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Abstract

The serotoninergic (5-hydroxytryptamine, 5-HT) system, has been implicated
in a variety of pathological conditions including schizophrenia, Parkinson’s disease
and depression. The 5-HT transporter (SERT) is responsible for the synaptic
clearance of 5-HT in the central nervous system and the accumulation of 5-HT by
platelets. SERT is a molecular target for clinically effective antidepressants and for
the popular recreational drug of abuse, methylenedioxymethamphetamine (MDMA,
Ecstasy). Serotonin specific reuptake inhibitors (SSRIs), bind to and inhibit SERT
causing an increase in synaptic 5-HT as an initial response to relieving depression.
However the nature of the link between the initial actions of these drugs in vitro and
the weeks of treatment required for clinical improvements remains unresolved.
Neuroadaptive changes not only of SERT, but also of the 5-HT receptors known to
regulate 5-HT neurotransmission (5-HT,;s, 5-HT;g and 5-HT,p receptors), may
account for this delayed onset of action. Unlike antidepressants, MDMA is a
substrate for SERT and can also affect 5-HT neurotransmission. In contrast to
antidepressants, MDMA is selectively neurotoxic to serotoninergic nerve terminals
in both animals and humans.

In this thesis the effects of chronic antidepressant treatments and MDMA
sub-chronic treatments on the density and affinity of the 5-HT transporter and 5-HT
receptors in rats is investigated, using radioligand binding and immunological
techniques. The influence of potentially neuroprotective drugs on the effects of
MDMA is also examined.

A [3H]cita]0pram binding assay has been used to label SERT in rat brain,
blood platelets and adrenal medulla. The pharmacology of these binding sites are
identical. A library of six SERT site directed antibodies have been characterised. A
monoclonal antibody which specifically recognises denatured SERT and displays the
appropriate immunohistochemical labelling, also immunoprecipitates SERT and
specifically recognises the native form from rat neocortex and platelets. SERT
protein has also been specifically detected in the rat adrenal medulla using this
antibody. A [*H]nisoxetine binding assay has been used to label the noradrenaline
transporter (NET) in both the rat brain and adrenal medulla revealing an identical

pharmacology.



A [*H]5-CT binding assay has been developed in the presence of receptor
specific drugs to mask particular 5-HT receptor subtypes to reveal a pharmacology
consistent with binding to 5-HT; receptors. A [’H]JGR125,743 binding assay has
been developed to reveal a pharmacology consistent with binding to a combination
of 5-HT and 5-HTp receptors.

After chronic SSRI (citalopram or fluoxetine) and tianeptine (an atypical
antidepressant) treatments, adaptive changes of SERT were not observed in rat brain
or adrenal medulla. No such changes were also observed for 5-HT receptors in the
brain. However decreases in 5-HT7;, 5-HT g and 5-HT,p receptor density were
observed in rat frontal neocortex after chronic SSRI (citalopram or fluoxetine) but
not tianeptine treatments.

Repeated MDMA administration causes similar depletions in the number of
SERT binding sites in both the brain and adrenal gland, measured 2 weeks after the
final dose of MDMA. FK506, which has been proposed as a neuroprotective drug,
prevents this MDMA induced SERT reduction in the brain, but does not protect
adrenal SERT depletion. The MDMA induced depletion of SERT in the brain is still
apparent 13 weeks after the final dose of MDMA, but not in the adrenal glands. In
the brain, MDMA induced SERT depletion is also prevented by a free radical
scavenger.

This thesis shows that chronic dosing with SSRIs involves site specific
adaptive changes of 5-HTp,;p nerve terminal autoreceptors and 5-HT; receptors
suggesting a potential role of these receptors in the mechanism of action of these
antidepressant drugs. The sensitivity of adrenal chromaffin cell SERT to MDMA is
similar to brain SERT, but may involve a different mechanism and length of action.
In the brain this MDMA induced depletion of SERT is likely to involve the
formation of free radicals and mechanisms blocked by the immunosuppressive drug
FK506. The characterisation of an anti-SERT antibody capable of native SERT

recognition will be a useful tool for future studies.
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CHAPTER 1

INTRODUCTION



The studies described in this thesis were undertaken to determine the
potential modulatory role of clinically used antidepressant drugs and the recreational
drug of abuse, MDMA (Ecstasy) on the S-hydroxytryptamine (5-HT; Serotonin)
system, with particular emphasis on the 5-HT transporter (SERT) and the 5-HT4, 5-
HTpip and 5-HT7 receptors. This introduction firstly reviews the discovery,
biochemistry and anatomy of the 5-HT nervous system. Following a review of 5-HT
receptor nomenclature, the structural, operational and pharmacological
characteristics of the transporter and individual receptor subtypes are described. The
involvement of the 5-HT system in clinical depression is outlined, highlighting the
reported characteristics of various classes of antidepressant drugs. In the final section

the consequences of MDMA exposure are outlined.

1.1 Discovery of 5-HT

The existence of an endogenous serum factor causing vasoconstriction
(Brodie, 1900), and the presence of a substance, termed enteramine, which was
abundant in the enterochromaffin cells of the gut, and caused smooth muscle
contraction (Vialli & Erspamer, 1933) were the first descriptions of 5-HT. The
vasoconstrictor substance was purified from serum, named serotonin (Rapport er al.,
1947) and identified as 5-hydroxytryptamine (Rapport et al., 1948; Rapport, 1949).
Enteramine and 5-HT were subsequently shown to be chemically and biologically
identical (Erspamer & Asero, 1952). The presence of 5-HT in the mammalian brain
was established (Twarog & Page, 1953; Amin et al, 1954), following the
development of a sensitive bioassay in the isolated heart of Venus mercenaria, one of
several mollusc species where 5-HT potently excites the heart (Erspamer & Ghiretti,
1951). It was recognised that several alkaloids including the ergot derivative, lysergic
acid diethylamide (LSD), showed structural similarities to 5-HT, and that these
compounds antagonised the contractile effects of 5S-HT on vascular smooth muscle in
experimental animals (Shaw & Wolley, 1953). Several of the compounds caused
‘mental aberrations’ in man, including hallucinations and a transient state resembling
schizophrenia (Woolley & Shaw, 1954a). Consequently, Woolley & Shaw (1954a &

b) suggested that 5-HT may be a chemical mediator in the brain, being involved in



the maintenance of normal mental processes, and that interference with actions of

this compound may contribute to the production of some mental disorders.

1.2 Biosynthesis and Metabolism of 5-HT

The synthesis of 5-HT (Figure 1.1) from the essential dietary amino acid L-
tryptophan and its subsequent metabolism is well documented and has been
extensively reviewed elsewhere as a two step process (see Bosnin, 1978).
Availability of tryptophan is believed to be the rate-limiting step in 5-HT synthesis
(Grahame-Smith, 1964). Following neuronal uptake via a neutral amino acid carrier
at the blood-brain barrier (Blasberg & Lajtha, 1966), the 5-position of the indole ring
of tryptophan is hydroxylated by the cytoplasmic enzyme, tryptophan hydroxylase,
using O3, reduced pteridin and NADPH as cofactors (Joh et al., 1975). The resulting
5-hydroxytryptophan is rapidly decarboxylated by non-specific L-aromatic amino
acid decarboxylase, forming S-hydroxytryptamine (Clark er al., 1954). Whilst the
first reaction is unique to serotonergic neurons, L-aromatic amino acid decarboxylase
also decarboxylates L-DOPA in catecolaminergic neurons leading to the synthesis of
dopamine and noradrenaline.

In most cells in the central nervous system (CNS), 5-HT is metabolised by
monoamine oxidase (MAQO; Weissbach er al., 1961), which is located on the outer
membrane of synaptic terminal mitochondria (Schnaitman & Greenawalt, 1968).
MAO-A, one of two isoforms of this enzyme is clorgyline sensitive (Johnston, 1968),
and oxidatively deaminates 5-HT forming the intermediate 5-hydroxyindole
acetaldehyde. This intermediate is further metabolised by NAD"-sensitive aldehyde
dehyrogenase, forming the major metabolite 5-hydroxyindole acetic acid (5-HIAA;
Duncan & Sourkes, 1974). In addition, 5-hydroxyindole acetaldehyde can be
metabolised by  NADPH-sensitive  aldehyde  reductase, forming  5-
hydroxytryptophanol (Eccleston er al., 1966). However this metabolite represents
only 1% of 5-HIAA levels in rat brain (Cheifez & Warsh, 1980). 5-HT in areas such
as the pineal gland and in the retina, however, can be further metabolised to form the
active substance melatonin via N-acetyl serotonin (Feldstein & Williamson, 1968;

Klein & Weller, 1970; Klein et al., 1971).
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1.3 Anatomy of 5-HT Pathways in the CNS

The central or midline (raphé) location of the large neurons in the brain stem
has attracted anatomists since the time of Ramon y Cajal (1911), who described these
cells as large multipolar neurons with uncertain projections. The discrete localisation
of 5-HT in the CNS was achieved using a modified method of the histochemical
formaldehye-induced fluorescence technique described by Falck et al., (1962). Using
this technique, the localisation of the cell bodies and axon terminals of rat brain
neurons containing 5-HT were identified (Dahlstrom & Fuxe, 1964 & 1965; Fuxe,
1965). The original classification designated the central 5-HT-containing cell body
fluorescent clusters into nine distinct cell groups (B1-B9; Dahlstrom & Fuxe, 1964)
predominantly in the raphé region of the midbrain (Figure 1.2). In further work, these
same workers localised the 5-HT-containing nerve terminals (Dahlstrom & Fuxe,
1965; Fuxe, 1965), thus delineating the basic anatomy of the 5-HT neuronal system.
To enable the path of 5-HT neurones to be traced in serial sections of rat brain,
mechanical hemisections and electrocoagulations were carried out in order to
increase the amount of neurotransmitter caudal to the lesion, enabling 5-HT axonal
visualisation (Ungerstedt, 1971). This work showed that the 5-HT system consisted
of two distinct subdivisions, with the most caudal 5-HT cell groups in the medulla
(B1-B3) giving rise to axons which descend to innervate the ventral and dorsal horns
and the lateral column of the spinal cord, whilst axons arising from cell bodies in the
dorsal and median raphé nuclei project to the forebrain (Figure 1.2). Neuronal 5-HT
has been more precisely localised by autoradiography (Aghajanian & Bloom, 1967;
Descarries et al., 1975; Azmitia & Segal, 1978). The detailed mapping of the
serotoninergic system was finally established immunohistochemically, using a highly
specific polyclonal antiserum directed against 5-HT (Steinbusch et al., 1978;
Steinbusch, 1981).

Ascending (Rostral) System

The rostral part of the 5-HT system has cell bodies in the caudal linear
nucleus and the dorsal and the median raphé nuclei (T6rk, 1990), corresponding to
cell groups B6-B9 (Dahlstrom & Fuxe, 1964). These ascending projections are

extensive and innervate diverse regions of the cerebral cortex, limbic system, basal



Figure 1.2: Schematic Illustration of Major S-HT Pathways.

The cell groups B1-B9 represent those described by Dahlstrom & Fuxe (1964) and
correspond to the raphé nuclei (Bl-nucleus raphé pallidus; B2-nucleus raphé
obscurus; B3-nucleus raphé magnus; B4-nucleus raphé obscurus (dorsolateral); B5-
median raphé nucleus (caudal); B6-dorsal raphé nucleus (caudal); B7-dorsal raphé
nucleus (rostral); B8-caudal linear nucleus and nucleus raphé pontis; B9-nucleus
raphé pontis and supraleminscal region). Projections from B1-B3 descend to
innervate the spinal cord, whilst B5-B9 innervate the forebrain. (Adapted from

Cooper et al., The Biochemical Basis of Neuropharmacology, 1982).



ganglia and diencephalon (Steinbusch, 1981). In rats there is evidence for two
distinct populations of fibres in the cortex (Kohler et al., 1980), which differ in their
morphology, nucleus of origin and distribution (Kosofsky & Molliver, 1987). The D
fibres arising from the dorsal raphé nucleus have very fine axons (<lpum diameter)
with minute irregularly spaced varicosities that branch frequently (Kosofsky &
Molliver, 1987; Molliver, 1987, Mamounas & Molliver, 1988; Mulligan & Tork,
1988). These axons project to associative and limbic cortical areas concentrated
within layers III-IV, and to subcortical forebrain nuclei including the basal ganglia,
amygdala, septum and in periventricular areas of the hypothalamus and thalamus
(Azmitia & Segal, 1978; Jacobs & Azmitia, 1992; Baumgarten & Grozdanovic,
1994). The M fibres arising from the median raphé nucleus have large non-varicose
axons (up to 2um in diameter) giving rise to infrequent branches of fine fibres with
large spherical varicosities and a beaded appearance (Kosofsky & Molliver, 1987,
Molliver, 1987; Mamounas & Molliver, 1988; Mulligan & Tork, 1988). These fibres
project to the basal olfactory forebrain areas, septal complex, hypothalamic nuclei,
hippocampal formation and many neo- and allocortical areas (predominantly layers 1
and II; Azmitia & Segal, 1978; Jacobs & Azmitia, 1992; Baumgarten &
Grozdanovic, 1994). The difference in morphology between the two populations of
fibres in the ascending serotoninergic system has been implicated in their relative
susceptibility to chemical destruction, whereby the fine dorsal raphé fibres are more
prone to destruction by drugs such as p-chloroamphetamine (Mamounas & Molliver,
1988) and MDMA (Ecstasy; O’Hearn et al., 1988).
Descending (Caudal) System

Dahlstrom & Fuxe (1965) described the projection of axons from 5-HT cell
bodies in the medulla (B1-B3; Dahlstrom & Fuxe, 1964) via a ventromedial pathway
to the ventral horn and a lateral pathway to the central grey area of spinal cord as
reported in monkeys (Azmitia & Gannon, 1986). 5-HT like immunoreactivity has
been demonstrated throughout the spinal grey area, with highest densities in laminae
I-Ila of the dorsal horn, laminae VIII and IX of the ventral horn and in the
intermediolateral column of the thoracic cord (Bowker et al., 1982). Combining this
immunohistochemical method with the retrograde cell marker horseradish

peroxidase, the major serotonergic input to the spinal cord was identified as being



from cell groups B1-3, with groups B5, B7 and B9 having a smaller input to cervical
regions of the cord (Bowker er al., 1982). Serotonergic endings from the nucleus
raphé magnus make direct contract with the neurons in the dorsal horn that give rise

to the spinothalamic tract (Ruda ez al., 1982; Hylden et al., 1986).

14 5-HT Neurotransmission

Figure 1.3a depicts a typical serotoninergic synapse showing the 5-HT nerve
terminal in close proximity to the post-synaptic target neuron. Following the
neuronal synthesis of the neurotransmitter, 5-HT is taken up by the vesicular
monoamine transporter and stored in nerve terminal vesicles with a specific 5-HT
binding protein (Tamir & Gershon, 1990). Upon arrival of an action potential the
resultant nerve terminal depolarisation causes the opening of voltage-sensitive
calcium channels and subsequent Ca’* entry. Secretory vesicles already docked to
the plasma membrane release their contents by exocytosis initiated by this increase in
intracellular Ca®*. For those secretory granules that are fixed to the cytoskeleton,
Ca“—calmodulin]cAMP—dependem phosphorylation of Ca*'-sensitive vesicle
membrane proteins, such as synapsin I, allows the docking of the granules to the
plasma membrane and release of the neurotransmitter (see Burgoyne & Cheek,
1995). The mechanism of exocytosis is not however the only mechanism that can
account for neurotransmitter release. One other postulated mechanism for the release
of 5-HT by 5-HT releasing drugs such as addictive amphetamines, is a carrier
mediated-release process. Unlike exocytosis, carrier mediated-release is Na', but not
Ca®* dependent, does not_ rely on a vesicular but on a cytoplasmic pool of
neurotransmitter, is not modulated by pre-synaptic receptors, and is blocked by
uptake inhibitors (Rudnick & Wall, 1992; Levi & Raiteri, 1993).

The main autoregulatory effect of 5-HT on its own release is inhibitory. In
Figure 1.3b, 5-HT released from both the terminal and the somatodendritic area has a
profound influence on its own neurotransmission such that the amount of
neurotransmitter released is subject to receptor-dependent regulation. 5-HT
autoreceptors located on the cell bodies and dendrites of serotoninergic neurons, i.e.
the somatodendritic 5-HT autoreceptors, can be activated by 5-HT released from the

somatodendritic area or recurrent branches of the serotoninergic axon. This may be
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Figure 1.3: Schematic Representations of S-HT Neurotransmission
(a) represents a serotonergic synapse from Lesch, 1998. (b) represents pre-synaptic

and post-synaptic factors regulating the effectiveness of 5-HT neurotransmission
from Blier & De Montigny, 1998.



of the same neuron or from axons of other serotoninergic neurons innervating the cell
bodies and dendrites of the neuron under consideration. According to the location of
these receptors, their stimulation induces a decrease in neuronal firing (5-HTa
receptors; see section 1.5.2) or in somatodendritic release (5-HT|p receptors; see
section 1.5.2). 5-HTignp autoreceptors are also known to be located on
serotoninergic nerve terminals, whose stimulation results in the inhibition of release
of 5-HT from the nerve terminal (see section 1.5.2). 5-HT), receptor stimulation is
known to reduce a high threshold Ca®* current (Penington & Kelly, 1990; Penington
et al., 1991; Penington & Fox, 1994) and to increase conductance to potassium ions
(Aghajanian & Lakoski, 1984). On the otherhand, stimulation of 5-HTg/ip receptors
is known to inhibit adenylate cyclase with subsequent inhibition of cAMP. Apart
from these 5-HT autoreceptors, a,-adrenergic heteroreceptors located on 5-HT nerve
terminals also inhibit 5-HT release (Figure 1.3b; Maura er al, 1982). All these
factors can contribute to a net decrease in 5-HT neurotransmission.

Once in the synaptic cleft, 5-HT interacts with a number of post-synaptic
receptors causing a cascade of events through their second messenger coupling
resulting in either excitatory or inhibitory post-synaptic potentials. For example,
intracellular studies in brain slices have demonstrated directly that 5-HT can be both
inhibitory by 5-HT;n receptor activation and excitatory via 5-HT,s receptor
activation upon the same cortical pyramidal cells (see Araneda & Andrade, 1991). 5-
HT neurotransmission is terminated prior to the next round of action potentials, by
active clearance of the neurotransmitter back into the pre-synaptic neuron by a high-
affinity 5-HT transporter located on the pre-synaptic membrane (Figure 1.3; see
section 1.6.2). 5-HT is then either accumulated into the synaptic vesicles by the
vesicular monoamine transporter (see section 1.6.2) or is inactivated by monoamine
oxidase (MAO). MAO exists as two isoforms (MAO-A and MAO-B; Benedetti &
Dostert, 1992). Dopamine and tyramine are non-specific substrates for both forms. 5-
HT and noradrenaline are preferentially metabolised by MAO-A, whereas the B form
has a substrate preference for phenylethylamine and benzylamine. Within the nerve
terminal, MAO-A regulates the concentration of free 5S-HT by metabolising 5-HT to
its inactive metabolite S-HIAA.
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Taken as a whole, 5-HT neurotransmission is therefore highly regulated. It
can be influenced by not only drugs which affect the activation of various
autoreceptors and heteroreceptors on serotoninergic neurons, but also by drugs that
block 5-HT re-uptake (serotonin specific re-uptake inhibitors, SSRIs), vesicular

transport (e.g. reserpine) or monoamine oxidase activity.

1.5 Classification of 5-HT Receptors

5-HT exerts its actions via specific interactions with cell surface receptors.
Currently seven 5-HT receptor gene families giving rise to a total of 14 receptor
subtypes have been identified using molecular cloning techniques. Analysis of
primary amino acid sequences has enabled receptor subtypes to be grouped based on
the degree of amino acid sequence homology (Figure 1.4), whereby each member of
the same receptor gene family share common structural, operational and
transductional characteristics (Hoyer & Martin, 1997). At the molecular level it has
been established, mainly using recombinant receptor models and hydropathy profiles,
that 5-HT receptors are seven putative transmembrane spanning G-protein coupled
metabotropic receptors (Figure 1.5). However an exception to this is the 5-HTj;

receptor which is a ligand-gated ion channel.

1.5.1 A Historical Perspective

The current system of 5-HT receptor classification and nomenclature is
summarised in Table 1.1 (Hoyer & Martin, 1997) and is in accordance with the
guidelines outlined by the International Union of Pharmacology (IUPHAR) receptor
nomenclature committee (Vanhoutte ez al., 1996; Humphrey & Barnard, 1998). This
section deals with a historical perspective leading up to this current classification.

Multiple 5-HT receptor subtypes were first evident after two receptors
involved in the 5-HT-induced contractile response in guinea-pig ileum were
described (Gaddum & Picarelli, 1957). One of these receptors could be antagonised
by morphine, termed the M receptor. The other receptor could be antagonised by
dibenzyline (phenoxybenzamine) termed the D receptor. The development of
radioligand binding techniques provided the main tool to show the existence of
multiple 5-HT receptor subtypes. Initial experiments demonstrated that
[*H]spiroperidol (spiperone) labelled 5-HT binding sites (Leysen et al., 1978). It was

11
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Phospholipase C (+)
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Figure 1.4: Dendrogram Showing the Evolutionary Relationship and

Second Mesenger Systems Between Human 5-HT Receptor Subtypes

5-htsa and 5-htsp represent 5-HT receptors which are murine in origin. (+) represents

stimulation whereas (-) represents inhibition and ? represents unknown signal

transduction pathway. The lower case appellation for receptors lacking a well

defined physiological role is denoted for the appropriate receptor subtypes according

to recent nomenclature guidelines (Hoyer & Martin, 1997). Figure taken and adapted

from Barnes & Sharp (1999).
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Figure 1.5: Schematic Representation of G-Protein Coupling

The G-protein consists of three subunits (o, B, y). In the resting state the G-protein
exists as an unattached afy trimer, with GDP occupying the site on the a subunit. On
receptor occupation by an agonist ligand, the receptor aquires high affinity for the
trimer through conformational changes in the cytoplasmic regions (mainly large loop
structures between transmembrnae domains) of the seven transmembrane receptor
structure. This causes the bound GDP to dissociate and to be replaced by GTP which
causes dissociation of o GTP from the Py subunits. This a GTP diffuses in the
membrane to activate a variety of second messenger systems (targets) and is
controlled by the existance of a variety of G-proteins determined by variations in the
a subunit. The process is terminated when the hydrolysis of GTP to GDP occurs
through the GTPase activity of the a subunit. The resulting o GDP dissociates from
the effector, and reunites with the Py subunits, completing the cycle. G protein
coupling and its regulation is reviewed in Birnbaumer et al, (1990), Simon et al.,
(1991) and Birnbaumer (1992).
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Current Nomenclature

Former Nomenclature

Reference

5-HTa 5-HT;a Pedigo et al., 1981
5-HT;, Hartig, 1989
5-HTg Human 5-HTpg Weinshank ef al., 1992
Rat 5-HTp Pedigo et al., 1981
Human 5-HTp Hartig et al., 1996
Rat 5-HTp Hartig et al., 1996
5-HTp 5-HT pq Weinshank ef al., 1992
Human 5-HTp Hartig et al., 1996
Rat 5-HTp Hartig et al., 1996
5-htig 5-HT g Leonhardt e al., 1989
5-htg S-HTlgg Amlaiky etal., 1992
5-HT Adhametal, 1993a & b
5-HT54 D Gaddum & Picarelli, 1957
Sa Leysen & Laduron, 1977
5-HT, Peroutka & Snyder, 1979
5-HT> Bradley et al., 1986
5-HT2q Hartig, 1989
5-HTzg 5-HTr Kursar et al., 1992
5-HT;c¢ 5-HTc Pazos et al., 1984
S-Hsz Hartig et al., 1996
5-HT; M Gaddum & Picarelli, 1957
5-HT4 RL Shenker et al., 1987
5-htsa 5-HTs, Erlander et al., 1993
5-HTsa Plassat et al., 1993
5-htsg 5-HTsp Erlander et al., 1993
5-HTsg Matthes et al., 1993
5-hts 5-HT Monsma et al., 1993
5-HT, Ry Shenker et al., 1987
5-HTy Plassat et al., 1993

Table 1.1: Summary of Current 5-HT Receptor Nomenclature.
Curent nomenclature is according to the ITUHPAR Receptor Nomenclature

Committee for 5-HT receptors by Hoyer & Martin, (1997).
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later shown that [H]S-HT and [*H]spiperone labelled two distinct non-
interconverting population of binding sites in rat cortex, termed 5-HT,; and 5-HT,
respectively (Peroutka & Synder, 1979). It was also observed that displacement of
[’H]5-HT binding by spiperone was not monophasic, suggesting heterogeneity of the
5-HT, binding site (Peroutka & Synder, 1979). Subsequently two components of
[PH]5-HT binding with nanomolar (5-HT,4) and micromolar (5-HT;3) affinity was
confirmed for spiperone displaceable binding (Pedigo et al., 1981). Furthermore a
third 5-HT; binding site was described using [PH]5-HT autoradiography in porcine
choroid plexus and named 5-HT¢ (Pazos et al., 1984).

The first attempt at 5-HT receptor classification involved the correlation of
ligand binding studies with functional responses (Bradley et al., 1986). Three classes
of receptors were described: 5-HT,-like, 5-HT; and 5-HT3. The 5-HT-like receptors
represented a heterogeneous group at which 5-HT has high affinity. At these sites,
the actions of 5-HT were mimicked by 5-CT and antagonised by methysergide and
methiothepin, but not by 5-HT, or 5-HT3 antagonists. The 5-HT, receptor was
analogous to the D receptor described by Gaddum & Picarelli (1957) and the 5-HT,
receptor of Peroutka & Synder (1979). The 5-HT, receptor was distinguished by the
high affinity of the antagonists, ketanserin, methysergide and spiperone. The 5-HT;
receptor was analogous to the M receptor described by Gaddum & Picarelli (1957).
This receptor site was characterised by the high affinity of 2-methyl 5-HT (agonist),
antagonism by cocaine and its derivatives (MDL 72222 & ICS 205 930), and the lack
of affinity of 5-HT-like or 5-HT, antagonists.

This classification was revised when additional [3H]5~HT binding sites were
shown to remain after displacement with 5-HT;s, 5-HTs, 5-HT,c and 5-HT;
compounds and were pharmacologically identified as 5-HTp and 5-HT;g binding
sites (Heuring & Peroutka, 1987; Leonhardt et al., 1989). The molecular cloning of
these subtypes prompted a new nomenclature to be proposed based not only on
pharmacological characteristics, but also on molecular structure and second
messenger linkage (Hartig, 1989). This modified scheme described the 5-HT; and 5-
HT, families as G-protein coupled receptors (linked to adenylyl cyclase &
phospholipase C respectively) and the 5-HT3 receptor as a ligand-gated ion channel.

Following the observation of the similarity of sequences and functional properties of
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the 5-HT, and 5-HT)c receptor subtypes (Peroutka, 1990a), the latter was renamed as
the 5-HTc receptor and included in the 5-HT, receptor family. The molecular
cloning of the 5-HT,r receptor (Kursar er al., 1992) was renamed the 5-HTop
receptor and included in a revised nomenclature of 5-HT receptor subtypes
(Humphrey et al., 1993). This newly proposed nomenclature for 5-HT receptors also
included the pharmacologically identified 5-HTp and 5-HTg receptors (Heuring &
Peroutka, 1987; Leonhardt ez al., 1989) and the cloned 5-HTr subtype (Amlaiky et
al., 1992) as members of the 5-HT, family. It also recognised the new 5-HT, receptor
family positively coupled to adenylyl cyclase (Dumuis et al, 1988a & b). The
IUPHAR  approved nomenclature system integrated the operational
(pharmacological), transductional (functional) and structural receptor characteristics
employed by Humphrey et al., (1993) to generate a more rigorous review for the
classification of receptors for 5-HT (Hoyer et al., 1994). This included new subtypes
following the cloning of 5-htsa, 5-htsg, 5-hts and 5-ht; receptors (Hoyer et al., 1994,
Martin & Humphrey, 1994). These receptors were given lower case appellation as
they lacked well-defined functions.

Nomenclature for 5-HT g and 5-HT,p receptors has a complex history. 5-
HTp receptors were first described pharmacologically in the rat brain, representing
the component of [?’H]5-HT binding with low (micromolar) affinity for spiperone
(Pedigo et al., 1981). However a corresponding binding site could not be detected in
the human brain with 5-HTp ligands (Hoyer et al., 1986a). The identification of a
pharmacologically distinct receptor class in non-rodents was termed 5-HT,p
(Heuring & Peroutka, 1987; Hoyer & Middlemiss, 1989). Initially the expression of
these receptors was thought to be species specific. 5-HT g receptors were found in
rat, mouse, cat, hamster and opossum, whereas 5-HTp receptors were found in other
species including man, calf, dog, and guinea pig. (Middlemiss et al., 1988; Schipper
& Tulp, 1988; Schlicker et al., 1989; Hoyer et al., 1990). However it was noted that
these two sites had a common anatomical distribution (Pazos & Palacios, 1985a;
Waeber et al., 1988). At this early stage it was speculated that the two receptors were
species equivalents which displayed different pharmacology (Hoyer & Middlemiss,
1989). This initial idea became complicated by the discovery of two related human

receptor genes which were isolated on the basis of their sequence homology with an
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orphan receptor (dog RDC4) with 5-HT) receptor-characteristics. These two genes
demonstrated a 77% sequence homology in the transmembrane domain and when
expressed displayed a pharmacological profile identical to that of the originally
described 5-HTp site and not that of the rodent 5-HTp site (Weinshank et al., 1992;
Hamblin et al., 1992b). These two receptors were designated 5-HTpy and 5- HT pg
to reflect their identical binding profiles and similar structural characteristics (Hartig
et al., 1992). Using a homology screening approach, the rat 5-HT g receptor was
cloned and shown to be a protein of 386 amino acids (Vioigt et al., 1991; Adham ez
al., 1992; Hamblin et al., 1992a). This rat 5-HT;p receptor shared 96%
transmembrane sequence homology with the human 5- HTpg receptor (Adham et al.,
1992; Hartig er al., 1992; Jin et al., 1992;). Site-directed mutagensis of the human 5-
HTpg receptor demonstrated that substitution of a single amino acid residue
(threonine for asparagine at position 355) dramatically altered the pharmacology of
the receptor. The resultant binding profile was virtually identical to that of the rat 5-
HT,p receptor (Metcalf et al., 1992; Oskenberg er al., 1992; Parker et al., 1993).
These findings, together with the discovery of a rat gene homologous to the human
5-HT)pq receptor and which encoded a receptor with a 5-HTp binding site profile
(Hamblin et al., 1992a & b), lead to a recent reassessment of the nomenclature for
the 5-HTpp receptors (Hartig er al., 1996; Table 1.2). This nomenclature change
recognised that despite differing pharmacology, the human 5-HT,pg receptor is a
species equivalent of the rodent 5-HTg receptor. Therefore the 5-HTpg receptor was
realigned to the 5-HT);p receptor classification (Table 1.2). To take account of the
fact that the pharmacology of the 5-HT,p receptor shows significant differences
across species, prefixes are now used to denote species specific 5-HTp receptors: the
rat becomes r5-HT;g and the human becomes h5-HT g (Table 1.2). Likewise the 5-
HTpy receptor expressed in the rat and human, and other species, became the
equivalent r or h5-HTp receptor (Table 1.2).

This re-classification of the 5-HT;g/p receptors is currently used in the most
recent of 5-HT receptor nomenclature publications (Table 1.1; Hoyer & Martin,
1997). This classification system includes the 5-HT; receptor losing its lower case
appellation due to the discovery of firm evidence that this receptor subtype is

endogenous and fulfils a physiological role (Carter et al., 1995; Ullmer et al., 1995).
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Receptor Species homologue

Human Rat Dog
S-HT]D hS-HT;D I‘S-HT;D C&S-HT;D
(5-HT1pq) (RDC4)
5-HTg* h5-HT g r5-HT g
(5-HT1pg)

Table 1.2: Receptor Nomenclature for S5-HT;3 and 5-HT;p

Receptors.
Previous receptor names are shown in parentheses. Species abbreviations (ca, dog; h,
human; r, rat) differentiate species-specific gene and receptor proteins. “Denotes

species-specific pharmacology (see Hartig et al., 1996 where figure taken from).
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Throughout this thesis those receptors that still lack a well-defined function are given
a lower case appellation (i.e. 5-htjg, S5-htyr, 5-htsa, 5-htsg and 5-hts receptors)
consistent with the IUPHAR guidelines for naming receptors (Vanhoutte ez al., 1996;
Humphrey & Barnard, 1998).

The chromosomal location of the gene and the number of amino acids of
encoded gene of the human 5-HT receptor subtypes and 5-HT transporter are
summarised in Table 1.3. Such localisations have allowed association studies to
potentially link the 5-HT system with disease states such as depression and
schizophrenia (Ogilvie et al., 1996; Busatto & Kerwin, 1997). Table 1.4 summarises
the main pharmacological tools currently available to label these receptor subtypes
for radioligand binding and/or for autoradiographic distribution studies. The
physiological functions of these 5-HT receptor subtypes in terms of behavioural,
neurochemical and neuroendocrine responses to specific agonists and/or antagonists
are summarised in Table 1.5.

The structure, distribution and pharmacological characteristics of each of the
mammalian 5-HT receptor subtypes are briefly outlined below. More comprehensive
reviews are available (Zifa & Fillion, 1992; Boess & Martin, 1994; Hoyer et al.,
1994; Martin & Humphrey, 1994; Hoyer & Martin, 1997; Gerhardt & Van
Heerikhuizen, 1997; Barnes & Sharp, 1999). The presence of 5-HT receptors has
also been reported in a variety of invertebrates, although currently no guidelines for
nomenclature have been recommended from the [UPHAR Serotonin Receptor
Nomenclature Committee. These include three 5-HT, like receptors (Sadou et al.,
1992; Sugamori et al., 1993), two 5-HT; like receptors (Colas et al., 1995; Gerhardt
et al., 1996), a 5-HT like receptor (Witz et al., 1990) and two 5-HT receptors cloned
from Aplysia (Li et al., 1995). These are reviewed by Sadou & Hen, (1994) and
Gerhardt & Van Heerikhuizen (1997).

1.5.2 The 5-HT; Receptor Family

The 5-HT; receptor family consists of five receptor subtypes (5-HTja,
5-HTg, 5-HTp, 5-htjg and 5-ht;r) defined by their high degree of amino acid
sequence homology (>60% in the seven transmembrane regions; Hoyer et al., 1994).

These receptor subtypes contain between 365 and 422 amino acids, and unlike other
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Subtype Chromosomal Location Amino Acids
5-HTa 5qll1.2-q13 422
Kobilka et al., 1987 Chanda et al., 1993
5-HT g 6ql3 390
Jin et al., 1992 Weinshank et al., 1992
5-HTip 1p34.3-36.3 377
Libert et al., 1991 Hamblin & Metcalf, 1991
5-htig 6q14-15 365
Levy etal, 1992 McAllister et al., 1992
S-htg 13p13-p14.l 366
Erdmann et al., 1997 Lovenberg ef al.,, 1993b
5-HTza 13q14-q21 471
Sparkes et al., 1991 Saltzmann et al., 1991
S'HTQB 2q36.3-37.1 481
Le Coniat ef al., 1996 Kursar et al., 1994
5-HT»c Xq24 458
Milatovich et al., 1992; Stam et Saltzman ef al., 1991
al., 1994
5-HT; Chromosome 11 487
A detailed mapping of the 5-HT; gene yet to be reported (Uetz et
al., 1994; Miyake et al., 1995).
5-HT, 5q31-q33 388
Claeysen et al., 1997 Van den Wyngaert ef al., 1991
S5-htsa 7q35-36 357
Matthes et al., 1993 Rees et al., 1994
5-htsg 2qll1-13 370
Matthes et al., 1993 Matthes et al., 1993
5-hts 1p35-36 440
Kohen et al., 1996 Kohen et al., 1996
5-HT> 10g23.3-24.3 5-HT7@) 445

5-HT Transporter

Gelertner et al., 1995

17q11.1-17q12
Ramamoorthy ef al., 1993a

5-HT7,)432
S-HT','(d) 479
Heidmann et al., 1997

630
Lesch er al., 1994

Table 1.3: Summary of the Chromosomal Location and Primary
Structure of the Human S5-HT Receptors and Transporter.
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Receptor Radioligand Selective Selective G protein
antagonists agonists coupling
5-HT4 ["H]8-0H DPAT WAY100635 - Gy
PHIWAY100635 NAD 299
5-HT,y ["®TIGTI SB216 641 CP 93129 Gio
[*H]CP 93129 SB224 289
[PH]CP 96501
[PHIGR125,743
5-HT,p [*H]sumatriptan BRL 15572 - Gio
["®IGTI
[PH]GR125,743
5-htg ["H]5-HT - - Giso
5-htyg CH]5-HT 5 LY344864 Guo
[*H]sumatriptan LY334370
[PH]LSD
5-HT,, [H]Ketanserin MDL100907 - Gy
[’HIMDL100907
5-HTyp [PH]5-HT SB200646 BW 723C86 Gyt
SB204741
5-HT;c¢ [JH]mesuIergine SB242084 a-Me-5-HT Gy
RS-102221
5-HT; [*H]zacopride granisetron 2-Me-5-HT Cation
['TJzacopride ondansteron m-chlorophenyl- channel
tropisetron biguanide
MDL72222
5-HT, PH]GR113808 GR113808 BIMU 1 + 8 Gs
['**1]SB207710 SB207710 RS67506
SDZ 205557 ML10302
5-hts, [’H]5-CT s . Gs?
PH]LSD
5-htsp [’H]5-CT g e Gs?
PHJLSD
5-ht, [H]5-CT Ro 04-6790 - Gs
PHILSD Ro 63-0563
5-HT, [PH]5-CT SB258719 " Gs

[PHILSD; [*H]5-HT

Table 1.4: Summary of Pharmacological Tools Available to Identify

5-HT Receptors. Adapted from Hoyer & Martin, (1997).

21




‘(6661) dieys 2 soureg woij paydepe djqe ], "aA0qe umoys s103daoa1 -1 [ -G 93 JO SUOIOUN] UOWILOD I}
0] pauBIsse A[Jualmnd 2q Ued JBY) duou Inq (Ix) 99s) sasuodsar [euoroun} pAYNUIP! 2ARY S0P 103ddar L[ H-G Y], "PAULJAP UIq JOU JARY
sajo1 TeardojorsAyd aunjop se juasqe ae s10)dasar 9y-g pue 8/VSAIAlY-¢ 10§ sasuodsal [euonoun, ‘(‘Sejue) sysiuoSeiue jo soudsaid Iy
ur pajou os[e a1e sasuodsar yong "s}eyorIq Ul UdAIF a1e sasuodsal [euonouny oy} uo s309J9 (+) A103e310%0 10 (=) A1031qIyuy “(103dadar VITH
-G =y "21) adAigns 119Y) 01 SUIPI0ddE USAIZ I SUONOUNJ SULIDOPUIOINAU PUR [BITWAYO0INAU ‘[RINOIARYS] JY) Ul paA[oAUl S103da03a1 | H-S

uoneAndy 3dAqng 103d339y L H-S Jo sdduanbasuo)) jeuonduny 'y dqeL

(VT uiual Jo uonen3ay (‘Beyue -)¢ premay

(VT ANQ4 Jo uonenday () * (Bewe +)¢ uoniuzo)

VI aUOULIOY YIMOI3 JO uonen3ay ()07 ‘C)d1 ‘(Gat ‘Gdr aureISIN

(+)2T ‘(HvT (Hdl 3U0AISO01LI0) JO UonE[NFY 2T VT daajg

()T PV (Pl GV aseajai unoejoid jo uonen3ay VT (vex) axyeys Sop 1om
(+H)OT (HIVT PV aseajal 1OV Jo uonen3ay V2 YoM, peaH
JULIOPUIOINAN ()¢ ‘G OdI (HTH) VI ured

(g1 uoissai33y

orAk: | UOI19313 J[1Ud]

()¢ d.L'T Jo uononpuj dl ol oruojooA

()¢ aseafol DO Jo uonenday (‘Beue -)¢ ‘(-)oz {(Hd1 UonouI0207]

()€ (T (Ive uoissTwISUE 131 gV oz 'dl eideydodAy

(+)oz uonisoduiod 2 aWnjoA JS0) JO [oQuo) VI VI SNNLUIS SANBUIWLIOSI]

(H)F (H)€ ‘()T (Ive aseaal (] Jo uonem3ay VT V1 INoIABYaq [BNXAS

()ar ‘Gvi aseajar qewrein|3 Jo uoneniay (‘Seue) ¢ ‘(Bewe)g ‘0T VI siskjoxuy

() ‘() (v (Cdl (V1 asgajal Yoy Jo uonejnday Vi eigeydiadAy
()€ ()T :IVT ‘(1 (HIVI aseajal YN Jo uone|ngay VT dl Vi eruaodAy
(Bt ‘(D¢ Gar ‘Odr ‘Gvi 95B3[aI [ H-G JO Uonen3ay Vi awiospuss [H-G

[EIMUEYI0ININ

Jeanolasyag

22



5-HT receptor subtype families lack introns within the coding regions of their genes.
The 5-HT| receptors are all believed to couple negatively to adenylate cyclase via
pertussis toxin-sensitive G proteins.
The 5-HT;s Receptor

The 5-HT;5 receptor was the first 5-HT receptor to be fully sequenced
identified by screening a genomic library for homologous sequences to the B,-
adrenoreceptor (Kobilka et al., 1987; Fargin et al., 1988; Albert et al., 1990). The rat
and human 5-HT;a receptor nucleic acid sequences are 88% homologous to each
other (Kobilka et al., 1987; Fargin et al., 1988; Albert et al., 1990). The 5-HT,
receptor displays significantly less homology with other members of the family of G-
protein coupled 5-HT receptors such as 5-HT»a (19%) and 5-HT»¢ (18%) receptors
and the 5-HTp receptors (43%) (Fujiwara et al., 1993). [SH]S—OH DPAT provided
the first pharmacological profile of the 5-HT binding site (Gozlan et al., 1983). The
agonists 5-CT, DP-5-CT, 5-HT and 8-OH DPAT have high affinity for the
recombinant 5-HT,4 receptor. However it is now apparent that 8-OH DPAT has
moderate affinity at the cloned 5-HT; receptor (Shen er al., 1993; Lovenberg et al.,
1993a). The antagonist spiperone, and the B-adrenoreceptor antagonists such as
pindolol and propanolol also display high affinity for the 5-HT) 4 receptor (Fargin et
al., 1988; Newman-Tancredi et al., 1992). Mutagenesis studies have established that
a single amino acid residue in the 7" transmembrane (Asp 385) is responsible for the
high affinity stereoselectivity of the receptor for certain B-adrenoreceptor ligands
such as pindolol (Guan et al, 1992). A number of potent and specific 5-HT;x
receptor antagonists have since been developed, WAY 100635 being the most potent,
although NAD-299 appears to be somewhat more selective (Fletcher et al., 1996;
Johansson er al., 1997). These ligands have been used extensively to study the
distribution of 5-HT A binding sites in the rat brain (Hoyer et al., 1985a; Pazos et al.,
1987a; Pompeiano et al., 1992; Hume et al., 1994; Khwaja, 1995). The density of 5-
HT;a binding sites is highest in limbic brain areas, notably hippocampus, lateral
septum, cortical areas (particularly cingulate & enterohinal cortex), and also the
dorsal raphé nuclei, with lower levels in the median raphé and some hypothalamic
and thalamic nuclei. In contrast, levels of 5-HT A binding sites in the extrapyramidal

areas such as the caudate-putamen, globus pallidus, substantia nigra and cerebellum
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were barely detectable. In vivo labelling of the 5-HT 5 receptor has been achieved in
both mouse (Laporte et al., 1994) and the human living brain (Pike ef al., 1995). The
distribution of mRNA encoding the 5-HT) 4 receptor and the localisation pattern of
receptor protein using site specific antibodies is almost identical to the 5-HT),
binding site (Chalmers & Watson, 1991; Hamon et al., 1991; Gozlan et al., 1993;
Burnet et al, 1995; Kia er al., 1996a). 5-HT,5 receptors are predominantly
somatodendritic (Pompeiano et al., 1992; Burnet er al., 1994; Kia et al., 1996b),
existing on non-5-HT cell bodies in neuronal 5-HT projection areas, mainly post-
synaptically in 5-HT neuronal projection areas and as autoreceptors on 5-HT
perikaya in the raphé nuclei. The reduction of raphé 5-HT;, binding sites observed
following 5,7-DHT lesions confirms the cell body autoreceptor status of this subtype
at this particular location (Vergé et al., 1986). In neurons, 5-HT; s receptors inhibit
adenylyl cyclase (De Vivo & Maayani, 1986; Weiss et al., 1986). However in
hippocampal tissue, there are reports of positive coupling to adenylate cyclase
stimulating cAMP formation (Shenker er al., 1983; Markstein ez al., 1986), which
may be attributable to the pharmacologically similar 5-HT5 receptor. Interestingly the
high density of dorsal raphé 5-HT,s receptors does not appear to couple to the
inhibition of adenylate cyclase (Clarke er al,, 1996). The 5-HT;a receptor is also
linked via a pertussis toxin-sensitive G protein to K* channel opening in rat
hippocampal membranes, leading to hyperpolarisation due to increased K
conductance and decreased neuronal firing (Andrade et al., 1986). In isolated dorsal
raphé nucleus neurones, activation of somatodendritic 5-HT; s autoreceptors induces
activation of an inward rectifying K* current (Williams et al., 1988; Penington et al.,
1993) and an inhibition of voltage-activated high threshold Ca** currents (Penington
& Kelly, 1990; Penington & Fox, 1994 & 1995). In both cases, the response to 5-HT
is G-protein mediated via a direct interaction between G proteins and the respective
ion channel (Innis & Aghajanian, 1987; Penington et al., 1991; Penington et al.,
1993; Penington & Fox, 1994). This two fold mechanism induces membrane
hyperpolarisation which inhibits neuronal firing (Vandermaelen e al., 1986; Blier &
De Montigny, 1987; Godbout et al., 1990; Schechter et al., 1990; Hadrava et al.,
1995). This effect is also produced indirectly by serotonin specific re-uptake

inhibitors (SSRIs) and monoamine oxidase inhibitors (MAOIs) which induce an
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activation of 5-HT,, autoreceptors due to an increase in extracellular 5-HT at the
somatodendritic level (Blier & De Montigny, 1983 & 1985; Chaput er al., 1986;
Artigas, 1993).
The 5-HTg Receptor

There are a large number of available ligands with high affinity for the rat 5-
HT,g receptor but most are not selective. The most potent agonists include RU
24969, 5-CT and CP93129, with methiothepin, cyanopindolol & pindolol being
potent but less specific antagonists (see Hoyer et al., 1994). These compounds have
high affinity for other 5-HT receptor subtypes particulary 5-HT A receptors. The low
affinity for 5-HTp sites of other drugs such as 8-OH DPAT, WAY 100635, ritanserin
and tropisetron helps to identify the 5-HT;p receptor. However the compound GR
127935 has high selectivity for 5-HTp/1p versus other 5-HT receptors and is a potent
antagonist in functional models (Skingle ez al., 1995). In order to radiolabel 5-HTp
receptors in rat brain tissue, a variety of radioligands have been used. These include
[3H]5-HT binding in the presence of blocking concentrations of 5-H;4 and 5-HTc

(now 5-HT;c) receptor ligands (Peroutka, 1986), or %

Iliodocyanopindolol in the
presence of 30uM isoprenaline and 100nM 8-OH DPAT to avoid f-adrenoceptor and
5-HT, 4 binding (Hoyer et al., 1985a &b). Other radioligands used include the non-
selective [3H]Dihydroergotaminc ([3H]DHIE; Hamblin et al.,, 1987) and the more
selective ligands ['®I)GTI (serotonin-5-O-carboxymethyl-glycyl-['*T]tyrosinamide;
Boulenguez et al., 1992) or [PHJCP 93129 / CP 96501 (Koe et al., 1992a & b).
[IZSI]GTI also however labels a low density of 5-HT)p receptors in rat brain
(Bruinvels et al., 1993a & b). Despite their high sequence homology and similar
brain distribution, the rat and mouse 5-HT g receptors are pharmacologically distinct
from the human (Hamblin ez al., 1992a, b). The most striking difference is that
certain [3-adrenoreceptor antagonists including cyanopindolol, SDZ 21009,
isamoltane, pindolol and propanolol have higher affinity for the 5-HTg receptor in
the rodent than human (see Boess & Martin, 1994). This difference can be accounted
for by a single amino acid difference in the putative 7" transmembrane region at
position 355 (asparagine in rat, threonine in human; Metcalf er al., 1992; Oksenberg
et al.,, 1992; Parker et al., 1993). Despite the reported similarity of human 5-HTp

and 5-HT,p receptor pharmacologies (Weinshank et al., 1992), it is now apparent
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that certain drugs may distinguish these two receptor subtypes. For example the 5-
HT, receptor antagonists, ketanserin and ritanserin, show some selectivity (15-30
fold) for the human 5-HTp versus 5-HT)p receptor (Kaumann et al., 1994; Pauwels
et al., 1996). More recently, the first antagonists with selectivity (at least 25-fold) for
the human 5-HT g (SB 216641 & SB 224289) and human 5-HT;p (BRL155172)
receptors have been developed (Price et al, 1997; Schlicker et al., 1997). An
analogue of GR127,935 with higher potency at human 5-HT)g;p receptors, namely
GR125,743 has become available as a radioligand (Audinot et al., 1997; Doménech
et al., 1997) but as yet no published data are available concerning its potential
labelling of these receptors in the rat. Autoradiographic studies in the rat have been
hindered by the need to use relatively non-selective ligands in the presence of
masking agents to identify 5-HT, binding sites as described above. However a high
density of 5-HT;g binding sites have been identified in many brain areas but
particularly in the substantia nigra, globus pallidus, ventral pallidum and
entopedunclear nucleus of the rat basal ganglia (Pazos & Palacios, 1985; Vergé et
al., 1986; Bruinvels et al., 1993a & b). The availability of the newer 5-HT;p/ip
selective radioligand, ["HJGR125, 743 may help verify these earlier studies. Specific
5-HT receptor antibodies have also been used to show similar high 5-HTp receptor
densities in the globus pallidus, substantia nigra and dorsal subiculum, with lower
levels in the caudate-putamen, cerebral cortex, central grey and superior colliculus
(Langlois et al., 1995; Sari et al.,, 1997 & 1999). Some forebrain areas (e.g. striatum)
also express high levels of 5-HT; binding sites and 5-HTp receptor mRNA (Voigt
et al., 1991; Boschert et al., 1994; Bruinvels et al., 1994a & b; Doucet et al., 1995).
However, in situ hybridisation studies have revealed that 5-HT;3 mRNA does not
correlate with its binding sites in all brain areas (Bruinvels er al., 1994a & b). For
example, despite the high density of 5-HT;p binding sites in many areas of the rat
basal ganglia there is little 5-HT g mRNA. In situ hybridisation studies have also
shown high 5-HT,g receptor mRNA signals in the dorsal and median raphé nuclei
(Voigt et al., 1991; Boschert et al., 1994; Bruinvels et al., 1994a & b) which are
markedly reduced by 5-HT neuronal destruction (Doucet et al., 1995). In the raphé
nuclei however there is a very low density of 5-HT,g binding sites (Vergé et al.,

1986; Voigt et al., 1991; Boschert et al., 1994; Bruinvels et al., 1993a & 1994a & b).
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Mismatches between 5-HT receptor protein and mRNA previously observed in mice
have been explained by assuming that 5-HT receptors are transported along fibres
far from somas where they are synthesised (Boschert et al., 1994). Together these
data sugggest that 5-HT,p receptors are both presynaptic and postsynaptic. There is
now convincing evidence that 5-HTp receptors function as 5-HT autoreceptors at the
5-HT terminal modulating 5-HT release (Middlemiss & Hutson, 1990; Fink et al.,
1995; Biihlen et al., 1996). There is also evidence that 5-HTp receptors are located
on non-5-HT terminals, thereby acting as heteroreceptors (Maura & Raiteri, 1986;
Cassel et al., 1995). A novel endogenous modulator of the 5-HT g receptor subtype
has also been identified and termed 5-HT moduline (Rouselle ez al., 1996; Fillion et
al., 1996). This tetrapeptide (Leu-Ser-Ala-Leu) has similar binding properties and an
autoradiographic distribution to that of the 5-HT,p receptor, and has been proposed
as a novel neurotransmitter (for review, see Massot et al., 1998). In the rat and calf
substantia nigra, 5-HTp receptors negatively couple to adenylate cyclase (Bouhelal
et al., 1988; Schoeffer & Hoyer, 1989).
The 5-HTp Receptor

It has been difficult to determine the distribution of the 5-HT)p receptor in the
rat because levels appear to be low and there is a lack of available specific
radioligands. However autoradiographic studies with ['®I)GTI in the presence of
100nM CP93129 to mask binding to 5-HT;g binding sites have revealed 5-HTp
binding sites in the basal ganglia and even lower levels in the hippocampus and
cortex (Bruinvels et al., 1993a & b). Studies in humans have also revealed a similar
distribution as well as in specific regions of the midbrain and spinal cord using the
ketanserin sensitive component of [°H]sumatriptan binding (Castro et al., 1997a).
Like the 5-HT;3 receptor, 5-HT;p mRNA has been detected in lower abundance than
the protein in these areas (Hamblin er al.,, 1992a & b; Bruinvels et al.,, 1994 a & b).
The presence of a 5-HTp autoreceptor on 5-HT nerve terminals has been proposed
on the basis of in vitro evidence of the persistence of 5-HT agonist-induced
inhibition of 5-HT release in the cortex and hippocampus of 5-HTp knock-out mice
(Pifieyro et al., 1995a). In the rat dorsal raphé nucleus there are high levels of 5-HT)p,
mRNA (Hamblin et al., 1992a & b; Bruinvels et al., 1994 a & b). Indeed the

presence of 5-HTp receptors in the dorsal raphé nucleus has also been shown by the
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continued 5-HT agonist-induced inhibition of 5-HT release in 5-HT ;3 knockout mice
(Pineyro et al., 1995a). This group concluded that the pharmacology of the 5-HT
agonist induced inhibition of [PH]5-HT from slices of the rat mesencephalon
indicated the presence of a 5-HTp (but not 5-HT) autoreceptor in this preparation
(Pifieyro et al., 1995b). Indeed the 5-HT;g agonist CP93129 did not modify release
in the dorsal raphé nucleus (Pifeyro ef al., 1996). 5-HT,p receptors also modulate 5-
HT release in the same brain region of the guinea pig brain (El Mansari & Blier,
1996). Like the 5-HT,p receptor, the 5-HTp receptor has been shown to act as an
auto and heteroreceptor regulating transmitter release, albeit by interpreting the
actions of non-selective drugs (Harel-Dupas er al., 1991; Davidson & Stamford,
1995; Feuerstein et al., 1996; Maura & Raiteri, 1996; Pineyro et al., 1996; Maura et
al., 1998). In humans and guinea pig, 5S-HT autoreceptors in the cortex appear to be
of the 5-HTp type rather than the 5-HTp type based on the blocking ability of the
respective selective antagonists, SB 216641 and BRL 15572 (Schlicker et al., 1997).
Therefore it is apparent that although the possibility of 5-HT;p auto/hetero receptors
exist, they may be restricted to specific brain areas and or species. Use of the more
recently developed selective drugs should being able to address these questions. The
currently understanding of rat 5-HT g, 1p receptors, as outlined by Pifieyro & Blier
(1999), is that the somatodendritic receptors regulating cell body 5-HT release,
independent of neuronal firing are of the 5-HT)p receptor subtype whereas those at
the nerve terminal are predominantly of the 5-HT;p subtype. Currently no second
messenger response or in vivo functional response can be safely attributed to the
activation of CNS 5-HT,p receptors due to lack of discriminative brain penetrating
drugs. Indeed although it was originally thought that the 5-HT)p receptor coupled
negatively to adenylate cyclase in the substantia nigra of the calf and guinea pig
(Schoeffter & Hoyer, 1989; Waeber et al., 1990), it now seems clear that the receptor
detected in these early studies was actually the species equivalent of the 5-HTp
receptor.
The 5-ht;g Receptor

The 5-htyg receptor was detected in radioligand binding studies using [3H]5-
HT in the presence of compounds that blocked 5-HTa/18/1p/2c receptors. A biphasic

5-CT inhibition curve was detected in cortex and caudate membranes of humans as
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well as other species, e.g. guinea pig, dog and rabbit (Leonhardt et al., 1989; Beer et
al., 1992). The high affinity site represented binding to 5-HTp receptors, whereas
the low affinity site represented a novel receptor with novel pharmacology and was
termed 5-HT g (Leonhardt ez al., 1989). This receptor is characterised by its high
affinity for 5-HT and lower affinity for 5-CT, sumatriptan and ergotamine compared
with the 5-HT)p site (McAllister et al., 1992). Using the same binding approach,
autoradiographic distribution studies have detected high levels in cortex (particularly
entorinhal cortex), caudate putamen with lower levels in hippocampus and amygdala
in human, rat, mouse and guinea pig brain (Miller & Teitler, 1992; Barone et al.,
1993; Bruinvels ef al., 1994b). 5-ht;z mRNA has been detected in these regions
(Bruinvels et al., 1994a) and the receptor is believed to lie postsynaptically (Barone
et al., 1993). However the lack of any selective ligands has hindered investigations
into its functional role and effect on neurons.
The 5-ht;x Receptor

Using a homology cloning approach with probes derived from the 5-HT,p
gene, a mouse receptor, having 61% transmembrane sequence homology to the 5-
htjg receptor, and termed 5-HT,gs, was identified (Amlaiky et al., 1992). A
homologous human receptor was subsequently identified and named 5-ht;r on the
basis of its unique pharmacological profile (Adham ez al., 1993 a & b). 5-HT,
sumatriptan, methysergide and ergotamine all have relatively high affinity at this site,
whilst 5-CT has relatively low affinity (Adham et al., 1993a & b; Lovenberg et al.,
1993b). Its high affinity for sumatriptan therefore distinguishes it from the 5-htig
receptor. Two novel and selective 5-ht;r receptor agonists, 1.Y344864 and .Y334370
have recently become available (Overshiner et al, 1996; Johnson et al., 1997,
Phebus et al., 1997). Autoradiographic studies to investigate the distribution of this
5-HT receptor subtype, using the S5-CT-insensitive portion of [*H]sumatriptan
binding, have revealed a high density of 5-ht;r binding sites in the claustrum, with
lower levels in some thalamic and amygdala nuclei, cerebral cortex and striatum
corresponding to 5-ht;p mRNA distribution in the guinea pig brain (Bruinvels et al.,
1994a). A similar distribution is apparent in guinea pig, rat and human brain (Waeber
& Moskowitz, 1995a & b; Pascual et al., 1996; Castro et al., 1997a;). However the

lack of any selective ligands has hindered investigations into its functional role and
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effect on neurons, though the more recently identified selective agonists above may
help to elucidate the function of this receptor subtype. Indeed initial reports using
LY334370 suggest that it does not induce alterations of behavioural effects or
monoamine levels in rats (Overshiner et al., 1996) but may be important in the

treatment of migraine (Johnson et al., 1997; Phebus et al., 1997).

1.5.3 The 5-HT), Receptor Family

The 5-HT; receptor family consists of three subtypes (5-HT»a, 5-HT2p and 5-
HT,c) that have very similar molecular structures and signal transduction pathways.
These receptor subtypes contain between 458 and 504 amino acids and members of
the 5-HT, receptor gene family either have two (5-HT,5 and 5-HT,p receptors) or
three introns (5-HT,¢ receptors) in their coding sequence (Yu et al.,, 1991; Chen et
al., 1992; Stam et al., 1994). They all stimulate phospholipase C activity, with
subsequent production of inositol phosphates (IP3; which increases intracellular
calcium) and diacylglycerol (DAG; which increases protein kinase C).
The 5-HT,4 Receptor

The 5-HT:4 receptor represents the classical 5-HT; binding site described by
Peroutka & Synder (1979) as having high affinity for [*H]spiperone and [*H]LSD
and low affinity for [PH]5-HT. A rat 5-HT,s cDNA sequence was isolated by
homology with the rat 5-HT,¢ receptor (Pritchett et al., 1988; Julius ef al., 1990).
Subsequently a human 5-HT;s receptor cDNA clone was isolated with 80%
transmembrane homology (Boess & Martin, 1994). The pharmacological profile of
the 5-HT4 binding site, labelled by [3H]spiper0ne and [PHJLSD can be displaced by
spiperone and ketanserin with >10 and >1000 fold selectivity over 5-HT,c and 5-
HT,p receptors (Pritchett er al., 1988; Julius er al., 1990; Wainscott et al., 1993).
[SH]ketanserin was the first selective 5-HT,4 radioligand reported (Leysen et al.,
1982) and is still used today. MDL100907 is a more recently identified potent and
selective antagonist of the 5-HT,5 receptor (Sorenson er al., 1993; Kehne et al.,
1996). The agonists DOM, DOI and DOB also bind with high affinity to 5-HT,a
receptors whereas 5-HT binds with low affinity (Glennon er al., 1992). Receptor
autoradiography studies locate this receptor in many forebrain regions, particularly

cortical areas, caudate nucleus, nucleus accumbens, olfactory tubercle and
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hippocampus of all species studied (Pazos et al., 1985b & 1987b; Lopez-Giménéz et
al., 1997). These binding sites are closely correlated with 5-HT; mRNA (Mengod ez
al., 1990; Morilak er al., 1993 & 1994; Pompeiano et al., 1994; Burnet et al., 1995).
MDL 100907 is currently under development as a PET ligand to study in vivo 5-
HT4 receptors in the living human brain (Lundkvist ef al., 1996; Ito et al., 1998).

