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ABSTRACT 

The endothelium plays a pivotal role in the maintenance of vascular 

homeostasis and its dysregulation promotes vascular complications. This 

thesis proposes that heme oxygenase-1 (HO-1), an anti-inflammatory enzyme 

with antioxidant properties, is endothelial protective factor that prevents 

endothelial injury induced by cisplatin or activated neutrophils. Specifically, 

this thesis aimed to test (i) that overexpression of HO-1 prevents cisplatin-

induced endothelial injury and suppresses caspase activity; (ii) whether 

neutrophil-endothelial cell activation resulted in the release of soluble Flt-1 

(sFlt-1) and soluble endoglin (sEng), the two anti-angiogenic factors known 

to induce the clinical signs of preeclampsia; (iii) whether HO-1 prevented 

activated neutrophils from stimulating the release of these factors from the 

endothelium; (iv) the relative contribution and the co-dependency of 

neutrophil activation and anti-angiogenic growth factors in preeclampsia 

where systemic endothelial dysfunction is known to occur. This thesis shows 

that cisplatin inhibited human umbilical vein endothelial cells (HUVEC) 

metabolism as measured by MTT assay and resulted in the release of 

placenta growth factor (PlGF). Immunoblotting confirmed that cisplatin 

increased cleaved caspase-3 expression in HUVEC. These effects of cisplatin 

were attenuated in HUVEC infected with adenovirus encoding HO-1 and the 

effects were exacerbated when HO-1 was silenced by siRNA. Furthermore, 

cisplatin stimulated PlGF release was suppressed by the overexpression of 

HO-1. In addition, HO-1 overexpression inhibited angiogenesis as 

determined by vascular endothelial growth factor-induced capillary tube 



formation on Matrigel coated plates. Thus these studies indicate that agents 

which upregulate HO-1 could increase the effectiveness and tolerability to 

cisplatin in cancer treatment. Although neutrophils are early contributors to 

endothelial cell activation, no studies have determined their contribution to 

the release of sFlt-1 and sEng. We therefore investigated the effect of 

activated neutrophils on the release of sFlt-1 and sEng in 

endothelial/neutrophil co-cultures and in the circulation of women with 

normal pregnancy and preeclampsia. LPS-mediated neutrophil activation 

stimulated the release of sEng but not sFlt-1 from endothelial cells in culture. 

In the absence of neutrophils, overexpression of HO-1 in HUVEC down-

regulated the release of sEng. In contrast, HO-1 overexpression failed to 

inhibit the release of sEng in the presence of activated neutrophils. The 

release of sEng by activated neutrophils-endothelial cell cocultures appears 

to be mediated by metalloproteinases (MMP) as the broad-spectrum MMP 

inhibitor (GM6001) attenuated sEng release. Clinical studies demonstrated 

that sEng, pro-inflammatory interleukin-6 (IL-6) and the soluble markers of 

neutrophil activation (!-defensins and calprotectin) were all elevated in 

women with preeclampsia. We identified a direct correlation between 

neutrophil activation and IL-6 release. However, no correlation could be 

established between these factors and sEng release in preeclampsia. Hence, 

these results provide compelling clinical evidence to show that the increase 

in neutrophil activation and IL-6 release during preeclampsia are unlikely to 

significantly contribute to the clinical signs of preeclampsia as they fail to 

correlate directly with the anti-angiogenic factors, which form the final 



common pathway to the clinical signs of preeclampsia and systemic 

endothelial dysfunction. 
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1.1 THE ENDOTHELIUM 
!
The vascular endothelium is a metabolically active organ, which plays a 

pivotal role in tissue homeostasis (Molitoris et al., 2002). The endothelium 

forms the inner surface of all blood vessels and taken together it is an organ 

of about 1kg of weight with an estimated total surface area in human of 

about 350m2 (Pries et al., 2000). This inner layer of the blood vessel is also 

refered to as the intima. The endothelium is a single-layer of cells, followed 

by the media consisting of smooth muscle cells and the outer layer, the 

adventitia (Figure 1.1). The endothelial cells align with the blood stream as 

indicated in Figure 1.1 by the arrow for the direction of the blood flow.  

 

!

!
Figure 1.1. Location and structure of the endothelium. The left panel 
represents a porcine coronary artery with the inner layer (intima or endothelium) 

as a single-layer of cells, followed by the media consisting of smooth muscle cells 
and the outer layer, the adventitia. The right panel illustrates the alignment of the 

endothelial cells with the direction of blood flow, indicated by the arrow.  
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The endothelium acts as an anatomical barrier that prevents the influx of 

circulating blood into the vessel wall and also controls vascular tone, 

regulates local cellular growth and the deposition of extracellular matrix. 

Equally important is its ability to protect the vessel from the potentially 

harmful consequences of toxic substances and cells that circulate in the blood 

by mediating hemostatic, inflammatory, and reparative responses to local 

injury. It also regulates leukocyte trafficking from blood to tissues and 

maintains the anti-thrombotic and anti-coagulant balance in flowing blood 

(Pearson, 2000). 

 

1.1.1 Endothelial cell barrier 
!
The endothelial cell lining the wall of blood vessels form a selective barrier 

for the transport of molecules between blood and tissues. The continuous 

monolayer of endothelial cells are linked to each other by various types of 

adhesive structures or cell-to-cell junctions. Three types of junctions have 

been identified: tight junctions, adherens junctions, and gap junctions 

(Dejana et al., 1995, Schnittler, 1998). Tight junctions seal the endothelial cell 

layer and are formed by closely apposed neighboring plasma membranes, 

which appear to be partially fused. The main transmembrane constituent of 

tight junctions is occludins (Vestweber, 2000). Adherens junctions are formed 

by cadherins, VE-cadherin located at the endothelial cell surface. Cadherins 

are cell adhesion molecules, which are anchored with their cytoplasmic tail 

to a network of intracellular cytoplasmic proteins, catenins, that are 

connected to the actin-based microfilament system (Dejana, 1996). Adhesive 
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structures regulate the vascular permeability to circulating cells. They are 

controlled according to the need of the irrigated organ. Redistribution of 

surface cadherins and occludins, stabilization of focal adhesion bonds and 

progressive activation of matrix metalloproteinases (MMP) are associated 

with the regulation of endothelial cell permeability (Alexander, 2002).  

 

1.1.2 Haemostatic balance 
!
The endothelium maintains haemostatic balances via the production of 

procoagulant factors (von Willebrand factor, Tissue factor) and the 

fibrinolytic plasminogen activator inhibitor-1, coagulation inhibitors 

thrombomodulin and tissue factor pathway inhibitor, and tissue type and 

urokinase-type plasminogen activator (John Vane, 1995).  

 

Inflammation, trauma and exposure to various cytokines (such as tumour 

necrosis factor-! or lipopolysaccharide) shift the endothelium from its 

normal anti-coagulant state to a procoagulant and prothrombotic state 

(Rapaport, 1993, Pearson, 1999). Activated endothelial cells secrete platelet-

activating factor, which causes aggregation of platelets. The endothelium 

also synthesizes von Willebrand’s factor (vWF), a platelet adhesion protein 

that is mainly found in the subendothelium and extracellular matrix, areas 

that do not interact with the platelets unless exposed by injury. Additionally, 

fibronectin and collagen in the subendothelium also contribute to platelet 

adherence (Nievelstein and de Groot, 1988). von Willebrand’s factor and 

fibronectin are used as markers of endothelial cell activation (Meyer, 1982).  
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Activated endothelial cells also express tissue factor. Factor VII binds tissue 

factor and is activated on the endothelial cell surface. VIIa-tissue factor 

complex activates Factor X to form prothrombinase complex that cleaves 

prothrombin to generate thrombin. VIIa-tissue factor complex can also 

activate factor IX, which forms a complex with VIIIa and phospholipid 

thereby activating Factor X. Once thrombin is formed, it diffuses into the 

surrounding plasma or interstitial fluid and produce fibrin strands by 

cleaving fibrinogen (Rapaport, 1993).  

 

1.1.3 Control of vascular tone 
!
The endothelial cells regulate the vascular tone and blood pressure via the 

secretion of vasodilators: prostacyclin (PGI2), nitric oxide (NO) and the 

endothelium derived hyperpolarizing factor (EDHF). These vasodilators also 

act to inhibit platelet aggregation and inflammation (Figure 1.2 & Figure 1.3). 

However, under pathological conditions such as hypoxia or high blood 

pressure, vasoconstrictive factors such as endothelin, superoxide anion, 

vasoconstrictor prostaglandins (PGF2!, PGH2) and thromboxane A2 are 

released from the endothelium (Michiels, 2003).  
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!
Figure 1.2 Functions of PGI2, NO and EDHF in endothelial cells. PGI2 is 
produced from arachidonic acid (AA) metabolism on cyclooxygenase (COX); NO 

is produced by the action of eNOS on L-arginine and EDHF is derived from 
arachidonic acidʼs (AA) action of CYP. 

!
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1.1.3.1 Prostacyclin 
!
Prostacyclin (PGI2) is derived from arachidonic acid metabolism and is 

released constitutively by endothelial cells (Moncada et al., 1976). It activates 

adenylate cyclase to generate cAMP and consequently causes relaxation of 

the underlying smooth muscle cells. PGI2 synthesis can also be triggered by a 

variety of agents such as thrombin, arachidonic acid, histamine or serotonin 

(Figure 1.3).  These agents increase the cytoplasmic concentrations of 

calcium, via the G-protein-coupled receptors, causing nitric oxide synthase 

(NOS) and phospholipase A2 (the initial rate limiting enzyme in the PGI2 

synthetic pathway) to be activated by calcium (Ibe et al., 1989).  

