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Abstract

There are two main goals of the work presented in this thesis. The first is to pro¬

vide a system for automatically classifying utterances into different types known
as moves. In order to do this, one can take advantage of certain constraints found
in natural dialogues. Moves of the same type have similar syntax and intonation

features. In addition, moves follow each other with a degree of regularity. This

study joins together these three aspects to perform automatic move detection.

The second goal is to use this move classification in an automatic speech recog¬

nition system to constrain the recognition candidates. This system is successful
in identifying utterance types and subsequently reduces the word error rate of
the recogniser. It also provides an in depth study into how people express the
discourse function of an utterance through intonation and provides a model of

dialogue structure at a number of levels.
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Chapter 1

Introduction

There are two main goals of the work reported in this thesis. The first is to be able
to model and automatically detect discourse structure. The second is to integrate

this into an automatic speech recognition system to improve word recognition.

The first issue addressed is the automatic classification of utterances into dif¬

ferent types, for example statements, question and replies. The term utterance

type is used here and encodes the role of an utterance in the dialogue also known
as its dialogue act. Automatic utterance type detection is performed by taking

advantages of regularities in the following three areas:

• Utterances of the same type have similar syntactic patterns. For example in

the Map Task, a yes-no question frequently starts with "Do you have...?".

• Utterances follow each other with a degree of regularity. For example, a

query followed by a reply followed by an acknowledgement is more likely
than three replies in a row.

• Utterances have distinguishing intonation patterns. For example, a sen¬

tence with a declarative syntax can be realised as a question or a statement

depending on whether the utterance final intonation contour is rising or

falling.

1
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Previous studies have refrained from using intonation to distinguish utterance

types as there is not a one-to-one mapping between intonation contour and dis¬

course function. For example, a yes-no question frequently has a rising boundary

but may have a falling boundary. I propose a solution to this problem by training

stochastic models that can cope with the variation of intonation contours asso¬

ciated with one utterance type. Before this is possible, one has to extract the

potential intonation features automatically from the data.

Twelve language models (LM) are trained for each of the different utterance

types. These models are used to give the likelihood that a sequence of recognised
words is an utterance of a certain type. Regularities in the sequences of utter¬
ance types are captured by a statistical dialogue model (DM). These dialogue
models use discourse information such as the previous utterance type and speaker

identities to predict the current utterance type.

It will also be shown that using information about the current discourse goal

and where the participants are in achieving this goal can increase the predictability
of the three statistical models described above. For example, utterances that

introduce a new topic may be more emphatic than say an acknowledgement at
the end of the dialogue. It will be shown that using this higher level discourse
information significantly increases the utterance type recognition accuracy of the

system.

If the system knows the type of an utterance, it has a greater chance of guessing
what the words are. For example, questions frequently contain words such as

"which, where, how". Integrating an automatic utterance type detector into a

speech recogniser produces a reduction in the word error rate (WER).
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1.1 Thesis Structure

The second half of this chapter gives a review of current spoken language systems

that use dialogue information to some extent. One of the main problems the

developers of these systems face is deciding on a dialogue analysis scheme that
is expressive enough to cover all the observed phenomena yet succinct enough to

avoid overgeneration. Current discourse analysis methods are discussed in chapter
2.

Chapter 3 gives a breakdown of the utterance type recognition system and how
this is incorporated into the automatic speech recognition system. The choice of
data and the discourse analysis theory used in the experiments are also discussed.

The rest of the thesis is mostly concerned with training statistical models
for the three aspects of discourse described above: dialogue structure, syntactic

or language modelling and intonation modelling. The structure of the thesis is
illustrated in figure 1.1. Dialogue and language modules are dealt with together in

chapter 4, as similar language modelling techniques are used to train both models.

The main part of the original work is reported in chapters 5 and 6. Chapter

5 looks at possible intonation features that can be used to train the statistical

intonation models described in chapter 6. Methods of automatically extracting

these features are discussed, specifically the tilt theory described in Taylor (2000).
There are some issues concerning the tilt features which will be addressed in

chapter 9. Specifically, a method is given for statistically modelling the alignment
of the peak of an accent.

In chapter 6, three methods of statistical modelling of intonation are examined
and compared: classification and regression trees, artificial neural nets and hidden
Markov models.

Utterance type recognition results for the whole system are given in chapter
7. The type of an utterance, as classified by the system, is used in the automatic
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Figure 1.1: Thesis Structure
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speech recognition system. The word recognition results show a significant im¬

provement over the baseline using the system described in this thesis. Chapter
8 gives a method of improving the utterance type recognition results further by

using higher level discourse information such as the current discourse goal and the

stage one has reached in achieving this goal.

Finally, chapter 10 gives a summary of the work presented in this thesis and

suggests areas of future investigation.

1.2 Distribution of Work

The system described in this thesis is the result of collaboration between a number

of people. The automatic accent detector described in chapter 5 was developed

by Paul Taylor (Taylor, 2000; Taylor, 1998). The work on dialogue and language

modelling described in chapter 4 is that of Simon King (King, 1998). Stephen
Isard also contributed to the work by personal communication. The novel work
contributed by the current author is given in table 1.1.

Table 1.1: Thesis content corresponding to author's own work
Topic Chapter Page
Language modelling 4 63
Automatic intonation feature extraction3- 5 69-85
Stochastic modelling of intonation 6 86-121
Intonation results as part of the whole system 7 122-132

Clustering and splitting of moves 7 132-135

Using game information to improve move recognition11 8 136-173
Automatic prediction of peak position 9 174-186

a Joining together various types of intonation features and writing programs

for automatic extraction.

bUsing the system structure described in chapter 3.

Most of this work is a result of an EPSRC1 funded project (called ID4S)

Engineering and Physical Science Research Council
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from October 1993 to March 1997. This project looked at using intonation and

dialogue context in speech recognition. Extensions of this work by the author
include examining various stochastic models for intonation modelling (chapters 5

and 6) and looking at issues arising from the automatic extraction of intonation
features (chapter 9). Other original work includes using game information for
utterance type detection (chapter 8), which is inspired by the work of and personal
communication with Massimo Poesio (Poesio & Mikheev, 1998).

The main word recognition was performed using HTK (Young et ai, 1996).
The software for the classification and regression tree was written by Alan Black

(Taylor et al., 1998a). Other software used includes the Stuttgart neural net
simulator (SNNS, 1997) and the CMU toolkit (Rosenfeld & Clarkson, 1997).

1.3 Published Work

The method of statistically modelling intonation is outlined in Wright and Taylor

(1997) and Wright (1998) and described in full detail in chapters 5 and 6. General

publications involving the ID4S project include Taylor et al. (1997) and Taylor
et al. (1998b). Modelling higher level discourse information is reported in Wright
et al. (1999) and discussed in full detail in chapter 8.

1.4 Applications

Utterance type detection is useful in human-computer interaction systems; for

example the system needs to know if it is being asked a question or given a reply.
The system also needs to know when a goal has been achieved so that it can

update its knowledge base and move on to the next goal. A review of current

spoken language systems that incorporate dialogue and prosodic information is

given in the following section.



1.5. SPOKEN LANGUAGE SYSTEMS 7

1.5 Spoken Language Systems

The goal of spoken language systems is to hold a task-oriented natural language

dialogue with a human in a limited domain. Automatic dialogue analysis has three
functions in these systems. Firstly, it can be used to improve word recognition.

Secondly, if the system knows the type of utterance, recognising 100% of the words

correctly is not always essential for understanding. For example, if one knows a

positive reply has been uttered, the system does not have to bother distinguishing
between the different types of replies such as "yeah, yep, right". Finally, a dialogue

manager component can use discourse information to aid semantic and pragmatic

analysis.

Due to the complexity of the task the systems are very large with many differ¬
ent modules including a speech recogniser, natural language parser, proposition

extractor, language generator and optionally a speech synthesiser. These modules
which use discourse information will be discussed here.

1.5.1 TRAINS

TRAINS (Allen et al., 1996) is a system that conducts a conversation either

through speech or typing and aids the user to plan a train route between American

cities. The planner is programmed so that it does not find a direct ronte thus

inducing more elaborate dialogue.

The main components of interest here are the speech recogniser, a chart parser
which determines the dialogue act2 and a discourse manager. Dialogue act clas¬
sification is an integral part of this system. The output of the parser and input
to the discourse manager is a sequence of dialogue acts rather than a syntactic

analysis. This forces an emphasis on semantic and pragmatic interpretation.

2The term "dialogue act" is used here instead of "utterance type" to be consistent with the
relevant literature
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The vocabulary of this system is 1000 words. The speech recogniser used is a

non-domain specific off-the-shelf recogniser, Sphinx-II system from CMU (Huang
et ai, 1993). This system has a baseline word error rate of 20%.

The dialogue act annotation scheme adopted in this system is DAMSL. This
scheme is described in detail in section 2.5.

o Dialogue Act Classification

The automatic classification of dialogue acts (Hinkelman, 1990; Traum & Hinkel-

man, 1992) is performed in two processes. Firstly, the output of the recogniser
is passed through a robust parser for syntactic and semantic analysis. A list of
candidate dialogue act interpretations and their propositional content is derived
from a number of rules based on syntactic and semantic properties. For exam¬

ple, "Can you do X?" can map to either a request or a yes/no question if taken

literally. "Why not do X?" is mapped to a suggestion act. A second process

examines the context and prunes the number of possible interpretations. These
filters are based on checking the preconditions of the dialogue acts with the current

knowledge state.

The use of dialogue act identification in a dialogue system is illustrated below

(taken from Allen et al. (1996)). The badly recognised utterance "Okay now I
take the last train in go from Albany to is" is divided into 3 dialogue acts

• a confirm/acknowledge ("okay")

• a tell with content to take the last train ("now I take the last train")

• a request to go from Albany ("go from Albany")

The correct transcription is "Okay now let's take the last train and go from Al¬

bany to Milwaukee". The dialogue act analyser has wrongly identified the second
act but the dialogue manager has enough information to establish a confirmation
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and that a request has been made to move a train from Albany. The system

continues the dialogue by starting a clarification sub-game.

o Dialogue Manager

The dialogue manager breaks up into a number of functions including dialogue act

interpretation, planning, problem solving and domain reasoning. The sequence of

dialogue acts is interpreted by the dialogue manager as illustrated in the above

example. This module keeps track of the discourse state as a stack. Each element
of the stack captures the focus topic, history list and goal of the discourse segment

and its status, i.e. whether it has been achieved or not.

• Other Train Enquiry Systems

Baggia et al. (1997) and Eckert et al. (1996) report work using discourse structure
in similar train enquiry dialogue systems for Italian and German respectively.
Both systems decide on the user's utterance type depending on the system's own

utterance. Most of these utterances are standard requests, such as a request

for a specific time. This method of utterance type detection assumes a degree of

cooperation of the speaker which, if, violated results in an incorrect interpretation.

The predicted utterance type is used to improve word recognition. If one knows

the type of an utterance, one can have a better guess at the words. For example,
a reply to a request for a time is likely to include numbers. Details of word

recognition results are given in section 7.1.

1.5.2 Verbmobil

The Verbmobil project (Wahlster, 1993) is a speech-to-speech translation system
with the application of scheduling. There are two participants who both have
a working knowledge of English. Automatic translation is available on request.
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The system has to keep track of the dialogue in order to catch certain contextual

aspects such as reference. The system consists of 20 modules, a number of which

use dialogue acts and prosody. The automatic prosodic annotation module is

described chapter 5. A review of the Verbmobil dialogue model component is

given in chapter 4.

The dialogue act tag set used in this system comprises of 43 acts which describe
intentional content and the proposition of an utterance to a certain extent. This
set is hierarchical and can be collapsed to a set of 18 primary intentions such
as suggest, initiation and acceptance. Further details of the tag set are given in

chapter 2.

Automatic dialogue act identification, described in Warnke et al. (1997), is

performed using two different methods. In the first, dialogue act segmentation is

performed prior to classification. In the second, it is performed simultaneously.
Various experiments use either hand-labelled word sequences or the recogniser

output.

A multi-layer perceptron (MLP) is trained for dialogue act segmentation us¬

ing 117 prosodic features for each word-final syllable. These prosodic features
include duration, pause, FO-contour and energy. The MLP looks at a frame of six
word-final syllables and outputs either YES or NO for the dialogue act boundary

prediction. This was improved upon by combining the MLP with a language model
trained on data with inserted dialogue act boundary tokens between the words.
Classification is subsequently performed by running the word sequence through

language models that capture the syntactic properties of each of the dialogue act

types (dialogue act specific language models). The dialogue act likelihoods from
these language models are combined with probabilities from a dialogue model that
looks at the previous dialogue act type within a speaker's turn.

The second method performs dialogue act classification and segmentation si¬

multaneously by combining and weighting likelihoods from the various models:
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prosody, dialogue model and dialogue act specific language models. Therefore,
at each word boundary a likelihood is given for a dialogue boundary and the
word chain between the potential dialogue act boundaries is used to predict the
utterance type.

Both methods produce similar results of approximately 53% accuracy, using

the recognised word sequence. Running the system with the dialogue model only
results in a slight decrease in error. This is not surprising as the dialogue model
is restricted to using utterances in the same turn. Chapter 4 looks at more so¬

phisticated dialogue models that make use of other information sources such as

speaker identity.

1.5.3 Question-acknowledgement Statement Classifier

A simple dialogue act detection system is described in Terry et al. (1994) for use in
a street-map directions dialogue system. The goal of this module is to distinguish

between acknowledgements and questions using prosody. Distinguishing dialogue
act types without prosody could lead to the misclassification of utterances. For

example (taken from Terry et al. (1994)), the response to the system's instruction
"turn right at the main street" could be any of the following:

• do I turn right at the main street?

• so RIGHT? at main

• right at MAIN?

• Okay, right at main

Apart from the first utterance which has interrogative syntax, prosody is
needed to determine the utterance type of the replies. They use a set of 10
rules to map the intonation contour onto the utterance type. Firstly, they ex¬

tract a set of prosodic features from the smoothed F0 contour. These features
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include duration, average pitch value and variance, pitch slope, goodness of fit,
and maximum and minimum pitch values. These are then used to categorise parts

of the contour into three shapes: convex, concave and straight. These shapes are

classed as either rise, fall or level. Section 5.2.7 describes a system that captures
the shape of a contour as a single continuous variable tilt, thus rendering these
discrete labels redundant.

The set of 10 rules they present are based on two generalisations:

1. falling pitch indicates a statement

2. utterance final rising pitch indicates a query

For example, Terry et al. expand rule 2, saying that if there is a rising pitch
that levels off at the end then the utterance is still classified as a query. Another

example rule classes intonation contours that have a sharp rise at the beginning
of the sentence and level off as a query or denoting uncertainty. Word spotting
was also used for acknowledgements as they may have a rising boundary due to

an element of doubt, for example "uh-huh", "go-on" and "okay". This method

distinguishes queries from acknowledgements 89% of the time3. They have no way

of recognising a query that has a falling intonation contour even if it has inter¬

rogative syntax. A novel method is presented in this thesis that uses statistical

techniques that can map various intonation contours onto one utterance type.

3They do not give a baseline figure.



Chapter 2

Dialogue Annotation Schemes

The problem of which discourse analysis method to adopt is a major design deci¬
sion in the construction of any dialogue system or automatic speech recognition

system. One needs an annotation scheme that is large enough to be expressive

yet succinct enough to be reliably coded. For the purpose of our experiments
described in chapter 1, each utterance type must have a distinctive syntactic and

prosodic form and yet be linguistically and pragmatically meaningful.

Two approaches are adopted throughout the literature: a shallow discourse
structure and a deep discourse structure. Shallow approaches examine utter¬

ance form and discourse function in a small window of dialogue, such as speech
act based utterance types (Austin, 1962; Nagata & Morimoto, 1993; Reithinger
et al., 1996). Other shallow analyses look at sociolinguistic facts such as appropri¬
ate replies captured by Schegloff and Sacks' adjacency pairs (Schegloff & Sacks,

1973). One deep structure approach looks at topic or focus structure identification

(Nakajima & Allen, 1993). The theory adopted for this work is the Conversational
Game Analysis, first proposed by Power (1979) and adapted for Map Task by Car-
letta et al. (1997). This theory takes a deep structure approach captured in plan
based systems that classify utterances in terms of high-level discourse goals.

13
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2.1 Discourse Plans

Plan based dialogue analysis schemes were developed (Power, 1979; Houghton,

1986) for use in computer-computer dialogue systems for generation and analysis
of task oriented dialogues. Their schemes are hierarchical in structure and examine

general goals of discourse and how these goals are achieved using different types
of plans. Schemes developed by Power (1979) and an adaptation of this work

by Houghton (1986) will be discussed here as their ideas form the basis of the
Conversational Game Analysis adopted in this study.

Power's motivation for developing a plan based scheme was to gain insight
into how utterances achieve goals. His practical application was to program two

processes on one computer to communicate in such a way that they could achieve

simple practical goals in a limited world, such as opening a door and entering. For
the programs to cooperate, they have to exchange information, formulate plans,

compare belief states and assess results, just as humans do.

The actual form of the conversation is determined by a number of procedures
called games. In each of these games the agents take different roles. The games

can be nested, which would occur if a subgoal needs to be achieved before the
main one. The types of games defined by the program are listed below:

1. GAME ASK to obtain information

2. GAME TELL to give information

3. GAME RULE to discuss rules

4. GAME GOAL to ask for help with a goal

5. GAME PLAN to agree on a plan

6. GAME ASSESS to assess the result of an action
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7. GAME GAME to get one of the other games started

Houghton (1986; 1987) defines a discourse unit of interaction frames which are

similar to Power's games and are also designed to be used by agents in a virtual
world. The types of interaction frames are given below:

1. MAKE_KNOWN impart information

2. FIND.OUT obtain information

3. GETJDONE get a favour done

4. GET_ATTENTION call someone

2.2 Adjacency pairs

Schegloff and Sacks' (1973) conversational structure is founded mostly on ad¬

jacency pairs. An adjacency pair consists of two utterances each of which is

made by different speakers. For example: greeting-greeting; question-answer; of-

fer:acceptance/refusal. Most types of utterances are specific to one part of the

adjacency pair. The second part has two functions either to give a response or

to acknowledge understanding. Despite the term adjacency pair the related ut¬

terances may have intervening utterances. For example a) and d) constitute an

adjacency pair of suggest-agree with a clarification sub-pair in between.

• A: let's go to the cinema

• B: what's on?

• C: a cartoon

• D: all right
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Power (1979) suggests that there is strong evidence that the adjacency pair is
an important dialogue unit. The whole point of uttering a question or an answer

is to inform the listener, this cannot be achieved to the full extent without the

adjacency pair context.

2.3 Speech Act Theory

Austin (1962) observed in his book that saying something often involves also doing

something, for example, making a request, promising, apologising. According to

Austin, an utterance can be described on the three levels given below.

• locution: uttering the words (phonemes or syllables)

• illocution: the intention behind the words (e.g. promising, suggesting, ad¬

vising, etc.)

• perlocution: the effect of the illocution on the hearer (e.g. persuading, urg¬

ing, etc.)

For example, take the utterance "You can't do that!". Locution is the ut¬

terance of the phonemes or words; the illocutionary act is either forbidding or

protesting; and the perlocutionary effect could be to stop the addressee's action,

annoy them or even incite them. In his book, Austin focused on what he calls

performative sentences which contain performative verbs, such as "I order you to

turn out the lights". He observed that performative sentences can go wrong as

the intended effect of an utterance may not necessarily be achieved, conversely an

action can be performed without using a performative verb.

Searle (1975) went on to develop Austin's work by developing the concept of
felicity. He states that a speech act can only be performed in the correct felicity
conditions. For example, the act of marriage can only be performed by a priest
or a judge.
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2.4 Conversational Games

This aspect of the effect of utterances is emphasised in the plan based schemes

described above, where the participants only communicate when they need to per¬

form some goal. It is the grouping of utterances with similar aims that motivated
the development of the Conversational Game Analysis theory. Carletta et al.

(1997) modified this theory of games for the type of dialogue created by the Map
Task which is used in the experiments presented in this thesis. The Map Task is

conducted by two people, one participant (the giver) has the role of guiding the

follower around a map (more details are given in section 3.2).

The annotation scheme consists of three levels. The largest division of the

dialogue is a transaction which involves the completion of a major part of the

participant's plan. In the Map Task, this generally corresponds to the completion
of some part of the route on the map. Transactions are subdivided into games.

Dialogue games consist of an initiating utterance and encompasses all subsequent
utterances that contribute to the aim of the game. Games consist of a sequence of
move utterance types divided into initiations and responses. Each of these levels
is discussed in turn in the sections below.

2.4.1 Moves

To a certain extent, move typing involves a shallow analysis by describing the
utterance in terms of its form (e.g. query-yn/query-w) or its function in discourse

(e.g. ready, check). The advantage of the move types described in Carletta et al.

(Carletta et al., 1997) is that they reflect the game structure. This is exemplified
in figure 2.1 taken from Carletta et al. (1997), which shows the distinctions used
to classify the move types. This figure shows that the move types are divided
into three basic classes: initiation moves that start games, response moves and
a preparation move ready. A breakdown of each of these move types is given in
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Line Speaker Utterance Move Game

1 Giver okay ready query-yn
2 Giver at the starting point query-yn query-yn

do you have a sandy shore?
3 Follower yes I do reply-y query-yn
4 Giver and directly below that query-yn query-yn

do you have a well?
5 Follower well? check check
6 Follower no well reply-n query-yn
7 Giver anything directly below? query-yn query-yn
8 Follower hills way below reply-w query-yn
9 Giver the well acknowledge query-yn
10 Giver okay ready instruct

11 Giver I'd say about three fingers instruct instruct

south go down
12 Follower of sandy shore, there's a check check

well?

13 Giver yeah reply-y check
14 Follower okay acknowledge instruct

Table 2.1: Data extract including move and game type

Carletta et al. (1997) and is repeated here.

2.4.2 Initiating Moves

• The Instruct Move

This type of utterance requests or demands an action. Instruct moves can be in the

form of direct questions, imperatives or indirect suggestions. Due to the nature

of the Map Task most instructions are given by the giver and mostly involve him

guiding the follower around landmarks along the given route on the map. An

example of an instruct is given in line 11 in table 2.1, where the giver guides the
follower three fingers south to a landmark.
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Is the utterance an initiation, response, or preparation?

INITIATION

Is the utterance a command, statement,
or question?

COMMAND

INSTRUCT

STATEMENT

EXPLAIN

RESPONSE

Does the response contribute task/domain
information, or does it only show evidence
that communication has been successful?

PREPARATION

READY

QUESTION
Is the person who is transferring information
asking a question in an attempt to get evidence
that the transfer was successful, so they can
move on?

COMMUNICATION

ACKNOWLEDGEMENT

INFORMATION

Does the response contain just
the information requested, or is
it amplified?

YES NO AMPLIFIED

ALIGN Does the question ask for confirmation of CLARIFY
material which the speaker believes might be
inferred, given the dialogue context?

INFO REQUESTED
Does the response mean yes, no,
or something more complex?

YES

CHECK

NO

Does the question ask for a yes-no

answer, or something more complex?

YES-NO

QUERY-YN

COMPLEX

QUERY-W

Figure 2.1: Move categorisation. Source: Carletta pI nl (1007*1
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• The Explain Move

This is a declarative utterance that gives some information not elicited from the
other speaker1. Information transferred through explain moves include the state of
the discourse plan (such as domain information) and the establishing of mutually
known information (such as shared landmarks). An example of an explain move

is:

- Giver, the farm land is about three fingers east of the dead tree (explain)

- Follower: okay (acknowledge)

• The Check Move

Check moves are interrogatives that request the other participant to confirm some

information or state of discourse goal. This information is either explicitly con¬

veyed by the partner or inferable. Most of the check moves involve comparing

possible matching landmarks on the map. Examples of a check move are given in

lines 5 and 12 in table 2.1.

• The Align Move

This move is discourse function oriented in that it is used to check the agreement,

attention or readiness of a partner. Align is mostly used to check the successful
transferral of information in order to close a game and move onto the next. This
is commonly realised as "Okay?" immediately after a question. It is also often
used to break up larger pauses, making sure the other participant is still following
the conversation. For example:

- Giver: so you've circled the farm land? (align)

- Follower: yes (reply-y)
Tf it is elicited then the move would be a response, for example a reply to a query-w.
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• The Query-yn Move

Classification of yes/no questions is based primarily on syntactic form mostly

starting with "do you have" and referring to the landmarks on the map. They are

only classified as such if they take a "yes" or "no" answer and do not fall into the
check or align categories. Examples of query-yn moves are given on lines 4 and 7

in table 2.1. The data given are dialogue initial and illustrate the frequent use of

query-yn to establish the features on the maps.

• The Query-w Move

This category mostly includes wh-questions (those that start with "which, what,
where etc."). However, it is also a general category for all interrogatives that do
not fall into the other initiating move categories, including asking the hearer to
choose an answer from a list of possibilities. An example of a query-w move is

given below.

- Follower, which side of the well do I pass? (query-w)

- Giver: you go around the southwest side of the well (reply-w)

2.4.3 Response Moves

• The Acknowledge Move

Acknowledge moves are generally short utterances frequently used as backchannels.

They indicate that the speaker has heard and/or understood the corresponding
utterance from the other speaker. Acknowledges involve either producing a verbal

acknowledgement (usually "okay"), paraphrasing or repeating all or part of the
utterance, illustrated in lines 9 and 14 in table 2.1.
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• The Reply-y Move

This is a positive reply elicited from a question, normally a query-yn, check or

align. Examples can be found on lines 3 and 13 in table 2.1.

• The Reply-n Move

This is a negative reply elicited from a query-yn, exemplified on line 6 in table
2.1.

• The Reply-w Move

This move type encompasses any type of response to a query that is not included
in the previous two categories. See the section on query-w moves for an example.

• The Clarify Move

A clarify move is a reply that contains more information than was requested by

the question. This move type is used if the change in meaning is too small to
merit one of the other move types. These tend to occur when the participants

are not talking about a particular topic (such as a landmark), but when a general

problem has occurred. For example, if the follower is unclear where he should be
on the map, as illustrated in the following data extract.

- Follower: so I'm staying on the east side of the babbling brook and going
south on it? {check)

- Giver: yeah (reply-y)

- Follower: all right (acknowledge)

- Giver: just follow it down until you get past the curve and then stop (clarify)
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• The Ready Move

The ready move is in addition to the initiating and non-initiating moves. It fre¬

quently occurs to conclude that the current game has ended and to set up the

next one. Although ready moves basically play the role of discourse markers, it is

important that they have their own class to distinguish them from acknowledges
which are also short and have similar wording (mostly "okay", "right"). There
are two examples of ready moves starting games given in table 2.1.

2.4.4 Games

As discussed previously, the idea of dividing discourse into games was initially

developed by Power (1979) for computer-computer interactions. A game is taken
as a group of moves that establish some higher level goal. A game is only complete
if both participants agree that this aim has been achieved. Games are named

depending on their discourse function; this is taken as the same as the initiating

move, excluding ready moves.

Table 2.1 gives examples of four consecutive games. Take game 1, for example,
this is a query-yn game as the first initiating move is a query-yn move. This game

has the goal of establishing the landmark "sandy shore". Another example is

game 4, which is an instruct game and has the goal of getting the follower to

perform the action of moving down the map.

Games can be embedded where smaller subgoals need to be achieved before

higher goals. Examples of embedded games are found in games 2 and 4 in table
2.1. These embedded games are check games that need to be completed before
the goal of the main game (e.g. instructing) can be obtained.

2.4.5 Transactions

Transactions are larger chunks of dialogue that accomplish a higher level goal in
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the Map Task, such as mapping out a section of the route. Labelling of transac¬
tions is not always straightforward, as participants like to review previous parts

of the route and also look forward to upcoming parts to provide context. Con¬

versation not pertaining to the route also occurs, for example in discussing the

experimental makeup.

2.5 DAMSL

The game based systems described above were judged inappropriate for the com¬

plex shallow analysis needed for dialogue systems such as TRAINS (Allen et al.,

1996). A multi-layer dialogue annotation system was developed called DAMSL

(Dialog Act Markup in Several Layers) described in Core & Allen (1997). In this

scheme, each utterance is attached with a number of independent labels each per¬

taining to a different action. For example, an utterance may simultaneously be

responding to a question, informing and promising to perform an action. DAMSL
consists of a set of 33 dialogue act types. These are subdivided into three cate¬

gories:

• forward communicative functions

• backward communicative functions

• utterance features

Forward communicative functions affect the future conversation, such as a

request for information. Utterances that are included in this category potentially
induce further action such as performatives, offers, commitments and statements.

