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Abstract 

The molecular mechanisms involved in heart development are poorly understood and 

only a few heart specific molecular markers are known. A gene-trap strategy in 

embryonic stem (ES) cells has been employed to identify and characterise genes 

involved in heart development. This work describes the characterisation of two gene-

trap integrations (R68 and R124), including identification of endogenous trapped gene 

sequences and analysis to determine the function of the trapped genes. 

Molecular analysis of the R68 and R124 gene-trap integrations has shown the use of 

cryptic splice sites within the gene-trap vector suggesting the vector has integrated into 

an exon in both gene-trap cell lines. The unpredicted integration of a gene-trap vector 

into an exon still results in the expression of the reporter gene. Sequence data indicates 

a novel gene has been trapped by the R124 gene-trap integration. The structure of the 

R124 integration in the genome has been predicted based upon sequencing data and 

restriction fragment length polymorphism analysis. The R124 gene-trap integration has 

been mapped to chromosome 5 in the mouse genome using fluorescent in situ 

hybridisation labelling. 

Beating cardiomyocytes generated from the in vitro differentiation of R68 and R124 

ES cells express the reporter gene. Embryos heterozygous for the R124 gene-trap 

integration express reporter gene activity in the developing heart throughout gestation. 

In the adult the reporter gene is expressed in the heart, kidney, testis, ovary and brain. 

Function of the trapped gene was assessed by generating animals homozygous for the 

R124 integration. 60% of animals homozygous fOr the integration die shortly after 

birth. This lethality is associated with a right ventricle heart defect. Surviving 

homozygote males show enlarged hearts and kidneys. Histology has shown 

generalised hypertrophy in the enlarged hearts and vacuoles in the tubules of the 

enlarged kidneys indicating renal dysfunction. The surviving homozygote males are 

also infertile, histological analysis has shown no mature sperm in the testes of 

homozygote males. 

Characterisation of the R124 gene-trap integration has led to the discovery of a novel 

gene which is important for heart development. This gene is also important for male 

fertility as well as heart and kidney function in the adult. 
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Chapter 1 



1.0 General Introduction 

Introduction 

The heart is one of the first organs to develop and become functional during vertebrate 

embryogenesis. It plays the essential role of pumping blood, nutrients, cellular 

products (such as hormones, cytokines and waste products) to and from all the tissues 

around the body via the vascular system. Congenital heart anomalies are the most 

common form of human birth defect and affect one in every 125 live births each year 

in the UK. Cardiovascular disease is the most common cause of premature death in the 

UK, claiming the lives of approximately 1 in 5 men and 1 in 10 women before the age 

of 75 i.e. 43% of the population (statistics from the British Heart Foundation). 

Anatomical studies in man and animal models (pig, dog, rabbit, hamster, rat and 

mouse) of the normal and diseased heart have revealed heart development is essentially 

the same in all mammals and involves complex morphogenetic changes (via cell 

proliferation, migration, differentiation and shape change). Three stages of 

morphogenetic change are characteristic of mammalian heart development: formation 

of the linear heart tube; looping of the linear heart tube; septation of common atria and 

ventricles to give rise to the chambers of the adult heart (DeHaan, 1965; Kaufman et 

al., 1981; Manasek et al., 1972). Physiological studies have shown that normal heart 

function can be described via characteristic profiles and changes in these can be used 

for diagnostic purposes to determine the disease state of the heart (Colucci, 1994; 

Rockman et al., 1994). Molecular approaches have begun to allow an understanding 

of the complex genetics regulating heart development and function (Chien, 1993; 

Doetschman et al., 1993; Field, 1993; Fishman et al., 1997; Fung et al., 1996). 

In this study advantage has been taken of the well described developmental stages of 

mouse embryogenesis and the ability to manipulate the genetics of the mouse, using 

embryonic stem cells, to isolate and characterise genes involved in heart development 

and function. 
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1.1 Heart Development 

Cardiogenesis is initiated early during vertebrate embryogenesis, shortly after the onset 

of gastrulation. Some of the first mesodermal cells emerging from the primitive streak 

give rise to cardiac mesenchyme. The cardiac mesenchyme is thought to be induced by 

the underlying pharyngeal endoderm to proliferate and form angiogenic clusters 

(DeHaan, 1965; Jacobson et al., 1988; Nascone et al., 1995; Schultheiss et al., 1995; 

Schuitheiss et al., 1977). The mesodermal derived clusters migrate laterally and then 

rostrally to surround the cranial neural plate by the late presomite stage (Gerhart et al., 

1986). The clusters extend across the midline and unite to form the cardiogenic 

region/crescent and the pericardial cavity. With formation of the cranial neural folds the 

cardiogenic region moves ventrally and rotates so that it comes to lie ventral to the 

foregut, forming the cavity of the foregut as it moves progressively more caudally. 

Splanchnopleuric mesoderm gives rise to the right and left primitive heart tubes, which 

fuse (in a rostral to caudal direction) to form a single endocardial tube, while the 

adjacent mesoderm thickens to from the myocardial mantle (Kaufman et al., 1981). 

The anterior/posterior (rostral/caudal) axis of the heart, which is in line with the body 

axis of the embryo, is clearly defined at this stage (McGinnis et al., 1992). Evidence 

of positional information along the anterior/posterior axis has come from exposure of 

embryos to retinoids, these cause anterior truncations of the heart tube in a dose 

dependent manner (Stainier et al., 1992; Yamamura et al., 1997). As soon as the 

precardiac mesoderm forms, the cells begin to express muscle specific gene products 

including myosin heavy chain (MHC), myosin light chain (MLC), actin, tropomyosin 

and various other structural gene products (Han et al., 1992). Shortly after the single 

heart tube has formed it starts to beat. Initially the endocardium and myocardium are 

separated by the cardiac jelly (Manasek, 1975; Manasek, 1977), a extracellular matrix 

dense material, which plays an important role in the early modelling of the heart and is 

later invaded by endocardial cells. The endocardial tube forms the endocardium, the 
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internal lining of the heart, and the envelope of thickened myocardial tissue 

surrounding it give rise to the myocardium, which forms the ventricular and atrial 

walls. The endocardium is a single layer of flattened granulated cells and the 

myocardium is comprised of two to three cell layers of irregularly shaped myoblasts. 

At this stage the primitive heart is a double walled tube subdivided into three regions 

by constrictions: the atrium which recovers blood from the primitive veins; the 

ventricle which pumps blood out and the bulbus which is continuous with the aorta. 

Internally, a pair of sinus valves (right and left) guard the entrance into the atrium. By 

8.5 d.p.c. (8-10 somites) the primitive heart is one of the most prominent structures of 

the embryo and starts to beat regularly (Kaufman, 1992; Moorman et al., 1997). The 

primitive heart undergoes complex conformational changes in the following stages of 

development which are complete by 15 d.p.c., resulting in the recognisable four 

chambered heart connected to the major inflow and outflow blood vessels (Figure l.l). 

1.2 The Looping of the Linear Heart Tube 

Looping of the linear heart tube (between 8.5 - 9.5 d.p.c.) is an essential process that 

aligns the heart to the vascular connections in the embryo and arranges the presumptive 

chambers of the heart into their relative spatial positions observed in the adult. Overall 

the looping process translates the anterior/posterior positional information of the heart 

into a right/left orientation (Danos et al., 1995). 

Classical embryological studies show that the linear cardiac tube starts growing via cell 

division to a length longer than the dimensions of the pericardial cavity (Kaufman et 

al., 1981, Manasek et al., 1972). The linear cardiac tube is observed to physically 

bend to remain within the constraints of the pericardial cavity into the characteristic S-

shaped conformation observed at late 8.5 d.p.c.. With further asymmetric growth 

through cell division and cell shape change the bulboventricular loop is pushed caudal 
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Figure 1.1: Mammalian Heart Development 
A simplified schematic to highlight the major morphogenetic changes during heart development and documentation 
of earliest expressed genetic markers in the cardiac lineage including detection of reporter gene expression in 
embryos heterozygous for the R124 gene-trap integration. 



forming the C-shaped conformation. Therefore by 9 d.p.c. the heart tube is in a 

conformation to generate the four chambers observed in the adult heart. 

More recently asymmetric expression of molecular markers such as nodal (Collignon 

et al., 1996), lefty (Meno et at., 1996), HNF3/3 (Echelard et at., 1993), Shh (Johnson 

et at., 1994), cSnR (Isaac et at., 1997), e-HAND/Hxt/Thl (Cross et at., 1995; 

Cserjesi et al., 1995) and d-HAND/Hed/Th2 (Hollenberg et at., 1995; Srivastava et 

at., 1995) have been detected before the linear heart tube loops. In addition the 

asymmetric distribution of extracellular matrix components locally around the cardiac 

region and within the linear heart tube, provided by the cardiac jelly (Yost, 1992) e.g. 

fibronectin (Linask et al., 1986; Icardo et al., 1983), flectin (Tsuda et at., 1996) and 

actin (Itasaki et at., 1991), before and during looping of the heart have been 

demonstrated. These examples of asymmetric markers have accumulated from studies 

on various model organisms (mouse, chick, xenopus, zebrafish) and have been used 

to propose a genetic pathway that would lead to looping (Figure 1.2), but here I will 

concentrate mainly on the mouse. The asymmetric expression of markers would 

suggest that looping of the heart is an active process regulated by expression of 

specific gene products in contrast to the interpretation of how the heart loops from 

anatomical studies. The rightward-looping of the linear heart tube is a process 

conserved in all vertebrates studied to date i.e. man, pig, sheep, cat, rat, mouse, frog, 

fish and chick. Recently, Biben et at., 1997 have documented that during mouse heart 

development an initial leftward displacement of the caudal/posterior end of the heart 

tube is observed before the rightward looping is initiated, this is also conserved in 

other vertebrates. 

nodal and lefty, members of the transforming growth factor (TGFf) superfamily, are 

expressed in the lateral plate mesoderm to the left of the linear heart tube prior to 

looping suggesting that the heart receives signals from this region which influence 

looping of the heart. Ectopic expression of nodal in chick and frogs leads to abnormal 
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Figure 1.2: A genetic pathway determining asymmetry of the heart 
Expression of the HAND genes is correlated with the presumptive 
right and left ventricles. The pathway leading to the asymmetric 
expression of Shh has been determined from experiments in chick. 
No asymmetry of Shh expression has been detected in mouse. 



looping of the heart, which implicates nodal directly in the right/left axis of the heart 

(Levin etal., 1997). 

d-HAND and e-HAND are the first helix-loop-helix transcription factors to be 

identified that are expressed in the cardiac lineage (Srivastava et al., 1995; Cserjesi et 

al., 1995). In the mouse, both genes are initially expressed throughout the linear heart 

tube but become restricted to the future right and left ventricle regions respectively 

(Cserjesi et al., 1995). d-HAND null embryos fail to complete the process of looping 

and die by the 10th day of gestation from heart failure (Srivastava et al., 1997). 

Analysis of the null mice shows the region destined to become the right ventricle is 

missing, suggesting that d-HAND regulates the proliferation and specificity of 

cardiogenic precursors destined to form the right ventricle. Evidence has also been 

documented that shows e-HAND maybe involved in the initial leftward displacement 

of the cardiac tube and determining the future left ventricle cardiomyocytes (Biben and 

Harvey, 1997). 

In chick asymmetric expression of the HAND genes is not observed (Srivastava et al., 

1995). However, the involvement of the HAND genes in looping of the heart in chick 

is shown by disruption of looping by antisense oligonucleotides designed to inhibit the 

expression of the HAND genes (Srivastava et al., 1995). 

Complete reversal of the right/left axis is observed in 100% of mouse mutants lacking 

the normal function of mv (situs inversus) and in 50% of mutants lacking the normal 

function ofiv (inversus viscerum) (Collignon et al., 1996; Layton, 1976; Yokoyama et 

al., 1993). Expression of nodal, lefty and the HAND genes is reversed and the heart 

loops to the left in these mutants (Icardo et al., 1991; Lowe et al., 1996). This 

suggests that the looping of the heart is interlinked with the symmetry of the body 

axis. 

Other genes such as MeJ2C and Nkx2.5 also affect looping of the heart but do not 

show asymmetric patterns of expression during heart development. Mef2 C 
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(Edmondson et at., 1994; Molkentin et at., 1995) and Nkx 2.51CSX (DeRuiter et at., 

1992; Komuro et al., 1993; Lints et at., 1993) are expressed bilaterally in the early 

cardiac progenitors before the linear heart tube forms implicating them in commitment 

to and maintenance of a cardiac specific lineage. 

Interestingly both genes have Drosophila homologues, Dmef 2 and tinman respectively 

that display high conservation in sequence and expression patterns. Dmef 2 loss-of-

function mutants block differentiation of all muscle cell types in the embryo, however 

normal myoblasts are present which give rise to the dorsal vessel (heart equivalent in 

Drosophila) but contractile protein genes are not expressed. Drosophila tinman loss-of-

function mutants have no hearts or visceral muscles and many of the somatic body 

wall muscles also appear to develop abnormally (Bodmer, 1993). 

MEF 2C, a member of the MAIDS box containing transcription factors (Pollock et at., 

1991) is first expressed at 7.5 d.p.c. in cardiac mesodermal cells that give rise to the 

primitive heart tube and thereafter is expressed throughout the primitive heart tube. 

However the phenotype observed in embryos null for MEF2C affects the looping 

morphogenesis of the linear heart tube (Lin et al., 1997). In addition the right ventricle 

does not seem to form in these mutants and is correlated with down regulation of 

dHAND and other right ventricle markers. Nbc 2.5, also known as CSX, is expressed 

at 8.5 d.p.c. in myocardial progenitor cells and continues to be expressed throughout 

the embryonic and adult heart at later stages (Lints et al., 1993). Homozygous Nkx 

2.5 loss-of-function mouse mutants form a linear heart tube but looping 

morphogenesis of the heart is not initiated. In addition, expression of eHAND and 

myosin light chain 2V (MLC 2V) is not observed in mutant hearts implicating Nbc 2.5 

in left ventricle specification (Lyons et at., 1995; Biben et al., 1997). This data suggest 

that Mef2C and Nkx2.5 lie upstream of the HAND genes in a genetic pathway 

determining chamber specificity and looping. The lack of severity of MEF2C and N/a 

2.5 mutants, as would be predicted from their early expression, can be explained by 
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the overlapping expression and possible functional redundancy between the family 

members of MEF2 and N/a genes during development (Lin et al., 1997; Lints et al., 

1993). 

Thus, determination of regional specificity of the linear heart tube, demarcated by the 

expression of gene markers, is an essential part of the mechanism involved in the 

looping of the heart tube. Regional specification of the linear heart tube into 

presumptive chambers may be sufficient for the basis of the genetic pathways which 

determine the cell fate of precursor cardiomyocytes. The regulated morphogenetic 

behaviour of cardiomyocytes i.e. activation of cell growth, shape change and division, 

in specific regions of the linear heart tube would lead to asymmetry of the heart. 

1.3 Chamber Specification 

As has been stated above, a number of markers have been identified that are 

implicated in looping of the cardiac tube and are also involved in regional specification 

of the right/left ventricles. In addition to these, genes that encode structural proteins 

allow early distinction between different cell types of the presumptive atria and 

ventricles of the heart before actual physical regionalisation (Lyons et al., 1990). Many 

of these are also expressed later in skeletal muscle except for cardiac troponin I which 

is exclusively expressed in the cardiac cells (Schiaffino et al., 1990). Expression of 

these structural protein encoding genes in skeletal muscle is regulated by the helix-

loop-helix transcription factors Myo D, myf and myogenin, but no homologues of 

these genes have been found in cardiac muscle. This makes it difficult to analyse the 

regulation of the myosin proteins in cardiac muscle. 

Myosin heavy chain. (MHC) genes and myosin light chain (ML C) genes are 

coexpressed throughout the myocardium of the primitive linear heart tube, but by 8 

d.p.c. expression of MHCa becomes increasingly restricted to cells that will 

contribute to the atria, while MHCJ3 is restricted to the ventricle. As development 
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proceeds, late 17.5 d.p.c., expression of MLCJa and MLCJv also become restricted 

to the atria and ventricles respectively. This variation in expression patterns is 

indicative of chamber specific cardiomyocytes arising as cardiogenesis proceeds 

(Lyons et al., 1990). The complete partitioning of these chamber specific markers 

occurs after morphologically distinct atrial and ventricle regions can be identified. In 

contrast, the regional specific expression of the MLC2a and MLC2v has been shown 

to become restricted, to the presumptive atria and ventricles respectively, earlier during 

cardiogenesis than any other cardiac chamber specific marker. MLC2v becomes 

restricted to the presumptive ventricle at 8 d.p.c. in the linear heart tube. Following 

this the expression of MLC2a is down regulated in the ventricular region by 9 d.p.c. 

and becomes restricted to the atrial region. The ventricular specificity of MLC2v gene 

has been localised to a 250bp cis regulatory promoter sequence that contains positive 

(HF-la, HF-lb, HF-2) and negative (HF-3 and E-box) regulatory sites (O'Brien et 

al., 1993; Lee et al., 1994; Zhu et al., 1991). The 250bp sequence can be replaced by 

the HF] binding site (HF-la and HF-i b/Mef-2 sites) to confer ventricular specific 

expression of 3-ga1actosidase reporter transgene during early cardiogenesis. However 

the expression of the transgene becomes restricted to the right ventricle/conotruncal 

region as heart development proceeds unlike the expression of the endogenous MLC2v 

which is expressed in both ventricular chambers suggesting that sequences for 

complete spatial regulation are not present within the 250bp sequence (Ross et al., 

1996). 

The modular nature of promoters in eukaryotes can potentially be used to study 

regionalisation of the heart by directing for example reporter gene expression to 

identify distinct regions within the physically obvious compartments of the heart. 

Recently, promoter sequences from the MLC-3F gene, which is normally expressed in 

more abundantly in atria than ventricles, have been used to direct reporter gene 

expression to distinct regions of the developing heart eg. embryonic right atrium, 



atrioventricular canal and left ventricle (Franco et al., 1997). This data adds support to 

expression within distinct regions of the heart being regulated by specific sets of 

transcription factors and thus particular promoter sequences direct expression of genes 

to specific regions of the heart. 

1.4 Chamber Maturation and Septation 

As the conformational changes are observed externally between 8 and 9.5 d.p.c., 

important changes are occurring within the heart to compartmentalise the heart into 

four chambers (Vuillemin et al., 1989a; Vuillemin et al., 1989b). These morphogenetic 

changes include: the partitioning of the common atria into right and left by the 

formation of the septum primurn and septum secundum; the absorption of the sinus 

venosus (which becomes the vena cava) into the wall of the right atrium and of the 

pulmonary veins into the left atrium; the division of the atrioventricular canal into two 

by the generation of the atrioventricular valves from endocardial cushions; the merging 

of the bulbus into the prospective right ventricle; the partitioning of the right and left 

ventricles; the longitudinal division of the conotruncus/bulbus into the cardiac outflow 

tracts (aorta and pulmonary artery) via a complex spiral interaction between the conus 

cordis and truncus arteriosus; small regions of the dorsal myocardium breakdown 

between the inflow and outflow tracts to create the transverse pericardial sinus; and the 

histogenic differentiation (thickening and trabeculation) of the cardiac wall, including 

the development of the tricuspid and bicuspid valves (Huang et al., 1995; Meyer et al., 

1995). The internal morphogenetic changes of the heart involve extensive remodelling 

that is achieved through selective growth of the epicardial compact zone and cell death 

zones of the myocardium (Manasek, 1969; Okamata et al., 1975). The developing 

heart being sculpted by cellular morphogenesis is also under the influence of the 

hemodynamic forces generated from the circulatory system (Bishop, 1995). 



After the specification of the primitive ventricle, the ventricular wall consists of three 

zones, the endocardium, the myocardium and the epicardium. The external surface of 

the myocardial wall (known as the compact zone) undergoes expansion to form the 

thickened ventricle wall (spongy layer), the trabeculation within the chamber and 

contributes to the formation of the interventncular septum between the future right and 

left ventricles. Specialised trabeculae develop into papillary muscles which anchor the 

atrioventricular valves. 

1.5 Neural Crest Cell Contribution to the Heart 

Neural crest cells arise from the neuroepithelium. They are characterised by a epithelial 

to mesenchymal transformation as they emigrate from the junction between the 

neuroepithelium and epidermal ectoderm (Nichols, 1987). The first migratory wave of 

neural crest cells emerge at the neural plate stage during embryógenesis this is 

followed by several waves of emigration in a cranio-caudal direction (Morriss-Kay et 

al, 1993). Each wave of neural crest is referred to as the anatomical region from which 

it emerges eg. cranial neural crest are derived from the midbrain/rostral hindbrain 

region. Neural crest cells migrate to specific sites in the embryo and differentiate into a 

variety of cell types which contribute to the development of many organs and tissues 

eg. heart, craniofacial bone and cartilage, ganglia, melanocytes, neurons etc., [this 

pluripotentiality has earned them the title of the "fourth germ layer" in some schools of 

biology] (Fukiishi et al, 1992; Levi et al, 1987; Morriss-Kay et al, 1991; Noden, 

1983). Neural crest cells derived from the caudal hindbrain neuroepithelium (parallel to 

the occipital somites 1-7) contribute to the cardiac ganglia, the cardiac mesenchyme 

and septation of the outflow tract (Fukiishi etal., 1992; Kirby et al., 1983a; Kirby et 

al. 1983b). Deletion of neural crest that lie adjacent to occipital somites 1-3 produce 

malformations of the heart which include abnormalities of the aorticopulmonary 

septum, transposition of the major heart vessels, high ventricular septal defects, single 
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outflow vessels emerging from the right ventricle or over the ventricular septum 

leading to abnormal outflow of blood from the heart (Kirby et al., 1983; Stewart et al., 

1986). Deletion of more caudal neural crest from the level of somites 10-20 results in 

the absence of sympathetic cardiac nerve innervation (Kirby et al., 1984). These heart 

defects are associated with under development of the thymus and parathyroid glands, 

both of which also receive contribution from neural crest cells. The specificity of 

defects induced by deletion of different neural crest populations highlights the 

importance of the spatially and temporally regulated contribution of neural crest cells in 

development (Beeson et at., 1986). Many of these cardiac defects are also observed in 

vitamin A deficiency syndrome defects and in excess RA embryopathies (Dickman et 

at., 1997; Wilson et at., 1949; Wilson et at., 1953; Lammer et at.; 1985, Morriss-Kay, 

1993). Human syndromes such as DiGeorge Syndrome also display a range of similar 

cardiac defects some of which can be attributed to abnormal neural crest migration and 

differentiation. 

1.6 Function of the Heart 

The heart is one of the few organs that becomes functional as it forms emphasising the 

critical role it performs to pump blood, nutrients and waste through the early embryo 

and placenta. On formation of the single linear heart tube, the heart starts to beat 

initially in a peristaltic motion which is initiated in the pacemaker region of the 

primitive ventricle, and then a regular beating pattern is achieved (DeHaan, 1963; 

Kamino et at., 1981, Moorman et at., 1997). This beating is an intrinsic function of 

the cardiomyocytes and can be modulated by parasympathetic and sympathetic neural 

inputs (not discussed here). The pacemaker activity is taken over by a cluster of cells 

known as the sinoatrial node which is situated in the right atrium in the right venous 

valve (Viragh et at., 1977a; Viragh et al., 1977b; Viragh et at., 1980; Viragh et at., 

1982). Soon after the establishment of the sinoatrial node pacemaker the formation of 
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the atrioventricular valves is initiated, this coincides with the development of a second 

pacemaker centre the atrioventricular node. The development of the atrioventricular 

node is accompanied by the appearance of the "bundle of His" a bundle of specialised 

conducting cells extended into the right and left ventricles. Signals from the sinoatrial 

node are conveyed, at a pace slower than conductance through the atria, via nodal 

fibres to the atrioventricular node which passes the signal rapidly to the ventricles via 

the "bundle of His". The differential pace of the signal from the sinoatrial node to the 

atrioventricular node allows for the atria to contract earlier than the ventricles and thus 

blood is pumped into the ventricles before the ventricles contract. Impulses from the 

pacemakers are relayed through the atria and ventricles via specialised conducting 

purkinje fibres and via the numerous intercellular connections between cardiomyocytes 

including gap junctions (Flucher et al., 1996). Normal heart function can be 

characterised by measurements of pressure, volume, electroactivity and heart sound 

during the cardiac cycle which consists of a period diastole (relaxation) when the 

chambers of the heart fill with blood followed by systole (contraction) (Figure 1.3) 

(Colucci, 1994; Dyson et al., 1995; Rockman et al., 1991, 1993, 1994; Tsutsui et al., 

1993; Jones et al., 1996). The myofibril contracting apparatus of the heart myocardial 

cells consists of force generating proteins myosin (thick filament), actin and a complex 

of regulatory proteins namely tropomyosin, troponin C, tropininl and troponin T (thin 

filaments). The structure of the myofilaments is highly organised in a regular array of 

thick and thin filaments that is observed as the characteristic striated structure of 

cardiac muscle (Ishikawa et al., 1975). The ultrastructure of heart muscle i.e. 

composition and structure of the myofilaments; the activity of the contractile proteins 

and the structure of intercellular connections have been documented widely in the 

literature (Colucci, 1994) but are beyond the scope of this introduction. 
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Figure 13: Characteristic Normal Cardiac Cycle 

A. Changes in pressure, volume and electrical activity in the left and 

right ventricles during systole (contracting) and diastole (relaxing) 

phases of a single cardiac cycle. Electrocardiogram shows the normal 

profile of electrical activity from the heart ventricles consisting of: P 

wave, spread of repolarization; QRS wave, result of depolarization; I 

wave, repolarization. B. The flow of blood (arrows) during these phases. 



1.7 Changes in the Heart at Birth 

The external appearance of the beating heart at late stages of gestation is the same as 

the adult heart. Distinct atrial and ventricular chambers connected to the great blood 

vessels can be identified. Internally the development of the tricuspid and bicuspid 

valves separating the atrial and ventricle chambers is complete, however flow of blood 

through the right side of the heart is not completely partitioned from the left (DeHaan, 

1965). 

Before birth oxygen and nutrients are supplied via the placenta. Thus oxygen and 

nutrient rich blood reaches the fetus via venous circulation into the right atrium and 

right ventricle. The right atrium is connected to the left ventricle via the oval foramen, 

this allows the blood to be shunted to the left and be pumped around the body. Blood 

from the right ventricle is pumped into the aorta via the ductus arteriosus. The ductus 

arteriosus is an arterial connection between the pulmonary artery and the aorta that 

diverts blood away from pulmonary circulation around the body (Coceani et al, 1988). 

After birth it is essential to close the oval foramen and the ductus arteriosus to redirect 

the flow of blood via the pulmonary circuit and prevent shunting of blood from the left 

to the right side of the heart. Abnormalities arise if these structures do not close 

(discussed in Section 1.8). 

Expansion of the lungs after birth allows blood to flow, with little resistance, from the 

right ventricle into the lungs via the pulmonary artery to be oxygenated and passed into 

the left atria via the pulmonary vein and finally into the left ventricle which pumps the 

blood throughout the body. Change in the direction of blood circulation after birth 

leads to reduced pressure in the right ventricle and atrium while the reverse is true for 

the left side of the heart. This causes the septum primum, a thin membranous 

structure, to be pressed against the septum secundum resulting in the closure of the 

oval foramen (Smolich, 1995; Teitel, 1988). In man these septa fuse permanently in 

the year following birth. The ductus arteriosus is a large muscular artery with layers of 
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immature smooth muscle separated by layers of elastin. The permanent closure of the 

ductus arteriosus is initiated by constriction of the vessel followed by fragmentation of 

the elastin layers resulting in release of endothelial cells into the lumen of the vessel. 

Subsequently, extracellular matrix components accumulate in the lumen followed by 

invasion of the lumen by smooth muscle cells to form thickened intimal cushions this 

results in the obstruction of the ductus arteriosus. The final stage of closure involves 

the degradation of the ductus arteriosus into a fibrous cord referred to as the 

ligamenum arteriosus (Coceani et al., 1988). The closure of the ductus arteriosus is 

initiated within 3 hours and is complete after about 12 hours after birth in the mouse. 

The morphological changes involved in the closure of the ductus arteriosus in mouse 

closely resemble those observed in larger model organisms (sheep, dog, rat) and in 

man (permanent closure of the ductus arteriosus takes 1 to 3 months). The direction of 

closure, from the pulmonary to the aortic end, is also conserved. 

Recently prostaglandin synthesis has been implicated in the closure of the ductus 

arteriosus (Nguyen et al., 1997). Inhibition of prostanoid synthesis using 

pharmacological inhibitors can induce premature closure of the ductus arteriosus. Mice 

lacking the prostaglandin E2EP4 receptor die after birth from a patent ductus 

arteriosus. This suggests that a reduction in the level of prostaglandins circulating after 

birth is detected by the E2EP4 receptor which initiates the closure of the ductus 

arteriosus. 

After birth the hemodynamic forces of the circulation system change such that the left 

of the heart dominates the right, a reversal of forces experienced by the heart before 

birth. This results in the cardiomyocytes of the left ventricle becoming larger than the 

right ventricle cardiomyocytes. The sum effect is that the left ventricle becomes much 

thicker and muscular than the right via hypertrophy. This adaptive change is not 

immediate but becomes apparent after 1 to 2 weeks after birth in the mouse (Bishop, 

1995). 
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1.8 Congenital Heart Disease 

Congenital cardiovascular malformations account for about twenty percent of all 

congenital defects observed in live born infants. Examples of cardiovascular defects 

affecting every step of cardiogenesis have been documented but defects affecting 

septation are most common. Incomplete partitioning of the right and left atria leads to 

shunting of blood from the left to the right causing enlargement of the right ventricle 

and pulmonary trunk. Ventricular septal defects arise due to incomplete partitioning of 

the right left ventricles leading to serious shunting of blood from left to right causing 

pulmonary hypertension. Other defects include transposition of the great vessels, 

tricuspid stenosis, persistent truncus arteriosus and the double outlet left ventricle 

malformation all of which involve abnormal blood flow. Hemodynamic forces caused 

by the flow of blood are critical and aberration of blood flow due to defects mentioned 

above lead to a syndrome of defects which often result in the hypoplasia of the heart 

walls. Many of the defects mentioned arise due to aberrant neural crest contribution 

and an abnormal level of programmed cell death. Programmed cell death is normally 

involved in fusion of the primitive heart primordia to give rise to the primitive heart 

tube and modelling of the ventricular septum, atrioventricular valve formation and 

outflow tract. A majority of the defects described above can be detected either in utero 

or at the neonatal stage using echocardiography and can be corrected by modern 

surgical techniques. Other defects which are observed to a lesser extent in clinical 

cases effect the looping of the heart and are often embryonic lethal. 

This full spectrum of clinical heart defects and additional defects affecting commitment 

to the cardiac lineage, chamber specification, looping of the primitive heart tube have 

been observed in various mouse models of congenital disease (Table 1.1). These 

mouse models will prove very important in dissecting the genetics of how these 

defects arise 
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1.9 Effects of Retinoic Acid on Heart Development 

All-trans retinoic acid (RA), a biologically active derivative of vitamin A, has been 

shown to play an important role in vertebrate pattern formation and cell differentiation 

(Conlon, 1995; Morriss-Kay, 1991; Papalopulu et al., 1991, Tabin, 1991). During 

embryogenesis maternal RA excess and Vitamin A deficiency (VAD) are teratogenic 

and cause a syndrome of congenital malformations. Tissues affected include neural 

crest derivatives, the axial skeleton, the limbs, the neural tube, the brain and the heart. 

The defects induced by RA are dose and stage specific (Lammer et al., 1985; Morriss-

Kay, 1993; Webster et al., 1986; Wilson et al., 1949; Wilson et al., 1953). In vitro 

RA can induce the differentiation of embryonic carcinoma (EC) cells and embryonic 

stem (ES) cells through activation of specific genes (Simeone et al., 1991). RA 

transcriptional regulation is mediated through complexes of RA with nuclear retinoic 

acid (RARs) and retinoid X receptor (RXRs) heterodimers. These complexes bind to 

specific DNA regulatory sequences known as retinoic acid response elements (RAREs) 

in a ligand dependent manner to regulate gene expression. Diversity of RAR/RXR 

complexes is generated through the existence of three different subtypes (a, 0 and y) 

of each receptor which are extensively spliced into many different isoforms. Each 

isoform is expressed in a spatially restricted pattern during embryogenesis. No RAR 

isoform or subtype is exclusively expressed in any tissue (Chambon, 1994; 

Manglesdorf et al., 1994). 