!
Figure 1.3 Factors involved in the regulation of vascular tone in blood 
vessels. PGI2, NO and EDHF from intact endothelium (blue single-nuclear layer 
of cells) cause relaxation of underlying smooth muscle cells (red). In contrast, 

constriction of smooth muscle cells occurs when the endothelium is damaged.  
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1.1.3.2 Nitric Oxide 
!
Nitric Oxide (NO) has a wide range of physiological and pathological 

activities, including the regulation of vessel tone and angiogenesis in wound 

healing, inflammation, ischemic cardiovascular and malignant diseases 

(Ignarro, 1989, Flammer and Luscher, 2010). In 1980, Furchgott and 

Zawadzki showed for the first time that the integrity of the endothelium was 

crucial for the relaxation of vascular smooth muscle cells induced by 

acetylcholine (Furchgott and Zawadzki, 1980). Seven years later, they 

identified that the endothelium-derived relaxing factor (EDRF) was NO 

(Palmer et al., 1987, Furchgott, 1988). The physiological concentration of NO 

ranges from 5 nM to 4 µM (Palmer et al., 1987). NO is synthesized in 

response to physiologic shear stress or vasopeptides such as acetylcholine, 

bradykinin, thrombin (Figure 1.3) and polypeptide growth factors like 

vascular endothelial growth factor (VEGF) (Ahmed et al., 1997).  

 

The endothelial NO is generated by the membrane-bound endothelial NOS 

(eNOS). The normal function of eNOS requires the dimerisation of the 

enzyme, the presence of its substrate L-arginine and the essential co-factor 

(6R)-5,6,7,8-tetrahydro-L-biopterin (BH4), a potent naturally occurring 

reducing agent (Forstermann and Munzel, 2006). NO-dependent 

vasodilation is initiated when the phosphoinositol pathway is activated in 

the endothelial cells, leading to the increase in cytosolic calcium level. The 

binding of calcium to calmodulin activates eNOS, which then catalyses the 
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NADPH-- and O2-dependent five-electron oxidation of L-arginine to form 

NO and citrulline (Cooke and Dzau, 1997). NO diffuses from the endothelial 

cells into the vascular smooth muscle cell to activate soluble guanylate 

cyclase (sGC) to increase cyclic guanosine monophosphate (cGMP) (Figure 

1.2). This causes inhibition of the phosphoinositol pathway and a decrease in 

intracellular calcium accompanied by muscle cell relaxation and vasodilation 

(Henderson, 1991).  

 

NO is rapidly inactivated in the blood by hemoglobin, superoxide radicals in 

the vascular walls or oxygen in free solution (Marshall and Kontos, 1990). 

Failure of endothelium-dependent vasodilatation due to lack of NO 

synthesis (and/or increased NO destruction by reactive oxygen species) is an 

early feature of hypercholesterolemia and atherogenesis (Cooke et al., 1991), 

and chronic inhibition of eNOS exacerbates atherogenesis in animal models 

(Maxwell et al., 1998). Furthermore, lack of eNOS in mice leads to reduction 

in endothelium dependent vasodilation and increase in systemic blood 

pressure (Huang et al., 1995). Apart from its vasodilatory function, NO also 

inhibits platelet activation, smooth muscle cell proliferation, leukocyte 

adhesion and is antioxidative (Figure 1.4).   

 

Although eNOS is the predominant form of NOS in the vasculature, an 

inducible form (iNOS), which can produce approximately 1000-fold greater 

amounts of NO than does the constitutive form, is also present in the 

endothelial cells (Star, 1993). iNOS is also present in macrophages, 
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neutrophils, hepatocytes, cardiac myocytes, chondrocytes, and many other 

cell types (Lala and Orucevic, 1998). iNOS is induced during inflammation 

by pro-inflammatory cytokines and bacterial endotoxins. It can locally 

generate high amount of NO for prolonged period of time, which can cause 

cellular injury (Wink et al., 1996, Ricciardolo et al., 2004). The other form of 

NOS, neuronal NOS (nNOS) produces NO in nervous tissue of both the 

central and peripheral nervous system (Southan and Szabo, 1996). Both iNOS 

and nNOS are soluble and located predominantly in the cytosol. 

 

 

 

!
Figure 1.4. Diagrammatic representation of the physiological properties of 
nitric oxide (NO). NO functions as a vasodilator and has antioxidative properties 
in endothelial cells. It also inhibits leukocyte adhesion, muscle proliferation and 

platelet aggregation.  

!
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1.1.4 Endothelial cell dysfunction 
!
Endothelial dysfunction plays a key role in the development of vascular 

diseases. It refers to the disruption of any of the processes that is required to 

maintain healthy endothelial cells and is commonly linked to the abnormal 

endothelial-dependent smooth muscle relaxation (vasodilation) due to the 

impairment of the NO-cGMP pathway and decrease in NO bioavailability 

(Cooke et al., 1991, Bivalacqua et al., 2003) (Figure 1.5). Cardiovascular risk 

factors such as hypertension, hypercholesterolemia, diabetes mellitus, or 

chronic smoking stimulate the production of reactive oxygen species and 

superoxide from NADPH oxidases in the vasculature (Figure 1.5). 

Superoxide reacts readily with vascular NO to form peroxynitrite, a reactive 

nitrogen species. The co-factor for eNOS, BH4, is highly sensitive to oxidation 

by peroxinitrite. Oxidation of BH4 leads to its depletion that consequently 

promotes superoxide production by eNOS (referred to as eNOS uncoupling). 

This transformation of eNOS from a protective enzyme to a contributor to 

oxidative stress has been observed in several in vitro models, in animal 

models of cardiovascular diseases, and in patients with cardiovascular risk 

factors (Forstermann and Munzel, 2006). Together, these contribute to 

increase vasoconstriction of the vessel leading to vascular disorders such as 

atherosclerosis, myocardial ischemia and angina (Henderson, 1991, Schwartz 

et al., 2010). In healthy endothelium, intravenous injection of acetylcholine 

causes vasodilation through the NO-cGMP pathway.  However, in absence 

of the normal endothelium as in patients with hypertension, diabetes, 

hypercholesterolemia, congestive heart failure or atherosclerosis, 

acetylcholine has a paradoxical vasoconstrictive effect (Henderson, 1991, 
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Quyyumi, 1998), indicating that the vasodilatory response of acetylcholine is 

reduced or abolished as a result of endothelial damage (Schwartz et al., 

2010).  

 

Physiological NO has multiple effects on the vasculature. In the absence of 

NO, platelets adhere to the endothelium, aggregate and release platelet-

derived factors, while leukocytes also adhere and promote inflammatory 

responses. Furthermore, low bioavailability of NO leads to an increase in 

superoxide production, which promotes low-density lipoprotein (LDL) 

oxidation. It was recently shown than NO per se inhibits LDL oxidation 

(Ahmed et al., 2009). Thus, NO keeps the endothelium healthy not just by its 

vasodilatory and anti-adhesive properties but also by inhibiting lipid 

peroxidation. Moreover, in pregnancy, insufficient generation of NO can 

predispose women to preeclampsia and fetal growth restriction (Ahmed et 

al., 1997) as well as compromise angiogenesis (Murohara et al., 1998, Ahmad 

et al., 2006). 
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1.1.5 Endothelial cell activation 
!
Endothelial cell activation and injury plays an important role in both drug-

induced and inflammatory-mediated injury to the endothelium. Both 

endothelial cell activation and endothelial cell injury are two distinct 

phenomenons, yet the two are likely to overlap during the activation process 

(Pober and Cotran, 1990). Endothelial cell activation is a reversible process, 

which involves the change in morphological structure (increase in cell size 

and cytoplasmic organelles) of the endothelial cells, without loss of 

!
Figure 1.5 Schematic representation of endothelial dysfunction. Endothelial 
dysfunction is a consequence of a decrease in NO bioavailability as a 

consequence of superoxide anions production from NADPH oxidases, hence 
impairing the relaxation of the underlying vascular smooth muscles.   

!
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endothelial integrity. The endothelial cell can return to the quiescent, non-

activated state upon withdrawal of cytokines such as tumor necrosis factor-α 

(TNF-α) and interferon-γ (IFN-γ) (Pober, 1988, Ballermann, 1998, Blann, 

2000). However, uncontrolled endothelial cell activation can progress to 

injury and apoptosis, which is irreversible and causes endothelial 

fragmentation and detachment of endothelial cells from the intima (Bach et 

al., 1997). The terms “endothelial cell activation,” “endothelial cell 

injury/endothelial cell damage,” and “endothelial cell dysfunction” are not 

interchangeable and should be used with a clear definition of each (Blann, 

2000). “Endothelial cell activation” is distinct from sublethal injury with 

consequent endothelial cell dysfunction. Endothelial cell activation may also 

lead to endothelial cell dysfunction without evidence of vascular injury, as 

seen in the vascular leak syndrome induced by interleukin-2 (IL-2) (Pober, 

1988).  

 

As previously described, endothelial cell dysfunction can manifest itself as 

an imbalance between relaxing and contracting factors, for example, NO and 

endothelin; between procoagulant and anticoagulant mediators; or between 

growth-inhibiting and growth-promoting substances (De Meyer et al., 1997). 

Hence, the process of endothelial cell activation leading to endothelial cell 

dysfunction and endothelial cell injury involves a series of immediate and 

delayed events. The first event may be a very early, immediate 

immunological activation of the endothelial cells (type I endothelial cell 

activation) involving the release of stored proteins independent of protein 
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synthesis, followed by an early delayed activation (type II endothelial cell 

activation) that involves de novo protein synthesis and secretion of the 

proteins. Endothelial cell dysfunction with irreversible endothelial cell injury 

can be produced by uncontrolled and persistent endothelial cell activation 

and can result in critical local levels of endothelial adhesion molecules, 

procoagulant molecules, vasodilators, cytokines, chemokines, and 

endothelial cell necrosis (Zhang et al., 2010). 