5-HT,4 receptor activation results in excitatory responses, whereby 5-HT
induced neuronal depolarisations are associated with a reduction of potassium
conductances (Aghajanian, 1995), although it is not currently understood as to
whether the phosphoinositide signalling pathway has a role in this effect. These
excitatory responses have been observed in brain slices from cortex (Araneda &
Andrade, 1991; Aghajanian & Marek, 1997) and dentate gyrus of the hippocampus
(Piguet & Galvan, 1994)
The 5-HT,5 Receptor

This receptor was first described in the stomach fundus preparation, where
the contractile effect of 5-HT was used as a sensitive bioassay for 5-HT (Vane,
1957). The mouse and rat fundus receptor genes were isolated by low stringency
screening for sequences homologous to the 5-HT,c receptor (Fouget et al., 1992a &
b; Kursar et al., 1992). Subsequently the human 5-HT,p receptor, which shares >70%
transmembrane homology with the human 5-HT,4 and 5-HT,c receptors, was cloned
from SH SY5Y neuroblastoma cells and from uterine tissue (Schmuck er al., 1994;
Kursar et al., 1994). There is a close pharmacological characterisation between
cloned 5-HT;p receptors and the rat stomach fundus receptor, with methysergide and
metergoline having high affinity, whereas ketanserin and cinanserin show low
affinity (Wainscott et al., 1993; Baxter et al., 1994). Yohimbine has higher affinity at
5-HTg receptors than 5-HT,5 or 5-HT,¢ receptors, and ketanserin, spiperone and
mianserin have lower affinity at 5-HT,5 compared to other 5-HT; receptor subtypes
(Wainscott et al., 1993; Kennett, 1993; Bohanus et al., 1995). More selective ligands
are now available including the 5-HT,p antagonist SB 204 741 which shows 20-60
fold selectivity over 5-HT,4 and 5-HT,¢ receptors and also the agonist BW 723C86
which has about 10 fold selectivity for the 5-HT,p receptor over the 5-HTzanc
receptors (Baxter et al., 1995; Bonhanus et al., 1995; Baxter, 1996). The detection of

5-HT,p receptor protein in the brain has been limited by the lack of selective
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radioligands. 5-HT,p transcripts have been found in human brain and in rat
peripheral tissues, though initially no mRNA was detected in the rat CNS (Kursar ef
al., 1992, 1994; Pompeiano et al., 1994). Since then low levels have been reported
(Flanigan et al., 1995) and site directed antibodies have revealed a distribution to a
few brain areas. These regions include the lateral septum, dorsal hypothalamus,
medial amygdala and Purkinje cells of the cerebellum (Duxon et al., 1997a). The use
of the more selective ligands now available will help not only to confirm its
distribution in the CNS but also its function, which as yet has been limited to a
possible involvement in anxiety (Kennett et al., 1996a & b; Duxon et al., 1997b).
The 5-HT,c Receptor

A [PH]5-HT binding site in the choroid plexus of a variety of species was
identified that could also be labelled by [*H]mesulergine and [’H]LSD but not by
[’H]ketanserin and was termed 5-HT)c (Pazos et al., 1984). This was subsequently
renamed 5-HT,c (Humphrey er al, 1993). Partial cloning of the mouse 5-HTyc
receptor (Lubbert er al., 1987) was followed by the sequencing of the full length
clone in, initially the rat (Julius et al., 1988), and then the mouse (Yu et al., 1991)
and human (Saltzman et al., 1991). The 5-HT,c¢ receptor gene has three introns and
may encode a protein product with eight rather than seven transmembrane domains,
which if proven would be unusual for G-protein coupled receptors (Yu et al., 1991).
The 5-HTyp/c receptors can be distinguished from the 5-HT4 receptor by their high
affinity for SB 200646A and SB 206553, and their lower affinity for the antagonists
MDL 100907, ketanserin and spiperone (Barnes & Sharp, 1999). The 5-HTc
receptor antagonists, SB242084 and RS-102221 show at least two orders of
magnitude in selectivity for 5-HT,c versus 5-HT,p, 5-HT24 and other binding sites
(Bonhaus ez al., 1997; Kennett et al., 1997). 5-HTc receptor transcripts and binding
sites (particularly using [*H]mesulergine autoradiography) are extensively distributed
throughout the brain irrespective of species, being especially abundant in the choroid
plexus, anterior olfactory nucleus, piriform cortex, amygdala, CA3 region of the
hippocampus and in some areas of the basal ganglia. Binding sites were also
observed in several thalamic and hypothalamic nuclei, septum, layers III-IV of the
cerebral cortex, and with moderate levels in midbrain and brainstem (Pazos et al.,

1985b; Hoffman & Mezey, 1989; Mengod et al., 1990; Pompeiano et al., 1994). This
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distribution profile corresponds well with the immunohistochemical (Abramowski ez
al., 1995; Sharma et al., 1997) and mRNA detection of 5-HT¢ receptors (Pasqualetti
et al., 1999). There is evidence for the 5-HT,c receptor-mediated excitation of
neurones in several brain areas. For example motorneurons of the facial nucleus in
vitro and in vivo are activated by 5-HT or 5-HT), receptor agonists and this effect is

mediated by the 5-HT,¢ receptor (Larkman & Kelly, 1991; Aghajanian, 1995).

1.5.4 The 5-HT;Receptor

The existence of the 5-HTj; receptor was first reported by Gaddum & Picarelli
(1957) who described a contractile M receptor in guinea pig ileum that was
antagonised by morphine. At the molecular level, unlike the other 5-HT receptor
subtypes the 5-HT; receptor is a ligand-gated ion channel (Derkach ez al., 1989;
Maricq et al., 1991). The structure of the 5-HT; receptor is similar to that of the
nicotinic acetylcholine receptor since it consists of five subunits forming a
pentameric ion channel complex (Cooper et al., 1991; Boess & Martin, 1994). Since
the cloning of one of the subunits of this receptor (5-HT34; 487 amino acids) from a
mouse neuroblastoma hamster brain (NCB-20) library (Maricg et al.,, 1991)
extensive electrophysiological properties have been characterised and are reviewed
elsewhere (Peters et al., 1994; Jackson & Yakel, 1995). Very briefly this ion channel
is cation selective and prone to rapid desensitisation leading to fast synaptic
transmission (Sugita ef al., 1992). An alternatively spliced variant (5-HT5as; Hope et
al., 1993) and species homologues have been reported in rat, guinea pig and human
(Johnson & Heineman, 1992; Isenberg et al., 1993; Belelli et al., 1995; Miyake et al.,
1995; Lankiewicz et al, 1998). mRNA for the short form of the splice variant
predominates in mouse neuronal tissue, whereas the long form of the 5-HT34 subunit
i1s not expressed in humans (Werner et al., 1994). Recently an additional 5-HT3
receptor subunit has been identified (the human 5-HT;p receptor subunit; Davies et
al., 1999) which requires co-expression of the 5-HT3s subunit for functionality
resembling native 5-HT3 receptors. Several antagonists such as GR65630,
MDL72222, ICS 205 930 (tropisetron), odansetron, granisetron and zacopride show
high affinity selectivity for the 5-HT; receptor. MDL 72222 does however display

species differences in affinity being considerably less potent at the guinea pig variant
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of the 5-HT; receptor (Kilpatrick & Tyers, 1992; Lankiewicz et al., 1998). Despite
the large number of selective antagonists there are no current selective 5-HTj
agonists, although phenylbiguanide (PBG) and 2-methyl 5-HT have moderate
affinity (Milburn & Peroutka, 1989; Belelli er al., 1995; Miyake et al., 1995).
Despite chlorophenylbiguanide (CPBG; a higher affinity agonist) and PBG both
having greater selectivity than 2-methyl 5-HT for the 5-HT5 receptor, they both
potently block dopamine re-uptake (Kilpatrick et al., 1990a & b). Kilpatrick et al.,
(1987) were the first to demonstrate the presence of 5-HT3 binding sites using the
radioligand ["H]GR 65630 and a rat brain homogenate preparation. Since then this
radioligand and others have been used to assess the distribution of the 5-HT;
receptor. In human and rat brain, 5-HT; receptors are relatively sparse in comparison
to other 5-HT receptors, with highest levels of binding sites detected in the area
postrema, nucleus of the solitary tract, dorsovagal complex, trigeminal nucleus
caudalis, substantia gelatinosa of the spinal cord and lower densities in limbic areas
such as the hippocampus, entorhinal cortex and hippocampus (Waeber et al., 1989;
Kilpatrick et al., 1987, 1988 & 1989). These autoradiographic experiments have been
confirmed using a 5-HTj3 receptor specific antibody (Morales et al., 1996). One of
the functions of the 5-HT; receptor is that it can also regulate 5-HT
neurotransmission upon its activation. Unlike 5-HTp/1p receptors, these receptors
facilitate 5-HT release in guinea pig and rat cortex and hippocampus (Galzin et al.,
1990; Barnes et al., 1992; Martin et al., 1992; Blier & Bouchard, 1993). They are not
however 5-HT nerve terminal autoreceptors and are thought to be located on an

interneuron (Blier et al., 1993).

1.5.5 The 5-HT, Receptor

The 5-HT4 receptor was initially identified in cultured mouse colliculi
neurones and guinea-pig hippocampus membranes using a functional assay-
stimulation of adenylate cyclase activity (Dumuis et al., 1988a & b). This receptor
was cloned from a rat brain cDNA library and shown to identify two full length
cDNA sequences which existed as C-terminal splice variants displaying different
distributions; 387 (short) and 407 (long) amino acids (Gerald ez al., 1995). RT-PCR

revealed transcripts of the long form throughout the brain, whereas the short form
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was restricted to the striatum (Gerald er al., 1995). A single extra amino acid in the
long (5-HT4 renamed 5-HTypy) and short (5-HTsg renamed 5-HTy4)) forms was
elucidated in the rat after the cloning of the human 5-HTy. subtype identified a
frameshift produced by an open reading frame in the previously reported rat 5S-HTy;,
receptor (Van den Wyngaert et al.,, 1997). Two additional splice variants of the 5-
HT, receptor have since been identified in tissues from mouse, rat and human, 5-
HT4() and 5-HT 44y which encode polypeptide sequences of 380 and 360 amino acids
respectively, with all four isoforms diverging after Leu®™®*(Blondel er al., 1998;
Bockaert et al., 1998). The pharmacology of the human receptor isoforms has been
reported to be similar (Blondel er al., 1998). BIMU-1 and BIMU-8 have been
described as selective agonists (Turconi et al., 1989) compared to the moderate
affinity partial agonists zacopride and cisapride (Bockaert et al., 1992; Grossman et
al., 1993; Gerald et al., 1995; Van den Wyngaert et al., 1997). Tropisetron acts as a
5-HT} antagonist with moderate potency. There are now several highly potent and
selective 5-HT4 receptor antagonists available such as, GR113808, RS 23597-190,
LY 297582, SB207266, SB207710, SB2047266, SB204070, SB203186 and SDZ
205557 (Grossman et al., 1993; Medhurst & Kaumann, 1993; Gerald er al., 1995;
Wardle et al., 1996; Van den Wyngaert et al., 1997; Bockaert et al., 1998). The
autoradiographic localisation of binding sites using radioligands such as
[PH]GR 113808 or [3H]BTMU-1, and localisation of mRNA in the rat CNS is identical
with high levels in the basal ganglia (especially in caudate-putamen, globus pallidus
and substantia nigra) and lower levels in the limbic regions of the hippocampus,
amygdala and frontal cortex (Gerald et al., 1995; Claeysen et al., 1996; Mengod et
al., 1996). All isoforms are expressed in the gut, but only 5-HT4qyp) and 5-HTy() are
found in the brain and heart (Blondel et al., 1998). 5-HT, receptor-mediated cAMP
accumulation activates protein kinase A (Gerald et al., 1995; Van den Wyngaert et
al., 1997), with subsequent phosphorylation of potassium channels leading to their
closure and reduced potassium conductance producing depolarisation in mouse
collicular and hippocampal neurones (Andrade & Chaput, 1991; Fagni et al., 1992).
In cardiac muscle cells 5-HT, receptor stimulation activates voltage-sensitive

calcium channels via protein kinase A (Kaumann et al., 1990; Ouadid et al., 1992).



1.5.6 The 5-ht; Receptor Family

The 5-hts receptor family encompasses two-intron containing recombinant
receptors (5-htsa and S5-htsg) which share 68% amino acid sequence identity
(Erlander er al., 1993). It is the least well understood of all the 5-HT receptor classes,
with no reports of specific binding to native 5-hts binding sites or of functional
responses.

The 5-htsy Receptor

The 5-htss receptor gene has been cloned from mouse, rat and man (Plassat ef
al., 1992; Erlander er al., 1993; Rees et al, 1994). In transfected cells the
recombinant 5-htsy receptor displays high affinity ['®IILSD binding which is
displaceable by ergotamine, 5-CT, 5-HT methysergide and methiothepin (Plassat et
al., 1992; Erlander et al., 1993; Rees et al., 1994). The presence of high and low
affinity sites for [*’H]5-CT binding suggests that this subtype is G protein-coupled
(Plassat et al., 1992), and a negative coupling to adenylate cyclase has been observed
(Carson et al., 1996). In situ hybridisation experiments have revealed a widespread
distribution of 5-htss receptor mRNA throughout the mouse, rat and human brain, in
areas such as the cerebral cortex, dentate gyrus, hippocampus and the cerebellum
(Plassat et al., 1992; Erlander et al., 1993; Pasqualetti et al., 1998). Site specific
antibodies designed to the 5-htsa receptor have revealed 5-hts, immunoreactivity in
the rat hypothalamus, hippocampus, corpus callosum and olfactory bulb, and appear
to be associated primarily with astrocytes (Carson et al., 1996). 5-htss protein has yet
to be mapped in the brain due to the lack of selective ligands.

The 5-htsg Receptor

The 5-htsg receptor gene has been cloned from mouse, rat and man (Plassat et
al., 1992a & b; Erlander ef al., 1993, Rees et al., 1994). The pharmacological profile
of this subtype is comparable, but distinguishable, to that of the 5-htsp receptor
(Erlander et al., 1993; Matthes et al., 1993). Both these receptor subtypes do
however show pharmacological similarities to the 5-HTp receptor subtype, with 5-
CT, LSD, ergotamine, methiothepin and sumatriptan all showing relatively high
affinity. A discrete expression of 5-htsg mRNA is apparent in the CAl field of the
hippocampus, medial and lateral habernula, dorsal raphé in the mouse and rat brain

(Matthes et al., 1993; Wisden et al., 1993). However 5-htsg receptor protein has yet
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to be mapped in the brain due to the lack of selective ligands. As for the 5-htsy
receptor, [3H]5-CT labels two affinity states of the 5-htsg receptor which are sensitive
to guanine nucleotide regulation (Wisden ez al., 1993). Despite this evidence of G
protein coupling, no data is currently available for second messenger linkage in

native tissue.

1.5.7 The 5-hts Receptor

The 5-hts receptor was cloned from a rat cDNA library, initially revealing
two different sequences (Monsma et al., 1993; Ruat et al., 1993a), which after the
cloning of the human 5-htg receptor (Kohen et al., 1996), were considered to be
identical. The 5-htg receptor has received considerable attention due to the interaction
of a high number of anti-psychotic (notably clozapine, olanzipine, rilapine,
fluperlapine & seroquel) and antidepressant drugs (clomipramine, amitriptyline,
doxepin & nortryptyline) with this receptor at clinically relevant concentrations
(Hoyer et al., 1994, Sebben et al., 1994; Glatt et al., 1995; Kohen et al., 1996).
Transfected receptors can be labelled with [3H]LSD and [3H]5—HT (Monsma et al.,
1993; Roth et al., 1994; Kohen et al., 1996). Only recently have two selective
antagonists been identified (Ro 04-6790 & Ro 63-0563; Sleight et al., 1998). Ro 63-
0563 is however unsuitable for native labelling of the 5-htg receptor due to the high
(70-90%) non-specific binding and the low expression of this subtype (Boess et al.,
1998). Specific site directed antibodies have revealed a brain distribution with
highest levels in the cerebral cortex, nucleus accumbens, striatum, CAl region and
dentate gyrus of the hippocampus and lower levels in the thalamus and substantia
nigra (Gerald et al., 1997). The distribution of 5-hts mRNA appears largely to be
confined to the brain though low levels are found in the stomach and adrenal glands
(Ruat e al., 1993a) and closely matches 5-htg receptor protein expression as revealed
by immunological studies (Gerard et al., 1997). The 5-hts receptor stimulates
adenylate cyclase activity (Ruat er al., 1993a; Sebben et al., 1994) but no functional
correlates have been positively identified. However studies using antisense
oligonucleotides induced a behavioural syndrome of yawning and stretching that
could be dose dependently blocked by atropine, suggesting an involvement of the 5-

hts receptor on the cholinergic system (Bourson et al., 1995).
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1.5.8 The 5-HT; Receptor

The 5-HT; receptor is the most recently identified 5-HT receptor. Using
degenerate oligonucleotides corresponding to conserved sequences amongst other
receptor families, 5-HT; receptor cDNA has been identified from a number of
species including human, rat, mouse, guinea pig and toad (Bard et al., 1993;
Lovenberg et al., 1993a &b; Meyerhof et al., 1993; Plassat et al., 1993; Ruat er al.,
1993b; Shen et al., 1993; Tsou et al., 1994; Nelson et al., 1995). The 5-HT5 receptor
appears to be the mammalian species homologue of the 5-HT 4, receptor identified
in Drosophila melanogaster (Witz et al., 1990). Of the two introns in the 5-HT;
receptor gene, one is responsible for the presence of a second extracellular loop
(Heidman et al., 1997) and the other corresponds to the C-terminal and is responsible
for the generation of at least four currently recognised splice variants (5-HT7), 5-
HT7@), 5-HT7(), and 5-HT74); Heidmann et al., 1997). The pharmacological profile
of 5-HT7 receptors is unique (reviewed in Eglen et al., 1997) with the non-selective
agonists 5-CT and 5-MeOT, the non-selective antagonists methiothepin and
metergoline, the 5-HT, antagonists mesulergine and ritanserin having high affinity
and the ‘selective’ 5-HT;s receptor agonist, 8-OH DPAT displaying moderate
affinity (Shen ez al., 1993; Ruat et al., 1993b, Tsou et al., 1994; To et al., 1995). The
pharmacology of the different receptor isoforms have not been directly compared,
though preliminary experiments reveal a similar pharmacology between the 5-HT7,
and 5-HTy, isoforms (Jasper et al., 1997). To date only one selective antagonist has
been identified SB-258719 (Forbes et al., 1998; Thomas et al., 1998). Previous
autoradiographic studies have relied on using non-selective ligands such as [*H]5-CT
in the presence of masking drugs to attempt to block non-5-HT binding. In rat and
guinea pig brain, both the mRNA and receptor binding sites display a similar
distribution, and expression is relatively high within regions of the thalamus,
hypothalamus and hippocampus with generally lower levels in areas such as the
cerebral cortex and amygdala (To et al., 1995; Gustafson er al., 1996; Stowe &
Barnes, 1998b). The 5-HT; receptor transcript has also been identified in several
other organs including the spleen, kidney, pancreas, stomach and ileum of both
human and rat, (Ruat et al., 1993b; Shen et al., 1993; Bard et al., 1993; Stam et al.,

1997) and more recently in the rat adrenal gland (Contesse et al., 1999). Additionally
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5-HT7 mRNA has been detected in a variety of vascular tissues, including
microvessels in human cerebral cortex, saphenous vein, aortic and pulmonary artery
smooth muscle, and in the vena cava, femoral vein, aorta and renal artery of the rat
(Ullmer et al., 1995; Cohen & Hamel, 1996; Hamblin & Heidmann, 1996). The 5-
HT; receptor isoforms show differential species and regional distribution and
expression levels as reviewed by Heidmann et al., (1997 & 1998). Both the
recombinant and the native 5-HT7 receptor stimulate adenylate cyclase (Shen ez al.,
1993; Heidmann et al., 1997 & 1998 ). At present no direct functional evidence is
apparent for the behavioural, biochemical or neuroendocrine effects in Table 1.5 as
seen with activation of the 5-HT,4 receptor subtypes. However activation of the 5-
HT5 receptor has been shown to produce effects on vasculature, gastric motility, and
circadian rhythms. The 5-HT7 receptor has recently been shown to be responsible for
mediating smooth muscle relaxation in a number of vascular tissues (Martin &
Wilson, 1996; Cushing er al,, 1996; Leung et al., 1996; Terrén, 1996 & 1997a;
Terron & Falcon-Neri, 1999). It is also now known that the 5-HT; receptor mediates
5-HT induced hypotension (De Vries et al., 1997; Terrén, 1997b) without affecting
cardiac output or blood flow to vital organs (De Vries et al., 1998). This 5-HT;
receptor subtype may therefore be a target for anti-hypertensive therapy. 5-HT:p
receptor activation can cause stomach fundus contraction (Kursar et al., 1992), and
5-HT7 receptor activation can cause smooth muscle contraction in the rat jejunum
(McClean & Coupar, 1996), smooth muscle relaxation in the guinea-pig ileum
(Carter et al., 1995) and porcine myometrium (Kitizawa et al., 1998). The finding
that 8-OH DPAT induces a phase shift in neuronal activity in the suprachiasmatic
nucleus has now been shown to be associated with 5-HT; receptor activation
(Lovenberg et al., 1993a; Ying & Rusack, 1997) rather than 5-HT;n receptor
stimulation as first thought (Prosser et al., 1993). The development and use of more
selective antagonist and agonist ligands will help to further evaluate the functional

roles of this 5-HT receptor subtype.
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1.6  The 5-HT Transporter

After transmitter release from activated nerve terminals, the principle
mechanism involved in the rapid clearance from the synapse is transport of the
transmitter back into presynaptic nerve terminals by one of a large number of
structurally and pharmacologically distinguishable transport proteins (Amara &
Kubhar, 1993).

1.6.1 Cloning, Structure, Localisation and Classification

Cloning

The molecular characterisation of neurotransmitter transporters began with
the purification, amino acid sequencing, and cloning of the rat and human y-
aminobutyric acid (GABA) transporter (GAT; Radian et al.,, 1986; Guastella ez al.,
1990; Nelson et al., 1990). Within 6 months, a cDNA clone for the cocaine and
antidepressant sensitive human noradrenaline transporter (NET) was cloned
(Pacholczyk et al., 1991). Alignment of GAT and NET sequences demonstrated a
46% amino acid identity and revealed the sequence motifs of a novel
neurotransmitter transporter gene family with a similar inferred membrane
topography of 12 regions of high hydrophobicity in spans long enough to form
transmembrane domains (TMDs). Degenerate oligonucleotides designed to the
conserved sequences of GAT and NET served as probes for homology cloning,
resulting in the identification of eight distinct transporter homologues expressed in
rodent and human brain using PCR techniques (Peek et al., 1991). One of these PCR
products recognised mRNA overlying cells of the midbrain and brain stem raphé
nuclei (Blakely ez al., 1991), which are the principle sites of serotonergic neurons in
the rat brain (Steinbusch, 1984). This clone was shown to be a functional 5-HT
selective transporter (SERT) due to its sensitivity to selective uptake blockers,
including paroxetine, citalopram and fluoxetine and also by the ability of low
concentrations of addictive amphetamines and cocaine to block 5-HT uptake in
transfected cells (Blakely et al., 1991). A cDNA encoding a functional SERT was
also identified in the mast cell line RBL (rat basophilic leukaemia; Hoffman ez al.,
1991) and shown to be identical to rat brain SERT (Blakely et al., 1991). This

suggested that neuronal and non-neuronal SERTSs are encoded by a common gene
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(Blakely et al., 1993). Cloning of cDNAs encoding functional SERTs from human
placental (Ramamoorthy er al., 1993a), brain (Blakely et al, 1993; Lesch et al.,
1993b) and platelets (Lesch et al., 1993c) and from other rodent species (mouse:
Chang et al., 1996; guinea pig: Chen er al, 1997), have revealed that rodent and
human SERTSs show >90% cross-species sequence identity. Furthermore, peripheral
and CNS SERT are identical, suggesting that they encoded by a common gene, a
hypothesis supported by the identification of a single SERT loci in human
(Ramamoorthy et al., 1993a) and mouse (Gregor et al., 1993). SERT genes are
fragmented by multiple introns (Lesch er al., 1994) and thus could give rise to
multiple transcripts by alternative RNA processing. Peripheral and CNS SERT do
show differences in size, which may involve differential post-translational
modifications. For example, in SDS western blots, rat platelet SERT migrates to 94
kDa, whereas brain SERT migrates to 76 kDa (Qian et al., 1995). This difference in
electrophoretic mobility is due to differential deglycosylation, with platelet SERT
being more heavily glycosylated. Sequential stages of transporter glycosylation are
also apparent for SERTs transfected in HeLa cells (Melikian et al., 1994).
Glycosylation plays a role in receptor and transporter assembly and trafficking
(Rands er al., 1990; Asano et al., 1993; Collier et al., 1993), and in some cases
contribute to functional properties (Boege et al., 1988; Leconte et al., 1992).
However in the case of SERT, glycosylation is required for optimal stability of the
SERT in the membrane but not for serotonin transport or ligand binding per se (Tate
& Blakely, 1994).
Structure

The structure of SERT consists of 630 amino acids arranged in 12 a-helical
transmembrane domains (TMDs), with intracellular and extracellular loops, similar
to the structure of GAT and NET (Figure 1.6). The carboxy and amino terminals are
predicted to be intracellular (Figure 1.6). Multiple sites for N-linked glycosylation
are located on the large extracellular loop between TMDs 3 and 4, whereas multiple
consensus sequences for possible phosphorylation are found in the intracellular

domains (Figure 1.6). The greatest sequence identity to NET is in TMDs 1-2 and 5-8,
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whereas the greatest sequence divergence is in regions between putative TMDs as
well as in the predicted cytoplasmic NH, and COOH-terminals (Figure 1.6).
Localisation

In the CNS, cells in the raphé nuclei express high levels of SERT mRNA
with lower but detectable levels in the projectional terminal fields of areas such as
the cortex, hippocampus and striatum (Blakely er al, 1991; Fujita et al., 1993;
Austin et al., 1994). Though SERT activity has been reported in astrocytes (Bel ez
al., 1997), there is no evidence of glial SERT protein (Hoffman ez al., 1998; Masson
et al., 1999). In addition, SERT activity has been described in certain peripheral
tissues, including platelets (Sneddon, 1973; Rudnick, 1977), lung (Paczkowski et al.,
1996) and in human resting lymphocytes (Mazarreti ef al., 1998). SERT mRNA has
also been detected in the rat adrenal gland (Blakely et al., 1991; Hoffman et al.,
1991).

Classification

The cloning of other neurotransmitter transporters has revealed a family of
transporters all with a 12 TMD structure. These neurotransmitter transporters form
three distinct families based on their amino acid sequence homology, membrane
location and ionic dependence: (1) Na* and Cl dependent transporters that operate on
the plasma membrane; (2) Na* and K" dependent transporters that function on the
plasma membranes, especially in glutamate transport (3) vesicular transporters that
function in uptake into synaptic vesicles and granules.

The Na" and CI" dependent neurotransmitter transporter family is further
subdivided based upon amino acid sequence conservation (Figure 1.7) and gene
structure into 3 subfamilies including: (1) the GABA, betaine, taurine and creatine
transporters; (2) the amino acid (L-proline and glycine) transporters; and (3) the
biogenic amine transporters which includes transporters for dopamine, noradrenaline
and 5-HT (DAT, NET and SERT respectively). For example, DAT, NET and SERT
genes encode a large extracellular loop on an exon that also encodes the third
transmembrane domain, whereas these domains are split by an intron in the murine
GAT gene (Lesch et al., 1994; Liu et al., 1993). Recently four new members of this
family have been identified, though these are still to be established as actual

transporters since their respective substrates have not been identified. These
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Transporter Reference Abbreviation
Proline Fremeau et al., 1992 PROT
Glycine-1 Smith et al., 1992a GLYT-1
GABA-3 Liu et al., 1993 GAT-3
GABA-2 L-Corcuera et al., 1992 GAT-2
Betaine Yamauchi ef al., 1992 BGT
GABA-4 Liu et al, 1993 GAT+4
Taurine Smith et al., 1992b TauT
Creatine Mayser et al., 1992 CreaT J
GABA-1 Guastella et al., 1990 GAT-1
Noradrenaline Pacholczyk et al., 1991 NET
Dopamine Shimada et al., 1991 DAT
Serotonin Blakely et al., 1991 SERT

Figure 1.7: Dendrogram of Amino Acid Relationships Between
Members of the Na’ and CI' Dependent Plasma Membrane

Transporters.

Figure taken and adapted from Shafqat et al., 1993. Dendogram shows that three
distinct subfamilies can be resolved based upon amino acid sequence similarities: the
subfamily of amino acid (L-proline and glycine) transporters; the subfamily of
GABA, betaine, taurine and creatine transporters; and the subfamily of biogenic
amine transporters. GLYT-2 is identical to GLYT-1 except for the first 15 amino

acids (Borowsky et al., 1993) and is not shown.
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“orphan” transporters exhibit significant homology with the “classical” members
such as DAT, SERT, GAT and glycine transporters despite distinct membrane
topographies with large second and fourth extracellular loops with the presence of an
additional site for N-linked glycosylation in the later (see Masson et al., 1999).

The details of the biogenic amine transporters are discussed briefly below due
to SERT being present in this sub family of the Na* and CI" dependent family of
neurotransmitter transporters. The vesicular monoamine transporters are also briefly
reviewed below due to their involvement in 5-HT neurotransmission. More
comprehensive reviews are available (Henry et al., 1994; Liu & Edwards, 1997,
Peter et al., 1998; Masson et al., 1999). SERT is not a member of the Na* and K"
dependent transporters which are predominantly involved in glutamate uptake and
may be reviewed with the other neurotransmitter transporters elsewhere (Shafqat et
al., 1993; Amara & Kuhar, 1993; Kanner, 1994; Rudnick, 1997; Masson ef al.,
1999).

The Biogenic Amine and Vesicular MonoamineTransporters

Dopamine (DA), noradrenaline (NA) and 5-HT are the main substrates for
DAT, NET and SERT respectively. However these transporters may also transport
each others main substrates, albeit with a lower affinity, and a variety of neurotoxins
including addictive amphetamines (Table 1.6). The uptake ability of these biogenic
transporters may also be blocked by a variety of specific uptake inhibitors and
cocaine (Table 1.6). For example citalopram and fluoxetine are considered serotonin
specific reuptake inhibitors (SSRIs) due to their higher affinity for SERT, whereas
nomifensine has reasonably high affinity for both NET and DAT and is not
considered a specific uptake inhibitor. Bupropion though weak in potency is more
specific for DAT, whereas DMI and nisoxetine are more selective for NET (Table
1.6). The vesicular monoamine transporters (VMATS), in contrast to those at the
plasma membrane, translocate transmitters from the cytoplasm into vesicles in
preparation for regulated release by exocytosis. In addition, a single vesicular
transport activity recognises all of the monoamine transmitters with similar sub-
micromolar affinity, occuring in DA, NA and 5-HT neurons with 5-HT having
slightly higher affinity (~0.2uM; Liu & Edwards, 1997). Indeed one vesicular

transporter, VMAT; is responsible for these re-uptake
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Substrates Biogenic system (Affinity of uptake K,, in pM)

“Classical” Serotonergic Noradrenergic Dopaminergic
5-HT 0.1 8 >100
Noradrenaline >50 0.1 0.1
Dopamine 50 0.1 0.1
Neurotoxins are substrates and examples are listed below: K, ~ 1uM

Amphetamine Amphetamine Amphetamine

p-chloroamphetamine  p-chloroamphetamine  p-chloroamphetamine
MDMA MDMA MDMA
fenfluramine fenfluramine fenfluramine
MPTP (MPP") MPTP (MPP") MPTP (MPP")
5,7 DHT* 6-OH DA 6-OH DA**

Uptake Biogenic system (Affinity of inhibition of uptake K; in nM)
Inhibitors Serotonergic Noradrenergic Dopaminergic
Citalopram 1.3 4000 280000
Fluoxetine 12 280 1600
DMI 340 0.9 5200
Nisoxetine 310 1.3 510
Nomifensine 1280 5 51
Bupropion 15600 2300 630
Cocaine 180 155 270

Table 1.6: The Main Substrates and Examples of Inhibitors of

Biogenic Amine Transporters

Substrate data from Amara & Kuhar (1993). Inhibitor data from Richelson &
Pfenning (1984). Amphetamine and its derivatives (p-chloroamphetamine, MDMA =
3,4-methylenedioxymetamphetamine (Ecstasy) and fenfluramine) are also substrates
for SERT along with the classical substrates (5-HT, noradrenaline and dopamine).
MPTP =  N-methyl-1,2,3,6-tetrahydropyridine. =~ MPP* =  N-methyl-4-
phenylpyridinium and is the active metabolite of MPTP. 5,7-DHT = 5,7
dihydroxytryptamine. 6-OH DA = 6-hydroxy dopamine. * = in the presence of DMI
to block NET. ** = in the presence of DMI to block NET and pargyline to prevent
oxidation.
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properties in the brain, which is sensitive to inhibition by both reserpine and
tetrabenazine (see Liu & Edwards, 1997 Masson er al., 1999). Other vesicular
transporters, with different specificities are found in neurons that release amino acid
neurotransmitters and acetylcholine (see Usdin et al., 1995; Liu & Edwards, 1997;
Mclntire et al., 1997)

1.6.2 Mechanisms of 5-HT Uptake

Outlined in Figure 1.8a is the recapture of released neurotransmitter, which
via the plasma membrane is only the first of two steps required for efficient
neurotransmitter recycling. A second transport process sequesters cytoplasmic
transmitters within synaptic vesicles via VMAT, in preparation for their release by
exocytosis.

At the Plasma Membrane

As outlined in Figure 1.8b inwardly-directed Na* and CI gradients, and
outwardly-directed K or H' gradients serve as driving forces for 5-HT transport
across the plasma membrane (Rudnick & Clark, 1993). These electrochemical
gradients are created and maintained by the plasma membrane Na'/K® ATPase
(Kanner & Schuldiner, 1987; Figure 1.8a). When these appropriate transmembrane
ion gradients are imposed, the nerve terminal accumulates 5-HT concentrations
several hundred fold higher than in the external medium. Using stably transfected
cells, the ionic dependence of monoamine reuptake has been established (Gu et al.,
1994, 1996 & 1998). For DA, two Na' ions are cotransported with the substrate
while NA and 5-HT are cotransported with only a single Na* ion (Gu et al., 1994,
1996 & 1998). All three transporters also cotransport a single CI” ion with the
substrate (Gu et al., 1998). A theoretical model for substrate translocation has been
suggested whereby SERT may assume open and closed channel-like states which
differ only in the accessibility of the central binding site (see Rudnick & Clark, 1993;
Figure 1.8c). Thus the transporter may behave like a channel with a gate at each face
of the membrane, but only one gate may be open at any point in time (the gate-lumen
gate theory). Electrophysiological methods have uncovered a Na* flux not accounted
for by the ionic dependence of substrate translocation. Using both Xenopous oocytes

(Lester et al., 1994; Mager et al., 1994; Deflice & Blakely, 1996; Lin et al., 1996;

47



() (b)

Mechanism of serotonin
transport. Coupling to
sodium, chloride and
potassium gradients

Figure 1.8: Mechanism of 5-HT Re-uptake at the Plasma Membrane
In (a) Neurotransmitter recycling is represented. Gradients of Na', K" and CI
generated by the plasma membrane Na'/K'-ATPase drive influx of released
neurotransmitter (NT) across the plasma membrane. Once inside the nerve terminal,
the transmitter is accumulated within synaptic vesicles by exchange with
intravesicular H' ions supplied by the vacuolar H -pumping ATPase. In (b) Driving
forces of 5-HT transport are shown. Inwardly-directed gradients of Na" and CI" are
coupled by SERT to serotonin influx by a process of symport (or cotransport). The
K" gradient also serves as a driving force for the transporter, which catalyses
exchange (countertransport or antiport) of internal K for external 5-HT. In (c) a
model for Na’, Cl- and K* coupling to 5-HT transport is shown. Counter clockwise
from the lower left, SERT is shown binding external Na', 5-HT (s) and CI and then
interconverting to a form (above the line) in which the binding sites for these ligands
is accesible from the cytoplasm. This interconversion represents the transport
process. Following dissociation of Na®, 5-HT and Cl-, the transporter binds internal
K" (upper left) and converts to a form which can release K+ to the external medium
(left side) to return to the starting point. Figure from Rudnick & Clarke (1993).
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Zhu et al., 1997; Zahiser et al., 1998) and mammalian cells (Galli et al., 1995, 1996
& 1997) expressing these transporters, two different antidepressant-sensitive Na'
fluxes were detected, one associated with the transport cycle and the second a leak
current in the absence of substrate. These data suggest these transporters have a
channel-like activity and are reviewed by Lester et al., (1996) and Sonders & Amara,
(1996). It has also now been suggested that the transporter-associated current is
because of both gates remaining open (Cao et al., 1998).

At the Vesicular Membrane

The transport system consists of two components: (i) a vacuolar ATP-driven H”
pump that acidifies the vesicle interior creating a transmembrane pH difference in the
absence of ATP and the development of a transmembrane electrical potential, and (ii)
the reserpine-sensitive vesicular amine which couples efflux of two H" ions to the
uptake of each molecule of the 5-HT (see Rudnick & Clark, 1993). Because the
amine substrate is exchanged for the equivalent of two H' ions, a 10-fold H
concentration gradient (one pH unit) will lead to a 100-fold gradient of substrate.
Membrane potential is not as strong a driving force, since only one charge crosses

the membrane with each catalytic cycle (see Rudnick & Clark, 1993).

1.6.3 Functional Domains of SERT

A hypothetical model for functional domains of SERT has been proposed
based on the known structure of this transporter (Figure 1.9). The combination of
molecular biology and pharmacological techniques has allowed this model to be
assessed. A useful strategy for identifying ligand binding domains of G-protein-
coupled receptors and ion channels has been the exploitation of species differences in
antagonist potencies, in which cross-species chimeras and site-directed mutagenesis
localise domains and residues critical for ligand interaction (Jackson et al., 1991;
Oksenberg et al., 1992; Olah & Stiles, 1997). Using chimeras of rat and human
SERTs, the carboxy region of SERT distal to TMD11 was identified as the domain
involved in the species selectivity of imipramine and d-amphetamine (Barker et al.,
1994) in agreement with the hypothetical model (Figure 1.9). Follow-up studies
using site-directed mutagenesis identified a single amino acid in TMDI2

(phenylalanine 586) for the species selectivity (favouring human SERT) of the
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Figure 1.9: Hypothetical Model of SERT Functional Domains

Taken from Lesch (1998).
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tricyclic antidepressants and cocaine (Barker & Blakely, 1996). Previous
mutagenesis studies of the dopamine transporter have shown a conserved aspartate
79 located in TMD1 as being critical for dopamine uptake and cocaine analogue
recognition (Kitayama ez al., 1992). Corresponding studies in the equivalent rat
SERT TMD 1, aspartate 98, suggested that this residue may indeed serve as a direct
contact site for substrates and some uptake inhibitors and hence may be directly
involved in the uptake mechanism (Barker et al., 1998). Data from numerous studies
on chimeric transporters have suggested that maintaining proper interactions between
TMD7 and other nearby spans is critical for transporter function (Giros et al., 1994;
Buck & Amara, 1994 & 1995). Mutagenesis studies of the rat brain SERT have
revealed critical amino acid residues in TMD7 that play a role in Na* binding or
coupling (Penado et al., 1998) and may form part of an aromatic binding pocket
similar to that found in the crystal structure of acetylcholine esterase (Sussman er al.,
1993). The absence of crystal structure data for SERT however has further reinforced
the importance of such techniques for future studies aimed at understanding the
three-dimensional structure and mechanism of transporter function and inhibition.
Chimera studies have also revealed that 2" extracellular loop is involved in
conformational changes (Stephaner al., 1997). None of the remaining extracellular
loops seem to be directly involved in substrate or inhibitor binding, though the 1%,
5" and 6™ extracellular loops appear to be involved in the transport reaction as
revealed by mutagenesis studies of cysteine and leucine residues in these regions
(Chen et al., 1997; Chen et al., 1998; Smicun et al., 1999).

The distantly related Drosophila melanogaster SERT (Demchyshyn et al.,
1994; Corey et al., 1994) has further helped investigators unravel studies on the
functional domain of SERT. Despite human and Drosophila SERTs only showing
49% sequence identity (extending to 58% when considering only the TMDs), both
transporters exhibit essentially equivalent transport kinetics for 5-HT; however,
vastly different pharmacological profiles are observed (Barker & Blakely, 1998).
Drosophila/human SERT chimeras have helped to identify the TMDs 1-2 region as
being potentially involved in the recognition of the uptake inhibitors mazindol and
citalopram as well as interactions with the cotransported Na ions (Barker er al.,

1998). Another important difference in these different SERT species is in their
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transporter mediated currents. Transport of 5-HT by Drosophilia SERT appears to be
voltage dependent, whereas human SERT exhibits voltage-independent transport
activity with a magnitude of current 5-10 times lower than in Drosophila (Corey et
al., 1994). This is possibly due to the stoichometry of 2Na™: 1 5-HT coupling of
Drosophila SERT (Barker & Blakely, 1998). Therefore chimera studies may reveal
domains involved in these properties. Indeed, replacement of serine at position 545
in TMD11 in the recombinant rat SERT by alanine has been found to alter the cation
dependence of serotonin uptake (Sur et al, 1997) and has been suggested to be
involved in the ligand-dependent gating processess that are indicative of ion channels

(Magers et al., 1994 & Sonders et al., 1996).

1.6.4 Regulation of 5-HT Transporter Function

Cool et al., (1990) have demonstrated that SERT activity in human placental
JAR cells can be modulated by chronic exposure to cAMP elevating agents including
cholera toxin (CTX). This effect despite taking many hours to manifest is inhibited
by translation and transcription inhibitors. SERT abundance is increased in parallel
with SERT mRNA after CTX treatment (Ramamoorthy et al., 1993b), suggesting a
transcriptional mediated increase in SERT abundance. Human SERT gene
expression is significantly regulated by activation of both PKA and PKC pathways
(Blakely et al., 1997 & 1998), and potential target sites for second messenger-
mediated regulation of gene expression have been identified at or near transcription
initiation and mRNA splicing sites (Lesch er al., 1994; Heils er al., 1996; Bradley &
Blakely, 1997). Platelet, endothelial and brain SERT are down-regulated within
minutes by PKC activation (Myers et al., 1989; Anderson & Horne, 1992). PKC-
mediated down-regulation of 5-HT uptake in stably transfected HEK-293 cells
occurs via a specific reduction in cell-surface transporter protein (Qian et al., 1997).
The presence of multiple, canonical serine and threonine phosphorylation sites on
SERT cytoplasmic domains and the ability of NH, and COOH termini, where most
of these sites lie, to serve as substrates for purified protein kinases has been shown
(Figure 1.6). Rapid kinase-mediated regulation of 5-HT uptake, as a consequence of
SERT phosphorylation is paralleled with reductions in SERT surface abundance
(Ramamoorthy et al., 1998) though the possibility of PKC induced internalisation of
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cell-surface SERT protein may underlie this mechanism by which transmitter
clearance is mediated (Qian et al., 1997).

Another regulating mechanism of transporter function is the direct interaction
of various uptake inhibitors (see section 1.8.3). It is believed that uptake inhibitors
bind to the same or closely overlapping site in SERT as 5-HT itself (Bdcstrom ez al.,
1989; Graham et al., 1989), thereby inhibiting the transport activity of SERT and
increasing synaptic availability of the neurotransmitter, enhancing receptor
activation. This effect has been thought to be due to a decrease in SERT density and
a desensitisation of its function following chronic treatment with uptake inhibitors
such as paroxetine (Pifeyro ef al., 1994). Furthermore chronic treatment with uptake
inhibitors reduce SERT mRNA levels in rat brain (Lesch et al., 1993a), suggesting a
sensitivity of SERT at the level of gene expression.

A class of amphetamine derivatives, including p-chloroamphetamine,
fenfluramine, and 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”; see
Section 1.9) can also bind to SERT, on the same site as antidepressants, and catalyse
the exchange of one molecule of 5-HT to the outside of the membrane for one
molecule of drug to the inside (Rudnick & Wall, 1992). Therefore these drugs can
lead to large concentrations of synaptic 5-HT, that cannot be retaken up into the

presynaptic neuron.

1.7  Physiological and Pathophysiological Roles of 5-HT

Neurons in the entire mammalian CNS number in the billions, whereas
serotoninergic cells number in the thousands. Therefore serotoninergic neurons
constitute approximately 1000000™ of all CNS neurons. However their diverse
projections and branching account for approximately 500" of all axon terminals in
the rat cortex (Audet et al., 1989). This extensive network of its projections and the
diverse function of different 5-HT receptor types has implicated the 5-HT system in a
wide range of physiological functions including neuronal development,
thermoregulation, pain, motor regulation, sleep, appetite, sexual behaviour,
aggression, anxiety and mood (see Kean & Soubrie, 1998). Some of these have been
assigned to specific receptor subtypes on the basis of the action of often non-

selective drugs in a variety of behavioural and physiological experiments (as outlined
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in Table 1.5). In addition to the effects named above, there is also evidence for a role
of the serotoninergic system in neuroendocrine function, the immune system and in
neuroimmune interactions (see reviews Van de Kar, 1991; Mossner & Lesch, 1998;
Raap &Van de Kar, 1999). Due to the large array of physiological responses
attributed to the 5-HT system there are a variety of current applications for 5-HT
compounds in the clinic to treat symptoms associated with alterations in the 5-HT
system (Table 1.7). However the lack of selective compounds for the ever increasing
number of 5-HT receptor subtypes discovered and the multifunctional modulatory
effects of 5-HT (Elliot et al., 1994), may explain why an even greater number of
drugs are not currently available to physicians.

Two common physiological effects that can be treated using selective
serotininergic drugs are migraine and nausea. Migraine represents a disorder of
cerebral vascular regulation and may be the result of a marked, prolonged phase of
cranial vasodilation. During an attack, extravasation of plasma proteins and
development of localised inflammation in intracranial vessels also occur. Some 5-HT
receptor subtypes located on blood vessels have a powerful influence over smooth
muscle contractibilty of blood vessels (see Martin, 1994). The 5-HT;p agonist,
sumatriptan (Table 1.7) was developed by screening compounds for vasoconstrictor
activity in dog saphenous vein (Humphrey et al., 1988). Injection of sumatriptan
reverses the dilation of the middle cerebral artery on the headache side (Friberg ez
al., 1991). It is also believed that it may activate a prejunctional receptor, which
resembles the 5-HT;p receptor on perivascular fibers, resulting in an inhibition of
release of inflammatory neuropeptides that mediate pain, such as substance P and
CGRP (Moskowitz, 1992).

Unlike migraine, nausea may be treated with specific 5-HT receptor
antagonists. Nausea and vomiting have consistently appeared among the severe side
effects associated with radiation and chemotherapy in cancer patients. During the
course of these therapies, mucosal enterochromaffin cells release 5-HT which
stimulates 5-HT3 receptors on enteric neurons such as the vagus and sympathetic
nerves (Cubeddu et al., 1990). The resultant vagal efferent discharge induces emesis
by activation of the parvicellular reticular formation, the so-called emetic centre of

the brain. 5-HT3 receptors are also found centrally in high concentrations in cortical
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Clinical Indication Drug Class of Compound
generalised anxiety buspirone 5-HT, partial agonist
disorder
panic disorder paroxetine SSRI
citalopram SSRI
obsessive-compulsive fluoxetine SSRI
disorder fluvoxamine SSRI
paroxetine SSRI
bulimia fluoxetine SSRI
schizophrenia clozapine 5-HT3a/c antagonist
risperidone 5-HT>ac antagonist
chemotherapy-induced ondansetron 5-HTj; antagonist
nausea granisetron 5-HT; antagonist
tropisetron 5-HT; antagonist
post-operative nausea and ondansetron 5-HTj; antagonist
vomiting granisetron 5-HT; antagonist
gatroparesis cyproheptadine 5-HT; antagonist
cisapride 5-HT; agonist
acute migraine sumatriptan 5-HT,p agonist
naratriptan 5-HTp agonist
zolmitriptan 5-HTp agonist
rizatriptan 5-HT,p agonist
migraine prophylaxis methysergide 5-HT;anc antagonist
pizotifen 5-HT, antagonist
cyroheptidine 5-HT), antagonist

depression

amitriptyline

phenelzine, isocarboxaid,
trancylcypromine,
moclobemide
tryptophan
amitriptyline, amoxapine,
clomipramine, dothepin,
doxepin, imipramine,
lotepramine, nortriptyline,
protriptyline, trimipramine
maprotiline, mianserin
citalopram, fluoxetine,
fluvoxamine, paroxetine,
sertraline
nefazodone, trazodone

venlafaxine, viloxazine
mirtazapine

atypical antidepressant

monoamine oxidase
Inhibitors

amino acid
tricyclic antidepressants

atypical antidepressants
SSRIs

5-HT uptake and 5-HT,
antagonists
SNRIs
NaSSA

Table 1.7: Therapeutic Indications of 5-HT Compounds.
Taken from the British National Formulary, September 1999 issue. SSRI = serotonin
specific reuptake inhibitor; SNRI = serotonin/noradrenaline reuptake inhibitor;
NaSSA = noradrenergic and specific serotonergic antidepressant.
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and limbic regions and in or near the chemoreceptor trigger zone, all of which are
implicated in the vomiting reflex induced by serotonin (Kilpatrick er al., 1989;
Andrews, 1990). Both ondansetron and granisetron are potent and selective inhibitors
of 5-HT; receptors both centrally and peripherally, and hence are used for the
treatment of post-operative nausea and vomiting and chemotherapy-induced nausea
(Table 1.7; see Perez, 1995).

5-HT has also been implicated in many neurophyschiatric disorders such as
anxiety, schizophrenia, obsessive compulsive disorders and depression (see Blier &
De Montigny, 1998). The treatment of depression is one of these disorders which
currently assigns the most clinically used drugs that act on the 5-HT system as stated
by The British National Formulary (September 1999; BNF No. 38 issue; Table 1.7).
The management of the depressive state is reviewed in the following section (section

1.8).

1.8 Models of Depression

Depressive disorders are serious illnesses that are characterised by similar
signs and symptoms irrespective of race and socio-economic status throughout the
world, and are considered to be a major health problem (Unstiin & Sartorius, 1993).
Today it is well established that major depression is the most common of psychiatric
disorders, which has lifetime prevalence rates between 4.4 and 19.6% (Angst, 1992),
It can be treated effectively in many cases with a variety of methods, such as

psychotherapeutic techniques, pharmacotherapy or electroconvulsive therapy (ECT).

1.8.1 Monoamine Hypothesis of Depression

One of the first indicators of a monoamine in depression was the finding that
reserpine, which blocks vesicular amine transport, although effective in the treatment
of high blood pressure, produces a behavioural syndrome that resembles depression
(Frize, 1954). The subsequent monoaminergic model of depression was suggested by
Schildkraut (1965), which stated that depression is caused by a functional deficit of
monoamine transmitters at certain sites in the brain, whereas mania results from
functional excess. Imipramine was established as possessing antidepressive
properties (Kuhn, 1958), despite it and its congeners (tricyclic antidepressants;
TCAs) being originally synthesised as antihistamines. Antagonism of the behavioural
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effects of reserpine and tetrabenazine by the TCA drugs was suggested to be
associated with the inhibition of NE reuptake in the brain (Ross & Renyi, 1967) and
these behavioural tests were considered predictive of antidepressant activity (Corrodi
& Fuxe, 1968). However, imipramine was also found to block reserpine-sensitive
accumulation of 5-HT in brain (Blackburn er al, 1967; Carlsson et al., 1968).
Researchers discovered that most TCAs were inhibitors of both serotonin and
noradrenaline reuptake into the presynaptic nerve terminal (Ross & Renyi, 1969).
This combined role was based on findings that N-demethylation of these tertiary
amines (parent drugs) to the secondary amine metabolites (e.g. imipramine to
desipramine (DMI) and amitriptyline to nortriptyline) increased noradrenaline
reuptake affinity in vitro (Table 1.12) and inhibition of noradrenaline uptake in rat
brain was mainly observed when the tertiary amine drugs were administered in vivo
(Carlsson et al., 1969; Ross & Renyi, 1969). The affinity of the imipramine series of
drugs for 5-HT reuptake inhibition was shown as DMI < imipramine < clomipramine
suggesting that inhibitors of 5-HT uptake may be responsible for the mood elevating
effect of the TCAs (Carlsson et al., 1969). This subsequently led to the formulation
of the indoleamine hypothesis of depression, suggesting that 5-HT neurotransmission
is also decreased in depressed patients (Lapin and Oxenkrug, 1969; Carlsson et al.,
1969). Later, it was thought that there might be two types of depression linked with
decreases in either NA or 5-HT neurotransmisson, (Maas, 1975). However this
hypothesis was not supported by clinical findings, and antidepressant agents
inhibiting either 5-HT or NA reuptake, or both, are equally effective and are not

selective for subtypes of depression (De Johnge et al., 1991; Yazici et al., 1993).

1.8.2 Involvement of The 5-HT System in Depression

The inaccessibility of the human brain to investigation has been a major
obstacle in understanding mental illness. Most investigations have been restricted to
studies on post-mortem brain tissue, or in looking for biochemical abnormalities in
the cerebrospinal fluid (CSF), blood or urine from depressed patients. For example
concentrations of 5-HT and its metabolite, 5-HIAA, were found to be lower in the
hindbrains of suicide victims suffering from depression compared to sudden death

victims (Shaw et al., 1967; Lloyd et al., 1974) or those that suffered coronary
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occlusion (Bourne et al., 1968). Additionally, the concentration of 5-HIAA in CSF
was lower in depressed patients (Aschroft et al., 1966; Dencker et al., 1966),
particularly among those who had an increased incidence of suicide attempts and
subsequently committed suicide (Asberg er al., 1986). Treatment with amino acid
precursors of 5-HT, tryptophan (Coppen et al., 1967; Hertz & Sulman, 1968) and 5-
hydroxytryptophan (Sano, 1977), showed antidepressive effects. In a more recent
study remitted depressed patients receiving serotonergic antidepressants were given a
low tryptophan diet and found to promptly relapse, which was reversed on
tryptophan supplementation (Delgado et al., 1990).

Precursors, metabolites and 5-HT itself are not alone in the evidence for a
role of the 5-HT system in depression. SERT and the 5-HT receptors have also been
implicated in the pathophysiology of depression. Studies using post-mortem material
are often difficult to obtain in large numbers, and so many studies have been
conducted in the non-invasive model of SERT, namely blood platelets. Like SERT,
5-HT; receptors are also found on both 5-HT containing neurons and blood platelets.
Studies in depressed and suicidal patients for both these types of tissue have revealed
a decrease in SERT binding density and an increase in 5-HT, receptor density in
many studies (see Owens & Nemeroff, 1994). These respective changes in density
have been shown to return to control levels upon clinical improvement, but low
densities for SERT persist until clinical improvement is achieved (Berrettini et al.,
1982; Suranyi-Cadotte ef al., 1984; Langer et al., 1987).

Hormone responses to indirect serotonin agonists like L-tryptophan also lend
evidence to the indoleamine hypothesis. Upon stimulation of the serotonin system,
the hormones, prolactin and growth hormone are released. Neuroendocrine responses
to intravenous L-tryptophan were examined to compare the serotonergic function in
depressed patients and healthy comparison subjects. Prolactin and growth hormone
responses to the intravenous injection of L-tryptophan were decreased in depressed
patients (Price et al., 1991), supporting the evidence that the serotonin function is
abnormal in depression. Stimulation of the serotonergic system also activates the
hypothalamic-pituitary and adrenal (HPA) axis (Calogero et al., 1990; Lépez et al.,
1997), which has been implicated in depression (Barden et al., 1995). Corticotropin-

releasing hormone (CRH) in the hypothalamus is the main driving force behind the
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activation of the HPA axis. Subsequent release of pituitary pro-opiomelanocortin-
derived peptides (especially adrenocorticotropic hormone, ACTH) stimulate the
production of adrenal steroids which can influence steroidal receptors in the brain or
cause a series of feedback inhibitions that regulate these neuroendocrine responses
(Barden et al., 1995). In depressed patients there is a hyperactivity of the HPA axis,
which can be reversed by antidepressant treatment following a similar time course to
clinical improvement (Barden et al., 1995). Densensitisation of 5-HT;s receptor-
mediated and a potentiation of the 5-HT,a receptor-mediated hormone responses
after chronic SSRI treatment in rats are believed to account for the normalisation of
the HPA axis (Raap & Van der Kaar, 1999).

The molecular cloning and sequencing of the human SERT gene located on
chromosome 17 (Table 1.3) has added evidence for the involvement of the
serotonergic system in depression. Although there is no evidence of an abnormality
in any of the 14 exons of the human SERT gene (Lesch et al., 1995), there is
evidence of a number of polymorphisms in the promotor region (Heils ez al., 1996)
and second intron (Lesch et al., 1994; Battersby et al., 1996) containing differential
numbers of variable number tandem repeats (VNTR) in depression. The first
association study of this kind revealed a difference in the frequency in the VNTR of
the 2" exon in depressed patients, suggesting that this polymorphism was associated
with the susceptibility to major depression (Ogilvie et al., 1996). This was supported
by evidence from other groups (Battersby ef al., 1996; Stober et al., 1996; Collier et
al., 1996a; Kunugi et al., 1997; Rees et al, 1997), but was disputed by others
(Kunugi et al., 1996; Esterling et al., 1998; Ewald et al., 1998; Gutiérrez et al., 1998;
Hoehe et al., 1998). A similar controversial story is apparent for the VNTR close to
the promotor region of the SERT gene whereby some groups have reported weak
associations between these alleles and affective disorder (Collier et al., 1996b;
Furlong et al., 1998) whereas others have not (Mendes de Oliveira ef al., 1998). It is
likely that depression may therefore be associated with a locus at or near the SERT
gene, just as in migraine (Ogilvie et al., 1998). To answer this question, research is
currently geared towards finding more polymorphic regions, such as that recently

identified in the 3" untranslated region of human SERT (Battersby et al., 1999) and
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to investigating other markers surrounding the SERT gene as suggested by Collier
(1998).

Direct evidence for the role of 5-HT in depression has been more recently
shown using in vivo human studies. Mann er al., (1996) developed a method which
enabled the visualisation of in vivo brain responses to serotonin release by comparing
regional brain glucose metabolism, measured using [lgF]deoxyg]ucose, after
administration of fenfluramine, a serotonin releasing drug. Significant increases in
glucose metabolism, namely in the left prefrontal and temporoparietal cortex, and
decreases in metabolism in the right prefrontal cortex were observed in healthy
patients. Depressed patients, however, had no areas of decrease or increase in
glucose metabolism. The development of ligands for positron emission tomography
(PET; e.g. [''C](+)MCN5652 & ['*I]5-iodo-6-nitroquipazine) or single photon
emission tomography (SPECT; e.g. ['*’I]CIT, (2B-carbomethoxy-3f-(4-iodophenyl)-
tropane)) have enabled the direct visualisation of SERT and 5-HT receptors in the
living brain (Fletcher et al., 1995). To date there have been reports of decreased
SERT density in living brains of depressed patients (Malison et al., 1998; Staley et
al., 1998). 5-HT, receptors however appear to be unaffected, in contrast to the post-
mortem studies described above (Staley et al., 1998; Meyer et al., 1999). Although
this field is at a relatively early stage, the TCA desipramine has been shown to
decrease the density of 5-HT, binding sites in the living human brain of depressed
patients following a 3-4 week treatment using ['°F]setoperone (Yatham et al., 1999).
No comparable studies have yet been carried out to investigate SERT or other 5-HT
receptors during or after antidepressant treatment. Other technical advances have
enabled serotonin transporter function in vivo to be assessed by chronoamperometry,
which measures the disappearance of extracellular monoamine signals, but so far
these studies are limited to rodents and nonhuman primate brains (see Frazer &
Daws, 1998).

The other main monoamines have also been implicated in depression, such as
noradrenaline (see review Leonard, 1997) and dopamine (see review Fibiger, 1995).
However according to the BNF, only reboxetine, a specific noradrenergic reuptake
inhibitor (Healy & Healy, 1998) is currently used as an alternative to the serotonergic

drugs for the treatment of depression.
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1.8.3 Antidepressant Drugs Linked With The 5-HT System

Despite biochemical, molecular, genetic and in vive studies, probably the
most striking evidence for the involvement of the 5-HT system in depression is the
fact that so many of the clinically effective antidepressants interact with the 5-HT
system (Blier et al., 1990; Cowen, 1990; Goodwin, 1996; Goodnick & Goldstein,
1998). There are three main classes of antidepressants (MAOIs, TCAs and SSRIs) all
of which are effective in relieving depressive symptoms and interact with the 5-HT
system. However they differ not only in their mode of action via different
receptor/transporter or enzymatic systems, but also in their duration of action,
immediate effect on mood, unwanted side effects, risk with acute overdose, risk of
drug interactions and delay in therapeutic onset of action as shown in Table 1.8.
Electrophysiological experiments have provided evidence for an enhancement of 5-
HT neurotransmission following various long-term drug treatments (Table 1.8).
MAOIs

MAO-A inhibitors such as clorgyline produce an initial decrease in the firing
activity of 5-HT containing neurons in the raphé nuclei, which is followed by a
progressive recovery during a three week treatment due to desensitisation of
somatodendritic 5-HT ;o receptors (Blier et al., 1990) but not desensitisation of
terminal 5-HT autoreceptors (Blier er al., 1988b). MAO-A inhibitors however
desensitise ap-adrenoceptors on the nerve terminals of 5-HT containing neurons
(Mongeau et al., 1994), as this isoform has a substrate preference for both 5-HT and
noradrenaline.

TCAs

TCAs are a group of antidepressants that lack reasonable affinity for DAT but
have moderate to high affinity for SERT (e.g. imipramine) but in the case of the
secondary amine metabolites have higher affinity for NET (e.g. desipramine; Table
1.9). The sensitivity of postsynaptic neurons to 5-HT is enhanced by TCA and also
ECT, following 2-4 week treatment (De Montigny & Aghajanian, 1978; De
Montigny 1984; Chaput er al., 1991). However it was soon realised that the
interaction of such uptake inhibitors with receptors of neurotransmitters may produce
unwanted side effects that complicate antidepressive therapy (Synder & Yamamura,

1977). This is particularly the case for TCAs, such as imipramine, which have high
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affinity for various neuronal receptors including «;-adrenergic, muscarinic and
histaminergic receptors (Hall and Ogren, 1981; Wong et al., 1983). Interaction of
TCAs with these receptors may relate to the side effect profiles of constipation,
urinary retention, blurred vision, postural hypotension and sedation (Snyder &
Yamamura, 1977; U’Prichard et al., 1978; Richelson & Nelson, 1984; Table 1.8).
This prompted the search for much more selective drugs which would have a more
tolerable side effect profile compared to the TCAs and MAOIs.
SSRIs

The development of serotonin specific reuptake inhibitors (SSRIs) which had
a marked selectivity for inhibiting serotonin uptake, such as paroxetine, citalopram
and fluoxetine (Table 1.9), compared to other reuptake systems, did not improve
clinical efficacy, but did improve the side effect profile by reducing the
cardiotoxicity and anticholinergic side effects associated with TCAs (Anderson &
Tomenson, 1993; Goldstein & Goodnick, 1998). Comparing the uptake blocking
profile of the SSRIs in Table 1.9, sertraline despite having high affinity for SERT
also has high affinity for DAT. It is structurally related to the atypical antidepressant
nomifensine, which similarly has high affinity for DAT (Table 1.9). Though the
clinical relevance of this blockade is currently unknown, it may help to explain why
sertraline was more effective in improving cognitive function over fluoxetine in a
group of depressed patients (Oxman, 1996). When acutely administered, SSRIs
reduce the firing activity of 5-HT neurons (Chaput e al., 1986). With long-term
treatment firing activity is recovered leading to increases in extracellular 5-HT
levels, controlled by the desensitisation of somatodendritic 5-HT;s autoreceptors
(Chaput et al., 1986). Terminal 5-HT autoreceptors which exert a negative influence
on 5-HT release are also desensitised after chronic antidepressant treatment (see
Pifieyro & Blier, 1999). In the case of paroxetine, a desensitisation of the neuronal 5-
HT transporter is also believed to be involved, as shown by a reduction in the density
of SERT and [°H]5-HT uptake (Pifieyro et al., 1994). This is also apparent for the
noradrenaline transporter after long term desipramine treatment (Bauer & Tejani-
Butt, 1992) suggesting that monoamine transporters share a common adaptive
mechanism caused by their long term blockade. Therapeutic relief in patients taking

SSRIs is usually not attained until 2-3 weeks after commencement of treatment
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Affinity at Human Transporters pKp (-Log M)

Serotonin Noradrenaline Dopamine
Tricyclics
Amitriptyline 8.37 7.46 5.49
Nortriptyline 7.74 8.36 5.94
Imipramine 8.85 7.43 5.07
Desipramine 7.75 9.08 5.50
Chloroimipramine 9.55 7.42 5.66
Atypical
Oxaprotiline 5.41 8.31 5.36
Maprotiline 5.24 7.95 6
Mianserin 5.40 7.15 5.03
Nomifensine 6.00 7.81 7.25
SSRIs
Paroxetine 9.89 7.40 6.31
Fluoxetine 9.09 6.62 5.44
Fluoxamine 8.66 5.89 5.04
Citalopram 8.94 5.39 4.55
Sertraline 9.53 6.38 7.60

5-HT reuptake & 5-HT, antagonists

Nefazodone 6.70 6.44 6.44
Trazodone 6.80 5.07 5.13
SNRIs

Venlafaxine 8.05 5.97 5.03
Viloxazine 4.76 6.81 <4
NaSSA

Mirtazapine <4 5.34 <4

Table 1.9: Affinity of Antidepressants at Human Transporters.