As described in section 2.3, performatives, first defined by Austin (1962), are

utterances that perform some action and can be used in conjunction with any

one of the other categories. For example, "You are fired" is a statement and a

performative.
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The backward communicative functions include utterances of agreement, un¬

derstanding and answers. The final category is utterance features which tries to

capture the content of an utterance. These include utterances on a meta-level

(such as describing the task at hand), abandoned utterances and conventional
utterances such as "hello" and exclamatory ones such as "wow".

The advantage of the DAMSL scheme is that an utterance can be assigned
more than one category, as the layers of utterance types are independent to a

certain extent. The drawback with this approach is that it is far more complicated
than the plan based schemes and therefore has lower inter-annotator agreement.

The agreement results of DAMSL and the other schemes are compared in section
2.11.

The scheme was primarily designed for task oriented dialogue systems, such as

TRAINS described in section 1.5.1. Allen et al. (1996) do state that it is adaptable
for non-task oriented dialogues such as the switchboard corpus, described in the

next section.

2.6 Switchboard Data Recognition

A large corpus of spontaneous telephone conversation has been hand-annotated
for dialogue structure. These data, known as the switchboard corpus (SWB),
are a set of recordings of two participant conversations on a given topic. The

participants do not know each other prior to the recording.

Studies on the switchboard corpus (Shriberg et al., 1998; Jurafsky et al., 1997)
use dialogue information in an attempt to improve word recognition accuracy (see
section 7.1). The dialogue act tag set they use is a modified version of DAMSL.
As DAMSL is a task oriented annotation scheme, modifications were necessary

for less goal oriented dialogue. The new set consists of approximately 60 basic

tags some of which can be combined, resulting in a set of 220 combinations, 130
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Tag Example %
Statement-non-opinion Me, I'm in the legal department 36%
Acknowledge (Backchannel) Uh-huh 19%
Statement-opinion I think it's great 13%
Agree/Accept That's exactly it 5%
Abandoned or Turn-Exit So - 5%

Table 2.2: Examples of the five most frequent dialogue acts after clustering, with
the percentage of the data they account for

of which occurred less that 10 times. This set was clustered by hand into 42

categories. The top five most frequent of these are given in table 2.2, taken from

Shriberg et al. (1998). Further clustering was performed resulting in main seven

tags: statements, questions, incomplete utterances, backchannels, agreements, ap¬

preciation and other.

80% of the 42 SWB labels can be mapped onto the standard DAMSL labels.

The main difference is that some of the SWB tags incorporate both forward and

backward communications. For example, interrogatives are placed in the same

class if they are eliciting information (forward communicative function) or query¬

ing given information (backward communicative function).

Shriberg et al. (1998) claim that the SWB annotation scheme "incorporates
both traditional sociolinguistic and discourse-theoretic rhetorical relations (adja¬

cency pairs) as well as some more-form-based labels". By using a more shallow

tag set, they claim that they can cover a larger data set. This may be true but

higher level discourse information, such as whether a local goal is achieved, is
shown to be useful in the study presented here (see chapter 8).

2.6.1 Clarity

The Clarity project described in Finke et al. (1998) is a speech recognition project

using similar data to the switchboard but in Spanish. In this corpus, members of
the same family talk on unrestricted topics. The dialogue act annotation scheme
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is similar to the SWB with a few modifications. The tag set had to be changed to

account for a distinction between direct and indirect speech acts, expressions of

surprise and attention directives. There were also tags that could be excluded as

they never occur in the data, for example reformulations of the speaker's utterance.

2.7 Verbmobil

The set of dialogue acts for the translation dialogue system described in sec¬

tion 1.4 consists of 43 dialogue acts described in Jekat et al. (1995) and Maier

(1997). These are tailored towards the domain of the system, namely appointment

scheduling. The 43 acts are grouped into 18 abstract illocutionary classes. The

following examples are taken from Maier (1997).

• REQUESTJ3UGGEST: the dialogue participant is asked to make a sugges¬

tion.

• ACCEPT, REJECT: a proposed item is accepted or rejected

• GREET, THANK, BYE: conventional dialogue actions are performed

Finer grained distinctions deal with propositional content, for example date, du¬
ration and location.

2.8 Dialogue Annotation of Classroom Corpus

Sinclair & Coulthard (1975), part of the Birmingham School Discourse Analysis

group, developed a set of dialogue acts in an attempt to model classroom discourse.
Their scheme consists of a hierarchy of five ranks of discourse structure: lesson,

transaction, exchange, move and act. Lessons constitute a series of transactions

which themselves consist of a series of exchanges. The structure of each exchange
is in terms of three move types: initiation (I), response (R) and feedback (F).
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The IRF model predicts that these moves will occur in the given sequence and
that only the initiation (I) is obligatory. Sinclair & Coulthard (1975) define 22

acts, many of which are limited to particular moves. For example, "accept" or

"evaluate" are typically response type moves. The disadvantage of this scheme is

that it is very domain specific. In addition, the IRF model is not very predictive

as it does not specify the conditions under which the R and F type moves would
be omitted.

2.9 Annotation for a Japanese Dialogue System

Nagata &; Morimoto (1993) and Kita et al. (1996) define a classification system

based on the utterance's syntax, modality or speaker's intention. Some examples
of the 15 fold tag set are given below:

• inform-, information giving utterances (e.g. "I've just received my registra¬
tion card")

• questionif: yes/no questions (e.g. "Do you have any other questions")

• suggestion: speaker suggests that the hearer perform some action (e.g. "How
about seeing that?")

• acknowledge: speaker acknowledges the other person's utterance (e.g. "I

see")

The data they use are typed dialogues between a secretary and a questioner
in Japanese. Their dialogue annotation scheme is similar to DAMSL in that it
has many tags that can be simultaneously attached to one utterance.
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2.10 Topic Structure Identification

Prosodic cues to topic shift structure are examined in Nakajima & Allen (1993)
for incorporation into the TRAINS system described in section 1.5.1. Utterance

types are divided into four main categories which reflect the topic state given

below, taken from Nakajima & Allen (1993).

• Topic Shift

- New Topic: utterance that introduces a new topic, new (sub)goal or
new (sub)plan

— Topic Development: utterance develops previous topic with some

weak linkage between them

- Interruption: previous or simultaneous utterance is interrupted by

current utterance

• Topic Continuation: talking about the same plan or entity as in the

previous utterance

• Elaboration Class

— Elaboration: the current utterance adds some information relevant

to the previous statement

— Clarification: the current utterance clarifies some proposition from
the previous statement

- Summary: the current utterance summarises contents of previous

utterances

• Speech Act Continuation: single speech act continues over several ut¬
terances
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In their paper, Nakajima and Allen show that various prosodic features can

be used to discriminate the above topic boundary classes. For example, they

found that the mean F0 onset of an utterance containing a new topic is higher
than one that continues the same topic (125Hz compared to 101Hz). Another
trend they found is that the average final F0 of declarative utterances is lower
if a new topic is introduced in the next utterance (88Hz compared to 108Hz).
This utterance classification is beneficial from a pragmatic viewpoint and would
be useful in conjunction with key word spotting to identify the current topic.

However, these dialogue act types do not group utterances that are syntactically
similar. In addition, the prosodic features they present to distinguish utterance

types exclude interrogative features. This suggests that further investigation is
needed to create a set of topic related utterance types distinguishable by both

their intonation and their syntactic structure.

2.11 Assessing Discourse Annotation Schemes

When doing any type of research, it is essential that other people besides the

author can understand the reasoning behind it and replicate the workings. This

is especially true of annotation schemes, as one desires a corpus of consistently

annotated dialogue acts across a number of coders. This section presents several

methods of measuring the reliability of coders for a given annotation scheme.

Krippendorff (1980) defines three terms of coder reliability: stability, repro¬

ducibility and accuracy. Stability refers to whether a coder's judgement varies over
time. Reproducibility or inter-coder variance requires different annotators to code

in the same way. The final term is accuracy where the coder has to conform to

some known standard.

Siegel and Castellan (1988) propose using a figure that takes into account how
different the results are from random assignment of categories. The statistic that
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they use is the kappa coefficient. This figure measures pairwise agreement among

coders making categorical judgements and is corrected for chance.

P(A)-P(E)
1 - P(E) 1 ' '

P(A) is the proportion of times the coders agree and P(E) is the proportion
of agreement one would expect by chance2. This provides a scale of accuracy from
0 to 1, where if there is no more agreement than chance, K is 0. If there is total

agreement 77 is 1.

Krippendorff defines a threshold of K > .8 for good reliability and
.67 > K > .8 for tentative conclusion to be drawn. This statistic can be used

for both classification of utterances into a set of mutually exclusive classes and

also to test the regularity of utterance boundary placement. These are obviously
interrelated: as Krippendorff highlights, there is not much point having a high

accuracy of classification if the segmentation process is inaccurate.

2.11.1 Annotation Accuracy of Game Analysis Theory

Carletta et al. (1997) use the kappa statistic to examine if Conversational Game

Analysis theory can be applied with sufficient accuracy. In this study, the au¬

thors compare four reasonably experienced coders who each code the same four

dialogues using both text and speech.

• Reliability of Move Segmentation

Two figures are given for move segmentation. The first is the kappa score which is

used to determine the agreement for assigning or not assigning move boundaries
at each word boundary. This score is K = .92.

2See Siegel & Castellan (1988) for complete calculation instructions.
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The second figure is the pairwise percentage agreement which just examines

agreement on word boundaries where any coder has marked a boundary. The
number of pairs of coders that agree is divided by the total number of coder pairs.

Pairwise percentage agreement is reasonably good for move segmentation (89%).
Most of the disagreements involve the ready and reply moves. The problem with

ready is that some coders include the following extra utterance such as an explain
in the ready move while others label two separate moves. Similarly with reply
moves: some coders make them short, with an extra move if some elaboration

follows, (e.g. an explain, clarify or instruct) while others include these moves in
the reply move.

• Reliability ofMove Classification

The kappa coefficient is calculated for utterances where coders agree on the bound¬
aries. This figure is K — .83, which is above the threshold set by Krippendorff

(1980) for good reliability. Confusions arise between the following moves: check
and query-yn; instruct and clarify; acknowledge, ready and reply-y.

Separate tests were performed dividing the data into sets of initiating and non-

initiating moves. For initiating moves, agreement is K = .95 between the following

categories: statements (i.e. explain), commands (i.e. instruct) and questions. For

non-initiating moves, the separate categories were between acknowledge, clarify
and replies. This kappa score is K = .86. This results in an overall kappa score

of K = .89.

• Reliability of Game Coding

Testing the reliability of game coding is not as straight forward as for moves. This
is because, although coders may agree on when a game starts and the goal of the

game, they may not always agree on where the game ends. In addition, as games

can nest within each other, it is not possible to analyse game segmentation in the
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same way as for moves. Carletta et al. (1997) observe a 70% pairwise percentage

agreement on game starts. Where starts are agreed most coders also agree on

game type (K = .86). This is due to the fact that most of the time the move type

of the initiating move is taken as the game type. Where the coders agreed on the

game start, they agree 65% of the time where the game ended.

2.11.2 Agreement Results for Other Annotation Schemes

O DAMSL

Dialogue annotation accuracy experiments were conducted using 93 dialogues of
TRAINS corpus. These data consist of dialogues between humans discussing the
task described in section 1.5.1. One participant is given a problem to solve such
as shipping boxcars. The second participant acts as a problem solving agent.

The results of inter-annotator agreement are below reliability standard set by

Krippendorff but are of a usable quality (.67 < K < .8). See Core & Allen (1997)
for further details.

o SWB

Annotator accuracy of the 42 SWB dialogue acts types is K = .8, which is

highly creditable. Grouping these categories according to the main seven types

yields a kappa score of A: = .85. Recall that the SWB dialogue acts are a modifica¬
tion of the DAMSL set. As the SWB kappa score is higher than the DAMSL score,

one can infer the modifications made were justified and indeed an improvement.

o Verbmobil
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Inter-coder agreement between two annotators is excellent for the Verbmobil

dialogue act boundary detection (K = .9). Classification of the 18 utterance

types between these coders is also good (K = .8). Ideally, a comparison between
a larger number of coders would be desirable. Stability of one of the coders was

calculated with a ten month time lapse. This figure is K — .94 for segmentation
and K = .84 for classification.

• Summary

The annotation reliability figures for the above systems are not directly compa¬

rable as the dialogue acts vary in number and complexity. One can gauge the

accuracy to a certain extent by using Krippendorf's standard of K > .8 for re¬

liable data coding. It is worth noting that the accuracy of the classification and

segmentation of the Conversational Game Analysis theory adopted in this study
is above this threshold.



Chapter 3

Experimental Setup

3.1 Introduction

There are two main goals of the work presented in this thesis, the first of which is
the automatic classification of utterance types. This has a number of applications,
such as human computer interactive systems where the system needs to know if
it is being asked a question or not. Automatic utterance type classification would
also facilitate the annotation of large electronic databases. Finally, the utterance

type detector can be used in an automatic speech recognition system (ASR). The
second goal of this work is to be able to perform utterance type recognition with

enough accuracy to improve word recognition error in an ASR system.

This chapter is divided into two parts. The first part gives an overview of the

type of data used in the experiments and the choice of dialogue annotation scheme.
The second part gives an overview of the method used to identify utterance type

and how this is used in an automatic speech recognition system to improve word
error rate.

35
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3.2 The Data

The data used in the experiments described in this thesis are a subset of the

DCIEM Map Task corpus. This is a corpus of spontaneous goal-directed dialogue

speech produced by Canadian males (Bard et al., 1995)h This corpus was chosen
over a Map Task corpus produced by Glaswegian students in order to take ad¬

vantage of the large amount of work on North American speech recognition. In

addition, it was thought that the Canadian intonation would be easier to model
than the Glaswegian, which is generally more monotone.

3.2.1 The Map Task Scenario

In the Map Task scenario (Bard et al., 1995), each conversation has two partici¬

pants with different roles called giver and follower. Each participant has a map

with landmarks. These maps are similar to each other but not identical as illus¬

trated in figure 3.1. The role of the giver is to guide the follower through the
route on his map.

The speakers are recorded using separate high-quality microphones. Although
there is some speaker overlap, one can basically distinguish different speakers by
their channels.

3.3 Choice of Discourse Annotation Scheme

A number of possible dialogue act annotation schemes have been discussed in

chapter 2. These schemes take two basic approaches: shallow discourse structure

or a deep structure. The shallow level dialogue labels are adopted for complex

dialogue systems, e.g. TRAINS (Allen et al., 1996) and less task specific speech
1 Although these data are collected from a sleep deprivation experiment, dialogues recorded

in non-standard conditions are not included in the data
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(a) Giver (b) Follower

Figure 3.1: Example of two slightly different maps given to the Map Task partic¬
ipants

recognition applications such as SWB (Shriberg et ai, 1998). These schemes,

however, do not model the hierarchical nature of discourse.

Deep structure schemes include plan based schemes such as that developed by

Power (1979). His system specifies discourse goals and how to achieve these goals

using set plans. He developed this scheme for the computer-computer scenario

where the agents have to perform a simple task, such as opening a door and moving

through it. The Map Task is similar to this scenario in that the two participants

have to cooperate to achieve the discourse goal of moving from A to B on the map.

Therefore, Carletta et al. (1997) modified his scheme for the Map Task dialogues,
as described in section 2.4. As discussed in section 2.11.1, Carletta shows that

the Conversational Game Analysis theory can be applied with a high degree of

reliability.
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Data set Number of

dialogues
Number of
utterances

Purpose

Set A 50 12,758 training
Set B 20 3726 training
Set C 5 1061 testing

Table 3.1: Statistics for training and testing sets of the DCIEM corpus

Word Intonation Moves Games

Set A yes no yes no

Set B yes yes yes yes
Set C yes yes yes yes

Table 3.2: Hand-labelled training and testing sets of the DCIEM corpus

3.3.1 Data Annotation

The data is divided into two sets, one for training (A) and one for testing the

system (C). None of the test set speakers are in the training set, i.e. the system is

speaker independent. Set B is a subset of a larger training set A. Details of these
sets are given in tables 3.1 and 3.2.

Word transcriptions are available for all the data. These, however, are not

aligned in time. Intonation events are hand-labelled for the smaller training set

B and the test set C. All the data are hand-labelled for moves, but the larger

discourse unit of game is only labelled for sets B and C.

• Frequency ofMove Types

Table 3.3 shows the frequency of the different moves in the training set divided
between the follower and the giver. One can see how the nature of the Map Task
affects the discourse structure with the giver uttering many instruct and query-yn

moves and the follower many acknowledges. The high number of explain moves

by the follower may be surprising. These are often uttered in an attempt to

establish the different landmarks on the maps. The acknowledge move has a high

frequency, thus illustrating the number of backchannels in discourse. Another
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Move type Frequency Giver frequency Follower frequency
instruct 604 596 8

explain 330 148 182

align 120 117 3

check 245 62 183

query-yn 333 246 87

query-w 97 24 73

acknowledge 922 292 630

clarify 93 85 8

reply-y 384 174 210

reply-n 107 27 80

reply-w 145 71 74

ready 346 289 57

Table 3.3: Frequency of move types for set B training set, follower's moves and
giver's moves

factor contributing to the number of acknowledges is the fact that the Map Task
is not done face-to-face. A study of the Glasgow Map Task (Anderson et ai,

1991), which is coded for eye contact, shows that the task is completed in less
moves and 13% fewer words when eye contact is present. This is due to the fact

that many of the acknowledgements are expressed non-verbally.

The difficulty of the task of move type detection is reflected in the distribution

of the moves to a certain extent. One defines a figure of chance that is the

percentage of moves that would be correctly classified if the most frequent move

type was picked 100% of the time. For this database chance is 24%, which is the

proportion of acknowledge moves. Another measure of task difficulty is perplexity

which is defined in chapter 4.

3.4 System Architecture

This section is divided into two parts. The first deals mainly with the method of
automatic move classification. The second part looks at how this can be integrated
into the automatic speech recognition system.
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3.4.1 Automatic Move Classification

There are three basic sources of information that can be tapped for move recogni¬

tion. Firstly, moves of certain types follow each other with a degree of regularity.
For example, as the data in table 2.1 illustrate, query-yn moves are often followed

by replies which in turn may be followed by an acknowledge. This sequence of
moves is more likely than, for example, three acknowledges. The regularities in

move sequence are captured by a dialogue model (DM). This dialogue model takes

advantage of the fact that one can tell the role of the speaker automatically. This
is very useful as the different participant roles have different distribution of moves,
as discussed above.

Secondly, utterances of a certain move type have similar syntactic and lexical

patterns. For example, a query-yn frequently starts with the words "Do you have
a ...". A language model (LM) is used to capture these characteristics. One

language model is trained for each of the move types. The recogniser is run 12

times using a different language model each time. Whichever language model
matches the string of recognised words the best is taken as the most likely move

type.

Finally, intonation is indicative of move type. For example a query-yn fre¬

quently has a rising intonation contour, while an explain frequently has a falling

one. The intonation model (IM) is used to produce the likelihood of the intonation

given the different move types.

Figure 3.2 gives a schematic representation of how these three models are

combined to perform move recognition. The architecture of the system is the same

as that reported in Taylor et al. (1998b) and King (1998)2. Finding the most likely
move sequence is a search problem. The search space is a list of all the possible

combinations of move types for a given number of utterances. The solution to

2These describe a joint project with the author.
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Figure 3.2: System Architecture
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this problem is finding the most likely sequence based on observations about each

utterance combined with prior knowledge. The observations are provided by the
intonation and language models. The prior knowledge is provided by the dialogue

model that looks at the move type of previous utterances.

To find the best move sequence, one could perform a brute force search through

all the possible move sequences. As this is computationally expensive, the math¬
ematical algorithm known as the viterbi search (Viterbi, 1967) has been chosen.
This procedure cuts down the search space as it searches incrementally, keeping
track of a number of the best hypotheses in parallel. This set of hypotheses can

be large and therefore would need to be pruned.

The search finds the best sequence of moves M* using the Bayesian equation

3.1. A formal derivation, taken from Taylor et al. (1998b), is given in the following
section.

• Formal Derivation

D the dialogue

C acoustic observations for D

I intonation observations, such as F0

M the sequence of move types for D

S the sequence of speaker identities for D

Given a dialogue D, the goal is to find the most likely move sequence (M*)

given the following information sources: speaker identity (S); acoustic observations

(C); and intonation features (I).

M* = argmaxP(M\S, C, I)
M
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= argmax P(M)P(S, C, I\M)
M

because P(S, C, F) is a constant for a given D (there is no other acoustic data
save those that are given). Assuming that S, C and / are independent:

= argmaxP(M)P(P|M)P(C|M)P(/|M)
M

= argmaxP(S)P(M|S)P(C|M)P(J|M)
M

and since P(S) is a constant for any given D:

= argmax P{M\S) ■ P(C\M) ■ P(/|M) (3.1)

dialogue speech intonation
model recogniser model

In this derivation, one assumes that speaker identity has no effect on the acous¬

tic or intonation features. Although this is clearly false, one already makes this

assumption by using the same intonation and word recogniser for both partici¬

pants. The following chapter shows that the likelihoods from the dialogue model
are calculated without regard to intonation and acoustics.

The middle term in equation 3.1 is the output likelihood of the acoustic pho¬

netic recogniser. Specifically, the likelihood of the acoustics is calculated from
the recogniser by using 12 different language models, as shown in the following

equations.

Letting W range over all possible word sequences,

P(C\M) = J2P(C\W)P(W\M)
w

^ maxP(C\W)P(W\M) (3.2)
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The sum over all possible word sequences is replaced by the most likely sequence,

i.e. the output of the recogniser.

Let

Ci = acoustic observations for the zth utterance

C = {C\, C2, . . . CyVy }

Wi = the word sequence for the zth utterance

w = {WuW2,...WNu}

rrii = move type of the ith utterance

M = {mum2,...mNu}

The two terms in equation 3.2 are

Nv

p{c iw) =
i=1

which is given by the HMMs in the speech recogniser, and

Nv

P(wim) = nm.K)
i=i

which is given by the move specific language models.

Stolcke et al. (1998) suggest using a lattice of the N-best word sequences from
the recogniser to calculate the likelihood for each move type. This method may

improve the results given in chapter 7 but it is very computationally expensive.
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3.4.2 Automatic Speech Recognition

The motivation behind using an automatic move detection system in a speech

recognition system is to make it easier to choose among a number of word pos¬

sibilities. In other words, one wants to take advantage of the fact that certain
words and word sequences occur in one move type. For example, most acknowl¬

edge moves contain "okay". In chapter 4, it will be shown that the difficulty of

the task of word identification is reduced by using language models specific to

the utterance's move type. The method given in the previous section is used to

identify the most likely move type of an utterance. This is then used to deter¬

mine the language model to be used during recognition. Chapter 7 gives the word

recognition results and shows that the baseline system can be improved using this

novel technique.

3.4.3 The Baseline System

The baseline speech recognition system that provides the likelihoods of word se¬

quences which are used to predict the utterance type is a standard HMM based

system built using the HTK toolkit (Young et al., 1996). This system uses the
standard features for training the HMM models, namely 12 cepstral co-efficients

plus energy, plus their first and second derivatives giving 39 component obser¬

vation vectors. The HMM models are 8-component Gaussian mixture tied-state

cross-word triphone models; see Young et al. (1996) and Rabiner & Juang (1994)
for more details.

Approximately three hours and twenty minutes of speech were used to train

the models. These data have a vocabulary of around 900 words, which is not

particularly large in speech recognition terms. Using a general bigram language
model achieves a word error rate of 24.8%3. This is the baseline result that one

3For further detail of the baseline system see King (1998).
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is trying to improve by using move-specific language models.

3.4.4 Measuring Success

Move recognition results are given in terms of percentage of utterances correctly
classified. Word recognition is given in terms of percentage correct and accuracy.

Accuracy is used to account for words inserted or deleted and is calculated by

subtracting the percentage of insertions and deletions from the percentage correct.

3.4.5 Testing Scenarios

There are three different types of scenarios where this system can be tested. The

first is called overhearer, where the recogniser's goal is to transcribe both partic¬

ipants' moves and words. In this case, the predictors excluding speaker identity,

have to be guessed by the recogniser. This scenario is used for most of the ex¬

periments described in this thesis and in Taylor et al. (1998b). The second

application is the participant scenario, where the computer knows what one par¬

ticipant is saying and can use this to predict what the other person is saying. The

final transcription scenario uses the hand-transcribed data to predict the move or

word sequence. This is the easiest of the three tasks. This scenario is adopted in

the experiments reported in Poesio & Mikheev (1998) described in chapter 8.



Chapter 4

Dialogue and Language Models

4.1 Introduction

It is everyday knowledge that words do not follow each other randomly. For

example, a determiner followed by a noun followed by a verb is more likely than

three determiners in a row. One can take advantage of this in speech recognition to

make it easier to choose among a number of word possibilities. In order to do this,
statistical language models (LM) are trained on sequences of words. A language
model gives the probability of a particular word given a number of preceding
words or part of speech categories.

In a similar way, utterances of different types follow each other in a particularly

predictable way. For example, a reply is likely to follow a question. Language

modelling techniques are applied in order to model these sequences of utterance

types or moves. These models are referred to as discourse grammars or dialogue

models (DM).

In the first section, a standard language modelling technique, known as the

N-gram model is discussed. The method of training this model is described and
various techniques to cope with sparse data problems are discussed1. In order

1For a more comprehensive review of language modelling techniques see the CMU toolkit
manual (Rosenfeld & Clarkson, 1997).
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to examine whether the language and dialogue models improve the predictability
of the data, perplexity and entropy are calculated. Section 4.2.5 discusses the

implications of these figures and describes how to calculate them.

Section 4.4 looks at how the language modelling techniques can be applied
to dialogue modelling. As dialogue modelling is more relevant to the topic of
this thesis, a more detailed review of previous literature will be presented along
with a summary of other systems that attempt to model dialogue in a similar

way. Experiments taken from King (1998) show the effects of using various types

of predictors in terms of move sequence perplexity for the DCIEM Map Task

corpus. These results are given in 4.5.

Move-specific language models are used in move recognition. Each language
model is run over the recognised word sequence and the likelihood that the utter¬

ance is of a certain type is calculated. Section 4.6 presents these move recognition

results in conjunction with the best dialogue model.

The work on language modelling and dialogue modelling reported in this chap¬

ter is mostly taken from King (1998) but is part of a group project by Taylor,

Isard, King and Wright reported in Taylor et al. (1998b).

4.2 Language Modelling Techniques

4.2.1 N-grams

The N-gram model is a statistical method that improves the identification of the

current word by taking into account the a priori probabilities of various candi¬
date identities. This method is easily trainable and can be integrated into the

probabilistic framework described in chapter 3. As discussed in the introduction

N-grams can also be used to model sequences of moves. For simplicity, N-grams

will be described in terms of words in the following discussion. Section 4.4 deals
with N-grams for dialogue modelling.
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If W is a sequence of words w of length Q:

49

W = Wi,w2,...wQ (4.1)

calculating the probability of W is shown in equation 4.2. The equations below

are taken from Rabiner & Juang (1993):

P(W) = P(wuw2,...wQ)
= P(W1),P(W2\W1)...P(wq\WIW2...WQ-I) (4.2)

Unfortunately, it is not practically possible to calculate the probability of a whole

sequence of words of any length Q. Hence the N-gram was developed that looks
N — 1 tokens left of each word to be predicted, Wi

P{wi\wxw2...Wi-x) ^ P(wi\wi-N+i~-Wi-i) (4.3)

The probability of a sequence of words W is defined by the N-gram language
model PN(W). This is the product of the probabilities for each W{ in Q given its

context, i.e.

Q

PN(W) = Y[P(wl\wi_N+l...wi-i) (4.4)
i=1

The conditional probabilities are calculated using a simple frequency count shown
in equation 4.5.

P(iui|iui_1,....,u;i_jv+1) =
C(wj,Wj-1, ....,Wj_N+1)
C{wi-1, ....,Wi-N+i)

(4.5)
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4.2.2 Backing Off

Ideally N would be as high as possible in order to take advantage of as many

predictors as possible. However, if N is too large then this will increase the
number of occurrences of N-grams in the testing set that do not occur in the

training set. In order to compensate for this, a process known as backing off can
be employed (Katz, 1987). In order to give these rare N-grams some non-zero

probability, some of the frequencies from the other N-grams are discounted, so

that the sum of the likelihoods remains equal to 1.