 

1.1.6 Markers of endothelial cell injury 
!
The expression of endothelial cell adhesion molecules and other soluble 

factors released by the endothelium are good markers of endothelial cell 

activation. Adhesion molecules play a critical role in the recruitment of 

leukocytes in many forms of vascular injury. Several endothelial cell 

adhesion molecules belonging to the immunoglobulin (Ig) superfamily play 

mediate the interaction between endothelial cell and leukocytes. These 

include intercellular adhesion molecule ICAM-1, ICAM-2, ICAM-3, vascular 

cell adhesion molecule-1 (VCAM-1), and mucosal addressin cell adhesion 

molecule-1 (MAdCAM-1). Other biomarkers include E-selectin, P-selectin 

and endothelin-1. Among the numerous biomarkers commonly used, only E-

selectin, vWF, MadCAM-1, Asymmetric dimethylarginine (ADMA), and 

circulating endothelial cells (CEC) that are detached from the endothelium, 

are considered to be endothelial-specific markers of activated endothelial 

cells (Zhang et al., 2010). The other markers, although reliable and sensitive 

for vascular inflammation and injury, are not endothelial-specific and may 
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derive from multiple types of activated cells, such as neutrophils, platelets, 

mast cells, macrophages, antigen representing cells or T lymphocytes. 

Activation of neutrophils and endothelial cells is an early critical event in 

drug-induced vascular injury and in major pathologies. Increased expression 

of ICAM-1 has been reported in vasculitic lesions involving nerve and 

muscle (Panegyres et al., 1992). The levels of soluble ICAM-1 have been 

shown to be higher in individuals who develop atherosclerosis thereby 

suggesting that soluble ICAM-1 may serve as a biomarker for such vascular 

lesions (Lu et al., 2010). E-selectin expressed on endothelial cells binds to the 

carbohydrate ligands on leukocytes. In patients with diffuse vasculitis, the 

skin vessels have increased expression of both E-selectin and ICAM-1 

(Johnson et al., 2006).  

 

1.2 THE HAEMOXYGENASE SYSTEM 
!
Heme oxygenases are microsomal enzymes responsible for the rate-limiting 

breakdown of heme to produce equimolar amount of carbon monoxide (CO), 

free iron (Fe) and biliverdin (Jozkowicz et al., 2007) (Figure 1.6). There are 

three major isoforms of hemeoxygenases, which are products of different 

genes (Cruse and Maines, 1988). HO-1, a 32 kDa protein is the inducible 

form, which is present at very low levels in most quiescent tissues. The 

spleen and the liver are the only exception where HO-1 is highly expressed, 

probably due to its role in the recycling of erythrocyte and heme degradation 

(Braggins et al., 1986). HO-2 is an approximately 36 kDa protein which is 

catalytically active and shares with HO-1 similar substrate specificity and co-
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factor requirements (Trakshel et al., 1986). It is constitutively expressed in the 

brain, endothelium and testis, supporting a role for this enzyme in both the 

nervous nd male reproductive systems (Trakshel and Maines, 1988, 

Bainbridge and Smith, 2005). However, HO-2 is present at lower levels in 

most tissues including the liver, kidney, spleen the cardiovascular system 

and the vasculature comprising the endothelial and smooth muscle cell 

lining of blood vessels (Maines, 1988). HO-2 and HO-1 share less than 50% 

homology in both amino acid and nucleotide sequence (Rotenberg and 

Maines, 1990). HO-3 is a newly characterised 33 kDa protein. It is a poor 

catalyst of heme and its transcript can be found in a variety of organs 

including the spleen, liver, thymus, prostate, heart, kidney, brain and testes 

(McCoubrey et al., 1997).  
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Free heme is produced from hemoglobin upon lysis of red blood cells. Heme 

is a pro-oxidant and pro-inflammatory agent, which can be toxic to several 

cellular components including lipid bilayers, mitochondria, the cytoskeleton 

and the components of the nucleus (Maines, 1997). As a result, its elimination 

from the body is essential to prevent excessive oxidative stress, inflammation 

and also to maintain cell survival. HO acts by degrading heme into biliverdin 

the gaseous CO and free iron. Biliverdin is subsequently converted to 

bilirubin by biliverdin reductase (BVR). HO and its catalytic products have 

important roles in ischemia/reperfusion injury, inflammation, immune 

!
Figure 1.6. Diagrammatic representation of the heme catabolic pathway. 
Degradation of heme catalysed by the enzyme heme oxygenase leads to the 

production of biliverdin, carbon monoxide (CO) and iron (Fe). Biliverdin is 

subsequently converted to bilirubin. Tin protoporphyrin (SnPP) is an inhibitor of 
heme oxygenase.  

!
!
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dysfunction, organ transplant, the control of vascular tone and apoptosis 

(Elbirt and Bonkovsky, 1999, Bainbridge and Smith, 2005). Bilirubin is an 

antioxidant, which can scavenge free radicals and prevent lipid peroxidation. 

CO has vasodilatory effects as well as antiapoptotic functions and can protect 

cells under “stress” conditions (Li Volti et al., 2002, Agarwal and Nick, 2000).  

 

1.2.1 Heme oxygenase-1 
!
Heme oxygenase-1 (HO-1) plays an important role in the body and lack of 

HO-1 has detrimental consequences. Poss and Tonegawa reported 

embryonic loss and death within one year of birth in HO-1 knockout mice. In 

HO-1 knockout adult mice, normochromic, microcytic anemia and 

progressive chronic inflammation in the kidney and the liver were observed 

(Fang et al., 2004). HO-1 is induced by stress stimulus such as as heme, heavy 

metals, platelet-derived factors, peroxynitrite, endotoxin, hypoxia, hyperoxia 

and cytokines (Dulak et al., 2008, Agarwal and Nick, 2000). A common 

feature among these inducers is that they are all involved in the imbalance of 

the redox state of the cell and cause cellular and tissue injury, indicating that 

increased in HO-1 level under stress condition could be a cellular defense 

mechanism. Indeed, induction of HO-1 with metalloporphyrins (Amersi et 

al., 1999) and HO-1 gene transfer (Amersi et al., 1999, Coito et al., 2002) 

confers protection against various insults and has also been associated to 

increased xenograft survival in mice models. Figure 1.7 illustrates the 

multifunctional role of the HO-1/CO system.  
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1.2.1.1 HO-1 and oxidative stress 
!
Stocker et al. first proposed that HO-1 induction might provide 

cytoprotection against oxidative stress (Stocker, 1990). Indeed, studies in HO-

1 deficient mice in vivo and their derived cells in vitro revealed that these 

mice are more prone to oxidative challenge than their wild type counterparts 

!

!
Figure 1.7 Multifunctional actions of heme oxygenase pathway. The HO-1/CO 

system increases plaque stability, ameliorates endothelial function, confer 

cytoprotection, acts as antioxidant, anti-thrombosis, anti-inflammatory and 
controls the immune systems.  
 
!
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(Poss and Tonegawa, 1997). Several other studies have shown that the 

induction of HO-1 serves as an adaptive and protective mechanism in 

various stress conditions (Otterbein and Choi, 2000, Morse and Choi, 2002). 

Furthermore, pharmacological induction of HO-1 with cobalt 

protoporphyrin or gene transfer using an adenoviral vector containing HO-1 

reduces ischemia-reperfusion injury and prolonged survival after cold 

ischemia/isotransplantation of fatty livers in the rat (Agarwal and Nick, 

2000). Nonetheless, despite the extensive literature on the cytoprotective role 

of HO-1, few studies have reported the detrimental effects resulting from 

HO-1 overexpression as a result of the accumulation of reactive iron released 

during the degradation of heme by HO-1 (Suttner and Dennery, 1999),(Lamb 

et al., 1999). This suggests that a beneficial threshold for HO-1 

overexpression exists and that the exaggerated expression of HO-1 is 

unlikely to confer cytoprotection  

 

1.2.1.2 HO-1 and inflammation 
!
Induction of HO-1 is associated with reduced inflammation while its 

inhibition is pro-inflammatory (Willis et al., 1996, Willoughby et al., 2000). 

The anti-inflammatory property of HO-1 is supported by the fact that the 

only human who lacked the HO-1 enzymatic activity died of an 

inflammatory condition (Yachie et al., 1999).  Furthermore, HO-1 deficient 

mice exhibited strong increased in proinflammatory cytokines, including IL-

1!, IFN-", TNF-%, and interleukin-6 (IL-6) and developed a chronic 

inflammatory state characterized by splenomegaly, lymphadenopathy, 
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leukocytosis, as well as hepatic and renal inflammation that progressed with 

age (Poss and Tonegawa, 1997). Studies have shown that the expression of 

HO-1 in inflammatory conditions, including pulmonary inflammation, 

cardiac ischemia and reperfusion injury and hypertension, is potently 

cytoprotective (Minamino et al., 2001, Yet et al., 2001, Fujita et al., 2001, 

Otterbein et al., 1999). Furthermore, elevated level of HO-1 mRNA and 

protein was observed in human atherosclerotic plaques (Wang et al., 1998a) 

and in the vascular endothelial and smooth muscle cells exposed to oxidised 

low-density lipoprotein (Ishikawa et al., 1997). In addition, increase in HO-1 

gene expression has also been shown to inhibit vascular smooth muscle cell 

proliferation, hence preventing atherosclerotic lesions (Duckers et al., 2001). 

Many studies have suggested that CO is largely responsible for the anti-

inflammatory nature of HO-1 (Otterbein et al., 2000, Lee and Chau, 2002). 

However, ferritin, biliverdin and bilirubin may also mediate this effect (Vile 

et al., 1994, Gray et al., 2002, Nakagami et al., 1993). For example, they can 

reduce the interaction of leukocytes with the vascular endothelium &'!

()*+,-./! *0+ expression of various adhesion molecules, such as E-selectin, 

ICAM-1, and VCAM-1 (Hayashi et al., 1999).  

 

1.2.1.3 HO-1 and apoptosis 
!
HO-1 has cytoprotective effects in cultured cells and in animal models of 

various diseases in brain, heart, kidney, lung and liver (Fang et al., 2004, 

Brouard et al., 2000). Apoptosis, or programmed cell death, is an active and 

tightly regulated process that occurs during normal development, but can be 
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induced in response to drugs or diseases. Apoptosis is known to commonly 

follow oxidative stress. The induction of HO-1 following oxidative stress has 

prompted researchers to investigate the anti-apoptotic properties of HO-1. 

Indeed, many studies have now confirmed such a role for HO-1. 

Overexpression of HO-1 in the endothelial cells of coronary microvessel has 

been shown to protect against the toxicity of heme (Abraham et al., 1995). 