Data taken from Tatsumi et al., 1997. SSRI = serotonin specific reuptake inhibitor.
SNRI = Serotonin/noradrenaline reuptake inhibitor. NaSSA = Noradrenergic and
specific serotonergic antidepressant.
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(Artigas et al., 1996; Quitkin et al., 1996). Indeed several lines of evidence from the
kinetics of [*H]5-HT transport and binding studies on SERT have suggested that
chronic but not short-term treatment with these drugs have a time-dependent
regulatory effect on monoamine transporter systems. SERT mRNA transcription
and/or stability is regulated by chronic treatment with selective and non-selective
uptake inhibitors (Lesch et al, 1993a). A more recent study, however, has shown
fluoxetine to reduce dorsal raphé 5-HT;3 mRNA levels in a time dependent manner
whereas SERT mRNA was only transiently decreased within 21 days of treatment
(Neumaier et al., 1996). This reduction in 5-HT;3 mRNA was specific to dorsal
raphé nucleus and was not found in several postsynaptic (non-serotoninergic)
regions. Hence adaptive changes of SERT and/or 5-HT autoreceptors may underlie
the therapeutic effectiveness of SSRIs. This characteristic delay in the onset of
clinical improvement is a major concern since this period is associated with a high
risk of suicide (Stockmeier, 1997). The mechanism of action of SSRIs is further
reviewed elsewhere (Goodnick & Goldstein, 1998; Goldstein & Goodnick, 1998;
Stahl, 1998a & b; Feighner, 1999; Pineyro & Blier, 1999).
Other Classes of Antidepressant Drugs

Drugs which may have an improved clinical efficacy compared with the
SSRIs and which have an improved side effect profile compared to both the TCAs
and the SSRIs are currently sought. This search has lead to the development of a
variety of compounds which have been grouped into different classes based on their
in vitro and in vivo mechanisms. These may be reviewed in Stahl, (1998b), Feighner,
(1999) and Pifieyro & Blier, (1999). These include atypical antidepressants (e.g.
maprotiline), 5-HT4 receptor partial agonists (e.g. buspirone; Sharp er al., 1989),
serotonin uptake and 5-HT), receptor inhibitors (e.g. nefazodone; Davis et al., 1997),
dual serotonin and noradrenaline uptake inhibitors (SNRIs; e.g. venlafaxine;
Andrews et al., 1996) and noradrenergic and specific serotonergic antidepressants
(NaSSAs; e.g. mirtazapine; De Boer & Ruigt, 1995).

Atypical antidepressants represent a heterogeneous group of compounds,
which, compared to TCAs, have fewer side effects, have a lower acute toxicity in
overdose, a somewhat debatable improved onset of action and an improved efficacy

in patients non-responsive to TCAs or MAOIs but show little improvement over the
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SSRIs. However, unlike other classes of antidepressants, these clinically effective
compounds do not share a common mechanism of action. They can however be split
into broad classes: non-tricyclic structures which preferentially block noradrenaline-
uptake (e.g. Oxaprotiline and maprotiline; Table 1.9), drugs that do not affect
monoamine uptake such as Iprindole, those that weakly affect monoamine uptake but
also blocks other receptor systems such as mianserin and those that actually enhance
monoamine uptake such as tianeptine (Mennini ez al., 1987; Fattaccini ef al., 1990).
SNRIs show a slightly greater antidepressant efficacy than the SSRIs without
the side effects of the TCAs (Morton ef al., 1995). Venlafaxine also has a favourable
drug interaction profile due to the fact that it does not interact with other
neurotransmitter receptors, unlike some SSRIs and TCAs, or inhibit cytochrome
p450 enzymes which play a role in the metabolism of such drugs (Ereshefsky, 1996).
However the first NaSSA identified, mirtazapine, which appears to have little affinity
at monoamine transporters (Table 1.9) has the greatest benefit to date over SSRIs
with an onset of action of only one week (Claghorn, 1995). In comparison to SSRIs,
which reduce 5-HT cell firing initially, mirtazapine immediately and persistently
enhances serotoninergic cell firing (Blier & De Montigny, 1994; De Montigny et al.,
1995). The mechanism of action of mirtazapine is unique in that it enhances both NA
and 5-HT neurotransmission. This NaSSA enhances noradrenergic transmission by
blocking o, adrenergic autoreceptors, which when normally stimulated by
noradrenaline, inhibit the release of noradrenaline. Noradrenergic neurons control the
firing rate of serotonergic 5-HT neurons via o adrenoceptors, located on 5-HT cell
bodies. Stimulation of these receptors by noradrenaline leads to an increase in the
firing rate of the 5-HT neurons. Due to very low affinity of mirtazapine for o
adrenoceptors, the increased levels of noradrenaline (caused by mirtazapine blockade
of o autoreceptors) leads to an enhancement of serotonergic cell firing. This
increased firing rate raises 5-HT release at the nerve terminal. This release is not
inhibited by the inhibitory effect of noradrenaline on serotonin release due to
mirtazapine blockade of o, heteroreceptors and hence results in a net enhancement of
serotonin neurotransmission, mediated by 5-HT; type receptors. Mirtazapine also

blocks 5-HT, and 5-HTj; like receptors, which probably accounts for the lower side
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effect profile of this antidepressant compared to the SSRIs (see review De Boer,

1996).

1.8.4 Animal Models of Depression

In the laboratory the potential effectiveness of antidepressants is examined
using a variety of biochemical, in vivo and ex vivo experiments, but also in
behavioural models, which though not used in this thesis are included for
completeness. Unlike some other psychological disorders such as psychosis and
anxiety, affective disorders such as depression are only known to be experienced by
man. However, animal models that introduce similar environmental factors that are
thought to be associated with depression in humans have been validated, to access
the therapeutic efficacy of many potential antidepressant agents. These models may
be reviewed in Willner (1995) and Kean & Soubrie (1998). The classical example is
the model of learned helplessness in which an animal is exposed to a prolonged
inescapable stress, but does not attempt to escape when later given the opportunity.
Many types of antidepressants, including serotonin specific reuptake inhibitors,

increase escape behaviour in animals displaying learned helplessness (Martin et al.,

1990).

1.9 Consequences of MDMA Exposure

The popular recreational drug of abuse 3,4-methylenedioxymethamphetamine
(MDMA or ‘ecstasy’) has two well established phases of action in experimental
animals. The acute phase consists of a rapid release of 5-HT from neuronal stores,
thereby producing many of the acute behavioural changes, including behavioural
excitation and hyperthermia, that are seen in both experimental animals and humans
(see reviews, Steele er al., 1994; Green et al., 1995; White et al., 1996). The
mechanism by which this occurs is summarised in Figure 1.10. Amphetamines and
their highly lipophilic, neurotoxic analogues, such as MDMA, are substrates of
SERT, displace the biogenic amine from its storage vesicle, and ultimately induce 5-
HT efflux by a carrier-dependent process (Levi & Raiteri, 1993; Rudnick & Wall,
1993). MDMA induces efflux in a stereospecific, Na*-dependent and imipramine-
sensitive manner, a characteristic of SERT-mediated exchange. MDMA-evoked
vesicular 5-HT efflux on the otherhand is due to dissipation of the transmembrane
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Figure 1.10: The Role of The 5-HT Transporter in the Mechanism of
MDMA and MPP" Neurotoxicity.

Amphetamines and their highly lipophilic, neurotoxic analogs, such as MDMA, are
substrates of SERT (5-HTT), displace 5-HT from its storage vesicle, and ultimately
induce 5-HT efflux by a carrier-dependent process. MDMA is therefore a potent
releaser of 5-HT. Long-term administration results in toxic degeneration of
serotoninergic terminals. MDMA-induced 5-HT release and neurotoxicity can be
prevented by reuptake inhibitors. MPP", the neurotoxic metabolite of MPTP, also
enters serotoninergic neurons via SERT. In pathological conditions a dysfunctional
transport process may contribute to an increased susceptibility to exogenous MPP"-
like neurotoxins. The vunerability of MPP" may be futher aggravated by an impaired
capacity of the vesicular monoamine transporter (VMT), which plays a central role in
the sequestration of cytoplasmic toxins and thus in the limitation of mitochondrial
damage. Figure from Lesch et al., (1998).
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pH difference generated by ATP hydrolysis (alkalinisation) and to direct interaction
with the vesicular monoamine transporter (Rudnick & Wall, 1992). Recently the
mechanism of MDMA induced release of 5-HT has been extended to include a Ca®'-
dependent process, which is possibly exocytotic-like (Crespi et al., 1997).

The second action of MDMA in the brain of experimental animals is to
produce a long lasting neurotoxic loss of 5-HT nerve terminals in several areas of the
brain, an effect demonstrated both histologically (O’Hearn et al., 1988; Molliver et
al., 1990) and biochemically (Battaglia et al., 1987; Sharkey et al., 1991; Hewitt &
Green, 1994). The main biochemical evidence for MDMA induced neurotoxicity is
derived from reductions in [3H]citalopram or [3H]paroxetine (SERT) binding density
(as markers of serotoninergic nerve terminals; Battaglia et al., 1987, 1988; Sharkey
et al., 1991). Other parameters are often used such as a reduction of 5-HT and its
major metabolite 5-HIAA (Stone et al., 1986; Schmidt, 1987), or a decline in the
activity of tryptophan hydroxylase (Stone et al., 1986) to confirm MDMA
neurotoxicity which is specific to central 5-HT nerve terminals, and not DA or NA
neurons. This has been derived from several species of experimental animal,
including rat (Battaglia et al., 1987), guinea pig (Battaglia ez al., 1988) and different
species of primate, which appear to be four times more susceptible to MDMA than
are rodents (Ricaurte er al., 1988). Although initially it was thought that toxicity
required multiple exposure to relatively high doses of MDMA, several subsequent
studies have found that a single exposure to a high dose, or several exposures to
lower doses can induce the same profile of toxicity (Colado et al, 1993). More
recently it has been found that even single treatments with doses close to those
encountered by human users can also result in some of the manifestations of neuronal
damage (Colado et al., 1997a; O’Shea et al., 1998).

Although the mechanism by which MDMA damages 5-HT terminals remains
elusive, different drugs interfering with central serotoninergic or dopaminergic
systems, such as blockers of 5-HT or DA uptake, 5-HT, and DA receptor
antagonists, DA synthesis inhibitors or previous dopaminergic lesioning, all prevent
the depletion of brain 5-HT terminals following MDMA administration to rats
(Schmidt, 1987; Stone et al., 1988; Schmidt et al., 1990a & b; Hewitt & Green,

1994). Recent data have also given substantial evidence to support the contention
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Figure 1.11: An Intergrated Hypothesis for the Development of
Selective 5-HT Terminal Degeneration Following MDMA.

MDMA induces an acute release of 5-HT (Nichols et al., 1982, Schmidt et al., 1987;
Steele et al., 1987) thought to be due to 5-HT-MDMA exchange (Rudnick & Wall,
1992; Zackek et al., 1990), causing depletion of intraneuronal stores (Commins et
al., 1987; Schmidt et al., 1987; Stone et al., 1986). The 5-HT released activates post-
synaptic 5-HTzanc receptors located on GABA interneurons (Cowan ef al., 1990;
Kita et al., 1990), causing a decrease in inhibitory GABAergic transmission
(Yamamoto et al, 1995) leading to an increase in dopamine (DA) release and
synthesis (Nash, 1990). The excessive DA released is then transported into the
depleted 5-HT terminal (Sprague & Nichols, 1995). Once concentrated within the 5-
HT terminal, the DA is deaminated by MAO-B located within the 5-HT terminal
(Levitt et al., 1982). Hydrogen peroxide formed from this process may lead to lipid
peroxidation and the selective destruction of the 5-HT terminal. Deamination of large
quantities of DA would generate concentrations of reactive oxidising species
sufficient to overwhelm the protective reductive capabilities of the terminal. Figure

adapted from Sprague ef al., (1998).
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that increased free radical production is also involved (Colado et al., 1997b). This
has lead to the formulation of an intergrated hypothesis of MDMA neurotoxicity
involving SERT, DA and free radicals as outlined in Figure 1.11 (Sprague ez al.,
1998).

Many users perceive this recreational drug of abuse as “safe” (Peroutka,
1987; Randall, 1992). However there is a growing evidence that both cognitive
deficits and mood disturbances are amongst the negative, long-term consequences of
MDMA exposure in humans (Curran & Travill, 1997; Davison & Parrott, 1997;
Cohen & Cocores, 1997; Parrot & Lasky, 1998; McGann et al., 1999). Furthermore
there is direct evidence that MDMA causes a loss of serotonergic neurons in human
users due to the reduction of 5-HT transporter sites recently shown by PET studies
(McGann et al., 1998). There is a general concern that the use and especially misuse

of this drug may lead to negative mental consequences later on in human life.

1.10 Aims of Thesis

The 5-HT transporter (SERT), which functions in the synaptic clearance of 5-
HT within the nervous system and accumulation of 5-HT by platelets, is a molecular
target not only for clinically effective antidepressants, but also for the popular
recreational drug of abuse, 3,4-methylenedioxymethamphetamine (MDMA,
Ecstasy). Serotonin specific reuptake inhibitors (SSRIs), bind to and inhibit SERT
causing an acute increase in synaptic 5-HT as an initial response to relieving
depression. However the nature of the link between the acute actions of these drugs
in vitro and the weeks of treatment required for clinical improvements remains
unresolved. Neuroadaptive changes not only of SERT, but also of the 5-HT receptors
regulating 5-HT neurotransmission, may account for this delayed onset of action. In
contrast, MDMA significantly alters neurotransmission following uptake into
serotoninergic nerve terminals and has been shown to be selectively neurotoxic for
serotonergic systems in both animals and humans, by an as yet unidentified or
confirmed mechanism.

In this thesis the effects of chronic antidepressant treatments and repeated
MDMA administration on the density and affinity of a variety of regional rat brain

SERT and 5-HT receptors is investigated using a range of radioligand binding and
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immunological techniques. The influence of potentially neuroprotective drugs on the
effects of MDMA is also examined. Since SERT mRNA has been detected in the rat
adrenal gland, the effects of antidepressant and MDMA treatment on adrenal SERT
has also been determined. In order to achieve these goals the following main areas
were investigated:

In chapter 2, SERT site directed antibodies are characterised as to their
potential use in Western blots and immunocytochemical techniques to evaluate
SERT abundance. These studies were extended to investigate the potential of these
antibodies to recognise native SERT protein. This is an important prerequisite for the
separation of purified 5S-HT nerve terminals for other studies involved in the project
from which this thesis was funded.

In chapter 4, the evaluation and pharmacological characterisation of serotonin
and noradrenaline transporter (SERT & NET) radioligand binding assays are
performed in rat brain and adrenal gland tissue. These are extended with the use of
one of the antibodies in chapter 2, to investigate the distribution of adrenal gland
SERT protein.

In chapter 5, the development and characterisation of radioligand binding
assays for the 5-HT 4, 5-HTp/1p and 5-HT; receptors are performed. The conditions
employed for identifying native rat 5-HT; receptors are autoradiographically used to
determine the distribution of this receptor subtype in the rat brain.

In chapter 6, the antibodies characterised in chapter 2 and radioligand binding
assays developed in chapters 4 & 5 are used to investigate the effects of chronic
antidepressant treatments on the affinity and density of SERT, 5-HT;A, 5-HT 51D
and 5-HT? receptors in the rat brain. The effect of such treatments on SERT affinity
and density is also assessed in the rat adrenal gland. Two SSRIs, which block 5-HT
reuptake were used, namely citalopram (the most selective) and fluoxetine (the least
selective) in comparison to the atypical antidepressant, tianeptine.

Finally in Chapter 7 the effect of repeated MDMA administration on 5-HT
receptor and SERT affinity and density is investigated in rat brain and adrenal gland
using the radioligand binding assays developed and characterised in previous
chapters. These effects were also investigated in the presence of two potentially

neuroprotective drugs, namely FK506 and FR122175.
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CHAPTER 2

IMMUNOLOGICAL CHARACTERISATION OF SEROTONIN
TRANSPORTER SITE DIRECTED ANTIBODIES
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Autoradiographic visualisation of neurotransmitter transporters/receptors is
only possible with the availability of suitable high affinity radioligands. Molecular
cloning has enabled researchers to exploit the specificity of the mammalian immune
response (Burnet, 1957) to produce antibodies that are specific for the 5-HT
transporter/receptors (Table 2.1). Some 5-HT receptors still lack suitable high
affinity radioligands and so the anatomical localisation of 5-htsy receptors, for
example, has been acheived using techniques employing antibodies (Carson et al.,
1996; Table 2.1). The advent of molecular cloning has also permitted the use of
oligonucleotide probes in conjunction with in situ hybridisation to identify cells that
express transporter/receptor mRNA. However, in the case of neurotransmitter
transporters, the mRNA tends to localise in the soma, thereby providing little
information regarding the localisation of the transporter in the nerve terminals and
dendrites, where the transporter protein is most likely to be expressed. Although, in
the case of SERT, there are high affinity radioligands available, the production of
anti-SERT antibodies can complement autoradiographic studies and provide a non-
radioactive method of investigating the distribution and function of the transporter.
Immunological techniques such as immunohistochemistry and Western blotting have
been employed to study the role of this protein. Furthermore as an alternative to
autoradiographic analysis, immunohistochemical techniques are very useful for
studying specific brain areas, which may be too small for conventional membrane
binding studies.

Antibodies are produced by immunisation of animals with synthetic antigenic
peptides containing amino acid sequences that are unique to the protein of interest, as
revealed by molecular cloning techniques. In the absence of methods to predict the
immunogenicity (ability to elicit an immune response) of a given protein, peptide
sequences must be selected on the basis of their antigenicity (ability to be recognised
by cells of the immune system). This is often quoted as being regions of a protein
that are easily accessible for antibody binding, such as extracellular loop sequences
of membrane associated proteins on the cells surface. The antigenic index has been

developed using weighted computer algorithms, showing that regions of a high
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Receptor/ Epitope Reference
Transporter
5-HT5* EL1 (96-111) Verdot et al., 1994, 1995
EL2 (173-193)
5-HTa EL3 (170-186) Azmitia ef al., 1992
IL3 (258-274)
5-HTa IL3 (243-268) El Mestikawy et al, 1990; Hamon et al.,
1991; Gozlan et al., 1993; Kia ef al., 1996a
&b
5-HTp IL3 (23-287) Langlois et al., 1995; Sari et al., 1997
5-HT>a N-terminal (22-41) Garlow et al., 1993; Morilak et al., 1993
5-HTop N-terminal (1-12) Duxon et al., 1997a
5-HT,¢ N-terminal (1-10) Sharma et al., 1997
5-HTyc IL3 (270-288) Backstrom et al., 1995
5-HTyc** IL3 (239-257) Abramowski &  Staufenbiel,  1995;
COOH-tail (373-459)  Abramowski et al., 1995
5-HT; N-terminal (1-10) Turton et al., 1993
5-htsa IL3 (239-257) Carson et al., 1996
COOH-tail (343-357)
5-hts COOH-tail (398-415) Miquel ef al., 1996; Gérard ef al., 1997
SERT EL4 (388-401) Qian et al., 1995
COOH-tail FP of
last 34 amino acids
SERT EL4 (388-401) Sur et al., 1996
SERT EL3 (315-325) Zhou et al., 1996

N-terminal (55-68)
N-terminal FP of

first 71 amino acids

Table 2.1: 5-HT Receptor/Transporter Site-Directed Antibodies.

Antibodies were raised against rat receptors except *human, and ** mouse. Amino
acid sequences against which antibodies were produced are indicated in parentheses
(numbering from the N-terminal end of the protein). EL & IL = numbered external
and intracellular loops respectively. FP = fusion protein.
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antigenic index correlate well with antigenic and immunogenic epitopes (Jameson &
Wolf, 1988). This model integrates a variety of characteristics of the protein of
interest including: hydrophilicity (Hopps & Woods, 1981), surface accessibility
(Janin et al., 1978), chain flexibility (Karplus & Schultz, 1985) and secondary
structure (Chou & Fasman, 1978; Garnier ef al., 1978).

The optimal size for antigenic peptides is 10-15 amino acids, minimising the
risk of cross-reactivity with the use of longer sequences, and the poor
immunogenicity of shorter peptides (Harlow & Lane, 1988). To increase the immune
response the synthetic peptide may be coupled to a phylogenetically removed
protein, such as the invertebrate protein keyhole limpet haemocyanin (KLH). For
larger peptides (> 30 amino acids) a fusion protein may be generated (see Miller et
al., 1998). These peptide-carrier conjugates are often given to the host in
combination with an adjuvant, such as Freund’s Complete Adjuvant, which prevents
rapid dispersal from the injection site and stimulates lymphocyte infiltration and
proliferation, prolonging and increasing exposure of the immunogen to cells of the
immune system and enhancing the response (Merser et al., 1975; Harlow & Lane,
1988). During the immunisation protocol, blood is taken at frequent intervals, the
serum isolated and the immunoreactivity of the antisera determined by indirect
Enzyme-Linked Immunosorbent Assays (ELISAs) against the synthetic peptide. This
enables calculation of the antibody titre and the time at which the antibody
production is most effective. Despite the highly specific nature of antibody-antigen
binding, anti-peptide antibodies must be characterised to ensure that the protein is
selectively recognised. The detection of a single band of an appropriate molecular
weight following Western blotting is generally considered to indicate antibody
specificity (Azmitia et al., 1992). Specific labelling should be eliminated by pre-
incubation of the immune serum with the antigenic peptide and absent following
detection with pre-immune serum or in the absence of primary antibody. Antibodies
generated in a natural immune response or after immunisation in laboratory animals,
however, are a mixture of molecules of different specificities and affinities. These
polyclonal antibodies therefore have the ability to bind to determinants other than the
antigen of interest. To increase the specificity of polyclonal antibodies, the antisera

may be purified by techniques such as affinity chromatography, which exploits the
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specific binding of antibody to antigen held on a solid matrix. Confirmation that
these purified antibodies are specific by Western blots enable their use to study the
distribution of the protein of interest by immunohistochemical methods. However, it
is possible that antibodies may vary in their specificity between techniques, and so a
combination of these techniques is often used to determine the best antibody for such
purposes. The procedures outlined above for the production of polyclonal antibodies
(and in detail in Harlow & Lane, 1988) have been used to produce anti-peptide
antibodies to the noradrenaline (Melikian et al., 1994), dopamine (Vaughan ez al.,
1992), and serotonin transporters (Qian e al., 1995; Sur et al., 1996; Zhou et al.,
1996).

In designing an immunisation protocol it is important to avoid protein regions
which contain cysteine residues or potential glycosylation sites, as these regions may
reduce the chance of antibody binding due to steric hindrance. However specific
polyclonal antibodies for opioid receptors raised from antigenic peptide sequences in
these regions has been successfully reported (Garzén et al., 1994). The molecular
cloning of SERT (Blakely er al, 1991) has shown this protein to traverse the
membrane twelve times, and be most closely related to NET and DAT with greatest
sequence divergence present in the exposed intracellular NH, and COOH termini as
well as in the accessible large TMD 3-4 extracellular loop (Amar & Kuhar, 1993). It
is these regions which have been used to select appropriate antigenic sequences for
anti-SERT antibody production (Table 2.1). Anti-SERT peptide antibodies have been
used to study the anatomical localisation and SDS-polacrylamide gel electrophoresis
(PAGE) mobility of the SERT protein (Table 2.1; Qian ez al., 1995; Sur et al., 1996;
Zhou et al., 1996). These studies revealed that brain structures such as the cortex,
hippocampus and caudate putamen contain high levels of SERT immunoreactivity
which electrophoretically migrate at 76 kDa in denaturing Western blots. In contrast,
low SERT density was evident in the cerebellum, which only receives a sparse
serotoninergic innervation (Steinbusch 1984; Takeuchi, 1988). Furthermore there is a
high density of cell body staining in the midbrain in particular in the dorsal and
midbrain raphé nuclei from which these projectional fields arise (Qian et al., 1995;
Sur et al., 1996; Zhou et al., 1996). This SERT positive immunoreactivity was
substantially reduced by 5,7-dihydroxytryptamine (5,7-DHT) lesioning of the
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serotoninergic system, further confirming the specificity of these antibodies (Zhou et
al., 1996). Of particular importance is that these immunological studies show a close
resemblence to autoradiographic analyses of SERT radioligand binding sites
(D’Amato er al., 1987; De Souza & Kuyatt, 1987; Hrdina et al., 1990; Chen et al.,
1992; Duncan et al, 1992) and the localisation of 5-HT immunoreactivity
(Steinbusch, 1984; Takeuchi, 1988) suggesting specific labelling of serotoninergic
neurons.

Prior to the commercial availability of SERT antibodies a whole library of
site-directed antibodies to SERT had been generated in our laboratory by Dr Jane
Lawrence. Two of the affinity purified antibodies produced (1001 and 998; Table
2.2; Figure 2.1) have previously been shown to specifically recognise SERT in
denaturing Western blots and fixed tissue immunohistochemical studies as reported
in a short communication (Lawrence er al., 1995a). Since these initial studies,
commercially available site directed antibodies against SERT have also been become
available, including a monoclonal antibody (Table 2.2). The problems of specificity
and reproducibility associated with traditional polyclonal antisera was originally
resolved by the Nobel Prize winning work on the production of monoclonal
antibodies (Kohler & Milstein, 1975). Monoclonal antibodies are usually produced
by making hybrid antibody-forming cells from a fusion of myeloma cells with
immune spleen cells. These cells are grown in culture (rather than in whole animals)
and will secrete an antibody against only one antigenic determinant, thereby
providing a longer-term source of the specific antibody.

The first aim of this chapter was therefore to assess the specificity of a variety
of these antibodies in SDS (denaturing) Western blots and immunohistochemistry,
for use after chronic antidepressant treatment studies (Chapter 6). The purpose of
such antibody studies was to complement conventional binding experiments using a
non-radioactive method, especially in brain regions too small for membrane binding,
such as the raphé nuclei.

5-HT neurotransmission is known to be modulated not only by
somatodendritic 5-HT, 4 autoreceptors, but also by 5-HTg/1p autoreceptors located
on 5-HT containing nerve terminals (Middlemiss & Hutson, 1990), where SERT is

specifically found. However 5-HTp;p receptors are also located on
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Table 2.2: Summary of Affinity Purified SERT Antibodies.

Code/

Source Immunised Amino acids SERT catalogue

Animal region number
Polyclonal Antibodies
In-house Rabbit 613-626 COOH-tail 998
In-house Rabbit 388-401 4" EL 1001
Chemicon Rabbit 388-401 4" EL AB1594P
Chemicon Guinea pig 634-653 COOH-tail AB1772
Incstar (Diasorin)  Rabbit 579-599 COOH-tail 24330
Monoclonal Antibodies
Chemicon Mouse 1-85 (fusion N-terminal MAB1564

protein)

EL = extracellular loop

Figure 2.1: Sequences Used for In-House Antibody Production.

Topological Structure of SERT

Extracellular

Intracellular .

1001 antibody- EMRNEDVSEVAKDA

.. 998 antibody- TPETPTEIPCGDIR ___""§r..]
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non-serotoninergic receptors acting as heteroreceptors (Molderings er al., 1987;
Bolanos & Fillion, 1989). SERT antibodies may therefore provide a useful tool to
isolate pure 5-HT containing nerve terminals from the rest of the nerve terminals
present in various brain structures (Lawrence et al., 1995a & b). Such a technique
would involve an immunomagnetic separation whereby synaptosomes are incubated
with an anti-SERT antibody and magnetic microspheres recognising the SERT
antibody, before being poured into a column influenced by a magnetic field. The
eluted fraction would consist of the non-5-HT component, whereas the magnetically
bound fraction would consist of isolated 5-HT containing nerve terminals, which can
easily be recovered after removal of the magnet.

A long-term goal of this research group is to study the ionic conductances
present at pure serotoninergic nerve terminals and to investigate the influence of
antidepressant treatments on the 5-HT receptor subtypes mediating these currents.
Production of pure serotoninergic synaptosomes using these antibodies, in
combination with the formation of large enough structures (fusosomes) from which
electrophysiologists can record would therefore aid such investigations. However the
electrophysiological experiments, by virtue of their nature, require the constituents of
nerve terminals to exist in their native form. Therefore, before immunomagnetic
separation can commence, it was important to ascertain whether or not the anti-SERT
antibodies that recognise SERT in denaturing Western blots or fixed tissue
immunohistochemistry, could also recognise native SERT, where no conformational
changes of the protein are induced. The final aim of this chapter was therefore to
investigate the potential of a variety of the anti-SERT antibodies (Table 2.2) to
recognise native SERT using a number of techniques, namely ELISA, non-

denaturing Western blots and immunoprecipitations.

2.1 Methods

All animals used in these studies were adult male Sprague Dawley rats
(Charles River, 200-350g). All reagents were prepared in milliQ distilled water
(d.H20).
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2.1.1 Preparation of Homogenates and Membranes

Rat brain and liver homogenates, membranes, synaptosomes or synaptic
plasma membranes were used in this chapter. Rats were stunned and killed by
decapitation. Brains and liver were removed and immediately placed into ice-cold
saline prior to dissection. Brains were dissected to reveal specific brain areas; whole
cortex, hippocampus, striatum and/or cerebellum. Brain or liver tissue was rolled on
filter paper to remove excess blood vessels and weighed. Homogenates were
prepared by homogenisation (800 rpm) in 5 volumes of Phosphate Buffered Saline
(PBS: Na,HPO,4 (40mM), Na,H,PO4 (10mM), NaCl (150mM) at pH 8.0) containing
protease inhibitors (Roche Diagnostics), using a glass-teflon homogenizer with 80um
clearance. Brain and liver membranes were prepared according to the methods
outlined in chapter 3 (section 3.2.1.1). Following the final centrifugation membranes
were resuspended in 5 volumes of PBS (containing protease inhibitors, Roche
Diagnostics). Tissue synaptosomes or synaptic membranes were prepared according
to the method in Figure 2.2.

Rat platelet homogenates or membranes were also used in this chapter. Rat
platelets were obtained from blood as described in Chapter 3 (section 3.2.1.3).
Platelet homogenates were obtained after the final PRP was centrifuged (30000g; 20
min, 4°C) prior to lyse. The resulting platelet pellet was resuspended in 0.5ml of
10mM Tris- HCI (pH 9.0 with; containing protease inhibitors, Roche Diagnostics)
per 9mls of blood collected. Platelet membranes were prepared as described in
chapter 3 (sections 3.2.1.3 and 3.2.2.5) and homogenised in 1ml of PBS (containing
protease inhibitors, Roche Diagnostics) per 9mls of blood following the final

centrifugation step. All tissue was stored at —20°C until required.

2.1.2 Storage of SERT Antibodies

Affinity purified antibodies were initially diluted in PBS to 1mg/ml, unless
otherwise stated. Following further dilution in PBS, antibodies were stored at
0.1mg/ml as 20-100ul aliquots at —20°C. The dilution of antibodies used in this thesis
relates to dilutions from the original 1mg/ml stock. Therefore a 1 in 1000 dilution
represents an antibody used at a concentration of 1pg/ml. Dilutions of all antibodies

for the techniques used in this chapter are summarised in Table 2.3.
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Homogenise tissue in 20 vols of 0.32 M ice-cold sucrose

:

Centrifuge (1000g for 10 minutes at 4°C )

‘

Decant supernatant into fresh tube and discard pellet

‘

Centrifuge supernatant (30000g for 20 minutes at 4°C)

SYNAPTOSOMAL PELLET
T

Resuspend pellet in 5 vols PBS
(Synaptosomes)

Resuspend pellet in 30 volumes d.H»0

v

Leave for 30 minutes on ice
Centrifuge (30000g for 10 minutes at 4°C)

Resuspend pellet in 30 vols ice cold 50mM Tris-HCI (pH 7.4)

v

Centrifuge (30000g for 10 minutes at 4°C)

v

Resuspend pellet in 30 vols ice cold 50mM Tris-HCI (pH 7.4)
Incubate for 15 minutes al37°C

Centrifuge (30000g for 10 minutes at 4°C)

;

SYNAPTOSOMAL MEMBRANE PELLET

Resuspend pellet in 5 vols of PBS
(Synaptic membranes)

Figure 2.2: Preparation of Synaptosomes and Synaptic Membranes.
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2.1.3 Denaturing Western Blots

2.1.3:1 Preparation of Samples

Tissue or brain homogenates were thawed on ice and protein assayed as
detailed in Chapter 3 (section 3.2.1.6). Following centrifugation (30000g; 20 min,
4°C), the resulting pellets were resuspended in 10% SDS to give a concentration of
10mg/ml protein. These were left for at least two hours at room temperature to allow
full denaturation, with intermittent vortexing to aid the process. Samples were then
diluted 1:1 with x2 Laemmli buffer so as to give a final concentration of 5mg/ml
protein. A 100ml stock of Laemmli buffer consisted of 10% SDS (20ml), 50%
glycerol (20ml), d.H,0 (35ml), 0.5M Tris-HCl (pH 6.8; 25ml) and 0.02g of
bromophenol blue to enable visualisation of the running of the samples. 250pul
mercaptoethanol per 5ml of Laemmli buffer was added to act as a reducing agent
prior to use. This solution was prepared fresh for each new set of samples, whereas
the Laemmli stock was used for periods up to 6 months. Prior to their use in SDS-
polyacryalmide gel electrophoresis (PAGE), all tissue samples diluted in reduced
Laemmli buffer were heated for 20 mins at 37°C, then centrifuged briefly
(approximately 2 mins) at 20g to remove any particulate debris. Molecular weight
standards (colour wide range markers; Sigma; C3437), stored as 20ul aliquots at —
20°C were also diluted 1:1 with x2 Laemmli buffer after thawing at room

temperature and then boiled (84°C) for 20 mins prior to their use.

2.1.3.2 Polyacrylamide Gel Electrophoresis (PAGE)

Resolving gels (7.5% containing 40% acrylamide (3.75ml), 2% bisacrylamide
(2ml), 3M Tris (pHS8.8, 2.5ml), 10% SDS (0.2ml), 1.5% ammonium persulfate (1ml),
d.H;0; (10.55ml) and TEMED (10ul) to initiate polymerisation) were poured
between fixed glass and aluminium plates (10x10cm) separated by 0.5mm spacers,
leaving a 3cm gap from the top, layered with 4001 saturated butan-1-ol and covered
until polymerised. Following polymerisation, the butan-1-ol was washed off several
times with d.H>0. Combs were inserted Smm from the resolving gel surface, and the
stacking gel poured (7.5% containing 40% acrylamide (0.9ml), 2% bisacrylamide
(0.45ml), 0.5M Tris (pH6.8, 2.5ml), 10% SDS (0.1ml), 1.5% ammonium persulfate
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(0.5ml), mQ d.H,0 (5.55ml) and TEMED (7.5ul)). After the stacking gel had set, the
combs were removed, the plates transferred onto a Hoefer electrophoresis unit and
the wells and electrodes immersed in running buffer (containing 25mM Tris, 192mM
glycine and 1% SDS). Samples were loaded (usually 10ul) and electrophoresed with
a non-limiting voltage at 30mA at room temperature until the dye front was <0.5cm
from the bottom of the plate (1-2 hours).

The stacking portion of the gel was cut away and the resolving portion of the
gel laid protein side up on PVDF membranes (Hybond™-P, Amersham; equilibrated
in 100% methanol for 30 seconds) and the dye fronts marked on the membrane.
Following immersion in running buffer (25mM Tris, 192mM glycine and 20%
methanol), the gel and PVDF membranes were surrounded by filter paper and air
bubbles gently rolled out. These membrane/gel ‘sandwiches’ were locked in cassettes
containing thick sponges and immersed in running buffer in a Hoefer wet transfer
system. The proteins were then transferred to the blotting paper overnight at 4°C

using a non-limiting current at approximately 17V.

2:1.3.3 Detection of SERT Immunoreactivity

The blots from PAGE were then processed for SERT immunoreactivity at
room temperature. They were washed briefly (2 x 30 seconds) in wash buffer (PBS
containing 0.1% Tween-20) before non-specific sites were blocked in 5% Blotto (or
3% BSA) and 0.1% Tween-20 in PBS for two hours. The primary anti-SERT
antibody to be investigated was diluted in antibody diluent (PBS containing 0.5%
Blotto (or 0.3% BSA) and 0.01% Tween-20; see Table 2.3) and incubated with
PVDF membranes for one hour. Following 3 x 10 min and 2 x 5 min washes of
PVDF membranes, the secondary antibody conjugated to HRP (horseradish
peroxidase) diluted in antibody diluent (see Table 2.3) was incubated with PVDF
membranes for 45 mins. Following 2 x 5 min and 7 x 3 min washes in wash buffer,
the blots were finally washed in PBS only (2 x 30 seconds). For a full size gel, wash
volumes generally were 20-30ml, and antibody incubation volumes were 10-15ml.
After each addition, blots were gently incubated on orbital shakers to allow even

antibody binding and thorough washing.
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Immunoreactivity was finally detected using the ECL plus™ (Amersham)
system before exposure on Hyperfilm™ (Amersham) according to the
manufacturer’s instructions. Films were immersed in developer (Ilford Multigrade,
U.K.; catalogue number 757855; diluted 10 fold with water) for 4 min, dipped in
water before two 4 min washes in fixative (Ilford Multigrade, U.K.; catalogue
number 758285; diluted 10 fold with water) and finally dipped in water containing
detergent (0.1%). Films were then rinsed under cold running tap water for 30 min,
dried in a cabinet at 30°C, covered and stored at room temperature prior to analysis.

As the rainbow molecular weight markers used do not transfer onto PVDF
membranes, the original blot, once dried was overlaid over the film and the position
of the molecular weight markers marked. R values for molecular weight markers and
protein samples were calculated according to their distance travelled with respect to
the distance travelled by the tracking dye. A standard curve of log;op molecular
weight against R¢ was produced for marker proteins, and molecular weights of the
unknown sample proteins were then calculated by interpolation from the curve

generated by computerised linear regression analysis.

2.14 Immunohistochemistry

Rats were anaesthesised with sodium pentobarbitone (60mg/kg; i.p.).
Following cessation of reflex responses, the heart was exposed and via a trans-cardial
perfusion route, sterile saline (0.9% w/v containing 2% w/v heparin) was delivered
for 1 min followed immediately by ice-cold fixative (4% paraformaldehyde, 0.05%
gluteraldehyde) for a further 9 mins at a flow rate of 20ml min™'. Brains were then
removed and post-fixed in the same fixative for 2 hours at 4°C, followed by
overnight with 20% sucrose at 4°C.

Brains sections (20um) were cut on a Bright cryostat in a similar fashion to
those used in autoradiographic studies (chapter 3 section 3.3.2 for general method) at
the level of the raphé nuclei, the septum and the medial geniculate. SERT
immunohistochemical detection was carried out on free-floating sections in 24-well
culture plates at room temperature (unless stated). For each well, 1-3 sections were
processed with wash volumes being 1ml, and antibody additions 0.5ml. After each

addition plates were gently incubated on orbital shakers to allow even and thorough
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washing. Sections were initially incubated for 30 mins in PBS in 0.3% H,O,
(containing 0.3% Triton X-100) to remove endogenous peroxidase activity.
Following washing in PBS (5 x 5 mins), non-specific binding sites were blocked for
2 hours with 20% normal goat serum (NGS) in PBS. After washing (3 x 1 min) in
PBS, the primary antibody was diluted in antibody diluent (PBS containing 2% NGS,
0.01% NaN; and 0.3% Triton X-100) and incubated overnight at 4°C according to
dilutions in Table 2.3. After 3 x 1 min and then 2 x 10 min washes in PBS, sections
were processed using VECTASTAIN ABC kits. Sections were incubated with the
biotinylated antibody required for 1 hour, followed by 5 washes (as before) and
incubation (1 hour) in the avidin-biotin-peroxidase complex according to the
manufacturers instructions. Following another set of 5 washes, the peroxidase
reaction was observed using DAB-H;0, (3,3’-diaminobenzine tetrahydrochloride-
hydrogen peroxide). Sections were rinsed in PBS, laid on microscope slides (subbed
as for autoradiographic experiments outlined in Chapter 3, section 3.3.1), dried
overnight, dehydrated by placing in increasing concentrations of ethanol (70-100%)

then xylene, and coverslips finally attached using styrolite mounting medium.

2.1.5 ELISAs

2:1.5:1 Plate ELISAs

A 96 well plate ELISA was used as the initial attempt to identify native
SERT protein. Maxisorb™ (Nunc) 96 well plates were used for these experiments.
The methodology is outlined in Figure 2.3. An indirect ELISA was used, whereby
the antigen (protein) was absorbed in the well, and the remaining sites blocked.
Subsequent incubation with specific antibodies, which bind to the antigen, was
followed by incubation with an enzyme-conjugated secondary antibody. Two
different enzyme-conjugated secondary antibodies were used. Alkaline phosphate
conjugated antibodies were detected using the pNpp substrate (SIGMA FAST™ p-
Nitrophenyl Phosphate), whose reaction was stopped after 30 mins with an equal
volume of 1mM EDTA. Horseradish peroxidase (HRP) conjugated antibodies were
also used, in keeping with the immunohistochemical and Western blot experiments.
The biotinylated method outlined in Figure 2.3, makes use of the high affinity of
avidin for biotinylated secondary antibodies to potentially increase signal size (avidin
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Absorb antigen (tissue) overnight at 4°C in PBS (100ul)
2 washes in PBS + 0.1% Tween 20 (350pl)
Block non-specific sites with PBS containing 3% BSA + 0.1% Tween 20 (300pl)
2 washes in PBS iO.l% Tween 20 (350pl1)

add primary antibody (100p!: diluted in PBS + 0.3% BSA + 0.01% Tween 20) and
incubate for 1 hour at 37°C

/ “biotinylated method”

5 washes in PBS + 0.1% Tween 20 350ul) —» | 444 biotinylated secondary

antibody (100pul: diluted in
PBS +0.3% BSA + 0.01%
Tween 20) and incubate for 1

“normal method” hour at 37°C

7 washes in PBS + 0.1%
Tween 20 (350ul)

i v
add secondary HRP or AKP conjugated antibody =
(100pl: diluted in PBS + 0.3% BSA Add Avidin HRP (100p1:
+0.01% Tween 20) and incubate diluted in PBS + 0.3% BSA
for 1 hour at 37°C +0.01% Tween 20) and

incubate for 1 hour at 37°C

ah

7 washes in PBS + 0.1% Tween 20 (350ul)

2 washes in PBS only (350ul)
add pNpp for AKP or ABTS peroxidase solution for HRP conjugates (100ul)
After 30 minutes stop reaction
Use 1% SDS for HRP conjugates and avidin
Use ImM EDTA for pNpp for AKP conjugates

Read O.D. at 405nr+n on Dynatech Platereader

Figure 2.3: ELISA (96 Well Plate) Methodology.

Washes were performed by inverting the plate and “flicking”, followed by pressing
on paper absorbent towels. HRP = horseradish peroxidase. AKP = alkaline
phosphatase. 0.D. = optical density
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binds noncovalently to 4 molecules of biotin with high affinity: Kp = 10 =15 M
Lillehoj, 1994). These HRP antibodies were detected using the ABTS peroxidase
substrate whose reaction was stopped after 30 mins with 1% SDS. Using a Dynatech
plate reader, samples were mixed by shaking for 20 seconds and absorbance

measured at an optical density of 405nm (ODygs).

2.1.5.2 Centrifugation ELISAs

To facilitate the use of larger amounts of protein compared to the 96 well
plate ELISAs, a centrifugation ELISA style protocol was adopted which incorporated
the steps of the 96 well plate assay. Initial experiments revealed that centrifuging
samples in eppendorf tubes at 17000g (max.) for 2 mins in a lab top centrifuge,
caused a 70% decrease in protein pelleted compared to the original sample.
Increasing the centrifugation time to 15 mins only caused a 1-5% decrease in protein
after each centrifugation. However to run centrifugation ELISAs as per the 96 well
plate ELISA methodology (centrifugation replacing conventional washes; Figure 2.3)
long experiments and more importantly a 13-51% and 19-66% loss in protein in the
normal and biotinylated methods respectively would result. Therefore an alternative
approach was attempted, to reduce the number of washes required as outlined in
Figure 2.4. Eppendorf non-specific binding sites were blocked and then tissue and
antibodies incubated in one step. In the biotinylated method, this involved the
formation of a primary antibody, secondary biotinylated antibody and avidin HRP
complex. These HRP antibodies were detected using the ABTS peroxidase substrate
whose reaction was stopped after 30 mins with 1% SDS. Samples were mixed and
transferred to a 96 well plate, shook for 20 seconds and absorbance measured at an

optical density of 405nm (ODyps) using a Dynatech plate reader.

2.1.6 Native Western Blotting

Native Western blotting followed a similar protocol to SDS-PAGE Western
blotting, except that the protein was extracted from samples using the non-ionic
detergent, Triton X-100. For native gel electrophoresis, protein was extracted in
20mM Tris-Glycine pH9.0 containing 2% Triton X-100 and a cocktail of protease
and phosphatase inhibitors. Protein was separated on a native polyacrylamide gel (3-
10% gradient) (running buffer: 100mM Tris-HCI-Glycine pH 9.0 containing 0.1%
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Block eppendorf tube non-specific binding
sites (1.8ml of PBS containing 3% BSA +0.1% Tween 20)

¥

Biotinylated Method

Incubate 100ul tissue (diluted in PBS

+ 0.3% BSA + 0.01% Tween 20) with
100ul of “antibody cocktail” (containing
primary antibody + biotinylated secondary
antibody + avidin HRP diluted in

PBS + 0.3% BSA + 0.01% Tween 20)

for 2 hours at 37°C

o

4

Normal Method

Incubate  100ul  tissue
(diluted in PBS + 0.3%
BSA + 0.01% Tween 20))
with  100ul of primary
antibody (diluted in PBS +
0.3% BSA + 0.01% Tween
20) for 2 hours at 37°C

v

Add 800pl of wash buffer (PBS + 0.1% Tween 20)
Centrifuge at 17000g for 15 min at 4°C

= ONE WASH

Discard supernatant, homogenise

pellet in 20pul, then add 180pl and top

up to 1ml with wash buffer TS
Repeat wash step three times

One extra wash in PBS only

Homogenise pellet in 20ul + 180l of
ABTS peroxidase solution

After 30 minutes add 200ul of
1% SDS to stoireaction

Centrifuge for 20 seconds at 20g
to remove any particle debris

Transfer 100 pl of supernatant
to 96 well plate

Read O.D. at 4t5nm

Normal Method

Homogenise pellet in 20
pl + 180pl of secondary
antibody (diluted in PBS +
03% BSA + 0.01%
Tween 20) and incubate
for 2 hours at 37°C

v

Normal Method

Wash three times in wash
buffer followed by one
extra wash in PBS only

Figure 2.4: Generalised Methodology for Centrifugation ELISAs.
HRP = horseradish peroxidase. O.D. = optical density.
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Triton X-100) and transferred to PVDF membranes (transfer buffer: 100mM Tris-
Glycine pH 9.0). These experiments were performed in collaboration with Dr. Jane

Matthews (Department of Neuroscience)

2.1.7 Immunoprecipitations

For immunoprecipitations, protein was extracted in 50mM Tris-HCI (pH 8.0;
containing 120mM NaCl, 1% Triton X-100 and a cocktail of protease and
phosphatase inhibitors). SERT was immunoprecipitated overnight at 4°C with one
primary antibody (mouse monoclonal), isolated following binding of antibody to
Protein A-Sepharose and denatured in RIPA buffer (containing 1% NP-40, 0.5%
sodium deoxycholate and 0.1% SDS in PBS).

Protein was separated by SDS-PAGE on a 7.5% resolving gel, transferred to
PVDF membranes and immunoblotted using another primary antibody (guinea pig
polyclonal) as outlined above in the denaturing Western blot methodology (section
2.1.3) and in Table 2.3. Typically 60ul of an initial 1 in 10 dilution of the mouse
monoclonal antibody was added to 300ul (1.5mg) of tissue and 30ul of 50% Protein
A-Sepharose. These experiments were conducted by Dr Jane Matthews and are

included in this thesis for the purpose of completion.

2.1.8 Materials

Sodium pentobarbitone was purchased from Rhone Mérieux (Harlow, Essex, UK).
24-well culture plates were obtained from Costar (Cambridge, MA, U.S.A.). ABTS
peroxidase solution was purchased from Kirkegaard & Perry Laboratories, Inc.
(Maryland, U.S.A.). Vectastain ABC peroxidase kits and DAB were purchased from
Vector Laboratories (Peterborough, U.K.). The alkaline phosphatase substrate pNpp
(p-nitrophenyl phosphate) was purchased from Sigma (Poole, Dorset, U.K.). All
secondary antibodies and normal serum were purchased from Chemicon
International (Harrow, U.K.). The 5-HT antibody was purchased from Incstar (now
Diasorin, Berkshire, U.K.). All other chemicals were obtained from regular

commercial sources, and all reagents used were of the highest analytical grade.
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2.2 Results

2.2.1 Denaturing Western Blots

The 1001 (4™ extracellular loop) affinity purified antibody recognises SERT,
with a molecular weight of 94kDa in platelets and 76kDa in brain homogenates, with
much lower intensity in cerebellum homogenates compared to cortex homogenates
(Figure 2.5a). No immunoreactivity was detected in liver homogenates (Figure 2.5a).
Preincubation of the 1001 antibody with the immunising peptide removed all
immunoreactivity, as did the absence of the primary antibody (Dr Jane Lawrence-
personal communication; Lawrence et al., 1995a; data not shown). Unpurified 1001
antibody, recognised multiple bands in all tissues, whether homogenates or
membranes, but did recognise SERT immunoreactivity at 94kDa and 76kDa in
platelet and cortical tissues respectively (Figure 2.5b). Immunoreactivity was also
apparent in cerebellum tissue but to a much lesser extent than in cortical and platelet
tissue (Figure 2.5b). The disappearance of non-specific banding confirms the affinity
purification method conducted by Dr Jane Lawrence.

The 998 affinity purified antibody, which was generated to a peptide
sequence from the carboxyl tail rather than in the 4™ extracellular loop (Table 2.2)
recognised the specific elements that the other in-house antibody recognised (1001)
with prominent platelet immunoreactivity at 94kDa and strong cortical and striatal
immunoreactivity at 76kDa with much less cerebellum immunoreactivity at this
migration size (Figure 2.5¢). This specific banding was removed on preincubation
with the antibody to the antigenic peptide (Dr Jane Lawrence-personal
communication; Lawrence et al, 1995a; data not shown). However this purified
antibody did, unlike 1001, display immunoreactivity to more than one species in all
tissues (Figure 2.5c) which was not removed by preincubation with the antigenic
peptide (Dr Jane Lawrence-personal communication; data not shown).

The Chemicon rabbit antibody raised to the same sequence as 1001
recognised multiple immunoreactive bands in all tissues, that did not include SERT
at 94kDa in platelets or 76kDa in cortical membranes (Figure 2.5d). Furthermore this
immunoreactivity was not abolished on preincubation of the antibody with the

antigenic peptide (data not shown). Of the other antibodies tested, both the Chemicon
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Figure 2.5: SDS Western Blots Using 1001,
998 and Chemicon Rabbit Antibodies.

Data are representative gels processed for SERT
immunoreactivity using (a) purified 1001 antibody
(1 in 200); (b) unpurified 1001 antibody (1 in 200);
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(c) purified 998 (1 in 200); (d) chemicon rabbit (1 in 200). Dilutions are as detailed
in brackets. The corresponding secondary antibody dilutions are in Table 2.3. The
molecular weight is to the left of the gel (in kDa) according to the standards used.
50ug protein loaded in each lane. All lanes are for homogenate tissue, unless stated

otherwise. Mems = membranes.
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Figure 2.6: SDS Western Blots Using Guinea Pig, Incstar and

Monoclonal Antibodies.

Data are representative gels processed for SERT immunoreactivity using (a) guinea pig (1 in
2000); (b) Incstar (1 in 500); (¢) & (d) monoclonal (1 in 750) antibodies. Dilutions are as
detailed in brackets. The corresponding secondary antibody dilutions are in Table 2.3. The
molecular weight is to the left of the gel (in kDa) according to the standards used. 50pug
protein loaded in each lane. All lanes are for homogenate tissue, unless stated otherwise. Syn

Mems = synaptic membranes. Syn = synaptosomes.
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guinea pig and Incstar rabbit antibodies recognised multiple immunoreactivity with
prominent bands at 94kDa in platelets and 76kDa in cortical tissue with limited or no
immunoreactivity at these molecular weights in cerebellum or liver homogenates
(Figure 2.6a & b). In contrast the mouse monoclonal antibody, recognised one
immunoreactive band in brain tissue at 76kDa, and prominent immunoreactivity at
94kDa in platelets (Figure 2.6c) with no difference in the intensity of
immunoreactivity between synaptosomes and synaptosomal membranes (Figure
2.6d). For all of the antibodies tested (excluding the Chemicon rabbit polyclonal),
those that recognised immunoreactive bands at 94kDa in platelets, also showed some
weaker immunoreactivity between 40 and 76kDa (Figures 2.5 & 2.6) and bands at
76kDa in brain tissue. Furthermore the rank order of intensity of antibody labelling
(1001, 998, Chemicon guinea pig, Incstar and mouse monoclonal) at these calculated
molecular weights for these tissues was platelets >> cortex >> cerebellum >/= liver
(Figures 2.5 & 2.6). The antigenic peptides for all commercial antibodies were not
available and therefore prevented experiments whereby the specificity of labelling
was determined in the presence of antibody absorbed by competing peptide.
However exclusion of primary antibody from the detection process (section 2.1.3.3)
revealed no immunoreactivity (data not shown). All of the figures are representative

examples of experiments that had been repeated at least twice.

222 Immunohistochemistry

All of the antibodies tested, 1001, 998, Incstar and mouse monoclonal at the
dilutions specified in Table 2.3, labelled the cell bodies in the dorsal raphé nucleus
(Figure 2.7). Furthermore all SERT immunoreactivity overlapped 5-HT
immunoreactivity (Figure 2.7). In the terminal fields of the hippocampus and the
striatum, good specific staining was obtained with the 998 antibody and also the
mouse monoclonal, whereas poor staining was obtained for the 1001 antibody and
more 8o for the Incstar antibody (Figure 2.8). Absence of the primary antibody in
each case revealed negligible staining (data not shown). Previous studies have
demonstrated that the 998 antibody staining is specific, whereby 5,7-DHT lesions

significantly depleted the immunoreactivity observed (Dr Jane Lawrence,

95



(© (d)

N ik e

Figure 2.7: Immunohistochemical Localisation o RT Preiﬁ In
Raphé Complex.

Data are representative immunohistological rat brain sections processed for SERT
immunoreactivity using different antibodies as outlined in Table 2.3. Images
represent; 998 antibody in (a) & (b); 1001 antibody in (c); Incstar antibody in (d);
mouse monoclonal antibody in (e); 5-HT antibody in (f). All images are displayed at
a magnification of x100 except (a), which is at x16.
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Figure 2.8: Immunohistochemical Localisation of SERT Protein In

5-HT Nerve Terminal Containing Projection Areas.

Data are representative immunohistological rat brain sections processed for SERT
immunoreactivity using different antibodies as outlined in Table 2.3 in the
hippocampus (a) & (c) and in the striatum (b) & (d). Images represent; 1001 antibody
in (a); Incstar antibody in (b); mouse monoclonal in (c); 998 antibody in (d). All
images are displayed at a magnification of x200.

(e) and (f) below are figures courtesy of Dr Jane Lawrence showing examples of
reduced SERT density as observed on a anatomical level following 5,7- DHT
lesions. Immunoreactivity is visualized with 998 antibody (1:1000 dilution). Areas
shown are approximately 0.9-1mm lateral with respect to bregma. Most profound
reductions are seen in cortical areas (A,B) and the anterior commisurial nucleus (C).
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unpublished findings, Figure 2.8¢ & f). All of the figures are representative examples

of experiments that had been repeated at least twice.

223 ELISAs (96 well plate)

The 96 well plate ELISA was initially established with the unpurified 1001
antibody, in order to conserve affinity purified material on the basis of expense and
time to purify the antibody. Initial titre of the antibody against cortical synaptosomes
at 400ng (near to the binding capacity of the plate, 400-800ng of protein) gave a
working dilution of 1 in 100 (Figure 2.9a), and showed a rank order of reactivity of
liver> cerebellum> cortex> platelets (Figure 2.9b). No differences were observed
between synaptosomes or membranes (Figure 2.9b). There was no difference in the
rank order of reactivity using either alkaline phosphatase or horseradish peroxidase
conjugated antibodies (data not shown). The tissue showed no endogenous alkaline
phosphatase or peroxidase activity in experiments with only tissue and no antibodies
(data not shown). Use of purified antibodies at dilution of up to | in 50, gave no
signal (data not shown). In an attempt to increase the signal, biotinylated secondary
antibodies were used in conjunction with the unpurified 1001 antibody and found to
increase the response, as shown by the shift to the left in Figure 2.9c. However, the
biotinylated method still did not give a signal when using the affinity purified
antibodies (998, 1001 and all commerical antibodies) at up to dilutions of 1 in 50.
Carrying out incubations at 4°C instead of room temperature, to prevent any potential
capping or internalisation of the transporter protein, did not solve the signal problem.
Replacing PBS with 50mM Tris-HCI (pH 7.4; containing NaCl (120mM), and KCl
5mM) the assay buffer used for used in SERT radioligand binding assays (Chapter

4), similarly made no difference.

224 Centrifugation ELISAs

To increase the amount of protein that could be assayed, which would be
more comparable to Western blots (50pug) where immunoreactivity is detected with
the purified antibodies, a centrifugation ELISA was attempted. This was only tested
using the mouse monoclonal antibody to save on wastage of the in-house purified
antibody in developing the assay. Similar “specific” signals for both cortical and
liver membranes were obtained using the biotinylated approach to increase the
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Figure 2.9: ELISAs (96 Well Plate) Using Unpurified 1001 Antibody.

Data represent: (a) titre of 1001 unpurified antibody against 400ng per well cortical
synaptosomes; (b) 1 in 100 dilution of 1001 unpurified antibody against increasing
protein; (¢) comparison of biotinylated method against normal method using 1 in 100
dilution of 1001 unpurified antibody in cortical membranes. In each case the
secondary antibody (anti-rabbit IgG conjugated to HRP) was diluted 1 in 1000. For
the biotinylated method in (c), the biotinylated anti-rabbit secondary antibody
(1.5mg/ml stock; Vector) was diluted 1 in 1500, whereas avidin HRP (5mg/ml stock;
Vector) was diluted 1 in 2500. Each point represents the mean of duplicate points
with each experiment repeated at least three times. The background (no tissue or
antibodies) is shown in each case. OD = optical density measured at 405nm.
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Figure 2.10: Centrifugation ELISA using Monoclonal Antibody.

Data represent: (a) membranes in the presence of Avidin HRP (1 in 2500 dilution of
5Smg/ml stock; Vector) + biotinylated secondary antibody (1 in 250 of 2.5mg/ml
stock) = 1 in 100 dilution of mouse monoclonal antibody; (b) cortical synaptic
membranes (200pg) in the presence of Avidin HRP only (1 in 2500 dilution of
Smg/ml stock; Vector); (c) non-biotinylated approach using 1 in 1000 anti-mouse
IgG secondary antibody conjugated to HRP =+ 1 in 100 dilution of mouse monoclonal
antibody and increasing concentrations of membranes. Each point represents the
mean of duplicate points with each experiment repeated atleast three times. The
background (no tissue or antibodies) is shown in (b) and is no different to any
permutation of antibodies with no tissue. OD = optical density measured at 405nm.
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sensitivity of the assay (Figure 2.10a). However this signal was also detected in the
absence of the antibody and also in the presence of avidin HRP alone, but not in the
absence of tissue (Figure 2.10a). This suggested that centrifugation resulted in avidin
HRP becoming incorporated into the pellet. Adding two more washes decreased this
non-specific signal only slightly (probably due to loss of protein; data not shown). In
the presence of avidin HRP alone and increasing concentrations of protein in the
tube, there was an increase in signal (Figure 2.10b), irrespective of any tissue used
(data not shown). This confirmed that avidin HRP was centrifuged down with the
protein. Using the non-biotinylated method (as used originally in the 96 well plate
ELISA), an identical story was apparent. A similar signal was obtained in cortical
and liver membranes, which remained in the absence of primary antibody and

gradually decreased with decreasing protein (Figure 2.10¢).

2.2.5 Native Western Blots

Extraction of native SERT using the non-ionising detergent, Triton X-100,
followed by electrophoresis on a non-denaturing gel (Triton X-100 replacing SDS),
allowed the migration of native protein from the wells into the gel. Larger banding
was observed, probably due to the appreciable sample volume (10-20ul) loaded onto
a gel lacking the focussing capabilities of a stacking gel. Specific immunoreactivity
was observed in both platelet homogenates (94kDa determined from Ferguson plots;
data not shown) and cortex membranes with no immunodetection in liver membranes
using the Chemicon guinea pig antibody (Figure 2.11). The mouse monoclonal
antibody has also been tested with a similar immunoreactive profile (data not shown;

Dr Jane Matthews).

2.2.6 Immunoprecipitation of Native SERT

Native protein extracts were immunoprecipitated with the mouse monoclonal
antibody and then denatured. Following SDS-PAGE, immunodetection with the
guinea pig polyclonal antibody, revealed a prominent platelet homogenate band
(94 kDa) and a weaker band (76 kDa) in cortex (Figure 2.12a). However no such
immunoreactive band was present in cerebellum membranes (Figure 2.12a). Species
cross-reactivity of the secondary antibody in the immunodetection was also apparent,
since both heavy and light chains of the immunoprecipitating monoclonal antibody
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Figure 2.11: Native Western Blotting of SERT.

Native protein was triton extracted from platelet homogenates, cortex and liver
membranes. Following separation of protein by native gel electrophoresis and
transfer to PVDF membrane, SERT was immunodetected using Chemicon guinea pig
antibody (1 in 2000 dilution). These results are representative of four separate

experiments.
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Figure 2.12: Immunoprecipitation of Native SERT.

Data represent typical (a) immunoprecipitation of native SERT and (b)
immunoprecipitation of native SERT in the presence and absence of the
endoglycosidase PNGase F. In (a) native protein was triton extracted from cortex and
cerebellum membranes and platelet homogenates. SERT was immunodetected using
Chemicon guinea-pig polyclonal SERT antibody (1 in 2000 dilution)following
immunoprecipitation with Chemicon monoclonal SERT antibody (1 in 750 dilution),
separation on SDS-PAGE and transfer to PVDF membrane. In (b) native protein was
triton extracted from cortex synaptosomes and platelet homogenates and =+
deglycosylated. SERT was immunodetected as in (a). These experiments are
representative of atleast 3 independent experiments in each case. IP antibody =
immunoprecipitation antibody.
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were detected in all samples (Figure 2.12a), including in the absence of protein (data
not shown). Using this method SERT has also been detected in cortical
synaptosomes (76 kDa), albeit with low abundance, which clearly migrates further
on deglycosylation with PNGase F (Figure 2.12b; compare lane 4 to lane 3). SERT
from platelets also migrate to the same position (54kDa) following treatment with
endoglycosidase PNGase F, which in the case of the cortical synaptosomes is masked

by the presence of the heavy IgG chains (Figure 2.12b).

2.3 Discussion

The aim of this chapter was to firstly characterise the library of site-directed
SERT antibodies (Table 2.2) as to their use in Western blot and
immunohistochemical studies. The purpose of such antibodies was to qualitatively
assess the effect of chronic antidepressant treatment on the abundance of SERT. It is
important to use an antibody, which specifically recognises SERT in the raphé nuclei
in the brain, a brain area that is too small for the conventional membrane binding
studies used in Chapter 6. Due to the existence of 5-HT receptors on non-
serotoninergic nerve terminals (Maura & Raiteri, 1986; Molderings et al., 1987,
Bolanos & Fillion, 1989; Cassel et al., 1995), SERT directed antibodies may provide
a useful tool for the isolation of pure serotoninergic terminals (Lawrence et al.,
1995a &b). The use of such an antibody that can recognise the native form of SERT
is a prerequisite for immunomagnetically isolating functionally viable 5-HT nerve
terminals to allow subsequent electrophysiological analysis. The second aim of this
chapter was to use ELISA techniques in an attempt to identify a site-directed SERT
antibody that was capable of recognising SERT in its native form. The development
of such an ELISA assay would also enable the quantification of SERT abundance
after chronic antidepressant treatments to complement membrane binding
experiments and to possibly replace them with a non-radioactive method.