Defects arising from an excess or deficiency of RA during embryogenesis in the heart 

include hypoplasiaof the ventricle walls, transposition of the great arteries and septal 

defects. The septal defects arise due to spatial and temporal disruption of cardiac neural 

crest cell migration. Cardiac neural crest cells normally contribute to the septation of 

the heart and to the outflow tract. Direct evidence implicating RA in cardiogenesis 

comes from genetic studies in which RA receptors have been disrupted using 

homologous recombination in ES cells. Animals homozygous for the majority, of 
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single RAR knockouts are normal or display only subtle abnormalities supporting the 

hypothesis that there is functional redundancy between the different RARs 

(Mendelsohn et al., 1994). However, double knock-out mutants e.g. generated from 

intercrossing single RAR knock-outs mutants display abnormalities which affect the 

heart, including myocardial deficiency, persistent atrioventricular septal defects, 

outflow tract defects, persistant atrioventricular canal and abnormal aortic arch 

patterning (Kastner et al., 1994; Lohnes et al., 1994; Mendelsohn et al., 1994). A 

majority of these abnormalities are observed in the fetal VAD syndrome (Wilson et al., 

1953). Further evidence for the role of RA in cardiogenesis comes from a study in 

which the RXRa was targeted to generate a loss-of-function mutation. Homozygous 

RXRx null animals die between 13.5 and 16.5 d.p.c. and the main defect observed in 

these fetuses is hypoplastic development of the ventricular chambers of the heart with 

concurrent defects in the ventricular septation (Dyson et al., 1995; Kastner et al., 1994; 

Sucov et al., 1994). Again these defects are identical to a subset of defects observed 

due to VAD and do not affect cardiac neural crest cell derived structures. 

1.10 In Vitro Early Cardiogenesis Model 

Embryonic stem (ES) cells are pluripotent stem cells derived from the inner cell mass 

of blastocyst stage mouse embryos (for further details see 1.14). ES cells can be 

differentiated in vitro to give rise to cell types derived from all three germ layers: 

endodermal, mesodermal and ectodermal (Keller et al., 1995). ES cells allowed to 

aggregate in suspension or in hanging drops form small embryo like structures called 

embryoid bodies. These embryoid bodies spontaneously differentiate, in the absence 

of DIA (Differentiation Inhibiting Activity)JLIF (Leukaemia Inhibiting Factor), and 

recapitulate several aspects of early embryogenesis which include hematopoiesis 

(Lindenaum et al., 1990), cardiogenesis (Doetschman et al., 1985; Robbins et al., 

1990; Sanchez et al., 1991), neurogenesis (Strubing et al, 1995) and angiogenesis 
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(Risau et al., 1988). Some differentiated cell lineages can be distinguished by their 

morphology - one of the most striking and obvious is the presence of beating cells. A 

number of studies using physiological and molecular markers have shown that these 

beating cells are cardiomyocytes (Wobus et al., 1991). The temporal expression of 

cardiac markers e.g. MHCs and MLCs has been shown by RT-PCR to be consistent 

with the in vivo expression pattern observed during early cardiogenesis (Robbins et 

al., 1990; Maltsev et al., 1994). Further evidence comes from physiological patch 

clamp experiments which show the expression of cardiac specific ion channels, 

adrenoceptors and cholinoceptors in beating cells (Wobus et al., 1991). In addition 

beating cells have been shown to differentiate into regional specific cardiac cell types 

i.e. ventricular or atrial, by the detection of chamber specific gene expression e.g. 

MHCs, MLCJv and MLC2v (Miller-Hance et al., 1993; Kubalak et al., 1994). 

This evidence suggests that cardiac differentiation of ES cells in embryoid bodies 

recapitulates early cardiogenesis and therefore could serve as an in vitro model to study 

cardiogenesis at the molecular level. Genetic and pharmacological manipulations of ES 

cells before aggregating cells to form embryoid bodies would allow dissection of the 

molecular pathways determining cardiac fate. This approach is exemplified by the in 

vitro differentiation of P 1 integrin null-ES cells (Fassler et al., 1996). p31-null ES cell 

derived cardiomyocytes exhibit delayed expression of cardiac specific genes and 

incomplete sàcromeric architecture resulting in generalised impairment of 

cardiogenesis. In vivo as in vitro, 131-null ES cells undergo limited cardiac 

differentiation (Fassler et al., 1995). Chimaeric mice generated from 131-null ES cells 

have revealed that mutant cell contribution in hearts is not maintained indicating the 

importance of 131 -integrin in differentiation and maintenance of cardiomyocytes. 
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1. 11 Identification of Novel Genes 

The generation of a mutation is very valuable in determining the function of a gene and 

is the principle on which "classical" genetics is based on to identify genes involved in 

development and disease. Mutants in plants, bacteria, worms, flies, zebrafish, mouse 

and humans can be generated by spontaneous, mutagen induced or insertional 

mutagenesis. 

[Many spontaneous mutations linked to human disease states have led to the discovery 

of genes through linkage analysis, which have been later verified by directed 

mutagenesis of homologous genes in model organisms e.g. muscular dystrophy due to 

mutations in the human dystrophin gene and mdx gene in mouse (Chamberlain et al., 

1987; OMIM no.3 10200).] 

1.12 Random Mutagenesis 

Classical mutants were isolated by screening populations for spontaneous mutations, 

which include point mutations, insertions, deletions, translocations. 

To increase the number of mutants available for study large scale saturation 

mutagenesis screens have been performed in D.melanogaster ( Nusslein-Volhard et 

al., 1980 and 1984); C.elegans (Horvitz et al., 1991); D.rerio (Driever et al., 1996; 

Haffter et al., 1996; Streisinger et al., 198 1) using X-rays, which cause large 

chromosomal deletions, chemical mutagens such as ethylnitrosourea (ENU) which 

induces point mutations in the genome, or chiorambucil (CHL) which induces short 

chromosomal deletions. The mutants selected from these screens had obvious external 

morphological phenotypes. For example homeotic transformations in Drosophila or 

disruption of heart morphogenesis in zebrafish were some of the easily identifiable 

criteria by which mutants were isolated. Random mutagenesis requires breeding 

programs over multiple generations to segregate mutations, define allelism and identify 

recessive mutations. Thus, small model organisms with short life spans but large 
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offspring production are most practical for this type of approach. Both spontaneous 

and mutagen induced mutations have to be mapped using linkage analysis and then 

isolated by positional cloning techniques or by candidate gene approaches. Positional 

cloning and candidate approaches are suited for small well characterised genomes e.g. 

Drosophila (Collins, 1995). This approach is not practical for a model organism like 

mouse which has a relatively long life span, generates a small number of offspring per 

generation and has a large uncharacterised genome relative to Drosophila. Although 

many classical mouse mutants have been mapped by linkage analysis (Haldane et al., 

1915; Dietrich et al., 1995). If saturation mutagenesis was carried out on a large scale 

it would require vast resources to manage and maintain mutant mouse breeding 

programs. This is exemplified by reports from Shedlovsky et al., 1988 and Rinchik, 

1991. 

To increase the efficiency of cloning genes mutated by random mutagenesis, 

insertional mutagenesis has been developed in many organisms [plant (Koncz et al., 

1989); bacteria (Bellofatto etal., 1984; Casabadan etal., 1980); flies (Spralding et al., 

1995); zebrafish (Schier et al., 1996); mouse, (Jaenisch, 1981; Gossler et al., 1993)]. 

This technique relies on the introduction of a known piece of DNA, which integrates 

randomly, into the genome and thus 'tags' the site of integration at the molecular level. 

Some of the first examples of gene identification using insertional mutagenesis in 

eukaryotes comes from Drosophila P-element studies (Bier etal., 1989; Engels, 1989; 

Spralding et al., 1989; Wilson et al., 1989). The P-element not only integrates into 

genes but also into regulatory regions this has led to the discovery of enhancer and 

promoter sequences (Bellen etal., 1989). Insertional mutagenesis has evolved to what 

is known as entrapment technology in mouse ES cells, this is discussed in the context 

of gene-trapping below (Section 1.17) (Skarnes, 1990). 
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1. 13 Identification of Conserved Genes 

Isolation of gene sequences from model organisms e.g. D.melangastor and C.elegans 

has led to the identification of conserved gene family members between species. Many 

techniques involve performing homology screens at the genomic level using 

'Zooblots' to identify evolutionarily conserved genes. A variation of this approach is 

the identification of gene family members between and within different species by 

screening with redundant probes at varying stringencies e.g. steroid/thyroid hormone 

(Evans, 1988; Green et al., 1988). This approach has been superceded by the use of 

degenerate polymerase chain reaction (PCR) primers to amplify homologous 

sequences (Gould et al., 1989; Wilks et al., 1989). PCR based approaches can be 

employed at the genomic and mRNA level. 

Analysis of mRNA allows the identification of transcriptionally active sequences that 

can be tissue or molecular pathway specific. This adds a dimension of gene regulation 

to identification of genes. Techniques such as 'differential display' (Liang et al, 1993) 

and 'subtractive hybridisation' (Harrison et al., 1995) analyse mRNA populations 

isolated from different sources. The sources of mRNA can be different types of tissue 

or tissue treated for example with some agent to alter differentiation status. Both 

techniques involve elimination of common cDNAs between the different sources to 

reveal cDNAs that are unique to one source. In 'differential display' elimination is 

performed by running the different cDNA pools on polyacrylamide gels and looking 

for differentially expressed cDNAs. This procedure has to be repeated several times to 

confirm reproducibility before the differential cDNA is eluted and cloned. 'Subtractive 

hybridisation' as it suggests involves hybridisation of single stranded cDNA with 

mRNA or cDNA from a control reference source followed by active removal of the 

hybridised duplex species thus enriching the single stranded differentially expressed 

cDNAs. In differential display the elimination step has to be repeated several times to 

enrich the differential cDNA before cloning procedures. 
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More recently gene identification has reached a computer database dimension. 

Progress in genome sequencing projects has led to establishment of databases 

predicting potential gene encoding cistrons (Olson et al., 1989; Pruitt, 1997). At the 

mRNA level sequencing of random cDNA synthesis from various tissue sources have 

generated expressed sequence tag (EST) databases (Adams et al., 1995; Boguski et 

at., 1993). The authenticity of sequences in these databases have to be confirmed by 

Southern and northern blot analysis. However these databases provide a useful 

resource for comparing and extending novel sequences without screening libraries. 

1.14 Embryonic Stem Cells 

The isolation of embryonic stem (ES) cells has revolutionised the ability to genetically 

manipulate the mouse genome and hence mouse mutational analysis. ES cells are 

derived from the inner cell mass of blastocyst stage mouse embryos and can be 

maintained in an undifferentiated state by culturing on fibroblast feeder cell layers or in 

the presence of DIA (differentiating inhibitory activity), also known as LIF (leukaemia 

inhibiting factor) (Brook et al., 1997; Smith et al., 1988; Williams et at., 1988). In 

vitro ES cells can be induced under appropriate culturing conditions to give rise to cell 

types derived from all three germ layers (Section 1.10) (Evans et al., 1981; Martin, 

1981). In vivo, when ES cells are introduced into preimplantion embryos by morula 

aggregation or blastocyst injection they are incorporated into the normal development 

of the embryo and contribute to all tissues, including the germline, giving rise to 

chimaeric mice (Bradley et al., 1984; Nagy et at., 1993). By incorporating selectable 

markers into the targeting constructs and gene-trap vectors, ES cells can be screened in 

vitro for the desired genetic alteration before reintroduction into an embryo. 

Genetically altered ES cells are generally stable in culture and maintain their normal 

morphology and their pluripotency in vivo and in vitro (Gossler et at., 1989; 

Robertson et al., 1986; Thomson etal., 1989). 
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1. 15 Directed Mutagenesis (or "Reverse" Genetics) 

Identification and isolation of genes from classical mutants and saturation screens has 

been most successful in Drosophila and C.elegans consequently many evolutionarily 

conserved genes have been identified and isolated by homology in other species eg. 

Hox genes (McGinnis et al., 1992; Miklos et al., 1996; Nusslein-Volhard, 1994). The 

development of homologous recombination in mouse ES cells has allowed vertebrate 

homologues to be 'targeted' to introduce (point and deletions) mutations to assess the 

functional homology of conserved genes (Capecchi, 1989). 

This approach is very powerful in dissecting the function of known genes in the 

mouse and a number of mutant phenotypes have accumulated from targeted knock-out 

experiments which are proving very valuable in understanding mammalian 

developmental mechanisms and clinical disease conditions. 

1.16 Mouse Mutations Affecting Heart Development 

The development of the heart has been well described morphologically and more 

recently the molecular mechanisms are becoming apparent, through the identification 

of genes, which determine cardiac fate and regulate cardiac differentiation (Chien, 

1993). Many genes that have been identified could not be predicted to be involved in 

heart development from their expression patterns. The generation of targeted mutations 

by homologous recombination in ES cells has uncovered specific functions of genes in 

the cardiac lineage. Conversely in some mutants the spectrum of defects is more 

restricted or less severe than would be predicted from the expression pattern this 

partially reflects the functional redundancy present between family members and may 

confuse mutational analysis in some cases. 

A list of genes is provided which have been implicated in cardiogenesis (Table 1. 1), 

and some selected genes are discussed below highlighting the advantages of mutational 

analysis to study development. The heart ventricle matures at 9.5 d.p.c. (Section 1.4) 
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Table 1.1: Genes Implicated in Mouse Heart Development 

•1. 	 / Mutation Death 
Fibronectjn j T, null day 10-1 lp.c. bilateral heart primordia do not shortened A-P axis, deformed 
(George etal., 1993) fuse neural tube, lack of mesoderm 

derivatives 
cx4-integrin T, null Variable epicardial dissolution failure of chorioallantoic fusion 
(Yang et al., 1995) 
14i-integrin T, null day 8.5p.c. impaireddifferentiation of none reported 
(Fassler etal., 1996) cardiomyocytes 
VCAM- 1 T, null Variable epicardial dissolution, reduced failure of chorioallantoic fusion, 
(Kwee etal., 1995) myocardium placental anomalies 
yinculin T, null day lOp.c. dilated pericardiac cavity, heart failure of neural tube to close, 
(Xu etal., 1998) walls hypoplastic leading to forelimb bud development 

hypodynamic heart retarded 

MHCct T, null day 1 1-12p.c. defective myofibrillar and none reported 
(Jones et al., 1996) sacromeric organisation, 

I1eurcgulin typel T, null day 10.5p.c. ventricular trabeculation lost no sensory neurons in cranial 
(Meyer et al., 1997) ganglia 
1DGF-B T, null Term heart and vessel dilation kidney, hematological defects 
(Leveen, etal., 1994) 

T, null 
et al., 1994)  

çonnexin43 T, null 
(eaume et al., 1995) 
pl30 T, null 

([Yoshida etal., 1996) 
IGF-11r T, null, 
(JLau et al.; 1994) imprinted 

ARs T, null 
(vlehdelsohn et al., compound 

994) 
'1 XR(x T, null 
JSucov etal., 19,94) 

ATA4 T, null 
uoetal., 1997) 
ox 1.5 (0) T, null 

Chisaka etal., 1991) 

IEF2C T, null 
Lin etal., 1997) - 
Jkx2.5 T, null 
Lyons et al., 1995) 
-HAND T, null 
Srivastava etal., 1997) 
1-myc T, null 
Sawai etal., 1993) 
1-myc T, hypo/null 
Moens etal., 1993) 
EF-1 GT, null 
Chen etal., 1994) 

T-1 T, null 
Kreidberg et al., 1993) 

day 14p.c. 	hypoplastic heart, septal defects, multiple organ defects, 
persistent truncus arteriosus 	I hyperplastic ganglia 

Term 	• enlarged ventricles, outflow tract none reported 
aberrations 

day 12.5-Term hypoplastic ventricular 	impaired hematopoiesis 
myocardium 

Term 	• hypertrophic myocardium 	fetal organ overgrowth 

variable hypoplastic ventricular 
myocardium, outflow tract and 
great vessel aberrations 

day 13.5- hypoplastic ventricular 
16.5p.c. myocardium, septal defects 
day 8.5-10.5 bilateral primorda do not fuse 

Term 	hypertrophic atria, 
dysmorphogenic ventricles, 
enlarged blood vessels, stenosis 

day 10.5p.c. 	right ventricle absent, abnormal 
heart looping 

day 9-1Op.c. 	abnormal heart looping 

day 10.5 right ventricle and trabeculation 
absent 

day 1 lp.c. hypoplastic myocardium, septal 
defects 

day 14p.c. hypoplastic ventricular 
myocardium 

day 12p.c hypoplastic myocardium, 
reduced trabeculae 

day 14p.c. hypoplastic myocardium 

neural crest derivatives, genito-
urinary and lower digestive tract 
abnormal, 
ocular defects, chorioallantoic 
placenta defects 
folding of the embryo generally 
impaired 
athymic, aparathyroid, throat 
abnormalities 

none reported 

none reported 

aortic arch vessels absent 

general hypoplasia 

reduced lung branching 

dilated brain vesicles 

renal agenesis 

Sp 	 S, various 	day 13p.c. 	persistent truncus, congestive 	neural tube and neural crest 
Franz et al., 1989) - 	alleles 	 heart failure 	• 	 defects 

targeted mutation; S, spontaneous mutation; GT, gene-trap integration; hypo, hypomorphic allele. 
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and comparison of different mutant phenotypes allows speculation of genes that may 

regulate this developmental process. The earliest effect on ventricle determination is 

observed in MEF2C null mutants (Lin etal., 1997) which display no morphologically 

distinct right ventricle and concomitantly no expression of right ventricle specific 

markers e.g. d-I-IAND (Cserjesi et al., 1995). d-HAND null mutants also display the 

loss of the right ventricle and trabeculation is lost suggesting both these genes are in 

the same pathway that determines the fate of the presumptive right ventricle. In other 

mutants the ventricles are determined but the maturation of ventricles is impaired. The 

myocardium and the ventricular septum are hypoplastic in RXRx mutants (Sucov et 

al., 1994) while gpl30 null mutants only display hypoplastic myocardium (Yoshida et 

al., 1996). In contrast, trabeculation is lost in neuregu!in type I null mutants (Meyer et 

al., 1997). These observations suggest that although the compact zone contributes to 

the myocardium, ventricular septum and trabeculation the molecular pathway 

determining each process can be separated into distinct developmental steps. This 

demonstrates that although the compact zone is not proliferative in RXRx and gpl30 

null mutants it is responsive to neuregulin signals from the endocardium to induce 

trabeculation. Phenocopies of ventricular defects in other mutants potentially infers 

their involvement in the same ventricular maturation pathway e.g. TEF- 1 (Chen et al., 

1994). 

1.17 Gene-Trap Technology 

Gene-trapping has been used successfully to identify novel developmentally regulated 

genes (Baker et al., 1997; Chowdhury etal., 1997; Forrester etal., 1996; Gasca etal., 

1995; Gossler etal., 1989; Skarnes et al., 1992; Skarnes et al.., 1995; Takeuchi etal., 

1995). In mice the gene-trap technology relies on the ease of genetically manipulating 

embryonic stem (ES) cells in vitro and their potential to be reintroduced into an embryo 

to contribute to all tissues of resultant chimaeras. Gene-trapping is based on the 
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principle that when a promoterless reporter gene is introduced into an ES cell genome 

it will be inactive unless it integrates into an actively expressed transcription unit. As a 

consequence of integration reporter sequences, under the regulation of endogenous 

cis-acting regulatory sequences, allow direct monitoring of the endogenous gene by 

visualizing the reporter gene expression in ES cells and in mouse embryo chimeras. 

The reporter sequences can be used to clone the endogenous gene from a fusion 

transcript using PCR based strategies. The trapped gene may also be disrupted and 

inactivated by the insertion thus potentially generating a mutant. The mutation can be 

transmitted through the germline to analyse the function of the trapped gene in 

homozygous animals. 

1.18 Enhancer Trap Vectors 

The prototype trapping vector, the enhancer trap, used originally for identifying novel 

developmentally regulated genes was based on trapping regulatory elements which 

specified the spatial and temporal expression of genes. Enhancer trap vectors consist 

of a minimal promoter (ideally a TATA box and a transcriptional initiation site) driving 

lacZ expression. Theoretically when this vector integrates into the genome adjacent to 

an enhancer the expression of lacZ reflects the specific temporal and spatial expression 

pattern specified by the enhancer. The problem with using this approach is that 

enhancers have the potential to regulate expression bidirectionally over kilobases of 

DNA , therefore identifying and cloning a gene by this strategy has proven to be 

difficult. Additionally, because enhancer trap vectors do not necessarily integrate into 

the transcriptional unit of a gene they are unlikely to be mutagenic. This type of vector 

(P-element based) has been used successfully in Drosophila to identify and clone a 

number of genes [Mlodzik et al., 1990 (seven-up); Fasano et al., 1991 (teashirt); Doe 

et al., 1991 (prospero); Bier et al., 1990 (rhomboid)] but has proved more difficult in 

mammals. 
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1. 19 Gene-Trap Vectors 

The second generation of trapping vectors were designed to allow direct identification 

of the trapped gene. This was achieved by designing vectors that would only function 

if they integrated into an active transcription unit to generate a fusion transcript. 

Various types of DNA constructs have been engineered to include a reporter gene and 

a selectable marker (Cui et al., 1994). The selectable marker (for example the drug 

resistance gene neomycin), can be placed under its own promoter eg. 

phosphoglycerate kinase (PGK- 1) to select for all integration events. The reporter gene 

most often used is the bacterial lacZ gene, encoding B-galactosidase, and its position 

on the construct can be designed such that integrations into active transcription units 

can be selected (see below). The expression of the lacZ gene is easily detectable using 

a histochemical substrate, X-gal, and allows direct visualisation of the expression 

patterns of trapped genes in chimaeric embryos. LacZ expressing ES cells can also be 

detected and isolated by fluorescence-activated cell sorting (FACS), and can still be 

successfully transmitted through the germ line (Reddy et al., 1992). The subcellular 

localisation of B-galactosidase activity can reflect potentially the function of the trapped 

gene (Gossler et al., 1989; Friedrich etal., 1991; Skarnes et al., 1992). Furthermore 

the level of B-galactosidase can be quantified by colourmetric measurements. 

The first type of gene-trap vector, the promoter trap (or exon trap), consists of reporter 

gene lacking a promoter. This construct requires an in frame integration into an exon 

of a gene for the reporter to be expressed. These sites of insertion have been confirmed 

by cloning sequences 5-primed to the insertion sites by inverse PCR (polymerase 

chain reaction) (von Meichner etal., 1992). 

A second type of vector termed gene-trap (or intron trap) contains a splice acceptor 

Upstream of a promoterless reporter gene. This construct requires integration into an 

intron of an endogenous gene and becomes functional through the splicing of an 

endogenous gene exon to the vector sequences via the splice acceptor site. Due to the 
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high proportion of intronic sequences in the eukaryote genome, 12 fold more lacZ 

expressing transformants arise from gene-trap vectors than from promoter trap vectors 

(Gossler et al., 1989). 

Integration of the promoter-trap and gene-trap constructs results in the generation of 

fusion transcripts between endogenous and vector sequences leading to a disruption of 

the trapped gene. This disruption potentially may inactivate the gene and effectively be 

regarded as a gene knock-out. Animals homozygous for these integrations derived 

from germline transmission may display observable phenotypes which aid analysing 

the function of the trapped gene. The fusion transcript also allows cloning the 

endogenous gene sequences using RT-PCR based cloning strategies. 

The promoter trap and gene-trap vectors have superceded the enhancer trap vector as 

strategies to identify and clone novel genes. A number of studies using promoter and 

gene-trap vectors have identified developmentally regulated genes with specific spatial 

and temporal expression patterns, as determined from the generation of chimaeric 

embryos from ES cell lines (Friedrich et al., 1991; Skarnes et al., 1992). Some 

trapped genes have been cloned using RT-PCR cloning strategies from trapped gene-

lacZ fusion transcripts (Skarnes et al., 1992). Sequence analysis has confirmed that 

the vectors can behave as predicted i.e. promoter trap vectors can insert inframe into 

exons and gene-trap vectors can insert into introns and splice to upstream exons via the 

en-2 splice site. In addition, germline transmission of gene-trap ES cell lines has 

shown that trapped genes can be disrupted and can lead to mutant phenotypes 

(Friedrich et al., 1991; Gossler et al., 1989; Skarnes et al., 1992). 

1.20 Modified Gene-Trap Vectors 

1.20.1 Reading Frame-Independent Gene-Trap Vectors 

The second generation gene-trap vectors have been modified to allow optimal detection 

of trapped genes. The basic gene-trap vector (PT 1) consists of a splice acceptor from 
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the en-2 gene upstream of a promoterless lacZ reporter gene followed by a selectable 

marker gene, neomycin, under the regulation of a promoter (PGK). A variation of PT  

termed PT 1 -ATG has a translation start (ATG) incorporated at the beginning of the 

reporter gene to allow translation of the reporter even when the gene-trap vector inserts 

into the 5' untranslated region of a gene or out of frame with the endogenous ATG. 

This modification has been shown to increase the number of LacZ expressing clones 

by about three fold (Hill et al., 1993). Other modifications to ensure that the reporter is 

expressed include the use of MoMuLV splice acceptor from the env gene which allows 

splicing in all three reading frames (Schuster-Gossler et al., 1994). Alternatively the 

addition of an internal ribosomal entry site (IRES) ensures reading frame-independent 

translation of the reporter gene (Chowdhury et al., 1997; Mountford et al., 1995). 

1.20.2 Direct Selection Gene-Trap Vectors 

To allow direct selection of true gene-trap events, neomycin has been fused in frame to 

the 3' end of the lacZ gene to generate a novel reporter, termed B-geo. B-geo encodes 

the enzyme activities of both LacZ and neomycin and can be positively selected in the 

presence of G418. The activity of neomycin has been found to be much more sensitive 

than B-gal activity therefore gene-traps can be selected which express LacZ at 

undetectable levels in undifferentiated ES cells, but are found to express the reporter at 

higher levels in differentiated cells (Friedrich et al., 1991). 

1.20.3 Gene Product Selective-Trap Vectors 

Gene-trap vectors modified to preferentially trap genes encoding particular classes of 

genes. The secretory trap vector has been generated by incorporating a transmembrane 

domain, from the C134 type I transmembrane protein gene, upstream of the f3geo gene 

in the basic gene-trap vector and has been shown to preferentially trap genes encoding 

cell surface and cell membrane spanning molecules (Skarnes et al., 1995). This vector 
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is being modified further to accommodate integration into any of the three reading 

frames and also to generate an exon-trap version of the vector to isolate genes with no 

or small introns. 

Another novel vector termed poly A-trap has been designed to identify genes that are 

not expressed in ES cells (Niwa et al., 1993). The vector was generated from a 

standard gene-trap vector but the neomycin resistance gene, neo was placed under the 

regulation of a -actin promoter, expressed in ES cells, and the poly A signal 

following the neomycin resistance gene, neo was removed. Thus expression of the 

neomycin resistance gene, neo would require to trap an endogenous poly A tail. This 

vector was modified by the addition of a splice donor site to its 3'end to allow splicing 

to exons downstream of the neomycin resistance gene, neo. Examples of integrations 

into the 3'end of genes have been confirmed by the isolation of novel endogenous 

sequences using 3' RACE (Yoshida et al., 1995). 

1.21 Transfection of ES Cells 

Exogenous DNA can be introduced into ES cells by a number of methods for example 

calcium phosphate DNA co-precipitation, electroporation, and retroviral infection 

(Lovell-Badge, 1987). Each method has its advantages, however retroviral based 

gene-trap vectors are less likely to cause rearrangements of the host genome on 

insertion (Friedrich et al., 1993). Studies have indicated a preference of these vectors 

to insert at the 5' end of genes thus generating transcripts with a small contribution 

from endogenous gene sequences (Friedrich et al., 1991; Sheridan et al., 1990). In 

contrast, vectors electroporated into cells often integrate as tandem insertions with 

local rearrangements or small deletions. No preference for integration into the 5' has 

been observed for these vectors resulting in a larger range of fusion transcript sizes, 

which aids the cloning procedure (Chowdhury et al., 1997, Gossler et al., 1986; 

Robertson et al., 1986). 
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1.22 Modified Gene-Trap Screens 

Gene-trap screens have been designed to select for developmentally regulated genes. 

For example a recent screen has been conducted to select genes expressed in a 

restricted pattern in 8.5 d.p.c. mouse embryos (Wurst et al., 1995). More recently 

screens have been adapted by the addition of in vitro selective steps. Changes in 

reporter gene expression in response to RA-exposure have been used to isolate genes 

which are differentially regulated during development (Forrester etal., 1996). Another 

approach has taken advantage of in vitro ES differentiation protocols to screen cells 

with gene-trap integrations in particular cell lineages (Baker etal., 1997). 

Further lineage specific gene-trap screens are being developed by Forrester et al. 

(unpublished) by introducing in vitro differentiation steps in combination with defined 

growth factors to promote gene-trap ES cell line differentiation down particular 

lineages that are morphologically distinct cell types eg cardiac muscle, haematopoetic 

lineages, neurons, endodermal cells (Doetschman et al., 1985; Risau etal., 1988). 

1.23 Trapping in Practice 

An attempt has been made to catalogue the known and novel genes that have been 

isolated from gene-trap screens carried out over the last 5 years from different 

laboratories (Table 1.2A and B). This exemplifies the working potential of the gene-

trap approach in its infancy. Although examples of gene-trap integrations can be sited 

which follow the predicted theory (jumonji, Takeuchi et al., 1995), some exceptions 

have accumulated (cordon-bleu, Gasca et al., 1995). These exceptions have important 

implications on the design of future gene-trap vectors, gene-trap prescreens/screens 

and the analysis of gene-trap integrations. It is impressive to see gene-trapping is 

evolving at such a rapid pace many alternative vectors and prescreens have already 

been introduced, as documented above. In addition many advancements are being 

made to make gene-trap integration analysis more accessible, eg. direct sequencing of 
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table 1.2A: Characterised Gene -Trap Integrations 

Vector Design 
• 

- 

Insertion 
site 

Gene Gene Product Pgal 

activitya 

Homozygous 
phenotype 

Reference 

Retroviral 

Gene-Trap 
OSAgeo 5'UTR TEF-1 transcription factor widespread embryonic lethal Chen etal., 1994 
OSA3geo intron BTF-3 transcription factor restricted embryonic lethal Deng etal., 1995 
OSAgeo 
OSAf3geo 

intron 
intron 

CathepsinB 
ROSA26 

protease 
novel 

N.A.i N.A.i Gogos etal., 1996 
widespread none Zambrowicz etal., 1997 

OSA3geo intron Sec8 secretory protein restricted embryonic lethal Friedrich et al., 1997 
romoter-Trap 
3geo 5'UTR Eck receptor tyrosine kinase restricted none Chen etal., 1996 
3geo ? ArMT arginine methyltransferase N.D. embryonic lethal Scherer etal., 1996 
3neo 5'UTR fugi novel N.A. embryonic lethal DeGregori etal., 1994 
r3His 5'UTR REX-i transcription factor N.A. embryonic lethal vonMelchner et a!, 1992 

Plasmid 

Gene-Trap 
GT4.5 intron Gt4-2 transcription factor restricted lethalb Skarnes etal., 1992 
V2 intron Jumonji DNA binding restricted embryonic lethal Takeuchi etal., 1995 
GT1.83geo intron E-catenin cell adhesion molecule restricted embryonic lethal Tones etal., 1997 
Ti-ATG intron Tfeb transcription factor restricted none McClive etal.,1998 
GT4.5 intron Gt4-1 novel widespread perinatal lethal Skarnes etal., 1992 
GT4.5 intron GOO novel restricted N.D. Skarnes etal., 1992 
GT4.5 	- intron Cordonbleu novel restricted none Gasca etal. 1995 
Ti-ATG intron R.140 novel restricted embryonic lethal Forrester, etal., 1996 
T1-ATG intron 1.114 novel restricted none Forrester, etal., 1996 
T1-ATG intron 1.163 novel restricted none Forrester, etal., 1996 
Ti-ATG intron 1.193 novel restricted none Forrester, et al., 1996 
GT4.5 ? Gt2 N.D. widespread none Skarnes etal., 1992 
T1-ATG -intron 1.23 N.D. restricted none Forrester, etal., 1996 
EN53 intron cloneVl novel N.A.i N.A.i Menchini etal., 1997 
.ecretory-Trap 
GT1 .8TM intron Netrin secreted axon guidance cue restricted postnatal lethal Skarnes etal., 1995 
)GT1.8TM intron PTPK protein tyrosine phosphatase restricted none Skarnes etal., 1995 
)GT1.8TM intron LAR protein tyrosine phosphatase restricted none Skarnes etal., 1995 
Enhancer-Trap 

p3LSN ? Etl-1 DNA binding restricted N.D. Soininen etal., 1992 
p3LSN intron Etl-2 type-I cytokine receptor restricted N.D. Neuhaus etal., 1994 

PolyA-Trap 
,PAT 	I  intron 	I pat-12 novel 	I N.D. none 	I Yoshida etal., 1995 

unknown 
LD. 	not determined 
4.A. 	not applicable as vector does not contain a reporter gene 
LA.i 	not applicable in vitro study 

gal activity during development 
variable penetrance, some homozygotes viable with growth defect 

[able 1.2B: Large Scale Gene-Trap Screens 

Screen Vector Trapped Sequence Homology (% of total) 
Data 

Known Genes 	ESTs 	Novel 
Plasmid Gene-Trap 

:howdhury etal., 1997 pSAgeo and pSAIRES3geo 5-RACE PCR 17(30%) 11(20%) 28 (50%) 
'ownley etal., 1997 pGTl.8TM Direct Sequencing 29 (51%) 11(19%) 17(30%) 

Retroviral Shuttle 
licks etal., 1997 1 U3neoSV1 I PSTs 1 	42(11%) 21(5%) 337 (84%)* 
STs, Promoter-Proximal Sequence Tags are derived from genomic DNA flanking insertion sites.  
Figures are derived from the comparison of PSTs to cDNA databases. Insertions of retroviral vector into exons would validate 

he: of comparison PSTs to cDNA databases however this is not always the case and the vector may insert into promoter or 
ntronic sites. As a consequence significant matches can be missed because the PST does not contain sufficient exon sequences. 
'his results in an inaccurate over-representation of insertions into novel genes. 