Furthermore, in vitro pharmacological induction of HO-1 using hemin 

showed a significant decrease in apoptosis induced by potent oxidising 

agents such as peroxynitrite or cytotoxic agents such as cisplatin (Foresti et 

al., 1999),(Shiraishi et al., 2000). Other in vitro studies have shown that 

upregulation of HO-1 confers protection to endothelial cells against 

hydrogen peroxide-mediated cell death (Motterlini et al., 1996a, Motterlini et 

al., 1996b) and from the cytotoxic effect of tumour necrosis factor ! (TNF-!) 

(Polte et al., 1997). In constrast, inhibition of HO-1 by specific inhibitors 

enhances the nephtoxic side effect of cisplatin and promotes endotoxin-

induced septic shock (Fang et al., 2004).  

 

1.2.1.4 HO-1 in cell proliferation 
!
A number of studies have shown that overexpression of HO-1 in various cell 

types affects cell growth. In smooth muscle cells, renal and pulmonary 

epithelial cells, HO-1 overexpression has been shown to inhibit cell 

proliferation by causing cell arrest (Zhang et al., 2002b, Inguaggiato et al., 

2001, Lee et al., 1996b). In the presence of HO-1 inhibitors, the anti-

proliferative effect of HO-1 was abolished (Zhang et al., 2002b),(Lee et al., 
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1996b). Furthermore, vascular smooth muscle cells lacking HO-1 displayed 

an increase in proliferation rate compared to those expressing HO-1 (Duckers 

et al., 2001). Studies investigating the mechanism by which HO-1 may affect 

cell proliferation have demonstrated that gene-induced or pharmacological 

overexpression of HO-1 causes up-regulation of p21 in smooth muscle cells 

(Inguaggiato et al., 2001, Duckers et al., 2001). In contrast, the retroviral 

overexpression of HO-1 in endothelial cells downregulates p21 and p27, 

leaving the expression of p53 unaffected (Abraham et al., 2003b). p21 is a 

cyclin dependent kinase inhibitor acting as a down-stream target of p53 

tumour suppressor gene and is involved in promoting cell cycle arrest in the 

G1 phase of the cell cycle. The mechanism by which HO-1 overexpression 

regulates p21 is currently unclear. However, these findings strongly suggest 

that HO-1 can influence the cell cycle and its regulators depending on the cell 

types.  

 

1.2.1.5 HO-1 in angiogenesis 
!
Some studies have shown that HO-1 has proliferative functions and 

promotes angiogenesis. For instance, Li Volti et al. showed that NO donors 

can upregulate the expression of HO-1 and increase the proliferation of 

vascular endothelium (Li Volti et al., 2002), while the inhibition of HO-1 with 

zinc protoporphirin (SnPP) or antisense strategies (siRNA) abolished the 

proliferative effect of HO-1 (Dulak et al., 2008). The involvement of HO-1 in 

angiogenesis was demonstrated through the transfection of HO-1 gene into 

coronary endothelial cells, which resulted in the formation of capillary-like 
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tubular structures (Li Volti et al., 2002). Furthermore, the upregulation of 

HO-1 in endothelial cells has been linked to increase in VEGF synthesis in 

those cells, hence suggesting the contribution of HO-1 in angiogenesis 

(Jozkowicz et al., 2003). However, as human umbilical vein endothelial cells 

do not produce VEGF, these studies have come into question in recent years. 

 

1.2.1.6 HO-1 in cancer 
!
 The expression and proliferative effect of HO-1 in cancer is controversial. 

Many studies have shown that HO-1 is highly expressed in a variety of 

tumours including adenocarcinoma, sarcoma, glioblastoma, and melanoma, 

and squamous carcinoma cells, prostate cancers, pancreatic cancers 

(Jozkowicz et al., 2007). However, the effect of HO-1 on tumour growth 

differs depending on the type of cancerous cells. In certain type of cancers, as 

in murine and human melanoma cell lines, the upregulation of HO-1 has 

been shown to promote their proliferation (Was et al., 2006), whereas its 

knockdown, as in pancreatic tumour cell lines, caused a significant reduction 

in tumour growth (Berberat et al., 2005). In contrast, pharmacological 

inhibition of HO-1 caused a small but significant increase in proliferation of 

the rat and human breast cancer cell lines, whereas its pharmacological 

induction significantly inhibited cell cycle progression in the same cells (Hill 

et al., 2005). Hence the ability of HO-1 to regulate tumour growth is variable 

and tumour specific.  
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1.2.2 Carbon monoxide 
!
Carbon monoxide (CO) is a by-product of HO catabolism. The basal level of 

CO is generated from HO-2 as a result of the degradation of heme and the 

physiological turnover of heme (Kajimura et al., 2003, Suematsu et al., 1994) 

and under physiological conditions, the basal level of CO in the human body 

is about 20 µM/hr (Johnson et al., 2003). This basal level is responsible for 

many biological processes, including activation of cGMP when NOS is 

inhibited (Kaide et al., 2001, Kajimura et al., 2003). During stress conditions, 

CO is produced from the upregulation of HO-1 (Abraham et al., 2003a).  

 

 Like NO, CO activates soluble guanylate cyclase and increases the 

intracellular concentration of cGMP (Furchgott and Jothianandan, 1991), 

hence inhibiting platelet aggregation (Brune and Ullrich, 1987) and causing 

smooth muscle relaxation (Morita and Kourembanas, 1995).  CO also inhibits 

endothelin-1 and platelet-derived growth factor-B to promote vasodilation 

(Morita and Kourembanas, 1995). Furthermore, CO has anti-inflammatory 

properties and has been shown to inhibit the production of pro-

inflammatory cytokines such as TNF-α, IL-1β or IL-6 from 

lipopolysaccharide-stimulated macrophages (Otterbein et al., 2000, Sawle et 

al., 2005). Brouard et al. reported that the anti-apoptotic effect of HO-1 was 

due to the production of CO in endothelial cells expressing HO-1 and that 

the release of CO may serve as an intercellular signaling molecule to protect 

those endothelial cells which do not express HO-1. They suggested that p38 

mitogen-activated protein kinase (MAPK) activation might be responsible for 
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the anti-apoptotic effect of HO-1/CO system in the endothelial cells as 

observed in other cell type including the kidney epithelial cell line HeLa, 

cardiac muscle cells and lymphoid Jurkat T cells (Brouard et al., 2000, Silva et 

al., 2006, Soares et al., 2002).  

 

 

!
 

Figure 1.8. Physiological role of carbon monoxide (CO). CO is involved in 
smooth muscle relaxation and inhibits platelets aggregation. It also controls 

neurological processes involved in sensory function and respiration. 

!
!
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1.2.3 Biliverdin reductase and bilirubin 
!
Human biliverdin reductase (BVR) is a water-soluble enzyme that reduces 

biliverdin (the product of heme oxygenase HO-1 and HO-2 activity) to 

bilirubin. It is unique among biological catalysts due to its dual pH/cofactor 

dependent activity profile (Kutty and Maines, 1981); either NADPH or 

NADH are used, with pH optima of 8.7 and 7.0, respectively. It also 

functions as a serine/threonine (Lerner-Marmarosh et al., 2005) and tyrosine 

kinase (Hunter and Cooper, 1985) and acts as a transcription factor in the 

MAPK signaling cascade (Salim et al., 2001). A rare feature of BVR is that its 

biological activity depends on its pH dependent autophosphorylation 

(optimum pH 8.5), which is reversible (Salim et al., 2001).  

 

Singleton et al. were the first to uncover the enzymatic action of BVR in 1965 

(Singleton and Laster, 1965). BVR is expressed in all tissues in two forms: 

BVR-A (dominant in adults) and BVR-B (dominant in fetal state) (Maines et 

al., 2007, Florczyk et al., 2008). The kidney has the highest level of BVR 

(McCoubrey et al., 1995). Unlike bilirubin, biliverdin cannot cross the cell 

membrane lipid bilayer (Maines, 2005). Experiments in rodents and human 

cell lines have shown that environmental agents, such as bromobenzene, 

renal toxin and lipopolysaccharide can activate BVR in the kidney and 

induce its translocation to the cell nucleus (Maines et al., 2001).  
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The resulting product of the enzyme activity of BVR is bilirubin, a 

biologically active and multifunctional protein. Bilirubin is an important 

cytoprotectant and antioxidant, which protects nuclear components against 

free radical damage. It also inhibits the production of superoxide-producing 

NADPH oxidase. The BVR/bilirubin system can act as an important survival 

factor. For instance, under hemolytic conditions or when HO-1 is induced, a 

large amount of heme is degraded. Therefore, high level of BVR is required 

to prevent biliverdin levels from rising above normal levels. The 

accumulation of biliverdin due to the absence of BVR can cause the fatal 

“green jaundice”. Small interfering RNA (siRNA) knock down of BVR can 

also cause depletion of bilirubin, hence causing apoptotic cell death via the 

increase in tissue level of reactive oxygen species (Baranano et al., 2002).  

 

1.3 ANGIOGENESIS 
!
Vasculogenesis and angiogenesis are the two processes involved in the 

formation of new blood vessels during embryogenesis. Vasculogenesis is 

unique to embryonic development whereas angiogenesis occurs throughout 

life. During vasculogenesis, angioblasts proliferate and coalesce into a 

primitive network of vessels known as the primary capillary plexus. The 

endothelial cell lattice created by vasculogenesis serves as a scaffold for 

angiogenesis. Angiogenesis, also refered as neovascularisation, is the 

formation of new capillaries from pre-existing microvasculature (Ausprunk 

and Folkman, 1977, Folkman, 1992 #1889, Carmeliet, 2005). It involves the 

expansion of the endothelium through proliferation, migration and 
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remodeling where capillaries are formed by spouting or by non-sprouting 

angiogenesis (Risau, 1997).  

