computing speed of the order of ten to one from an efficient computer program" 

(Knuth and Trabb Pardo 1980,239). This was important because, as Laning 

later recalled: "This was In the days when machine time was king and people-time 

was worthless" (Knuth and Trabb Pardo 1980,239). 

The question of efficiency and the way that efficiency was defined was crucial 

in shaping the course taken by the separation of programming from hardware. 

Efficiency, from the early days of computing, when the machines had very 

restricted capacity, was defined in terms of the most efficient use possible of the 

machine, in terms of speed and memory capacity. Inevitably, the process of 

translating a programming language into machine code involved a loss of efficiency 

as defined in these terms. This was so for two reasons. Firstly, the compiler 

required to translate the source program into machine language took up space in 

the computer; and secondly, the object code produced by the compiler was unlikely 

14 



to use the computer as efficiently as would a machine-language program written 

by a good programmer. Consequently, although the use of programming languages 

facilitated the task of programming, it also resulted in a loss in the speed of the 

computer. 

The breakthrough came with the development of FORTRAN. Late in 1953, John 

Backus of IBM managed to convince the IBM directors that, using the increased 

memory capacity and new capabilities of the IBM 704, which was to be announced 

in May 1954, it would be possible to devise a programming language with the 

necessary syntactic power to make it attractive to users. Besides pointing to the 

capabilities of the new machine, which, by building floating point arithmetic, 

which had previously been done through programming subroutines, into the 

hardware, created the possibility of simplifying programming considerably, 

Backus based his argument on the economics of programming: 

"FORTRAN did not really grow out of some brainstorm about the beauty of 
programming in mathematical notation; instead, it began with recognition 
of a basic problem of economics: programming and debugging costs already 
exceeded the cost of running a program, and as computers became cheaper 
this imbalance would become more and more intolerable. This prosaic 
economic insight, plus experience with the drudgery of coding, plus an 
unusually lazy nature led to my continuing interest in making 
programming easier" (Backus 1980,131). 

The economic need for a system like FORTRAN "was one reason why 

IBM... provided for our constantly expanding needs over the next five years 

without ever asking us to project or justify those needs in a formal budget" 

(Backus 1981,27). 

Although the work of the project group was not subject to direct economic 
15 



pressures from IBM, the commercial environment in which they were operating 

had an influence on the way that they approached the question of developing the 

new language. Backus stressed the importance of proving the efficiency of the 

language. "In view of the widespread skepticism about the possibility of producing 

efficient programs with an automatic programming system..., we were convinced 

that the kind of system we had in mind would be widely used only if we could 

demonstrate that it would produce programs almost as efficient as hand coded ones 

and do so on virtually every job" (Backus 1981,28). Although the motivation for 

the language is based on a recognition of the importance of programmer time, and 

therefore implicitly on a change in the definition of efficiency, it was still 

essential to show that the language would make efficient use of the machine. 

As a result: "This belief caused us to regard the design of the translator as the 

real challenge, not the simple task of designing the language. Our belief in the 

simplicity of language design was partly confirmed by the relative ease with 

which similar languages had been independently developed by Rutishauser 

(1952), Laning and Zierler (1954); and ourselves; whereas we were alone in 

seeking to produce really efficient object programs" (Backus 1981,29). 

The group's approach to the design of the language itself was a fairly 

pragmatic one: "As far as we were aware, we simply made up the language as we 

went along. We did not regard language design as a difficult problem, merely a 

simple prelude to the real problem: designing a compiler which could produce 

efficient programs ... In our naive unawareness of language design problems - of 

course we knew nothing of many Issues which were later thought to be 

16 



important... - it seemed to us that once one had the notions of the assignment 

statements, the subscripted variable and the DO statement in hand (and these were 

among our earliest ideas), then the remaining problems of language design were 

trivial: either their solution was thrust upon one by the need to provide some 

machine facility such as reading input, or by some programming task which could 

not be done with existing structures" (Backus 1981,30,32). 

The definition of the new language, to be known as FORTRAN (FORmula 

TRANslator), was completed quickly, by November 1954, but the completion of 

the compiler took another two-and-a-half years, the first implementation being 

made available in the spring of 1957. 

The whole process was very much related to the production and marketing of 

the IBM 704, which was announced in May 1954. The language was designed for 

use with the 704, and Independence from the machine was not seen as an 

important goal (Knuth and Trabb Pardo 1980,241). After the preliminary 

definition of the language, Backus and his colleagues went to a number of cities to 

give talks about the proposed language to groups of IBM customers who had 

ordered a 704 (Backus 1981,32), and when the compiler was finally ready, it 

was delivered to 704 customers. The fact that FORTRAN was produced within IBM 

meant not just a more implementation-oriented approach from the beginning; it 

also meant that, when completed, the new language had the full weight of IBM's 

support behind It. 

FORTRAN proved an extremely successful and influential language. By the end 

17 



of the 1950s most computer manufacturers had adopted it and offered a FORTRAN 

compiler with their machines. By making programming easier and less tedious, 

FORTRAN gave an enormous boost both to IBM and to the computer industry in 

general. 

The success of FORTRAN coincided with the advent of the second generation of 

computers and the two developments fed off each other in shaping computer 

development. The second generation is generally associated with the replacement 

of vacuum tubes by the transistor as the basic component of computer technology. 

Transistors had in fact already been used in the construction of computers as 

early as 1950 (in the Standards Eastern Automatic Computer, SEAC, built for the 

US National Bureau of Standards and used mainly for meteorology (Moreau 1984, 

63)), but the second generation is generally taken as dating from 1958/59, when 

several companies announced their first wholly transistorised machines, and as 

continuing until 1963/64, when the first machines using integrated circuits 

made their appearance. When the transistorised machines were announced, the 

various manufacturers felt compelled to provide FORTRAN compilers with them. 

Rosen recalls: , 

"At the time I was In charge of Programming systems for the new model 
2000 computers that Philco was preparing to market. An Algebraic 
compiler was an absolute necessity, and there was never really any 
serious doubt that the language had to be FORTRAN. The very first sales 
contracts for the 2000 specified that the computer had to be equipped 
with a compiler that would accept 704 FORTRAN source decks essentially 
without charge. Other manufacturers, Honeywell, Control Data, - Bendix, 
faced with the same problems, came to the same conclusion. Without any 
formal recognition, in spite of the attitude of the professional committees, 
FORTRAN became the standard scientific computing language" (Rosen 
1968,10). 

18 



The improvements in speed and reliability of the transistorised machines, 

compared with the vacuum tube computers, combined with FORTRAN to provide 

the basis for a considerable further expansion of computer production and use 

during this period. 

As the production and use of computers expanded, the demand for 

programmers grew too. It was partly in response to these changes that the role of 

the universities in relation to computers changed. The education of programmers 

was recognised as a distinct activity by universities and computer science began to 

emerge as a discipline. This led to the development of further splits in addition to 

the ones already mentioned (production/use, hardware/software, machine/ 

programmers). On the one hand, computer science was acquiring an autonomy 

from other disciplines like engineering and mathematics, and, on the other, this 

development led to an increasing separation of theory and practice (or of 

universities and Industry). 

The year in which the first commercial transistorised computers emerged 

also saw the publication of another important programming language, ALGOL. 

ALGOL grew out of an initiative by the German GAMM (Gesellschaft für 

angewandte Mathematik und, Mechanik, Society for Applied Mathematics and 

Mechanics). In October 1955, the GAMM organised an international symposium on 

automatic programming, at which algorithmic languages and their translation into 

machine code were discussed. Several speakers at the meeting, including 

Rutishauser, the author of one of the earliest programming languages, stressed 

19 



the need for focusing attention on unification, on creating "one universal, 

machine-independent algorithmic language to be used by all", rather than devising 

a number of competing languages (Rutishauser 1967, quoted in Naur 1981,93). 

After the conference, a special Subcommittee for Programming Languages was set 

up in order to design such a language. In the autumn of 1957, the subcommittee 

decided that, rather than simply presenting its own language, it should try to 

achieve worldwide unification: this clearly required United States participation. 

Consequently, the chairman of the subcommittee, F. L. Bauer, wrote to J. W. Carr, 

the president of the American ACM (Association for Computing Machinery), and 

proposed a joint conference to establish a common algorithmic language 

(Rutishauser 1967, quoted in Naur 1981,93-94). Bauer's letter to Carr 

stressed the importance of seeking a common language. 

"We consider it a misfortune that at this time several different languages 
exist, but none of these languages appears to overshadow the other enough 
so that this would offer a reason for selecting it. We would like to avoid 
increasing this bad situation by setting up in Middle Europe one more 
such language" (Letter of 19th October 1957, reproduced in Berner, 
1969, p. 160). 

The ACM welcomed the GAMM proposal. Indeed, a similar initiative was 

already under way within the ACM. In May 1957 a conference in Los Angeles, 

attended by representatives of the users' organisations, USE, SHARE and DUO, and 

of the ACM, had declared that a single, universal language would be very desirable 

and had recommended that the ACM should appoint a committee to study ways of 

achieving this end (Sammet 1969,173). Even before receiving the letter from 

Bauer, the ACM had established a committee to study the matter of creating a 

universal programming language, under the chairmanship of Alan Perlis of 
20 



Carnegie Tech (Perlis 1981,77). The committee consisted of representatives of 

the major computer manufacturers and of several universities and research 

agencies that had done work on compilers. Since Bauers letter arrived before the 

first meeting of the committee, it was decided that this committee should 

coordinate efforts with the Europeans. 

The committee met several times, but "without any very great sense of 

urgency" (Rosen 1967,9). In the first meeting, in January 1958, the committee 

agreed that the language should be at the level of FORTRAN, an algebraic language 

(Perlis 1981,77). The second meeting was addressed by Bauer, who pressed for 

a date to be set for the international meeting. 

The ACM committee felt that the question of a new language could be tackled at 

two distinct levels. At one level, there was general agreement on what the basic 

elements of the language should be; beyond that, however, there was considerable 

disagreement about how far such a language should go and about how to specify 

many of the more advanced concepts. It was decided to set up two subcommittees, 

one of which would deal with the definition of a language which included those 

features on which there was widespread agreement, and the other of which would 

work towards some future specification of a language, that would Incorprate the 

most advanced thinking of the time. It was the short-range committee which set up 

the meeting with the representatives of GAMM. 

The new language initiative did not have universal support on the American 

side, however. Although SHARE, the IBM users' organisation (formed by the users 

21 



of the 704), had supported the recommendation at the conference in May 1957 

for the establishment of a universal programming language, the conference had 

not specified whether the universal language should be at the machine or at the 

algebraic language level. When the GAMM proposal specified that the new language 

should be algorithmic, the response of the SHARE chairman, Francis Wagner, was 

negative. On 22nd November, he wrote to the SHARE Executive Board: 

"I believe very, very firmly that the establishment of a universal 
algebraic language for programmers to code in is a relatively trivial 
project. I do not feel that the existence of several such 'higher order' 
languages would particularly hurt the computing profession. (In fact, I 
think it necessary that there be many, each adapted to its own field)" 
(quoted in Berner, 1969, p. 162). 

A couple of weeks later, on 9th December 1957, Wagner wrote to the 

President of the ACM, accepting the selection of a US delegation to meet the 

Europeans, but objecting to its composition: 

"We think... you are making a mistake in loading it so heavily with 
compiler designers and university people" (quoted in Berner 1969, p. 
162). 

Wagner expanded the reasons for his opposition to the project in another 

letter to Carr just eleven days later: 

"It seems to me a shame to waste all this time and effort on just another 
algebraic higher order language even though it purports to be 'universal'. 
It seems to me that such an assumption is almost a contradiction In 
terms... the most useful manner of exploiting the computers of the future 
will be to encourage every discipline to develop a higher order 
programmer language which most ideally suits its subject matter. Thus 
there should be programmer languages for aerodynamicists, petroleum 
engineers, nuclear physicists, medical diagnosticians, clothing 
manufacturers, etc. Even If this were not sound .... I maintain, that human 
nature will make it Inevitable. Thus an algebraic programmer language 
can never be universal, for lack of universal acceptance" (quoted In 
Berner 1969,163). 

22 



SHARE's lack of enthusiasm for the new language was undoubtedly also 

connected with a vested interest In the established position of FORTRAN. When 

Bauer stated in his letter to Carr that none of the existing languages "appears to 

overshadow the other", this may have been true from an academic perspective, 

but it was clearly not true from the perspective of commercial programming 

practice. FORTRAN was already well established among the users of IBM's 704 

represented by SHARE: their programs were written and their programmers were 

trained in FORTRAN. However, although FORTRAN clearly did overshadow the 

existing languages, it would not have been possible to adopt it as the universal 

language: "Today FORTRAN is the property of the computing world, but in 1957 It 

was an IBM creation and closely tied to the use of IBM hardware. For these 

reasons, FORTRAN was unacceptable as a universal language" (Perlis 1981,77). 

Another member of the ACM committee, Rosen, who represented Philco on the 

committee, makes the same point in his account: "There was a feeling on the part 

of a number of persons highly placed in the ACM that FORTRAN represented part of 

the IBM empire, and that any enhancement of the status of FORTRAN by accepting 

it as the basis of an international standard would also enhance IBM's monopoly in 

the large scale scientific computer field" (Rosen 1967,10). 

The fact that FORTRAN was closely identified with IBM does not mean that IBM 

itself was unequivocally opposed to the establishment of a new language: Indeed 

one of the most active members of the ACM committee was John Backus, the IBM 

representative (Rosen 1967,9). The fact that FORTRAN had been designed for a 

specific machine meant that it was not necessarily the best language for the 

further development of IBM machines. IBM probably had a less clearly defined 

23 



interest than the users of IBM computers in maintaining the established position 

of FORTRAN. 

The Identification of FORTRAN with IBM was also an issue for the Europeans, 

although this was never mentioned at the time. Perlis, commenting more than 

twenty years later on the difference in perspective between the American and the 

European groups, says: 

"The American view of the promise of ALGOL contained the hope that some 
new view of a programming language would emerge that none of us ... had 
thought of. For the Europeans the issue was much more serious and 
pragmatic. It was necessary for the Europeans that a language be created 
that the numerical analyst could use, that would run on their computers 
and enable them to avoid, at least for a small period of time, being 
Inundated by IBM" (Perlis 1981,141). 

McCarthy, another member of the ALGOL group, also saw the ALGOL initiative 

as having a specific target: 

"I really thought that one of the goals of ALGOL was to knock off FORTRAN. 
I believe that many people at the time considered that a goal" (Wexelblat 
1981,167). 

It was against this background of conflicting interests that the meeting took 

place in Zurich at the end of May 1958, with the participation of four Europeans 

(Bauer, Bottenbruch, Rutishauser, Samelson) and four Americans (Backus, Katz, 

Perlis and Wegstein). Before - Zurich there had been relatively little 

communication between European and American computer scientists: Grace 

Murray Hopper recalls that in the 1950s "I had absolutely no idea of what 

Rutishauser, Zuse, or anyone else was doing. That word had not come over. The 

only other country that we knew of that was doing the work was Wilkes In England. 

24 



The other information had not come across. There was little communication, and I 

think no real communication with Germany until the time of ALGOL, until our 

first ALGOL group went over there to work with them" (Hopper 1981,22). The 

European and American traditions in language design also differed in many 

respects - Perlis mentions the Europeans' "passion for orderliness" (Perlis 

1981,78) - and the interests on the two sides were not identical. Despite all 

this, the meeting made rapid progress. 

This progress was helped by a decision to distinguish between three different 

representations of the language. Perlis recalls that "after two days of probing 

attitudes and suggestions, the meeting came to a complete deadlock with one 

European member pounding on the table and declaring: 'Nol I will never use a 

period as a decimal point' Naturally the Americans considered the use of comma as 

decimal point to be beneath ridicule. That evening Wegstein visited the opposing 

camps and proposed defining the three levels of language. The proposal was 

Immediately adopted and progress resumed" (Perlis 1981,80). Wegstein's 

proposal was that there should be a reference language, which would be an 

abstract representation of the language, a publication language and a hardware 

language, and that the meeting should focus attention on the reference language, 

leaving the publication and the hardware languages to be derived subsequently 

from the reference language. This allowed the meeting to concentrate on the 

abstract definition of the language without worrying about differences between 

different character sets (Perlis 1981,80; Naur 1981,95) 

The result of the meeting was the publication of a report (prepared by Perlis 

25 



and Samelson) describing a new language which they initially named IAL 

(International Algebraic Language), but which subsequently became known as 

ALGOL (Algorithmic Language). The name ALGOL was suggested at a meeting in the 

autumn of 1958 "and the ones among us who had studied astronomy immediately 

saw the pun" (Bauer 1980,521). "ALGOL, named by the Arabs, is a fixed star in 

the constellation Perseus. It was among the first of stars noted for its periodic 

variation in brightness, due to eclipse by its dark satellite. Its name, in Arabic, 

signifies 'The Demon'" (Granholm 1963, quoted by Berner 1969,206). 

The report was received with a lot of interest on both sides of the Atlantic. In 

the United States, SHARE's attitude changed from its original hostility to one of 

enthusiastic acceptance once the report was published, especially after hearing 

the report of the IBM representative at the Zurich meeting, John Backus (Berner 

1969, p 164). As a result, SHARE established a special committee (first called 

the IAL Committee, later the ALGOL Committee) in September 1958 to promote 

the adoption of ALGOL as a SHARE standard. 

In Europe, Peter Naur of Copenhagen established an ALGOL Bulletin as a forum 

for discussion of suggested amendments to the language. A number of conferences 

were held on the topic, of which the most Important was the International 

Conference on Information Processing In Paris in June 1959. At this conference 

an important paper was given by John Backus on "The Syntax and Semantics of the 

Proposed International Algebraic Language of the Zurich ACM-GAMM Conference", 

a paper which was to establish a standard form (BNF) for the syntax of 

programming languages. The conference also established a special Ad Hoc 

26 



Subcommittee (consisting of Dijkstra, Heise, Perlis and Samelson) to consider 

extensions of the ALGOL language. 

All this discussion culminated in the holding of another international 

conference to define the language, held this time in Paris in January 1960, and 

with a slightly expanded membership of thirteen: seven Europeans (in addition to 

three of the Zurich members, Bauer, Rutishauser and Samelson, there were four 

newcomers: Naur from Denmark, van Wijngaarden from the Netherlands, 

Vauquols from France and Woodger from Great Britain); on the American side 

there were six participants (the original four, Backus, Katz, Perlis and 

Wegstein, together with Green and McCarthy; the seventh American participant, 

Turanski, was killed in a car accident shortly before the conference). The Paris 

meeting was successful and led to the definition of ALGOL 60, which differed in 

many respects from ALGOL 58. The report was edited by Peter Naur and described 

the new language in BNF. 

From its origins, ALGOL was conceived as a universal, formal language, 

designed in abstraction from. any particular machine. Consequently, its concepts 

were shaped not by machine structures but by the aim of structuring problems in 

the form most appropriate to their solution. The essence of Its approach was the 

breaking down of complex problems Into simpler units which could then be 

progressively refined. It was hoped that this would also make the language easier 

for users to read and understand. 

The key feature of ALGOL is its block structure. Every ALGOL program is made 

27 



up of blocks, framed by the key words begin and end. Each block contains a 

declaration of the objects to be found inside the block, followed by the statements 

or instructions to be executed. Each block may contain other blocks within it, the 

declarations and statements within each block being valid only for that block. The 

block structure built upon the für... ende construction first introduced by 

Rutishauser in his language proposal of 1952, but the fully developed idea was an 

innovation which emerged in the discussions between the Zurich and the Paris 

meeting: 

"It's interesting to follow ... the tortuous step-by-step process by which 
blocks finally came into being. That concept, now so well understood by all 
students almost immediately, began with a set of declarations and ended in 
an understanding of how long a variable exists in such a block 
environment and was arrived at over the year 1959 in painfully slow 
steps, by people that are as bright as or brighter than anyone here... Men 
of the stature of Dijkstra, Naur, Samelson, Rutishauser, labored long and 
hard through the year of 1959 to come up with something that we now 
take so much for granted, and Is such an obviously desirable 
programmatic concept. But It wasn't in those days" (Perlis, 1981, 
p. 144). 

The idea of the block structure can be explained with a very simple example 

suggested by Reynolds (1981,1). Programming involves the breaking down of 

complex processes into a series of simple instructions which can be executed by 

the computer. One can imagine that the aim is to program a typical series of 

actions on a particular morning. For many people, the early morning passes in a 

blur of confusion, but the programming of a computer requires precision. On 

reflection, it might be possible to break down the confused morning rush into an 

orderly series of activities such as: 

Eat breakfast; 
Put on clothes; 
Leave in car. 

28 



It is obviously possible to break each of these acts down into a sequence of more 

detailed acts, and to break those acts down into even more detailed acts: 

Gross Detailed More Detailed 

Peel orange 
Eat orange Eat bite 

Eat bite 

Put milk on cereal 
Put sugar on cereal 

Eat breakfast Eat cereal Eat bite 
Eat bite 
Eat bite 

Eat bite 
Eat toast Eat bite 

Eat bite 

Put on coat 
Put on clothes Put on gloves 

Put on shoes 

Open garage door 
Leave in car Start car 

Get car out of garage 

In this example, the program of morning activities is divided into a series of 

blocks or compound statements which describe procedures or subroutines. At the 

most gross level, the program could be written as follows 

begin 
Eat breakfast; 
Put on clothes; 
Leave in car 
end . 

But these statements are still far too gross: they must be further refined into 

more detailed actions. This can be done by further dividing each block into a nested 

series of blocks until the whole problem is broken down into detailed instructions 

29 



which can be processed by the machine. In ALGOL each block is enclosed by the 

delimiters begin, end. Thus, defining the program at the next level of detail, we 

might write: 

begin 
begin comment Eat breakfast; 
Eat orange; 
Eat cereal; 
Eat toast; 
end; 
begin comment Put on clothes; 
Put on coat; 
Put on gloves; 
Put on shoes; 
end; 
begin comment Leave in car 
Open garage door; 
Start car; 
Get car out of garage; 
end; 

end . 

Each block of statements is self-contained. The instruction "eat toast" Is 

specific to the procedure "eat breakfast" and has no existence outside that 

procedure: in the world of ALGOL there Is no possibility of eating toast while you 

start your car. An ALGOL program is a series of nested blocks, one enclosed inside 

another, rather like a set of Russian dolls. The outside block describes an 

environment (in this case eat breakfast; put on clothes; leave in car), which is 

progressively refined by each of the internal blocks. Each of the inner blocks is 

embedded in that environment and is accessible only by opening up the outer 

"dolls". 

The nesting of blocks is reinforced by the technique of recursion. As the more 

detailed column of statements makes clear, one of the problems of programming a 

computer is the problem of describing repetitions concisely and defining them 
30 



clearly. It would be tiresome to write a program which listed every bite of toast 

to be taken, and in any case it would not be known in advance how many bites 

would be necessary to finish the piece of toast. It Is necessary to describe the 

dynamic process of toast-eating in such a way as to ensure that all the toast Is 

eaten. 

In ALGOL it is possible to do this by means of recursion. In mathematics, 

recursion is the name given to the technique of defining a function or process in 

terms of itself. By a recursive subroutine is meant a subroutine which uses its 

own specifications in its text. For example, the factorial function of N, written NI, 

has the value Nx (N-1) x (N-2) x ... 2x1 when N Is a positive integer and 1 I- 

1; thus 41 =4x3x2x1. This can be computed by a subroutine of the form IF N 

>1 FACTORIAL N=Nx FACTORIAL (N-1) where the FACTORIAL subroutine is 

called repeatedly until the number on which it operates has been reduced to 1. If 

this concept is applied to the Eat toast example, the program might be written: 

procedure eat toast (a); 
value (a); comment a is an amount of toast in bitefuls; 
Integer a; 
begin r-ý 

procedure eat (a); value a; Integer a; 
begin procedure bite; begin... end; 

If a>0 then begin bite; eat (a"1); end 
end - 
eat (a) 

end 

Recursion reinforces the concept of block structuring because, by allowing a 

subroutine to call itself, it facilitates the construction of programs as a series of 

self-contained blocks. 

31 



Recursion was highly controversial. This was partly because of the way in 

which it was introduced. Peter Naur, editor of the ALGOL 60 report, explained it 

as follows at a conference on the history of programming languages held nearly 

twenty years later (Naur 1981,112-113): 

"One of the proposals of the American representatives to the ALGOL 60 
Conference was to add the delimiter recursive to the language, to be used 
in the context recursive function or recursive procedure at the 
start of declarations (ALGOL 60 document 6). This proposal was rejected 
by a narrow margin. Then on about 1960 February 10, while the draft 
was being studied by the members of the committee, I had a telephone call 
from A. van Wijngaarden, speaking also for E. W. Dijkstra. They pointed to 
an important lack of definition in the draft report, namely, the meaning, 
if any, of an occurrence of a procedure identifier inside the body of the 
declaration other than in the left part of the assignment. They also made it 
clear that preventing recursive activations through rules of the 
description would be complicated because of the possibilities of indirect 
activations through other procedures and their parameters. They 
proposed to clarify the matter by adding a sentence to section 5.4.4: 'Any 
other occurrence of the procedure identifier within the procedure body 
denotes activation of the procedure'. I got charmed with the boldness and 
simplicity of this suggestion and decided to follow it in spite of the risk of 
subsequent trouble over the question. " 

The strength of the feelings aroused by Naur's decision is evident even twenty 

years later. Bauer comments: 

"Events described by Peter Naur ... (the Amsterdam plot on introducing 
recursivity) show clearly that Peter Naur had absorbed the Holy Ghost 
after the Paris meeting. It should be mentioned, however, that there was 
not only scepticism among the committee members, but also resignation 
that there was nothing one could do when the editor did arbitrarily change 
the outcome of the conference: it was to be swallowed for the sake of 
loyalty. These feelings, however; have not been sensed by the editor. Otherwise, I think too, he did a magnificent job" (Wexelblat 1981,130). 

The whole question of recursion was a contentious issue: "it has been 

remarked that 'if computers had existed in the Middle Ages, programmers would 

have been burned at the stake by other programmers for heresy' (Gill 1960, 

32 



180). It is almost certain that one of the main heresies would have been a belief 

(or disbelief) In recursion" (Barron 1968,1). 

Recursion was contentious, because it meant that ALGOL would be very 

difficult to implement within the existing computer architectures. This can best 

be explained by going back to FORTRAN and seeing how FORTRAN programs are 

structured. 

FORTRAN Is a non-recursive language and does not have a block structure. A 

FORTRAN program first describes the subroutines to be used in the program and 

allocates those subroutines to a fixed storage location in the computer's memory. 

The subroutines then constitute a sort of library, from which particular 

subroutines can be called as they are required. Thus, to return to the Eat 

breakfast example, the FORTRAN program might be as follows: 

SUBROUTINE bite 

RETURN 
END 

SUBROUTINE eat orange 
CALL bite 
CALL bite 
CALL bite 
RETURN 
END 

. 

SUBROUTINE eat cereal 
CALL bite 
CALL bite 
CALL bite 
RETURN 
END 

SUBROUTINE eat toast 
CALL bite 

33 



CALL bite 
CALL bite 
RETURN 
END 

CALL eat orange 
CALL eat cereal 
CALL eat toast 
STOP 
END 

The program first establishes a library of subroutines (bite; eat orange; eat 

cereal; eat toast), allocating each to a specific part of the memory, and these can 

then be called as needed at any point during the execution of the program. The 

program jumps from one location in the memory to another as the different 

subroutines are required. There Is a constant transfer of control during execution 

from the main program to the subroutines and back again. The execution of the 

program is shaped by the constant pursuit of efficiency, defined in terms of using 

the least possible storage. It is known in advance how much memory is required 

for the program and there is a close correspondence between the textual program 

and the structure of the memory. This makes FORTRAN relatively easy to compile. 

This is not the case with ALGOL. In an ALGOL program it is not known in 

advance how much space will be taken up by the program. The amount of storage 

will vary enormously depending on how the program executes: recursion means 

that the subroutines are defined in terms of themselves, they are generated in the 

process of execution. There is no fixed correspondence between the textual 

structure of the program and the structure of the storage in the computer. In 

ALGOL, the storage allocation is dynamic. As a result, ALGOL is more difficult to 

compile and requires considerable overhead just for managing the allocation of 

storage. 

34 



FORTRAN and ALGOL can be contrasted by saying that FORTRAN looks towards 

the machine and Is structured by its requirements, while ALGOL looks towards the 

problem and focuses on structuring the problem in a manner appropriate to its 

solution. FORTRAN programming can be seen as being rather like building up a 

stock of components which can then be put together (possibly by different 

programmers on different projects) to solve different problems. The flexibility 

this provides is useful In allowing the programmer to use various tricks to 

maximise the use of the available memory. It is rather like programming by 

cutting and pasting. In FORTRAN there would be no objection to eating your toast 

while you start your car: it would be not only be allowed, but strongly encouraged 

if this made the best use of the available resources. ALGOL is very different. Each 

problem is thought of separately, according to the nature of the problem itself, so 

there can be no question of making use of a stock of common components. This 

means, however, not only that ALGOL Is more difficult to compile, but also that it 

involves a more radical break with the established practices of programming. In 

FORTRAN there Is a clear continuity with machine language and assembly 

language, while ALGOL, which was much influenced by the ideas of Zuse and 

Rutishauser, requires a radical rethinking of programming. As a result, the 

problems of implementing ALGOL appeared more difficult than they actually were. 

The question of implementation was central to the subsequent development of 

ALGOL. FORTRAN had been designed for a particular computer, the IBM 704, and 

the approach in its design was to focus on the problems of compiling. ALGOL, on 

the other hand, was a formal language in the sense that it was defined 

independently of any particular machine, and therefore in abstraction from the 

35 



process of translation into machine language. The aim was to produce a language 

which would be both elegant and have universal application. Perlis describes 

ALGOL as "an object of stunning beauty" (Perlis 1981,88). 

The emphasis on the formal definition of the language was reflected In the 

initial absence of practical facilities which would make the language immediately 

implementable, for example the lack of any input/output provisions and the 

initial absence of a compiler (Berner 1969,155). The absence of these facilities 

certainly meant that it was possible to concentrate on the structures of the 

language itself, without worrying about the question of translation but it also 

affected the acceptance of ALGOL 

The acceptance of ALGOL was of course affected by the reactions of the users' 

organisations and paricularly by the powerful IBM users' organisation, SHARE. 

By March 1961 SHARE had reverted to Its Initial position of hostility towards 

ALGOL. A report to the XVIth meeting of SHARE on 22nd-24th of March 1961 

refers to the views which Wagner had expressed in 1957 and continues: 

"At three years distance these objections appear to have lost none of their 
basic soundness... The position of the recalcitrants was (and still is) 
simply that problem oriented language universality is neither possible 
nor desirable; that there should be Individually tailored POLs for 
engineers, nuclear physicists, cost accountants, global strategists or what 
have you; and that the real problem is the drastic reduction of the 
manpower and elapsed time required to provide a capability of using a 
given POL with a given machine. Nevertheless, the Pollyannas had their 
way and ALGOL was born" (Minutes of SHARE XVI - Introduction to the 
UNCOL Committee Report, quoted in Berner, 1969,180-181). 

At the same meeting of SHARE a resolution was moved, expressing SHARE's 

dissatisfaction with ALGOL and rescinding SHARE's endorsement and support of the 
36 



language (cited In Berner 1969,181 with the footnote: "The language of the 

original proposal was strongly intemperate and will not be reproduced here"). 

Decision on the resolution was postponed till the August meeting of SHARE, but in 

the meantime it was agreed that SHARE should rescind any request made to IBM to 

implement any ALGOL processors. When the resolution came to be voted on at 

SHARE XVII on 23rd August 1961, it was carried, with 65 installations in favour, 

43 against and 15 abstaining (Berner 1969,189). 

Why did SHARE's attitude change so drastically? A central issue was the 

question of implementation. Since ALGOL was defined independently of any 

particular machine, its implementation depended on the construction of a 

compiler or processor to adapt it to particular machines. Dijkstra and Zonneveld 

produced such a processor for use with their X1 computer in Amsterdam as early 

as the summer of 1960, but what was crucial for SHARE members was of course 

IBM's willingness to produce an ALGOL processor. IBM Initially welcomed ALGOL 

and produced an experimental ALGOL compiler for the IBM 709 which was 

demonstrated at a SHARE IAL Committee meeting in May 1959, but were then 

reluctant to produce a fully operational processor. This was announced by A. L. 

Harmon to a SHARE meeting (SHARE XIV) in February 1960: 

"Since the development of the ALGOL language has not reached the point 
where it seems advisable to expend the manpower required for a full 
processor that SHARE seems to deserve, based upon the recommendations 
of the SHARE ALGOL Committee, IBM will not produce an official ALGOL 
processor at this time. However, IBM will continue to support the ALGOL 
efforts in the areas of language development, transition techniques and, of 
course, processor development" (Berner 1969,172). 

1 

Although IBM gave nominal support to ALGOL, they were not prepared to put very 

37 



much effort in to promoting its practical implementation. 

Given the real problems of implementing ALGOL, IBM's and SHARE's lack of 

support was crucial in determining the fact that ALGOL was never widely adopted 

in commercial computing, particularly in the United States. 

Although nobody seems to have suggested that ALGOL was not superior to 

FORTRAN, IBM had practical reasons for not wanting to give it full support. As a 

Datamation report at the time (December 1961) said: 

"Frankly acknowledged by many IBMers as a far superior processor to 
FORTRAN, ALGOL development is nevertheless far from practical in the 
eyes of IBM management. The problem is not one of money but largely the 
lack of experienced programmers to meet present commitments for over 
35 FORTRAN processors as well as numerous other dialects promised to 
IBM customers. In addition, scrapping their present Investment in 
FORTRAN would involve an enormous risk for IBM with no national or 
International body providing the needed authority for a definitive 
explanation of ALGOL.... The current status at IBM: considerable 
head-scratching" (quoted in Berner 1969,194). 

IBM's attitude, however, was very much intertwined with that of its users. 

By 1960, SHARE members already had a substantial investment in FORTRAN: 

their programs were written in FORTRAN and their programmers were trained in 

FORTRAN. Not only that, but there was a shortage of programmers and computer 

use was expanding rapidly: 

"ALGOL came on the scene just when US users were engaged in a struggle 
to achieve production to justify all that expensive computer equipment 
they had ordered for purposes of advertising and keeping up with the 
Joneses. Thus most ALGOL processors were experimental at a time when 
FORTRAN was well into production" (Bemer-1969,153). 

ALGOL was defeated not by a conspiracy so much as by "the pragmatics of the 
38 



situation". As a commentator put it in 1963: 

"ALGOL ... faced the de facto standard, FORTRAN, and the pragmatics of the 
situation were and are such that popularity is not in the cards for ALGOL 

- no computer user who has a large library of FORTRAN programs, or 
who has acces to the huge collective FORTRAN library, can justify the cost 
of conversion to a system which most are not even sure is superior... " 
(Jones 1963, quoted in Berner 1969,204). 

Whatever the motives behind IBM's and SHARE's lack of support for ALGOL, 

the result was a situation in which ALGOL, although widely recognised as being 

superior to FORTRAN, was never widely adopted in the United States, particularly 

in commercial practice. In Europe (including the USSR and, more hesitantly, the 

UK), it was very widely adopted, particularly but not only in the universities. 

It is clear that the history of ALGOL Is extremely Important for 

understanding subsequent software development, not only because its innovations 

(block structure and recursive procedures) foreshadowed many later 

developments, but also because it illustrates the growing divide between 

commercial practice (the widespread use of FORTRAN) and the views of most 

computer scientists. This tension is well expressed in a question from Aaron 

Finerman to Alan Perlis at a conference on the history of computer languages: 

"You once described FORTRAN as the language of the streets, graffiti upon 
the bathroom walls. You also Indicate, and correctly so, that ALGOL's 
contributed much to the language and compiler development. Why then Is 
FORTRAN so widely used in the real world, almost to the exclusion of all 
other languages except COBOL, while ALGOL is noted only for Its 
contributions? " (Wexelblat 1981,161). 

When Perlis failed to give a very explicit response to the question, this prompted 

an expression of frustration from another participant, Kristen Nygaard: 

39 



"Programming languages are a very Important part of a very important 
commerce, and if you are going to have the real full story, then you must 
also have the story of the commercial reactions and interests In the 
various languages. When we designed SIMULA, we felt quite strongly the 
resistance against ALGOL from IBM. And we felt that it was said that ALGOL 
was a long-haired language; it was such-and-such; it was a distinction 
between commercial and scientific, etc., etc., which was in line with 
certain commercial interests" (Wexelblat 1981,166). 

To have the "real full story", it is necessary, as Nygaard suggests, to move 

from the long-haired world of ALGOL to the short-haired world of commercial 

interests and to the greatest commercial project of all. 

40 



Chapter 2 

The $5,000,000,000 Gamble 

The advancing commercialisation of computers brought with it not only a 

proliferation of programming languages, but a proliferation of computer models 

as well. Up to the early sixties, the tendency of computer manufacturers had been 

to build machines for particular types of applications. As a result, computers 

were generally not compatible even with machines of the same line. 

The situation at IBM was no different from the rest of the computer industry. 

By 1960, the incompability, diversity and complexity of IBM data processing 

products had become a very severe problem. IBM had fifteen different processors 

in the market, and about seven different lines of second generation computer 

systems and, on top of this, input-output equipment developed especially for each 

processor. All this meant that not just the architecture of the various systems 

differed but so too did their software. For the users this meant great inflexibility 

in responding to changes in their requirements. Once they were using a particular 

system, they were more or less stuck with it. 

Within IBM the different divisions were working more or less independently 

of each other, sometimes competing with each other, each of them trying to 

present their own solutions to market problems. The Data Processing Group was 

divided into three product divisions: the General Products Division (Endicott), 

which had the line of small computers and whose plans were to upgrade those 

machines; the Data Systems Division (Poughkeepsie), in charge of large systems 
41 



and whose plans were to develop a modern product line with small machines to 

support it; and the Data Processing Division, whose responsibility was sales and 

services. Apart from those, there was also the World Trade Laboratories in 

England, which also had its own plans for development. 

This situation resulted in a proliferation of products and redundant effort. 

Bob Evans of the Data Systems Division later recalled: "I often told the story of the 

customer who called to see an IBM salesman about an IBM machine and had three 

salesmen stuck in the door all shouting about their particular wares" (SPREAD 

Discussion 1983,29). 

Worries at IBM about the proliferation of products led in 1959 to the 

creation of the Group Staff, whose mission was, not to direct the product 

development of the corporation, but to try to give some coherence to all the 

developments carried out In the different divisions at IBM. Soon It became clear to 

people In the Group Staff that In order to have a coherent programme that 

addressed overall market needs, it was necesary to have close, intense Interaction, 

with key people In the different divisions closeted together for a period of time 

(SPREAD Discussion 1983). 

In the autumn of 1961 Don Spaulding, head of the Group Staff, formed a 

committee to develop a plan for IBM data processing products. The aim of the plan 

was to "encompass all stored-program processor developments and to provide 

development and product direction extending to 1970" (SPREAD Report, 1961). 

The committee was called. SPREAD -(acronym for Systems Programming, 

Research, Engineering, And Development). It was chaired by John W. Haanstra, 

42 
p 



director of development of the General Products Division, and vice-chaired by Bob 

Evans, head of planning and development in the Data Systems Division (SPREAD 

Report, 1961). As the name indicated, the committee included people from all the 

different divisions at IBM, people with different skills and different backgrounds, 

including marketing specialists "to make certain that a bunch of engineers were 

not designing a Taj Mahal" (Evans In SPREAD Discussion 1983,33). 

The thirteen people who constituted the SPREAD commitee, went to live in a 

motel and worked together full time for sixty days. The progress was very slow, 

owing largely to the sharp competition among the different divisions, a 

competition that was highly encouraged by IBM executives, as part of their 

general approach to management, sometimes referred to as "management by 

contention". As a result, it was very difficult to reach technical decisions and to 

agree on a common view of the future product. 

There were a number of points of controversy. The first related to the choice 

of the basic component of the new line of machines. The basic component 

technology of future computer development had already been under discussion 

within IBM. It had already been decided that it was essential to go beyond existing 

component technology, the SMS (Standard Modular System) technology used in 

STRETCH and a number of IBM products. SMS consisted in printed circuit cards 

and improved back panel wiring. The option of improving SMS had been 

dismissed, on the grounds that SMS technology had already been pushed to its 

limits in terms of cost, performance and reliability, and that competitors could 

easily go beyond it (Fisher et al 1983,106). 

43 



Once it had been decided to go beyond the existing technology, there were two 

possibilities: the monolithic integrated circuit and the hybrid Solid Logic 

Technology (SLT). 

Integrated circuits had been developed In the late 1950's, and soon 

microcircuit companies were "looking hungrily at the commercial computer 

business" (Siekman 1966,122). The idea of a marriage between integrated 

circuits and computers was very attractive. Computers contained hundreds of 

thousands of separate electronic components that worked simply on the basis of 

on/off, and there were clear advantages to be gained from replacing all these 

components by integrated circuits. Integrated circuits seemed the Ideal way of 

reducing assembly costs. Lowering the number of interconnections also meant 

reducing the number of possible failure points and thus Improving both 

maintainability and reliability (Abelson and Hammond 1980,19). 

Microelectronics promised to Increase computer speed: 

"Computer switching speeds, the time required for a single operation, are 
measured in nanoseconds, a billionth of a second, or roughly the time 
required for light to travel one foot. Individual components are extremely 
fast, but delays incurred while signals travel from component to 
component and circuit to circuit limit over-all speed" (Siekman 1966, 
122). 

In the early 1960's, however, it was not clear that it was practicable to 

move to monolithic integrated circuits. They were very expensive and had until 

then been used only by the military in projects where the other characteristics of 

integrated circuits, such as size, were felt to be more important than 

considerations of cost. 

44 



The alternative was to base the new computers on Solid Logic Technology. The 

difference is that, whereas in monolithic integrated circuits all components and 

connections are created in one continuous production process (several transistors 

and resistors are fabricated on a single silicon chip and interconnected by fine 

conducting lines in the chip itself), hybrid integrated circuits are manufactured 

in several distinct steps, in which a number of silicon chips, each of them with a 

transistor fabricated on it, are mounted on a 0.5 inch square ceramic module in 

the surface of which conductors and resistors are silk-screened. 

The choice of the computer component provoked a lot of discussion at IBM. 

Another committee, the Advanced Technology Study Committee, had concluded 

earlier In 1961 that, although monolithics met the performance requirements, 

they would be too expensive and their development would take too long. 

Consequently, that committee had recommended pursuing the development of the 

hybrid technology, SLT (Fisher et al 1983,107). This view was supported by the 

SPREAD committee (SPREAD Discussion 1983,33) 

Several advantages were seen in going for SLT rather than monolithic. 

Firstly, because the production of hybrid circuits was done in several steps, it 

was possible to control. flaws in the circuit: with monolithic circuits the 

production was done In one single step, so it was feared that there would be 

problems in maintaining quality in large-scale production. Secondly, it was felt 

that, because considerable research had already been done on the hybrid 

technology, successful completion of SLT was reasonably assured, whereas 

development of monolithics was highly risky and would require much more time 

(Pugh 1984,193). 

45 



The fundamental issue which had to be decided by the SPREAD committee 

concerned the general shape of future computer development at. IBM. Basically 

there were two different views. Evans, the vice-chairperson of the committee 

(from the Data Systems Division) argued that there should be one compatible line 

to cover the entire computer market, while Haanstra, the chairperson, who was 

Director of Development in the General Products Division, argued that the 

small-computer end of the market would be best served by enhancing the 

architecture of the very successful 1401 system. Eventually, the conflict among 

the proponents of the different systems was eased by the promotion of Haanstra 

away from the SPREAD comittee to be President of General Products Division, so 

that Evans became the effective chairperson of SPREAD (Fisher et al 1983; Pugh 

1984; SPREAD Discussion 1983). 

The idea of a single computer line to cover the whole market was very radical 

indeed. There were two elements to this proposal: that it should be a line of 

general purpose computers; and that there should be compatibility between the 

different computers of the line. 

The idea of the general purpose computer was that there should be a single 

line of processors "to meet the needs of the commercial, scientific, 

communications and control markets", (SPREAD Report, 1961). In order to meet 

this recommendation there would have to be a "fundamental change in IBM's design 

emphasis" (Evans, quoted by Fisher et al 1983,109). 

Up to then, computers had been clearly either scientific or commercial in 

their emphasis. This was the case not just for IBM products but for other 

46 



computer manufacturers as well. Most users who wanted to do what traditionally 

had been considered both "scientific applications" and "business applications" 

often had to acquire two computers. 

"In those days computer people believed that the scientific user fed in a 
few long numbers and waited for the machine to perform a large number 
of complex calculations and provide the answer; he presumably would 
trade relatively slow input and output for enormous calculating speed. The 
commercial customer, on the other hand, fed great quantities of 
information into the computer, which then performed some fairly simple 
processing operations on each item" (Fishman 1982,42). 