RACE products (Townley et al., 1997). Modification of RACE-PCR techniques has 

led to the development of direct sequencing (Townley et al., 1997). This technique 

allows selection of integration events at the sequence level without the need of cloning. 

1.24 Generation and Isolation of Gene-Trap Cell lines R68 and R124 

The gene-trap vector, PT1.ATG (Section 1.19), was electroporated into RI ES cells 

(Simpson et al., 1997). The PT 1 .ATG gene-trap. vector is more precisely termed a 

intron trap vector and includes a splice acceptor derived from the engrailed-2 gene, a 

3-galactosidase reporter gene with an inframe ATG translation initiation site at its 5' 

end and a neomycin selectable marker under the regulation of the phosphoglycerate 

kinase- 1 (PGK- 1) promoter. The presence of an ATG allows the translation of the 

reporter gene even when the vector has integrated into the 5' UTR (untranslated 

region) of a gene. The independently-driven selectable marker allows selection of all 

gene-trap integrations, including integrations into sites which are not active in 

undifferentiated ES cells. Integration of the vector into an intron of a functional gene 

allows a fusion transcript to be formed via the splice acceptor on the vector. This 

integration results in transcription of the reporter gene to be directly regulated by the 

promoter sequences of the endogenous gene. 

ES cells transfected with the PT 1 .ATG were selected in the presence of G418 and 

replica plated. These ES cells were then induced with RA and stained for - 

galactosidase (3-gal) activity to screen for cells carrying a correctly integrated and 

spliced vector. 3-galactosidase-positive clones were then retested in the presence and 

absence of RA to select for integrations into RA-responsive genes. Twenty gene-trap 

cell lines were found to respond to RA, of these LacZ expression was induced in nine 

lines and repressed in eleven lines. Tetraploid mouse chimeras derived from eight of 

the eleven repressed gene-trap cell lines were expressed in the heart (Forrester et al., 

1996). This observation may be of significance as RA has been shown to inhibit 
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cardiogenesis in embryoid bodies by repression of cardiac specific genes, an in vitro 

model for early cardiogenesis (Wobus et al., 1994). 

Two of the repressed cell lines, R68 and R124, displayed reporter gene expression 

almost exclusively in the developing heart of 9-10 d.p.c. tetraploid chimeras. 
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1.25 Aim of the Project 

The aim of this Ph.D project is to characterise two gene-trap integrations, R68 and 

R124 isolated from a gene-trap screen conducted by Forrester et al., 1996. The 

characterisation of the gene-trap integrations includes identification of endogenous 

trapped gene sequences and analysis to determine the function of the trapped genes in 

heart development. 
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Chapter 2 



2.0 Materials and Methods 

2.1 Molecular Techniques 

The preparation of standard solutions and general molecular techniques described in 

this section were according to Sambrook et al., 1989 unless otherwise stated. 

2. 1.1 General Cloning Procedures 

Restriction enzyme digests were performed as recommended by the suppliers 

(Boehringer Mannheim) and digest products were analysed by gel electrophoresis. 

Agarose gels at appropriate concentrations were prepared in 1xTAE buffer and stained 

with 0.5 jig/nil ethidium bromide. 

Preparation of Vectors for Cloning 

Plasmid vectors linearised with restriction enzyme digestion for cloning purposes were 

treated with alkaline phosphatase to prevent recircularisation. Following digestion 

lunit of calf intestinal phophatase (CIP - Boehringer) was added directly to the 

reaction and incubated at 37 0C for 30 minutes. To inactivate the CIP, 5mM EDTA, 

lOjig proteinaseK and 0.5%SDS were added to the reaction mix and incubated at 

560C for 30 minutes. The reaction mix was then extracted with an equal volume of 

phenol/chloroform, precipitated with 0. ivolume of 3M NaOAc pH5.2 and 2volumes 

of ethanol at -20 0C for 1 hour. Following precipitation the plasmid DNA was pelleted 

by centrifugation, washed in 70% ethanol and resuspended in T.E. 

Preparation of DNA Inserts 

Restriction enzyme digest products were run on 0.8% low melt agarose gels. Bands of 

interest were excised under long wavelength UV illumination. An equal volume of 

dH20 and sodium chloride to a final concentration of 0. 1M was added to the excised 

band, heated to 700C for 5 minutes and vortexed to melt the agarose. An equal volume 
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of Tris saturated phenol, prewarmed to 37 0C, was added, mixed by vortexing and the 

suspension was centrifuged at 6.5K for 5 minutes into an upper aqueous phase, 

containing the DNA, and lower organic phase. The aqueous phase was precipitated 

with 2volumes of 100% ethanol at -20 0C for 30 minutes Precipitated DNA was 

pelleted by centrifugation at 13K for 10 minutes, washed with 70% ethanol, air dried 

and resuspended in 20pl of T.E. 

2.1.2 Ligations 

Ligation reactions were set up with a vector to insert molarity ratio of 1:3 and included 

lunit of T4 DNA Ligase and of lx ligation buffer (66mM Tris.HCI pH7.5; 5mM 

MgCl2; 1mM DTT; 1mM ATP) (Boehringer) in a total volume of lOp!. A control 

reaction containing vector alone was also set up to determine the background number 

of colonies due to self-ligation of vector. A successful ligation reaction usually 

produced an enrichment of more than 100-fold colonies over the vector-alone ligation. 

Cohesive-end ligations were performed at 16 0C for a minimum of 1 hour, blunt-end 

ligations were incubated overnight at room temperature. Ligation reactions were 

precipitated (with 0.1 volume of 3M NaOAc pH5.2 and 2volumes of ethanol) and 

resuspended in 5.tl of T.E before transformation by electroporation. 

2.1.3 Transformation of Bacterial Cells 

Electrocompetent cells were prepared by inoculating a single colony of the required 

bacterial strain, DH5a or XL1-Blue, into a 25 ml LB broth culture and was grown at 

370C overnight with vigorous shaking. lOml of the overnight culture were used to 

inoculate ilitre of LB broth and grown to a specific density to ensure log phase 

(0D600=0.6-0.9). The cells were chilled on ice for 15 minutes before centrifugation at 

4K for 20 minutes at 4 0C. The bacterial pellet was resuspended in a total of ilitre of 

ice cold water, re-centrifuged and resuspended in 500m1 of ice cold water. 
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Centrifugation was repeated and the bacterial pellet resuspended in 40m1 of ice cold 

10% glycerol in water and after another round of centrifugation into 2rnl of ice cold 

10% glycerol. The electrocompetent bacterial cells were aliquoted into prechilled 

eppendorf tubes and snap frozen in liquid nitrogen before storage at 80 0C. 

Frozen aliquots of electrocompetent cells were thawed on ice for 30-60 minutes before 

electroporations. 35 j.tl of electrocompetent cells were mixed with 3-5pi of the ligation 

reaction in a prechilled cuvette with a 0.2cm electrode gap(Biorad). Cells were 

electroporated using Biorad's Gene Pulser (25 j.tFD, 200 ohm and 1.8 kV and a time 

constant of 3-4msec). 1.5ml of LB supplemented with 10% 2M glucose was 

immediately added to the cells following electroporation. The transformed cells were 

transferred to an eppendorf tube and placed at 37 0C for 45 minutes to recover, with no 

shaking. Appropriate dilutions were plated onto LB-Ampicillin plates. When 

blue/white selection was required, standard 90mm agar plates were treated with 40p1 

of 20mg/ml X-gal and 4jil of 0.2mg/mi IPTG prior to plating. Transformation 

efficiencies of 108  transformants per jtg of plasmid were typically acheived. 

2.1.4 Plasmid Preparation - "Miniprep" 

A single colony, from a freshly streaked plate, was used to inoculate 3ml of L broth 

containing the appropriate antibiotics. This culture was grown at 37 0C overnight with 

shaking. 1 .5ml of the overnight culture was transferred to an eppendorf tube and the 

cells were harvested by centrifugation at 3K for 10 minutes. The supernatant was 

discarded and the pellet resuspended in 100.tl of solution 1 (50 mM glucose; 25 mM 

Tris-HCI pH 8.0; 10 mM EDTA; lOOj.tg/ml RNase A). 200tl of freshly prepared 

solution2(0.2 M NaOH;l% SDS) and 150j.il of ice cold solution3 (3M KAcetate 

pH4.8 with acetic acid) were added sequentially, mixed and then placed on ice for 5 

minutes. A precipitate formed which was removed by centrifugation at 13K for 10 

minutes. 400t1 of the DNA containing supernatant was extracted with an equal volume 
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of phenol/chloroform and precipitated with 240j.tl of isopropanol. Following 

centrifugation at 13K for 10 minutes, the pellet was washed in 70% ethanol, air dried 

and resuspended in 50jil of T.E. This protocol was scaled up a 100 fold to prepare 

larger quantities of DNA ("Midiprep"- 50ml culture and "Maxiprep"- 150ml culture). 

The quality of DNA from this preparation was sufficient for diagnostic digest analysis. 

To improve quality the DNA preparation was reprecipitated with an equal volume of 

13% PEG 8000 in 1.6M NaC1 on ice for 1 hour. The precipitated DNA was pelleted 

by centrifugation at 13K for 5 minutes, washed twice with 70% ethanol, air dried and 

resuspended in 50ul T.E. This procedure improved the quality of the DNA such that it 

could be used for all cloning procedures, probe fragment preparations and sequencing 

reactions. Alternative methods of plasmid preparations included the use of Qiagen and 

Promega Wizard kits. Reagents and protocols were supplied with the kits by 

manufacturers. 

2.1.5 Sequencing and Analyses of Double Stranded DNA Templates 

DNA was subcloned into the multiple cloning sites of commercially available plasmids 

flanked by T3/T7 or T7/Sp6 primer sites eg. pBluescript II KS-. Both strands of DNA 

were routinely sequenced to allow any ambiguities to be clarified. BLAST database 

search programs on the Netscape, provided by National Centre for Biotechnology 

Information(NCBI) (http://www.ncbi.nlm.nih.gov/cgi-bin/BLAST),  which search 

Genbank, EMBL, DDBJ, DDBJEST, PDB, SwissProt and PIR (Altschul et al, 1990) 

were used to perform searches with sequence data to identify any known homologies. 

Sequences were analysed and assembled using DNA Star computer software to 

identify ORF, map restriction enzyme sites and generate contigs of sequence. 
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2.1.5.1 Manual Dideoxy-Termination Sequencing 

The dideoxy-termination method is based upon the elongation of a labelled DNA 

strand using DNA polymerases (Sanger et al., 1977). Incorporation of terminating 

dideoxy nucleotides, that lack 3'-OH groups necessary for strand elongation, results in 

a series of nested DNA strands that can be resolved on a denaturing polyacrylamide 

gel. Four termination reactions, each for a different dideoxy nucleotide, are performed 

for each DNA template to give complete sequence information. DNA was sequenced 

using the Sequenase Version 2.0 DNA Sequencing Kit reagents (USB-Amersham) 

following the recommended protocol with modifications to improve annealing of the 

primer to the template DNA and to minimise re-annealing of template strands. This 

was done by alkali denaturing the plasmid in the presence of the primer and by the 

addition of DMSO. 

2.5jtg of template plasmid DNA (resuspended in T.E. pH7.5) mixed with 4pmoles of 

oligonucleotide primer in a volume of 20j.tl was denatured with 0.2M NaOH at room 

temperature for 5 minutes. The mixture was precipitated with 0.4M ammonium acetate 

(pH4.6 with acetic acid) and 2volumes of 100% ethanol on ice for 15 minutes 

followed by centrifugation at 13K for 15 minutes at 4 0C to pellet the DNA, washed in 

70% ethanol and then resuspended in 12.5.tl sequencing buffer (10%DMSO; 40mM 

Tris.HCI pH7.5; 20mM M902;  50mM NaC1). To this ipi 0.1M DTT; 2jtl labelling 

mix (1.5tM each of dGTP, dTTP and dCTP); 0.5p1 (X-35S  dATP (5.iCi); 

2pJ(3.25units) DNA polymerase was added and the reaction incubated at room 

temperature for 5 minutes. 2.5pJ of each nucleotide termination mix (8tM 

dideoxynucleotide; 80jiM of the other three deoxynucleotides; 50mM NaCl; 10% 

DMSO) was aliquoted into a 96we11 plate and prewarmed to 37 0C. 3.5j.tl of template 

was added to each nucleotide termination mix (ddGTP; ddATP, ddTTP and ddCTP) 

and incubate at 37 0C for 5 minutes. Termination reactions were stopped by adding 4pi 

of stop solution (95% formamide; 20mM EDTA; 0.05% bromophenol blue; 0.05% 



xylene cyanol FF). Sequencing samples were denatured at 80 0C for 10 minutes and 

ran on a 6% denaturing polyacrylamide gel (7M urea; 5.7% acrylamide; 0.3% 

bisacrylamide; 1xTBE; 0.06% ammonium persuiphate; 35g1 TEMED per lOOml mix) 

in 1xTBE. After electrophoresis the gel was soaked in 15% methanol; 5% acetic acid 

for 15 minutes, transferred to Whatman 3MM paper and dried at 80 0C under vacuum 

before being exposed to autoradiographic film at room temperature. Overnight 

exposure was usually sufficient to give readable signals. 

2.1.5.2 Automated Cycle Sequencing 

Automated cycle sequencing is a PCR based Sanger dideoxy-termination method 

(Sanger et at., 1977). Modifications include each of the four dideoxy terminators 

labelled with a different fluorescent dye. Thus all termination reactions are performed 

in a single tube. The wavelength of light emitted by each fluorescent dye can be 

detected and interpreted by ABI sequencing computer software. Cycle sequencing was 

performed using the Perkin-Elmer Taq DyeDeoxy Terminator Cycle Sequencing Kit 

according to the suppliers recommendations. 0.5jig of double stranded DNA 

resuspended in dH20 was mixed with 3.2pmole primer and 8.Ojil of terminator ready 

reaction mix (A, C, G, T - dye terminators; dITP; dATP; dCTP; dTTP; Tris.HCI 

pH9.0; MgCl2;  thermal stable pyrophosphatase; AmpliTaq DNA polymerase) in a 

volume of 20jil. This reaction was overlaid with 40il mineral oil and cycle sequenced 

in a Hybaid Omnigene Thermocycler for 25 cycles. Each cycle consisted of: 

960C 	30 seconds 

509C 	15 seconds 

600C 	4 minutes 

Each step was preceeded by a rapid thermal ramp to achieve the required temperature. 

The sequencing reaction was precipitated with 0.3M sodium acetate pH4.6 and 

2volumes of 100% ethanol on ice for 15 minutes followed by centrifugation at 13K for 
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25 minutes. The supernatant was discarded, the pellet washed in 70% ethanol, air 

dried and resuspended in 6jil loading buffer (5mM EDTA pH8.0; 10mg/mi Blue 

dextran in deionised formamide). Sequencing reactions were denatured at 950C for 5 

minutes and ran on denaturing polyacrylamide gel (7M urea; 5% acrylamide (29:1 

Biorad); 1xTBE; 0.06% ammonium persuiphate; 15jtl TEMIED per SOml mix) in 

1xTBE. The sequencing run, routinely 500-600bases, was processed on the ABI 

PRISM 377 DNA Sequencer combined with sequencing ABI Prism 2. 1.1 computer 

software and presented as a nucleotide sequence with a profile of signal intensity, that 

allowed any ambiguities to be clarified. 

2.1.6 Isolation of Genomic DNA from ES Cells 

ES cells were grown to confluency in 25cm 2  flasks, rinsed twice in PBS and then 

lysed overnight at 37 0C with 5ml of lysis buffer (100mM Tris.HC1 pH8.5; 5mM 

EDTA; 0.2% SDS; 200mM NaCl) containing freshly added 100ig/ml Proteinase K. 

The lysate was extracted with an equal volume of phenol/chioroform/isoamyl (mixture 

25:24:1) and centrifuged at 6K for 10 minutes to separate aqueous and organic phases. 

Extraction of the aqueous layer was repeated with chloroform/isoamyl (mixture 24:1). 

The aqueous phase was precipitated with an equal volume of isopropanol. Genomic 

DNA precipitates as the solutions are mixed by inversion. The DNA was spooled out 

of the tube using a sterile gilson tip, rinsed in 70% ethanol, and then resuspended in 

SOpi of T.E. To remove any ethanol carry-over the open sample tube was incubated at 

600C for 30 minutes. The sample was left overnight to complete the resuspension of 

the genomic DNA before determining the concentration by optical density 

measurements at 260nm. 



2.1.7 Isolation of Genomic DNA from Tissue 

Tail tips (0.5-1.0cm) were taken routinely from 3 week old animals to isolate genomic 

DNA for genotyping purposes. Tissue was digested overnight at 550C in 0.5m1 lysis 

buffer (100mM Tris.HC1 pH8.5; 5mM EDTA; 0.2% SDS; 200mM NaC1) with freshly 

added lOOjig/mi Proteinase K. The lysate was vortexed vigorously and centrifuged at 

13K for 10 minutes to remove indigestible tissue eg. bones and hair. The resulting 

DNA containing supernatant was extracted and precipitated as described in 2.1.7. 

2.1.8 Southern Blot Analysis 

Genomic DNA (lOjig) was digested overnight at 37 0C with 40units of appropriate 

restriction enzymes and products analysed on I% agarose gels. After electrophoresis 

the DNA was stained/destained with ethidium bromide and photographed. The gel was 

then denatured (0.5M NaOH; 1 .5MNaC1) for 30 minutes and neutralised (1.5M NaCl; 

0.5M Tris.HCI pH7.4) for 30 minutes. To set up the overnight capillary dry blot the 

gel was placed face down on Saran wrap. Hybond N+  membrane (Amersham) cut to 

the size of the gel was pre-soaked in 20xSSC and placed on to the gel followed by 2 

pieces of Whatman 3MM paper (soaked in 20xSSC) and finally a dry piece of 3MM 

paper (as each layer was added all bubbles were carefully removed). A stack of 

absorbent paper towels and a weight was placed on top to encourage capillary flow. 

Afterovernight blotting the membrane was marked for orientation, rinsed in 2xSSC 

and baked at 800C for 2 hours. 

2.1.9 Isolation of Total RNA from ES cells and Tissue 

Total RNA was isolated using a modified guanidinium isothiocynate and phenol RNA 

isolation protocol described by Chomczynski and Sacchi, (1987). 

ES cells were grown to confluency in 90mm gelatinised plates, rinsed twice with PBS 

and then treated with 5m1 of Solution D (4.4M Guanidinium Isothiocynate; 25mM 
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Sodium Citrate; 0.6% Sarcosyl; 100mM -Mercaptoethanol). The contents of the plate 

were then scraped and transferred to centrifuge tube (Falcon 2059). Tissue for RNA 

isolation was freshly dissected and 0.5g were taken to be homogenised using a 

standard ground glass homogeniser. 5m1 of Solution D was added to this and the 

lysate was transferred to a centrifuge tube (Falcon 2059). The following steps are 

common to the isolation of RNA from ES cells and tissue. 

0.5m1 2M Sodium Actetate, 5m1 Phenol and 2m1 Chloroform were sequentially added 

to 5ml of the lysate, each reagent was thoroughly mixed with the lysate by inversion. 

The suspension was then placed on ice for 15 minutes followed by centrifugation at 

6K for 15 minutes at 4 0C (Sorval SS34 rotor) into a upper aqueous phase containing 

the RNA and a lower organic phase. RNA from the aqueous phase was precipitated by 

addition of an equal volume of isopropanol at -20 0C for 1 hour followed by 

centrifugation at 8K for 20 minutes at 4 0C (Sorval SS34 rotor). The pellet was 

resuspended in 0.3ml Solution D and reprecipitated with an equal volume of 

isopropanol at -200C for 1 hour. The RNA was pelleted by centrifugation at 13K for 

10 minutes at 40C, washed with 70% ethanol, air dried and resuspended in 50pi of 

DEPC treated water. The RNA was placed at 4 0C overnight before determining the 

concentration by absorbance at 260nm. Ratio of 260nm1280nm was used to estimate 

the purity of the sample. A ratio close to 1.8 indicated the sample was not significantly 

contaminated by protein. 

2.1.10 Northern Blot Analysis 

Total RNA (lOpg) samples were mixed with 3volumes of sample buffer (66% 

deionised formamide; 22% formaldehyde; 1.2xMOPS) and denatured at 70 0C for 10 

minutes. Followed by cooling on ice and the addition of 2pJ of RNA loading dye 

(50% glycerol; 1mM EDTA; 0.4% bromophenol blue; 0.4% xylene cyanol; 2g 

ethidium bromide) the samples were separated on a 1% denaturing agarose gel 
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prepared in 1xMOPS (20mM MOPS; 4mM sodium acetate; 1mM EDTA) containing 

17.5% formaldehyde. After electrophoresis the gel was denatured in 50mM NaOH for 

30 minutes followed by neutralisation in buffer (1.5M NaCl; Tris.HCI pH 8.0; 1mM 

EDTA) for 30 minutes. An overnight capillary dry blot was then set up to transfer the 

RNA to Hybond N+  membrane as described for Southern blot analysis (2.1.8). 

2. 1.11 Random-Primed Labelling 

All experiments involving radioactivity were performed in designated areas following 

strict guidelines to minimise exposure and avoid contamination. DNA fragments to be 

used as 32P-labelled probes for hybridisation to membrane blots were purified by 

elution from agarose gel bands (2.1.2). Random-primed labelling was performed 

using a "high prime" kit as recommended by Boerhinger: 25ng of DNA was mixed 

with dH20 to a volume of 12j.il, denatured at 100 0C for 10 minutes, snap cooled on 

ice and then collected by centrifugation. On ice, 4jx1 high prime mix (lunitlpJ Kienow 

polymerase; 0.125mM dATP; 0.125mM dGTP; 0.125mM; 0.125mM dTTP; 50% v/v 

glycerol) and 4pJ of 50pCi [a 32P]dCTP (3000Ci/mMol) aqueous solution were added 

to the denatured DNA and the reaction was then incubated at 37 0C for 10 minutes. The 

reaction was stopped by adding 1tl 0.5M EDTA pH8.0 and 79j.tl of dH20. 

Unincorporated nucleotides were removed by centrifugation of the reaction through a 

G-50 Sephadex column at 2K for 2 minutes. An aliquot of 1il from the labelled probe 

was used to determine the [a 32P]dCTP incorporation. 

2.1.12 Hybridisation Conditions 

DNA and RNA blot hybridisations were performed overnight in rotating Techne 

hybridisation bottles in Techne Hybridiser HB-1 ovens. Blots were prehybridised for 

1 hour in hybridisation buffer: Southern blots in 0.5M Na2HPO4  pH7.1 (with 

phosphoric acid); 15% deionised formamidé; 1% BSA (w/v); 7% SDS; 1mM EDTA 
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pH8.0 at 65 0 C and Northern blots in 0.35M Na2HPO4  pH7.1; 30% deionised 

formamide; 1% BSA (w/v); 7% SDS; 1mM EDTA pH8.0 at 60 0C. 

The labelled probe was denatured at 100°C for 5 minutes, snap cooled on ice and 

centrifuged before adding to the blot with fresh hybridisation buffer. Routinely 

107cpm of probe in lOmi hybridisation buffer were used for hybridising to a standard 

(13x1 1cm) midi-gel blot. Following hybridisation DNA and RNA blots were washed 

in a common wash buffer (lSOmIvI Na2HPO4  pH7.1; 0.1% SDS) 3 times for 20 

minutes each at 60 0C. 

After washing the blots were wrapped in Saran wrap and exposed to autoradiographic 

film at -700C for an appropriate length of time (1-7 days) for a signal to appear. 

Alternatively hybridised blots were exposed to Molecular Dynamics phosphor screens 

that were processed using a Molecular Dynamics phosphoimager and Imagequant 

Molecular Devices software to quantify signals. This computer software package gave, 

a measurement of signal strength relative to background levels and to internal control 

signal bands. 

Prior to rehybridising, DNA and RNA blots were stripped in boiling stripping buffer 

(0.O1xSSC; 0.O1xSDS) to remove bound radiolabelled probe. The buffer was 

changed every 10 minutes until the counts dropped to background levels. Stripped 

blots were then re-exposed to autoradiographic film to check the probe had been 

removed prior to rehybridisation. 

2.1.13 PCR amplification of genomic DNA 

The PCR reactions were set up on ice, in a total volume of 50j.tl, as follows: 0.5pg 

genomic DNA; 1xPCR buffer [50mM KC1/lOmM Tris (pH8.3)]; 2mM MgCl2; 

0.2mM dNTP's; 0.6j.tM *primer  alibi; 0.6.tM *primer  a2/b2; 28il dH20. The 

reaction was mixed gently, overlaid with 50i1 of mineral oil and heated at 94°C for 5 



minutes before the addition of 2.5units of Taq DNA polymerase (Promega). The PCR 

amplification was performed on a thennocycler through 30 cycles of: 

94°C 1.5 minutes 

60°C 1.5 minutes 

72°C 3 minutes 

The final step at 72 0C was for 10 minutes to fill in single stranded ends. The 

combination of *primer  al/a2 and bl/b2 give products of predicted size that were 

analysed by agarose gel electrophoresis and Southern blot analysis. 

*primers 	 Sequence (5' - 3') 

a 1 (en2-intron) 	ACTFGGCCTCACCAGGC 

a2(en2-exon) 	TGCTCTGTCAGGTACCTGTTGG 

b 1 (KXE) 	 ATCCACCAA1TGAAGAACACC 

b2(en2-intron) 	TGAGCACCAGAGGACATCCG 

2.1.14 Rapid Amplification of cDNA Ends (5' RACE) 

The RACE protocol used is based upon the method described by Frohman et al., 1988 

with modifications as described in Townley et al., 1997. 5'RACE allows the cloning 

of unkown S'ends of mRNA. Reverse transcription was primed from a known 

sequence to generate a single stranded cDNA. This was tailed with dCTPs using 

terminal transferase. An anchor primer, complementary to the dCTP tail, was used to 

prime the second cDNA strand to generate double stranded cDNA. The double 

stranded cDNA was amplified using specific nested primers. Restriction sites 

engineered within the nested primers were used to directionally clone the amplified 

sequence into pBluescript II KS- plasmid. The Primers used were: 

45 



Primer(homology) 	Seguence(5' - 3') 
	

Restriction Enzyme site 

1 (lacZ) 
	

GCAAGGCGAYI'AAGTFGGGT 

2(anchor) 
	

GGCCACGCGTCGACTAGTACGGGIIGGGIIGGGHG 
	

Spel 

3(en-2) 
	

CCGTCGACTCTGGCGCCGCT 

4(en-2) 
	

TGCTCTGTCAGGTACCTGTFG 
	

KpnI 

First strand cDNA synthesis 

1 pg of total RNA (isolated from ES cells as described in 2.1.10), lOng primer 1 and 

sterile dH20, in a volume of 1 2tl, were mixed on ice and denatured at 70°C for 5 

minutes followed by snap cooling on ice. The contents were collected by brief 

centrifugation and ixist strand buffer (50mM Tris.HC1 pH8.3; 75m1v1 KCI; 3mM 

MgCl2); 10mM DTT; 0.5mM dNTP were added. This mix was heated at 37°C for 2 

minutes and 200units of Superscript II (GibcoBRL) was added to a total volume of 

20p1. The reverse transcription reaction was incubated at 37°C for 1 hour. After 1st 

strand cDNA synthesis, 0. 1M NaOH was added and reactions incubated at 65°C for 

20 minutes to hydrolyse RNA then neutralised with 0. 1M HC1. Microdialysis was 

performed (to remove primers, buffers and free nucleotides) by loading all the 1st 

strand reaction ,  onto a 0.025pm microdialysis filter (Millipore) and floating in a petri 

dish (-50m1) of T.E. and for 4 hours. Routinely, 6-8jil were recovered after dialysis 

and dH20 was added to 20j.iI. 

Poly C Tail Addition 

lxTdT buffer (0. 1M Potassuim cacodylate pH7.2; 10mM COC12 ;  1mM DTT) and 

0.13mM dCTP were added to 20jtl of the 1st strand reaction and samples were 

incubated at 37°C for 2 minutes. To this 20units of terminal transferase(TdT 

GibcoBRL) were added and the reaction incubated at 37°C for 5 minutes, followed by 

heat inactivation at 70°C for 2 minutes. 

2nd Strand Synthesis 



lx restriction buffer M(lmM Tris.HCI pH7.5; 5mM NaCl; 1mM MgCl ;  0.1mM 

dithioerythritol) (Boehringer); 0.5mM dNTPs; 0.5ng4L1 primer 2; 2units Kienow 

(Boehringer) were added to 15tl of poly C tailed cDNA. This reaction was incubated 

at room temperature for 30 minutes followed by incubation at 37°C for 30 minutes and 

inactivation at 70°C for 5 minutes. The cDNA sample was then microdialysed on 0.1 

pm microdialysis filter as above. Routinely 8 -lOp! were recovered after dialysis and 

dH20 was added to 37pJ. 

1st Round PCR amplification 

The PCR reactions were set up on ice as follows: 5.tl cDNA; 1xPCR buffer (50mM 

KC1/lOmM Tris (pH8.3); 2mM M902;  0.2mM dNTP's; 2ng Primer 2; 2ng Primer 3; 

28pJ dH20. The reaction was mixed gently, overlaid with 50p1 of mineral oil and 

heated at 94°C for 5 minutes before the addition of 2.5units of Taq DNA polymerase 

(Promega). 

The PCR amplification was performed on a thermocycler through 35 cycles of: 

94°C 1mm 

60°C 2mm 

72°C 3mm 

The 1st round PCR products were dialysed on 0.1 pm filters as above which results in 

the retention of the largest PCR products. Routinely 15-18j.il were recovered after 

dialysis and dH20 was added to 40j.tl. 

2nd Round PCR amplification 

The second round of PCR amplification reactions were performed as above using the 

anchor primer (Primer 2) and a nested primer in en-2 sequence (Primer 4). 

Specificity of PCR Amplification 

The specificity of the first and second rounds of PCR amplificaton were checked by 

running 1/10th of the 40gl volume of PCR products after microdialysis on an agrose 

gel. The gel was Southern blotted and the blot hybridised with a 32P-labelled probe 
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specific to engrailed sequences within the vector. Control PCR reactions, with no 

template/ no reverse transcriptase/ no polymerase/ no primers, which result in no 

amplification of the trapped sequences were also run. 

Size Selection of PCR products 

The second round PCR products were run on a 0.8% low melting.point agarose gel. 

Products between 1.0 and 0.5kb were cut from the gel and purified by phenol 

extraction and precipitation (2.1.2). 

Cloning PCR products 

The PCR amplified cDNA products were digested and directionally cloned into a 

SpeI!KpnI site in pBluescript II KS- (See section 2.1.1 for general cloning 

procedures). 

2.1.15 RNase Protection 

Riboprobe Templates 

Plasmids containing RACE products were linearised by restriction digest to allow the 

generation of antisense run-off transcripts of predicted sizes. Linearised plasmids were 

purified as described in 2.1.2. 

Riboprobe synthesis 

1pg of template DNA was mixed with: 10mM DTT; 0.4jtg BSA; 1mM AUG 

(ATP:UTP:GTP at 1:1:1); 20units RNase inhibitor; IX transcription buffer (40mM 

Tris.HC1 pH8.0; 6mM MgCl2;  lOinM dithoithreitol; 2mM Spermidine); 250tci a 32P 

CTP; 20units polymerase (usually T3) in a total volume of 20j.il. 

The reaction mix was incubated at 37°C for 1 hour. Following the in vitro 

transcription, the reaction was treated with 20units RNase-free DNase at 37°C for 15 

minutes to remove the DNA template. The reaction volume was made up to lOOj.tl with 

the addition of dH20 and centrifuged through a sephadex G-50/SpinX column (Sigma 

Costar) at 13K for 5 seconds to remove protein and unincorporated nucleotides. 
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Gel Purification of Riboprobe 

96p1 of riboprobe was mixed with 64111 of loading dye(95% formamide; 20mM 

EDTA; 0.05% bromophenol blue; 0.05% xylene cyanol FF) denatured at 80 0C for 3 

minutes and run on a 6% polyacrylamide sequencing gel(7M urea; 5.7% acrylamide; 

0.3% bisacrylamide; 1xTBE; 0.06% ammonium persuiphate; 35111 TEMED per lOOml 

mix) in 1xTBE for 1.5hours at 60W. 