For example, one may want to calculate the probability of a trigram, P(a, b, c).
If one has not seen this sequence in the training data frequently enough to reliably
estimate the probability, one can use the probability of the bigram P(c\b) to

estimate the trigram probability.

where a is the backing off weight which is needed to ensure that the probabilities
of the word history (a, b) sum to one (taken from King (1998)).

P{w\a,b) — 1 V a, b where V is the vocabulary a, b, c... (4.7)
wEV

For a to be greater than zero one needs to discount the probability mass from

N-gram frequencies that are greater than zero. The following equations are taken

from Katz (1987).

where is the sequence of words Wi,u>2, ■ ■ ■ wat, k is a threshold and P(-) is now
estimated P(-) using :

Let

P(c\a,b) = a.P(c\b) if C(a, b, c) is below some threshold (4.6)

P(wN\wf 1
P(wn\wi x) if C(ruf) > k

aZi~l ' P{wn\w2~1) otherwise
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Piwjvlw?-1) = C(WuW2> d(C(wi,w2, ■ ■ • wN))N 1
C(wi,v)2,...wn-1)

The discounting function d(-) allows the distribution of probability from higher

frequency n-grams to lower frequency ones. There are a number of discounting
functions available such as fixed and linear discounting (Ney et al., 1994), Good

Turing Method (Church & Gale, 1991) and Witten Bell discounting function (Wit-
ten & Bell, 1991). A detailed discussion of these methods is beyond the scope of

this thesis.

One simple solution to the sparse data problem is to include a floor value (F)
for the frequency of any given N-gram:

P(wN\wf *) =

P(wN Iw?-1) if C(u>i) > F

F otherwise

(4.9)

4.2.3 Interpolation Techniques

An alternative way to deal with cases where C(w{-1,...., i) < k is a method
known as smoothing. For example, trigrams can be smoothed with bigrams and

unigrams. In order to deal with combinations that do not occur in the training set

(but may occur in the test set), one can use a weighted sum of the frequencies from
three models, as shown in equation 4.10, taken from Rabiner k Juang (1993).

6 ( i \ C(wuw2,wz) C(wi,w2) C(wi) , .P{w3\w1,w2) = Pi—^n ^+P2-7T,—^+^3^7—T 4.10C[wi,w2) C{wi) E C[Wi)

where p\ + p-2 + p^ = 1 and E C(wi) is the size of the corpus.

The interpolation weights (px) are calculated using Estimation Maximisation
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(EM). This algorithm is implemented in the CMU toolkit (Rosenfeld & Clarkson,

1997) which is used by King to train the language models discussed in section 4.3.

4.2.4 Move Recognition using the Word Frequencies

Garner et al. (1996) use an alternative method to language modelling in order
to use the word sequence for move recognition. They perform experiments using

the HCRC Map Task corpus (Kowkto et al., 1992) hand-labelled for moves using
the Conversational Games Theory discussed in section 2.4. In their experiments,

they use hand-transcribed word sequences to determine the move types. Instead

of using a language model to calculate the likelihood of a word sequence given a

move type, they calculate the product of the individual likelihoods of the words

given a move type in a dialogue. Their system utilises the same Bayesian equation

discussed in chapter 3. Specifically, they find the most likely move sequence by

multiplying the prior probability of a move (given by a unigram) by the likelihood
of finding the words given that move type.

This method achieves 47.2% move recognition accuracy. They improve on this
result by using a Poisson based estimate with a gamma prior distribution which

represents the frequency of different words in a move. Using this method yields a

move recognition rate of 54.8%. They go on to say that this figure may increase

by using a more sophisticated dialogue model than a unigram thus taking into

account move context as well as word frequencies. Dialogue models are discussed
in detail in section 4.4.

4.2.5 Perplexity and Entropy

This section describes how to calculate a measure of how well a language or

dialogue model reduces the difficulty of the task of word or move recognition.

Data complexity is calculated by measuring entropy and perplexity (Jelinek, 1997).
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Entropy is a measure of information content or disorder. Perplexity is often known

as the average word branching factor. In other words, given a sequence ofX words,
how many possible words are there that could follow? The better the language

model, the more constraints there are, the lower the perplexity and the easier the

recognition task. Suppose the data contains a vocabulary of X different words
which occur in equal quantities, the perplexity would be X because for each word
there would be X equally likely possible words that could follow. If one word is

more likely than another then the perplexity would be less than X.

Accuracy of recognition is not directly related to perplexity, for example, words
that are badly recognised may be predicted the most often by the language model.

However, in general, if a language model lowers the perplexity of the source then
one expects a better word accuracy. The perplexity and entropy of the data can

only be estimated from the test set. When performing any optimisation method,
such as calculating interpolation weights, perplexity should be calculated using a

held-out data set.

The equations below are taken from Rabiner & Juang (1993). Equation 4.11
shows perplexity B in terms of entropy H.

B = 2h (4.11)

The entropy of the test set is calculated for a sequence of Q words by equation

4.12 where Q should be as large as possible.

Hp = -^logP(wi,w2...wQ) (4.12)
H can be estimated by using P(W) = P(wi,W2---Wq) from the language model.

For example, using the language model P^ in equation 4.4 gives the following
estimate Hp
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Hp = -^logP(wi,w2...wQ) (4.13)
1 Q

Hp = —-^2logP(wi\wi-i,Wi-2-Wi-N+i) (4-14)V i—i

Hp is the average difficulty of classifying a word based on the language model.
Therefore the lower Hp, the more the language model reduces the difficulty of the
task.

4.3 Language Modelling Experiments using the
Map Task Data

4.3.1 Experimental Setup

The previous section discussed the methodology behind training language models

to capture regularities in word sequences. The assumption behind this study

is that utterances of different types have characteristic syntactic patterns and

lexical distributions. For example, a query-yn move frequently starts with the

word sequence "Do you have a ...?". Training language models that are specific
to utterance types will cut down on the number of possible words and therefore

reduce the likelihood of word recognition error.

King (1998) calculates the perplexity of the test set using a general language
model and move-specific language models. Some of the moves are not as fre¬

quent as others (see table 4.1) and have fewer words to train on. King, therefore,
smoothes the move specific language models with a general model. This takes

advantage of the robustness of the general model while still holding onto the
characteristics associated with an utterance type. This is done by combining the

counts C(-) in the move specific and the general model using weights. This is
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Move type Sentences Words

acknowledge 2607 6363

align 319 1753
check 598 4359

clarify 246 2149

explain 733 6521
instruct 1407 17991

query-w 262 1863

query-yn 703 5748

ready 784 1574

reply-n 262 770

reply-w 331 2937

reply-y 1020 2824

total 9272 54852

Table 4.1: Move-specific LM training set sizes

shown in equation 4.15, taken from King (1998).

^combined model(a' w-^type-specific data(a> 4~
(1-w).Caiidata(a'5) (415)

As discussed above, w is calculated using the EM technique. The weightings
of the move-specific language models (w) are given in table 4.2. This table shows
that for shorter move types the move-specific language models are more heav¬

ily weighted. This is because they have a stricter syntax and are therefore very

effective in predicting word sequences. For example, acknowledges mostly con¬

sist of "okay" or "right". On the other hand, longer moves such as explain and
check have a more varied syntax and larger variation in their lexical distribution.

Therefore, the general model is heavily weighted so one can benefit from its larger

vocabulary.
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Move type Weight
acknowledge 0.8
align
check

0.5
0.4
0.3
0.5

0.7
0.6
0.6
0.9

0.9
0.4

0.8

clarify
explain
instruct

query-w

query-yn

ready
reply-n
reply-w
reply-y

Table 4.2: The interpolation weights of the move-specific language models

4.3.2 Perplexity Results

Perplexity results are calculated using the following language models trained on

set A and tested on set C of the DCIEM corpus described in 3.2.

1. General language model (trained on set A)

2. Move specific language models (each trained on a subset of set A according
to utterance type)

3. Smoothed models 1 and 2

4. Best choice of 1, 2 and 3 for each utterance type

Models 1, 2 and 3 have been discussed above. Method 4 simply takes the

model that has the lowest perplexity for each of the move types. For example,

using the general model for utterances of types: reply-w, clarify and explain results

in the lowest perplexity. On the other hand, the smoothed models are best used
to recognise words in utterances of types: acknowledge, align, check , query-w and

query-yn. Move specific models are used for utterances of types instruct, reply-n

and reply-y.
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Table 4.3 is taken from King (1998) and gives the whole test set perplexities

using the four different methods.

Model Test set perplexity
general (baseline) 23.6

original move-specific 22.1

smoothed move-specific 21.5
best choice move-specific 21.0

Table 4.3: Language model perplexities

This shows an improvement by smoothing the original move type-specific and
the general language models. The "best choice" method allows one to pick the

appropriate method depending on the move type of each utterance and results in

a perplexity of 21.0. This method was therefore adopted in the automatic speech

recognition experiments described in chapter 3. Using these sub-language models
results in a reduction in word error rate. The word recognition results are given

in detail in chapter 7.

4.4 Dialogue Modelling

This section describes the dialogue model component of the system. N-gram

dialogue models are used to calculate the prior probability of a move P(M) in

equation 3.1 on page 43.

One can adopt two approaches to dialogue modelling: top down or bottom

up. Either of these approaches can be linguistically motivated and statistically

trained.
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4.4.1 Top-down Approaches

• Stochastic context free grammars

Stochastic context free grammars (SCFG) are top-down generative models used

frequently in natural language processing. The grammar is made up of a finite
set of rules. Each non-terminal node maps onto a sequence of non-terminal or
terminal tokens. For example:

instruct_game —> instruct clarification_game acknowledge

—> instruct acknowledge

clarification_game —v clarify reply

—> clarify

Probabilities which are derived automatically from the training data can be
associated with each mapping. This rule based technique may work in small

domains. However, in larger domains such as the Map Task, it is likely to result

in inadequate coverage. In addition, SCFG are not compatible with the viterbi

search algorithm explained in section 3.4.1 (Rabiner & Juang, 1993).

• Plan Based Schemes

Top down plan based schemes, such as Power (1979) described in chapters 1 and

3, were developed to allow two computer agents to talk to each other in a limited
world. In order to complete a discourse and achieve a goal, they follow planning

procedures. These are top down prescriptive descriptions of dialogue in terms of a
stack. They are, however, too simple for human-human dialogue in the real world.

One particular aspect of his work that is of use is the idea that discourse can be

divided into games which consist of a sequence of moves. Each game, similar
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o° i°oo

QUERY ACKNOWLEDGE

Figure 4.1: Move bigram finite state network; not all arcs are given

to a planning procedure, has a goal and may contain sub-games which achieve

necessary subgoals. However, the bottom up approach was chosen in the present

study as the dialogue is described in terms of sequences of moves which make up

games.

4.4.2 Bottom-up Approaches

• Finite State Networks

This sequence of moves can be modelled by a finite state network (FSN). A sim¬

plified FSN is given in figure 4.1 where the nodes represent the move type and
the arcs the possible transitions from one move to the next.

Bennacef et al. (1995) developed a non-probabilistic FSN for an air travel

dialogue system. This FSN was used to aid dialogue act identification and to

generate appropriate responses according to the current dialogue state. The FSN
has nodes for the different stages of dialogue: opening and closing formality and
information retrieval. FSNs are useful in small domains as they specify all of the

occurring transitions. However, developing FSNs can be rather impractical as

they have to be developed manually. They can increase in size and complexity

rapidly, especially as one starts increasing the number of predictors (N).

• Hidden Markov Models

Some of the transitions of the FSN in figure 4.1 are more frequent than others.
For example, a query is likely to be followed by a reply, whereas a query followed
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0.27

QUERY REPLY ACKNOWLEDGE

Figure 4.2: Probabilistic move bigram finite state network; not all arcs are given

by an acknowledge is less frequent. This is formalised by adding probabilities to

the arcs of the network resulting in the probabilistic finite state network shown
in figure 4.2. These show the probability of a move given the previous move, i.e.

N=2.

Markov models are essentially probabilistic FSN with the addition of observa¬
tion likelihoods associated with each node or state. Woszczyna & Waibel (1994)
use Markov and hidden Markov models for dialogue act detection in a speech-

to-speech dialogue system called JANUS. They train a Markov model with six

nodes each corresponding to a type of dialogue act. The transitional probabilities
are the bigram probabilities of dialogue act transitions, illustrated in figure 4.3.

The observation probabilities are the likelihoods of observing a word in a given

dialogue state. An improvement was found by automatically clustering words into

classes depending on their context. Using this Markov model one can compute

the probability of being in a certain dialogue state at any point in the discourse.

Using hand transcribed word sequences, they yield a dialogue act recognition rate

of 62.3%. In a second experiment, they use a hidden Markov model to cluster sim¬
ilar phrases into speech acts instead of explicitly linking the nodes with a speech
act type. They show that this yields a reduction in test set perplexity indicating

that the words have been clustered to form better language models.
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opening

Figure 4.3: Markov model of dialogue with transitional probabilities. Source:
Woszczyna and Waibel (1994)

4.4.3 N-grams for Dialogue Modelling: Previous Work

• Verbmobil

Reithinger et al. (1996; 1997) present methods of training dialogue models using

N-gram techniques for use in the Verbmobil project. Their goal is to automatically

recognise the 18 acts described in chapter 2.

The dialogue model component described in Reithinger et al. (1996) is a basic

N-gram and is improved upon using various techniques. Including speaker identity

increases their baseline result from 72.2% to 75.5% 2. In a separate experiment,

they use speaker information to mirror the data, providing an alternate set of data

with the speaker counterpart. That is, as far as I can tell, they train the model

using a new set of moves which are the product of the move type and the speaker

identity, for example reject is reject-ab or reject-ba. They can then collapse

the new moves down to the original (e.g. reject) and calculate the recognition
result which is 76.05%. The chance figure is 25%, which is the proportion of the
most frequent dialogue act.

2Results are only given for hit rates within the top three answers using only the dialogue
model.
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Reithinger et al. (1997) give results for combining this dialogue model with
the language model likelihoods in separate experiments for English and German
data. This gives an accuracy rate of 67% for recognising the 18 dialogue acts in

German and 72% for the English data. They yield better results for fixed sayings

such as "great/bye" and dialogue acts such as ACCEPTS/REQUESTS. Dialogue
act types that have a larger lexical distribution such as DIGRESS-SCENARIO
are badly recognised.

• Nagata and Morimoto

Nagata & Morimoto (1993) use a similar method of combining language model
and dialogue model likelihoods. They also use hand transcribed word sequences

as the input. Their goal is to predict one of 30 dialogue act types described in

chapter 2. For the dialogue model component, they interpolate a trigram dialogue
model with bigram and unigram probabilities with weightings of 77%, 13% and

10% respectively (see equation 4.10). With this dialogue model, they achieve a

DA recognition rate of 39.7% (chance is 35%). They find that recognition of acts

corresponding to the second part of an adjacency pair (e.g. acknowledges) is much
easier than predicting initiating moves (e.g. inform). They also show a reduction
in word perplexity by using utterance type specific language models specified by
the dialogue model.

4.5 Dialogue Modelling Experiments for the Map
Task

4.5.1 Simple N-grams

The first experiments to develop a statistical model of the Map Task dialogue

simply use the previous N-l moves to predict the current move. A 4-gram is

illustrated in figure 4.4, using the three previous moves to predict the current
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MOVES move. 3 move. 2 move. { movej

time

Figure 4.4: 4-gram for move sequence modelling

N Perplexity
1 9.1

2 6.3
3 6.1

4 6.8

Table 4.4: Perplexities of simple N-gram dialogue models. Source: King (1999)

movei. Table 4.4 gives the perplexity results for N-grams of increasing N. As one

can see, the trigram model reduces the perplexity the most. The perplexity does

not decrease proportionally to the number of predictors used, i.e. the higher N.

This is because not all sequences of the predictors are likely to occur if N is greater

than 3. Therefore, the dialogue model is less effective in reducing the uncertainty

of the following move type.

• Backing Off and Interpolation

For N > 2, King (1998) had to use a floor value; this compensates for N-grams
that do not occur in the training set but do in the test set (see equation 4.9). Ex¬

periments were conducted by the current author to see if interpolating the trigram

dialogue model with bigram and unigram models would result in a reduction in

perplexity, as described in section 4.2.3. This was not the case, suggesting that

using a floor is sufficient to compensate for N-grams that do not occur frequently.
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4.5.2 Including Speaker Information

Dialogue models can be formed using different types of predictors. As shown

in the previous section, the preceding move sequence can be used to predict the
current move type. However, if the system is to be totally automatic, it has to

use its own classification of the previous moves, which will not be 100% accurate.

One source of information that is derivable automatically with 100% accuracy3
is the identity of the speaker at a given point in the dialogue. As discussed in

section 3.2, each participant has a different role in the Map Task. The giver gives

instructions and directs the follower around the map. Therefore, each speaker

has a different distribution of move types with the giver uttering more initiating

moves and the follower more non-initiating. In order to capture this difference,
the role of the current speaker is used as a predictor in the dialogue model.

The sequencing of the different speakers can also help to predict move types.

For example, if the giver makes a question type move, and follows it up with

a second move, one can expect the follow up to be some type of explanation,

clarification or question. If it is the follower that utters the second move, one

would expect it to be some type of reply or acknowledgement. Therefore, the

identity of the previous speaker is included in the dialogue model.

A complete list of the predictors used in the experiments is given in table

4.5. The vocabulary for the predictors contains 15 elements: the 12 move types,

two types for speaker identity and a value for dialogue start (ENTER). This

general vocabulary for the different types of predictors may result in the creation

of impossible N-grams (such as follower as a move type). However, this does not

affect the accuracy of possible N-grams as the recogniser will ignore the impossible
ones. The system has to choose from one of 13 elements in a vocabulary which

consists of the 12 move types and a type for dialogue end (EXIT). The software

3If the speakers are using different microphones or phone lines.
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Predictor Symbol
Move type of current move ml

Identity of speaker of current move Si

Identity of speaker of previous move Si—1

Move type of previous move mi-1

Move type of other speaker's last move 777-2—j

Table 4.5: Notation of N-gram candidate predictors

MOVES move.,i-3 move..

1
move.

,i-i movej

I
SPEAKER giver follower

1
giver

1
giver

time

Figure 4.5: Dialogue Model III

for training the dialogue model is part of the speech tools developed by Taylor et

al. (1998a).

4.5.3 Results

A number of predictor combinations were tried in King (1998); the perplexities
of these dialogue models are given in table 4.6. The model that reduces the

perplexity the most uses the speaker identities and the other person's previous

move, as illustrated in figure 4.5. This seems intuitive as one is more likely to be

responding to the other person's move, rather than the previous move which may

have been one's own.

• Backing off

Again not all possible sequences of the predictors in model III occur in the train¬

ing set, therefore backing off techniques were tried. Using a floor value for low

frequency combinations did not result in a reduction in perplexity. One can infer
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Model Predictors Test Set Perplexity
simple trigram 1 2 6.1

simple 4-gram TTli—1 2 5^^2—3 6.8

4-gram model I rrii-u $i—i 5.5

4-gram model II —2 i S{ 6.2

4-gram model III W^i—ji ^z—11 5.2

4-gram model IV — 2 } ^2— 1} 5.8

Table 4.6: Perplexity results for the different dialogue models

Information source Move type
accuracy (%)

A Baseline 24

B DM only 37
C Recogniser output and LM 40
D Recogniser output and LM and DM 57

Table 4.7: Move detection results using various information sources in the over-
hearer scenario

from this that the N-grams that do not occur in the training set also do not occur

in the test set. Therefore, using other more complicated backing off techniques,
such as those described in section 4.2.2, is unlikely to improve the predictability of

the language models. Furthermore, backing off of mixed predictor dialogue mod¬

els is more complicated. In the example given for trigram language models, the
left most word is dropped. Choosing which predictor to drop is more complicated

for mixed predictor models and is not pursued in this work.

4.6 Move Recognition Results

This section gives move recognition results using the language models and dia¬

logue models described above. These experiments are conducted in the overhearer

scenario, where the types of the previous moves are those predicted by the sys¬

tem as it goes through the dialogue, as described in section 3.2. Various move

recognition results are given in table 4.7, each of which will be discussed in turn.
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• Dialogue Models

Using the 4-gram model alone yields a move recognition result of 37% (experiment
B in table 4.7). Using a unigram gives a 24% recognition, which is equivalent to
the baseline since the system chooses acknowledge for each utterance as this is the

most frequent type.

• Recognition Output and Language Models

As discussed above, the recogniser is run in conjunction with each of the move

specific language models in order to determine the most likely move type of a

given utterance. This method of automatic move classification gets 40% of the
move types correct (experiment C table 4.7). This figure is lower than those given
in the Verbmobil result of (67% for German and 72% for English). Those results,

however, are derived using the transcribed word sequences. The results are also

not directly comparable as the number of moves and the baseline differ for the

different corpora.

• Recognition Output, Language Models and Dialogue Models
t

The likelihoods from the language models are combined with probabilities from the

dialogue model in a viterbi search. This is formalised in equation 4.16 for finding

the most likely move sequence M*. The dialogue component calculates the a

priori probability of a move given the speaker sequence S. The language model

is used to calculate the likelihood of each move given the cepstral observation

sequence C. For a more detailed description of the system see chapter 3.

M* = max P(M\S) ■ P{C\M) (4.16)

dialogue speech
model recogniser
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This method yields a 57% recognition accuracy result (experiment D in table

4.7).

4.6.1 Conclusion

In this chapter, it has been shown that the system can perform automatic move

recognition with reasonable accuracy using dialogue models and language models
in conjunction with the recognition output. Once move recognition has been

performed, the system chooses which sub-language model to use during word

recognition. These word recognition results are given in chapter 7.



Chapter 5

Automatically Extracting
Intonation Features

5.1 Introduction

One of the main goals of this thesis is to be able to automatically detect the

type of dialogue act represented by an utterance. Intonation can be indicative

of the function of an utterance in the discourse. For example, an utterance with

declarative word order such as "You have a totem pole" can be a statement with

a falling boundary or a question with a rising boundary. This illustrates that just

modelling the wording as discussed in the previous chapter would lead to errors

that only a model of intonation would be able to detect.

Chapter 6 approaches the subject of how one can predict move types using

statistical models of intonation. This chapter compares using three different sta¬
tistical models: classification trees (CART), hidden Markov models (HMM) and
artificial neural nets (ANN). In order to train these models, a set of intonation
features that potentially relate the contour to discourse function have to be ex¬

tracted. There are two approaches to finding these features. Firstly, one appeals
to the literature to find a linguistically motivated set of features. HMMs are

trained solely on a set of these features known as the tilt parameters.

69
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Secondly, a set of more global features, based on the study by Shriberg et al.

(1998) are extracted e.g. mean FO and energy. These features, listed in section 5.4
are used along with the theoretically motivated features in the CART and ANN

models. By examining the CART tree, one can see which of these features are

used to discriminate utterance types. Section 6.4.4 will show that the tree uses

both the theory specific features, such as the tilt value or shape of the final accent

and the more general features, such as utterance duration and FO mean.

5.2 Intonation Analysis

In order to be able to distinguish different types of moves, one has to identify
the distinguishing features in the intonation contours of utterances of the same

type. There are two areas of research that are discussed in the literature review.

Firstly, a standard method of analysing contours is needed in order to identify
the similarities and differences of contours associated with a specific move type.

Secondly, an algorithm is sought after that can be used to perform this analysis

of the intonation contour automatically. This way, the features can be used to

train the statistical intonation models that perform automatic move classification.

Details of these intonation models are given in the following chapter.

5.2.1 IPO

The model of Dutch intonation developed at Institute for Perception Research

(known as IPO) defines the contour as a sequence of intonation events (t'Hart &

Cohen, 1973). These events are categorised in terms of their pitch movement, (rise
or falls). They classify events into two categories: prominence lending and non-

prominence lending. Prominence lending pitch movements are associated with
a prominent syllable, for example a rise or a fall early on the stressed syllable.

The sequences of rise and falls form phonologically distinct contours. That is to
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prehead head nucleus tail

Figure 5.1: Division of the intonation contour by the British School. Source: Ladd
(1990)

say, the same sequence of phonological events may be phonetically realised in a

number of ways depending on certain factors, for example utterance length.

Non-prominence lending movements are important to the current study as they

can be indicative of utterance types. They include movements at the boundary of

utterances and rise or fall movements that span more than one syllable. Boundary
tones are thought of as phonologically distinct, as different boundary tones turn

utterances into different types.

5.2.2 British School of Intonation Description

The British School of Intonation Description e.g. Palmer (1922), O'Connor and
Arnold (1973) and Crystal (1969), also describe the intonation contour as a se¬

quence ofmovements. They add a further layer of analysis by dividing the contour

into different parts: pre-head, head, nucleus and tail, as illustrated in figure 5.1,

taken from Ladd (1996). The nucleus is the only tone group that is not optional.

Although originally the IPO model did not have such a delimitation of the con¬

tour, they have recently developed a similar structure analysis of prefix, root and
suffix (t'Hart et al., 1990).
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5.2.3 Autosegmental-metrical Theory of Intonation

The Autosegmental-metrical theory (AM) is similar to the IPO and the British
School in that the intonation structure is defined as a linear sequence of intonation

events. However, the AM theory defines pitch movement in terms of tones or pitch

targets (High or Low) as opposed to rises or falls. The AM theory is based on

PhD theses by Liberman (1975), Bruce (1977) and Pierrehumbert (1980).

There are three types of intonation events: pitch accents, phrase tones and

boundary tones. Pitch accents are either H for high level tone or L for low level.
If a tone is associated with a stressed syllable it is accompanied by a star (e.g.

H*). A tone may be accompanied by a leading or a trailing tone. For exam¬

ple, a rising accent in IPO terminology is a L*+H or L+H* in AM terminology.

Boundary tones are transcribed with a percent sign (e.g. L%) and mark the end
of a large intonation phrase. Phrase accents or tones are unstarred Hs or Ls that

are unattached and come between the last pitch accent and the boundary tone.

Different intonation events in the same category are phonologically distinct.

This taxonomy can be given in terms of the finite state (FSN) grammar il¬
lustrated in figure 5.2 taken from Pierrehumbert (1980). Each node of the FSN

corresponds to the different types of events. The FSN generates all the possible

intonation contours that occur in English. One can see that, unlike the British

School's analysis, Pierrehumbert gives no theoretical validity to the status of nu¬

clear accent. Her theory is based on defining the contour in terms of a sequence

of events generated by the FSN. She argues against any sort of global contour

shapes such as the British School's.

One argument against including the nuclear status is that there is no phonetic

difference between these accents and prenuclear accents, as shown by Silverman
& Pierrehumbert (1990). Ladd (1996) argues, however, that although there may

be no phonetic difference, this is not an argument against the idea that nuclear
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Accents

Phrase
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Figure 5.2: FSN for all possible event combinations. Source: Pierrehumbert
(1980)

Nuclear Phrase Boundary
Accents Tones Tones

Figure 5.3: FSN for all possible event combinations. Source: Ladd (1996)

accents play an important role in the phonological structure of contours. Ladd

amends Pierrehumbert's FSN by adding an obligatory node for the nuclear accent

illustrated in figure 5.3. This preserves Pierrehumbert's notion that the string

consists of a sequence of events generated by the FSN, while still giving separate

status to the nuclear accent.

5.2.4 ToBI

ToBI (Silverman et ai, 1992) is a version of Pierrehumbert's taxonomy that is a

proposed standard for intonation labelling of electronic English databases1. The
ToBI labelling system consists of a number of tiers, including orthographic tran¬

scription. One of the tiers marks the event type (To) in terms of Hs and Ls and
one gives a measure of phrase breaks between each word (BI).

1 There are language and dialect variants such as GToBI for German (Grice et al., 1996) and
GlaToBI for Glaswegian (Mayo et al., 1997).
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5.2.5 Verbmobil

The set of prosodic labels used in the Verbmobil project, described in section 1.4,

consists of four types of boundary tones which correspond to the break indices of

ToBI. They define three types of accents based on the starred accents in ToBi.

For automatic classification of accents, they use a vector of features which are

related to the output of the speech recogniser, e.g. speaking-rate, duration of filled
and silent pauses and duration of segments. However, characterising intonation

features in terms of the output of the recogniser leads to inaccuracies; see Bucklow

et al. (1999) for more details.

5.2.6 Fujisaki

All of the systems described above are phonological. In other words, they consist

of a sequence of phonological events which can have various phonetic realisations

depending on the context. An alternative model has been proposed by Fujisaki

(1982) which is non-phonological and quantitative. This model defines the FO
contour as a complex function consisting of two component FO functions, namely
a phrase component and an accent component. The accent component defines the

local perturbations corresponding to intonation events. The phrase component

incorporates utterance level effects such as declination.