However, by the end of the 1950s, the distinction between the scientific and 

commercial uses of computers had started to blur: 

"Customers themselves were not observing the lines between scientific 
and business machines in actual practice... Often the 'scientific side' of a 
user's operation needed the data-handling capabilities associated with 
business data processors, and the 'business side' needed the arithmetic and 
logic capabilities associated with scientific systems" (Evans, quoted by 
Fisher et al 1983,109). 

Evans argued that it was necessary to respond to users' needs by developing a 

general purpose computer: such a computer would bring great savings to the 

users: 

"One of the premises from the beginning was that there would be great 
savings to the users if we could combine in the single machine the ability 
to cover the full range of business applications and scientific applications 
as well. So our concept was a single machine that would be equally able in 
either of those areas" (Evans, quoted by Fisher et al 1983, p 110). 

Users would get benefits from the broad range of applications of a general 

purpose computer in several ways: firstly it would simplify the difficult process 

of computer selection and acquisition; secondly it would enable them to gain 

efficiency by acquiring one large capacity rather than two small capacity 

47 



computers; and it would also reduce training and improve the efficiency of their 

data processing staff. 

But it was not only the users who would make great savings. The development 

of a general purpose computer promised great returns for IBM as well: 

"The combination of business, scientific, and other applications in the 
same line also helped reduce IBM's costs. It enabled IBM to concentrate on 
a single machine type with fewer sets of program support and software, 
and with a single program of training and education for customers and 
IBM personnel" (Fisher et al 1983, p 111). 

There were, however, arguments against the idea of a general purpose 

computer. The opponents of the idea felt that there should be a continuation of the 

development of scientific and business products, and that users, especially the 

military, would not necessarily want a general purpose computer, in which case 

IBM's competitors would step in and offer specialised systems. 

The other aspect of the proposal for a single line of computers was that they 

should be mutually compatible. Users should be able to adjust their computer 

system according to their needs, without having to rewrite programs. This would 

mean developing compatible and modular software as well as hardware and 

peripheral equipment. 

The idea of compatibility was not completely new. Some degree of upward 

compatibility had been achieved by IBM and other computer producers between a 
few machines of similar design but different power. However, Evans was 

proposing far more: the idea of providing compatibility between a whole family of 

computers and peripheral equipment, with full upward and downward 

48 



compatibility over a very wide performance range was, in Evans' words, "just a 

mile apart from the rest of the world" (quoted by Fisher et al 1983,112). 

The implications of compatibility were revolutionary. Compatibility would 

open up a whole range of possibilities in terms of communication between 

machines and the international transmission of data: 

"It [IBM] sees itself playing a critical role In a brand-new kind of 
international data communication, composed of computers that work and 
talk with each other. And in such a vision compatibility is a necessary 
element" (Wise 1966b, 142). 

In addition to the potential opened up for communications, compatibility would 

present tremendous advantages for users in other respects. Compatibility would 

offer great flexibility in relation to the changing needs of users. It would allow 

them unlimited growth capability while remaining within the same environment. 

The promise of interchangeability of operating systems and application software 

was something that users had been calling for since the 1950s. Compatibility 

would also improve the efficiency of programming departments and save in the 

time and money spent on training. 

The proposal was revolutionary in suggesting full upward and downward 

compatibility over a wide performance range. The basic idea was that users 

switching from a smaller to a larger, but also from a larger to a smaller model in 

the family should not have to rewrite their programs: 

"Their clients could grow from a smaller system to a larger system, or if 
the economic situations were such that they wanted to go to a lower 
system, they could do so without having to reinvest in their software. It 
also was an advantage if you had a multi-faceted organisation that had 
large computers and small computers, and some commonality of 

49 



applications that they wanted to use on both types of systems. It gave the 
client the advantage of not having to modify his software to do so" 
(Rooney, quoted by Fisher et al 1983,113). 

It was recognised by the SPREAD Committee that the success of compatibility 

would require a "technological change in the way computer systems were built ... 

in IBM" (Fisher et al 1983,114). Central to this change were the concepts of 

microprogramming and the read-only control store. 

A computer is said to be microprogrammed when it interprets the user's 

instructions (add, multiply, branch, etc) as calls on routines (the microprogram 

routines) stored in a microprogram memory. These routines are themselves 

sequences of the more elementary operations that are built into the machine 

hardware (Rosen 1968,1444), normally in a read-only control store. Thus, the 

complex control logic of a central processor is replaced by the microprogram held 

in the read-only control store, which emulates the behaviour of the processor 

(COSERS 1980,318). 

Control stores would make it possible for computers with very different 

hardware to appear identical to the user, except in speed and price. Each computer 

of the series, no matter how its internal paths were structured would be able to 

respond to the same set of instructions (Pugh 1984,200). Therefore, control 

stores were fundamental for the idea of compatibility. between machines. 

The idea of control stores was not a new one. It existed since the early fifties, 

but it was only with the development of suitable memory technology (ferrite core 

memories) and the recognition of a market demand for a line of compatible 

computers that the commercial use of control stores became practical (Pugh 

1984,202; COSERS 1980,306).. 

50 



The idea of compatibility went together with a concept of modularity. One of 

the design objectives of the new system would be to provide flexibility in order to 

cater for users' changing needs. This design objective was to be achieved by 

modularity. The system was to be structured as modules, so that users could 

adjust their computer systems according to their changing needs simply by adding 

or removing a module rather than by replacing the whole system. This meant that 

there would have to be a whole range of peripheral equipment, so that users could 

build up their own systems to meet their own particular requirements. The 

system could, for example, be structured to optimise either commercial or 

scientific applications (Fisher et al 1983,120). 

The concept of modularity was to be implemented through the adoption of a 

standard interface between the peripherals and the input-output equipment in the 

new line. This meant that the same peripherals could be attached to all processors 

in the line in the same way: 

"All the auxiliary machines... had to be designed so that they could feed 
information into or receive information from the central processing unit; 
this meant that the equipment had to have timing, voltage and signal levels 
matching those of the central unit. In computerese, the peripheral 
equipment was to have 'standard interface'" (Wise 1966a, 120). 

The standard interface would help maximise the benefits that customers could 

derive from the broad range of peripherals offered with the new sysstem and it 

would also offer substantial benefits for IBM. 

The whole system of compatibility and modularity opened up new possibilities 

for the standardisation and mass production of computer systems. There would be 

savings for IBM in the design,. development, manufacturing and testing of 

51 



computers. In particular, it would lead to higher production runs of the 

peripheral devices since the same peripheral device and the same attachment, or 

plug-in circuitry would be associated with the interface to any of the models 

(Fisher et al 1983,126). 

However, it was recognised by the SPREAD committee that compatibility and 

modularity also involved a certain risk for IBM. It would mean that IBM was a 

better target for its competitors, in the sense that they could decide to become IBM 

compatible in processors, peripherals and software, or, even worse, that they 

could anticipate the new line of computers and react more effectively, whereas if 

IBM committed itself to compatibility it would be very difficult to change to 

another approach. 

The SPREAD report was completed by the end of 1961. It recommended the end 

of the proliferation of IBM products and, in order to achieve standardisation 

within IBM, it proposed the development of a family of compatible processors, 

peripherals and programs. The system was named the New Product Line and, in 

line with IBM's business goals, it had to have an annual growth rate of 20 percent. 

In order to achieve this growth the following objectives were to be met: 

-a single family of five compatible Central Processing Units (CPU's) with a 

performance ratio ranging in size-from the smallest computer then being 

produced at IBM to one slightly more powerful than the largest; 

-a line of peripherals compatible with all the different CPU's; 

= the New Product Line had to meet the needs for both scientific and commercial 

applications, by having the capacity to put together any number and combination 

of CPU's into a single stored-program-controlled system; 

52 



- each processor was to be capable of operating correctly all valid 

machine-language programs of all processors with the same or smaller memory 

configuration; 

- each processor was to be economically competitive at the time of Its 

Introduction (SPREAD Report, 1961). 

As soon as the report was completed, Haanstra, Evans and some of the other 

members took it "to the top management of IBM on something like January 3, 

1962. Management listened to the report, accepted it, and we were all charged 

with the implementation plans the study had recommended" (Evans in SPREAD 

Discussion 1983,36). The plan for a common line of computers was to be 

implemented: this in itself was of major significance. As one of the SPREAD 

members, Fred Brooks, later commented: "it requires an extraordinary degree of 

determination to hold a highly divisionalised, very diverse business together in a 

common technical strategy. The most remarkable thing about the SPREAD Report 

is not what it contains, but that the corporation In fact followed It" (SPREAD 

Discussion 1983,42). 

A major problem still to be confronted was the question of timing. The new 

family was not to be compatible with any of the existing systems, so that the 

timing of its announcement had to be planned very carefully to avoid making the 

existing systems obsolete before their time. This was particularly a problem at 

the lower end of the market, where the General Products Division's 1401 was 

still doing very well. It was agreed that the new series would be announced at 

different times, taking Into consideration sales forecasts and the decline of the 

different installations. The dates of announcement which SPREAD suggested for the 

53 



first and fourth models were 1965, for the second and fifth models the dates were 

early and late 1964 respectively, and the mid-range models were to be announced 

in 1966 (Pugh 1984,197). 

In spite of the SPREAD recommendations that the timing of the announcements 

of the different models of the New Product Line should be between early 1964 and 

1966, different things were happening that made IBM change its mind. 

IBM's product line was running out of steam. The company was barely 

reaching its sales goals for that period. This was due partly to the fact that 

rumours about the new product had been spread, so potential customers were 

holding back their purchases, waiting for the new product. Another reason was 

that the needs of users were changing and IBM had limited capacity to meet those 

changes In demand. Thirdly, IBM suffered a terrible blow: in December 1963, 

Honeywell announced a new computer that threatened the existence of the 1401, 

IBM's best selling computer (Wise 1966b). 

Honeywell's announcement was a blow to IBM because Honeywell was not just 

offering a computer that was 30 percent cheaper and more powerful than the IBM 

1401, but it was offering to the user of the 1401 the possibility of upgrading 

without having to rewrite programs. Honeywell was providing a very inexpensive 

way of converting programs of the IBM, 1401 into programs for the H-200. The 

conversion was achieved with a software simulator called The Liberator. 

I, ýi t 

The fact that the H-200 was cheaper, designed to allow a relatively easy 

conversion, and seen as technically a very superior machine ensured its success. 

54 



The first H-200 was delivered in early 1964; by that time, the IBM 1401 was 

four years old. By 1965, the H-200 was accounting for over 50 percent of the 

value of Honeywell's installed computers (Brock 1975). Designed to replace the 

IBM 1401, the H-200 meant the end of the 1401's dominance of the market. IBM 

badly needed the introduction of a better product in order to maintain its position 

in the market. 

IBM's reaction to Honeywell's threat was to improve and drastically reduce 

the price of the existing line. Discussions about the timing of the announcement of 

the New Product Line were reopened. 

People from marketing argued strongly for a simultaneous early 

announcement of all the models. There were several advantages in announcing all 

the models at the same time. One was that it would have a tremendous public 

relations impact. The company's image would change radically, and "customers 

would have a clear picture of where and how they could grow" with a family of 

computers (Wise 1966b, 205). Customers would then wait for IBM's products. 

These were not the only advantages. With an early announcement of all the 

models, they were hoping to solve various problems. One was the possibility of an 

antitrust action. Rumours about the new IBM product were not just slowing down 

the sales of the existing product lines, but they could create problems with the 

Justice Department. According to IBM's policy, no employee was allowed to tell 

customers of any product not yet formally announced by IBM. But things were 

getting hard, and in order to keep customers from switching to the competition, 

some sales people were hinting at the near announcement of a new product. The 

55 

0 



Justice Department might find that IBM was taking away competitors' customers 

in an unfair way. IBM in fact fired or disciplined several employees for violating 

this policy. 

The main opposition to the suggestion from marketing came from the Product 

Test Department, the Finance Department and the Endicott Division. 

Tom Watson, the President of IBM, had created strict rules for the testing of a 

new product. Fishman (1981, p 99) quotes him saying that: No new product will 

be announced for general availability to all customers, entered Into regular 

production, nor delivered until it has been approved by an IBM testing 

department". Permission to change this rule could come only from the Corporate 

Management Committee, a body composed of top executives which acted as chief 

policy maker for IBM. 

In December 1963, a product test report on the small model of the family said 

that an early announcement of this particular model was very risky, both for 

hardware and especially for software. They suggested that the announcement of the 

small model, bearing in mind normal risks, should be November 1964. The 

report pointed out that, for the rest of the models, to bring forward the date of 

announcement would be a very risky move. Even three days before the final 

decision was taken, the head of Product Testing made clear his department's 

opposition to the announcement, arguing that "a large part of the testing was 

incomplete, and there were known major problems with the system" (Fishman 

1982,99). 

56 



The Finance Department was opposed to the announcement, arguing that with 

all that rush a proper analysis of prices had not been done and that the prices for 

the new model were too low. 

Very strong opposition came from the General Products Division at Endicott. 

Its opposition was not just to an early announcement but to a particular model of 

the family, the model 30. From the beginning, Haanstra, head of Endicott, had 

been against the idea of a family of computers. But once the commitment to a single 

family of processors was accepted by IBM executives, Haanstra's opposition was 

mainly centred in the fact that the model 30 which IBM was hoping to sell to its 

1401 users and the 1401 were incompatible, whereas Honeywell's H-200 with 

its new reprogramming technique was compatible with the 1401. Haanstra 

believed that the only way to stop Honeywell taking away up to three quarters of 

the 1401 customers was through an improved and cost reduced version of the 

1401, the 1401-S (Wise 1966b). 

By the end of 1963, the argument for early simultaneous announcement had 

gained increasing support. In order to speed the work on the new system, Watson 

abolished the Corporate Management Committee. He felt that the Committee was a 

barrier to reaching an agreement on the various problems in the development of 

the new system. Abolishing the Committee would make it possible to speed up vital 

decisions and allow an early settlement of the problems. 

As for the opposition from the Finance Department, it "fell on deaf ears". 

Watson allowed just two minutes to the people from that department to present 

their views (Fishman 1982,100). 

57 



The main opposition was still Haanstra. But thanks to Honeywell's Liberator, 

the marketing people at IBM had become aware of the possibility of making the 

model 30 of the new series compatible with the 1401 computer. A group of 

engineers believed that with the technique of read-only, which involves the 

storing of permanent electronic instructions in the computer, they could design 

the model 30 to operate like the 1401 (Pugh 1984). 

In order to meet Haanstra's objections to the model 30, Learson (head of 

marketing at IBM) organised in January 1964 a "shoot-out" between the 1401-S 

and the model 30. The result was that the model 30, emulating the 1401-8, could 

work at 80 percent of the speed of the 1401-S. For Learson that result was good 

enough to ignore Haanstra's opposition (Wise 1966b, 205). 

On the 18th and 19th of March 1964, T. Watson, IBM's president Al 

Williams, and thirty top executives got together for a final risk assessment 

meeting. The aim was to revise every controversial aspect of the program. 

Haanstra did not take part in the meeting: he had again been "promoted" less than 

two months before. This meeting was the last opportunity for anyone to state 

objections to, or doubts about, any aspect of the new system. At the end of the 

meeting, Williams, who had been presiding, 

"stood up before the group, asked if there were any last dissents, and 
then, getting no response, dramatically Intoned, 'Going ... going... gonel'" 
(Wise 1966b, 205). 

On April 7,1964, IBM made . "the most important product announcement in 

company history" (Burck 1964,113). The company staged simultaneous press 

conferences in sixty-two cities in. the United States and in. fourteen foreign 

58 



countries, and organised a huge gathering at IBM's headquarters In Poughkeepsie, 

New York, for which it hired a special train to transport members of the press. It 

was at these conferences that IBM announced the launching of Its new line, the 

family of compatible computers, the 360 Family. 

The name 360 was chosen to indicate the full circle of the range of possible 

applications of the system. For the first time the distinction between commercial 

and scientific computers was totally blurred. IBM was to provide a series of 

related and program-compatible processors as well as peripherals to satisfy any 

user's needs. 

The announcement caused a great commotion, partly because IBM "is not a 

corporation given to making earth-shaking pronouncements casually, and the 

declaration that it was launching an entire new computer line, the System/360, 

was headline news" (Wise 1966b, 138). But it was the magnitude of the new line 

that shook the computer industry: 

"No company had ever introduced, in one swoop, six computer models of 
totally new design, in a technology never tested in the market place, and 
with programming abilities of the greatest complexity" (Wise 1966b, 
138). 

The computers announced were the 30,40,50,60,62, and 70 models. These 

models were going to have different capacity, they would be compatible and their 

memories would be interchangeable, so that it would be possible to have nineteen 

different combinations. On top of that was the peripheral equipment, which 

included forty different input and output devices, including printers, optical 

scanners, and high-speed tape drives. There were over 150 different things 

59 



announced in all. The delivery of the computers would start a year later, in April 

1965. 

In announcing the 360 computers before the planned dates, IBM was making 

obsolete not only almost all the existing computers in the market, but its own 

computers as well. In an article published in Fortune, Wise points out that IBM's 

announcement was a challenge to the marketing structure of the whole computer 

industry: 

"It was roughly as though General Motors had decided to scrap its existing 
makes and models and offer in their place one new line of cars, covering 
the entire spectrum of demand, with a radically redesigned engine and an 
exotic fuel" (Wise 1966a, 119). 

The announcement of the 360 represented an enormous gamble for IBM, 

which put the whole future of the company at stake. Evans half-jokingly, 

half-seriously says of the 360 project: "We called this project 'You bet your 

company'" (Wise 1966a, 118). In addition to making its existing computers 

obsolete, the decision involved the commitment of enormous sums of money: 

"The decision committed IBM to laying out money in sums that read like 
the federal bubget - some $5 billion over a period of four years" (Wise 
1966a, 118). 

It was this great gamble, "probably the most important event In the history of 

the computing Industry" (Galler In SPREAD Discussion 1983,27), which created 

the context for the software problems that were to come. The marketing people had 

triumphed over the technical people In the battle over the announcement of the 

360 series. But once the announcement was made, it was the technical people who 

were left with the task of realising a commitment of unprecedented dimensions. 

60 



Chapter 3 

The Producers 

IThe IBM 360 had been launched. With one stroke, IBM's great announcement 

had declared not only all its own products obsolete but also virtually all the 

computers then on the market. Only IBM could have afforded to make such a 

dramatic announcement. But would the great gamble pay off, would IBM be able to 

keep its promises? 

What were those promises? Essentially, IBM was promising five things: a 

dramatic increase in cost performance through the joining together of two great 

technologies of the century, the computer and the integrated circuit; the provision 

of a general purpose computer that would cover both scientific and commercial 

applications; compatibility between the different models of the series, which 

would allow the user unlimited growth capability while remaining within the 

same environment; an operating system that would both provide compatibility and 

allow on-line real-time multiprogramming capabilities; and, finally, the 

simultaneous delivery of all the models in the 360 family. 

The attempt. to fulfil these promises was to turn not only IBM but the whole 

computer world upside down. 

The-commitment to deliver, all the different models at the same time "was the 

boldest and most perilous part of the plan" (Wise 1966a, 120). 

61 



Announcing all the models simultaneously and promising to deliver them all at 

the same time had enormous consequences. It meant the 360 hardware and 

software were developed under terrific pressure. It made almost all existing 

products in the market obsolete. It unleashed a war in the computer industry. 

The effect of IBM's announcement in making existing computers obsolete was 

greatly accentuated as a result of the renting practices in the industry. It was the 

practice of IBM and other computer manufacturers to rent most of their machines 

rather than sell them. Although, under the terms of a settlement in an anti-trust 

suit in 1952, users had the option of buying the equipment if they wanted, IBM 

encouraged customers to rent rather than buy, and it remained the practice of 

computer manufacturers to use short-term leases in the marketing of their 

computers (Brock 1975,155). 

For a well established company like IBM, renting was more profitable than 

selling. Firstly, It facilitated the control of the pace of technological innovation: 

provided that the machines stayed leased long after they had paid for themselves, 

manufacturers like IBM introduced new products only when they were forced to, 

in order to avoid making their own products obsolete before time. Another 

advantage was what is called account control: 

"When a computer is bought outright, the salesman ' and the customer 
shake hands and say goodbye until the customer needs a new machine. If 
the computer Is rented, however, the customer has a continuing 
relationship with the supplier, and the liaison Is the salesman, who 
returns regularly to see that everything is going right and incidentally to 
suggest new applications for the equipment. The more applications, the 
more, equipment the. customer will need - more memory, additional 
peripherals and ultimately a larger mainframe" (Fishman 1982,17). 

62 



The advantages that IBM derived from renting went beyond just having a 

salesperson regularly at customers' premises. Renting gave IBM financial 

control, "the ability to adjust prices on machines in the field in order to correct 

previous pricing errors, respond to economic conditions and bring revenues into 

line with goals" (Fishman 1982,260). 

The practice of renting machines also played an important role in keeping new 

entrants out of the computer industry. A new company entering the industry had to 

wait several years until its first products started paying off and at the same time 

it had to have enough money to support the development of new products. It took a 

period of over ten years for the new company to break even, "when it ships enough 

computers to realise economies of scale in manufacturing and product 

development. By then the rented machines contribute enough gross profit to cover 

fixed costs... Remington Rand entered the computer business in 1950; it was 1966 

by the time its descendant, Sperry Rand, broke even on computer operations" 

(Fishman 1982,16). 

The leasing of computers was also a way of expanding the market for 

computers. It made computers available to users who otherwise would not acquire 

them: the leasing reduced the magnitude of the initial investment necessary to 

obtain a computer system. Short term leasing also shifted the economic risk of 

technological obsolescence to the manufacturer: 

"If the customer sees a shinier toy, if his needs change or if he simply doesn't like the product or service he gets from IBM or Univac, he can 
simply return the machine" (Fishman 1982,17-18). 

One result of short term leasing was that manufacturers were required to 

63 



respond rapidly to users' needs and were under constant pressure to keep their 

users satisfied. This pressure, however, did not mean that users could switch 

computers or computer brands lightly. Manufacturers protected themselves 

through software: 

"Each manufacturer has a different way of manipulating the ones and 
zeros, and software written for an IBM computer is largely incompatible 
with a Univac machine" (Fishman 1982,18). 

For the users, switching computer meant that they had to rewrite all their 

programs and this was a very painstaking and time-consuming process. 

"The ones and zeros of binary code are known as bits. Bits are assembled 
into groups of six or eight called characters or bytes, each of which 
represents a number or letter, and into larger groups called words. The 
number of bits in a byte or a word is peculiar to the architecture of the 
machine, and this is one of the factors that make it impossible to run the 
same program on two different computer models without a little or a lot of 
rewriting" (Fishman 1982,10-11). 

It Is not only that the users would have to rewrite software. Often specific 

processes within the users' organisation interlock with a particular software 

structure, so that changing to a new software system may require the 

reorganisation of other aspects of the business too. Consequently, the decision to 

change computer brand is not one that is easily taken: 

"The cost of switching causes a high percentage of users to order their 
follow-on computer from the manufacturer, who provided the previous 
one. A 1962 survey showed that 92% of the users who had used a 
previous computer ordered, their, second computer from the same 
manufacturer as the first" (Brock 1975,51). 

Under a leasing system, therefore, software is the main thing that ties users 

to a particular, manufacturer. The development of simulation and emulation 

techniques weakens this effect, however. 

64 



In spite of the effect of software in tying users to particular manufacturers, 

the leasing system still made the whole computer Industry particularly volatile. 

Once IBM announced their 360 family, other companies had to change their 

products In order to try to retain the loyalty of their users. The 360 

announcement was the starting point for what Is generally referred to as the third 

generation of computers: often defined In terms of its component technology 

(integrated circuits), the third generation was shaped above all by the enormous 

impact of the 360. The 360 announcement started a chain reaction, as other 

manufacturers reacted to IBM's 360 and IBM counter-reacted to their reactions: 

"The fitful competitive struggle in the computer industry has suddenly 
burst into a full battle, and the marketing strategists have moved forward 
to take field command" (Fortune Jan 1965). 

This series of reactions and counter-reactions was to have an important effect 

In shaping the nature and scope of the 360, and therefore of IBM, the computer 

Industry and the future development of software. 

The original concept of the 360 was modified in a number of Important 

respects In response to the competitive environment. The 360 concept always had 

its critics even within IBM: John Backus criticised SPREAD, arguing that a full 

line of compatible processors was too ambitious an undertaking, particularly 

when the architecture of line was supposed to remain competitive through 1970 

(Fishman 1982,96). On a number of points, the internal criticism combined 

with external developments to bring about changes. 

One such area was component technology. Even after the decision was taken in 

favour of SLT, there. were still some inside and outside IBM who criticised this 

65 



decision as being over-cautious and short-sighted in underestimating the 

potential of monolithic technology (Soma 1975; Rosen 1969). One of the leading 

critics was John Haanstra, who had been removed from the General Products 

Division for his opposition to the 360 shortly before the announcement was made. 

Only two months after IBM's announcement that the 360 family was going to 

have hybrid circuits, Fairchild, one of the semiconductor companies "stunned its 

competitors" (Siekman 1966,122) by drastically cutting the price of its 

circuits. By the time the first 360 was delivered in April 1965, Scientific Data 

Systems was delivering the first commercial integrated circuit computer, and 

soon other companies were joining the market with their own integrated circuit 

models: 

"Only a little more than a year ago monolithic integrated circuits moved 
out of the stratosphere of high-priced military systems and into the 
commercial computer cost range. Today their use in large-scale business 
and industrial computers is common design practice" (Richmond 1965, 
29). 

When the response of the other computer manufacturers to the 360 family 

took the form of computers with monolithic circuits, there was considerable fear 

inside IBM that the 360 would soon be obsolete. The position of Haanstra and the 

other critics of SLT was greatly strengthened. In September 1964, Haanstra 

wrote a report called "Monolithics and IBM", in which he documented how far 

behind he believed the company to be in monolithic circuitry. His report played on 

the fears of corporate managers and, urged the Immediate development of 

monolithic technology (Pugh 1984,252). 

Fears about the possible obsolescence of the 360 components were not the 

66 



only cause of anxiety. There were problems also in the production of SLT which 

delayed for several months the scheduling required for the 360 computers. The 

problem had to do with a particular step in the production of the circuitry, which 

was accomplished by an evaporation process. IBM engineers had used 

small-capacity evaporators to test the technique, but when large-capacity 

evaporators were introduced to meet the mass production requirements, problems 

emerged, which had to do with metallurgical changes that took place when the 

large evaporators were used. As a result, production came almost to a standstill. 

Finally the metallurgical problems were solved by using all the small-capacity 

evaporators they could find (Wise 1966b). But by then it was clear that IBM 

would not be able to deliver all the computers at the same time. 

In January 1965, management responded to the component problems by 

carrying out a restructuring inside IBM. The Data Systems, the General Products 

and the Components divisions were united to form a single division, the Systems 

Development Division. Haanstra was appointed president of the new division, and 

the company started to move into monolithic technology. 

These rapid changes in the component technology of the computers caused 

considerable confusion within the company. Pugh gives some sense of the feeling of 

chaos at the time: 

"The frantic efforts to upgrade the company's presumably inadequate 
technology resulted in a period of, uncertainty and frustration. 
Development objectives, unrealistically aggressive in retrospect, were 
rejected for not. being aggressive enough. Some development groups 
became so confused that they did virtually nothing. Others continued their 
own projects while ignoring the, rapidly changing objectives established by higher levels of management" (Pugh 1984,253). 

67 



A second way in which the original 360 concept was modified under competitive 

pressure was through the erosion of the general purpose idea. Some of the fears of 

those opposed to the general purpose concept did turn out to be well-founded. Some 

competitors did successfully offer specialised sytems to cater for the needs of 

users who wanted something more specialised than the general range of functions 

offered by the 360. In order to assure its presence in the more specialised 

markets, IBM had to develop specialised models within the 360 family, such as 

the 360/91, the 360/67, the 360/44 and the 360/20. These new developments 

expanded its undertaking even more and modified the original concept of the 

general purpose family of computers. 

One of the markets In which IBM was forced to react to the competition was in 

the area of very large-scale computers. As a result of the failure of IBM's 

STRETCH, Control Data had become the leader in the production of large-scale 

computers with Its 3600 machine, first delivered In 1963. In the same year 

Control Data announced a new model, the 6600, which had been discussed in the 

trade literature from 1961 onwards, and "which had capabilities far beyond even 

IBM's discontinued STRETCH" (Brock'1975,170). ` 

In the original announcement of the 360 family in April 1964, IBM had not 

included a computer that could be competitive with Control Data's 6600. It seemed 

to outsiders that IBM had lost interest in the market of large scale computers; but 

inside IBM "there was a lot of heat at the time, that CDC had stolen a march on 

them " and that they had abandoned the top of the scientific line and they were in 

danger of losing the leading edge customers" (Fisher Interview). Four, months 

later, and just before CDC was due to deliver the first 6600s, -. IBM announced 

68 



officially a new super-scale computer, the 360/90 series. However, IBM had 

already been discussing a new super-scale computer with potential customers of 

Control Data's 6600 since 1963. For Control Data, IBM's announcement meant 

that orders for the 6600 were delayed and that, in order to compete with IBM's 

announced but unavailable computer, Control Data was forced to cut substantially 

the price of the 6600. 

In the development of the 360/90 computers, however, IBM encountered so 

many problems that in January 1966 It announced that from then on only 

purchase orders would be taken. Finally, in early 1967, before any computer had 

been delivered, IBM decided to discontinue the 360/90 line, but promised to fill 

all contract orders. 

Control Data felt that IBM's actions on the super-scale computer market were 

unfair competition, partly because of the long delay between the announcement of 

I 
the 360/90 and its delivery, and partly because of the estimated losses incurred 

by IBM in its production, and it sued IBM for antitrust violations. IBM finally 

built seventeen machines and lost $126 millon In the project (Fishman 1982, 

123). Control Data, in contrast, sold nearly a hundred of its 6600 computers but, 

as a result of having to compete, with the IBM's non-existent computer, the 

company suffered big financial problems. 

There were also problems at the opposite end of the computer scale. After the 

360 announcement IBM realised that the model 30 was not small enough to attract 

small customers. The small low-cost computers were very important because 

they helped to expand the, computer market. As a result, " there was a lot of 

69 



pressure to bring out a very small machine" (Fisher Interview). In order to 

protect its position from Univac, Honeywell and GE, IBM announced the model 20 

in November 1964. In order to keep costs down, it was decided that the model 20 

should not contain all the features of the 360. As a result, it was not compatible 

with the 360 family to the extent that other models were, and it did not have the 

standard interface to plug in to the 360 peripherals. 

The model 20 was used not only by small users but by large customers as 

peripherals of their main system and it proved to be a success: 

As it turned out, the 360/20 was more than merely a good competitive 
response; as had the 1401 in its day, the 360/20 became the 
largest-selling of IBM systems, with more than 7,400 installed in the 
United States by 1970" (Fisher et al 1983,153). 

Another area In which IBM broke away from the general purpose concept was 

the Intermediate scientific area. In the months following the announcement, the 

company began to be increasingly concerned with the fact that models were not 

being accepted by customers In the intermediate scientific area. Concerning the 

acceptance of models 40 and 50, Learson wrote to Watson: 

Our position here since announcement in April, 1964 is that we have won 44, 
lost 44, and we have 172 doubtful situations. CDC and SDS have a total of five 
machines which out-price, out- perform us by a good margin" (Fisher et al 
1983,158). 

In the medium scientific market users were rejecting the IBM machines 

because they did not optimise their particular applications: 

Some scientific customers were asking for a lean hard machine. They 
didn't want all the bells and whistles that came with the 360. There was a demand for a somewhat stripped-down and cheaper version" (Fisher 

70 



Interview). 

In addition, they were not prepared to accept the overhead associated with the 

complex 360 system software. To meet the problem, IBM announced the model 44 

in August 1964. With this model IBM was offering "raw binary speed and high 

throughput to solve a wide range of scientific problems, including high speed 

acquisition jobs" (Fisher et al 1983,159). In order to achieve this aim at a 

reduced cost, compatibility with the rest of the 360 family was sacrificed. The 

model was not successful: it was soon surpassed by the competition and also: 

"To at least some In IBM, it appeared that this was because IBM had 
learned to meet customer needs generally, but had not successfully 
learned to specialise within that talent" (Fisher et al 1983,159). 

A further breach in the 360 family concept arose in connection with the 

introduction of a time-sharing capability, where several users share the 

computer resources simultaneously. After IBM had lost several important 

contracts to General Electric, whose 600 series offered a time-sharing 

capability, the company announced in March 1965 another addition to the 360 

range: the 360/67. In Fisher's words, there was: 

"A great deal of heat on the question of whether they had missed the right 
way to do time-sharing, and a crash programme to develop what became 
the 360/67" (Fisher interview). 

This was to prove the most traumatic of IBM's changes to the original concept, 

but, since the problems had to do mainly with the software, this will be taken up 

later in the chapter. 

In the course of the implementation of the 360, there was therefore an 

important move away from the concept of the general purpose machine. This shift 

71 



came about under the constant competitive pressure that did so much to shape the 

360: 

"Throughout the development what you've got is an immense crash 
programme by the corporation with a clear understanding very early, 
possibly unique in the computer industry, that they could not stand still, 
and the farther into the programme they get, the more it becomes obvious 
that in fact they could not stand still, that the need for putting out this 
product was getting more and more severe as competition went on" 
(Fisher interview). 

As the 360 family developed, the concept of compatibility was modified. When 

IBM moved away from the concept of a general purpose computer with the 

introduction of the new models, it also broke with the idea of a fully compatible 

family. The 360/20 and the 360/44 were never intended to be compatible with 

the rest of the 360 computers, and there were also difficulties in achieving full 

compatibility between the other new models and the rest of the family. Downwards 

compatibility, the possibility of running programs from the larger models on the 

smaller models of the family, was never achieved. 

Another difficulty in the implementation of the 360 concept arose from the 

problem of the incompatibility between the 360 family and IBM's older models. It 

was not originally intended to make the older models compatible with the new 

machines, but after Honeywell's announcement of its H-200 machine which was 

cheaper and more powerful than the IBM 1401 and which came with its software 

simulator, the Liberator, IBM realised how vulnerable it was in this area and was 

forced to provide users with a way of running their old programs on the new 

models. 

The transfer of the old programs to the new models was to be achieved 
72 



through emulation based on microprogramming techniques. Although emulation 

meant a loss of efficiency, it offered users the possibility of making a smoother 

transition to the new system: 

"The provision of emulators on System/360 afforded users an alternative 
to conversion. It permitted them to transfer jobs to System/360 and to 
concentrate on new application areas without immediately having to 
convert their existing applications. Although programs run in emulation 
mode generally ran more slowly than they would have if rewritten to run 
in native mode on the new systems, they could be run effectively enough to 
permit users to forego reprogramming if they chose to do so" (Fisher et 
al 1983,117). 

During the course of 1964, IBM announced a whole series of emulators for 

the 1401,1410,1440,1460,1620,709,7010,7040,7044,7080,7090, 

7094 and 7094 II processors. It has been estimated that the cost of developing the 

1401 emulator for the 360/30 was $200,000 and the cost of developing the 

7090 emulator for the 360/65 was $500,000 (Fisher et al 1983,116). 

Although emulators created a bridge between models, they represented an 

inefficient use of the 360 computers, and most applications had to be 

reprogrammed for the new equipment (Rosen 1969). 

In implementing the 360 plan, IBM were forced to modify the original concept 

in a number of significant ways. The most difficult area of all, however, to 

implement was the software, and particularly the operating system. 

Operating Systems 

Erasing the distinction between scientific and commercial computers, and 

achieving compatibility among the different processors and peripherals were 

73 



important aspects of the 360 family. But even more important was the promise to 

provide an operating system which would schedule the computer without manual 

intervention in different environments and different configurations. IBM decided 

to call the new operating system by the generic term - "The Operating System" - 

but it is more commonly referred to as OS/360. 

Operating systems are an Important step in the further separation of 

programming from the machine. An operating system is a master program, a set 

of programs, the aim of which is to allow a more efficient use of the computer 

resources and peripheral equipment. An operating system is basically the house 

keeper of the computer: the various programs that constitute the operating system 

are in charge of different tasks, like scheduling the users' programs, allocating 

space in the computer main memory and managing the peripheral equipment. 

Without an operating system, programmers would have to incorporate in each 

program they write the necessary lntructions for scheduling different tasks and 

controlling different pieces of equipment. 

Operating Systems were born as an attempt to eliminate idle time, the 

primary source of which was the way in which computers were organised and 

used. Computers represented such a large Investment that It was very Important 

to use them in the most efficient way possible and to try to eliminate any idle 

time. 

One of the main sources of idle time was the way in which computers were 

used: 

74 



"The programmer marched into the machine room with his card decks and 
listings, preparatory to an extended session of playing with the console 
keyboard. First, an inordinate amount of time was wasted whenever the 
machine hung up and the programmer scratched his head, trying to figure 
out what to do next. Second, nothing at all happened - not even 
constructive thinking - when a job was done. The departing programmer 
had to gather all his material and insure that nothing was left undone. The 
new user had to get himself and his material properly emplaced. It was 
during this hasty transfer of authority that the worst calamity would 
occur -a dropped card deck (often unsequenced). If this deck belonged to 
the oncoming user, idle time mushroomed" (Steel 1964,26). 

The initial step towards a solution to this problem was to create a new 

profession: machine operators. The function of computer operators was to ensure 

the continuous running of the computer. They would now do the loading of 

programs into the computer and in general take care of any unanticipated 

stoppage. The introduction of the operators had the effect of pushing programmers 

out of the computer room. 

This measure provoked anger and resentment among programmers, who felt 

that they could not debug their programs unless they manipulated the computer's 

console. Others argued that this would force programmers to write better 

programs and to ensure that their programs were correct before being run on the 

computer (Greenbaum 1979). 

However, from the point of view of the users, even computer operators took 

too much time between removing one job and Initiating another. It seemed 

ridiculous to have a machine that could perform thousands of calculations per 

second, but where the time that it took between unloading one program and loading 

another was several minutes or even more. By the time computer operators were 

widely employed, the pressures on total machine time available were becoming 

very severe. 

75 



The first operating systems were attempts to automate as much as possible the 

functions of the computer operator, in order to reduce idle time. The basic idea of 

a primitive operating system was job stacking or batching: 

"Rather than being loaded into the machine independently and immediately 
executed, a collection of jobs is gathered into an input batch and the 
programs necessary for each job, together with the relevant input, are 
all loaded onto an input file. There is a program, normally kept in the 
main store, whose function is to load the next job from the input file, 
halting only when there are no more jobs to process. All jobs are 
required, upon completion, to transfer control from this program, and 
machine operators are instructed to execute the appropriate manual 
transfer if any thing goes wrong" (Steel 1964,26). 

General Motors was the first to develop an operating system. This elementary 

operating system was implemented on the IBM 701. Hart from General Motors 

describes the situation before the operating system as follows: 

"With the 701 it was necessary to schedule people to the computer one at 
a time to read in the cards at the card reader, wait for the computation to 
compute, print out the results, and then log off and let the next person 
approach the machine to repeat the process" (Fisher et al 1983,31). 

After the introduction of the primitive operating system, the increment in 

productivity was such that General Motors decided to construct a similar system 

for its next computer, an IBM 704. North American Aviation had been very 

impressed with General Motors' achievements and, because it also wanted to obtain 

a 704, it joined forces with General Motors for the development of an operating 

system for the 704. Efforts were taken to develop an operating system that would 

provide an automatic mechanism via software for executing one job after another 

without operator intervention" (Fisher et at 1983,31). According to General 

Motors, the use of this operating system "quadrupled the throughput of the 704 

computer by eliminating several steps of manual handling" (Fisher et al 1983, 

76 



31). 

The IBM 704 became a very successful computer. Its users formed SHARE, 

one of the first users' organizations. SHARE was to provide a forum In which 

IBM's users could get together to join efforts and avoid redundant developments in 

using the 704 computer. SHARE and other users' organizations became a force in 

their own right in dealing with computer manufacturers and In shaping the 

development of software, as was seen already in the discussion of ALGOL. 

The success of the 704 became the medium by which the General 

Motors-North American Aviation operating system concepts were spread among 

SHARE members. Soon most 704 installations had operating systems of their own. 

Not long after, the operating system concept "jumped the boundaries of machine 

type", and the use of operating systems in large computers became a common 

practice (Steel 1964,27). 

There was some discussion at the time as to whether general purpose 

operating systems should be designed and supplied by the manufacturers. Some 

users felt that specially designed and tailored operating systems were required 

because of the great difference in the way in which computer installations work, 

and that consequently they should be designed by the users themselves. But as 

operating systems became more complex, it became more common to see them as 

uniform systems which should be designed and produced by the manufacturers 

(Rosen 1967,17). 

It was through pressure from SHARE that IBM undertook developments on 
77 



operating systems. In the late 1950's SHARE members began to develop the SHARE 

Operating System (SOS) and they pressed IBM to take on Its further development. 

It became universally accepted that it was -the obligation of the computer 

manufacturers to provide operating systems and software In general with a 

computer. 

As the concept of the operating system spread, operating systems became more 

complex. In addition to the idle time generated by the fact that people and 

computers perform at different rates, there were other problems that operating 

systems had to deal with. A second form of idle time arose from conflicts due to the 

independent decisions made by programmers in the selection of system 

components: 

"A simple example of such a situation is the case of programmer N+1 who 
wants to use tape unit A as an intermediate scratch tape just after 
programmer N has used the same unit as an output tape. While operators 
run about dismounting and mounting tapes - or, at the very least, 
changing switches to rename tape units - everything in the machine must 
come to a halt" (Steel 1964,27). 

Then there was the problem of turn-around time, a problem that arose from 

the introduction of operating systems themselves. Although the machine might 

operate more efficiently, the amount of time that it took to get results often meant 

that the programmer's time was wasted. Some people felt that operating systems 

simply replaced one inefficiency with another because they focused on the 

problem of saving machine time rather than human time. 

in many shops it takes far too long for a job to pass through the system, 
and we begin to see the converse of the problem operating systems were designed to solve. A great deal of man time is now expended to gain a little 
machine time" (Steel 1964,28). 

78 



As computers became more powerful and sophisticated, another type of idle 

time became increasingly important. It was no longer just a question of keeping 

the computer running continuously, but also of using the computer resources 

efficiently. 

Multiprogramming systems were a response to this requirement. 

Multiprogramming was an important feature of third generation computing. The 

basic idea of multiprogramming is that the resources of the computer can be used 

more fully if the machine is able to handle more than one program at a time: 

"'Multiprogramming' is the label given to the concept of a dynamic 
sharing of the resources of a given computer system among two or more 
programs" (Steel 1968,99). 

At its simplest, multiprogramming means that while program N Is being executed, 

program N+1 is in the input and program N-1 is in the output. 

"An operating multiprogramming system presents to external observers 
the appearance of effecting the concurrent execution of several object 
programs. There may or may not be truly simultaneous operation of more 
than one program, but it will be the case that a second program begins 
execution before the first program has run to completion" (Steel 1968, 
99). 

Multiprogramming therefore poses the question of the coordination of the 

different programs and of the transfer of control from one to another: 

"There must be an oscillation of control among the several programs for 
multiprogramming to come into play" (Steel 1968,99). 

, The coordination of the different 'programs creates a whole series of 

challenges for the development of operating systems. The transition from one 

program having all the resources of the computer to several programs sharing the 
79 



computer's resources is something like the transition from directing traffic in a 

one-street village to the problems of traffic control in a city. The coordination of 

traffic and the avoidance of collisions is similar to the challenge confronted by 

multiprogramming. 

In multiprogramming, traffic coordination is conceptualised in terms of 

processes, or programs in execution: 

"The term 'process' was introduced in the early 1960s as an abstraction 
of a processor's activity, so that the concept of 'program in execution' 
could be meaningful at any instant in time, regardless of whether or not a 
processor was actually executing instructions from a specific program at 
that instant" (Denning 1971,178). 

A multiprogramming operating system may be defined therefore in terms of 

the supervisory and control functions for the processes created by its users. 

These include creating and removing processes; controlling the progress of 

processes so that one process does not block another indefinitely; dealing with 

exceptional conditions arising during the execution of a process, such as ensuring 

the priority of a privileged process over a less privileged one; allocating 

hardware resources among processes; providing access to software resources like 

compilers, assemblers, subroutine libraries etc; providing protection, access 

control and security for Information; and providing communications between 

processes where these are required. A multi-programming operating system has 

the task of coordinating and prioritising these different activities. These functions 

have to be provided by the operating system because they cannot be adequately 

provided by the processes themselves (Denning 1971,175). 

Although multiprogramming became a common feature of third generation 

80 



operating systems, not all the systems try to achieve the coordination, 

supervision and control of multiple processes in the same way. There are 

significant differences in approach which are crucial for the development of 

software during this period. These differences are important for an understanding 

of the subsequent problems of software. This can be illustrated by comparing two 

approaches to multiprogramming: the Master Control Program of the Burroughs 

B-5000 and IBM's OS/360. 