After the electrophoresis the wet gel was wrapped in Saran wrap and exposed to 

autoradiographic film (the film was placed on the gel and marked for orientation). The 

autoradiograph was aligned to the gel and the area of the gel containing the probe band 

excised. The gel was re-exposed to ensure that the correct region of the gel had been 

isolated. The probe was eluted from the gel slice by incubation in lml of probe elution 

buffer (0.5M ammonium acetate; 1mM EDTA; 0.2% SDS) at 37°C for 2 hours with 

vigorous shaking, the gel pelleted by centrifugation at 13K for 5 minutes and the 

probe-containing supernatant removed. lxl of riboprobe, in lml of scintillation fluid 

(Ultima Gold), was used to determine the incorporation. 

Hybridisation 

l0g target RNA and 3.5 x 10 5cpm of eluted riboprobe in a total volume 100J.il was 

precipitated with 0.3M sodium acetate, 20 jig glycogen and 2volumes of 100% ethanol 

at -80°C for 30 minutes. RNA was pelleted by centrifugation at 13K for 10 minutes at 

40C, washed with 70% ethanol, air dried and resuspended in 30jil of hybridisation 

mix (0.4M NaCl; 40mM PIPES pH6.4; 1mM EDTA in deionised formamide). 

Hybridisation reactions were then denatured at 85°C for 15 minutes and hybridised 

overnight at 55°C. 

RNase Digestion 

Unhybridised single stranded RNA was digested in 350111 of digestion buffer (10mM 

Tris.HC1 pH7.5; 5mM EDTA; 0.3M NaCl; l4ug RNase; 2000units Rnase Ti) at 

300C for 30 minutes. 0.5% SDS and 0.1 3jtg/jil proteinase K were added to stop the 
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digest with a further 10 minutes incubation at 30 0C. Reactions were then extracted 

with phenol/chloroform and precipitated with imI 100% ethanol using 5j.tg tRNA as a 

carrier at 80 0C for 30 minutes. RNA was pelleted by centrifugation at 13K for 10 

minutes, air dried and resuspended in 4.tl of loading dye. Samples were then 

denatured briefly at 95°C and run on a 6% polyacrylamide gel. The gel was dried 

before exposing to autoradiographic film at -80 0C. 

2.1.16 Screening eDNA Libraries 

Library Titre 

lOml of LBroth, supplemented with 0.2%maltose and 10mM MgSO4, were inoculated 

with a single colony of C600Hfl cells from a freshly streaked plate and grown 

overnight at 37 0C. Cells were harvested by centrifugation at 4K for 10 minutes and 

resuspended in 5m1 10mM MgSO4, such that 0D600= 0.6. Serial dilutions of library 

phage lysate made in 100p1 SM buffer (100mM NaCl; 10mM MgSO4; 50mM 

Tris.HC1 pH7.5; 0.01% gelatin) were mixed with 200pJ of overnight bacterial culture 

and incubated at 37 0C for 15 minutes. 3m1 of 0.7% molten top agarose, supplemented 

with 10mM MgSO4, were added to each dilution preparation and immediately poured 

contents onto prewarmed LB plates. The top agarose was allowed to set at room 

temperature and incubated at 37 0C overnight. The titre was calculated from the number 

of plaques with respect to the dilution factor. The Clonetech Mouse Heart 5'- Stretch 

plus cDNA library gave a titer of 1x10 8  pfulml. 

Library Plating 

i. A total of lx 106  pfu were plated over four (20x2Ocm) agar plates. These plates were 

poured (250ml agar) the night before use and dried at 37 0C for 4-6hours. For each 

plate 2.5x105  pfu were mixed with 2m1 C600Hfl cells in 10mM MgSO4 (prepared as 

in 2.1.16.1) and incubated at 37 0C for 30 minutes. Phage/bacterial preparations were 

mixed with 30m1 of 0.7% molten top agarose supplemented with 10mM Mg504 and 
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immediately poured evenly onto separate prewarmed LB agar plates. The top agarose 

was allowed to set at room temperature and then the plates were incubated (inverted) at 

370C for 5-8 hours until lysis was observed. The plates were then placed at 4 0C for 

the top agarose to harden before plaque lifts 

Plaque Lifts 

Hybond N+  nylon membrane (Amersham) was placed on to the surface of the 

agarose, avoid trapping bubbles, for Imin and marked for orientation by stabbing the 

agar through the overlaid membrane. A second duplicate lift was taken by placing a 

fresh piece of membrane on the agarose for 2 minutes and marking the initial 

alignment. Each membrane was then placed face up on Whatman 3MM paper soaked 

in: denaturing solution (1.5M NaCl; 0.5M NaOH) for 2 minutes; neutralising solution 

(0.5M Tris.HC1 pH8.0; 1.5M NaCl) for 3 minutes; neutralising solution for 3 minutes 

and then rinsed in 2xSSC. The membranes were then air dried briefly and baked at 

800C for 2 hours. 

Screening Library 

Filters were prehybridised in prehybridisation buffer (5xDenhardt's; 6xSSC; 0.5% 

Sarkosyl; lOOj.ig/ml denatured herring sperm) at 650C for 2-3 hours. Overnight 

hybridisation was performed at 650C with a 32P-labelled probe (denatured and 

snapped cooled before addition) at 10 6cpmIml hybridisation buffer (5xDenhardt's; 

6xSSC; 0.5% Sarkosyl; lOOjig/ml denatured herring sperm; 100pg/ml dextran 

sulphate). Filters were washed in buffer (2xSSC; 0.1%SDS) four times for 30 

minutes at 650C and exposed to autoradiographic film at -80 0C. 

The exposed film was developed and aligned to the library plate to identify positive 

plaques. 

Isolation of Single Positive Plaques 

Positive plaques from the first primary screen were cored with the wide end of a sterile 

blue Gilson tip and placed in 500p1 of SM buffer. Elution of the phage was 
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encouraged by vigorous shaking for 2 hours. A secondary screen was then performed 

with serial dilutions of each primary plaque in 100tl of SM bufffer mixed with 100i1 

of cells plated upon 90mm agar plates in 3m1 of top agarose. Thereafter steps 3, 4 and 

5 were repeated, until a single positive plaque could be isolated to give a pure 

population of positive plaques. 

6. Preparation of Phage DNA 

Phage was eluted from a single positive plaque overnight in 500jil of SM buffer at 

40C. 100p1 of phage stock diluted to 200jil with SM buffer was added to 100p1 

C600Hfl cells, freshly cultured til 0D600=0.6, and incubated at 37 0C for 30 minutes 

for the phage to adsorb to the bacterial cells. The phage/bacterial cell mix was then 

used to inoculate a 15m1 LBroth culture supplemented with 10mM MgSO4 that was 

grown at 37 0C with vigorous shaking until lysis. For complete lysis 75j.il of 

chloroform was added to the lysate and shaken at 37 0C for a further 10 minutes. The 

lysate was then centrifuged at 4K for 10 minutes and the supernatant containing the 

phage removed to a fresh tube. 

lOml TM buffer (10mM Mg504; 10mM Tris.HC1 pH7.5); 16jig/ml DNaseI; 16pg/ml 

RNaseA, were added to lOmI of lysate and incubated at room temperature for 15 

minutes. 0.5M NaCl and 2.2g of PEG were added and the mix incubated at room 

temperature until the PEG dissolved and thereafter placed on ice for 15 minutes. The 

phage DNA was pelleted by centrifuge at 9.5K for 10 minutes at 4 0C, resuspended in 

300tl TM and extracted twice with an equal volume of chloroform. 25mM EDTA and 

0.5M NaCl were added to the aqueous phase and extracted with an equal volume of 

phenol followed by extraction with an equal volume of chloroform. The aqueous 

phase was precipitated with 2.5volumes of 100% ethanol on ice for 10 minutes. The 

DNA was pelleted by centrifugation, washed with 70% ethanol, air dried and 

resuspended in 50pJ. of TE. 
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7. cDNA Insert Subcloning 

The size of insert contained in each phage clone was determined by restriction enzyme 

digestions. Southern blot analysis was performed to confirm the hybridisation of the 

clones to the desired sequence. 

The cDNA inserts were subcloned into the EcoRl site of pZero-2 using the materials 

and methods provided with the Zero Background/Kan PLUS Cloning Kit 

(Invitrogen). The kit uses a positive selection mechanism based upon interruption of 

the lethal ccdB gene by the insertion of a DNA fragment to allow survival of the 

bacterial cell carrying the vector. cDNA inserts were sequenced using the flanking Sp6 

and T7 primer sites. 

2.1.17 Plasmid Constructs used for Molecular Analysis 

Table 2.1 lists the plasmid constructs, polymerase sites, restriction enzyme sites and 

probe fragments used for analysing gene-trap integrations. PT1.ATG was the gene-

trap vector electroporated into RI ES cells to generate gene-trap cell lines R68 and 

R124 (Forrester et al., 1996). RACE clones are RACE-PCR products derived from 

R68 and R124 ES cell RNA respectively cloned directionally into pBluescript II KS-. 

cDNA clones are cDNAs isolated from the Clonetech Mouse Heart 5'- Stretch plus 

cDNA library, screened with R124 RACE trapped novel sequence KXE, cloned into 

pZerO-2. Polymerase sites flanking multiple cloning sites were used to sequence 

cDNA fragments. Probe fragments were used for Southern and Northern blot analysis 

to show the presence of trapped And vector sequences. Riboprobes were used for 

RNase protection assays to confirm the presence of fusion (endogenous-reporter gene) 

transcripts. The plasmid maps are listed in appendix I. 
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Probe Fragment Gener 

Plasmid 

PT1.ATG 

PT1 .ATG 

PT1.ATG 

pB.R68. 13 

pB.R68.32 

pB .R 124.4 

pB.R124.1 1 

pB.R124.1 1 

pZ.TRI 

pZ.TnI 

pZ.VRJ 

Fragment RE site 

En-2 exon BamilI 

En-2 intron BamHJJHindIll 

lacZ EcoRTJC1aI 

- KpnISpeI 

- Kpn/SpeI 

- KpnISpeI 

KX KpnJJSpeI 

KXE KpnJJSpeJfEarI 

TRI EcoRI* 

TnT NotI 

YRT EcoRT* 

S eq . S ites 

T7/T3 

T7/T3 

T7/T3 

T7/T3 

T7/T3 

T7/SP6 

T7/SP6 

T7/SP6 

ation Rib oprobe _Generation 

Size (kb) Line POI Size(nt) 

0.5 - - - 

1.0 - - - 

2.2 - - - 

0.5 Spel T3 444 

0.3 Spel T3 307 

0.5 Spel T3 500 

0.5 Spel T3 463 

0.3 - - - 

1.6 - - - 

0.6 - - - 

0.8 - - - 

Table 2.1: Plasmid constructs used for molecular analysis. 

PT1 .ATG gene-trap vector; pB, plasmids generated by cloning RACE products into pBluescript II KS(-); pZ, plasmids generated by cloning 

cDNA fragments into pZero-2. EcoRI*  could also be digested with Sall and NotI. 



2.2 ES Cell Methodology 

General reference was made to Hogan et al., 1994 for ES cell methodology. All ES 

cell manipulations were performed in laminar flow sterile hoods. Sterility was 

maintained by using strict microbiological techniques which included wiping the hood 

down and spraying all items entering the hood with 70% industrial methylated spirits 

(IMS). Solutions used for ES cell culturing were filtered for sterility and tested for 

contaminations. Sterile disposable tissue culture grade plasticware (Corning) was used 

for culturing. 

2.2.1 Reagents for ES Methods 

Differentiation Inhibiting Activity/Leukemia Inhibitory Factor (DIA/LIF) was prepared 

by Douglas Colby and Derek Rout at the CGR by transient expression of murine or 

human DIA/LIF expression plasmids in COS-7 cells using the previously described 

method (Smith, 1991). Serial dilutions of the supernatant were tested on ES cells for 

their ability to maintain pluripotency. Routinely lOOx strength of the minimal dilution 

of the preparation required to keep ES cells undifferentiated was used as the working 

concentration. 

15% FCS ES cell culture medium: lxGlasgow MEM (BHK21) (Gibco); 0.25% 

sodium bicarbonate (Gibco); 0. 1xMEM non-essential amino acids (Gibco); 4mM 

glutamine(Gibco); 2mM sodium pyruvate(Gibco); 0.1mM 2-mercaptoethanol 

(Sigma); 15% foetal calf serum (FCS) (Globephann, Surrey). 

All-trans Retinoic Acid: All-trans retinoic acid (Sigma) prepared as 20mg/mi stock 

in DMSO, used at 10 6M in 5% FCS ES cell medium. 

• Trypsin solution: 0.025% trypsin (Gibco); 0.1% chicken serum (Flow Labs) and 

1.3mM EDTA disodium salt (Sigma) in PBS. 

• PenlStrep: 50 units Penicillin; 50j.ig/ml Streptomycin (Gibco) in PBS 

• Gelatin: 0.1% gelatin (Sigma) in PBS. 
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2.2.2 ES Cell Growth and Maintenance 

Undifferentiated ES cell cultures were grown in gelatinised plastic flasks in ES cell 

culture medium supplemented with DIA/LIF, as described by Smith 1991. Cultures 

were maintained in humidified incubators at 37 0C under 7% CO2. Cultures were 

checked every day and not allowed to grow past confluency. In practice cells were 

passaged every two days. Media from the cultures was removed by aspiration and the 

cells were washed twice with Smls of PBS, prewarmed to 370C.  Cells were then 

dissociated by incubation with imi of trypsin at 37 0C for 2-3mm. The flask was 

tapped to ensure complete dissociation of the cells from the surface of the flask. This 

was monitored using an inverted Olympus microscope CK2. When a single cell 

suspension was reached, 4mls of ES cell medium were added to stop trypsinisaton. 

This single cell suspension was centrifuged for 5 minutes at 1200rpm, excess media 

was removed and the pellet was resuspended in 5mls of fresh culture media. Cell 

numbers were determined and lx 10 6  cells were seeded to a new 25cm 2  gelatinised 

flask containing lOmi of ES cell medium supplemented with DIA/LIF. 

2.2.3 Freezing ES Cells 

ES cells from a 25cm2  flask were trypsinised into a single cell suspension and then 

pelleted and resuspended in 0.5ml of freezing mix (10% dimethyl sulphoxide in ES 

cell medium) and rapidly aliquotted into Nunc cryotubes and placed at -80 0C overnight 

before being transferred to a liquid nitrogen cell bank for long term storage. 

2.2.4 Thawing ES Cells 

Frozen ES cell vials were taken directly from the liquid nitrogen storage and quickly 

thawed in a 370C water bath. The contents of the vial were transferred to a centrifuge 

tube containing lOml of prewarmed ES cell medium and centrifuged at 1200rpm for 3 

minutes. Excess media was removed and the pelleted cells were resuspended in lml of 
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ES cell medium. This lml cell suspension was then used to seed a 25cm 2  flask 

containing 9m] of ES cell medium. The medium was changed after 8 hours of culture 

to remove remove any dead cells. Subsequently the culture was maintained as 

described above (2.2.1). 

2.2.5 Exposure of ES cells to Retinoic Acid 

Gene-trap ES cells were exposed to RA over a period of 48hours to induce 

differentiation. The response of the trapped gene was monitored by quantifying the 

reporter gene activity at the protein and RNA level. Cultures were set up: 3x10 5  ES 

cells per 6-well plate for j3-galactosidase (f3—gal) assays and lx 106  cells were plated in 

90mm tissue culture plates for northern blot analysis in 15% FCS+LIF. .The next 

morning the media was changed to 5% FCS-LIF and 10 6M RA was added to the 

cultures for 0, 6, 12, 24 and 48 hours. All timepoints were done in duplicate and the 

media was changed at each time point in all cultures to keep the activity of RA optimal. 

Control cells were grown in 15% FCS+LIF. 

2.2.5.1 8-galactosidase Assay 

The cells were harvested by trypinisation, washed in phosphate buffered saline (PBS) 

and resuspended in 0.25M Tris pH7.5. After three cycles of freeze/thawing in liquid 

nitrogen, the samples were centrifuged at 13K for 5 minutes and the supernatant was 

transfered to a fresh tube. The protein concentrations in the supernatant were 

determined using the Biorad protein assay kit and comparing the optical density 

(595nm) of samples to a standard BSA protein concentration curve. The 13- 

galactosidase assays were performed using equivalent amounts of protein (250jig) in 

0.5ml of 8-gal buffer (60mM Na2HPO4, 40mM NaH2PO4, 10mM KC1, 1mM 

Mg C 12,  50mM B -mercaptoethanol) containing 0.2mg 0-Nitrophenyl B-D- 
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Galactosidase (ONPG) at 37 0C overnight. The reaction was stopped and optical 

density was measured at 420nm. 

2.2.5.2 Northern Blot Analysis 

Cultures were set up in parallel to the protein assay cultures to measure the levels of lac 

Z transcripts. Total RNA was isolated at the appropriate timepoints using a modified 

guanidinium isothiocynate and phenol RNA isolation protocol (2.1.10). 15jig of RNA 

from each sample were used for nothem blot analysis following standard procedures 

(2.1.11). Blots were hybridised (2.1.13) with 32P-labelled lacZ probe (2.1.12) to 

detect the level of the lac Z fusion transcripts. The blots were stripped (2.1.13) then 

hybridised with 32P-labelled actin probe to standardise the amount of RNA loaded on 

the gel. The blots were reprobed with 32P-labelled RARJ3 probe to confirm the activity 

of RA, RARI3 is directly regulated by RA at the transcriptional level. Phosphoimaging 

analysis allowed the northern blot signals to be measured and quantified relative to 

actin signals. 

2.2.6 In Vitro Cardiac Differentiation 

Embryonic stem (ES) cells were grown on gelatin in the presence of LIF until 

confluent. The cells were then trypsinised and made into a suspension of 3x10 4  cells 

per ml of ES cell media supplemented with DIA/LIF. 300 cells (lOjil of suspension) 

were used to prepare a single embryoid body in a hanging drop - multiple drops of 

suspension were placed on the lid of a bacterial petri dish which was then placed on 

the base of the dish containing lOmi of sterile water. The cells aggregate together, by 

the force of gravity, to form embryoid bodies. After 2 days in hanging drops the 

embryoid bodies were transferred to a bacterial dish containing ES cell media 

supplemented with Pen/Strep (DIA/LIF was added) and grown in suspension for a 

further 5 days. The medium was changed every second day. After 5 days in 
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suspension the embryoid bodies were plated on gelatin coated 24-well plates 

(whenever possible a single embryoid body was placed in a well) in ES cell media 

supplemented with PenlStrep. Thereafter plated embryoid bodies were checked daily 

for beating cells. After overnight plating beating cardiomyocytes were found in 

approximately 80% of embryoid bodies. 

2.3 Biological Specimens 

2.3.1 Animal Maintenance and Breeding 

Mice were housed in a constant light-dark cycle, 14 hours light and 10 hours dark, 

environment. A supply of water and chow food was available to the mice at all times. 

In these conditions females ovulate every 4-5 days and males tend to mate females in 

estrus during the middle of the dark period. Thus natural matings were set up 

overnight and females were examined for vaginal plugs (coagulation of semen 

proteins) the next morning. The presence of the plug was taken as 0.5 days of 

gestation. The gestational period for a mouse is 20 to 21 days depending on the 

particular mouse strain. Litters born from natural matings were left with the parents as 

standard practise until they reach 3 weeks of age when they are weaned i.e. sexed and 

separated from the parents. Tail tips are also taken at this age for genotyping purposes 

(Southern blot analysis 2.1.9). At 6 weeks of age, male and female mice have reached 

sexual maturity and can be used for mating purposes. 

2.3.2 Breeding Protocol for the R124 Gene-Trap Line 

In this study inbred strains, 129CGR and C5713L/6, and the outbred strain MF1 were 

used to assess the in vivo function of the trapped gene. Backcross matings were set up 

with'pure'background females and males heterozygous for the gene-trap integration. 

Intercross matings were set up between heterozygous male and female siblings from 



the same litter. Genotyping of backcross litters was done by detecting the presence of 

lacZ by Southern blot analysis. Intercross litters were intially genotyped by 

quantifying the number en-2 copies relative to two endogenous copies in wildtype 

animals by Southern blot analysis combined with Phosphoimaging analysis. This was 

verified by quantifying the number of lacZ copies in homozygotes relative to 

heterozygotes. Upon isolation of endogenous trapped sequences by RACE-PCR, a 

RFLP was determined which allowed an unambiguous distinction between wild type, 

heterozygous and homozygous animals by Southern blot analysis. 

2.3.3 Animals Housed in Metabolic Cages 

Metabolic cages are designed to collect urine samples and allow the volume of water 

intake to be measured. Test and control animals were housed in metabolic cages for 24 

hour periods with water but no food in the same light/dark cycle as all other animals. 

Urine secreted by each animal was collected for volume and osmolarity measurements. 

Osmolarity of urine is a measure of the salt concentration present in urine. A 

osmometer 0M80 1, calibrated using salt concentration standards, was used to measure 

urine osmolarity (Osmol/kg). 

2.3.4 Specimens for Histology 

Timed matings were set up for the collection of embryos or fetuses at specific stages of 

gestation. Pregnant females were culled by a schedule one method i.e. cervical 

dislocation and offspring explanted into cold phosphate buffered saline (PBS). All 

extraembryonic tissues were removed from embryos and fetuses (i.e. decidua, yolk 

sac, placenta), in addition fetuses (11 days post coitum and older) were decapitated 

before any experimental procedure. All specimens collected were checked for 

normality by examining stage specific features eg. beating and looped heart; number of 

somites; turning of the embryo; neural tube closure; number of pharyngeal arches; fore 
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and hind limb development. Adult tissues, collected from animals culled by a schedule 

one method, were dissected free of any connective tissue and fat. Organs were 

examined for any gross abnormalities and weighed. In parallel, embryonic and adult, 

samples were taken from wild type siblings as controls. 

2.3.4.1 TESPA coating slides 

Microscope slides were treated with: 10% HC1 in 70% ethanol for 10 seconds; rinsed 

in dH20 for 10 seconds; dehydrated in 95% ethanol for 10 seconds; baked dry at 

1500C for 5 minutes; cooled down to room temperature; dipped in 2% TESPA in 

acetone for lOs; rinsed twice in 100% acetone for 10 seconds each; rinsed in dH20 for 

10 seconds and baked dry overnight at 42 0C. TESPA coated slides were stored at 4 0C 

with silca gel. 

2.3.4.2 Wax Histology 

Dissected specimens were fixed in Bouin's fixative (BDH) overnight at room 

temperature. After fixation the specimens were transferred to 70% ethanol for storage 

until the waxing procedure. For wax embedding specimens were dehydrated through a 

gradient of alcohols (70%, 95%, 95%, 100%, 100% ethanol) for 1 hour each and then 

cleared in xylene for 1 hour. Following clearing the xylene was replaced by molten 

wax and the specimens incubated at 550C for a total of 3 hours. Wax was changed 

every hour (for specimens older than 11 days post coitum and adult tissues the last 

wax was extended to overnight at 550C). The specimens were then orientated and 

embedded in fresh wax. This was left to set overnight before sectioning. 

Sections were cut at a thickness of 7-1 0im using a microtome, floated on a waterbath 

at 420C to flatten and mounted on TESPA coated slides (2.3.4.1). The slides were 

then dried on a hotplate at 42 0C for 30 minutes and baked overnight at 42 0C. 
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Following this the sections were counterstained with haematoxylin and eosin 

(2.3.4.3). 

2.3.4.3 Counterstaining Wax Sections with Haematoxylin and Eosin 

Wax sections were treated as follows: dewaxed in xylene for 10 minutes; rehydrated 

through alcohol series (100% , 95%; 70% ethanol) for 5 minutes each; rinsed in water 

for 5mm; stained with haematoxylin [Sigma supplied stock solution diluted 1/12 in 

water] for 5 minutes; rinsed in water till clear; stained with eosin (BDH)[0.1% solution 

in 70% ethanol] for 5 minutes; dehydrated through alcohol series (95%, 100% ethanol) 

for 10 minutes each; xylene/histoclear for 10 minutes and coverslipped using DPX 

mountant (BDH). 

2.3.4.4 Cryostat Sections 

Specimens for cryostat sectioning were freshly dissected, placed in OTC, immediately 

frozen in liquid nitrogen and stored at 800C.  Specimens were removed from -80oC 

and placed in the cryostat at the cutting temperature (-15 to -200C) for 1-2 hours to 

equilibrate before sectioning. 7-1Olim thick sections were cut and lifted onto TESPA 

coated slides (2.3.4.1) prewarmed to room temperature. The sections were then dried 

onto the slides at room temperature (can be stored at 20 0C if necessary at this stage) 

before staining for x-gal activity (as described below). Sections stained for x-gal 

activity were then counterstained with Haematoxylin and Eosin (2.3.4.6). 

2.3.4.5 X-gal Staining 

The x-gal staining protocol involves fixing tissue in a gluteraldehyde fixative followed 

by rinsing in a detergent phosphate wash buffer to remove the fix and finally staining 

with a x-gal (5-bromo-4-chloro-3-indoly1-3-D-galactopyranoside) stain. This protocol 

can be adapted to stain cells, embryoid bodies, cryostat sections or whole embryos 
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(younger than 11.5 days post coitum) by varying the time for fixation and washing. 

Stated below is the protocol used for staining whole 8.5 days post coitum (d.p.c.) 

embryos. The times for fixing and washing cells, embryoid bodies, cryostat sections 

or whole embryos is tabulated. 

8.5 d.p.c. embryos were rinsed in phosphate buffer (pH7.3) followed by fixation in 

fix solution (0.2% gluteraldehyde; 5mM EGTA (pH7.3); 2mM MgCl2 in 0. 1M 

sodium phosphate pH7.3) for 15 minutes at room temperature. The embryos were 

then washed in wash buffer (20mM MgCl2;  0.01% deoxycholate; 0.02% nonidet in 

0. 1M sodium phosphate pH7.3) three times for 15 minutes each at room temperature 

and stained with x-gal stain (1mg/mi X-gal dissolved in di-methyl formamide; 250mM 

potassium ferrocyanide; 250mM potassium ferricyanide in wash buffer) overnight at 

370C. After staining, stain was replaced with wash buffer and the samples stored at 

4°C. 

Tissue 	 Fix Time 	Wash Time 

	

(minutes) 	(minutes) 

Cells 	 5 	 5 

Cryostat sections 	 5 	 5 

Embryoid Bodies 	 10 	10 

Embryos (d8.5-10.5 p.c.) 	15 - 30 	15 - 20 

2.3.4.6 Counterstaining Cryostat Sections with Haematoxylin and Eosin 

Cryostat sections were treated as follows: stained with haematoxylin [Sigma supplied 

stock solution diluted 1/12 in water] for 2.5 minutes; rinsed clear in water; stained with 

eosin (BDH)[0.1% solution in 70% ethanol] for 1 minute; dehydrated through alcohol 

(95%, 100% ethanol) for 10 minutes each; xylene/histoclear for 10 minutes and 

coverslipped counterstained using DPX mountant (BDH). 
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2.3.4.7 Microscopy and Photography of Specimens 

Whole tissue specimens were examined using Olympus SZ40 and Olympus SZH1O 

dissection microscopes and photographed using an Olympus C-35AD-4 camera. 

Sections were examined using a Wild Leitz Laborlux S microscope and photographed 

using a Wild Leica MPS52 camera combined with a Wild Leica MPS46 exposure box. 
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Chapter 3 



3.0 Preliminary Characterisation of Gene-Trap Integrations 

R68 and R124 

Introduction 

ES cell lines, R68 and R124, were isolated in a gene-trap screen designed to identify 

genes involved in the process of differentiation (Forrester et al., 1996). In vivo 

analyses showed that the reporter gene was expressed in the hearts of tetraploid 

aggregation chimeras generated from both gene-trap ES cell lines and were therefore 

chosen for further analysis. This chapter describes the preliminary characterisation of 

the R68 and R124 gene-trap integrations. The preliminary characterisation involved 

assessment of the ES cell lines: in vitro by confirming their response to RA-exposure 

and their ability to differentiate into cardiomyocytes; in vivo by transmitting the 

integrations through the germline to determine whether the cell lines had retained their 

pluripotency and to characterise reporter gene activity; and molecular analysis to 

determine whether the endogenous trapped gene sequences could be cloned. 

3.1 Response of Reporter Gene Activity to Retinoic Acid 

The gene-trap ES cell lines were grown under the same conditions as in the original 

RA screen (Forrester et al., 1996) and exposed to 10-6  M RA (Chapter 2, Section 

2.2.4). Equal quantities (250jtg) of protein were assayed to determine p3-gal activity. 

As observed in the original screen both cell lines showed a repression of n—gal activity 

after 48 hours of RA exposure (Table 3.1). The data also revealed slightly elevated 

levels of 3—gal activity after 12 and 6 hours of RA-exposure in gene-trap cell lines 

R68 and R124 respectively (Table 3.1). 



Table 3.1: 3-gal Response to RA-exposure 
RA Treatment (hours) 	 Reduction 

Cell Line 	0 	6 	12 	24 	48 	0 vs 48 

R68 	506± 14 561±55 630±45 388±9 251±3 	0.50 

R124 718± 16 767± 1 629± 19 433±40 259±9 	0.64 
Values are the mean of four independent 0D420 (10) measurements ± standard error 
vs, versus. 

RNA isolated from parallel cultures was analysed by northern blotting combined with 

phosphoimaging analysis. The presence of the fusion transcript was detected with a 

lacZ probe (northern blots not shown) and quantified relative to f3-actin loading 

controls. Changes in transcript levels paralleled the changes observed at the protein 

level (Table 3.2). Elevated levels of RARf transcripts were detected after 6 hours of 

RA-exposure (Table 3.2) confirming that the ES cell lines were responding to RA-

activity (Manglesdorf etal., 1994). 

Table3.2: Quantitation of Fusion Transcripts 

	

RA Treatment (hours) 	 Reduction 
Cell Line Transcript 	0 	6 	12 	24 	48 	0 vs 48 

R68 	lacZ 	92±6 139±14 183±11 88±4 	62±4 	0.33 

RAR 16 	15±2 	35±3 	na 	na 	na 	na 

R124 	lacZ 	16±2 	47±3 	25±2 	18±2 	8±2 	0.50 

RARJ3 	33 ± 5 	89 ± 5 	na 	na 	na 	na 

Values are the mean of two independent phosphoimaging measurements (10-2) ± range. 
na, not applicable; vs, versus. 

3.2 In Vitro Differentiation 

To assess the specificity of the reporter gene activity in R68 and R124 gene-trap 

integrations to cardiogenesis both ES cell lines were differentiated in vitro to generate 

beating cardiomyocytes. 

ES cells differentiate into many lineages including beating cardiomyocytes (Sanchez et 

al., 1991) which express cardiac specific genes in a temporal pattern resembling early 

cardiogenesis. In addition, electrophysiological measurements of these beating cells 
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show the presence of cardiac specific ion channels and characteristic cellular potentials, 

which confirm that the beating cells are cardiomyocytes (Wobus et at., 1991). 

3.2.1 Differentiation of Embryoid Bodies 

The in vitro generation of beating cardiomyocytes was achieved using the hanging 

drop protocol to prepare embryoid bodies and then allowing these to differentiate in 

suspension by removing DIA/LIF (Chapter 2 Section 2.2.6). 

After 5 days in suspension the embryoid bodies (EBs) were plated onto gelatin coated 

tissue culture dishes and monitored 1, 4 and 8 days after plating. One day after plating 

the EBs had adhered to the gelatin coated surface and cells could be observed 

spreading away from the large multilayered central embryoid body (Figure 3. 1A). 

Two different waves of cells migrating from the EB were observed: the first wave 

were endodermal-like flat cells; the later second wave, (sitting on top of the 

endodermal-like cells), were slightly rounded cells. Beating cells were found in the 

central part of the EB usually in a single site covering up to 50% of the EB. In 

addition, multiple smaller sites were observed beating in the second wave of cells, 

often two sites close together could be found beating synchronously. Approximately 5 

- 25% of the total embryoid body area was found to be beating in most cases. The 

morphology of beating cells and regions are different from surrounding cells, cells are 

more round and seem to overlap each other generating a network/spiraling pattern 

(Figure 3.2 and 3.3). Beating cardiomyocytes were observed in 80% of all embryoid 

bodies after overnight plating. 