Ladd (1996) states that this type of overlay model can be useful for modelling
local perturbations and overall pitch range changes due to, for example, changes
in emotion. Ladd highlights one problem concerning the phrase component. This

identifies the phrase boundaries that result in the ideal model of the FO but the

boundaries do not always correspond to the linguistic structure of the utterance.

This results in a model of the physical aspects of FO but which makes no sense

linguistically.
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5.2.7 The Tilt Model

The tilt model is also a non-phonological quantitative model and was developed

by Taylor (2000; 1998), to provide an intonation model for speech synthesis and

recognition. Taylor attempts to define a model that is reasonably constrained
to avoid overgeneration and yet still be able to cover a wide variety of observed

phenomena.

Instead of using such discrete labels as the ToBI system to classify intonation

events, Taylor uses continuous variables known as the tilt parameters. These

parameters are:

• tilt: shape of the event

• FO amplitude, a measure of the F0 excursion of the event

• start FO: the FO value at the start of the event

• duration: length of the event in time

• peak position: position of the event peak

The above continuous variables are used instead of discrete categories to clas¬

sify events for a number of reasons. Firstly, classifying accents into ToBI labels is

a difficult task, even for human labellers. In a study based on the ToBI labelling
scheme (Pitrelli et a/., 1994), labellers agreed on pitch accent presence or absence
80% of the time, while agreement on the category of the accent was just 64%;
this figure was only achieved by first collapsing some of the main categories (e.g.
H* with L+H*). Similarly, the system described in Taylor et al. (1997) finds the
task of locating pitch accents much easier than classifying them.
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Figure 5.4: Values for tilt for various shaped intonation events

• Interpreting the Tilt Parameters

The tilt value is a figure between -1 and 1 and describes the shape of the con¬

tour. Examples of varying tilt values are given in figure 5.4 taken from Taylor

(2000). The other four tilt parameters (start F0, F0 amplitude, duration and peak

position) are shown in figure 5.5.

F0 amplitude is given in Hertz and is a phonetic measure of prominence.

However, this level of prominence is dependent on the position in the utterance.

Liberman and Pierrehumbert (1984) show that pitch range decreases nearer the
end of the utterance. The same measure of amplitude corresponds to less promi¬

nence if it is near the start than if it is near the end of the utterance. Therefore,

further processing is necessary to obtain a prominence value that has phonological

meaning.

The start F0 parameter is necessary for analysis and resynthesis. Duration is

given in seconds. The length of an event can be affected by a number of factors
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Figure 5.5: Rise fall accent showing the tilt parameters, excluding tilt

including the FO contour, the segmental string and speaking rate.

• Peak Position

Taylor takes peak position as the distance in time from the start of the utterance

to the peak, as illustrated in figure 5.5. This distance figure is necessary for

synthesis but is not an intonationally meaningful feature. Taylor proposes an

alternative measure called the syllabic position parameter, which is the distance

from the peak to the start of the vowel in stressed syllable. This would provide a

parameter that is similar to the other tilt parameters in that it is locally oriented.

More importantly, it would capture a distinctive feature of accents associated with

accent alignment. Alignment is the phonetic realisation of the accent with relation

to the stressed syllable.

At the time of the experiments described in this thesis only the absolute peak

position was derivable from the wave form. Subsequent experiments described

in chapter 9 look at ways of deriving the more linguistically useful measure of

syllabic position and examine its relation to the other tilt parameters.
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5.3 Automatic Analysis of the Intonation Con¬
tour

The studies described above provide a method of analysing the contour in terms of
intonation events which are classified using discrete labels or continuous variables.
These methods will not be useful in the system described in chapter 3, unless the

feature extraction is fully automated.

There have been a number of studies that attempt automatic intonation analy¬

sis. These vary depending on whether they are attempting to identify and classify

pitch accents or locate stressed syllables or segments e.g. Hieronymus (1989). Ap¬

proaches also vary depending in their applications, whether they are used for au¬

tomatic labelling of data or in an automatic recognition system. The first of these

applications usually assumes segmental transcription. For example Wightman &
Ostendorf (1994) train a decision tree using syllable level features for accent clas¬
sification. Methods of automatically identifying and classifying intonation events

based on the waveform alone are of interest here.

Ross & Ostendorf (1995) attempt accent location and classification in terms

of ToBI labels for recognition. They use FO, energy and syllable duration to train
a statistical model. Their result for accent location accuracy is 85%. Overall

classification accuracy is 65%. Distinguishing rising and falling boundary tones

is reasonably accurate (85%). The disadvantage of this system is that it assumes
fixed syllable boundaries which it uses with the recogniser to align the segments.

This syllable information could be obtained by various automatic techniques, all
of which are error prone.

In a module in the Verbmobil system, Bucklow et al. (1999) use a multi-layer

perceptron (MLP) to categorise intonation events into accents and boundary tones
after they have been identified. The MLP is trained on a set of prosodic features
for each syllable. A description of these features is given in section 5.2.5. The
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Figure 5.6: Intonation contour with labelled accents and boundaries corresponding
to the circled pitch excursions

MLP distinguishes accents from boundaries with an accuracy of approximately

80%.

Taylor (2000) provides a method of intonation analysis that requires no pre¬

processing and is totally automated 2. His algorithm is divided into two main

processes. The first is the automatic placement of accents and boundary tones.

Accents are marked with "a"; "m" marks a minor accent. Boundaries "b" can

either be falling "fb" or rising "rb". There is an additional category "ab" for use

when accents and boundaries occur too close to be separated. The second process

automatically defines these events in terms of the five tilt parameters discussed

above.

5.3.1 Automatic Event Detection

Intonation event detection is performed using a continuous density HMM system.

Each utterance is represented acoustically by F0 and energy, and their first and
second derivatives. Separate context independent models are trained for accent

and boundary type events. The system is trained on set B of the DCIEM corpus

(see the data section 3.2), which is hand-labelled for these intonation events. A
schematic representation of intonation labelling is given in figure 5.6, taken from

Taylor (2000) and modified.

2Although it does need handlabelled data for the initial training process.
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Performance is assessed by measuring how well the hand-labelled test set

matches the output of the recogniser. For an automatically labelled event to

count as correct, it must overlap a hand-labelled event by at least 50%. Using

this metric, the performance of the recogniser is 86.5% correct with 54.3% accu¬

racy. An equivalent speaker dependent system trained on part of the data gave

87% correct and 63% accuracy. Taylor is currently developing speaker normal¬
isation techniques which may improve the accuracy of the speaker independent

model.

5.3.2 Aligning the Rise and Fall Parts of Events

In order to calculate the tilt parameters, the start and end points of the accent

must be identified. To do this, the approximate location of an event given by the

HMMs and the F0 contour are used. Firstly, the F0 between the event boundaries

is smoothed and the unvoiced regions interpolated (see figure 5.7a). This helps to
factor out spurious perturbations and speaker effects. A peak-picking algorithm
is used to determine the rise and fall parts of the event. This is known as RFC

analysis, illustrated in figure 5.7b (Taylor, 1995).

For single rise and falls, a search region of 20% of the event length is set

before and after the potential start and end points of the accent. The curve

is resynthesised for each of these potential boundary frames and the Euclidean

distance3 from the original curve is calculated. For rise-fall contours the rise

section is aligned first. With a fixed peak position and start point established,
the fall part of the contour is then aligned.

5.3.3 Automatic Tilt Analysis

The tilt parameters describe the type of event and are calculated in two stages.

Firstly, the F0 amplitude and duration values in figure 5.7c are calculated by
3This distance is a measure of good fit.
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A

FO contour

smoothing

(C)

Figure 5.7: a) shows FO smoothing; b) rise/fall fitting using the RFC model; c)
amplitude and duration calculations used in the tilt analysis. Source: Taylor et
al. (1998).

equations 5.1 and 5.2 respectively.

.,
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These equations can be combined, as they are highly correlated. The equation for
tilt is given below.

,i. A\rise\ |^4/a/z| Drise Dfaii .
2

2(1^1 + \Afall\) + 2(Drise + Dfau) [ '
Finally, the FO amplitude and event duration are calculated in equations 5.4 and

5.5 respectively.

Advent l-^rise | + IAfa//| (5-4)
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Deyent Drise + Ofan (5.5)

5.4 Other Features

So far this chapter has been devoted to looking at various ways of extracting
intonation features automatically from the waveform. In particular, a method

was presented for automatically identifying accents and extracting their distinc¬

tive features. A separate set of more general features were also extracted from
the waveform. This set of features is based on features used in a similar study

described in Shriberg et al. (1998).

These features fall into the three main categories which are described in detail
in the following sections:

• FO features (e.g. max FO, FO mean and standard deviation, least squares

regression line)

• Energy features (e.g. energy mean and standard deviation)

• Duration features (e.g. number of frames in utterance, number of frames of

FO)

5.4.1 FO features

The list of features involving FO is given in table 5.1. The first set of features cap¬

tures general characteristics of the utterance, for example the standard deviation

of the FO represents pitch range. As the final part of the intonation contour is

often indicative of utterance type, calculations are made for the last and penul¬
timate 200ms4 of the utterance as well as for the whole utterance (e.g. end_F0,

pen_F0).
4This figure is chosen based on the study described in Shriberg et al. (1998).
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Feature Name Description
max_F0
utt_F0_mean
utt_F0_sd

utterance max FO

utterance mean FO

utterance standard deviation FO

end_F0_mean

pen_F0_mean
end region FO mean

penultimate region FO mean
norm_end_F0_mean

norm_pen_F0_mean
abs_fO_diff
rel_fO_diff
normTO .excursion

end region FO mean normalised using the utterance mean and sd
pen. region FO mean normalised using the utterance mean and sd
difference between mean FO of end and penultimate region
ratio mean FO of end and penultimate region
ratio of FO sd of end region over utterance

utt_a, utt_b
end_a, end_b
pen_a, pen_b

least-squares all-points regression line over utterance
least-squares all-points regression line over end region
least-squares all-points regression line over pen. region

type_boundary
num_acc

num_bound
num_acc_bound
total_num_abs

Type of final boundary (falling, rising)
number of accents

number of boundaries

number of accent and boundaries

total number of accents

Table 5.1: FO feature list

The features in the next set are calculated by comparing feature values for the

two end regions and the whole utterance, e.g. ratio of mean FO in the end and

penultimate regions (rel_fO_diff). In addition to these features, the least-squares

regression line of the FO contour is calculated for the last and penultimate 200ms

and for the whole utterance. This would capture intonation features such as

declination over the whole utterance, and boundary type over the final part of the
contour. This is illustrated in figure 5.8.

For the least squares regression line y is y — ax + 5, the values a and b are

calculated by solving the following simultaneous equations where n is the number

of voiced frames.

= aY,x + nb (5.6)

= a^x2 Tb^x (5.7)

x refers to time frames in seconds and y corresponds to the FO value at that time.
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200ms

time

Declination line

Boundary tone

Figure 5.8: Intonation contour with least square regression lines capturing the
line of declination and the boundary tone

Type_boundary is a binary value given for the type of boundary (1 for rising
and 0 for falling), depending on the tilt value of the final accent. The number
of accents (a), boundary (b) and joint accent boundary tones (ab) were counted

(rtum_acc, num_bound, num_acc_bound, total_num_abs).

5.4.2 Energy features

A general set of features is calculated for the root mean squared (RMS) energy

values. These are given in table 5.2.

5.4.3 Duration Features

There are three duration features listed in table 5.3. Utterance duration is the

number of frames of the utterance including utterance initial and final silences and
voiceless segments. FOJength is taken from the start to the end of voicing and

includes voiceless sections. Regrmumjfames is the number of frames containing

voicing, used to calculate the F0 regression line for the whole utterance.
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Feature Name Description
utt_nrg_mean
utt_nrg_sd

mean RMS energy in utterance
standard deviation RMS energy in utterance

end_nrg_mean
pen_nrg_mean

mean RMS energy in end region
mean RMS energy in pen. region

norm_end_nrg_mean
norm_pen_nrg_mean

abs_nrg_diff
norm_nrg_diff
rel_nrg_diff

mean RMS energy in end region normalised over utterance
mean RMS energy in pen. region normalised over utterance
difference between mean RMS energy at end and pen. regions
difference between norm_end_nrg_mean and norm_pen_nrg_mean
ratio of end_nrg_mean and pen_nrg_mean

Table 5.2: Energy feature list

Feature Name Description
utt_duration

fOJength
regr_num_frames

number of frames of whole utterance

duration of FO contour in seconds, including voiceless frames
number of frames of FO contour, excluding voiceless frames

Table 5.3: Duration feature list

5.5 Summary

The aim of this chapter is to give an outline of certain methods of evaluating
distinctive intonation features. An account of the tilt model was given. This is an

alternative approach to the classic discrete labelling systems, such as ToBI. This

system is totally automatic and provides a set of continuous variables that can be

used in a statistical model, such as the hidden Markov models described in the

following chapter. The tilt parameters of the final three accents in a phrase are

combined with the 33 general features given in the previous section of this chapter.
All these features are used to train classification and regression trees and artificial
neural nets, also described in the following chapter. These models determine

the most discriminating features for classifying utterances into the different move

types. Examining the features used by the CART model shows that the process

of extracting tilt features is justified and that general features such as utterance

length and maximum FO are also used to determine move type.



Chapter 6

Intonation Models

6.1 Introduction

There are two questions approached in this chapter, firstly whether intonation is

indicative of move type and secondly, if it is, whether characteristic intonation

patterns can be effectively modelled using statistical techniques.

The previous chapter looked at ways of classifying certain features of the into¬

nation contour. Specifically, the contour is represented as a sequence of intonation

events which are categorised in terms of pitch movement, pitch targets or a set

of five continuous variables, depending on the theory adopted. The different se¬

quences of events are known as tunes. The literature review in section 6.2 examines

previous attempts at linking these tunes to functions in the discourse, in terms of

dialogue acts, speech acts, attitude, emotion, etc...

In section 6.3, a novel method is presented that models intonation at an ut¬

terance level by using statistical methods. These statistical intonation models fit
into the framework described in chapter 3 for automatic move detection. Section
6.7 gives move detection results using the intonation models in conjunction with
the dialogue models described in chapter 4. Results for move detection and word
error rate for the system as a whole are given in chapter 7.

86
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6.2 Mapping Intonation to Discourse Function

This section gives an overview of previous attempts at mapping intonation con¬

tours or tunes to discourse functions. The approaches described below fall into

two categories: a bottom-up and a top-down approach. The bottom-up approach

takes the intonation contour and attempts to assign discourse meaning. The al¬
ternative approach looks at the different functions in discourse and examines how

these are realised in terms of intonation features.

6.2.1 The Top-down Approach

Sag and Liberman (1975) identify certain intonation contours in an attempt to

separate indirect speech acts from direct ones, such as contours that distinguish

questions from suggestions and other utterance types. They establish that cer¬

tain contours force a literal interpretation, such as using their "tilde" contour

with wh-questions. However, they find that some contours such as their surprise

redundancy contour can be used to express direct and indirect acts, depending on

the context in which it is used.

Kowtko (1996) examines whether discourse function correlates with the type

of intonation pattern. She finds that the intonation of a move can vary, depending

on a number of factors. For example, the intonation of acknowledge type moves

varies depending on which game it is in. Intonation of moves also varies depending

on whether the data are read or spontaneous.

6.2.2 The Bottom-up Approach

The bottom-up approach focuses on prosodic characteristics, whereby intonation

categories are identified and associated with a function in the discourse. This is the

basic approach of O'Connor & Arnold (1973), who describe ten canonical tunes
with names such as low bounce and high drop. Each tune has various functions and
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attitudes. For example the high drop tone group is used for statements that have

an indication of "warmth". However the high drop is also used in wh-questions,

yes-no questions and commands. Examples of these are given below, taken from

O'Connor & Arnold (1973) (\ indicates a high drop on the following word).

Statement: (What time is it?) It's half past \twelve.
I didn't realise how

\late it was.

Wh-question: What's the \time?

(Yes-no question (John says he's got an alibi.) Can he \prove it?

Command (What shall I do with this rubbish?) \Burn it

Similarly Liberman (1975) defines tunes in terms of speaker attitude such as

the surprise/redundancy tune. When this tune is used with a statement, it conveys

an expression of surprise or that the propositional content is, or should be obvious.

Gussenhoven (1984) and Crystal (1972) attempt to associate meaning, emotion
and intention to intonation contours.

The studies mentioned above take a holistic approach to tune classification.

Pierrehumbert & Hirschberg (1990) attempt a "compositional theory of tune inter¬

pretation" . The authors argue that the different features of a tune (pitch accents,

boundary tones, phrase accents) convey certain aspects of meaning. Tunes that
have certain parts in common share some of the same meaning. For example,

L*+H L H%, H* L H% and L+H* L H% all share a low phrase tone and a high

boundary tone that indicate a following utterance will complete the speaker's
intended meaning.

The main problem with this bottom-up approach is that intonation tunes do

not map directly onto the utterance types. For example, the H* L L% is frequently

used with declaratives but also can be used with wh-questions.
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6.3 Statistical Models of Intonation

Both of the approaches discussed above are problematic due to the many-to-

many mapping of the intonation contours and discourse functions of utterances. I

propose a solution to this problem by using the top-down approach and developing
statistical models of intonation that can model the variability associated with the

different types of move. The statistical models take into account the mean and

variation of the prosodic features of a move type. As long as the probability
distributions for the features are different for each of the move types, the models

will be able to determine the type of a given utterance.

Intonation plays a crucial role in the automatic classification of moves. For

example, if one has a phrase of declarative syntax uttered with a rising boundary

tone (e.g. "you have a totem pole?"), the speech recogniser module of the system

would classify this as a statement. The dialogue model may classify it as a question
if it is followed by a reply. The intonation model would typically give a high
likelihood of it being a question, thus outweighing the speech recogniser module

and classifying the utterance as an interrogative.

The statistical models fit within the framework described in chapter 3, as

they produce the likelihood of the intonation given the different move types, i.e.

P(I\M) in the following equation:

M* = max P(M\S) ■ P(C\M) • P(I\M) (6.1)

dialogue speech intonation
model recogniser model

where I represents the intonation features and M the move type (see section 3.4.1
for more details).
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Three stochastic methods are examined for modelling the intonation contour.

These are:

• Classification and Regression Trees (CART)

• Artificial Neural Nets (ANN)

• Hidden Markov Models (HMMs).

Each of these models will be discussed in turn and their effectiveness as into¬

nation models compared.

6.4 Classification and Regression Trees

This section reports work using a statistical model known as classification and

regression trees (Breiman et al., 1994) to automatically predict move types. These
are binary decision trees trained on many intonation features. The classification
tree decides what queries to perform using these features in order to maximise
classification accuracy.

6.4.1 Previous use of CART Trees in Synthesis and Recog¬
nition of Intonation

The study reported in (Shriberg et al., 1998; Jurafsky et al., 1997) uses prosodic
features in a similar way to the method described in this thesis but using the

Switchboard corpus1. Specifically, they train CART trees for dialogue act recog¬

nition by using the intonation model in conjunction with a dialogue model and

language models.

They find that intonation is useful in their experiments when using imperfect

word recognition. Their model uses durational features 55% of the time and the
1This projects was carried out simultaneously with the current work with Paul Taylor as a

joint author in both studies (Shriberg et al., 1998; Taylor et al., 1998b).
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most queried feature is regrmumJxames described on page 84. This is consistent

with the findings of the current study given below. Shriberg et al. found FO fea¬

tures to be important for the classification of questions in particular. Energy was

useful in classifying incomplete utterances, agreements and backchannels. They

ran different experiments using transcribed words and automatically recognised

words. Using recognised speech, the system achieved a dialogue act recognition

rate of 65% for their 42 categories, with a baseline of 36%. Using transcribed

speech this figure is 71%.

CART trees have been used for identifying disfluencies (Shriberg et al., 1997),

repairs (Hirschberg & Nakatani, 1993), and discourse cue phrases (Grosz & Hirschberg,

1992). Shriberg et al. (1997) use CART trees trained on prosodic features to

determine for each word boundary whether there is a repair of various kinds:

filled pauses, repetitions, repairs or false starts. The features include durational

features, distance from last pause, FO and energy features. They combine this

prosodic model with a language model trained to find boundaries as word tokens

(Stolcke & Shriberg, 1996). The trees trained for classifying the various types of

repairs are reasonably successful, with the following accuracy rates2: filled pauses,

89.7%; repetitions, 77.5%; repairs, 75.5% and false starts, 74%.

Hirschberg & Nakatani (1993) use a mixture of prosodic features and word level
features to train a CART tree to find interruption sites of self-repair. Examples

of these features include: pause distance between words, normalised energy of

word, FO of word in relation to the following and previous word, filled pauses,

part of speech information. This CART tree identifies 86% of the interruption

sites correctly with an accuracy of 77%.

Grosz & Hirshberg (1992) use CART trees trained on prosodic features to

identify discourse features in read speech based on Grosz and Sidner's model of

discourse structure (Grosz & Sidner, 1986).

2See section 3.4.4 for a definition of accuracy.
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Regression trees have been used to predict values for prosodic features for

the resynthesis of FO contours. The experiments described in Dusterhoff (2000)
involve developing a set of trees for each type of intonation event (e.g. "a", "b")
trained on 45 prosodic features available during text-to-speech synthesis. These

decision trees are used for the prediction of tilt parameters for a given sequence

of events. A similar preceding study (Black & Hunt, 1996) involves training

regression trees to predict the FO contour for every syllable.

All of the studies discusses above show that decision trees can be useful in

modelling prosodic features, for a number of purposes. CART trees are particu¬

larly useful as one can examine the features used in the decision tree to obtain an

insight into the predictive nature of the data.

6.4.2 Training CART Trees

There are three main rules involved in training the tree:

1. A rule for selecting the best split in a tree

2. A rule to stop tree growth

3. A rule for assigning every terminal node to a class

Each of these rules shall be discussed in turn.

1. The first rule decides how the data will be split to form groups that are the

most similar. Splits are in the form of questions. During training, one needs
a method of checking how effective the trees are at final classification. This

error function, or misclassification rate is defined as the probability that

a pattern will be allocated the wrong class. There are several methods of

estimating this error rate. One method involves extracting a portion of the

training set, known as the "held out" set. This set is randomly chosen from
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the training set in order to maximise independence. Testing the progress of

the training of the tree using the held out set does improve its performance.

2. A CART tree does not have a fixed size. A method is therefore needed

for stopping the growth of the tree at some point or the final tree will
have one data point at each node. The method described in Breiman et

al. (1994) involves growing the tree until terminal nodes are very small and
then pruning the tree upwards getting a sequence of subtrees. A held-out
test set is used to pick out the subtrees with the lowest misclassification

rate.

3. When the tree has stopped growing the categories in the leaves are examined
and a leaf is assigned a category or a figure relative to the majority of
members.

6.4.3 Experiments Using the DCIEM Data

This section describes how a classification decision tree is trained to classify utter¬

ances into the 12 different types. Forty-five features are automatically extracted

from the speech signal for each utterance in the training set A. These include
the 33 general features given in section 5.4, plus the tilt parameters for the last

three accents (if present) in the contour. Peak position of these accents was not

included in these features as it was thought that it has no linguistic meaning, see

chapter 9 for further discussion. All of these features are normalised to fall within

-1 and 1.

The features are used to train one classification tree. The output of this tree

is a set of likelihoods for the 12 move types. These likelihoods are actually the

posterior probability of the moves given the intonation features P(M\I). In other

words, the tree takes into account the distribution of the moves in the training

set. In order to use a CART tree in the system described by equation 6.1, one
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needs to compute the likelihood of the intonation given the different move types

P(I\M). There are two methods of doing this. The first is to divide the output

of the tree by the prior probability, P(M):

mM)= m(,2)
An alternative method is to train the tree on data containing equal numbers of
moves. A certain number of examples for each move were randomly selected from

the training set. The move type with the lowest frequency is clarify with 93

occurrences. Therefore, 93 examples of each move type were used, resulting in

a training set containing 1113 different utterances. In order to produce a larger

training set, duplicate sets of intonation features were used for moves with lower

frequency. This "equal data" method produced slightly better results; therefore
results quoted henceforth are obtained using trees trained on data with 200 entries

for each move type.

6.4.4 Tree Interpretation

It is useful to know which features are the most discriminatory in the classification

of the moves. As the tree is reasonably large with 30 leaves, interpretation is not

straightforward. For simplicity, the features are grouped into 3 general categories

of duration, F0 and energy. For a detailed description of the features that make

up these categories, see section 5.4. Table 6.1 gives the feature usage frequency
for these groups of features. This measure is the number of times a features is

queried during the classification of each data point. The figure is normalised so

that the feature usage sums to one for each tree. It reflects the position in the
classification tree as the higher the feature is in the tree, the more times it will be

queried.

Different move types by their nature vary in length; therefore it is not sur¬

prising that duration is highly discriminatory in classifying utterance types. For
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Feature Type Usage (%)
F0 46

Duration 36

RMS Energy 1

Table 6.1: Discriminatory features and type usage in move classification trained
using equal number of moves

example, ready, acknowledge, reply-y, reply-n and align are distinguished from the

other moves by the top node which queries a duration feature.

The top 10 features are given in table 6.2. The duration feature used most is

regr_num_frames, which is the number of frames used to compute the F0 regression

line for a smoothed F0 contour over the whole utterance. This feature may be a

fairer measure of actual speech duration than the other duration features, as it

excludes pauses and silences.

In our study the F0 feature that is queried the most is the F0 mean in the

end region of the contour (end_fO_mean). The next top two F0 features are the
maximum F0 and the point where the least squares regression line for the last part

of the utterance crosses the y-axis (end_b). The use of these features indicates
that the F0 contour near the end of the utterance contains important linguistic

information for the distinction of move types.

There are two tilt parameters in the top 10 features queried. These are the tilt

value of the final accent and the F0 amplitude of the third from the last accent.

The tilt value of the final accent would be a clear indication of boundary type.

Figure 6.1 illustrates part of the classification tree. One can see how the

tree splits the data, depending on the feature that is being queried3. The nodes

represent the classification of the examples in the training set into the different
move types.

3The features are continuous variables, the binary terms such as long/short, are used in this
figure for simplicity.
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Feature Usage (%)
regr_num jrames 31.5

end_fO_mean 16

maxTO 8.5

utt.duration 7.9

end_b 7.3

abs_nrg_diff 6.7

auto_tilt 4.9

norm_auto3_amp 2.4

fOJength 2.4

Table 6.2: Top 10 features and feature type usage

/' high FO max \
Imay be indicative''

Figure 6.1: Part of the binary decision tree for classifying moves
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The highest query in this part of the tree is whether the utterance has a high

maximum FO. This may be indicative of a rising boundary tone or a large pitch

range. All the utterances with this feature are classified as query-yn. If there is not

a high maximum FO but there is a high FO mean in the last part of the utterance,

then align and query-yn are given high likelihoods. These moves frequently have

high boundary tones.

If an utterance does not have a particularly high boundary tone and the ut¬

terance is long, then the tree classifies it as an instruct. If it is not long and the

penultimate4 event is rising, indicated by a tilt value greater than 0.45, then the

utterance is a query-yn. If one adopts the view of the British School of Intona¬
tion and takes the final non-boundary event to be the nuclear accent (see section

5.2.2), one can make the following generalisation: if a yes-no question has a falling

boundary tone it is likely to have a high tone on the nuclear accent. If this was not

the case the classification tree would not have used this feature to discriminate

query-yn from the other types of moves, such as check and align. An example of a

yes-no question with a low boundary tone and a high accent on the nuclear tone

is given in figure 6.2. The FO contour is accompanied by the word transcriptions

and the hand-labelled accents where the delimitation lines indicate the mid point

of the accent. For definitions of the labels see section 5.2.7.

Finally the moves check and align with falling boundaries are discriminated

by length. Recall from section 5.4 that "utt-duration" is the whole length of the

utterance in terms of the number of frames, including utterance initial and final
voiceless segments and silences. 'FO length" is the duration in seconds of the FO
contour including only utterance internal silences.

This figure clearly shows that the classification tree is able to make sensible
decisions by identifying features that are discriminatory in the classification of
utterances into the 12 move types.

4The penultimate accent is the last non-boundary event.
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sil a sil m a fb

do you have ruined monastery

Figure 6.2: Example contour of a yes-no question move that has a falling boundary
("fb") and a high accent on the nuclear accent ("a") on "monastery", ("m" is a
minor accent, see section 5.2.7)

6.5 Neural Nets

Artificial neural nets (ANNs) are a machine learning algorithm used for classifi¬
cation given a vector of feature values. Like CART trees, they are particularly

suited to the type of pattern recognition attempted in this thesis, namely using a

vector of intonation features to determine the move type of an utterance.