SDS denaturing Western blots, for all the antibodies tested (except the
chemicon rabbit polyclonal antibody) revealed prominent immunoreactivity at 94
kDa in platelets and 76 kDa in brain tissue (Figures 2.5 & 2.6). This is consistent
with SERT recognition in previous studies using site-directed SERT antibodies (Qian

et al., 1995; Sur et al., 1996; Zhou et al., 1996). Despite the identical primary amino
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acid sequence of human brain and platelet SERT (Lesch er al., 1993b &c) and the
presence of a single SERT genomic locus (Ramamoorthy ez al., 1993) there is an
obvious difference in the size of these brain and peripheral SERTs. Previous
experiments have revealed that this difference in size, reflected in a reduced
electrophoretic mobility, is due to differential N-linked glycosylation caused by post-
translational modifications (Qian ez al., 1995). This glycosylation is required for the
optimal stability of SERT but not for 5-HT transport or ligand binding per se (Tate &
Blakely, 1994). In addition to the 94 kDa immunoreactive band in platelets there was
also other banding for all antibodies between 76 and 40 kDa in this tissue (Figures
2.5 & 2.6). Though this extra banding could represent non-specific binding, it may
also represent the differential extent of platelet SERT glycosylation, caused by their
susceptibility to degradation during preparation, where full deglycosylated SERT
migrates to approximately 54 kDa (Qian et al., 1995). The rank order of the intensity
of immunoreactive bands was: platelets >> cortex >> cerebellum >/= liver (Figures
2.5 & 2.6). This is consistent with the known distribution of SERT (Plenge &
Mellerup, 1991; Qian er al., 1995) and agrees well with [*H]citalopram binding
studies in chapter 4. Though the detection of cerebellum immunoreactivity is always
less than corresponding cortical tissue, there are discrepancies in the amount detected
in cerebellum. The cerebellum receives only a sparse serotoninergic innervation
(Steinbusch, 1984; Takeuchi, 1988), and therefore it likely that the detection of
SERT in this brain region is due to the contamination of midbrain at the dissection
level. Despite this, liver membranes served as a consistent negative control as in
previous reports (Qian er al, 1995). The most specific antibodies tested, as
determined by the presence of only one brain immunoreactive species, were the
mouse monoclonal and 1001 antibodies. The specificity of the latter had previously
been confirmed by the disappearance of immunoreactivity following absorption of
the antibody with the antigenic peptide prior to immunoblotting (Lawrence et al.,
1995a). Corresponding work with the antigenic peptide used for the generation of the
mouse monoclonal antibody were not performed, due to the lack of commercially
available peptide. The commercial rabbit polyclonal antibody raised to the same

sequence as the 1001 antibody did not reveal specific immunodetection. The
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possibility of batch variations was not addressed as other antibodies served the role
required.

The immunohistochemical localisation of SERT was assessed in rat brain
using those antibodies that recognised the appropriate SERT immunoreactive bands
in platelets and brain tissue in denaturing Western blots. All antibodies tested (1001,
998, Chemicon mouse monoclonal and Incstar) revealed specific staining of cell
bodies in the raphé nuclei (Figure 2.7a-e). This was virtually identical to the pattern
of 5-HT specific staining (Figure 2.7f), suggesting that SERT had been specifically
detected on 5-HT containing neurons. This is comparable to previous reports for
other SERT site directed antibodies (Qian et al., 1995; Sur et al., 1995) in a manner
virtually identical to that observed for rSERT gene expression (Blakely ez al., 1991;
Fujita et al., 1993). Though all these antibodies revealed appropriate SERT staining
in the raphé nuclei, there was a mixed quality of staining in the projectional areas. In
the hippocampus and striatum, only the mouse monoclonal and 998 antibodies
revealed good staining of dendrites and terminal bulbs (Figure 2.8). Overall,
immunohistochemical studies demonstrated a high correspondence in the cellular and
axonal distribution of SERT and 5-HT immunoreactivity, with high levels in the
raph€é and hippocampus (Figures 2.7 & 2.8). Negligible levels of SERT
immunoreactivity were detected in the cerebellum for all antibodies (data not shown)
consistent with the sparse S-HT innervation of this structure in the rat brain
(Steinbusch, 1984; Takeuchi, 1988). The specificity of the 998 antibody has been
demonstrated previously firstly using absorption of the antibody with the antigenic
peptide prior to immunodetection and secondly with diminished immunoreactivity
following 5, 7 DHT lesioning of the serotoninergic system (Dr Jane Lawrence,
unpublished findings; Figures 2.8¢ & f).

5-HT reuptake activity has been reported in glial cells in particular those
derived from primary cultures of cortical astrocytes (Dave & Kimelberg et al., 1994;
Bal et al., 1997). Although SERT mRNA has been detected in these cultures, there
has yet to be any reports of SERT mRNA by in situ hybridisation or SERT protein
by immunohistochemical techniques in vivo (Qian et al., 1995; Sur et al.,, 1996;
Hansson et al., 1998). In this chapter there was no evidence of glial staining.

Furthermore previous studies in this laboratory have demonstrated a non-overlapping
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of SERT immunoreactivity (998 antibody) and immunoreactivity of the glial marker
GFAP (glial fibrillary acidic protein; Dr. Jane Lawrence-personal communication).

I identified the antibodies that could be used for Western blotting and
immunohistochemistry studies, but these techniques are for denatured/fixed tissue.
The second part of the work was designed to identify whether these antibodies could
recognise the native form of SERT. This was an important first step leading up to the
immunomagnetic separation of serotoninergic nerve terminals. The detection and
quantification of native protein was initially attempted using ELISA techniques. The
methodologies for a 96 well plate ELISA assay was developed using the unpurified
1001 antibody (Figure 2.9a). This method revealed a specific signal in cortical
membranes and synaptosomes but also revealed a larger signal in cerebellum and
liver membranes (Figure 2.9b). These latter tissues, however, display low or no
SERT immunoreactivity (Qian ez al., 1995). Their detection was also apparent in
denaturing Western blots using the same unpurified antibody (Figure 2.5) suggesting
the non-specific binding of the unpurified antibody. This was confirmed using the
corresponding purified antibody which gave no signal in any tissue and only
displayed single species immunoreactivity in known 5-HT containing tissue (Figure
2.5). This lack of ELISA signal was also apparent for all the other affinity-purified
antibodies tested, irrespective of the detection method employed. The use of the
biotin/avidin system increased sensitivity (Figure 2.9c), but still failed to detect any
signal using the affinity-purified antibodies.

The explanation may be that there were insufficient quantities of SERT
present that would allow detection. 96 well plates by virtue of their size generally
have a binding capacity of 400ng of protein. Maxisorb plates used in this chapter are
considered to have a slightly higher binding capacity of up to 800ng). In chapter 4,
radioligand binding assays for SERT reveal a binding site density of approximately
1700 fmoles mg"' protein in cortical membranes. This is equivalent to 1.7 x 10
moles ng ' of protein. In ELISA assays, using 100ng (up to 1000ng ) of membrane
protein (where no signal was detected) there would be 1.7 x 10'° moles of SERT
present. Using Avogadro’s rule (one mole, molecular weight or gram of any
substance is equivalent to 6 x 107 molecules), the number of molecules of SERT

present would be 1 x 10°. In indirect ELISAs, where the antigenic peptide is
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recognised by the produced affinity purified antibody (1001; as performed by Dr
Jane Lawrence; data not shown) rather than membranes, 100ng of protein produces a
specific signal. The antigenic peptide is 15 amino acids long and is conjugated to an
extra cysteine residue to allow coupling to KLH, with a molecular weight of
approximately 2000 (EMRNEDVSEVAKDA-C). The number of moles in 100ng of
this peptide would be 5 x 10!, which corresponds to 3 x 10" molecules. Therefore
there are 3 x 10° fold more molecules of peptide compared to SERT protein in
membrane fractions in each well. This would mean that only 333fg (3.33 x 10™ ng)
of the peptide sequence within the 100ng of membranes would be recognised by the
1001 antibody. This is approximately 300 times below the lower limit of detection of
the ELISA assay of the antigenic peptide (0.Ing; Dr Jane Lawrence-personal
communication). Even increasing protein concentration to the maximum capacity of
the plate (~800ng), the amount of SERT present would still be below the detection
limit. This would explain why no signal was obtained even when using the avidin/
biotin system in conjunction with the purified antibodies.

In order to increase the sensitivity of the ELISA assay, the amount of protein
was increased to an upper limit of 200pg by the use of a centrifugation ELISA. This
would theoretically allow the detection of SERT using an ELISA approach, as now
approximately 0.67ng of peptide sequence protein would be available for detection.
Furthermore 50ug of total protein has already been shown to elicit a signal in
denaturing Western blots. This assay employed the use of eppendorf tubes for
antibody-antigen binding. The principle of such an assay was to separate the bound
from free antibody via centrifugation wash steps. A similar signal was obtained from
different tissue sources at 200ug of protein (Figure 2.10). Any specific signal could
not be detected due to the incorporation of the secondary antibody or avidin HRP
into the pellet after centrifugation (Figure 2.10), which could not be removed with
repeated washes. Therefore the detection and quantification of native SERT in
ELISA assays was unsuccessful.

Cell based ELISA assays may have alleviated this problem. Cells transfected
with the SERT gene (if available) could have been centrifuged down at only 800g,

which may have prevented incorporation of the secondary antibodies into the pellet.
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Furthermore over expression of SERT in these cells could have enabled their use in a
conventional 96 well plate ELISA assays.

It was therefore not possible to investigate whether the antibodies that
recognised SERT in its denatured form also recognised it in its native form using
ELISA techniques. Native Western blots and immunoprecipitations were
subsequently used to attempt to immunodetect native SERT, although these methods
are purely qualitative in our laboratory. Following protein extraction and gradient
PAGE under non-denaturing conditions, a distinct immunoreactive band was
detected in platelet and cortex but not liver membrane extracts using the Chemicon
guinea pig and mouse monoclonal antibodies (Figure 2.11). This was expected since
platelets and cortex, but not liver, express SERT at the plasma membrane (Qian et
al., 1995). Subsequently, Ferguson plots were constructed to determine the
corresponding molecular weight for the distinct band from platelets, which was
found to be consistent with immunodetection of SERT (94 kDa in platelets).

In addition the method for immunoprecipitation of native SERT with
subsequent immunodetection following denaturation and SDS-PAGE was defined.
The mouse monoclonal antibody was used for immunoprecipitation and the
Chemicon guinea pig polyclonal antibody used for immunodetection. These
antibodies were selected not only on their specificity in SDS and native PAGE, but
because they were also raised against different epitopes of SERT and therefore
would not compete for the same binding domain. Distinct bands corresponding to
SERT were obtained from extracts of cortex membranes/synaptosomes and platelet
homogenates (76 kDa and 94 kDa respectively; Figure 2.12). Pre-treatment with the
endoglycosidase, PNGase F, increased the mobility on SDS-PAGE of SERT
immunoprecipitated from cortex and platelet extracts. Subsequent immunodetection
indicated SERT from both sources had migrated equally, consistent with
deglycosylated SERT at a molecular weight of 54 kDa (Figure 2.12b).

Native PAGE has shown that both the guinea pig and monoclonal antibodies
recognise SERT in its native form, the latter being confirmed in the
immunoprecipitation experiments described above. Therefore it is possible that the
two antibodies (Chemicon mouse monoclonal and guinea pig polyclonal) will be

suitable for the first attempts of immunomagnetically isolating pure 5-HT nerve
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terminals. The in-house antibodies have yet to be tested for their ability to recognise
native SERT. However in the longer term the stocks of the in-house antibodies are
limited, and it is more likely that the commercial monoclonal antibody will be used
instead. The main advantage of this already affinity purified antibody is that it is
from a stable cell line, which will require only limited analysis each time a new stock
is ordered.

The immunomagnetic separation method involves the binding of the primary
antibody to the native SERT protein in non-denatured/fixed tissue as a first step
followed by incubation with a secondary magnetic antibody. The first step in the
binding of primary antibody is identical to in the successful immunoprecipitation
experiments. SERT containing nerve terminals may then be separated in theory by
means of a magnetic column, whereby the negative elute contains non-serotoninergic
nerve terminals. Removal of the magnetic and washing of the column should then
reveal the pure serotoninergic population, though it is appreciated that this final
process may have to be repeated many times to increase the purity. To assess the
purity of the immunomagnetically separated nerve terminals, an appropriate
detection system must be sought. Unfortunately immunoprecipitation experiments
have only ready shown some degree of species cross reactivity when one antibody is
used for SERT extraction and the other for detection (Figure 2.12). These antibodies
however, do not inhibit [3H]citalopram binding (a selective marker for SERT;
method in Chapter 3), at the concentrations that would be used for immunomagnetic
separation (data not shown). Therefore it is possible that the purity and yield of
separation may be monitored with quantitative radioligand binding studies.
[*H]citalopram binding would be expected to be present in the positive elute
(retained by magnet) and not in the negative elute, whereas [3H]nisoxetine (a
selective marker for noradrenergic terminals but not 5-HT terminals) binding would
be expected to be in the negative but not positive elute. The ratio of
[3H]citalopram:[3H]nisoxetine binding would therefore give a good estimate of

purity.
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2.4 Summary

Western blot analysis revealed two site-directed antibodies, that specifically
recognised denatured SERT; in-house 1001 and mouse monoclonal antibodies. These
antibodies are used in the following chapters to investigate the effect of chronic
antidepressant treatments on SERT abundance in the rat brain and also in platelets.

Immunohistochemical analysis demonstrated two site-directed antibodies that
specifically recognised SERT in the cell bodies of the raphé nuclei and also in the
dendrites and terminals, namely the in-house 998 and the mouse monoclonal
antibody. These antibodies are used in the following chapters to determine the effect
of chronic antidepressant treatments on SERT abundance specifically in the raphé
nuclei, which is too small for conventional membrane binding studies.

Attempts to recognise the native form of SERT proved unsuccessful with
ELISA techniques, due to the insufficient amount of protein that could be assayed in
96 well plates and also due to the inability of centrifugation methods to separate
unbound and bound secondary antibodies.

Native Western blotting with the mouse monoclonal and guinea pig
antibodies recognised one immunoreactive species consistent with SERT. This native
detection was also confirmed using immunoprecipitation techniques. The mouse
monoclonal antibody was firstly used for immunoprecipitation, followed
immunodetection after SDS-PAGE by the guinea pig antibody, recognising a
different epitope. These antibodies will provide a useful tool in immunomagnetically

isolating pure serotoninergic nerve terminals.
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CHAPTER 3

METHODOLOGY FOR RADIOLIGAND BINDING ASSAYS
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Studies described within this thesis used two types of radioligand binding
assays. For the purpose of receptor/transporter affinity and density determinations,
membrane radioligand binding assays were used. For the purpose of determining the
localisation and density of a variety of these receptors/transporters, radioligand
autoradiography was used. These two methods are described in detail below, as is the

statistical analysis of the generated results used throughout this thesis.

3.1 Animals

Unless otherwise stated, animals used in these studies were male Wistar Cobb
rats (200-300g; bred in-house; Department of Neuroscience, University of
Edinburgh). Animals were given free access to [ood and water and maintained on a

12hr light/12hr dark cycle.

3.2 In Vitro Membrane Receptor Binding Assays
3.2.1 Preparation of Membranes for Receptor Binding
322410 Brain Membrane Preparations

Rats were stunned and killed by decapitation. Brains were removed and
immediately placed into ice-cold saline prior to dissection. Brains were dissected to
reveal specific brain areas; whole cortex, frontal cortex, caudal cortex, hippocampus,
and/or striatum. Tissue was rolled on filter paper to remove excess blood vessels,
specific brain regions were pooled, weighed and homogenised (800 rpm) in 10 vols.
of ice-cold SOmM Tris-HCI (pH 7.4) using a glass-teflon homogenizer with 80um
clearance. Homogenates were further diluted to 50 vols. with ice-cold 50mM Tris-
HCI, then centrifuged at 30000g for 10 min at 4°C. The resulting membrane pellet
was resuspended (50mM Tris-HCI) and centrifuged (30000g; 10min, 4°C). The pellet
was resuspended as before and incubated for 15 min at 37°C to facilitate dissociation
of endogenous 5-HT, then centrifuged (30000g; 10min, 4°C). The final pellet was
resuspended in 25 vols. ice-cold S0mM Tris-HCI (pH 7.4) and aliquoted if necessary
before freezing at —20°C. Tissues were kept frozen for no longer than 4 weeks before

binding assays were carried out.
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3.2.1.2 Adrenal Gland Membrane Preparations

Rats were stunned and killed by decapitation. Whole adrenal glands were
removed and immediately placed in ice-cold saline prior to dissection. Adrenal
glands (Figure 3.1) were essentially decapsulated, by removing the capsular
(including five cell thick zona glomerulosa layer) region to reveal the medullary
portion (including regions of the inner cortex, particularly the zona reticularis).
Tissue from several adrenals were pooled as required. Adrenal capsules and/or
adrenal medulla tissue was homogenised in 10vols. ice-cold 50mM Tris HCI (pH
7.4) by 2x10 second bursts using a polytron homogeniser (setting 5) on ice.
Homogenates were further diluted to 50 vols. with ice-cold 50mM Tris HCI (pH 7.4),
and the preparation of adrenal capsule and/or medulla membranes carried out as

described above for the brain membrane preparation.

3.2.1.3 Platelet Membrane Preparations

An adaptation of the method by Gordon & Olverman (1978) was used to
obtain platelet rich plasma (PRP). Rats were anaesthetised with 4% halothane in
oxygen and nitrous oxide (30:70 v:v). Blood was taken by puncture of the vena cava
and the animals subsequently sacrificed, by cutting of the diaphragm and cervical
dislocation of the neck. 9 parts of blood was transferred into a tube containing 1 part
3.1% Tri sodium citrate to act as anti-coagulant. After gentle mixing, the samples
were centrifuged for 2 minutes at 800g at room temperature. The upper layer (PRP)
was collected carefully at the interface using a 1ml syringe and the lower layer
centrifuged as before. PRP was once again collected and the lower layer centrifuged
as before. PRP was pooled after the final collection, and the final lower layer,
containing the red blood cells, discarded. Typically between 7 and 9ml of blood was
obtained from each rat, resulting in 4-5ml of PRP. The PRP was then centrifuged at
30000g for 20 min at 4°C. The resulting platelet pellet was resuspended in 300-500u1
d.H0. Each pellet was allowed to sit on ice for 1 hour to lyse the platelets, and then
frozen overnight at —20°C to make sure of full lysis. The following day, platelets
were allowed to thaw on ice, further diluted to 10mls with ice-cold 50mM Tris HCI
(pH 7.4) and incubated for 30 min at 37°C. Platelet membranes were prepared as

described above for brain membranes, except that the incubation period at 37°C was
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extended to 30 minutes. At each step the platelet membranes derived from one rat,
were homogenised in Sml of ice-cold 50mM Tris HCI (pH 7.4) and further diluted to
[Oml. After the final centrifugation, the resultant pellets were homogenised and
stored at —20°C in 1ml of ice-cold SOmM Tris HCI (pH 7.4) per 7-9mls of rat blood

initially used.

3.2.14 Membrane Preparations After Drug Treatments

The methodology for membrane preparations after in vivo drug treatments
was essentially the same as described above. However, tissue derived from drug
treatment studies were not pooled. Instead dissected specific brain or adrenal areas
from each rat were individually treated. Brain tissue was weighed and homogenised
(800 rpm) in the centrifuge tube using a loose fitting teflon pestle with 80um
clearance. Adrenal tissue was weighed and homogenised in the centrifuge tube using
a polytron homogeniser as described above. Following the initial centrifugation step,
further homogenisations of all tissue were performed in the centrifuge tube using the
appropriate loose fitting teflon pestle. Table 3.1a shows the typical conditions used
for preparing individual brain area (frontal cortex, caudal cortex, hippocampus or
striatum) and adrenal medulla membranes. The speed and ease of handling multiple
tissue samples was maintained by using constant homogenisation and centrifugation
volumes for each specific tissue area group that were appropriate to the typical
weight of the tissue. Homogenisation volumes were adjusted to between 10 and 25
vols. Centrifugation volumes were adjusted to between 25 and 50 vols. The final
pellets were resuspended in between 10 and 30 vols. A varying number of small
aliquots were stored at —20°C to maximise the number of binding assays that could
be performed on one brain region without damaging the tissue through multiple

freeze-thaw cycles.

3.2.1.5 Treatment of Membranes on Day of Assay

Pooled (non-drug treatment) membranes stored at —20°C were allowed to
thaw on ice, mixed if necessary and further diluted in the appropriate ice-cold assay
buffer. Table 3.2 outlines the diluted number of vols. of the original wet weight of
tissue used, to ensure that less than 10% of added ligand was bound whilst
maintaining a workable amount of specific binding. Protein linearity experiments,
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Membranes (Vols.)

Binding Assay Chapter Brain Adrenal Medulla .
[*H]citalopram 4 150-300 100-200
[*H]nisoxetine 4 40-50 25-50
[’H]8-OH DPAT 5 100-200 -
[’H]5-CT 5 40-300* E
[PHIGR125,743 5 40-80 -

Table 3.2: Diluted Volumes of Membranes for use in Binding Assays
For each radioligand membrane binding assay, the range of the diluted number of
vols. of membranes are given, prior to addition to assay tubes, to ensure that less than
10% of added ligand was bound whilst maintaining a workable amount of specific
binding. On addition to assay tubes these are further diluted two fold. Hence in the
case of [*H]citalopram binding in brain, membrane vol. in the assay is actually 300-
600 vols. These vols. relate to standard pooled tissue membrane preparations from
multiple animals stored at 25 vols. One volume relates to 1g of original wet weight
tissue in Iml of assay buffer. The protein concentration ranges used to ensure that
less than 10% of added ligand was bound whilst maintaining a workable amount of
specific binding are stated in the relevant chapters (chapters 4 & 5) determined from
protein linearity experiments. * = The large range of diluted membrane suspension
used for [’H]5-CT binding relating to binding in the presence or absence of various
masking drugs (see chapter 5). As components of [°’H]5-CT binding are blocked, the
amount of membrane suspension used has to be increased in order to maintain a

workable amount of specific binding (see chapter 5).
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whereby the amount of specific binding is monitored with increasing concentrations
of membrane protein, enabled the calculation of the optimal range of membrane
protein concentrations to be used (see Chapters 4 & 5).

Drug treatment membrane aliquots were thawed as above and used in either
single point or duplicate point assays to allow multiple binding assays to be
performed from the same source of tissue. In table 3.1b the number of aliqouts used
for single point or duplicate point assays are shown. The total aliquot volume was
further diluted to 7mls for single point assays or 12.5ml for duplicate point assays in
the appropriate assay buffer to ensure that less than 10% of added ligand was bound
whilst maintaining a workable amount of specific binding.

[or pooled and drug treatment membranes, two separate 250u] samples were
taken for protein content determination. These two protein samples were assayed one

week apart to ensure correct protein concentration use for subsequent calculations.

3.2.1.6 Protein Assay

The amount of protein was determined using a Bradford protein assay
(Bradford, 1976). Standard curves were constructed using serial dilutions of bovine
serum albumin (BSA) ranging from 10 to 200 pg ml"' of protein. 50ul aliquots of
standards or test sample were added to Corning 96 well plates followed by 250ul of
Bradford reagent (0.1% coomassie blue (w/v), 5% of 95% ethanol (v/v), 10% of 85%
orthophosphoric acid (v/v) in d.H,0; filtered twice through Whatman filter paper and
stored at 4°C). Using a Dynatech plate reader, samples were mixed by shaking for 20
seconds and absorbance measured at an optical density of 595nm (ODsgs) after 20
min. (ODsos) measurements for BSA samples were fitted to a straight line through
the linear portion of the curve, and the amount of protein in each sample determined

by extrapolation.
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3.2.2 In Vitro Membrane Receptor Binding Assay Methods

and Analysis

3.2.2.1 Generalised Receptor Binding Experiments

All drugs used in the study of receptor/transporter binding were dissolved in
either d.H,0 or the appropriate solvent. Where drugs were diluted in DMSO,
methanol or ethanol, the final concentration of the solvent in the assay did not exceed
1%. Drugs and membrane preparations were stored for up to 3 months at —-20°C,
unless stated otherwise. Table 3.3 outlines the details of each radioligand membrane
binding assay used in this thesis. Buffers were prepared in d.H,0 and stored at 4°C.
Radioligands were diluted in d.H,0 to appropriate concentrations and stored at =70°C
under liquid N, in aliquots sufficient for one experiment.

Binding assays were conducted in Sml round bottomed polypropylene tubes
(Sterilin (RT35), UK). Radioligand membrane binding assays were typically carried
out by preincubating 100ul of buffer or test drug, 300u1 of assay buffer with 100ul of
[3H]Iigand for 2 min at 25°C unless stated otherwise. Non-specific binding was
determined in the presence of a maximal concentration of drug that was at least 100
fold its affinity for the receptor/tranporter of interest. Binding was initiated by
addition of 0.5ml of diluted membrane suspension to give a final volume of 1ml.
Incubations were continued until binding was at equilibrium (except for time
courses) as outlined in Table 3.3. Bound and free ligand were then separated over
pre-wetted Whatman GF/B filters (assay buffer + polyethyleneimine; PEI) using a
Brandel cell harvester. Following rapid assay buffer washes (Table 3.3), the resultant
filter disks were transferred to scintillation vials and incubated with 100ul of 100%
formic acid for at least 10 min. Emulsifier safe scintillant (2.5ml) was then added and
equilibrated overnight. For each binding assay eight samples of the radioactvity
added to the assay were used as standards to calculate the concentration of the ligand
added. Radioactivity was determined in a Packard 2500TR scintillation counter with
automatic quench correction (counting efficiency approximately 50%), with samples
counted for 4 minutes and results expressed as disintegrations per minute (dpm) per

sample.
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3.2.2.2 Competition Experiments

Competition experiments (‘cold’ saturations) are carried out under
equilibrium conditions with a fixed incubation time, membrane (receptor/transporter)
concentration and radioligand concentration. The concentration of competing drug is
varied. As the concentration of competing drug is increased the amount of bound
radioligand decreases. Competition binding curves generally comprised of 2
duplicate tubes for both total and non-specific binding and 10 duplicate
concentrations of competing drug. Stock drugs were generally diluted 1 in 10 and
then 1 in 3, followed by serial 10 fold dilutions of both to give a series of
concentrations one half of a log unit aparl. Such curves enable the calculation of the
affinity and density of labelled binding sites and also the affinity of inhibitors for that
binding site.

Data were initially analysed using an iterative, non-linear least squares curve

fitting programme (Microcal Origin) to a one site logistic model (Barlow, 1983);

y= ((A1-A2) / (1 + x / X,)°) + A2

where Al = the initial binding maximum, A2 = the binding minimum, X, = the
concentration of competing drug which inhibits 50% of specific radioligand binding
(ICsp) and P = the slope. The calculated specific binding (A1-A2) and non-specific
binding (A2) were compared with experimentally determined values. Values were
accepted if within 10%.

The slope of competition binding curves from the logistic equation above,
known as the “Hill Slope” or “Hill coefficient” (nH), may indicate the type of
binding model appropriate for data analysis. If nH=1, the data are consistent with a
simple one site model and increasing the concentration of competing drug from one
tenth to 10 times the ICsq value, should reduce the specific binding of the radioligand
from 90.9% to 9.1%. A Hill slope of less than unity indicates binding is not
consistent with a single population of non-interacting binding sites and a negative co-
operative or more likely two site model may be more appropriate. The data with Hill

slopes of less than unity were analysed using a two site model (where stated). In

122



determining the proportions and affinity of these two states or different receptor
subtypes, data was fitted to a two site hyperbola model using the following equation

(in Graphpad Prism: Barlow, 1983):

y= (((AL-A2)/(14+x/X)+A2)+(((A3-A4)/(1+x/x1)+A4)

where Al = the initial binding maximum of the high affinity site, A2 = the binding
minimum of the high affinity site, x, = ICs¢ of high affinity site, A3 = the initial
binding maximum of the low affinity site, A4 = the binding minimum of the low
affinity site, x; = ICsq of the low affinity site.

The results of the fit were statistically compared to those of the one site fit by

the use of a partial F test defined as below:

F= (SS1-SS,)/(df-df3)
SS,/df;,

where SS; is the sum of the squares error for the single site, SS; is the sum of squares
error for the two site model, and df; and df; are the degrees of freedom for the one
and two site fit models respectively. A two site fit was assumed to be significantly
better than a single site fit if the determined F value was significant (p<0.05) (De
Lean et al., 1981).

The range of inhibitor concentrations used in the assay were altered in
accordance with the ICsp of each compound. Where appropriate, concentration
ranges were further adjusted to fit more tightly around the ICsg, to reduce the
experimental error, especially in drug treatment studies. For two site models,
experiments were repeated with 20 different concentrations of the inhibitor using at
least three concentrations per log cycle (where stated), in an attempt to provide a
clearer definition of the high and low affinity sites.

When the unlabelled form of the [3H]ligand is used as the inhibitor (a ‘cold’
saturation experiment), it is possible to derive the equilibrium dissociation constant
(affinity; Kp) and the number of binding sites (density; Bmax) using the following
equations (Bylund & Yamamura, 1990).
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Kp = ICso- ["H]ligand

where ICso (M) is that of the unlabelled ligand and [3H]]igand (M) is the
concentration in the assay as determined from the standards.

Bumax values (mol mg' protein) were calculated by converting the specific
binding (DPM) of the radioligand bound, into the number of moles bound using the

specific activity and the following equation;
Bunax= (b x ICs0) / ([*H]ligand x Pr)

where b is the specific binding (moles) at the [*H]ligand concentration used in the
assay in the absence of inhibitor, ICsq (M) is that of the unlabelled ligand, [3H]ligand
(M) is the concentration in the assay and Pr is the amount of protein added to assay
tube (mg). Bimax Was expressed in mol mg'l protein by determining the amount of
protein used in the assay (mg) of each sample.

‘Cold’ saturation experiments were used after drug treatments to determine
possible changes in the density or affinity of the receptor/transporter under
investigation. Dilutions of the unlabelled ligand were prepared in significant
quantities to use for all the individual membrane preparations from each study and
stored at —20°C until required. Prior to their use, these dilutions were thawed at room
temperature and the affinity and tightness of the data points checked in naive
membranes binding assays.

As the ICso is an experimentally defined parameter, an inhibition constant
(K;), which is dependent of radioligand concentration, was calculated according to
the Cheng Prussoff approximation for all inhibitors other than the cold form of the

[*H]ligand (Cheng & Prussoff, 1973);
K;=ICso/ 1 + (H]ligand / Kp)

where ICsy (M) is that of the compound being tested, [3H]ligand (M) is the

concentration in the assay and the Kp, is the affinity of the radioligand.
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3.22.3 ‘Hot’ Saturation Experiments

As for competition experiments, binding is carried out under equilibrium
conditions. Receptor/transporter concentration and time are kept constant and the
amount of bound radioligand is measured as a function of the free radioligand
concentration at various increasing concentrations of the radioligand. ‘Hot’
saturation experiments, like competition experiments, allows the determination of Kp
and B,y values. Both methods should give the same values and Hill slopes are again
indicative of the type of receptor binding..

Radioligands were diluted to give a range of concentrations approximately 10
fold above (depending on the amount of ligand available) and below the expected
Kp. Generally 8 concentrations in duplicate were used to determine total binding and
8 single concentrations used to determine non-specific binding. Samples from each
radioligand concentration was used as standards to calculate ligand concentrations.
Specific binding (bound [3H]ligand) was determined for each point by subtracting
non-specific binding from total binding. The free [PH]ligand at equilibrium was
calculated by subtracting specifically bound [*H]ligand from [*H]ligand added.
Using the specific activity of the radioligand the concentration (M) of both free and
bound [3H]ligand was calculated. The data were fitted using the iterative, non-linear
least squares curve fitting programme (Microcal Origin) to a hyperbolic model and

the Kp and Bmax values estimated (Bylund & Yamamura, 1990);
b= Bmaxx L)/ (L +Kp)

where b: is the specifically bound [3H]ligand (M), L: is the free [BH]Iigand (M)
concentration, Kp (M) the affinity of the ligand and Bmax (M) the density of the

receptor.

3.2.24 Time Course Experiments

Time course experiments allow us to determine when equilibrium has been
reached, and can also provide us with the affinity of the radioligand. In association
and dissociation experiments, receptor/transporter and radioligand concentration are

constant, with radioligand bound measured as a function of time. Samples of the
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radioligand added were counted as standards to calculate the radioligand
concentration.

In association experiments the specific binding at each time point was
determined by subtracting non-specific binding from total binding and data fitted to a

single exponential function (Bylund & Yamamura, 1990);
B =B - (Be/ exp(kobs.l))

where t: is time (min), B: is bound [3H]Iigand (dpm) at time t, Be: total specific
binding (dpm) at equilibrium and ke (min™') is the observed constant. Alternatively
semilogarithmic conversion of the data, where Ln(B¢/B.-B;) is plotted as a function
of time, produces a straight line with a slope of koys. The t;, time may be calculated
which is the time at which By is equal to one-half of Be..

The association rate constant (k;;) was determined by estimating the free
[3H]ligand concentration (M) when maximum binding is observed and calculated

using the following equation;
ki1 = (Kobs- k1) / L

where: Kgps (min") is the observed constant, k_; (min'l)(see below) is the dissociation
rate constant and L: is the free concentration of [3H]ligand (M).

In dissociation experiments, radioligand and receptor are incubated until
equilibrium is achieved. Further association of the radioligand is prevented by the
addition of excess unlabelled drug (usually at least one hundred times the Kp) so the
dissociation of the radioligand from the receptor can be monitored and the k;
measured.

The dissociation rate constant (k.;) was calculated from a dissociation time
course experiment. Specific binding at each time point was determined by
subtracting non-specific binding from total binding and data fitted to the following

equation (Bylund & Yamamura, 1990);

Bi= (Bo/ exp(k.1.0))
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where t: is time (min), B;: is bound [3H]Iigand (dpm) at time t, Bo: total specific
binding (dpm) at time 0 and k; (min™'") is the dissociation rate constant. Alternatively
semilogarithmic conversion of the data, where Ln(Bt/By) is plotted as a function of
time, produces a straight line with a slope of k; The t;; time may be calculated
which is the time at which B, is equal to one-half of By.

Time course experiments provide an independent estimate of the Kp which
should agree with the Kp from competition and ‘hot’saturation studies.The Kp (M)

was calculated from the time course data using the following equation;
Kp=k/ky

where k; (min") and ky; (min' M) are the dissociation and association rate

constants respectively.

3.2.2.5 [*H]Citalopram Binding in Platelet Membranes

Platelet membrane Iml aliqouts (prepared in section 3.2.1.3) were diluted in
10-200ml of assay buffer for use in binding assays. However initial experiments
revealed no specific binding (data not shown) despite the reported high abundance of
both 5-HT and SERT (Rudnick, 1977). On the day of the assay, platelet membranes
were subjected to further washes and incubations at 37°C in an attempt to completely
remove the high levels of endogenous 5-HT found in platelets which may inhibit
[3H]citalopram binding. Platelet membrane 1ml aliquots were thawed on ice and
further diluted to 10ml in 50mM Tris-HCI (pH 7.4). Membranes were incubated for a
further 30 min at 37°C and centrifuged (30000g; 10min, 4°C). This was repeated
three times and at the end of each centrifugation step, the amount of specific
[3H]citalopram binding assessed. In comparison to the standard brain membrane
preparation (see section 3.2.1.1), the addition of two extra incubation and
centrifugation steps were sufficient to give maximal binding in platelet membranes
(Figure 3.2), presumably due to the complete dissociation of the high levels of
endogenous 5-HT. The final pellet from a 1ml aliquot after these two extra wash

steps was further diluted in 100-200ml assay buffer for subsequent use in
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Figure 3.2: Effect of Platelet Membrane Preparation Method on
[’H]Citalopram Membrane Binding.

Data represent single experiments in platelet membranes. Data represents the amount
of specific [SH]citaIOpram binding after increasing incubation and centrifugation

steps of platelet membranes. Each data point represents the mean of triplicate tubes.
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[3H]citalopram platelet membrane binding assays (Chapter 4) to ensure that less than
10% of added ligand was bound whilst maintaining a workable amount of specific

binding.

3.3 In Vitro Autoradiographic Receptor Binding Assays

3.3 Preparation of Slides for In Vitro Autoradiography

Double frosted glass microscope slides for in vitro autoradiography were
cleaned in running tap water and dried in an oven at 60°C. A subbing solution (10 g
gelatin, 0.5 g chromic potassium sulphate in 1L d.H;0) was heat stirred to a
temperature of 60-70°C and filtered through Whatman 91 filter paper. The solution
was allowed to cool to below 40°C and racks containing clean slides were dipped in
subbing solution. Slides were dried overnight at 60°C in an oven containing a tray of
copper sulphate desiccant. The subbing solution could be used to coat several batches

of slides at once but was discarded after use.

332 Preparation of Sections for In Vitro Autoradiography

For in vitro autoradiographic studies, rats were killed by stunning and then
decapitation. Brain or adrenal glands were immediately removed and frozen in
isopentane at —45°C (temperature was maintained by cooling in a dry ice/acetone
mixture). Brain or adrenal glands were frozen onto orientating microtome chucks
with Tissue tek, dipped in Lipshaw Embedding Matrix, sprayed with cryospray and
equilibrated for 30 min at —20°C. Coronal sections (20um) were cut on a Bright
cryostat and thaw mounted onto gelatin subbed slides. Sections were taken in the
caudal to rostral direction in a plane related to Bregma as described by Paxinos &
Watson (1982). Sections were taken continuously at the levels required, and the
unwanted levels discarded. Generally 3 sections per slide were used. Adjacent
sections on separate slides were used to determine total binding and non-specific
binding. Rat adrenal sections were cut until both the adrenal medulla and cortical
levels were apparent. Sections were allowed to dry at room temperature and then

stored at —70°C for at least 3 days before use, to facilitate adhesion to the slide.
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3:3.3 In Vitro Autoradiographic Method and Analysis

For in vitro autoradiographic studies, tissue sections were removed from the
freezer and left at room temperature for 60 min. All autoradiographic procedures
were carried out at room temperature in 50 ml assay buffer in Coplin jars. The
procedure for each autoradiographic study is outlined in Table 3.4. Briefly sections
were pre-incubated in assay buffer, then incubated in the presence of [*H]ligand (+
non-specific determinant in adjacent sections on separate slides), and washed in
separate coplin jars containing fresh ice-cold assay buffer. Following dipping in
d.H;0 and blotting, excess liquid was carefully removed under vacuum with a fine
tipped pasteur pipette and dried under a hot or cold stream of air. For
autoradiographical analysis, sections were apposed together with tritium standards
([3H] microscales, Amersham) to [3H]-sensitive Hyperfilm in x-ray cassettes for
varying periods at —70°C, as outlined in Table 3.4.

Cassettes were left at room temperature for 60 min, after the stated period,
before removal of the [3H]—Hyperfilm and development in a dark room. Films were
bathed in Kodak D19 developer (diluted 5 fold in tap water) for 4 min, dipped in
water before two 4 min washes in Kodak fixative (diluted 4 fold in tap water) and
finally dipped in water containing detergent (0.1%). Films were then rinsed under
cold running tap water for 30 min and dried in a cabinet at 30°C. Films were then
covered and stored at room temperature prior to analysis.

Autoradiograms were analysed using a computer based image analyser
(MCID, Imaging Research Inc.). After background subtraction by a matrix shading
correction facility, optical density (O.D.) values were converted to binding density
(fmol mg™' tissue equivalent) using tritium standards and the specific activity of the
ligand. Standard curves were calculated as O.D. measurements versus radioactivity
in fmol mg" tissue. O.D. measurements were performed by selecting a measuring
box of appropriate dimension, overlaying the structure in a total binding section and
measuring the optical density of that area four times for all sections on each slide.
The same dimension overlay was then used for adjacent non-specific binding and
total binding plus masking drugs (if present) slides. Specific binding was then
determined by automatic subtraction of non-specific binding from the respective

totals.
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34 Statistical Analysis

The majority of figures displayed in the thesis are a representation of one
experiment, all of which have been carried out at least three times, unless otherwise
stated. Data in tables and text are shown as the mean * the standard error (s.e.m.) for
at least three separate determinations/animals. For comparisons of drug affinities in
different membrane preparations, the Students t-test was used (Welch corrected;
assuming that each group may have different standard deviations). This same test
was used for comparison between 2 drug treated groups. For the comparison of 3
drug treated groups or more a one-way ANOVA test was performed with Dunnett’s
multiple comparison post-testing against controls. In all cases, conformity to
normality and equality of variance was checked prior to parametric analysis. If data
did not conform to an equality of variance then non-parametric testing was carried
out with the Dunn’s method of Post-hoc analyses. All statistical analyses were

carried out using Graphpad Instat® and the level of significance set as P<0.05.

3.5 Materials

For studies in this thesis the majority of drugs used were obtained from
regular commercial sources, and all reagents used were of the highest analytical
grade. The following drugs, however, were kindly donated as gifts from their
pharmaceutical company of origin: citalopram hydrobromide (H.Lundbeck A.S.,
Denmark), fluoxetine hydrochloride (Lilly, UK), tianeptine hydrochloride (Servier,
France), DP-5-CT (Novartis, Switzerland), paroxetine hydrochloride, SB216641 and
BRL15572 (Smithkline Beecham, UK), FK506 and FR122175 (Dr J. Sharkey,
Fujisawa Institute of Neuroscience, Edinburgh) and GR127,935, GR125,743,
GR85548 and sumatriptan (Glaxo Wellcome, UK).
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CHAPTER 4

PHARMACOLOGICAL CHARACTERISATION OF THE
SEROTONIN AND NORADRENALINE TRANSPORTERS IN
THE RAT ADRENAL MEDULLA
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5-HT has also been immunocytochemically and neurochemically detected in the rat
adrenal medulla (Verhofstad & Jonsson, 1983; Holzwarth et al., 1984; Brownfield ez
al., 1985, Holzwarth & Brownfield, 1985). Although 5-HT affects adrenal
physiology (see Haning et al., 1970; Furman & Waton, 1989; Aguilera et al., 1993;
Vijayaraghavan et al., 1993) its source is unclear at present. Tryptophan loading
demonstrated serotonin synthesis in adrenochromaffin cells (Delarue er al., 1992),
suggesting in part that the majority of enzymes for 5-HT synthesis are present.
However, despite significant quantities of 5-HT in chromaffin granules there is low
or insignificant levels of de novo 5-HT synthesis (Holzwarth er al., 1984;
Vandenberg et al., 1991). It has long been known that, the adrenal medulla of both
rats and mice take up and store exogenous 5-HT as well as its precursor 5-
hydroxytryptophan as shown by autoradiographic experiments (Gershon and Ross,
1966a; Gershon and Ross 1966b; Csaba and Barith, 1974; Csaba and Sudér, 1978).
This active accumulation of 5-HT in adrenal chromaffin cells is antidepressant-
sensitive (Gershon & Ross, 1966b; Barath & Csaba, 1973; Trost & Muller, 1976;
Kent & Coupland, 1984). It has been hypothesised that 5-HT in the rat adrenal gland
is derived from circulating 5-HT (Verhofstad & Jonsson, 1983). The proteins
responsible for adrenal 5-HT accumulation have been suggested as those responsible
for noradrenaline transport (noradrenaline transporter; NET) since they are also
expressed by chromaffin cells (Yoffe & Borchardt, 1982; Michael-Hepp et al., 1992;
Role & Perlman, 1993; Cubells et al., 1995). These proteins will transport 5-HT
albeit with low affinity (Thoa er al., 1969). Although 5-HT transporter (SERT) gene
expression appears to be exclusively neuronal in the CNS, SERTs are known to be
expressed in several peripheral tissues, including lung, placenta (Balkovetz et al.,
1989), platelets (Rudnick, 1977) and lymphocytes (Marazzitti et al., 1998). In the
adrenal gland, an alternative transport mechanism for 5-HT uptake has been
suggested since the discovery of high levels of SERT mRNA expression (Blakely ez
al., 1991; Hoffman et al., 1991). This expression is confined to medullary chromaffin
cells of rodents (Blakely et al., 1994; Chang et al., 1996; Schroeter & Blakely,
1996). This suggests that adrenal chromaffin cell 5-HT may be captured from
circulating blood, via a mechanism analogous to SERT-mediated accumulation of 5-

HT in platelets (Rudnick, 1977; Gillis & Pitt, 1982; Stoltz, 1985).
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[n this chapter the potential of SERT protein expression was investigated in
the rat adrenal gland. Citalopram, a selective serotonin re-uptake inhibitor (SSRI;
Hyttel, 1994), was used to label SERT. [3H]Citalopram binding was characterised in
rat brain and adrenal gland membranes and the pharmacology of these two distinct
CNS and peripheral tissues directly compared. The pharmacology of platelet
[SH]citalopram binding was also included, as it is known that the pharmacology of
this SERT and brain SERT is identical (Plenge & Mellerup, 1991). Another SSRI,
[3I-I]par0xetine, has previously been reported to autoradiographically quantify SERT
in the rat brain (Chen er al., 1992). This radiolabelled ligand was used to investigate
the autoradiographic distribution of SERT in the adrenal gland. The cloning of SERT
(Blakely er al., 1991; Hoffman et al., 1991), has enabled the production of specific
site-directed anti-SERT antibodies (described in Chapter 2). One such antibody (as
identified in Chapter 2) was used to further assess the distribution of SERT using
brain, adrenal and platelet tissue in SDS-PAGE Western blots.

NET is a marker for noradrenergic terminals in the brain and is also present
in adrenal chromaffin cells (Yoffe & Borchardt, 1982; Michael-Hepp et al., 1992;
Role & Perlman, 1993; Cubells et al., 1995). This chapter also pharmacologically
characterises a NET radioligand binding assays in both the rat adrenal gland and
brain membranes, using the selective ligand [BH]nisoxetine (Tejani-Butt et al., 1990;

Tejani-Butt, 1992; Cheetham et al., 1996).

4.1 Methods

[3H]Citalopram and [’H]nisoxetine binding assays, to label SERT and NET
respectively, were conducted as described in chapter 3. [*H]Paroxetine
autoradiography experiments, to assess the distribution of SERT, were conducted as
described in chapter 3. Western blot experiments were conducted using the mouse
monoclonal antibody as described in chapter 2 using tissue homogenates. Denatured
protein was prepared at 5Smg/ml as described in chapter 2. In order to load greater
than 50pg of protein per lane, the volume of denatured sample added was
accordingly adjusted. To obtain 200ug of protein per lane for example, 40ul of
denatured protein was added per lane rather than 10ul to obtain 50ug of denatured

protein.
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4.2 Results

4.2.1 [’H]Citalopram Binding Assays

Initial experiments using a one hour incubation period, with membranes
prepared from rat adrenal medulla (including the inner cortex), adrenal capsule
(including the zona glomerulosa), brain cortex and platelet membranes revealed
differences in the amount of specific [*H]citalopram binding. Though specific
binding could be detected in adrenal medulla, brain and platelet membranes, no
specific binding could be detected in adrenal capsule membranes (even using ten
times more protein than in the adrenal medulla and neocortex membranes). The
inclusion of further incubation and wash steps, as described for platelet membrane
[3H]citalopram binding (section 3.2.2.5 described in Chapter 3), did not alter the
amount of specific binding in brain, adrenal medulla or adrenal capsule membranes
(Figure 4.1).

Adrenal medulla and cerebral cortex membranes were therefore used to
characterise the [3H]cit310pram binding assay and to directly compare the

pharmacology of the binding sites in these two tissues and in rat blood platelets.

4.2.1.1 Time Course of [’H]Citalopram Binding to Rat Adrenal
Medulla and Cerebral Cortex Membranes

A time course (0-120 min) of [3H]citalopram (0.25nM) binding to rat adrenal
medulla and cerebral cortex membranes was carried out at 25°C. Equilibrium was
attained by 50 min, and was stable for at least another 70 min. Curve fitting using
non linear regression gave an observed constant (kops) of 0.076 + 0.004 min"' (n=3)
with a tjp of 8.712 + 0.018 min (n=3) in adrenal medulla membranes and an observed
constant (kgps) of 0.073 + 0.003 min’' (n=3) with a t;; of 8.725 + 0.091 min (n=3) in
cerebral cortical membranes (Figure 4.2a). Dissociation was initiated after addition
of 10uM citalopram following incubation for 60 min at 25°C, and followed first
order kinetics with a t;; of 11.747 + 0.946 min and a dissociation rate constant (k_;)
of 0.0633 + 0.005 min™ in adrenal medulla membranes and a t;; of 11.162 + 0.954

1

min and a dissociation rate constant (k.;) of 0.0609 £ 0.005 min™ in cerebral cortical

membranes (Figure 4.2b). Subsequent calculation gave association rate constants
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Figure 4.1: Effect of Increasing the Number of Incubations at 37°C
and Washes on [’H|Citalopram Membrane Binding.

Data represent single experiments in adrenal medulla, adrenal capsule and cerebral
cortex membranes. Membranes were subjected to further incubations at 37°C and
washes as described in section 3.2.2.5. for [*H]citalopram binding in platelet

membranes. Each data point repressents the mean of triplicate tubes.
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Figure 4.2: Time Course and Protein Linearity of [’H]Citalopram
Binding.

The data represent typical (a) time course, and (b) dissociation experiments, and (c) a
single protein linearity experiment. Graphs on the right hand side represent the
semilogarithmic transformations of the data. Experiments were performed as

described in the text, with mean data obtained from three experiments also in text.
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(ky1) 0.0474 + 0.008 and of 0.0434 + 0.004 min'M" in adrenal medulla and cerebral
cortex membranes respectively. The data from these time course experiments gave
equilibrium constants (Kp) of 1.413 = 0.290 and 1.447 + 0.227 nM in adrenal
medulla and cerebral cortex membranes respectively. In the following competition
experiments [3H]citalop1‘am (0.25nM) binding to both rat adrenal medulla and

cerebral cortical membranes was carried out at equilibrium at 25°C for 60 min.

4.2.1.2 Effect of Membrane Protein Concentration on
[3H]Citalopram Binding to Rat Adrenal Medulla and Cerebral
Cortical Membranes

Specitic [3H]cita10pram binding was dependent on membrane protein (Figure
4.2¢) and was linear over the concentrations tested (~20-400pg protein/assay) for
both adrenal medulla and cerebral cortex membranes. Subsequent experiments were
conducted with 40-160ug adrenal medulla membrane protein and 20-60pg of
cerebral cortex membrane protein to ensure that less than 10% of added ligand was

bound whilst maintaining a workable amount of specific binding.

4.2.1.3 Time Course and Concentration Dependence of
[’H]Citalopram Binding in Rat Platelet Membranes

As in rat adrenal medulla and cerebral cortical membranes, the time course of
[*H]citalopram binding to rat platelet membranes reached equilibrium at 50 min, and
was stable for at least another 70 min (Fig 4.3a). Competition binding studies using
0.25nM [3H]citalopram and increasing concentrations of unlabelled citalopram
(0.0InM-1uM) (Figure 3.4b), gave a Kp of 1.36 £ 0.09 nM, a B,,x of 16.05 + 2.64
pmoles mg™ protein and a Hill slope of 0.97 £ 0.02 (n=3).

4.2.1.4 Concentration Dependence of [’H]Citalopram Binding to
Rat Adrenal Medulla and Cerebral Cortical Membranes

Hot saturation analysis of [*H]citalopram binding to both adrenal medulla and
cerebral cortex membranes was carried out using increasing concentrations of

[*H]citalopram (Figure 4.4a). Curve fitting using a logistic model gave an

equilibrium dissociation constant (Kp) of 1.28 + 0.07 and 1.28 + 0.08 nM and a
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binding site density (Byax) of 0.69 + 0.02 and 1.63 + 0.10 pmol mg" protein (n=3) in
adrenal medulla and cerebral cortex membranes respectively. Hill slopes of 0.98 +
0.07 and 1.02 = 0.03 (n=3) in adrenal medulla and cerebral cortex membranes
respectively were observed.

Competition binding studies using 0.25nM [BH]citalopram and increasing
concentrations of unlabelled citalopram (0.0InM-1uM) (Figure 4.4b), gave a Kp of
1.41 + 0.02 and 1.58 = 0.20 nM, a B« of 0.66 = 0.03 and 1.66 = 0.03 pmol mg-1
protein, and a Hill slope of 0.94 + 0.10 and 1.03 + 0.18 (n=3) in adrenal medulla and
cerebral cortex membranes respectively. This is in very close agreement with data
obtained from ‘hot’saturation and time course experiments. No significant
differences were observed in the B, or pKp values between these studies in Wistar

Cobb or in Sprague Dawley rats (data not shown).

4.2.1.5 Pharmacology of [’H]Citalopram Binding Sites in Rat
Adrenal Medulla, Cerebral Cortical and Platelet Membranes

To pharmacologically characterise [*H]citalopram binding sites, the affinity
of a number of amine uptake inhibitors (paroxetine, fluoxetine, desmethylimipramine
(DMI), nisoxetine, and nomifensine) and amine substrates (5-HT, dopamine,
noradrenaline and MDMA) was investigated. Experiments with adrenal medulla and
neocortical membranes were performed in parallel to allow direct comparison.

The serotonin specific re-uptake inhibitors (SSRIs; paroxetine, citalopram
and fluoxetine) had the highest affinity in the adrenal medulla and neocortical
membranes with pK; values of 9.44, 8.85 and 8.04, and 9.58, 8.80 and 8.17
respectively (Table 4.1). The same pattern was observed with platelet membranes
(Table 4.1). DMI which has affinity for both noradrenergic and serotonergic
transporters, had a lower affinity than the SSRIs in both adrenal medulla and
neocortical membranes with pK; values of 6.83 and 6.81 respectively (Figure 4.5).

Nisoxetine (a selective noradrenergic uptake inhibitor) and nomifensine (a
selective dopaminergic uptake inhibitor) also had a much lower affinity than the
SSRIs in both adrenal medulla and neocortical membranes (Table 4.1) and also in rat

platelet membranes.
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Figure 4.5: Inhibition of [’H]Citalopram Binding by Amine Uptake
Inhibitors.

The data represent a typical experiment in (a) adrenal medulla and (b) cerebral
cortical membranes. pK; values for competing drugs were determined from at least

three independent experiments (Table 4.1).
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Figure 4.6: Correlation of Affinities of [’H]Citalopram Binding in
Rat Adrenal Medulla and Cerebral Cortical Membranes.

Affinities for inhibition of [3H]citalopram binding were determined from at least
three experiments (Table 4.1). The correlation coefficient (r) obtained by linear
regression analyses of the data was 0.998 (p<0.0001, degrees of freedom = 9) with a
slope of 1.00 + 0.02 which is not significantly different from 1 (Student’s t-test).
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Of the amine substrates tested (5-HT, dopamine and noradrenaline), 5-HT
was the most potent with a pK; value of 6.29 in adrenal medulla membranes, 6.25 in
neocortical membranes and 6.26 in platelet membranes. MDMA also had lower
affinity than 5-HT, but was not significantly different between adrenal medulla and
cerebral cortex membranes (Table 4.1). In all tissues, the atypical antidepressant,
tianeptine, had no effect on [*H]citalopram binding, when tested up to ImM (data not
shown).

Hill coefficients of all amine re-uptake inhibitors and substrates were close to
unity (Table 4.1) in all membrane preparations, indicative of a single population of
[*H]citalopram binding sites. The rank order of potency of the drugs tested against
[(*H]citalopram binding in adrenal medulla and neocortical membranes was
paroxetine > citalopram > fluoxetine > nisoxetine > desmethylimpramine (DMI) > 5-
HT > nomifensine > MDMA > dopamine > noradrenaline (Table 4.1). Although a
limited range of drugs were tested in platelet membranes the same rank order was
observed (Table 4.1). Comparison of drug affinities between adrenal medulla and
neocortical membranes, show a very good correlation (r = 0.998, Figure 4.6), with no
one drug being significantly different in affinity between the two membrane
preparations (P>0.05, Table 4.1). Likewise, there was no significant difference in the
affinity of drugs tested between platelet and/or adrenal medulla or cerebral cortical

membranes (P>0.05, Table 4.1).

4.2.2 [’H]Paroxetine Autoradiography in the Rat Adrenal Gland

The distribution of [3H]par0xetine binding sites was asseésed in the rat
adrenal gland. In the presence of 250pM [*H]paroxetine, total binding was found at a
high density centrally located to the rat adrenal medulla with fewer sites in the
adrenal cortex (Figure 4.7a). In the presence of 250pM [3H]paroxetine and 4uM
citalopram, non-specific binding was apparent in the cortex but not the centrally
located adrenal medulla (Figure 4.7b). Comparing the autoradiograms (Figures 4.7a
& b), a high degree of specific binding can be seen after subtraction between total
and non-specific binding in the centrally located adrenal medulla, with little or no
specific binding in the surrounding cortical areas. The density of [’H]paroxetine

binding sites was calculated to be 220 + 20 fmoles mg™ of tissue in the adrenal
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(a)

(b)

Figure 4.7: [’H]Paroxetine Autoradiograms of Rat Adrenal Glands.

Total binding was defined using 250pM [*H]paroxetine (a) and non-specific binding
defined in adjacent sections using 250pM [* H]paroxetine in the presence of 4uM
citalopram (b). Tissue isotope concentrations were measured, relative to appropriate
[H]standards, and specific binding determined by subtraction of image densities
from total and non-specific binding images. Data shown are representative
autoradiograms. [’H]Paroxetine binding densities were determined from at least three

independent experiments.
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medulla and 7 + 6 fmoles mg' tissue in the cortex (n=6). No specific [*H]paroxetine
binding could be detected in the capsular region, which includes the 5 cell thick layer

of the zona glomerulosa (n=6).

4.2.3 Western Blots

Western blot analysis (Figures 4.8 a & b) using a mouse monoclonal antibody
raised against SERT, showed the presence of a single immunoreactive species at 76
kDa in the adrenal medulla (including inner cortex; lane 6 of Figure 4.8a). Doubling
the concentration loaded, to 100ug of protein of adrenal medulla (including inner
cortex) also showed the presence of a single immunoreactive species with increased
band intensity at 76 kDa (lane 4 of Figure 4.8a and lane 3 of Figure 4.8b). No
immunoreactivity could be detected in the adrenal capsule (including the zona
glomerulosa) at 50pg of protein (lane 3 of Figure 4.8a and lane 7 of Figure 4.8b),
100p g of protein (lane 2 of Figure 4.8b) or at the even higher concentration of 200ug
of protein (lane 5 of Figure 4.8b). Neocortical homogenates at 50pug of protein, as in
the adrenal medulla homogenates, gave a single immunoreactive species at 76 kDa
(lane 1 of Figure 4.8a), with a higher band intensity when compared to adrenal
medulla homogenates also loaded at 50pg. No immunoreactivity was detected in
liver (lane 7 of Figure 4.8a and lane 1 of Figure 4.8b) or cerebellum homogenates
(lane 2 of Figure 4.8a and lane 4 of Figure 4.8b), both loaded at 50pg. Prominent
immunoreactivity was also detected in platelets at 94 kDa loaded at 50pg (lanes 5 of
Figure 4.8a and lane 6 of Figure 4.8b). No immunoreactivity was detected in the

absence of primary antibody (data not shown).

4.2.4 [’H|Nisoxetine Binding

4.2.4.1 Time Course of ["H]Nisoxetine Binding to Rat Adrenal
Medulla and Cerebral Cortex Membranes

A time course (0-90 min) of [*H]nisoxetine (0.50nM) binding to rat adrenal
medulla and cerebral cortex membranes was carried out at 25°C. Equilibrium was
attained by 15 min and was stable for at least another 65 min. Curve fitting using non

linear regression gave an observed constant (Kobs) of 0.277 £ 0.018 min"' (n=3) with a
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Figure 4.8: Western Blot Analysis of Rat Adrenal Glands, Cerebral

Cortex and Platelets.

SDS-PAGE western blot analysis using a 1 in 500 dilution of the anti-SERT
monoclonal mouse antibody. Protein from each sample was loaded onto a 7.5%
polyacrylamide gel. Rainbow markers (Sigma) were run on the gel and the transfer
overlaid over the exposure to give the appropriate size markers (not shown) in kDa.
Immunodetection of SERT in 50pug adrenal medulla at 76 kDa (lane 6a) and 100pg
of adrenal medulla (lane 4a and lane 3b).

No immunodetection of 50ug (lane 3a and lane 7b), 100pg (lane 2b) or 200pg (lane
5b) of adrenal capsule protein was detected.

50ug of neocortex was detected at 76 kDa (lane 1a).

50ug of liver (lane 7a and lane 1b) and cerebellum was loaded (lane 2a and lane 4b).
50ug platelets was immunodetected with a molecular weight of 94 kDa (lanes 5a and
lane 6b).
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tiz of 3.669 % 0.155 min (n=3) in adrenal medulla membranes and an observed
constant (kqgs) of 0.274 +=0.015 min’' (n=3) with a ty; of 3.762 £ 0.091 min (n=3) in
cerebral cortical membranes (Figure 4.9a). Dissociation was initiated after addition
of 10pM nisoxetine following incubation for 60 min at 25°C, and followed first order
kinetics with a t;» of 2.448 +0.131 min and a dissociation rate constant (k_;) of 0.236
+ 0.005 min™ in adrenal medulla membranes and a t;,; of 2.667 + 0.114 min and a
dissociation rate constant (k.;) of 0.247 + 0.012 min™' in cerebral cortical membranes
(Figure 4.9b). Subsequent calculation gave association rate constants (k) of 0.082 +
0.026 and of 0.053 + 0.015 min'M"' in adrenal medulla and cerebral cortex
membranes respectively. The data from these time course experiments gave
equilibrium constants (Kp) of 3.753 + 1.44 and 5.688 + 1.757 nM in adrenal medulla
and cerebral cortex membranes respectively. In the following competition
experiments [PH]nisoxetine (0.50nM) binding to both rat cerebral cortical and

adrenal medulla membranes was carried out at equilibrium at 25°C for 60 min.

4.2.4.2 Effect of Membrane Protein Concentration on
[’H]Nisoxetine Binding to Rat Adrenal Medulla and Cerebral

Cortical Membranes

Specific [3H]citalopram binding was dependent on membrane protein (Figure
4.9c) and was linear over the concentrations tested (~20-400ug protein/assay) for
both adrenal medulla and cerebral cortex membranes. Subsequent experiments were
conducted with 300-400pg adrenal medulla membrane protein and 150-300ug of
cerebral cortex membrane protein to ensure that less than 10% of added ligand was

bound whilst maintaining a workable amount of specific binding.

4.2.4.3 Concentration Dependence of [’H]Nisoxetine Binding to Rat
Adrenal Medulla and Cerebral Cortical Membranes

Hot saturation analysis of [*H]nisoxetine binding to both adrenal medulla and
cerebral cortex membranes was carried out using increasing concentrations of
[*H]nisoxetine (Figure 4.10a). Curve fitting using a logistic model gave an
equilibrium dissociation constant (Kp) of 3.84 + 0.22 and 3.89 + 0.13 M and a
binding site density (Bmax) of 84.67 + 4.34 and 634.00 + 38.57 fmol mg'I protein
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Figure 4.9: Time Course and Protein Linearity of [’H]|Nisoxetine
Binding.

The data represent typical (a) time course, and (b) dissociation experiments, and (c) a
single protein linearity experiment. Graphs on the right hand side, represent the

semilogarithmic transformations of the data. Experiments were performed as

described in the text, with mean data obtained from three experiments also in text.

151



(a)

B Adrenal medulla

=

2

e

o

Tl:hl)

=

8 300

<

é 250 4 o Cerebral cortex

o 200 ]

g

E 150 4

M 1004 N

Q ]

0 50

3

fE-‘ 0 T T -1
0 5 10 15 20 25

[AH]nisoxetine Concentration nM

(b)

70 5

60 -
. B Adrenal medulla
50 4

1

Specific Binding (fmoles mg™ protein)

O Cerebral cortex

40
30 4

20

0 il R e R LR | :
0.01 0.1 1 10 100 1000

Concentration (nisoxetine) Log nM

Figure 4.10: Concentration Dependence of Specific [3H]Nisoxetine
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(n=3) in adrenal medulla and cerebral cortex membranes respectively. Hill slopes of
0.93 +0.07 and 0.94 + 0.06 (n=3) in adrenal medulla and cerebral cortex membranes
respectively were observed.