 

Angiogenesis is a dynamic multistep phenomenon, which is regulated by a 

number of pro-angiogenic and anti-angiogenic (angiostatic) factors (Papetti 

and Herman, 2002). It sequentially involves the degradation of vascular 

basement, and interstitial matrix by endothelial cells, the coordinated 

migration and proliferation of endothelial cells and tubulogenesis and the 

formation of capillary loops. Angiogenesis is completed by a process known 

as vascular maturation, whereby pericytes are recruited to stabilize the new 

vessels by inhibiting endothelial cell proliferation and migration, and by 

stimulating the production of extracullular matrix (Figure 1.9). In addition, 

large vessels may become covered with smooth muscle cells providing them 

with elasticity and vasomotor properties (Carmeliet and Jain, 2000).  

 

In healthy adults, angiogenesis is a tightly regulated process. Under 

physiological conditions, the rate of proliferation of endothelial cells is very 

low (Denekamp, 1982). The maintenance of quiescent endothelial cells is 

thought to be due to negative regulators of angiogeneis, since pro-angiogenic 

factors have been detected in adult tissues in which there is no angiogenesis. 

The growth of new vessels only occurs in ovarian cycle, wound healing or 

bone fracture and in muscles adaptations to exercise (Klagsbrun and 

D'Amore, 1991, Brown and Hudlicka, 2003). Angiogenesis is a crucial 

phenomenon during pregnancy and is required for the development of the 

vascular structures involved in transplacental exchange and for the growth 



 37!

of the placental vessels. In contrast, in pathological conditions such as 

atherosclerosis, diabetic retinopathy, rheumatoid arthritis, psoriasis, 

endometriosis and cancer unrestrained angiogenesis occurs, while in the 

heart, brain and peripheral ischemia, pre-eclampsia, and nephropathy are 

characterized by insufficient angiogenesis (Carmeliet, 2005).  
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!
Figure 1.9.  Sequential steps involved in angiogenesis. VEGF acts as a 

chemoattractant for endothelial cells migration. Proteases cause basement 
membrane degradation. Ang-1 binds to its receptor Tie2 and promotes survival 

and stabilisation of quiescent endothelial cells. The Tie2 antagonist, Ang-2, 
increases vascular permeability and promotes cell migration and formation of 

capillary sprout. TGF-β plays a role in vessel maturation, ideally resulting in 
functional vessels that can conduct blood, oxygen, and nutrients to the site of the 

angiogenic stimulus and decrease in VEGF. 
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1.3.1 Physiological angiogenesis 
!
During adult life, physiological angiogenesis is involved in the development 

of the ovarian follicle and corpus luteum, and in the endometrium in each 

menstrual cycle (Demir et al., 2010). It is also involved in the wound repair 

process, where it provides a supply of nutrients and promotes granulation, 

tissue formation and the clearance of debris. Neovascularisation in wounds 

depends on cell-cell interactions, cell extracellular matrix interactions and 

also the balance between angiogenic agonists and antagonists. Tissue injury 

is followed by exudation of plasma constituents including fibrinogen. 

Fibrinogen provides the substrate for the generation of a fibrin-containing 

matrix, which is subsequently replaced by granulation tissue (Calvete, 1994). 

Replacement involved proteolysis by plasmin, which is generated from 

plasminogen present in plasma and the interstitial fluid (Miyashita et al., 

1988). Plasminogen activators convert plasminogen into plasmin by limited 

proteolysis (Dano et al., 1985). Granulocytes, monocytes, fibroblasts and 

capillary endothelial cells are involved in the organization of the primary 

wound matrix (Lanir et al., 1988). During the later stages of wound repair, 

macrophages stimulated by hypoxia, cytokines or inflammatory mediators 

synthesize new factors like transforming growth factor (TGF-β) and VEGF 

(Knighton et al., 1983). During the terminal stages of healing, the production 

of angiogenic factors is decreased when granulation tissue is formed and the 

area is less hypoxic.  
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The development and endocrine function of the ovarian corpus luteum are 

dependent on the growth new capillary vessels. Progesterone release by the 

corpeus luteum is crucial for implantation and maintenance of pregnancy. 

After ovulation, the vessels invade and ruptured follicle and form a 

microvascular plexus that nourishes the developing corpus luteum. Multiple 

mediators are involved in corpus luteum angiogenesis including VEGF, basic 

FGF (bFGF) (Ferrara et al., 1998), angiopoietin-1 and angiopoietin-2 

(Maisonpierre et al., 1997). 

 

1.3.2 Vascular endothelial growth factor 
!
Vascular endothelial growth factor (VEGF) was first described as a protein 

able to induce vascular permeability in tumours (Senger et al., 1983). It was 

later described as a stimulator of endothelial cell proliferation and as a major 

inducer of angiogenesis and vasculogenesis (Ferrara, 2004).  VEGF belongs to 

the platelet derived growth factor (PDGF)/VEGF family of growth factors 

which also includes placenta growth factor (PlGF) (Maglione et al., 1991), 

VEGF-B (Olofsson et al., 1996), VEGF-C (Joukov et al., 1996) (Lee et al., 

1996a), VEGF-D (Achen et al., 1998) and VEGF-E (Ogawa et al., 1998, Meyer 

et al., 1999) (see Figure 1.10).  

!

Vascular endothelial growth factor-A (VEGF-A) is widely known for its 

critical role in vascular development and angiogenesis. It is an endothelial 

specific mitogen, which promotes endothelial cell survival and causes 

endothelium-dependent vasodilation (Schrijvers et al., 2004). Increasing 
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evidence point to VEGF-A being an important factor that maintains vascular 

homeostasis.  Lee and colleagues showed that the absence of VEGF-A from 

endothelial cells of mice was associated with organ failure, haemorrhages, 

intestinal perforations and signs of multiple infarcts. Furthermore, the 

presence of cleaved caspase-3 in those mice lacking endothelial-VEGF and 

morphological alterations of the endothelial cells such as membrane 

blebbing, cell shrinkage, cell rupture, nuclear condensation and exposure to 

cytosolic component provided support for the importance of VEGF in 

inhibiting endothelial cell apoptosis. Accumulation of vWF and fibrinogen 

deposits in the same mice signified endothelial cell damage. Eventually the 

endothelial specific VEGF deficient mice died from thromboembolism and 

cardiac ischemic event (Lee et al., 2007). 

 

VEGF also stimulates the release of NO from HUVEC (Ahmed et al., 1997, 

Papapetropoulos et al., 1997) and NO plays a role in sprouting angiogenesis 

by mediating vasodilation (Duda et al., 2004). VEGF-A acts via two high-

affinity tyrosine kinase receptors (VEGFR-1 and VEGFR-2) and also binds 

with lower affinity to co-receptors such as neuropilins (NRP) and heparin 

sulphate containing proteoglycans (Neufeld et al., 1999, Neufeld et al., 2002) 

(Figure 1.12). VEGF mediated cell proliferation and migration are mediated 

by VEGFR-2, while VEGFR-1 plays a role in the endothelial cell 

differentiation and release of nitric oxide (Bussolati et al., 2001).  Activation 

of VEGFR-1 (Bussolati et al., 2001) and VEGFR-2 (Feng et al., 1999, Wu et al., 

1999) causes upregulation and phosphorylation of eNOS and induces the 

release of NO from endothelial cells.  
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VEGFR-1 is located on the vascular endothelial cells, smooth muscle cells, 

monocytes and osteoblasts. Alternative splicing of this receptor generates its 

soluble form, soluble VEGFR-1 (sVEGFR-1), also known as soluble Fms-like 

tyrosine kinase receptor-1 (sFlt-1). Although sVEGFR-1 lacks the cytosolic 

region, it can still bind its ligands VEGF and acts as an antagonist (Luttun et 

al., 2004). In vivo studies in mice have suggested that VEGFR-1 does not play 

an important role in vascular development. However, mice lacking VEGFR-1 

die prematurely (embryonic day 8.5-9.0) because of vascular overgrowth and 

disorganisation (Fong et al., 1995), whereas mice deficient in VEGFR-2 die in 

utero at embryonic day 8.5 due to a defect in vasculogenesis resulting from a 

failure in migration and proliferation of hematopoietic/endothelial 

progenitor cells (Shalaby et al., 1995, Hidaka et al., 1999, Schuh et al., 1999). 

In contrast mice without the tyrosine kinase domain of VEGFR-1 survived 

(Hiratsuka et al., 1998) indicating that VEGFR-1 acts as a decoy receptor to 

regulate the bioavailability of VEGF for VEGFR-2 activation and 

development (Hiratsuka et al., 1998, Kearney et al., 2004). However, using 

chimeric receptor system in endothelial cells, Ahmad and colleagues 

demonstrated the involvement of VEGFR-1 in adult angiogenesis. They 

showed that the independent activation of VEGFR-1 and VEGFR-2 causes 

capillary-like tube formation on Matrigel in an NO-dependent manner 

(Ahmad et al., 2006).   
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1.3.3 Placenta growth factor 
!
Placenta growth factor (PlGF) was first discovered in the human placenta 

(Maglione et al., 1991). It is a member of the VEGF family of growth factors 

(Ribatti, 2008). Alternative splicing of the human PlGF mRNA produces 4 

!
Figure 1.10. VEGF signaling pathway in endothelial cell.  There are five 

ligands (VEGF-A, -B, -C and PlGF) and five receptors (VEGFR-1, -2, -3 and 

NRP1 and NRP2). VEGFR-1 and VEGFR-2 are expressed in the cell surface of 

most blood endothelial cells.  In contrast, VEGFR-3 is largely restricted to 

lymphatic endothelial cells.  VEGF-A binds VEGFR1, VEGFR2, NRP1 and NRP2; 

VEGF-B interacts with VEGFR1 and NRP1; VEGF-C binds VEGFR2, VEGFR3 

and NRP2; VEGF-D interacts with VEGFR2 and VEGFR3; and PlGF interacts 

with VEGFR1, NRP1 and NRP2 (Adapted from Li, 2009 #3123) 
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isoforms: PlGF-1 (PlGF131), PlGF-2 (PlGF152), PlGF-3 (PlGF203) and PlGF-4 

(PlGF224). PlGF-1 and PlGF-3 bind exclusively to VEGFR-1, which is highly 

expressed in vascular endothelial cells. PlGF-2 binds to the neuropilin-1 

(NRP1) and neuropilin-2 (NRP1), which are also expressed in endothelial 

cells (Figure 1.10). Unlike VEGF, binding of PlGF to VEGFR-1 causes 

phosphorylation of alternative tyrosine residues and gene expression in 

endothelium (Autiero et al., 2003).  