The structure of artificial neural nets was motivated by the network of cells or

neurons in the brain. However, they should really be viewed as simply a trainable

statistical model. In this chapter, the structure of artificial nets will be discussed

and the parameters set for this task specified. This section shows that ANNs

are an effective method for classifying move type using suprasegmental features.
The software used in these experiments is the Stuttgart Neural Network System

(SNNS, 1997).
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6.5.1 Appropriate Problems for ANNs

Early ANNs were in the form of single layer perceptrons (Rosenblatt, 1958). This

type of neural net was unable to classify data that are not linearly separable. For

example, they could model some of the rules of logic, such as AND, OR, but were
unable to compute XOR (exclusive or). The development of a learning algorithm
for a multi-layer network, known as backpropagation, enabled ANNs to be used
for a large variety of tasks.

Previous experiments have illustrated the effectiveness of networks that use

the backpropagation learning algorithm to perform the classification of linguistic
units. An example of one such study is NETtalk (Sejnowski & Rosenberg, 1986).
This study involved training a multi-layer neural network for classifying graphemes

into phonemes which are to be submitted to a speech synthesiser. The net has a

classification rate of 81% correct.

ANNs have also been used for the task of recognising handwritten ZIP codes

by LeCun et al. (1989). The input to the multi-layer net is a 16x16 digitised gray

scale image and the output layer consists of 10 units, one for each numeral. They

achieve an impressive error rate of 5% on the test set.

The above examples show that the task of classifying utterances into moves

using a set of suprasegmental features as inputs is a plausible experiment.

6.5.2 The Perceptron

The net consists of many layers of perceptrons. A perceptron is a unit that takes

a set of values as its input, calculates a linear combination of these values and

outputs 1 or -1, depending on some threshold {—wq). Figure 6.3 shows a per¬

ceptron with input values x, which are weighted depending on some real valued
constant tWj. The output of the node is computed given the input o(xi, x2,... xn)
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as follows:

1 if w0 + W\X\ + W2X2 + ... + wnxn > 0

o(x i,x2, ...xn)
— 1 otherwise

(6.3)

As one can see in figure 6.3, the threshold can be used as a weight w0 with a

constant activation value of 1 (x0 = 1)- This is known as a bias and allows one to

use the inequality in equation 6.3 as S"=0 Wjaq > 0.

6.5.3 Training the Models

Several points have to be taken into consideration when setting up the training

of a neural net:

1. The database: how the input and output are encoded

2. The structure of the net

3. The learning algorithm to be employed
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4. The training process: percentage of errors, time taken to train, etc.

Each of these shall be discussed in turn.

• 1. The Database

The features used to train the net are the same 45 features used to train classi¬

fication and regression trees as described in section 5.4. These were normalised

between 0 and 1 to restrict the input vector space. The move type of the utterance

was encoded into a sequence of 12 binary numbers.

The test and training sets were the same as the CART experiments i.e. set A

for training and set C for testing. A quarter of the training set formed a validation

set. This set was needed to test the net during training in order to monitor how

well it was doing.

• 2. Net Structure

The net uses is a three layer network. The input layer consists of 45 units corre¬

sponding to the number of features described in section 5.4. The output consists

of 12 units, corresponding to the number of move types. In order to perform

non-linear decisions, one needs a hidden layer of nodes in the net. Experiments

were run with different sized hidden layers; the optimal network had a hidden

layer consisting of 50 units.

• 3. The Learning Algorithm

The learning algorithm used in these experiments is the backpropagation algorithm
which is used to train multi-layer ANNs and was developed mainly by the PDP

group (Rumelhart & McClelland, 1986). This learning algorithm determines the
difference between the desired output and the actual output, known as a cost or

error function. The weights of the connections are changed in order to minimise
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the cost value. This process is known as gradient descent and requires the calcu¬

lation of the gradient of the error function. The weight adjustment that would
reduce this error is passed back to the hidden units. Iterative applications of the

learning function allow one to find the set of weights that results in the most ef¬
fective neural net. This process also allows one to determine which of the weights

are contributing most to the error.

SNNS has an output function that converts the activation value of the outputs

nodes to a value between 0 and 1. In our case, these figures are used as likelihoods
for the 12 moves, given a feature vector. In other words, one takes the node with

the highest output value as the most likely move type.

• 4. The Training Process

ANNs are similar to CART trees in that they take into account the distribution
of moves, that is they output the posterior probability. In order for the ANNs
to be used to calculate the most likely move sequence, they need to produce the

likelihood of a set of observations, given a type of move P(I\M). As with the
CART trees, there are two methods of obtaining this likelihood. The first is to

train on a set that has equal numbers of moves. The second involves dividing

the output of the ANN by the prior probability of the moves, calculated from

the training set (see equation 6.2). The second method produces slightly better
results and took fewer training cycles. The results reported in section 6.7 are

obtained using this technique.

All patterns are presented once in a random order during one training cycle.

Every 10 cycles the net is tested on the validation set and the sum of squared

errors (SSE) is calculated. A check is performed and training is terminated if this
SSE falls below a certain threshold. This allows one to monitor for overtraining.

The network achieved optimum classification rate after 50 cycles.

Neural networks are effective at classification given a large feature vector. To
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enable a network to do this it invents new features using the hidden layer of nodes.

Unfortunately, it is very hard to interpret these features. Unlike the classification

trees, it is not possible to look "inside" the neural net. The only method of

evaluation available is to look at the move recognition accuracy results which are

given in the results section 6.7.

6.6 Hidden Markov Models

The previous two sections described methods ofmodelling intonation using general
characteristics of the utterance, for example average F0, amplitude, utterance

final F0 excursion etc. They do not really model the sequence of the different

types of intonation events, depicted by Pierrehumbert (1980) or Ladd's finite
state network (Ladd, 1996) discussed in section 5.2.3. These models also do not

attempt to capture characteristics of events in the different parts of the contour

(head, nucleus, tail) as described by the British School (Palmer, 1922) discussed
in section 5.2.2.

This section presents a method ofmodelling these different parts of the intona¬

tion contour using the different states of a hidden Markov model. HMMs are prob¬

abilistic finite state networks and are a common technique in acoustic/phonetic

modelling in automatic speech recognition and part-of-speech tagging. A brief

overview of the theory behind hidden Markov models is given along with a discus¬

sion on whether HMMs are an appropriate method for modelling the intonation

contours.

6.6.1 Finite State Networks as Intonation Model

An HMM is formed by adding probabilities to a finite state network. As discussed
in section 5.2.3, these networks can be used to model the finite set of sequences

of intonation events. Figure 6.4 gives a summary of these FSNs. Figure 6.4a
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(a)

(b) boundary pitch 43—*- phrase -sq-*- boundary
tone / accent tone tone

(C)
/ pre-nuclear\ nuclear

boundary -»jS—»- pitch —P'tch phrase boundarytone tT accent j accent tone tone

(d) pre-head —-*0-—»- head nucleus

Figure 6.4: Intonation structure represented by finite state networks

shows Pierrehumbert's intonation grammar giving all the legal tone sequences for

English (Pierrehumbert, 1980). Figure 6.4b shows the same information but with

descriptive variables associated with states which emit tones of the particular type

(e.g. the pitch accent state emits all the pitch accent types). Figure 6.4c shows
Ladd's amended version (1996) where nuclear accents are treated differently from

pre-nuclear accents. Figure 6.4d shows the British School system of pre-head,

head, nucleus and tail, Palmer (1922).

These FSNs are transformed into HMMs by adding two types of probabilities,
as illustrated in figure 6.5. Transition probabilities (a^) are added to the arcs

between states which give, for example, the likelihood of a contour having or not

having a pre-head. Observation probabilities (bs(on)) are associated with states

and specify the likelihood of that state emitting one of the events associated with
it. For example, the pitch accent state in figure 6.4b might have a high chance of
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State 1 State 2 State 3

a11 a22 a33

Observation Sequence a a a b

Figure 6.5: A three state, left-to-right HMM

emitting a common accent such as H* and a much lower chance of emitting a rare

accent such as H+L*. The models are known as hidden Markov models as the

sequence of state transitions is not directly derivable from the observed sequence

of accents.

6.6.2 Training the Models

The first stage in training the HMMs is to derive a sequence of observations for
each utterance. These observations are intonation events which can either be in

terms of discrete labels, such as ToBI or in terms of a set of continuous variables,

such as the tilt parameters described in section 5.2.7. The latter is chosen for a

number of reasons which are described in chapter 5, but mainly because they are

automatically derivable using the method described in Taylor et al. (1997).

Recall that this method automatically identifies the intonation events in an

utterance5. Four tilt parameters (described in section 5.2.7) are used as the ob-

5The HMMs used for accent detection are separate from the HMMs used for move detection.
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servation vector for each event. These parameters are: start FO, F0 amplitude,

event duration and tilt. Peak position is not included for reasons given in chapter

9. Normalisation of these parameters, excluding till?, was conducted in an at¬

tempt to eliminate speaker specific characteristics. Each observation parameter

was normalised using the mean and standard deviation of that parameter for a

given speaker.

The system is tested on a sequence of automatic identified events. Hand and

automatically labelled data are available for training. Although the automatically

labelled data may not be as accurate as the hand-labelled data, the models trained

on it perform better as they learn the labelling characteristics.

A three state, left-to-right continuous density HMM, as illustrated in figure

6.5, is trained for each of the twelve moves. The HMMs are trained in two stages,

initialisation and re-estimation. Initialisation involves providing crude estimates

for the HMM parameters, which are then re-estimated using the standard Baum-

Welch algorithm (Baum, 1972). Re-estimation is an unsupervised iterative tech¬

nique which optimises the maximum likelihood of the models emitting the obser¬

vations in the training data. The re-estimation process takes several iterations

and often after training the states do not emit the same observations as after
initialisation. The hidden Markov model tool kit (Young et al, 1996) was used
for the training and recognition procedures in these experiments.

A common practice in any recognition system is to retrain the HMMs, increas¬

ing the number of component Gaussian mixtures, each with a mean and variance.

This provides a more accurate model of the continuous variables' probability dis¬

tribution, thus improving the recognition results. The best results were obtained

using a mixture of two Gaussians.

Various experiments were conducted using HMMs with different transition

paths. The most effective was one with no transitions from state 1 to state 3,
6 Tilt is a speaker independent value.
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such as the HMM shown in figure 6.5. The implications of this is discussed in

section 6.6.3.

By using a viterbi decoder7 at run time, the most probable state sequence is

determined, given the observation sequence. A test utterance is passed through
each of the 12 models. The likelihood for the intonation of a given utterance

is calculated by multiplying the transitional probabilities of the state sequence

with the probability of that state emitting the observed intonation event in that

state. Unlike the CART or the ANNs, HMMs output the likelihood of the intona¬

tion contour given the move type, P(I\M). Therefore no modification is needed

regarding the number of each move in the training set.

6.6.3 Discussion

In order to examine exactly how the HMMs model the intonation contour, the

relationship between the different types of intonation events and the states that

model them was investigated. This was done by using a HTK tool8 that gives
a breakdown of the type of events modelled by each state during recognition. It

was observed that prenuclear accents are emitted mostly by state 1, while nuclear

accents can be emitted by state 2 or state 3. Boundary tones are only emitted

by state 3. The reason why state 3 emits nuclear accents is due to the fact that

accents and boundary tones can be combined as a single event if they are close

enough together (see section 5.2.7). These findings show that the HMMs are

modelling the contour in more or less the same way as the FSNs of the British

School and Ladd.

The type of HMM that produces the best results does not allow transitions

from state 1 to state 3. Under the assumption that state 2 models the nuclear

accents, this also supports the hypothesis that the HMMs model intonation struc-

7See section 3.4.1 a description of viterbi decoding.
8By using H2Vite with a trace flag.
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ture in a similar way to the British School and Ladd, represented in 6.4c and

6.4d, respectively. Both of these structures state that the intonation contour

must contain a nuclear accent.

HMMs can be used to recognise a sequence of intonation events but they can

also be used to generate such a sequence. In order to gain further insight into
the accuracy of the HMMs as models of intonation, they are used to generate

intonation contours which are compared to contours of the same move type. This

is the topic of the following section.

6.6.4 Resynthesising the Intonation Contour using HMMs

HMMs have a dual function. They can be used to process or generate sequences of
intonation events. As discussed in the previous section, they provide the likelihood

that an observed sequence of events has been produced by that model. They can

also be used to specify the distribution of intonation events for contour generation.

Using this latter method, one can test how well the HMMs actually model the

intonation by examining the type of contours that they produce.

This statistical intonation contour generation could be used as an alterna¬

tive to rule based systems in current text-to-speech (TTS) systems (Anderson
et a/., 1984; Silverman, 1988). General heuristics, such as giving interrogatives
a high boundary and declaratives a low boundary, are successful to a certain ex¬

tent. However, if the conversation is of reasonable length, unnaturalness would

be detected by the listener. This unnaturalness is due to the fact that there is

not always a one-to-one mapping of intonation to utterance type. For example,

a declarative frequently has a low boundary tone, but a high boundary may be
realised if there is an element of doubt.

As hidden Markov models are probabilistic finite state grammars, they can

capture this variation. However, one has to be very wary of generating intonation
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tilt

Figure 6.6: Highest weighted Gaussian mixture component for the tilt values of
the third state of the query-yn HMM

contours using statistical techniques due to the unintentional meanings that may

be conveyed. Examples of this include placing focus accents on the wrong words

or conveying doubt at an inappropriate point in the discourse. For this reason,

contour synthesis using HMMs is reported here solely as a tool for examining
the effectiveness of the models, not as an alternative to the current intonation

synthesis methods.

• Method of Synthesising Contours using HMMs

Synthesising intonation contours involves computing new tilt parameters for each

event in an utterance. These new tilt parameters are calculated depending on the

most likely state given the accent's position in the utterance and the observation

probability distribution associated with that state.

A simple approach to calculating the values for the four tilt parameters would

be to use the mean associated with a specific state. Figure 6.6 shows the highest

weighted Gaussian for the tilt value in state 3 of a query-yes/no move HMM. In
other words, it illustrates the distribution of the shape of boundary tones.

If one just takes the mean (0.6), the HMM will always generate boundaries
for yes-no questions that are mostly rising with a slight fall (see figure 6.6b).
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The model will never predict boundaries with more of a fall which can occur in

natural speech. One, therefore, wants to take into consideration the variance of

the distribution in order to model the many-to-one mapping of intonation contour

to move type. This is achieved by using a random number that has a Gaussian
distribution. By doing this, the model will generate some values for tilt that are
rise-fall (nearer 0, figure 6.6a) and some that are complete rise (nearer 1, figure

6.6c), but mostly values around the mean (figure 6.6b).

For each of the four tilt features, a random number is generated9 with a stan¬

dard normal distribution, i.e. with a mean of zero and a standard deviation of

1. This number is multiplied by the standard deviation and added to the mean

for each parameter associated with a certain state. This is shown in equation 6.4

where R is the Gaussian distributed random variable; x is the new value for that

tilt parameter; and /i and o represent the mean and standard deviation of that

parameter, specified by a certain state.

%tilt — R * &tilt "I" Htilt (^•^)

For simplicity, the Gaussian component that has the highest weighting is used

for generation. Recall that each tilt parameter (excluding tilt itself) is normalised
to compensate for speaker variation. The predicted values are therefore renor-

malised using the mean /T and standard deviation as of each tilt parameter for a

given speaker (s).

%s= (6-5)
<JS

The transitional probabilities determine the state sequence, i.e. the states

with higher self-transition probabilities are more likely to be used to produce

more accents. The state transitions are determined by a randomly distributed

'This is using the "gauss" program from Entropic (1999).
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variable. If this random number is above the self-transitional probability then the

following event will be generated by the next state. Otherwise, one stays in the

same state and generates another random variable. The HMMs are constrained

to produce a specific number of intonation events.

The contour is generated from the new tilt values by the method described in

Taylor (2000).

• Synthesis Results

Figure 6.7 illustrates the types of contours generated by a yes/no query HMM.
The label files contain the time-aligned word transcriptions and the intonation

events. The intonation labels (a, b) indicate the mid points of the automatically
detected intonation events. The top contour is the original spoken F0 contour.

The second contour is a resynthesised version which is generated from the tilt

parameters automatically extracted for each of the events. The bottom two are

synthesised using the new parameters generated for each event by the yes/no

query HMM. Just as human speakers vary boundary tones for such interrogatives

so does the HMM. The second of the automatically identified accents is misplaced

by approximately 0.2 seconds; it should be aligned with the stressed word "right".

This causes the synthesised contours to place an accent on the unstressed syllables

"to the". This illustrates that the HMMs are trained on some inaccurate event

labels however, as the test set is automatically labelled in the same way, the

HMMs would capture these idiosyncrasies for move recognition.

The goal of this work is to produce synthesised contours that reflect variation

over a sequence of utterances of the same type. Therefore, standard methods

of comparing synthesised contours with the original ones, such as RMSE and

correlation, are inappropriate here; for more information see Hermes (1998) and
Clark & Dusterhoff (1999).

One can, however, examine the distribution of accents and boundary tones
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sil a a a a a b

now to the right of the diamond mine do you have a wagon wheel

Figure 6.7: Four FO contours with automatic intonation labelling and words.
From top down: original FO; resynthesised FO from original tilt parameters; two
synthesised contours from a yes/no query HMM
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produced by the system over a series of synthesised contours. Boundary tones

are chosen as they are labelled in the database as rising or falling (rb/fb) and
are likely to contribute to the discrimination of utterance types. Sixty utterances

were synthesised using the yes/no query HMM for the sequence of events given
in figure 6.7. These 60 synthesised contours were then relabelled by hand. In the

training data 71% of yes/no questions have a rising boundary; in the synthesised
data this figure is 70%. This shows that the HMM does reflect the variation of

contours associated with the query-yn move type. If the HMMs were inappropriate

statistical models or if the method of extracting the tilt features was inaccurate,

this distribution of synthesised contours would not have been generated.

Informal listening tests indicate that contours are appropriate to the type of

model that produced them.

• Discussion

As described above, the distribution of boundary tone types of the synthesised

contours does indicate that HMMs form accurate models of intonation patterns.

The state transitions during recognition were examined and it was observed that
most of the prenuclear accents are associated with state 1 and most of the nuclear

accents with state 2. However, one cannot guarantee that the nuclear accent will
be associated with the focus of the sentence or that contrastive stress would be

realised appropriately.

Final lowering, declination and downstep should be reflected in the distribution

of tilt parameters in each state. Again, there is little control over semantic and

syntactic influences. For example, in a list scenario each H*+L causes a downstep

of the subsequent H*+L accents. This variation in start F0 is captured by the

state distribution but as one uses random variables to determine the value of

the tilt parameter, one cannot guarantee that the sequence of H*+L accents will
decrease in F0 systematically.
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Ladd and Johnson (1987) show that the sentence initial FO height is adjusted

according to the syntactic structure of the sentence. In other words, longer sen¬

tences have a higher start FO. This is reflected in the values for the mean and

standard deviation in the first state of the move HMMs. For example, shorter

move types such as reply-n have a lower mean and higher s.d. for start FO than

longer types such as instruct. This illustrates that, not only do shorter utter¬

ance types start at a lower FO value, they also have a steeper line of declination.

As with downstep, because one is using random variables during synthesis, one

cannot be sure that the initial start FO would be higher than the other accents.

This is particularly true with HMMs that have a large start FO variation, such as

reply-n and acknowledge moves.

Taking these points into account, HMMs cannot be recommended as an al¬

ternative to the current contour generation systems found in TTS. This work is

presented here, merely as a method for analysing the effectiveness of modelling
the intonation contour using HMMs. The main role of these HMMs is to be used

in automatic move recognition, the results of which are presented in the following
section.

A possible extension of this work would be to perform perception tests using

resynthesised contours, such as the examples given above or by integrating the
HMM generator into a TTS such as Festival (Black et al., 1996-1999). These tests

would look at those cases in which the HMM does not reflect the appropriate

intonation contour for a given utterance type. This may lead to redefining the
utterance type sets, or re-examining certain aspects of the linguistic representation
such as alignment or the tilt theory in general.
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Unigram 4-gram III &IM 4-gram III, IM and REC
HMMs 42 47 64
CART 45 49 63

ANNs 45 46 63

Table 6.3: Percentage of moves correctly recognised using the intonation models
(IM) in conjunction with various dialogue models and the language models and
recogniser (REC)

6.7 Move Detection Results using Intonation

This section presents a comparison of move recognition results using the three
different stochastic models presented in the previous sections. These intonation

models are combined with the various dialogue models, and the recogniser and

language models (as described in chapter 4). This section concentrates on com¬

paring the different methods of statistical modelling. Chapter 7 gives a discussion
of the contribution of the intonation models in the system as a whole.

Table 6.3 gives the move recognition results for the three different types of
models. The first column gives results using a unigram that takes into considera¬
tion the distribution of the moves in the training set. One can see that the HMMs

results are slightly lower that the other two methods. There is a general improve¬
ment on all the results by using the best dialogue model, 4-gram III (see section

4.5.3). The CART tree has a slightly higher result of 49%. The final column gives

results using all three sources of information available for move recognition. These
show a significant increase for all models with the HMMs producing a slightly bet¬
ter recognition result of 64%. All these results are well above chance, which is

24%.

Table 6.4 gives the system's move recognition results divided into initiating

and non-initiating moves. All three models do better on non-initiating moves than

initiating moves. This is useful in human-computer interaction systems where the

word recognition accuracy is not as important as knowing the type of response.
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Total Initiating Non-initiating
HMM, DM, REC 64 56 72

CART, DM, REC 63 55 71

ANN, DM, REC 63 55 72

Table 6.4: Percentage of initiating and non-initiating moves correctly recognised

For example, differentiating "yeah, yes, yep" is not as important as the fact that
the utterance is a positive reply to a question.

In order to discuss the effectiveness of the intonation models, two matrices

are given: one using no dialogue model and one using a unigram dialogue model.
Results matrices for the system as a whole are given in chapter 7. Table 6.5 gives

the results matrix produced by the CART tree with a unigram dialogue model

which correctly classifies 45% of the test set. The CART tree matrix is presented

here as this has one of the highest recognition results using a unigram. One can

see by the large number of moves that are recognised as acknowledge (464) and
instruct (303), that the recognition is greatly affected by the the prior probabilities
of the moves.

In order to filter out the effect of the prior probabilities, recognition is per¬

formed using the CART tree that is trained on equal numbers of moves (see section
6.4.3). The recognition result using this tree is 31.2% and the corresponding ma¬

trix is given in table 6.6. As this experiment does not take into account prior

probabilities, this figure is compared with chance which is 100/12% or 8.3%.

One can see from table 6.6, the move types that are recognised correctly are

more equally distributed; none have 0% accuracy. One can see the effect of the

length feature at the top of the CART tree, dividing the data points into short
and long utterances. There are confusions between the shorter categories ready,

reply-y and reply-n and acknowledge types.

There is also some misclassification of the longer utterances. In order to see

if this misclassification is systematic, the longer move types are grouped into
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Actual Moves

acknowledge 223 0 5 0 6 4 0 0 13 0 0 8 86.1

align 17 17 2 0 4 12 0 2 1 0 0 1 30.4
check 20 2 10 0 5 24 1 5 0 0 0 0 15.0

clarify 3 0 0 0 7 16 0 1 0 0 0 0 0.0

explain 20 0 4 0 31 49 0 5 0 0 0 0 28.4

instruct 11 1 4 0 22 138 3 15 0 0 0 1 70.8

query-w 7 0 0 0 4 8 0 3 1 0 0 1 0.0

query-yn 10 0 10 0 8 39 0 17 0 0 0 2 19.8

ready 44 0 0 0 4 0 0 0 28 0 0 2 35.9

reply-n 23 0 1 0 4 0 0 0 1 0 0 0 0.0

reply-w 8 0 0 0 2 11 0 2 0 0 0 0 0.0

reply-y 78 0 3 0 7 2 0 0 8 0 0 10 9.3

Table 6.5: Move recognition results for CART tree trained on original data. 44.7%
of the moves are correctly classified.
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acknowledge 126 4 5 13 3 4 2 0 63 9 7 23 48.6

align 7 19 2 5 0 1 3 4 2 2 4 7 33.9
check 9 7 14 4 4 1 3 16 2 2 5 0 20.9

clarify 0 0 1 6 10 2 1 2 0 0 5 0 22.2

explain 2 2 1 16 19 10 19 5 8 3 22 2 17.4

instruct 3 14 10 18 28 37 14 47 2 2 20 0 19.0

query-yn 1 2 2 3 3 0 7 0 3 0 2 1 29.2

query-w 2 12 9 10 7 3 7 22 2 1 7 4 25.6

ready 9 1 0 0 2 1 1 0 55 3 3 3 70.5

reply-n 8 0 2 4 1 0 1 0 6 3 0 4 10.3

reply-w 3 1 2 1 6 0 4 3 1 1 1 0 4.3

reply-y 27 4 4 6 1 1 0 3 23 8 5 22 20.4

Table 6.6: Move recognition results for CART tree trained on data of equal move
types. 31.2% of the moves are correctly classified.
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declarative and interrogative types. Specifically, declaratives include clarify, ex¬

plain, instruct and reply-w and interrogatives check, query-yn and query-w. Align

type moves are classified as "other" as they encompass both declarative and inter¬

rogative type utterances. One can see that the align model captures this variation
in utterance types as both declarative moves (e.g instruct) and interrogatives (e.g.

query-yn) are misclassified as align.

The recognition results of the two main utterance types are given in table 6.7.

Results are given using the CART tree trained on equal data and the CART tree

trained on the original data.

One can see from this table that the tree trained on all the data recognises

more declarative utterances than the equal tree. This shows the effect of the large

number of instructs in the data. The equal data tree misclassifies declaratives as

queries depending on their contour. For example, instruct moves with a rising

contour are often misclassified as query-yn. Explain moves are frequently misclas¬
sified as query-w or reply-w, all of which typically have have a falling boundary.
In addition, utterances that contain an abandoned utterance or a mid-utterance

restart tend to be misclassified.

The results in the following chapter show that when the likelihoods based on

the recognised words are added, distinguishing between these move types is easier

as queries tend to have a fixed syntax. For example, query-yn frequently starts

with "do you have a" and query-w with a wh-word.

The tree trained on equal data is better at classifying interrogatives (45%

compared to 26%). Most interrogatives are misclassified as instructs by the tree

trained on the original data. This is again due to the effect of the prior probability
of instruct moves.



6.8. SUMMARY 120

IM (all data) % IM (equal data) %
Decl Interrog Other Decl Interrog Other

Declaratives 75 12 13 57 31 12

fnterrogatives 50 26 24 28 45 27

Table 6.7: Percentage of declaratives and interrogative type moves correctly clas¬
sified by the different types of CART tree

6.8 Summary

The hypotheses tested in this chapter are firstly, that intonation is indicative
of move type, and secondly, that these intonation patterns can be effectively
modelled using statistical techniques. Section 6.2 gave a summary of previous

attempts at finding intonation contours characteristic of discourse function. Most
of these were in terms of rule based models which are problematic for an automatic

system as there is not a one-to-one mapping of intonation contours and utterance

types. This was the motivation for developing statistical models that can cope

with such variation.

Three methods for modelling intonation statistically were presented. Classifi¬
cation trees are useful as they can take discrete and continuous variables. Unlike

neural networks, they do not need a fixed vector space. In other words, the tree

can ignore features that are not present, such as the last three accents. HMMs

model the intonation from a temporal perspective, with different states represent¬

ing different parts of the contour. Both CART trees and HMMs can be evaluated

to a certain extent by examining the model's internal structure. This has led to

the discovery of some interesting intonation phenomenon. One such example is
that the classification tree uses the shape of the nuclear accent to decide whether

a contour with a falling boundary tone is a yes-no question or another type of

question (such as an align or check).

The three models are very difficult to compare. As well as using different sta¬
tistical techniques, the models are trained on different sets of data. The CART
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and ANNs use more general features and can be seen to model the intonation

contour from a more holistic perspective. HMMs, on the other hand, take a more

autosegmental approach by using the sequence of intonation events characterised

by the tilt parameters10. This makes a comparison of the models difficult. How¬

ever, all three models have one important feature in common, namely utterance

length. The HMM reflects the length of an utterance based on its transitional

probabilities. The CART tree has been shown to use both general features and
more theoretically based features such as tilt. This justifies the process of feature

extraction based on the sequence of intonation events for contour modelling.