Four days after plating the embryoid bodies were found to have spread more and the 

central mound of cells was flatter (Figure 3.1B). The beating regions had also 

increased proportionally. No significant change in the number of embryoid bodies 

with beating cardiomyocytes was observed. 
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Figure 3.1: In Vitro Differentiation of ES cell derived EBs. 

EB plated for 1 day, first wave of cells emigrating; 

EB plated for 4 days, second wave emigrating. 

Scale bar, lOOpm. 
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Eight days after plating the embryoid bodies had spread further, the central region of 

embryoid bodies was much flatter, possibly only two to three layers thick. Again no 

significant change in the number of embryoid bodies with beating cardiomyocytes was 

observed but by this stage other differentiated cell types such as neuronal cells and 

haematopoetic cells could be distinguished morphologically. 

3.2.2 3-gal Activity in the In Vitro Differentiated R68 Cell Line 

In vitro undifferentiated R68 ES cells, grown in the presence of LW, stained for n-gal 

activity display a single cytoplasmic spot of expression. Embryoid bodies in hanging 

drops generated from R68 ES cells, in the presence of LIE, also display reporter gene 

expression in all cells as a single deposit. 

In suspension, in the absence of LW, reporter gene activity becomes restricted to 

multiple clusters of cells within the embryoid body. One day after plating, 3-gal 

activity was found to be coincidental with cells that were beating. A simple drawing of 

the cells which were beating in the culture prior to staining was used to, correlate 

beating cells with stained cells. Expression was also found in some regions of 

unspread non-beating cells in embryoid bodies, it is most likely that these were 

undifferentiated ES cells. This could be tested by staining the cells for alkaline 

phosphatase activity. No beating or stained cells were observed in the first wave of 

endodermal-like cells. X-gal staining after four days of plating was the same as day 1, 

however the number of non-beating sites stained were reduced. After eight days of 

plating reporter gene expression was restricted exclusively to the beating 

cardiomyocytes derived from the R68 ES cells (Figure 3.2). No staining was observed 

in other differentiated cell types such as neuronal or haematopoetic cells. 

In conclusion, reporter gene activity is detected in undifferentiated R68 ES cells and 

exclusively in vitro in R68 ES cell derived beating cardiomyocytes. 
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Figure 3.2: R68 ES cell derived Beating Cardiomyocytes. 

Cardiomyocytes, stained for reporter gene activity, are morphologically distinct. 

Scale bar, 101.tm. 

Figure 3.3: R124 ES cell derived Beating Cardiomyocytes. 

Two adjacent groups of cardiomyocytes, beating in synchrony in culture, stained for 

reporter gene activity. Scale bar, lOim. 
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3.2.3 f3-gal Activity in the In Vitro Differentiated R124 Cell Line 

Undifferentiated R124 ES cells stained for f-gal activity displayed a single 

cytoplasmic spot of expression. The pattern of reporter gene expression observed in 

embryoid bodies derived from R124 ES cells over eight days of plating is similar to 

that observed with R68 ES cell line. After eight days, reporter gene expression is 

detected solely in the in vitro differentiated beating cardiomyocytes (Figure 3.3). 

3.3 Germline Transmission of the Gene-Trap Integrations 

3.3.1 R68 Gene-Trap Integration 

Attempts have been made to transmit the R68 gene-trap integration through the 

germline to generate animals heterozygous for the integration but these have been 

unsuccessful. R68 ES cells were injected into a total of 440 blastocysts collected from 

C57BL/6 females, by Kathryn Newton and Jan Ure. Six founder chimeras (4 males 

and 2 females) resulted from a total of 86 animals born but none successfully 

transmitted the integration through the germline. Morula aggregations (46) gave 2 

chimeras (1 male and 1 female) out of 17 animals born. The chimeras generated from 

morula aggregations were also unsuccessful in transmitting the integration through the 

germline. The low number of chimeras developing to term suggests that the condition 

of the ES cells is suboptimal, and that high chimerism resulted in midgestational death. 

The introduction of genetically engineered vectors into the ES cell genome can cause 

large rearrangements of the genome which lead to lack of germline transmission (Yu et 

al., 1996). To eliminate this possibility R68 ES cells were karyotyped (by Derek Rout) 

and no gross disturbance of the ES cell genome was observed but subtle 

rearrangements cannot be excluded (See Section 3.5). As a last resort in vitro 

fertilisation with sperm isolated from R68 founders was attempted (Hogan et al., 

1994). Although the sperm derived from chimeras seemed normal and motile under the 



light microscope this also proved to be unsuccessful. The lack of germline 

transmission therefore limits future experiments in vivo with this gene-trap line. 

3.3.2 R124 Gene-Trap Integration 

R124 ES cells were injected into C57BL/6 blastocysts by Jan Ure to generate 

chimeras. Three male chimeras 287, 288 and 289 (strong chimeras as predicted from 

coat colour) resulted from 16 independent blastócyst injections. Heterozygous 

embryos, collected from MF1 females mated to each chimera, displayed reporter gene 

activity restricted to the developing heart (Figure 3.4C), which had been anticipated 

from the reporter gene activity observed in tetraploid chimeras generated from R124 

ES cells (Forrester et al., 1996). Chimera 289 was backcrossed onto both inbred and 

outbred genetic backgrounds. To date the R124 integration has been backcrossed to 

C57BL/6, l29/CGR and MF1 to F6, F4 and Fl generations respectively. 

3.4 in Vivo Reporter Gene Activity in R124 Heterozygotes 

3.4.1 Reporter Gene Activity Controls 

All expression studies were done on animals that had been backcrossed to at least the 

F2 generation. Patterns of reporter gene activity were verified by staining at least ten 

embryonic specimens and at least 3 tissue/organ specimens for each stage on inbred 

and outbred mouse backgrounds. For every heterozygous specimen stained at least 

one wild type sibling/sibling tissue was stained as a control for reporter gene activity. 

Background endogenous galactosidase activity was kept to a minimum by staining at 

pH 7.3 (Chapter 2, Section 2.3.4.5) which is the optimal for the bacterial reporter 

gene activity (Alam et al., 1990), in contrast to mammalian galactosidase which has a 

pH optimum of 5.4. However, endogenous galactosidase activity was observed in 

wild type kidney, testis, ovaries and gut tissue in inbred and outbred heterozygous 

TO 



specimens. This activity was observed as diffuse stain and could be distinguished 

from the punctate staining pattern displayed by the bacterial reporter gene 

3.4.2 Reporter Gene Activity during Mouse Embryogenesis 

Whole embryos and cryostat sections of R124 heterozygotes were stained for reporter 

gene activity. During embryogenesis reporter gene activity was detected as early as 7.0 

dayspost coitum (d.p.c.) (before any cardiac mesenchyme is determined) in single 

cells of the embryonic ectodermal layer (Figure 3.4A). These single cells could be 

pluripotent progenitor cells akin to ES cells and would be consistent with expression 

of the reporter gene in undifferentiated ES cells. At 7.5 d.p.c. reporter gene activity 

was detected in single cells within the cardiac mesoderm and along the whole length of 

the neuroectoderm (not shown). Once the primitive heart tube has formed and begins 

to loop (8.5 d.p.c.) an increasing number of cells within the developing heart display 

reporter gene activity (Figure 3.4B). By this stage the neural plate begins to fold and 

form the neural tube and it was observed that reporter gene activity was lost in the 

closed parts of the neural plate (not shown). At 9.0 d.p.c. of embryogenesis reporter 

gene activity was detected exclusively in the developing heart both in atria and 

ventricles (not shown). Exclusive expression of the reporter gene in the heart of 

midgestation fetuses was demonstrated by wholemount x-gal staining of a 10.5 d.p.c. 

fetus (Figure 3.4C). At 19 d.p.c. expression of the reporter gene can also detected in 

the choroid plexus of the brain. Cryostat sections of the heart (from 10 to 19 d.p.c.) 

reveal that reporter gene activity is detected in all cardiomyocytes in the myocardium 

and endocardium (not shown). 

3.4.3 Reporter Gene Activity After Birth 

After birth reporter gene activity was studied by staining 7-1 0.tm cryostat sections of 

organs and tissues dissected from heterozygote males and females. Stages examined 
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Figure 3.4: Reporter Gene Expression during Embryogenesis 

Sagittal cryostat sections stained for reporter gene expression: 

Al. day 7.0 p.c. embryo, punctate expression in ectodermal cells and some staining in the mesoderm and extraembryonic amnion region; 
A2. orientation of Al, boxed; 

B 1. day 8.5 p.c. embryo, punctate expression in neural epithelia and some cells of developing looped heart; 

B2. orientation of B 1, boxed; 

C. wholemount stained day 10.5 d.p.c. fetus, expression exclusive to the heart (expression in nasal placode background). 

am, extraembryonic amnion; ec, ectoderm; me, mesoderm; ne, neural epithelia; dlh, developing looped heart; arrow, anterior to posterior 

orientation of embryo. 

Scale bar, 50pm. 
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included: 1 to 14 dayspost partum (d.p.p.) (pups collected daily); 21 to 49 d.p.p. 

(pups collected every 7 days) and 2 to 10 months p.p. (animals collected every 

month). To keep illustrations to a minimum temporal changes of reporter gene activity 

in each tissue have not been shown, instead adult tissues (10 weeks old) have been 

shown (Figure 3.5). 

3.4.3.1 Heart Expression 

Newborn pups, 1 and 2 d.p.p., continued to display reporter gene activity throughout 

the heart. In contrast, reporter gene activity could not be detected in the heart at 9 

d.p.p. (2 males and 2 females from C57BL/6 background and 2 males from the MF1 

background were examined). Examination of serial sections and whole hearts stained 

for reporter gene activity from 6 and 7 d.p.p pups showed increasingly patchy reporter 

gene activity in the heart up until 9 d.p.p. when no activity was detectable. At 11 d.p.p 

reporter gene activity reappeared as patches in the heart and by 14 d.p.p activity of the 

reporter gene was detected throughout the heart. Homogenous activity of the reporter 

gene in the heart remained constant after this stage and into adulthood (6 weeks to 18 

months old tested) (Figure 3.5A). 

3.4.3.2 Kidney Expression 

Reporter gene activity was first detected in the proximal tubules of the kidney at 6 

d.p.p. and continued to adult stages (Figure 3.5C). Background diffuse staining due 

to the activity of endogenous galactosidases in the kidney was observed but this was 

eliminated by comparison to wild type controls. 

3.4.3.3 Gonad Expression 

By 9 d.p.p reporter gene activity was detected in mesenchymal cells and primordial 

oocytes of the ovary and in mucosal cells of the oviduct adjacent to the ovary in female 
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Figure 3.5: Reporter Gene Expression in Adult Tissues 
Cryostat sections stained for reporter gene expression: 

cardiomyocytes (arrowhead) in the heart ventricle, longitudinal section; 
Sertoli cells (arrowhead) in the cortex of seminiferous tubules in the testis, transverse section; 
proximal tubules (arrowhead) in the cortex of the kidney, longitudinal section; 
grey ( arrowhead) and white matter of the brain, coronal section; 
mesenchymal cells (arrowhead) in the ovary, transverse section; 
mucosal cells (arrowhead) in the oviduct, transverse section. 

Scale bar, 50mm. 

Orientation and plane of section (i-i) for each organ. note: panel E includes oreinta-
tion and plane of section for Figure 3.5E -and F, the ovary and oviduct stained for 
reporter gene expression here. Schematics representing histological section (box) 
through the brain, testis and kidney to clarify sites of reporter expression. 
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pups. In males reporter gene activity was detected in the Sertoli cells of the testis at the 

same stage. Activity in the ovaries (Figure 3.5E), oviduct (Figure 3.5F) and testis 

(Figure 3.5B) continued to be detected in the adult. 

3.4.3.4 Brain Expression 

Reporter gene activity continued to be detected in the choroid plexus after birth. By 35 

d.p.p. reporter gene activity was detected throughout the brain including the choroid 

plexus. The density of cells stained in the grey matter of the brain was greater than that 

in the white matter (Figure 3.513). 

3.4.3.5 Non-Expressing Tissues 

No reporter gene activity was detected in striated skeletal muscle, smooth gut muscle, 

smooth bladder muscle, liver, thymus, lung or spleen (not shown). 

3.5 Chromosomal Mapping 

Using the PT1-ATG gene-trap vector (9.9kb) as a fluorescently labeled probe the 

gene-trap integrations R68 and R124 were mapped to mouse chromosomes 11 and 5 

(band G2) respectively in ES cells by FISH (Fluorescent in situ Hybridisation) by 

Muriel Lee, MRC HGU. The chromosomes were initially identified by their G-

banding pattern and then confirmed by chromosome specific painting (Rabbits et al., 

1995). FISH analysis of the R124 gene-trap integration is shown (Figure 3.6). This 

level of analysis revealed the vector had integrated into a single site in the ES cell 

genome in both gene-trap cell lines and no rearrangements of the genome had occured. 

Searching the Mouse Genome Database revealed no candidate genes on chromosome 5 

or 11 which are expressed in the developing heart similar to the reporter gene in the 

R68 and R124 gene-trap integrations. 

72 



Figure 3.6: Chromosomal Mapping 

Localisation of the R124 gene-trap integration by FISH analysis. Metaphase 

chromosomes hybridised with a fluorescent-labelled probe to detect integration of the 

gene-trap vector. 

Orange spots, hybridisation signal; 

green, chromosome paint specific to chromosome 5. 



Figure 3.6 



3.6 Detection of Fusion Transcripts 

The expression of fusion transcripts in gene-trap cell lines R68 and R124 was detected 

using lacZ as a probe. A 4.4 kb fusion transcript was detected by northern blot 

analysis of total RNA isolated from both R68 and R124 ES, cells (Figure 3.7). The 

lacZ transcript is approximately 3.3kb, expressed in the R121 gene-trap cell line, 

suggesting 1.1 kb of endogenous trapped gene transcript is fused to the lacZ transcript 

in R68 and R124 gene-trap integrations. The detection of transcripts on a northern blot 

indicates that the trapped sequences are actively transcribed. 

3.7 Identification of Trapped Sequences using RACE PCR 

5' rapid amplification of cDNA ends polymerase chain reaction (5'RACE PCR) allows 

the isolation of unknown sequences 5' to known sequences within the fusion 

transcript (2.1.14). It relies upon reverse transcription from a known stretch of 

sequence using a complementary primer to generate a cDNA which can subsequently 

be tailed with an adaptor sequence and amplified using PCR. The RACE PCR 

products can be size selected, purified and subcloned. 

The products from RACE cloning of R68 and R124 gene-trap ES cell RNA were 

sequenced and grouped into groups Ito IV according to sequence similarity 5' to the 

vector en-2 SA sequence (Table 3.3). 

Group I showed the intact splice acceptor sequence indicating no splice event had 

occured. This type of clone could arise by the amplification of pre-spliced mRNA. 

Group II showed vector-derived en-2 SA sequence spliced to vector-derived en-2 

intron at position 435. Group III showed vector-derived en-2 SA sequence spliced to 

vector-derived en-2 intron at position 32. Detection of vector-derived en-2 intron 

sequences fused to vector-derived en-2 SA suggests the presence of cryptic SDs in the 

vector-derived en-2 intron sequence. Activation of these cryptic SDs was consistent 
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Figure 3.7: Detection of Fusion Transcript 

Detection of fusion transcripts by northern blot analysis of total RNA isolated from 

gene-trap cell lines, R68, R124 and *R121  using 32P-labelled lacZ probe. 
*expresses  minimal lacZ transcript 3.3kb. 
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Group Name Size 
(bases) 

Si 
trapped sequence 	en-2 exon 

Trapped Sequence 
Homology 

Splice 
Event 

I 	R68.14 200 gggaaagaggagtacacaaccagGTcccAGGTcccG vector-derived en-2 none 
R124.9 700 intron 

II 	R68.19 400 gacccttttgggtttgccctttgGTcccAGGTcccG vector-derived en-2 cryptic 
R68.32 307 intron SD 435 
R124.2 400 

R124.4 500 

R124.12 300 

III 	R124.11 	463 	TTGGGGCTGattcatgggaagaggaaccgaaaGTcccAGGTcccG vector-derived en-2 cryptic 

plus novel sequence SD 32 

N R68.1 	600 	 ctattctgaccggccttcttcagGTcccAGGTcccG endogenousen-2 	N/A 
R6813 	500 	 exon2 

[gb/Li 2705/MUSEN2AB} 

Table 3.3: RACE products from gene-trap ES cell lines, R68 and R124, generated by electroporating the PTLATG vector into R  ES cells 

Clones grouped (Ito IV) according to homology of the trapped sequence 5' to the vector derived en-2 SA sequence. 

SJ, splice junction; SD, splice donor; novel sequence underlined; intron sequence lower case; [] genebank accession number. 



with the gene-trap vector integrating into an exon (Chapter 4, Section 4.3) and has 

been observed in other gene-trap cell lines (personal communication Bill Skarnes). 

Integration of a gene-trap vector into an exon would presumably result in the lack of an 

immediate SD of the endogenous trapped gene upstream from the vector-derived en-2 

SA and as a consequence the splicing mechanism uses the nearest upstream SD. The 

cryptic SD at position 435 (TTGGTAAGA) has 67% identity and the cryptic SD at 

position 32 (AAAGTATGT) has 78% identity with the consensus SD sequence (CIA 

AGGTA/G AGT) making them potential targets for the splicing machinery and as 

observed they can be actively used (Figure 3.8). Cryptic splicing to position 435 

results in the trapped sequence 435 bases 5' to the vector-derived en-2 SA sequence. 

RACE clones derived from the R68 RNA were not long enough to identify the trapped 

sequence. However, cryptic splicing to position 32 results in the trapped sequence 32 

bases 5' to the vector-derived en-2 SA sequence making the identification of the 

trapped sequences more attainable. Thus sequences trapped by the R124 gene-trap 

integration have been identified (Chapter 4). In the R124.11 RACE clone 23bases of 

intron separate the endogenous trapped sequence and the vector-derived en-2 SA 

sequence. Thus 9 bases of the 32 have been lost possibly due to cellular exonuclease 

activity on the 5' of the gene-trap vector before it integrated into the genome. 

Group IV clones displayed sequences identical to endogenous en-2 exon sequences 

which lie immediately 5' to the en-2 primer sequence used for RACE cloning. This 

could arise by priming of the endogenous engrailed transcripts during PCR 

amplification of the RACE products suggesting RNA was not efficiently removed after 

first strand synthesis. Alternatively the gene-trap vector may have integrated into the 

endogenous en-2 gene by homologous recombination, this is unlikely because the R68 

gene-trap integration has been mapped to chromosome 11 by FISH analysis (Section 

3.5) whereas en-2 is located on chromosome 5. Furthermore reporter gene expression 



Figure 3.8: Predicted Splice Events from RACE Products 

Predicted integration into an intron, an endogenous 5' SD splices to vector derived 
en-2 SA excluding all intervening sequences. 

Integration into an exon, reveals two cryptic SD sites within the vector en-2 intron 
sequence. 

Group II and ifi refer to Table 3.3. SA, splice acceptor; SD, endogenous splice donor; 

cSD, cryptic splice donor 
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detected in tetraploid chimeras derived from the R68 ES cells did not mimic the 

expression of en-2 (Joyner et al., 1987). 

3.8 RNase Protection Analysis of RACE Clones 

RNase protection (2.1.15) was used to verify whether group II, group III and group 

IV clones were derived from the gene-trap integrations. Radio-labeled riboprobes from 

RACE clones (R68.32, R68.13 and R124.1 1) were generated to represent each group 

and hybridised to total RNA isolated from R68, R124 and RI the parental cell line 

which contains no gene-trap integration (Figure 3.9). Group II RACE clone R68.32 

protected a fusion RNA species of the predicted size (307bases) in the R68 and R124 

ES cell RNA but this was not observed in the parental cell line. This indicates that 

group II clones are derived from the integrations. Endogenous en-2 sequences (120 

bases) are protected in all cell lines. The trapped sequence alone i.e. sequence 5' to 

vector-derived en-2 SA (187 bases) was not protected in any cell line. This was 

consistent with the trapped sequence being derived from intron sequence, which is not 

normally expressed. 

Group III RACE clone R124.11 protected three RNA species (463, 320 and 120 

bases) corresponding to the predicted fusion (trapped sequence spliced to the vector-

derived en-2 SA equal to the size of the riboprobe), endogenous trapped sequence and 

endogenous en-2 sequence respectively in the R124 cell line RNA. These observations 

are consistent with the isolation of a RACE clone containing trapped endogenous 

sequence that is expressed. Two RNA species (320 and 120 bases) were protected in 

R  and R68 cell line RNAs corresponding to the endogenous trapped sequence and the 

endogenous en-2 sequence. The discrepancy of 23 bases when the sum of these two 

RNA species is compared to the riboprobe can be explained by the derivation of the 23 

bases from vector-derived en-2 intron sequence that is not normally present in the 

mRNA population. The lack of a protected RNA species corresponding to the fusion 

in the R68 cell line RNA shows that the R124.l1 RACE clone was specific to the 
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Figure 3.9: RNase Protection with RACE clones 

RNA isolated from ES cell lines (RI parental cell line; R68 and R124 independent 

gene-trap cell lines) was hybridised with 32P-labelled riboprobes derived from RACE 
clones (trapped sequence 5' to vector-derived en-2 SA fused to vector-derived en-2 

SA) representing groups II, III and IV. M13C, bacteriophage M13mp18 dCTP 

sequence, and M13A, bacteriophage M13mp18 dCTP sequence, used as size markers. 

Bands (*) observed in panel III do not correspond to protection of the other splice 

products identified by RACE. 

Predicted size of fragments were protected by the riboprobes: 

fusion transcript; 

*A, endogenous transcript; 

trapped sequence 5' to vector-derived en-2 SA; 

endogenous en-2 sequence; 

*C, vector-derived en-2 SA. 
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R124 gene-trap integration. The presence of less prominant protected RNA species in 

R68 and R1'24 cell line RNAs, observed as additional bands, may correspond to RNA 

species with some sequence homology with the RACE clone derived riboprobe that is 

generated by the integration of the gene-trap vector because these species are not 

observed in the R  cell line RNA. 

Group IV RACE clone R68.13 protected a single RNA species equal to the size of the 

RACE clone derived riboprobe (444bases) in RI ES cell RNA. This indicates that the 

clones in grouplV are derived from an endogenous en-2 transcript. In the gene-trap 

cell lines, R68 and R124, the same RNA species (444 bases) and RNA corresponding 

to the size of vector-derived en-2 SA (120 bases) is protected. The protection of the 

vector-derived en-2 SA sequence was consistent with other sequences spliced to 

vector-derived en-2 SA in the R68 and R124 gene-trap cell lines and with the detection 

of group II and III clones. 
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3.9 Summary 

In vitro cardiac specificity of gene-trap integrations R68 and Ri 24 was confirmed by 

detection of reporter gene activity detected exclusively in cardiomyocytes generated 

from both cell lines, respectively. In vivo reporter gene cardiac specificity during 

embryogenesis was shown in heterozygote embryos for the R124 gene-trap integration 

but this was not possible for the R68 integration, which could not be transmitted 

through the germline. Reporter gene activity was also detected in the heart, kidney, 

brain and the gonads of adult animals heterozygous for the R124 integration. 

The data gathered from the preliminary characterisation of the R68 and R124 gene-trap 

integrations indicates that the "intron" gene-trap vector PT1 .ATG did not integrate into 

the ES cell genome as predicted. Molecular analysis of the gene-trap integrations 

revealed cryptic splicing within the gene-trap vector and was consistent with 

integration into an exon. The use of the cryptic SD at position 32 in the R124 gene-trap 

integration allowed identification of the endogenous trapped sequence. In contrast the 

use of the cryptic SD at position 435 in the R68 gene-trap integration displaced the 

endogenous trapped sequence further from the vector-derived en-2 SA and was not 

identified. However this does not seem to have perturbed the functionality of the 

vector. Northern blot analysis shows that reporter gene activity was expressed as a 

fusion mRNA with endogenous sequences and RA-responsive at the transcriptional 

level. 
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3.10 Discussion 

In Vitro Reporter Gene Analysis 

Repression of reporter gene activity in gene-trap cell lines R68 and R124 observed in 

the original screen after 48 hours of RA-exposure was confirmed and shown to be 

regulated at the transcriptional level. The data also revealed slightly elevated levels of 

reporter gene activity and transcripts, after 12 and 6 hours of RA-exposure, in the R68 

and R124 gene-trap cell lines respectively. This RA-induction was not as dramatic as 

the RA-repression observed at 48 hours and thus further data will be required to show 

statistical significance. However, the speculative interpretation of this RA-induction of 

the reporter gene suggests that the trapped genes maybe directly and positively 

regulated by RA at the transcriptional level in undifferentiated ES cells, but as 

differentiation proceeds over the 48 hours the response of the genes reflects the 

differentiation state of the cell. In vitro the RA response time documented for genes 

regulated directly by RA e.g. RARJ3 and containing a RARE (retinoic acid response 

element) in their promoters is 6 hours (Manglesdorf et al., 1994). Thus RA-

transcriptional induction, if significant, would have important implications on the 

transcriptional regulation of the endogenous trapped genes. 

In vitro cardiac specificity of gene-trap integrations R68 and R124 was shown by 

correlating reporter gene activity with beating cardiomyocytes derived from both cell 

lines, respectively. This could be further verified by double labeling reporter gene 

active cardiomyocytes with known cardiac specific markers e.g. MHCa. 

Cardiogenesis has been shown to be inhibited in EBs treated with RA, for the first 2 

days of embryoid formation, via the repression of cardiac specific genes e.g. MHCa 

(Wobus et al., 1994). It is intriguing to compare the RA-repression of cardiac specific 

genes in EBs to the RA-repression of the 'cardiac specific' R68 and R124 gene-trap 

integrations after 48 hours of RA-exposure. The question that arises is whether it is 

valid to compare the differentiation of ES cells in a monolayer to differentiation of ES 



cells in EBs. The period of RA-exposure in both systems is comparable, 

undifferentiated ES cells are exposed to RA for the first 48 hours of differentiation. In 

the case of the monolayer the ES culture was harvested after 48 hours. In contrast the 

EBs were allowed to differentiate into morphologically distinct cell types. Thus to 

validate this comparison one would have to compare the changes in the transcripts of 

known cardiac specific genes after the 48 hour period. If this was comparable in both 

systems of differentiation it would suggest the cell fate decision was made within the 

48 hour period of RA-exposure to inhibit cardiogenesis via repression of cardiac 

specific genes or conversely the ES cells were pushed towards an alternative 

differentiation pathway. This data would support differentiation of a monolayer of ES 

cells was comparable to differentiation of ES cell derived EBs. 

RA-activity affects the in vitro cardiogenesis in BBs in a dose and stage/time dependent 

manner resembling the in vivo effects of RA-activity. (Wobus et al., 1994; Wilson et 

al., 1953). RA is further implicated in cardiogenesis by the cardiac phenotypes 

observed in knock-out mutants of genes in the retinoid pathway (Dickman et al., 1997; 

Sucov et al., 1994). The effect of RA on differentiation of EBs and ES cells cannot be 

strictly considered in isolation with respect to cardiogenesis because the fate of other 

lineages, via transcriptional regulation of specific genes, may also be determined 

during the period of RA-exposure (Wobus et al., 1994). The timing and dose of RA-

exposure are critical in determining differentiation status. Thus one may extrapolate 

from this that RA-repression of reporter gene activity in ES cells may not solely select 

cardiac specific gene-trap integrations. 

However, if used in combination with in vitro cardiac specific reporter gene activity in 

gene-trap ES cell derived cardiomyocytes, confirmed with colocalisation of known 

cardiac markers, this may prove a useful screen to select cardiac specific gene-trap 

integrations. 
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Attempts to Transmit the R68 Integration through the Germline 

The difficulties in generating chimeras which transmit the R68 gene-trap integration 

through the germ line may reflect the quality of the R68 ES cells. This highlights a 

major disadvantage of gene-trapping technology that only one ES cell clone for an 

integration event is available for studying. The identification of the trapped gene would 

relieve the difficulties of trying to generate chimeras capable of transmitting the 

integration through the germ line with R68 ES cells because it would then be possible 

target the gene by homologous recombination. 

The EBs derived from the R68 ES cell line could be differentiated successfully in vitro 

to show cardiac lineage specificity. Thus the R68 gene-trap integration could be used 

as a cardiac specific marker in vitro. The selection of R68 ES cells to homozygosity in 

vitro could be used in combination with the generation of beating cardiomyocytes to 

investigate the potential phenotype caused by the R68 integration. Studies have shown 

that cardiac specific markers and electrophysiological data can be gathered from single 

beating cells in culture (Sanchez et al., 1991; Wobus et al., 1994)). 

In Vivo Reporter Gene Activity in R124 Heterozygotes 

During development reporter gene expression is restricted exclusively to the heart from 

9 d.p.c., when the heart is undergoing looping, until just before birth when it is also 

detected in the choroid plexus of the brain. In the adult, expression continues to be 

detected in the heart and is also detected in the kidney, gonads and brain. The early 

expression of the reporter in the cardiogenic crescent region is restricted to a few cells, 

this pattern of expression is unlike that documented for the earliest known cardiac 

markers Nkx2.5 and Mef2c, which are expressed homogenously throughout the 

cardiogenic region. This early expression implicates the trapped gene in commitment to 

and maintenance of the cardiac lineage. As the heart develops into two bilateral 

primitive heart tubes which fuse into the single beating linear heart tube the number of 



cells expressing the reporter increases, however the expressing cells are not restricted 

to any region of the tubes but seem to be scattered throughout the myocardial and 

endocardial layers. Other cardiac markers at this stage e.g. eHAND, dHAND are 

expressed in an asymmetric pattern in the linear heart tube and have been implicated in 

chamber specification and heart looping (Biben et al., 1997). As looping proceeds 

chamber specificationlregionalisation of the heart is being determined, expression of 

contractile proteins and cardiac markers can be assigned to the presumptive chambers, 

however expression of the reporter gene is detected homogenously throughout the 

heart. By completion of heart looping (9 d.p.c.) and at later stages the expression of 

the reporter gene is detected exclusively in and throughout the heart, in the epicardium, 

myocardium and endocardium. 

On the basis of reporter gene expression pattern during embryogenesis, the gene 

trapped by the R124 integration may play a specific role in heart development but does 

not seem to be involved in regional specification of the heart. 

After birth the reporter gene continues to be expressed in the heart but is undetectable 

at 9 d.p.p., however detection of expression resumes by 11 d.p.p.. The precise 

window of switch off/down regulation of the reporter is difficult to estimate because 

3-gal is a relatively stable protein and may therefore remain in the cell for a few days 

after transcriptional switch off (Cui et al., 1994). In addition expression of the reporter 

is not observed as a clean switch off/switch on in all cells in the heart but as 'patches' 

of cells. This may in some way reflect the transcriptional/translational mechanisms 

involved in regulating expression of the trapped gene taking into consideration that the 

expression of the reporter during embryogenesis also initially appeared in single cells. 

Thus the 'patches' of cells may reflect some clonal intra-cellular communication event. 

Another possibility may be that the reporter gene activity was restricted in some cells 

leading to mosaic expression (Cui et al., 1994). 



The switch on/off of the trapped gene in the heart is very intriguing and one could 

speculate that it is marking a neonatal to adult stage transition which could involve the 

expression of an alternative gene isoform eg. switching of FGFRJ isoforms during 

heart development (Jin et al., 1994). This is also the period in which reporter gene 

expression is first detected in the kidney and gonads. A number of examples have been 

documented which demarcate a "neonate to adult transition" in the mouse between 1 to 

3 weeks after birth. In the first week of birth the heart stops undergoing growth via 

hyperplasia and any growth after this period is achieved through hypertrophy of the 

polyploid adult cardiomyocytes (Brodsky et al., 1980). The predominating MHC 

isoform switches from beta, in the embryonic and fetal heart, to alpha in the adult heart 

(Ng etal., 1991). Ventricular cardiomyocytes begin to exhibit a transient outward K+ 

current resembling the adult (Wang et al., 1996; Wang et al., 1997) and during this 

period the expression of enzymes reach levels required for adult cardiac function eg. 

cyclic AMP-dependent protein kinase (Haddox et al., 1979); lactic dehydrogenase, 

creatine phosphokinase (Courtney et al., 1978). In the kidney changes in the renin-

angiotensin system take place within this period achieving adult levels by five weeks 

after birth (Gomez et al., 1995). This maturation period of the kidney is associated 

with a phase of corticosteriod-binding globulin (Scrocchi et al., 1993). Processes are 

also initiated in the gonads within the first weeks of birth to achieve levels required for 

sexual maturity at 6 weeks of age. Steroidogenesis in the male and female gonads is 

characterised by different profiles of steroid hormones (Mannan etal.; 1991; Sheffield 

et al., 1988). Spermatogonia enter spermatogenesis in the second week and produce 

the first wave of spermatozoa by the fourth week after birth. This process is associated 

with expression of markers such as HSP70-2 (Dix et al., 1997), Mos, Abi, actin and 

Hox-1.4 (Propst et al., 1988) in the testis. 