The Burroughs B-5000 

The Burroughs B-5000 commercial computer (first delivered in March 

1963) was remarkable for the relation established between hardware and 

software from the very beginning. In terms of the analogy between operating 

systems and traffic control in a city, it was as if the city and the traffic control 

system had been planned at the same time. The Burroughs system was the first and 

for a long time the only computer whose hardware design was based on a number 

of well-defined software objectives (Rosen 1972,595). The emphasis on 

software was very much in the minds of the designers from the very beginning. An 

article by two of the designers, first published in 1961, opens by making this 

point strongly: 

"Computing systems have conventionally been designed via the 'hardware' 
route. Subsequent to design, these systems have been handed over to 
programming sytems people for the development of a programming 
package to facilitate the use of the hardware. In contrast to this, the 
B-5000 system was designed from the start as a total hardware-software 
system. The assumption was made that higher level programming 
languages, such as ALGOL, should be used to the virtual exclusion of 
machine language programming, and the system should largely be used to 
control its own operation. A hardware-free notation was utilised to design 
a processor with the desired word and symbol manipulative capabilities. 
Subsequently this model was translated into hardware specifications at 
which time cost constraints were considered" (Lonergan and King 1987, 

81 



16). 

The design of the B-5000 started out from the software, and particularly 

from the choice of ALGOL as a programming language. The choice of ALGOL was 

made by the designers of the machine: 

"Burroughs decided that high-level languages were the way to go, that 
efficient compilers could be written, and then we simply selected the best 
language around, and that was ALGOL. We didn't consider at all that there 
was the huge customer base in FORTRAN and the momentum that we'd have 
to overcome. ALGOL was simply a better language" (Waychoff in B-5000 
Discussion 1987,47). 

This choice coincided with Burroughs' view 'that ALGOL was to become the 

standard scientific programming language" (Dahm in B-5000 Discussion 1987, 

41). 

The problem then was to design a machine suitable for ALGOL Implementation. 

ALGOL was very difficult to implement on existing machine architectures, partly 

because it did not map neatly on to a static storage system in the way that 

FORTRAN did. The implementation of recursion demanded a dynamic storage 

system, a stack architecture in which information could be stacked and eliminated 

as required by the execution of the program. In the B-5000, the implementation 

of the stack architecture was associated with the development of a virtual memory 

system, a concept already used in the Atlas system constructed at the University of 

Manchester between 1959 and 1961. 

A virtual memory system allows a user to address a sub-program in 

peripheral storage as though it were in the main memory: 

"A design feature called virtual memory could shuffle segments of the 

82 



user's programs between the computer's fast, expensive main memory 

and the cheaper, slower disc storage, giving him the illusion that the main 

memory he had to work with was twice its actual size" (Fishman 1982, 

140). 

In the Atlas, the main memory was a core store, while the auxiliary memory 

was a rotating drum. In order to implement a virtual memory several times the 

size of the main memory, the virtual memory was divided into blocks of fixed size 

(512 words) called "pages", while the real memory was divided also into 512 

word blocks called "page frames". Pages were the unit of transfer and storage 

among the page frames of the two levels of memory. When the real memory was 

too small, the programmer had to divide his program into segments and insert 

swapping commands into the program's text. 

Like the Atlas, the Burroughs machines had a virtual memory system. Unlike 

the Atlas, the Burroughs system employed not pages, but blocks of varying size 

called "segments", the size of which could be determined by the programmer or 

the logic of the program. Although this made address translation more complex, it 

had the advantage of supporting the structuring of the program into blocks shaped 

by the logic of the problem rather than the structure of the machine. 

Another feature of the design conept of the B-5000 was its emphasis on 

reentrancy. A reentrant program is a program which does not in any way modify 

itself during execution. In early programming it was common for programmers to 

write non-reentrant code, i. e. code which was modified in the course of execution, 

as a means of saving storage space and increasing speed. 

In an environment in which only one program was being executed, the use of 

83 



non-reentrant code did not necessarily create difficulties. In a multiprogramming 

environment, however, the situation was different. Multiprogramming is 

characterised by the oscillation of control between different processes. As the 

processor moves from one program to another (e. g. to give one program priority 

over another), the processes are Interrupted. For the smooth operation of 

multiprogramming, it Is necessary to be able to control the Interrupts and to 

control the progress of the process. It Is important too for a process, once 

interrupted, to return to the same state: hence programs should not be modified 

in the course of their execution, i. e. they should be reentrant. Here the distinction 

between addresses and locations (or code and data) introduced by the Atlas system 

and developed by the B-5000 is important: in order to be reentrant, the code 

must be distinct from the data handled, and it must be read-only 

(non-modifiable). The important feature about the Burroughs system is that, like 

the Atlas before it, it established such a distinction and so excluded non-reentrant 

code. By doing so, It effectively -recognised that programming In a 

multiprogramming environment required a new discipline and a new 

methodology. 

With this structure, Burroughs aimed to make its computer secure, reliable 

and relatively easy to use. There was a strong emphasis on saving user time 

rather than machine time: where "other manufacturers were designing for 

efficient use of memory space and to save machine time, Burroughs designers 

wanted to save the user's time" (Fishman 1982,167). This is reflected in the 

exclusive emphasis given to higher level language programming and also in the 

approach of the designers to the problem of compiling. The emphasis in designing 

the compiler (in complete contrast to the approach of the team which designed 

84 



FORTRAN, for example) was on the speed of compilation rather than the efficiency 

of the object code produced: 

"One of the goals was to have fast compilation... Unfortunately, we forgot 
about the need for object-code execution speed. [Laughter. ] Not until 
users started running programs and comparing them to object-code 
execution on IBM machines did I realise that somebody had made a terrible 
omission in decimal arithmetic on that machine. It was just terrible" 
(Hale in B-5000 Discussion 1987,67). 

The design of the B-5000 system was carried out by a very small team, 

numbering only twenty-five, in which software specialists and engineers worked 

closely together. Within Burroughs, the team enjoyed a large degree of autonomy. 

Whereas the marketing people had been incorporated In the SPREAD discussions at 

IBM from the beginning, marketing had a much lower status at Burroughs. The 

general sales manager for EDP systems at the time later described the general 

atmosphere at Burroughs: 

it was largely Engineering deciding what they could do and somebody 
deciding what the market wanted. Then the sales department was told, 
'This is what you have. Isn't it great? '" (Ford in B-5000 Discussion 
1987,76). 

The design of the B-5000 was very much shaped by considerations of the 

quality of the machine the design group wanted to produce, rather than by 

marketing criteria. The total contrast with the position at IBM was brought out 

very clearly in a discussion on the development of the B-5000. Asked if the 

adoption of ALGOL was "in response to customer requests or at Burroughs's 

instigation". one of the participants, Duncan MacDonald, replied: 

"MacDonald: Things at that time -weren't done in response to external 
stimuli. [Laughter. ] They were internally created in an atmosphere that 
was highly creative, highly charged, and largely running on its own 
steam. 

85 



Galler: And not necessarily market driven, then? 

MacDonald: No, they weren't. Absolutely not. Because, you see, things 
were so advanced that there weren't any external stimuli. They didn't 
exist at the time to a large extent. 

Galler: How did you justify the effort within Burroughs? 

MacDonald: Didn't have to. Nobody else In Burroughs knew what was going 
on. As long as you stayed away-from the administrative restrictions, you 
did what you pleased. That's oversimplified, but the atmosphere was very 
much that way. Very unique. I've never seen it since" (B-5000 
Discussion 1987,44). 

The emphasis on quality rather than marketability was expressed in the 

team's reluctance to provide a FORTRAN compiler. It was in fact provided much 

later, but only under heavy pressure from the sales organisation. The design team 

felt that FORTRAN would not fit well on the machine and that it would lower the 

tone of what they were trying to do: 

"I never wanted to see it on there, because to me it had implications of 
trying to sell a machine head-on in FORTRAN shops. I personally thought 
it would be a terrible mistake and not the kind of thing to be trying to do 
with this wonderful machine called the 5000, which had a lot of other 
objectives" (MacKenzie in B-5000 Discussion 1987,49). 

Perhaps it is not surprising that the machine' was not a great commmercial 

success. It is universally agreed that It was a very good machine, far ahead of Its 

time in architecture and programming concepts, but it sold only slowly. Partly 

this was because the radical nature of Its conception made It difficult to 

understand for users used to static memory sytems: "trying to sell a machine 

where neither the operator nor the user nor the programmer knew where the 

program was in memory was very difficult" (Dent in B-5000 Discusion 1987, 

49). The adoption of ALGOL also brought the B-5000 Into confrontation with the 

entrenched position of FORTRAN: -:. 

86 



"The only thing that was available was higher-level language, that being 
ALGOL, and who knew what ALGOL was? 'Maybe Edsger Dijkstra and all 
those people can tell me how wonderful it Is and it's the future of the 
world, but I've got $5 million invested in FORTRAN programs here, and 
what am I going to do with them? '" (Pearson in B-5000 Discussion 
1987,85). 

In addition to those difficulties, the Burroughs sales force was in crisis at that 

time, with many of the computer specialists having left shortly before, so that it 

was difficult to train the salespeople sufficiently for them to be able to present 

and explain a machine that was such a radical departure in computer design. As a 

result, "there were a lot more Burroughs machines bought than sold" (Collins in 

B-5000 Discussion 1987,84): the purchasers of the Burroughs machine tended 

to be those bodies where the specialists understood the quality of the B-5000 and 

went to Burroughs and asked to buy it. As Fishman puts it: 

"A Burroughs user was a buff, with that air of self-congratulation that 
buffs always have. He was pleased that he had the perspicacity, 
sophistication and daring to ° appreciate a really superior piece of 
equipment and to find Burroughs, because God knew the Burroughs 
salesmen, who were scarce as hen's teeth anyway, weren't astute enough 
to find him" (Fishman 1982,166). 

Despite its lack-of commercial success, the B-5000 was a very significant 

development in computing. Variously described as a Porsche (Fishman 1982, 

166) or a BMW (Rosin in B-5000 Discussion 1987,90) among computers, the 

B-5000 is widely seen as having been well ahead of its time, particularly in its 

recognition of the importance of software for computer design. On the 100th 

anniversary of the Burroughs Corporation in 1985, Blumenthal, the chief 

executive of the company, said: 

"Since our beginning, we have made significant accomplishments, but if I 
were to cite one major milestone in this century of progress, it was our 

87 



bold introduction 25 years ago of the B-5000 mainframe -a decade ahead 
of its time due to a design decision to develop hardware and software in 

concert, to use higher-level languages exclusively for user productivity, 
and to ensure compatibility as we developed new generations of mainframe 
systems" (quoted by Rosin 1987,6). 

The IBM Operating Systems 

IBM tackled the question of multiprogramming in a different way from 

Burroughs. In particular, the relation between hardware and software was quite 

different. In the design of the 360 system, the programming department was not 

brought in from the beginning, as it had been at Burroughs, and even later it 

continued to be managed separately. As an internal IBM report in 1966 put it: "it 

started out-of-phase and still is" (quoted in Fishman 1982,101). 

This was not just a question of bad timing, but related to the whole way in 

which the computer was understood. The computer was seen as a piece of 

hardware: the software simply had to fit in with the design of the hardware. This 

perception shaped the notion of efficiency embodied in the design of the OS/360: 

efficiency was seen as hardware efficiency. The aim of programming was seen as 

being to eliminate superfluous instructions in order to minimise the storage and 

run-time requirements of the program. The problem with this approach is that in 

large, complex systems such as the OS/360, with an enormous number of 

possible interactions, the whole program, becomes, extremely difficult to 

understand and to debug. Thus, the efficiency of the code itself, defined in these 

terms, comes into conflict with the effectiveness of constructing a working 

system. 

In this approach, the framework for the software is pro-established by the 

hardware and,. since the power of the computer is defined in hardware terms, 

88 



measured in terms of the price/performance ratio, the result may be a machine 

that is extremely difficult to program: 

"The official literature tells us that their price/ performance ratio has 
been one of the major design objectives. But if you take as 'performance' 
the duty cycle of the machine's various components, little will prevent 
you from ending up with a design in which the major part of your 
performance goal is reached by internal housekeeping activities of 
doubtful necessity. And if your definition of price is the price to be paid 
for the hardware, little will prevent you from ending up with a design 
that is terribly hard to program for... And to a large extent these 
unpleasant possibilities seem to have become reality (Dijkstra 1978, 
12). 

The OS/360 was pulled by the hardware on the one side, by the enormous 

demands implied by IBM's promises on the other. On the hardware side, a stack 

architecture was tried but rejected at an early date because "that was fine at the 

higher end of the spectrum, but it didn't work at the lower end of the spectrum" 

(Brooks in SPREAD Discussion 1983,31). Consequently, the architecture of the 

360 is a classic static memory architecture, still bearing the legacy of first and 

second generation machines, but far more complex to allow for multiprogramming 

and the compatibility demanded by the family commitment. This meant that 

programming took place within a very baroque environment. 

On the side of the demands to be met, the scope of the OS/360 was, of course, a 

reflection of the enormous scale of what IBM had promised to achieve with Its 360 

family. The objectives of the operating system derive from those promises. In 

line with IBM's promise of a compatible family with a big variety of peripherals, 

the basic objective of OS/360 was to "accommodate an environment of diverse 

applications and operating modes" (Mealy 1966,3). The aim was that it should 

be applicable to all (or nearly all) the models of the family, that It should be able 

89 



to deal with a variety of input-output equipment and other peripherals, that it 

should be applicable both in scientific and commercial use, and that it should be a 

multiprogramming system equally appropriate to batch and real-time 

applications. Other objectives were said to be increased throughput; lowered 

response time; increased programmer productivity; adaptability of programs to 

changing resources; and expandability (Mealy 1966). 

The mere description of the objectives of the OS/360 gives some idea of the 

enormous software task that had been created by the 360 announcement. As 

Kinslow put it: 

in my view both OS/360 and TSS/360 were straight-through, 
start-to-finish, no-test-development revolutions .I have never seen an 
engineer build a bridge of unprecedented span, with brand new materials, 
for a kind of traffic never seen before - but that is exactly what happened 
on OS/360 and TSS/360" (Garmisch Conference Report 1968,122). 

The enormous scope of the operating system resulted from the family concept 

which was the strength of the whole 360 idea. But this vastness brought 

complexity with it, and complexity resulted in difficulties. The aim of providing 

software that would be compatible across a range of machines with standard 

interfaces made the software much more complicated and difficult to test: 

in a way, the modularity and standard interface of the System/360, 
which made hardware testing easier, made software testing harder. It 
allowed customers great flexibility in the range of configurations they 
could choose, and that, coupled with the wide variety of ways in which 
OS/360 could be used, led to a very complex hardware-software system 
that was literally impossible to test adequately" (Fisher et al 1983, 
139). 

One example of the problems of complexity is provided by the Job Control 

Language. The basic function of a job control language is to assist in controlling 

90 



the movement of jobs within a multiprogramming system. In the OS/360, 

however, the Job Control Language became very sophisticated and could be used 

for a wide variety of purposes. As one of the OS/360 manuals put it: 

"The flexibility of the job control language allows the programmer to 
specify his requirements for a large variety of facilities when he 
prepares his control statements. He may specify job priority, set-up 
information, buffering and block methods, space requirements, etc" (IBM 
1967,629). 

The problem with this sophistication was that it tended to encourage clever 

tricks and led to a system that was over-complex and difficult to use, so much so 

that JCL became "one of the swear words of third generation systems": 

"The glaring failure of current multiprogramming technology is the 
complications it has introduced for the programmer and operator. The 
current Job Control Languages (JCL) required to specify what the system 
is to do are, by and large, disasters. It takes far too much of a 
programmer's time to construct the appropriate JCL statements, and an 
even larger amount of time to debug them, not to mention the effect on 
morale of aborted runs deriving from trivial JCL errors" (Rosen 1968, 
102). 

Brooks, the manager of the OS/360 project is no less critical: "JCL Is the 

worst programming language ever devised by anybody, anywhere, for any 

purpose; and it was done under my management" (SPREAD Discussion 1983,41). 

Another illustration of the problems of complexity is provided by P1.11, the 

programming language developed for the 360. Parallel to the development of a 

general purpose computer, it was felt that there was a need for a universal 

language that could handle both scientific and commercial programs. In order to 

consider these problems, IBM and SHARE formed a joint committee in October 

1963. The committee first proposed to upgrade FORTRAN, but after a lot of 

91 



discussion they decided in favour of developing a new language. Pressure was put 

on the comittee to produce the language as quickly as possible: "we literally nailed 

the door shut on this study team" (Evans in SPREAD Discussion 1983,39). The 

committee was confronted by a "series of very early, but seemingly rigid 

deadlines" (Radin 1981,553): 

"In order to be included in the first release of IBM's New Product Line, we 
were first informed that the language definition would have to be complete 
(and frozen) by December 1963. In December, we were given until the 
first week in January 1964, and finally allowed to slip Into late 
February. Thus, not only was the total time for language definition very 
short, but even this period was punctuated by 'deadlines' which gave a 
sense of crisis to the activity" (Radin 1981,553). 

The new language was called PL/1 (Programming Language 1): In fact, thinking 

ahead to the future, IBM patented the names PU1, PU2... PU100. 

The new language proved to be a very complex one. It took elements from 

several existing languages (FORTRAN, ALGOL, COBOL, JOVIAL, etc): 

"To produce a formal description of a language of the magnitude and 
complexity of PV1 was a formidable task. This task was undertaken by a 
group at the IBM research laboratory in Vienna [Austria], and the 
resulting document was so thick that it was humorously referred to as the 
Vienna telephone directory" (Rosen 1972,592). 

Pill was widely criticised for its complexity (Rosen 1972; Moreau 1984; 

McGovern 1967): 

"Using PIJ1 must be like flying a plane with 7,000 buttons, switches, 
and handles to manipulate in the cockpit. I absolutely fail to see how can 
we keep our growing programs firmly within our intellectual grip when 
by its sheer baroqueness the programming language - our basic tool, 
mind youl - already escapes our intellectual control... When FORTRAN has 
been called an, infantile disorder, 

-full - PL/1, with its growth 
characteristics of a dangerous tumor, could turn out to be a fatal disease" 
(Dijkstra : 1978,15). .. I. 

92 



The complexity that characterised the Job Control Language, PL/1 and the OS/360 

as a whole provided a wide range of facilities for the programmer, but left a lot of 

room for exceptions and clever tricks. Good programming in such an environment 

is a question of finding one's way through the complexity and applying facilities 

cleverly: the environment does nothing to impose a discipline or a coherent 

methodology on the programmer. 

Originally, it had been intended that the OS/360 should provide support for 

all the 360 computers except the very small ones. Smaller models would use as 

startup systems the Basic Programming Support (BPS) and the Basic Operating 

System (BOS). However, it soon became clear that OS could only be used in the 

large 360s, with at least 265K of memory, and that it was necessary to develop 

other systems for the smaller computers. This led in the early part of 1965 to the 

development of another operating system, the Disc Operating System (DOS). This 

particular system was released several months before the initial release of OS. 

The pressure on software development became even worse when IBM 

announced the introduction of the specialised models. Of these the most traumatic 

experience was that connected with the 360/67, the time-sharing model. 

IBM had considered the possibility of including time-sharing capabilities for 

the 360 family, but had initially decided that it was not feasible, and that the 

market was not yet ready for time-sharing. Time-sharing is a system that shares 

computer resources among many users, working at different terminals more or 

less far from the computer itself, so that each one appears to have complete 

control over the computer. In fact, this is an illusion: the computer works on each 

93 



user's program only for a fraction of a second, moving from program to program 

and then repeating the cycle. From the programmers' point of view, it meant that 

they could again have a "true rapport" (Steel 1964,26) with the computer and 

that they could control the running of their own programs, without having to 

"hand over their work, punched on a deck of cards, to the operators in the cool, 

glass-enclosed computer room" (Fishman 1982,108). Time-sharing was a 

convenience for programmers and also greatly increased their productivity by 

reducing the turn-around time. 

However, IBM did not at first realise the importance of time-sharing. In line 

with the concept of efficiency that dominated the whole 360 project, IBM had the 

idea that "the balance between computer-power and people-power, or the price of 

computer-power versus people-power still was heavily enough weighted in the 

direction of computer-power that they could be concerned about optimising the 

use of computer resources rather than concerned about optimising the use of 

human resources", as Norman Rasmussen, one of the participants in the TSS 

project put it (Rasmussen Interview). They misjudged how attractive the notion 

of time-sharing was, especially for "university type people, who had no concern 

about that value trade-off, because they were dealing with free computers funded 

by goverment" (Rasmussen interview). It seemed that IBM misjudged the extent 

to which these people would push . 
hard the notion. of Improving the life of the 

computer user, and their Influence in changing the perception of the demand. 

However, when General Electric announced that its third generation 

computers, the 600 series, would have time-sharing capabilities and MIT decided 

to use a General : Electric 635 for its MAC project on time-sharing, IBM had to 

94 



rethink its position. 

Within the company, time-sharing was a highly controversial subject. Those 

who felt that IBM should develop time-sharing argued that there was more at 

stake than just a few prestige contracts; that IBM computers risked becoming 

obsolete if they did not develop time-sharing: 

"The reason for this... was that the real problem in applying computers 
was the productivity of the programmers, a factor which time-sharing 
improved considerably" (Fishman 1982,112). 

Those who opposed the development of a time-sharing capability for the 360 

argued in terms of machine efficiency: time-sharing would require a modification 

to the 360 hardware which would increase costs and slow machine performance 

(Fishman 1982,111). To this objection were added the complaints of the 

software people that they simply could not cope with such an extra workload. 

After losing a second important contract to General Electric, for supplying 

Bell Laboratories, in October 1964, IBM decided to work seriously on the 

development of time-sharing for the 360 series. It was agreed by IBM 

management that the OS/360, which was supposed to be "everything for 

everyone", was not suitable for time-sharing, both for marketing and for 

technical reasons. Therefore, It was accepted that a special model (the 360/67) 

with a different operating system; the Time Sharing System (TSS), should be 

built. However, those working on the 360 software still warned of the dangers of 

making any public announcement: 

"In May the head of software protested strongly against any imminent 
official announcement. He observed that marketing had not formally 

95 



specified what it wanted IBM to accomplish in the time-sharing software; 
that both hardware and sofware specifications were incomplete and many 
important customers disapproved of them; that field engineering had not 
declared itself able to maintain the system; that testing plans were not 
clear; that technical issues relating to compatibility hadn't been resolved; 
and funding for the project hadn't been defined" (Fishman 1982,115). 

Moreover, even if it were not for these difficulties, the head of the 360 software 

pointed out that the whole software workload was out of control, that it was more 

than the programming staff could handle: 

"The IBM workload in programming is not only growing at a faster rate 
than ever in history, but in a more uncontrolled way than ever before. 
This can only lead to the abrogation of commitments on a large scale in the 
years 1966 and 1967" (quoted by Fishman 1982,115). 

Against the advice from the software people, the new model that would offer 

the time-sharing capability, the 360/67, was announced in August 1965, for 

delivery a year later. The initial release of TSS was scheduled for June 1967. 

From the beginning, TSS "had an awful lot of expectations attached to it and an 

awful lot of advanced technology incorporated into its specifications" (Rassmussen 

interview). Potential users were said to be enthusiastically "planning 

installations in which hundreds of consoles would be on-line simultaneously" 

(Rosen 1969,32). 

But TSS turned out to be extremely difficult to implement. This was mainly 

because of the complexity of the operating system required. The task of this 

operating system was to allocate computer resources among users, and to protect 

each job from interference by the others. } 

TSS "suffered a tremendous number of slippages, setbacks, decommitments, 

96 



reduction of personnel, reduction of performance expectations, etc. * (Rassmussen 

interview). By July 1966, the estimated number of lines of code required for TSS 

had doubled: the undertaking was far more complex than had been anticipated 

(Fisher et at 1983,166). In August 1966, IBM announced that there would be a 

delay of 45 days in the initial release of the TSS. In the autumn of the same year, 

IBM made calls on its 360/67 customers to explain the situation "and inform 

them that certain functions were being decommitted and schedules delayed" 

(Fisher et al 1983,166). In January 1967 the company announced a major 

decommitment of functions: while the company would continue to work on 

improving the basic TSS software, many of the promised features could not be 

guaranteed for delivery, ever. After this announcement, well over half of the 170 

orders already received for the system were cancelled (Fishman 1982,116). 

Such were the problems In the development of TSS that from first being 

offered as a major attraction, it eventually became just a "very minor offering 

which hung around the middle market until about 1968, when other things took 

its place" (Rassmussen interview). 

Because of the excessive expectations attached to TSS, and the lack of 

appreciation of how much had to be invented in order to fulfill those expectations, 

TSS became highly controversial. As the realisation of the problems involved 

started to materialise, so there 'we're "reductions in schedule, everyday 

reductions of personnel, reductions in computer investment, and the bill kept 

rising. The bill kept rising at the same time. " (Rassmussen interview). 

Neither IBM nor General Electric was able to deliver a working time-sharing 

97 



operating system until 1967. IBM did eventually succeed in building a lot of what 

was originally promised. Eight successive versions of TSS were produced, almost 

all of which included the redesign of major components of the system. It was 

estimated that over 2,000 man years of work had gone into TSS. Even after all 

that effort, all that could be said for the system was that "with adequate core 

memory and relatively few users, TSS was a usable, though expensive 

time-sharing system" (Rosen 1972,597). Even as late as 1970, the 360/67, 

used with standard TSS software, could support fewer than 15 simultaneous 

users, and responses to trivial requests were reported to take between 10 and 30 

seconds (Doherty 1970). 

Commercially, TSS was a total failure: just 10 to 15 installations used it. 

Although several hundred computers of the 67 model were delivered, most of them 

used software provided either by other time-sharing companies or developed by 

the users themselves. By 1969, the programming expenses of TSS were forecast 

at $57.5 millon, with losses of $49 millon on the entire 67 model (Fishman 

1982,117). 

Watts Humphrey, head of software at IBM in 1966, sums up the TSS project 

in the following way: 

"As a technical man I'd say TSS was a success in teaching us a whole series 
of technical concepts. , As a product developer, I'd say it was a very 
expensive education" (Fishman 1982, p 117). 

For General Electric, the experience of developing time-sharing was equally 

traumatic. Although it became the leader in time-sharing technology, it was at the 

cost of going out of the computer business. It was estimated that General Electric 

98 



losses for 1966 were $100 millon and for 1967 $60 millon. After the 

unexpected costs in developing hardware and software for time-sharing, General 

Electric could not afford to develop new products and decided to sell Its Computer 

Division to Honeywell In 1970 (Brock 1975). 

Software: The New Force 

As the 360 project developed, an awareness of the importance of software 

forced itself upon IBM. The company came to realise that the problems that would 

hold up the scheduling of the 360 were not hardware but software: "no part of the 

whole adventure of launching System/360 has been as tough, as stubborn, or as 

enduring as the programming" (Wise 1966b, 138). 

By 1965 orders were flowing in for the new family of machines, but the 

success of the 360 was not guaranteed simply by the number of orders. In some 

respects, the amount of orders for the 360 made the problems in manufacturing 

and software development worse, without ensuring market success, since orders 

could be cancelled easily and systems in rental could be returned. Producing the 

software for the 360 was becoming a huge problem. The reality for IBM was that 

its entire future was shaking. By the end of 1965, Watson wrote: 

By the spring of '64 our hand was forced and we had to, with our eyes 
wide open, announce a complete line - some of the machines 24 months 
early, and the total line an average of 12 months early. I guess all of us 
who were thinking about the matter realised that we would have problems 
when we did this, but I don't think any of us anticipated that the problems 
would reach the serious proportions that they now have" (Fishman 
1982,100). 

The problems continued to grow: 

991, - 



"in 1966 the problems of designing software for System 360 were most 
serious. Perhaps the operating system would never achieve the 
sophistication that IBM had planned for it. If so, the 360 would be highly 
vulnerable to competition, and might not even live out its allotted span" 
(Fishman 1982,259). 

An internal investigation in August 1966 into the problems of producing 

software cited poor planning as the root of the problem, observing that the 

programming department had not been brought into the planning of the 360 early 

enough and that programming had continued to be managed separately (Fishman 

1982,101). 

The planning and management problems involved in the OS/360 were quite 

unprecedented. Noone foresaw the enormous difficulty of developing the complex 

multiprogramming operating systems of the third generation. 

Most of the major manufacturers ran into similar difficulties and delays in 

dealing with the unprecedented problems. "There was too much system code that 

had to be resident in the central memory and too much computer time used in 

system overhead functions" (Rosen 1972,594), so that the amount of space 

available for the users' jobs was reduced. The obvious solution was to have larger 

and larger central memories, but core memory was very expensive: Incorporating 

the amount of core memory necessary to run the operating system would mean 

that the price of the computers would become non-competitive. Systems had to be 

debugged and improved, but the process of change often introduced new bugs and 

new problems. The problem faced by the computer manufacturers was that nobody 

really knew how to go about producing and debugging these new systems. They all 

misjudged the complexity of developing the new operating systems. As Theodore 

Climas, the corporate head of programming for IBM, put It: "we had to do some of 
100 



our planning with the entrails of chickens" (Business Week, November 5,1966, 

132). 

One of the first problems was that the programmers that were desperately 

needed to develop the software for the 360 during the whole of 1963 and 1964 

were still engaged in improving the programs for IBM's older computers. 

As IBM became aware of the complexity of the undertaking and as delays 

accumulated, more and more programmers were added to the project. By 

mid-1965, the company had become aware of the magnitude of the problem and 

the number of programmers working on the 360 software expanded in an 

unprecedented manner: 

"During the peak effort, some 1000 programmers at 12 locations in the 
US and five other countries were at one time working on the control 
programs for System 360, plus another 1000 on application programs" 
(Business Week, November 5 1966,132). 

As the number of programmers working on the 360 mushroomed, the costs 

mushroomed too. Watson gave some impression of the way in which programming 

costs were expanding when he spoke to a meeting of IBM customers early in 1966: 

"We are investing nearly as much in System/360 programming as we are 
in the entire development of System/360 hardware. A few months ago the 
bill was going to be $40 million. I asked Vin Learson last night before I 
left what he thought it would be for 1966 and he said $50 million. 
Twenty-four hours later I met Watts Humphrey, who is In charge of 
programming production, in the hall here and said, 'Is this figure right? 
Can I use itV He said it's going to be $60 million. You can see that if I 
keep asking questions we won't pay a dividend this year" (Wise 1966b, 
139). 

There are no official figures on the final costs of the OS/360. Estimates range 

101 



from $200 million upwards: 

"One IBM software man estimates that in all the company spent some 
$500 million to develop, maintain, repair and enhance the 360 systems 
software, including the programs that controlled the computer's 
operations and those that translated higher-level languages into binary 
code. Enhancements to that software which enabled it to run on the next 
product line probably cost another $500 million. Neither of these figures 
includes the numerous applications programs which IBM prepared to help 
the customer get out the payroll or keep track of inventory on the 360" 
(Fishman 1982,101-102). 

This escalation of costs took place in spite of IBM's decision early In 1966 to 

"decommit" thirty-one technical capabilities of the operating system. Although 

this helped to reduce the difficulties, it "represented only a minor gain in the total 

software campaign" (Wise 1966b, 211). 

This mushrooming of costs and programmers led also to a mushrooming of 

documentation: 

"The documentation for the 360 operating systems is voluminous, almost 
to the point of being overwhelming. There are literally thousands of 
documents, and techniques of computer assisted text preparation and 
publication make it possible to produce new documents and new versions 
of old documents at an alarming rate" (Rosen 1972,596). 

The complexity of the documentation made the 'operating system much more 

difficult to use, whereas one of its aims had been to make programming easier. 

The enormous number of programmers and money dedicated to the OS/360 did 

not prevent It being late. As the delays accumulated, the problems Increased. 

Planning and scheduling was a major problem In the whole project. It was very 

difficult to estimate the amount of time and the number of people required to 

develop the software for a whole family of compatible computers. Delays had 

102 



consequences not only for the rest of the 360 project, but also for the quality of 

the software itself, since the whole development took place within a corporate 

atmosphere of "it must be done". Delays had especially serious consequences for 

the testing of the software: 

"Failure to allow enough time for system test, in particular, is peculiarly 
disastrous. Since the delay comes at the end of the schedule, no one is 
aware of schedule trouble until almost the delivery date. Bad news, late 
and without warning, is unsettling to customers and to managers. 
Furthermore, delay at this point has unusually severe financial, as well 
as psychological, repercussions" (Brooks 1974,20). 

Delays in an environment of urgent deadlines can have disastrous 

consequences for the quality of the product. As Brooks says in discussing the 

conclusions to be drawn from the 360 experience: 

"An omelette, promised in two minutes, may appear to be progressing 
nicely. But when it has not set in two minutes, the customer has two 
choices - wait or eat it raw. Software customers have had the same 
choices. The cook has another choice; he can turn up the heat. The result is 
often an omelette nothing can save - burned in one part, raw in another" 
(Brooks 1974,21). 

In spite of the heat being turned up, the OS was still late: although delivery of 

the 360 computers had originally been promised for April 1965 and although the 

first deliveries of the hardware were actually made In that year, it was 1967 

before the systems software was delivered. Even then, the operating system was 

found to have many errors, so that a whole series of releases was required before 

the system was running at all well. The complexity of the system made it prone to 

error. It was calculated that each new release of OS/360, designed to remove 

existing errors from the system, contained roughly a thousand new software 

errors (Boehm 1973,57). The errors continued: 

103 



"Release 16 of OS/360, Issued in July 1968, contained nearly 4000 
modules, comprising almost one million Instructions ... Its FORTRAN H 
compiler alone was stated to contain 2000 distinct faults" (Randell 
1979,6). 

The releases continued: release 21 contained 6,300 modules (Belady and 

Lehman 1979,140). Even then, IBM never achieved the total compatibility that 

had been at the core of the family concept. The problems of OS/360 were partly 

the reflection of the basic concept behind the 360 family. Trying to be everything 

for everybody led to a failure to optimise in any particular area (McGovern 

1967,19). 

Despite all its problems, it was nevertheless the OS/360, and not the 

Burroughs system, generally considered to have been superior, that set the 

standards for the development of third generation operating systems: 

"The most important software systems of the period 1965-1970 were 
the systems developed by IBM for Its system 360. This is true not because 
of the Intrinsic merit of the systems themselves, but rather because of 
IBM's position of dominance in the computer industry" (Rosen 1972, 
596). 

The effort involved in the 360 project was enormous. As the 360 family 

grew, and as the problems of realisation grew, IBM also grew. Just as IBM shaped 

the 360, the 360 came to shape IBM. By 1966, IBM had spent over half a billion 

dollars in research and development associated with the 360. The programme: 

"involved a tremendous hunt for talent: by the end of this year (1966), 
one third of IBM's 190,000 employees will have been hired since the new 
program was announced. Between that time, April 7,1964, and the end of 1967, the company will have opened five new plants here and abroad and budgeted a total of $4.5 billion for rental machines, plant and equipment. Not even the Manhattan - Project, which produced the atomic bomb in 
World War Il,, cost so much (The goverment costs up'to Hiroshima are 
reckoned at $2 billion), nor, probably, has any other privately financed 
commercial project In history" (Wise 1966a, 120). 

104 



Customer demand for the 360 was greater than anticipated. The 360 proved to 

be a turning point in the commercialisation of computers: third generation 

computers are often defined in terms of the basic component, the integrated 

circuit; much more important, however, were the' traumas of the 360 and the 

breakthrough to the mass production and use of computers that they brought with 

them. Within weeks of the announcemment, thousands of orders were filed for the 

360. To keep up with the demand many new divisions and plants were created and 

existing ones expanded: 

"By October 1965, IBM announced that It was 'completing more than 
three millon square feet of new manufacturing space' to meet 
requirements for system 360 - including plants in Boulder, Colorado; 
Raleigh, North Carolina; Montpellier, France; and Vimercate, Italy; and 
expansion of existing facilities in Owego, East Fishkill, and Endicott, New 
York; Burlington, Vermont; and San Jose, California. New plants were 
later added in Boca Raton, Florida, and Brooklyn, New York" (Fisher et al 
1983,140). 

Thousands of people were hired: 

"Between the end of 1964 and the end of 1967, IBM increased its work 
force by approximately 50 percent - adding more than 70,000 new 
employees" (Fisher et al 1983,140). 

Whole areas of the company were reorganised: 

"The new family of computers cut across all the old lines of authority and 
upset all the old divisions. The system/360 concepts plunged IBM Into an 
organizational upheaval" (Wise 1966b, 143). 

At the peak of the problems: 

"Four technical executives were temporarily relieved of their normal 
responsibilities in order to devote full time to the task of identifying and 
solving all problems contributing to delays in manufacturing and 
shipping" (Pugh 1984,248). 1 

105 



Careers were made and unmade: 

"Managers of software development projects were replaced and a number 
of individuals were dismissed for failing to meet schedules. Manufacturing 
managers who did not meet the ever accelerating schedules were replaced 
by others who found the problems to be no more tractable" (Pugh 1984, 
251). 

The whole of IBM was thrown into upheaval: 

"To launch the 360, IBM has been forced into sweeping organizational 
changes, with executives rising and falling with the changing tides of the 
battle" (Wise 1966a, 118). 

The whole production, delivery and installation of the 360 "required a 

massive effort on IBM's part and placed a severe strain on the corporation. It was 

a task that some in IBM likened to trying to swallow an elephant" (Fisher et al 

1983,141). 

The whole experience of the 360 placed IBM under financial stress. Although 

IBM always recognised the risks inherent in the 360 program, in the summer of 

1964 it was confident that it had taken the right decision. The whole development 

of the 360 took such proportions that an investment of $1.1 billion was required 

to finance it in 1965, and a further $1.6 billion in 1966. IBM found itself 

without sufficient cash in 1966 and was forced, to raise it urgently through an 

issue of shares, through bank loans and through reducing the price at which its 

machines were sold while at the same time increasing rental charges. This last 

measure left IBM very vulnerable-at-a time when competitors were reducing 

drastically the rental on their machines (Fisher et al 1983,141; Wise 1966b, 

206). 

106 



For some time It was not clear whether the great gamble - "IBM's 

$5,000,000,000 Gamble", as the title of one article put it (Wise 1966b) - 

would succeed. In his meeting with the SHARE members in March 1965, Watson 

even conceded that the announcement of the entire 360 package In April 1964 may 

have been "ill advised" (Wise 1966b, 211). And John Opel, a future president of 

IBM, wrote in a memorandum in 1966: "Henceforth, we will instruct our people 

to avoid like sin a repetition of such a broad announcement and any announcement 

before its time" (quoted in Fishman 1982,103). 

However, it was not simply the announcement that caused the difficulties. The 

announcement was just one expression of the general "it must be done" 

atmosphere of the corporation. The "it must be done" was the rule of the market. It 

had to be done for marketing rather than technical reasons. At the core of IBM's 

problems in trying to carry off its great gamble was a tension between technology 

and the market, personalised In conflict between the technical people and the 

marketing people. This is a conflict fundamental to the development of computers 

and of computer software; but in IBM, and most clearly of all in the experience of 

the IBM 360 it took a particular form.. In contrast to the environment within 

which the Burroughs 5000 series was developed, the IBM 360 was characterised 

by conflict between the advice of the marketing people and the advice of the 

technical experts from the very beginning. And in this conflict there was no doubt 

that marketing set the pace. There Is a programmers' saying In IBM that 

"Marketing is king, engineering Is, prime minister, and software is the court 

jester" (Fishman 1982,104). Perhaps that Is the secret of IBM's success. 

In spite of all the problems, IBM's multibillion-dollar Investment paid 'off. It 

107 



has been estimated that before the 360 announcement, IBM had only about 11,000 

computer systems installed in the USA, by 1970 It had installed about 35,000 

systems (Fisher et al 1983,141). The 360 program was a financial success, 

"perhaps the greatest in the history of American Industry" . At the end of 1965, 

before massive shipment of the 360 began, IBM's annual worldwide revenues 

were $ 3,600,000,000 by the end of the 360 period, revenues had increased to 

$7,500,000,000: 

"Observers have characterized the 360 decision as perhaps the biggest, In 
its impact on a company, ever made in American Industry - far bigger 
even than Boeing's decision to go Into jets, bigger than Ford's decision to 
build several million Mustangs" (Fisher et al 1983,142). 

However, although the 360 was a success, the massive problems associated 

with the whole venture, and the retreats from many of the original goals, did 

much to change the image of IBM: "the mystique is probably gone for good - 

although the successes may just go on becoming greater and greater" (Wise 1966, 

212). The achievements of the 360 were enormous, yet the whole experience was 

double-edged: 

"The great gamble had paid off, but in ways that couldn't have been 
anticipated when the machines were first planned. What Tom Watson had 
in mind was a family of technologically advanced computers that would 
provide IBM with a lead in technology, expand its markets, ward off 
competitors, and unite his company. He had success in most of these areas. 
But at the same time he had reshaped the industry; in the history of 
computers, everything is either pre-360 or post-360. Without meaning 
to do so, Watson had opened his own Pandora's box" (Sobel 1984,232) 

Pandora's box was well and truly opened, not only for IBM and the rest of the 

computer industry, but for the whole world. 

108 



Chapter 4 

The Users 

When Pandora's box was opened, the gifts fell upon the computer users. 

Software development during this period was no less double-edged for users than 

it was for producers. 

The problems of software cannot be understood simply in terms of the 

difficulties faced within the computer industry itself. Software develops in the 

tension between the demands of the machine and the requirements of the users. 

Computers are produced as commodities to be sold on the market, to purchasers 

who intend to use the computer in some way. The manufacturing companies have to 

respond, or at least appear to respond, to the requirements of the users. The 

problems of third generation software reflected not only an "internal" gap 

between the promises of the manufacturing companies and the ability of their 

programmers to deliver, and between the capacity of the hardware and the ability 

of the software to exploit that capacity; there was also an "external" gap between 

the demands of the users and the performance of the producers. 

The third generation marked a turning point in the mass production and use of 

computers. There was a very rapid increase in the production and use of 

computers during the 1960s. Since the largest manufacturer, IBM, does not 

publish figures on the number of computers it installs, there are no precise 

figures on the rise In computer Installations, but it has been estimated that the 

total number of computers Installed leapt from 16,000 in 1964 to 60,000 in 
109 



1969 (Brandon 1970,28). Another estimate (Computers and Automation June 

1967,77) gives a figure of 52,460 for world computer installations in 1967, of 

which well over half (32,500) in the United States, with a figure over 25% 

higher the following year: 67,200, of which IBM machines accounted for over 

half - an estimated 39,600 (Computers and Automation, June 1968,132). 

Government was still the most important single computer user. A survey 

published in 1965 reported that about 10% of the total number of computers 

installed in the United States were used by the Federal Government (EDP Weekly, 

Sept 6,1965,14-15, quoted by Armer 1970,123); a further 2.5% of the total 

number were being used by state and local governments (Automatic Data 

Processing Newsletter, Vol IX, No. 25, May 10,1965, quoted by Armer 1970, 

123). 

Within government the use of computers for military purposes predominated. 

The 1965 report stated that of the 10% of total computer installations accounted 

for by the Federal Government: 

"about 7% are in the Department of Defense, with NASA and the AEC 
accounting for another 2%. Thus, nondefense and nonspace related 
activities of the Federal Government comprise only about 1% of the total 
computers installed" (Armer 1970,123). 

However, the most striking feature of this period was the increasing use of 

computers by private business. Some idea of the growing importance of computers 

in industry is given in a report by McKinsey & Co. In 1969: 

"In 1963, computer manufacturers shipped hardware worth $1.3 billion 
to their US customers. By 1967, the value of computer shipments had 
risen to $3.9 billion,. an increase of no less than 200% In four years. Of 

110 



every $1 million that business laid out on new plant and equipment in 
1963, $33,000 went for computers and computer-associated hardware. 
By 1967, the computer's share had risen to $63,000, and each dollar 
was buying at least half as much again in capacity. Computer spending, 
both absolutely and as a proportion of all plant and equipment outlays is 
still rising" (McKinsey 1969,26-27). 

The continuation of this trend was confirmed by Hertz, who says that by 

1969, of every $1 million laid out in plant and equipment, "approximately 

$100,000 was going for computers and associated hardware" (Hertz 1969, 

181). 

At the beginning of the third generation computer, use by business was 

limited to large companies. One survey of 33 manufacturing companies in 1966 

(in Business Automation, Oct. 1966,53) found that: 

"- the median company spent nearly $1.2 million yearly for its entire 
computer operation, with about one third of that amount allocated to 
equipment, mainly machine rental; 
- total computer costs ranged from $128,000 to $50 million per year; 
- the median company spent $5.40 per thousand dollars of sales for its 
computer operation" (Kleiman 1969,48). 

Kleiman points out the implications of these figures: 

if we hypothesize a computer installation renting at $5000 per month 
and each hardware dollar must be matched by $2 for backup support -a 
conservative assumption - the total yearly bill runs to $180,000. To 
support this expense, yearly sales must approximate $33 million" 
(Kleiman 1969,48). 

By the later 1960s, however, this pattern was beginning to change. Not only 

the fall in the price of computers - the average purchase price fell from 

$3,000,000 in =1953 to $410,000 in 1969 (Brandon 1970,28) - but also the 

introduction of the first time-sharing systems opened up the possibility of 

computer use to medium and even small firms. A 1967 article praising the 

111 



virtues of time-sharing suggested that now "a typical subscriber can get good use 

out of the system for under $200 a month, including terminal, data transmission 

costs and program storage" (O'Rourke 1967,50). By early 1969, time-sharing 

companies already operated nearly one hundred computers and their number was 

growing rapidly (Hertz 1969,174). 