10These parameters capture the phonetic properties of an event whereas the autosegmental
approach characterises the contour as a string of phonological events.



Chapter 7

System Performance

As discussed in chapter 1, there are two main goals of the work presented in this
thesis. The first is to be able to perform automatic move recognition accurately

enough to be useful in human-computer interactive systems. The second is to

incorporate this move recognition in an automatic speech recognition system to

improve word error rate. Automatic move classification results were given in

chapter 4, using the recogniser output and language models in conjunction with
the different dialogue models. Chapter 6 looked at performing move recognition

using statistical models of intonation. Results for move recognition experiments

using a combination of these different information sources are given below. All

of these experiments are conducted in the overhearer scenario, that is to say the

system recognises the sequence of moves solely on the information extracted from
the speech (see section 3.4.5).

In order to see if move recognition has the potential to improve word error

rate, the speech recogniser is run using hand-transcribed move types. This shows
what the error rate would be if the system could obtain 100% move recognition

accuracy. The crucial result is when the recogniser is run using the automatically
classified move types. This result shows that move recognition rate is accurate

enough to improve word error rate. Before discussing the results of the current

work, a brief overview of similar studies is given.

122
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7.1 Comparison with Similar Speech Recogni¬
tion Systems

o Switchboard Corpus

The switchboard study (Jurafsky et al., 1997; Shriberg et al., 1998) uses a

similar method of move detection as that described in chapter 31. They use

CART intonation models, language models and acoustics and a dialogue model
for automatic classification of the dialogue act set described in section 6.4.1.

They find that prosody is an important knowledge source when using the auto¬

matically recognised word sequence (see section 6.4.4 for further details). Regard¬

ing word error rate results, using 100% move recognition yields an improvement of

0.9% over the baseline result of 41.2% which is significant (p < 0.001). Using the

predicted utterance categories results in a slight (non-significant) improvement in
word error rate of 0.3 %.

o Train Projects

Baggia et al. (1997) and Eckert et al. (1996) describe the use of utterance type

specific language models in train enquiry dialogue systems for Italian and German

respectively. Both systems decide on the user's utterance type depending on the

system's own utterance, most of which are standard requests. This assumes a

degree of cooperation of the speaker which, if violated, results in bad prediction
of utterance type, which in turn results in an increase in word error rate. In

Baggia et al. (1997), using utterance type specific language models reduces the
word error rate up to 17% for some utterance types. Eckert et al. (1996) use a

xThis projects was carried out simultaneously with the current work with Paul Taylor as a
joint author in both studies (Jurafsky et al., 1997; Taylor et al., 1998b)
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combination of word and POS bigrams. Using these models results in a significant

reduction in word error rate (3.3%) over the general language model.

o Clarity

The Clarity project described in Finke et al. (1998) is a speech recognition project

using similar data to the switchboard but in Spanish. Three prosodic features

(pitch, intensity and speaking rate) were used to train a classification tree for
dialogue act classification. Unfortunately, they do not give results for act recog¬
nition using prosody. The only dialogue act recognition results they give are in
the transcription scenario. Specifically, they use the hand-transcribed sequence of
words and employ language models and dialogue models to predict the dialogue
act type. This result is 48% correct.

7.2 Summary of DCIEM Move Recognition Re¬
sults

Table 7.1 gives the move recognition results using different combinations of the
models described in previous chapters and in Taylor et al. (1998b). Using the
intonation model trained on all the data yields a move recognition result of 42%,
which is significantly above chance. The inclusion of intonation models in the

system as a whole is justified by the 7% increase in move recognition results

(compare D and G). The intonation results given here are those using the HMM,
as they yield the best overall result (64%). This figure subdivides into 56% for

initiating moves and 72% for non-initiating moves.

Table 7.2 illustrates the distribution of moves correctly analysed using all three
models (G). The recognition results are poor for align type utterances, which are

frequently misrecognised as ready. This is most likely due to the similar length
of the moves and similar lexical content (mostly "okay"). Clarify moves are fre-



7.2. SUMMARY OF DCIEM MOVE RECOGNITION RESULTS 125

Information Source Move type
accuracy (%)

A Baseline 24

B DM only 35

C Recogniser output and LM 40
D Recogniser output and LM and DM 57

E IM 42

F IM and DM 47

G IM, recogniser output and LM and DM 64

Table 7.1: Move detection results using various information sources in the over-
hearer scenario

quently misclassified as instruct as a large portion of clarify moves are declaratives
with similar discourse functions. Other poorly recognised moves include query-w

and reply-w. This is attributable to the low frequency of these moves, resulting
in poor models.

Chapter 3 discussed how the three models are weighted differently to produce
the optimal move recognition result of 64% (G). These weights were found by

using a held out test set as reported in King (1998). He systematically varied the
intonation model and recogniser weights, while keeping the dialogue model at a

fixed weight of 5. The optimum weights are between 1.5 and 2 for the intonation

models and 35 and 40 for the recogniser and language model; see page 140 of King

(1998).

In order to examine the misclassification of the longer utterances in more

detail, moves are collapsed into declarative and interrogative categories. Recall
from section 6.7, declaratives include explain, instruct, clarify and reply-w and
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acknowledge 208 0 1 0 2 2 0 1 28 0 1 16 80%
align 4 2 2 0 2 12 0 4 28 1 1 0 3%
check 11 1 28 1 1 3 2 13 1 1 3 2 41%
clarify 0 0 0 7 0 17 0 0 0 0 3 0 25%
explain 20 1 9 4 41 11 0 11 1 6 5 0 37%
instruct 4 1 1 2 6 172 0 2 1 0 3 3 88%
query-w 9 0 4 0 1 2 4 2 0 0 0 2 16%
query-yn 6 1 13 0 5 5 1 54 0 0 1 0 62%

ready 22 0 0 0 1 3 0 1 46 1 0 4 58%
reply-n 4 0 0 0 1 0 0 0 0 23 1 0 79%
reply-w 3 0 0 2 5 4 1 0 0 0 6 2 26%
reply-y 21 1 0 0 3 3 0 1 0 1 2 76 70%

Table 7.2: Confusion matrix for move type classification: 64% move recognition
accuracy

interrogatives check, query-yn and query-'w. Table 7.3 gives the recognition results
for these categories using all three modules. These results are compared to those

produced by the intonation model trained on all the data given in table 6.7 and

repeated here.

The accuracy of recognising declaratives is not improved by using the likeli¬
hoods from the dialogue and language models (75%). However, fewer declaratives
are misclassified as query-yn or query-w as these moves have a distinct syntax.
There is a significant improvement (40%) in the classification of interrogatives
over just using the intonation model. This is likely to be due to the fact that in¬

terrogatives contain key words that indicate their discourse function, for example

"which, what, do you".
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IM, REC and DM % IM %
Decl Interrog Other Decl Interrog Other

Declaratives 75 8 17 75 12 13

Interrogatives 12 64 24 50 26 24

Table 7.3: Percentage of declaratives and interrogatives correctly classified by
CART tree trained on equal data

7.3 Word Recognition Results

This section examines whether the move recognition results presented above yield
an overall word error rate reduction. Recall that the move type predictions are

used to determine the type of language model to be employed during recognition.

The method of training the language models is discussed in chapter 4. The word

recogniser was run using the move predictions of the different combination of
models (A-G). These word error rate results are given in table 7.4, which are also

reported in Taylor et al. (1998b).

The system achieves a word error rate of 23.5% (H), using the hand-transcribed
move types rather than those predicted by the system. This shows a lower word
error rate than the baseline result (24.8%) obtained using a general language
model trained on all the data. Therefore, the perplexity results of the language
models described in section 4.3.2 do result in a reduction in word error rate. In

order for the move type specific language models to be of use, one has to be able

to recognise move type with a degree of accuracy. Using the predicted move types

(G) to choose the language model yields a recognition result of 23.7%.

In order to test the significance of the reduction of word error over the baseline,

paired two-tailed t-tests (Iman, 1994) were performed. This test requires two

sets of corresponding data points produced by two different systems. For each

utterance, the WER of the baseline system is compared with that of the system

that uses move-specific language models. The degrees of freedom are therefore
the number of test utterances minus one.
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Information Source Move Recognition
Results%

WER

%

A Baseline 24 24.8

B DM only 37 26.4

C Recogniser output and LM 40 24.1
D Recogniser output and LM and DM 57 24.1

E IM 42 25.7
F IM and DM 47 24.7

G IM, recogniser output and LM and DM 64 23.7

H 100% move recognition correct 100 23.5

Table 7.4: Move detection and WER results using various information sources in
the overhearer scenario

In order to perform the t-test, consecutive pairs of utterances must be inde¬

pendent of each other. It is reasonably safe to assume that this is the case for the

100% move recognition scenario (H). The error rate reduction from 24.8 to 23.5
is highly significant (p < .0005, d./. = 1060). The reduction of word error rate is

highly significant for all the initiating moves (p < .0005, d./. = 522), but not for
non-initiating moves.

Due to the nature of the 4-gram dialogue model which uses the types of pre¬
vious utterances to predict the current one, one cannot claim that consecutive

utterances are independent. However, t-tests can be performed on the data di¬
vided into initiating and non-initiating move types as one can be reasonably sure

that utterances of the same initiating/non-initiating type do not effect each other.
Table 7.5 gives the percentage word error rate for utterances grouped into initi¬

ating and non-initiating move types. The decrease in WER of the baseline for
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Experiment Word error rate %

A: Baseline - General language model
Overall 24.8

Initiating moves 26.0
Other moves 19.2
C: Move specific language models
without dialogue model or intonation
Overall 24.1

Initiating moves 24.9
Other moves 20.9
G: Move specific language models
with automatic move classification
Overall 23.7

Initiating moves 24.7
Other moves 19.3
H: Cheating (100% move classification)
Overall 23.5

Initiating moves 24.6
Other moves 19.0

Table 7.5: System performance compared with baseline for initiating and non-
initiating moves

initiating moves (from 26% to 24.7%) is significant (p < .001, d./. = 522). The

slight increase in non-initiating moves is not significant.

ft is interesting to note how well the recogniser would do without the help of

dialogue or intonation models (comparing C with A). This result is 24.1%, which is
not a significant reduction in WER compared to the baseline2. The improvement

in results for just the initiating moves is significant (p < .005, d./. = 522). The
baseline result (A) is significantly better (p < .05, d.f. = 537) for non-initiating
moves.

2The independence assumption is not violated as the dialogue model is not used in these
experiments.
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Information Sources Move Recognition
Results%

Word error

rate %

G: HMM, DM and
recogniser output and LM
Overall 64 23.7

Initiating moves 56 24.7
Other moves 72 19.3

G: CART, DM and
recogniser output and LM
Overall 63 23.6

Initiating moves 55 24.55

Other moves 71 19.56
G: ANN, DM and
recogniser output and LM
Overall 63 23.8

Initiating moves 55 24.75
Other moves 72 19.85

Table 7.6: System performance comparing different intonation modelling tech¬
niques

7.4 WER using Different Intonation Models

The results presented in table 7.5 are obtained using the HMMs for intonation

modelling. However, the alternative methods, described in chapter 6, produce
similar move recognition results (63% compared to 64%). It would therefore be

interesting to compare the word recognition results using all three models. These
results are given in table 7.6.

This table shows that there is a slight (non-significant) reduction in word
error rate using CART trees over HMMs. This improvement is concentrated in
the initiating move types. There is no improvement over the HMMs for the non-

initiating moves using either the CART or the ANN model.
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7.5 Discussion

There are two main questions addressed here. The first is whether the system can

perform automatic move recognition with enough accuracy to be useful in human-

computer interaction systems. The second is whether the move recognition results
are accurate enough to be used in an ASR system to improve WER.

One can see from the results given in table 7.5 that move recognition is more

accurate for non-initiating moves than initiating moves. However, the word error

rate is better for initiating moves than non-initiating moves, resulting in an im¬

portant compromise. Initiating moves often contain salient propositional content.

Non-initiating moves, on the other hand, are mostly backchannels or replies, where
word recognition accuracy is not as essential as knowing the type of response. For

example, differentiating "yeah, yes, yep" is not as important as the fact that the
utterance is a positive reply to a question. This illustrates how useful move recog¬

nition would be in a human-computer interaction system despite the fact that

100% word recognition accuracy is not obtained.

It has been shown that a significant increase in WER can be achieved by

using the method presented in this thesis. One can conclude from the results

discussed in section 7.3 that intonation models contribute significantly to the
move recognition results and the word error rate. The main drawback of the word
error results is the small reduction from the baseline to that obtained using 100%
move recognition. This gap could be widened by a number of techniques: more

sophisticated language modelling techniques; different utterance type sets; and,
as always with any recognition task more data. One of these approaches is in the

scope of this thesis, namely looking at alternative utterance categorisation. The

following section looks at clustering the moves in order to maximise the intonation

similarity.

There is an additional source of information that has not been tapped in the
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system described so far. This is higher level dialogue information such as a move's

position in a game and the game type. The following chapter looks at how this
information can be used to improve move recognition accuracy.

7.6 Clustering and Splitting the 12 Moves

One can hypothesise that the inaccuracy of the results presented in the previous
section is due to the fact that the 12 moves do not group utterances that are

the most intonationally and syntactically similar. Initial experiments presented
here involve splitting and merging the 12 moves by hand using heuristics aimed
at optimising intonation similarity.

7.6.1 Context Dependent Moves

A study conducted by Hockey et al. (1997) indicates that the lexical content of a
move can be predicted to a certain extent depending on the previous move. For

example, there is a low probability of the word no if the move is preceded by an

align move. One can hypothesise that if this is the case, then the move will be

intonationally marked. Other intonationally marked moves may be non-replies

preceded by queries.

In their study, reply-y and reply-n were split into three groups each, depending
on the preceding moves: one for those preceded by align or check, the second for
those preceded by query-yn and the last for any other move. Align and check were

differentiated from query-yn because they have a higher expectancy of a positive

answer, whereas query-yn moves have a more even distribution of reply types.

A number of possible move sets were experimented with. The set that pro¬

duced the best results is listed in table 7.7 and was formed in the following way:

• explain, clarify and instruct were merged as these are mostly declarative
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align
check

clarify+explain+instruct
query-w

query-yn

ready
reply-n_prec_by_align+check
reply-n_prec_by -query-yn
reply-n_prec_by.other
reply-w
acknowledge-f reply-y_prec_by_align+check
reply-y_prec_by-query-yn
reply-y_prec-by-Other

Table 7.7: Modified move types

sentences of similar length

• reply-n was split into three categories depending on the preceding move:

query-yn; align or check; other

• reply-y was split into three types in a similar way to reply-n

• acknowledge was merged with reply-y moves which are preceded by align or

check.

• align, check query-w, query-yn, ready and reply-w were unchanged

7.6.2 Results of Merging and Splitting

The move and word recognition results were calculated for this new set using

various information sources, presented in table 7.8. These were obtained using

the same method for the original 12 moves as described in chapter 3.

The overall move detection result is better than the original set (67% compared
to 64%), but the figure for chance is higher (28% compared to 24%). In addition
the test set perplexity of moves using a unigram is lower than the original test set:
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Information Source Move Recognition WER

Results% %
Original New Original New

A Baseline 24 28 24.8 24.8

B DM only 37 45 - -

C Recogniser output and LM 40 43 24.1 24.5
D Recogniser output and LM and DM 57 67 24.1 24.4

E IM 42 29 _ _

F IM and DM 47 52 24.7 26.5

G IM, recogniser output and LM and DM 64 67 23.7 24.4

H 100% move recognition correct 100 100 23.5 24.8

Table 7.8: Move detection and WER results using various information sources in
the overhearer scenario

6.8 compared to 9.1. This indicates that the new task is easier than the original
one.

Using the intonation models alone (E) yields a result of 29% accuracy; this
is slightly above the baseline. The intonation models of the original set yield a

higher result of 42% on a harder task. This leads one to believe that the new set

is not more intonationally similar or that there were not enough data for the less

frequent moves, such as the context-dependent replies.

Combining the intonation models with the 4-gram dialogue model (F) increases
the result to 52%, compared to 47% of the original moves. The higher dialogue
model result (45% compared to 37%) leads one to believe that the new move types
follow each other with a higher degree of predictability than the original set.

Adding intonation and dialogue model likelihoods to the recogniser and lan¬

guage models (compare G with C) increases the move recognition (43% to 67%)
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but yields similar WER (24.5% to 24.4%). Adding intonation alone does not im¬

prove the move recognition results (compare experiments D and G). These results
are better than than the result using 100% correct move recognition (24.8%).
Furthermore, the 100% move recognition result is not lower than the baseline,

indicating that the move-specific language models are not better than the general

language model. This leads one to believe that the new set does not cluster moves

that are syntactically similar, alternatively, it may be that there are not enough

data to train language models.

These initial experiments looked at clustering the moves in order to maximise
the intonation similarity. This method was unsuccessful from the point of word

recognition, as the new move set does not form useful sub-language models. In

the following chapter, utterance types are developed that incorporate higher level

dialogue information in an attempt to maximise both intonation and syntactic

similarity.



Chapter 8

Using Game Information to
Improve Move Recognition

8.1 Introduction

This chapter investigates whether higher level discourse information, such as the
current discourse goal and goal state, affects the characteristics of utterances of
different types. This discourse goal information is captured in Power's (1979)

theory of Conversational Game Analysis discussed in detail in chapter 2. Game
information is used in this chapter to improve the recognition of move types.

Specifically, game type and position of an utterance are used in each of the main

stochastic models i.e. dialogue, intonation, and language models.

Game information would be useful in a dialogue model as different move se¬

quences occur in different game positions. For example, a move sequence such as

explain followed by acknowledge is common near the end of a game as the goal of
that game is achieved. The type of move can also vary depending on the type of

game it is in as each game has a different distribution of moves. For example, in
an instruct game there is a higher likelihood of finding acknowledge moves than
in a query-yn game where you are more likely to find reply-y or reply-n moves.

The dialogue model can use these regularities to improve move prediction. One
motivation for this approach comes from a study by Poesio and Mikheev (1998)

136
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who achieve a 30% increase in move detection by using game information in their

dialogue model. An attempt will be made to replicate this study by using game

type and game position in the N-gram dialogue model.

Kowtko (1996) shows that the intonation of acknowledge moves varies depend¬

ing on what type of game it is in. She shows that acknowledges have a non-falling
intonation in non-information seeking games such as instruct and explain games.

Acknowledges in the other, information seeking games (such as querying games)
tend to have a non-rising intonation.

Intonation may also vary depending on the position of an utterance in a game.

For example, if an utterance is game initial, it may be introducing a new goal or

topic and have a slightly higher utterance initial F0 contour.

Finally, there may be regularities in syntax corresponding to the game type

and position of an utterance. For instance, a ready move at the start of a game

contains a larger vocabulary than ready moves in the rest of the game, as these just
tend to consist of "okay". Training language models that take game information
into account could improve their predictability.

Although this work follows a similar experimental set-up to the joint work

reported in Taylor et al. (1998b) and King (1998), the idea was the author's own

and the experiments reported in this chapter were conducted by the author1.

8.2 Automatically Identifying Game Information

There are two approaches to using game information for move prediction. One
method is to predict game information first and then use this to predict move

types. The second method predicts move and game information simultaneously.

The problem with the first of these methods is that game type and position
must be predicted with a high degree of accuracy. Initial experiments were per-

1With direct correspondence with M. Poesio, S. Isard and S. King.
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formed that attempted to recognise game position and game type independently
from move type using similar methods to those described in previous chapters.

Specifically, intonation, language models and dialogue models were trained for

game position and game type recognition separately and simultaneously.

The game dialogue model picks up on the regularities in game type and posi¬
tion. However, as it uses its own predictions it tends to predict the same sequence

repeatedly (e.g. "start, middle, end, start, middle, etc.").

Training intonation models on game type alone would assume that utterances
have similar intonation if they are in the same game. This is obviously an over-

generalisation as a query-yn move in a query-yn game would not have the same

intonation pattern as a reply in the same game type. Similarly, utterances of
different move type in games of the same type would have very different wording,

resulting in poor language models.

It is obvious that more sophisticated methods of game analysis are needed.
These may involve: topic spotting (Nakajima & Allen, 1993), cue phrases and
discourse marker analysis (Heeman & Allen, 1997), or game boundary intona¬
tion studies (Hirschberg &; Litman, 1993). The studies mentioned here just look
at these features in relation to discourse structure at an utterance level. The

development of a sophisticated game annotator is beyond the scope of this thesis.

What will be investigated is whether it is beneficial to model move type fea¬
tures with respect to their game type and position. For example, are game initial

ready moves more emphatic than game internal ones? In order to do this, a system
is trained to identify the product of the move and its game position or type. This

system is described in the following sections.
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YES

Utterance Type
Recognition

Figure 8.1: Chapter overview
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8.3 Chapter Structure

Figure 8.1 gives a schematic representation of the work presented in this chapter.

Firstly, the move and game labels are joined to form new sets of utterance types.

For example, in order to look at the intonation of move type with respect to

position in the game, one uses the move_position set. In order to evaluate the

usefulness of these sets, their intonation characteristics are examined, as well as

whether they have any syntactic or lexical similarities and whether they occur

in a predictable sequence. To do this, intonation models, language models and

dialogue models are trained.

Section 8.5 discusses dialogue modelling and has two main parts. The first

part looks at predicting various combinations of game and move information si¬

multaneously. For example, do utterances in certain game types follow each other
with some degree of regularity, such as an explain game final move preceding an

instruct game initial move? The effectiveness of these models is examined by

calculating the perplexity of the category sequence in the same way as explained
in chapter 4 for the original move set. The second part of this section looks at

improving recognition of the original move set using game information, replicating
the findings of Poesio and Mikheev (1998).

Section 8.6 examines whether the new utterance types that include game infor¬

mation form better intonation models than the original set. For example initiating
moves at the end of games may have more marked intonation than those at the

start. Evaluating intonation models is not straight forward. One can, however,
assume that if they improve utterance type recognition then they must model the
utterances' discriminatory intonation features to a certain extent.

Finally, section 8.7 looks at whether move specific language models that take

game type and position into account reflect syntactic characteristics more accu¬

rately than the original set. For example, utterances at the start of games may
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contain a new topic or landmark for discussion. The language models are evalu¬

ated in the standard way by calculating the test set perplexity of word sequences,

using the same method described in section 4.2 for the original move sets.

After examining the three types of models, new utterance types are developed
that take into account the move type and game position of an utterance. Section
8.8 presents the results of recognising these new utterance types. The classification
of utterances into these new types can be collapsed to the original move types.

This yields a significant improvement in the move recognition accuracy presented
in chapter 7. Finally, the move types are collapsed further into declarative and

interrogative type utterances. These results also show that using game position

can improve general utterance type recognition.

8.4 The Data

The game position of each utterance and the game type are hand-labelled for
a subset of the DCIEM Map Task corpus. This consists of 25 dialogues which
are divided into a training set (B) of 20 dialogues (3726 utterances) and a test

set (C) of five dialogues (1061 utterances). None of the test set speakers are in
the training set, i.e. the system is speaker independent. The study presented

in previous chapters used the larger data set (A) which is labelled for words
and moves but not games (see section 3.2 for more details). Therefore, a direct

comparison is not possible between results presented in previous chapters and
those presented in this chapter.

Another source of data is the Glasgow Map Task corpus. This corpus is ob¬
tained using the Map Task set-up described in section 2.4 but is performed by

Glaswegian students who are familiar with each other. These data consist of

26,621 utterances and are labelled for games, moves and word transcription but
are not labelled for intonation events.
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Speaker Utterance Move Position Game

Giver: Mike, do you see the start? align start align
Follower: Yes I do. reply-y end align
Giver: Do you have a telephone query-yn start query-yn

booth just below the start?
Follower: Yes I do. reply-y middle query-yn
Giver: Okay. acknowledge end query-yn
Giver: Go approximately one inch instruct start instruct

to the left of the telephone booth.
Follower: Yes. acknowledge middle instruct

Table 8.1: Data extract including game, position and move type

8.4.1 Data Analysis

The data are analysed in terms of the following categories.

• the original 12 moves

• position in game

• game type

Game type corresponds to the first initiating move in the game. There are

therefore six game types corresponding to the six initiating moves given in section

3.2.

Game position is classified as start, middle or end. An alternate set of position

types were investigated. This contained an additional move start-end which was

used in games containing a single move, e.g. an align game that contains just
an align move in between an instruct and a check game. Initial experiments

using a bigram dialogue model on transcribed data showed that including this

position type did not improve recognition results. It was therefore discarded and
all corresponding moves were labelled as a start. Game position was automatically
derived from the game boundaries. Table 8.1 gives an extract of data, including

move, game type and position labels.
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Move type #moves Most frequent move Baseline%
position 3 middle 43
move 12 acknowledge 24

game 8 instruct 35

move.position 31 acknowledge-end 13

move_game 63 instructJnstruct 19

pos_game 18 middle-instruct 23

move_pos_game 117 instruct-middleJnstruct 12

Table 8.2: DCIEM Map Task data statistics for training set B

Move type #moves Most frequent move Baseline%
position 3 middle 42

move 12 acknowledge 22

game 8 instruct 29

move_position 45 acknowledge-end 11

move_game 75 instructJnstruct 15

position_game 28 middle-instruct 16

move_pos_game 179 instruct-middle-instruct 8

Table 8.3: Glasgow Map Task data statistics

Each utterance can belong to a number of the above categories. Experiments
were run on the following combinations:

• move.position (e.g. align-middle)

• move_game type (e.g. alignJnstruct)

• position_game type (e.g. middle-instruct)

• move_position_game type (e.g. align-middleJnstruct)

Tables 8.2 and 8.3 give information regarding these categories for the DCIEM
and Glasgow Map Task corpus respectively. These include the number of moves
for each set, the most frequent move and the corresponding baseline, which is the

proportion of the most frequent utterance type in the test set.

One can see from these tables that the Glasgow Map Task corpus has more

possible combinations of joint category types. For example, there are 179



8.4. THE DATA 144

Game type % of games Average # of moves
per game

align 6 2.1

check 17 3

explain 14 2.2

instruct 31 4

query-w 7.5 3.3

query-yn 24.5 3

Table 8.4: Distribution and average length of games in training set B

move_position_game types compared to 117 in the DCIEM corpus. This is prob¬

ably due to the fact that it is a much larger corpus.

The most common move type for both data sets is acknowledge and the most

common game type is instruct. This is to be expected given the nature of the Map
Task. Middle position types take up approximately 43% of the move types. This
is due to the high number of instruct games that have an average of four moves,
i.e. an average of two middle moves per game. The game type distribution and

average length of the different types of games are given in table 8.4.

Table 8.5 gives the distribution of games and the most frequent initiating move.

Not surprisingly, the type of the initiating move and the game type are the same.

The table also gives the frequency of the two top non-initiating moves. Align and

check games have more reply-y moves than acknowledges. Align moves frequently
contain the phrase "OK?" which is given a positive reply approximately half the
time. Check is an interrogative usually requiring some kind of confirmation of
information or knowledge state and therefore is frequently replied to positively.

Explain and instruct are declarative sentences which are therefore mostly replied

to with an acknowledge. The last two games, query-w and query-yn, contain a

similar number of acknowledges and replies. However, the initiating move is most

frequently followed by a reply rather than an acknowledge.
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Game type Init move Freq Non-init Freq 2nd Non-init Freq
align align 118 reply-y 64 acknowledge 23
check check 230 reply-y 153 acknowledge 115

explain explain 290 acknowledge 163 ready 50

instruct instruct 595 acknowledge 382 ready 171

query-w query-w 89 acknowledge 71 reply-w 61

query-yn query-yn 331 acknowledge 165 reply-y 152

Table 8.5: Frequencies of the most common initiating and the two most common
non-initiating moves in various types of games in training set B

8.5 Dialogue Models

In chapter 4, various types of dialogue models were examined, all of which use

low level predictors such as sequences of moves or speaker identity. However, the

choice of a speech act or utterance type is influenced by other factors, such as

current goal and goal state.

As discussed in the previous section, different move types have different dis¬
tributions depending on the position in the game. For example, 58% of game
final moves are acknowledge moves. The type of move can also vary depending on

the type of game it is in as each game has a different distribution of moves. For

example, acknowledge moves are more common in an instruct game while check

games are likely to contain more replies than acknowledges.