In the kidney expression of the reporter gene is restricted to the tubules that are 

involved in resorption of water and salt from urine. This process is strictly regulated 
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and is critical in the balance of water to salt in blood. Water/salt ratio is a primary 

factor in blood pressure maintenance and inbalance contributes significantly to hypo-

and hypertension. 

Expression of the reporter gene in the gonads would suggest that the trapped gene may 

play a role in germ cell maturation. Reporter gene expression in the male gonads 

reflects the distribution of Sertoli cells in seminiferous tubules, this will be shown 

definitively by double labelling cells with a Sertoli cell marker e.g. WTI and lacZ. 

These cells are involved in providing maturation signals during spermatogenesis 

(Jegou, 1993). In the female ovaries, the reporter gene is not expressed, in the follicle 

cells, the homologous structure of the male Sertoli cells but is restricted to the primitive 

oocytes and in mesenchymal 'packer' cells, the function of which is ill-defined in 

literature. The oviduct tract adjacent to the ovaries also expresses the reporter gene in 

mucus forming cells. 

Integration of a gene-trap vector into an active gene in the ES cell genome should place 

the reporter gene under direct regulation of endogenous cis-acting promoters of the 

trapped gene. Thus the activity of the reporter should reflect the expression of the 

endogenous trapped gene and this has been shown for several gene-trap integrations 

(Gasca et al., 1995; Skarnes et al., 1992). To complement these expression studies it 

will be necessary to study the diversity of transcripts arising from the trapped gene 

during embryogenesis and to perform in situ hybridisation studies to characterise the 

expression of the trapped gene using endogenous sequences. 

Molecular Analysis of Gene-Trap Integrations R68 and R124 

The RACE products derived from R68 and R124 ES cell RNA indicate that integration 

of the gene-trap vector into an exon leads to a pattern of unpredicted splicing. 

Integration into an exon has been shown for the R124 integration (Chapter 4, Section 

4.2) however for the R68 integration it has been assumed on the basis of the RACE 



products. Two cryptic SD sites (32 and 435) have been identified within the vector-

derived en-2 intron sequence. RNase protection has shown that the cryptic splicing 

between vector engrailed intron (435 site) and engrailed splice acceptor is derived from 

the R68 gene-trap integration. Thus in the R68 integration the endogenous trapped 

sequence lies 435 bases 5' to the splice site. It would be possible to isolate the 

endogenous trapped sequence by the selection of larger RACE clones or by 

performing RACE using 5' nested primers complementary to the engrailed vector 

intron sequences. The time constraints of a Ph.D did not permit these experiments to 

be attempted. In the R124 gene-trap integration cryptic splice events to position 32 and 

435 were identified indicating that both can occur when the vector has integrated into 

an exon. Comparison of each site to the consensus SD has shown the cryptic SD at 

position 32 has a higher percentage identity with the consensus, potentially making it a 

stronger candidate for a SD. In contrast the RACE products, from both the R68 and 

R124 integrations, suggest that site 435 was preferentially used as a SD. Thus it seems 

that the preference of one cryptic splice site over another cannot be based on sequence 

homology alone but may be determined by the context of the integration in the 

genome. However, splicing to position 32 allows identification of the endogenous 

trapped sequence, as observed for the R124 gene-trap integration. 

Thus the "intron" gene-trap vector PT1.ATG can act as a functional "exon" gene-trap 

vector with an active reporter gene that will allow characterisation of the endogenous 

trapped gene and allow the isolation of the trapped sequences. In addition integration 

into an exon may have increased the the possibility of disrupting the endogenous 

trapped gene. 

Implications for Future Gene-Trap Screens 

RA-repression as a screen to select for cardiac specific gene-trap integrations may not 

be ideal, as discussed above, but combined with in vitro reporter gene cardiac 



specificity in beating cardiomyocytes may prove more fruitful. Gene-trap integrations 

R68 and R124 fulfill the predictions of this screen, reporter gene activity was RA, 

repressed and detected exclusively in in vitro beating cardiomyocytes generated from 

both gene-trap cell lines. In vivo reporter gene activity was detected exclusively in the 

developing heart of embryos heterozygous for the R124 gene-trap integration. This 

was consistent with in vitro differentiation of EBs recapitulating early cardiogenesis 

(Sanchez et al., 1991). In the adult the reporter gene was expressed more widely but 

was cardiac muscle specific. 

PT! .ATG gene-trap vector, although it was designed as a intron-trap vector, has been 

shown to be a functional exon-trap vector through the activation of cryptic SDs within 

the gene-trap vector. The cryptic splicing leads to vector-derived en-2 intron sequence 

incorporation into the fusion transcripts and complicates RACE analysis by the 

presence of multiple products. Thus, screens have been used to remove such events by 

the detection of intron containing RACE products e.g. Townely et al., 1996. An 

alternative approach would be to modify the PT 1 .ATG gene-trap vector to remove the 

cryptic SD sites, but this rather than alleviate the problem may result in the activation 

of other uncharacterised cryptic SD sites when the vector integrates into an exon. An 

example of this is documented for human thalassemia syndromes where loss of a 

splice site results in more, rather than less, alternative splice events (Orkin et al., 

1984). Thus to avoid this, it may be optimal to modify the cryptic SD at position 32 to 

enhance splicing activity upon integration of the vector into an exon and to remove the 

cryptic SD at position 435 thus eliminating RACE products which contain 435 bases 

of vector-derived en 2 intron and make the identification of endogenous trapped 

sequences difficult. This modification would result in optimization of the vector to be 

functional as a 'exon' and 'intron' gene-trap vector. 



3.11 Conclusion 

The R124 gene-trap cell line fulfilled both criteria of the analysis, the integration was 

transmitted through the germ line and endogenous trapped sequences were isolated. 

In contrast, characterisation of the R68 gene-trap cell line was unsuccessful, the 

integration could not be transmitted through the germline and no endogenous trapped 

sequence was isolated. Other strategies could allow the characterisation of the R68 

gene-trap integration but time constraints of a Ph.D did not permit the possible 

experiments discussed above to be attempted and so no further studies were continued 

with the R68 gene-trap cell line. 

RACE cloning data from R68 and R124 integrations revealed the gene-trap vector had 

not integrated in the ES cell genome as predicted, into an intron, but into an exon. 

PT 1 .ATG gene-trap vector was shown to function as an exon-trap vector, via the 

activation of cryptic SDs within the vector, by expression of the reporter gene as a 

fusion transcript with endogenous sequences and isolation of endogenous trapped 

sequence from the R124 gene-trap integration. Integration of the vector into an exon 

may have increased its potential to generate a mutation. In vitro reporter gene analysis 

confirmed that gene-trap integrations R68 and R124 were RA-responsive and specific 

to cardiomyocytes generated from the in vitro differentiation of both cell lines, 

respectively. In vivo reporter gene activity characterised in embryos heterozygous for 

the R124 integration showed cardiac specificity during embryogenesis. In adult 

heterozygotes reporter gene activity was detected in the kidney, gonads, brain and 

specifically in cardiac muscle. This indicates that the gene trapped by the R124 

integration may be involved in the development of the heart and function of the adult 

tissues. Further characterisation of the R124 gene-trap integration and identification of 

endogenous trapped sequences are presented in Chapter 4 and the phenotypic 

consequences of disrupting the endogenous trapped gene are presented in Chapter 5. 
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Chapter 4 



4.0 Molecular Analysis of the R124 Gene-Trap Integration 

Introduction 

RACE clone analysis of the R124 gene-trap integration suggests that the gene-trap 

vector has integrated into an endogenous exon and that endogenous trapped sequences 

are expressed as a fusion transcript. The reporter gene analysis of the R124 gene-trap 

integration suggests that the trapped gene may play a role in heart development and in 

the function of the heart, kidney, gonads and brain. This chapter describes the PCR 

and RFLP analysis to confirm that the vector has integrated into an exon and that the 

trapped sequence is linked to the vector at the genomic level. The isolation of more 

sequence to identify the trapped gene and the detection of endogenous transcripts is 

also presented. 

4.1 Sequence Analysis of R124 ES Cell RNA derived RACE Clone 11 

Sequencing revealed that clone 11, isolated from RACE-PCR of Ri 24 ES cell RNA 

and confirmed by RNase Protection Assay (Chapter 3 Section 3.8), contained 320 

bases of novel endogenous sequence (referred to as KXE), 23 bases of vector derived 

en-2 intron and 120 bases of vector derived en-2 exon sequence (Figure 4.1). 

Translation of the novel trapped sequence revealed a short open reading frame (ORF), 

in frame 2 with a methionine at position 266, that could potentially be the start of the 

coding sequence this start does conform to a Kozak consensus (Figure 4.1). The 

methionine at position 266 was out of frame with the lacZ reporter gene ATG start 

(frame 1). This trapped sequence showed no significant homology to known genes or 

ESTs in database searches. The lack of a ORF and homology suggests this sequence 

may be non-coding 5' UTR (untranslated region) sequence. Thus it will be essential to 

isolate more cDNA sequence 3' to the integration to identify the gene function. BLAST 

database search programs, provided by National Centre for Biotechnology Information 
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Figure 4.1: R124 RACE clone 11 

Full RACE clone sequence and endogenous trapped sequence translated in all three 

forward frames. 

Box, KXE sequence; 

black, endogenous trapped sequence; 

red, vector derived en-2 intron sequence; 

blue, vector derived en-2 exon sequence; 

underlined, restriction sites (BamHI, GGATCC; Earl site TTCATG); 

dark blue, frame 1 is in frame with the downstream lacZ reporter gene; 

green, frame 2 has a potential open reading frame, with a methionine at position 266. 
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cttttccgggtcttcccgctccggtctcctgacggactctgctctttgagagtccctga 
+---------+---------+---------+---------+---------+ 

P F PG L PAP VS * R 	L L F ES P * 
L F RV F P L R S PD G L Cs L RV P E 
F S G S SR S G L LTD SAL * ES L N 

ccaggtcaccgtattgtgtccctgtgccctttccttgagctcggcatatgctctgctcg 
---+---------+---------+---------+---------+---------+ 

r R SPY CV P V P F P * A R 	ML Cs 
PG H RI VS L C P FL EL G IC S AR 
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gatcccgcctgtgaacagccgcttgtactgtgataatcacctcgcggtcaaagtttcct 
+---------+---------+---------+---------+---------+ 

G SR L * P AA C TV II T S R 5K F P 
D PACE Q P L 	L * * 5 PR G Q SF L 
I PP V N SR L Y CD N H L AV K V SS 

cggtcaacttgtgaccaaattaagggcgccatcttcccgagagttcctttatgacactt 
+---------+---------+---------+---------+---------+ 

P V N L * P N * G R 	L P ES SF MT L 
R ST CD Q 1KG A IF P RV P L * H L 
G Q L 	T K L RAPS SR E FLY D T * 

aagccgtacggccatctcttattggatgggtgcagtaatccaccaatttgaagaacacca 
+---------+---------+---------+---------+---------+ 

X P Y G H L L L D G CS N P P I * R 	P 
R T A I S Y W M G A V I H Q F B E H Q 

AV R PS L 	G WV Q * ST N L K N TN 

tcagcgaacattggggctgattcptJggagagyaaccqaaagtcccaggtcccgaaaa 
+---------+---------+---------+---------+---------+ 

1 	IS E H W  
2 	SAN I GA 
3 	 Q R T L G L 

ccaaagaagaagaaccctaacaaagaggacaagcggcctcgcacagccttcactgctgag 
361 ---------+---------+---------+---------+---------+---------+ 

cagctccagaggctcaaggctgagtttcagaccaacaggtacc 
421 ---------+---------+---------+--------- 



(NCBI) on the Netscape (http://www.ncbi.nlm.nih.gov/cgi-binIBLAST),  were used to 

perform searches on databases which included Genbank, EMBL, DDBJ, DDBJEST, 

PDB, SwissProt and PW (Altschul et a!, 1990). 

4.2 Vector integration into an endogenous gene exon 

The use of the cryptic SD (Chapter 3, Section 3.7) suggested that the vector had 

integrated into an exon. This was confirmed at the genomic level using PCR analysis 

(by Peter McClive) (Chapter 2, Section 2.1.9). Primer pair b  and b2, complementary 

to the endogenous trapped sequence and to the vector sequence respectively amplified 

a PCR product of predicted size (282 bases) from heterozygote and homozygote 

genomic DNA confirming that there were no intervening intronic sequences between 

these primer sites and therefore that the vector had integrated into an exon (Figure 

4.2). Control primers, al and a2 complementary to the en-2 splice acceptor, intron and 

exon sequence respectively, amplified a PCR product of predicted size (672 bases) in 

all genotypes. The band generated from the wild type genomic DNA sample 

corresponds to the endogenous en-2 genomic sequences and the more intense 

heterozygous and homozygous bands include the additional amplification from 1 and 2 

copies of vector derived en-2 sequences, respectively. 

4.3 Isolation of cDNA 

In order to obtain more sequence information the novel trapped sequence, KXE 

(Figure 4.1), was used to screen a heart cDNA library (Clontech, adult Mouse Heart 

5'- Stretch plus cDNA Library) (Chapter 2, Section 2.1.16). Three cDNA clones 

containing the trapped sequence were isolated. Restriction enzyme mapping showed 

that two clones (TRI, 1.6kb) were identical and these overlapped with a third clone 

(VRI, 0.8kb) (Figure 4.3). Clone VRI(0.8kb) has 131 bases overlap with the 5' end 

of the trapped sequence isolated by RACE. Restriction enzyme analysis and sequence 



Figure 4.2: PCR analysis of the R124 genomic integration site. 

Detection of PCR products of a predicted size verifies the integration of the gene-trap 

vector is into an exon. 

A. Control primer pair (al x a2) amplifies a 672bp fragment in wild type, heterozygote 

and homozygote genomic DNA. Test primers (bi x b2) amplify a 282bp fragment 

only in heterozygote and homozygote genomic DNA. 

B, primer sites determined from vector (en-2 SA intron, exon) and RACE cloned 

KXE sequence. 
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Figure 4.3: cDNA clones isolated from a Mouse Heart cDNA Library Screen 

cDNA clones relative to endogenous RACE cloned sequence KXE (320 bases). 

Restriction sites used to align sequences shown. 

VRII (0.8kb) cDNA clone. 

TRI (1.6kb) hybrid cDNA clone. 

TnI (0.6kb), NotI subclone of TRI. 

Hatched bar, KXE; circled, restriction sites in cDNA library adaptor; green bar, 

homology to mitochondrial sequences. 
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analysis revealed that the TRI clones contained restriction sites present in the adaptor 

sequences used when preparing the cDNA library indicating that these were hybrid 

clones. The fragment 5' of the adaptor sequence (TnI, 0.6kb) contained 176 bases that 

were identical to the 3' region of the RACE cloned KXE sequence. Database searches 

using sequences 3' of the adapter sequence clones showed high homology to 

mitochondrial DNA in database searches and were irrelevent to the characterisation of 

the gene-trap integration. Thus, in total a contig of 1004 bases of cDNA 5' and 306 

bases 3' to the site of integration has been isolated (Figure 4.4). 

4.4 Sequence Analysis of eDNA Clones 

No homology with known genes in database searches was revealed, however 

homology with a number of EST was revealed indicating the VRI cDNA clone 

sequence is transcribed (Table 4.1). The sequence analysis of the TnT fragment 

showed the presence of an inverted repeat (25 bases) separated by 255 bases that 

potentially generates secondary structure and disrupts sequencing (Figure 4.4). 

Subcloning the TnT clone to remove one repeat allowed a total of 559 bases of 

sequence to be determined. Database searches have revealed the inverted 25 base 

sequence and the most 3' sequence (TnT7, 306 bases) of the TnT cDNA clone to be 

highly conserved among myosin heavy genes (Table 4.1). Approximately 41 bases of 

the TnT clone are unknown, this sequence will be required to show the overlap 

between the 5' (TnSp6) and 3' (TnT7) ends of TnT and confirm the presence of the 

RACE clone sequence KXE. The complete sequence of the clone will provide 

definitive proof that the TnT clone arises from a single transcript and was not the result 

of some homologous recombination event between the highly conserved inverted 

repeats. 

Translation of the cDNA clone VRT sequence in all frames revealed no continuous 

ORF suggesting that it may be 5'UTR. Translation of the TnT sequence revealed ORF2 



Figure 4.4: Contig of RACE and cDNA Sequences 

Boxed, RACE cloned sequence; 

black, \'RI cDNA sequences; 

pink, overlap between RACE and VRI sequences; 

red, overlap between RACE, VRI and TnT sequence; 

blue, overlap between RACE and TnT sequence; 

orange, TnT sequences; 

..\\.., 41bp of unknown sequence; 

yellow, inverted repeats, arrow shows direction; 

outlined, potential ATG starts; 

underlined, restriction sites (BamHI, GGATCC; Pvull, GTCCAC; TaqI, TCGA); 
potential splice junctions. 



1 CGGCCGCGTCGACGGCATTCTCCPGAAG'GTCTGGCTGGGGTCAGTCCT 

51 	 .N;AGCCCTGGGTTGGGCGTTGGCTCACAATGTCCCTGAAG 

101 CTCCACGGGGTACGCTGGGGCTCAAAAACAGAAGTGTGTCTTTTCTTC 

151 CAACCACTCGTCCCTCAGTCCCCTCCTCAGACAGCTCAATGCGGAATCTG 

201 TCCTGGACGTCATAGTGGCTGGGGACGGGGGGCCACGTGCCGTATCACAA 

251 TGTCATCCAGGACTGAGGCTTCACATATCCCTCTGCATCGAATACCGTG 

301 PATTTGGCATGCTGTGCACAGAACTCGGAAGCGAAGCGCAGTTCCCGT 

351 GGGGTTGTAGAGGGTCAGCAGCTGCCGGGGTCCACTTCTCTGGTCCGCCC 

401 TGAATACTAGATCCGGGGGAAAGACCAGCACCGGGACAACGGGTCCTGAG 

451 GAAGGAGGGGAGCCCCGGGACCCCCGCCCAGGGGCCCCCGGACCCACCAG 

501 TTCTTGGTCCTGGGGCGCCCCACGGCGCATtCAGGCTCTGGGCGGTCGGA 

551 CATCCGAGGGCAGAGCTCAGGACAAGAGGGTCTTAGAGTTTAGGGCT 

601 GGCTAA1ATCCGTCCCGCCTGGTCGCTTCCCAATCCGGGTCTTCCGGTTT 

651 GGGGCGCAGTAAACCCGCCCTGTTTCTGACCACGI'F'rTi1.'.I 

701 

51 ITCACCGAATTGTGTCCCTGTGCCCTTTCCTTGAGCTCGGCAT CIC 1 

I CGGAICCC('CTGTGAACAGCCGCTTGTACTGTGATAATCACCTCGC 

851 IGGTCAAAGTTTCCTCCGGTCAACTTGTGACCAAATTAAGGGCGCCATCTT 

901 TTAAGCCGTACGGCCATCTCTTATTGG 

951 K.VGGTGCAGTAATCCACCAATTTGAAGAACACCAATCAGCGAACATTGGG 

11001 IGCTG.I 

:GCTGCAGGAGAAGAACCTACAGCTCCAAGTGCAGGCGGAACAi 



matched the MHCa sequence at the protein level, this was anticipated because of the 

high homology at the nucleotide level (Table 4.1). 

4.5 Detection of endogenous transcripts by northern blot analysis 

Northern blot analysis was used to detect the distribution of endogenous transcripts in 

wild type tissues using a probe generated from the cDNA clone VRI isolated from the 

heart library. This probe detects a heart specific transcript (4.4kb) and a ubiquitously 

expressed transcript (1.4kb) in RI ES cells and in wild type tissues (heart, kidney, 

brain, testis, skeletal muscle also detected in, but not shown, lung, spleen, thymus and 

liver) (Figure 4.5A). Thus the distribution of endogenous transcripts seems to be in a 

wider range of tissues than detected with reporter gene activity. 

The smaller RACE cloned KXE probe detects a more complex pattern of transcripts 

that overlap with the transcripts detected with the VRI probe. This could be explained 

because the RACE clone contains sequences which extend more 3' than the cDNA and 

includes the conserved 25 base repeat. Thus one could infer that the shorter probe may 

contain sequences in common with more transcripts. KXE used as a probe detects 

transcripts of three sizes (4.4, 2.0 and 1.4kb) which are differentially expressed in 

wild type tissues (Figure 4.5B). 4.4kb and 2.0kb transcripts are expressed in all 

tissues expressing the reporter gene but are also detected in tissues in which reporter 

gene activity cannot be detected by histological staining i.e. skeletal muscle, lung and 

thymus. These transcripts run close to 18S and 28S ribosomal RNA (rRNA). Samples 

of rRNA ran with test samples did not hybridise with the probe (data not shown) 

excluding the possibility that the probe was detecting rRNA. A 1.4 kb transcript is 

detected in heart, kidney, testis and brain. 



Table 4.1: Database Search Results 

Clone Database Access. no. 	 Homology 	 %match  
(no.bases) 

VRI 	DBEST 	gbIAA472888 Soares mouse lymph node 	 98 (263) 
DBEST 	gb1W93516 	Soares fetal heart NbHH19W Homo sapiens 	82 (301) 
DBEST 	gbIAA437 126 Soares tDBESTis NHT Homo sapiens 	 82 (302) 

TnSP6 	nr gbIM76598IM Mouse alpha cardiac myosin heavy chain mRNA 90 (32)* 
USACMHCA 

nr embIX15938IR Rat alpha cardiac myosin heavy chain mRNA 90 (32)* 
NMHCB 
embIX15939IR Rat beta cardiac myosin heavy chain mRNA 90 (32)* 
NMHCB 

nr dbjID00943IH Human cardiac alpha-myosin heavy chain mRNA 90 (32)* 
TJMCAMHC 

DBEST gbIAA153 146 Stratagene mouse heart (#937316) cDNA clone 90 (32)* 
604443 5' similar to gb:Z20656_rnal myosin 
heavy chain, cardiac muscle alpha isoform(human); 
gb:M76601 Mouse alpha cardiac myosin heavy 
chain mRNA, 

TnT7 	nr gbIM76599IM Mouse alpha cardiac myosin heavy chain mRNA 100 (260) 
USACMHCB 
embIX15938IR Rat alpha cardiac myosin heavy chain mRNA 95 (260) 
NMHCA 
embIX15939IR Rat for beta cardiac myosin heavy chain mRNA 95 260)1 
NMHCB 
dbjlD00943IH Human cardiac alpha-myosin heavy chain mRNA 93 (260) 
UMCAMHC 

DBEST gbIAA153 146 Stratagene mouse heart (#937316) cDNA clone 99 (260) 
604443 5 similar to gb:Z20656_rnal myosin 
heavy chain, cardiac muscle alpha isoform(human); 
gb:M76601 Mouse alpha cardiac myosin heavy 
chain mRNA, 

DBEST embIF00516IH H. sapiens partial cDNA sequence 90(232) 
SB07B072 

25mer# 	nr gbIM76598IM Mouse alpha cardiac myosin heavy chain mRNA 100 (25) 
USACMHCA 
embIX15938IR Rat alpha cardiac myosin heavy chain mRNA 100 (25) 
NMHCA 
embIX15939IR Rat beta cardiac myosin heavy chain mRNA 100 (25) 
NMHCB 
embIZ206561H Homo sapiens cardiac alpha-myosin heavy chain 100 (25) 
SCAMHCA 

DBEST gbIAA153 146 Stratagene mouse heart (#937316) cDNA clone 100 (25) 
604443 5' similar to gb:Z20656_rnal myosin 
heavy chain, cardiac muscle alpha isoform(human); 
gb:M76601 Mouse alpha cardiac myosin heavy 
chain mRNA 

embIFOOS 161H H. sapiens partial cDNA sequence 	 100 (25) 
SB07B072 
gbIAA106052 Stratagene mouse kidney(#937315) cDNA 	91(24) 
gbIAA20796 1 GuayWoodford Beier mouse kidney day 7 	91(24) 
gbIAA619356 Barstead mouse myotubes MPLRB5 cDNA 	91 (24) 

List restricted to most highest homologies 
TnSP6 and TnT7, opposite ends of TnI clone 
* homology over same region of clone 
1 homology over same region of clone, includes database homology to * 
# sequence present in TrSP6 and TRT7 



Figure 4.5: Expression of Endogenous Transcripts 

Wild type adult tissue RNA northern blots hybridised with 32P-labelled probes derived from: 

cDNA VRI minus sequences overlapping with KXE (600bases), RI ES cell sample on blot. 

RACE cloned KXE (320 bases), RI and R124 ES cell samples on blot. 

-Actin loading controls presented below each panel. f3-Actin cDNA (610bases) (Tokunaga et al., 1986). 

[note: loading of heart sample less than other tissue samples and exposure time not long enough to detect smaller and less abundant 1.6kb 

transcript in heart tissue samples in Figure 4.5B]. 
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4.6 Genomic Structure of the R124 Gene-Trap Integration 

Identification of animals heterozygous or homozygous for the R124 integration is 

important for expression and phenotype analyses. This was initially done by the 

detection and quantification of the number of gene-trap vector copies integrated into the 

genome using a lacZ probe. However relying on a signal intensity was not ideal so 

attempts were made to analyse the genomic structure of the integration and identify a 

RFLP (restriction fragment length polymorphism) which allowed unequivocal 

distinction between wild type and trapped alleles of the endogenous trapped gene. 

4.61 Detecting and Quantiflying the Number of Integrated Vector Copies 

Backcross and intercross litters (Chapter 2, Section 2.3.2) were initially genotyped by 

Southern blot analysis of genomic DNA digested with EcoRl and hybridised to detect 

the presence of lacZ (Figure 4.6C). Figure 4.6A shows the banding pattern obtained 

from a litter derived from mating heterozygous males and females (intercross). No 

bands were detected in the wild type genomic DNA and two bands (6kb and 10kb) of 

equal intensity are detected in the heterozygote and homozygote genomic DNA 

samples. Bands (6kb and 10kb) in homozygotes were twice as intense as the 

heterozygote bands. The banding pattern indicates that two copies of lacZ are present, 

this results from two copies of the vector integrating into the genome in tandem 

(Figure 4.6C). 

The tandem integration of the vector was confirmed using en-2 exon sequences as a 

probe, which detects both the endogenous (12kb) and vector-derived (6kb and 10kb) 

en-2 sequences (Figure 4.613). The vector-derived bands are the same as those 

detected with the lacZ probe and were anticipated from the restriction map of the 

vector. The intensity of bands on a Southern blot hybridised with the en-2 probe were 

quantified by phosphoimaging analysis (ImageQuant, Molecular Devices) to estimate 

the number of vector associated en-2 copies relative to the two copies of endogenous 
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Figure 4.6: Southern blot analysis of genomic DNA 

Genomic DNA digested with EcoRI and hybridised sequentially with: 

32P -labelled lacZ probe and; 

32P -labelled vector-derived en-2 exon probe. 

Predicted fragments generated by EcoRI digest of genomic DNA and detected by 

vector derived probes. +ve, lacZ positive; -ye lacZ negative; +1+, wild type genotype; 

+1-, heterozygous genotype; -I- homozygous genotype. 
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en-2 in a genomic DNA sample. In samples from animals heterozygous for the R124 

gene-trap integration the ratio between endogenous en-2 and vector en-2 was 1: 1, 

confirming two copies of the vector had integrated. A proportion of samples generated 

from intercross litters showed a ratio of 1:2 between endogenous en-2 and vector-

derived en-2 suggesting that 4 copies of vector-derived en-2 were present and that 

these samples were derived from animals homozygous for the gene-trap integration. 

This always correlated with samples that had been identified as homozygotes based on 

the lacZ intensity. 

4.62 Restriction Fragment Length Polymorphism (RFLP) Analysis 

The size of DNA fragments generated by restriction endonuclease activity from a 

single genetic locus can vary from one allele to another because of the variation in 

nucleotide sequences. The variation observed is termed restriction fragment length 

polymorphism (RFLP) and can be used as a molecular marker to identify one allele 

from another. A RFLP has been determined which allows distinction between wild 

type and trapped alleles. Southern blot analysis of genomic DNA digested with the 

restriction enzyme BamHI and hybridised with the RACE clone KX, that contains 

novel sequence and a region of the vector-derived en-2 exon sequence, generates a 

characteristic banding pattern (Figure 4.7A). 

The RFLP reliably confirmed the genotype of 52 animals which had been genotyped 

as wild type, heterozygous or homozygous with lacZ and en-2 assays described 

above. Interestingly, litters backcrossed onto 129ICGR and C57BL16 backgrounds 

showed strain-related RFLPs (Figure 4.7A). Southern blot analysis with genomic 

DNA isolated from the pure 129/CGR and C5713L/6 strains has confirmed that a 

polymorphism at the endogenous locus exists between the two strains. 

The RFLP has shown the direct linkage of the trapped sequence to the integrated gene- 

trap vector at the genomic level by the detection of common bands by sequential 
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Figure 4.7: RFLP analysis of the R124 integration 

Genomic DNA digested with BamHI and hybridised to 32P-labelled RACE clone 

KX (contains endogenous trapped sequence and vector derived en-2 SA sequence) 

probe results in a banding pattern which allows distinction between wildtype and 

trapped alleles. 

Southern blot analysis of genomic DNA digested with BamHI and sequentially 

hybridised with a probe derived from 1. the RACE cloned endogenous trapped 

sequence KXE (contains no vector-derived en-2 sequence) and 2. vector-derived en-2 

intron sequence shows linkage of KXE to the gene-trap vector at the genomic level. 

+1+, wild type genotype; +1-, heterozygous genotype; -I- homozygous genotype; A, 

trapped allele; B and C wild type alleles [polymorphic between 129CGR (B) and 

C57B1/6 (C)]; E, a 300bp band common to wild type and trapped alleles; D, vector 

derived en-2 exon sequence; la, endogenous en-2 intron sequence; Tb, vector-derived 

en-2 intron from second vector. 
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hybridisation of Southern blots with trapped sequence specific and vector-derived 

engrailed specific probes (Figure 4.7 B1 and B2). Band A (1.6kb) arises from the 

trapped allele and can be detected by probes generated from KXE and vector-derived 

en-2 intron. Bands B (1.4kb) and C (1.2kb) represent the endogenous wildtype allele, 

which is naturally polymorphic between 129/CGR and C57BL16 mouse strains and 

can be detected by KXE. Band D (0.5kb) is specific to the vector and is not present in 

wild type samples. Band E (0.3kb) is endogenous sequence that is constant between 

wild type and mutant alleles, and can be detected by KXE and is consistent with the 

presence of a BamHI site in the probe. Band la represents endogenous en-2 sequences 

and can be detected with a vector-derived en-2 intron. Band lb represents vector-

derived en-2 intron sequence from the second copy of the vector integrated into the 

genome (data summarised in Figure 4.9A). Further RFLP analysis of genomic DNA 

(wild type, heterozygous and homozygous samples) digested with a range of 

restriction enzymes, BamHI, BglIT, KpnI, PvuII, and TaqI (not shown) and 

sequentially hybridised with VRT cDNA, RACE KXE and vector specific probes has 

shown bands in common indicating that the cDNA, RACE trapped and gene-trap 

vector sequences are linked at the genomic level (Figure 4.8). 

The RFLP analysis of genomic DNA and cDNA clones with the different probes, the 

sequence analysis of the RACE clone and YRI cDNA, and the phosphoimaging 

analysis has allowed the prediction of the R124 gene-trap integration in the genome, 2 

copies of the gene-trap vector integrated into a single site in a head-to-tail tandem 

repeat on chromosome 5, (Figure 4.9A) and a local exon/intron structure of the 

endogenous trapped gene (Figure 4.9B). The isolation of a genomic clone for the 

endogenous gene will confirm the exon/intron structure by comparison to cDNA 

sequences. 
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Figure 4.8: Linkage of Endogenous Sequences to the Vector at the genomic level 

Southern blot analysis of genomic DNA digested with Bglll, KpnI and Pvull, and sequentially hybridised to: 

KXE (endogenous RACE cloned sequence); 

VRI (cDNA); 

vector derived en-2 intron probes. 

The trapped allele (arrow head) was detected in common with all probes. 
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Figure 4.9: Predicted Structure of the R124 gene-trap integration 

Tandem integration of gene-trap vectors into an endogenous exon, detection of bands A - E, la and Tb, restriction fragments generated 

from genomic DNA digested with BamHI shown in Figure 4.7. 

Preliminary local endogenous exonlintron structure and restriction sites surrounding integration site (not to scale). Preliminary data 

suggests VRI generated from exons 1, 2 and 3, and KXE generated from exons 3 and 4. Arrow, site of integration into exon 5. 
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4.7 Summary 

PCR analysis of genomic DNA, (from wild type, heterozygotes and homozygotes), 

was used to confirm the integration of the gene-trap vector into an endogenous exon. 