The users had been promised great things. The third generation of computers 

had been announced with a great fanfare of publicity. The new systems were sold 

with the claim that they offered many dramatic improvements which would be of 

direct benefit to the user. First of all, the users would benefit from a considerable 

increase in cost-performance, resulting from technical advances: faster internal 

speeds, higher peripheral data transfer rates, larger storage with direct access 

capability, and the promise of sophisticated software that was to optimise system 

performance by extensive use of multiprogramming techniques. Secondly, the 

operating system would allow the user to control the system without requiring an 

intimate knowledge of the intricacies of the hardware. Thirdly, the family concept 

would allow the user unlimited growth capability while remaining within the 

same environment. Other innovations would open up a whole new range of 

applications: time-sharing for multiple users, rapid access from multiple 

locations, on-line processing of random transactions would all create the basis for 

total management information systems. And it was promised too that there would 

be little problem in converting Second Generation programs to the new system: 

new software translation techniques would allow the user to bridge the 

compatibility gap between Second and Third Generation systems (Bouvard 1970). 

"Thoroughly dazzled by these rosy prospects, EDP users were in for a rude 
112 



awakening when confronted with the practical realities of the third generation" 

(Bouvard 1970,120). The actual experience of the users after they had bought 

or rented the new computers was very different from what they had been 

promised. By the end of the 1960s, much of the optimism associated with the 

expansion of computer use had faded. 

From the point of view of business, the basic problem was that computers 

were not doing what they were supposed to do: they were not increasing the 

companies' profitability. In many cases, the large investments made by companies 

were simply not paying off: 

"Studies conducted by consulting firms have indicated that many 
computers are costing organisations more than they are returning as part 
of that investment" (Trocchi 1969,29). 

The earlier managerial "euphoria" (Alexander 1969) began to fade in the late 

1960s as more and more companies realised that the benefits obtained from their 

investment in computers were at best dubious (Callahan 1967; Alexander 1969; 

Laver 1970). There was a feeling that business had been tricked, that computers 

had been oversold. From the point of view of the users, the "traumatic experience 

of the Third Generation" (Bouvard 1970,123) was one of disappointment, of an 

enormous gap between the promises of the producers and the reality of their own 

experience. 

The gap between the producers' promises and the users' experience had two 

sides: the performance of the producers on the one side, and the users' own 

development of the software and their expectations on the other. It was not simply 

that the users had bought a "defective product"; the problems encountered by the 

113 



users arose both from the nature of what was supplied to them by the 

manufacturers, particularly the software, and also from the way in which the 

users developed and understood that software. 

The most obvious source of problems for the users was simply that it was 

they who suffered the consequences of the manufacturers' failure to meet their 

commitments. Operating systems were delivered late; when delivered they were 

full of bugs; as a result, there were frequent releases of the same system; 

emulators were not as good as had been promised, so that the performance of 

converted second generation software was often below the standard achieved on 

second generation machines; compatibility between machines was not achieved to 

the degree that had been promised, etc. 

Beyond the immediate question of delivery dates and programming bugs, 

however, lay much deeper problems. These sprang from the nature of software 

and from the way it was understood: from the complexity of third generation 

software, on the one hand, and from the ways in which users tried to apply it, on 

the other. 

The complexity of the third generation machines led to a great mushrooming of 

programming problems that often swallowed up the benefits of the increased 

power of the hardware. One of the promises of the producers, for example, was 

that the new machines would radically increase the cost/performance ratio. Some 

authors, however, suggest that, despite the increase in the internal speed of the 

machines, the users often did not actually receive the benefit of any improvement 

in cost/performance. Feeney (1981) speaks of the "cost/performance myth": 

114 



"A myriad of graphs and charts have been produced showing the reduction 
in cost per character of storage or per instruction performed. No less 
impressive was the plethora of new and enhanced peripherals giving an 

explosion of capacity to the DP department. However, it is the author's 
contention that for many users the costs per character or per instruction 

were at best static and in many cases increased over much of the last two 
decades. The manufacturers' graphs and charts were usually honest. So 
how is this contradiction to be resolved? Black holes! Performance 
increases were absorbed by a whole series of black holes which kept the 
benefit well away from the user" (Feeney 1981,265). 

All of Feeney's "black holes" relate to software problems. One major problem 

for the users was the complexity of the new operating systems: 

"The operating system concept was supposed to simplify programming and 
operating problems by shielding the user from the internal complexities 
of hardware. Too often, however, the problems were displaced rather than 

solved as complex user-hardware interfaces were traded for even more 
complex and just as unnatural user-software interfaces" (Bouvard 
1970,120). 

Not only were the operating systems full of complexity and difficult to use, 

but also because of this complexity they used up a lot of the capacity of the new 

machines: "they took most of the core and many of the cycles just to work out what 

they were supposed to be doing" (Feeney 1981,265). 

The complexity and scale of the new software also gave rise to a problem that 

had not existed to the same degree previously: maintenance. In a large and complex 

system involving many programmers, maintaining -the program became an 

important task in its own right. For Feeney (1981), maintenance is the "ultimate 

black hole": ,.,. - 

it gradually became clear that programs are like cabbages, if you put 
them on the shelf and forget about them they go bad. The work of the 
maintenance programmer is formidable: 
- Trying to find original bugs 
- Trying to find the last maintenance programmer's bugs - Trying to find 
the bugs he put in last week himself 

115 



- Achieving compatibility with the latest operating 
system release 

- Achieving compatibility with the latest compiler 
release 

- Changing to use the new peripherals 
- Changing machines 
- Changing operating systems 
- Changing standards 
- Interfacing with new developments. 
- Looking for bugs that do not exist (they are in the program of the 
accused) 
- Statutory changes 
- Making improvements for the user if there is any time left over" 
(Feeney 1981,266). 

All of these activities demanded not only large amounts of machine time, they 

also demanded large numbers of programmers. The demand for programmers does 

not increase in simple proportion to the size of a program. As programs become 

more complex, the programming time required increases disproportionately: the 

larger the program, the slower the process of programming: 

in 1964, the rule of thumb for estimating the manpower requirement of 
the programming of large systems was 200 or 300 machine Instructions 
per man-month. However, in a graph developed that year by Nanus and 
Farr, summarizing experience gained In developing eleven complex 
systems, the function relating man-months to number of instructions 
curved upward rather sharply. It showed - on the average, though with 
quite a bit of variation - about 200 instructions per man-month on 
systems of 100,000 or 200,000 Instructions, but fewer than 100 
instructions per man-month on the largest of the eleven systems, which 
had 640,000 instructions" (Licklider 1969,51). 

The whole situation was made much more difficult by the fact that the 

programmers required for this explosion of programming activity simply did not 

exist. The shortage of programmers was a major preoccupation: 

"The supply of skilled computer' personnel is far short of the demand. 
There are only about 120,000 programmers In the United States - and 
right now there's an estimated need for 175,000 or more. And the gap is 
widening. The number, power and widespread application of computers has far outstripped the supply, of programmers" (Computers and Automation Feb. 1967,11). 

116 



The shortage of programmers had important implications for the development 

of software. Most immediately, it meant that in order to meet their requirements 

companies often took on inadequately trained programmers, with obvious 

consequences for the quality of the programs produced, consequences that could 

multiply like a contagious disease: 

"The vast increase in programming requirements brought an influx of 
incompetent and poorly trained programmers. A lot of good people joined 
tool But it was the poor ones who soaked up the machine resource. It was 
bad enough to have a slow, inefficient and bug-ridden daily production 
job, but these characters really came into their own when they wrote 
slow, inefficient and bug-ridden compilers which produced deformed 
object code, which confused the hapless programmer endlessly. How could 
he resolve whether the problem lay with his lack of skill, or the 
operating system, or the compiler, or even with the intermittent 
hardware fault" (Feeney 1981,265). 

As the problems mounted, so did the costs. It was realised for the first time 

just how costly software was. Previously, the focus had been on the costs of 

hardware: now it became clear that software was even more expensive. Boehm 

(1973) provides some very striking illustrations: 

"For the Air Force, the estimated dollars for FY 1972 are ... an annual 
expenditure of between $1 billion and $1.5 billion, about three times the 
annual expenditure on computer hardware and about 4 to 5% of the total 
Air Force budget. Similar figures hold elsewhere. The recent World Wide 
Military Command and Control System (WWMCCS) computer 
procurement was estimated to involve expenditures of $50 to $100 
million for hardware and $722 million for software. A recent estimate 
for NASA was an annual expenditure of $100 million for hardware, and 
$200 million for software - about 6% of the-annual NASA budget. For 
some individual projects, here are some overall software costs: 

IBM OS/360 
SACS 
Manned Space Program 
1960-1970 T 

$200,000,000 
$250,000,000 

$1,000,000,000 

Overall software costs in ' the U. S. are probably over $10 billion per 
year, over 1% of the gross national product (Boehm 1973,48). 

117 



Programming was far more complex and required far more work than had 

been anticipated. As a consequence, the problem of costs was a double one: not only 

were costs high in absolute terms, but they also constantly exceeded estimates. It 

seemed to be almost a universal law that software took much longer than expected 

and cost more than was estimated. In the case of the Air Traffic Control System 

commissioned by the Federal Aviation Administration, to take just one example, 

Raytheon contracted (in January 1967) to deliver 16 computer display channels 

by the end of February 1968 for a fixed price of $44.8 million; more than four 

years later, in August 1972, not one operational model had yet been delivered and 

the "fixed price" of $44.8 million had been increased to $124 million (Hirsch 

1972,51). 

Delays increased the costs for the user in two ways. Firstly, the increased 

cost of the software often fell on the user: obviously so if the software was being 

produced by the user company itself but often in other cases too - as in the case of 

the Air Traffic Control System. With experience, users were able to protect 

themselves in some cases at least: Wolverton, writing in 1972, reports that: 

"Our customers have shown a growing unwillingness to accept cost and 
schedule overruns unless the penalties were Increasingly borne by the 
software developer" (Wolverton 1974,615). 

It was not only a question of direct costs. There were indirect, secondary costs 

too, which almost always fell on the users: 

"Big as the direct costs of software are, the Indirect costs are even bigger, 
because software generally is on the critical path In overall system 
development. That Is, any slippages in the software schedule translate 
directly into slippages In the overall delivery schedule of the system. 
Let's see what this meant in a recent software development for a large 
defense system. It was planned to have an operational lifetime of seven 

118 



years and a total cost of about $1.4 billion - or about $200 million a 
year worth of capability. However, a six-month software delay in making 
the system available to the user, who thus lost about $100 million worth 
of needed capability - about 50 times the direct cost of $2 million for the 
additional software effort" (Boehm 1973,49). 

Cost was not the only problem arising from the complexity of third generation 

software. The other major problem was reliability. The baroque, seemingly 

uncontrollable nature of the software, in which complex application programs 

were often constructed on top of complex and error-prone operating sytems, led 

in the end to programs that were frequently unreliable. The unreliability of 

computer programs led to a proliferation of stories about people receiving 

electricity bills for a million dollars, but it also raised very serious problems 

about the consequences of depending upon computers. 

The consequences of unreliability were particularly acute in the context of the 

"real time" computing applications then being developed, where the results of the 

computation were required immediately as part of a continuing process: 

"The issue of reliability takes on a dimension quite different from that 
encountered previously. If something goes wrong with the data processing 
environment... which cuts off real-time service, he has extended his 
troubles right this minute to the front line of the enterprise. In the case 
of an airline, it's the reservation sytem that does not work; for a bank, 
it's probably the savings accounts which are now inaccessible; a large 
wholesale distributor finds he no longer can determine his inventory 
condition... This entire sensitive matter of reliability takes on a degree of 
importance not easily equated directly to the costs of the system alone" 
(Boering 1967,37). 

The potential consequences of software unreliability are far-reaching. 

Speaking of a conference in 1969, , Dijkstra recalls: 

"The... Conference In 1969 was shortly after Armstrong and Aldwin had 
walked on the surface of the moon and I knew that each new Appollo shot 
required 400,000 new lines of code - 400,000 is a lot and I was very 

119 



impressed. In Rome I met Joel Aron of the IBM Federal Systems Division 
who had been responsible as manager for quite a lot of that sort of thing 
and I said to Joel, 'How did you do it? ' 'Do what? ' said Joel. I said, 'Get all 
that software correct: 'Correct! ' he said, and then he told me that suppose 
they were computing trajectories and one of the programs computing a 
trajectory of the lunar module, if this was the moon, the module wouldn't 
go that way, it would go that way because in the program the moon had 
been repulsive, had been coded repulsive instead of attractive and that 
error had been found by accident five days before count zero. I got pale, 
and when I had regained my composure, I said 'Jesus Christ, Joel, those 
guys have been lucky! ' 'Yes, ' said Aron" (Dijkstra interview). 

Dijkstra's story of the moon shot provides a particularly striking example, 

but the possible consequences of software errors are endless, from mistakes in 

electricity bills to plane crashes, from double-booking of airline seats to nuclear 

war. The Implications of errors in the military software field, in which many of 

the most complex systems are applied, are obviously particularly frightening, 

especially as "the secrecy which shrouded their purposes served also to hide the 

extent to which such projects were often characterised by 'underestimates and 

overexpectations'" (Randell 1979,5). Lacklider cites the example of the Ballistic 

Missile Early Warning System: 

"Early in its operational life, the Ballistic Missile Early Warning System 
made its now-famous detection of 'incoming ballistic missiles' that turned 
out to be the moon. Fortunately, cool wisdom In Colorado Springs - and 
lack of confidence in the new system - prevailed over the reflex of 
counterstrike, and what could have been the greatest tragedy in history 
became a lesson" (Lacklider 1969,50). 

The question of software reliability was an important issue raised in the 

discussion in the late 1960s of the US decision to develop an anti-ballistic missile 

system. As Lacklider points out, the possibility of error arises not only from poor 

programming but from the sheer complexity of the programs involved: 

"Let us take time to make it clear that the presence of such errors in a program is not evidence. of. poor w workmanship on the part of the 
programmers... the essential facts are that that all complex programs 

120 



contain programming errors, that no complex program Is ever wholly 
debugged and that no complex program can ever be run through all Its 

possible states or conditions in order to permit its designers to check that 

what they think ought to happen actually does happen" (Lacklider 1969, 
51). 

Software is costly and unreliable. These were the two most important features 

of the problems experienced by the users in the late 1960s. However, it is clear 

that there may be a conflict in trying to find a solution to these two problems: in 

certain circumstances reducing costs may have the effect of making the software 

less reliable. Testing software, for example, is time-consuming and costly. Boehm 

(1973,52) points out that between 45% and 50% of the effort on large software 

projects was typically devoted to checkout and testing. At the end of any project, 

there is inevitably a decision to be taken on whether to spend more time and 

money on testing or to accept a certain possibility of software error. Thus, in his 

summary of a Department of Defense study of "the DoD software problem", 

Carlson states that: 

"Currently, software is quality controlled by testing Its performance in 
as many situations as time and budget will allow" (Carlson 1976,380). 

The interest in reducing costs, therefore, is not synonymous with the interest 

in improving reliability. Furthermore; there may be differences in Interest 

between producers and users in this respect, or between different groups of 

users. Alt (1969) points to this potential conflict in his discussion of the 

problems of software and their possible solution: 

"To say all this is a wish, not a prediction. It ought to happen, but will it 
happen? One straw In the wind is that there is plenty of economic interest 
In, and financial backing for, anything that reduces the cost of 
programming. But this condition does not exist for making programs safe. 
Thus it may be realistic to hope. for-a strong effort on cost reduction, 
leading to more specialized programming languages. But for making 
programs safe, for new methods of problem specification leading to higher 

121 

01 



quality in programming, only a continuation of the present slow rate of 
progress seems to be ahead. Programming errors hurt the unorganized 
users and, above all, the public; and they have no good way of protecting 
their interests. The case is somewhat analogous to automobile design, 

where appearance and performance pay off, but safety does not. Perhaps 

we need a Ralph Nader in computer programming" (1969,16). 

The difference between automobile design and software, however, is that 

dangerous software can do far more damage than a dangerous car. 

IBM's announcement of the 360 series on 7th April 1964 had not only thrown 

the company itself into confusion, but it had released on the world a mass of 

problems arising from the unmastered complexity of the software required to run 

the new machines. Perhaps the most striking feature is not just the scale of the 

software but the bureaucratic transformation of the programming process: 

"The magnitude and complexity of the new software created immense and 
unsuspected development problems. It soon became apparent that little of 
the experience gathered in the development of earlier operating systems 
was applicable to the new endeavor. Close technical coordination had to be 

maintained over hundreds of implementation personnel; these, in turn, 
produced thousands of program modules which had to be Integrated into a 
single system. These were entirely new conditions in an Industry where 
individualistic practices had always flourished. All at once an enormous 
administrative and procedural apparatus had to be set In place. Naturally, 
development time and cost requirements soared, while pressure to meet 
delivery schedules caused the release of incomplete and untested products. 
As a result, and despite all the announcement fanfare, many users have 
found Third Generation software far more . unreliable than the old" 
(Bouvard 1970,121). 

Bureaucratisation not only transformed the, experience of the individual 

programmers and the process of programming: It affected also the definition of 

user requirements. 

The disappointments of the computer users did not simply derive from the 

complexity of the software; it also had a lot to do with the nature of the demands 

122 



which they made on the software. The gap between expectations and experience 

expresses not just a technical problem, but a social relation, a relation between 

producers and users. The expectations were largely expectations promoted by the 

producers, the experience was the users'. 

The relationship between producers and users is a complex one. It was seen In 

the discussion of the earlier generations that the development of the computer 

industry was characterised by the growing separation of producer and user. 

Whereas the relation between the process of production and the requirements of 

the user was a fairly direct one in the earliest computers, the two elements 

became more and more separated as the computer came to be a mass produced 

commodity. In the early days the user exercised a direct and continuous Influence 

on the design of the computer, but as the Industry developed, the user was 

progressively excluded from the process of production and design. The relation 

between what the producer produced and what the user wanted was no longer so 

direct: it was established through the market. A computer fetish was constructed, 

consciously and unconsciously: the producers tried to create an attractive image 

that would sell their computers, while the users turned to computers for the 

solution of problems that could not always be solved by computer. 

By the late 1960s the relation between producers and users was often seen as 

antagonistic (cf. e. g. Laver 1970; Stevens 1970), and many users felt that their 

requirements had little impact on the development of either hardware or software. 

It is true that the manufacturers, if they are going to sell their computers, must 

pay some attention to the requirements of the users; but this does not mean that 

the interests of the manufacturers, and the users necessarily coincide. Laver 

123 



(1970) suggests two examples to illustrate this point: 

"First, a supplier tends to be greatly concerned to reduce the initial cost 
of computer installations for this looms large in his negotiations with 
customers, but to do so may disadvantage the user by increasing his costs 
and diminishing the range of processing over the whole life of the 
machine. Secondly, the regular obsoleting of equipment is unsurprising as 
a supplier's response to a highly competitive situation, although it can 
also be (and often is) rationalized by presentation as an enlightened 
policy that brings the benefits of technical advance to users with the least 
possible delay. However, to produce new models every two or three years 
is too frequent, and merely keeps those users who have a morbid fear of 
being unfashionable in a costly state of flux" (Laver 1970,104). 

On the one hand, the interests of the producers are influenced by, but 

certainly not identical with, the needs of the users. On the other hand, the needs of 

the users are also influenced by the marketing of the producers. 

"This situation holds dangers. First there Is the danger that users may be 
led into thinking of their needs in terms of improved machine 
performance. That they need faster, fiercer, smaller, cheaper computers 
is axiomatic but trivial; and when computer users focus on fascinating 
technicalities, whether of hardware or software, they become like those 
HIFI enthusiasts who, dazzled by decibels, tantalized by tracking errors 
and Intrigued by intermodulation, hate music. The second danger arises 
because users' needs are plastic; they may actually come to want what 
computer designers want to design, or what computer marketing men 
want to sell... We all know - now that users may need 'computers ... for 
subconscious as well as conscious reasons; that stated needs may be hidden 
persuasions rationalised" (Laver 1970,106). 

It thus becomes very difficult to distinguish the "overselling" of Third 

Generation computers by the manufacturers from the "overbuying" of computers 

by the users. The story of the users' disappointments is not just a tale of wicked 

wolves and innocent sheep. The gap between expectations and experience was 

created not just by the fanfares of the manufacturers but also by the unreal 

expectations of the users: 

"Observes Donald Heaney, an internal consultant on computer usage with 

124 



General Electric Co., 'Yes, there was overselling on the part of the 
manufacturers. But in companies everywhere the reasons for buying 
computers were not thought out. From the top, the attitude was that you 
can't let the competition get ahead of you; if they buy computers we've got 
to buy computers'" (Alexander 1969,126). 

The gap between expectations and experience is therefore not just a gap 

between producers and users. It is also reflected within the users themselves as a 

gap between uninformed hopes and the real world, or as a gap between desires and 

needs: "many business users may claim to be dissatisfied because they have got 

what they asked for instead of what they needed" (Laver 1970,106). 

The users' frustrations had much to do with attempts to apply computers to 

new, more sophisticated applications. 

Until the third generation, computers were used mainly for routine clerical 

and accounting purposes: 

"Computers entered Industry as massive, fast, brute force arithmetic 
devices. They were bought because managers believed they might do known 
work more rapidly, accurately, and cheaply than organized sets of people. 
This was the EDP phase of computerization. Its greatest effect on 
organizations was chiefly just what was intended: a substitution of 
computer programs for human substructures that were then doing the 
same routine tasks" (Klahr and Leavitt 1967,107). 

This was reflected, for example, by the fact that within the private sector 

banks were the principal users of computers - In Britain it was calculated that 

the financial sector owned about ' 11 % of the total computer stock (Stoneman 

1976,164). Within the field of routine accounting, however, applications were 

becoming more sophisticated. The. introduction of magnetic-ink character 

recognition (MICR) encoding on all cheques in the late 1950s and early 1960s 

provided an important stimulus for the computerisation of record keeping for 

125 



cheque accounts (Ernst 1982,112). Computer-based equipment for tellers was 

also introduced early in the 1960s to speed the processing of bank transactions. 

The first credit card systems were developed in the late 1960s (Ernst 1982, 

115). 

In the private sector more generally, computers were used mainly for the 

routine clerical tasks: 

"By the mid-1960s most large businesses had turned to computers to 
facilitate such routine 'back office' tasks as storing payroll data and 
issuing checks, controlling inventory and monitoring the payment of 
bills. With advances in solid-state circuit components and then with 
microelectronics the computer became much smaller and cheaper. Remote 
terminals, consisting either of a teletypewriter or a keyboard and a video 
display, began to appear, generally tapping the central processing and 
storage facilities of a mainframe computer. There was steady 
improvement in the cost effectiveness of data-processing equipment. All 
of this was reflected in a remarkable expansion of the computer industry" 
(Giuliano, 1982,126). 

Even In manufacturing companies, the first applications of computers were 

not directly connected with the process of production itself, but with the 

automation of routine administrative and financial tasks (Gunn, . 1982,88). By 

the late 1960s, however, this was changing. The Introduction of computers Into 

the design of products and their manufacture began to develop rapidly (Kaplinsky, 

1984, p. 33). Computer aided design was initially developed in the 1950s for the 

US early-warning nuclear defence system, but it was Increasingly applied In the 

1960s, primarily for military projects, and then spreading to the automobile and 

aviation industries by the late 1960s (Kaplinsky, 1984,47). Similarly, 

numerically controlled machine tools were a technology which had been promoted 

by the military (the US Air Force) in the 1950s, but which really only took off 

commercially In the mid-1960s with the introduction of the cheaper and more 

126 



reliable computers of the third generation (Kaplinsky, 1984,65). 

In the more general area of management, attempts were being made to push 

computer applications beyond the performance of routine tasks. Starting in the 

late 1950s more complex programs were developed to automate some activities 

that had previously been performed with some element of judgment or had not 

been performed at all, such as sales forecasting, inventory control and production 

scheduling. Developments in this direction were supported by the development of 

more sophisticated mathematical techniques such as PERT (production evaluation 

and review technique), CPM (critical path method), simulation and dynamic 

programming (Gawne-Cain 1967,158; Boehm 1962,128). The various 

developments still affected only discrete, fairly routinised activities within a 

company structure: 

"All these avenues of advance were at first followed Independently. 
Computers were still serving Industry merely as overgrown 
book-keeping and calculating machines" (Gawne-Cain 1967,158). 

At the same time, however, the development of the new mathematical 

techniques for evaluating possible courses of action led people to speak of a new 

"decision theory" which could lead to a "marriage of judgment and mathematics" 

(Boehm 1962,129) and provide a new rational basis for executive 

decision-making. 

Roughly coinciding with the introduction of the first third generation 

machines, there is then the beginning of a third, "information systems" wave of 

computerisation (Klahr and Leavitt 1967,108): 

127 



"During almost half a decade..., there has evolved from this heterogeneous 
growth the concept that the primary and all-important function of 
computers in business is management control. The separate, largely 
unrelated, single computer applications, already developed and currently 
being developed should be replaced by an 'Integrated Management 
Information and Control' system. This reflects a very important 
fundamental characteristic. The system is conceived and designed as a 
whole, to control an entire business organization rather than evolved as a 
loose combination of a number of more or less Independent computer 
applications applied at a more tactical level of management" (Gawne-Cain 
1967,158). 

For business users, one of the principal challenges of this period is to develop 

total Management Information Systems. Although computers were still being used 

predominantly in routine clerical tasks, by the mid-1960s this was seen as being 

relatively straightforward. From the point of view of management, it did not 

provide any major problems, since It involved the automation of a self-contained 

activity that could relatively easily be reduced to a system of rules. 

"Back in the days when corporate computer efforts centred on the 
conversion of accounting and administrative systems, management seldom 
had to concern itself with the issue of feasibility. With a relatively 
orderly manual system, the feasibility question centred on the technical 
problems of programming the computer" (McKinsey 1969,29). 

The desire to use computers for more sophisticated applications was of course 

prompted not only by the fact that such a development posed a challenge (although 

this may have motivated some programmers and data processing departments), 

but, much more concretely, by the pursuit of profit. By the late 1960s It was felt 

that the savings to be made by the further automation of clerical work no longer 

justified major expenditure on computers. 

"As a superclerk, the computer has more than paid its way. However, the 
areas (such as administrative and accounting systems) In which most 
companies have concentrated their computer activities are also those 
where the cream (and some of the milk) has already been skimmed. As a 
result, mounting computer expenditures are often no longer matched by 
rising economic returns" (Hertz . 1969,168). 

128 



The development of comprehensive management information systems was 

intended to achieve big improvements in managerial decision-making. The aim of 

such systems was to process data from the whole of the company in a 

comprehensive form. Information is distinguished from mere data: 

"A management information system is an assemblage of data (facts, 
opinions, etc) so processed (summarized, categorized, projected, etc) 
that it constitutes intelligence (information) for purposes of managerial 
decision-making and the attainment of organizational goals" (Tomeski and 
Lazarus1975,104). 

The ambitions of management information systems are well illustrated by a 

table in which Tomeski and Lazarus contrast MIS with traditional data processing: 

"Data processing frequently has 
the following characteristics 

MIS frequently has the 
following characteristics 

Routine 
Procedurized 
Accounting orientation 
Internal data 
Mechanistic 
Basic computations 
Historical or current data 
Precision recordings 
Examples of Data Processing 
Payroll 

Man-job matching 
Labor cost accounting 
(Tomeski and Lazarus 1975,107). 

Non-routine and novel 
Difficult to procedurize 
Extends beyond accounting 
External and internal data 
Some human judgment 
Complex computations 
Predictive 
Estimates 
Examples of MIS 
Collective bargaining 
strategy 
Manpower forecasting 
Human resource accounting" 

The definitions of Management Information Systems vary, but the two features 

most often emphasised are the transition from the routine to the non-routine and 

the integration of information from different spheres in a form that will be useful 

for the process of decision-making. 

The idea of using computers to construct Management Information Systems is 

129 



closely associated with the development of management science: 

"The machines in effect incubated the new discipline "management 
science", based upon an explicit faith in the quantitative approach to 
problems that had traditionally been looked upon as qualitative - and 
therefore susceptible only to intuition and experience" (Alexander 1969, 
127). 

More precisely, management science is said to involve: 

"1. Constructing mathematical, economic and statistical descriptions or 
models of decision and control problems to treat situations of complexity 
and uncertainty. 
2. Analyzing the relationships that determine the probable future 
consequences of decision choices, and devising appropriate measures of 
effectiveness in order to evaluate the relative merit of alternative action" 
(Tomeski and Lazarus 1975,114). 

Since the quantification of so many variables leads to very complex 

computations which must be done in real time, the principles of management 

science only become practicable if the power of a computer is applied. 

The application of management science and the development of Management 

Information Systems was, of course, not limited to business. As In other areas of 

computer development, the Department of Defense played an important role (the 

third generation is, after all, the time of the Vietnam War): 

"The United States Defense Department, the largest single user of 
computers, has been prominent In-the forefront of computer-based 
information systems. Robert McNamara, when he was Secretary of Defense, introduced a plethora of advanced management techniques 
including computerized planning programming budgeting systems (PPBS) 
which appraised missions on a cost-benefit basis, rather than on the old line-item basis" (Tomeski and Lazarus 1975,120). 

The quantification of that which had previouly been considered qualitative, the 

integration of that which had previously been considered separate and the 

130 



routinisation of that which had previously been seen as non-routine obviously 

posed problems of a new order for programming. It is hardly surprising that 

users encountered enormous difficulties. Despite early optimism about what could 

be achieved (e. g. Boehm 1962), there was growing disillusionment by the end of 

the 1960s. There was a big gap between the claimed potential of MIS and the actual 

achievements. The happy pictures of users painted in the press were not always 

accurate: 

it is widely reported that these have passed through the the tribulations 
of clerical mechanization and have achieved the blissful state of IMIS 
(integrated management Information systems). A simple count, however, 
would probably show that only a few have gained the heights of IMIS, and 
that the main body is still struggling and cursing In the clerical swamps 
below. Those who report computer applications appear in fact to be 
unduly Influenced by the primitive grammar of computer languages, for 
you will recall that these do not distinguish between the past and future 
tenses, nor between an intention and its execution" (Laver 1970,107). 

By the early 1970s, Morgan & Soden report that: 

"Abandoning multimillion dollar MIS development efforts is commonplace 
today" (Morgan and Soden 1973,157). 

Even more graphically, Tomeski &Lazarus report the laments of a company 

vice-president who had sponsored a study of his company's MIS needs: 

"Every year the computer department management claims it needs an 
expanded budget for more equipment, more programs and more staff. Yet, 
we have yet to obtain any management information. What information we 
do get is often of questionable value. The other day I received some 
forecasted data regarding the next year's sources of revenue. Some of the 
figures were absurd. I won't spend a nickel more on the operation until 
the mess is cleaned up" (Tomeski and Lazarus 1975,117). 

The first problem in the development of management information systems was 

that the software provided by the manufacturers did not provide as helpful as had 

131 



been hoped: 

"The data management and communications support facilities offered with 
operating systems were only of limited assistance to the user. Time 
sharing software was found ill-suited for use In a data processing 
environment where the emphasis centers more on sharing of data files 
than computational power between multiple users... File sharing, too, 
raised more complex problems which the generalized management 
software could not adequately resolve. It could only assist the user in 
implementing his own file design" (Bouvard 1970,121). 

Another problem was that effective management information systems depended 

on on-line processing, and the implementation of on-line systems proved very 

difficult: 

"On-line processing has been expensive for the most part, long in lead 
times and failure-prone. If one were to define the characterisitics of an 
on-line Implementation, they might read as follows: on-line systems are 
traditionally installed late... significantly over budget... below performance 
expectations... low cpu utilization-difficult to expand" (Flynn 1974,71). 

However, the problems faced in implementing Management Information 

Systems go much deeper and relate to the nature of software itself. The contrast 

between the automation of clerical work and the development of management 

information systems is a contrast between "a relatively orderly manual system" 

(McKinsey 1969,29) on the one hand, and a vague desire where nobody seems to 

have had a precise idea of what was required, on the other. Software Is the 

reduction of processes to precise rrules, but this can only be achieved If the 

requirements themselves are specified In a clear and orderly form. 

"Computers are a long, long way from aping the behaviour of the human 
mind. Before they can help with even the most routine chores, the rude 
chaos of the real world and the unpredictable behavior of humans at work 
must be reduced to an array of simple and highly specific tasks and instructions that the machine can handle" (Alexander 1969,168). 

132 



This is the very core of software: the reduction of the "rude chaos of the real 

world and the unpredictable behaviour of humans at work" to an array of simple, 

specific rules. In the case of Management Information Systems, it was not clear 

just what were the processes that were to be reduced to rules and whether they 

could be reduced at all: 

"Management Information Systems today are not a well-defined 
application. Aside from saying that a manager shouldn't have to think, we 
know only in vague terms what a management information system is to 
provide. Now I don't mean to say that there aren't well-defined 
applications which do specific, useful things for management. There are, 
and they can be classified as management information systems. But too 
often today, the generic term management information system refers to 
'terminal in the office, push the button, and get the answer to the 
competitive problem or next year's profit'" (Reynolds 1967,19). 

Moreover, it was not simply that the concept of the Management Information 

System was often very vague, but the process of management is inherently 

difficult to reduce to a set of rules. Managers, at least at a higher level, normally 

deal with decisions which do not fit into a pre-established pattern of rules, and 

the way that they deal with them will vary from one manager to another: 

"Because a manager deals with exceptional cases, it Is difficult to predict 
and define clearly what he is going to do, what data he is going to need, and 
how he is going to use it... The analyst does not know what the exceptions 
are going to be until they occur. Moreover, until an exception occurs, the 
kind of data that will be needed to handle it is also unknown. The analyst 
does not know what kinds of alternatives will be developed, what can be 
explored and examined, nor what kind of historical data will be relevant 
until he knows which manager will handle the problem and how he 
"operates" (Gosden and Raichelson 1970,76). 

A fundamental problem in the concept of a Management Information System is 

the idea that the different factors to be taken into account in a managerial decision 

can be reduced to a common denominator, as quantities. Yet the effect of 

computerising the most routine business activities is to concentrate managerial 

133 



attention on the least predictable aspects of business, with the result that 

management becomes progressively less of a quantifiable activity: 

"This leaves top management grappling with a world of future 
possibilities, of people, politics, and policy. As it happens, these are the 
most important realms of all at a time when efficiency of operations 
weighs less in survival value than the ability to handle change. But this 
unstructured world tends to resist quantification of any kind and is 
certainly not reducible to a mathematical formula of the aesthetic 
exactness that scientists and computer people crave" (Alexander 1969, 
128). 

The whole idea of constructing a Management Information System is full of 

contradictions and the distinction made between data and information is not as 

simple as it seems. This does not mean that the concept of the MIS is not 

important. It simply means that these contradictions are carried over into the 

software itself. 

The interface between the often vague and contradictory demands of 

management and the process of programming precise instructions for the 

computer is the work of the systems analyst or system designer. It was at this 

time (from the mid-1960s) that systems analysis emerged as a distinct branch of 

the programming profession. The task of the systems analyst (possibly In 

conjunction with an operations researcher or management scientist) is firstly to 

define the problem to which a solution is to be sought and secondly to decide on the 

overall structure of complex programming projects. The work of the systems 

analyst thus has two sides to it: in the phase of problem definition the analyst's 

face is turned towards the user (in this case the management of the company); the 

phase of deciding on the overall structure of the program involves an interface 

with the programmers who translate the analysts' specifications into instructions 

134 



to be fed into the computer. 

In the case of Management Information Systems, however, to speak of the 

systematisation of the process is no help when it was often not clear what it was 

that was supposed to be systematised. Simon (1960,8) distinguishes between 

programmed or routine decisions which can be easily automated, and 

non-programmed or ill-structured decisions. One of the aims of systems analysis 

is to extend the area of programmed (and automatable) decision making. However, 

it Is'clear that this is not just a technical task, but one which requires knowledge 

of the management process and also involves certain conflicts of interest. 

The Introduction of Management Information Systems almost Inevitably 

involves a conflict of interest with certain managers. The aim of such systems Is 

to alter the control structures within firms, so as to Integrate areas that were 

previously separate. Information that previously remained within departments or 

sections is now to be made available more widely. One of the aims of the system is 

to subordinate the goals of the different parts of the organisation more firmly to 

the aims of the organisation as a whole. Inevitably, this means, If not a loss of 

power, then certainly a loss of autonomy for the managers of the different units. It 

is not surprising that one study of the problems of implementing Management 

Information Systems revealed "a great deal of massive resistance on the part of 

managers, particularly at the unit and subunit level" (Huse 1967,291). Another 

study speaks of "aggression, avoidance and projection as the three types of 

dysfunctional reaction of unit managers to MIS" (Dickson and Simmons 1970,63, 

cited in Tomeski and Lazarus 1975,121). The reactions of management often led 

to a watering down of the Idea of Integrating the information between different 

135 



parts of a company as unit managers demanded, for instance, "that the programs, 

at the interface between different sections or subsections, come under manual 

control of the individual manager" (Huse 1967,291). Inevitably, a data 

processing department's ability to Implement a Management Information System 

in such a case involved a power struggle with individual unit managers. 

However, it would be too simple to see data processing departments simply as 

a tool for strengthening central managerial control. The user companies were not 

monolithic units. 

The commercialisation of computers, the growing distance that separated 

producers from users, had given rise to a distinct profession of computer and 

programming specialists: 

"The early computers were designed, developed, programmed, and 
operated at first hand by the mathematicians who wanted to apply their 
results: the influence of the users was immediate and continual; their 
needs were paramount. Then the professionals took over, computing grew 
into an industry, and it stratified. Designers worked for manufacturers, 
developing and producing what could most profitably be made and sold. 
Programming and operating became specialisms and, In the Interests of 
efficiency, users - business users especially - were banished from the 
machine room. Users' experience of computing became vicarious... " 
(Laver 1970,104). 

The specialists were not just the computer manufacturers, as opposed to the 

users: rather, they were a distinct group within each type of company, both 

within the manufacturers and within the users, often moving easily from one 

type of company to the other: 

"Working managers feel..., not without reason, that computer experts are 
mercenary soldiers who are seeking high reward and fields chosen to demonstrate and develop their skill; and who remain uncommitted to any 

136 



cause but their own" (Laver 1970,105-6). 

The programming specialists had their own interests and objectives, which 

were not necessarily those of the company. 

"For instance, a technician's 'dream' may be a sophisticated computerised 
accounting system; but in practice such a system may well make no major 
contribution to profit" (Hertz 1969,169). 

In many cases programmers did not understand management's requirements. 

There were frequent complaints about the ignorance of computer staffs when it 

came to assessing what information was important to management. The education 

of programmers trained them to program computers but not to understand what 

Information was required by managers: 

The result of this training is to produce annually, by the tens of thousand 
each year, individuals who can indeed program the third-ge ne ration 
equipment produced, but who have little or no conception as to how 
organisational information is handled as part of the decision-making 
process for that organisation" (Trocchi 1968,29). 

Or again: 

"Computer department staffs - though they may be superbly equipped, 
technically speaking, to respond to management's expectations - are seldom 
strategically placed (or managerially trained) - to fully assess the economics 
of operations or to judge operational feasibility" (Hertz 1969,169). 

The limitations of the programming staff were seen largely as a question of 

ignorance but also as a matter of culture: 

"Most experts agree that another barrier to the most desirable use of the 
computer is the immense culture and communication gap that divides 
managers from computer people. The computer people tend to be young, 
mobile, and quantitatively oriented, and look to their peers both for 
company and for approval... Managers, on-the other hand, are typically 
older and tend to regard computer people either as mere technicians or as threats to their position and status - In either case they resist their 

137 



presence in the halls of power" (Alexander 1969,168). 

There was often hostility or suspicion towards the computer specialists: 

"The ordinary business user has the impression that computer people do 
not much want to communicate with outsiders, that they enjoy a collective 
narcissism: nor is communication aided by the fact that computer men 
tend to be young and hawkish, and occasionally to theorise with 
breath-taking arrogance where working managers have learned to 
proceed with pragmatism and with hope" (Laver 1970,105). 

It was felt that programmers did not always pursue the interests of the 

company: 

"More often than not the systems designer approaches the user with a 
predisposition to utilize the latest equipment or software technology - for 
his resume - rather than the real benefit of the user" (Morgan and Soden 
1973,159) 

In this, of course, the interests of the computer staff may be very close to the 

interests of the computer manufacturers. The lines between producers and users 

become blurred, and the tensions between manufacturers and users become 

reproduced within the user companies themselves. 

From the point of view of senior management, therefore, the development of 

management information systems did not simply involve using computers to 

increase their control over the company. They also had to fight to assert control 

over the computer staff. This was made all the more difficult by the explosion of 

programming associated with the third generation. The shortage of programmers 

meant that it was necessary for management to offer not only good salaries but 

also good conditions of work. This was also a period in which more and more 

computer departments gained organisational autonomy - previously, many had 

been subdivisions of accounting or financial departments. 

138 



The assertion of managerial control meant that the question of the feasibility 

of computer applications could no longer be treated as a technical matter which 

could be safely left to the computer staff. It required managerial Intervention, as 

McKinsey & Co, the management consultants, pointed out in their 1969 report: 

"Today the situation is very different. Applications are not only more 
complex, but also more far-reaching in their impact on different 
operating departments. Feasibility is no longer an issue that operating 
managers can ignore, for it is affected by complex economic and 
operational questions that the staff specialists are unequipped to answer. 
Yet many managers - far too many - are still leaving the whole question 
of feasibility to the computer professionals" (McKinsey 1969,29). 

It was necessary that the managers themselves should become involved in the 

process of automation and impose the interests of economic feasibility: 

"Many otherwise effective top managements, however, are in trouble with 
their computer efforts because they have abdicated control to staff 
specialists - good technicians who have neither the operational 
experience to know the jobs that need doing nor the authority to get them 
done right. Only managers can manage the computer in the best interests 
of the business. The companies that take this lesson to heart today will be 
the computer profit leaders of tomorrow". (McKinsey 1969,33) 

The problem of making computers do what they are supposed to do - 

contribute to the users' profitability - was thus translated into a question of 

control. The managers must take priority over the computer specialists, the 

criteria of economic feasibility must take priority over problems of technical 

feasibilty. For the manager, as Hertz points out, the interests of the company 

must take precedence over questions of technical elegance: 

"He must make the technology work for the company and not use the 
company's resources merely to support an elegant systems effort" (Hertz 
1969,171). 

The examination of the problems of the users thus brings the discussion back 

139 



to the central theme of earlier chapters. The tension between scientific-technical 

considerations and economic interests which can be seen in the conflict between 

FORTRAN and ALGOL, and again in the deliberations of the SPREAD Committee, and 

again in the history of the operating systems, reappears here as a question of 

control within the user companies, as a conflict between programmers and 

managers. Inseparably entangled with this tension between the technical and the 

economic is the question of the nature of software itself, the reduction of the "rude 

chaos of the world" to a set of rules. 

iý- 

140 



Chapter 5 

The Commodification of Software 

Bundling 

The difficulties experienced by both producers and users with Third 

Generation computers led to a new awareness of the significance of software. The 

new awareness of software found expression in its growing commodification at the 

end of the 1960s. 

As was seen in the discussion of operating systems, it had become the practice 

for computer manufacturers to provide the software together with the hardware. 

In the earliest days of computers, the manufacturers would simply sell the 

computer itself, which would be programmed by the user: neither operating 

systems nor applications packages existed. As computers developed, however, and 

particularly with the advent of operating systems, it became established practice 

for the computer manufacturer to provide both operating systems and applications 

software "free" with their machines. This practice was referred to as "bundling": 

"Bundling is 'the offering of a number of elements that are considered to 
be interrelated and necessary from a customer's point of view, in the 
computer field, under a single pricing plan, without detailing the pricing 
of the component elements themselves'. The elements that were offered 
without a separate price were nonhardware items such as education, 
software, systems design and maintenance" (Fisher et al 1983,172). 

Thus, users bought a bundled package in which hardware and software were not 

priced separately. Software was regarded as purely secondary, as part of the 

service that users received when they purchased a computer.. 

141 



"The positive reason behind bundling was you were selling or leasing the 
customer a complicated piece of equipment customers typically didn't 
understand and what the customer bought was not a piece of hardware that 
would sit there but some assurance that it would do what you said it would 
do and so, what you sold him was the assurance. One can really not imagine 
an IBM salesman In, let's say, the 1950s going out and saying 'By the 
way, after you have bought this thing, then I'll sell you the stuff that'll 
actually make it go" (Fisher interview). 

Although it appeared that the manufacturers were providing a service free of 

charge to the users, in fact the practice of bundling had fundamental advantages 

for the manufacturers. Firstly, it played an important part in expanding the 

market for computers. One of the main obstacles to the development of the 

computer industry in the early days was the newness and unfamiliarity of 

computers. No matter how good the hardware was, the market would be limited 

until customers had learned to use the new machines. The provision of software 

and other support services was an important means of overcoming this barrier. 