This section is divided into two parts. The first looks at whether sequences

of moves and game type and position are predictable. The second part looks
at replicating Poesio's (1998) experiments by adapting the move dialogue model
described in chapter 4 to include game type and position as predictors of move

type.
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Move type Number Unigram Bigram
of moves perplexity perplexity

move 12 9.2 6.2

position 3 2.9 2.56

game 8 5.3 3

move_position 31 18.7 9.8

move_game 63 21.2 8.8

position_game 18 14.3 4.7

move_position_game 117 38.8 17.1

Table 8.6: Dialogue model perplexities for DCIEM corpus

Move type Number Unigram Bigram
of moves perplexity perplexity

move 12 9.9 7.2

position 3 2.9 2.6

game 8 5.4 3.2

move_position 45 12 9.4

move_game 75 25 9.4

position_game 28 15.4 5.1

move_position_game 179 47.3 16

Table 8.7: Dialogue model perplexities for Glasgow Corpus



8.5. DIALOGUE MODELS 147

8.5.1 Modelling Game and Move Information Simultane¬
ously

Bigram and unigram dialogue models were trained for the different utterance types

and their test set perplexities calculated. These perplexity results are given in

tables 8.6 and 8.7. Trigram models were also trained but these did not reduce the

perplexity further. In addition, training trigams for a large number of categories
such as move_position_game is not possible with the amount of data available.

Game types seem to follow each other with a degree of regularity, as reflected
in the reduction of perplexity by using a simple bigram model (from 5.4 to 3.2).
For example, align, check and explain games are likely to be followed by an instruct

game. This would allow for information to be established or checked before giving
an instruction. Query-w and query-yn games are typically followed by explain
or instruct games. If the answer to the query is unsatisfactory, then typically
an explain game would occur; otherwise the dialogue continues with an instruct

game.

Games can be nested, resulting in the need for a more complicated model
of dialogue. Initial experiments were conducted that use the binary distinction

of nested/non-nested game type. These experiments resulted in a large number
of move types, creating sparse data problems. In addition, the games can be

deeply nested resulting in abandoned games as the participants forget the initial

goal. Even human labellers find it hard to label the end of large games (Carletta
et al., 1997). Therefore, trying to distinguish embedded games automatically is

impractical at the time of this thesis with the data available.

Chu-Carroll (1998) ran experiments using a dialogue model that only looked
at previous dialogue acts at the same level of embeddedness. That is to say,

the model would only use previous utterances in the same game. This dialogue
model was used to detect the intention of an utterance given its hand-transcribed
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syntactic form, i.e. whether it was a question, statement, etc.. Chu-Carroll shows
that using this dialogue model does not result in an increase in utterance type

recognition over the dialogue model that just looks at the previous utterances

regardless of whether they are in the same game or not.

• Higher Order Dialogue Modelling for Move-position

Further Map Task experiments were run to see if using a more complicated N-

gram would reduce the perplexity result for the move_position bigrarn trained on

DCIEM corpus (9.8 given in table 8.2). Move_position was chosen for further

experiments as it has a manageable number of move types and the bigram model
reduces the test set perplexity substantially, indicating that the types follow each
other with a degree of predictability. In addition, if the move and position of an
utterance is predicted with a certain degree of accuracy then the game type can

be inferred from the first few moves in the game.

In order to be able to train an effective dialogue model, there must be a

distinctive distribution of move types with respect to their game position. Table
8.8 gives the frequencies of the different moves in different game positions for the

training set. One can see that for many move types the distribution is uneven

across game positions. The first obvious pattern is that initiating moves, with the

exception of instruct, occur most frequently at the start of games. Most ready
moves are game initial. Replies are quite evenly distributed across middle and
end positions. All, with the exception of acknowledge, have a higher frequency
of middle moves than game final moves. From this table, one can see that there
are clear patterns of move distributions across game positions. These regularities
should be picked up by the dialogue model.

The test set perplexities for various dialogue N-grams are given in table 8.9.
One can see that previous move_position utterance types mpi_j) are better
predictors of the current move_position types than just the previous move type.
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Move Start Middle End Total

acknowledge 0 409 510 919

align 95 22 4 121

check 185 51 9 245

clarify 0 66 25 91

explain 192 96 43 331

instruct 192 381 43 606

query-w 78 17 2 97

query-yn 237 93 4 334

ready 271 70 5 346

reply-n 0 82 25 107

reply-w 0 116 29 145

reply-y 0 201 183 384

total 1240 1604 882 3726

Table 8.8: Move frequencies with respect to game position

Model Predictors Perplexity
A unigram 18.7

B m,-1 9.78

C fTli—ji Sit Si—1 9.08

D 1 > Pi—1 >Sj 9.06

E Si, Si—i 8.55
F WiPi—ji Sj_i 7.6

Table 8.9: Perplexity results for the different dialogue models predicting
move-position categories

The 4-gram that reduces the perplexity the most uses the move_position type of
the other speaker's previous move (mpi^f) and the current and previous speaker
type (Model F). This model is illustrated in figure 8.2 and uses the same type of

predictors that were used in the original move dialogue model (King, 1998; Taylor
et al., 1998b).
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GAME TYPE instruct instruct instruct instruct

POSITION
MOVES

start middle middle end
move. „ move. . move. , move;i-3 | I-J l-l 1

SPEAKER giver follower giver giver

time

Figure 8.2: Model F for move_position modelling

8.5.2 Comparing ME with N-grams for Modelling Game
Structure

As mentioned in the introduction, motivation for this research comes partly from

experiments described in Poesio and Mikheev (1998). Their experiments show an

improvement in utterance type detection by using game information. The data

used for these experiments are the Glasgow Map Task corpus, hand-transcribed for

games, moves and words. Instead of using N-grams, they use maximum entropy

estimation (Berger et al., 1996) to perform the move discrimination.

Maximum entropy estimation is an alternative way to calculate the proba¬

bility P(M\0) where O is a set of given observations corresponding to the set

of predictors given in table 8.10, e.g. speaker, position in game, etc.. Poesio &:
Mikheev (1998) report experiments that are conducted in the transcription sce¬

nario, discussed in section 3.4.5. That is to say all move and game types used to

predict the current move are hand-transcribed, not the model's own prediction,

which may contain errors. In their first experiment, they use a simple bigram for
move sequences. The result achieved for this method is 38.6% with a baseline
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Predictor Symbol
Move type of current move ml

Identity of speaker of current move Si

Identity of speaker of previous move Si—1

Move type of previous move 1

Move type of other speaker's last move n^i—j
Position in game of previous move Pi-i
Game type of previous move 9i— 1

Table 8.10: Notation of N-gram predictors

Model Predictors Perplexity
I unigram 9.2
II rrH-1 6.2

III TTli—j, Sj, Si—i 5.1

IV mi—i, Pi—i, fji—i 4.9

V mi-j, Pi—i, fji—i 4.7

VI mi-j, Pi—i, Si, Si—i 4.7
VII mi—i, Pi—i,Si, Sj_i 4.6

VIII 9i—1) Pi—It Si, Si—i 4.6

Table 8.11: Perplexity results for the different dialogue models for predicting
original move types

figure of 21% 2. The second experiment includes adding a label for game position
and game type to each move type. For predicting move types, this method yields
a 30% increase to 50.63%. By classifying a separate group of moves, known as

"dialogue control" moves (acknowledge and clarify) and by adding speaker change

information, a move recognition rate of 57.2% was obtained.

This section describes a similar study where the hand-labelled position and

game type are used to predict the move type of an utterance. Various dialogue

models that use combinations of predictors are examined and their test set per¬

plexities for the DCIEM corpus are compared. The full list of predictors is given

in table 8.10.

Table 8.11 shows the perplexity of the test set given the dialogue models which
2Recall the baseline corresponds to the percentage of the most frequent type.
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GAME TYPE instruct instruct instruct instruct

POSITION start middle middle end

MOVES move.
i-3

move. . move
i-j i-l

move;

SPEAKER giver follower giver giver

time

Figure 8.3: Model VII giving 4.6 test set perplexity

use the specified predictors. This table shows that models using game information

(i.e. IV to VIII) yield better results than models that just use previous move

types and/or speaker information (models I-III). In particular model VII and
VIII reduce the perplexity of the source the most. These models use the speaker

identity of the current speaker and the speaker of the previous move and the

position of the previous utterance in the game. Model VII uses the previous

move type, while model VIII uses the game type of the previous utterance. These
models are illustrated in figures 8.3 and 8.4.

The lower perplexities of the new models are reflected in the move recognition

results. Table 8.12 gives these results using different levels of information for
transcribed data, i.e. the original CART intonation model described in chapter 5

and the output of the recogniser and LMs described in chapter 3. One can see from
this table that in all conditions the new models are better at move recognition

with model VII yielding the best overall move recognition of 69.1%.

To compare methods of dialogue modelling, model IV was trained using both

N-gram and maximum entropy estimation methods in the transcription scenario 3.
3Model IV is discussed here as it was the only similar dialogue model used in the ME
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GAME TYPE instruct instruct instruct instruct

POSITION start middle middle end

MOVES move. „ move. . move. , move;1-3 i-J i-l

SPEAKER giver follower giver giver

time

Figure 8.4: Model VIII giving 4.6 test set perplexity

Model III Model VII Model VIII
DM 52 55.7 55

DM, I 54.4 57.6 58.2

DM, I,REC 64 69.1 68.9

Table 8.12: Percentage of original moves correct using dialogue model (DM),
intonation (I) and recogniser output (REC) in the transcription scenario
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GAME TYPE instruct instruct instruct instruct

POSITION start middle mic d

MOVES move.
i-3

move. . move.
i-j ii-1

move;

SPEAKER giver follower giver giver

time

Figure 8.5: Model IV used in ME and 4-gram experiments

The model uses the other person's previous move and the position and game type

of the previous utterance as illustrated in figure 8.5. Both methods of dialogue

modelling produced similar results of 55% for N-grams and 54% for ME.

Studies have shown that intonation can be indicative of a change in topic. Naka-

jima & Allen (1993) show that average FO at the end and start of an utterance

varies depending on whether the utterance is continuing or introducing a new

topic (see section 2.10 for more details). This suggests that moves of the same

type may differ in intonation depending on their position in the game. If an utter¬

ance is game initial it may be introducing a new goal or topic and have a slightly

higher utterance initial FO contour.

Classification trees are used in the following intonation modelling experiments
as this method yields similar move recognition results to HMMs and ANNs but

slightly better word recognition results (see section 7.4). One CART tree was

experiments conducted by Massimo Poesio.

8.6 Intonation Models
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Position Position_game Move_pos_game Move_position
Baseline 43 23 12 35

Bigram 59 47 39 37

Bigram &; IM 61 51 42 42

Table 8.13: Utterance type detection using bigrams and intonation models in the
transcription scenario

trained for each utterance type set (e.g. position) and it was used to classify each
utterance into the different categories (e.g. start, middle, end,)4.

Table 8.13 gives the results for recognising the different categories of the various

utterance type sets using a bigram and the respective intonation models. These

were initial experiments conducted using a dialogue model that uses the hand-
transcribed label of the previous utterance, i.e. the transcription scenario. As

discussed above, recognition results are poor using dialogue models to recognise

position and position_game in the overhearer scenario. The point of presenting

these results is to see whether the intonation models can improve the recognition

of the various types of utterances. This is in fact the case, as one can see an

improvement by using the likelihoods of the intonation models over using the

dialogue model alone. One can infer from this that the CART trees must be able

to discriminate utterances using their intonation features to a certain extent.

The intonation model for position does yield a slight improvement. However,
there is a greater increase for combined move and position prediction. This sug¬

gests that the intonation of a contour is influenced not only by its move type,

but also by its game position. For example, an acknowledge may have a more

declarative type intonation contour, i.e. falling more rapidly, if it occurs at the
end of a game than in the middle, emphasising finality. Results for recognising

move_position in the overhearer scenario are given in section 8.8.4.

4The classification trees were trained on equal numbers of each utterance type.
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LM type set Number of models Perplexity
general 1 27.6

original moves 12 27.2

position 3 30.1

position-game 18 32.4

move_position 31 32.4

Table 8.14: Perplexity results for the test set using the various sets of language
models trained on set B

8.7 Language Models

This section looks at whether utterances have distinctive lexical characteristics

depending on where they are in a game and the type of game they are in. This
is determined by calculating the perplexity of the test set using the appropriate

utterance type-specific language model. This perplexity is compared to that cal¬
culated using the general language model and the original move-specific language
models. If the perplexity is lower, then the sub-language models capture char¬
acteristics of the utterances that are missed by the general model. For further
details on language modelling and perplexity see section 4.2.

Table 8.14 gives the test set perplexity using the different sets of language
models. The last two sets, position-game and move_position, have the highest

perplexity. However, one has to take into account the amount of data used to train

the specific language models. The higher the number of move types, the less data

there is for each language model. Language modelling using the move_position
set seems to have potential as the perplexity is only 5.2 higher that the original
move set but is used to recognise 19 more utterance types. The position_game

language model set, on the other hand, is less effective as it contains only 4 more

types than the original set. Modelling word sequences based solely on game type

and position is not optimal; for example, instruct and ready moves that start an
instruct game will have a quite different syntax.

One can see that using the position language models does not reduce the
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perplexity of the test set, despite having a large amount of data for training each
model. This illustrates, as discussed earlier, that classifying utterances solely on

the basis of game position does not group utterances that are syntactically similar.

8.7.1 Smoothing Move_position Language Models

In order to compensate for words that may occur in the test set but not in the

training set for each move type, the sub-language models are smoothed with the

general language model. This allows the models to cover a larger vocabulary while
still capturing the characteristics of utterances of a certain type.

The method for language model smoothing presented here is similar to that
described in King (1998) for the original twelve move-specific language models.
He calculates the perplexity of the test set using a general language model, move-

specific language models and smoothed move type-specific models. For each ut¬

terance the model that has the lowest perplexity is chosen; this process is called
"best choice move-specific" by King. Section 4.2 gives a more detailed account of
the method of training and smoothing language models.

Table 8.15 gives the perplexity for the test set using the various sets of ut¬
terance type-specific language models. Position type utterances have the highest
"best-choice" figure, indicating that they would not be of much use for word recog¬

nition. The best result is obtained using the move_position utterance type sets

which is just below the perplexity result calculated using the original move set

(23.6).

Recall from section 4.2 that the smoothed models are achieved by combining

the general language model with the move specific models using a set of weights. If
the model is weighted more towards the move-specific model then one can assume

that the sub-language model captures characteristic syntactic information. The

smoothing weights for move_position are given in table 8.16, where 1 is total
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Original moves Position Game_position Move_position
general 27.6 27.6 27.6 27.6
move specific 27.2 30.2 32.4 32.4

smoothed 27.2 28.3 24.9 27.7

best choice 23.8 27.6 24.6 23.6

Table 8.15: LM perplexity results for whole test set using different types of lan¬
guage models for the different utterance type sets

weighting of the utterance type-specific language model and 0 is total weighting of
the general language model. This table indicates whether dividing the move type

into start, middle and end provides better language models. One can see that the
shorter original moves are weighted more towards the move type-specific language

model, such as acknowledge, reply-n and reply-y. Reply-n and ready make better

language models if divided into the different positions. The ready-middle/end
moves contain mostly "okay", whereas readystart ones generally have a wider

vocabulary. This is reflected in the weights where ready-middle is more heavily

weighted towards the move-specific language model.

For longer move types such as explain, clarify, align, check and query-w, the
word sequences are more varied and the more data available the better the lan¬

guage model. Hence, the general language model is more heavily weighted. Di¬

viding these moves into the different positions results in more weighting towards
the general model as there is less data to train the sub-language models.

8.8 Modifying the Move_position Utterance Type
Set

Given the above discussion, it looks worth while trying to merge some of the

move_position categories before performing move and word recognition. Cluster¬

ing of the move_position categories was based on the language model weights given
in table 8.16, data sparsity and knowledge of intonation similarity.
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Original move Weight Position Weight

acknowledge 0.8
end 0.8

middle 0.8

0.3
end 0.4

align middle 0.2
start 0.3

0.2
end 0.0

check middle 0.05

start 0.25

clarify 0.3
end 0.2

middle 0.3

0.5
end 0.2

explain middle 0.3

start 0.4

0.6
end 0.2

instruct middle 0.5
start 0.4

0.5
end 0.0

query-w middle 0.4
start 0.5

query-yn 0.5
end 0.1

middle 0.5
start 0.5

ready 0.6
end 0.6

middle 1.0

start 0.6

reply-n 0.8
end 1.0

middle 0.8

reply-w 0.4
end 0.1

middle 0.4

reply-y 0.7
end 0.5

middle 0.7

Table 8.16: Smoothing weights towards the move_position and move specific lan¬
guage models
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Original moves Move_position Set 2

number of moves 12 31 19
set B general 27.6 27.6 27.6

move specific 27.2 32.4 29.7

smoothed 27.2 27.7 27.9
best choice 23.8 23.6 23.9

Table 8.17: Perplexity results for the test set trained on set B, smoothed with set
B general

The most promising utterance type set, which will be called move_position set

2, contains 19 categories. The utterance type recognition baseline is lower than
the original move_position set; the most frequent move is acknowledge.end, which

makes up 13% of the data.

The end and middle moves are combined for the following move types: instruct,

query-w, query-yn, reply-w and ready. This is motivated by the lack of data of

game final moves of these types. This results in poor language models which are

weighted towards the general language model during smoothing (these weights in
the final column are in bold in figure 8.16). Align, check, clarify, and explain are

used as categories regardless of position as they are longer and have a more varied

syntax.

This method of clustering results in a decrease in perplexity using the utterance

type-specific language models over the unclustered set (compare 29.7 with 32.4 in
table 8.17). This is still slightly higher than the original set (27.2), but one has
to remember that there are a larger number of moves with less data to train on

(19 compared to 12).

8.8.1 Language Models for Move.position Set 2

In order to see if this new set would be useful for word recognition, the "best-
choice" figure was calculated (given in table 8.17) and compared to the original
move and move.position language models. One can see that there is little differ-
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Original move Weight Position Weight

acknowledge 0.8
end 0.8

middle 0.8

align 0.3 all 0.3

check 0.2 all 0.2

clarify 0.3 all 0.3

explain 0.3 all 0.3

instruct 0.6
middle 0.5

start 0.4

query-w 0.5
middle 0.4

start 0.5

query-yn 0.5
middle 0.5

start 0.5

ready 0.6
middle 1.0

start 0.6

reply-n 0.8
end 1.0

middle 0.8

reply-w 0.4 all 0.4

reply-y 0.7
end 0.5

middle 0.7

Table 8.18: Smoothing weights towards set 2 and move specific language models

ence in perplexity between these sets. One can infer from this that the moves

that were merged have a reasonably similar lexical distribution as no information
is lost.

The smoothing weights for the new move .position set are given in table 8.18.

Comparing the figures in bold with table 8.16 shows that joining the middle and
end moves for instruct, query-w, query-yn, reply-w and ready creates a better

language model than having separate models. However, compared to the original,
undivided moves, only ready and query-yn perform as well as or better than the

original language models. Again it may be the case that the original moves do
better because they have more data to train on.
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Model Predictors Perplexity
A unigram 14

B mi-I 8.3

C , fYli—2 9.7

D Sj, Sj_i 6.9
E , S{, Si—\ 4.5

Table 8.19: Perplexity results for the different dialogue model

Original moves % Set 2 %
Baseline 24 13

IM 45 30.4

4-gram 37 25

4-gram & Intonation 47 37

Table 8.20: Recognition results for move and set 2 using Model E and intonation
models in the overhearer scenario

8.8.2 Dialogue Models for Move_position Set 2

A number of dialogue models were developed to predict the move_position set

2 utterance types. The perplexity of the test set using these models is given in

table 8.19. One can see a reduction from the unigram perplexity by using a bigram

(compare model A with B). No more information is gained by using trigrams (C).

As shown in previous dialogue modelling experiments, speaker identities are

good predictors of move and position types. As with the original 12 move types

the best perplexity is achieved by using the other person's previous set 2 move

type (mp2j_j) and speaker identities (model E). This results in a perplexity of 4.5
which is lower than the test set perplexity (5.1) using a similar dialogue model for
the original move set, despite the new set having a higher number of moves (19
compared to 12).

8.8.3 Intonation Models for Move_position Set 2

Intonation models were trained to model the characteristics of the new move_position

set. Experiments were conducted that performed move recognition in the over-
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hearer scenario using intonation models in conjunction with dialogue model E
defined in table 8.19. Using the intonation model which takes into account prior

likelihoods, achieves a recognition rate of 30%, which is significantly higher than
the baseline. Adding the likelihoods of the intonation model to the 4-gram dia¬

logue model E results in an increase of 12% move recognition accuracy.

The matrix given in table 8.21 gives the breakdown of the utterance type

recognition performed by the intonation model trained on all the data. One can

see a similar division between the short and long move types observed with the

recognition performed on the original moves, discussed in section 6.7. For ex¬

ample, the short moves (e.g. acknowledge, replies, ready) are often classified as

acknowledge-end or readystart. Short utterances with a rising boundary are typi¬

cally classified as readystart and ones with a falling boundary as acknowledge-end.
This pattern is also observed using the tree trained on equal numbers of moves,
which has a recognition rate of 16%. Therefore, it is not necessarily the prior

probabilities that cause this misclassification but mostly the use of the length
feature in the tree.

Regarding the longer utterances, these are again split into two categories:

declaratives (clarify, explain, instruct-inter, instructstart, reply-w) and interrog-
atives (check, query-ynJnter, query-ynstart, query-W-inter, query-wstart). Table
8.22 gives a breakdown of the tree's classification in terms of these main utterance

types.

There is no improvement in the classification of declaratives using the new

move set. However, the new tree does perform better at recognising interrogative

type sentences (compare 32% with 26%). As with the original intonation model,

many of the query moves are misrecognised as instruct type moves, which are

the most frequent of the longer move types. This reflects the effect of prior

probabilities on the classification tree.
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ActualMoves acknowledge_end
80

14

1

4

0

8

3

0

0

0

0

0

0

0

18

0

0

0

9

0

58.4%

acknowledgerinter
61

33

2

1

0

4

3

0

0

0

0

0

0

0

14

0

0

0

4

0

27.1%

align

9

2

17

2

0

5

9

0

0

0

0

6

0

0

6

0

0

0

0

0

30.4%

check

9

1

5

14

0

8

12

0

0

0

0

11

0

0

5

0

0

0

2

0

20.9%

clarify

3

0

0

1

0

6

11

0

0

0

0

0

0

0

3

0

0

0

0

0

0.0%

explain

9

0

0

3

0

44

34

0

0

0

0

1

0

0

14

0

0

0

0

0

41.9%

instruct_inter
2

0

3

4

0

31

79

0

0

0

0

10

0

0

6

0

0

0

2

0

57.7%

instructostart
1

0

1

2

0

9

38

0

0

0

0

7

0

0

5

0

0

0

0

0

0.0%

query-wrinter
0

0

1

0

0

1

1

0

0

0

0

0

0

0

2

0

0

0

0

0

0.0%

query-w_start
4

0

0

3

0

4

3

0

0

0

0

1

0

0

2

0

0

0

2

0

0.0%

query-ynrinter
4

0

0

5

0

0

9

0

0

0

0

1

0

0

1

0

0

0

0

0

0.0%

query-yn_start
4

0

2

11

0

10

26

0

0

0

0

11

0

0

2

0

0

0

0

0

16.7%

ready_end

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.0%

readyrinter
4

1

0

0

0

1

1

0

0

0

0

0

0

0

17

0

0

0

0

0

0.0%

ready_start
16

1

0

1

0

1

0

0

0

0

0

0

0

0

33

0

0

0

2

0

61.1%

reply-n_end
3

0

0

0

0

1

0

0

0

0

0

0

0

0

4

0

0

0

0

0

0.0%

reply-ndnter
8

3

1

2

0

0

1

0

0

0

0

0

0

0

3

0

0

0

3

0

0.0%

reply-w

5

0

0

1

0

5

10

0

0

0

0

2

0

0

2

0

0

0

0

0

0.0%

reply-y_end
21

6

1

2

0

6

0

0

0

0

0

0

0

0

3

0

0

0

11

0

22.0%

reply-y_inter
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4

2

2

0

6

3

0

0

0

0

1

0

0
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0

0

0
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0
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IM using position % IM using original moves %
Decl Interrog Other Decl Interrog Other

Declaratives 75 9 16 75 12 13

Interrogatives 42 32 26 50 26 24

Table 8.22: Percentage of declaratives and interrogative type moves correctly
classified by CART tree trained on all data

8.8.4 Move_position Set 2 Recognition Results

Table 8.23 gives the utterance type recognition results for the new move set 2 and
the original move types using the various information sources in the overhearer
scenario. In general, the new set has a lower move recognition rate. These results,

however, are not directly comparable as recognising the new set of utterance

types is a harder task than the original which is reflected in the lower baseline
result (13%). However, all of the move_position recognition figures are higher
with respect to this baseline than the original move recognition results are to

the baseline of 24%. For example, using the dialogue model and the recogniser

output (D) yields a move recognition accuracy of 57%, which is 2.4 times the

original baseline, whereas the result of 47% for move_position is 3.6 times the

baseline for move_position.

8.8.5 Word Recognition using Move_position set 2

After performing move_position recognition, the move_position language models
are used for word recognition. It is difficult to compare these word error results
to those reported in Taylor et al. (1998b) as the amount of data available for

training the move.position language models is much less.

One can, however, compare the baseline result using the general model trained
on set B with the results using the set B sub-language models. For the utterance

specific language models to be of any use the 100% recognition figure must be
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Information Source Type Recognition
Results%

Original New

A Baseline 24 13

B DM only 35 25

C Recogniser output and LM 40 26

D Recogniser output and LM and DM 57 47

E IM 42 30

F IM and DM 47 37

G IM, recogniser output and LM and DM 64 49

Table 8.23: Move detection results using various information sources in the over-
hearer scenario

lower than the baseline. Otherwise, there is no use in trying to predict the move

type as it would be more beneficial to use the general model for all utterances.
The baseline word error rate using words in data set B is 26.1 where the 100%

move_position result is 27.7 (recall lower WER is better). This indicates that the
move_position language models as a whole set are not better than the general

language model. The word error rate of the system using the recognised sequence

move_position categories (of which it gets 49% correct) is 27.6. By system design,
this word error rate should be in between the 100% move recognition results (27.1)
and the baseline result (26.1) with the 100% move recognition result being lower
than the baseline. This is clearly not the case, indicating that this method of
utterance type classification is not appropriate for these word recognition experi¬
ments.
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Information Move Collapsed
Source Recognition set2

Results%

A Baseline 24 24

B DM only 37 37

C Recogniser output and LM 40 45

D Recogniser output and LM and DM 57 64

E IM 42 43

F IM and DM 47 50

G IM, recogniser output and LM and DM 64 66

Table 8.24: Move detection accuracy using various information sources in the
overhearer scenario

8.8.6 Original Move Recognition Results

As discussed above, the whole system classifies 49% of utterances correctly into

the move_position categories. If one collapses these move_position labels into the

corresponding move type, this results in an increase in the recognition accuracy

of original move categories. Results are given in table 8.24 for the original move
classification using this method.

The system as a whole increases the original result by 2% to 66%. Although
this increase is small, the new system is found to be significantly more accurate by
a Sign test (p < 0.01, d./. = 1060). This Sign test examines the utterances which
are classified differently by the two systems. A positive sign is given when the new

system is correct and a negative sign when the original system is correct. The null
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hypothesis tested is that the old system beats the new system more times than the

new system beats the old system. Sign tests are normally performed on smaller

sample sizes as large N may make any small difference significant. However, this
is not necessarily of great concern in the field of speech recognition.

The distribution of moves correctly recognised by the whole system is given in
the matrix in table 8.25. This table is compared to the matrix in table 7.2 (page

125) produced by the original system. There are several noticeable differences.

Firstly, there are fewer acknowledges misrecognised as ready moves as these rarely

occur in the same game position. Fewer explain moves are recognised as replies.
This is due to the fact that explains mostly occur game initially whereas replies
are mostly game final.

There is a 28% increase in query-w recognition. Less of these move types are

confused with acknowledge moves that occur in different game positions. More

query-yn moves are confused with explains as the majority of both these move

types are game initial.

Surprisingly, there is an increase in ready moves that are misclassified as ac¬

knowledges despite the fact that they rarely occur in the same game position.

This misclassification must be due to the fact that the language models have a

high weighting and both move types have similar wording, i.e. mostly "okay".

Recognising the replies using position does not make much of a difference.