 

PlGF is not required for vascular development and its level is low in healthy 

adult tissues (Carmeliet et al., 2001). However, in normal endothelial cells, 

PlGF stimulate angiogenesis by amplifying the effect of VEGF. It also 

promotes monocyte migration (Clauss et al., 1996), stimulates NO release 

(Bussolati et al., 2001) and prolongs survival and stability of capillary-

networks (Cai et al., 2003). In vivo studies have shown that during new 

blood vessels formation in the adult, endothelial cells become more 

responsive to VEGF through the upregulation of PlGF and VEGFR-1. PlGF 

affects endothelial cells directly by binding to VEGFR-1 and inducing its own 

signalling as well as amplifying VEGF-mediated angiogenesis (Carmeliet et 

al., 2001). Enhancement in angiogenesis can occur due to the intermolecular 

crosstalk between VEGFR-1 and VEGFR-2 as a result of activation of VEGFR-

1 by PlGF (Autiero et al., 2003).  

 

In pathological situations such as cancer and diabetes there is an increase in 

PlGF expression, which makes it an attractive target for therapy (Carmeliet et 

al., 2001). Recent evidence has shown that PlGF/VEGFR-1 signalling is 
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confined to pathologies characterized by aberrant angiogenesis such as 

cancer in the adult. The significance of PlGF in tumour development is 

highlighted by the fact that tumour angiogenesis and growth is inhibited in 

PlGF null mice, or transgenic mice bearing truncated/signaling-inactive 

VEGFR-1. PlGF deficient mice show significantly reduced growth and 

neovascularisation (Carmeliet et al., 2001). Consistent with these findings, 

PlGF appears to be a survival factor for the endothelium and prolongs 

stability of capillary-networks (Cai et al., 2003). However, unlike VEGF, 

which is overexpressed in most tumours, PlGF up-regulation occurs in only a 

few cancers such as melanomas (Lacal et al., 2000), hypervascular renal cell 

carcinomas and a subset of meningiomas (Donnini et al., 1999).  

 

Cardiac expression of PlGF promotes wound healing (Iwama et al., 2006) and 

improves cardiac performance (Roncal et al., 2010) after acute myocardial 

infarction. PlGF has also been shown to stimulate collateral growth in the 

ischemic heart and limb (Pipp et al., 2003, Luttun et al., 2002, Kolakowski et 

al., 2006). On the other side, PlGF is involved in inflammatory angiogenic 

disorders such as atherosclerosis (Pilarczyk et al., 2008) or arthritis (Yoo et 

al., 2009). Since monocytes and macrophages express VEGFR-1 receptors, 

PlGF acts as a chemoattractant and promotes inflammation by increasing 

monocyte migration, cytokine production (Fu et al., 2009) and tissue factor 

expression (Carmeliet et al., 2001).  
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1.3.4 Transforming growth factor-!  
!
Transforming growth factor1$ (TGF-$2 is part of a superfamily of dimeric 

growth factors and similar to VEGF, it has the ability to regulate blood vessel 

formation. It is also involved in many biological processes, including cell 

proliferation, migration and vessel maturation (Figure 1.9). It also regulates 

cellular functions involved in development, wound healing, cancer, fibrosis, 

vascular, and immune diseases. There are three TGF-$ isoforms: TGF-$1, -$2 

and -$3 (ten Dijke and Arthur, 2007, Blobe et al., 2000). TGF-$1 is expressed 

in endothelial cells, vascular smooth muscle cells, myofibroblasts, 

macrophages and other hematopoietic cells. TGF-$2 is localised in epithelial 

and neuronal cells while TGF-$3 is predominantly expressed in 

mesenchymal cells, vascular smooth muscle cells, macrophages and 

endothelial cells (Letterio and Roberts, 1996, Taya et al., 1999, Molin et al., 

2002). TGF-$ modulates cellular processes by binding to three high affinity 

cell surface receptors. The type III receptor is the most abundant receptor. 

However, it is a non-signaling receptor and functions to transfer TGF-$ to its 

signaling receptors, type I and type II. Another type III-related TGF-$ 

receptor that is expressed in endothelial cells is Endoglin, which is made up 

of an extracellular domain and a cytoplasmic tail homologous to the type III 

receptor (Duff et al., 2003).  

 

Knockdown studies of TGF-β, its receptors and its downstream signaling 

proteins, activin receptor-like kinase-1 (ALK1) and ALK5, have revealed the 
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importance of TGF-β signaling in vascular development. TGF-β1 deficient 

mice die in utero due to vascular defects (Dickson et al., 1995), while TGF-β1 

null embryos display developmental defects and cardiac malformations 

(Bartram et al., 2001). Mice lacking TGF-β type II receptor (TGF-β RII) or 

ALK5 die at embryonic day 10.5 due to vascular defects of the yolk sac 

(Oshima et al., 1996, Larsson et al., 2001). ALK1 knockout mice die at 

embryonic day 10.5–11.5, whereas mutation in ALK1 caused defective 

angiogenesis and impaired vascular smooth muscle cell development (Oh et 

al., 2000). Smad1-deficient mice demonstrate a failure in establishing 

chorion–allontoic circulation (Tremblay et al., 2001, Lechleider et al., 2001), 

whereas Smad5-deficient embryos had defects in yolk sac vasculature with 

enlarged blood vessels (Chang et al., 1999, Yang et al., 1999). Absence of the 

accessory receptor, endoglin, caused embryonic lethality at embryonic day 

10.5–11.5 accompanied by cardiovascular and angiogenic defects due to 

abnormal vascular smooth muscle cell development (Li et al., 1999, Arthur et 

al., 2000, Bourdeau et al., 1999). Mice deficient in the accessory TGF-$ type III 

receptor, betaglycan, exhibited lethal proliferative defects in the heart and 

apoptosis of the liver (Stenvers et al., 2003).  

 

TGF-$ exerts bifunctional effects on angiogenesis. It can stimulate and inhibit 

proliferation of endothelial cells in a dose-dependent manner. Low doses of 

TGF-$ stimulate proliferation and migration, while high doses of TGF-$ 

inhibit these responses. Furthermore, TGF-$ regulates the activation state of 

the endothelium via a fine balance between ALK5 and ALK1 signaling 



 50!

(Goumans et al., 2002). The TGF-$/ALK5 pathway leads to the inhibition of 

endothelial cell migration and proliferation, while the TGF-$/ALK1 pathway 

induces endothelial cell migration and proliferation (Ota et al., 2002). 

Endoglin, the TGF-β coreceptor, has been shown to regulate the balance 

between ALK1 and ALK5 signalling (Figure 1.11) (Goumans et al., 2002).   

 

 

!
Figure 1.11. Regulation of angiogenesis by TGF-β/Endoglin. TGF-β /ALK5 

signalling pathway inhibits cell proliferation and migration, whereas the TGF-

β/ALK1 pathway promotes proliferation and migration. Endoglin, a coreceptor of 
TGF-β RII is essential for ALK1 signalling. In the absence of endoglin, theTGF-β 

/ALK5 signalling is predominant and maintains a quiescent the endothelium (EC). 
High endoglin expression stimulates the ALK1 pathway and indirectly inhibits 

ALK5 signalling, thus promoting angiogenesis (Adapted from (Lebrin et al., 2005).  

!
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1.3.4.1 Endoglin  
!
Endoglin (also known as CD105) is a type of type I integral membrane 

glycoprotein that belongs to the zona pellucida family of proteins (Gougos et 

al., 1992, Llorca et al., 2007). It consists of a large extracellular domain (561 

amino acids), a single hydrophobic transmembrane domain, and a short 

cytosolic domain (Gougos and Letarte, 1990). Endoglin acts as a TGF-β 

coreceptor and modulates TGF-β1 and TGF-β3 dependent responses, but not 

TGF-β2 (Cheifetz et al., 1992). Endoglin binds to TGF-β1 or TGF-β3 only 

when it is associated to TGF-β type II receptor (TGF-β RII) (Barbara et al., 

1999). Both the extracellular and intracellular domain of Endoglin interacts 

with TGFβ- RII. The cytoplasmic domain of Endoglin, rich in serine and 

threonine residues, is phosphorylated by ALK5 or TGF-$!RII (Guerrero-Esteo 

et al., 2002). The expression of Endoglin in endothelial cell is upregulated by 

hypoxia (Sanchez-Elsner et al., 2002) and TGF-β1, while TNF-α suppresses 

its expression (Li et al., 2003). In the absence of endoglin, the growth of 

endothelial cells is impaired and TGF-$/ALK1 signaling is abrogated 

whereas the TGF-$/ALK5 signaling is stimulated, indicating that Endoglin 

may function as a modulator of the balance between TGF-$/ALK1 and TGF-

$/ALK5 signaling pathways. Hence Endoglin stimulates TGF-$/ALK1 

signaling and indirectly inhibits TGF-$/ALK5 signaling, thus promoting the 

activation phase of angiogenesis (Figure 1.14) (Lebrin et al., 2004).  Moreover, 

Endoglin can modulate the endothelial cell function independent of TGF-β 

by regulating cytoskeleton organization, protecting endothelial cells from 

hypoxia-induced apoptosis, stimulating JNK1 phosphorylation and 
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regulating the expression of eNOS (Lebrin et al., 2005). Endoglin plays an 

important role in tumoral and non-tumoral adult angiogenesis (Figure 1.11) 

(Bernabeu et al., 2009, Jerkic, 2006 #2660). In resting endothelial cells, the 

level of endoglin is undetectable. However, it is highly expressed in vascular 

endothelial cells in sites of active angiogenesis during embryogenesis, in 

inflamed tissues and within tumours (Burrows et al., 1995, Miller et al., 1999, 

Fonsatti et al., 2000). Mice deficient in endoglin die during embryonic 

development due to defective angiogenesis indicating the importance of 

endoglin in vascular development (Arthur et al., 2000). 