The computer manufacturer dealt with the user not only through the salesperson, 

but also through the systems engineer. The systems engineer would work with the 

user to work out a hardware-software system configuration tailored to the user's 

needs and to write the specific applications software. 

Even after the Initial unfamiliarity had been overcome, bundling continued to 

be an important part of the marketing of computers. One of the reasons for the 

success of IBM was the extent to which It provided such bundled services as part 

of its marketing effort: 

"At IBM the provision of bundled support began before the installation or 
even the acquisition of a computer by the customer. Such support was 
viewed both inside and outside IBM as an essential part of the marketing 
effort. The IBM systems engineer... worked with -customers to define 
requirements, in system design, developing approaches to problems; they 

142 



also engaged in customer education and training, and in programming" 
(Fisher et at 1983,172). 

The practice of bundling was an important means by which manufacturers 

protected themselves against the risks involved in the leasing system. The fact 

that each manufacturer had its own way of writing software, forced users to be 

loyal to a particular manufacturer: switching software involved not only the 

costly process of rewriting programs, it also meant the upheaval of reorganising 

processes that had been shaped around a specific software configuration. Thus, the 

differences in software made it difficult for users to switch from one 

manufacturer to another. 

Quite apart from the benefits that the practice of bundling brought for 

manufacturers, it was difficult in the early days to imagine how software could be 

marketed separately. People did not think of software as a thing that could be sold. 

Indeed, the generic term "software" did not exist before the 1960s. Software was 

seen as something that you shared With people: 

"The negative reason behind bundling was that It was very hard to imagine 
how to sell software as property. It's still quite hard, not to imagine, but 
to enforce property rights In software, the way people just copy - people 
with personal computers do that all the time. The concept of that was 
foreign... In the early days; software was something you wrote and shared 
with people" (Fisher Interview). 

This assumption was expressed clearly in a letter by Galler of the University 

of Michigan to the editor of the Communications of the ACM in 1960: 

it has come to my attention that a 704 statistical program has been 
produced at Arizona State University which apparently does a pretty good job on factor analysis and a few other things. Unfortunately, the letter I 
saw indicated a charge of $3 for the manual, $4 for one box of binary 
cards and $20 for four and a half boxes of SAP cards (plus postage). 

I believe that this has very unfortunate implications for the computing 

143 



profession. When one has to cover printing and card costs, that is one 
matter. In this case, however, it is clear that what is being charged for is 

the development of the program, and while I am particularly unhappy that 
it comes from a university, I believe it is damaging to the whole 
profession. There isn't a 704 installation that hasn't directly benefited 
from the free exchange of programs made possible by the distribution 
facilities of SHARE. If we start to sell our programs, this will set very 
undesirable precedents" (quoted by Frank 1976,92). 

During the 1960s, the conception of software began to change. There were 

various developments that contributed to the emergence of software as an 

independent commodity. 

Firstly, the difficulties of producing increasingly complex software, and 

particularly the traumatic experience of the 360 software, led to a new 

awareness: producers realised just how difficult software was to produce, and just 

how costly. In the case of IBM, not only OS/360 Itself, but the whole package of 

bundled support for the 360 cost much more than the company had expected: 

"The training of the enlarged marketing staff, the support required by 
users to effect their conversion to the new and sophisticated operating 
system software associated with System/360, and the problems that IBM 
encountered with some of the 360 software caused the firm to devote an 
enormous portion of its resources to supporting the installation of 
System/360" (Fisher et al 1983,176). 

Although these costs were passed on to the users in the long term, it was IBM 

which had to bear the immediate costs involved. Within IBM, there was growing 

concern about the returns on their ever-increasing software expenditure: this led 

in 1966 to an attempt to quantify these returns (Fisher et al 1983,176). 

As the area of computer applications extended, there was also a growing 

community of sophisticated users who felt that they did not need the same level of 

support from the manufacturer and often preferred to write their own software. 

144 



These users resented having to pay for the whole package: what they wanted was "a 

lean, hard machine". This was seen already in the case of the 360/44 model, 

where IBM responded to users' demands by providing a machine without the usual 

software. As Thomas J. Watson later testified: 

"We had some very sophisticated customers by this time, Lockheed, 
Boeing and others, who felt that they were better at performing some of 
these services than we were. They felt it onerous to pay for them when 
they, themselves, could do it in their opinion better" (quoted by Fisher et 
al 1983,176). 

Another thing that helped to change the conception of software was the 

development during these years of independent software houses. The first software 

houses were founded in the late 1950s and early 1960s as consultants for the 

military and space agencies. By 1965 there were about 40 to 50 Independent 

software vendors in the US and it was during the period of the third generation 

computers that software houses expanded. Software houses were then not just 

involved with government contracts. As computer manufacturers could not cope 

with the production of the software for the third generation computers, they began 

hiring consultants and university professors. In fact a lot of the system software 

for the third generation computers was done by software houses (about 30 to 

50%). With the expansion and complexity In the use of computers, users 

increasingly began to use the services of software houses for their specialised 

applications. The software houses emerged as a bridge over the growing gap 

between producers and users. It was relatively easy to start a software house - 

not much capital was needed - and a lot of companies were formed by people 

leaving the larger firms. By 1968 there were nearly 500 software houses in the 

USA and their number was increasing. 

145 



Software houses influenced the conception of software: "the growth of the 

independent software industry showed that in fact it was possible to offer software 

separately as a product" (Fisher interview), that it was possible to price 

software and services independently of hardware. The fact that computers were 

sold or rented bundled created a barrier to the expansion of the software houses. 

The concept of software as a product was also associated with the growing 

importance of software packages. Software packages were originally developed by 

computer users. The sharing of experience in users' groups led to "the concept of 

developing programs of general applicability and thereby saving the time and 

money that would otherwise be wasted in 'reinventing the wheel'" (Head and 

Linick 1968,22). Packaged software had advantages for users not only in terms 

of costs but also in terms of standardisation: 

"Multi-divisional companies began to appreciate the advantages of 
application software which could be used by all divisions. This led to 
standardisation of operating and clerical procedures combined with 
increased generality in the computer- programs" (Head and Linick 1968, 
23). 

As the advantages were realised, competitive pressures led manufacturers to 

provide application packages with their machines. The problems associated with 

the advent of third generation computers gave a boost to the development of 

software packages: 

"Manufacturers have been hard pressed to provide essential system 
software. Users have had to expend huge programming resources in 
conversion efforts. And, of course, good programmers are in very short 
supply" (Head and Linick 1968,23). 

In addition, compatibility between computers and the use of common programming 

146 



languages helped to open up a much wider market for application packages. 

Computer manufacturers were unable to meet the increasing demand 

satisfactorily and by the end of the 1960s many of the application packages were 

being supplied by software houses. By this time, software houses were selling not 

only applications software but also operating systems, such as the Mark IV 

System, an operating system developed by Informatics Inc. to be used with the IBM 

360 computers (Postley 1968). Despite the fact that the products of software 

houses were sold on the market, while the manufacturers' software was offered 

free of charge, the superior quality or the greater specialisation of the software 

houses' products often made it worth while for the users to buy them. 

Property Rights 

The development of software packages brought to the fore another issue that 

had a bearing on the changing awareness of software: the protection of property 

rights. This problem was highlighted by a UK scandal concerning the "plagiarism" 

of sections of the British Overseas Air Corporation's $100 million international 

airline reservation system. It was alleged that some employees of BOAC had 

expropriated information for consultancy work and passed it to a software house 

which used it to win a public contract. The scandal caused "considerable 

consternation among manufacturers and software houses" (Datamation June 

1968,91). 

The whole issue of property rights in software has been a topic of intense 

debate since that time. It was not clear whether software could be regarded as 

property and just what this would mean. To make this point clear, Dansiger makes 

an analogy with the protection of musical melodies. He cites a legal action In which 

147 



the composer of a tune called Moonglow claimed that the theme music of a 

Hollywood movie called Picnic was based on his melody and that he was therefore 

entitled to a large part of the royalties. The decision of the judge on whether the 

theme of the film was basically a copy of Moonglow or not was "necessarily 

subjective", because it is often very difficult to determine the degree of 

originality in music: 

"The music business has suffered for many years from this problem. No 

objective method has ever developed for settling these disputes" 
(Dansiger 1968,32). 

In just the same way, it is often very difficult to determine the originality of 

programs: "many claims have been made that one program is merely a slight 

reworking of another program previously in existence" (Dansiger 1968,32). 

Even if this problem could be overcome, it was still not clear just what would 

be covered by the protection of software: would it be the detailed coding of a 

program or the logic flowchart, or the results, or perhaps the algorithm 

underlying the program? (Davidson 1968,12). Moreover: 

"To complicate matters, we have not so much an undefined product as a 
product whose definition keeps changing all the time. Software can be 
considered from several levels. It can be simply the program, as it 
appears in a deck of cards or on a reel of tape. It can be this plus the 
research effort which has gone into an over-all study of the problem" 
(Bigelow 1968,32). 

The two main existing forms of "intellectual property right" were copyright 

and patent. Under the US Copyright Law, the author or other copyright owner has 

exclusive control for 28 years of the right to reproduce the form of expression. 

Under the Patent Law inventors have exclusive right to control the use of their 

148 



Inventions and the methods embodied therein during a period of 17 years. 

Copyrights are registered and any disputes come only after the registration; in the 

case of patents, the patent is applied for and the Patent Office examines the 

application to see if it meets the criteria of being (a) not already invented and (b) 

not obvious (Bigelow 1968,32). 

The US Copyright Office decided in May 1964 that computer programs could 

be registered if certain requirements were met. However, the acceptance of 

programs for registration did not necessarily give legal protection to the 

programs because the Copyright Office still took no position on whether a program 

could be considered to be "a writing of an author". The debate therefore continued 

on whether programs should be copyrightable. Opposition to the idea came mainly 

from the Interuniversity Communications Council (EDUCOM). EDUCOM claimed 

that if copyrights were permitted, it would be unlawful to use the program In a 

computer without the permission of the copyright owner. If copyright had existed 

from the beginning, they argued, so that program preparation had "been 

constantly carried out under the threat of Infringement actions charging 

plagiarism of existing copyrighted programs, it is doubtful whether the growth of 

programs and programming techniques of recent years would have been possible" 

(quoted by Bigelow 1968,33). 

The response of the Copyright Office was that these fears were Ill-founded: 

"The case of Baker v Seiden decided by the Supreme Court in 1879 said, 'the copyright of a work on mathematical science cannot give the author an 
exclusive right to the methods of operation which he propounds, or to the 
diagrams which he employs to explain them, so as to prevent an engineer from using them whenever occasion requires'" (Bigelow 1968,33). 

149 



By analogy with this case, the Copyright Office argued that the use of a copyrighted 

program would not be an Infringement of the copyright whereas its reproduction 

would be. In effect the protection offered by copyright is limited to manuals, 

advertisements, and other documentation. 

- Most of the discussion of the protection of software property in these years 

focused on the question of patents rather than copyright. The initial approach of 

the Patent Office was that computer programs were not patentable because they 

were not "methods or apparatus, but rather mathematical processes or formulae" 

(Bigelow 1968,33) - which traditionally had been held not to be patentable. In 

August 1966 the Patent Office modified its position slightly by issuing guidelines 

which stated that a patent could be granted to a program if it could meet the 

requirements of either a "process" or an "apparatus". 

These guidelines were discussed in a public hearing in Washington in October 

1966. At this meeting the discusion focused around the question of whether 

computer programs deal with "mathematical" or "functional" entities: 

The guidelines, which deserve a prize for murky syntax, seem to say that 
a program as usually written is an algorithm - i. e., a mathematical 
process - and hence unpatentable. But they go-on to say that if the 
Individual steps are described In functional terms- as changes 'in the 
state of certain electrical or mechanical. devices within the computer- 
the program would be eligible for patent consideration" (Hirsch 1966, 
79). 

As a number of the participants pointed out, such a distinction seemed 

unsatisfactory because any program written in algorithm terms could be patented 

simply by rewriting the algorithm in functional terms. 

150 



At the hearing the guidelines were universally criticised, but there were 

different views about the desirability of patents. Software users at the meeting 

were against the guidelines but in favour of patents. The computer manufacturers, 

however, were against any form of software patenting. Their argument was 

basically that software could not be seen as autonomous from hardware. This view 

was put forward by a representative of Honeywell: 

He argued that a computer program can't be new, in the sense meant by 

the patent statute, because the corresponding logic design Is 'contemplated 
fully in the design of the computer ... In evaluating a computer program... it 

should be kept in mind that the hardware... at any particular instant.. will 
be under the control of a program instruction which will... establish pre- 
determined ... circuit paths. At that particular Instant, the 
paths... established are (those) fully contemplated by the designer of the 
equipment'" (Hirsch 1966,81). 

The introduction of patents, manufacturers argued, could spoil their relationship 

with users. Manufacturers often developed their programs in cooperation with 

users and the introduction of patents could lead to arguments over ownership 

rights. 

There were very few software houses represented at the hearing, but the head 

of a software firm interviewed after the meeting said that he was not interested in 

patents because "the programs we develop change too quickly. By the time a patent 

on a particular program was granted, we'd be using an updated version". Some 

software houses were in favour of patent protection, he added, but mainly because 

"it gives recognition to the programmers who do the work, and improves the 

company's image, not because of the property rights involved". Other software 

houses who produced relatively long-lived programs on contract, were interested 

in property rights, but, like the manufacturers they "have to worry about 

151 



customer relations" (quoted by Hirsch 1966,81). 

Over the period of the next few years there was a gradual shift In the position 

of the Patent Office. In April 1968 a patent was granted to Applied Data Research 

for a software sorting system. The president of the company claimed that this 

indicated that "software systems and programs are entitled to patent protection In 

much the same way as computer hardware... The issuance of a software systems 

patent is another milestone In the coming maturity of the software Industry" 

(Richard Jones, quoted In Datamation July 1968,91). However, an official of the 

Patent Office, when asked about the patent, stated "we do not think a program Is 

patentable" (Erwin L Reynolds, quoted by Bigelow 1968,34). It was not until the 

end of 1969, after a number of court cases in which the Court of Patent Appeals 

had overruled the Patent Office (Computers and Automation Jan 1969,72), that 

the Patent Office finally revised its guidelines and announced that In future patent 

applications for software would be considered (Computers and Automation 

November 1969,11). 

In reality, the practical implications of patenting were limited. The 

development of software has been too rapid, and the machinery of patent 

protection too slow, for patents to have had a major significance in protecting 

software (Brock 1975,64). In practice the most common way of trying to 

protect software has been through secrecy supported by contractual provisions 

either between suppliers and users or between employers and programmers. 

However, in an industry that has been developing so rapidly and in which people 

change frequently from one company to another, there are limits to the 

effectiveness of legal protection: 

152 



"As a practical matter, the best protection for the software developer is to 
deal with an honest man, give him a square deal, and trust him" (Bigelow 
1968,38). 

In the case of the BOAC scandal, the immediate response was to see the remedy not 

in terms of enforcing property rights, but in terms of "reinforcing codes of 

professionalism in an industry that is expanding so rapidly" (Datamation June 

1968,91). 

Nevertheless, the discussion of software patents and property rights is very 

interesting because it reflected and legalised the changing conception of software. 

The acceptance that software could be patented was a victory for the argument that 

software was not simply the counterpart of the computer's design but something 

autonomous in its own right; and also for the view that software can be seen as 

closer to engineering than to mathematics. 

Unbundling 

The changing conception of software played an important part in preparing the 

ground for a change in the practice of bundling. The realisation of the problems 

and costs of producing software; the experience of the 360 and other installations; 

the growing sophistication of users who did not always want the whole bundle; the 

legal recognition of property rights In software: all pointed the way to the 

unbundling of software from hardware. 

By the late 1960s there were increasing pressures on IBM to unbundle. These 

pressures came from some, users; who wanted greater freedom from the 

manufacturers, and from software houses, who saw the practice of bundling as a 
barrier to their growth (Gilchrist and Wessel 1972,8). These feelings were 

153 



given open expression in a meeting in May 1968: 

"Five revolutionaries advocated the overthrow of the computer industry 
before almost 600 witnesses at the SJCC [Spring Joint Computer 
Conference] last month. Members of the panel convened to discuss 
separate pricing of hardware and software, they suggested such 
blasphemous thoughts as forcing IBM (and the other manufacturers) to 
price software separately... and spinning off IBM's software production 
activity into a separate company" (Datamation June 1968,72). 

The "five revolutionaries" included the representatives of three Important 

software houses, the director of the Center for Computer Sciences and Technology 

at the National Bureau of Standards and the president of SHARE, IBM's biggest 

users' association. They argued that the current pricing practices were In 

violation of antitrust laws. If IBM were to unbundle, It would lead to an Increase 

in competition which would result in better quality software. One of the speakers 

argued that manufacturers have "little Incentive to offer anything more than what 

will make the machinery function adequately". Separate pricing, he argued, 

"would offer the competition and the Incentive to produce 'outstanding' software 

support" (Datamation June 1968,72). The president of SHARE emphasised that 

"ultimately,... it will be the computer users who will have to insist on the separate 

pricing of hardware and software" (Datamation June 1968,72). 

In the same month, some software houses united to establish the Association of 

Independent Software Companies, with -the aim of fostering their interests. The 

establishment of the Association was said to be "a sign of the continuing maturity 

of the computer software field" (Computers and Automation, July -1968,14). One 

of their priority concerns was -"the question of separating procurement and 

pricing of hardware and software" (Computers and Automation, July 1968,14). 

Their first president was one of the "five revolutionaries", Richard Jones of 

154 



Applied Data Inc. In July of the same year, Jones published a letter calling for the 

separation of hardware and software pricing: 

"The issue of separating the pricing of hardware and software is the issue 

of free competition. In virtually every phase of our lives, we favor 

competition and the right of the consumer to make a buying decision. Our 

country was founded on this basis, and our legal system, presumably is 

constructed to protect this right" (Jones 1968,12). 

He argued that, apart from being in illegal restraint of trade, the current pricing 

practices meant that the user was paying for lack of competition in at least five 

areas: 

"1. The pricing of equipment includes the cost of highly specialized 
packages which are applicable to a very small segment of user population. 
2. The efficiency of software is an issue over and over. The introduction of 
competition by companies who sell software on its merits would place 
emphasis where it belongs. 
3. The amount of equipment required is of primary concern to 
manufacturers. Software that does not sell equipment or that reduces 
memory and peripheral requirements beyond those otherwise required 
are not in the manufacturer's interest. 
4. Excessive user personnel and unnecessary costs result from the 
present approach which includes over- elaborate, difficult-to-use 
systems software. 
5. The maintenance of software currently leaves much to be desired. 
Placing the economic emphasis where it belongs would improve the 
situation" (Jones 1968,12). 

The idea that unbundling could make a contribution to solving the problems of 

software was a major issue at a NATO Conference held in Garmisch in October 

1968. At that conference, unbundling was such a hot issue that a special session 

on software pricing was arranged in response to demand. The session went on until 

well after midnight, but it was not fully reported in the published conference 

proceedings in order to preserve participants' anonymity: 

"The whole topic was regarded as so sensitive that this was the one session 
for which the conference report merely records the various arguments 

155 



put forward without attributing them to individual speakers" (Randell 
1979,2). 

This "sensitivity" had to do with worries about the dominance of IBM: 

"Within the software engineering conference, amongst a number of 
people, there was an undercurrent of worry about the dominance of IBM, 
and that came out most obviously in the unbundling session. It was because 
of that commercial sensitivity, if I recall it correctly, that we made the 
deliberate decision not to attribute comments to particular people" 
(Randell interview). 

The large majority of the participants in the discussion at Garmisch were in 

favour of the separate pricing of software (GCR 130). It was accepted by most 

people that software was "a sort of commodity": 

The common thought was that software was a sort of commodity. It was a 
valuable commodity, it was a commodity whose reliability and whose 
timeliness mattered ... it was a commodity rather than the almost 
accidental outcome of somebody writing instructions because he wanted to 
use the computer" (Randell interview). 

This view, however, was not accepted by all the participants. One of the arguments 

against separate pricing was that "software belongs to the world of ideas, like 

music and mathematics, and should be treated accordingly" (GCR 132). 

Although most participants saw software as a "sort of commodity", it was not 

clear what the consequences of unbundling would be: "people really didn't know 

what unbundling would do" (Randelf interview). The discussion at Garmisch was 

centred on the relation between the market, power and the quality of software. At 

one level, the call for the separate pricing of software was clearly an attack on the 

power of IBM: 

"A user's dependence on his computing system is such that he should not have to rely on a single manufacturer for all aspects of it. The dangers 

156 



inherent in an organisation with sufficient capital resources producing 
comprehensive software for any industry, educational activity, research 
organisation or government agency are considerable and far outweigh, for 
intance, those of a national or international data bank. A hardware 
manufacturer who also produces the software on which business and 
industry depend has the reins to almost unlimited power" (GCR 132). 

Other participants, however, warned that unbundling would not necessarily 

reduce the power of IBM: 

"Some people undoubtedly argue in favour of separate pricing because of 
their worries about the concentration of power in the hands of a single 
manufacturer. However, separate pricing may well be of most benefit to 
IBM" (GCR 132). 

The increase in competition would not necessarily be to IBM's disadvantage: 

"Separate pricing may bring IBM, which currently owns the largest 
software house in the world (namely their Federal Systems Division) In 
more direct competition with the independent software houses. Thus, 
contrary to prevalent opinion, the Independents may have more to lose 
than to gain by separate pricing" (GCR 132). 

Related to the question of power is the question of quality. The practice of 

bundling and the power of IBM meant that many improvements in software were 

not widely diffused. Unbundling would mean a much better utilisation of talent: 

"Until software is separately priced it is difficult for the software talents 
of the smaller hardware manufacturers, the software houses and the 
universities to be effectively utilized. It Is these sources and not IBM 
which have produced the majority of good systems and languages, such as BASIC, JOSS, SNOBOL, LISP, MTS" (GCR 131). 

The quality of software, rather than any reduction In the price of hardware, 

was seen as the central issue. It was assumed that an improvement in software 

quality would result from the opening of the market to competition and from the 

clearer definition of the value of software: 

"Software is of obvious importance and yet is treated as though it were of 

157 



no financial value. If software had a value defined in terms of money, 
users could express their opinion of the worth of a system by deciding to 
accept or reject it at a given price" (GCR 130). 

John Buxton, one of the participants in the conference, recalls that he made a 

similar argument at Garmisch in favour of unbundling: 

"As I recall, I was lobbying for it because ... I think my own argument was 
that software at the time was not regarded as sufficiently valuable, and I 
felt that the crisis was so great than one ought to attach to software the 
right economic value, otherwise you weren't going to put the right amount 
of money into solving it. So that was my rationalisation for lobbying for 
unbundling, and I'm sure IBM were influenced a lot by that particular 
meeting. I was of course only half right and maybe even half wrong" 
(Buxton interview). 

The reason that he was "only half right and maybe even half wrong" was: 

"What I'd not really worked out was that the cost of reproduction of 
software is of course almost zero. Therefore, if you sell a million copies 
and it costs you a million pounds, you will sell each copy at one pound, so 
what I hadn't worked out was that the consequences of unbundling would be 
that IBM software cost a thousandth of everybody else's software, because 
they sell a thousand times the number of machines. The IBM people at that 
meeting were sharper than I was and they spotted it Imediately, and I 
recall some of them saying, 'You know, there could be some unexpected 
consequences If we unbundle'" (Buxton interview). 

This argument was spelt out in much greater detail in an article published the 

same month by Conway, which Brian Randell (Professor at Newcastle University 

and also one of the participants In the Garmisch Conference) In 1979 referred to 

as "by far the most reasoned contribution to the debate" (Randell 1979,2). The 

central point Is that the relation between design costs and reproduction costs 

makes software a very special commodity. 

The total cost of any mass-produced commodity consists of two elements: the 

design cost, which will depend on the nature of the article, its complexity, need 

158 



for reliability, etc; and the reproduction cost, which will depend to a large extent 

on the materials incorporated in the product. The cost of an individual article will 

consist of its individual reproduction costs plus a share of the total design cost. In 

the case of most mass-produced articles (a car, for example), it is the cost of 

reproduction that dominates: the share of the design cost is not significant. In the 

case of software, however, the relation between the design cost and the 

reproduction cost is the reverse: 

"Software, viewed as a mass-produced article, is strange because the 
design cost D can be very high and the reproduction cost R very low. For 
software which has a small sales and support cost the reproduction cost is 
essentially the cost of copying a tape or punching a deck. Thus the 
per-unit cost of unsupported software approaches zero as the volume 
becomes very large" (Conway 1968,29). 

It follows that the per-unit cost of software is peculiarly sensitive to volume: 

"Everything else being equal, the software producer with the highest 
volume will have the lowest per-unit costs. This effect is much more 
pronounced than in conventional mass-production equipment 
manufacturing where the reproduction cost dominates the design cost and 
the effect of volume on per-unit cost is only a second-order effect" 
(Conway 1968,30). 

As a result, it is the biggest producers who will probably gain most from 

unbundling: 

When the edict comes to separate the pricing of software and hardware 
the lower-volume manufacturers may have to charge more for their 
software. This could have two consequences. First, It could force the 
smaller manufacturers into a hardware price war against IBM, a war 
they can not in the long run win. Secondly, it could lead consumers, other 
things being equal, to prefer machines which will run IBM software. 
Independent software houses will concentrate on developing proprietary 
software for 360's - because of, the larger potential market: this 
concentration, which favors the 360 owner Is already quite evident" 
(Conway 1968,31). 

159 



The long term effect of unbundling could, therefore, be the standardisation of 

hardware and software around IBM's products. 

It was not only the small manufacturers but also the small users who could 

suffer as a result of unbundling, Conway argued. The system of bundled pricing 

meant that the larger users paid for a portion of the total software cost with each 

machine that they purchased. With separate pricing, they would pay only once for 

the software. As a result the small users would have to bear a larger proportion of 

the total software cost. 

Another consequence of unbundling could be that users would no longer receive 

the support of the manufacturer in installing a new system or in integrating 

different components into a computer system. In this case the user would probably 

turn to a software company for support: 

"The major significance of separate software pricing, then, is that it 
promises to drive a wedge into the marketing relationship which now 
exists between the user and the computer manufacturer. The wedge is 
labeled 'prime contractor' and the role is most probably occupied by the 
software houses" (Conway 1968,31). 

It Is clear that, although the call for unbundling seems an attack on the power 

of IBM, the matter is not so simple. There were pressures on IBM, but it Is not 

clear that the pressures were contrary to IBM's Interests. 

The various pressures that were building up by 1968 had a certain influence, 

but they lacked real force as long as the state did not intervene. The US 

government might have used its power as a major purchaser of computers to 

enforce a separation of the pricing of hardware and software. In fact: 

160 



"The General Services Administration and a few other government 
agencies did suggest that hardware manufacturers offer software 
separately, but only in a limited way. Moreover, such governmental 
'unbundling' requests appear to have been motivated solely by the desire 
to obtain an effective price reduction and without any appreciation of the 
effect it would have on the economic pattern of the computer industry and 
resulting indirect costs" (Gilchrist and Wessel 1972,9). 

The government did not intervene effectively as a purchaser. The important area 

of intervention was through antitrust regulation. 

Concern about the monopoly position of IBM was, to a great extent, a result of 

the 360 experience. The 360 family had been a success, It had consolidated IBM's 

position but it had taken IBM into a new era, an era of litigation: 

"Never before or since had any company been so involved in such a 
variety of legal actions simultaneously. Around Armonk, jokesters 
obseved that Watson senior had stressed sales, and Tom Watson, 
technology. The next chairman would have to be lured from the Supreme 
Court, for the company had entered an age of litigation" (Sobel 1984, 
253). 

As soon as the 360 family was announced in 1964, IBM's competitors had 

alerted their law firms and asked them to prepare the ground work for appeals to 

the Justice Department and the courts. IBM responded by starting to assemble its 

own strong legal team. Among the recruits to its legal staff was the former head of 

the Antitrust Division of the Justice Department during the Kennedy years and a 

former Attorney General. Later, when litigation began, "competitors complained 

that the very same individuals who had prepared the case for the government were 

now in IBM's employ" (Sobel 1984,224). There is an anecdote that once Norris, 

the president of Control Data, was looking out the window with a friend at a long 

line of black limousines. "'Someone Important must have died', said the friend. 

'No', snapped Norris. 'That's just the IBM lawyers going out to lunch'" (Sobel 

161 



1984,224). 

The Justice Department started working on a possible antitrust suit againt 

IBM in 1965, but there was a split within the Department "on how best to 

proceed, on which of IBM's practices should be challenged, and even on whether or 

not the entire matter should be dropped" (Sobel 1984,261-262). 

Pressure continued to build up on the Justice Department to intervene. 

Competitors claimed that IBM's conduct thoughout the sixties had been against 

antitrust law in various ways. Software houses calling for unbundling had been 

putting pressure on the Justice Department to take action (Jones, 1968,12). 

Computer manufacturers had been doing the same. Control Data in particular 

complained about IBM's practices, claiming that IBM had prematurely announced 

the 360/90 model and had priced it below costs in order to stop customers from 

buying Control Data's 6600 model. Control Data had collected information for a 

possible antitrust suit, which it submitted to the Justice Department In an effort 

to get the government to take action. The company maintained contact with the 

Justice Department from January 1966 to December 1968, when it was 

Informed that no legal action was contemplated by the Department. In view of the 

inaction of the Justice Department, Control Data filed a private antitrust suit on 

December 11,1968 (Brock 1975,170; Computers and Automation Jan 1969, 

72). The following month, on January 17,1969, shortly before the end of the 

Johnson administration, the Justice Department filed its own suit against IBM. 

This suit was to last for more than a decade during which IBM was "obliged to 

amass no less than 46,726 tons of documents and Incur untold legal costs" (Sobel 

1984,276); the case against IBM was dropped at the beginning of the Reagan 

162 



administration. 

The Justice Department charged IBM with monopolising the general purpose 

computer market. The complaint was against four specific practices that were said 

to contribute to the monopolisation. 

One of these charges was directly related to the complaint of Control Data. It 

was claimed that the announcement of the whole 360 family was an 

anticompeVive pract\ce. According to khe Jusfte Depaftmenk %% 364 \act\\\y has 

been announced prematurely: the company had announced the future development 

of new models for competitive markets "when it knew that it was unlikely to 

complete production within the announced time". Further, in the case of some of 

the models where competitors were very successful, they had been announced as 

"fighting machines" (Models 360/90,360/67 and 360/44), with prices 

deliberately set below costs (Computers and Automation Feb 1969,8). 

Another charge was that IBM had been dominating the educational market by 

granting "exceptional discriminatory allowances in favor of universities and 

other educational institutions" (Computers and Automation Feb 1969,8). The 

educational market was important, it was argued, not just because it was large but 

because of the future influence that it had in the choice of computer manufacturer: 

"universities also often provide either ideas or programming which lead to useful 

commercial enhancements to the machines. In addition, universities are often 

very visible installations, providing substantial public relations value for the 

computer manufacturer" (Brock 1975,158). 

163 



The remaining two charges related directly to software. One of these was that 

IBM was using its accumulated software and related support to preclude other 

computer makers from competing effectively for customers. 

The other attacked the practice of bundling: the fact that IBM had maintained a 

policy of quoting a single price for computer hardware, software and support had 

limited the development of an independent software and support industry 

(Computers and Automation Feb 1969,8). This charge was a response to the 

arguments of the software houses, some users and manufacturers. 

Just before the Justice Department filed its suit, IBM announced that it was 

going to announce a change in its policy. On December 6,1968, IBM announced 

that no later than July 1,1969, it expected to "make changes in the way it 

charges for and supports its data processing equipment. The company had been 

"re-examining its methods of doing business in the United States to determine 

what support services should be separately offered and priced to better meet the 

future requirements of all users of IBM equipment" (Computers and Automation 

Jan 1969,73). 1 

Some idea of the upheaval within IBM is given by the account of one IBM 

employee who had been working on a new IBM computer: 

"The product looked ready for announcement In December 1968. Then 
Joyce's boss announced he was going on a task force which would meet 
near group headquarters in Harrison. The purpose of the task force was 
top secret, but the rumor was that IBM, under that threat of Incipient 
antitrust charges, was about to revise its price structure and start 
charging the customer for systems engineering, applications software and 
training courses. A week later Joyce received a call from his superior. 
'He told me to forget everything we'd worked on for the past two years. 

164 



IBM was going to unbundle and we'd have eight weeks to do the whole thing 
over'... The two-story building in Harrison now housed some two hundred 
men. 'It was under heavy guard, and you needed a badge to get in', Joyce 
recalls" (Fishman 1982,135-136). 

There were many practical problems to be solved before unbundling could 

take place. IBM would have to reduce the price of its hardware, but by how much? 

How were application programs to be priced? What were all the support services 

worth to the customer bundled and unbundled? The task force had a lot of work to 

do sorting out the practicalities of unbundling (Fishman 1982,137). 

On June 23,1969 IBM unbundled: "the date is engraved on the hearts of the 

leaders of the software industry" (Financial Times Sep 30 1983). The company 

announced that in future a charge would be made for systems engineering 

activities, customer education courses, and new "program products as distinct 

from system control programming". Thus, it was only the application software 

that was being unbundled: operating systems were considered to be too much an 

integral part of the whole system to be unbundled: 

"When they unbundled in '69, they didn't unbundle the operating system, 
of course, because they thought at the time that that was just not feasible, 
there was no way you could separate the design of the operating system 
from the design of the computer. As time has gone on, they have discovered 
more and more ways to do that, they've unbundled more and more of the 
software" (Fisher interview). 

At the same time, IBM announced that it was reducing both the leasing and sale 

price of its hardware by 3 percent, "stating that this reflected its 'best 

approximation' of the expenses that would 'no longer be provided for In prices of 

currently announced equipment" (Fisher et al 1983,175; Computers and 

Automation July 1969,8). 

165 



IBM's decision to unbundle is commonly seen as a response to the Justice 

Department's antitrust suit, but there are some who deny that the Justice 

Department had any influence: 

"Everybody speculates that it was the filing of the government case, that 
it had something to do with that. It's a perfectly plausible explanation, but 
I know not a shred of evidence that that is true, not a shred, and I expect 
the government would have produced it if there had been a shred. I can't 
imagine that it wasn't at the back of their minds, but there Is really 
nothing to support that" (Fisher interview). 

As can be seen from the whole development of commodification, the reasons 

why IBM unbundled were more complex: 

"They had to. Well, they had to and they wanted to. I think there were some 
people who saw an excellent opportunity for developing essentially a new 
business. There was a lot of concern internal to IBM, I remember this 
very well, about the possible effects of unbundling. There were those who 
saw it as a very positive thing to do. I think the majority knew it was 
something that had to be done to placate the Justice Department, but I 
think there were some who said 'well, we have to do this, all right', but 
they really wanted to do it, you know, to generate additional profits, to 
make a profit out of doing It" (Rasmussen interview). 

Unbundling was not just a response to the Justice Department or to IBM's own 

Interests, but confirmation of the changes in the conception of software that took 

place during the period of the Third Generation computers. Unbundling confirmed 

the emergence of software as an independent commodity: "unbundling made It more 

a commodity" (Randell interview). 

The immediate reactions to IBM's announcement were very mixed. In August 

1969 Datamation published an article under the heading "Industry Reacts with 

Approval and Dismay as IBM goes Separate Ways". The author reports that IBM's 

announcement has: 

166 



"Upped the giant's long-term income expectations. 
Wounded the user, who is bewildered and moaning - but oh, so softly and 
ineffectually - about the prospect of increased costs. 
Given the leasing companies a break for now, but false sense of hope for 
the future. 
Opened significantly more of the software market to competition than had 
been dreamed. 
Satisfied firms in professional edp education. 
Pleased - perhaps - the Justice Department. 
Forced more choice on mainframe makers in the setting of their own 
policies. 
And earned the IBM task forces that designed the policies a week's vacation 
for a 'superb' job" (Pantages 1969,105). 

For users, unbundling had varying effects, depending on their size and 

sophistication. The immediate reaction of many users was hostile: it was estimated 

that for most users computing costs would rise by about 20% because of the 

additional prices they would have to pay for programs, systems engineering and 

education. Moreover, it was pointed out that companies which had already bought 

IBM equipment had already paid for the services which were now an added charge: 

"this Is tantamount to selling a man a house and later removing all the bathrooms" 

(Computers and Automation Aug 1969,39). Bigger users welcomed unbundling, 

they had pushed for it: IBM's software and support was not needed or wanted. But 

for many small users and newcomers bundling had represented an Insurance 

policy, against the many, many unknowns of their data processing operations: 

"So the user sits, miserable and confused about the 'lush' prices, the 
skimpy reductions, the promised compiler that hasn't been announced and 
may be priced, the number and type of Systems Engineers he will need vs. 
what he can afford, what programming maintenance bills he will have, 
how he can afford that software package that must be paid for 10 times for 
the 10 computers he has scattered. about the country, and what loyal 
programmers he will send for education" (Pantages 1969,108). 

The reaction of computer manufacturers varied. Some like RCA, Univac, and 

Honeywell saw unbundling ' as an opportunity to gain customers., They remained 

bundled hoping to get new accounts, particularly among small and unsophisticated 

167 



users who might find it difficult to choose separately priced products: 

"We could go to the customers, potential customers of IBM, and say to 
them that 'we would offer you these services... and you know what you will 
be getting from us, and under the IBM unbundled pricing policy, only time 
will tell what your real price will be'; and I think It was effective, at 
least for a period of time" (Fisher et al 1983,177-178). 

Other manufacturers took the same course as IBM. Burroughs had in fact 

already unbunbled before IBM; Control Data unbundled after IBM but it went 

further: it unbundled Its operating systems as well as Its application software 

(Computers and Automation Oct 1969,11). IBM's unbundling gave computer 

manufacturers the freedom to choose their own pricing policy. Both strategies had 

advantages for them. If they stayed bundled, they could pick up the less 

sophisticated users who felt abandoned by IBM's new policy. If they unbundled, 

they relieved the strain on their own overstretched resources: they were no 

longer compelled to look after customers "from the cradle to the grave" (Sobel 

1984,263). 

Software houses were the ones that gained most from unbundling. It was an 

exaggeration to say, as one commentator remarked at the time, that the 

announcement had "in effect given birth to the software industry as an industry" 

(Computers and Automation Oct 1969,39). The software industry was already 

flourishing; but certainly it "opened the floodgates and made the fortunes of the 

founders of the software houses like MSA, Cullinet - Software, Applied Data 

Research, Computer Associates and a score of others who wrote software'for IBM 

mainframes which ' was better, faster and cheaper than the software IBM wrote 

itself, or carried out functions that IBM simply could not offer" (Financial Times 

Sep 30 1983). 

168 



There was some concern that "unbundling would dry up the source of new 

software, that unbundling would, since IBM was going to charge for software, 

make IBM the only source really for software, that others would have difficulties 

because they didn't have IBM's stamp of approval... What happened was just the 

opposite of course, that a lot of opportunities were created that IBM didn't always 

respond to, partly because they didn't have the resources and partly because It 

made mistakes too. So a combination of making mistakes and not having enough 

resources to discover and work on all the opportunities created a huge new world 

of opportunity" (Rasmussen interview). 

Behind the ups and downs in the fortunes of users, manufacturers and 

software houses stood the power of IBM. Whatever else the effects of unbundling, 

IBM emerged with its power undiminished. Eight years after unbundling, Freeman 

commented: 

"The upshot of eight years' unbundling is now clear. It has benefited the 
computer industry as a whole, but IBM has lost little account control or 
market share" (Freeman 1978,138). 

IBM got the best of both worlds with unbundling. It showed virtue in giving way to 

anti-monopoly pressures, while doing nothing to reduce its power or Its profits. 

When IBM split software and hardware prices,. It set the standard for the 

whole Industry. Software had been emerging as a commodity, but IBM's 

unbundling gave this concept a new force:: unbundling made users think of 

software as a product, "a psychological reaction which is difficult to translate Into 

dollars" (Fishman 1982,138). °... 

169 



With unbundling, IBM gave its blessing to the commodification of software. 

Unbundling was the culmination of a long-term process, which had gained 

momentum with the advent of the Third Generation. Once IBM made its 

announcement, the divorce between hardware and software was official: software 

was thrown out into the world as an independent commodity. 

The existence of software as a commodity implied the recognition of software 

as property, as a form of intellectual property, with all the contradictions that 

this notion implies. ' By its nature intellectual property is difficult to protect; 

laws can exist but they are difficult to enforce. Everybody knows how easy it is to 

copy music or books illegally. This is even more true of software: the enormous 

disparity between production and reproduction costs makes it a very special form 

of intellectual property, and data communications make it very difficult to control 

its circulation. The fact that the law recognises software as property does not 

mean that it is respected in the same way as other forms of property. The concept 

of software as property brought other problems with it too: problems of taxation, 

import-export duties, import restrictions, insurance, liability for damage, and 

so on. 

The commodification of software also means that the relation between the 

production of software and the market becomes more direct. The law of value 

imposes itself more directly on the production process. To survive in the 

competitive struggle, it is necessary to produce software as efficiently as 

possible. Pressures to produce software as efficiently as possible ran parallel to 

the process of commodification; both grew out of the experience of the third 

generation and the new awareness of software which that experience produced. 

170 



Before unbundling it was possible to hide inefficiencies in software production 

behind the hardware. With unbundling, software production was subjected 

increasingly to the disciplines of the market. 

The subjection of intellectual work to the disciplines of the market raises 

particular problems. How is the productivity of intellectual labour to be 

measured? Especially in programming, how are standards of productivity to be 

set when there are enormous differences in capacity between one programmer and 

another, and when the object of the program is not to produce a certain number of 

lines of code but to solve a particular problem? This point is made forcefully by 

Dijkstra in his satirical letter from the chairman of "Mathematics Inc": 

"We have returned to our old method of productivity measuring: since 
February 1974 we measured mathematician productivity by the number 
of new results obtained per month; we are now back on the more realistic 
and, after all, also more objective technique of counting the number of 
lines of proof produced per week" (Dijkstra 1982,185). 

It Is difficult to reduce Intellectual labour to mere abstract labour. The 

contradictions are expressed in the 'tensions that run through the whole 

development of software: tensions between academics and industry, tensions 

between the technical and the economic, tensions 'between programming as 

mathematics and software as engineering. 

171 



Chapter 6 

The Software Crisis 

The Garmisch Conference 

The tensions shaping software development came to the surface in Garmisch 

Partenkirchen where the NATO Conference on Software Engineering was held in 

October 1968. This conference was a turning point in the development of 

software. 

The proposal to hold a conference on Software Engineering was made in late 

1967 by the Study Group on Computer Science which had been established in the 

autumn of that year by the NATO Science Commitee. The actual idea for the 

conference came from Professor Fritz Bauer of Munich. It was Bauer too who 

appears to have chosen the title "Software Engineering" for the conference. 

The choice of the title was very significant. The term "software engineering" 

had been used before the Garmisch conference. As far back as 1965, Eckert had 

used the phrase in his talk at the Fall Joint Computer Conference of that year. He 

argued that programming would be manageable only when it was possible to refer 

to it as "software engineering". The use of the term would "constitute recognition 

that, as a discipline, programming had come as far as the older, maturer 

engineering professions". Before the term could be, validly applied, two events 

would have to occur: "One of these events is anticipated by the growing number of 

universities with 'computer science', programs. The, second is, the 'discovery' that 

computer programming projects can be managed" (Gordon 
, 
1968, '200). 

172 



The first university course on software engineering was taught in the spring 

of 1968 by Douglas Ross of the Servo Mechanism Laboratory at MIT, as a means of 

elaborating the principles of the pioneering work that he had been doing on 

numerical control (APT) and computer aided design (AED) languages. He recalls: 

"I've never seen anybody lay claim to the first use of the term 'software 
engineering'. I vaguely remember seeing it in a recruiting advertisement, 
I think from Boeing or some west coast aerospace company, but I also 
myself ended up teaching what I believe was the first software 
engineering course in 1968" (Ross interview). 

When asked if the adoption of the term was in response to an awareness that a 

certain kind of methodology was needed, Ross replied: 

"Well, it wouldn't be that sophisticated at that point, you see. It would be 
that you realised that what you were doing was building things the same 
way that other people built bridges, right? And so engineering would be a 
natural way to express what it was that you were doing. As I say, there 
were lots of other groups besides ours that were doing this actual 
engineering work before calling it engineering" (Ross Interview). 

Although the term did not originate with the conference, it was the conference 

that launched it into common use. The title "software engineering" was 

deliberately chosen "as being provocative, in implying the need for software 

manufacture to be based on the types of theoretical foundations and practical 

disciplines, that are traditional in the established branches of engineering" (GCR 

13). Bauer explained why he had chosen the term "software engineering" in a 

later account of the conference: 

"The time has arrived to switch from home-made software to 
manufactured software, from tinkering to engineering - twelve years 
after a similar transition has taken place in the computer hardware 
field... lt is high time to take this step. The use of computers has reached 
the stage that software production... has become a bottleneck for further 
expansion. And saturation has not even been reached. This results in 
undesirable effects, like production and use of insufficiently sophisticated 

173 



software with a resulting economic loss, or the strangulation of research 
in areas that need the computer intensively" (Bauer 1969,189). 