Competition binding studies using 0.50nM [’H]nisoxetine and increasing
concentrations of unlabelled nisoxetine (0.01nM-1uM) (Figure 4.10b), gave a K, of
3.94 +0.14 and 3.93 + 0.17 nM, a By, of 98.67 £ 11.42 and 510.21 + 53.25 fmol
mg' protein, and a Hill slope of 0.97 £ 0.03 and 0.90 = 0.11 (n=3) in adrenal
medulla and cerebral cortex membranes respectively. This is in very close agreement
with data obtained from ‘hot’saturation and time course experiments. No significant
differences were observed in the B,x or pKp values between these studies in Wistar

Cobb or in Sprague Dawley rats (data not shown).

4.2.4.4 Pharmacology of [*H|Nisoxetine Binding Sites in Rat
Adrenal Medulla and Cerebral Cortical Membranes

To pharmacologically characterise [*H]nisoxetine binding sites, the affinity of
a number of amine uptake inhibitors (nisoxetine, desmethylimipramine (DMI),
mianserin, nomifensine, fluoxetine and citalopram) and amine substrates (5-HT,
dopamine, and noradrenaline) was investigated. Experiments with adrenal medulla
and neocortical membranes were performed in parallel to allow direct comparison.

Re-uptake inhibitors of noradrenaline transport (nisoxetine and DMI) had the
highest affinity in the adrenal medulla and neocortical membranes with pKj values of
8.43 and 8.26, and 8.43 and 8.51 respectively (Table 4.2).

Nomifensine (a selective dopaminergic uptake inhibitor) had lower affinity
than the noradrenergic reuptake inhibitors, whilst fluoxetine and citalopram
(selective serotoninergic ligands) were by far the weakest amine uptake inhibitors
tested in both adrenal medulla (Figure 4.11a) and cerebral cortex (Figure 4.11b)
membranes. Of the amine substrates tested (5-HT, dopamine and noradrenaline),
noradrenaline was the most potent with a pK; value of 5.59 in both adrenal medulla
and cerebral cortical membranes (Table 4.2).

Hill coefficients of all amine re-uptake inhibitors and substrates were close to
unity (Table 4.2) in all membrane preparations, indicative of a single population of

[*H]nisoxetine binding sites. The rank order of potency of all the drugs tested against
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Figure 4.11: Inhibition of [’H|Nisoxetine Binding by Amine Uptake
Inhibitors.

The data represent a typical experiment in (a) adrenal medulla and (b) cerebral
cortical membranes. pK; values for competing drugs were determined from at least

three independent parallel experiments (Table 4.2).
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Adrenal Medulla Membranes

Cerebral Cortex Membranes

Inhibitors pK; nH pKi nH
Nisoxetine 8.43 +0.01 0.93 +0.07 8.43+0.01 0.95 + 0.06
DMI 8.26 +0.04 0.90+£0.03 8.51+0.22 0.99 + 0.07
Nomifensine 7.49 4+ 0.08 0.88+0.12 7.53 £0.03 0.89 +0.08
Mianserin 6.85 +0.06 0.95+0.05 6.85 £ 0.05 0.88 +0.08
Fluoxetine 6.06 +0.02 1.00 +0.07 6.05+0.03 1.03 +£ 0.06
Citalopram 542 +0.04 096+ 0.04 542 +0.04 0.99 + 0.03
Substrates

Noradrenaline 5.59 +0.09 0.95+0.06 5.59+0.12 0.89+0.12
Dopamine 4.61+0.02 0.91 £0.06 4.61+0.03 0.93+0.06
5-HT <4 nd <4 nd

Table 4.2: Pharmacology of ['H|Nisoxetine Binding.

The affinity values were determined from the inhibition of 0.50nM [*H]nisoxetine
binding to rat adrenal medulla and cerebral cortex membranes. The results are
expressed as pK; values and Hill slope (nH) for a single site logistic fit. Values
shown are the mean + s.e.mean. Data represents the results from at least three

independent experiments. nd represents those factors that were not determined.
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Figure 4.12: Correlation of Affinities of [H]nisoxetine Binding in

Rat Adrenal Medulla and Cerebral Cortical Membranes.

Affinities for inhibition of [*H]nisoxetine binding were determined from at least
three experiments (Table 4.2). The correlation coefficient (r) obtained by linear
regression analyses of the data was 0.999 (p<0.0001, degrees of freedom = 7) with a
slope of 1.03 £ 0.02 which is not significantly different from 1 (Student’s t-test).
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[*H]nisoxetine binding in adrenal medulla and cerebral cortex membranes
was nisoxetine = desmethylimpramine (DMI) > nomifensine > mianserin >
fluoxetine > noradrenaline > citalopram > dopamine > 5-HT (Table 4.2).
Comparison of drug affinities between adrenal medulla and neocortical membranes,
show a very good correlation (r = 0.999, Figure 4.6), with no one drug being
significantly different in affinity between the two membrane preparations (P>0.05,

Table 4.2).

4.3 Discussion

The initial aim of this chapter was to pharmacologically characterise SERT
protein sites in the rat adrenal gland and to confirm their distribution using
[BH]paroxetine autoradiography and Western blot analysis. The pharmacological
characterisation used the most selective of the SSRIs, citalopram, in membrane
radioligand binding studies. The binding of [*H]citalopram to both adrenal medulla
and cerebral cortex membranes was reversible, saturable and of high affinity. The Kp
and B« values were similar in their respective kinetic, saturation and competition
studies in both membrane preparations (Figures 4.2 & 4.4). A high density of
[3H]citalopram binding sites was found in rat adrenal medulla (including inner

cortex) membranes corresponding to a B, value of 657 + 28 fmoles mg"' protein

(2.5 fold lower than in cerebral cortex membranes) and a pKp value of 8.85 + 0.02
(Figure 4.4). No specific binding could be detected in the adrenal capsular region,
even when using 10 times more protein than required for assays with adrenal medulla
membranes. A high density of [*H]citalopram binding sites were identified in platelet
membranes (approximately 10 fold higher than in cerebral cortex) with the same
affinity as adrenal medulla and cerebral cortex membranes (Figure 4.3). It was
necessary to use two further incubation and centrifugation steps in the platelet
membrane preparation for [*H]citalopram binding (section 3.2.2.5). The use of this
extended membrane preparation in adrenal or brain membranes, compared to
standard brain and adrenal membrane preparations, resulted in no change in specific
[3H]citalopram binding (Figure 4.1). This further confirms the lack of [BH]citalopram

binding sites in the adrenal capsular region.
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In adrenal medulla membranes, the rank order of affinity for amine uptake
inhibitors was paroxetine > citalopram > fluoxetine > nisoxetine > DMI >
nomifensine (Table 4.1). Of all the drugs tested, each had a Hill coefficient of close
to unity suggesting the binding to one population of binding sites (Table 4.1). Thus
potent inhibitors of 5-HT uptake, such as the SSRIs; paroxetine, citalopram and
fluoxetine had high affinity for [’H]citalopram binding sites whereas inhibitors of
noradrenaline and dopamine uptake (nisoxetine and nomifensine respectively) had
low affinity. DMI, which has affinity for both NET and SERT (a higher affinity for
the former), had a lower affinity than the SSRIs, which is comparable to binding at
SERT (Figure 4.5; Owens et al., 1997). Of the amine substrates tested, S-HT had
much higher affinity than either dopamine or noradrenaline (Table 4.1).

In parallel comparative experiments, [3H]citalopram binding in brain cortex
membranes gave a pKp value of 8.80 + 0.05, which was not statistically significantly
different to the affinity in adrenal medulla membranes. Moreover, the rank order of
all the drugs tested in neocortical membranes was the same as in adrenal medulla
membranes (Table 4.1). Comparison of affinities displayed an excellent correlation
(Figure 4.6). A similar pharmacological profile was also obtained in platelet
membranes (Table 4.1). The pharmacological profile of [*H]citalopram binding in
adrenal medulla membranes is therefore consistent with SERT binding in brain and
platelet membranes (Plenge & Mellerup, 1991; Owens et al., 1997). A recent report
has shown a high density of fluoxetine and DMI sensitive [*H]citalopram binding
sites in the rat adrenal medulla (Pahkla & Rigo, 1997). However a limited range of
drugs were tested, including reserpine and -carbolines, and the authors did not make
a clear conclusion as to the nature of these [*H]citalopram binding sites. In my study
a spectrum of amine transporter uptake inhibitors and a number of substrates were
tested in direct comparison to [*H]citalopram binding in the brain. This enabled the
conclusion that the [3H]citalopram binding sites identified in the rat adrenal gland,
represented SERT binding sites as in the brain.

The presence and distribution of SERT in the rat adrenal gland has been
investigated in some other studies. In situ hybridisation mRNA experiments have
revealed the adrenal medulla as a potential site for significant SERT expression

(Hoffman ez al., 1991 and Blakely ez al., 1994). Recently ['*I]RTI-55 has been used
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in autoradiographic experiments, and potential SERT expression shown in the rat
adrenal medulla (Schroeter et al., 1997). This ligand has very high affinity for SERT,
but despite showing low affinity for NET, has a similar high affinity for the
dopamine transporter (DAT; Boja et al., 1992; Silverthorn et al., 1995). DAT,
however, has immunohistochemically been shown to be present in the rat adrenal
medulla (Mitsuma er al, 1998). Therefore it was important to confirm SERT
expression and distribution using a more selective ligand. Multiple specific
radioligands have been evaluated for the anatomical mapping of SERT expression in
rat brain, including [SH]citalopram (Lidlow et al., 1989) and [3H]par0xctine (Chen et
al., 1992). Using the former, SERT expression was confirmed in rat adrenal medulla
membranes, and the latter used for autoradiographic distribution experiments. A high
density of SERT autoradiographic binding sites were found in the adrenal medulla
(220 % 20 fmoles mg™' tissue), with negligible such sites in the surrounding cortical
area (7 + 6 fmoles mg"' tissue; Figure 4.7). Using both membrane and
autoradiographic binding techniques, no evidence was found for SERT expression in
the capsular region (including the zona glomerulosa).

To aid the autoradiographic and membrane binding studies to determine if
SERT is present in the adrenal capsules, an immunological approach was also
adopted. Using the mouse anti-SERT monoclonal antibody (described in chapter 2),
SERT immunoreactivity was specifically detected in adrenal medulla and brain
cortex with an apparent molecular weight of 76 kDa (Figure 4.8). SERT
immunoreactivity was also detected in platelets at 94 kDa (Figure 4.8). This is in
agreement with brain and platelet studies in chapter 2 and also by others (e.g. Qian et
al., 1995). No immunoreactivity was observed in adrenal capsules using larger
quantities of tissue (Figure 4.8), confirming the results obtained by [SH]citalopram
binding. The specificity of SERT immunodetection was confirmed by the lack of any
staining in the cerebellum or liver, two tissues which are known to show negligible
SERT expression (Figure 4.8; Steinbusch, 1984; Qian et al., 1995).

The presence of residual platelets from the adrenal medullary blood supply
could account for the detection of SERT in the adrenal medulla, especially as the
pharmacology of their binding sites are identical (Table 4.1). The difference in size

of SERT between the adrenal medulla and platelets as determined by Western blots
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is particularly important. Though this difference in size may be explained by the
differing degrees of glycosylation (see chapter 2), it indicates that there is no
contamination of adrenal SERT with platelet SERT. Furthermore the method for
membrane [*H]citalopram binding in rat adrenal medulla membranes does not reveal
any specific binding in platelet membranes (Figure 4.1). Therefore, despite the
identical pharmacology of platelet and adrenal [*H]citalopram binding sites (Table
4.1), the detection of SERT in the adrenal medulla by radioligand binding or
immunological methods is not due to the presence of platelets. These studies suggest
that the pharmacology of the SERT located peripherally in the adrenal medulla is
indistinguishable from SERT found in the CNS or SERT found on platelets.
[*H]Nisoxetine binding assays were developed to specifically label NET. The
binding of [3H]nisoxctine to both adrenal medulla and cerebral cortical membranes
was reversible, saturable and of high affinity. The Kp and Bp.x values were similar in
their respective kinetic, saturation and competition studies in both membrane
preparations (Figures 4.9 & 4.10). A relatively low density of [*H]nisoxetine binding
sites was found in the rat adrenal medulla (including inner cortex) membranes with a

B,... Value of 84.67 + 4.34 fmoles mg ' protein (~6 fold lower than in cerebral cortex

membranes) and a pKp value of 8.43 + 0.01 (Figure 4.10).

In adrenal medulla membranes, the rank order of affinity for amine uptake
inhibitors was nisoxetine = DMI > nomifensine > mianserin > fluoxetine >
citalopram (Table 4.2). Of all the drugs tested, each had a Hill coefficient of close to
unity suggesting the binding to one population of binding sites (Table 4.2). Thus
potent inhibitors of noradrenaline uptake, such as nisoxetine and DMI, had high
affinity for ["H]nisoxetine binding sites whereas inhibitors of serotoninergic and
dopamine uptake (citalopram and fluoxetine, and nomifensine respectively) had
lower affinity (Figure 4.11; Table 4.2). Of the amine substrates tested, noradrenaline
had much higher affinity than either dopamine or 5-HT (Table 4.2). This would
suggest that ["H]nisoxetine binding had labelled and detected the NET protein in the
rat adrenal medulla membranes, albeit at a low density. In parallel comparative
experiments, [*H]nisoxetine binding in brain cortical membranes gave a pKp value of
8.43 = 0.01, which was not statistically significantly different to the affinity in

adrenal medulla membranes. Moreover, the rank order of all the drugs tested in

160



neocortical membranes was identical to in the adrenal medulla membranes (Table
4.2). The comparison of affinities displayed a very good correlation with no one drug
being statistically different between adrenal medulla and brain membranes (Figure
4.12; Table 4.2). This shows that the pharmacology of the NET located peripherally
in the adrenal medulla is indistinguishable from NET found in the CNS. Indeed a
similar pharmacology has been shown in previous studies in the CNS (Tejani-Butt et
al., 1990; Tejani-Butt, 1992; Cheetham et al., 1996). These studies show that 5-HT
re-uptake sites are pharmacologically distinquishable from noradrenergic re-uptake
sites in both the brain and adrenal medulla.

The confirmation of high levels of SERT protein in the rat adrenal medulla
raises the question as to role of the transporter in this peripheral organ. Adrenal
physiology shows blood moving in one direction to a central single vein within the
medulla of the rat adrenal gland (Nussdorfer, 1980; Breslow, 1992). The specific
location of SERT in the medullary region of the adrenal gland may serve as the
uptake machinery for 5-HT in the blood. SERT is therefore positioned where 5-HT is
potentially most concentrated. Furthermore the evidence supporting chromaffin cell
5-HT synthesis is indirect. After in vitro precursor loading, 5-HT has been detected
in the adrenal gland (Holzwarth et al, 1984). Although this suggests local
biosynthesis, others have suggested that mast cell 5-HT biosynthesis could account
for these findings (Hinson ef al., 1989). This may explain why very low levels of
tryptophan hydroxylase (TPH) mRNA are detected by PCR techniques in the adrenal
gland (Vandenbergh er al., 1991). However, the authors of this above study could not
rule out the possibility of a post-translational modified form of TPH (Kim er al.,
1991). In a more recent study the lack of any TPH protein has been confirmed
immunologically (Schroeter et al., 1997). The lack of TPH suggests de novo
synthesis of 5-HT in the rat adrenal gland does not occur.

Adrenal 5-HT accumulation could possibly involve a mechanism involving
NET, since these transporters are expressed by chromaffin cells, and will transport 5-
HT (Thoa et al., 1969). However, recent studies indicate only a low level of plasma
membrane catecholamine transport activity in the intact adrenal gland resulting from
corticosteroid suppression of NET gene expression (Wakade er al., 1996).

Furthermore the low affinity of 5S-HT for NET (Pacholczyk er al., 1991) suggests an
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alternative mechanism for adrenal 5-HT accumulation. The confirmation of a high
density of SERT protein in the adrenal medulla, compared to the lower density of the
pharmacologically distinct NET, as shown in this chapter, supports the hypothesis
that SERT mediated 5-HT plasma membrane transport, may be involved in loading
chromaffin granules with 5-HT for later release (Blakely et al., 1994). Chromaffin
secretory granules, within chromaffin cells, possess large quantities of
catecholamines, and are packaged by vesicular monoamine transporters (VMATS;
Edwards, 1992). These transporters are less selective than plasma membrane
transporters and can transport 5-HT with high affinity. It is known that chromaffin
granule fusion can significantly elevate the free plasma concentration of 5S-HT above
nanomolar concentrations (Verhofstad & Jonsson, 1983; Holzwarth & Brownfield,
1985), about the Kp for a number of 5-HT receptors (Boess & Martin, 1994). These
previous studies thus suggest that 5-HT may be transported across the plasma
membrane from blood and further concentrated by VMAT in chromaffin secretory
granules before release. This mechanism is analogous to those involved in the
uptake, storage and secretion of 5-HT by platelets where SERT is also known to be
expressed (Rudnick, 1977; Gillis & Pitt, 1982; Stoltz, 1985).

Within the adrenal gland it is known that 5-HT stimulation of the cells of the
adrenal cortex and zona glomerulosa causes the secretion of steroids (Racz et al,
1979; Rocco et al., 1990; Rocco et al., 1992). Is it also known that this stimulation of
steroid secretion is mediated by a variety of 5-HT receptors in these adrenal cell
types (Williams et al., 1984; Matsouka et al., 1985; Lefebvre et al., 1992; Welch &
Saphier, 1994). The discovery of SERT protein in the rat adrenal medulla suggests a
potential regulatory mechanism for steroid secretion. It was perhaps surprising that
the adrenal capsular region, which includes the zona glomerulosa layer where many
of these receptors are located, did not therefore contain SERT. However in a recent
study, the most intense SERT immunolabelling was found in medullary chromaffin
cells in close proximity to steroid synthesising cells of the cortex, suggesting a
paracrine interaction between the two cell types mediated by 5-HT (Schroeter et al.,
1997).

162



44 Summary

A [’H]citalopram binding assay was developed to label SERT. A high density
of binding sites specifically located in the rat adrenal medulla was revealed, with a
pharmacological profile identical to brain and platelet SERT. The specific location of
SERT in the adrenal medulla was confirmed using autoradiographic and
immunological techniques.

A [PH]nisoxetine binding assay was developed to specifically label SERT.
Studies. A low density of binding sites in the rat adrenal medulla with a

pharmacological profile identical to brain NET was identified.
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CHAPTER 5

CHARACTERISATION OF 5-HT RECEPTOR RADIOLIGAND
BINDING ASSAYS
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In the previous chapter radioligand binding assays were characterised for the
5-HT and noradrenaline transporters. In this chapter, binding assays were established
for the 5-HTa receptor and developed for 5-HT; and 5-HT,p/p receptors. The
purpose of these experiments was to use such assays to measure possible changes in
receptor density and affinity after chronic antidepressant treatments and repeated
MDMA administration (chapters 6 & 7).

The 5-HT;a receptor was one of the original 5-HT receptors characterised.
Previous studies have used the 5-HT,a receptor agonist, 8-OH DPAT to radiolabel
this 5-HT receptor sub-type (Gozlan et al., 1983). [’H]8-OH DPAT binding to rat
brain membranes was therefore pharmacologically characterised prior to drug
treatments to ensure specific labelling of 5-HT 4 receptors.

The most recent addition to the 5-HT receptor family is the 5-HT; receptor.
The cDNA encoding this 5-HT receptor sub-type has been sequenced from a number
of species including; mouse (Plassat et al., 1993), guinea-pig (Tsou et al., 1994),
human (Bard er al., 1993; Heidmann er al., 1997; Jasper et al., 1997), and rat
(Lovenberg et al., 1993a; Meyerhof et al., 1993; Ruat et al., 1993b; Shen et al.,
1993). At present, however, there are no commercially available selective 5-HT;
receptor ligands. The identification of 5-HT7 binding sites has been established using
the protocol of rank order of agonist and antagonist potency at recombinant receptors
(Sleight .et al., 1995b; Eglen et al., 1997). The expressed recombinant 5-HT;
receptor has; high affinity (pK; 8.0-10.00) for the agonists 5-CT, 5-HT, and 5-MeOT,
and the 5-HT»a/2p/2c antagonist mesulergine, moderate affinity (pK; 6-7.9) for the 5-
HT,4282c antagonist ritanserin, the ‘selective’ 5-HT 4 agonist 8-OH DPAT, the non-
selective antagonists methysergide and ergotamine, and low affinity (pK; <6.0) for
the 5HTang antagonists pindolol and cyanopindolol (Table 5.1). Several
antipsychotic compounds, including pimozide and clozapine also display high to
moderate affinity for the cloned 5-HT; receptor (Roth ef al., 1994; Table 5.1). These
attributes comprise a unique pharmacological profile for the 5-HT; receptor, which
distinguishes it from closely related receptors such as the 5-HT) 4 receptor (Hoyer et
al. 1994; To et al., 1995; Table 5.2).

Though the pharmacology of 5-HT; receptors has been characterised using

recombinant receptors, the development of a radioligand binding assay to selectively
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label a population of native 5-HT; receptors has proved difficult. Studies have been
performed using the endogenous ligand, 5-HT, as a radiolabel. 5-HT has similar
affinity for a variety of 5-HT receptors (Table 5.2) and therefore selective binding to
5-HT7 receptors requires the use of masking agents to block binding to other 5-HT
receptor sub-types. Previous studies have used this ligand (in the presence of the 5-
HT a1 and PB-adrenoreceptor ligand (+)-pindolol to reduce non-5-HT; receptor
ligand binding) in an attempt to label native 5-HT; receptors in rat hypothalamus.
Shallow competition curves for a number of compounds were indicative of labelling
a heterogeneous population of binding sites in these studies (Sleight et al., 1995a;
Gobbi et al., 1996). Indeed a more recent study using [3H]5—HT in the presence of
3uM pindolol, a saturating concentration to block all 5-HTa,p binding, again
revealed very low Hill coefficients for some compounds confirming the non-specific
labelling of 5-HT receptors (Clemett ez al., 1999).

The higher potency of 5-CT in functional models (Leung er al., 1996;
Lovenberg et al., 1993a; Martin & Wilson, 1995; Terrén, 1996, 1997a & 1997b;
Terrén & Falcén-Neri, 1999), in conjunction with its higher affinity at 5-HT;
receptors, high affinity at 5-HTa/1p1p and 5-htsa receptors and low affinity at other
5-HT receptors (5-HT gnr2ancuss and 5-HTg receptors; Table 5.2) suggest that the
radioligand binding of this ligand in comparison to [*H]5-HT might be less complex
(Hoyer et al., 1994). The use of this relatively more selective radioligand in the
presence of (-)cyanopindolol (1uM) and sumatriptan (1uM), to block binding to 5-
HT4 and 5-HT g/ p receptors, labelled a single population of receptors in guinea-pig
cerebral cortex membranes, which displayed a pharmacological profile broadly
comparable to recombinant 5-HT; receptors (To ez al., 1995; Boyland et al., 1995;
Table 5.3). [3H]5-CT binding in rat cerebral cortex homogenates, using the same
masking conditions, was to a heterogeneous receptor population, as revealed by
shallow competition curves for some compounds (eg. methiothepin; Boyland et al.,
1995; Table 5.3). In a study using rat whole brain membranes [PH]5-CT in the
presence of 10pM pindolol and 100nM WAY100635 was used to label a
homogenous population of receptors which correlated well to binding at the 5-HT;
receptor (Stowe & Barnes, 1998b; Tables 5.1, 5.2 & 5.3). Using such masking
agents, [3H]S-CT binding to 5-HT;4 and 5-HT;p receptors would be blocked. 5-CT
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also binds to 5-HT)p receptors with high affinity, although this receptor is in low
abundance in the rat whole brain (Bruinvels et al., 1993a & b). However in certain
brain regions, such as the striatum, 5-HT,p receptors are in relatively greater
abundance (Bruinvels et al., 1993a & b). In such brain regions it is therefore unlikely
that a homogeneous population of receptors would be identified using the masking
agents employed by Stowe & Barnes (1998b). In this chapter, conditions were
established for [*H]5-CT selective binding to the 5-HT7 receptor in the individual
brain areas of the cortex, hippocampus and striatum.

Despite the shortfalls of the blocks used in earlier experiments, [’H]5-CT has
been used to autoradiographically visualise the 5-HT; receptor in rat and/or guinea
pig brain (Waeber and Moskowitz, 1995a; Gustafson et al., 1996). 5-HT; mRNA
expression appears to correlate well with 5-HT7 receptor binding densities
(Lovenberg et al., 1993a; Ruat et al., 1993b; Shen et al., 1993). Highest
concentrations of 5-HT; mRNA exist in the hypothalamus, cortex, hippocampus,
striatum, brainstem and thalamus of the rat brain, as demonstrated by Northern blot
analysis and in situ hybridisation experiments (Lovenberg et al., 1993a; Ruat et al.,
1993b; Shen et al., 1993; Table 5.3). In this chapter, the 5-HT; binding assay
conditions established and evaluated in membrane binding studies were also adapted
for use in [’H]5-CT autoradiography experiments to assess the distribution of the 5-
HT5 receptor in the rat brain.

The 5-HT)p and 5-HTp receptors have become of particular interest recently,
because of their apparent role in migraine and hypothesised roles in depression and
diseases involving the basal ganglia (Saxena and Ferrari, 1989; Peroutka, 1990b;
Waeber et al., 1990; Moskowitz, 1992; Rebeck et al., 1994;). 5-HT g receptors are
present in rat brain at much higher densities than 5-HTp receptors (Bruinvels et al.,
1993), with 5-HTp receptors reaching a maximum density in brain structures such as
the substantia nigra, globus pallidus and caudate-putamen (Bruinvels ef al., 1993a &
b). At present there are very few ligands that can selectively differentiate between 5-
HT,g and 5-HT)p receptors or these receptors and other 5-HT receptor sub-types.
GR125, 743 is one of the most recent 5-HT;p,p receptor antagonists with a high
affinity and marked selectivity over other 5-HT receptor subtypes (Scopes et al.,
1994). The radiolabelled form of GR125,743 has been successfully used to
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characterise human and guinea pig 5-HTp,p receptors (Audinot et al., 1997,
Doménech er al., 1997). Finally, the binding of [BH]GR12S,?43 in rat cortex,

hippocampus and striatum membranes was also characterised in this chapter.

5.1 Methods

[3H]8-0H DPAT binding assays, to label 5-HT 4 receptors, were conducted
as described in chapter 3, adapting a previously reported method (Gozlan er al.,
1983). [*H]5-CT binding assays, to label 5-HT; receptors, were conducted as
described in chapter 3. As [’H]5-CT is a non-selective ligand, the use of masking
agents to block binding to non-5-HT; receptors was investigated. The rationale for
the use of such blocks is described throughout the appropriate results sections. In
order to visualise the distribution of 5-HT; receptors, ["H]5-CT autoradiography
experiments were performed using the masking agents that would block non-5-HT>
receptor membrane binding. [*H]5-CT autoradiography experiments were performed
using adult male Wistar Cobb rats (200-300g; bred in-house; Department of
Neuroscience, University of Edinburgh), as described in chapter 3. ["H]JGR125,743

binding to label 5-HTg/ip receptors was performed as described in chapter 3.

5.2 Results
5.2.1 [’H]8-OH DPAT Binding Assays

5.2.1.1 Time Course of ["H]8-OH DPAT Binding to Rat Cerebral
Cortex and Hippocampus Membranes

A time course (0-90 min) of [°’H]8-OH DPAT (0.25nM) binding to rat
cerebral cortex and hippocampus membranes was carried out at 37°C. Equilibrium
was attained by 15 min being stable for at least another 75 min (Figure 5.1a). Curve
fitting using non-linear regression gave an observed constant (Kqps) of 0.189 + 0.0118
min”' with a tip of 6.46 £ 1.31 min (n=3) in cerebral cortex membranes, and an
observed constant (Keps) Of 0.2977 + 0.046 min™ (n=3) with a t;,; of 3.75 + 0.29 min
(n=3) in hippocampus membranes. Dissociation was initiated after addition of 10pM
5-HT following incubation for 30 min at 37°C, and followed first order kinetics with

atjpof 6.94 +0.37 and 4.54 + 0.60 min (Figure 5.1b) and a dissociation rate constant
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Figure 5.1: Time Course & Protein Linearity of ["H]8-OH DPAT
Binding.

The data represent typical (a) time course, and (b) dissociation experiments, and (c) a single
protein linearity experiment. Graphs on the right hand side, represent the semilogarithmic
transformations of the data. Experiments were performed as described in the text, with mean

data obtained from three experiments also in text.
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(k1) of 0.139 + 0.002 and 0.210 + 0.021 min' (n=3) in cerebral cortex and
hippocampus membranes respectively. Subsequent calculation gave an association
rate constant (k;;) of 0.211 + 0.033 and 0.3832 + 0.167 min'M™' in cerebral cortex
and hippocampus membranes respectively. The data from these time course
experiments gave an equilibrium constant (Kp) of 0.692 + 0.127 and 0.995 + 0.586
nM in cerebral cortex and hippocampus membranes respectively. In the following
competition experiments [’H]8-OH DPAT (0.25nM) binding to rat cortex and

hippocampus membranes was carried out at equilibrium at 37°C for 30 min.

5.2.1.2 Effect of Membrane Protein Concentration on [’H]8-OH
DPAT Binding to Rat Cerebral Cortex and Hippocampus

Membranes

Specific [’H]8-OH DPAT binding was dependent on membrane protein
(Figure 5.1c) and was linear up to the concentrations measured (~300pg
protein/assay). Subsequent experiments were conducted with 40-160pg cerebral
cortex or 10-60pg hippocampus membrane protein, to ensure that less than 10% of

added ligand was bound whilst maintaining a workable amount of specific binding.

5.2.1.3 Concentration Dependence of [’H]8-OH DAT Binding to
Rat Cerebral Cortex and Hippocampus Membranes

Hot saturation analysis of [*’H]8-OH DPAT binding to rat cerebral cortex and
hippocampus membranes was carried out using increasing concentrations of [PH]8-
OH DPAT (Figure 5.2a). Curve fitting using a logistic model gave an equilibrium
dissociation constant (Kp) of 0.41 = 0.13 nM and a binding site density (Bay) of
0.29 + 0.02 pmol mg' protein (n=3) in cerebral cortex membranes. In hippocampus
membranes hot saturation analysis gave a similar dissociation constant (Kp) of 0.45
#+0.17 nM and a higher binding site density (Bmax) of 0.75 = 0.08 pmol mg" protein
(n=3). Hill Slopes of 0.91 + 0.08 and 1.06 + 0.03 in hippocampus and cortex
membranes (n=3), were consistent with binding to one population of binding sites.

Competition binding studies using 0.25nM [’H]8-OH DPAT and increasing
concentrations of unlabelled 8-OH DPAT (0.003-100nM) (Figure 5.2b), gave Kp
values of 0.69 + 0.34 and 0.37 £+ 0.13 nM and B, values of 0.41 = 0.11 and 0.74 +
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Figure 5.2: Concentration Dependence of Specific [’H]8-OH DPAT
Binding.
The results represent (a) hot saturation and (b) cold saturation experiments with each

point performed in duplicate. See text for mean values.
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0.13 pmol mg™' protein with Hill coefficients of 0.87 + 0.10 and 1.00 + 0.03 (n=3) in
cerebral cortex and hippocampus membranes respectively. This was is in reasonable

agreement with data obtained from both ‘hot’ saturation and time course studies.

5.2.1.4 Pharmacology of [’"H]8-OH DPAT Binding Sites in Rat
Cerebral Cortex and Hippocampus Membranes

The pharmacology of [’H]8-OH DPAT binding was assessed in both cerebral cortex
and hippocampus membranes using 8-OH DPAT (5-HT o agonist), WAY 100635 (5-
HT,s antagonist), DP-5-CT (5-HTanp agonist) and cyanopindolol (5-HTans
antagonist). The rank order of affinity was the same in both membrane preparations:
DP-5-CT > 8-OH DPAT > WAYI100635 > cyanopindolol > any of the
antidepressants and MDMA tested (Table 5.4; Figure 5.3). The affinity values were
not significantly different between the two brain areas (P>0.05) and agreed with
published binding at 5-HT;n receptors. Furthermore the Hill slopes of each
compound were not significantly different from unity (P>0.05; Table 5.4),

suggesting binding to a single population of binding sites.

5.2.2 [’H]5-CT Binding Assays

5.2.2.1 Time Course of [’H]5-CT Binding to Rat Cerebral
Cortex Membranes

A time course (0-90 min) of [3H]5—CT (0.25nM) binding to rat cerebral cortex
membranes was carried out at 25°C, with equilibrium attained by 30 min being stable
for at least another 60 min (Figure 5.4a). Curve fitting using non-linear regression
gave an observed constant (Kops) of 0.130 + 0.008 min™ (n=3) with a t;; of 5.044
0.021 min (n=3). Dissociation was initiated after addition of 10uM 5-HT following
incubation for 60 min at 25°C, and followed first order kinetics with a t;, of 7.575 +
0.202 min (Figure 5.4b) and a dissociation rate constant (k.;) of 0.094 + 0.002 min”'
(n=3). Subsequent calculation gave an association rate constant (k;;) of 0.148 =
0.032 min"'M'. The data from these time course experiments gave an equilibrium

constant (Kp) of 0.684 + 0.124 nM. In the following competition experiments
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Figure 5.3: Inhibition of [°’H]8-OH DPAT Binding.
The data represent a typical experiment in (a) cerebral cortex & (b) hippocampus

membranes. Mean data from at least three different experiments (Table 5.4).
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Cerebral Cortex Hippocampus
Membranes Membranes
n pK;i nH n pK; nH

3-HT s
Receptor Drugs
8-OH DPAT 3 928+£022 087Tx010 3 930x£0:19 1.00%0.03
WAY 100635 3 914003 102+£0.03 3 9.14+020 1.06+0.05
DP-5-CT F 973005 106006 3 9979003 110%0.07
Cyanopindolol 3 8.05+0.04 099+009 3 802+0.14 098=+0.02
Antidepressants
Citalopram 3 493+002 096+£0.02 3 5.00+£0.06 1.00+0.07
Fluoxetine 3 462+001 1.07+£005 3 459+£006 1.06+0.02
Tianeptine* 3 No affinity 3 No affinity
Neurotoxin
MDMA 3 5.18+002 093+001 3 516+0.02 0.99+0.04

Table 5.4: Pharmacology of [’H]8-OH DPAT Binding in Rat

Cerebral Cortex and Hippocampus Membranes.

The affinity values were determined from the inhibition of 0.25nM [°*H]8-OH DPAT
binding to rat cerebral cortex and hippocampus membranes. The results are
expressed as pK; values and Hill slopes (nH) for a logistic fit. Values shown are the

mean * s.e.mean. * = tianeptine tested up to 1mM.
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Figure 5.4: Time Course and Protein Linearity of [’H]5-CT Binding.

The data represent typical (a) time course, and (b) dissociation experiments, and (c) a

single protein linearity experiment. Graphs on the right hand side, represent the

semilogarithmic transformations of the data. Experiments were performed as

described in the text, with mean data obtained from three experiments also in text.
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[*H]5-CT (0.25nM) binding to rat cortex membranes was carried out at equilibrium

at 25°C for 60 min.

5.2.2.2 Effect of Membrane Protein Concentration on [*H]5-CT
Binding to Rat Cerebral Cortex Membranes

Specific [’H]5-CT binding was dependent on membrane protein (Figure 5.4c¢)
and was linear up to the concentrations measured (~300pg protein/assay).
Subsequent experiments were conducted with 25-50ug membrane protein to ensure
that less than 10% of added ligand was bound whilst maintaining a workable amount

of specific binding.

5.2.2.3 Concentration Dependence of [’H]5-CT Binding to Rat
Cerebral Cortex Membranes

Hot saturation analysis of [3H]5-CT binding to rat cerebral cortex was carried
out using increasing concentrations of [*H]5-CT (Figure 5.5a). Curve fitting using a
logistic model gave an equilibrium dissociation constant (Kp) of 0.57 + 0.09 nM,
binding site density (Bmax) of 1.48 + 0.22 pmol mg™' protein and a Hill slope of 0.92
+ 0.11 (n=3). This Hill slope was not significantly different from unity (P>0.05), and
is consistent to binding to one population of binding sites or a number of receptors
with similar affinity.

Competition binding studies using 0.25nM [’H]5-CT and increasing
concentrations of unlabelled 5-CT (0.01-300nM) (Figure 5.5b), gave a Kp of 0.58 =
0.02nM and a By« of 1.33 + 0.08 pmol mg'l protein with a Hill coefficient of 1.01 *
0.05 (n=12). This was is in reasonable agreement with data obtained from both

‘hot’saturation and time course studies.

5.2.24 Pharmacological Profile of [’H]5-CT Binding Sites in
Rat Cortex Membranes: Blockade of the 5-HT;, Component of
Binding

Competition studies using [’H]5-CT were used in conjunction with drugs that

have high affinity at 5-HT;, receptors, to block the 5-HT;5 component of [3H]5—CT

binding. Unlabelled 5-CT was included in each experiment to enable calculations of
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Figure 5.5: Concentration Dependence of Specific [3H]S—CT Binding.
The results represent (a) hot saturation and (b) cold saturation experiments with each

point performed in duplicate. See text for mean values.
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pK; values. Both 5-CT and 5-HT inhibited binding fully with Hill slopes not different
from unity and best fitted a one-site model of binding (Figure 5.6a; Table 5.5).
Cyanopindolol (5-HT)a/p antagonist), DP-5-CT (5-HTa/p agonist), 8-OH DPAT
(5-HT, s agonist), and WAY 100635 (5-HT, s antagonist) all inhibited binding fully
when used at concentrations up to 100uM (Figure 5.6a). However curves gave Hill
slopes significantly less than 1, and best fit a two site model of binding (Table 5.5).
The proportion of high affinity sites was approximately 60% for DP-5-CT,
Cyanopindolol, WAY100635 and 8-OH DPAT, with approximately 40%
constituting the low affinity site (Table 5.5). The affinities of the high affinity site for
each of the compounds tested is indicative of binding at 5-HT;a receptors (Table
5.5). The small difference (<200 fold) in ICsy values between the high and low
affinity sites for cyanopindolol and 8-OH DPAT, as indicated by moderately low Hill
slopes (0.60-0.80), made it difficult to graphically determine a concentration that
could be used to only block the high affinity component of binding, i.e. binding to 5-
HTs receptors. On the otherhand for DP-5-CT and WAY100635, the larger
separation of ICsps (>1000 fold) between the high and low affinity sites, as indicated
by low Hill slopes (<0.60), made it much easier to graphically determine a
concentration that could be used to block the high affinity component of binding.
Whereas DP-5-CT started to plateau between 5 and 50nM, WAY 100635 reached a
more obvious plateau between 100nM and 1uM due to the greater ICsy separation of
high and low affinity binding sites (Figure 5.6a). Inhibition binding curves were
subsequently generated for WAY 100635 between 0.01nM and 1uM. Analysis of this
WAY100635 sensitive component of [°’H]5-CT binding revealed one population of
binding sites, with a pK; value of 8.91 = 0.02, indicative of binding to 5-HTa
receptors (Table 5.5). The inhibition binding profile of WAY 100635 reached a
plateau between 100nM and 1uM (Figure 5.6b). At the level of the plateau, [PH]5-CT
binding was reduced by 61.65 + 0.99% (n=12). In subsequent experiments 200nM
WAY100635 was used to block binding to 5-HT; 4 receptors and to monitor the level

of the 5-HT 4 receptor block within and between experiments.
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Figure 5.6: The Effect of 5-HT;, Receptor Ligands on Inhibition of
[*H]5-CT Binding in Rat Cortex Membranes.

The data represent a typical experiment (a) single points and (b) duplicate points with

mean data from at least three different experiments (Table 5.5)
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Table 5.5: Inhibition of [’H]5-CT Binding to Rat Cortex Membranes

by 5-HT,;, Receptor Ligands.

Single site fit Two site fit
Competing
ligand n pK; nH pICso %

5-CT 12 9.23+0.02 098 +0.02

High 9.07+0.02 99.20+0.08

Low 33 1-EU2S 103 3:10.54
5-HT 8 8.53x003 099+0.03

High 846+0.11 9745+2.51

Low 6.14+£020 321+2.12
DP-5-CT* 8 853+0.04 0.30+0.02

High 9.69+0.15 61.25+251

Low 51934021 40751 53
WAY100635* 12 843+002 0.69+0.11

High 8.81+£0.16 61.30+2.51

Low 4.05+0.25 40.27 +2.58
8-OH DPAT* 8§ 8.07x0.04 0.67=x0.03

High 876 +0.25 65.23+3.28

Low 649 +£031 37.85%x4.21
Cyanopindolol* 8  7.69+0.17 0.76 £0.02

High 820021 © 58254352

Low 6.46 +0.28 39.71 £5.65

Analysis of data up to 1pM %oInhibition by 200nM

WAY100635 12 891002 1.00+0.03 61.65+0.99

The affinity values were determined from the inhibition of 0.25nM [3H]5-CT to rat
cerebral cortex membranes. The results are expressed as pK; values and Hill slope for
a one site fit, and for a two site fit the pIC50 and % contribution of each component
is given. Values shown are the mean + s.e.mean. * Statistically better at fitting a two

site model (F test, p <0.0001)
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N2 Pharmacological Profile of [’H]5-CT Binding Site in Rat
Cortex Membranes in the Presence of 200nM WAY100635

Using conditions which allowed blockade of [3H]5—CT binding to 5-HT A
receptors (above), the proportion of [3H]5-CT binding to 5-HT;g and 5-HTp
receptors in rat cortex membranes was determined. Unlabelled 5-CT was included in
each experiment to enable calculations of pK; values.

A number of drugs with varying degrees of selectivity for these and other 5-
HT receptor subtypes were tested up to concentrations of 100uM to ImM. The non-
selective agonists, 5-CT and 5-HT, fully inhibited this remaining binding with Hill
slopes of 1 and with similar affinities as in the absence of 200nM WAY 100635
(Table 5.6). The non-selective antagonist metergoline, also completely inhibited
WAY 100635 insensitive [’H]5-CT binding with a Hill slope of 1 (Table 5.6). The
other non-selective drugs tested, all completely inhibited WAY 1000635 insensitive
[*H]5-CT binding but with Hill slopes of <1 and with a rank order of potency of:
Metergoline > Methysergide > Mianserin > Ketanserin > Clozapine > 8-OH DPAT >
ritanserin (Table 5.6).

For those drugs which have a reported selectivity for 5-HT;g (DP-5-CT,
SB216642, CGS12066B & CP93129) or 5-HT,p receptors (sumatriptan, PAPP,
BRLI15572, LY694,247 & GR46611) or a combination of these receptors
(GR125,743, GR127,935 & GR85548), the WAY 1000635 insensitive component of
[’H]5-CT binding was almost completely inhibited with Hill slopes of <1 (data not
shown). However when some of these inhibition curves were fitted to a one site
logistic model up to concentrations of 1uM, varying amounts of the inhibiton of the
WAY 100635 insensitive component of [*H]5-CT binding was observed.

Drugs with reported selective affinities at 5-HTp receptors (SB216641,
CGS12066B & CP93129) all had Hill slopes of 1 and inhibited approximately 60%
of the WAY100635 insensitive component of [’H]5-CT binding, which corresponds
to approximately 85% of the total specific [*H]5-CT binding (Table 5.6). The 5-
HT o8 antagonist, cyanopindolol also blocked approximately 60% of the remaining
binding with a Hill slope of one. Figure 5.7a shows the binding of "selective" 5-HTp
drugs and the non-5-HT;s binding profile of WAY100635 and DP-5-CT in the
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Figure 5.7: Inhibition of [’H]5-CT Binding in the Presence of 200nM
WAY100635 (which blocks approximately 60% of control binding)
The data represent a typical experiment (a) 5-HTp ligands & WAY100635 and (b)

5-HTgnp ligands and the selective 5-HT agonist, CP93129 with mean data from at

least three different experiments (Table 5.6).

185



Table 5.6: Inhibition of [’H]5-CT Binding in the presence of 200nM
WAY100635 to Rat Cortex Membranes by 5-HT Receptor Ligands.

% Maximum

Inhibition of % Maximum

WAY 100635 Inhibition of Total
Competing Insensitive Specific
ligand n pK; nH [’H]5-CT Binding [PH]5-CT Binding
LY 694,247 5 1084+028 0.78+0.09 100 100
GR46611* 3  9.63+001 0.86+0.13 7328 £3.12 89.23 +2.51
5-CT 120 9 150103 1.01 +£0.05 100 100
SB216642* 5 9.04+0.06 1.11 +0.17 6221 £2.28 84.79 + 1.25
5-HT 3 876+x002 0.93+0.08 100 100
GR125743* 8 8.73+0.06 1.05 +0.03 72.19+2.02 88.24 +0.55
Cyanopindolol* 8  8.56+0.11 0.98 + 0.04 5824 £3.12 83.79 + 1.25
CP93129* 7 847+0.08 094+0.03 6123 £2.15 84.75+0.75
Metergoline 3 8.08 £ 0.05 1.00 + 0.08 100 100
GR127935* 8 8.05+0.10 1.08 + 0.06 7341 +£2.28 89.24 +0.98
GR85548* 4 790+x0.15 1.01 + 0.06 74.56 + 2.46 89.90 + 0.94
Sumatriptan 3 750+017 0.76+0.03 100 100
CGS12066B* 3087225007, 1.07 £ 0.03 5728 +3.16 84.12 + 1.28
Methysergide 3 695+007 0.37+0.05 100 100
PAPP 4 6.60+009 0.76+0.06 100 100
BRL15572 4 6.01=+0.19 1.17 £ 0.17 100 100
Mianserin 3 593010 0.69 £0.12 100 100
DP-5-CT 4 544+028 084+0.12 100 100
Ketanserin 3 532+049 0.86+0.03 100 100
Clozapine 3 529+030 0.55+0.07 100 100
8-OH DPAT 3 469+030 048=003 100 100
Ritanserin 3t 33220107 0.66 £0.11 100 100

The affinity values were determined from the inhibition of 0.25nM [3H]5-CT to rat
cerebral cortex membranes in the presence of 200nM WAY 100635. The results are
expressed as pK; values and Hill slope for a one site logistic fit. Inhibition curves
were fit up to concentrations of 100uM for all compounds except those indicated by
* which were fit up to concentrations of 1uM. The % maximum inhibition of total
specific and WAY 100635 insensitive [’H]5-CT binding are given. Values shown are

the mean + s.e.mean, of atleast three experiments as shown by the n value.
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presence of 200nM WAY100635. WAY 100635 only inhibited at concentrations
greater than 1pM, with an affinity close to that seen for the low affinity non-5-HT 4
receptors previously. DP-5-CT inhibited binding fully, with a pK; value of 5.44,
reflecting the low affinity site seen in the absence of WAY100635. CP93129 reached
an inhibition of specific binding maximum at between 100 and 1000nM. 300nM
CP93129 in the presence of 200nM WAY100635 was consequently used to
determine the proportion of 5-HTp and 5-HT,a receptors labelled and calculated to
be 84.75 + 0.75% of total specific [’H]5-CT binding (n=7; Table 5.6). Taking into
account the inhibition of total specific binding [*H]5-CT by WAY 100635 (61.65 =
0.99%) the proportion of 5-HT,p receptors labelled by [3H]5-CT corresponded to
23.10%.

The majority of drugs tested with reported higher affinities at 5-HTp
receptors compared to 5-HT,g receptors inhibited WAY insensitive [PH]5-CT
binding fully with Hill slopes of < 1 (Table 5.6). However, the inhibition curve for
LY694,247 was clearly biphasic inhibiting 70 % of the binding up to a plateau of
between 1 and 10nM, with a Hill slope of <1 when fit up to a concentration of 1uM
(Figure 5.7b). GR46611, on the otherhand, only inhibited binding by approximately
70% with a Hill slope of < 1.

In contrast to the 5-HTp selective drugs, the selective 5-HTp;1p compounds
with similar affinities at 5-HTg and 5-HT;p receptors (GR125,743, GR127,935 &
GR85548) all inhibited approximately 70% of the WAY100635 insensitive
component of [PH]5-CT binding with Hill slopes of 1, which corresponds to
approximately 90% of the total specific [*H]5-CT binding (Table 5.6). Therefore
drugs with a relatively high potency at 5-HT,;g/p receptors (and LY694,247 &
GR46611), inhibited greater amounts of WAY 100635 insensitive [*H]5-CT binding
(approximately 10%), compared to those that only inhibited 5-HT receptor binding.
Figure 5.7b shows the binding of "selective" 5-HT;p/p drugs in the presence of
200nM WAY100635. A curve to CP93129 is included to emphasise the increased
inhibition by 5-HTg/ip drugs. The most potent of these drugs, GR125,743, reached
an inhibition of binding maximum at between 100 and 1000nM. 200nM GR125,743
in the presence of 200nM WAY100635 was consequently used to determine the
proportion of 5-HTp/p and 5-HT;4 receptors labelled and calculated to be 88.24 +
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0.55% of total specific [*H]5-CT binding (n=8; Table 5.6). Taking into account the
inhibition of total specific [’H]5-CT binding by WAY100635 (61.65 + 0.99%) the
proportion of 5-HT;g/p receptors labelled by [?'H]S-CT corresponded to 26.59 +
3.58%. Consequently the proportion of 5-HTp receptors labelled by [PH]5-CT
corresponded to 3.49 +2.41%.

Therefore the WAY100635 insensitive component of [H]5-CT binding
includes 5-HTp and 5-HTp receptors and also another unknown component(s). This
unknown component(s) represented 11.76 + 0.55% of total specific [*H]5-CT

binding.

5.2.2.6 PH]5-CT Binding in the Presence of 200nM
WAY100635 & 200nM GR125,743

200nM GR125,743 in the presence of 200nM WAY 100635 was sufficient to
block binding to 5-HT,p/p receptors. These conditions were used to investigate the
kinetics and pharmacology of the remaining component(s) of WAY100635 &
GR 125,743 insensitive [3H]5—CT binding which could not include the 5-HT;a, 5-
HTp or 5-HTp receptor population. In subsequent experiments the inhibiton of
[*H]5-CT binding by 200nM WAY 100635, 200nM WAY100635 & 300nM
CP93129 and 200nM WAY 100635 & 200nM GR125,743 was also used to monitor
the level of 5-HT o, 5-HTanp and 5-HTa/18/1p receptors respectively blocked within

and between experiments.

5.2.2.6.1 Time Course of [’H]5-CT Binding to Rat Cerebral
Cortex Membranes in the Presence of 200nM WAY100635 & 200nM
GR125,743

A time course (0-90 min) of [*H]5-CT (0.25nM) binding to rat cerebral cortex
membranes was carried out at 25°C, with equilibrium attained by 20 min being stable
for at least another 70 min (Figure 5.8a). Curve fitting using non-linear regression
gave an observed constant (kops) of 0.142 + 0.007 min”’ (n=3) with a ty; of 3.789 +
0.076 min (n=3). Dissociation was initiated after addition of 10pM 5-HT following
incubation for 60 min at 25°C, and followed first order kinetics with a t;;; of 6.716 +

0.476 min (Figure 5.8b) and a dissociation rate constant (k_;) of 0.095 =+ 0.001 min’’
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Figure 5.8: Time Course and Protein Linearity of [’H]5-CT Binding
in the Presence of 200nM WAY100635 & 200nM GR125,743.

The data represent typical (a) time course, and (b) dissociation experiments, and (c) a
single protein linearity experiment. Graphs on the right hand side represent the
semilogarithmic transformations of the data. Experiments were performed as

described in the text, with mean data obtained from three experiments also in text.
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(n=3). Subsequent calculation gave an association rate constant (ki;) of 0.196 +
0.153 min'M'. The data from these time course experiments gave an equilibrium
constant (Kp) of 0.488 + 0.039 nM. In the following competition experiments [*H]5-
CT (0.25nM) binding to rat cortex membranes was carried out at equilibrium at 25°C

for 60 min.

5.2.2.6.2  Effect of Membrane Protein Concentration on [’H]5-CT
Binding to Rat Cerebral Cortex Membranes in the Presence of
200nM WAY100635 & 200nM GR125,743

Specific [*H]5-CT binding was dependent on membrane protein (Figure 5.8¢)
and was linear up to the concentrations measured (~300pg protein/assay).
Subsequent experiments were conducted with 100-300pg membrane protein to
ensure that less than 10% of added ligand was bound whilst maintaining a workable

amount of specific binding.

5.2.2.6.3 Concentration Dependence of [PH]5-CT Binding to Rat
Cerebral Cortex Membranes in the presence of 200nMWAY100635
& 200nM GR125,743

Hot saturation analysis of [°H]5-CT binding, in the presence of 200nM
WAY100635 & 200nM GR 125743, to rat cerebral cortex membranes was carried out
using increasing concentrations of [*H]5-CT (Figure 5.9a). Curve fitting using a
logistic model gave an equilibrium dissociation constant (Kp) of 0.36 + 0.04 nM, a
binding site density (Bmay) of 85.13 + 1.09 fmol mg™' protein (n=3) and a Hill slope
of 0.79 = 0.03 (n=3).

Competition binding studies using 0.25nM [’H]5-CT and increasing
concentrations of unlabelled 5-CT (0.01-300nM) (Figure 5.9b), gave a Kp of 0.45 +
0.08nM and a By, of 80.44 + 5.70 fmol mg™' protein with a Hill coefficient of 0.84 +
0.03 (n=9). This was is in reasonable agreement with data obtained from both
saturation and time course studies. The Hill slopes for both hot and cold saturations

were significantly less than 1 (P<0.05).
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5.2.2.6.4  Pharmacology of ["H]5-CT Binding in the Presence of
200nMWAY100635 & 200nM GR125,743

The WAY 100635 & GR125,743 insensitive component of [BH]S-CT binding,
representing the non-5-HT,anp1p receptor population, was pharmacologically
characterised using a number of structurally diverse compounds. These were tested
up to 100uM and all inhibited the remaining binding fully (Figure 5.10). Of the
antagonists tested, mesulergine was the most potent, with a mean pK; value of 8.15 +
0.02 and Ketanserin the least potent, with a mean pK; value of 6.56 + 0.11 (Table
5.7). The rank order of potency of these antagonists was: mesulergine > methiothepin
> metergoline > pimozide > methysergide > ergotamine > ritanserin >
dihydroergotamine > clozapine > mianserin > ketanserin (Table 5.7). All antagonists
displayed binding to a single population of binding sites as indicated by their Hill
slopes not differing from 1 (Table 5.7; Figure 5.10). Of the agonists tested, 5-CT was
the most potent with a mean pK; value of 9.35 + 0.08 and DP-5-CT the least potent
with a pKj value of <5 (Table 5.7). The rank order of potency of the agonists tested
was: 5-CT > 5-HT > 5-MeOT > 8-OH DPAT > Sumatriptan > DP-5-CT. In contrast
to the antagonists, agonists generally had a Hill slope of between 0.76 and 1. Other
compounds tested up to a concentration of 100uM, some of which had been used to
characterise the blocking of [3H]S-CT binding to 5-HT ) a/is/1p receptors, had pKis of
<6. These included pindolol, cyanopindolol and WAY 100635 (Table 5.7).

Comparison of drug affinities obtained for [’H]5-CT binding in the presence
of 200nM WAY100635 and 200nM GR125,743 with the known affinities of these
drugs at 5-HT5 rat recombinant receptors gave a good positive correlation (r = 0.90;
Figure 5.11). [*H]5-CT binding in the presence of 200nM WAY 100635 & 200nM
GR125,743 in rat cerebral cortex membranes is therefore likely to specifically label

the native 5-HT7 receptor population in rat cortex membranes.

5.2.2.7 Characterisation of [’H]5-CT Binding in Guinea Pig Cortex
Membranes

The low Hill slopes of agonists in rat 5-HT7 binding above, may be indicative

of the reported complex nature of [*H]5-CT binding to rat native 5-HT; receptors
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Figure 5.10: Inhibition of [’H]5-CT Binding in the Presence of
200nM WAY100635 & 200nM GR125743.

The data represent a typical experiment using 0.25nM [*H]5-CT in the presence of
200nM WAY100635 & 200nM GR125,743.(a) & (b) represent two graphs from the

same experiment with mean data from at least three different experiments (Table
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Table 5.7: Inhibition of [’H]5-CT Binding in the Presence of 200nM
WAY100635 and 200nM GR125743 to Rat Cortex Membranes by 5-

HT Receptor Ligands.

n pK; nH
Agonists
5-CT 9 9.35 +0.08 0.84 +0.03
5-HT 4 8.78 £ 0.05 0.82 +£0.01
5-MeOT 4 8.69 +0.03 0.84 +0.01
8-OH DPAT 4 T A5.£0:15 0.82 +£0.04
Sumatriptan 4 6.29 £0.10 0.83 +£0.03
DP-5-CT 3 <5 n.d.
Antagonists
Mesulergine -+ 8.15+£0.02 1.03 +=0.04
Methiothepin -+ 8.10+0.11 0.96 = 0.05
Metergoline 4 8.00 = 0.06 1.03 £0.03
Pimozide 4 797 +0.19 0.95 £0.01
Methysergide - 7.66 +£0.16 094 +£0.11
Ergotamine 4 7.55 +£0.09 0.94 £ 0.06
Ritanserin 4 7.27 £0.08 0.98 £0.02
Dihydroergotamine 4 7.23 £0.05 1.00 = 0.05
Clozapine 4 7.21 £0.16 0.95 +0.08
Mianserin 4 6.98 +0.08 0.95 £0.03
Ketanserin 4 6.56 +0.11 1.00 £ 0.03
Cyanopindolol 3 <6 n.d.
Pindolol 3 <5 n.d.
WAY100635 3 <5 n.d.

The affinity values were determined from the inhibition of 0.25nM [’H]5-CT to rat
cerebral cortex membranes in the presence of 200nM WAY100635 & 200nM
GR125,743. Values are the mean + s.e.mean pK; values and Hill slope (nH). n.d. =
not determined.
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Figure 5.11: Correlation Between [PH]5-CT Binding Site Affinities in
the Presence of 200nM WAY100635 & 200nM GR125,743 and
Affinities at Rat Recombinant 5-HT; Receptors.

Affinities at rat cortical [3H]5-CT binding sites in the presence of 200nM
WAY100635 & 200nM GR 125743 determined from atleast three experiments (Table
5.6). (1) 5-CT; (2) 5-HT; (3) 5-MeOT; (4) mesulergine; (5) methiothepin; (6)
metergoline; (7) pimozide; (8) methysergide; (9) ergotamine; (10) ritanserin; (11)
dihydroergotamine; (12) clozapine; (13) 8-OH DPAT; (14) Mianserin; (15)
ketanserin; (16) sumatriptan. Affinities at the recombinant 5-HT5 receptor taken from
Hoyer et al., (1994). r=linear correlation coefficient.

195



compared to the apparently less complex binding to guinea pig brain membranes
(Boyland et al., 1995). [’H]5-CT binding in guinea pig cortex membranes using the
same conditions as in the rat 5-HT; receptor binding assay was investigated.
However the pharmacology of the guinea pig 5-HT,p receptor is different to the
rodent 5-HT;p receptor, but the same as in man (see Hoyer et al, 1994). It was
therefore important to firstly determine the affinities of the drugs used in the rat
cortex membranes, in order to find the concentration of drugs required to achieve full
block of non-5-HT?7 receptors in guinea pig cortex membranes.

In the absence of masking drugs, cold saturation experiments revealed a
single population of binding sites, as indicated by a Hill slope of unity, with a Kp
value of 0.44 + 0.08 nM and a B, of 0.893 + 0.101 pmoles mg'i protein (n=4). DP-
5-CT and 8-OH DPAT completely inhibited [*H]5-CT binding at concentrations
greater than 1pM (Figure 5.12a). Despite Hill slopes <1, there was no obvious
graphical separation of binding site affinites (Figure 5.12a). Inhibition of [*H]5-CT
binding by WAY 100635 on the otherhand, reached a plateau between 100 and
1000nM with a mean pK; value of 8.73 + 0.07 and a Hill slope of 1 (Figure 5.12a;
Table 5.8), which is close to the value obtained in rat cortex membranes. To define
the proportion of non-5-HT; receptors labelled by [*’H]5-CT, subsequent experiments
were performed in the presence of 200nM WAY 100635, which caused a 59.76 +
3.09% reduction in [3H]5-CT binding (n=3, Table 5.8; Figure 5.12a).

Binding inhibition curves were generated for CP93129, cyanopindolol,
GR125743 and GR127935. The latter two 5-HTg/1p antagonists inhibited [PH]5-CT
binding in the presence of 200nM WAY 100635 by approximately a further 9%, with
Hill slopes of 1 and respective mean pK; values of 8.69 +0.14 and 7.78 + 0.13 (Table
5.8; Figure 5.12b). GR125,743 in the presence of 200nM WAY 100635 reached a
plateau between 100 and 1000nM (Figure 5.12b), as in the rat, blocking 68.20 +
5.40% of total specific [’H]5-CT binding. CP93129 and cyanopindolol inhibition
curves, up to 1uM, inhibited WAY100635 insensitive [’H]5-CT binding with much
lower affinity (pK; <6) than in rat cortex membranes. Due to this low affinity, the
proportion of 5-HTg receptors labelled by [*H]5-CT could not be determined.

In subsequent experiments 200nM GR125743 was used in addition to 200nM
WAY100635 to block binding to 5-HT anpnp receptors. The affinity (Kp) of this
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Figure 5.12: Inhibition of [’H]5-CT Binding to Guinea Pig Cortex
Membranes by 5-HT Receptor Ligands.

The data represent typical 0.25nM [’H)5-CT binding experiments in the presence of
(a) no block (b) 200nM WAY100635 and (c) 200nM WAY 100635 and 200nM

GR125,743 with mean data from at least three different experiments (Table 5.8).
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Table 5.8: Inhibition of [PH]5-CT Binding to Guinea Pig Cortex
Membranes by 5-HT Receptor Ligands.

Competing Ligand n pK; nH
In the absence of any blocking agents
5-CT 3 9.37 +£0.07 0.98 +£0.02
DP-5-CT 3 8.66 = 0.06 0.65 =0.07
8-OH DPAT 3 8.11 £0.04 0.81 £0.05
WAY100635 3 8.73 +0.07 0.98 +0.01
In the presence of 200nM WAY 100635
5-CT 3 9.11 £0.03 0.94 +0.05
GR125,743 3 8.69 +0.14 0.96 +0.04
GR127,935 3 7.78 £0.13 0.99 +£0.02
Cyanopindolol 3 <6 n.d.
CP93129 3 <6 n.d.
In the presence of 200nM WAY 100635 and 200nM GR125.743
Agonists
5-CT 4 9.25+0.12 0.96 +0.13
5-HT 4 8.78 +0.05 0.99 £0.02
5-MeOT 4 8.63 +0.07 1.00 £0.03
DP-5-CT 4 7.95 +£0.09 0.98 £0.02
8-OH DPAT 4 6.91 £0.09 0.90 = 0.09
Antagonists
Methiothepin 4 8.29 +£0.10 0.95 £0.04
Metergoline 4 8.03 £0.07 0.93 £0.07
Ritanserin 4 7.69 +0.06 0.87 £0.11
Clozapine 4 7.47 £0.05 0.95+0.03
Mianserin 4 6.99 +0.04 0.94 +0.05
Ketanserin 4 6.49 +0.06 1.08 +0.09

The affinity values were determined from the inhibition of 0.25nM [3H]5—CT to
guinea pig cerebral cortex membranes using the conditions stated. Values are mean +
s.e.mean pK; values and Hill slope (nH). n.d. = not determined.
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remaining WAY100635 & GR125,743 binding was 0.56 + 0.12nM, with a binding
site density (Bpmay) of 0.355 + 0.056 pmoles mg ' protein and a Hill slope of 1 (n = 3;
Table 5.8).