 

In ischemia-reperfusion injury and myocardial infarction, the level of 

endoglin is increased in the ischemic area and border zone (van Laake et al., 

2006). Furthermore, in atherosclerosis, the expression of endoglin is elevated 

in the vascular smooth muscle cells (Conley et al., 2000). In cancer, it is highly 

expressed in certain tumours, including primary and metastatic lesions of 

melanoma (Altomonte et al., 1996), in ovarian cancer (Henriksen et al., 1995) 

and in prostate cancer cells (Jovanovic et al., 2001). Endoglin is also 

expressed in syncytiotrophoblasts of term placenta (St-Jacques et al., 1994) 

and its expression is elevated in preeclampsia (Venkatesha et al., 2006).  

 

As previously described, NO produced from eNOS is a major regulator of 

vascular tone and angiogenesis. In endothelial cells, endoglin is necessary for 

TGF-β1-dependent transcription of eNOS (Santibanez et al., 2007). Endoglin 

induces the expression of eNOS at the transcriptional level in the presence or 
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the absence of TGF-β in endothelial cells via the TGF-β type I receptor/ALK5 

and its downstream substrate Smad2 (Santibanez et al., 2007). In the presence 

of TGF-β, it increases the expression of eNOS by increasing Smad2 protein 

levels thereby enhancing TGF-β induction of eNOS and increasing the 

synthesis of NO. Jerkic and colleagues demonstrated that the concentrations 

of nitrites, a NO metabolite, in the plasma and urine were lower in Eng+/- 

than in Eng+/+ mice. Moreover, the levels of eNOS is the kidneys and femoral 

arteries were about half in Eng+/- than in Eng+/+ mice and were also reduced 

in primary cultures of aortic endothelial cells from Eng+/- compared with 

those from Eng+/+ mice. In addition, they showed that overexpression or 

suppression of endoglin in cultured cells induced a marked increase or 

decrease in the protein levels of eNOS, respectively (Jerkic et al., 2004). 

Hence endoglin signaling via TGF-β can have vascular protective effect 

through the generation of NO and hence confer anti-inflammatory and 

atheroprotective effect. 

 

1.4 INFLAMMATION  
!
Inflammation is a complex biological response of vascular tissues to harmful 

injury caused by pathogens, damaged cells or irritants (Ferrero-Miliani et al., 

2007). Leukocytes (white blood cells) are important mediators of 

inflammation. They can be divided into two categories, 1) granulocytes 

consisting of neutrophils, basophils and eosinophils and 2) agranulocytes 

consisting of lymphocytes, monocytes and macrophages. Neutrophils are the 

first cells to be recruited to the site of infection or inflammation. The number 
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of neutrophils adhering to the endothelium increases with inflammation 

(Harlan et al., 1981). Neutrophils are important for the successful elimination 

of pathogens. Activated neutrophils and monocytes/macrophages respond 

to septic stimuli by producing ROS (e.g., superoxide, hydrogen peroxide), 

RNS (e.g. peroxynitrite), the myeloperoxidase-derived oxidant, 

hypochlorous acid and proteases. Together, these events contribute to the 

neutrophil/macrophage-mediated killing of pathogens. However, the 

excessive production of ROS and proteolytic enzymes can also cause 

endothelial cell dysfunction and damage leading to organ dysfunction 

(Mochida et al., 2007). 

 

Inflammation can be classified as either acute or chronic and systemic 

inflammation includes both acute and chronic changes.  Acute inflammation 

is the initial response of the body to harmful stimuli and it involves increased 

movement of plasma and leukocytes (especially neutrophils) from the blood 

into the injured tissues. The purpose of this response is to eliminate the 

microbes and remove the cellular debris. If successful, acute inflammation is 

resolved, restoring the normal tissue architecture or forming a connective 

tissue scar. If the stimulus is not eliminated then the inflammatory process 

persists and evolves (Pober and Sessa, 2007). This prolongation of 

inflammation is known as chronic inflammation. Chronic systemic 

inflammation can cause damage to the cardiovascular, nervous, endocrine 

and other systems. For instance chronic inflammation has been associated to 

the development of insulin resistance and hence the metabolic syndrome and 

diabetes. In addition, chronic inflammation can also induce damage to the 
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arterial lining leading to the development of atherosclerosis and 

cardiovascular disease.  

 

During both acute and chronic inflammation, a variety of soluble factors are 

involved in the recruitment of leukocyte through the expression of cellular 

adhesion molecules and chemoattractants. These soluble mediators modulate 

the activation of the resident cells (such as fibroblasts, endothelial cells, tissue 

macrophages, and mast cells) and the newly recruited inflammatory cells 

(such as monocytes, lymphocytes, neutrophils, and eosinophils) (Feghali and 

Wright, 1997). The soluble mediators include the inflammatory lipid 

metabolites such as platelet activating factor and the derivatives of 

arachidonic acid (prostaglandins, leukotrienes, lipoxins), which are 

generated from cellular phospholipids; the endogeneous vasodilator NO; 

and a group of cell-derived polypeptides, known as cytokines, which are 

involved in the orchestration of the inflammatory response by regulating the 

state of cellular activation and the systemic responses to inflammation (J.I. 

Gallin, 1992). Furthermore, systemic inflammation consists of changes in 

circulating acute-phase proteins with or without fever, anemia, leukocytosis, 

or metabolic adaptations, especially involving liver and adipose tissue 

(Gabay and Kushner, 1999). There are two types of acute-phase proteins: the 

positive ones that are increased during systemic inflammation such as C-

reactive protein (CRP) or IL-6, or the negative ones that are reduced during 

systemic inflammation (e.g. albumin). Figure 1.12 summarises the cytokines 

involved during acute and chronic inflammation.  



 56!

 

 

1.4.1 Neutrophil and the endothelium  
!
Neutrophils are the most abundant subclass of leukocytes (60-70%) in the 

peripheral blood and they are the first line of defense against invading 

bacteria. The bone marrow produces and releases more than 5–10 × 1010 

neutrophils in the circulation every day. In human, the average peripheral 

blood neutrophil count amounts to 2.5–7.5 × 109/L with a circulating half-life 

of 6 to 8 h (Sasmono et al., 2007). Defective neutrophil recruitment can have 

lethal consequences during bacterial infections (Anderson and Springer, 

1987). In contrast, inhibition of neutrophil recruitment can have positive 

effect on ischemia-reperfusion injury (Singbartl et al., 2000), non-bacterial 

inflammation (Zarbock et al., 2006) and in autoimmune disease (Chiriac et 

al., 2007).  

!

!
Figure 1.12. Cytokines involved during acute and chronic inflammation.  
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During acute inflammation, neutrophils are the first to be rapidly recruited 

to the endothelium followed by monocytes. They can cause “endothelial cell 

activation” through the release of cytokines, which then upregulate adhesion 

molecules on the endothelial cell surface, hence amplifying the neutrophil-

endothelial interaction and the inflammatory process (Lush and Kvietys, 

2000, Ley and Reutershan, 2006). Septic stimuli, such as LPS or TNF- α, 

activate transcription factors, including NF"B and activator protein 1 (AP-1), 

resulting in the transcriptional activation of multiple genes that leads to the 

formation of the pro-inflammatory cytokines (e.g. TNF- α, IFN-#, pro-

inflammatory interleukins, IL-6, IL-1$), and also increases the expression of 

adhesion molecules such as selectins, ICAM-1, VCAM-1 on endothelial cells 

and the release of chemokines (e.g. MCP-1, IL-8, fractalkine) by endothelial 

cells to recruit leukocytes from the blood to the site of infection or tissue 

damage (Ley and Reutershan, 2006, Liu and Malik, 2006, Abraham, 2003, Rao 

et al., 2007). E-selectin is upregulated by cytokine stimulation of endothelial 

cells; P-selectin is upregulated by stimulation of endothelial cells with agents 

such as thrombin and histamine; and L-selectin is resident on the surface of 

unstimulated neutrophils (Smith, 1993). E-selectin is primarily important for 

neutrophil recruitment, whereas ICAM-1 participates in the transmigration 

of all leukocytes by binding to β2-integrins (also known as LFA1). VCAM-1 is 

involved in the recruitment of T cells, monocytes, eosinophils, and basophils, 

but not neutrophils, which lack the integrin counterreceptor VLA-4 (Langer 

and Chavakis, 2009). Transendothelial migration is directed by chemokines 

including IL-8, which attracts neutrophils, and MCP-1, the main attractant 
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for mononuclear cells (Braunersreuther et al., 2007). Endothelial cells express 

adhesion molecules and release chemokines at different rate depending on 

the stimuli to control the extent of leukocytes transmigration across them. 

 

During inflammation, neutrophils roll along the endothelium, respond to 

inflammatory signals, arrest, and transmigrate (Figure 1.13). The adhesion 

molecules ICAM-1, VCAM-1 and MADCAM-1 are located on endothelial 

cells. Proinflammatory cytokines, such as TNF-α or LPS, stimulate 

endothelial cells to upregulate the expression of these adhesion molecules, 

which is responsible for the adhesion of neutrophils to the endothelium and 

their subsequent transmigration through the endothelial cell (Fassbender et 

al., 1995). The first contact between neutrophils and the endothelium is 

known as capture or tethering and is mediated by selectins (L-, P- and E-

selectins) and their counter-receptors (Kansas, 1996). Selectin binding and the 

presentation of chemokines by endothelial cells leads to the activation of 

signaling pathways in neutrophils that cause changes in integrin 

conformation (inside-out signaling). Depending on the resulting integrin 

conformation, binding of activated integrins to their counter-receptors in the 

endothelial cell surface causes either slow rolling or arrest of neutrophils. 