To prepare the conference, a meeting was held in Brussels in March 1968 of 

members of the Study Group together with the people they had invited to be the 

group leaders for the three main sections of the conference. It had been decided to 

organise the conference under three headings: design of software, production of 

software and service of software. The idea was to invite a limited number of people 

from all areas concerned with software: computer manufacturers, universities, 

software houses, computer users, etc. The participants were chosen from 

different backgrounds because it was intended that the conference should be a 

working conference which would throw light on the current problems of software 

and "discuss possible techniques, methods and developments which might lead to 

their solution". It was hoped that the results of the conference would "serve as a 

signpost to manufacturers of computers as well as their users" (GCR 14). The 

participants were carefully chosen: 

"The invitation list was carefully contrived. You know, we invited fifty or 
sixty people and it was done by the organising committee specifically 
trying to pick the leading figures in their country, so we had people from 
about twenty countries and they were all the top names" (Buxton 
interview). 

Despite the fact that the participants were from a wide variety of backgrounds 

and countries and that many were meeting each other for the first time, "almost 

from the start a tremendous rapport grew up" (Randelf 1979,6), a rapport 

which was certainly helped by the beautiful location In the Bavarian Alps and the 

timing, "which enabled attendees to experience the Munich Oktoberfest en route to 

Garmisch" (Randell 1979,6). On the first evening after dinner Bob Barton (who 

had been one of the leading members of the Burroughs B-5000 team) Introduced 

174 



the discussion with a fifteen minute talk 

"to the effect that we were all guilty, essentially, of concealing the fact 
that big pieces of software were increasingly disaster areas and we were 
all sitting around actually worrying internally about it and doing 

precisely nothing. So Barton led the discussion off with an extremely 
lengthy confession himself of just how bad he believed the situation 
was... He took a very forceful line, and then everybody else just chimed in 

and said: 'Yesl Actually this is a unique occasion: there have never been at 
any one time so many distinguished people in software in one place. And 

perhaps we really should address the problem of what the hell is going on 
and what are we going to do about it, and what, if anything, is the next 
step. ' So that set the sort of style for the whole thing, you see. And the 

result then was an immensely enthusiastic week" (Buxton interview). 

This excitement can be felt in all accounts of the conference: 

"The atmosphere throughout the conference was really quite amazing. I've 
known nothing like it before or since" (Randell interview). 

Dijkstra recalls: 

"The meeting in Garmisch Partenkirchen was very exciting. For me it was 
the end of the Middle Ages. It was very sunny. The meeting was a success 
in Garmisch Partenkirchen largely because' most of the people present 
were sufficiently high In their local hierarchies that they could afford to 
be honest, and were" (Dijkstra Interview). 

What was exciting for most of the participants was the common recognition 

that there was a software crisis, that there were serious problems in the way that 

software was being designed and produced. There were those who disliked the term 

"crisis": 

"I do not like the use of the word 'crisis'. It's a very emotive word. The 
basic problem is that certain classes of systems are placing demands on us 
which are beyond our capabilities and our theories and methods of design 
and production at this time. There are many areas where there is no such 
thing as a crisis - sort routines, payroll applications, for example. It Is 
large systems that are encountering great difficulties. We should not 
expect the production of such systems to be easy" (Kolence, GCR 121). 

1.75 



However, the general feeling was captured in Ross's response: 

It makes no difference if my legs, arms, brain and digestive tract are In 
fine working ondition if I am at the moment suffering from a heart attack. 
I am still very much In a crisis (GCR 121). 

This was quite new: before Garmisch, the literature tended to emphasise the 

"seductive fascination" of software rather than its failures (Randell 1979,1). It 

seems that people felt a great relief in being able to talk openly about their 

worries, in being able to move from a feeling of individual responsibility to a 

collective confession that software was in crisis: 

"The general admission of the existence of a software failure in this group 
of responsible people is the most refreshing experience i have had in a 
number of years, because the admission of the shortcomings is the 
primary condition for improvement" (Dijkstra, GCR 121). 

This feeling that something could be done was central to the feeling of 

exhilaration: "an enormous atmosphere of enthusiasm; we felt we might actually 

achieve something and solve some problems" (Buxton interview); "the main thing 

from the first conference was that we were openly talking about the software 

crisis and that something needed to be done" (Ross interview). 

The participants brought with them to Garmisch the experiences of the third 

generation: the trauma of the 360, the difficulties experienced in implementing 

large projects, the failure to meet deadlines, the disappointments of the users, the 

examples of disasters or near-disasters, the anxieties about unbundling. It had 

become clear that software was the problem, the bottleneck that was holding up 

further development. The manufacturers could build powerful computers, but 

could not program them to operate efficiently. The users could buy machines of 

176 



enormous capacity, but were often not able to program them to achieve their goals 

effectively. There were complaints everywhere and in the middle was software: 

people had come to realise how important and how difficult programming was. 

There was a strong feeling that software was in crisis. 

The sense of crisis was not only concerned with the technical difficulties of 

software production: there was a new awareness of the potentially horrific 

consequences of software failure. Many participants emphasised the danger to life 

that could result from a software failure: 

"Particularly alarming is the seemingly unavoidable fallibility of large 
software since a malfunction in an advanced hardware-software system 
can be a matter of life and death, not only for individuals but also for 
vehicles carrying hundreds of people and ultimately for nations as well 
(David and Fraser, GCR 120). 

In this context, people referred a lot to the problem of aircraft safety. The faulty 

programming of aircraft design or air traffic control could easily lead to disaster: 

"It Is my understanding that an uncritical belief in the validity of 
computer produced results ... was at least a contributory cause of a faulty 
aircraft design that led to several serious aircrashes" (Graham, GCR 
121). 

Even greater than the danger of aircrashes were the potential dangers of faulty 

software in military projects. 

"I still remember the ABM debate vividly, and my horror and incredulity 
that some computer people really believed that one could depend on 
massively complex hardware systems to detonate one or more H-bombs at exactly the right time and place over New York City to destroy just the Incoming missiles, rather than the city and its inhabitants" (Randell 
1979,6). 

Although the anti-ballistic missile debate tended to be more an American than a 
177 



European concern, "certainly that was the sort of thing that people were worrying 

about" at the conference: "very complex software systems were being depended on 

to a very great extent at a time when people were beginning to admit that there had 

been a lot of very unsuccessful large software system development" (Randell 

Interview). 

Other people, however, worried more about the consequences for the industry 

rather than for their own personal safety. Thus Opler (from IBM) argued: 

"As someone who flies in airplanes and banks in a bank I am concerned 
personally about the possibility of a calamity, but I am more concerned 
about the effects of software fiascos on the overall health of the industry" 
(GCR 121). 

However, although there were differences in the way that people saw the 

consequences of software crisis, it was this topic which dominated the conference. 

The problem was most generally seen in terms of a "gap". This was a concern that 

ran through the whole conference, and was seen as being so important that it was 

made the theme of a special session and was also discussed in the final plenary. 

This gap was seen as a gap between expectations and demands placed on 

software, on the one hand, and actual achievements of software, on the other: 

There is a widening gap between ambitions and achievements... This gap 
appears in several dimensions: between promises to users and 
performance achieved by software, between what seems to be ultimately 
possible and what is achievable now and between estimates of software 
costs and expenditures. This is arising at a time when the consequences of 
a software failure in all its aspects are becoming increasingly serious" 
(David and Fraser, GCR 120). 

There were different emphases in the way that people looked at this gap 

178 



between ambitions and achievements. Some saw it as a problem of the immaturity 

of the software industry. This argument was made very strongly in a paper by 

Mcllroy: 

"We undoubtedly produce software by backward techniques. We 
undoubtedly get the short end of the stick in confrontations with hardware 
people because they are the industrialists and we are the crofters. 
Software production today appears in the scale of industrialisation 
somewhere below the more backward construction industries" (GCR 
139). 

Gillette made a comparison between software production and the aircraft industry: 

"We are in many ways in an analogous position to the aircraft industry, 
which also has problems producing systems on schedule and to 
specification. We perhaps have more examples of bad large systems than 
good, but we are a young industry and are learning how to do better" (GCR 
17). 

McClure also associated present difficulties with the immaturity of the industry: 

"The ability to estimate time and cost of production comes only with 
product maturity and stability, with the directly applicable experience of 
the people involved and with a business-like approach to project control" 
(GCR 123). 

Graham made a striking analogy with early aircraft production: 

"We build systems like the Wright brothers built airplanes - build the 
whole thing, push it off the cliff, let it crash, and start all over again" 
(GCR 17). 

These comments on the "immaturity" of the industry could be seen as 

implying a basically optimistic picture: time and the natural evolution of 

technology would lead inevitably to "maturity", and would help solve the 

problems. 

179 



In contrast with this optimism, other comments emphasised rather the 

relation between the problems of software production and the environment within 

which that production takes place. The difficulties of software production were not 

just the result of immaturity, but of the pressures imposed on programmers by 

tensions between producers and users, data processing departments and marketing 

people and by the whole environment of market competition. 

The notion of a software gap implied that there were two sides to the problem. 

It was constituted not just by the failings of software production but equally by 

the unrealistic nature of the demands made on software. This unrealism resulted 

partly from users' demands: 

"There are extremely strong economic pressures on manufacturers, both 
from the users and from other manufacturers. Some of these pressures, 
which are a major contributory cause of our problems, are quite 
understandable. For example; the rate of increase of the air traffic in 
Europe is such that there is a pressing need for an automated system of 
control" (Buxton, GCR 124). 

in such cases, users were often trying to buy a technology that did not yet exist: 

"Some of the problems are caused by users who like to buy 'futures' In 
software systems, and then ignore the problem inherent in this" 
(Hastings, GCR 124). 

However, it was argued. that the users' illusions were actively promoted by 

the computer industry. itself, especially by its marketing people. There was not 

only overbuying, but overselling too. Thus Randell said: 

"I am worried that our abilities as software designers and producers have 
been oversold" (GCR 121) 

_ :. 

McClure, too, referring to the problems associated with the introduction of a new 

180 



operating system for the IBM 7090, concluded: 

"The root problem was that the manufacturer had promised far more and 
could not deliver on his promises. Did this failure lie in the inability of 
the software people to produce or in the ability of the sales office to 
overpromise? " (GCR 123). 

Software was being produced in an environment of unreality, a fetishised, 

even fraudulent environment. One participant put it very forcefully: 

"You may be right in blaming users for asking for blue-sky equipment, 
but if the manufacturing community offers this with a serious face, then I 

can only say that the whole business is based on one big fraud" (quoted by 
Bauer 1969,192). 

The effects of this environment were, however, very real. Constant pressures 

from both computer manufacturers and users pushed technology forward at an 

unrealistic and dangerous rate. There never seemed to be time to produce software 

properly or to perfect production techniques. Thus, Buxton argued that any new 

software project involved not just production but a whole new research effort so 

that "you are In fact continually embarking on research, yet your salesmen 

disguise this to the customer as being just a production job" (GCR 122). Kinslow, 

fresh from his experiences in IBM, quoted the obvious example: 

"In my view both OS-360 and TSS-360 were straight-through, start-to 
finish, no-test-development,, revolutions... At the time TSS-360 was 
committed for delivery within 18 months it was drawn from two things: 

1. Some hardware proposed, but not yet operational, at MIT. 
2. Some hardware, not quite operational, at the IBM Research Center" 
(GCR 122). 

It is not surprising, then, that some participants (especially those from IBM) 

longed for a situation in which software production was not constantly pushed 

beyond its limits: 

181 



"Personally, after 18 years in the business I would like just once, just 
once, to be able to do the same thing again. Just once to try an 
evolutionary step instead of a confounded revolutionary one" (Kinslow, 
GCR 124). 

Opler's solution to the software crisis implied a direct connection between the 

crisis and commercial pressures: 

"Either of the following two courses of action would be preferable to the 
present method of announcing a system: 

1. Do all development without revealing, and do not announce the 
product until it is working and working well. 

2. Announce what you are trying to do at the start of the development, 
specify which areas are particularly uncertain, and promise first 
delivery for four or five years hence" (GCR 124). 

His solution, in other words, was to produce software in a non-competitive 

environment, far removed from the pressures of the market. 

Despite the different emphases on the various aspects of the software crisis, 

there was a general consensus that software production lacked an adequate 

theoretical and practical foundation and that closing the software gap would 

"require metamorphosis in the practice of software production and its 

handmaiden, software design" (David and Fraser, GCR 124). 

When the conference ended, "the majority... left... with a feeling of relief, some 

even in a state of great excitement: it had been admitted at last that we did not 

know how to program well enough. I myself and quite a few others had been 

waiting eagerly for this moment because now at last something could be done about 

it" (Dijkstra 1969,35). 

Ross, however, introduced a note of caution. The fact that the software crisis 

182, 



was recognised did not mean that the solution would be easy: 

"My main worry is in fact that somebody in a position of power will 
recognise this - it is a crisis right now, and has been for some years, and 
it's good that we are getting around to recognising the fact - and believe 
someone who claims to have a breakthrough, an easy solution. The 
problem will take a lot of hard work to solve. There is no worse word than 
'breakthrough' in discussing possible solutions" (GCR 124-125). 

The Rome Conference 

In October 1969, a year after the Garmisch Conference, a second NATO 

Conference on Software Engineering was held in Rome. This conference was a 

sequel to the Garmisch one, but it was intended to have a more directly practical 

focus than Garmisch. Discussion was to be centred on the study of more detailed 

technical problems, and it was hoped that one of the outcomes would be the setting 

up of some sort of international institute for software. 

The idea, as in Garmisch, was to bring people together from different 

backgrounds. The participants, many of whom had participated in the Garmisch 

conference, were chosen on a similar basis, although Douglas Ross, who was 

involved in discussions of who should be invited, recalls that the selection at Rome 

"was more manipulated, trying to make sure that certain areas were covered and 

get people to come and talk" (Ross interview). - - 

r .. 

From the beginning there seemed to be something wrong with the atmosphere 

at Rome: 

"The place where the conference was held was sterile -I mean it was too 
modern, too - it didn't ° bring people together with feeling and that 
combined with the fact that people were saying their own version in less 

183 



compelling terms of what had been covered the year before... and that they 
were doing it on demand, or somebody had asked them to do that" (Ross 
interview). 

In total contrast to the excitement and enthusiasm of Garmisch, the Rome 

Conference "just never clicked" (Ross Interview); for Dijkstra, it "was a 

disaster" (Dijkstra Interview), while for Randell, again co-editor (this time 

with Buxton) of the conference report, "the NATO Conference In Rome was 

bad-tempered, it was in a hotel which wasn't so nice, and in many ways I think a 

lot of people who had been at the first one wished the second one hadn't been held" 

(Randell interview). Buxton too felt that most of the participants were left with 

"an enormous sensation of disillusionment" (Buxton Interview). 

Clearly, however, the cause of failure was deeper than the poor choice of 

location. The harmony between people from widely different backgrounds, who in 

Garmisch had agreed on the existence of a software crisis and the need to develop 

software engineering, completely fell apart in Rome. The tensions between the 

different groups of participants became obvious: 

"Just as the realization of the full magnitude of the software crisis was 
the main outcome of the meeting at Garmisch, it seems to the editors that 
the realization of the significance and extent of the communication gap is 
the most important outcome of the Rome Conference" (RCR 7). 

During the week the existence of such a communication gap became more and 

more evident, "and the realization that it was but a reflection of the situation In 

the real world caused the gap itself to become a major topic of discussion" (RCR 

7). 

At the end of the conference, many of the participants felt the need to discuss 

184 



this lack of communication, and an extra session was devoted to the topic of theory 

and practice. The lead in the discussion was taken by Christopher Strachey of 

Oxford University, who reported that he had heard people from industry 

complaining that they felt that they had been invited to the conference like 

"monkeys to be looked at by the theoreticians", while, on the other hand, the 

theoreticians felt isolated, that "they were not allowed to say anything" (Strachey, 

RCR 9). 

The differences were not quite as clear as that: they could not be, when it is 

often difficult to distinguish the industrial people from the academics in a world 

in which computer scientists frequently move from IBM or the other large 

corporations to the universities and back, and in which so many from both 

backgrounds have an interest in a software house or a consultancy. For example, 

John Buxton was selected as an "industrialist" for the Garmisch conference, but 

was a professor at Warwick University by the time it took place; Brian Randell is 

listed as Mr Randell of IBM In Garmisch, but Professor Randell of 

Newcastle-upon-Tyne in Rome; Douglas Ross's address Is given as MIT In 

Garmisch, and Softech Inc at Rome; Andy Kinslow, - who had played an Important 

role in IBM's TSS/360, Is listed as Computer Systems Consultant In Garmisch; 

Bob Barton, who had been part of the Burroughs B-5000 group, is listed as 

Professor at the University of Utah and consultant In system design; Edsger 

Dijkstra, often seen. as the most academic of the academics, was to become a 

Burroughs research fellow in 1973. It is impossible to draw very sharp lines, 

and yet there were certainly very Important differences in approach, differences 

which were emphasised in the discussions in Rome. 

185 



For the academics, the software crisis was seen as the result of the 

unscientific methods and rotten techniques used by people in industry. Strachey 

pointed out, for example, that "recursive programming is not used in general in 

any large-scale software system, with a few exceptions such as the Burroughs 

people". Not only that, but there did not seem to be any willingness to learn on the 

part of the industrialists: 

"The thing that saddens me about the present situation is that there is not 
much sign that the large engineering set-ups have yet been able to change 
their basic techniques. They can change the peripheral stuff, the editing 
and the documentation and things like this, but so far they haven't changed 
the central core of what they are doing: that is to say the actual 
programming techniques. Right in the middle it is still... classical 
programming and classical mistake s"(Strachey RCR 10). 

Since they did not use scientific methods, it was not surprising, in this view, that 

there were so many failures in large software projects. 

From the point of view of the industrialists, academics were arrogant 

amateurs without managerial capabilities who did not have to face up to the 

problem of the reality of large-scale software projects and commercial 

responsibilities. Since their work was simply carried on Individually or on a 

small scale, they diid not worry about maintenance and documentation, so it was 

not surprising that systems collapsed once one person left, the place. Their work 

was too abstract and they were unable to show that their programs could solve 

problems in the real world. 

One of the main -issues that emerged clearly from the discussion of this 

communication gap was the question, of demonstrability and reliability. What 

industrialists felt they needed were techniques that could be shown to work and not 

186 



mere abstractions. They argued that their projects, although full of bugs, worked: 

not all of them were failures. They were facing strong demands from users to 

produce results, and they were not in the ivory tower of the university. They 

were professionals working collectively, trying to solve concrete problems, to 

come up with concrete solutions. Although academics complained that their 

techniques were unscientific, it was clearly unrealistic to think that they should 

simply adopt the ideas of the academics. As Strachey put it: 

"How can we convince people who are dealing with hundreds of 
programmers and millions of instructions that something as radical as 
changing the basic core of the way in which they program is a good thing 
to do? Clearly you can't expect anybody to change a very large project 
completely in a direction like that merely because you say it is a good 
idea. This is obviously nonsense" (RCR 10). 

One of the proposals put forward for developing practical cooperation between 

industry and the universities was the idea of a pilot project. Strachey presented 

this as the solution of the problem of demonstrability and the way to construct a 

bridge between theory and practice: 

"We need something in the way of a proving ground, halfway between the 
very large projects which must rely on things that the managers already 
know how to use, and the most advanced techniques which we're quite sure 
are all right on a small scale but which we still have to develop on a 
somewhat larger scale. We need as it were a pilot plant ... It could be done, I 
think, by a cooperative effort between the manufacturers who have the 
financial resources and the Interest in very large systems, and the 
research institutions... You must build a reasonably sized system where 
management problems will arise and can be demonstrated to be soluble 
and where new techniques can be used by managers" (Strachey, RCR 10). 

In the discussion on the idea of a pilot plant, various issues were raised about 

the meaning of a pilot project: how large would It have to be to be convincing to the 

industrialists without being an actual project? What would be its relation to the 

market pressures which, as seen at Garmisch, were often blamed for the failures 

187 



of software? Galler argued that one important difference between a pilot project 

and an actual project would have to be "that there be no predetermined time limit 

specified by marketing people" (RCR 12): again the solution appeared to be to 

develop software in an atmosphere sheltered from market pressures. This was 

seen as a possible role for the international software institute that the conference 

organisers hoped to create. 

Doubts about the value of pilot projects were raised by Randell, who pointed 

out that there was no magic solution to the gap between universities and industry: 

"There is a well known English saying, which is relevant to this 
discussion about pilot projects. The saying is as follows: 'There's none so 
blind as them that won't see'. A pilot project will never be convincing to 
somebody who doesn't want to be convinced ... If you have people who are 
completely stuck In their own ways, whether-these are ways of running 
large projects without regard for possible new techniques, or whether 
these are ways of concentrating all research Into areas of ever smaller 
relevance or importance, almost no technique that I know of Is going to get 
these two types of people to communicate. A pilot project will just be 
something stuck in between them. It will be a Panmunjon with no way to 
it" (RCR 13-14). 

The idea of a pilot project could also be seen as an inadequate and reformist 

approach to a problem that required a radical solution. Thus, Dijkstra criticised 

the whole idea that it was necessary to build a bridge between theory and practice: 

"i would like to comment on the distinction that has been made between 
practical and theoretical people. I must stress that I feel this distinction 
to be obsolete, worn out, inadequate and fruitless... lts inadequacy, among 
other things, is shown by the fact that I alsolutely refuse to regard myself 
as either impractical or not theoretical" (Dijkstra, RCR 13). 

For him there was no need to construct a bridge between theory and practice 

simply because that distinction did not exist: it was a false distinction. For 

Dijkstra, the only way to show that software was of good quality was by proving It 

188 



correct: mathematical programming was the only way to achieve reliable 

software. 

Recalling the discussion that evening, Buxton contrasts Dijkstra's and 

Strachey's approaches: 

"If we think it's mathematics, then we embark on single individuals 

writing big programs and proving them right and so on, but if we think 
it's engineering, then it's not like that. If we're real engineers, then we 
build prototypes and pilot plants and explore things and investigate things 

and then build the production version later, so we had a long discussion 

about the whole version of pilot plants, essentially advancing the ideas of 
prototyping, which have come back into prominence only in the last year 
or two" (Buxton interview). 

The idea of setting up an international Institute which might be reponsible for 

organising such pilot projects was one of the main points of controversy at the 

Rome conference: 

"The Rome Conference was distorted by consideration of the strategic 
problems of changing large-scale bodies such as the DoD or IBM In the 
way they worked. And the managers have to be convinced. The Issue in 
Rome was whether a new international software institute should be 
founded, so that it could build a pilot model and show how it could be done. " 
(Dijkstra interview). 

The discussion on the creation of an institute appears to have become quite 

acrimonious, so much so that it was not included in the conference report. The idea 

had already come up in Garmisch, but according to Ross, 

"that was in an acceptable context of 'that's why we're all getting together 
is to see what this is and decide'. But between the first conference and the 
second, the concept of this institute had become a real political focal 
point, and the international politics kept getting in the way, because there 
was a lot of money and power associated with the idea" (Ross Interview). 

The institute was never founded. It got lost in international politics, in 

189 



quarrels over whether it should be in Munich or Luxembourg or Geneva: 

"All I remember is it ended up being a lot of time wasted, and no argument 
ever turned up to make something happen - which is probably just as 
well (laughs)" (Ross interview). 

The failure to found the international software institute was the most obvious 

consequence of the failure of the Rome conference. But the problems went deeper 

than that. This time the participants did not go away with a feeling of euphoria and 

"certainly, there was no thought then to have any further such conferences" 

(Randell interview). The conference had shown that, although industrialists and 

academics might agree on the existence of the software crisis, they did not 

necessarily mean the same thing by that, and they certainly did not have the same 

views as to how it should be solved. The conference made clear important 

differences in approach, both differences in the Interpretation of software 

engineering and, more obviously, differences that could be seen either in terms of 

theory and practice or, as Dijkstra prefers, in terms of the "Buxton Index", that 

is, In terms of a gap between long-term and short-term perspectives: 

"Rome suffered from a difference In Buxton Index. The Buxton index is the 
number of years in the future over which the planning of a person or 
organisation extends Itself ... It's illuminating because if you try close 
cooperation between people or institutions with very different Buxton 
Index, a man with a long Buxton index complains that the other party Is 
short-sighted, and the man with the short Buxton Index accuses the other 
one of being a day-dreamer and neglect of duty. The Rome Conference was 
a failure because it wanted to concoct a cure without having a considered 
opinion about why software development was so difficult... They were too 
rushed, they were too impatient to my taste. " (Dijkstra interview) 

In this view, the essential distinction is not between theory and practice, but 

between the hectic rush of the commercial world and the more careful, considered 

approach of the academics. 

190 



At the heart of the communication gap of the Rome Conference lay very 

different understandings of the nature of software, of the whole activity of 

programming, and of its relation to the "real world". 

191 



Chapter 7 

Closing the Lid? 

Garmisch can be seen as a turning point In the, history of software 

development. The Conference was a major link in a chain of events that has been 

seen as bringing about a revolution In the way that people thought about 

programming, a change of paradigm which has been compared to the impact of 

intuitionist logic on mathematical thought in the early part of this century (Knuth 

1974,142). 

In Garmisch everyone had seen Pandora's gifts. They had agreed that software 

was in crisis and that it was necessary to bring order Into chaos, to lay a solid 

foundation for the further development of software. The term chosen to express 

the new direction, "software engineering" Implied "the need for software 

manufacture to be based on the types of theoretical foundations and practical 

disciplines, that are traditional in the established branches of engineering" (GCR 

13). 

However, behind the concept "software engineering" there were radically 

different understandings. For Dijksträ the importance of the concept lay in its 

connection with mathematics: "we in the Netherlands have the title 'Mathematical 

Engineer'. Software engineering seems to be the activity for the Mathematical 

Engineer par excellence. This seems to fit perfectly. On the one hand,, we have all 

the aspects of an engineering activity, in that you are making something and want 

to see that it really works. On the other hand, our basic tools are mathematical in 

192° 



nature" (GCR 82). 

Not everybody understood the term In the same way, however. Dijkstra 

recalls that when he mentioned the term "Mathematical Engineer", "I noticed that 

my American colleagues started to laugh, because the mathematician was 

unpractical and the engineer was practical, and never the twain shall meet... As 

soon as you cross the Atlantic, all Important words slightly change their 

meaning... Also engineering changes its meaning. You see, here an engineer is 

someone with a solid academic training... However, in the United States of America, 

if there is something wrong with your central heating, you get a maintenance 

engineer. They use 'engineer' for what we would call technicians" (Dijkstra 

Interview). 

These differences in interpretation were not just a matter of definition: there 

were real tensions, as was shown by the Rome Conference. The differences 

blossomed into distinct approaches, which can be loosely referred to as 

"structured programming" and "software engineering". In many cases, the two 

terms are used almost interchangeably and the situation is made more confusing 

by the fact that both terms are interpreted in different ways. Nevertheless, it is 

possible to distinguish two responses to the problems of establishing a firmer 

foundation for programming. The first is a response which insists on the 

importance of programming methodology and treats programming as a science. The 

second response has a more immediately practical focus and treats programming 

as engineering and as a craft. The different views as to the nature of software 

which had shaped its development from the very earliest days continued to shape 

the "new" approaches to programming that emerged in the late 1960s and early 

193 



1970s, and still continue to do so up to the present day. 

Programming Methodology: Structured Programming 

The birth of the structured programming approach is associated with two 

other events of 1968: the break-up of IFIP Working Group 2.1 and the 

publication of the GOTO letter. 

IFIP Working Group 2.1 had been formed after the publication of the ALGOL 

60 Report to maintain and develop the ALGOL language. The group met about twice 

a year. In the early 1960s they began to work on a new language, originally called 

ALGOL X, to be the successor of ALGOL 60. In May 1965 Niklaus Wirth was given 

the task of drafting the new language, and his draft was submitted to the group In 

October of the same year. The majority of the group rejected his draft in favour of 

a preliminary version of a much more ambitious language. Wirth subsequently 

left the group and published his version as ALGOL W. In the meantime, the more 

ambitious project grew more and more ambitious and more and more complex, 

despite the protests of Hoare, Dijkstra and some other members of the group 

(Hoare 1984). 

The new project reflected the growing power within the group of Aad van 

Wijngaarden of Amsterdam (who had been one of the members of the ALGOL 60 

Committee): 

"Van Wijngaarden gradually got more and more power within the group. 
Van Wijngaarden at that time l think was rather more Interested in his 
method of language definition than the actual language he was defining. He 
produced this idea of a two-level 'grammar, or van Wijngaarden 

194 



grammars as they are sometimes called now, and one had the Impression 
you could criticise anything you liked of the language and he'd make 
efforts to change it, as long as he could fit in his style of language design, 
his formalism for specifiying the language. And gradually more and more 
of the meetings of the group became concentrated on detailed Issues, on 
van Wijngaarden's proposals and the little group around him" (Randell 
interview). 

The crisis came at an "incredibly dramatic" meeting In Munich in December 

1968, just a couple of months after the Garmisch conference. Van Wijngaarden's 

proposal for a new language, to be called ALGOL 68 (though Dijkstra thinks a 

better name for it would have been "van Wijngol"), was put to the vote and a 

minority group of seven voted against it and produced a short Minority Report: 

"what the minority group by then had formulated was a general belief that what 

became known as ALGOL 68 was much too complicated and that the report 

describing it was nothing like as simple as was needed... and the minority, as the 

name implies, lost the vote, and then seven of us resigned from the committee" 

(Randell interview). The split was reported In Datamation as a "serious setback" 

for "that dedicated band of software men, the European ALGOL loyalists" (March 

1969,205). 

The break-up of Working Group 2.1 was due to two interrelated issues: the 

question of language and the issue of simplicity. The Minority Group felt that the 

emphasis on language design was hindering a simpler, clearer approach to 

programming. 

In the 1960s much stress had been placed on programming languages: 

"The sixties were very programming language oriented. It has been the 
decade in which there has been extensive research on all sorts of parsing 
algorithms. I remember that in the mid-seventies, when I came to some of . the backward places, and even not so backward ones, people asked me, 

195 



'what are you doing, what's your specialty? My answer was always 
'programming', and in hearing that, people didn't hear that, and said 'oh, 

programming languagesi' I said, 'no, programming'. Programming 
languages were quite clearly recognised as a practical area of scientific 
research, but that programming itself, the activity, could be one, that 
was not perceived. And still isn't. There are still lots and lots and lots of 
people who think that the major problems of programming are due to the 
shortcomings of the languages we use, and if we have a good language, then 
all our problems are gone" (Dijkstra interview). 

During the 1960s there was a great proliferation of high level programming 

languages: by 1969 there were well over a hundred languages in existence 

(Sammet 1969). This mushrooming gave rise to concern about the need for 

standardisation and warnings of the dangers of this new Tower of Babel. 

Some people felt that the focus on language development was leading computer 

science in the wrong direction: 

"Much of the theoretical work now being done in the field of programming 
languages is concerned with language syntax. In essence this means the 
research is concerned not with what the language says but with how it 

says it. This approach seems to put almost insuperable barriers in the 
way of forming new concepts - at least as far as language meaning is 
concerned" (Strachey 1966,75). 

It was this type of critique that led to the break-up of Working Group 2.1 in 

December 1968: "some of us were getting to believe that those Issues of language 

and language design weren't really so much the central Issues of software, and we 

felt that issues of producing sophisticated systems that one could trust depended 

critically on questions of structure and questions of very great simplicity" 

(Randell Interview). 

.. _ýýý- 

The minority group then formed a new working -group, IFIP Working Group 

2.3, which was to concentrate on what they felt was the central issue of software. 

196 



At Brian Randell's suggestion, the group took the title "Programming 

Methodology". 

From the beginning "the working group was very different from all the other 

IFIP working groups. It had started up with the avowed intention of not trying to 

produce a magnum opus like the ALGOL 68 report. We decided to act purely as a 

means whereby people who were working on a general set of topics met up 

together and exchanged notes every now and then" (Randell Interview). As a result 

of this informality, the group had problems with the IFIP bureaucracy who felt 

that they were "just a sort of private club" (Randell interview). 

In fact, the work of the people in the group was to become extremely 

influential in changing the orientation of software. This was not because of any 

group project, but because it provided a forum for discussion for a number of 

people who were trying to push software development in the same direction. 

"When eventually David Gries, one of the members, undertook the editing of the 

book which was collected papers from members of the group, that... absolutely 

transformed the impression that IFIP had and, from being one of the bad boys of 

IFIP, we suddenly became some of the highly approved of people" (Randell 

interview). The working group continues to exist, although Its composition has 

changed. 

The members of Working Group 2.3 differed in their emphasis, but they 

shared a common concern with increasing the rigour and raising the scientific 

level of computer programming. Within the group, there emerged a distinctive 

197 



approach to programming, advocated by some (Dijkstra, Hoare, Gries etc) though 

not all of the participants. This approach, which continues to be influential within 

computer science, is sometimes referred to as the "aesthetic school of computer 

science" (Wegner 1979,206) or the "mathematical school", or sometimes the 

"Dijkstra school": Edsger Dijkstra is one of the most influential, and certainly the 

most outspoken, advocate of radical change. 

This approach stresses the importance of scientific rigour. Scientific rigour 

is necessary because programming is difficult: "we must acknowledge that 

programming is a difficult intellectual task" (Gries 1979,257). The difficulty of 

programming has not been sufficiently realised. The problems of programming 

are unprecedented in human history: "computers are so unlike anything we ever 

had before that the challenge to program them well is absolutely without 

precedent" (Dijkstra interview). 

The difficulties of programming arise partly from size. Increase in size can 

make a problem incomparably more difficult: "one can close one's eyes and 

imagine how it feels to be standing In an open place, a prairie or a sea shore, 

while far away a big, reinless horse is approaching at a gallop, one can see it 

approaching and passing. To do the same with a phalanx of a thousand of these big 

beasts Is mentally Impossible: your heart would miss a number of beats by pure 

panic if you couldl" (Dijkstra 1972a, 2). Underestimation- of the difficulties 

arising from size is "one of the major underlying causes of the current software 

failure" (Dijkstra 1972a, 2). 

The problem of programming is how to deal with this complexity. As humans 

198 



our intellectual powers are limited, and was wise programmers... we should be 

aware of our limitations" (Dijkstra 1968,147). The reason for the existence of 

the computer is that the computer can do things which humans can not do: "the 

automatic computer owes its right to exist, its usefulness, precisely to its ability 

to perform large computations where we humans cannot. We want the computer to 

do what we can never do ourselves" (Dijkstra 1972a, 2). Programming is about 

organising complex computations "in such a way that our limited powers are 

sufficient to guarantee that the computation will establish the desired effect" 

(Dijkstra 1972a, 3). 

Complexity demands simplicity. The programmer's task, therefore, is to 

structure this complexity in such a way that it becomes intellectually manageable. 

Programming is about the organisation of complex problems into simple units: 

"programming... boils down to no more and no less than very effective thinking so 

as to avoid unmastered complexity" (Dijkstra 1982,163). Complexity has to be 

avoided for the simple reason that humans cannot cope with it: "as a slow-witted 

human being I have a very small head and I had better learn to live with it and to 

respect my limitations and to give them full credit, rather than to ignore them, 

for the latter vain effort will be punished by failure" (Dijkstra 1972a, 3). 

The emphasis on simplicity and rigour is the basis of a radical critique of the 

existing practice of programming at the time. The starting point of the critique is 

the contrast between craft and science. Dijkstra, Hoare and others argue that the 

fact that programming had developed as a craft rather than as a science was the 

source of many of the problems of software. 

199 



The distinction between a craft and a science relates to knowledge, education 

and methods of work. The craftsperson begins by working as an apprentice under 

the guidance and supervision of a master, "absorbing gradually, by osmosis so to 

speak, the skills of the craft, until he may be called a master himself" (Dijkstra 

1982,104). The knowledge of craftspeople is never formulated explicitly, but is 

passed on from one to another, typically being kept a well-guarded secret among 

the craftspeople themselves. The methods of work are based not on formulated 

principles but on acquired intuition: "the craftsman knows what he is going to 

build, and knows how to build it. He has no need of elaborate plans, precise 

blueprints, careful measurements, precise quantities, progress charts, delivery 

schedules and cost estimates. When he undertakes to make something, he succeeds, 

because he knows how to make it and his customer knows what to expect. He seems 

to have an ingrained sympathy with his materials, and an intuitive knack for 

handling his tools most effectively. If by chance something goes awry, he knows 

how to adapt his work or his design to compensate for the error. And in the end, 

his product works, and gives good service, and endures. Or, on the other hand, it 

doesn't! " (Hoare 1978,1). B 

In contrast with the craftsperson,; whose knowledge remains implicit, "the 

future scientist learns his trade as a student from a teacher... who tries to 

formulate the knowledge and to describe the skills as explicitly as possible, 

thereby bringing, both into the public domain" (Dijkstra 1982,4). This has 

important implications for education and particularly for the development of 

curricula in computer science. Whereas the craft approach leads to a curriculum 

which is a "cocktail", bringing together "any. odd collection of scraps of knowledge 

and an arbitrary bunch of abilities (Dijkstra 1982,65), the development of a 

200 



scientific discipline requires a high degree of internal coherence and rigour: "the 

internal requirement is one of coherence... The external requirement is one of 

what I usually call a 'narrow interface': the more self-supporting such an 

intellectual subuniverse, the less detailed the knowledge that its practitioners 

need about other areas of human endeavour, the greater its viability. In the 

terminology of the computing scientist, I should perhaps call our scientific 

disciplines 'the natural intellectual modules of our culture'" (Dijkstra 1982, 

65-66). 

Programming, in this view, was still predominantly treated as a craft rather 

than a science. From the early years of programming, the architecture and limited 

capacity of the. machines had led to a tradition of seeing programming as clever 

tricks to get the computer to do what was required: the good programmer was 

"puzzle-minded and very fond of clever tricks" (Dijkstra 1978,11), trying to 

squeeze the best results from an often unique and idiosyncratic machine, often 

achieving excellent results, but not always. This picture of the clever craft 

approach to programming can be seen very clearly, for example, in accounts of 

early programming. In a conference in ' 1979, Backus recalled that "programming 

in the America, of the 1950s had a vital frontier enthusiasm virtually untainted 

by either the scholarship or the stuffiness of academia". However, the other side 

of this enthusiasm was that "just as freewheeling westerners developed a 

chauvinistic pride in their frontiersmanship and a corresponding conservatism, 

so many programmers of the freewheeling 1950s began to regard themselves as 

members of a priesthood guarding skills and mysteries far too complex for 

ordinary mortals" (Backus 1980,126-127). 

201 



For the craftsperson, results are achieved through clever tricks, and 

professional excitement is derived from "not quite understanding what he is doing. 

In this streamline age, one of our most undernourished psychological needs is the 

craving for Black Magic and apparently the automatic computer can satisfy this 

need for the professional software engineer, who is secretly enthralled by the 

gigantic risks he takes in his daring irresponsibility" (Dijkstra 1972b, 223). 

The result of this "daring irresponsibility" is, in this view, that one can 

never be sure of the correctness of a program. The way in which the correctness 

and reliability of software was ensured was, as Graham had pointed out at 

Garmisch (GCR 17), rather like the way that the Wright brothers had tested their 

aeroplanes - by pushing them off the cliff, letting them crash and starting all 

over again. The established method of ensuring reliability was first to write the 

program and then to test and debug it. Hoare describes the work of the 

programmer, systems analyst or project leader on the typical project: 

"He may indeed start with a description of what his client thinks he 
wants; but the desription is so imprecise, inconsistent and even 
inconstant that it can serve only as a rough diagram rather than as a firm 
plan for implementation. Nevertheless a good programmer knows how to 
proceed. He seems to have an intuitive grasp of his programming language 
and ingrained feeling for what his operating system can be made to do. He 
starts writing and testing his code, and when it ' is all finished, it all 
miraculously fits together and . 

works after its fashion. If anything goes 
awry, he hacks a bit at his already written code, modifies his plans a bit, 
and after some delay, delivers his product. If it is not quite what his client 
wanted, he can continue to hack until his client is satisfied; or more 
usually, until he gets tired of waiting. And if the product never gets to 
work at all, or is too inefficient or expensive to put into use, there is no 
point in trying to understand 'why - it is just one of those things that 
happen in programming" (Hoare 1978,2). 

For the craftsperson, the mechanism on which she or he is working remains 

not quite understood, a "black box" (Dijkstra 1972a, 5; 1972b, 221). Hence one 

202 



Scientif is Management 

T) 

1. As mann emu t 

reest1i 
Z. As Eheprnjerkleader 3. As sus 

def fined t. dect3r it 

4. As pro3rammirýg .. 
S. As opetatias 6. Ykd the user dgelcped installed it Kanbzd 



can never be sure what the output of the black box will be; one can test it and try 

to "debug" it, but one can never be sure of its correctness. Consequently, it 

follows that: "present-day computers are amazing pieces of equipment, but most 

amazing of all are the uncertain grounds on account of which we attach any 

validity to their output" (Dijkstra 1972a, 3). 

Ensuring reliability by testing is, in this view, bound to be Inadequate 

because, as Dijkstra points out, even for a simple program In the fastest machine, 

the exhaustive testing of all the computations that can be evoked by the program 

"is apt to take millions of years" (1971,361). Exhaustive testing is thus 

impossible and "testing by random sampling is hopelessly inadequate as well, 

because even the most vigorous sampling will cover only a truly negligible 

fraction of the possible number of cases" (1971,361). It follows that, In one of 

Dijkstra's favourite sayings, "program testing can be used very efficiently to 

show the presence of bugs, but never to show their absence" (1971,361). 

How can the reliability of programs be ensured? Dijkstra's "gospel", as he 

puts it, is that proving the correctness of a program cannot be separated from the 

program itself: 

"When concern for correctness comes as an afterthought, so that 
correctness proofs have to be given once the program is already 
completed, the programmer can indeed expect severe troubles. If, 
however, he adheres to the discipline of producing correctness proofs as he writes his program he will produce program and proof with less effort 
than just the programming alone would have taken" (1971,366). 

The only way to produce such a proof of correctness is through mathematics. 

The application of mathematics to programming is the only way to deal with the 

203 



problems of reliability and complexity. 

Mathematical assertions are seen as possessing three characteristics which 

should be intrinsic to programming: firstly, they are always general in the sense 

that they are applicable to many cases; secondly, they are very precise; and 

thirdly, "a tradition of more than twenty centuries has taught us to present these 

general and precise assertions with a convincing power that has no equal in any 

other intellectual discipline. This tradition is called mathematics" (Dijkstra 

1969,38). 

Generality, precision and convincing power are seen as being essential to any 

program. Firstly, a program is general in so far as it computes a function that is 

defined for an enormous number of different values of its argument. Secondly, the 

specification of what a program can achieve must be precise if the program is 

going to be a safe tool to use. And thirdly, if the program is to be regarded as 

reliable, it is necessary to provide a convincing case for the assertion that such 

and such a program corresponds to such and such a function: "that program testing 

does not provide such a convincing case is well known-The only alternative that I 

see is the only alternative mankind has been able to come up with for dealing with 

such problems, and that is a nice convincing argument. And that is what we have 

always called mathematics" (Dijkstra 1969,38). 

'ýý `. J 

As one can see if one thinks of Euclid's theorems in geometry, for example, the 

convincing power of the argument depends upon the way it is stuctured or built up 

step by step. The problem of correctness, therefore, can only be approached 

through the proper structuring of the program. This relation between 

204 



programming structure and mathematics was brought out strongly by another 

event in 1968, the publication of Dijkstra's GOTO letter and the ensuing 

controversy. 

Dijkstra's letter, entitled "GOTO Statement Considered Harmful", was 

published in March 1968 in the Communications of the ACM. The letter was less 

than a page and a half in length, but it was to become famous as the symbol of the 

methodological attack on the established practices of computer programming and 

the focus of what became known as the GOTO controversy. 

The title under which the letter was published was not its original title. 

Initially, it "was submitted as an article with another title -I don't remember the 

title any more - and I submitted It to Niklaus Wirth, who was then one of the 

editors of the ACM. And, In order to speed up the publication, he made a letter to 

the editor of It, because letters to the editor can be published Immediately" 

(Dijkstra interview). The editor assigned the paper to Douglas T. Ross of MIT as a 

reviewer and he recommended that It should be published quickly since it was "a 

significant paper which should be brought to everybody's attention-It was an 

important thing for conceptualising, that people could talk about things that 

before had not been verbalised" (Ross interview). 

Dijkstra's letter was concerned with controlling the progress of a process, or 

program in execution. As explained in the discussion of operating systems, the 

term "process" was Introduced-in the early 1960s as an abstraction of the 

processor's activity, to denote a program in execution at any instant in time, 

regardless of whether the processor is actually executing instructions from a 

205 



specific program at that instant. In terms of the analogy between an operating 

system and the coordination of a complex traffic system in a city, a process is a 

car on the road, whether it is currently in motion or not. To be able to keep track 

of the progress of one car on the road (process) is obviously an important 

precondition for being able to regulate a complex traffic system, or being able to 

coordinate the various processes within the computer. 