The pharmacology of WAY100635 & GR125,743 insensitive [*H]5-CT
binding, which represented 31.80 + 5.40% of total specific [*H]5-CT binding, was
essentially the same as in rat cortex membranes. Unlike in the rat, all drugs tested,
whether agonists or antagonists, inhibited binding fully with a Hill slope close to
unity (Figure 5.12c; Table 5.8). Of the antagonists tested, methiothepin was the most
potent with a mean pK; value of 8.29 + 0.10 and ketanserin the weakest with a mean
pKi value of 6.49 + 0.06 (Table 5.8). The rank order of potency of the antagonists
was the same as in the rat, whereby: Methiothepin > Metergoline > Ritanserin >
Clozapine > Mianserin > Ketanserin (Table 5.8). Of the agonists tested, 5-CT was
the most potent with a mean pK; value of 9.25 + 0.12 and 8-OH DPAT the least
potent with a mean pK; value of 6.91 + 0.09 (Table 5.8). The rank order of potency
of the agonists tested was slightly different than in rat: 5-CT > 5-HT > 5-MeOT >
DP-5-CT> 8-OH DPAT. (Table 5.8). DP-5-CT had 2000 fold higher affinity in
guinea pig cortex membranes compared to corresponding rat membranes. As in the
rat, pindolol, cyanopindolol & WAY 100635 all had pICsps <6 (Table 5.8)

Comparison of drug affinities obtained for [’H]5-CT binding in the presence
of 200nM WAY100635 and 200nM GR 125,743 in guinea pig cortex with the known
affinities of these drugs at 5-HT; guinea pig recombinant receptors gave a very good
positive correlation (r = 0.96; Fig 5.13a). Comparison of drug affinities obtained for
[’H]5-CT binding in the presence of 200nM WAY 100635 and 200nM GR125,743 in
guinea pig cortex membranes with the affinities of these drugs in a previous study in
the same membranes using different blocking drugs (To er al, 1995) also gave a
good positive correlation (r = 0.94; Figure 5.13b). Comparison of experimental
affinities for WAY 100635 & GR125,743 insensitive ["H]5-CT binding in native rat
and guinea pig cortex membranes also displayed a good positive correlation (r =
0.98, Figure 5.13c), when excluding the obvious outlier, DP-5-CT.

Radioligand binding using 0.25nM [’H]5-CT in the presence of 200nM
WAY100635 & 200nM GR125,743 can therefore label the 5-HT; receptor in both

native rat and guinea pig cortex membranes.
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5.2.2.8 Characterisation of ["H]5-CT Binding in Rat Striatum and
Hippocampal Brain Membranes

For the purpose of investigating the effects of chronic antidepressant
treatments on 5-HT; receptor density in other brain areas, as in chapter 6, the
conditions of the blocks in the rat striatum and hippocampus to reveal the 5-HT;
binding site were determined.

To block binding to 5-HT,a receptors, WAY100635 was again used.
Inhibition binding curves to WAY100635 yielded a plateau between 100 and
1000nM in both brain areas with a Hill slope of 1, with a mean pK; value of 8.45 +
0.02 and 8.44 + 0.02 in striatum and hippocampus membranes respectively (n =3;
data not shown). This was in good agreement with data obtained in the rat cortex and
hence 200nM WAY 100635 was used to mask binding to 5-HT 4 receptors. However
the proportion of [’H]5-CT binding which is attributable to 5-HT;s receptors as
defined in the presence of 200nM WAY 100635, was dramatically different to that in
rat cortex membranes. In the striatum 200nM WAY 100635 blocked only 21.96 +
0.38% of total specific ["'H]S-CT binding, whereas 200nM WAY 100635 blocked
77.41 + 0.96% of total specific ["H]5-CT binding in the hippocampus (Table 5.9).

The pharmacology of the WAY100635 insensitive ["H]5-CT binding sites
was identical comparing the striatum, hippocampus and cortex (data not shown).
CP93129 reached a plateau between 100 and 1000nM and yielded similar pK; values
of 8.43 + 0.11 and 8.35 = 0.04 (n = 3, data not shown) with Hill slopes of 1, in
striatum and hippocampus membranes respectively. 300nM CP93129 in the presence
of 200nM WAY 100635 blocked 79.63 + 2.40% and 91.67 = 1.45% of total specific
[*H]5-CT binding in the striatum and hippocampus respectively (Table 5.9).
GR125,743 in the presence of 200nM WAY 100635 reached a plateau between 100
and 1000nM and yielded pK; values of 8.75 + 0.03 and 8.85 + 0.06 with Hill slopes
of 1, in striatum and hippocampus membranes respectively (n=3, data not shown).
200nM GR125743 in the presence of 200nM WAY100635 blocked 90.68 + 0.66%
and 93.33 + 0.88% of total specific [’H]5-CT binding in the striatum, whereas [’H]5-
CT binding was blocked in the hippocampus (Table 5.9).
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The Kp of this remaining WAY 100635 & GR125,743 insensitive ["H]5-CT
binding was 0.53 = 0.12 and 0.43 = 0.11 nM, with B, values of 75.22 + 7.21 and
100.29 + 8.03 fmoles mg' protein in striatum and hippocampus membranes
respectively (n = 3, Table 5.9). The pharmacology of this remaining binding was
assessed using a range of drugs used in rat cortex experiments. In both tissues the
rank order of potency was 5-CT > 5-HT > methiothepin > clozapine > 8-OH DPAT
> ketanserin, with the antagonists having Hill slopes of 1, and the agonists Hill
slopes of <1 as seen in cortex membranes (data not shown). Once again the affinities
of these drugs correlated well to binding at rat recombinant 5-HT; receptors (data not
shown). Therefore the same conditions employed in the rat cortex can be used in the

rat striatum and hippocampus to label native 5-HT; receptors.

5.2.2.9 Characterisation of [’H]5-CT Binding in a Different Strain
of Rat-Sprague Dawley

The binding experiments described thus far were carried out using Wistar
Cobb rats. For the drug treatment studies described in chapter 6 adult male Sprague
Dawley rats were used. Therefore the characterisation of [3H]5-CT binding was
repeated in adult male Sprague Dawley rats (200-300g; Charles River) in cortex,
hippocampus, and striatum membranes. There were no differences observed in either
the % of [’H]5-CT binding blocked by the different blocking agents, or in the
pharmacology of the binding sites after these blocks (data not shown). Importantly
there was a strong correlation in the [’H]5-CT binding in the presence of 200nM
WAY100635 & 200nM GR125,743 with results obtained in Wistar Cobb rat
membranes and with binding at 5-HT; recombinant receptors (data not shown). The
Bmax values of this remaining WAY100635 & GR125,743 binding site was no
different to Wistar Cobb rat membranes, with 89.17 + 5.23, 83.17 + 6.23, and 99.81
+ 7.26 fmoles mg" protein in cortex, striatum and hippocampus Sprague Dawley rat

membranes respectively (Table 5.9).
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5.2.2.10 Relative Proportions of 5-HT;,, 5-HT,3 and 5-HT
Receptors Labelled by [*H]5-CT

Irrespective of the source of tissue or the brain area investigated, the studies
described throughout this chapter utilised 200nM WAY 100635 to block [3H]5—CT
binding to 5-HT,s receptors, 200nM WAY 100635 & 200nM CP93129 to block
[BH]S-CT binding to 5-HT,s and 5-HT,g receptors and 200nM WAY100635 &
200nM GR125743 to block [3H}S-CT binding to 5-HT;s and 5-HT;p/1p receptors.
From these studies it was important to calculate the relative proportions of each
receptor subtype labelled by [’H]5-CT, to act as control reference points between
experiments and for the antidepressant or MDMA treatments (chapters 6 & 7).

Figure 5.14 summarises the calculation of the proportions of receptors
labelled by 0.25nM [°H]5-CT. Relative proportions were calculated as the percentage
of specific umasked [SH]S-CT binding for each of the three blocks. The % of [3H]5—
CT binding to 5-HT;a receptors was calculated as the % of [’H]5-CT binding
blocked in the presence of 200nM WAY100635. The % of [*H]5-CT binding to 5-
HTp & 5-HTp receptors was calculated as the % of [*H]5-CT binding blocked in
the presence of 200nM WAY 100635 & 200nM GR 125743 minus the % of [3H]S-CT
binding blocked in the presence of 200nM WAY 100635. The % of [’H]5-CT binding
to 5-HTp receptors was calculated as the % of [3H]5-CT binding blocked in the
presence of 200nM WAY 100635 & 300nM CP93129 minus the % of [3H]S—CT
binding blocked in the presence of 200nM WAY 100635. The % of *H]5-CT binding
to 5-HTp receptors was calculated as the % of [3H]5~CT binding blocked in the
presence of 200nM WAY 100635 & 200nM GR125,743 minus the % of [’H]5-CT
binding blocked in the presence of 200nM WAY 100635 & 300nM CP93129.

The relative proportions of [H]5-CT binding to 5-HT receptors varies
through the rat brain (Table 5.9). The highest proportion of [*H]5-CT binding
corresponding to binding at 5-HT;s receptors was in the hippocampus, an area
known to have a high density of 5-HT;5 receptors (Deshmukh et al., 1983). The
highest proportion of any combination of 5-HT g and 5-HT;p receptors was in the

striatum, an area rich in these receptors (Bruinvels et al., 1993a & b).
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Figure 5.14: Calculation of Proportions of 5-HT Receptors Labelled

By [’H]5-CT.
This Figure represents how the proportion of 5-HT receptors labelled by 0.25nM [*H]5-CT
were calculated irrespective of tissue source. This figure is purely a summary of how the

calculations are performed and is not representative of experimental data.

A= % of [*'H]5-CT binding to 5-HT;, receptors calculated as the % of [’H]5-CT binding
blocked in the presence of 200nM WAY 100635.

B= % of [3H]S—CT binding to 5-HTp & 5-HT)p receptors calculated as the % of [3H]5-CT
binding blocked in the presence of 200nM WAY 100635 & 200nM GR 125743 minus the %
of [*H]5-CT binding blocked in the presence of 200nM WAY 100635.

C= % of [’H]5-CT binding to 5-HT,g receptors calculated as the % of [*’H]5-CT binding
blocked in the presence of 200nM WAY 100635 & 300nM CP93129 minus the % of [*H]5-
CT binding blocked in the presence of 200nM WAY100635.

D= % of [’H]5-CT binding to 5-HT,p receptors calculated as the % of [’H]5-CT binding

blocked in the presence of 200nM WAY 100635 & 200nM GR125,743 minus the % of
[*H]5-CT binding blocked in the presence of 200nM WAY 100635 & 300nM CP93129.
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5.2.3 [’H]5-CT Autoradiography

The distribution of 5-HT; binding sites labelled by 0.5nM [’H]5-CT was
studied in rat brain and adrenal glands by in vitro autoradiography, using the same
blocking conditions employed in the corresponding radioligand binding assays, i.e. in
the presence of 200nM WAY100635 (to prevent binding to 5-HT,, receptors) and
200nM GR125,743 (to prevent binding to 5-HT,p/p receptors). Initial experiments
were conducted after a 6 week exposure to Hyperfilm™, however the resultant
images in the presence of 200nM WAY 100635 & 200nM GR125,743 to define the
5-HT; population were faint, and revealed low optical densities (data not shown).
The experiments were therefore repeated at 12 weeks exposure to obtain images at a
reasonable resolution.

Following a 12 week exposure, non-specific binding in consecutive sections
was not significantly greater than background, but specific binding was detected in
various brain regions. Table 5.10 and Figure 5.15, shows the density of 5-HT;
binding sites in 14 areas of rat brain and also 2 areas of the rat adrenal gland. The
rank order of [*H]5-CT binding site densities in the presence of 200nM WAY 100635
and 200nM GR125,743, was: dorsal raphé > septum > hippocampus structures >
substantia nigra > cortex regions = striatum regions > hypothalamic regions =
median raphé. Specific [’H]5-CT binding sites under these conditions were
negligible in the rat adrenal gland indicating no 5-HT; receptors in this peripheral
tissue.

Figures 5.16a, 5.17a & 5.18a represent total [’H]5-CT binding and Figures
5.16b, 5.17b & 5.18b represent total [*H]5-CT binding in the presence of 200nM
WAY100635. Within these images many of the brain areas gave optical densities
that were not on the linear portion of the [*H]microscales generated standard curve,
as shown by the saturating signal. Therefore no specific binding (fmols mg'] protein)
was determined for these images and hence the proportion of receptors labelled by
[3H]5-CT could not be determined.

The autoradiograms in the adrenal glands (Figure 5.18), however reveal
differences between the total binding (Figure 5.18a) and in the presence of 200nM
WAY 100635 (Figure 5.18b) in the centrally located rat adrenal medulla, suggesting
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Figure S.15: 5-HT; Distribution in Rat Brain and Adrenal Glands

Representative autoradiograms in the presence of 0.5nM [’H]5-CT and 200nM
WAY 100635 and 200nM GR125,743 after 12 weeks exposure, at the levels of the;
(a)- tenia tecta (TT), (b)- septum (Sep), (¢)- medial geniculate (MG), (d)- habenula
(Hb), (e)- raphé nuclei and (f)- adrenal gland. CAl, CA2 & CA3 represent
corresponding areas of the hippocampus, DG = dentate gyrus, SN = substantia nigra,
FCtx = frontal cortex, CCtx = caudal cortex, LH & AH = lateral and anterior
hypothalamus respectively, Str = striatum, Ac = accumbens, DR = dorsal raphé, MR

= median raphé, Ctx = adrenal cortex and Med = adrenal medulla.
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’ i
Brain Area fmols mg™ tissue

At the level of the tenia tecta

Frontal cortex 8.06 +1.13
Caudal cortex 7.24 £0.61

At the level of the septum

Accumbens 925+1.15
Septum 15:75 % 1.50
Striatum 7.12 +1.00

At the level of the medial geniculate

CAl 13.25 +0.61

CA2 14.22+1.21

CA3 16.75+1.23
Dentate gyrus 12.25 +1.25
Substantia nigra 12.76 + 0.57

At the level of the habenula

Anterior hypothalamus 7.05 £0.54
Lateral hypothalamus 5.12+0.38

At the level of the raphé nuclei

Dorsal raphé 23.27 +1.24
Median raphé 5.19 +£0.26
Adrenal gland
Medulla None
Cortex None

Table 5.10: Autoradiographic Distribution of Rat 5-HT; Receptors.

Results are expressed as the mean + s.e. mean from three individual animals after a
12 week exposure to 0.5nM [*H]5-CT in the presence of 200nM WAY 100635 and
200nM GR125,743. Adjacent sections in the presence of 0.5nM [*H]5-CT and 10uM
5-HT determined the level of non-specific binding. The amount of specific binding
for the 5-HT; receptor is expressed as fmols mg™ tissue, after optical density values

were corrected using appropriate microscale standards.
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(b)

(d

Figure 5.16: [’H]5-CT Autoradiography at the Level of the Septum.

Representative autoradiograms after 12 weeks exposure in the presence of; (a)-
0.5nM [’H]5-CT, (b)- 0.5nM [*H]5-CT & 200nM WAY100635, (c)- 0.5nM [*H]5-
CT & 200nM WAY100635 & 200nM GR125,743 and (d)- 0.5nM [’H]5-CT in the
presence of 10uM 5-HT to define non-specific binding. FCtx = frontal cortex, CCtx

= caudal cortex, Ac = accumbens, Str = striatum and Sep = septum.
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(a) (b)

(d)

Figure 5.17: [’H]5-CT Autoradiography at the Level of the Medial

Geniculate.

Representative autoradiograms after 12 weeks exposure in the presence of; (a)-
0.5nM [*H]5-CT, (b)- 0.5nM [*H]5-CT & 200nM WAY 100635, (c)- 0.5nM [*H]5-
CT & 200nM WAY100635 & 200nM GR125,743 and (d)- 0.5nM [*H]5-CT in the
presence of 10uM 5-HT to define non-specific binding. MG = medial geniculate, SN
= substantia nigra, DG = dentate gyrus and CAl, CA2 & CA3 = corresponding

layers of the hippocampus.

210



(@) (b)

2 &:El
{9 é\ ®
. 4
Med
Ctx
(c) (d)

Figure 5.18: [’H]5-CT Autoradiography in Rat Adrenal Glands.
Representative autoradiograms after 12 weeks exposure in the presence of; (a)-
0.5nM [*H]5-CT, (b)- 0.5nM [°H]5-CT & 200nM WAY 100635, (c)- 0.5nM [*H]5-
CT & 200nM WAY 100635 & 200nM GR125,743 and (d)- 0.5nM [°H]5-CT in the
presence of 10uM 5-HT to define non-specific binding. Ctx = adrenal cortex and

Med = adrenal medulla.
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the presence of 5-HT;s receptors. Radioligand binding studies using [SH]S-OH'
DPAT however, revealed no specific binding in either rat adrenal medulla or adrenal
capsule membranes (data not shown; up to 300ug of protein). Visual comparison of
[*H]5-CT autoradiograms representing total [’H]5-CT binding in the presence of
200nM WAY100635 (Figure 5.18b) and those in the presence of 200nM
WAY100635 & 200nM GR125,743 (Figure 5.18c) clearly show a difference. This
may suggest the presence of 5-HT g/ p receptors in the rat adrenal medulla. However
radioligand membrane binding studies in rat adrenal medulla or capsule membranes
gave no specific ["’H]5-CT binding (data not shown; up to 300pg of protein). In
membrane binding studies, the complete dissection of the adrenal medulla proved too
difficult, and so essentially decapsulated adrenals were used. The diffuse localisation
and low density of 5-HT;a/18/1p (but not 5-HT7) receptors seen autoradiographically
in the adrenal medulla (Figure 5.18a), may have therefore not been detected in

membrane binding studies.

5.2.4 [H]GR125,743 Binding Assays

The 5-HT;pp receptor population could not be isolated using [F’H]S—CT
membrane binding as none of the drugs tested were suitable to block the 5-HT;
component without inhibiting binding to the 5-HTg,;p receptors. In addition there
was no selective S-HT, ligands commercially available. ["HJGR125,743 was
therefore used to label the 5-HT)p,p receptor population in the following
experiments. Characterisation was limited to single time course and protein linearity

experiments performed.

5.2.4.1 Time Course of [3H]GR125,‘743 Binding to Rat Brain

Membranes

A time course (0-90 min) of [3H]GR125,743 (0.25nM) binding to rat cortex,
hippocampus and striatum membranes was carried out at 25°C. Equilibrium was
attained by 45 min being stable for at least another 45 min (Figure 5.19a). In the
following competition experiments [3H]GR125,?43 (0.25nM) binding to rat

membranes was carried out at equilibrium at 25°C for 60 min as described in chapter

3.
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Figure 5.19: Time Course and Protein Linearity of ["H]GR125,743

Binding.

The data represent a single (a) time course, and (b) protein linearity experiments.

Experiments were performed in cortex, hippocampus and striatum brain areas as

described in the text.
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5.2.4.2 Effect of Membrane Protein Concentration on

PHIGR125,743 Binding to Rat Brain Membranes

Specific [’H]JGR125,743 binding was dependent on membrane protein
(Figure 5.19b) and was linear up to the concentrations measured (~250ug
protein/assay) in cortex, hippocampus and striatum. Subsequent experiments were
conducted with 80-200ug of cortex or hippocampus membrane protein, or 60-120ug
of striatum membrane protein to ensure that less than 10% of added ligand was

bound whilst maintaining a workable amount of specific binding.

5.2.4.3 Concentration Dependence of [’HIGR125,743 Binding in
Rat Brain Membranes.

Competition (‘cold saturation’) binding studies using 0.25nM [3H]GR125,743
and increasing concentrations of unlabelled GR125,743 (0.003-1000nM) (Figure
5.20a) inhibited binding fully with Hill slopes of 1 and gave Kp values of 1.29 +
0.06, 1.20 = 0.03, and 1.20 + 0.04 nM in cortex, hippocampus and striatum
membranes respectively (n=4; Table 5.11). The corresponding B, values were of
0.50 + 0.12, 0.57 + 0.10 and 1.25 + 0.08 pmol mg' protein (Table 5.11). This
confirms that the striatum, as in the [3H]5-CT binding studies, is rich in these
receptors whereas both the cortex and hippocampus are relatively less abundant in 5-

HT1 B/1D receptors.

5.2.4.4 Pharmacology of [’H]JGR125,743 Binding in Rat Brain
Membranes

Six classes of drugs were tested which included: selective 5-HT;g/p drugs
(GR125,743 & GR127,935), selective 5-HT;g drugs (SB216641 & CP93129),
selective 5-HTp drugs (BRL15572), drugs with high affinity for both 5-HT;, and 5-
HT,g receptors (cyanopindolol), non-selective drugs (ritanserin & ketanserin) and
drugs with high affinity at 5-HT 4 receptors (WAY 100635 & DP-5-CT).

GR125,743 and GR127,935 inhibited binding fully with Hill slopes of 1 and
with similar affinities for the WAY100635 insensitive component of [PH]5-CT
binding in section 5.2.2.5. (Table 5.11; Figure 5.20b). SB216641, cyanopindolol (fit
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Figure 5.20: Inhibition of [3H]GR125,743 Binding.
The data represent typical experiments (a) cold saturation in cortex, hippocampus
and striatum, and (b) inhibition of [’H]JGR125,743 binding in the striatum. Mean data

from at least three independent experiments (Table 5.12).
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up to 100nM) and CP93129 (fit up to 1pM) inhibited approximately 87, 92, and 80%
of specific [’H]GR125,743 binding in cortex, hippocampus and striatum membranes
respectively, with affinities indicative of binding to 5-HT ) receptors and Hill Slopes
of 1 (Table 5.11; Figure 5.20b). The affinity values were also similar to those
obtained for the WAY 100635 insensitive component of [3H]5-CT binding in section
5.2.2.5. (Table 5.11; Figure 5.20b). Cyanopindolol also has high affinity at 5-HTa
receptors, but binding to this subtype was excluded by the low affinity of the
selective 5-HT;a antagonist WAY 100635 (Table 5.11). DP-5-CT also had low
affinity indicative of 5-HTp binding and non-5-HT;s binding. In rat brain
membranes, the rank order of potency of all the drugs tested was: 5-CT >
cyanopindolol > GR125,743 > 5-HT > SB216641 > CP93129 > GR127,935 >
ritanserin, ketanserin, WAY 100635, BRLL15572, and DP-5-CT (Table 5.11).

The majority of [3H]GR125,743 binding to 5-HT;g/p receptors in these
tissues is therefore to the 5-HTp receptor. Competition curves with CP93129
reached a plateau between 100 and 1000nM, and hence a concentration of 300nM
was used to represent binding to the 5-HTp receptor (Figure 5.20b). In the striatum
the highest proportion of 5-HT,g receptors (~80% of specific [PHIGR125,743
binding) and 5-HT,p receptors (~20% of specific [PHIGR125,743 binding) was
observed. As GR125,743 had a Hill slope of 1 in all brain areas, it was assumed that
GR125,743 was equipotent for both receptor subtypes as reported for the human 5-
HT,g and 5-HTp receptors (Audinot et al., 1997). Buax values of the total and
individual components of specific [PHJGR125,743 binding could therefore be
calculated with the use of the 5-HT;g block (300nM CP93129). This revealed that
the highest density of 5-HTp receptors was in the striatum, with much lower
densities in the hippocampus and the cortex (see Table 5.11) which is in agreement
with the relative proportions obtained in the [H]5-CT binding assays.

The kinetics and pharmacology of [’H]JGR125,743 binding did not differ
between the studies reported above (in Wistar Cobb rats) and those in Sprague

Dawley rats (data not shown).
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5.3 Discussion

In this chapter, membrane radioligand binding assays were characterised for
5-HTa receptors using [3H]8-OH DPAT, 5-HT; receptors using [3H]5~CT and 5-
HTp/1p receptors using PHIGR125,743.

[BH]S—OH DPAT was used to label 5-HT, 5 receptors. The binding of [3H]8-
OH DPAT to both cerebral cortex and hippocampus membranes was reversible,
saturable and of high affinity. The Kpand B, values were similar in their respective
kinetic, saturation and competition studies in both membrane preparations (Figures
5.1 & 52). However, a higher density of [’H]8-OH DPAT binding sites
(approximately 3 fold) was observed in hippocampus compared to cerebral cortex
membranes which is in agreement with previous studies (Gozlan et al., 1983). The
pharmacology of [’H]8-OH DPAT binding was identical in cerebral cortex and
hippocampus membranes (Table 5.1; Figure 5.4). The affinities of the drugs tested
agreed with the known affinities at 5-HT); s receptors from previous studies (Gozlan
et al., 1983; Hoyer, 1989; Boess & Martin, 1994; Fletcher et al., 1996). Therefore a
binding assay for 5-HT;a receptors had been characterised using [SH]S—OH DPAT
membrane binding.

[3H]S-HT has been previously used to label 5-HT; receptors in transfected
cells (Plassat et al., 1993; Ruat et al., 1993b; Shen et al., 1993; Bard et al., 1993;
Lovenberg et al., 1993a). In native brain tissue 5-HT; receptors have been
demonstrated to be involved in [°H]5-HT binding to non-5-HT;, and 5-HTp
receptors (Gobbi ez al., 1996). However the binding of [’H]5-HT in the presence of
3uM pindolol was heterogeneous and better fit a two site model of binding,
suggesting that receptor sub-types other than 5-HT;4 and 5-HT,p receptors were
present (Gobbi e al., 1996). [’H]5-CT is alternative agonist radioligand, which binds
with nanomolar affinity to 5-HT;a, 5-HT)p, 5-HTp, 5-htsy and 5-HT; receptor
subtypes (Hoyer et al., 1985a & b; Heuring & Peroutka, 1987; Hoyer, 1991; Nowak
et al., 1993). Previous studies with this radioligand in native tissues have required the
use of various masking drugs in an attempt to block binding to non-5-HT; receptors.
Using [°H]5-CT in the presence of such masking drugs, previous studies have
identified a homogeneous 5-HT7 receptor population in guinea pig brain membranes

(To et al., 1995; Boyland et al, 1995). However in these same studies a
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heterogeneous receptor population of [’H]5-CT binding sites in rat cerebral cortex
homogenates was identified. A recent study was the first to label a homogeneous
population of native 5-HT; receptors using [’H]5-CT binding in the presence of
10uM Pindolol (to block binding to 5-HT;s and 5-HT;g receptors) and 100nM
WAY100635 (to block residual binding to 5-HT;a receptors) in rat whole brain
membranes (Stowe & Barnes, 1998b). These drugs would not block binding to 5-
HTp receptors known to be in low abundance throughout the rat brain (Bruinvels et
al., 1993). However in specific brain regions such as the striatum, there are relatively
high levels of 5-HT3 and 5-HT)p receptors (Bruinvels et al., 1993). Therefore 5-
HT,p receptors may have accounted for an increase in the non-SHT receptor binding
of this radioligand in previous reports in specific brain region homogenates, where
only pindolol was used to mask binding to 5-HTs and 5-HT;p receptors (Stowe &
Barnes, 1996; Stowe & Barnes, 1998a). In this chapter the binding of [3H]5~CT was
characterised in individual brain areas with variable amounts of 5-HT;g/p
expression, which were to be used in drug treatment studies (chapters 6 & 7).
Experiments were primarily conducted using rat cortex membranes, and then
subsequently with rat hippocampus (similar 5-HT)p;ip expression to cortex) and
striatal membranes (higher 5-HTg/1p expression).

In the absence of any masking drugs, the binding of [*H]5-CT to rat cortex
membranes was reversible, saturable and of high affinity. The Kp and B,y values
were similar in their respective kinetic, saturation and competition studies (Figures
54 & 5.5). The Hill slopes generated were not different from 1, which usually
suggests binding to one population of receptors, but in this case confirms that
[’H]5-CT labels multiple 5-HT receptors with approximately equal affinity. In an
attempt to develop a [’H]5-CT binding assay for S-HT; receptors in native rat brain
membranes, it was necessary to mask binding to non-5-HT; receptors. [3H]5-CT
binding to 5-HT;s receptors was blocked by the use of the selective 5-HTja
antagonist, WAY100635. A variety of other 5-HT,4 selective drugs were used to
confirm the block of 5-HT;a receptors. Each compound tested inhibited [3H]5-CT
binding fully, but best fit a two-site model of binding, with the high affinity
proportion occupying approximately 60% of specific binding. The affinities of the

high affinity sites of these compounds not only agreed with published data at the 5-
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HT A receptor (Boess & Martin, 1994), but also with data derived from [3H]8—OH
DPAT binding in this chapter (Tables 54 & 5.5). WAY100635 inhibition binding
curves reached an obvious plateau between 100 and 1000nM (Figure 5.6), and best
fit a single site logistic model with a mean pK; value of 8.81 + 0.16. This was in
agreement with the known affinity of WAY 100635 at 5-HT 4 receptors (Khawaja et
al., 1995). 200nM WAY 100635, which blocked 61.65 + 0.99 % of the total specific
binding, was therefore used to block [BH]S-CT binding to 5-HT;a receptors. The
pharmacology of all the 5-HT 4 receptor ligands was identical in the hippocampus,
and striatum, though the percentage block by 200nM WAY 100635 was greater in the
hippocampus, and much less in the striatum (Table 5.9). This is also in good
agreement with a reported higher density of 5-HT, receptors in the hippocampus
(Deshmukh et al., 1983).

In rat cortex membranes drugs with reported affinities at 5-HT,g receptors
(eg. CP93129 and cyanopindolol), blocked approximately 60% of WAY100635
insensitive [3H]specific binding. This corresponded to 85% of total specific binding
with affinities comparable to binding at 5-HT,p receptors and with Hill slopes of 1
(Table 5.6; Figure 5.7). Conversely, drugs with reported activities at both 5-HT and
5-HT,p receptors (eg. GR125,743 and GR127,935) blocked WAY 100635 insensitive
[*H]specific binding by approximately a further 10% with Hill slopes of 1,
confirming the presence of a small proportion of 5-HTp receptors (Table 5.6; Figure
5.7). In rat hippocampus and striatum membranes the pharmacology of WAY 100635
insensitive binding was identical to cortex membranes. However the total specific
binding was inhibited by varying degrees, by either 300nM CP93129 (to define the
proportion of 5-HT g receptors) or 200nM GR125,743 (to define the proportion of 5-
HTignp receptors) in the presence of 200nM WAY 100635 (Table 5.9; Figure 5.7).
200nM GR125,743, a selective 5-HTp,p antagonist, was used in conjunction with
200nM WAY100635 in subsequent experiments to determine the pharmacology of
the remaining binding.

The remaining WAY 100635 & GR125,743 [’H]5-CT binding was reversible,
saturable and of high affinity (Figures 5.8 & 5.9). The Kp and Bpmas values were
similar in their respective kinetic, saturation and competition studies. Calculation of

Bmax Values revealed a binding site density order of: hippocampus > cortex > striatum
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(Table 5.9). However the Hill slope of <1 for both competition and saturation
experiments is possibly indicative of the presence of more than one binding site. All
high and moderate affinity drugs inhibited binding fully to the non-specific level
(defined by 10 uM 5-HT), indicating that no non 5-HT sites were labelled. The
pharmacology of the remaining [*H]5-CT binding in the presence of 200nM
WAY 100635 and 200nM GR 125,743 revealed Hill slopes of one for all antagonists,
whereas all agonists including 5-CT had Hill slopes of <1 (Table 5.7). The
pharmacology of this WAY 100635 and GR125,743 insensitive binding site was
identical in rat hippocampus and striatum membranes. Comparing the experimental
affinities of drugs with the known affinities at recombinant 5-HT; receptors revealed
a very good correlation (r = 0.90; Figure 5.11). The rank order of affinities of the
drugs tested was also similar as reported for recombinant 5-HT; receptors. This
suggests that 5-HT; receptors are labelled by [’H]S-CT in the presence of 200nM
WAY100635 and 200nM GR125,743.

The fact that all antagonists inhibited this remaining [’H]5-CT binding with
Hill slopes of 1 suggests that another binding site other than the 5-HT7 receptor is
unlikely. The remaining binding (believed to be 5-HT5) is unlikely to include the 5-
HT;s or 5-HT, receptor since the low affinities of pindolol, cyanopindolol and
WAY 100635 are consistent with binding to 5-HT7 but not 5-HT,; receptors, where
they all possess near nanomolar affinities (Table 5.2). It was not possible to
determine the Hill slopes of these compounds due to the incomplete inhibition
binding curves obtained, a consequence of their low affinity. 8-OH DPAT which is
known to have sub- nanomolar affinity at the 5-HTa receptor (Table 5.4), had a
mean pKj value of 7.15 + 0.15 at this binding site (Table 5.7) which further suggests
that no residual 5-HT;s binding was present. 200nM WAY 100635 was therefore
sufficient to block binding to all 5-HT s receptors.

Binding to residual 5-HT)p receptors was ruled out by the use of 200 nM
GR125,743, the higher affinity of 5-CT and 8-OH DPAT in this study, compared to
their lower affinities at 5-HTp receptors and the low affinities of DP-5-CT and
sumatriptan in this study, compared to their higher affinities at 5-HTp receptors
(Tables 5.2 & 5.7). Binding to residual 5-HTp receptors was also ruled out by the
use of 200nM GR125,743, which inhibited more binding than all of the 5-HT;p

221



selective drugs alone. Furthermore the majority of drugs tested in the presence of
200nM WAY100635 & 200nM GR 125,743, also displayed a higher affinity for the
remaining binding, than is known for 5-HT receptors (Tables 5.2 & 5.7).

The other 5-HT; receptor subtypes, 5-HT g and 5-HT ;¢ were ruled out by the
high affinity of 5-CT in this study and would therefore not be labelled using 0.25nM
[*H]5-CT (Hoyer et al., 1994). The receptor labelled is very unlikely to include 5-
HT>5 or 5-HT,c receptors due to the low affinity of 5-CT at these subtypes,
compared to the high affinity in this study. Furthermore, sumatriptan was found to
have micromolar affinity in this study, whilst it has only millimolar affinity at 5-
HT,a and 5-HT;c receptors (Hoyer et al,, 1994). The high affinity of 5-CT and 5-
MeOT also ruled out the involvement of 5-HTj receptors, where these agonists are
inactive (Bard et al., 1993, Hoyer et al., 1994). 5-CT also binds to 5-htss receptors
with nanomolar affinity (Hoyer er al., 1994). This is unlikely to account for any of
the remaining binding, due to the high affinities of mesulergine, methiothepin and
metergoline at 5-HT; receptors as in our experimental assay (Table 5.7), but not at 5-
htsa receptors (Table 5.2). Furthermore, compounds with known high affinities at 5-
htsa receptors, such as ergotamine (Table 5.2), showed much lower affinity in the
experimental assay (Table 5.7) in agreement with binding at 5-HT; receptors (Table
5.2). The high affinity of mesulergine, not only excluded the binding to 5-htsa
receptors, but also to 5-htsg and 5-htg receptors where it has micromolar affinity
(Plassat et al., 1993; Erlander et al., 1993; Monsma et al., 1993) and to 5-HT,
receptors where it is inactive (Hoyer ef al.,, 1994). Further evidence against 5-htsg
and 5-hts receptor involvement is the low affinity of 5-CT (pK; = 74 & 6.6
respectively) for these receptors (Hoyer er al., 1994). While the 5-HT orphan
receptor reported by Castro et al., (1997b) has a high affinity for 5-CT, it cannot play
any part in the remaining binding, since mesulergine has only a micromolar affinity
at this uncharacterised receptor. The presence of other known receptor systems is
unlikely for the reasons detailed above and also because all antagonists had Hill
slopes of 1. Therefore the remaining [*H]5-CT binding in the presence of 200nM
WAY100635 and 200nM GR125,743 is likely to represent binding to a 5-HT;

receptor population in rat brain membranes.
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The WAY100635 & GRI125,743 [’H]5-CT binding to rat cortex,
hippocampus or striatum membranes appears however to be heterogeneous due to the
agonist hill slopes of <1. Shallow Hill slopes of agonist receptor binding can
represent the presence of high and low affinity states of the receptor, reflecting the
receptor being coupled to and uncoupled from G proteins (Gilman, 1987;
Birnbaumer et al., 1990). The existence of high and low affinity states of agonist 5-
HT; receptor binding has indeed been observed in rat brain using the non-selective
antagonist ligand [3H]mesulergine in the presence of masking agents for D,
receptors, Oyp-adrenoreceptors and 5-HTzapc receptors, which displays a
pharmacological profile broadly comparable to S5-HT; receptors in rat brain
(Hemedabh et al., 1999).

Using membranes derived from guinea pig cerebral cortex, the initial binding
of [3H]5-CT was reanalysed. As in the rat, 200nM WAY 100635, was sufficient to
block binding to 5-HT4 receptors (Table 5.8; Figure 5.12a). The pharmacology of
the WAY 100635 insensitive binding site, however was different to in rat membranes.
Unlike in the rat, CP93129 and cyanopindolol, both displayed very low affinity for
this remaining binding (Table 5.8; Figure 5.12b). This however was not surprising as
the pharmacology of rodent 5-HT,g receptors compared to non-rodent 5-HTg
receptors is different due to a single amino acid difference; asparagine in rat and
threonine in guinea pig at position 355 (Boess & Martin, 1994; Hoyer et al., 1994).
The 5-HT,p/p drugs gave the same profile as in the rat, with 200nM GR125,743
being sufficient to block binding to the 5-HTp/p receptor population. The remaining
binding in the presence of 200nM WAY 100635 and 200nM GR125,743 correlated
well with affinities at both recombinant and native guinea pig 5-HT; receptors
(Figures 5.13a & 5.13b). The correlation between affinities at native experimentally
determined rat and guinea pig 5-HT; receptors was very good (Figure 5.13c),
although the agonist DP-5-CT was approximately 1000 fold more potent at guinea
pig 5-HT7 receptors in this study and others (To et al., 1995). There are also other
isolated reports of an apparent species difference in the 5-HT7 receptor. For example,
the affinity of clozapine for the rat 5-HT7 receptor was found to be almost two orders
of magnitude greater than the affinity of the compound at the mouse 5-HT5 receptor

(Sleight et al., 1995b). Of particular importance is that agonists and antagonists
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inhibited WAY 100635 & GR125,743 [°H]5-CT binding fully with Hill slopes of 1,
suggesting the lack of different affinity states of this G-protein coupled receptor in
the guinea pig brain.

Another possibility which may help to explain the observed complexity of
[*H]5-CT agonist binding in the rat brain compared to in the guinea pig brain is the
presence of multiple 5-HT; receptor isoforms in the rat. Alternative splicing of the
single receptor gene which encodes the 5-HT; receptor (Gelertner et al., 1995) has
enabled the identification of four different isoforms of the 5-HT7 receptor (5-HT7,),
5-HT7w). 5-HT7) & 5- HT7); Heidmann et al., 1997), three of which exist in the rat
(5-HT7@), 5-HT7(») and 5- HTq); Heidmann et al., 1998). In guinea pig the presence
of one receptor isoform (5-HT7()) has previously been shown not to complicate
agonist [3H]5-C’1‘ binding as in this study (Tsou et al., 1994; To et al., 1995; Boyland
et al., 1995). In humans, as in rats, three isoforms exist, namely 5-HT7(,), 5-HT7¢,) and
5- HTyq) (Heidmann er al., 1997), but [3H]S-CT binding in the presence of blocks
that would selectively label 5-HT7 receptors in guinea pigs where one isoform exists,
only appears to label a heterogeneous population of receptors (Barnes et al., 1997).
Differential coupling to these isoforms has been suggested by Clemett et al., (1997),
who have shown a differential desensitisation of human 5-HT7,, and 5-HT7g,
receptor mediated cAMP responses. The possible presence of high and low affinity
states of [°H]5-CT agonist binding in the rat (indicated by low agonist Hill slopes)
but not in the guinea pig seen in this study, may therefore be due to differential G
protein coupling.

The unsuccessful past development of binding assays for native 5-HT;
receptor detection in rat brain, has hindered autoradioradiographic studies in this
tissue. It has been unclear if appropriate conditions have been used to detect the 5-
HT; receptor, possibly due to insufficient blockade of 5-HT;s and/or 5-HT,g/p
receptors, and a possible involvement of 5-htss receptors (Waeber & Moskowitz,
1995a; Gustafson et al., 1996). Gustafson et al., (1996) believe that [3H]5-CT
binding in the presence of 30nM PAPP and 160nM pindolol is mainly to 5-HT;
receptors. They claimed that as [3H]S~CT was used at the Kp for 5-HT; receptors,
there can be no binding to 5-htsasp receptors as the affinity of 5-CT for these

receptors is three fold lower (Table 5.3). This is not the case, as 5-CT also has
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nanomolar affinity for 5-hts, receptors (Table 5.2). Waeber & Moskowitz (1995a), in
contrast, claimed that they have no evidence for 5-htss binding, despite the reported
high affinity, but rather the heterogeneous nature of their binding is more likely due
to the incomplete blockade of other 5-HT receptor subtypes, particularly 5-HT)4.
This seems unlikely, as 100nM 8-OH DPAT should be a sufficiently high
concentration to block binding to 5-HT;s receptors (Figure 5.6a). 100nM 8-OH
DPAT would however also inhibit some 5-HT7 binding. It is more likely that the
100nM GR127,935 is not sufficient to block binding to 5-HTgp receptors.
GR127,935 (Figure 5.7b), a weaker compound than its structurally similar
counterpart GR125,743 (Audinot et al., 1997; Table 5.6) would need to be used at
micromolar concentrations to be effective. It is therefore unlikely that GR127,935
blocked all 5-HTg,1p binding and that this actually corresponds to the heterogeneity
of binding, apparent in another study using 250nM GR127,935 (Mengod et al.,
1996). In the absence of available selective antagonist ligands, it was therefore
important to re-evaluate the autoradiographic localisation of 5-HT; binding sites
using the binding assay conditions developed in this chapter, where there was only
evidence of [3H]5-CT binding to 5-HTa/i8/1p and 5-HT7 receptors.

The autoradiographic distribution of 5-HT; binding sites in this chapter
correlates well with that of previous studies. Relatively high binding site densities
were observed in the hippocampus areas, the septum and the dorsal raphé, and
moderate to low binding site densities observed in the striatum, cortex and
hypothalamus (To er al., 1995; Gustafson et al., 1996; Table 5.10; igures 5.15 to
5.18). The rank order of autoradiographic binding site densities agreed well with the
[*H]5-CT membrane binding studies with the hippocampus being the most abundant
and the cortex/striatum the least. The highest density of 5-HT; binding sites was
located in the dorsal raphé (Table 5.11; Figure 5.15¢). The identification of 5-HT;
mRNA in a serotonergic cell line derived from embryonic rat raphé neurons (Jackson
et al., 1997), as well as detection in the dorsal and paramedian raphé nuclei of mature
rats (Ruat et al, 1993b) may indicate the 5-HT; receptor as an additional
serotoninergic cell body autoreceptor.

Binding site densities also correlated well with reported 5-HT; receptor

mRNA signals, with highest receptor densities being detected in the thalamus,
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hippocampus, superficial cortex layeras, amygdala and hippocampus (To et al.,
1995; Gustafson er al.,, 1996). Although levels of 5-HT; mRNA and binding site
densities are generally well correlated, previous studies have revealed differences.
Hippocampus mRNA levels were high in the guinea-pig CA3 region, while [*H]5-
CT binding sites were higher in the CA1 and CA2 regions, suggesting a possible pre-
synaptic location of the 5-HT5 receptor in the CA3 region (To et al., 1995). 5-HT,
binding sites were also present in areas (central grey, superior colliculus and spinal
trigeminal nucleus) lacking 5-HT; mRNA, which may also reflect presynaptic 5-HT5
binding sites (To et al., 1995). In this study in the rat brain, the CA3 region of the
hippocampus gave a higher density of 5-HT; binding sites compared to the CAl and
CAZ2 regions of the hippocampus. The high levels of 5-HT7; mRNA in this structure
(Gustafson er al., 1996) suggest a possible pre-synaptic location in this species.
Furthermore the superior colliculus also gave a very high density of 5-HT7 binding
sites (not measured), an area which has very low 5-HT7 mRNA (Gustafson et al.,
1996), which may also suggest a pre-synaptic location. The substantia nigra, like the
superior colliculus (two structures with high 5-HT g receptor density; Sari et al.,
1999), contained relatively high levels of 5-HT; receptor density (Table 5.10). The
substantia nigra contains no 5-HT7 mRNA and receives inputs from the striatum (To
et al., 1995; Gustafson ef al., 1996). The striatum contains no 5-HT7 mRNA (To et
al., 1995; Gustafson et al., 1996) but does contain 5-HT7 binding sites as shown in
this study. This may therefore represent a pre-synaptic location in the substantia
nigra or striatum, or even non-5-HT; receptor binding. The latter is unlikely as the
concentration of blocks used were sufficient to block non-5-HT; binding in the
membrane binding assays. However the affinity of GR125,743 for 5-HT/1p binding
sites could be different in the substantia nigra, compared to the striatum, and hence
some binding may represent incomplete blockade of non-5-HT; receptors. Similarly,
although the binding to 5-htsa receptors was not detected in hippocampus, cortex or
striatum membranes, the distribution of the 5-htsa receptor is widespread throughout
the rat brain (Erlander et al., 1993) and so may contribute to non-5-HT; binding in
other structures. However no binding was detected in the cerebellum (data not
shown), where it is known that there is no 5-HT7; mRNA, but where there is

appreciable quantities of 5-htsx mRNA (Plassat et al., 1992; Erlander et al., 1993).
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Experiments were also performed in rat adrenal glands where it is believed
there is a lack of 5-HT; mRNA (Lovenberg et al., 1993a). No specific [H]5-CT
autoradiographic binding was observed in any region of the adrenal gland in the
presence of 200nM WAY 100635 & 200nM GR125,743 (Figure 5.18). This in
contrast to a recent study whereby functionally active 5-HT; receptors have been
demonstrated in the zona glomerulosa (Contesse ef al., 1999). The resolution of such
a region by autoradiographic experiments or a very low abundance may explain why
no 5-HT7 receptors were detected in the present study. Although no specific [*H]5-
CT or [SH]S-OH DPAT binding could be detected in membranes derived from the rat
adrenal medulla (data not shown), 5-HT;s and 5-HT;g;p receptors could be
autoradiographically demonstrated in the rat adrenal medulla (Figure 5.15). This is in
contrast to other 5-HT receptors which are found in the cortex or zona glomerulosa
of the adrenal gland and are associated with the release of steroids (Williams et al.,
1984; Matsouka et al., 1985; Lefebvre er al., 1992; Contesse et al., 1999). This may
suggest a different role for those receptors not previously discovered in the rat
adrenal medulla. The lack of 5-HT binding in the adrenal medulla, but presence of
5-HTp/p binding confirms the ability of 200nM GR125,743 to completely block
binding to these 5-HTp,;p receptor subtypes.

The lack of selective 5-HT; antagonists precluded the use of [*H]5-CT to
develop a binding assay to directly study the 5-HTipnp receptor population.
Therefore the selective 5-HT,g/p selective antagonist [3H]GR125,?43 was used to
characterise a membrane binding assay for 5-HTg and 5-HT)p receptors which has
previously only been used in human and guinea pig studies (Audinot et al., 1997,
Doménech et al., 1997). The binding of ["H]JGR 125,743 to rat cortex, hippocampus
and striatum membranes was of high affinity. The Kp values were similar in the three
different brain areas (cortex, hippocampus, and striatum) from competition studies
and the pharmacology identical (Table 5.11). Furthermore similar affinities were
obtained compared to studies with [3H]5-CT (Table 5.6). The Bnyax values were of the
rank order; striatum > hippocampus = cortex (Figure 5.20; Table 5.11), confirming
the higher expression of 5-HT,p/1p binding sites in the striatum (Table 5.11). In the
presence of 300nM CP93129 (the selective 5-HT,p agonist; Macor et al., 1990) the
5-HT,s component of [PHIGR125,743 binding was effectively blocked. Only 20, 13
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and 8 % of initial binding remained in striatum, cortex, and hippocampus
respectively, which correlates with the rank order of 5-HTp expression being highest
in the striatum and lowest in the hippocampus. The distribution of these receptors
and the fact that most 5-HTp/p receptors in rat brain are of the 5-HT;p type are in
agreement with other studies (Pazos & Palacios, 1985a; Sijbesma et al., 1991;
Bruinvels et al., 1993a & b; Sari et al., 1997). Hill slopes of GR125,743 were not
different from unity, which in the case of the striatum, where there is a higher
proportion of 5-HT)p receptors, suggests that GR125,743 has the same affinity for
both receptor subtypes as is apparent at the equivalent human receptors (Audinot et
al., 1997). This enabled calculation of the individual B,x values for both receptor
subtypes (Table 5.11).

At present there are no selective ligands for 5-HT,g and 5-HT;p receptors,
although there are reports of two compounds which can differentiate between
human/guinea pig 5-HT,p and 5-HT)p receptors in recombinant cell lines (Price et
al., 1997) and in functional studies (Schliker et al., 1997). These two compounds,
SB216641 and BRL15572 were included in this study. SB216641, inhibited both
[’H]GR125,743 and [*H]5-CT binding in the presence of 200nM WAY 100635 with
Hill slopes of 1, to the level of the block caused by 300nM CP93129 (Tables 5.6 &
5.12). It would therefore appear that SB216641, is also selective for the 5-HTp
receptor subtype in native rat tissue. Moreover the affinity in these rat studies were
similar to the reported nanomolar affinity for human cloned 5-HT)p receptors (Price
et al., 1997). Despite the reported difference in pharmacology between rodent and
non-rodent 5-HTp receptors due to a single amino acid difference, there are indeed
some compounds that show no such differences in affinity (eg. 5-CT, 5-HT, DHE &
methiothepin; see Boess & Martin, 1994). BRL15572 on the other hand completely
inhibited WAY insensitive [’H]5-CT binding with a Hill slope of 1 and micromolar
affinity, suggesting that in the rat, this compound can not differentiate between 5-

HTg, 5-HTp or 5-HT; receptors.
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5.4 Summary

In this chapter membrane binding assays were characterised for the 5-
HT\ 1810 and 5-HT receptors, prior to their use for receptor abundance and affinity
determinations after drug treatments in chapters 6 & 7.

[3H]8—OH DPAT was used to label 5-HT, 4 receptors, whose pharmacology
agreed well with previous reports.

[3H]5-CT in the presence of 200nM WAY 100635 (to block binding to 5-
HT,a receptors) and 200nM GR125,743 (to block binding to 5-HT;g,p receptors)
revealed a pharmacology for the remaining component consistent with 5-HT;
receptor binding. The Hill slopes of 1 for antagonists suggest specific labelling. The
Hill slopes of <1 for agonists (in rat brain only) suggests a heterogeneity of agonist
binding, which was not due to incomplete blockade of 5-HTa/18/1p receptors or due
to binding to 5-htsa receptors. It also suggests the presence of high and low affinity
states of this G protein coupled receptor. The complex binding of this agonist
radioligand in rat brain in this study (and in human brain) may also potentially be due
to differential G-protein coupling of the multiple 5-HT receptor isoforms found in
these species. This complexity of binding is not observed in guinea pig brain where
only one 5-HT5 receptor isoform exists.

[PH]5-CT autoradiographic experiments, revealed a higher density of 5-HT;
binding sites in the hippocampus than in the cortex or striatum, in agreement with the
membrane binding studies. The highest binding was in the dorsal raphé, suggesting a
possible role for the 5-HT7 receptor as an autoreceptor. In the adrenal gland, no 5-
HT5 binding was detected, but binding sites for the 5-HT 4 and 5-HTg/ip receptors
were specifically located in the rat adrenal medulla.

[3H]GR125,?43 was used to label 5-HT,g and 5-HT,p receptors, whose
pharmacology agreed well with both previous reports and [’H]5-CT binding in the
presence of 200nM WAY100635. The rank order of 5-HTg,p, 5-HTp or 5-HTp
receptors was: striatum > hippocampus >/= cortex which was in agreement with

[*H]5-CT binding studies.
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CHAPTER 6

THE EFFECT OF CHRONIC ANTIDEPRESSANT
TREATMENTS ON THE DENSITY AND AFFINITY OF THE
S-HT TRANSPORTER AND 5-HT RECEPTORS
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The hypothesis that disturbances in normal serotoninergic transmission play
an important role in the aetiology of depression is based predominantly on the
clinical efficacy of selective serotonin re-uptake inhibitors (SSRIs) as highly
effective antidepressants (;\sberg et al., 1986; Blier et al., 1990; Price, 1990;
Delgado et al., 1992). SSRIs are effective inhibitors of the 5-HT transporter (SERT)
and bind to the same or closely overlapping site in SERT as 5-HT itself (Bacstrom ez
al., 1989; Graham er al., 1989). The therapeutic action of SSRIs is generally believed
to result from their ability to enhance central 5-HT neurotransmission by increasing
the synaptic availability of 5-HT (Blier et al., 1987; Chaput er al., 1991). Although
SSRIs inhibit SERT within minutes (De Montigny et al., 1984; Stark et al., 1985;
Artigas et al., 1996), their full antidepressant action is not apparent until after a
therapeutic delay of some 2-3 weeks (Meltzer & Lowy, 1987, Blier & De Montigny,
1994). However the nature of the link between the acute actions of these drugs in
vitro and the weeks of treatment required for clinical improvement remains
unresolved.

SERT is abundantly expressed in the midbrain raphé complex, whereas lower
but measurable concentrations are found in the projections areas of the cortex,
hippocampus and striatum (Hrdina et al, 1990; Lesch et al, 1993a). 5-HT;a
receptors are also relatively high in abundance in the midbrain raphé nuclei (Pazos &
Palacios, 1985), with lower concentrations in the terminal fields of the hippocampus
and cortex (Deshmukh ez al., 1983; Gozlan er al., 1983, and Vergé et al., 1986). The
majority of these terminal field 5-HT 4 receptors are putatively postsynaptic (Francis
et al., 1992; Lawrence et al., 1993). It is also well established that 5-HT; receptors
regulate 5-HT release from terminals of serotoninergic neurons ascending from the
dorsal and median raphé nuclei to the hippocampus, the striatum and the cortex
(Engel et al., 1986; Maura et al., 1986; Limberger et al., 1991).

Acute administration of SSRIs results in a large increase in 5-HT efflux in
several sub-cortical brain regions as shown by microdialysis in freely moving rats in
vivo (see Fuller et al., 1994). This increase, which is dependent on neuronal firing,
involves mechanisms in the terminal field since efflux of 5-HT is increased by local
infusion of the SSRI via the dialysis probe (Auerbach er al., 1989). However,

changes in the concentration of extracellular 5-HT in dialysates of the cerebral cortex
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after systemic drug administration are inconsistent (Artigas, 1993) and relatively
high doses are required (Invernizzi et al, 1992a). Acute administration of SSRIs
preferentially increase extracellular levels of 5-HT in the midbrain raphé nuclei
(Aghajanian 1978; Adell & Artigas, 1991; Invernizzi et al., 1992a). This results in a
reduction in neuronal firing (Chaput er al., 1986) due to somatodendritic 5-HT4
receptor activation (Vandermaelen & Aghajanian, 1983; Adell & Artigas, 1991;
Hodgkiss et al., 1992;). This decrease in serotoninergic neuronal activity following
acute administration limits the ability of SSRIs to increase 5-HT levels in the
forebrain (e.g., frontal cortex), as 5-HT synthesis (Carlsson & Lindqvist, 1978) and
release (Fuller ez al., 1974) are actually reduced. However there is regional variation
in this effect (Frankfurt et al., 1994). Increased extracellular 5-HT levels in the
terminal fields can also cause activation of 5-HT;g or 5-HTp receptors which can
cause feedback inhibition of transmitter release in rat forebrain projection areas
(Sharp ez al., 1989; Auerbach et al., 1991; Hjorth & Tao, 1991). Thus it appears that
5-HT autoreceptors have a restraining influence on pharmacological treatments in the
short-term that would otherwise tend to greatly increase 5-HT neurotransmission.
This is supported by the ability of 5-HT autoreceptor antagonists to augment the
increase in extracellular 5-HT levels produced by acute administration of SSRIs
alone (Invernizzi et al., 1992a; Hjorth er al., 1993; Rollema er al, 1996) or in
combination with an even greater effect (Gobert et al., 1997; Sharp et al., 1997). In
some scenarios, however, the concurrent block of all three 5-HT autoreceptors is
required to elevate terminal field 5-HT concentrations and/or to overcome SSRI
induced inhibition of 5-HT synthesis (Barton & Hutson, 1999; Roberts et al., 1999).
In contrast to acute treatment, long-term antidepressant treatment causes a
sustained increase in the extracellular concentrations of 5-HT (Rutter et al., 1994),
even in the cerebral cortex (Bel, & Artigas, 1993). This is believed to be due to the
desensitisation of somatodendritic 5-HT, receptors and nerve terminal 5-HTp/ip
receptors (De Montigny et al., 1984; Vergé at al., 1985; Chaput et al., 1986 & 1988;
Sprouse & Aghajanian, 1987; Blier er al., 1988 a & b; Moret and Briley, 1990;
Hjorth, 1993; Le Poul et al., 1995a & b). The desensitisation of the 5-HT 4 receptor
allows serotoninergic neurons to resume their normal firing activity in the presence

of continued re-uptake inhibition (Chaput ez al., 1986; Blier ez al., 1990). It has also
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been hypothesised that chronic SSRI treatment increases 5-HT release, perhaps by
down- regulating terminal autoreceptors (Blier et al., 1987 & 1990; Briley & Moret,
1993a & b; Mansari ef al., 1995). The resumption of serotoninergic neuronal activity
after 5-HT autoreceptor desensitisation is thought to lead to an overall enhancement
of serotonin neurotransmission, which, in turn, may mediate the therapeutic effect.
The time course of these desensitisations is consistent with the delayed onset of
action of these drugs in the clinic. Indeed co-administration of a 5-HT;a receptor
antagonist (pindolol) with an SSRI (citalopram) has been shown to enhance the
therapeutic efficacy and shorten the onset of action of SSRIs in depressive patients
(Artigas et al., 1996). Gradual desensitisation of these 5-HT autoreceptors may
therefore underlie the delayed onset of action of SSRIs.

However, this is not the only mechanism that could be involved. Sustained
blockade of the 5-HT transporter (SERT) located in the terminal field has been
shown to produce a desensitisation of the 5-HT re-uptake response. Long-term
treatments with paroxetine (a high affinity SSRI) induced a decreased uptake of
[*H]5-HT into hippocampus slices and a decrease in the density of SERT (Pineyro et
al., 1994). Furthermore, long term administration of antidepressants, which inhibit 5-
HT re-uptake such as the SSRI, fluoxetine and the tricyclics, imipramine and
chlorimpramine, decrease the steady-state concentrations of brain SERT mRNA
(Lesch et al., 1993a). These studies collectively suggest that chronic treatment with
re-uptake inhibiting antidepressants may be associated with down-regulation of
SERT at the levels of gene and protein expression. SERT is also found in the rat
adrenal medulla as shown in chapter 4. The adrenal gland is a primary source of
steroids, which have been implicated in the depressive state (see Barden et al., 1995).
Therefore part of the mechanism of antidepressant drugs may be due to the in
inhibition of adrenal SERT.

The identification of a further class of 5-HT receptor, namely the 5-HT;
receptor, warrants its investigation as to its potential involvement in the mechanism
of action of antidepressant drug treatments. Several different classes of
antidepressant drugs have been reported to interact with the 5-HT receptor; both
amitriptyline and mianserin significantly enhance 5-HT7-mediated cAMP

accumulation in rat frontocortical astrocytes following chronic exposure (Shimizu et
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al., 1996). Glucocorticoids have been implicated in the aetiology of depressive
illness (Dinan, 1996), and the alteration of circulating glucocorticoid levels alters
both 5-HT7; mRNA levels and functional adenylyl cyclase responses (Yau et al.,
1997a; Le Corré et al., 1997; Shimizu et al., 1997). In rat frontocortical astrocytes,
prolonged exposure to dexamethasone reduced both 5-HT7-mediated cAMP
accumulation and 5-HT7 mRNA levels (Shimizu et al., 1997). Additionally, blockade
of endogenous corticosterone synthesis by chemical adrenalectomy up-regulates 5-
HT7 receptor mRNA expression in rat hippocampal subfields, demonstrating that the
5-HT3 receptor can be regulated by circulating adrenal steroids (Yau et al., 1997a; Le
Corré et al., 1997). Furthermore the 5-HT; receptor has been suggested to be
involved in the therapeutic effects of the adrenocortical hormone synthesis blockers,
such as aminoglutethimide and metyrapone, which have been used to treat drug-
resistant depression (Yau et al., 1997a).

To date there has only been two reports on the effects of an SSRI chronic
treatment on 5-HT7 receptors in native brain tissue. In the first, chronic fluoxetine
treatment caused a down-regulation in the density of 5-HT; binding sites in the rat
hypothalamus (Sleight ez al., 1995a). However the conditions of the radioligand
binding assay employed have been disputed (Gobbi et al., 1996), and so the results
need to be treated with caution. In a second study, using more appropriate binding
conditions a significant decrease in 5-HT; receptor density in the rat hypothalamus
was observed with a variety of chronic antidepressant treatments, including
fluoxetine (Mullins et al., 1999). The 5-HT; receptor has been implicated in the
regulation of circadian rhythms (Lovenberg et al.,, 1993a) which is controlled in part
by the suprachiasmatic nucleus of the hypothalamus (SCN; Ralph ez al., 1990). Many
researchers have suggested that alterations in circadian rhythm play an important role
in the aetiology of depression (see Duncan, 1996). Indeed many classes of
antidepressants have been shown to shift established rhythmicity and possess the
ability to restore experimentally phase-shifted circadian activity patterns (Wollnick,
1992). c-Fos (a member of the AP-1 family of transcription factors) is significantly
induced in the SCN in response to the acute administration of 5-HT; agonists (5-CT
& 8-OH DPAT) and a variety of antidepressant drugs (fluoxetine, mianserin,

imipramine, desipramine, clorgyline, or nefazodone; Mullins er al., 1999). This
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response is desensitised following chronic antidepressant treatment with an
accompanying neuroadapative downregulation of 5-HT; receptor density in the
hypothalamus (Mullins ez al., 1999). These recent findings further support a role for
the 5-HT57 receptor in the mechanism of antidepressant action and in the regulation of
the circadian rhythms controlled by the SCN.

Factors controlling the delayed mechanism of action of most antidepressants
may involve changes in receptor expression throughout the time course of treatment
until clinical benefit is observed. Such long-term neuroadaptive mechanisms
responsible for the therapeutic effect of antidepressants have been suggested (Briley
& Moret, 1993b). These may involve alterations in the density of SERT and/or 5-
HT;s receptors and/or 5-HT;p,p receptors and/or 5-HT; receptors to control the
availability of 5-HT in the terminal fields and consequently to increase 5-HT
neurotransmission. Potential adaptive changes of SERT density after chronic
antidepressant treatment were therefore investigated in the 5-HT projection areas of
the cortex, hippocampus and striatum and in the periphery in the rat adrenal medulla,
using membrane [3H]citalopram binding as previously described (chapters 3 & 4).
Using site-directed SERT antibodies characterised in Chapter 2, SERT density was
assessed qualitatively in the raphé, a particularly small region of the rat brain that
was too small to wuse in conventional membrane binding studies.
Immunohistochemical methods were also used to assess SERT density in the
projectional areas of the cortex, striatum and hippocampus to complement
radioligand binding methods. Western blot analysis was also included to assess any
possible effects in the rat brain and rat blood platelets using a site-diected SERT
antibody. The effect of chronic antidepressant treatment on the density of 5-HTa
receptors was assessed in the projection areas of the cortex and hippocampus using
[3H]8—OH DPAT membrane binding. 5-HT;p/1p receptors were also investigated in
the same projection areas as the more robust 5-HT terminal marker (SERT) using
[3H]GR125,743 membrane binding. The conditions described in chapter 5 to
selectively label the 5-HT; receptor were used to investigate the effect of chronic
antidepressant treatment on the density of 5-HT; receptors in the projection areas of

the cortex, hippocampus and striatum.
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Three antidepressants were used for chronic treatment studies to investigate
potential neuroadaptive changes of SERT and 5-HT receptors, which may further
help to explain the mechanism of action of distinct classes or individual
antidepressants. These included the two SSRIs fluoxetine and citalopram. Fluoxetine
(Prozac®) is the least selective inhibitor of 5-HT uptake (Stanford, 1996) and
citalopram (Cipramil®) the most selective inhibitor of 5-HT uptake (Hyttel, 1994).
The atypical antidepressant, tianeptine, was also included, as unlike the SSRIs it
selectively stimulates the high affinity uptake of [*H]5-HT by rat brain synaptosomes
without affecting noradrenergic and dopaminergic uptake systems (Mennini et al.,
1987; Fattaccini et al., 1990) and without modifying the frequency of 5-HT neuronal
firing (Pifieyro et al., 1995¢ & d).