The endogenous sequence trapped by the R124 gene-trap integration was used to 

screen a mouse heart cDNA library to isolate cDNA clones. Sequencing analysis was 

performed on the isolated sequences (1004 bases 5' to the integration) to classify the 

trapped gene. No ORF, no functional motif and no homology with known genes in 

database searches was found suggesting the isolated sequence was 5'UTR and novel. 

Northern blot analysis confirmed the trapped sequences were expressed. Restriction 

fragment length polymorphism (RFLP) analysis was used to show linkage of the 

gene-trap vector to the trapped gene at the genomic level. This aided in the prediction 

of the structure of the R124 integration in the mouse genome. In addition, animals 

could be genotyped on the basis of distinct RFLP patterns for wild type and trapped 

alleles. 



4.8 Discussion 

Integration into an Exon 

PCR analysis and RFLP analysis of the trapped allele genomic DNA verify integration 

into an exon and that the endogenous trapped gene sequences are directly linked to 

vector sequences at the genomic level. Direct linkage of vector sequences and 

endogenous trapped sequences allows the determination of RFLPs that distinguish the 

wild type and trapped alleles. As a mutagen an exon integration has the theoretical 

advantage over intron integrations that it may directly disrupt DNA coding sequence 

whereas intron integrations are dependent upon splicing. Examples of intron 

integrations which give rise to wildtype transcripts from trapped alleles via splicing 

around vector integrations have been documented eg. cordon-bleu (Gasca et al., 

1995), R213 (McClive et al., in press 1998). However this is weighed against the 

generation of multiple splice variants caused by the juxtaposition of two splice acceptor 

sequences in exon integrations. It remains to be seen whether in practice intron or exon 

integrations are more effective as mutagens. 

Endogenous Trapped Sequences 

The trapped gene sequence (320bp) isolated using RACE shows no ORF and the size 

of the fusion transcript (1. lkb+lacZ 3.3kb) would suggest the gene-trap vector may 

have integrated into the 5' untranslated region (UTR) of the endogenous gene. 

Furthermore the cDNA (81 3bp) isolated from a heart library using KXE as probe, lies 

5' to the integration site, does not reveal an ORF. Although no ORF has been 

identified inframe with the lacZ sequence, translation of n-gal protein can be initiated 

from the ATG engineered 5' to the lacZ in the vector. An ORF has been identified out-

of-frame with lacZ but this does not conform to the Kozak consensus thus is unlikely 

to be the initiating methionine (Kozak, 1987). 
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The sequences isolated from the endogenous trapped gene by the R124 integration 

show no homology to any known genes but a number of ESTs have been identified 

which show high homology (Table 4.1). These ESTs are derived from different tissue 

cDNA libraries and can be used for "virtual northern blot" analysis i.e. gives an idea of 

tissues in which the trapped gene may be expressed. The gene sequences trapped by 

the R124 show homology to ESTs isolated from heart (fetal and adult), testis and 

kidney tissues which is consistent with tissues in which reporter gene activity was 

detected for the R124 integration (Chapter 3). In addition, EST sequences can be used 

to extend the sequence information of the trapped gene. However care must be taken to 

ensure the EST is not from a splice isoform or related gene, or that it does not arise 

from a chimeric cDNA clone. 

It would appear that clone TRI is chimeric. Whether the subclone of TRI, TnT, is 

chimeric is yet to be determined. This cDNA contains homology to KXE and to 

myosin heavy chain gene alpha (MHC(x), which is expressed exclusively in the heart. 

However, the trapped gene maps to chromosome 5 while the MHCot gene has mapped 

to chromosome 14 (Beisel et al., 1989). It is not inconceivable that another related 

MHC has been isolated but northern blot analysis with the region of homology 

displays transcript sizes corresponding to MHCa transcripts (data not shown) and not 

to transcript sizes detected in common with KXE and VRI cDNA clone. This suggests 

strongly that TnT is also a chimeric cDNA, but differs from the chimeric TRI clone in 

that it has no adaptor sequences within it. The 25bp homology found in the KXE and 

TnI is found to be highly conserved in all MHCs from this it can be inferred that TnT 

may have been generated by some homologous recombination event during the 

preparation of the cDNA library. The reason why this 25mer is conserved in MHCs 

throughout the animal kingdom is unknown and whether this homology is significant. 

to the identity or the function of the trapped gene is also still unknown. However, in 

database searches MHC genes showed a single site of homology with this 25mer, 



none displayed an inverted repeat suggesting that although the sequence is conserved 

the inverted repeat motif is not. 

The identification of ESTs with homology and detection of transcripts by northern blot 

analysis with the KXE and VRI indicate that the gene-trap vector has integrated into 

the transcribed region of the trapped endogenous gene and is thus likely to be 

mutagenic. To proceed further it will be important to isolate the full cDNA of the 

trapped gene and identify any functional motifs of the gene. A 4.4kb transcript 

exclusive to heart tissue is detected by northern blot analysis with the cDNA clone VRI 

thus a heart cDNA library could be screened using VRI as a probe to identify the 

remaining sequences of this heart specific cDNA. 

Distribution of Endogenous Transcripts 

Northern blot analysis of wild type RNA, isolated from adult tissues, was performed 

to determine the expression of the endogenous trapped gene sequences using probes 

generated from the VRI cDNA and KXE RACE cloned endogenous sequence. 

Transcripts of a common size (4.4kb and 1.4kb) were detected in the heart RNA and a 

1.4kb transcript was detected in RNA with both probes. Alternative transcripts were 

detected in other tissues, VRI detected a 1.4kb transcript in all tissues tested in contrast 

KXE detected a 1.4kb transcript in the heart, kidney, testis and brain while 4.4kb and 

2.0kb transcripts were detected in all tissues tested. Detection of the additional 

transcripts with the KXE probe may be due to the sequences which extend 3' to the 

VRI homology and are exclusive to KXE. The detection of alternative transcripts 

suggests that alternative splicing may be involved in generating different transcript 

isoforms from the same gene cistron. This can be inferred because the linkage of the 

VRI and KXEin the genome was shown by RFLP analysis. The probes detecting 

transcripts from related homologous genes is unlikely because Southern blot analysis 

indicates the trapped gene is a single copy gene. 
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Diversity of transcripts could be dissected by the isolation of tissue specific cDNA 

sequences and comparison of these to isolate transcript specific probes. Identification 

of tissue specific transcripts probes will be essential to characterise the distribution of 

the endogenous gene in the adult and during embryogenesis, using northern blot and 

in situ hybridisation analysis. Specific probes would allow RNAse protection assay 

experiments, a technique that allows detection at a higher specificity and thus is more 

conclusive than northern blot analysis, to be performed to confirm the distribution of 

transcripts. Knowing the distribution of specific transcripts will allow speculation of 

the function of the trapped gene and interpretation of any phenotype that may arise due 

to the integration of the gene-trap vector. 

The distribution of the endogenous transcripts was in a range of tissues wider than that 

observed with reporter gene analysis. One could infer that detection of the reporter 

gene activity was not optimal and thus it did not reflect the expression of endogenous 

trapped gene. In attempt to address this, northern blot analysis, to detect fusion 

(trapped endogenous and lacZ sequence) transcripts using lacZ specific probes, was 

performed (data not shown). The primary problem encountered was fusion transcripts 

could not be detected in RNA from tissues, such as the kidney, that express the 

reporter in restricted cell types, as determined from histological staining. In contrast, a 

4.4kb fusion transcript was detected in RNA from tissues displaying homogenous 

reporter gene activity e.g. heart. A simple explanation would be that RNA from non-

expressing cells dilutes the fusion transcripts from expressing cells in tissues with 

restricted reporter gene activity, such as the kidney, to levels undetectable by northern 

blot analysis. Abundance and stability of the fusion transcript seem critical in the 

detection of fusion transcripts. Thus it may prove more reliable to characterise the 

distribution of fusion transcripts by in situ hybridisation or f3-gal fusion protein 

detection using antibodies. 

OTIM 



Alternatively the problem is not of detection but because the reporter has not "tagged" 

all the transcripts transcribed from the trapped gene i.e. multiple alternative transcript 

isoforms are generated from the trapped gene by splicing all of which do not contain 

the exon into which the vector has integrated, thus reporter expression is not detected 

in the full range of tissues. This would be consistent with trapping for example, the 

1.4kb transcript detected, by the KXE probe, in tissues in which the reporter gene 

activity was detected by histology. To test this postulation one would have to identify 

the 1.4kb transcript specific sequence. This could be done by performing 5' RACE on 

RNA isolated from these tissues using vector specific primers. Protection of fusion 

(vector and transcript specific sequence) transcripts in RNA from these tissues by 

RNAse protection analysis would allow this postulation to be verified. 

M. 



4.9 Conclusion 

The gene-trap vector has integrated into the exon of a novel gene in the R124 gene-trap 

integration and is likely to have disrupted the function of the endogenous gene. A total 

of 1004 bases of the endogenous trapped gene sequence 5' to the integration site were 

isolated. These sequences show no homology to any known genes but a number of 

ESTs with homology were identified in database searches. Thus, it will be essential to 

isolate more sequence to identify functional domains of the gene. Northern blot 

analysis confirmed the isolated sequences were expressed and that they detected 

multiple transcripts in a range of adult tissues wider than that detected by reporter gene 

activity. However the distribution of one transcript, detected by the RACE cloned 

KXE sequence, resembled the distribution of reporter gene activity suggesting that the 

R124 integration may have trapped an alternatively spliced transcript of an endogenous 

gene. 
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Chapter 5 



5.0 Phenotype Analysis 

Introduction 

The molecular analysis of the R124 gene-trap integration has shown that the gene-trap 

vector has integrated into an exon of a gene and may have disrupted the function of the 

endogenous gene (Chapter 4). Therefore the phenotype of homozygous animals has 

been analysed, paying particular attention to tissues where reporter gene expression 

was detected (Chapter3). 

5.1 Neonatal Lethality 

Genotyping intercross litters from the inbred, C5713L/6 and 129/CGR, backgrounds at 

3 weeks of age revealed a statistically significant. (p<0.005) deficit (57%) in the 

number of animals homozygous for the R124 gene-trap integration (Table 5.1). 

Genotype analysis of 19 d.p.c. litters (collected by caesarean) and neonatal animals 

(collected in the first 6 hours after birth) showed the expected Mendelian ratio of 1:2:1 

suggesting homozygote animals are dying after birth and being cannabilised by the 

mothers. Close monitoring of litters immediately after birth resulted in the retrieval of 

eight dead pups, between 12-24 hours after birth, that were subsequently genotyped as 

homozygotes. Upon dissection it became apparent that the dead homozygous pups 

suffered from a localised dilatation affecting the right ventricle wall of the heart (Figure 

5. 1B). The localised dilatation was found in the same region of the right ventricle in all 

eight dead pups. Histological sectioning of these hearts revealed a localised thinning of 

the ventricle wall at that point where the dilatation appears, although the trabeculation 

in that region does not seem to be affected (Figure 5. 1A). The thinning and localised 

dilatation of the right ventricle is suggestive that the pups are dying because of a right 

ventricle dysfunction. This defect has never been observed in any wildtype or 

heterozygote animals (to date 29 animals from backcross litters and 37 wild 
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Figure 5.1: Neonatal Phenotype 

Section of a dead homozygote neonatal heart with a right ventricle dilatation. 

A heart from a dead homozygote neonatal heart with a right ventricle dilatation 

stained for reporter gene activity. 

Section of control neonatal kidney. 

Section of a dead homozygote neonatal kidney showing blood congestion in the 

veins of kidneys. 

Section of a dead neonatal lung reveals no abnormalities or congestion of blood. 

arrow, dilatation; rv, right ventricle; rvw, right ventricle wall; at, atrium; ye, vein; gi, 

glomerulus; al, alveoli; br, bronchiole; scale bar, 100pm. 
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type/heterozygote animals from intercross litters have been analysed), nor in eight live 

homozygotes sacrificed in the first 24 hours after birth. Congestion of the veins in the 

kidney of dead homozygotes has also been observed (Figure 5. 1D) which would be 

consistent with right ventricular dysfunction. Conversely, no abnormalities or 

congestion of blood have been observed in the lungs (Figure 5. 1E) of dead neonate 

homozygotes ruling out any left ventricle dysfunction. 

When the R124 integration was bred onto a MF1 outbred background no loss of 

homozygote animals was observed at 3 weeks of age (Table 5.1). Examination of 

neonatal hearts collected from thirteen outbred homozygote pups sacrificed between 

12-24 hours after birth revealed no dysmorphogenesis of the right ventricle. 

Genotype % loss of 

Stage +1+ +1- -I- -I- x2  Test P-Value 

19 d.p.c. 20 39 15 24 1.13 0.56836 
newborn (0 - 6 hours) 16 45 20 2 1.39 0.49908 
3 weeks - Inbred 

-129/CGR 45 79 20 52* 11.48 0.00322 
-057BL/6 26 54 9 66* 11.76 0.00280 
-Total 71 133 29 57* 22.56 0.00001 

- Outbred 

-MF1 50 121 45 21 3.82 0.14808 
*Statistically  Significant 

Table 5.1: Genotyping of R124 Intercross Litters 

Numbers of animals genotyped as wild type (+1+), heterozygous (+1-) or homozygous 
(-I-) from R124 intercross litters. Inbred intercross numbers are the sum of Fl to F5 

generations, a similar proportion of homozygotes were lost in each generation. 

Outbred intercross numbers are from the Fl generation. 
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5.2 Adult Phenotype 

The neonatal lethality is not fully penetrant and 40% of animals homozygous for the 

R124 gene-trap integration survive to adulthood. The ratio of males to females 

surviving (1:1) was as expected suggesting equal numbers of each were lost at the 

neonatal stage. At the gross morphological level, homozygotes surviving to adulthood 

did not show any major dilatation affecting the right ventricle of the heart but 

dysmorphogenesis of the right ventricle wall in the same region has been observed in 3 

out of 6 male and 2 out of 10 female surviving homozygotes (Figure 5.2C). Upon 

sectioning two hearts, with right ventricle dysmorphogenesis, disarray of the 

myofibrils was observed in this region (data not shown). 

In addition, all tested R124 homozygote males (4 C57BL/6 and 8 129/CGR 

background) surviving to adulthood displayed enlarged hearts (65% increase) (Figure 

5.213 and C) and kidneys (52% increase) (Figure 5.3A) compared to control male 

sibling (heterozygote and wildtype) organs (Table 5.2). No overall difference in body 

weight between siblings was observed. This fully penetrant enlargement phenotype in 

inbred homozygous males was not observed in the inbred homozygous females (10) 

nor in homozygous males or females from the outbred MF1 background. 

Gross histology of the enlarged hearts and kidneys displayed no obvious defect but 

presented a general overgrowth syndrome due to hypertrophy and hyperplasia. 

Detailed histology of kidney tissue [carried out in collaboration with Dr.Stewart 

Fleming] revealed the presence of membrane bound vesicles within the cytoplasm of 

the proximal tubules (Figure 5.3C), which are never observed in normal kidney tissue 

(Figure 5.3B). In addition, obliteration of the capillary tuft and expansion of the 

mesangial cells associated with glomeruli was observed (Figure 5.3E). The pathology 

of the glomeruli is often associated with hyperfiltration. This suggested that the 

"overgrowth syndrome" may be due to a defect in water to salt balance in kidney 

function and or blood pressure. This led to preliminary experiments to address 
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Figure 5.2: Enlarged Hearts 

Hearts collected from adult inbred males A. control, B. and C. homozygous. 

C. demonstrates dysmorphogenesis of the right ventricle wall observed in 30% of homozygotes. 

arrow, dysmorphogenesis; rv, right ventricle; at, left atruim. 
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Figure 5.3: Kidney dysmorphogenesis 

Kidneys collected from inbred adult wild type (+1+) and homozygote (-I-) males. 

Section of control kidney proximal tubules (scale bar, 50pm). 

Section of homozygous kidney showing membrane bound vesicles in proximal 

tubules (scale bar, 50j.tm). 

Section of control kidney glomerulus (scale bar, lOjim) 

Section of homozygote kidney glomerulus showing obliteration of the capillary tuft 

of the glomeruli and disorganization of associated mesangial cells (scale bar, 1Opm). 

arrow, vescicles in proximal tubules; Ct, capillary tuft; me, mesangial cells. 



rigure J.—IA 

I 

1mm 

I I,UL _) ..jJ) 
	 Figure 5.3C 

/ 

a 

, 

C 

I 1,U1L J..JLJ 
	

[- uure D.ib 

lop 

me 

'P - 	
.• 	 p . 

OOP 

	

.•. dt ct 	
4 

It 
- S  

4 

04  

I 	-- 

5'  

	

4. 	 ,. • 	 I 	 • 
5 - . 	 4I 	is 

-5- 	

-i': ••' 

/ 

	

Ct 	me 



Mean Weights ± Standard Error 	Weight Ratio (10-3) 	Increase (%) 

	

Animal 	Genotype(n) Heart(mg) Kidney(mg) Body(g) 'Heart/Body Kidney/Body Heart Kidney 

	

inbred males 	-/- (10) 	277±18 	607±36 	35.17±1.85 	8.1±0.7 	17.6±1.4 	65* 	52** 

+/-(10) 	172±11 	401±35 	36.41±2.08 	4.9±0.5 	11.6±1.5 

inbred females 	-/- (9) 192±9 393±13 30.70±1.03 6.3±0.4 12.8±0.6 	0 	-7 

193±6 412±15 30.22±0.67 6.3±0.3 13.8±0.6 

outbred males 	-/- (5) 195±11 566±45 37.78±2.78 5.2±0.5 15.0±0.7 	0 	-5 

216±12 607±14 39.22±1.21 5.2±0.2 15.8±0.7 

outbred females 	-/- (6) 152±7 417±17 29.68±0.77 5.2±0.2 14.2±0.3 	4 

+/- (6) 151±7 432±23 30.68±1.08 5.0±0.4 14.0±0.6 

T-Test *p<  0.0001,  **p  <0.005 

Table 5.2: Organ and Body Weights 

Organ and body weights of homozygote (-I-) and heterozygote (+1-) males and females on inbred and outbred genetic 

backgrounds. 



whether kidney function and blood pressure regulation was impaired in surviving 

R124 homozygous males. 

5.3 Kidney Function and Blood Pressure Evaluation 

To evaluate the function of the kidney, homozygous males (10) and their control wild 

type littermates (10) were placed in individual metabolic cages overnight (with water 

but no food) to collect urine samples. The volume of water intake and urine produced 

per animal was recorded and urine osmolarity was measured (Chapter 2 Section 2.3.3) 

(Table 5.3). A significant increase in the osmolarity of urine produced by homozygote 

males when compared to controls was observed. No significant difference between 

control and homozygotes in volume of fluid intake or secretion was observed. This 

increase in osmolarity would suggest. that there was a higher than normal salt 

concentration in the urine, implying less salt was being resorbed by the kidneys. 

The change in osmolarity may be an indication that blood pressure is altered in the 

homozygous animals and so experiments are underway to compare the blood pressure 

in wildtype, heterozygote and homozygote siblings. 

Number of Osmolarity Water Intake Urine Secretion 
Animals 	(OsmoIKg) 	(ml) 	(ml) 

Controls 	 10 	1.21 ± 0.16 7.49 ± 0.29 2.34 ± 0.25 

Homozygotes 	10 	1.98 ± 0.32* 6.74 ± 0.55 2.09 ± 0.23 

* T-Test p = 0.0047 

Table 5.3: Metabolic Measurements 

Comparison of osmolarity, water intake and urine secretion measurements from 

control and homozygous adult inbred males. 
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5.4 Male Infertility 

Homozygous males (3 C57BL16 and 5 129/CGR background) for the R124 

integration surviving to adulthood were mated to MF1 females and although they each 

plugged several females, none sired any offspring indicating that they were infertile. 

Histological analysis of testis collected from all inbred homozygotes, surviving to 

adults, showed there were no mature elongated spermatozoa within the semiferous 

tubules (Figure 5.413 and 5.41)). In contrast many round immature spermatocytes 

could be seen in the tubules and epididymis. This indicates that the production of 

sperm, spermatogenesis, was not affected but maturation of sperm, spermiogenesis, 

was arrested. In situ hybridisation analysis [carried out by Philipa Saunders] with a 

stage specific sperm marker (Rat-TP2) has shown that no sperm past stage 7 of 

maturation are present within these seminiferous tubules (Figure 5.4C and 5.41)). The 

phenotype observed shows that the supporting role of the Sertoli cells in sperm 

maturation was affected in homozygote males carrying the R124 integration. 

Morphologically the Sertoli cells appear normal, in contrast generalised leydig cell 

hyperplasia and an elevated number of germ cells undergoing apoptosis was observed 

(Figure 5.413). 

Surviving homozygote females (2 C57BL/6 and 4 129/CGR) from the inbred 

background were mated with wildtype males to check fertility. They were found to be 

fertile and gave birth to average size litters, which when genotyped as heterozygotes 

confirmed the homozygous status of the mother. 

Homozygote adults from the MF1 outbred background were also tested for fertility, 

both males (7) and females (7) were found to be fertile. 
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Figure 5.4: Male Infertility 

Section of inbred wild type male testis. 

Section of inbred homozygote male testis. 

Section of inbred wild type male testis hybridised to dig-labelled TP-2 riboprobe. 

Section of inbred homozygote male testis hybridised to dig-labelledTP-2 riboprobe. 

arrow, cells undergoing apoptosis; st, seminiferous tubules; sg, spermatogonia; sp, 

mature tailed spermatocytes; le, leydig cells; scale bar, lOOjim. 
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5.5 Summary 

57% of neonates homozygous for the R124 integration, on inbred backgrounds, die 

between the first 12-24 hours after birth. This incomplete penetrance lethality was 

associated with a localised right ventricle dilatation and congestion of blood in the renal 

veins. The proportion of homozygotes surviving to adulthood had equal numbers of 

males and females. None of these displayed the right ventricle dilatation but —30% 

displayed dysmorphogenesis of the right ventricle wall. Hearts and kidneys collected 

from all inbred homozygous males were enlarged. The increase in hearts was 

characterised by generalised hypertrophy. The increase in kidneys was characterised 

by hypertrophy, hyperplasia and the presence of aberrant membrane-bound vesicles in 

the proximal tubules. These mutant kidneys also displayed defective glomeruli. 

Osmolarity measurements indicated that the inbred male homozygotes were secreting 

abnormally high levels of salt in their urine. The inbred males were also found to be 

infertile due to a defect in sperm maturation. None of the adult phenotypes have been 

shown to affect inbred females, outbred males and females homozygous for the R124 

integration. 
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5.6 Discussion 

Neonatal Phenotype 

The right ventricle heart defect observed in neonates homozygous for the R124 

integration occurs later than woul be predicted from the early expression of the reporter 

gene in the primitive heart tube and is more restricted in comparison to the 

homogenous expression of the reporter gene throughout the developing heart. This 

suggests that genes with a redundant function may be expressed in an overlapping 

pattern with the trapped gene or that the function of the gene is not essential in all sites 

of expression. In this respect it resembles null mouse mutants generated for the early 

cardiac markers MEF2c and Nkx2.5 both of which display phenotypes later than 

anticipated and more restricted in distribution than their expression patterns during 

heart development (Lin et al., 1997; Biben et al., 1997). 57% of the neonates 

homozygous for the R124 integration die between 12-24hours after birth. This 

lethality is associated with a localised right ventricle dilatation and congestion of blood 

in renal veins indicating that the neonates die from right ventricle dysfunction/failure. 

Accordant with this phenotype the R124 gene-trap integration has been named 

defective heart induced lethality I (dhill), [dhil (punjabi) translates to heart]. 

Why the right ventricle dilatation is localised in a particular region cannot be explained 

from the reporter gene expression and published data. In normal development after the 

specification of the primitive ventricle the ventricular epicardial surface of the wall 

(known as the compact zone) undergoes expansion to form the thickened ventricle 

wall, the trabeculation within the chamber and contributes to the formation of the 

interventricular septum between the future right and left ventricles. In addition no 

cardiac markers have been described which are expressed in the right ventricle in such 

a restricted fashion. Thus, no difference is apparent from the morphogenesis of the 

heart or from cardiac markers to indicate that the region defective in the R124 

homozygotes is distinct from any other region of the ventricle wall. A number of 
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mouse mutants with right ventricle dilatations have been documented but none display 

localised dilatations. For example mutations in RXRct show hypoplasia of the 

ventricular compact zone and ventricular septal defects which in combination 

compromise the efficiency of the heart to function causing the right ventricle wall to 

dilate and ultimately lead to the death of mutants on the 15th day of gestation due to a 

form of congestive heart failure (Sucov et al., 1994; Dyson et al., 1995). General 

ventricular dilatations are often associated with changes in hemodynamic forces 

affecting the heart which arise due to septation defects and lead to hypoplastic growth 

of the chamber walls. It is difficult to explain the localised dilatation in R124 neonatal 

homozygotes by altered hemodynamic forces because no associated septal defect was 

observed. Proposing a developmental defect in the right ventricle wall would involve 

predicting that the gene trapped by the R124 integration interacts with regionally 

specific gene products that are part of a pathway which specify (morphogenetically or 

functionally) the region of the ventricle involved in the dilatation. Thus removal of the 

trapped gene product would result in a deficiency. The dilatation was not observed in 

live homozygotes before the lethal period suggesting that although the primary defect 

may be a structural deficiency in the right ventricle wall (will be investigated at the 

ultrastructural level), the dilatation was induced/aggravated by some "crisis" event after 

birth. A "crisis" event may arise because of the environmental and biological changes 

that take place in the first 24 hours of postnatal life eg. competition between siblings 

for suckling, inflation of the lungs and morphogenetic changes within the heart to 

partition oxygenated/deoxygenated blood causing changes in hemodynamic forces 

affecting the heart. Crisis events revealing phenotypes affecting muscle function have 

been documented for MHCa (Jones et al., 1996), MLC2 V (Fewell et al., 1997) and 

MyoD (Rudnicki et al., 1992) null mutants. The functional capacity of the mutant 

hearts (homozygote and heterozygote) could be determined, using a working heart 

model system (described in Grupp et al., 1993). This preparation allows physiological 



measurements, such as ventricular pressure and volume ejections, to be made during 

the cardiac cycle (systolic and diastolic) and application of external forces to assess 

heart function. This approach will also be useful to analyse the functional heart 

capacity of homozygous animals that survive to adulthood. 

The neonatal lethality was not fully penetrant, 40% of homozygotes from inbred 

backgrounds surivive. In addition no significant loss of homozygotes on the outbred 

MF1 background was observed. Survival of homozygotes is likely to be due to 

heterogenity in the genetic background of the animals. Inheritance of modifiers, 

unlinked to the trapped gene, maybe compensating for the mutation generated by the 

R124 integration. Many examples of the effects of strain background on mutant 

phenotypes have been documented e.g. Egfr (Threadgill et al., 1995), TGFJ3J 

(Bonyadi et al., 1997); CRABPII (Fawcett et al., 1995). For example, null mutations 

in the epidermal growth factor receptor (Egfr) gene (Threadgill et al., 1995): on an 

outbred CF-1 background mutant embryos have defects in the inner cell mass that 

cause peri-implanation lethality; on the 129/SvJ inbred background mutants have 

placental defects that cause mid-gestation lethality; and on a congenic C57BL/6J inbred 

background defects in various organs cause juvenile lethality. Further backcros sing of 

the R124 integration onto pure 129/CGR and C57BL/6 is ongoing to generate 

congenic strains. Comparison of simple sequence length, restriction length and 

chromosomal marker polymorphisms associated with the penetrance of the phenotype 

on 129ICGR, C57BL/6 and MFI background strains could be used to identifiy genetic 

modifiers that affect the phenotype. 

Adult Phenotype 

Homozygote neonates surviving the lethal period after birth show no dilatation but 

hearts from some homozygote adults (-30%) have displayed dysmorphogenesis of the 

right ventricle wall in the same region. In these cases a localised disarray of myofibrils 
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and congestion of blood in renal veins has been observed suggesting that the right 

ventricle is dysfunctional in these animals. However the lack of severity observed in 

adult homozygotes maybe because they inherited a genetic modifier(s) which 

compensates for the mutation caused by the R124 integration allowing these animals to 

survive the "crisis" event in the critical period after birth. Recovery from ventricular 

failure due to ischemia and infarction is often associated with compensatory 

hypertrophy (Beltrami et al., 1994). Significant levels of hypertrophy of the ventricle 

walls was observed in adult males but not in adult females. The levels of hypertrophy 

associated with right ventricle dysmorphogenesis may be masked in females by the 

majority of females not suffering a "crisis" event (2 hearts from 10 show 

dysmorphogenesis). However the males not only suffer from enlarged hypertrophic 

hearts but also from enlarged kidneys. The morphology of the mutant kidneys 

suggests renal dysfunction which was not observed in females. This is supported by 

preliminary physiological experiments which showed abnormally high levels of salt 

secretion in urine from homozygote males. Implications of these observations are that 

blood pressure may be significantly and detrimentally altered in the homozygotes. 

Thus studies are underway [in collaboration with Dr. John Mullins] to investigate 

blood pressure in homozygotes. Blood pressure, renal hemodynamics, fluid and 

electrolyte homeostasis are interlinked processes regulated by the renin-angiotensin 

system (Lee et al., 1993). Characterisation of expression of the genetic components of 

the renin-angiotensin in R124 mutants will determine if this pathway is altered. The 

morphology of glomeruli in mutants shows the relationship of cells surrounding the 

juxtaglomerular apparatus (JGA) was abnormal. The JGA regulates the production of 

renin and angiotensin which has been shown to be expressed in juxtaglomerular (JG) 

cells and in proximal tubules (Gomez etal., 1991; Burns etal., 1993). The expression 

of these and other components of the renin-angiotensin pathway are influenced by the 

circulating steroid hormone and salt levels (Taugner etal., 1989). Thus the prediction 
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would be that the morphological changes will be associated with altered levels of the 

renin-angiotensin pathway components resulting in abnormal levels of blood pressure. 

The alteration in blood pressure has significant effects on the cardiovascular system 

and is associated with hypertrophy of the heart (Johnson et al., 1996). Thus the 

significant cardiac enlargement in males may result from a combination of hypertrophy 

to compensate for ventricular dysfunction and alteration in blood pressure due to renal 

dysfunction. 

Sexual Dimorphism 

The phenotype observed in adults homozygous for the R124 integration suggests a 

sexually dimorphic role of the trapped gene in adulthood. Evidence of differences in 

blood pressure between males and females have been documented and pathways 

regulating blood pressure are known to be influenced by steroid hormones (Chen, 

1996). The sexual dimorphism of the adult phenotype has important implications in the 

practicalities of studying the neonatal and adult phenotypes. It will potentially allow the 

separation of the cardiac phenotype which stems from a "developmental defect" of the 

right ventricle, from the renal dysfunction-associated hypertrophy in adult animals. 

Thus the dysfunctional right ventricle can be studied in adult female mutants without 

the complication of secondary effects due to renal dysfunction. Future studies will 

include morphometric experiments, to measure size and characterise pathology of 

mutant organs, and physiological experiments, to measure urine osmolarity and blood 

pressure, over time in male versuses female homozygotes this will show when the 

male-specific phenotype arises and whether this has any correlation with the 

expression of male-specific steroids. An alternative approach would be to castrate 

homozygote males or conversely treat females with male-specific steroids e.g. 

testosterone, and determine whether male-specific steroids play a role in inducing the 

adult phenotypes. 
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Another possibility is that sex-specific genetic modifiers compensate for the mutation 

generated by the R124 integration in adult females. The modifiers modulating the 

penetrance of the neonatal lethality may be influenced by sex-specific changes after 

birth or the expression of other genes involved in the transitition from juvenile to adult 

may directly modify the mutation generated by the R124 integration. Investigation of 

this will also require the onset of the male-specific adult phenotype to be determined. 

Male Infertility 

The sexually dimorphic function of the trapped gene was further emphasised by the 

infertility of homozygous males but not of homozygous females. The expression of 

the reporter gene (Chapter 3) was not detected in homologous structures in the testis 

(Sertoli cells) and ovaries (primitive oocytes and mesenchymal cells) suggesting that it 

would play different roles in the males and females. 

Sertoli cells are involved in the initiation, maintenance and regulation of 

spermatogenesis. These processes are regulated through cell-cell communication 

between Sertoli and germ cells via interactions involving the complex cytoarchitecture 

of the Sertoli cells and secretion of nutritional metabolites, growth factors (e.g. IGFs, 

TGFf33, Si, PDGF) and transport-binding proteins (e.g. transferrin, androgen-binding 

protein, cellular retinoic acid-binding protein) (Skinner, 1991). Physical interaction 

between the Sertoli cell cytoarchitecture anchors and compartmentalizes the different 

stages of germ cells as they mature and travel towards the lumen of the seminiferous 

tubules to be released as mature spermatozoa. Sertoli cell product secretions are 

synchronous with the spermatogenic cycle to acheive normal maturation. Loss of 

signals from Sertoli cells or premature release of germ cells could result in the arrest of 

germ cell maturation. Alternatively, if the germ cells cannot respond to maturation 

signals from the Sertoli cells a similar phenotype would arise. The detection of Sertoli 

cell markers (e.g. RXRJ3, Kastner et al., 1996;WTJ, Pelletier et al., 1991) in R124 
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mutants will allow the evaluation of Sertoli cell function and the effect of the R124 

gene-trap integration. Targeting by homologous recombination of the transcription 

factor CREM (cyclic AMP-responsive element modulator) gene, expressed in 

postmieotic germ cells, to generate null homozygous mutant males has shown a 

phenocopy of the infertility observed in R124 homozygous males (Nantel et al., 1996; 

Blendy et al., 1996). Furthermore females homozygous for this mutation are fertile. 