In the 1960s the coordination of various programs in execution was a major 

problem in programming. The coordination of processes had been made much more 

complex by the advent of multiprogramming, real time computing and time 

sharing. It was a common occurrence for operating systems to crash, that is to 

stop suddenly for no apparent reason. Recovery from such crashes was both 

expensive and time consuming. The most common cause of system crash was the 

incorrect coordination of processes. One way in which this could happen was 

"deadlock", where two or more processes stop, each waiting for an action by one of 

the others. In this case the system comes to a complete halt, and recovery is often 

expensive, requiring the termination of one or more jobs in order to release the 

resources to allow the other jobs to proceed. 

Dijkstra had made an important contribution to the study of the problem of 

coordinating concurrent processes. In 1965, he published a paper on cooperating 

sequential processes, in which he introduced the concept of semaphores, special 

signals designed to synchronise asynchronous processes. The operating system is 

seen as a "society of sequential processes, progressing with undefined speed 

ratios", and the semaphores are special variables which force a process to stop at 

a specified place and wait until it has received a specified signal (COSERS 1984, 

206 



674). In a Symposium on the Principles of Operating Systems, organised by the 

ACM at Gatlingburg, Tennessee in October 1967, Dijkstra presented an operating 

system based on these principles, the THE-Multiprogamming System (named 

after Dijkstra's university, the Technische Hoogeschool Eindhoven). It was In the 

course of the discussions there that the idea of writing the GOTO letter emerged: 

"I was explaining this point one afternoon. The sessions had finished and 
we were sitting outside with a number of computing scientists. I explained 
this and Brian Randell, who was sitting next to me and was listening to 
me, said 'Gee, Edsger, that's great. I never realised. You should publish 
that. ' So then I wrote that explanation in the assumption that everybody 
would agree that there was something wrong with the GOTO statement. 
What I meant to publish was an explanation, and it created an unforeseen 
uproar" (Dijkstra interview). 

The letter itself was not concerned directly with the coordination of different 

processes, but with the more basic question of how to control the progress of one 

process, a simpler problem than the orderly coordination of processes within a 

system. 

The GOTO statement is an instruction to the computer to break the normal 

sequence of the program by "going to" or "jumping" to another location In the 

program. It was Introduced by FORTRAN. It was seen in the first chapter that 

FORTRAN operates by first constructing a library of subroutines and then 

selecting or GOing TO each subroutine as and when it Is' required. The attack on 

GOTO was thus to some extent a continuation of the ALGOL-FORTRAN controversy 

in a different form. ALGOL also allows GOTO statements, but the GOTO Is 

extraneous to the basic nested-block structure of ALGOL, while It Is fundamental 

in a language such as FORTRAN that assigns data to fixed locations In a static 

storage, and then jumps to them as required. 

207 



Dijkstra began his letter by saying that he had been familiar for a number of 

years with the observation that the quality of programmers is a decreasing 

function of the density of GOTO statements In the programs they produce". His aim 

in the GOTO letter was to establish a firm basis for the observation that the use of 

GOTO was harmful. The use of GOTO had already been criticised by a number of 

other people, such as Naur, Strachey, Hoare and Zemanek, during the 1960s 

(Arblaster, Sime and Green 1979,105). Dijkstra himself had claimed that the 

use of GOTO created problems as early as 1965: 

"Two programming department managers from different countries and 
different backgrounds - the one mainly scientific, the other mainly 
commercial - have communicated to me, Independently of each other and 
on their own Initiative, their observation that the quality of their 

programmers was inversely proportional to the density of the GOTO 

statements in their programs ... I have done various programming 
experiments... in modified versions of ALGOL 60 in which the GOTO 

statement was abolished... The latter versions were more dificult to make: 
we are so familiar with the jump order that it requires some effort to 
forget itl In all cases tried, however, the program without the GOTO 

statement turned out to be shorter and more lucid" (Dijkstra 1965, 
213). 

In his letter, Dijkstra claimed: 

"more recently I discovered why the use of the GOTO statement has such 
disastrous effects, and I became convinced that the GOTO statement should 
be abolished for all 'higher level' programming languages" (1968,147). 

Before developing his argument, Dijkstra introduced two general 

considerations. The first of these was that "although the programmer's activity 

ends when he has constructed a correct program, the process taking place under 

control of his program is the true subject matter of his activity, for it is the 

process that has to accomplish the desired effect; it is this process that in its 

dynamic behavior has to satisfy the desired specifications". Computer 

208 



programmers did not pay sufficient attention to controlling the process of 

computation: "once the program has been made, the 'making' of the corresponding 

process is delegated to the machine" (1968,147) 

Dijkstra's second general point was that it was essential to start from a 

recognition of our intellectual limitations: "our intellectual powers are rather 

geared to master static relations ... and our powers to visualise processes evolving 

in time are rather poorly developed". For that reason it was important "to shorten 

the conceptual gap between the static program and the dynamic process, to make 

the correspondence between the program (spread out in text space) and the 

process (spread out in time) as trivial as possible" (1968,147). 

The problem, therefore, was to see how the programmer could control the 

progress of the process of computation. To do this, it was necessary to find a way 

of characterising the progress of the process: you may think about this question 

in a very concrete manner: suppose that a process, considered as a time succession 

of actions, is stopped after an arbitrary action, what data do we have to fix in 

order that we can redo the process until the very same point? " (1968,147). 

Dijkstra's argument was that, in the absence of GOTO statements, it is 

possible to construct a system of coordinates that will describe the progress of the 

computation: "with a straight line program, then just the instruction counter will 

do. If you have a repetition, well you can, behind the scenes, so to speak, introduce 

a counter that counts how many times it has gone through. If you have recursive 

procedures, you can stack the pending calls" (Dijkstra Interview). In each case, 

the value of these indices are, outside the programmer's control: "they are 

209 



generated (either by the write-up of his program or by the dynamic evolution of 

the process) whether he wishes or not" (1968,147) 

The independent coordinates were important because their value would 

indicate the precise progress of the process: "if we wish to count the number, n 

say, of people in an initially empty room, we can achieve this by increasing n 

whenever we see somebody entering the room. In the in-between moment that we 

have observed someone entering the room but have not yet performed the 

subsequent increase of n, its value equals the number of people in the room minus 

one! " (1968,147) 

The problem with the GOTO statement is that: was soon you introduce GOTO 

there was no longer any means, any manageable means, of counting the number of 

instructions performed" (Dijkstra Interview). Although it is possible simply to 

count the number of actions performed since the start of the program, "the 

difficulty is that such a coordinate, although unique is utterly unhelpful". The 

coordinate would indicate the number of actions performed but not which part of 

the program had been reached. By breaking the sequence of the program, the GOTO 

statement can lead to a logical spaghetti which is very difficult to implement, 

correct or change. "The GOTO statement as it stands Is just too primitive; it is too 

much an invitation to make a mess of one's program". Consequently, Dijkstra 

advocated the elimination of the GOTO statement from all programming languages. 

After the publication of his letter, Dijkstra received "a torrent of abusive 

letters" (Knuth 1974,265). ° As ' Knuth points out, the discussion was clearly 

threatening to some, people. This was shown, for example, in the first published 

210 



response to Dijkstra, a letter from John R. Rice in Communications of the ACM 

five months later. Rice's indignation is evident, even though, according to 

Dijkstra, "the published version had been slightly toned down" (Dijkstra 

interview): 

"I was taken aback by Dijkstra's letter on the GOTO statement, which is an 
obviously useful and desirable statement... I find the emotional tone of this 

attack as disquieting as the 'scientific' analysis. How many poor, innocent, 

novice programmers will feel guilty when their sinful use of GOTO is 
flailed in this letter? " (Rice 1968,538). 

Rice's letter expressed what was probably a fairly widespread reaction to 

Dijkstra's suggestion that the GOTO statement should be eliminated. Dijkstra 

argues that the sense of indignation was "probably because that was a time in 

which the vast majority of programmers were monolingual. At the time there was 

definitely something called the FORTRAN community, and any suggestion that there 

might be something wrong with FORTRAN was taken as an offence" (Dijkstra 

interview). 

The GOTO letter stirred up the "GOTO controversy". At first examination of the 

literature, however, it is difficult to see where the controversy Is. Apart from 

Rice's letter, it is difficult to find anyone who openly defended the use of GOTO: "a 

number of years later ... there was a panel discussion about the GOTO controversy 

and I remember that at that time for the panel organiser it was hard to find 

someone who would argue in favour of the GOTO" (Dijkstra Interview). The person 

eventually found, Martin Hopkins of IBM, began his defence by saying that "it Is 

with some trepidation that I undertake to defend the GOTO statement, a construct, 

which, while ancient and much used, has been shown to be theoretically 

unnecessary and in recent years has come under so much attack" (Hopkins 1972, 

211 



AS IT HAPPENS... 
THE 

I-- MUM AK ' I 
EWIW-UP 
HAS 
REACHED 
AIRRMiNG 
rRMRfnoNS , vý/º 

X 

cdyoýý 

c EI 
LR 

SYSTEMS 
ARE 
ALS. 
PROGRAMMED 
'fD 

'iR166Eý 
ML»I(Nf S 
NOTKE 

.e 

PLZ D 
ARE 
ThRrRIED 

THIS 
SORT 
OF 
THING 
MIGHT 
HAPPEN 
BY 
ACCIDENT 

1000MPUTING 

BY ROSS SPEIRS AND CLIVE WILKINS 

THE #l SOGGES1 \ coro-Mss 

SMWRRE 
t THEY ýJ PROGRRMMING 

BW ITECHNIQUE 
C_ 

Ai 
TMGýlARIV4TFE 

MISSILE I 
THE 

PLEM AOl) 
SnF G E1Y 

OF THE 
WORLDS 

CONTROL ýý "ý 

CAPITALS SYSTVMS 
cage 

JULY261984 



787). 

The fact that the GOTO statement was so weakly defended does not, however, 

mean that there was no controversy. The controversy took the form that many 

arguments take: those who responded to Dijkstra's argument did not (apart from 

Rice and Hopkins) openly disagree with him; but they did not entirely agree with 

him either. The controversy was not a "yes/no" conflict, but a "yes, but.. " 

argument. Not only that, but the "yes, but... " operated at different levels, 

depending on how the letter was understood. 

The letter was understood in different ways. As Randell says, Dijkstra 

"managed to hit the nail on the thumb with that letter... It caused quite a lot of 

confusion" (Randell interview). Partly because of the title that it was given on 

publication, "in the eyes of many, not using GOTOs was the main issue" (Dijkstra 

Interview); or, as Hopkins put It In his defence of GOTO: "some people are now 

hoping that the royal road will be found through style, and that banishment of the 

GOTO statement will solve all" (Hopkins 1972,787). 

Consequently, much of the discussion focused simply on the elimination of the 

GOTO statement. However, if the discussion is focused simply on the use of the 

GOTO statement, the argument for its total elimination is rather weak: all that can 

be said is that it is possible to avoid the use of GOTO, that the GOTO Is harmful 

because it can lead to a "rat's nest of control flow" (Wulf 1972,791), but that 

there are certain circumstances in which its use is desirable. Nevertheless, after 

the publication of Dijkstra's letter, it became fashionable to eliminate the "sin" of 

GOTO at all costs, even if only to replace it by other forms of "jump" statement. 

212 



For example, the authors of the BLISS language replaced GOTO by eight "escape" 

statements and subsequently added a ninth. From this and other examples, Knuth 

concludes that "it seems that there is a wide-spread agreement that GOTO 

statements are harmful, yet programmers and language designers still feel the 

need for some euphemism that 'goes to' without saying GOTO" (Knuth 1974,266). 

At this level, there is some justification for Hopkins' remark: 

"I also suspect that the controversy reflects something rather deep in 
human nature, the notion that language is magic and the mere utterance of 
certain words is dangerous or defiling. Is it an accident that 'GOTO' has 
four letters? " (Hopkins 1972,787) 

However, this was far from Dijkstra's original intention. A few years after 

the publication of his letter, Dijkstra wrote to Knuth, complaining of exactly what 

Hopkins had criticised, saying that he had the uncomfortable feeling that others 

are making a religion out of it, as if the conceptual problems of programming 

could be solved by a single trick, by a simple form of coding discipline" (quoted by 

Knuth 1974,262). 

For Dijkstra, the main issue was the quality of programming, the clear 

structuring of the program: "not using the GOTO was a very minor part of that 

message; it was about something completely different and the ray of publicity has 

been responsible for it that, in the eyes of many, not using GOTOs was the main 

issue, and this completely distorted their view" (Dijkstra interview). 

Dijkstra's "message" was that programs should be structured clearly: the use 

of the GOTO made it difficult to do this by generating unnecessary complexity. For 

Dijkstra and those who shared his views, it was only within this context that the 

213 



issue of the GOTO became significant: "the strong reasons for eliminating the GOTO 

arise in the context of more positive proposals for a programming methodology 

which makes the GOTO unnecessary" (Wulf 1972,791). The important point is 

not to eliminate GOTOs from programs, but to program in such a way that the GOTO 

has no place: "in fact, the method of step-wise refinement of the programming 

task automatically leads to GOTO-free programming; the absence of jumps is not 

the initial aim, but the final outcome of the exercise" (Wirth 1974,257). 

The positive methodology referred to was structured programming. What is 

meant by structured programming and its relation to the GOTO statement can best 

be illustrated by returning to the simple program of morning activities discussed 

in the first chapter. In that example, the program of morning activities (eat 

breakfast; put on clothes; leave in car; ) was broken down into a series of detailed 

and more detailed statements, so that the whole thing became a nested set of blocks. 

The example was used there to explain the principles of ALGOL, but it can be used 

equally well to explain structured programming. 

Structuring complexity into appropriate blocks is the essence of structured 

programming: "it is the expression of a conviction that the programmers' 

knowledge must not consist of a bag of tricks and trade secrets, but of a general 

intellectual ability to tackle problems systematically" (Wirth '1974,249). The 

clever craft programmer of the old days would have eaten toast in the car because 

it saved time, but the systematic, scientific programmer locates each activity In 

its proper block: first breakfast, then clothes, then car. It appears less exciting: 

there is no hectic rush, no clever tricks; but the challenge, Dijkstra and the 

others would argue, lies in the proper ordering of a complex set of activities. 

214 



Each block is built around an abstraction. The statement "Eat breakfast" 

abstracts from the details of what is eaten: It is a general description of a pattern 

of behaviour that covers a large range of possible variables. The abstractions help 

to impose order on what would otherwise be a confusing mass of individual 

statements: eat toast, put on shoes, start car, eat cereal etc: "our most important 

mental tool for coping with complexity is abstraction. Therefore a complex 

problem should not be regarded in terms of computer instructions, bits, and 

'logical words', but rather in terms and entities natural to the problem itself, 

abstracted in some suitable sense" (Wirth 1974,249). 

The process of starting from the most general level of description and then 

breaking down the program into more and more detailed blocks is known as 

"step-wise decomposition" or "step-wise refinement": the general operations in 

the program "are then considered as the constituents of the program which are 

further subjected to decomposition to the next 'lower' level of abstraction. This 

process of refinement continues until a level is reached that can be understood by 

the computer" (Wirth 1974,249). 

By a process of abstraction and step-wise refinement, the morning's 

activities are decomposed into a hierarchical series of blocks, in which the 

abstractions are specified more and more concretely. Each block is self-contained, 

with a single entry and a single exit: first the breakfast, then the clothes, then the 

car, not backwards and forwards between the blocks with multiple entries and 

exits. A well-structured program is a disciplined sequence of blocks, with single 

entries and single exits. 1 

215 



Sequencing discipline is established not only through abstraction, but also 

through other "mental aids" or "typical patterns of thought which help us to 

understand complex problems" (Dijkstra 1972,6). Of these, the two most 

important are enumeration and mathematical induction. Enumeration is the 

simplest way of ordering any series of computations, but it is not necessarily the 

most concise. Thus, an enumerative description of the process of eating the cereal 

might take the form: 

begin comment Eat cereal; 
Put milk on cereal; 
Put sugar on cereal; 
If hungry and cereal in bowl then Eat bite of cereal; 
If hungry and cereal in bowl then Eat bite of cereal; 
If hungry and cereal in bowl then Eat bite of cereal; 
If hungry and cereal in bowl then Eat bite of cereal; 

end 

In its simplest form, it would be possible to simply enumerate all the 

possible bites of cereal, up to the maximum number contained in the cereal bowl. 

However, "enumeration is only an adequate tool when the number of cases to be 

considered is relatively small" (Gries 1979,259). By inductive reasoning, It is 

possible to shorten the sequence by using a while ... do... statement. The program 

for eating cereal then becomes: 

begin comment Eat cereal; 
Put milk on cereal; 
Put sugar on cereal; 
while hungry and cereal in bowl do Eat bite of cereal 
end . 

Thus, using the three "mental aids" of abstraction, enumeration and induction, 

it is possible to express, a very complex series of activities in a systematic and 

elegant manner. Together, these techniques help one to write a clearly structured, 

216 



w 

tightly sequenced program. In a well-structured program, there is no confusion, 

no logical spaghetti. 

In this approach, the program is visible. The well-structured program is 

easily understandable and requires no external documentation. Similarly, the 

proof of the program lies in the process of programming. A tightly sequenced 

series of logical, mathematical statements is its own proof. Correctness does not 

need to be established by testing after the event: "the wise programmer... develops 

program and correctness argument hand in hand; as a matter of fact, the 

development of the correctness argument usually runs slightly ahead of the 

development of the program: he first decides how he is going to prove the 

correctness and then designs the program so as to fit the next step of the proof" 

(Dijkstra, 1969,39). 

The program Is its own verification: the proof of the pudding Is In the cooking, 

not in the eating. It is the essence of a mathematical theorem that it does not 

depend on post-hoc testing: it Is not necessary to use a measuring tape to establish 

that in an isosceles triangle, the square on the hypotenuse Is equal to the sum of 

the squares on the other two sides. Once the terms of the problem are clearly 

specified, the process of programming should follow logically. In this conception, 

programming depends on the clear specification of the terms of the problem. 

The description of structured programming contains no mention of GOTO. This 

makes it clear that structured programming is not "about eliminating GOTOs": the 

GOTO statement Is simply redundant in a well-ordered program. The clever but 

unsystematic programmer who eats toast in the car would need a lot of GOTOs 

217 



connecting the Eat breakfast module with the Leave in car module. The end result 

might be faster, but the program would be hard to understand, hard to correct and 

liable to error. 

In the light of the earlier discussion of ALGOL, it is clear that neither the 

attack on GOTO nor the elaboration of the principles of structured programming 

was dramatically new. Dijkstra and the others were elaborating and making 

explicit many of the implications of the ALGOL approach to programming. 

It should now be clear why Randell said that Dijkstra "hit the nail on the 

thumb" with the GOTO letter. The fact that the letter was published under the title 

"GOTO Considered Harmful" contributed much to the form taken by the 

controversy. 

Dijkstra's letter caused a lot of confusion; as one commentator wrote 

afterwards: "The letter attracted considerable attention and puzzlement at the 

time. I well remember asking people. 'Do you understand what Dijkstra is talking 

about? ' The representative answer was 'I'm sure It's Important, but I don't really 

quite understand it'" (McCracken 1973,51). 

Behind the appearance of agreement, there was actually a dispute -a dispute 

between people who agreed, but who understood that agreement in different ways. 

Some took the criticism of GOTO simply to mean that the elimination of GOTO 

statements led to better programs, while others saw behind the criticism of GOTO 

a revolutionary change in the whole concept of programming, a new approach to 
Ai d 

programming which they referred to as Structured Programming. But even the 

218 



term "structured programming" does not differentiate the two sides of the 

unstated controversy clearly, because, as will be seen, the term came to mean 

different things to different people. 

Behind the apparent agreement, there can be seen what appear to be 

misunderstandings about the meaning of the GOTO letter. Misunderstandings, 

however, are rarely simply misunderstandings: behind the different 

interpretations of the GOTO letter lie divergent experiences, divergences that 

continue to shape the world of programming. When asked whether he expected the 

reaction that the letter received, Dijkstra replied: 

"No, I didn't, but that was because I was naive. In Europe I moved among 
computing scientists, among scientists in general, and the membership of 
the ACM probably consists largely of practitioners. Geldmongers. That's a 
reason for a shock too. Between the lines I raised all sorts of topics many 
people had never thought about: how to reason about a program. What I 
was essentially pointing out was that if you wish to see algorithms not as 
pragmatic pieces of text that you feed into an IBM computer, but if you 
prefer to treat them as a mathematical object, that in that case the GOTO 
statement is a complexity generator. And the suggestion that programs 
could and perhaps should be treated as mathematical objects, well that 
was a controversial one of course. Practitioners definitely did not like the 
suggestion" (Dijkstra interview). - "t , 

Behind the GOTO letter and the whole methodological critique of programming 

practice was a web of conflicting interests. The essence of the GOTO letter was an 

attack on the established, FORTRAN-dominated practice of programming. Perhaps 

it was this which gave the GOTO controversy its imbalance: It appears a very 

one-sided controversy partly because only one side was stated: "I think a lot of 

people ignored it; anybody writing assembly code simply ignored the whole 

question and just carried on writing code as before" (Buxton interview). 

Probably this sort of pattern is common to a lot of scientific development, at least 

219 



where it aims to make an impact on practice: "the researchers are talking at or to 

some practitioners, while few of the practitioners are talking back; there is no 

real dialogue" (Gries 1979b, 360). 

Dijkstra is very outspoken in his criticism of the "shockingly low" 

professional standards of the "average programmer" (1971,360): "the world 

today has about a million 'average programmers', and it is frightening to be forced 

to conclude that most of them are the victims of an earlier underestimation of the 

programmer's task and now find themselves lured into a profession beyond their 

intellectual capabilities. It is a horrible conclusion to draw, but I am afraid that it 

is unavoidable" (1969,36). 

The criticism extends beyond the programmers, however. The condemnation of 

the existing practices of programming implies a condemnation of the whole 

environment in which programming takes place. The "rigorous approach" 

advocated by Dijkstra and the others is not promoted by the chaotic and frantic 

atmosphere that seemed to dominate software production. Dijkstra's description of 

the typical software project is reminiscent of accounts of the OS/360 and other 

large software projects: - 

"One of the most common forms starts as an existing project, but as this 
project proceeds, deadlines are violated and what started as a fascinating 
thriller slowly turns into a drama, to be played by an ever increasing 
number of actors, the majority of which know perhaps their own part but 
have certainly lost their grasp on the meaning of the performance as a 
whole. At last the curtain falls, only because it is too late, not because 
anything has really been completed; the final piece of software is still full 
of bugs and will remain so for the rest of its days" (1972a, 219-220). 

In the commercial world, everything is too rushed. In Dijkstra's terms, the 

220 



commercial world suffers from a low Buxton index, a very short-term 

perspective, whereas scientific progress demands the long-term view: "in the 

industry, particularly the American one, but by now they've been copied in 

Europe as well, the top priority is speed, to have their product from the moment 

of its conception as soon as possible on the market". The way to move forward 

scientifically, however, is "not to be in a hurry ... to guess which problems will be 

hot issues five to fifteen years from now" and to work on those (Dijkstra 

interview). 

Dijkstra is very critical of the business world, and particularly of IBM and 

its influence. At one conference, organised by IBM, "I was severely shocked by the 

cultural level of the business participants. Their jokes were stale and sordid and 

- for people in business this amazed me - they could not drink their alcohol with 

style... But also technically, they were absolutely uneducated" (1982,128). He 

certainly does not see IBM as promoting scientific programming: "Turski's 

comments were short: 'They don't want computer scientists, nor software 

engineers, they want brainwashed mental cripples. ' It is too true" (1982,128). 

The Influence of IBM spreads far and wide. It shapes programming through the 

design of the IBM machines and the use of the IBM-sponsored languages. Thus, the 

architecture of the third generation computers, particularly the 360, (as 

contrasted with the Burroughs B5000) did much -to shape the subsequent 

development of software. "When these machines were announced and their 

functional specifications became known, - many among us must have become quite 

miserable; at least I was. It was only reasonable to expect that such machines 

would flood the computing community, and it was therefore all the more Important 

221 



that their design should be as sound as possible. But the design embodied such 

serious flaws that I felt that with a single stroke the progress of computing 

science had been retarded by at least ten years; It was then that I had the blackest 

week in the whole of my professional life" (Dijkstra 1978,12). As for the 

languages, "the intellectually degrading influence of what is becoming known as 

the pure FORTRAN environment is... grossly underestimated" (1971,360). 

The opposition to the influence of IBM is something which underlies a lot of 

computer science, especially in Europe. It was seen In the discussion of ALGOL that 

one of the considerations behind the original ALGOL project was the desire to 

resist the growing influence of IBM In Europe, and that ALGOL was seen by some as 

being specifically directed against FORTRAN and therefore IBM. Criticism of IBM 

Is also an important theme in Dijkstra's work and is one element In a more 

general criticism of American and commercial Influence, and this Is combined 

with a defence of what Dilkstra sees as traditional European scientific values. In a 

note "On the Fact that the Atlantic Ocean has Two Sides", he explains the 

differences between European and American perspectives on computer science In 

two ways. The first of these is the Buxton Index, the length of time In the future 

for which a person or institution plans: "on the average, the European Buxton 

Index seems to be larger than the American one" (1982,270). The second 

difference relates to the attitude of a society towards science. "The questions are: 

how does science justify itself, why does a society tolerate scientists? The way In 

which these questions are answered has a deep Influence on the scientist's 

behaviour, not only on the way. in which he presents his results, but also on his 

way of working and his choice of topics. Traditionally there are two ways In which 

science can be justified, the Platonic and the pragmatic one. In the Platonic way - 

222 



Tart pour Z'art' - science justifies Itself by Its beauty and Its Internal 

consistency, in the pragmatic way, science justifies itself by the usefulness of its 

products. My overall impression Is that along this scale - which Is not entirely 

independent of the Buxton Index - Europe, for better or for worse, Is more 

Platonic, whereas the USA, and Canada to a lesser extent, are more pragmatic". 

Dijkstra's own "Pan-Academic preferences... are most definitely Platonic" (1982, 

271). 

There are two elements here. One Is the cultural defence of traditional 

academic values against the influence of greater pragmatism. The second concerns 

the relation between scientific programming and the market. The problems of 

programming are not just cultural: they have to do with the fact that software and 

computers are produced for sale on the market. His criticism of IBM links their 

commercial success with their lack of scientific and mathematical quality: 

"technically, their machines were always very old-fashioned. It has been argued 

that it is misleading to consider IBM as a computer manufacturer. They didn't 

make computers, they made money. For the computing Industry, it was, of course, 

a colossal must to hide the machine's mathematical nature as much as possible... If 

you have to sell the machines to a public that considers mathematics as the 

pinnacle of user-unfriendliness, then you just have to lie, so then you have to 

take out advertisements: our machines take 20,000 business decisions per second 

for you" (Dijkstra Interview). 

The market is not only opposed to mathematics, it favours complexity over 

simplicity: "a tool is useful to the extent that we can know its properties, and 

therefore its functional specification should be simple. However, , many, many 

223 



commercial organisations, even if they were able to make a thing like that, 

wouldn't dare to market it, because they have a feeling that in order to promote 

their product, you have to include all sorts of user-friendliness... so the thing 

would be given all sorts of frills, bells and whistles, which may be nice to sell the 

product, but they're a pain in the neck to use" (Dijkstra interview). 

In the market environment, computers and software appear just like any 

other commodity, and programming like any other production job. Many people in 

the computing industry "do their best to ignore" the specificity of computers and 

computer programming "and try to do the business as any other business... Apple 

has a new executive president, contracted a few years ago. He came from Pepsi 

Cola, and the reason they contracted him was that, having run Pepsi Cola, he knew 

what it meant to be not the first, but the second business in the area. Now you 

know how much understanding the executive president will have of technology. It 

doesn't matter whether a business sells computers or Pepsi Cola or chewing gum" 

(Dijkstra interview). 

If software is a commodity like any other commodity, then this will have an 

effect on the way in which it is produced. - Dijkstra is particularly critical of the 

way in which "programmer productivity" is measured: "for instance, one of the 

things I have heard structured programming being praised for is that it has been 

responsible for a dramatic increase in programmer productivity. But is it 

adequate to consider programming as a production job? And then you look at how 

software engineers measure programming productivity - number of lines of code 

produced per year or per month. Now, you shouldn't talk about number of lines of 

code produced, you should talk about number of lines of code consumed. They book 

224 



it on the wrong side of the ledger" (Dijkstra interview). It Is absurd to measure 

programmer productivity in terms of lines of code produced when the aim should 

be to write programs in as few lines as possible: in science we measure physical 

quantities, something that is meaningful because (the measurements of) these 

quantities are supposed to satisfy certain explicitly stated laws; the purpose of the 

measurements is to confirm or refute the supposed laws. Here, however, to 

'measure' is used in the sense of 'attaching a number to', in very much the same 

way as psychologists construct an IQ. (It Is a fallacy to assume that an IQ 

'measures' somethingl" (Dijkstra 1982,221). 

From the clear connections that Dijkstra draws between the failings of 

software and the fact that software is produced for the market, it would seem 

legitimate to conclude that scientifically rigorous programming is not possible in 

a market environment. Dijkstra himself, however, does not draw such a 

politically radical conclusion. Where he does discuss the issue, his comments do 

not seem entirely consistent with the critical tone of most of his writing. A few 

years after accepting the fellowship from Burroughs, he comments in his 

discussion of the differences between the United States and Europe: "most of you 

must have been confronted with my Pan-Academic prejudices, which are most 

definitely Platonic, and by now you may wonder how in the world I could join not 

only an industrial organisation... but even an American one. But the answer is quite 

simple: in computing science the conflict need not exist - and that is what makes 

the subject so fascinating! To. quote C. A. R. Hoare - from memory -: In no 

engineering discipline does the successful pursuit of academic ideals pay more 

material dividends than in software engineering. ' I could not agree more" (1982, 

271). 

225 



The solution for Dijkstra lies not in the abolition of the market but in laying 

greater stress on education, science and mathematics. It is necessary to convince 

the computer industry that "mathematical elegance is a matter of life and death... I 

have to convince the industry, by saying it over and over again" (Dijkstra 

interview). 

Software Engineering 

The other approach to laying solid foundations for software which emerged at 

the end of the 1960s and the beginning of the 1970s is software engineering. This 

approach too started out from a critique of pro-Garmisch programming and from 

the perception that software was in crisis. The experience of the third generation 

had shown that people did not know how to produce and manage good software. 

Software was in a mess or, as Brooks put it, in a tar pit: 

"No scene from pre-history is quite so vivid as that of the mortal 
struggles of great beasts in the tar pits. In the mind's eye one sees 
dinosaurs, mammoths, and sabertoothed tigers struggling against the grip 
of the tar. The fiercer the struggle, the more entangling the tar, and no 
beast is so strong or so skilful but that he ultimately sinks. Large-system 
programming has over the past decade been such a tar pit, and many great 
and powerful beasts have thrashed violently in it. Most have emerged with 
running systems - few have met goals, schedules, and budgets. Large and 
small, massive or wiry, team after team has become entangled in the tar. 
No one thing seems to cause the difficulty - any particular paw can be 
pulled away. But the accumulation of simultaneous and interacting factors 
brings slower and slower motion. Everyone seems to have been surprised 
by the stickiness of the problem, and it is hard to discern the nature of It. 
But we must try to understand it if we are to solve it" (Brooks 1974,4). 

Brooks of course had considerable experience of the tar pit. After managing 

the OS/360, he left IBM to become a professor at the University of North 

226 



Carolina, and he later published his reflections on the problems of managing large 

software projects in a book called The Mythical Man Month. The way out of the tar 

pit, according to Brooks was to "try to understand it". The key was to learn from 

the mistakes that had been made: he optimistically prefaces the book with a Dutch 

proverb, "een schip op het strand is een baken in zee -a ship on the beach is a 

lighthouse to the sea". 

Many of Brooks' conclusions reflected a new awareness of the nature of 

software. Two features were particularly important. One was that software is 

abstract, the product of mental labour: 

"The programmer, like the poet, works only slightly removed from pure 
thought-stuff. He builds his castles in the air, from air, creating by 
exertion of the imagination. Few media of creation are so flexible, so easy 
to polish and rework, so readily capable of realizing grand conceptual 
structures" (Brooks 1974,7). 

However, software is not simply abstract, it is also a product, a product that is 

part of a system, a "programming systems product": "the program construct 

unlike the poet's words, is real in the sense that it moves and works, producing 

visible outputs separate from the construct Itself. It prints results, draws 

pictures, produces sounds, moves arms" (Brooks 1974,7). A program, 

therefore, is not self-contained: it is part of a wider system and must produce 

useful results. 

The third generation systems, in this view, had run into difficulties partly 
because of their failure to recognise the particular nature of software. One of the 

most important problems had been the scheduling of large projects: More 

software projects have gone awry for lack of calendar time than for all other 

227 



causes combined" (Brooks 1974,14). Because computer programs are 

constructed not from physical materials but from thought, it was expected that 

ideas would be easy to implement: 

"The programmer builds from pure thought-stuff: concepts and very 
flexible representations thereof. Because the medium is tractable, we 

expect few difficulties in implementation; hence our pervasive optimism. 
Because our ideas are faulty, we have bugs; hence our optimism is 

unjustified" (Brooks 1974,15). 

A second reason that Brooks gave for scheduling problems was the false 

assumption that people and months were interchangeable: 

The second fallacious thought mode Is expressed in the very unit of effort 
used in estimating and sheduling: the man-month. Cost does Indeed vary as 
the product of the number of men and the number of months. Progress 
does not. Hence the man-month as a unit for measuring the size of a job Is 
a dangerous and deceptive myth. It implies that men and months are 
interchangeable" (Brooks 1974,16). 

However, 

"When a task cannot be partitioned because of sequential constraints, the 
application of more effort has no effect on schedule. The bearing of a child 
takes nine months, no matter how many women are assigned" (Brooks 
1974,17). 

On the contrary, increasing the number of programmers working on a project 

could easily lead, not to speeding up the project, but to increasing the time 

required. Firstly, the new programmers had to be trained for the project: 

"Each worker must be trained in the technology, the goals of the effort, 
the overall strategy, and the plan of work. This training cannot be 
partitioned, so this part of the added effort varies linearly with the 
number of workers", - 

(Brooks 1974,18). 

Treating programming as though it were an ordinary mass production process 

228 



and adding more and more programmers to finish the job quickly - sometimes 

referred to as the Mongolian Hordes or Human Wave approach (Ogdin 1972,21) 

- did not solve the problem at all: 

"When schedule slippage is recognised, the natural (and traditional) 
response is to add manpower. Like dousing a fire with gasoline, this makes 
matters worse, much worse. More fire requires more gasoline, and thus 
begins a regenerative cycle which ends in disaster" (Brooks 1974,14). 

A major difficulty arising from the employment of large numbers of 

programmers was the problem of communication. If the organisation of the 

project required communication between the programmers working on it, then, 

since communication took time, the time required for the project began to 

increase exponentially with the number of programmers: 

"if each part of the task must be separately coordinated with each other 
part, the effort increases as n(n-1)/2. Three workers require three 
times as much pairwise intercommunication as two. If, moreover, there 
need to be conferences among three, four, etc, workers to resolve things 
jointly, matters get worse yet. The added effort of communicating may 
fully counteract the division of the original task" (Brooks 1974,90). 

The question of communication between programmers was thus an important 

issue in the management of large software projects. Inevitably communication 

took time away from production. As communications between programmers 

increased, productivity fell: 

"Joel Aron, manager of Systems Technology at IBM in Gaithersburg, 
Maryland, has studied programmer productivity when working on nine 
large systems (briefly, large means more than 25 programmers and 
30,000 deliverable instructions). He ' divides such systems according to 
interactions among the programmers (and system parts) and finds 
productivities as follows: 
Very few interactions: 10,000 instructions per man year Some interactions: 5,000 , 
Many interactions: 1,500" (Brooks 1974,90). 

229 



Consequently, one of the lessons that Brooks drew from the OS/360 experience 

was that it was essential for management to reduce communication between 

programmers: 

"The purpose of organization is to reduce the amount of communication 
and coordination necessary; hence organization is a radical attack on the 
communication problems treated above. The means by which 
communication is obviated are division of labour and specialization of 
function. The tree-like structures of organizations reflect the 
diminishing need for detailed communication when division and 
specialization of labor are applied" (Brooks 1974,79). 

One of the problems facing software specialists was to find a way of organising 

an abstract labour process in such a way that there was a clear division of labour 

which would reduce the need for communication to the minimum. Reducing the 

need for communication was important both to increase productivity and to make 

the whole programming project more manageable and so increase the reliability 

of the program. The abstract nature of the production process had a number of 

implications: It not only meant that the reproduction costs of software were close 

to zero, but it also made the division of labour a particularly difficult problem. 

Brooks was not the only software manager to reach this conclusion. An article 

by another manager, published in February 1968, spoke of "a structural theory 

of programs" as having emerged from industrial practice, a theory which he 

contrasted with the unstructured algorithmic approach still prevalent in the 

universities. The article concluded by calling on the universities to provide a 

more rigorous foundation for the practices being developed by industry: 

"The theory emerging from industry is tentative, incomplete and perhaps 
too compromised by its pragmatism. We vitally need the theoretical 
contributions which the university can make, not just in mathematical 
optimisation but in the structure of the programs, not only in compiler 

230 



design but in the psychology of programming" (Constantine 1968,19). 

In order to deal with the problem of division of labour, two other managers in 

IBM, Harlan Mills and Fred Baker, turned to the ideas of structured programming. 

It was Mills and Baker who first introduced the concept of structured 

programming into the practice of large-scale software production in 1969/70, 

while working on a project to index the New York Times. They saw the ideas of 

structured programming as being important in helping to establish a good, clean 

design for a programming project. Good design was the key to the Internal division 

of labour within the project. Communication in a well-designed project should be 

limited to contact between programmers at the top of hierarchically organised 

groups: 

The application of structured programming was said to be a "startling 

success" (Miller and Lindamood 1973,55), "with reports of greatly increased 

programmer productivity and very greatly reduced coding error rates (one 

detected error per 10,000 lines of coding, or one per man-year)l Absolutely 

incredible, but these were the facts" (McCracken 1973,51). 

The New York Times index was followed by other projects applying the ideas 

of structured programming, so that by 1973, an article in Datamation commented 

that "what was for a few years an underground ivory tower - to mix metaphors a 

bit - has now'come out in the open as a very important thing indeed. The 

practicality of the theory has been demonstrated in a fashion that simply cannot be 

ignored" (McCracken 1973,52). 

The application of structured programming led to a refinement of the 

231 



techniques of software management and particularly to the development of the 

Chief Programmer Team. As Baker put it at a conference in 1974: 

"FSD [Federal Systems Division] has been active in the development of 
structured programming techniques. This has led to organisations, 
procedures and tools for applying them to production programming 
projects, particularly with a new organisation called a Chief Programmer 
Team" (Baker 1975,39). 

The chief programmer team is described by Baker and Mills as "a new 

managerial approach to production programming. While the approach is made 

possible by recent technical advances in programming, it also incorporates a 

fundamental change in managerial framework which includes restructuring the 

work of programming into specialised jobs, defining relationships among 

specialists, developing new tools to permit these specialists to interface 

effectively with a developing, visible project; and providing for training and 

career development of personnel within these specialties". The new approach, 

they claim, "contrasts sharply with that of conventional programming groups 

which frequently suffer from lack of functional separation, discipline and 

teamwork" (Baker and Mills 1973,58). The chief programmer team is seen as a 

reaction against the Mongolian Hordes approach of many of the large projects in 

the 1960s: the emphasis is on small teams with charismatic and highly 

specialised team leadership and a very clear assignment of roles within the team. 

The concept was seen as being similar to that of a surgical team, where skilled 

technical assistants provide the instruments to the chief surgeon who performs 

the specialist work required (Brooks 1974,27). 

However, the internal division of labour Is only one aspect of the management 

problem. The other aspect derives from the fact that software is a product, which 

232 



must respond to users' requirements and is shaped by those requirements. 

The emphasis on user requirements is at the core of another approach to 

software engineering. In this view structured programming is a useful technique 

but is of limited importance when one is dealing with real machines which must 

be responsive to real and changing requirements. Software is produced within the 

constraints of a market economy for use by users whose requirements it must 

satisfy. Software engineering is not of concern only to software engineers, but 

affects also users, managers, marketing people and all those who participate in 

the software environment. It Is important, therefore, for all of these groups to 

understand and participate in the software engineering process. The focus is not on 

the program as a closed process but on the dynamic relation between programming 

and the environment which surrounds It. 

To look at programming in terms of its relationship to users' requirements 

Implies a different view of programming as an activity. Programming in this view 

cannot be seen as the rigorous application of a fixed body of principles; it involves 

a constantly changing relationship to a constantly changing environment. That 

shapes the activity of the programmer. There are no recipes, no hard rules that 

can be applied to an environment that is constantly evolving. That is why it is 

better to see the programmer ' as a ', software engineer who interacts with the 

surroundings and learns from them, through experience. In this sense, software 

engineering is a craft. 

Software engineers, then, are craftspersons. Their ability will be shaped by 

the tasks they have to perform' and by the environment within which those tasks 

233 



are performed. It is important for the development of the software engineers' 

ability that the environment should be a good one, "that it should have a 'strong' 

culture in good software engineering practice" (Macro and Buxton 1987,3). 

Ability is also shaped by experience, by "the stage that software engineers have 

reached in consolidating their subject knowledge Into a framework of practice 

sufficient for most eventualities, yet flexible enough to be extended and modified 

when necessary". It follows that in this sense the career of the software engineer 

"begins with an apprenticeship, and proceeds through junior and senior software 

engineer levels to that of 'master' in the craft" (Macro and Buxton 1987,3-4). 

The education of the programmer cannot be purely theoretical. 

In this perspective, rigidly hierarchical structures in the division of labour 

are a barrier to the making of good software engineers. The elitism in the 

traditional concept of the chief programmer team, as advocated by Mills, is 

counter-productive: 

"Now, I think the whole thrust of software engineering has very much 
gone the other way, that really high quality software is not written by 
COBOL-plonkers, and it's not written by an unduly hierarchical team 
with different skill levels, but it's actually written as a team activity 
with high skill levels on the part of everybody" (Buxton interview). 

The contrast between the hierarchical approach and the craft engineering 

approach can be seen if you "go and have a look at the software houses that 

specialise in writing commercial programs, and go in particular and have a look 

at the big insurance companies, people who write very large commercial 

programs, and you will find they talk about systems analysts and programmers 

and these are different kinds of people. Go to Logica or SDL or SSL or whatever, 

and they don't. They talk about levels of programmer, depending on experience and 

234 



ability" (Buxton interview). 

Craftspersons work with tools. Part of mastering the craft is the process of 

developing and mastering the tools and techniques of the craft. These tools (such as 

languages, editors, graphic packages, expert systems etc) help the software 

engineer to cope with the enormous complexity which arises from the changing 

relation between software and the multiplicity of users' requirements. For the 

craftsperson, building the right product in the right way is not a question of 

mathematical proof. The emphasis, therefore, is on devising good tools for testing 

correctness: tools such as prototyping, modelling, demonstrators etc. 

The emphasis on user requirements implies not only a more dynamic but also 

a more long-term view of software. Programming is the programming of dynamic 

processes and the software must be flexible and dynamic to respond to the users' 

needs. Software production does not simply involve programming in the usual 

sense. This Is just one stage in the entire lifecycle of the software, a central 

concept in this approach: 

"A major reason for the magnitude of the current software crisis is the 
failure of previous methodologies to analyse software costs over the 
entire life cycle of any given system. This life cycle extends from the 
design phase through initial Implementation and testing, and Includes 
modification and maintenance. Previous methodologies have failed to 
recognise the magnitude of the effort required to maintain and modify 
existing software. Software systems are 'living', 'growing' entities that 
require signficant care and attention In order to reach maturity" (Gillett 
and Pollack 1982,4). 

In this perspective, the actual process of programming is only part of the 

whole process of producing the programming product. A clear distinction is 

established between the program and the product. The product is external to the 

235 



process of programming. It is because of this externality that documentation, 

maintenance and testing acquire importance. Since the program is not the product, 

the testing of the software Is a separate activity from the writing of the program; 

similarly, because software Is an abstract product, documentation is required to 

make the program visible, and maintenance too is seen as an activity external to 

the programming process. These are all seen as different aspects of the 

engineering of a product. 

The concept of "lifecycle" is both a technical and a managerial concept. From 

its origins and by virtue of its practical orientation, it is impossible to separate 

the technical from the managerial in the software engineering approach. For this 

reason, Macro and Buxton, In their recent book on the topic, argue that the 

definition of software engineering must include expicit mention of management 

considerations. The definition which they propose for software engineering is the 

establishment and use of sound engineering principles and good management 

practice, and the evolution of applicable tools and methods and their use as 

appropriate, In order to obtain - within known and adequate resource provisions 

- software that is of high quality In an explicitly defined sense" (Macro and 

Buxton 1987,3). 