6.1 Methods

6.1.1 Treatment of Animals

Male Sprague-Dawley rats (Charles River, 200-250g) on the day of arrival,
were housed in groups of three to four for three days, given free access to food and
water and kept on a 12 hour light cycle at 21°C throughout the study. Following a
further two days habituation (which involved frequent handling to reduce
experimental stress), all animals were put on a restricted diet of 10g chow per 100g
rat body weight per day, but with free access to water and kept on this regime
throughout the treatment. Animals were dosed by subcutaneous injection, with twice
daily injections between 08:00 and 09:00, and again between 16:00 and 17:00. Each
drug used was dissolved in 0.9% saline. For each antidepressant tested, 0.1ml of
stock solution was injected subcutaneously (s.c.) per 100g body weight. Control
groups represent those animals receiving the equivalent volumes of 0.9% saline
vehicle for the duration of the antidepressant treatment. The final dose was followed
by a two full day washout period (64-72 hours) before animals were used for
neurochemical or immunological experiments. Two sets of independent chronic
antidepressant treatments were carried out.

Treatments to Study SERT and 5-HT;, Receptors

The first set of chronic antidepressant treatments involved three independent

studies (repeated twice). For each study 20 animals were used in total. Ten were
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treated with antidepressant and ten with control. Animals in the first study were
injected with either citalopram (10mg/kg bd for 21 days) or control. In a similar
chronic study, this dose has previously been shown to desensitise somatodendritic 5-
HT,a autoreceptors (Invernizzi et al., 1994). Animals in the second study were
injected in the mornings only with either fluoxetine (10mg/kg od for 21 days) or
control. Once daily dosing with fluoxetine has previously been shown to desensitise
somatodendritic 5-HT s autoreceptors through the course of a chronic treatment (Le
Poul er al, 1995a & b). Animals in the third study were injected with either
(10mg/kg bd for 14 days) tianeptine or control. This dose was used as previous
studies have shown an increase in 5-HT uptake in rat platelets and brain
synaptosomes (Mennini et al., 1987).

For each independent antidepressant study 6 control and 6 drug treated
animals were used for binding studies. Rats for these studies, after the washout
period, were killed by a sharp blow to the back of the neck, the head guillotined and
membranes immediately made according to the methods previously described in
chapter 3. Brain frontal cortex, caudal cortex, hippocampus, and striatum and also
adrenal medulla membranes were prepared. From these animals the effect of chronic
antidepressant treatments on SERT and 5-HT); s receptors was investigated. For each
independent antidepressant study, 2 control and 2 drug treated animals were also
used for immunohistochemical studies. A further 2 control and 2 treated animals
were used for Western blot analysis.

Treatments to Study 5-HTg1p and 5-HT; Receptors

This series of chronic antidepressant treatments involved two independent
studies with 6 animals in each study group. In the first study, rats were treated with
either citalopram (10mg/kg bd for 21 days), fluoxetine (10mg/kg bd for 21 days) or
control. In the second study, rats were treated with either tianeptine (10mg/kg bd for
14 days) or control. Rats for these studies, after the washout period, were killed by a
sharp blow to the back of the neck, the head guillotined and membranes immediately
made according to the methods previously described in chapter 3. Brain frontal
cortex, caudal cortex, hippocampus, and striatum and also adrenal medulla
membranes were prepared. From these animals the effect of chronic antidepressant

treatments on 5-HT; and 5-HTpnp receptors was investigated. However as
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fluoxetine was administered using a twice daily dosing regime the effect on SERT
was initially reassessed in comparison to twice daily dosing in citalopram, tianeptine

and control treated rats in frontal cortex membranes only.

6.1.2 Neurochemical and Immunological Assays

Membrane radioligand binding assays were conducted as described
previously (chapters 3, 4 & 5). For each binding assay 6 control and 6 treated
animals were compared in membranes from each brain area and the adrenal medulla.
However the small size of the striatum and hippocampus only permitted 3 control
and 3 treated animals to be compared in both 5-HT; and 5-HT;g/p receptor binding
assays.

In addition to the calculation of the Kp and B« of the 5-HT; receptor
binding site, the proportion of receptors labelled by 0.25nM [’H]5-CT were
calculated as described in chapter 5. In the 5-HT7 receptor binding assays untreated
naive membranes were assayed to ensure that the conditions of the blocks used were
sufficient to reveal the 5-HT7 receptor population. Inhibition curves for WAY 100635
against [*H]5-CT binding and GR 125,743 against WAY 100635 insensitive [*H]5-CT
binding were generated in naive membranes corresponding to the tissue being
assayed.

In addition to the calculation of the Kp and Bpax of the 5-HT,g/ip receptor
binding sites, the proportion of receptors labelled by 0.25nM [’H]GR 125,743 were
calculated as described in chapter 5. The calculation of the Kp and By, values of the
individual 5-HT g and 5-HTp receptor components were calculated assuming that
GR125,743 had equal affinity for these receptor subtypes as described and discussed
in chapter 5. In the 5-HTg/p receptor binding assays untreated naive membranes
were assayed to ensure that the conditions of the blocks used were sufficient to
reveal the 5-HTp receptor population. An Inhibition curve for CP93129 against
[PHIGR125,743 binding was generated in naive membranes corresponding to the
tissue being assayed.

SERT abundance was qualitatively assessed in the projection areas of the
cortex, hippocampus and striatum and also in the raphé nucleus, using the 998

antibody (1 in 2000 dilution) in immunohistochemical studies whose characterisation
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and methodology was determined in chapter 2. SERT abundance was also
qualitatively assessed in brain cortical and rat platelet homogenates, using the 1001
antibody (1 in 200 dilution) in Western blotting studies whose characterisation and

methodology was determined in chapter 2.

6.2 Results
6.2.1 Effect of Chronic Antidepressant Treatments on SERT

6.2.1.1 [’H]Citalopram Binding Studies in Rat Brain and
Adrenal Medulla Membranes

Chronic citalopram (10mg/kg bd s.c. for 21 days), fluoxetine (10mg/kg once
daily for 21 days) or tianeptine (10mg/kg bd s.c. for 14 days) treatments caused no
difference in either the density or affinity of SERT binding sites labelled with
0.25nM [3H]citalopram in frontal or caudal cortex, hippocampus or striatum
membranes, when compared to controls (Table 6.1; Figure 6.1a). Each treatment was
repeated twice and the same results obtained (data not shown). Similarly there were
no differences in the [*H]citalopram binding parameters in rat adrenal medulla
membranes after chronic SSRI or tianeptine treatments, when compared to controls
(Table 6.1; Figure 6.1a). The Hill slopes, whether from brain or adrenal membranes

were unaffected by chronic antidepressant treatment (Table 6.1).

6.2.1.2 Immunohistochemical and Western Blot Studies

There was no apparent difference in the terminal field staining in regions of
the cortex, hippocampus or striatum after each antidepressant treatment compared to
controls. There was also no difference in cell body staining in the raphé after any
antidepressant treatment compared to controls (Figure 6.2). Qualitative analysis of
SERT abundance using Western blots also revealed no differences after chronic
antidepressant treatment compared to controls, in cerebral cortex or platelet
homogenates. Cerebral cortex immunoreactivity was detected at 76 kDa, and platelet

immunoreactivity detected at 94 kDa (Figure 6.3).
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(a)

(b)

Figure 6.1: Example [’H]Citalopram & [*H]8-OH DPAT Binding

3504
300:
2501
200—-
150".
100—.

50

[3H]citalopmm Specific Binding (fmoles mg ' protein)

[’H]8-OH DPAT Specific Binding (fmoles mg"' protein)

@ Striatum
® Control
0O Citalopram
Adrenal Medulla
@ Control
O Citalopram

001 0.1 1 10 100 1000
Concentration (unlabelled citalopram) Log nM

Hippocampus
®  Control
O Citalopram

1E-3 0.01 0.1 1 10 100
Concentration (unlabelled 8-OH DPAT) Log nM

Isotherms After Chronic Antidepressant Treatment.

Data represent typical (a) [3H]citalopram (0.25nM) binding isotherms in striatum and
adrenal medulla membranes after chronic citalopram treatment (10mg/kg bd for 21
days) and (b)[’H]8-OH DPAT (0.25nM) binding isotherms in hippocampus
membranes after chronic citalopram treatment (10mg/kg bd for 21 days). Mean data

is in tables 6.1 & 6.2.
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5

Figure 6.2: Immunohistochemistry of SERT Protein After Chronic

Antidepressant Treatment.

Data presented are representative immunohistological rat brain sections processed for
SERT immunoreactivity after different chronic antidepressant treatments using the
998 antibody as described in Chapter 2. Each section was processed using a 1 in
2000 dilution of the 998 antibody and images represent (a) control and (b) tianeptine
(10mg/kg bd for 14 days) treated in dorsal raphé (magnification x100), (c) control
and (d) fluoxetine (10mg/kg once daily for 21 days) treated in striatum
(magnification x 200), (e) control and (f) citalopram (10mg/kg bd for 21 days)
treated in hippocampus (magnification x 200).
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Figure 6.3: Western Blot Analysis of SERT Protein After Chronic
Antidepressant Treatment with 1001 Antibody.

Example of western blot analysis from rats chronically treated with fluoxetine
(10mg/kg once daily for 21 days) using an antibody designed to the 4™ extracellular
loop of SERT as described in Chapter 2 and assigned as 1001. Tissue homogenates
were prepared according to the methods described in chapter 2 and loaded to give
50pg of protein per lane. Standard rainbow wide-range colour markers (Sigma) gave
the appropriate molecular weight standards, shown to the left of the blot. Cerebral
cortex immunoreactivity was observed at 76 kDa and platelet immunoreactivity at 94
kDa. C1= control animal 1, T1= fluoxetine treated animal 1, C2= control animal 2,

T2= fluoxetine treated animal 2.
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6.2.2 Effect of Chronic Antidepressant Treatments on 5-HT,;,

Receptors

Chronic citalopram (10mg/kg bd s.c. for 21 days), fluoxetine (10mg/kg once
daily for 21 days) or tianeptine (10mg/kg bd s.c. for 14 days) treatments caused no
changes in either the density or affinity of 5-HT 5 binding sites labelled with 0.25nM
[’H]8-OH DPAT in frontal cortex, caudal cortex, or hippocampus membranes, when
compared to controls (Table 6.2; Figure 6.1b). The Hill slopes were unaffected by
chronic antidepressant treatment (Table 6.2). Each treatment was repeated twice and

the same results obtained (data not shown).

6.2.3 Effects of Chronic Fluoxetine Twice Daily Treatments on
SERT and 5-HT;, Receptors

Chronic fluoxetine treatments using a once daily dosing regime resulted in no
change in the binding parameters as measured in the above sections (Tables 6.1 &
6.2). To make this SSRI treatment more comparable to citalopram and tianeptine
treatments, chronic fluoxetine treatments were conducted as before but with a twice
daily, rather than a once daily dose of 10mg/kg.

[3H]citalopram binding studies revealed a significant decrease in the amount
of specific binding (93 %) and affinity (45 fold) in frontal cerebral cortex membranes
(Table 6.3; Figure 6.4). No change in any binding parameter in frontal cortex
membranes was once again observed after chronic citalopram or tianeptine
treatments (data not shown). Accompanying these reductions in the frontal cortex
after chronic twice daily dosing of fluoxetine was a 2-3 fold increase in the Bpax
values (Table 6.3). Using adrenal medulla membranes, there was an 84% reduction
in the amount of [*H]citalopram binding specific binding (93 + 7 and 15 % 7 fmoles
mg' protein in fluoxetine treated and control animals respectively). Due to the low
amount of binding in the fluoxetine treated animals, no affinity values could be
determined. This effect may have been due to presence of residual fluoxetine
competing for [*H]citalopram binding sites.

In an attempt to investigate whether or not residual fluoxetine could account

for these results, competition [*H]citalopram binding assays were constructed in
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Figure 6.4: Effect of Chronic Fluoxetine Treatment on Specific
[3H]Citalopram Binding (DPM) in Frontal Cortex Membranes.
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Rats were treated with: fluoxetine (10mg/kg bd for 21 days) or the equivalent volume
of vehicle (control). Following a two day washout period, animals were sacrificed
and membranes made. The 5-HT transporter population was labelled with 0.25nM
[3H]citalopram. Figure 6.4 shows typical binding isotherms obtained using 147pg of
fluoxetine treated protein and 55ug of control treated protein. Combining the data

from 6 animals per group is shown in Table 6.3 below.

Table 6.3: Effect of Chronic Fluoxetine Treatment on

[3H]Citalopram Binding in Frontal Cortex Membranes.

Kp By nH Specific Binding
Control 1.81 £ 0.05 2.14+0.08 1.07+£0.02 256+ 8
Fluoxetine 83 +£17* 5.66+1.21* 0.99+0.18 19 5%

The results are expressed as the mean + s.e.mean. The Kp in nM, the By, in fmoles
mg” protein, Hill slope (nH), and the amount of specific binding at 0.25nM

[*H]citalopram in fmoles mg™ protein are given. * = p < 0.05 compared to controls.
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naive cerebral cortex membranes (non-treated rat membranes), whereby citalopram
inhibition curves were conducted in the absence or presence of increasing
concentrations of fluoxetine. This was done to estimate the concentration of residual
fluoxetine required to cause a 45 fold decrease in affinity compared to control. As
expected there were decreasing amounts of specific 0.25nM [3H]citalopram binding
in the presence of increasing concentrations of fixed concentrations of fluoxetine
(Figure 6.5a). In the presence of 10nM or greater fluoxetine the affinity of citalopram
was reduced. Concentrations of fluoxetine between 100 and 300nM in the assay
caused an approximate 88-97% reduction in specific [BH]citalopram binding and a 20
to 100 fold decrease in affinity (Figure 6.5a). At these concentrations the By, value
was increased by 2 to 3 fold, whereas the B,y did not change at or below 10nM
fluoxetine. This is comparable to that observed in membranes derived from animals
dosed twice daily with fluoxetine (Table 6.3), suggesting that residual fluoxetine may
be competing for [*H]citalopram binding sites. Furthermore, the ICso value of the
generated fluoxetine curve of 18.99nM is in good agreement with the fluoxetine
standard curve of 15nM (Figure 6.5b) and the affinity values determined in chapter 4.

From these frontal cortex membranes from fluoxetine treated animals,
binding experiments were also conducted using [3H]8-OH DPAT and [3H]nisoxetine
to investigate any effect on 5-HT;a receptors and NET respectively. There was no
change in the amount of specific binding using either ligand after chronic fluoxetine
twice-daily treatment as compared to controls (Figure 6.6). Fluoxetine has very low
affinity for 5-HTa receptors (pK; of 4.62 as determined in chapter 5). Therefore if
fluoxetine was present in the [’H]8-OH DPAT binding assay at concentrations less
than 1pM, no difference in specific binding would be expected. Fluoxetine however
has reasonable affinity for NET (pK; of 6.06 as determined in chapter 4). If there was
a high concentration of fluoxetine present in the assay (100-300 nM as described
above), there should be a reduction of between 9 and 23% in [SH]nisoxetine binding,
based on a theoretical model of fluoxetine inhibition of [PH]nisoxetine binding
(Figure 6.7). No reduction was however observed in the amount of specific
[*H]nisoxetine binding (Figure 6.6). Therefore residual fluoxetine does not appear to

account for the striking differences seen in these studies.
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Figure 6.5: Inhibition of [3I-I]citalopam Binding by Fluoxetine.
Data shown represents; (a) inhibition of [*H]citalopram binding by citalopram in the
presence of varying concentrations of fluoxetine (b) inhibition of [3H]citalopram by

citalopram and fluoxetine and the generated fluoxetine inhibition curve from (a).

248



(a)

IOU-A
8(}—.
60—-
40 -

20 1

Control Fluoxetine

['H]8-OH DPAT Specific Binding (fmoles mg" protein)

(b)

oT
=
e |

N
=)
1

(3]
=)
1

o
|

Control Fluoxetine

[3H]nisoxetine Specific Binding (fmoles m g" protein)
:

Figure 6.6: Effect of Chronic Twice Daily Fluoxetine Treatment on
[’H]8-OH DPAT & [’H]nisoxetine Binding.

Rats were treated with: fluoxetine (10mg/kg bd for 21 days) or the equivalent volume
of vehicle (control). The results are expressed as the mean + s.e.m from 6 animals
per group in frontal cortex membranes. 5-HT)a receptors were labelled with 0.25nM
[’H]8-OH DPAT in (a). The noradrenaline transporter was labelled with 0.50nM

[*H]nisoxetine in (b).
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Figure 6.7: Theoretical Displacement of [’H]Nisoxetine Binding by

Fluoxetine and Norfluoxetine.

Using the mean pK; value of fluoxetine for nisoxetine binding (chapter 4), and
assuming approximately 6 fold lower potency of the demethylated metabolite,
norfluoxetine, theoretical binding curves are shown. 100nM fluoxetine would
account for a 9% decrease in nisoxetine binding. 300nM fluoxetine would account
for a 23% reduction in nisoxetine binding. These concentrations of norfluoxetine

would account for a negligible decrease in nisoxetine binding.
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Fluoxetine is extensively biotransformed by N-demethylation (o
norfluoxetine (Parli & Hicks, 1974). In animal models, norfluoxetine is a potent and
selective inhibitor of serotonin uptake with activity essentially equivalent to
fluoxetine (Wong et al., 1993). Despite similar affinities for 5-HT re-uptake, the
half-life of norfluoxetine is considerably longer than that of the parent drug (Caccia
et al., 1990 & 1992). It is therefore likely that the effects seen after chronic
fluoxetine twice daily dosing treatments on [’H]citalopram binding could be
explained by the presence of residual norfluoxetine.

One study which was similar in methodology to this fluoxetine treatment,
albeit by a different route of administration (i.p. compared to s.c. in these studies),
caused a final brain concentration of approximately 30uM norfluoxetine and
negligible levels of fluoxetine after the same washout period (Gardier et al., 1994).
Taking into account the dilution of tissue for use in a [3H]citalopram binding assay,
this concentration would account for the presence of 250nM norfluoxetine.
Norfluoxetine is not commercially available hence it was assumed that both
norfluoxetine and fluoxetine would have the same affinity for 5-HT re-uptake sites as
previously reported (Wong et al., 1993). 250nM norfluoxetine would therefore
account for an approximate 93% reduction in specific [*H]citalopram binding when
extrapolated from a standard curve (Figure 6.5). This reduction would be comparable
to the effects seen after chronic fluoxetine treatment. Furthermore, the affinity of
norfluoxetine for NET is known to be approximately 6 fold weaker (Tatsumi et al.,
1997), and therefore 250nM norfluoxetine would only account for a 4 % reduction in
[3H]nisoxetine binding (Figure 6.7). In this study there was no significant reduction
in such binding (Figure 6.6). Therefore it is likely that the effects seen with a twice
daily treatment of fluoxetine are due to the presence of the residual active metabolite,
norfluoxetine.

The remaining tissue from this treatment was to be used to examine the
effects of chronic fluoxetine treatment on 5-HT; and 5-HTp,p receptor densities and
affinities. Prior to performing these experiments, the interaction of fluoxetine with
the 5-HT7 and 5-HT;p/1p receptors was investigated. Fluoxetine had weak affinity
(<10pM) for both [’H]5-CT binding sites (in the presence of 200nM WAY 100635
and 200nM GR125,743) and [PH]GR125,743 binding sites in rat cortex membranes
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(Table 6.4). Therefore if chronic fluoxetine treatment caused any effect on these

receptor subtypes, it would be unlikely to be due to the presence of residual drug.

6.2.4 Effects of Chronic SSRI Treatments on 5-HT,; and S5-
HTIB,"ID Receptors

In each of the brain areas investigated naive membranes from non-treated rats
revealed that 200nM WAY 100635 was sufficient to block the 5-HT ;4 component of
[’H]5-CT binding described in chapter 5 (data not shown). 200nM WAY 100635 &
200nM GR125,743 was sufficient to block the 5-HT, 5, p component of [3H]5-CT
binding described in chapter 5 (data not shown).

Chronic citalopram treatment caused a significant increase in the percentage
of 5-HTa receptors (~8 %), and decrease in the percentage of 5-HT;p/ip and 5-HT;
receptors (~9 and 13 % respectively) labelled with 0.25nM [3H]5-CT in the frontal
cortex (Table 6.5). Chronic fluoxetine treatment similarly caused a significant
increase in the percentage of 5-HT;, receptors (~10%), and decrease in the
percentage of 5-HT;g/p and 5-HT; receptors (~11 and 18 % respectively) labelled
with 0.25nM [3H]5-CT in the frontal cortex (Table 6.5). Chronic citalopram or
fluoxetine treatments both revealed no change in the affinity (Kp in nM) of 5-HT;
binding, but caused a significant reduction in the density (Bmax values in fmoles mg
protein) of these receptors by 14 and 26% respectively in the frontal cortex as
compared to controls determined by [’H]5-CT binding in the presence of 200nM
WAY100635 & 200nM GR125,743 (Table 6.5; Figure 6.8a). For the other brain
areas investigated, caudal cortex, hippocampus and striatum, there was no change in
any of the relative proportions of receptors labelled or in the affinity or density of the
5-HT; receptor population after either SSRI chronic treatment (Table 6.5; Figures
6.8b-d). The Hill slopes were unaffected by chronic antidepressant treatment (Table
6.5).

Using 0.25nM [’H]JGR 125,743, both chronic SSRI treatments revealed no
change in the density or affinity of the total 5-HT;p/;p population or individual
components, in the caudal cortex, hippocampus or striatum (Table 6.6; Figures 6.9b-
d). The density of 5-HTpnp, S-HT s and 5-HT)p receptors was significantly reduced
by 17, 18 and 13 % respectively by chronic citalopram treatment and 25, 25 and
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[*H]5-CT Binding
5-HT; receptors

[PHIGR125,743 Binding

5-HT,/preceptors

Compound pK; Hill slope pK; Hill slope
5-CT 931+£0.08 0.84 £0.01
GR125,743 894 +0.18 1.00+0.08
Citalopram 4.82+0.04 091+0.04 4.11+0.02 0.90+0.03
Fluoxetine  4.60+0.08 1.20+0.11 4.83+0.02 1.16+0.14
Tianeptine No Inhibition up to ImM No Inhibition up to 1mM
MDMA 457+0.05 092+£0.03 446+0.07 1.02+0.03

Table 6.4: Inhibition of [’H]5-CT and ["H]GR125,743 Binding by

Antidepressants Drugs and MDMA.
The affinity values were determined from the inhibition of 0.25nM [3H]5-CT (in the
presence of 200nM WAY 100635 & 200nM GR125,743) or 0.25nM ["H]GR 125,743

binding to rat cerebral cortex membranes. The results are expressed as pK; values and

Hill slope (nH) for a one site logistic fit. Data is expressed as the mean + s.e.mean

from at least three independent experiments.
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Figure 6.8: Inhibition of [*’H]5-CT Binding to 5-HT, Receptors after
Chronic SSRI Treatment.

[3H]S-CT (0.25nM) binding was conducted in the presence of 200nM WAY 100635
and 200nM GR125,743 to reveal the 5-HT7 receptor population as shown in chapter
5. The data represent typical binding isotherms for animals chronically treated with
10mg/kg, bd, s.c., for 21 days with either citalopram, fluoxetine or equivalent control
volume in (a) frontal cortex, (b) caudal cortex, (c) hippocampus and (d) striatum

membranes. Mean data is in Table 6.5.
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Figure 6.9: Inhibition of [’H]GR125,743 Binding to 5-HTgp
Receptors after Chronic SSRI Treatment.

The data represent typical ["HJGR125,743 (0.25nM) binding isotherms for animals

chronically treated with 10mg/kg, bd, s.c., for 21 days with either citalopram,

fluoxetine or equivalent control volume in (a) frontal cortex, (b) caudal cortex, (c)

hippocampus and (d) striatum membranes. The amount of specific binding

corresponding to 5-HTp binding as determined in the presence of 300nM CP93129

(to block binding to 5-HTg receptors) is shown as the corresponding hollow figures.
Mean data is in Table 6.6.
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Figure 6.10: Inhibition of [*H]5-CT Binding to 5-HT; Receptors

after Chronic TianeptineTreatment.

[’H]5-CT (0.25nM) binding was conducted in the presence of 200nM WAY 100635

and 200nM GR 125,743 to reveal the 5-HT7 receptor population as shown in chapter

5. The data represent typical binding isotherms for animals chronically treated with

10mg/kg, bd, s.c., for 14 days with either tianeptine or equivalent control volume in

(a) frontal cortex, (b) caudal cortex, (¢) hippocampus and (d) striatum membranes.

Mean data is in text Table 6.7.

258



'S[ORU0O 0} paredwiod §(°() > d =  “USAIS AIe £1/°STTYD INUOOT B SE900T AV INUQOT JO 2ouasaid
oy ut Sutpulq 19-6[H ] £q pauruworep aps Supuiq L1H-S g jo (Hu) adojs (i1 oy pue urejoxd S sajouy wl g oy WU U1 ay
YL (%) pauodar are 1-¢[H.] INUSZ 0 £q pardnooo s101daa1 LT -G oy pue A1/81 | [{-¢ paxiw 3t V! [ H-S Jo suontodoid oy "soueiquisw
wmerns pue snduredoddiy ur sjewue ¢ pue ‘Xa1109 [epned pue [BIUOL Ul S[EWIUR § 1O UBSUI'Y'S F UBIW JY) Se passaidxo are synsal ay [,

60LFTTIL  99LFLOSS g TE9FISHL SY'S F99pL g
YIOFIL0 [1°0F290 ayy €0°0 FSE0 900 F 1€°0 ay
ZI'0F68°0 0107880 adoys [Ty €0'0F6L0 200 F28°0 adoys [[TH
00 F IL'S ¥8°0 F L8'9 LLH-S % L8°0F€8'8 LEOFH8°L LLH-S %
ECTFOVES LS SFITTS aval H-¢ % VEIFSL8C  OF'1FLE6T avelyH-g 9%
LO'T F 6801 SL'Y FL8'01 VILH-S % WIFIWT9  STIF6LTY VILH-S %
wnems Xd40)) [epne)
09°€T F86'Z01  +S01 F 50901 - ¢ 8S'CF8968  T8ETFELSS g
SI'0F S0 Tro=190 ay €00 F 61°0 ¥0°0 F S0 ay
S0°0F 1870 ZI'0=680 adoys [11H v0'0 F L8°0 200 7060 adoys [[1H
190 F€L'E 90 F 29 LLH-S % 11°0 F6¥'8 9T0FCI'8 LLH-S %
€9°0F6TIC  $SOFTTOT aval] H-G % 0S'TFVL8E  8TITF6L6E AVl ] H-6 %
SLOF86PL  6S0F9ISL VILH-S % SSTFLOVPS  $E1F60TS VILH-S %
Sndwesoddif] X37I07) [ejuoT]

aundauer | [onuo) sundauer ], [onuo)

"Surpurg LD-S[H,| IWusz'0 uo jusuneasy, sundsuer], aruoIy) Jo 393J57 :L°9 AqeL

259



(a) (b)

250 250 4
~ B Control = | Control
g 200 4 @ Tianepline "E 200, @ Tiancpline
e &
-'bﬂ T e ‘bn = =
E 1504 O Control E 150 0O Control
; O Tiancpline E QO Tianeptine
E g
= 1004 = 1004
BL co
E =
E * 2
@ 504 m 504
o o
L= =
o o
£ ol e e v it

1E-3 0,01 0.1 1 10 100 1000 10000 1E-3 0.01 0.1 1 10 100 1000 10000
Concentration (GR125,743) Log nM Concentration (GR125,743) Log nM
(c) (d)

250 - 250 4
- B Contrel = ] [ W Contrul
u Tianeptine e ® Tiancpt
g 200 4 [ ] aneplin g 200 unepline
a a
- | SHTLD sile 3y S:HTID site
E 1504 O Control £ 150 O Control
% | QO Tianepline L::
B £
= 1004 = 1004
- o
2 1 2 1
@ 50 & 50+
2 o
G 1 G 1
] o i (i T - - r
w w

1E-3 0.01 0.1 1 10 100 1000 10000 1E-3 001 0.1 1 10 100 1000 10000

Concentration (GR125,743) Log nM

Concentration (GR125,743) Log nM

Figure 6.11: Inhibition of [P’H]JGR125,743 Binding to 5-HTipp

Receptors after Chronic Tianeptine Treatment.

The data represent typical [PHJGR125,743 (0.25nM) binding isotherms for animals
chronically treated with 10mg/kg, bd, s.c., for 14 days with either tianeptine of
equivalent control volume in (a) frontal cortex, (b) caudal cortex, (c) hippocampus
and (d) striatum membranes. The amount of specific binding corresponding to 5-
HTp binding as determined in the presence of 300nM CP93129 (to block binding to
5-HT;p receptors) is shown as the corresponding hollow figures. Mean data is in

Table 6.8.
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24 % respectively by chronic fluoxetine treatment in frontal cortex membranes, as
compared to controls (Table 6.6; Figure 6.9a). For each SSRI chronic treatment, the
affinity of [3H]GR125,?43 binding to 5-HTp/1p receptors remained unchanged in
frontal cortex membranes as compared to controls (Table 6.6). The Hill slopes were

unaffected by chronic antidepressant treatment (Table 6.6).

6.2.5  Effects of Chronic Tianeptine Treatment on 5-HT; and 5-
HT/:1p Receptors

In each of the brain areas investigated naive membranes from non-treated rats
revealed that 200nM WAY 100635 was sufficient to block the 5-HT 4 component of
[’H]5-CT binding described in chapter 5 (data not shown). 200nM WAY100635 &
200nM GR125,743 was sufficient to block the 5-HT g/ p component of [3H]5-CT
binding described in chapter 5 (data not shown).

Chronic treatment with the atypical antidepressant drug, tianeptine, did not
reveal any changes in any of the relative proportions of receptors labelled using
0.25nM [*H]5-CT, or in the affinity or density of the 5-HT; receptor population
([3I-I]S-CT binding in the presence of 200nM WAY 100635 & 200nM GR125,743) in
any of the brain areas investigated, as compared to controls (Table 6.7; Figures
6.10a-d). Using 0.25nM ["H]GR 125,743, tianeptine caused no change in the density
or affinity of the total 5-HTp/p population or individual components as compared to
controls, in any of the brain areas investigated (Table 6.8; Figures 6.11a-d). The Hill
slopes of both these radioligand binding assays were unaffected by chronic

antidepressant treatment (Tables 6.7 & 6.8).

6.3 Discussion

Chronic treatment with citalopram (10mg/kg bd), fluoxetine (10mg/kg once
daily) or tianeptine (10mg/kg bd) resulted in no change in SERT binding site density
or affinity, labelled with [3H]citalopram in frontal cortex, caudal -cortex,
hippocampus or striatum as compared to controls (Table 6.1; Figure 6.1). The
abundance of SERT was also unchanged after the same treatments in cerebral cortex,
hippocampus, striatum, raphé nuclei or blood platelets as qualitatively assessed by
immunohistochemistry and SDS-PAGE Western blots (Figures 6.2 & 6.3).
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Increasing the dose of fluoxetine by means of a twice daily dosing regime in a
separate study resulted in a significant decrease in the amount of [3H]citaiopram
specific binding and affinity in frontal cortex membranes compared to the equivalent
controls (Table 6.3; Figure 6.4). Unlike other SSRIs, one of the metabolites of
fluoxetine, norfluoxetine, retains high affinity for [*H]citlaopram binding sites with a
much greater half life than that of the parent drug (Caccia et al., 1990 & 1992; Wong
et al., 1993; Tatsumi et al., 1997; Sanchez & Hyttel, 1999). It is therefore likely that
the effects seen with twice daily dosing of fluoxetine was due to the presence of
residual norfluoxetine competing with cold citalopram for SERT binding sites in the
[*H]citalopram binding assays and not because of an adaptational change. The half
life of citalopram in rats is only 3 hours (Fredrickson et al., 1982) and hence no
residual drug would be present after chronic treatment with a two day washout period
as shown by no change in citalopram binding affinity (Table 6.1). Tianeptine also has
a short half life (Royer ez al., 1988) and more importantly has very low affinity for
SERT (>ImM as determined in chapter 4), which would explain why no affinity
change was also apparent after this chronic treatment (Table 6.1).

Controversial results have been published regarding the effect of chronic
SSRI treatments on the density of SERT in rat brain regarding a possible
neuroadaptive mechanism underlying their therapeutic benefit (see Pineyro & Blier,
1999). In agreement with the findings in this thesis some authors indicate that
chronic treatment of rats with SSRIs (i.e. citalopram, fluoxetine, paroxetine and
sertraline) does not result in adaptive modification of SERT, by measuring [*H]5-HT
uptake in rat brain synaptosomes (Hyttel et al., 1984), or by measuring 5-HT re-
uptake sites with specific ligands (Graham et al., 1987; Hrdina et al., 1990;
Brunswick et al., 1991; Cheetham et al., 1991; Kovachich et al., 1992; Cheetham et
al., 1993; Dewar et al., 1993; Gobbi et al., 1997). It should be noted at this point that
despite a common inhibitory action at SERT, SSRIs might have different individual
mechanisms of action attributed to their different pharmacology. For example,
fluoxetine is approximately 60 times more potent at 5-HT,s receptors than
paroxetine (Owens et al., 1997), which also in part explains why fluoxetine is the
least selective of the SSRIs. A paroxetine-induced down-regulation (Pifieyro er al.,

1994) and a fluoxetine-induced up-regulation (Hrdina & Vu, 1993) of [3H]par0xetine
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binding sites in rat frontal cortex and hippocampus after chronic treatment have been
observed. The large reduction in [BH]paroxetine binding in cortex and hippocampus
membranes involved the administration of paroxetine via subcutaneously inserted
mini-osmotic pumps (Pifieyro et al., 1994). The authors of this paper and Lesch et
al., (1993a) believe that this dosing route was essential for the induction of an
adaptive response at the level of SERT.

Studies on SERT mRNA after SSRI chronic treatment in rats are also
controversial. For example whereas chronic citalopram treatment had no effect on
the mRNA for 5-HT uptake sites (Spurlock ez al., 1994), chronic fluoxetine reduced
it in the dorsal raphé nucleus (Lesch et al., 1993; Neumaier et al., 1996) or had no
effect (Koed & Linnet, 1997). The study by Neumaier et al. (1996) reduced SERT
mRNA in the dorsal raphé nucleus but not in several other regions detectable after 7
days of treatment, but was not detected after drug washout or after 21 days treatment
and/or washout. It should be mentioned however that alternative post-translational
regulation of protein levels has been well documented (Latchman, 1990). Therefore
despite discrepancies in reported SERT mRNA levels after chronic antidepressant
treatments, these differences may not necessarily account for the same differences in
SERT protein levels.

The effect of chronic tianeptine treatment on SERT is also controversial. In
this thesis tianeptine was administered at a total dose of 20mg/kg/day which is
comparable to work done by other groups (Mennini et al., 1987; Mennini & Garattini
1991; Ortitz et al., 1991; Whitton et al., 1991; Bertorelli et al., 1992; Datla & Curzon
1993; Pifieyro et al., 1995¢ & d). Within the first 24 hours of tianeptine
administration 80% of its metabolites are eliminated (Royer et al., 1988). It has have
been suggested that the effect of tianeptine on 5-HT uptake disappears after a 48
washout period using mini osmotic pumps (Pifieyro et al., 1995c¢ & d). This suggests
that tianeptine or its metabolites must be present to enhance in vivo 5-HT uptake
activity (Pifieyro et al., 1995a) although this effect is “not always reproducible”
(Mennini et al.,, 1987). Indeed the same group showed that administration of
tianeptine (10mg/kg twice daily for 15 days i.p.) enhances 5-HT uptake ex vivo,

following a longer 72 hour washout period (Mennini et al., 1987).
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In the studies described within this chapter a dosing regime of 10mg/kg
twice-daily s.c. with a 2-day washout period is therefore consistent with the
enhancing effects of tianeptine. Using a similar dosing regime and washout period as
in this thesis, chronic tianeptine treatments have revealed no changes in SERT
density or affinity using [3H]imipramine (Mennini & Garattini, 1991) which binds to
heterogeneous sites (Reith ez al., 1983 and Marcusson et al., 1985). However using
[BH]cyanoimipramine which is more selective than [BH]imipramine for SERT
(Kovachich et al., 1988), tianeptine delivered using mini-osmotic pumps, caused a
significant increase in cortical By, values and a non significant increase in
hippocampus Bp.x values (Pifieyro ef al., 1995d). In this study the Kp values were
unaffected, which would be in agreement with the enhancing effect of tianeptine
upon [3I-I]S-HT uptake by increasing Vmax without affecting K, (Mennini ef al,
1987). However the large 25% error surrounding the Kp values could inherently
account for the 22% increase in B, values in the cortex. Using [3H]par0xetine as a
marker for SERT, which is much more comparable to citalopram than
cyanoimipramine, tianeptine had no effect on hippocampus and cerebral cortex
membrane binding parameters when given at 10mg/kg/day i.p. for 21 days (Frankfurt
et al., 1993). Interestingly the same group did however report decreases of SERT
density in the same brain membranes labelled with [3H]paroxctine when tianeptine
was administered at a higher dose of 30mg/kg/day i.p. for 14 days (Watanabe et al.,
1993). This latter effect is very unlikely to be due to the presence of residual drug;
not only because of the drugs short half-life, but also that it has no affinity (>1mM)
in inhibiting [*H]citalopram binding (chapter 4). One study however in the raphé
nuclei showed no changes in [3H]par0xetine binding sites or SERT mRNA in the
median raphé, but reported decreases in SERT protein and mRNA in the rat dorsal
raphé nucleus after tianeptine treatment (10mg/kg bd i.p. for 14 days ; Kuroda et al.,
1994).

The detection of rat adrenal SERT (chapter 4) suggests another therapeutic
site for antidepressant action. Antidepressants have been shown to inhibit the uptake
of [3H]serot0nin (Holzwarth et al., 1984) or [MC]cocaine (Delarue et al., 1992) or
block p-chloroamphetamine-induced serotonin depletion in adrenals (Som et al.,

1994) suggesting an active function of adrenal SERT. In adrenal medulla
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membranes, there was no change in the binding density or affinity of SERT after
chronic citalopram, fluoxetine (once daily) or tianeptine treatments as in the cortex,
hippocampus or striatum of the brain (Table 6.1; Figure 6.1). Chronic fluoxetine
treatment using a twice-daily dosing regime reduced the specific [*H]citalopram
binding by a similar degree as that seen in the brain. This was possibly due to the
presence of norfluoxetine for reasons discussed above. Indeed fluoxetine and
norfluoxetine have been shown to accumulate in other regions than the brain such as
in the blood, liver and body hair (Lefebvre ez al., 1999). It is therefore not surprising
that accumulation occurs in the adrenals where there is also a high density of
antidepressant sensitive SERT protein (chapter 4). Though no adaptive changes of
adrenal SERT protein density was observed after chronic SSRI or tianeptine
treatments, consequences of SERT blockade may help to understand the involvement
of the adrenal gland in the regulation of the HPA axis in depression and its
management with antidepressant drugs.

The lack of effect on SERT density or affinity after chronic SSRI (citalopram
and fluoxetine) and tianeptine in both the brain and adrenal medulla suggest that
adaptive changes of SERT at the protein level may not be central to the mechanism
of action of these antidepressants. However differences between the findings in this
chapter and some of those cited in the literature may be due to a variety of reasons.
These include the route of drug administration, the length of treatment, the brain
areas considered for biochemical measurements, the biochemical measurement itself
and the drug washout period as previously suggested (Gobbi ef al., 1997). Indeed the
latter effect was apparent in the twice-daily dose study using fluoxetine. In order to
remove active residual drug a 7 day washout period would have to be used (Gardier
et al., 1994). Such studies using this extended washout period have been performed,
showing no change in the both density or affinity of SERT after chronic fluoxetine
treatment in the raphé or terminal fields (Gobbi et al., 1997).

Studies using mini-osmotic pumps are the only treatments that have
consistently demonstrated an adaptive change in SERT density in response to chronic
antidepressant administration (Pifieyro et al., 1994 & Pifieyro et al., 1995d). More
recently using the same mini-osmotic pump procedure, chronic treatment with

paroxetine or sertraline have been shown to downregulate SERT binding sites
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throughout the rat brain (Benmansour ef al., 1999). It may therefore be that in order
to produce adaptations in SERT density, stable serum concentrations of drug are
necessary throughout the chronic treatment as previously suggested (Lesch er al.,
1993a; Pifieyro et al, 1994). However stable serum concentrations have been
reported not to be essential for the antidepressant effect in humans (Artigas et al.,
1996). In the rat the half-lives of most antidepressants are generally much shorter
than in humans (Sanchez & Hyttel, 1999). Therefore treatments in rats by any other
method other than using mini-osmotic pumps may produce a greater spiked or
transient drug exposure compared to the steadier exposure to drug achieved in human
patients. This may suggest that a more continual blockade of SERT is indeed
required to produce a down regulation of SERT, which in the clinic results in
eleviation of depressive symptoms. Mini osmotic pumps in experimental animals
may therefore closer resembles the pharmacokinetics observed in human patients and
hence be a more relevant model to understand antidepressant action than that used in
this thesis and currently by a large number of other researchers. From these limited
osmotic mini-pump studies it also interesting to see that SSRIs produce a down
regulation of SERT density (Pifieyro et al., 1994; Benmansour er al., 1999) whereas
tianeptine, which has opposing effects on uptake actually produces an upregulation
of SERT density (Pifieyro et al., 1995d). Furthermore those antidepressant drugs that
do not directly alter 5-HT uptake (e.g. NA uptake inhibitors or MAOIs), do not alter
SERT density or SERT mRNA levels (Lesch et al., 1993a; Bensamour et al., 1999).
The use of mini-osmotic pumps in future studies may therefore help to remove some
of the controversy surrounding antidepressant mechanisms of action and indeed may
help to answer many of the questions that remain unanswered with a closer
resemblance to what occurs in the clinic.

Chronic treatment with citalopram (10mg/kg bd), fluoxetine (10mg/kg once
daily) or tianeptine (10mg/kg bd) resulted in no change in the 5-HT;s receptor
binding site density or affinity labelled with [’H]8-OH DPAT in frontal cortex,
caudal cortex or hippocampus membranes as compared to controls (Table 6.1; Figure
6.1). This is agreement with other binding studies using this ligand (Hensler et al.,
1991; Newman et al., 1993; Watanabe et al., 1993; Wieland ef al., 1993; Le Poul et
al., 1995a & b; Carli et al.,, 1996). Work has also been extended to 5-HT;4 mRNA
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showing no change in concentration after chronic antidepressant treatment (Spurlock
et al., 1994) or no changes in post mortem brain tissue of antidepressant users (Yates
& Ferrier, 1990). It would therefore appear that despite a gradual desensitisation of
5-HT,a receptors located somatodendritically after chronic SSRI treatment (see
Pifieyro & Blier, 1999), no adaptive changes of the receptor number or affinity are
associated with this desensitisation process in the terminal field. The ligand used in
these studies ([3H]8-0H DPAT) is an agonist ligand and therefore will only label 5-
HT;a receptors functionally coupled to G-proteins (Emerit ez al., 1990). Previous
studies have suggested that alterations in G proteins might account for changes after
long term antidepressant treatment (Lesch er al, 1991; Lesch & Manji, 1992).
Therefore it is important to use an antagonist ligand (e.g. PHIWAY100635) to label
all 5-HT,s receptor binding sites (i.e. coupled and uncoupled with regard to G
proteins; Gozlan et al., 1995). However, after chronic fluoxetine or paroxetine
treatments, no changes were observed in the density or affinity of the 5-HTi4
receptors labelled by either [’H]8-OH DPAT or [3H]WAY100635 in the dorsal raphé
nucleus, the dentate gyrus or the hippocampus (Le Poul et al., 1995a & b). It is
therefore unlikely that the delay of onset of action, of particularly the SSRIs, is due
to adaptive changes of the 5-HT;a receptor population located in the post-synaptic
regions of the terminal field. Similarly adaptive changes of the number or affinity of
5-HT, s receptors located somatodendritically in the raphé nuclei are unlikely to
account for the desensitisation of these receptors after chronic SSRI treatment.
Another possible receptor subtype involved in the mechanism of action of
antidepressant drugs is the 5-HT; receptor. The effect of chronic antidepressant
treatments on the density and affinity of 5-HT; receptors was investigated in the
terminal field areas of the frontal and caudal cortex, hippocampus and striatum using
[31-1]5—CT binding in the presence of 200nM WAY100635 & 200nM GR125,743
(characterised in chapter 5). Chronic citalopram and fluoxetine treatments (both
10mg/kg bd for 21 days) caused a 14 and 26 % reduction respectively in the density
of 5-HT7 receptors in frontal cortex membranes as compared to controls, with no
change in the affinity (Table 6.5; Figure 6.8). For this study, the low affinity of
fluoxetine for the 5-HT7 receptor (Table 6.4) and no change in affinity after chronic

treatment, suggests that residual drug did not account for the effect seen. Tianeptine,
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which has no affinity for this receptor subtype (Table 6.4), unlike the SSRIs, did not
cause any such differences in this brain area (Table 6.7; Figure 6.10). All the
antidepressants tested also showed no change in the density or affinity of 5-HT;
receptors in the caudal cortex, hippocampus or striatum as compared to controls
(Tables 6.5 & 6.7; Figures 6.8 & 6.10). Each chronic antidepressant treatment failed
to change the Hill slope of the generated binding isotherms from <1 in each brain
area investigated (Tables 6.5 & 6.7). This suggests that in the frontal cortex the
affinity state of the functionally coupled G protein receptor is not important for a
neuroadaptive change to occur.

Previous studies on this receptor subtype are very limited, though a
neuroadapative downregulation of 5-HT; receptor density in the SCN following
chronic antidepressant treatments, including citalopram and fluoxetine, has been
reported (Mullins er al., 1999). If 5-HT; receptors are pre-synaptic they may exert a
negative influence on the firing of serotoninergic neurons or on 5-HT release and
therefore a neuroadpative downregulation may reduce this inhibitory action. The
identification of 5-HT7 binding sites in the raphé nucleus (chapter 5) suggests that
this receptor may indeed be a new autoreceptor that can control S5-HT
neurotransmission at the somatodendritic level. It will therefore be of interest to
study the effects of such chronic drug treatments on the function and density of this
receptor subtype in the raphé nucleus. This receptor subtype is however believed to
be postsynaptic in not only the hypothalamus (Clemett er al., 1999), but in many
other brain regions including the cortex due to the correlation of 5-HT; mRNA and
binding sites (To et al., 1995; Gustafson et al., 1996). The downregulation of 5-HT-
postsynaptic receptors after chronic SSRI administration may therefore be a
consequence of SSRI treatment or a mechanism by which SSRIs have a delayed
onset of action in the clinic.

5-HTp/p receptors are known to exist pre-synaptically on serotoninergic
nerve terminals, exerting an inhibitory action on 5-HT release following acute SSRI
administration (Sharp et al.,, 1989; Auerbach et al., 1991; Hjorth & Tao, 1991).
Following chronic administration these receptors are believed to be desensitised in a
time dependent manner associated with the delayed onset of action of such

antidepressants in the clinic (see Pifieyro & Blier, 1999). In this chapter the density
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and affinity of 5-HT)p,p receptors was investigated after chronic antidepressant
treatments in the terminal field regions of the frontal and caudal cortex, hippocampus
and striatum. Similar to the effects seen with the 5-HT5 receptor after chronic SSRI
treatment, citalopram and fluoxetine (both 10mg/kg bd for 21 days) decreased the
joint 5-HTp/1p receptor population density. The density of [3H]GR125,743 binding
sites was decreased by 17 and 25% respectively (without affecting the affinity) in
frontal cortex membranes as compared to controls (Table 6.6; Figure 6.9). This
would be in agreement with the decrease in the proportion of 5-HTg/p receptors
labelled using 0.25nM [H]5-CT after SSRI treatment (Table 6.5). Using
[PHIGR125,743 in the presence of 300nM CP93129 the individual binding site
densities of both the 5-HT;g and 5-HT,p receptors could be determined, as
GR125,743 has the same affinity for both these receptor subtypes (as discussed in
chapter 5). Within this population there was an 18 and 17 % decrease in 5-HT and
5-HTp receptor density respectively after chronic citalopram treatment. There was
also a 25 and 24 % decrease in 5-HT; and 5-HTp receptor density respectively after
chronic fluoxetine treatment (Table 6.6). The binding parameters in the other brain
areas investigated were unchanged after chronic SSRI treatments as compared to
controls (Table 6.6; Figure 6.9). The low affinity of fluoxetine and citalopram for the
5-HTpnp receptor population (Table 6.4) and no change in affinity after chronic
treatment, suggests that residual drug did not account for the effects seen. In contrast
to the SSRIs, chronic tianeptine administration resulted in no changes in
[3H]GR125,?43 binding parameters in the frontal cortex (Table 6.8; Figure 6.11).
However, a similarity of chronic tianeptine treatment effects, which has no affinity
for 5-HTp/1p receptors (Table 6.4), compared to the effect of the SSRIs treatments,
was the lack of any change of binding parameters in the caudal cortex, hippocampus
and striatum as compared to controls (Tables 6.7 & 6.8; Figures 6.10 & 6.11).
Previous radioligand binding studies looking directly at the possible
regulation of particularly 5-HT g/ 1p receptors after chronic antidepressant treatments
are limited, due to the lack of selective ligands available. One study in which a
[lzsl]cyanopindolol binding assay (Hoyer et al., 1985a & b) for 5-HTp receptors was
used, showed no changes in the receptor density in the rat frontal cortex as in this

study with a chronic tianeptine treatment (Montero et al., 1991). In the same study,
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although no SSRIs were investigated, chlorimipramine, and iprinole (the prototype of
atypical antidepressants without any significant blocking effect on monoamine
reuptake) also caused no changes in the density or affinity of [Il25]cyanopindolol
binding in the frontal cortex (Montero et al., 1991). On the otherhand, imipramine
reduced RU24969-displaceable [3 H]5-HT binding density of rat brain 5-HTp-like
binding sites by 19% (Johanning et al., 1992). This is comparable to the effects seen
in this study with citalopram and to a greater extent fluoxetine. In two animal models
of depression: the forced swimming test (Cervo et al, 1989) and the learned
helplessness paradigm (Martin & Peulch, 1991), 5-HT receptor agonist stimulation
blocks the antidepressant-like effects of SSRIs, such as citalopram and fluoxetine.
This suggests an involvement of these receptors in the mechanism of action of these
antidepressants. In the dorsal raphé nucleus, 5-HT;3 mRNA is increased in the
learned helplessness animals (Neumaier et al., 1997), which is significantly reduced
by chronic fluoxetine treatment of naive animals (Neumaier et al., 1996). This
suggests that 5-HT g receptors are potentially downregulated by SSRIs. Interestingly
the specific binding of ['2SI]iodocyanopindolol to 5-HT,p sites has been shown to be
increased in the cortex, hippocampus and septum of learned helplessness rats
(Edwards et al., 1991). No studies have however been done on the blocking effects
of antidepressants on increased 5-HT)g receptors in this depressive model. In this
chapter, the reduction in 5-HTp binding in the frontal cortex after chronic SSRI
treatment, may be a site specific effect that may also help to explain the delayed
onset of action of these drugs in the clinic. This site specific effect is further
suggested by the inability of a chronic citalopram treatment through any part of a 32
day timecourse to change the levels of 5-HT;g3 mRNA in rat whole brains (Spurlock
et al., 1994). In this case the effect on 5-HTp receptor density seen in this chapter
may be masked by the presence of other brain areas. Furthermore it should be noted
that no changes in mRNA, does not necessarily mean no adaptive changes in
receptor number, and vice versa.

Antidepressant studies on 5-HTp receptor numbers are even more limited
than 5-HTp receptors. Chronic studies using the SSRI, paroxetine, have been shown
to desensitise 5-HT,p but not 5-HT,p autoreceptors in the rat lateral geniculate

nucleus (Davidson & Stamford, 1997), showing that SSRIs can modulate 5-HTp
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activity. The downregulation of 5-HT;p/p receptor density in the frontal cortex of
chronically treated rats may be of importance in the mechanism of action of these
antidepressant drugs. However, 5-HT g and 5-HT,p receptors also exist on non-
serotoninergic neurons as a heteroreceptor affecting both noradrenaline and
acetylcholine release (see Barnes & Sharp, 1999). Chronic citalopram treatment has
been shown to desensitise 5-HT;s heteroreceptors by reducing the efficacy of
CGS12066B (5-HT;p receptor agonist) to inhibit the release of [3H]acetylcholinc
induced by K" depolarisation (Bolafios-Jimenez et al., 1994). It is therefore possible
that accompanying this desensitisation there is a downregulation in 5-HTg
heteroreceptor density. These heteroreceptors may also have been labelled by
[3H]GR125,743. To understand the importance of the findings in the frontal cortex in
this chapter, it will be important to study only the 5-HTp/1p autoreceptor population
on serotoninergic nerve terminals. The antibodies characterised in chapter 2, may
provide the tools necessary for such experiments, but until then it can not be
concluded whether the downregulation of 5-HT;p/;p receptors after chronic SSRI
treatment is either the serotoninergic autoreceptor or non-serotoninergic
heteroreceptor population or both.

In light of the recent findings upon SERT modulation by antidepressants
delivered by mini-osmotic pumps, it will be interesting to see if such adaptations can
occur at the different S-HT receptor sub-types to further elucidate mechanisms that
may explain the delay onset of action of SSRIs in the clinic. Such studies may
ultimately improve antidepressant drug design for more faster acting drugs with even

less side effects.

6.4 Summary

In this chapter the effects of chronic SSRI (citalopram and fluoxetine) and
tianeptine treatments on the density and affinity of a variety of 5-HT receptors and
SERT was investigated in an attempt to try and understand the delayed onset of
antidepressant action in the clinic.

Chronic citalopram (10mg/kg bd for 21 days), fluoxetine (10mg/kg once
daily for 21 days) and tianeptine (10mg/kg bd for 14 days) treatments following a

two day washout period caused no changes in the density or affinity of SERT in
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frontal or caudal cortex, hippocampus, striatum or adrenal medulla membranes as
measured by [3H]cita10pram binding. Using antibodies raised to SERT no
immunohistochemical differences were observed in the terminal field staining in any
of these brain areas or cell body staining in the raphé after any of the antidepressant
treatments as compared to controls. Similarly no differences were observed in the
abundance of SERT in cortex or platelet homogenates after chronic SSRI or
tianeptine treatments compared to controls, as assessed by Western blot analysis. The
density and affinity of 5-HT 5 receptors (frontal and caudal cortex and hippocampus)
were also unaffected by these treatments. Therefore the mechanism of action of these
antidepressant drugs is unlikely to involve neuroadaptational changes in the
abundance or affinity of these components of the 5-HT system, that may account for
the delay in onset of their therapeutic effectiveness.

Chronic administration of a higher dose of fluoxetine (10mg/kg bd for 21
days) with an identical washout period similarly did not affect the density or affinity
of 5-HT4 receptors or NET. Significant reductions in the amount and affinity of
specific [*H]citalopram binding, after such a treatment suggested the presence of
residual drug, possibly norfluoxetine, rather than any adaptational change.

Chronic administration of citalopram or fluoxetine (both 10mg/kg bd for 21
days) resulted in site-specific decreases in the density of 5-HT7 and 5-HTig;p
receptors in frontal cortex membranes as compared to controls. Chronic tianeptine
treatment by contrast resulted in no such changes.

It would therefore appear that the mechanism of action underlying the
delayed onset of action of SSRIs does not involve neuroadaptational changes (at the
protein level) of SERTor 5-HT) 4 receptors in the terminal fields, but may involve
changes in the pre-synaptic 5-HT'g/1p and 5-HT; receptor population in the frontal
cortex. Tianeptine, which enhances 5-HT reuptake rather than block it, though
effective in treating depression, does not appear to have any effect on these
receptors/transporter at the protein level in the terminal field projection areas of the
raphé nuclei. However it must be stated that the delivery of drugs via a mini-osmotic

pump system in the future may be more comparable to studies in humans.
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CHAPTER 7

THE EFFECT OF SUB-CHRONIC MDMA TREATMENTS ON
THE DENSITY AND AFFINITY OF THE 5-HT TRANSPORTER
AND 5-HT RECEPTORS
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The popular recreational drug of abuse, 3,4 methylenedioxy-
methamphetamine (Ecstasy, MDMA), is known to selectively reduce the number of
radiolabelled SERT binding sites in the rat brain (Battaglia et al, 1987). This
reduction in SERT density is a marker for the neurotoxic destruction of
serotoninergic nerve terminals by MDMA. Initially it was thought that this toxicity
required multiple exposure to relatively high doses of MDMA, however subsequent
studies have found that a single exposure to a high dose, or several exposures to
lower doses can induce the same profile of toxicity (Colado et al., 1993 & 1997a;
O’Shea et al., 1998). Reductions in SERT labelling after repeated exposure to
MDMA, are clearly detectable in the rat brain within a relatively short time period of
between 2 and 14 weeks (Battaglia ef al., 1987, 1988 &1991; Sharkey et al., 1991).
However there is evidence of near full recovery within a year after such treatments
(Scanzello et al., 1993; Fischer et al., 1995; Lew et al., 1996; Sabol et al., 1996). The
mechanism of MDMA uptake by the 5-HT terminal is carrier mediated (see chapter
1, section 1.9). The results which show SERT in the rat adrenal gland to have an
identical pharmacological profile to brain SERT (see chapter 4) suggest that the
adrenal gland may also be sensitive to MDMA.

Although the mechanism by which MDMA damages 5-HT nerve terminals
remains elusive, different drugs interfering with central serotoninergic or
dopaminergic systems prevent the depletion of brain 5-HT following MDMA
administration (Stone et al., 1988; Schmidt ez al., 1990a & b; Hewitt & Green, 1994;
Sprague et al., 1998; Colado et al., 1999a). However other drugs with no direct
action on these two systems also prevent the neurotoxic effects of MDMA (Finnegan
et al., 1990; Colado et al, 1993; Colado & Green, 1994). Glutamate, the most
abundant excitatory amino acid in the CNS (Stone & Burton, 1988), is capable of
producing neuronal damage in a variety of paradigms (for a review, see Olney,
1990). Glutamate has been implicated in the neurotoxicity of MDMA as the NMDA
receptor antagonist, MK-801, provides some degree of protection against the
decrease in 5-HT levels induced by MDMA treatment (Finnegan et al., 1990; Farfel
et al., 1992; Colado et al, 1993; Finnegan & Taraska, 1996). The macrolide
tacrolimus, FK506, a powerful immunosuppresive drug, which is widely used to

prevent graft rejection following organ transplantation (for a review see Hooks,
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1994), has neuroprotective qualities, in particular the ability to protect against
glutamate neurotoxicity (Dawson et al., 1993; Kikuchi ef al, 1998). Therefore it is
possible that FK506 may protect against MDMA induced depletion of SERT.
Another mechanism that may be involved in MDMA induced neurotoxicity is the
formation of free radicals. Free radicals are highly reactive species capable of
independent existence that contains one or more unpaired electrons which can disturb
biological systems by damaging a variety of their constituent molecules such as
lipids (see Maxwell & Lip, 1997). The metabolism of dopamine in the 5-HT terminal
by MAO-B, has been suggested to produce hydrogen peroxide which could lead to
lipid peroxidation and general oxidative stress (Sprague & Nichols ef al., 1995;
Cadet & Brannock et al, 1998; Sprague et al, 1998). Indeed just like
metamphetamine which is neurotoxic to both serotoninergic and dopaminergic
terminals, MDMA exposure may also produce free radicals (Giovanni ef al., 1995;
Colado & Green, 1995; Colado ef al., 1997b; Colado et al., 199a & b; Figure 1.11 in
chapter 1). There it is possible that the use of a free radical scavenger may prevent
MDMA neurotoxicity.

One consequence of MDMA treatment is an increased initial release of 5-HT
(Rudnick & Wall, 1992), followed by a sustained decrease in 5-HT levels in different
terminals of the 5-HT system (O’Hearn et al., 1988). The limited availability of 5-
HT following sub-chronic MDMA treatment may affect pre- or post-synaptic 5-HT
receptors as reported for the 5-HT) 4 receptor after MDMA treatment (Aguirre et al.,
1995, 1997 & 1998). 5-HTa receptors in the terminal field are mainly post-synaptic
(Francis et al., 1992; Lawrence et al., 1993) whereas 5-HT;p/ip receptors are known
to exist both pre- and post-synaptically (Middlemiss & Hutson, 1990; Bruinvels et
al., 1994a & b; Doucet et al., 1995, Buhlen et al., 1996). At present the location bf 5-
HT; receptors in relation to serotoninergic nerve terminals is poorly defined. Only
one study has attempted to address this question using the neurotoxin 5, 7-
dihdroxytryptamine, which destroys serotoninergic neurons and hence reduces 5-HT
content (5, 7-DHT; Clemett et al, 1999). In this study, involving only the
hypothalamus, an increase in density of pindolol-insensitive [’H]5-HT binding was
observed following 5,7-DHT treatment, suggesting a post-synaptic location of 5-HT;

receptors. However, this binding assay did not label a homogeneous population of
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receptors and so the confidence as to the location of 5-HT7 receptors in this brain
area is questionable.

In this chapter the effects of two independent sub-chronic MDMA treatments
after 2 and 13 week recovery periods in both the brain and rat adrenal gland were
investigated. The effect of the 2 week recovery period study was extended to
examine the potential protective qualities of FK506, in both the brain and adrenal
gland. A third sub-chronic MDMA treatment was included to directly compare the
effects of FK506 and a free radical scavenger in the brain (FR122175; personal
communication, Dr. J. Sharkey, Fujisawa Institute of Neuroscience, Edinburgh). In
this third study, the effect on 5-HT- receptors was investigated using the [*H]5-CT
binding assay developed in chapter 5. In all three treatments, [3I-I]citalopram binding
was used to assay the extent of the MDMA lesion of serotoninergic nerve terminals
using SERT as a marker. All three treatments were also used to examine any effects
on 5-HT4 receptors using ['H]8-OH DPAT binding.