Table 8.26 gives the breakdown of these recognition results in terms of ini¬

tiating and non-initiating moves. One can see that using the move_position set

improves the recognition of initiating moves (58% compared to 54%). There is a

3% decrease in the accuracy of non-initiating moves. The position of initiating

moves, by their nature, is more predictable than non-initiating ones. This aids
the recognition of initiating move_position utterance types and therefore initiating

move types.
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Actual Moves

acknowledge 232 i 0 0 1 0 0 1 13 0 1 10 89.6

align 9 6 2 i 1 8 i 6 21 0 1 0 10.7

check 7 1 30 0 4 2 i 16 1 1 1 3 44.8

clarify 0 1 0 5 0 14 i 0 0 0 3 0 20.8

explain 8 2 6 1 53 15 2 7 1 3 5 2 50.5

instruct 1 1 3 1 9 171 5 3 2 0 1 3 85.5

query-w 3 0 1 0 3 1 10 2 0 1 1 2 41.7

query-yn 3 2 11 0 9 5 2 50 1 1 1 1 58.1

ready 32 0 0 0 1 0 0 1 41 1 0 2 52.6

reply-n 1 0 0 0 2 0 0 0 0 25 1 0 86.2

reply-w 4 0 1 0 6 6 1 0 0 0 7 0 28.0

reply-y 24 0 1 0 2 3 0 4 0 1 1 72 66.7

Table 8.25: Confusion matrix for move type classification: 66% move recognition
accuracy

8.8.7 Word Error Rate

The word recognition result using the move predictions derived from the move_position
labels is the same (23.7%) despite the 2% increase in move recognition accuracy;

see table 8.27. The word error rates using the other combinations of information
sources also do not result in an increase in word error rate. One should remem¬

ber, however, that the word error rate is not always a good indication of the

performance of a system. This is discussed further in the final chapter.
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%of
declaratives
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correctly
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DM

IM
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moves
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set 2
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move_position
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Figure 8.6: Percentage of interrogative and declarative type utterances correctly
recognised
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Experiment Move recognition % WER %

Cheating
Overall 100 23.5

Initiating moves 100 24.6

Other moves 100 19.0

Original Move classification
Overall 64 23.7

Initiating moves 54 24.7

Other moves 80 19.3

Move classification using position
Overall 66 23.7

Initiating moves 58 24.76

Other moves 73 19.8

Table 8.26: System performance compared with baseline

8.8.8 Declarative and Interrogative Recognition

The moves are collapsed further into interrogative and declarative utterance types

using the same method described in section 8.8.3. Figure 8.6 illustrates the recog¬

nition results of these categories using the various statistical models.

One can see from figure 8.6 that the intonation models are better than the

other individual models at recognising the declarative type sentences (75%). The
intonation models are unable to recognise interrogatives to the same degree of

accuracy (32%). One can infer from these figures that the intonation of a declar¬
ative type utterance is indicative of its discourse function. The intonation of

interrogatives, on the other hand, is harder to model.

The recognition output in conjunction with the language models perform bet¬
ter than the other individual models at recognising the interrogative type utter¬

ances (63%). This is understandable as there is a finite set of words that are used



8.8. MODIFYING THE MOVE-POSITION UTTERANCE TYPE SET 172

Information

Source

Move rec

using original
method %

WER

%

Move rec

using
position%

WER

%

A Baseline 24 24.8 24 24.8

B DM only 37 26.4 37 26.6

C Recogniser output and LM
D Recogniser output and LM

and DM

40

57

24.1

24.1

45

64

25

24.6

E IM

F IM and DM

42

47

25.7

24.7

43

50

27.2

26

G IM, recogniser output
and LM

64 23.7 66 23.7

Table 8.27: Move detection and WER results using various information sources
in the overhearer scenario

in questions, such as "which, how, etc.". Recognising declaratives, on the other

hand, is more difficult as there are no keywords that indicate a declarative type

utterance.

The dialogue model alone has good declarative recognition (70%) as it assigns
the most common move for the follower and the giver each time. These are

instruct-inter and acknowledgeJnter respectively. As the model rarely assigns a

question type move, the interrogative recognition is poor (14%).

The intonation models are good at recognising the third group of utterance

types (86%). This is mostly due to the fact that these utterances are of similar
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length. As discussed above length is an important feature in the intonation model.

Similarly, the recognition output and language models are very good at recognising
this utterance type (92%). This is due to the similar lexical content of these

utterances, i.e. mostly "okay" and either positive or negative replies.

8.9 Summary

This chapter has looked at the relationship between move type characteristics and
the game type and in particular the game position of an utterance. Recognition
of move type and game position was performed simultaneously and with a degree
of accuracy well above the baseline. These predictions were not directly useful

for word recognition. Collapsing the move_position labels to the original 12 move

types does result in a significant increase in the recognition accuracy of the system

described in the previous chapters. In addition, there is an improvement in the

recognition of declarative and interrogative utterance types.



Chapter 9

Automatically Predicting the
Syllabic Peak Position

Chapter 5 examined various ways of automatically extracting intonation features
based on theoretical assumptions and more holistic properties. A method known

as the tilt theory described in Taylor (2000) was chosen for automatically identify¬

ing intonation events and characterising them in terms of 5 continuous variables,
known as the tilt parameters. Recall that these parameters are event shape or

tilt, start F0, F0 amplitude, duration and peak position.

The three types of statistical intonation model, described in chapter 6, were

trained either on the tilt parameters of the whole sequence of events or the last

3 events along with other more general features, e.g. utterance mean F0, s.d.
F0. There is, however, one tilt parameter that was omitted from the feature

sets, namely peak position. This chapter discusses the reasons behind this deci¬

sion, presents an alternative measure and describes a method of automatically

predicting this value.

9.1 Peak Position

Taylor (2000) takes peak position as the distance in time from the start of the
utterance to the event peak, as illustrated in figure 5.5 on page 77. This figure
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syllabic
position
parameter

start

FO

start

of event

duration end

of event

Consonant Vowel
stressed

Consonant i Vowel
unstressed

Figure 9.1: Contour schema showing syllabic position parameter measurement

is necessary for synthesis but is not an intonationally meaningful feature. Taylor

proposes an alternate measure, the syllabic position parameter, which is the dis¬
tance from the peak to the start of the vowel in the stressed syllable, illustrated

in figure 9.1. This would provide a parameter that is similar to the other tilt

parameters in that it is locally oriented. More importantly, it would capture a

distinctive feature of accents associated with accent alignment.

Sequences of accents can be linked to the syllables at a phonological level.
This is known as tune-text association. Figure 9.2 illustrates the segmental and

suprasegmental strings and the connections between them. This association of
the tiers is non-specific regarding variation of the phonetic alignment of the accent

with relation to the stressed syllable. The peak of the accent can be late or early

in the syllable and in some cases, outside the syllable itself.

There are many factors that may affect the position of the peak of an accent.

The study reported in this chapter looks at modelling this peak position using a
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Figure 9.2: Intonation contour with labelled accents and boundary corresponding
to the circled pitch excursions. Each accent is linked to a stressed syllable. Source:
Taylor (2000).

classification and regression tree (CART). Examining the tree gives insight into
which of the other prosodic features influence this position parameter.

Practical applications for a "syllabic peak position predictor" would be to

facilitate automatic intonation labelling using features derivable from the signal
alone. Peak position could also be used to identify the stressed syllable. Separate

triphone HMM models trained on stressed segments would then be used for this

syllable during word recognition. This would hopefully improve word recognition

error rate. This final research area is, however, outside the field of work presented

in this thesis.

Firstly, a review of a number of studies that look at peak position in terms of
fixed tonal targets is given. The methodology for training a CART tree to predict

syllabic peak position is discussed. Results are presented which show that the
trees can accurately predict this peak position value. A discussion follows which

examines how the trees predict this value and whether this can contribute to the

previous studies examined in the literature review.
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9.2 Literature Review

Ladd (1996) highlights the fact that the alignment of the peak in relation to the

segmental boundaries is important in distinguishing types of accents. Taking an

example using phonologically distinctive ToBI accents, a falling accent can either
be labelled as a H* or a H*+L. If it is a H* the peak and therefore the fall occurs

later on in the syllable than the H*+L. A measurement of the peak position with

respect to the stressed syllable would therefore be a fair representation of peak

position.

Bruce's (1977) study of Swedish word accent also exemplifies the discrimina¬

tory effect of alignment. He discovered that two distinctive lexical accents are

of the same phonological type but they differ in the alignment of the peak with

respect to the stressed vowel.

Arvaniti et al. (1998) and Ladd et al. (1999) developed the notion of segmental

anchoring which is the constant alignment of the peak and trough of an accent with
different parts of the stressed syllable. Segmental anchors can be, for example,
the start of the stressed word, syllable or nucleus. Arvaniti et al. (1998) show
that the peak and the initial low of prenuclear pitch accents in Modern Greek
are constantly aligned with the end of the pretonic syllable and the beginning of
the post-tonic vowel respectively. They show that the duration of the rise varies

depending on the segmental composition of the syllable. So, on short syllables
like [dit] in [ro'ditiko], the duration of the rise would be shorter than if the same

type of accent is placed on [remv] of [pa'remvasi]. They find that not only is the
duration of the accent variable, so is the gradient. Specifically, they show that the
FO values of the maxima and minima remain fixed but the gradient and duration
of the rise change to compensate for varying segmental contexts. These findings

provide support for the "tonal target" theory which is widely adopted in the
literature (Bruce, 1977; Pierrehumbert, 1980; Ladd, 1996). The opposing theories
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are known as the "constant slope" theory and "constant duration" theory, where

the accent is described by either a characteristic gradient or duration (Fujisaki,

1983; t'Hart et ai, 1990).

Ladd et al. (1999) investigate the effect of speech rate on the realisation of

rising pitch accents. In a preliminary experiment, they measure the duration
and F0 excursion of an accent and hypothesise that increasing speech rate will
shorten the duration of the pitch accent but not affect the pitch amplitude. They

reject the constant duration theory as there is a strong effect of rate on accent

duration. They also reject the constant slope theory as speech rate does not affect
the amplitude of the pitch rise.

In a second set of experiments, they measure the distance between two anchor

points (i.e. the duration of the test syllable) and the distance between the L
and H of the accent. If the duration of an accent is controlled by the anchor

points, there should be a strong correlation between the segmental duration of
the stressed syllable and the accent duration. This is exactly their findings. They
also found no effect of speech rate on pitch excursion height. This goes against

the constant slope theory because if the duration is variable and the gradient is
fixed then there would be a noticeable affect on pitch amplitude.

Taylor (2000) finds a strong correlation between the tilt figures for F0 ampli¬
tude and accent duration which initially seems to be in contrast with the findings
of Ladd et al. (1999). However, as this correlation figure takes both the rise and
fall part of the contour into account, it must be interpreted with care. Taylor does
not find a correlation between F0 amplitude and event duration for the separate

rise or fall parts of the contour. These findings support the argument against the
fixed duration and fixed slope theories.



9.3. PREDICTING PEAK POSITION 179

9.3 Predicting Peak Position

Classification and regression trees (Breiman et al., 1994) were chosen for modelling

peak position. Other statistical models such as artificial neural nets (LeCun et al.,

1989) were not considered as they are much harder to interpret than decision
trees. CART-style decision trees can be used to perform a classification task such

as deciding the move type of an utterance, described in previous chapters. A
detailed account of the methodology behind classification trees is given in section

6.4.

Decision trees can also also be trained to predict a value given a set of features.
This type of tree is called a regression tree and is used in the following experiments

to predict peak position. For each accent, the regression tree is given a feature
vector including variables such as tilt, accent duration, etc.. The tree decides
which features are best for predicting the peak position.

9.3.1 The Data

In order to train the statistical model, data are needed that are labelled for phone,

word and intonation events aligned to the corresponding stressed syllable. This
is problematic for the current study, as the DCIEM data are not labelled for

phones and the words are not time aligned. Initial experiments were attempted

using forced alignment for phone and word labels. This was run using the HTK
toolkit (Young et al., 1996) with the transcribed text and standard phonemic tran¬

scriptions. However, this only gives an approximate transcription and alignment,

resulting in an inaccurate measurement of peak position.

The data that do comply with these requirements are two sets of read North
American English. The first is the Boston radio corpus (BU) containing 2047
utterances read by a female. The second consists of prose on the topic of museum

pieces read by a male (known as KED after the speaker's initials). The data
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Feature Name Description
next_peak distance in seconds to the following accent peak
prev_peak distance in seconds to the previous accent peak
meanmrg mean RMS energy

sd_nrg standard deviation RMS energy

accJength distance in seconds from the peak to the trough
tilt tilt value of accent

start_F0 start F0 of the accent

FCLamplitude F0 amplitude of accent
high position in time of accent peak
low position in time of accent trough

Table 9.1: List of features used to train the regression tree to predict peak position

contain 786 utterances. The corpora are divided into training and testing sets

with three quarters for training and the rest for testing.

9.3.2 Training the Tree

For each intonation event, a set of 10 features is used to train the decision tree

to estimate the peak position. These features are given in table 9.1 and are all

automatically derivable from the acoustic signal. The features chosen are locally

oriented, with the exception of the last two, and potentially may affect the peak

position. The set includes the distance in time from the peak of the current accent

to the peaks of the next and previous accents. The mean and standard deviation

of energy during the accent are also included. The other four tilt parameters are

included in the feature set to see if they correlate at all with peak position. All

features are normalised to fall between -1 and 1.

Three different types of trees were trained depending on the type of the intona¬
tion event: one tree for accents, one for boundaries and one for both types. This

was done in order to see if there are any characteristics of boundary tones that

could be captured by a separate regression tree. Alternatively, the tree trained
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on both accents and boundary tones may be able to distinguish the differences
between these types of event.

Events where accents and boundaries occur close together were included in the

boundary category as they are linked to the final syllable. Ideally, a different tree
should be trained for these events as single boundary tones are typically linked
to an unstressed syllable whereas accent+boundary tones are linked to the last
stressed syllable in an utterance. Unfortunately the data set would be too small
as "ab" events only constitute 5% of the total number of events.

Different experiments were run using alternative segmental anchors other than
the start of the stressed vowel. These were start of the word, start of the syllable

and end of the vowel. However, the trees were not able to predict these distances

with the same degree of accuracy.

Alternative experiments were also run to try and find the distance from the
low to a segmental anchor. These results were poor due to the inaccuracy of the

automatically labelled data. When calculating the tilt parameters, the program

described in Taylor (2000) shifts the accent's position to a certain degree whilst

deriving the best fit for the tilt parameter. This results in inaccuracies for the low

point of accents.

9.4 Results

The output value of the tree is compared against the real value for each event in

the test set. The correlation of the predicted figures and the hand-labelled figures
is given in the table below. The root mean square error (RMSE) in seconds is
also calculated for these two sets of figures. A correlation above 0.75 and a RMSE
below 0.3 show that the tree can predict peak position with a high degree of

accuracy.

Tables 9.2 and 9.3 give the correlation results of the various regression trees.
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BU training data
Accents Boundaries All

Testing data
accents 0.84 0.15 0.85

boundaries 0.7 0.64 0.72

all 0.76 0.12 0.77

Table 9.2: Correlation between real peak position and output of the regression
tree using the BU corpus for training and testing

The columns give results for the tree trained on the different types of events and

the rows are the groups of events that are tested. One can see from the tables

that the highest correlation is achieved by using a tree trained on all the data

(results are in bold). This indicates that the decision tree takes into account

the difference between accent and boundary tones. The best result for accents

in the BU corpus is correlation=0.85, RMSE=0.14; and for the KED corpus:

correlation=0.73, RMSE=0.2345.

The trees trained specifically for boundaries are worse at estimating the peak

position than the other two types of trees that include accents. For example,

using the BU corpus, a correlation of 0.64 is obtained using the boundary tree

but the tree trained on accents alone obtains 0.7 and the tree trained on all events

gets 0.72 correlation. These poor results show that it is better to train one tree

that can distinguish between the characteristics of accents and boundaries. The

poor results for the boundary trees are likely to be due to lack of training data

(12% of KED events and 31% of BU events are boundaries). If more data are

available, this boundary tree may prove to be a more effective way of modelling

peak position.

Tables 9.4 and 9.5 show the results for speaker independent testing. In other

words, the tree trained on the BU corpus is used to test the KED corpus and visa

versa. One can see a slight reduction in results from table 9.2 to table 9.4 which
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KED training data
Accents Boundaries All

Testing data
accents 0.73 0.5 0.73

boundaries 0.44 0.36 0.5

all 0.66 0.49 0.68

Table 9.3: Correlation between real peak position and output of the regression
tree using the KED corpus for training and testing

KED training data
Accents Boundaries All

BU testing data
accents 0.69 0.34 0.71

boundaries 0.41 0 0.51

all 0.62 0.1 0.67

Table 9.4: Correlation between real peak position and output of the regression
tree using the KED corpus for training and BU corpus for testing

is to be expected. However, one sees similar and in some cases better results for

the KED speaker independent testing. For example, the correlation using the

boundary tree tested on boundaries is 0.36 in table 9.2 but 0.62 in table 9.4. This

can be attributed to the fact that BU is a much larger corpus.

Tables 9.6 gives a summary of the best results for speaker independent and

speaker dependent testing for accents using trees trained on all events. Table 9.7

BU training data
Accents Boundaries All

KED testing data
accents 0.73 0.68 0.71

boundaries 0.55 0.62 0.58

all 0.66 0.69 0.68

Table 9.5: Correlation between real peak position and output of the regression
tree using the BU corpus for training and KED corpus for testing
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Data Speaker dependent testing Speaker independent testing
BU 0.85 0.71

KED 0.73 0.71

Table 9.6: Correlation results for just accents using accents and boundaries to
train the regression tree

Data Speaker dependent testing Speaker independent testing
BU 0.77 0.64

KED 0.68 0.68

Table 9.7: Correlation results for accents and boundaries using accents and bound¬
aries to train the regression tree

gives the results for all the events also using trees trained on both accents and
boundaries. One can see from these tables that there is a strong correlation (up to

0.85) between the predicted value of peak position and the actual value calculated

using the hand labelled data.

9.5 Tree Interpretation

In order to examine which features are used the most in calculating the peak

position, one can examine decisions made by the regression tree. A measurement

of feature usage is calculated which is proportional to the number of times a

feature is queried. Features that are high up in the tree are queried the most.

The measurements are normalised for the number of examples in the training set

and therefore sum to one for each tree. The feature usage for the BU tree trained
on accents and boundaries is given in table 9.8.

One can see from this table that the tilt of an accent is the most discriminatory
feature in deciding on peak position. This is also the case for the separate accent

and the boundary trees. By examining the tree structure, one can observe that
in general, the higher the tilt value the greater the predicted distance from the
stressed vowel to the accent peak. This is because the peak occurs nearer the end
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Feature Usage %
tilt 0.76

mean_nrg 0.25

accentJength 0.12

prev.peak 0.09

sd_nrg 0.08

next_peak 0.02

Table 9.8: Discriminatory features and type usage in peak position prediction

of the accent if the accent mostly consists of a rise with less fall (see figure 5.4 on

page 75).

If the accent is falling and short and the previous accent is close then the peak

position is short. Interestingly, the distance from the previous accent affects the

peak position a lot more than the distance to the following peak.

If the tilt value is positive, i.e. the contour is mostly rising, then the peak

position depends less on the surrounding accents and more on the mean and
standard deviation of the energy. If there is a greater energy mean, then the

distance to the peak is longer. In other words, if the accent is more prominent

then the peak will occur further away from the start of the stressed vowel.

9.6 Conclusion

It is difficult to compare this study with that of Ladd et al. (1999) because the tilt
model does not give a way of accurately examining the rising and falling parts of
the contour separately. However, the tree can predict the distance from the peak

to the start of the stressed syllable with a high level of accuracy (correlation is

greater than 0.8). The peak position is predictable to a certain extent depending

on the shape of the accent, this does not support the constant slope theory.

The distance from the peak to the start of the stressed vowel is also affected
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by the length of the accent. Separate experiments show a correlation of 0.7 be¬

tween these two measurements. This contradicts the fixed duration theory as

the duration of the accent depends on the segmental string to a certain extent.

Level of prominence and the prosodic context of an accent also play a role in the

positioning of the peak.

If the fixed duration and fixed slope hypothesis are rejected then F0 ampli¬

tude would remain fixed and therefore not correlate with peak position. This is

supported by the fact that the tree does not use F0 amplitude to predict peak

position.

The speaker dependent tree can predict peak position with reasonable accuracy

and could be used for automatic prosodic labelling and stressed syllable prediction.

Training a speaker dependent regression tree for the DCIEM corpus is outside the

scope of this thesis, as the data are not appropriately labelled. This study gives

a potential improvement of the tilt system that can be implemented in the future

using the DCIEM data.



Chapter 10

Conclusion and Future Directions

As described in the introduction of this thesis, there are two main goals of this
work. This chapter discusses whether these goals have been achieved, examines
some of the drawbacks of the system and suggests possible areas of further devel¬

opment.

10.1 The Goals

The first main goal is to be able to perform automatic utterance type detection
with enough accuracy to be useful in a human computer interaction system. The

second goal is to use this utterance type classification to improve speech recogni¬

tion.

10.1.1 Utterance Type Recognition

Utterance type recognition has been performed with reasonable accuracy (64-

66%). This is achieved by training language models, dialogue models and intona¬
tion models. These statistical models capture the three main areas of regularity
observed across utterances of similar type. In other words, they have similar

wording, they follow each other with a degree of regularity and their intonation

patterns are indicative of discourse function. It has also been shown that predict-

187
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ing game position and move type simultaneously results in an increase in accuracy

for the recognition of the original move types.

10.1.2 Word Recognition

Choosing language models specific to utterance type has been shown to be benefi¬
cial in the word recognition process. The method described in this thesis produces
a significant increase in word error rate for the initiating move types but not for

non-initiating moves. Move recognition accuracy is higher for non-initiating than

initiating move types. If one knows the type of the non-initiating utterance then
one is not so concerned about getting the word recognition 100% correct. For

example, if one knows the utterance is a positive reply to a question, one does not

need to differentiate between wordings such as "yeah, yes, yep, etc.".

Although integrating game information into the system resulted in an increase

in move recognition, it did not improve word error rate. One must remember that
word recognition is not always a good measure of a system's performance. Spoken

dialogue systems tend to have a dialogue manager that performs linguistic and
semantic analysis using the recognised words and the utterance type as input.

Therefore, the word error rate is not necessarily indicative of the system's ability
to extract the propositional content of an utterance. Word error rate is not even

a good measure for comparing speech recognition systems. For example, the test

set may contain many words which the recogniser finds easy to recognise correctly.

10.2 Areas of further development

10.2.1 Discourse Annotation

One of the main issues in developing a spoken dialogue system is that one is

very dependent on the discourse analysis theory adopted. Discussions in previous
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chapters have shown the difficulty in developing models that capture the syntactic

and intonation similarities of utterances.

The problem of developing an ideal dialogue annotation scheme has been

touched upon in this thesis. Firstly, moves were clustered to develop types that

were intonationally similar by examining the context of an utterance. In separate

experiments, game information was used in the hope of developing a categorisa¬

tion that grouped utterances both in terms of syntactic and intonation similarity.
Neither of these new utterance types produced useful language models for word

recognition. However, the game utterance type set was used to improve the recog¬

nition of the original move types.

One area of future development would be the automatic clustering of utter¬

ances by calculating some measure of distance between vectors of words or into¬

nation features.

10.2.2 Utterance Type Recognition

The accuracy of automatic move recognition is calculated by comparing the sys¬

tem's output with that of one human labeller. It has been shown (Carletta et al.,

1997) that human labellers do not agree 100% of the time (see section 2.4). It
would therefore be interesting to calculate the kappa statistic (Carletta, 1996)
of the system compared to a number of human labellers. This may present the

system in a better light than just calculating the accuracy compared to that of
one labeller.

One possible drawback of the system design is that the length feature is used
both in the language model and the intonation model. This violates the indepen¬

dence assumption in equation 3.1 on page 42. The length of an utterance would
be reflected in the likelihood output of the language model as this is the product
of the likelihood of all the recognised words. It is thought that this effect would
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be negligible, although further experiments would be needed to prove this.

In order to make the system completely automatic, a move boundary detector

would have to be integrated into the system. This could be done simultaneously

or separately from the move type detection; see for example Warnke et al. (1997).
The hand-labelled utterance boundaries were used in this study as detecting them

automatically was outside of the scope of this thesis.

10.2.3 Intonation Models

Intonation is the most difficult aspect of discourse to model due its variable nature

with relation to discourse function. It has been shown in this thesis that intonation

can be modelled using statistical techniques and that these models can contribute
to the recognition of utterance types as well as provide a useful investigative tool.

One possible area of investigation is the realisation of intonation with respect

to the semantic content of an utterance. For example, a person's intonation

may vary depending on whether he/she is talking about a topic which he/she is
enthusiastic about, such as a favourite football team. This may not be applicable

in the context of Map Tasks performed by the military, but it may be of interest
in corpora such as the switchboard data where there is a wider range of topics

discussed.

10.2.4 Dialogue Models

Dialogue models could be developed by increasing the number and type of pre¬
dictors used. New predictors could include extralinguistic features such as eye

contact or head movement. A study of the Glasgow Map Task (Anderson et al.,

1991), which is coded for these features, shows that the task is completed in fewer
moves and 13% fewer words when eye contact is present.

As with all three of the statistical models used in this system, increasing
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the amount of training data would improve the performance of dialogue models
and allow for higher order N-grams to be developed. Increasing the number of

predictors of the current system would require some backing off to cope with

combinations that occur in the test set but not in the training set. For example,

if a trigram is not in the training set, backing off involves using the likelihood

given just the previous move type. However, the dialogue models that perform
the best are those that contain mixed predictors and it is not obvious which of

these predictors should be backed off. An investigation into the optimal method
of backing off mixed predictor N-grams is one area of future development.

10.2.5 Language Models

The main drawback of the system from the point of view of word recognition, is

the fact that even if one has perfect move classification, the decrease in word error

rate from the baseline is not particularly large (24.8% to 23.5%). The recogni¬

tion result of the system using the recognised moves falls in between these two

figures. Possible ways of increasing this difference are: increase training data; use

more sophisticated language modelling techniques; use more syntactically similar

utterance types.

The amount of data available to train the language models is of particular

importance. The language models trained to recognise the move and position

of an utterance were trained on a smaller amount of data than the original set

reported in Taylor et al. (1998b). Despite this, the move_position models are 2%
more effective at recognising the move types after collapsing the categories. This

indicates that the method described in chapter 8 shows potential to improve move

recognition further if more data labelled with game information are available.

As discussed in chapter 8, there is a large Glaswegian Map Task corpus labelled
for words, moves and games which could be used to train the language models.

However, there are important differences between these two corpora. These in-
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elude differences in dialect, relationship between the participants, approach to

the task, sex, age, etc.. Merging these two sources for language modelling would
involve smoothing techniques and is one area that could be investigated in the

future.

10.2.6 Discourse Markers

In addition to language models, some kind of discourse marker and cue phrase
detector could be of use in this system for move and game boundary detection. As
the maps have a limited number of landmarks, these phrases could be identified.
If an utterance introduces a new landmark then it is likely to be an initiating

move and also a start of a game.

Discourse markers, such as "and, then, well etc." are also indicative of the

discourse function of an utterance. For example, many check moves start with

"so". Although language models pick up on this to a certain extent, they do not

attached importance to the position of these words in the utterance. For example,

the word "well" could either be a landmark or a discourse marker. If it is at the

start of an utterance it is likely to be a discourse marker which occurs most often

in explain moves. In addition, language models do not pick up on discourse marker

phrases. For example, many instruct moves start with "and then".

In general, initiating moves are more likely to start with discourse markers
than non-initiating moves (34% compared to 12%). This is because utterances

at the start of a game or adjacency pair have a less certain role and a higher

cognitive load than non-initiating utterance types. This is useful for move and
word recognition. If a discourse marker is identified at the start of an utterance

then one would increase the acoustic weights of the initiating moves. For word

recognition, if the previous move is a non-initiating move then higher weights
would be placed on the recognition of the discourse marker words.
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10.3 Conclusion

In conclusion, the work presented in this thesis shows that it is possible to capture

aspects of dialogue using statistical models. These models provide a useful tool
for investigating certain phenomena, such as the intonation characteristics of an
utterance. This thesis has described a system that uses observations about an

utterance and its context to predict the most likely sequence of utterance types.

This is useful in spoken language systems, meeting summarisers, data annotation

and automatic speech recognition. It is this last application that has been ex¬

amined in this thesis and it has been shown that integrating an utterance type

detector does increase the number of words the system recognises correctly.

Other aspects of speech and dialogue have also been examined. These include

experiments involving modelling the peak alignment of an accent. The effect of

using high level dialogue information was also examined. This proved to be useful

as it improved the utterance type recognition accuracy of the original system.
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