In the "real world" of programming practice, the production of software is 

inextricably linked with questions of management. In industry, software 

engineering "tends to mean primarily software management - programming teams 

and quality control and using the software life-cycle and specification and design 

and so on"; whereas "the academics look at software engineering and say - well, 

Edsger [Dijkstra] is the purest example, but Edsger says quite bluntly that the 

236 



only way that you'll properly engineer a piece of software is to realise that it is a 

mathematical construct and you've got to prove that it is right", for the 

industrialist there are practical problems of management: "the industrialist looks 

at a piece of software and says, 'I am going to need a million-line program to do 

this and it'll take a hundred people to write it for five years, and we'd better have 

all the necessary techniques and controls to actually do that'" (Buxton interview). 

In practice, therefore, an aim of software engineering is to provide the software 

manager with "the necessary techniques and controls" to produce good software. 

Since software engineering is a practical real world activity, this means that 

it is necessary, according to its proponents, to come to terms with all the 

constraints that this implies. This means, firstly, a recognition that software has 

to be produced within the tight constraints of time and money imposed by the 

market. If the software is not efficiently contructed, it will not be competitive. 

It also means recognising that programming can only be done with the 

programmers available. The rapid expansion of computer use during the 1960s 

led to an explosion in the demand for computer programmers. As a result, many 

people had been recruited into programming without adequate training: "the 

Industry has grown so quickly that the demand for people has far exceeded the 

supply of well-trained people" (Guttag Interview). Software engineering 

acknowledges that it is not possible to do away with the "average programmer": 

"on the large scale that the computing world has got to now, you can't be having the 

Dijkstras of this world do all the programming for you, and there are issues of 

people can only work with the resources that they've got, and the people that they 

have and the training that those people have got and their calibre" (Randell 

237 



interview). 

The third way in which the "real world" orientation shapes software 

engineering Is through the relation of programming to changing user 

requirements. The mathematical approach assumes the existence of a clearly 

defined problem which must be solved: a clearly defined set of user specifications 

establishes the framework within which the problem is to be tackled. In practice, 

however, the users' requirements will often be ill-defined, both In the sense that 

the users may not know exactly what they want and in the sense that, even if they 

know, it may be difficult to communicate those wants clearly. In the discussion of 

the experience of the users with software, it was seen that these problems of 

communication and definition reflect and are reflected In tensions between 

producers and users, and between line managers and data processing departments. 

The process of translating user requirements into specifications may succeed in 

providing a clear framework for the design of the program, but it may still be 

found that they do not accurately reflect what the user wanted, or that the user's 

requirements subsequently change. The tensions of the real world penetrate into 

the practice of programming: the orientation of software engineering implies, 

therefore, a relation not to a well-defined, and stable specification but to 

ill-defined and unstable requirements. 

The two approaches discussed in this chapter differ fundamentally in their 

conception of: the nature of software and of the role of computer science. The 

central point is the relation of the computer scientist to the "real world" of 

software production. 

238 



On the one hand, the software engineers criticise the methodological school for 

having "too simple a view of the world" (Wegner 1979,206). Their contribution 

is seen as being important but limited and ultimately unrealistic. 

One aspect of this is the methodologists' preference for concentrating on 

small-scale problems. According to their critics, they insulate themselves from 

the difficulties that most programmers confront by the way in which they choose 

the problems they consider. Some of the main points of criticism are summarised 

in a discussion by Parnas of a paper by Gries; although Parnas shares the "belief 

that a more mathematical and disciplined treatment of programs is one of the keys 

to improved program quality", he argues that: 

"a. The programs by Dijkstra, Gries and others are the subject of months, 
years, or in some cases, centuries of study by disciplined, creative, and 
mathematically trained minds. Neither they, nor their working 
conditions, are typical. 
b. The problems have been selected because they are easily subject to 
mathematical treatment. Most programmers cannot select their problems. 
c. The programs are designed for publication, not for use. Few 
programmers can design their own, convenient notation and assume that it 
will be implemented. 
d. The methods work only where variables are uniquely and 
unambiguously identifiable. Major unsolved problems remain before one 
can deal routinely with programs that make sophisticated use of arrays or 
core addresses. 
e. Even with these advantages, incorrect programs have been published" 
(Parnas 1979,353). 

The Insistence of the methodologists on program verification has similarly 

been criticised for not being 
. applicable to the real difficulties of large 

programming projects. Even the concept of verification, it has been argued in a 

paper by De Millo, Lipton and Perlis, rests on a fundamental misunderstanding of 

the' nature of mathematical proof, which denies the relation between proof and 

social processes: 

239 



"We believe that, In the end, it Is a social process that determines 
whether mathematicians feel confident about a theorem - and we believe 
that, because no comparable social process can take place among program 
verifiers, program verification is bound to fail. We can't see how It's 
going to be able to affect anyone's confidence about programs" (De Millo, 
Lipton and Perlis 1979,271). 

Dijkstra's response to the "real-world" criticism is to deny the charge: 

"The appeal to the real world Is always a hidden threat not to challenge the 
other one's tacit assumptions. The real-world (sometimes with a hyphen 
In between): that's the catchword of sometimes rabid 
anti-intellectualism. It's true that a lot of software is made without 
proper functional specification. My suspicion is that that's precisely why 
it's such a mess" (Dijkstra interview). 

On the more specific argument that programming does not take place in an 

environment of clearly defined specifications, Dijkstra replies that: 

"The fallacy in this argument is to be found in the confusion between 
between exact and complete; although the program requirements, at a 
given stage, may be incomplete, a certain number of broad characteristics 
will be exactly known. The abstract program can see to it that these broad 
specifications are exactly met, while more detailed aspects of the problem 
specification are catered for in the lower levels... By successively adding 
more details in the lower levels [the programmer] eventually pins his 
program down to a solution for the given problem" (Dijkstra 1971, 
367). 

"Real -world" approaches to programming in general are guilty of 

anti-intellectualism. Dijkstra originally welcomed the term software 

engineering, "because in my view of the engineer, it included the mathematical 

involvement" (Dijkstra Interview). But then, under the Influence of the American 

interpretation of engineering, "software engineering went down the drain; the 

current meaning given to software engineering, if you read a book on it, you'll 

discover that that group has accepted as charter 'how to program If you can't'. It's 

really dismal" (Dijkstra Interview) 

240 



The structured programming of the real world, as practised by Mills and 

Baker, is no better. Dijkstra repudiates the "structured programming" which 

many people see as the product of his ideas, with almost the same horror as 

Frankenstein rejected his creature: "since IBM stole the term 'structured 

programming' I don't use it anymore myself" (1982,341). There is a dramatic 

scene in which Frankenstein comes face to face with the creature: Dijkstra 

describes his arrival at a conference in Canada sponsored by IBM in the following 

terms: 

"From Monday through Wednesday IBM sponsored there a conference on 
Software Engineering Education, and in my innocence I had expected an 
audience of computer scientists. My driver, however, was a manager who 
opened the conversation with something like 'So you are the world expert 
on structured programming and chief programmer teams'. Then I knew I 
was out in the wilderness and politely refused to be associated with Harlan 
D. Mills" (1982,126). 

And later in the same conference: 

"Later I heard Harlan Mills give a summing up of some of the things I had 
said - together with some Harlanesk additions - for that business 
audience. It was terrible, a misuse of language to which to the best of my 
powers I could not give a meaning. So, every third phrase I Interrupted 
Harlan 'please could you explain or restate what you tried to say', but It 
was hopeless. Tom Hull helped me and I was very grateful to him. Later, 
when it was all over, our eyes met, and Tom gasped 'Jezusl'. It was the 
first time that I had heard him use strong language. How to sell empty but 
impressive slogans under the cloak of academic respectability.... " (1982, 
128). 

The real-world charge iss in this view, not only anti-intellectual; it also 

implies a short-term, blinkered view of what constitutes reality. This emerges. 

for example, in a comment by Dijkstra on a paper on software engineering 

education, and particularly in a remark on the authors' view of the proper role of 

universities: 

241 



"They include producing the graduates industry and the government ask 
for. An alternative view is trying to educate the graduates the rest of the 
world will need in the future, independent of the question to what extent 
the rest of the world understands its future needs" (Dijkstra 1982, 
220). 

Dijkstra's long-term view of the world does not necessarily make his 

theories better than other theories, but it does give them a sharp critical force. In 

more positive terms, it Is possible to argue that the limitations of the Dijkstra 

approach are also a strength. The methodological approach Is a much more 

systematic and In many ways more cautious approach. It Is an approach that 

rejects the "daring irresponsibility" of much current programming and Insists 

that If something cannot be done properly, it should not be done at all. This 

implies a less hectic, and probably also less rapid progress in the development of 

software and therefore of computerisation, but perhaps a safer one. 

When the possible consequences of software failure are so enormous, there is 

much to be said for this approach, but it is utopian. As has been seen throughout 

this thesis, it is not "scientific reason" that shapes the development of software. 

Software has been and is being shaped by the tensions of the world that surrounds 

it: a world of fierce competition between computer manufacturers, between 

marketing and technical people, between users and producers, between users 

themselves. Software development operates in a constantly changing environment, 

in a world of ill defined requirements. To try to convince IBM and the world not to 

rush and not to be too ambitious, that the only way forward is to program 

scientifically, in a world of good programmers and clearly defined specifications, 

is a hopeless task. The lid on Pandora's Box is not so easily closed. 

end 

242 



References 

Abelson P. H. & Hammond A. L. (1980), "The Electronics Revolution", in Forester 
T. (ed. ), The Microelectronics Revolution, Blackwell, Oxford 

Alexander T. (1969), "Computers Can't Solve Everything", Fortune, October 

Alt F. L. (1969), "The Costs of Computing and Failure in Computing Programs", 

Computers and Automation, January, pp. 14-16 

Arblaster A. T., Sime M. E. and Green T. R. G. (1979), "Jumping to Some Purpose", 

The Computer Journal, Vol. 22, No. 2, pp. 105-109 

Armer P. (1970), "Computer Applications in Government", in Taviss I. (ed. ), 
The Computer Impact, Prentice-Hall Inc., Englewood Cliffs, New Jersey, pp. 
123-129 

Automatic Data Processing Newsletter Vol Ix No 25,10 May, 1965, "EDP in State 

and Local Governments at Mid-Decade" 

B-5000 Discussion (1987), "Discussion: The Burroughs B 5000 in Retrospect, 
Annals of the History of Computing, Vol. 9, No. 1, pp. 37-92 

Backus J. (1980), "Programming in America in the 1950s - Some Personal 
Impressions", In Metropolis N., Howlett J., Rota G. -C., A History of 
Computing in the Twentieth Century, Academic Press, New York, pp. 
125-136 

Backus J. (1981), "The History of FORTRAN I, II and III", in Wexelblat (1981), 
pp 25-74 

Baker F. T. (1975), "Organizing for Structured Prgramming", In Hackl C. E. (ed), 
Programming Methodology, Springer Verlag, Berlin 

243 



Baker F. T. and Mills H. D. (1973), "Chief Programmer Teams", Datamatlon, 

December, pp. 58-61 

Barron D. W. (1968), Recursive Techniques in Programming, Macdonald, London 

Bauer F. L. (1969), "Software Engineering: A Conference Report", Datamation, 

October, pp. 189-192 

Bauer F. L. (1980), "Between Zuse and Rutishauser - The Early Development of 

Digital Computing ý in Central Europe", in Metropolis N., Howlett J., Rota 

G. -C., A History of Computing in the Twentieth Century, Academic Press, New 

York, pp. 505-524 

Belady L. A. and Lehman M. M. (1979), "Characteristics of Large Systems", in 

Wegner (1979), pp. 106-138 

Berner R. W. (1969), "A Politico-Social History of ALGOL", in Halpern M. I. and 
Shaw C. J. (eds), Annual Review in Automatic Programming, Vol. 5, Pergamon 

Press, Oxford, pp. 151-238 

Bigelow R. P. (1968), "Legal Aspects of Proprietary Software", Datamation, 

October, pp. 32-39 

Boehm B. W. (1973), "Software and Its Impact: A Quantitative Assessment", 
Datamation, May, pp. 48-59 

Boehm G. A. (1962), "Helping the Executive to Make up his Mind", Fortune, 
April, p. 128 

Boering B. W. (1967) "Multi-Programming: Who Needs It? ", Computers and 
Automation, pp. 36-37 

Bouvard J.. (1970), "The 
, 
Translation of User Requirements Into Fourth 

Generation Software", In Gruenberger F. (ed. ), Fourth Generation Computers, 
Prentice-Hall, Inc., Englewood Cliffs, New Jersey, pp. 117-130 

244 



Brandon D. H. (1970), Management Planning for Data Processing, Brandon/ 

Systems Press, Princeton, New York 

Braverman H. (1974), Labor and Monopoly Capital: The Degradation of Work in 

the Twentieth Century, Monthly Review Press, New york and London 

Brock G. W. (1975), The US Computer Industry, Ballinger, Cambridge 

Massachusetts 

Brooks F. J. (1974), The Mythical Man-Month: Essays on Software Engineering, 

Addison-Wesley, Reading, Massachusetts 

Burck G. (1964), "The Boundless Age of the Computer", Fortune, March, April, 

May, June 

Business Week 5th November 1966, p. 127 "Software Gap -A Growing Crisis for 

Computers" 

Carlson W. E. (1976), Software Research in the Department of Defense", 

Proceedings of the Second International Conference on Software Engineering, 

pp. 379-393 

Computers and Automation February 1967, p. 11, "Software Gap -A Growing 
Crisis for Computers" 

Computers and Automation June. 1967 p. 77, "World Computer Census" 

Computers and Automation June 1968, p. 132, "World Computer Census" 

Computers and Automation July 1968, p. 14, "Association of Independent 
Software Companies Formed" 

Computers and Automation January . 1969, pp. 72-23 "As we go to press" 

Computers and Automation February 1969, p. 8 "As we go to press" 

245 



Computers and Automation July 1969, p. 8 "As we go to press" 

Computers and Automation August 1969, pp. 39-40, "Reactions to IBM'S 

'Unbundling'" 

Computers and Automation October 1969, p. 11, "As we go to press" 

Computers and Automation November 1969, p. 11, "As we go to press" 

Constantine L. L. (1968), "The Programming Profession, Programming Theory, 

and Programming Education", Computers and Automation, February, pp. 
14-19 

Conway M. E. (1968), "On the Economics of the Software Market", Datamation, 

October, pp 28-31 

COSERS (The Computer Science and Engineering Research Study) (B. W. Arden, 

ed), What Can be Automated? MIT Press, Cambridge Massachusetts and 
London, 1980 

Dansiger S. J. (1968), "Proprietary Protection of Computer Programs", 

Computers and Automation, February, p. 32 

Datamation March 1969, p. 205, "Software Group Splits over ALGOL 68" 

Datamation June 1968, pp. 72-77, "Separate Hardware/ Software Pricing? " 

Datamation June 1968, p. 91, "Program Plagiarism Alleged in UK Case" 

Datamation July 1968, p. 91, "ADR Receives First Program Patent" 

Davidson, L. (1968), "Practical Considerations in Program Patentability", 
Computers and Automation, May, pp. 12-13 

De Millo R. A., Upton R. J. and Perlis A. J. (1979), "Social Processes and Proofs of 
Theorems and Programs", Communications of the ACM, pp. 271-280 

246 



Denning P. J. (1971), "Third Generation Computer Systems", Computing 

Surveys, Vol. 3, No. 4, December, pp. 175-216 

Dickson G. W. and Simmons J. K. (1970), "The Behavioral Side of MIS", Business 

Horizons, August, pp. 59-71 

Dijkstra E. W. (1968), "GOTO Statement Considered Harmful", Communications of 

the ACM, Vol. 11, No. 3, March, pp. 147-148 

Dijkstra E. W. (1969), "On the Interplay between Mathematics and 

Programming", in Program Construction, Lecture Notes in Computer Science, 

Springer Verlag, New York, pp. 35-46 

Dijkstra E. W. (1971), "Concern for Correctness as a Guiding Principle for 

Programming", In The Fourth Generation, Infotech State of the Art Report, no. 

1. Infotech International, Maidenhead, pp. 359-367 

Dijkstra E. W. (1972a) "Notes on Structured Programming", in Dahl O-J, 

Dijkstra E. W., Hoare C. A. R., Structured Programming, Academic Press, 
London and New York 

Dijkstra E. W. (1972b), "The Reliability of Programs", In High Level Languages, 

Infotech State of the Art Report, no. 7, Infotech International, Maidenhead, 

pp. 218-232 

Dijkstra E. W. (1978), "The Humble Programmer", in D. Gries (ed. ), 
Programming Methodology: A Collection of Articles by Members of IF/P 
WG2.3, Springer Verlag, New York 

Dijkstra E. W. (1982), Selected Writings on Computing: A Personal Perspective, 
Springer Verlag, New York 

Doherty W. J. (1970), "Scheduling TSS/360 for Responsiveness", Proceeding of 
the Fall Joint Computer Conference 

247 



EDP Weekly, 6th September, 1965, pp. 14-15, "The House of Representatives 

Passed the Amended Version of the Brooks Bill" 

Ernst M. L. (1982), "The Mechanization of Commerce", Scientific American, Vol. 
247, No. 3, September, pp. 110-123 

Feeney J. M. (1981), "Management Information Systems - The Failure of 
Technology", in Business Information Systems, Infotech State of the Art 

Report, Series 9, No. 7, Pergamon Infotech, Maidenhead 

Financial Times, 30 September 1983, "Suddenly, the great software bonanza" 

Fisher F., McKie J., Mancke R. 1983, IBM and the U. S. Data Processing Industry. 

Praeger, New York 

Fishman K. D. (1982), The Computer Establishment, McGraw-Hill, New York 

Flynn R. L. (1974), "A Brief History of Data Base Management", Datamatlon, 

August, pp. 71-77 

Fortune January 1965, pp. 171-172, "The Battle of the Computer Marketeers" 

Frank W. L. (1976), "The Second Half of the Computer Age", Datamation, May, pp. 
91-100 

Freeman D. N. (1978), "Software Unbundling and Program Products", in IBM, 
vol 2, Infotech State of the Art Report, Infotech International, Maidenhead, pp. 
135-146. 

GCR, Garmisch Conference Report (1969), Software Engineering, Report on a 
conference sponsored by the NATO Science Committee, Garmisch, Germany, 
7th to 11th October 1968, edited by Naur P. and Randell B., NATO, Brussels 

Gawne-Cain H. (1967), "Integrated EDP Systems in Business", in Fletcher A. 
(ed. ), Computer Science for Management, pp. 157-172 

248 



Gilchrist B. and Wessel M. R. (1972), Government Regulation of the Computer 

Industry, AFIPS Press, Montvale, New Jersey 

Gill S. (1960), "The Philosophy of Programming", Annual Review of Automatic 

Programming, Pergamon Press, Oxford Vol. 1, pp. 178-188 

Gillett W. D. and Pollack S. V. 1982, An Introduction to Software Engineering, Holt, 

Rinehart and Winston, New York 

Giuliano V. E. (1982), "The Mechanization of Office Work", Scientific American, 

Vol. 247, No. 3, September, pp. 124-135 

Goldstine H. N. (1972), The Computer from Pascal to von Neumann, Princeton 

University Press, Princeton, New Jersey 

Gordon R. M. (1968) Review of The Management of Computer Programming 

Projects by Lecht C. P., Datamation April, pp. 200-204 

Gosden J. and Raichelson E. (1970), "The New Role of Management Information 
Systems", in Gruenberger F. (ed. ), Fourth Generation Computers, 

Prentice-Hall Inc., Englewood Cliffs, New Jersey, pp. 75-88 

Granholm J. W. (1963), "ALGOL on the 7090", Datamatlon, April, p. 28 

Greenbaum J. M. (1979), In the Name of Efficiency, Temple University Press, 
Philadelphia 

Gries D. (1979a), "Current Ideas in Programming Methodology", in Wegner 
1979, pp. 254-275 

Gries D. (1979b) "A Comment on Parnas' Counterpoint", in Wegner 1979, pp. 
359-370 

Gunn T. G. (1982), "The Mechanization of Design and Manufacturing", Scientific 
American, Vol. 247, No. 3, September, pp. 86-109 

249 



Head R. V. and Linick E. F. (1968), "Software Package Acquisition", Datamation, 

October, pp. 22-27 

Hertz D. (1969), New Power for Management, McGraw-Hill, New York 

Hilton A. M. (1963), Logic, Computing Machines and Automation, Spartan Books, 

Wahington D. C. 

Hirsch P. (1966), "The Patent Office Examines Software", Datamation, 

November, pp 79-81. 

Hirsch P. (1972), "What's Wrong with the Air Traffic Control System? ", 

Datamation, August, pp. 48-53 

Hoare C. A. R. (1978), "Software Engineering: A Keynote Address", Proceedings of 
the Third International Conference on Software Engineering 

Hoare C. A. R. (1984) "Der neue Turmbau zu Babel", Kursbuch, March, pp. 
57-73 

Hopkins M. E. (1972), "A Case for the GOTO", Proceedings of the ACM Annual 
Conference, Boston, Massachusetts 

Hopper, G. M. (1981), "Keynote Address", in Wexelblat 1981, pp 7-24 

Huse E. F. (1967), "The Impact of Computerized Programs on Managers and 
Organizations: A Case Study of an Integrated Manufacturing Company", In 
Myers C. A., The Impact of Computers on Management, MIT Press, Cambridge 
Massachusetts, pp 107-129 

IBM (1967), "IBM Operating System/360: Concepts and Facilities", in Rosen 
1967, pp 598-546 

Jones F. (1963), Datamation March 

Jones R. C. (1968), "Separate Pricing For Hardware and Software", Computers 
250 



and Automation, July, p 12. 

Kaplinsky R. (1984), Automation, Longman, Harlow, Essex 

Klahr D. and Leavitt H. J. (1967), "Tasks, Organization Structures, and Computer 

Programs", in Myers C. A., The Impact of Computers on Management, MIT 

Press, Cambridge Massachusetts, pp 107-129 

Kleiman H. S. (1969) "The Economic Promise of Computer Time Sharing", 

Computers and Automation, October pp. 47-49 

Knuth D. E. (1974) "Structured Programming with GOTO Statements", Computing 

Surveys, Vol. 6, No. 4, pp. 261-301 

Knuth D. E. and Trabb Pardo L. (1980), The Early Development of Programming 

Languages", in Metropolis N., Howlett J., Rota G. -C., A History of Computing 

in the Twentieth Century, Academic Press, New York, pp. 197-274 

Kraft P. (1977), Programmers and Managers: The Routinization of Computer 

Porgramming in the United States, Springer Verlag, New York 

Laver M. (1970), "Choosing for Using: Users' Influence on Computer System 
Design, in Gruenberger F. (ed. ), Fourth Generation Computers, Prentice-Hall 
Inc., Englewood Cliffs, New Jersey, pp. 103-116 

Licklider J. C. R. (1969), "Underestimates and Overexpectations", Computers and 
Automation, August, pp. 48-52 

Lonergan W. and King P. (1987),, "Design of the B 5000 System", Annals of the 
History of Computing, Vol. 9, No. 1, pp. 16-22 

Macro A. and Buxton J. (1987), The Craft of Software Engineering, Addison 
Wells, Wokingham 

McCracken - D. D., (1973) -"Revolution in Programming: An Overview", 
Datamation, December, pp. 50-52 

251 



McGovern P. J. (1967) "The Computer Field and the IBM 360", Computers and 
Automation, January, pp. 16-20 

. 

McKinsey & Co. (1969), "Unlocking the Computer's Profit Potential", Computers 

and Automation, April, pp. 24-33 

Mealy G. H. (1966), "The Functional Structure of OS/360", IBM Systems 

Journal, Vol. 5, No. 1, pp. 3-11 

Miller E. F. and Lindamood G. E. (1973), "Structured Programming: Top-Down 

Approach", Datamation, December, pp. 55-57 

Moreau, R. (1984), The Computer Comes of Age, MIT Press, Cambridge 

Massachusetts 

Morgan H. L. and Soden J. V. (1973), "Understanding MIS Failures", Data Base, 

Winter, pp. 157-171 

Naur P. (1981), "The European Side of the Last Phase of the Development of 
ALGOL 60", in Wexeiblat 1981, pp. 92-138 

Ogdin J. L. (1972), "The Mongolian Hordes versus Superprogrammer", 
Infosystems, no. 12, pp. 20-23 

O'Rourke T. J. (1967), "The Many New Uses of -Time-Sharing", Computers and 
Automation October, pp. 48-50 

Pantages A. (1969), "Industry Reacts with Approval and Dismay as IBM goes 
Separate Ways", Datamation August, pp 105-111. 

Parnas D. L: (1979), "Research Problems in Programming Methodology", in 
Wegner 

. 1979, pp. 352-358 

Perlis "A. J. (1981), "The American Side of the Development of ALGOL", In 
Wexelblat'-1981, pp75-91 

252 



Postley J. A. (1968), "The Mark IV System", Datamation, January, pp. 28-30. 

Pugh E. W. (1984), Memories That Shaped An Industry, MIT Press, Cambridge 

Massachusetts 

Radin G. (1981), "The Early History and Characteristics of PU1, in Metropolis 

et al (1981), PP. 551-599 

Randell B. (1979), "Software Engineering In 1968", in Proceedings of the 4th 

International Conference on Software Engineering, pp 1-10 

Reynolds C. H. (1967), "Software Development and its Costs", Computers and 

Automation, pp 18-21 

Reynolds J. C. (1981), The Craft of Programming, Prentice-Hall, Englewood 

Cliffs, New Jersey 

Richmond W. H. (1965), "integrated Circuits for Commercial Computers", 

Datamation , November, pp. 29-32 

Rice J. R. (1968), "The GOTO Statement Reconsidered", Communications of the 

ACM, Vol. 11, no. 8, p. 538 

RCR, Rome Conference Report (1970), Software Engineering Techniques, Report 

on a conference sponsored by the NATO Science Committee, Rome, Italy, 27th 

to 31st October 1969, edited by Buxton J. and Randell B., NATO, Brussels 

Rosen S. (1967), Programming Systems and Languages, McGraw-Hill, New York 

Rosen S. 1968, "Hardware Design Reflecting Software Requirements", 
Proceedings of the AFIPS Fall Joint Computer Conference, AFIPS Press, 
Montvale; ̀ New Jersey, pp. 1443-1449 

Rosen' S. - (1969), "Electronic Computers: A Historical Survey", Computing 
Surveys, Vol. 1, No. 1, March, pp. 7-36 

253 



Rosen S. (1972), "Programming Systems and Languages 1965-1975", 

Communications of the ACM, pp. 591-600 

Rosin R. F. (1987), "Prologue: the Burroughs B 5000", Annals of the History of 

Computing, Vol. 9, No. 1, pp. 6-7 

Rutishauser H. (1967), Description of ALGOL 60, Handbook for Automatic 

Computation, Vol. 1, Part a, Springer Verlag, Berlin and New York 

Sammet J. E. (1969), Programing Languages: History and Fundamentals, 

Prentice-Hall Inc., Englewood Cliffs, New Jersey 

Siekman P. (1966), "In Electronics, the Big Stakes Ride on Tiny Chips", Fortune, 

June 

Sobel R. (1984). IBM: Colossus in Transition, Sidgwick and Jackson, London 

Soma J. 1975, The Computer Industry, Lexington Books, Lexington, 

Massachusetts 

SPREAD Discussion (1983), "Discussion of the SPREAD Report", Annals of the 

History of Computing, Vol. 5, No. 1, pp. 27-44 

SPREAD Report (1961), "Final Report of SPREAD Task Group, Dec. 28,1961", 

reprinted in Annals of the History of Computing, Vol. 5, no. 1,1983, pp 
4-26 

Steel T. B. (1964), "Operating Systems: Boon or Boondoggle? ", Datamation, May, 

pp. 26-28 

Steel T. B. (1968), "Multiprogramming - Promise, Performance and Prospect", 
Proceedings of the Fall Joint Computer Conference, pp. 99-103 

Stevens . D. (1970) "The User/Manufacturer Interface", Computers and 
Automation, September, pp. 25-27 1 

254 



Stoneman P. (1976), Technological Diffusion and the Computer Revolution, 

Cambridge University Press, Cambridge 

Strachey C. (1966), "Systems Analysis and Programming", in Information, a 
Scientific American book, W. H. Freeman and Co., San Francisco and London, 

pp. 56-75 

Tomeski E. A. and Lazarus H. (1975), People-Oriented Computer Systems, Van 

Nostrand Reinhold, New York 

Trocchi R. F. (1969) "Third Generation Hardware - First Generation 

Applications", Computers and Automation, September, pp. 28-29 

Wegner P. (ed. ) (1979), Research Directions in Software Methodology, 
Cambridge Massachusetts 

Wexelblat R. L. (ed. ) (1981), History of Programming Languages, Academic 

Press, New York 

Wirth N. (1974), "On the Composition of Well-Structured Programs", 
Computing Surveys, vol. 6, No. 4, December, pp 247-259 

Wise T. A. (1966a), "IBM's $5,000,000,000 Gamble", Fortune, September 

Wise T. A (1966b), "The Rocky Road to the Marketplace" Fortune, October 

Wolverton R. W. (1974) "The Cost of Developing Large-Scale Software", IEEE 
Transactions on Computers, June pp. 615-636 

Wulf W. A. (1972), "A Case Against the GOTO", Proceedings of the ACM Annual 
Conference, Boston, Massachusetts 

Zuse K (1970), Der Computer, mein Lebenswerk, Velag Moderne Industrie, 
Munich 

255 



Zuse K. (1972), Kommentar zum Plankalkül, Ber. Ges. Math. Datenverarbeitung, 

63, Part 2; English translation in Ber. Ges. Math. Datenverarbeitung, 106 
(1976), pp. 21-41 

Zuse K. (1980), "Some Remarks on the History of Computing in Germany", in 
Metropolis N., Howlett J., Rota G. -C., A History of Computing In the 
Twentieth Century, Academic Press, New York, pp. 611-628 

256 



List of Interviews Cited 

John Buxton Professor of Information Technology, King's College 

London, co-editor of the Rome Conference Report 

Edsger Dijkstra Professor of Computer Sciences, University of Texas, 

formerly Professor of Mathematics at the Technical 

University of Eindhoven and Burroughs Fellow 

Franklin Fisher Professor of Economics, Massachusetts Institute of 

Technology; lead expert economist for the defence in the 

case of US vs. IBM 

John Guttag Professor of Computer Science, Massachusetts Institute 

of Technology 

Brian Randell Professor of Computing Science, Newcastle-upon-Tyne, 

co-editor of the Garmisch and Rome Conference Reports, 

one of the founder members of Working Group 2.3 

Norman Rasmussen Teleprocessing Inc., formerly head of IBM Cambridge 

Scientific Center, Mass. 

Douglas Ross SofTech Inc., formerly of the Servo Mechanisms 
Laboratory, Massachusetts Institute of Technology 

5 

257 



List of Abbreviations 

ABM Anti-Ballistic Missile 

ACM Association for Computing Machinery 

AEK) Atomic Energy Commission 

ALGOL ALGOrithmic Language 

APT Automatic Programming Tools 

BNF Backus Normal Form or Backus-Naur Form 

BOAC British Overseas Air Corporation 

BOS Basic Operating System 

BPS Basic Programming Support 

CDC Control Data Corporation 

COBOL COmmon Business-Oriented Language 

CPM Critical Path Method 

CPU Central Processing Unit 

DoD Department of Defense 

DOS Disk Operating System 

EDP Electronic Data Processing 

258 



EN AC Electronic Numerical Integrator And Computer 

FORTRAN FORmula TRANslator 

GAMM Gesellschaft für Angewandte Mathematik und Mechanik 

(Society for Applied Mathematics and Mechanics) 

CCR Garmisch Conference Report 

CE General Electric 

IAL International Algebraic Language 

IFIP International Federation for Information Processing 

IBM International Business Machines 

IMIS Integrated Management Information System 

JCL Job Control Language 

JOSS Johnniac Open Shop System 

JOVIAL Jules's Own International Algebraic Language 

LISP LISt Processor 

MAC Double acronym for Multiple-Access Computing and Machine 
Aided Cognition 

MICR Magnetic Ink Character Recognition 

MIS Management Information System 

MIT Massachusetts Institute of Technology 

259 



NASA National Aeronautic and Space Administration 

NATO North Atlantic Treaty Organisation 

NPL New Product Line 

Cß Operating System 

PERT Production Evaluation and Review Technique 

PL Programming Language 

RCR Rome Conference Report 

SAGE Semi-Automatic Ground Environment 

SDS Scientific Data Systems 

SEAC Standards. Eastern Automatic Computer 

SLT Solid Logic Technology 

SMS Standard Modular System 

906 SHARE Operating System 

SPREAD Systems Programming, Research, Engineering And 
Development 

THE Technische Hoogeschool Eindhoven 

TSS _; Time Sharing System 

UNIVAG ' UNIVersal Automatic Computer 

260 



Best Copy 
Available 

Print bound close to the spine 



, J%L"""{Ii'"ý' '`ý. ý'". 
" 

ýi'4 i'ýý ý. ff ;. i}S"ýrý Y.,, ýý"' J4 ýý. "'. 
y 

s. to theEditor +-.. _ýýý:. i ý=. ý. 
ý`ý 

rýý": r. "`°ýý. 

" 
". "" r ;; 

V. 
ý`'. ... " j: " :.... äß~r-'ý 

", 

.. ý""ý'! "ýi`. ", .:.: 
C>"L-ý 

- ýrY. ý«: E q" isi;, 
'Yýý;; 

... ýýr " 
ý" "y 

ý"-+""' ": 
ý }. 

,". ý.,. 

her "$ý4"ý ý. 
r 

?ý 7ý , 

tr", 
-: r" t "G 

ti.. ý, 
4 

ý'ý; ý' ,. 
ý 

ý'ý 

. rar 

. /'. ý. ýý, X. 2ý. ý\; riýi"Y. Itý: iý"Rtrý", %Si`i. 
ý 

i"-tnZ. ti+: Krýý? ýJý 
tyr/': 

ýtý, týý? %_ 

Go To Statement Considered Harmful 

Key Words and Phrases: go to statement, jump instruction, 

branch instruction, conditional clause, alternative clause, repet- 
itive clause, program intelligibility, program sequencing 

CR Categories: 4.22,5.23,5.24 

EDITOR: 
For a number of years I have been familiar with the observation 

that the quality of programmers is a decreasing function of the 
density of go to statements in the programs they produce. More 

recently I discovered why the use of the go to statement has such 
disastrous effects, and I became convinced that the go to state- 

ment should be abolished from all "higher level" programming 
languages (i. e. everything except, perhaps, plain machine code). 
At *t hat time I did not attach too much importance to this dis- 

covery; I now submit my considerations for publication because 

in very recent discussions in which the subject turned up, I have 

been urged to do so. 
My first remark is that, although the programmer's activity 

ends when he has constructed a correct program, the process 
taking place under control of his program is the true subject 
matter of his activity, for it is this process that has to accomplish 
the desired effect; it is this process that in its dynamic behavior 
has to satisfy the desired specifications. Yet, once the program has 
been made, the "making" of the corresponding process is dele- 

gated to the machine. 
My second remark is that our intellectual powers are rather 

seared to master static relations and that our powers to visualize 
processes evolving in time are relatively poorly developed. For 
that reason we should do (as wise programmers aware of our 
limitations) our utmost to shorten the conceptual gap between 
the static program and the dynamic process; to take the cor- 
renpondence between the program (spread out in to .t space) and 
the process (spread out in time) as trivial as pose ble: 

Let us now consider how we can characterize the progress of a 
process. (you may think about this question in a very concrete 
manner: suppose that a process, considered as a time succession 
of actions, is stopped after an arbitrary action, what data do we 
have to fix in order that we can redo the process until the very 
lame point? ) If the program text is a pure concatenation of, say, 
as4gnmentstatements (for the purpose of this discussion regarded 
as the descriptions of single actions) it is sufficient to point in the 
program text to a point between two successive action descrip- 
tiuns. (In the absence of go to statements I can permit myself the 
"vutactie ambiguity in the last three words of the previous sen. 
tiucr: if we parse them as "successive (action descriptions)" we 
Rcan successive in text space; if we parse as "(successive action) d"wriptions" we mean successive in time) Let us call such a 
winter to a suitable place in the- text a "textual index. " 

When we include conditional clauses (if B then A), alternative 
rl"0. es (if B then Al else A2), choice clauses as introduced by 
t A. R. Hoare(caseli) of (A 1, A2, ... , An)). or conditional expres. 

as introduced by J. McCarthy (Bl -. El, B2 -+ E2, """, En), the fact remains that the progress of the process re- '"11u characterized by a single textual index. 
anon as we include in our language procedures we must admit 'wt a eingle textual index is no longer sufficient. In the rase tbät 

textual index points to the interior of a procedure body the 

dynamic progress is only characterized when we also give to which 
call of the procedure we refer. With the inclusion of procedures 
we can characterize the progress of the process via a sequence of 
textual indices, the length of this sequence being equal to the 
dynamic depth of procedure calling. 

Let us now consider repetition clauses (like, while B repeat A 
or repeat A until B). Logically speaking, such clauses are now 
superfluous, because we can express repetition with the aid of 
recursive procedures. For reasons of realism I don't wish to ex- 
clude them: on the one hand, repetition clauses can be imple- 
mented quite comfortably with present day finite equipment; on 
the other hand, the reasoning pattern known as "induction" 
makes us well equipped to retain our intellectual grasp on the 
processes generated by repetition clauses. With the inclusion of 
the repetition clauses textual indices are no longer sufficient to 
describe the dynamic progress of the process. With each entry into 
a repetition clause, however, we can associate a so-called "dy- 
namic index, " inexorably counting the ordinal number of the 
corresponding current repetition. As repetition clauses (just as 
procedure calls) may be applied nestedly, we find that now the 
progress of the process can always be uniquely characterized by a 
(mixed) sequence of textual and/or dynamic indices. 

The main point is that the values of these indices are outside 
programmer's control; they are generated (either by the write-up 
of his program or by the dynamic evolution of the process) whether 
he wishes or not. They provide independent coordinates in which 
to describe the progress of the process. 

Why do we need such independent coordinates? The reason 
is-and this seems to be inherent to sequential processes-that 
we can interpret the value of a variable only with respect to the 
progress of the process. If we wish to count the number, is say, of 
people in an initially empty room, we can achieve this by increas- 
ing is by one whenever we see someone entering the room. In the 
in-between moment that we have observed someone entering the 
room but have not yet performed the subsequent increase of is, 
its value equals the number of people in the room minus onel 

The unbridled use of the go to statement has an immediate 
consequence that it becomes terribly hard to find a meaningful set 
of coordinates in which to describe the process progress. Usually, 
people take into account as well the values of some well chosen 
variables, but this is out of the question because it is relative to 
the progress that the meaning of these values is to be understood I 
With the go to statement one can, of course, still describe the 
progress uniquely by a counter counting the number of actions 
performed since program start (viz. a kind of normalized clock). 
The difficulty is that such a coordinate, although unique, is utterly 
unhelpful. In such a coordinate system it becomes an extremely 
complicated affair to define all those points of progress where, 
say; a equals the number of persons in the room minus one! 

The go to s gtement as it stands is just too primitive; It is too 
much an invitation to make a mess of one's program. One can 
regard and appreciate the clauses considered as bridling its use. I 
do not claim that the clauses mentioned are exhaustive in the sense 
that they will satisfy all needs, but whatever clauses are suggested 
(e. g. abortion clauses) they should satisfy the requirement that a 
programmer independent coordinate system can be maintained to 
describe the ro Win a-helpful and manageable way. 

It is hard to end this with a fair acknowledgment. Am I to 

11 / Number 3/ March, 1968 
Communications of the ACM 147 



judge by whom my thinking has been influenced? It is fairly 
obvious that I am not uninfluenced by Peter Landin and Chris- 
topher Strachey. Finally I should like to record (as I remember it 
quite distinctly) how Heins Zemanek at the pre-ALoor, meeting 
in early 1959 in Copenhagen, quite explicitly expressed his doubts 
whether the go to statement should be treated on equjl syntactic 
footing with the assignment statement. To a modest extent I 
blame myself for not having then drawn the consequences of his 
remark. 

The remark about the undesirability of the go to statement is 
far from new. I remember having read the explicit reconlnenda- 
tion to restrict the use of the go to statement to alarm exits, but 
I have not been able to trace it. presumably, it has been made by 
C. A. R. Hoare. In 11. Sec. 3.2.1.1 Wirth and Hoare together 
make a remark in the same direction in motivating the case 
construction: "Like the conditional, it mirrors the dynamic 
structure of a program more clearly than go to statements and 
switches, and it eliminates the need for introducing a large number 
of labels in the program. " 

In 121 Guiseppe Jacopini seems to have proved the (logical) 
superfluousness of the go to statement. The exercise to translate 
an arbitrary flow diagram more or less mechanically into a jump- 
less one, however, is not to be recommended. Then the resulting 
flow diagram cannot be expected to be more transparent than the 
original one. 

-RzrcRCNCES: 

1. WiaTu, Nrcwos. AND HOARE, C. A. R. A contribution to the 
development of ALGOL. Comm. ACM 9 (June 1966), 413-432. 

2. BÖNN. CORRADO, AND JACOPINI, GuISxPer. Flow diagrams. 
Turing machines and languages with only two formation 
rules. Comm ACM 9 (May 1966). 366-371. 

EDsosa W. DucsTRA 
Technological University 
Eindhoven, Tha Netherlands 



A Note on Other Sources 

The bibliography does not represent all the sources drawn upon in the course 

of this research, but only those cited in the main text of the thesis. 

The work was from the beginning one of exploration, an attempt to map out 

paths in an unknown territory. My supervisor Donald Mackenzie played a key role 

in showing me the possible ways forward. 

One problem from the beginning was that all the literature seemed to be 

either extremely schematic in its treatment of the issues or else extremely 

technical and therefore very difficult to relate to a broader framework. Much of 

the work in the early days of the research involved a search for sources at the 

right level of comprehensibility. Having reached the end of the thesis, it is 

pleasing to look back and to see that much that at first seemed totally 

incomprehensible now seems a bit more straightforward. A number of guides and 

aids helped me to find my way into the jungle and, since these are not adequately 

reflected in the list of references, it is perhaps worth mentioning them here, as 

an indication to future explorers. 

One aid was the discovery of a limited, but extremely useful literature that is 

both well informed and relatively easy to understand. Among books, the work of 

Fishman (1982) is perhaps the outstanding example; at a more specialised level, 

COSERS (1980) was a constant source of reference. Among journals, those 

addressed to practitioners rather than academics often provided a very useful 

introduction to difficult topics. Datamation, Computers and Automation and 

263 



I 

Fortune were particularly helpful in this respect, at least for developments in the 

1960s: the mixture of gossip, newsbriefs, advertisements and articles gave a good 

sense of what was happening at the time. Once some familiarity had been 

established with the topics, the more specialised journals such as Annals of the 

History of Computing, Communications of the ACM and the series of Infotech 

reports were constant sources of information and ideas. 

I was also extrememly fortunate in having the benefit of numerous informal 

discussions with tolerant practitioners of computer science, to whom I owe many 

thanks. In this context, special mention must be made of my computer science 

supervisor, Stuart Anderson, who showed unlimited patience in explaining the 

significance of recursion, reentrancy, stack architecture, interrupts and 

semaphores, etc, etc. 

Another important guide was provided by the more formal interviews which I 

conducted. The interviews were like markers in the jungle, giving me 

information, giving me ideas and giving me confidence that I was pushing forward 

in the right direction. 

Given the nature of the topic, the interviews were conducted only after quite a 

lot of the research had already been done to identify key events, processes and 

controversies. Two considerations affected the choice of the interviewees. The 

first was of course their relation to the object of the research, the centrality of 

their involvement in these events, processes and controversies. The other was 

less positive, but is certainly a feature of all postgraduate research: the limited 

availability of funds for travelling around the world and interviewing all the most 

significant actors. Given unlimited funds, there are certainly other people I would 

264 



very much like to have interviewed, but since the main role of the interviews was 

to support the investigation and to bring more life into the style of the thesis, I do 

not regard this as a major drawback. 

The interviews were 'semi-structered. I prepared for each one by reading the 

published work of the person in question and by finding out as much as possible 

from published sources about their role. From this I produced a list of key 

questions where I felt the published record most needed supplement and where I 

had ideas that I whished confirmed or disconfirmed. But I did not stick rigorously 

to this list, allowing the conversation between us to develop, lead into new areas, 

and suggest new ideas. 

The Interviews were a rewarding experience. The people interviewed (Bruce 

Bertram, John Buxton, Edsger Dijkstra, Franklin Fisher, John Guttag, Philip 

Kraft, Brian Randell, Norman Rasmussen and Douglas Ross) were not only 

informative, but also very good-humoured. All the Interviews were recorded and 

transcribed, and the recordings are full not only of information but of slurps of 

coffee, puffs of tobacco and bursts of laughter. 

One of the most positive aspects of being led into the jungle was to discover 

that the trees were full of laughter: much of what at first seemed 

incomprehensible later turned out to be full of wit and humour. For this reason, if 

not for any other, the paths opened in this thesis are worth exploring. 

265 