7.1 Methods

7.1.1 MDMA Treatment of Rats

Three separate studies were performed. For each study, rats on the day of
arrival, were housed in groups of four to five for three days, given free access to food
and water and kept on a 12 hour light cycle at 21°C throughout the study (unless
stated otherwise). Following habituation, animals were dosed by subcutaneous
injection, with twice daily injections between 08:00 and 09:00, and again between
16:00 and 17:00. Each drug used was dissolved in 0.9% saline. Control groups
represent those animals receiving the equivalent volumes of saline vehicle.
Treatment 1

The first treatment was a collaborative study with Dr. J. Sharkey (Fujisawa
Institute of Neuroscience, Edinburgh). Three study groups totalling 15 animals, were
used. Male Sprague-Dawley rats (50-70g; Charles River), housed at 19°C, were
dosed using a ramped treatment protocol. The first study group was injected with
MDMA (10mg/kg bd on day 1, 15mg/kg bd on day 2 & 20mg/kg bd on day 3, n=5).
The second study group was injected with FK506 (10mg/kg bd) 20 mins before each
of the MDMA injections as above (n=5). The third study group was control animals
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(n=5). In each study group, the final dose was followed by a 2 week washout period,
whereupon rats (now 150-200g) were killed by a sharp blow to the back of the neck,
the head guillotined and membranes immediately made according to the methods
previously described in chapter 3. Brain frontal cortex, caudal cortex, hippocampus,
and striatum and also adrenal medulla membranes were prepared.
Treatment 2

The second treatment was a collaborative study with Dr. P.A.T. Kelly
(Department of Clinical Neurosciences, University of Edinburgh) and Prof. J. Seckl
(Department of Medicine, University of Edinburgh). Two study groups totalling 16
animals were used. Adult male Wistar Cobb rats (50-70g; bred in-house, Department
of Neuroscience) were injected for 4 consecutive days with either MDMA (20mg/kg
bd; n=8) or the equivalent volume of control (n=8). In each study group the final
dose was followed by a 13 week washout period, whereupon rats (now 300-400g)
were sacrificed and the brains and adrenal glands immediately frozen in isopentane
at —45°C (temperature was maintained by cooling in a dry ice/acetone mixture).
Following no less than one week at ~70°C, tissue was thawed in 0.9% saline on ice
and membranes made as described in chapter 3. Binding assays carried out on the
same day as membrane preparation. Brain whole cortex, hippocampus, and striatum
and also adrenal medulla membranes were prepared.
Treatment 3

The third treatment was a collaborative study with Dr. J. Sharkey. Five study
groups totalling 25 animals were used. Male Sprague-Dawley rats (100-150g;
Charles River) were injected for 3 consecutive days as detailed below. The FK506
(10mg/kg bd) or FR122175 (10mg/kg bd) injections were performed 20 minutes
before the MDMA injections (20mg/kg bd). In each study group, the final dose was
followed by a 2 week washout period, whereupon rats (now 250-350g) were killed
by a sharp blow to the back of the neck, the head guillotined and membranes
immediately made according to the methods previously described in chapter 3. Brain

frontal cortex, caudal cortex and hippocampus membranes were prepared.
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Group Injection

1 Control

2 MDMA

3 MDMA + FK506

4 MDMA + FR122175

5 FR122175
7.1.2 Neurochemical Assays

Membranes were prepared as described in chapter 3. Radioligand binding
assays were performed as described in chapters 3-5. [’H]Citalopram binding was
used to assay the extent of the MDMA lesion, [3H]8-OH DPAT binding to label 5-
HT)4 receptors and [’H]5-CT binding in the presence of 200nM WAY10635 and
200nM GR125,743 to label 5-HT; receptors. In addition to the calculation of the Kp
and Bpax of the 5-HT; receptor binding site, the proportion of receptors labelled by
0.25nM [’H]5-CT were calculated as described in chapter 5. In the 5-HT; receptor
binding assays untreated naive membranes were assayed to ensure that the conditions
of the blocks used were sufficient to reveal the 5-HT7 receptor population. Inhibition
curves for WAY100635 against [’H]5-CT binding and GR125,743 against
WAY100635 insensitive [’H]5-CT binding were generated in naive membranes

corresponding to the tissue being assayed.

T2 Results

Treatment 1

In the ramped drug treatment, MDMA (10mg/kg bd on day 1, 15mg/kg bd on
day 2 & 20mg/kg bd on day 3) caused a significant 29% decrease in the density of
[PH]citalopram binding sites in adrenal medulla membranes, without affecting the
affinity (Table 7.1a; Figure 7.1a). In brain, MDMA also caused significant reductions
in the Bpa values of [*H]citalopram binding sites by 33, 36 and 41% in frontal
cortex, caudal cortex and hippocampus membranes respectively, without affecting
the affinity (Table 7.1a). In striatum, no changes were found in either the affinity or
in the binding density of [*H]citalopram binding sites (Table 7.1a). In brain regions
where MDMA decreased the binding density of [*H]citalopram binding sites, no
decrease was seen in the presence of FK506 (Table 7.1a). In adrenal medulla
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Figure 7.1: Effect of MDMA Treatments on [3H]Citalopram Binding
Sites in Rat Adrenal Medulla Membranes.

Data represent typical cold saturations for 0.25nM [3H]citalopram binding after; (a)
ramped MDMA treatment (treatment 1; 10mg/kg bd on day 1, 15mg/kg bd on day 2
& 20mg/kg bd on day 3) following a 2 week recovery period, and (b) MDMA
treatment (treatment 2; 10mg/kg bd for 4 consecutive days) following a 13 week
recovery period. See Tables 7.1 and 7.2 respectively for mean data.
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membranes, however, FK506, did not prevent the MDMA induced depletion of
[3H]citalopram binding sites (Table 7.1a). There were no changes in the binding
parameters of [H]8-OH DPAT after treatment with MDMA in any brain area
investigated (Table 7.1b).
Treatment 2

In this study where animals were allowed to recover for 13 weeks after the
final dose of MDMA (20mg/kg bd for 4 days), significant reductions in the density
of [3H]citalopram binding sites were observed by 25, 30 and 21 % in cerebral cortex,
hippocampus and striatum membranes respectively without affecting affinity in
MDMA treated rats (Table 7.2a). However in adrenal medulla membranes, MDMA
administration did not have any effect on [*H]citalopram binding parameters (Figure
7.2b). As in the ramped treatment, MDMA administration caused no changes in the
binding parameters of [*H]8-OH DPAT in the brain areas studied (Table 7.2b).
Treatment 3

Following a 2 week recovery period after MDMA administration (20mg/kg
bd. for 3 days) a significant reduction of 66, 79 and 79% in [*H]citalopram binding
sites was observed in frontal cortex, caudal cortex and hippocampus membranes
respectively with no change in affinity as compared to controls (Table 7.3). FK506
prevented 50, 27 and 29% of this decrease in [*H]citalopram binding site density in
frontal, caudal cortex and hippocampus membranes respectively without affecting
the affinity as compared to controls (Table 7.3). FR122175 at the same dose as
FK506 (10mg/kg bd), prevented 72, 74 and 54% of the decrease in [3H]citalopram
binding site density in frontal, caudal cortex and hippocampus membranes
respectively without affecting the affinity as compared to controls (Table 7.3).
FR122175 treatment in the absence of MDMA administration caused no changes in
[*H]citalopram binding parameters as compared to controls. (Table 7.3). There was
no significant change in the density or affinity of 5-HT;s receptors as measured
using [°H]8-OH DPAT binding after any of the drug treatments compared to controls
(Table 7.4).

The 5-HT; binding assay was only conducted in frontal cortex and caudal
cortex membranes, as insufficient hippocampal membranes were available after the

[*H]citalopram and [’H]8-OH DPAT binding assays. In each of the brain areas
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Table 7.4: Effect of MDMA Treatment on ["’H]5-CT Binding.

Frontal Cortex Caudal Cortex
% 5-HT) 55.05 +2.26 60.21 £3.52
% S-HTimo 37.12+£1.25 2921 +3.25
3 % 5-HT, 7.83 + 1.10 10.58 +2.21
g Hill slope 0.83 £ 0.03 0.82 = 0.06
Ko 0.51+0.12 0.34 + 0.06
Bauc 83.12 +4.25 62.01 + 4.89
% 5-HT» 60.23 + 3.26 6521 +221
% 5-HT 1 28.65 + 2.28* 20.18 +3.41*
3 % 5-HT; 11.12 £ 2.10% 14.61 = 1.26*
g Hill slope 0.83 +0.03 0.81 +0.07
Ko 0.44 = 0.08 0.37 +0.09
Bo 118.25 + 3.87* 85.81 + 1.25*
% S-HTa 58.25 £ 2.65 60.75 £ 3.24
=3 % 5-HT s/1p 35.25+1.25 2825+ 221
E % 5-HT, 6.50 + 2.01 11.00+2.12
% Hill slope 0.89 £ 0.02 0.81 +£0.04
g Kp 0.48 + 0.06 0.39 + 0.09
B 85.12 + 4.56 63.21 225
% 5-HTx 5725+ 5.25 60.85 3.75
% 5-HT 510 36.25 + 2.25 28.59 +2.85
< % 5-HT, 6.50%2.21 10.56 £ 1.25
g Hill slope 0.85+ 0.02 0.79 £ 0.07
= &n 0.45 + 0.05 0.4 + 0.08
Bl 88.85 =+ 8.21 68.25 + 6.25
" % 5-HT,» 54.51 + 2.26 62.21 2,51
= % 5-HT p1p 36.25 +2.51 2625 +2.21
> % 5-HT; 9.24+121 11.54 +0.79
5 Hill slope 0.85 + 0.05 0.89 + 0.02
5 Ko 0.48 + 0.06 0.41 = 0.07
S B 89.00 + 8.25 61.70 £ 5.20

Animals were dosed according to the method described in treatment 3. The results
are expressed as the mean + s.e.mean for 5 animals in frontal and caudal cortex
membranes. The proportions of 5-HT) 4, the mixed 5-HT)p/1p and the 5-HT; receptors
occupied by 0.25nM [*H]5-CT are reported (%). The Kp in nM, the By in fmoles
mg"' protein and the Hill slope (nH) of the 5-HT; binding site determined by [*H]5-
CT binding in the presence of 200nM WAY 100635 & 200nM GR125,743 are given.
* =P < (.05 compared to controls.
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investigated naive membranes from non-treated rats revealed that 200nM
WAY100635 was sufficient to block the 5-HT;s component of [PH]5-CT binding
described in chapter 5 (data not shown). 200nM WAY 100635 & 200nM GR125,743
was sufficient to block the 5-HT;s1p component of [’H]5-CT binding described in
chapter 5 (data not shown).

An increase in the 5-HT; binding site density of 42 and 38% in frontal and
caudal cortex membranes after MDMA treatment respectively without a change in
the affinity was observed. (Table 7.4). The proportion of 5-HT; receptors labelled
using 0.25nM [’H]5-CT were similarly increased by 42 and 38 % in the two
respective brain areas after repeated MDMA administration compared to controls.
The proportion of 5-HT;p/ip receptors labelled using 0.25nM [3H]5—CT revealed a
significant decrease in both frontal and caudal cortex membranes by 23 and 31%
respectively in rats treated with MDMA compared to controls (Table 7.4). There was
no change in the proportion of 5-HT;4 receptors labelled after any drug treatment
group in these brain areas (Table 7.4). MDMA administration in the presence of
either FK506 or FR122175 resulted in no change in the proportion of all 5-HT
receptors labelled using 0.25 nM [°H]5-CT as compared to controls (Table 7.4).

7.3 Discussion

The selective neurotoxic actions of MDMA in serotoninergic nerve terminals
can be detected not only by histochemical changes but also by the reduction of
radiolabelled SERT binding sites (Battaglia ef al., 1987, 1988 & 1991 & Sharkey ef
al., 1991). In this chapter the effect of repeated MDMA administration on the density
and affinity of [’H]citalopram binding sites was investigated in both the rat brain and
adrenal gland. The potential neuroprotective effects of FK506 and FR122175 and the
effect of such treatments on 5-HT;4 and 5-HT7 receptors were also examined

Following a two week recovery period after a ramped MDMA treatment
(“treatment 17; 10mg/kg bd. on day 1, 15 mg/kg bd. on day 2 and 20mg/kg bd. on
day 3), a significant reduction of 29% in SERT binding site densities in adrenal
medulla membranes with no change in affinity was observed (Table 7.1a; Figure
7.1a). MDMA has the same affinity for SERT in the CNS and adrenal medulla (see
chapter 4, Table 4.1), and also significantly reduced SERT binding site densities by
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41% in hippocampus, 36% in caudal cortex and 33% in frontal cortex membranes,
without affecting the affinity (Table 7.1a). Previous studies using a similar repeated
dosing schedule, have shown a much greater reduction in SERT density in
hippocampus and cortex brain regions of > 70% (Battaglia et al., 1987; Battaglia et
al., 1988; Sharkey et al., 1991). However it is now apparent that ambient temperature
not only has a pronounced effect on core temperature and thermoregulation of rats,
but also on MDMA neurotoxicity, which can cause a persistent loss of
thermoregulation (Dafters & Lynch, 1998). Increases in core temperature, caused by
increased ambient temperatures, of MDMA-treated animals, increase neurotoxicity
whereas decreases in core temperature decrease neurotoxicity. These pronounced
changes can be caused by as little as a 2°C fluctuation (Malberg & Sneinden, 1998).
In animals treated at or above ambient temperatures, MDMA causes a hyperthermic
response (Gordon et al., 1991; Colado et al., 1999d). It is not surprising therefore
that in humans, whose users commonly frequent crowded raves, the most common
and fatal side effects associated with MDMA use is hyperthermia (Henry et al.,
1992). However if the ambient temperature is lowered, a hypothermic response
occurs resulting in a dampening of the MDMA induced neurotoxicity (Gordon et al.,
1991). In this study, rats were housed at slightly lower than normal ambient
temperatures (19°C compared to 22°C), which may explain the lesser neurotoxic
action of MDMA observed in the brain regions studied. This temperature effect may
also help to explain why no damage was caused in the striatum (Table 7.1a) and
hence some brain regions may be less or more susceptible to temperature-dependent
neurotoxicity than others.

FK506 prevented the damage caused by MDMA in those brain areas where
there was a reduction in SERT binding density, but did not block the MDMA
induced depletion of SERT in the adrenal gland (Table 7.1a). The action of FK506
neuroprotection in the brain against MDMA neurotoxicity could involve both
glutamate and nitric oxide (NO). The role of glutamate and/or NO in MDMA-
induced neurotoxicity at present is rather ambiguous (Sprague et al., 1998). In the
brain, MDMA neurotoxicity is prevented by glutamate receptor antagonists
(Finnegan et al., 1990; Farfel ef al., 1992; Colado et al., 1993; Finnegan & Tarraska,
1996) and by the nitric oxide synthase (NOS) inhibitor, L-NAME, but not by other
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NOS inhibitors (Tarasaka & Finnegan, 1997). FK506 is thought to inhibit glutamate
neurotoxicity by inhibiting NOS (Kikuchi et al., 1998). The complex caused by
FK506 binding to the FK506 binding protein, inhibits calcineurin dephosphorylation
of protein-kinase C mediated phosphorylation of NOS, thereby inactivating the
enzymes catalytic activity and hence decreases production of NO (Dawson ef al.,
1993; Zhang & Steiner, 1995). FK506 is also known to produce a hypothermic
response in reducing focal cerebral ischaemic damage (Ide et al., 1996; Bochelen et
al., 1999). The production of a hypothermic response is a suggested mechanism for
other drugs that protect against MDMA induced neurotoxicity (see Malberg ef al.,
1996; Colado ef al., 1999b & c¢). However this is not a common mechanism of action
for drugs that prevent MDMA neurotoxicity. For example, fluoxetine has
consistently been shown to block MDMA induced neurotoxicity without preventing
MDMA induced hyperthermia (see Malberg et al, 1996). By blocking SERT,
fluoxetine therefore prevents entry of MDMA into the serotoninergic terminal
emphasising that MDMA neurotoxicity involves a carrier mediated process (Rudnick
& Wall, 1992).

The present study is the first to investigate the effects of MDMA treatment on
SERT in the adrenal gland. In an earlier report MDMA stimulates corticosterone
secretion through 5-HT release (Nash et al, 1988). More recently MDMA was
shown to potentiate the direct action of 5-HT on aldosterone secretion in vitro from
adrenals (Burns ef al., 1996). The mechanism underlying this increased aldosterone
secretion, could be associated with SERT. For example, it is known that MDMA
stimulates 5-HT efflux (Rudnick & Wall, 1992) and increased 5-HT levels are
known to increase steroid production in the adrenal gland (Rocco ef al., 1990 &
1992). The outcome of such increases in corticosterone and 5-HT is a site-specific
regulation of corticosteroid receptor expression in the brain, but only in adrenal intact
animals suggesting some form of corticosterone control (Yau et al., 1994 & 1997a).
In the brain it is believed that the interactions between 5-HT and corticosterone are
mediated by 5-HT;o» and 5-HT; receptors (Le Corré et al, 1997). Recently
corticosterone has been shown to regulate not only 5-HT,4 receptor expression, but

also SERT expression in the ageing brain (Maines ef al., 1999).
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Despite a similar MDMA induced depletion of SERT in the adrenal medulla
compared to in cortex and hippocampus brain areas, it can not be concluded if this
was due to the destruction of adrenal chromaffin cells. If MDMA also has a toxic
effect in the adrenal gland as in the brain, one would expect a similar decrease in
SERT and NET binding sites in the adrenal medulla as both transporters are co-
localised on adrenal chromaffin cells (Schroeter ef al., 1997). An attempt was made
to address this question by initially developing a [*H]nisoxetine binding assay in both
brain and adrenal medulla membranes (chapter 4). However the low amount of
specific [*H]nisoxetine binding characterised for NET in adrenals, meant that from
one animal there was not enough tissue to study the comparative effects of MDMA
on both SERT and NET in the adrenal medulla in the same animals. The failure of
FK506 to prevent the MDMA depletion of SERT in the adrenal medulla, in no way
provides conclusive evidence that the action of MDMA is not a toxic one as in the
brain. FK506 may simply exert its effects through site specific mechanisms. For
example, although FK506 inhibits glutamate neurotoxicity in the brain, glutamate
binding sites in the rat adrenal medulla have been shown to be different to those in
the CNS (Yoneda & Ogita et al., 1986) and therefore may be less susceptible to
FK506 protection. Future directives must therefore be driven towards answering this
MDMA toxicity question in the adrenal medulla. For example, 5-HT, 5-HIAA and
dopamine levels may be monitored after MDMA treatment in the adrenal glands. A
neurotoxic event may be evident if 5-HT and 5-HIAA levels fall and dopamine levels
rise, as previously reported in the brain (Battaglia er al.,, 1988; Colado et al., 1999a).
The ability of the Chemicon monoclonal antibody to recognise SERT in both adrenal
and brain tissue may also help to understand the action of MDMA in the adrenal
gland (chapter 4). Using this antibody in conjunction with commercially available
antibodies raised against proteins co-localised with SERT, such as SNAP-25 (a t-
SNARE protein associated in neurotransmitter release; Pfeffer, 1996) or
catecholamine  biosynthetic enzymes such as phenyl-ethanolamine N-
methyltransferase (PMNT; Ubink e al., 1995; Schroeter ef al., 1997), an answer may
be revealed. It is probably more appropriate to use immunological or
autoradiographic techniques to investigate the effects of repeated MDMA
administration on the co-localisation of SERT with DAT or NET which are
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unaffected by MDMA treatment in the brain (Stone ef al, 1986; Schimdt, 1987;
Battaglia ef al., 1988). This latter method will also overcome the need for the large
number of animals needed for membrane binding studies, as multiple sections can be
generated from one animal.

Following a longer recovery period of 13 weeks after a slightly different
treatment regime (“treatment 2”; 20mg/kg bd. for 4 days), MDMA caused a
reduction in SERT binding site density of between approximately 20 and 30 % in
cortex, hippocampus and striatum membranes (Table 7.2a). Although it is known
that re-innervation of 5-HT terminal regions does occur in rodents and primates it is
by no means “normal” or full (Scanzello ef al., 1993; Fischer et al., 1995; Lew et al.,
1996; Sabol ef al., 1996). This has been shown in monkey studies using a 13 month
or even seven year recovery after the final dose of a repeated MDMA dosing
schedule (Scheffel et al., 1998; Hatzidimitriou ef al, 1999). In that respect it is not
surprising that MDMA damage is still present after 13 weeks recovery as previously
reported (Battaglia e al., 1991; Sharkey ef al., 1991). No experimental animals after
a two week recovery period were however available in this independent study to
assess any possible 5-HT nerve terminal regeneration. As in the previous study a
lower than expected serotoninergic lesion was apparent, despite the injected animals
being maintained at a higher temperature. This may be due to the use of a different
strain of rat in this particular study; i.e. Wistar Cobb compared to Sprague Dawley.
However, unlike in the previous treatment, this Wistar Cobb rat treatment at the
higher temperature of 21°C did induce a reduction in striatum SERT binding sites.
This further suggests a temperature-site specific regulation of MDMA neurotoxicity.
In contrast to the ramped treatment allowed to recover for two weeks, there was no
MDMA induced depletion of SERT in the adrenal medulla after 13 weeks recovery,
despite significant decreases in all brain areas (Table 7.2a; Figure 7.2b). The
significance of this finding is hard to imagine without knowing whether or not the
initial MDMA induced depletion of adrenal medulla SERT in the ramped study was
due to MDMA toxicity. However if adrenal SERT depletion is a toxic consequence
of MDMA exposure as in the brain, there are two possible explanations to explain
this recovery. One is that MDMA has a different mechanism of toxicity in the
adrenal gland compared to the brain, which is supported by the inability of FK506 to
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protect adrenal SERT depletion. Another possible explanation may lie in the
morphology of adrenal chromaffin cells. Cell bodies in the dorsal raphé nuclei and
thick beaded axons from the median raphé nuclei are relatively spared in comparison
to the fine projections arising from the dorsal raphé nuclei after MDMA treatment
(Molliver et al., 1990). Raphé cell bodies are a longer distance away from SERT
containing nerve terminals in comparison to the relatively short distance of the
nucleus of adrenal chromaffin cells from their SERT-containing plasma membrane.
Therefore freshly synthesised SERT, near the nucleus of these cell bodies has a long
distance to travel before incorporation into the plasma membrane. This may explain
the long period of recovery needed to negate MDMA neurotoxicity in the brain. In
the adrenals, however, such a distance is much shorter, and hence may explain why
the MDMA induced depletion of SERT is reversed following longer recovery
periods. Understanding the trafficking of such transporters in both the brain and
adrenal chromaffin cell may therefore help to understand the long term consequences
of MDMA exposure in potentially regulating steroid and 5-HT levels.

In both these MDMA treatments (“treatments 1 &2”), the density of [H]8-
OH DPAT binding to 5-HT;s receptors was also assessed in some brain areas.
Differential regional regulation of this receptor subtype has been previously reported
after MDMA treatment (Aguirre ef al., 1995, 1997, & 1998). However there were no
changes in the density of 5-HT;a receptors after either treatment in frontal or caudal
cortex or hippocampus membranes (Tables 7.1b & 7.2b). The different survival
times (7 days vs. 14 days and 13 weeks in the studies in this thesis) may explain
these differences. Indeed another study after two weeks MDMA treatment has shown
no change in the level of 5-HT;4 mRNA (Yau et al, 1994). The longer recovery
study only looked at the whole cortex receptor population and therefore may have
diluted the region specific regulation of the frontal cortex as reported by Aguirre et
al., (1995, 1997 & 1998).

In a third series of treatments (“treatment 3”) the comparative effects of
repeated MDMA administration (20mg/kg bd for 4 days) in the presence of FK506
or the free radical scavenger FR122175 was investigated on brain SERT and 5-HTa
and 5-HT; receptors. The neurotoxicity of MDMA was confirmed by a significant
reduction in the number of radiolabelled SERT sites (Battaglia et al., 1987; Table
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7.3a), confirming the specific neurotoxic lesioning of serotoninergic nerve terminals.
This reduction in SERT density unlike the previous treatments, was more
comparable to previous studies with a 66, 79 and 79% reduction in radiolabelled
SERT binding sites in the frontal cortex, caudal cortex and hippocampus (Battaglia et
al., 1987; Sharkey et al., 1991). This may reflect the use of slightly older rats (as
reflected by their starting weight) at room temperature compared to the other
treatments in this chapter. Indeed it has been shown that there is an age dependent
increase in MDMA induced SERT depletion in the rat brain (Broening ef al., 1994 &
1995). Such age dependency correlates with the development of the dopaminergic
system (Aguirre ef al., 1998). It is therefore possible that the 21-25 day old rats used
in treatments 1 & 2, may not be as susceptible to MDMA neurotoxicitiy as their
older counterparts used in this third treatment. Both FK506 and FR122175 acted as
neuroprotective drugs by preventing the MDMA induced reduction in [*H]citalopram
binding sites in the brain areas studied, with no effect produced alone (Table 7.3).
FR122175 had a greater neuroprotective power than FK506 by returning the number
of SERT binding sites closer to controls (Table 7.3). FR122175 is a free radical
scavenger (Dr. J. Sharkey, Fujisawa Institute of Neuroscience, Edinburgh), and
therefore it would seem that free radicals do play a role in MDMA neurotoxicity as
recently reported by others (Colado & Green, 1995; Colado et al., 1997b; Colado et
al, 1999a & b; Yeh et al., 1999).

The thermoregulatory effect of FK506 is believed not to be solely responsible
for reductions in neurotoxicity (Yagita et al, 1996). The mitochondrial electron
transport chain is an intracellular source of free radical production (Dykens, 1997).
Mitochondrial dysfunction can cause free radical mediated cell damage (Raddi et al.,
1997), which in turn can lead to cell death (Murphy & Bredesen, 1997). FK506 has
recently been shown to decrease in vitro oxidative phosphorylation of mitochondria
from rat forebrain at complex III of the mitochondrial electron transport chain, which
is particularly involved with the formation of reactive oxygen species (Zinni et al.,
1998). Therefore the mechanism by which FK506 prevents MDMA induced
neurotoxicity may also be associated with free radicals by preventing mitochondrial

dysfunction.
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Mechanisms other than free radical scavenging involved in the
neuroprotective attributes of FR122175 can not be ruled out. For example, it is not
known if FR122175 has any effects on thermoregulation. Indeed the action of both
pentobarbitone and clomethiazole in protecting MDMA induced neurotoxicity was
originally thought to occur through a free radical scavenging process. However it is
now believed that free radical formation is actually prevented by reductions in
MDMA induced hyperthermia caused by the hypothermic responses of these two
drugs (Colado et al., 1999b& c). Fluoxetine has recently been shown to protect
against MDMA neurotoxicity by reducing free radical production (Shankaran et al.,
1999) without altering MDMA induced hyperthermia confirming that the MDMA-
induced generation of hydroxyl radicals, and, ultimately, the long term depletion of
5-HT, is dependent in part on the activation of SERT.

In agreement with “treatments 1 and 2”, no changes in the binding parameters
for [’'H]8-OH DPAT binding to 5-HT;s receptors was observed in treatment 3.
Within this chapter, studies on the density and affinity of 5-HT; receptors after
repeated MDMA treatment were used in an attempt to ascertain the location of this
receptor sub-type in membranes derived from the cortex. After repeated exposure to
MDMA (“treatment 3”), the binding density of 5-HT; receptors was significantly
increased in both the frontal and caudal cortex (Table 7.4). Although this does not
rule out the existence of some pre-synaptic receptors (the up-regulation could be an
underestimate), these results indicate that the 5-HT7 receptor is mainly located post-
synaptic to 5-HT nerve terminals in the rat cortex, where it appears to be upregulated
by a reduction in synaptic levels of 5-HT. A similar experimental set-up, has shown
this to be the case in the rat hypothalamus, whereby animals treated with the
neurotoxin 5,7-DHT also up-regulates 5-HT7 receptor binding sites (Clemett et al.,
1999). In agreement with this postulated post-synaptic location in these brain areas,
is the similar distribution of [*’H]5-CT binding sites and 5-HT; mRNA in these
structures (Gustafson et al., 1996). In contrast some brain areas such as in the raphé
nuclei as described in chapter 5, may have 5-HT; receptors with a pre-synaptic
location. If this were the case, a decrease in specific 5-HT; receptor binding in
conjunction with a decrease in [*H]citalopram binding would be expected. In the

future it would be interesting to autoradiographically assess the density of 5-HT>
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receptors (using the methodology in chapter 5) after MDMA treatment to determine
the location of these binding sites in all brain areas as to whether they are
predominantly pre or post-synaptic. In the presence of FK506 or FR122175, which
could only partially prevent the MDMA induced depletion of SERT (Table 7.3),
there was no increase in 5-HT5 binding sites observed after MDMA administration
(Table 7.4). This may suggest that there is a threshold of MDMA neurotoxicity that
modulates specific receptor changes and may explain why no changes were observed
for the 5-HT,5 receptor subtype. A significant decrease in the proportion of 5-
HTs/p receptors labelled was also observed after repeated MDMA treatment (Table
7.4). This would suggest that 5-HTp/1p receptors are indeed present on 5-HT nerve
terminals (Engel et al, 1986; Maura et al, 1986; Limberger ef al, 1991). This
however would need to be confirmed using a [3H]GR125,743 binding assay as
developed in chapter 5. The decrease in the % of 5-HTg/,1p receptors labelled after
MDMA exposure may just be a consequence of the increase in the % of 5-HT;
receptors radiolabelled. The lack of available tissue meant that this could not be
investigated in this study. Furthermore despite being a marker for the pre-synaptic 5-
HT nerve terminals, 5-HTg/yp receptors are also found on non-serotoninergic
~neurons acting as heteroreceptors (Bolands-Jiménez & Fillion, 1989; Molderings et
al., 1990). These receptors may therefore mask any reductions in 5-HTp/ip receptors
found on 5-HT neurons as MDMA neurotoxicity is selective for 5-HT containing
neurons (Battaglia ef al., 1988). MDMA administration in combination with the use
of a purified serotoninergic synaptosomal preparation, as discussed in chapter 2, may
help to further elucidate the consequences of MDMA exposure and to determine the

proportion of those receptors that are pre- and/or postsynaptic in their location.

7.4 Summary

In this chapter the effects of repeated MDMA administration on SERT in the
brain and adrenal gland and 5-HT receptors in the brain was investigated in the
presence or absence of the immunosupressant drug, FK506 or a free radical
scavenger (FR122175).

Repeated MDMA treatment, with a 2 week recovery period, resulted in a

significant reduction in adrenal medulla and brain cortex and hippocampus SERT.
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However it is not known if the results in the adrenal medulla were caused by the
neurotoxicity of MDMA as known in the brain. The immunosupressant drug, FK506,
prevented brain MDMA neurotoxicity, but had no effect on the MDMA induced
depletion of SERT in the rat adrenal medulla. Another MDMA treatment with a
longer 13 week recovery period, caused a significant reduction in brain SERT
density, but had no effect on adrenal medulla SERT.

In a third study, repeated MDMA administration caused a more substantial
reduction in the density of SERT. FR122175, a free radical scavenger was more
efficient at preventing such neurotoxicity compared to FK506.

5-HTj receptor binding site densities were increased in the frontal and caudal
cortex whereas no changes in any of the three MDMA treatments were observed for

the 5-HT4 receptor.
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GENERAL CONCLUSIONS
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In this thesis the effects of repeated administration of a number of drugs,
which interact with the 5-HT transporter, on the rat serotoninergic system have been
examined. This has included the validation and development of a wvariety of
immunological and radioligand binding techniques for the detection and
quantification of particular components of the serotoninergic system. This has
involved the characterisation of site directed SERT antibodies, the immunological
detection of native SERT, the pharmacological characterisation and localisation of
SERT in the brain and adrenal medulla, and the establishment of radioligand binding
assays capable of selectively labelling 5-HT;s, 5-HT7 and 5-HTipip in brain
membranes. These methodologies have been used in combination to investigate the
effect of chronic antidepressant treatments on SERT and 5-HTa, 5-HT/p and 5-
HT7 receptors. They have also been used to study the effects of repeated MDMA
administration on the modulation of ligand binding to SERT and 5-HT;4 and 5-HT;

receptors in the presence and absence of potentially neuroprotective drugs.

Characterisation of Site Directed SERT Antibodies

A library of 6 site directed antibodies were characterised as to their
specificity to recognise SERT. SDS-PAGE Western blots revealed two antibodies
that recognised a single immunoreactive species in rat neocortex at 76 kDa and two
immunoreactive species in rat blood platelets, one at 94 kDa and one between 54-76
kDa in rat blood platelets. The latter probably represents different degrees of SERT
deglycosylation (Qian et al, 1995). No immunoreactivity was detected in rat liver.
The rank order of intensity of immunoreactive signal was platelets > cortex >
cerebellum > liver. This is consistent with the known electrophoretic mobility and
distribution of SERT (Qian et al, 1995). One of these antibodies was raised to a
conserved sequence in the 4" extracellular loop of SERT (in-house 1001) and the
other to the N-terminus (Chemicon mouse monoclonal). Immunohistochemical
studies demonstrated SERT immunoreactivity in the cell bodies of the raphé nuclei.
In this brain area, SERT immunoreactivity was similar to 5-HT immunoreactivity,
consistent with the idea that SERT in the CNS is found specifically on 5-HT
containing neurons. SERT specific staining was also present in the dendrites and

terminal fields of the raphé nuclei projection areas of the cortex, hippocampus &
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striatum. This location of SERT in the rat brain is consistent with previous reports
using other SERT directed antibodies (Sur ef al., 1996). The antibodies with the best
quality of staining were one raised to conserved sequences of the SERT COOH-tail
(in house 998), and again the Chemicon mouse monoclonal antibody. The in-house
1001 and 998 antibodies were selected for the immunological qualitative assessment
of SERT abundance after drug treatments using SDS-PAGE Western blots and

immunohistochemistry respectively.

Immunological Detection of Native SERT

Several methods were used to identify antibodies that recognise the native
form of SERT. Using an ELISA based assay no specific signal was detected due to
the low abundance of SERT in membranes compared to using the antigenic peptide
in a 96 well plate assay. Increasing the abundance of SERT using a centrifugation
ELISA was also unsuccessful due to the incorporation of the secondary antibodies in
the membrane fraction following centrifugation. Native Western blotting revealed
specific SERT immunodetection using the Chemicon mouse monoclonal and guinea
pig antibodies. These two antibodies which recognise different SERT epitopes (N-
terminus and COOH-tail respectively), were used in combination whereby the mouse
antibody immunoprecipitated SERT from native membrane extracts and the guinea
pig antibody then used for SERT immuodetection in SDS-PAGE Western blots. The
detection of native SERT protein is an important prerequisite to isolate pure, viable
and functional serotoninergic nerve terminals. The immunoprecipitation procedure
demonstrates that the immunomagnetic separation of S5-HT containing nerve
terminals may well be possible. The mouse monoclonal antibody can be used to label
native SERT, and in conjunction with a magnetic secondary antibody can
specifically extract the serotoninergic nerve terminal population. The guinea pig
antibody may then be used to assess the purity of such a separation. Alternatively a
combination of [’H]citalopram binding to SERT and radioligand binding to non-
serotoninergic markers (eg. NET) can be used to monitor the purification to avoid the
possible species cross reactivity that is apparent with these two antibodies. This is the
key step for preparing serotoninergic nerve terminals, which can subsequently be

used by neuropharmacologists and electrophysiologists, to identify and determine the
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characteristics and influence of the receptor subtypes present on only serotoninergic

nerve terminals.

Pharmacological Characterisation of Adrenal SERT

An In vitro radioligand binding assay was used to specifically detect SERT in
the medulla of the rat adrenal gland. The affinities of a number of amine uptake
inhibitors and substrates at [’H]citalopram binding sites in adrenal medulla, cerebral
cortex and platelet membranes were essentially identical. [‘H]Paroxetine
autoradiography and SDS-PAGE Western blots using the Chemicon mouse
monoclonal antibody confirmed this specific localisation. Adrenal chromaffin SERT
is therefore indistinguishable from neuronal or platelet SERT and may similarly
serve as the uptake machinery for 5S-HT into the chromaffin cells of the adrenal gland
where 5-HT de novo synthesis is unclear (Holzwarth et al., 1984; Vandenberg et al.,
1991). SERT has recently been shown to exhibit polarity in rat adrenal chromaffin
cells (Schroeter ef al., 1997). The identical pharmacology and size of adrenal SERT
identified in this thesis warrants the use of this relatively simple system to try and
increase our current knowledge of SERT trafficking in neurones.

In the adrenal gland, 5-HT uptake has also been proposed to take place
through the adrenal chromaffin noradrenaline transporter (NET; Michael-Hepp et al.,
1992). An in vitro radioligand binding assay was used to detect NET in the rat
adrenal medulla. The pharmacology of NET was identical to [*H]nisoxetine binding
in the cerebral cortex, completely different to the pharmacology of SERT in these
tissues and had a density of approximately & times less than that of SERT in the
adrenal medulla. Together with the low affinity of 5-HT for NET and the significant
quantities of 5-HT in chromaffin granules (Brownfield et al, 1985), it is therefore
more likely that 5-HT is taken up by SERT present on adrenal chromaffin cells. The
discovery of SERT in the rat adrenal medulla may also help explain the regulation of
steroid production and function of the HPA axis in various pathophysiological

conditions such as depression (see Barden ef al., 1995).
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Development of Receptor Binding Assays

Receptor binding assays were validated or developed, minimising the amount
of tissue required after drug treatments, to allow the maximum number of receptor
binding assays to be studied in parallel. The pharmacological profile of [’H]8-OH
DPAT binding was consistent with rat 5-HT 4 receptor binding (Gozlan et al., 1983).

Previous attempts at specifically binding to native rat brain 5-HT; receptors
have been difficult due to the lack of selective ligands available. Non-selective
radioligands in the presence of masking drugs to prevent binding to non-5-HT;
receptors have failed to label a homogeneous population of binding sites in
individual rat brain regions. [*’H]5-CT in the presence of 200nM WAY100635
(selective 5-HT;a antagonist) was sufficient to remove the 5-HT;a component of
[’H]5-CT binding in cortex, striatum and hippocampal membranes. The remaining
WAY insensitive binding was inhibited by a variety of non-selective drugs with Hill
slopes of <1, suggesting the presence of multiple remaining receptor subtypes. The
WAY100635 insensitive component of [°H]5-CT binding was only partially
inhibited by the selective 5-HTg agonist, CP 93129. The 5-HTp/p antagonist,
GR125,743, also partially and selectively inhibited this binding but to a slightly
greater extent than CP93129. This small difference in inhibition between the
CP93129 and GR125,743 sensitive components of WAY 100635 insensitive [’H]5-
CT binding presumably represented binding to 5-HTp receptors and varied between
brain areas: striatum > hippocampus >/= cortex. This would be consistent with the
notion that the majority of 5-HT,p/p receptors in the rat brain are 5-HTp receptors
and that a higher density are located in the striatum (Bruinvels et al., 1993a & b,
1994a & b). 200nM GR125,743 was subsequently used to block the 5-HTig/ip
component of WAY 100635 insensitive [’H]5-CT binding.

The remaining WAY 100635 and GR125,743 insensitive [°H]5-CT binding
revealed a pharmacological profile that was highly correlated to binding at
recombinant rat 5-HT7 receptors. All antagonist inhibition curves gave Hill slopes of
1 consistent with binding to one population of binding sites. All agonists, including
unlabelled 5-CT, gave Hill slopes of <1. Based on the affinities obtained, there was
no evidence of [*H]5-CT binding to yet another known receptor sub-type. The

shallow Hill slopes of the agonists may represent binding to more than one affinity

300



state of the receptor. The [*’H]5-CT binding assay was used to recharacterise 5-HT;
receptors in guinea pig brain where only one receptor isoform exists (Tsou ef al,
1994) unlike the three in rat (Heidmann ef a/.,, 1997). The same conditions as used in
the rat were sufficient to block binding to non-5-HT; receptors and also revealed a
pharmacological profile consistent with binding to 5-HT7 receptors (Boyland et al.,
1995; To et al, 1995). However, the Hill slopes of 1 for all compounds whether
agonists or antagonists in the guinea pig brain, suggest that multiple 5-HT; receptor
isoforms may account for the complexity of agonist binding to rat 5-HT7 receptors.
The conditions used to isolate the S-HT; receptor component of [’H]5-CT
binding, were used to assess the anatomical distribution of this receptor subtype.
These autoradiographic experiments gave the same the rank order of binding site
densities as in the membrane binding studies: hippocampus > cortex >/= striatum.
The highest density was in the dorsal raphé nucleus (DRN), an area that is too small
to use for membrane binding studies. It is therefore possible that the 5-HT; receptor
may also be an autoreceptor like its somatodendritic 5-HT 4 receptor counterpart in
this brain area. In the absence of commercially available radiolabelled antagonists at
present, the development of this assay will aid further investigation of the
pharmacology, distribution and modulation of expression of the 5-HT> receptor.
Conditions for using [*H]5-CT as a radioligand for labelling the 5-HTg/p
receptor population could not be established largely because of the interference of
the 5-HT7 receptor component of binding. No drugs were suitable to block the 5-HT>
component without inhibiting binding to the 5-HTg/ip receptors. Therefore binding
to rat 5-HTg and 5-HT,p receptors was achieved using the relatively new selective
5-HT\g/1p antagonist ligand, [PH]GR125,743. The pharmacology of [’H]GR125,743
binding was consistent with binding to a mixed population of 5-HT;g and 5-HTp
receptors. The 5-HT;p component of [’H]GR125,743 was blocked using 300nM
CP93129 (selective 5-HT agonist) and was used to monitor the levels of 5-HT g
and 5-HTip receptor binding. The Bpmax values of both components of
[PH]JGR125,743 binding could be calculated based on the valid assumption that
GR125,743 had the same affinity for both receptor subtypes (Doménech et al,
1997). The rank order of the binding site densities of the components of the 5-

HTp/1p receptors was: striatum > hippocampus >/= cortex. This was consistent with
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the WAY100635 insensitive proportion of [’H]5-CT binding defined by CP93129 or
GR125,743 and the known distribution of these receptor subtypes (Bruinvels ef a/,
1993a & b, 1994 a & b).

Chronic Antidepressant Treatment Studies

SERT is the primary initial target for many classes of antidepressants,
including selective serotonin reuptake inhibitors. SSRIs rapidly inhibit the uptake of
5-HT. However, maximal antidepressant effects are apparent only after 2-3 weeks of
repeated treatment, suggesting that in addition to the inhibition of 5-HT reuptake,
other longer-term adaptive changes occur that contribute to therapeutic efficacy. To
try and produce future antidepressant drugs that have a faster onset of action, a
higher clinical efficacy and a more tolerable side effect profile, it is important to pin-
point the mechanism of action of the current drugs used to treat affective disorders.
The initial consequence of most antidepressant medication is an increase in
extracellular 5-HT levels (Fuller, 1994). 5-HT levels may be affected in many ways
including the blockade of SERT and also by blockade/desensitisation of 5-HT
autoreceptors, which appear to have an inhibitory influence over 5-HT
neurotransmission in the early stages of treatment.

In this thesis potential neuroadaptive changes of SERT, 5-HT 4, 5-HT s, 5-
HTp and 5-HT7 receptors were investigated using the binding and immunological
methods developed above. Three antidepressants were investigated; citalopram and
fluoxetine (both SSRIs), and tianeptine which unlike the SSRIs apparently enhances
5-HT reuptake (Fattaccini et al., 1990). Rats were treated with doses comparable to
those that have previously been shown to produce such desensitisation or enhancing
uptake responses (Mennini et al., 1987; Invernizzi et al., 1994; Le Poul et al,
1995a).

No changes in the density or affinity of SERT were observed in any brain
area with any of the antidepressant drugs examined. This would suggest that adaptive
changes of SERT at the protein level do not play a role in the mechanism of action of
various antidepressant drugs. This agrees with the majority of the literature available
(for a review see Pifieyro & Blier, 1999). Adrenal medulla SERT was similarly
unaffected by such treatments suggesting that this peripheral SERT does not play a
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role in the mechanism of action of antidepressants which are known to normalise the
hyperactivity of the HPA axis seen in depression (see Barden ef al., 1995).

5-HT) A receptors were also unaffected in the terminal field areas of the raphé
cell body projections, suggesting that this post-synaptic population of receptors is
unlikely to account for the delayed onset of action of antidepressant treatment. This
agrees with previous studies (see chapter 6). In this thesis the effect of these chronic
treatments were not investigated in the DRN, although it is apparent that the adaptive
processes associated with chronic antidepressant drug in this brain area are not
manifested by changes in receptor density or affinity (Le Poul ef al., 1995a & b).

5-HTp and 5-HT;p autoreceptors in the terminal fields exert a negative
influence on 5-HT release which after chronic antidepressant administration are
believed to be desensitised (see Pifieyro & Blier, 1999). Studies in this thesis
revealed a site specific down regulation of both 5-HT s and 5-HT)p receptors in the
frontal cortex of SSRI treated rats but not those treated with tianeptine. This suggests
that the adaptive process may in part be associated with a decrease in the number of
inhibitory 5-HT terminal autoreceptors in this brain area. However these 5-HT
receptor subtypes are also found on non-serotoninergic nerve terminals and are also
sensitive to antidepressant treatment (Bolafios-Jimenez et al., 1994). To quantify the
possible involvement of only serotoninergic 5-HTs/1p receptors, it will be important
to combine chronic SSRI treatment studies with the methods outlined in this thesis
for the preparation of pure, viable and functional serotoninergic nerve terminals.

Like the 5-HT;p/p receptors, there was also a site-specific decrease in the
binding site density of the 5-HT7 receptor in the frontal cortex after chronic SSRI
treatment. Indeed a recent study has shown a neuroadaptive decrease of 5-HT7
binding sites in the rat hypothalamus with SSRIs (Mullins ef al., 1999). It is therefore
possible that the mechanism of action of SSRIs is mediated by 5-HT; receptors in
these brain areas or alternatively that such adaptive processes could be linked to the
side effect profiles of these drugs after treatment. As 5-HT7 receptors are found in the
DRN it is possible that they may also exert a negative influence on neuronal firing,
just like 5-HT;p somatodendritic autoreceptors. However, until 5-HT; receptor
antagonists and agonists become commercially available the reporting of such a role

by electrophysiologists will be limited. The use of a 5-HT7 receptor antagonist, such
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as that reported by Forbes et al., (1998), in combination with an SSRI may help to
shorten the onset of action of antidepressant medications just as the 5-HT,
antagonist, pindolol, does in combination with fluoxetine (Perez et al., 1997). The 5-
HT; receptor may therefore be an important target for future antidepressant drug
design.

It would appear that the antidepressant studies undertaken in this thesis have
revealed that the SSRIs (fluoxetine and citalopram) share a common site-specific
mechanism of action in decreasing the number of 5-HTg/ip and 5-HT7 receptors in
the frontal cortex. It is therefore possible that this brain area plays a crucial role in
mechanism of action of SSRIs. SSRIs inhibit SERT within minutes of dosing but do
not appear, as in this thesis, to cause an adaptational change of SERT at the protein
level after chronic treatment. SERT is also subject to various other types of
regulatory influences (Qian ef al., 1997; Ramamoorthy et al., 1998; Ramamoorthy &
Blakely, 1999). To avoid a controversial scenario that has become apparent from
receptor modulation studies (see Pifieyro & Blier, 1999), it will be important to
ensure that a consistent approach is used for future antidepressant studies. For
example it has become apparent that the administration of antidepressants in animals
via a continuous delivery system, such as a mini-osmotic pump may be more
consistent with studies in humans than repeated injections. In such studies a role of
SERT in the mechanism of action of these antidepressants has been suggested as
shown by clear adaptive changes in SERT density (Pifieyro et al., 1994; Pifieyro et
al., 1995d; Benmansour ef al., 1999). This approach may also reveal other changes to
receptor subtypes and second messenger systems which are important in the
mechanism of action of antidepressant drugs, but which are not sensitive to adaptive
changes from a spiked treatment regime as used in thesis. However, many novel
strategies for the pharmacotherapy of depression have been detected in human and
animal studies using the repeated injection method for administration of drugs
(Maubach et al., 1999). Future developments of specific PET and SPECT ligands
may bypass these problems and allow the direct study of the mechanisms of action of
antidepressant drugs in the living human brain.

In studies for this thesis, tianeptine had no effect on any of the components of

the 5-HT system investigated. Despite the commonly believed notion that this drug
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may actually enhance 5-HT uptake (Mennini et al., 1987; Fattaccini e al., 1990) this
drug has been shown to influence other neurotransmitter systems. For example,
without producing marked changes in the 5-HT system, short-term administration of
tianeptine increases NA content and decreases NA turnover in specific nuclei related
with mood such as the preoptic area, DRN and sensory cortex (Frankfurt ef al,
1994b). Acute and prolonged tianeptine treatment may also increase extracellular DA
concentrations in striatum and nucleus accumbens in a 5-HT-independent manner
(Invernizzi ef al., 1992b). Therefore despite no observed effect on the areas of the 5-
HT system studied, the mechanism of action of tianeptine might be associated with
adaptive changes of other neurotransmitter systems. It is also possible that despite the
relatively specific nature of SSRIs, indirect changes in other aminergic systems may
also additionally account for their mechanism and delayed onset of action. For
example o, receptors exist on serotoninergic neurons exerting an inhibitory action on
5-HT release (Maura et al., 1982) and the stimulation of various 5-HT receptors can

influence DA release (see Table 1.5 in the Introduction of this thesis).

Repeated MDMA Administration Studies

MDMA produces long lasting changes in various 5-HT parameters in the
brain including: a reduction in 5-HT and 5-HIAA content, a decline in tryptophan
hydroxylase activity, and a decrease in the number of SERT binding sites
accompanying the degeneration of serotoninergic terminals (see Sprague ef al.,
1998). The mechanisms by which 5-HT release occurs are not fully understood at
present, but it is believed to involve a carrier-mediated (Rudnick & Wall, 1992) and
Ca®* dependent process (Crespi et al, 1997). Repeated MDMA administration
caused a significant reduction in the number of [*H]citalopram binding sites after a 2
week recovery period in both rat terminal field brain areas and the rat adrenal
medulla. Following a 13-week recovery period a significant reduction in SERT
density in the brain was still apparent, but not in the rat adrenal medulla. Though it is
not known whether the initial effect seen in the adrenal gland is a toxic event, as in
the brain, it is possible that changes in SERT density in the adrenal medulla may be
responsible for the previously reported changes in aldosterone secretion following
MDMA administration (Burns ef al., 1996). The recovery of adrenal SERT number

305



after a longer recovery period may reflect differences in the rate of SERT synthesis
and trafficking in these two tissues.

The density and affinity of 5-HT;a receptors remained unchanged after
MDMA administration following both 2-week and 13-week recovery periods.
Previous reports have suggested an upregulation of this 5-HT receptor subtype in the
frontal cortex following a 1-week recovery period after MDMA administration
(Aguirre et al., 1995, 1997 & 1998). It is therefore possible that 5-HTa receptors are
involved in the immediate but not longer term consequences of MDMA usage. The
density of 5-HT5 receptors was increased in both the frontal and caudal cortex after
repeated MDMA administration following a 2-week recovery period. This may
suggest that 5-HT; receptors are involved in the later consequences of MDMA usage.
It may also suggest a postsynaptic localisation of this 5-HT receptor subtype in this
brain area. Such an inference has previously for been made for 5-HT7 receptors in the
hypothalamus following an upregulation of binding sites after destruction of 5-HT
terminals using 5,7-DHT (Clemett et al., 1999). The results suggest a possible role
for 5-HT;a, 5-HT; receptors and the adrenal gland in the psychopathobiological
changes elicited in humans at various stages after MDMA usage. As these
parameters have been described to be involved in depression, the studies further add
concern that MDMA usage in humans may lead to neuropyschiatric conditions in
later life.

The selective neurotoxicity of MDMA to serotoninergic terminals is presently
not understood, though many drugs which have a direct action on the serotoninergic
and dopaminergic systems or induce a hypothermic response are capable of
preventing such damage (see Sprague et al., 1998). The immunosuppressant drug
FK506 prevented MDMA induced depletion of SERT in the brain but not in the
adrenal gland. Though FK506 is known to produce a hypothermic response in
reducing focal cerebral ischaemic damage (Bochelen et al., 1999), it is believed that
other mechanisms may also account for this reduction in neurotoxicity (Yagita et al.,
1996). Thus, glutamate neurotoxicity, which has been suggested to be involved in the
mechanism of action of MDMA (Sprague et al., 1998), is also inhibited by FK506
(Kikuchi ef al., 1998). Glutamate binding sites in the rat brain are pharmacologically
different to those in the rat adrenal medulla (Yoneda & Ogita, 1986), which may
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explain why FK506 can prevent MDMA induced depletion of SERT in the brain but
not in the adrenal medulla. Another possible mechanism of MDMA neurotoxicity
includes the formation of free radicals (Colado ef al, 1997b). This was confirmed
using the free radical scavenger FR122175 that was more effective than FK506 in
preventing MDMA induced depletion in the rat brain. Both drugs were also equally
effective in preventing the increase in 5-HT7 receptor number as a consequence of
MDMA administration. FK506 has also been shown to decrease in vitro oxidative
phosphorylation of mitochondria from rat forebrain at complex III of the
mitochondrial electron transport chain, which is particularly involved with the
formation of reactive oxygen species (Zianni et al, 1998). Therefore, whereas
FR122175 scavenges free radicals, the neuroprotective action of FK506 may in part

be due to direct inhibition of free radical formation.

Concluding Remarks

Neurochemical and electrophysiological experiments have indicated a role
for 5-HT in a variety of pathological conditions including depression. The 5-HT
transporter is the primary target for many antidepressants and drugs of abuse, such as
ecstasy (MDMA). However the mechanism of action of these drugs is poorly
understood. The studies undertaken in this thesis suggest an involvement of a variety
of pre- and post-synaptic components of the serotoninergic system in the mechanism
and delayed onset of action of antidepressant drugs. The studies also suggest a role
for such components in the psychopathological changes elicited by MDMA in man.
Such findings may help to improve antidepressant drug design and to increase public
awareness that the use of apparently “safe” recreational drugs may have detrimental

consequences.
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APPENDIX I: Abbreviations.

The abbreviations used in this thesis are in accordance with the guidelines set out in

the British Journal of Pharmacology instructions to authors. Those not defined in the

above publication are listed below. Ca**, K, Na‘, H and CI refer to the ionic

species of calcium, potassium, sodium, hydrogen and chlorine respectively

Miscellaneous

5,7-DHT
6-OH DA
5-HIAA
5-HT
5-HTP
ABC
ABTS
ACH
ACTH
AKP
ATP
BDNF
Bimax
BNF
BSA

R¢

cAMP
CCK
cDNA
CNS
COOH-tail
CRH
d.H>0

5,7-dihydrotryptamine
6-hydroxydopamine
5-hydroxyindoleacetic acid
5-hydroxytryptamine; serotonin
5-hydroxytryptophan

avidin biotin complex
2.2'-azinobis(3-ethylbenzthiazoline-sulfonic acid)
acetylcholine

adrenocorticotrophin hormone
alkaline phosphatase

adenosine 5’ triphosphate

brain derived neurotrophic factor
density of radiolabelled binding sites
British National Formulary

bovine serum albumin

'relative to the front' — the distance a protein moves relative to
the dye front

adenosine 3’ 5’ cyclic monophosphate
cholecystoskinin

complementary deoxyribonucleic acid
central nervous system

carboxyl tail

corticotrophin releasing hormone

distilled water
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DA dopamine

CSF cerebrospinal fluid

DAB 3,3’-diaminobenzine

DAG diacylglycerol

DAT dopamine transporter

DMSO dimethylsulphoxide

dpm disintergrations per minute

ECL enhanced chemiluminescence

ECT electroconvulsive shock therapy
EDTA (ethylenedinitrilo) tetraacetic acid
ELISA enzyme linked immunosorbent assay
G protein guanyl nucleotide binding protein
GPCRs G protein coupled receptors

GABA gamma aminobutyric acid

GAT gamma aminobutyric acid transporter
GDP guanosine 5’ diphosphate

GFAP glial fibrillary acidic protein

GTP guanosine 5’ triphosphate

H>0, hydrogen peroxide

HPA hypothalamus-pituitary-adrenal
HRP horseradish peroxidase

i.p. intraperitoneal

ICsp concentration of competing ligand which displaces 50% of the

specific binding of the radioligand

IgG immunoglobulin G

IP immunoprecipitation

IP; inositol phosphates

IUPHAR International Union of Pharmacology
K+ association rate constant

k. dissociation rate constant

Kp equilibrium dissociation constant
kDa kilodalton
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MAO
MAOI
MDMA
MPP"
MPTP
mRNA
N-terminal
NA
NAD
NADPH
NaSSA
NET
NGS

nH
NP-40
nsb
O.D.
PBS
PCR
PEI
PET
PKA
PKC
pKp
PK;
PNGASE F

inhibitor constant

keyhole limpet haemocyanin
observed constant
I-dihydroxyphenylalanine

lysergic acid diethylamide

long term potentiation

monoamine oxidase

monoamine oxidase inhibitor
3,4-methylenedioxymethamphetamine; ecstasy
N-methyl-4-phenylpyridinium
N-methyl-1,2,3,6-tetrahydropyridine
messenger ribonucleic acid

amino terminal

moradrenaline

nicotinamide adenine dinucleotide

nicotinamide adenine dinucleotide phosphate (reduced)

noradrenergic and specific serotonergic antidepressant
noradrenaline transporter

normal goat serum

Hill slope or coefficient

nonylphenoxy polyethoxy ethanol

non specific binding

optical density

phosphate buffered saline

polymerase chain reaction

polyethyleneamine

position emission tomography

protein kKinase A

protein kinase C

negative log of the equilibrium dissociation constant
negative log of the inhibitor constant

peptide —N-glycosidase F
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pNpp
PRP
PVDF

r

rpm

S.C.

SCN

s.e. mean
SDS
SDS-PAGE
SERT
SNRI
SPECT
SSRI
TCA
TEMED
™D
TPH
tween-20
VMAT
VNTR

Compounds

p-nitrophenyl phosphate

platelet rich plasma

polyvinylidene difluoride.

correlation coefficient

revolutions per minute

subcutaneous

suprachiasmatic nucleus

standard error of the mean

sodium dodecyl! sulphate

sodium dodecyl sulphate polyacrylamide gel electrophoresis
5-HT transporter

serotonin-noradrenaline reuptake inhibitor
single photon emission tomography
serotonin specific reuptake inhibitor
tricyclic antidepressant

N, N, N', N'-Tetramethylethylenediamine
transmembrane domain

tryptophan hydroxylase
polyoxyethylenesorbitan

vesicular monamine transporter

variable number tandem repeat

The full chemical names of those drugs experimentally used in this thesis are given

below. The full chemical names of those compounds which are referred to in the text

but which were not used experimentally, may be found in their accompanying

reference and/or those references cited within.

5-CT
5-HT
5-MeOT

8-OH DPAT

5-carboxamidotryptamine
5-hydroxytryptamine; serotonin
5-methoxytryptamine
8-hydroxy-2-dipropylaminotetralin
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BRL15572
CGS12066B

citalopram

clozapine

CP93129

cyanopindolol

DHE

DMI

DP-5-CT
ergotamine

FK506

fluoxetine

FR122175
GR125,743

3-[4-(3-chlorophenyl)piperazin-1-yl]-1,1-diphenyl-2-propanol
7-trifluoromethyl-4-(4-methyl-1-piperazinyl)pyrrolo[1,2-a]-
quinoxaline

1-[3-(dimethylamino) propyl]-1-(4-fluorophenyl)-1,3-
dihydroisobenzo-furan-5-carbonitrile
8-chloro-11-(4-methyl-1-piperazinyl)-5SH-
dibenzo[b,e][1,4]diazepine
1,4-dihydro-3-(1,2,3,6-tetrahydro-4-pyridinyl)-5H-
pyrrolo[3,2-b]pyridin-5-one
4-[3-['‘Butylamido]-2-hydroxypropoxy]-1H-indole-2-
carbonitrile

dihydroergotamine;  9,10-dihyro-12’-hydroxy-2’-methyl-5’-
(phenylmethyl)ergotaman-3°,6°,18-trione
desmethylimipramine;10,11-dihydro-5-(3-
methylaminopropyl)-5H-dibenz(b,f)azepine
dipropyl-5-carboxamidotryptamine
12’-hydroxy-2’-methyl-5’o-(phenylmethyl)ergotaman-
3°,6’,18-trione

macrolide tactrolimus; 15,19-Epoxy-3H-pyrido(2,1-
c)(1,4)oxaazacyclotricosine-1,7,20,21(4H,23H)-tetrone,
5,6,8,11,12,13,14,15,16,17,18,19,24,25,26,26a-
hexadecahydro-5,19-dihydroxy-3-(2-(4-hydroxy-3-
methoxycyclohexyl)-14,16-dimethoxy-4,10,12,18-tetramethyl-
8-(2-propenyl)-, (3S-

(3R*(E(1S*,35*,45%)),4S*,5R*,8S* 9E,12R*,14R*,15S*,16R
*,188%,195%,26aR*))-
(£)-N-methyl-y-[4-(trifluoromethyl)phenoxy]-
benzenepropanamine

development compound-no name supplied
N-[4-methoxy-3-(4-methylpiperazin-1-yl)phenyl]-3-methyl-4-
(4-pyridyl)benzamide
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GR127,935

GR46611

GR85548

ketanserin

LY 694,247

mesulergine

metergoline

methiothepin

methysergide

mianserin

nisoxetine
nomifensine

PAPP

pargyline

paroxetine

pentobarbitone

pimozide

pindolol

N-[4-methoxy-3-(4-metyl-1-piperzinyl)phenyl]2’-methyl-4 -
(5-methyl-1,2,4-oxadiazol-3-yl)[1,1-biphenyl]-4-carboxamide
3-[3-(2-dimethylamino-ethyl)-1 H-indol-6-yl]-N-(4-
methoxybenzyl)acrylamide
N-methyl-2-[3-(1-methylpiperidin-4-yl)-1 H-indol-5-yl] 4’-
(methylenedioxyphenoxy) [methyl] piperidine
3-[2-[4-(4-fluorobenzoyl)-1-piperidinyl]ethyl]-2,4[ 1 H,3H]-
quinazolinedione
2-[5-[3-(4-methyl-sulphonylamino)benzyl-1,2,4-oxadiazol-5-
yl]-1 H-indole-3-yl]ethylamine
N’-[(8a)-1,6-dimethylergolin-8-y1]-N,N-dimethylsulfamide
[(8B)-1,6-dimethylergolin-8-yl]-methyl]carbamic acid
phenylmethy] ester
1-[10,11-dihydro-8-(methylthio)dibenzo[b,f]thiepin-10-yl]-4-
methylpiperazine

[8B(S)]-9,10-didehydro-N-[ 1-(hydromethyl)propyl]-1,6-
dimethylergoline-8-carboxamide
1,2,3,4,10,14b-hexahydro-2-methyldibenzo[c,f]pyrazino[1,2-
alazepine
(#)-y-(2-methoxyphenoxy)-N-methylbenzenepropanamine
1,2,3,4-tetrahydro-2-methyl-4-phenyl-8-isoquinolinamine
1-(2-[4-aminophenyl]ethyl)-4-(3-tri-fluoromethyl-
phenyl)piperazine

N-methyl-N-2-propynylbenzylamine
(-)-(3S,4R)-4-(p-Fluorophenyl)-3-((3,4-
(methylenedioxy)phenoxy)methyl)piperidine
5-ethyl-5-(1-methylbutyl)-2,4,6(1H,3H,5H)-pyrimidinetrione
sodium
1-[1-[4,4-bis(4-fluorophenyl)butyl]4-piperidinyl]-1,3-dihydro-
2H-benzimidazol-2-one

1-(1H-indol-4-yloxy)-3-[(1-methylethyl)amino]-2-propanol
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ritanserin

SB216641

sumatriptan

tianeptine

WAY100635

6-[2-[4-[bis(4-fluorophenyl)methylene]-1-ethyl]-7-methyl-5H-
thiazolo[3,2-a]pyrimidin-5-one

N-[3-(2-dimethylamino) ethoxy-4-methoxyphenyl]-2’-methyl-
4’-(5-methyl-1,2,4-oxadiazol-3-yl)-1,1’-biphenyl)-4-
carboxamide

3-[2-(dimethylamino)ethyl]-N-methyl-indole-5-
methanesulfonamide
[3-chloro-6-methyl-5,5-diox0-6,11-dihydro-(c,f)-dibenzo-(1,2-
thiazepine)-11-yl)amino]-7-heptanoic acid
(N-[2-[4-(2-methoxyphenyl)piperazinyl]ethyl]-N-(2-piridinyl)

cyclohexanecarboxamide
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paroxetine (5-HT transporter)

F
F O’\
O
(CH,);N(CH,),
O O
CN N
citalopram (5-HT transporter) o
OH HN (CH,),NH,
N(CH,CH,CH,), 2 |
N
H
8-OH DPAT (5-HT 4 receptors) 5-CT (5-HT?7 receptors)

OMe N/Me
@: H nisoxetine (noradrenaline transporter)
O

GR125,743 (5-HT1g/p receptors) E j
N
0 O—
N
H
s
N I

APPENDIX III: Structures of Unlabelled Form of Radioligands
Used in This Thesis
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F citalopram fluoxetine

O CFS—QO H(CH,),NHCH,

(CH,);N(CH,),

0O
Q tianeptine

CN
O\\/O /CHS
~J 0
NH(CH,),COOH

@) CH, 3,4- methylenedioxymethamphetamine
<O NHCH, (MDMA; Ecstasy)

FK506

APPENDIX IV: Structures of Drugs Used In Animal Treatments
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