This could indicate that the R124 gene-trap product may interact with the CREM 

pathway to regulate spermatogenesis. Experiments to address this interaction of the 

R124 trapped gene and CREM could include characterising the expression of each 

gene on the other mutant background to determine which gene is upstream or 

downstream. If it was found both were in the same pathway, and were not acting in 

parallel pathways, to cause the same defect it would be interesting to cross the R124 

and CREM mutants to determine whether they complement and rescue the fertility 

defect in males. 

No effect on fertility of homozygous females suggests the function of the trapped gene 

is not essential or is substituted by a functionally redundant gene product in female 

ovaries, which may include the involvement of genetic modifiers. This may also apply 

to the brain where reporter gene expression was detected but no gross defects (data not 

shown) or behavioural changes were observed in homozygous animals. However the 

studies on the brain were not exhaustive and further detailed experiments will be 

necessary to rule out any subtle defects. 

Phenotypes versus Sites of Reporter Gene Activity 

The phenotypes detected (hypertrophy of the heart; hypertrophy, hyperplasia, aberrant 

membrane-bound vesicles in proximal tubules and glomerular defects of the kidney, 

and arrest of sperm maturation) correlate with the sites of reporter gene activity 

detected in inbred adult males (Chapter 3). The exception was the brain, where 
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reporter gene activity was detected but no defect was discovered but this could be 

because more detailed studies are required to reveal subtle anatomical and/or 

behavioural defects. No gross defects were detected in tissues where no reporter gene 

acitvity was detected but one cannot rule out subtle defects. Complete expression 

analysis of the endogenous trapped gene will allow this question to be readdressed and 

detailed phenotype analysis will be performed on tissues which showed no 

abnormalities. No defects were observed in inbred females, outbred females or 

outbred male homozygotes although reporter gene activity was detected in the same 

tissues as the inbred male suggesting that these may be protected by inheriting genetic 

modifiers which compensate for the defect generated by the R124 integration. 

Phenotype versus Endogenous Trapped Gene Sequences 

Homozygotes were selected from intercross litters using a RFLP which allowed 

distinction between wild type and trapped alleles (Chapter 4). No segregation of the 

trapped allele and, neonatal and adult, phenotypes has been observed over five 

generations of breeding inbred strain animals indicating that the disruption of the 

trapped gene due to integration was the likely cause of the phenotypes and not due to 

breeding strain related recessive mutations to homozygosity. This could be confirmed 

by targeting the trapped gene by homologous recombination. 

Northern blot analysis of wild type RNA using endogenous trapped gene specific 

sequence (Chapter 4) showed that the expression of the trapped gene was more 

complex than that inferred from the expression of the reporter gene. Interestingly 

phenotype analysis revealed the tissues expressing reporter gene are defective in 

animals homozygous for the R124 integration. This supports the postulation that the 

gene-trap vector has trapped a specific splice isoform of an endogenous gene. The 

expression of the isoform as indicated by reporter gene activity is restricted and it 

would seem it plays some unique function which cannot be compensated by the 
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alternative splice isoforms arising from the endogenous gene which are also expressed 

in reporter activity positive tissues bar the brain where no abnormality was detected. In 

situ hybridisation studies will complement northern blot analysis and may reveal that 

the different splice isoforms although expressed in the same organs, because total 

RNA from whole organs was used, they may be expressed in different cell types and 

thus the phenotype is restricted. 

It will be important to isolate the complete sequence of the transcript trapped by the 

integration and to show by using sequences 3' to the integration as probes that this 

transcript is disrupted in homozygotes. Transcript specific probes will also allow the 

exclusive expression of this transcript to be confirmed. Another approach to confirm 

the multiple splice isoforms were transcribed from the trapped gene and not from a 

related gene would be to target the trapped gene by homologous recombination and 

characterise the distribution of transcripts. If transcripts corresponding to the 

alternative isoforms were expressed it- would suggest other gene transcripts were 

cross-reacting with the probes used for northern blot analysis, alternatively if all 

transcripts were lost and the phenotype was restricted as with the gene-trap it would 

suggest the loss of the alternative isoforms may be compensated for in the other 

tissues. However, one would predict that the complete knock-out of the gene would 

result in a more severe phenotype affecting many tissues. 
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5.7 Conclusion 

The gene trapped by the R124 integration is important in the development of the heart. 

In the adult it is involved in heart and kidney function, and also in male infertility. The 

defects observed affect tissues in which reporter gene activity was detected suggesting 

that the reporter was mimicking the endogenous gene or more accurately the transcript 

that it had trapped. 

Lethality of neonates homozygous for the R124 integration was associated with a 

localised right ventricle dilatation and congestion of blood in the renal veins indicating 

these neonates were dying from right ventricle dysfunction/failure. This phenotype is 

not fully penetrant on the inbred background (57% loss) and no neonates are lost on 

the outbred background suggesting that the phenotype may be influenced by a genetic 

modifier(s). In surviving homozygote adults two phenotypes affecting the heart are 

observed: 30% suffer from right ventricle dysmorphogenesis which may be associated 

with the neonatal phenotype and is not fully penetrant; and the second, which is fully 

penetrant, causes enlargement of the heart in inbred homozygous males only. 

Homozygous males, on the inbred background, also suffer from abnormal kidneys 

associated with a change in urine osmolarity suggesting that the blood pressure of 

these animals may be abnormal. Inbred homozygote males are infertile due to arrest of 

spermatogenesis. The latter aspects of the adult phenotype suggests a secondary 

function of the trapped gene in adults which may be male specific. Conversely sex-

specific genetic modifiers may be operating in the adult mutants which protect the 

females from the deficiency generated by the R124 integration. 
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Chapter 6 



6.0 General Discussion 

The data presented in this thesis demonstrates the successful characterisation of a gene-

trap integration, R124, leading to the identification of a novel gene involved in heart 

development. This novel gene is also important for male fertility as well as heart and 

kidney function in the adult. The preliminary characterisation of the gene-trap 

integration R68 highlighted some of the problems encountered when using a gene-trap 

strategy to identify genes but in vitro analysis demonstrated that the reporter gene was 

expressed in cardiomyocytes. 

Recent strategies to identify novel genes involved in heart development and function 

have included the generation of catalogues of ESTs from heart cDNA libraries (Fung et 

al., 1996). In attempt to categorise novel ESTs into classes of gene products 

differential display has been used to determine which ESTs are expressed in the 

neonatal or adult heart and degenerate primers have been used to identify specific 

functional motifs, for example genes encoding zinc fingers (Wang et al., 1997). 

Subtractive hybridisation has been employed by Ruiz-Lazano et al., 1998 to identify 

target genes downstream of RXRa which may be involved in heart development. 

Many novel cDNAs (924 cDNAs Fung et al., 1996; 8 cDNAs Wang et al., 1997; 5 

cDNAs, Ruiz-Lazano et al., 1998) have been identified by these approaches, however 

the precise function and specificity to the cardiac lineage of these cannot be predicted 

until expression and phenotype analysis is performed. One should also be aware that 

many EST sequences are partial therefore may be represented in a pool multiple times 

by different segments of sequence, therefore the 924 novel cDNAs isolated by Fung et 

al., 1996 may be an over estimation. This has been documented by Ruiz-Lazano et al., 

1998 where one novel sequence was represented 12 times. 

Two large mutagenesis screens, using ENU as a point mutagen, have been performed 

in zebrafish (D.rerio) identifying an estimated 500 different mutants involved in heart 

development (Driever et al., 1996; Haffter et al., 1996). Mutants with defects affecting 
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many aspects of heart development have been identified but the isolation of genes, 

which will have to be done by positional cloning, is limited by the rate of segregating 

and identifying each mutated locus. 

All these strategies will greatly benefit from the data accumulating from genome 

sequencing projects and hence the candidate gene approach to characterise and identify 

novel genes can be employed. The most informative analysis to dissect heart 

development has been the targeted disruption of known genes by homologous 

recombination in the mouse. Some genes shown to be important for heart development 

could not be predicted by their expression pattern e.g. Hox 1.5 (0) (Chisaka et al., 

1991). 

Thus a combination of studies, which include sequence isolation, expression analysis 

and phenotype analysis linked with a specific mutation event, are required to show the 

function of a gene within heart development or any other developmental process. 

These essential components to identifying novel genes are married in the gene-trap 

approach, as described in the introduction, thus allow the function of a novel gene to 

be addressed directly. However, there remain complications that arise when using this 

technology some of which are highlighted in this thesis. How some of these 

complications can be overcome are discussed and alternative strategies are proposed. 

Molecular analysis of gene-trap integration R124 revealed the intron gene-trap vector, 

PT1 .ATG, used to generate these gene-trap cell lines was functioning as an efficient 

exon gene-trap vector via the activation of cryptic SDs within the vector. This resulted 

in the incorporation of vector-derived en-2 intron sequences in the fusion transcript 

between the reporter gene and endogenous trapped sequences. Integration of the vector 

into an endogenous exon was anticipated to generate a mutation and as shown animals 

homozygous for the R124 integration suffer from a number of defects concomitant 

with reporter gene expression. Thus it may prove fruitful to study unconventional 

exon gene-trap integrations but only if the trapped sequences are clonable, for example 
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in the case of R124. As demonstrated by Townely et al., 1996, RACE products 

generated from fusion transcript containing vector-derived intron sequence can be 

identified and the ability to clone sequences can be determined by using the direct 

sequencing approach. This screen showed that 20% (23/115 lines) of the gene-trap cell 

line RACE products contained intron sequences and in a smaller screen from our lab 

we found 23% (3/13 lines) of lines contained intron sequences. Gene-trap integrations 

classified as unclonable (30%) by direct sequencing showed superimposed sequences 

suggesting more than one splicing event was occurring in these lines. This could be 

due to a number of scenarios e.g. mixed ES cell clones; more than one integration; 

because the endogenous gene undergoes alternative splicing or as observed in the 

R124 gene-trap cell line there is competition between cryptic splice sites that have been 

activated due to the integration. Another problem encountered when RACE cloning 

R68 and R124 gene-trap integrations was products arising from unspliced primary 

transcripts which contain intron sequences and thus complicate RACE procedures by 

giving false impressions of more than one integration event. This could be eliminated 

by using polyA RNA for RACE procedures. This proportion of gene-trap cell lines 

containing intron sequences could be classified by using a range of probes specific to 

the 5' end of the vector-derived intron sequence and correspondingly primers could be 

designed to identify endogenous trapped sequences by RACE or direct sequencing. To 

pursue characterisation of lines containing multiple RACE products one would have to 

justify the merit of each particular integration and select lines by some additional 

parameter for example lineage specific reporter gene expression. This could be done 

efficiently using in vitro differentiation protocols or by the generation of chimeras. 

Many screens have been conducted using reporter gene expression, in vitro (Baker et 

al., 1997; Johnson et al., 1993) and in vivo (Wurst et al., 1995; Hill et al., 1993), to 

determine the lineage specificity of the endogenous trapped gene and thus to select 

gene-trap events on the basis of an interesting expression pattern. These screens rely 
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on the gene-trap vector behaving as predicted but as discussed above that is not always 

the case. In addition to problems of cloning trapped sequences, one should be aware 

of the possibility that the reporter could be silenced and not reflect the endogenous 

trapped gene expression. This is dependent upon the genomic context of the 

integration and may be complicated by alternative or cryptic splicing which could result 

in splicing around the vector and thus no expression of the reporter. Silencing of 

reporter gene expression can also result from epigenetic modifications such as 

methylation or imprinting. 

In the R124 gene-trap integration the reporter gene expression in the adult was 

restricted to the heart, kidney, brain and gonads, and a single fusion transcript was 

detected. However multiple endogenous transcripts are detected in a wider range of 

tissues with trapped gene-specific sequences suggesting in the first instance that the 

reporter is not mimicking the expression of the endogenous gene. However there is 

one alternatively spliced transcript that is expressed in a pattern similar to the reporter 

gene activity. Thus it is possible that a single alternative splice variant has been trapped 

by the gene-trap vector in the R124 integration. This is supported by animals 

homozygous for the R124 integration displaying defects only in organs where reporter 

gene activity was detected. 

Reporter gene expression based gene-trap screens can be further defined by the 

addition of preselection steps e.g. induction screen by Forrester et al., 1996 or by the 

use of modified gene-trap vectors e.g. secretory-trap screen by Skarnes et al., 1995 to 

detect specific classes of genes. To optimise these more defined screens one would 

propose the addition of a penultimate selection step of direct sequencing to determine 

which integrations would be clonable before initiating characterisation of gene-trap cell 

lines. 

Another issue of the gene-trap strategy is whether the integration of a gene-trap vector 

is mutagenic. Again this will be affected by the genomic context of the integration and 
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the transcriptional regulation of the trapped gene. Three possibilities that can arise have 

been documented i.e. the vector interrupts the endogenous gene and causes a mutation 

as predicted e.g. jumonji, Takeuchi et al., 1995; the vector interrupts the endogenous 

gene but alternative splicing results in the generation of wild type transcripts e.g. 

R213, McClive et al., 1998 and cordon-bleu, Gasca et al., 1995; the vector integrates 

in an unpredicted manner and causes a mutation e.g. R124. In addition the observation 

of a phenotype will be dependent on the function of the gene and whether that function 

is unique or if it can be substituted by a redundant family member. Phenotypes may 

also be influenced by the action of unlinked genetic modifiers and this would be 

reflected in the expressivity or the penetrance of a defect. Thus it is important to show 

that the integration is genetically linked to the phenotype and so is the likely cause of 

the mutation. 

The R124 gene-trap integration has been shown to be linked to the phenotypes 

observed in animals homozygous for the integration by RFLP analysis, which allowed 

distinction between wild type and trapped alleles. The neonatal phenotype generated by 

the Ri 24 integration is not fully penetrant therefore is likely to be under the influence 

of an unlinked genetic modifier. In addition the adult phenotypes are male specific, as 

far as has been determined, and thus may be under the influence of sex-specific 

modifiers. To complete phenotype analysis it will be essential to classify the protein 

encoded by the trapped gene at the sequence level and determine its relationship with 

known genetic markers. Sequence data of the trapped gene can also be used to target 

the endogenous gene by homologous recombination to generate mutations if it has not 

been disrupted by the integration of the gene-trap vector. 

A major disadvantage of gene-trap approaches is that in random only one ES cell clone 

for any gene-trap vector integration event is isolated in any screen. If this ES clone, as 

highlighted by the analysis of the R68 gene-trap cell line, has lost its pluripotency or is 

suboptimal the ability to transmit an integration event is compromised thus in vivo 
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analysis cannot be performed. Other consequence of working with a single clone that 

need to be considered include the presence of mutations, unlinked or linked to the 

gene-trap integration, within the gene-trap cell line that may influence phenotype 

analysis. An unlinked mutation can be segregated from the integration event through 

successive backcross generations to generate congenic strains. Analysis to show the 

integration is associated with the phenotype through successive generations benefits 

from a reliable genotyping protocol. This was done by identifying a RFLP to 

distinguish wild type and trapped alleles for the R124 gene-trap integration. Closely 

linked mutations are difficult to segregate and could include subtle rearrangements of 

the genome around the site of integration e.g. deletions or invertions. Another 

possibility is the integration has disrupted regulation elements that do not affect the 

expression of the trapped gene but of closely linked genes. To eliminate these 

possibilities one has to target the endogenous trapped gene using a conventional 

homologous recombination strategy to show the same phenotype. Conversely, one 

could propose "knock-in" experiments to rescue the phenotype using endogenous 

trapped gene sequences. 

Thus in summary it is important to collect as much sequence data as one can for any 

gene-trap integration. This information allows one to determine the gene-trap 

integration event and the approach required to clone the trapped sequence. The 

function of the gene can be predicted from its sequence and combined with expression 

analysis the mutant phenotype, as a consequence of disrupting the endogenous trapped 

gene, can be anticipated and better understood. 

The future characterisation of many more gene-trap integrations in detail will provide 

further information to asses the reliability of the predicted gene-trap technology and 

problems that can arise due to unconventional gene-trap integrations. 

The sequence data gathered for the R124 gene-trap integration is not complete and will 

be necessary to identify the precise function of the endogenous trapped gene. However 
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the genotype and phenotype analysis suggests the R124 integration has disrupted a 

gene important for right ventricle heart development and function in the neonate. The 

incomplete penetrance of this phenotype and the detection of heart defects in the adult 

may reflect a progressive state of disease. The heart defect resembles right ventricle 

dysfunction found in humans and may be useful as a model system to investigate the 

parameters that affect this condition (Rockman et al., 1994). In humans right ventricle 

dysfunction is a progressive disease that leads to congestive heart failure and is 

associated with ischemia or infarction of the ventricle wall which weakens the ventricle 

wall causing it to dilate (Goldstein et al., 1998; Parfrey et al., 1995). This leads to 

aberrant hemodynamics and electrical activity of the right ventricle (Goldstein et al., 

1990). Compensation of this defect results in hypertrophy of the ventricle walls. Re-

modeling of the ventricle wall during hypertrophy is associated with changes in the 

morphology of cardiomyocytes, expression of genetic markers e.g. actin, atrial 

natriuretic factor, I3MHC within cardiomyocytes and in the components of the 

extracellular matrix surrounding the cardiomyocytes e.g. fibronectin, collagen, integrin 

(Beltrami et al., 1995; Terracio et al., 1991). It will be important to study changes in 

parameters mentioned above in the defective hearts observed in animals homozygous 

for the R124 integration to correlate these to the human condition. 

Hypertrophy of the heart is often associated with changes in renin-angiotensin system 

which regulates blood pressure. Each is required for the function of the other and any 

alteration results in an unbalance causing damage to the heart and kidney (Johnson et 

al., 1996). Indications that blood pressure may be altered in R124 mutants has been 

shown by the dysmorphogenesis of kidneys, including glomerulosclerosis, and the 

alteration in urine osmolarity in these animals. Both these observations suggest renal 

dysfunction in salt secretion and fluid filtration which could be the cause or 

consequence of abnormal blood pressure. Glomerulosclerosis is a degenerative 

condition affecting the kidney which is characterised by increased levels of 
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extracellular matrix deposition, as associated with the hypertrophic heart (Peten et al., 

1994). 

Thus the heart disease syndrome observed in surviving adult R124 mutants may be the 

combined result of a developmental heart defect, (detected as dilatation of the right 

ventricle of the heart in the neonate which can be compensated for by hypertrophy and 

may be influenced by genetic modifiers) and kidney defects which accentuate each 

other. 

The use of R124 mutants as models to study heart disease will be validated further by 

showing that the gene-trapped by the R124 integration is conserved, by screening the 

human and other species genomes by Southern blot analysis, and if the human gene or 

locus is linked to a known cardiac syndrome. RFLP analysis indicates the endogenous 

trapped gene is a single copy gene and phenotype analysis indicates it has an important 

function thus it is likely this gene may be conserved. 

Similar reasoning can be used to determine the use of the male infertility caused by the 

R124 integration to be considered as a model for human male infertility. Infertility in 

human males due to arrest of sperm maturation has been documented and can be 

characterised with a number of genetic markers (Propst et al., 1988). 

Part of this work has been presented for publication with Peter McClive as a joint 

author and is in press, citation: McClive, P., Pall, G., Newton, K., Lee, M., Mullins, 

J., and Forrester, L. (1998) Gene-trap integrations expressed in the developing heart: 

Insertion affects splicing of the PT1-ATG vector, Developmental Dynamics. 
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Appendix I: Maps of plasmid constructs used for molecular analysis of gene-trap 

integrations. 
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Appendix II: PT1 .ATG gene-trap vector sequence 

The PT1.ATG vector is based on the original PT1.4.5a-PGKneo gene-trap vector. 

Vector is linearised at the Hindill site before electroporation into ES cells. Listed 

below are sequences of the vector used in the molecular analysis of the gene-trap 

integrations, essentially 5' sequence to lacZ reporter gene, to design PCR primers, 

probe fragments and perform Southern blot analysis. The first nine bases of the 

vector, containing HindHI and EcoRI sites, have been lost, possibly by endogenous 

endonuclease activity before integration into the ES cell genome in the R124 gene-trap 

integration. cSD, cryptic splice donor; SJ, splice junction; intron sequences lower 

case; exon sequences upper case; primer sites underlined. 

Primers 

*al(en 2 intron 

*a2(en 2 exon) 

*b2(en 2 intron 

#1 (lacZ) 

#3(en-2 exon) 

#4(en-2 exon) 

Sequence(5' - 3') 

ACTFGGCCTCACCAGGC 

TGCTCTGTCAGGTACCTGTI'GG 

TGAGCACCAGAGGACATCCG 

GCAAGGCGATFAAGYFGGGT 

CCGTCGACTCTGGCGCCGCT 

TGCTCTGTCAGGTACCTGFG 

*primers  used for genomic PCRs 

#primers used for 5' RACE 
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H 
± 

n E 
d 	c 	.E 
I 	o 	a 
I 	R 	r 	 cSD32 
I 	I 	I 
aagcttggaattcatgggaagaggaaccgaaagtatgtttttcagatgttctttctcaga 
------------------------------------------------------------  
ttcgaaccttaagtacccttctccttggctttcatacaaaaagtctacaagaaagagtct 

aataggagtttgcggaggttggagtgtgtgttgtaggacacgaaccccagggtggaggag 
61 ------------------------------------------------------------ 

ttatcctcaaacgcctccaacctcacacacaacatcctgtgcttggggtcccacctcctc 

ac tggaggacagagccc tct ttcccagggagggaaggaggagagt ttgagatccgctccg 
121 ------------------------------------------------------------ 

tgacctcctgtctcgggagaaagggtccctcccttcctcctctcaaactctaggcgaggc 

gaagtcggggttcaggtttgagcaggccaggcctctcccgtggtctcgccctcttgtcct 
181 ---------+ ---------+ ---------+ ---------+ ---------+---------+ 

cttcagccccaagtccaaactcgtccggtccggagagggcaccagagcgggagaacagga 

agaagcctcactggccaggtgtaagccaggtcgtgggtgccgagccctgctccctcatcc 
241 ------------------------------------------------------------ 

tcttcggagtgaccggtccacattcggtccagcacccacggctcgggacgagggagtagg 

tcagcatggatgtgaagaggactgtatggcgtgcgggtgtgtgtgaccgtgggtacactt 
301 ------------------------------------------------------------ 

agtcgtacctacacttctcctgacataccgcacgcccacacacactggcacccatgtgaa 

primer b2 
aaaacaccgggttttggatctgcactgtccgatgtcctctggtgctcaaagacccttt 

361 ---------+ ---------+ ---------+- --------+ ---------+ ---------+ 

ttttgtggcccaaaacctagacgtgacagggcctacaggagaccacgagtttctgggaaa 

cSD435 

tgggtttgccctttggtaagagcgccgggatctacttgtctggaggccagggagtcctca 
421 ------------------------------------------------------------ 

acccaaacgggaaaccattctcgcggccctagatgaacagacctccggtccctcaggagt 
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gccgaggcttgccgcccctgactgcactgcactgagtagtggatgggagagtctggtacc 
481 ------------------------------------------------------------ 

cggctccgaacggcggggactgacgtgacgtgactcatcacctaccctctcagaccatgg 

gcactgccggtttcctccaccatccccgcagcgcagggcagtgcattccgtcctggctgc 
541 ------------------------------------------------------------ 

cgtgacggccaaaggaggtggtaggggcgtcgcgtcccgtcacgtaaggcaggaccgacg 

gaagggggatggtcgggccttctccagcctcttccgcttctagcgaaggggccttgatgg 
601 ---------+-------------------------------------------------- 

cttccccctaccagcccggaagaggtcggagaaggcgaagatcgcttccccggaactacc 

aagggcccgcatgtctccaaagttgattcatgcttcttgcacagagaaagaccagaaaga 
661 ------------------------------------------------------------ 

ttcccgggcgtacagaggtttcaactaagtacgaagaacgtgtctctttctggtctttct 

aggtctcaagttttagccggtagcccggatggccttttcctgcacggcaccatatgaacc 
721 ------------------------------------------------------------ 

tccagagttcaaaatcggccatcgggcctaccggaaaaggacgtgccgtggtatacttgg 

ttgtgaccctgactttgagacccctctaacccaaggcccctaccactttaccctttccct 
781 ------------------------------------------------------------ 

aacactgggac tgaaac tctggggagattgggttccggggatggtgaaatgggaaaggga 

ttgaaggctttcccacaccaccctccacacttnccccaaacactgccaactatgtaggag 
841 ---------+---------- 1----$--------+ ---------+ ---------+ 

aacttccgaaagggtgtggtgggaggtgtgaanggggtttgtgacggttgatacatcctc 

gaaggggt tgggactaacagaagaacccgt tgtggggaagc tgttgggagggtcac ttta 
901 ------------------------------------------------------------ 

cttccccaaccctgattgtcttcttgggcaacaccccttcgacaaccctcccagtgaaat 

tgttcttgcccaaggtcagttgggtggcctgcttctgatgaggtggtcccaaggtctggg 
961 ------------------------------------------------------------ 

acaagaacgggttccagtcaacccaccggacgaagactactccaccagggttccagaccc 
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gtagaaggtgagagggacaggccaccaaggtcagccccccccccctatcccataggagcc 
1021 ------------------------------------------------------------ 

catcttccactctccctgtccggtggttccagtcgggggggggggatagggtatcctcgg 

aggtccc tc tcc tggacaggaagactgaaggggagatgccagagac tcagtgaagcctgg 
1081 ------------------------------------------------------------ 

tccagggagaggacctgtccttctgacttcccctctacggtctctgagtcacttcggacc 

K 

P 
n 
I 	 primer a 1 

ggtaccc tat tggagtcc t tcaaggaaacaaac t tggcc tcac cagcc tcagcc t tggc 
1141 ------------------------------------------------------------ 

ccatgggataacctcaggaagttcctttgtttgaaccggagtggtccggagtcggaaccg 

B 
a 
M 

H 
I 

tcctcctgggaactctactgcccttgggatcccttgtagttgtgggttacataggaaggg 
1201 ------------------------------------------------------------ 

aggaggacccttgagatgacgggaaccctagggaacatcaacacccaatgtatccttccc 

gacggattccccttgactggctagcctactcttttcttcagtcttctccatctcctctca 
1261 ------------------------------------------------------------ 

C tgcc taaggggaac tgaccgatcggatgagaaaagaagtcagaagaggtagaggagagt 

T 
a 
q 
I 

ccgttctctcgaccctttccctaggatagacttggaaaaagataaggggagaaaaacaaa 
1321 ------------------------------------------------------------ 

ggcaagagagctgggaaagggatcctatctgaacctttttctattcccctctttttgttt 

B 
a 
M 

H 
I 

tgcaaacgaggccagaaagattttggctgggcattccttccgctagcttttattgggatc 
1381 ------------------------------------------------------------ 

acgtttgctccggtctttctaaaaccgacccgtaaggaaggcgatcgaaaataaccctag 
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ccctagtttgtgataggccttttagctacatctgccaatccatctcattttcacacacac 
1441 ------------------------------------------------------------ 

gggatcaaacac tatccggaaaatcgatgtagacggttaggtagagtaaaagtgtgtgtg 

acacaccactttccttctggtcagtgggcacatgtccagcccccaacacttgtatggcct 
1501 ------------------------------------------------------------ 

tgtgtggtgaaaggaagaccagtcacccgtgtacaggtcgggggttgtgaacataccgga 

tggcggggtcatcccccccccacccccagtatctgcaacctcaagctagcttgggtgcgt 
1561 ------------------------------------------------------------ 

accgccccagtagggggggggtgggggtcatagacgt tggagttcgatcgaacccacgca 

tggttgtggataagtagctagactccagcaaccagtaacctctgccctttctcctccatg 
1621 ------------------------------------------------------------ 

accaacacctattcatcgatctgaggtcgttggtcattggagacgggaaagaggaggtac 

en-2 intron< 	si 	> en-2 exon 

acaacca 
1681 ------------------------------------------------------------ 

tgt tggtcCAGGGTCCAGGGCTTTTGGTTTCTTCTTCTTGGGATTGTTTCTCCTGTTCGC 

GCCTCGCACAGCCTTCACTGCTGAGCAGCTCCAGAGGCTCAAGGCTGAGTTTCAGACCAA 
1741 ------------------------------------------------------------ 

CGGAGCGTGTCGGAAGTGACGACTCGTCGAGGTCTCCGAGTTCCGACTCGTCTGGTT 

K 	 K 

P 	 p 

i primer 4 = a2 	primer 3 
GGTACCTGACAGAGCCGGCGCCAGAGTCTGGCACAGGAGCTCGGTACCCGGATGAT 

1801  
GTCCATGGACTGTCTCGTCGCCGCGGTCTCAGACCGTGTCCTCGAGCCATGGGCCTACTA 

B 
X 	a 
b 	m 
a 	H 
I 	I 

CTGGACTCTAGAGGATCCCGTCGTTTTACAACGTCGTGACTGGGAkACCCTGGCGTTAC 
1861 ---------+ ---------+ ---------+ ---------+---------+ ---------+ 

GACCTGAGATCTCCTAGGGCAGCA1WTGTTGCAGCACTGACCCTTTTGGGACCGCkTG 

en-2 exon_< > lacZ 
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P 
V 

U 

I 
primer 1 

1921 ---------+ ---------+ ---------+ ---------+ ---------+---------+ 

GGTTGAATTAGCGGAACGTCGTGTAGGGGGAkGCGGTCGACCGCATTATCGCTTCTCCG 

CCGCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGCGCTTTGCCTG 
1981 ------------------------------------------------------------ 

GTTTCCGGCACCAGAAGCGGTGCCGGAAAGCTGGCTGGAGTGCGATCTTCCTGAGGCCGA 
2041 ------------------------------------------------------------ 

CAAAGGCCGTGGTCTTCGCCACGGCCTTTCGACCGACCTCACGCTAGpdGGAcTccGGcT 

TACTGTCGTCGTCCCCTCAAACTGGCAGATGCACGGTTACGATGCGCCCATCTACACCAA  
2101 ------------------------------------------------------------ 

ATGACAGCAGCAGGGGAGTTTGACCGTCTACGTGCCAATGCTACGCGGGTAGATGTGGT'p 

CGTAACCTATCCCATTACGGTCAATCCGCCGTTTGTTCCCACG 
2161 -------------------------------------------- remainder 

GCATTGGATAGGGTAATGCCAGTTAGGCGGCAAACAAGGGTGC 	of gene-trap 
vector 
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Abbreviations 
ATG 	translational start codon 

13—gal 	3—galactosidase 

13—geo 	13—galactosidase and neomycin fusion 

bp 	basepairs 

BSA 	bovine serum albumin 

cDNA 	complementary deoxyribonucleic acid 

CHL 	chiorambucil 

cpm counts per minute 

cSD cryptic splice donor 

dATP deoxyadenosine triphosphate 

dCTP deoxycytidine triphosphate 

dGTP deoxyguanosine triphosphate 

dNTP deoxynucleoside triphosphate 

dTTP deoxythymidine triphosphate 

DEPC diethylpyrocarbonate 

DIA differentiation inhibiting activity 

DMSO dimethylsulfoxide 

DNA deoxyribonucleic Acid 

d.p.c. dayspost coitum 

d.p.p. days post partum 

DY!' dithiothreitol 

EB embryoid body 

EDTA ethylenediaminetetraacetic acid 

en-2 mouse engrailed-2 

ENU ethylitrosourea 

ES cells embryonic stem cells 

EST expressed sequence tag 

FISH fluorescent in situ hybridisation 

IRES internal ribosomal entry site 

kan kanamycin 

kb kilobases 

LIF leukemia inhibiting factor 

MHC myosin heavy chain 

tvILC myosin light chain 

mRNA messenger ribonucleic acid 
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OMTtvI online Mendelian inheritance in man 

ORF open reading frame 

P.C. post coitum 

PCR polymerase chain reaction 

PGK phophoglycerate kinase 

p.p. post partium 

RA retinoic acid 

RAR retinoic acid receptor 

RARE retinoic acid receptor element 

RACE rapid amplification of cDNA ends 

RFLP restriction fragment length polymorphism 

RNA ribonucleic acid 

RT-PCR reverse transcription polymerase chain reaction 

RXR retinoid X receptor 

SA splice acceptor 

SD splice donor 

TESPA 3-aninopropyltriethoxysilane 

UTR untranslated region 

VAD vitamin A deficiency 
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