Slow rolling of neutrophils along the endothelial cells is mediated by β2-

integrins (CD11a/CD18, CD11b/CD18, CD11c/CD18) binding to ICAM-1, 

ICAM-2 and ICAM-3 (Smith, 1993),(Dunne et al., 2002). The firm adhesion of 

neutrophils to endothelium is dependent on the time a neutrophil spends in 

close contact with the endothelium (Jung et al., 1998). Upon arrest, integrins 

bound to their ligands can signal into the neutrophil (outside-in signaling), 
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stabilize and strenghten the adhesion (Ley and Zarbock, 2006). They also 

activate different signaling pathways, and initiate transmigration. During the 

neutrophil-endothelium interaction, neutrophils receive signals from P-

selectin glycoprotein ligand-1 (PSGL1), L-selectin, G-protein-coupled 

receptors, and integrins, which can activate different pathways and 

subsequently leading to the activation of neutrophils with actin 

polymerization, crawling, transmigration through the endothelium, 

respiratory burst, and degranulation. Neutrophils activation also involves 

the rapid shedding of L-selectin (Gearing and Newman, 1993) and 

upregulation of CD11b/CD18 on the neutrophil surface (Smith, 1993).  

Endothelial cell activation results in the shedding of ICAM-1 from the cell 

surface into the circulation.  
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!
Figure 1.13. Leukocyte-endothelial cell interaction. Capture and slow rolling is mediated by selectins, activation is mediated by chemokines, 

arrest is mediated by integrins on neutrophils binding to adhesion molecules on the endothelial cell surface. Following arrest, neutrophils 

transmigrate either paracellularly or transcellularly (Ley et al., 2007).  
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1.4.2 Neutrophil degranulation 
!
Once neutrophils migrate to the site of injury, they function as a secretory 

cell. The mobilization and release of cytoplasmic granules and secretory 

vesicles from neutrophils is an important part of the defense mechanism 

(Faurschou and Borregaard, 2003). Neutrophil degranulation occurs in a two-

stage process involving an initial prerequisite “priming” step and a second 

“activation” step. Priming is essential to prevent unregulated neutrophil 

activation. Contact with activated endothelium, foreign surfaces, or agents 

such as LPS, primed neutrophils. Priming also inhibits chemotaxis and 

apoptosis suggesting that this event may serve to “fix” neutrophils at the 

inflamed site and increase the lifespan of these cells (Sengelov et al., 1995). 

Upon stimulation of neutrophils, there is a complete mobilization of 

secretory vesicles that contain the receptors necessary for the earliest phases 

of the inflammatory response such as "2-integrin, CD11b/CD18 and CD35 

(Sengelov et al., 1993, Sengelov et al., 1994). Continuous stimulation results 

in the release of secondary and then primary (azurophil) granules from 

neutrophils, a process known as sequential degranulation (Bainton, 1973, 

Bentwood and Henson, 1980). The extra cellular release of the secondary and 

primary granules is under separate controls. Chemoattractants selectively 

induce the release of secondary granules under conditions when azurophilic 

granules are not released (Table 1.1).  
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Neutrophils release four major types of granules, which include secretory 

vesicles that are endocytic in origin, tertiary, secondary, and azurophilic 

primary granules. Tertiary granules rich in proteases, such as MMP-9 and 

gelatinases, are released during the transmigration of neutrophils across the 

endothelium to facilitate the penetration of neutrophils through the 

endothelium. The release of the primary and secondary granules in the 

extravascular space is dependent on the increases in intracellular calcium. 

They contain the antibacterial peptides, including myeloperoxidase, α-

defensins, elastases, lactoferrin, which are important in the clearance of 

bacteria and contribute to the degradation of engulfed microorganisms 

(Sengelov et al., 1993). Table 1.1 summarises the contents of neutrophil 

degranulation.  

 

 

Table 1.1. Contents of neutrophil degranulation 
 PRIMARY 

GRANULES 
SECONDARY 
GRANULES 

TERTIARY 
GRANULES 

SECRETORY 
VESICLES 

 
 

Membrane 

 
CD63, CD68 

 
Laminin-R, 
Vitronektin-R, 
TNF-R, FPR 

 
CD11b, FPR 

 
CD11, CD14, 
CD16, FPR, 
CD10, CD13 

 
 
 

Matrix 

 
Azurocidin 
Cathepsin G 
Elastase 
Proteinase-3 
Defensins 
MPO 

 
Lactoferrin, 
hCAP18 (LL-
37), 
NGAL 

 
MMP-9, 
lysozyme, 
gelatinases 

 
Azurocidin, 
proteinase-3, 
albumin 
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1.4.3 Toll-like receptor mediated neutrophil activation 
!
Toll-like receptors (TLR) function as pattern recognition receptors for a broad 

range of microbial stimuli. Until now, ten human TLR have been identified 

(Sabroe et al., 2003). Neutrophils express all of these TLRs, except TLR3 

(Hayashi et al., 2003). The binding of TLR agonists on neutrophil causes 

activation of neutrophils (Kutsuna et al., 2004, Suzuki et al., 1999, Yuo et al., 

1989). TLR are also expressed in different parts of a cell, such as the plasma 

membrane (TLR1, TLR2, TLR4, TLR5, and TLR6) or in endo(lyso)somes 

(TLR3, TLR7, TLR8, and TLR9) (Barton and Kagan, 2009). Table 1.2 

summarises microbial TLR agonists and Table 1.3 summarizes the 

endogeneous TLR agonists.  

 

LPS produced from Gram-negative bacteria is often used as a model of 

inflammation for in vitro and in vivo studies and TLR4 is its major receptor 

for binding (Poltorak et al., 1998, Qureshi et al., 1999). Mice lacking TLR4 are 

not able to display an inflammatory response to LPS and are highly 

susceptible to Gram-negative infections such as Escherichia coli peritonitis or 

pneumonia caused by Klebsiella pneumoniae or Acinetobacter baumannii 

(Malcolm et al., 2003).  

 

Cellular responses to components of gram-positive bacteria are mainly 

mediated via TLR2 (Beutler et al., 2003). TLR2 agonists signal via TLR2 

heterodimers, TLR2 in combination with TLR1 and TLR2 in combination 

with TLR6 (Hirschfeld et al., 2000, Aliprantis et al., 2000, Hajjar et al., 2001). 
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TLR2 ligands induce cytokine and chemokine production, with involvement 

of phosphoinositide 3-kinase and the Akt signaling pathway (Strassheim et 

al., 2004). 

 

Table 1.2 Microbial ligands reported to activate cells via TLR. 
 MICROBIAL LIGANDS PATHOGENS 

 
TLR 1/2/6 

Lipopeptides 
Zymosan 
Lipoarabinomannan 

Various bacteria, 
Mycoplasma 
Yeast 
Mycobacteria 

TLR 3 ds RNA Viruses 
 

TLR 4 
LPS 
Pneumolysin 
F-protein 

Gram-negative bacteria 
Strep. Pneumonia 
Respiratory syncitial virus 

TLR 5 Flagellin Flagellated bacteria 
TLR 7/8 Single stranded RNA viruses 
TLR 9 Unmethylated CpG DNA Viral and bacterial DNA 

!
!
Table 1.3 Endogeneous TLR ligands 
 ENDOGENEOUS TLR 

LIGANDS 
DISEASE 

 
TLR 2 

Hyaluronan fragments  
High-mobility group box 1 
protein (HMGB1) 
Biglycan 

Lung inflammation 
 
 
Systemic inflammation 

TLR 3 RNA (from dead cells) 
RNA (dead cells) 

Skin healing/injury 
Rheumatoid arthritis 

 
 
 

TLR 4 

Myeloid-related protein 8 and 14 
(Mrp8/14) 
Type III repeat extra domain of 
fibronectin 
Hyaluronan fragments 
High-mobility group box 1 
protein (HMGB1) 
Oxidized phospholipids 
Biglycan 

Inflammation/sepsis  
 
 
 
Lung inflammation 
Inflammation/sepsis 
 
Lung injury 
Systemic inflammation 

TLR 7/8 Small nuclear RNA SLE 
TLR 9 HMGB1 

Immune complexes/dsDNA 
Autoimmune disease (SLE) 
Autoimmune disease 
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1.5 DRUG-INDUCED ENDOTHELIAL DYSFUNCTION 
!
Pharmacological agent and cytotoxic drugs can modulate the endothelial 

cells directly to trigger endothelial dysfunction and tissue toxicity. Indeed, 

drug-induced vascular injury is an important toxicological concern in the 

development of new drugs and in existing drug therapy, such as cisplatin 

chemotherapy. Various clinical studies have shown that one of the important 

drawbacks of cisplatin-based chemotherapy is the development of vascular 

injury during and post treatment (Nuver et al., 2010).   

 

1.5.1 Cisplatin – A model of vascular injury  
!
Cisplatin has been used for over 30 years as an anti-cancer drug. It has been 

the first line treatment for metastatic ovarian and testicular cancers combined 

with bleomycin or etoposide (Go and Adjei, 1999, Rabik and Dolan, 2007). It 

is also used against epidermoid carcinomas of the head and neck, refractory 

non-hodgkins lymphomas, and cancers of the bladder, lung, breast, uterus 

and cervix (Go and Adjei, 1999).  Despite being one of the most effective 

chemotherapeutic agents, its administration has been hindered by its side 

effects including ototoxicity, neurotoxicity, nephrotoxicity and vascular 

toxicity. 

 

The most common mode of administration of cisplatin is a single slow 

intravenous injection or infusion every 3-4 weeks. It can also be administered 

in close proximity to the site of the tumour. In ovarian tumour, the most 
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common method of administration is the intraperitoneal (IP) administration, 

where the concentration of the drug in the peritoneal cavity is about 50 times 

higher compared to intravenous (IV) administration. In the treatment of 

osteosarcoma and osteogenic sarcoma, repeated doses of intra-arterial 

cisplatin were found to be more effective than intravenous administration of 

the drug (Hugate et al., 2008). Intra-arterial delivery is also commonly used 

for hepatic tumours, melanoma and glioblastoma (Liu et al., 1998).  

 

1.5.1.1 Cisplatin-induced apoptosis 
!
Apoptosis is a mechanism through which cells with damaged genetic 

contents undergo programmed cell death to prevent the proliferation of cells 

with abnormal genes. It involves cell shrinkage, chromatin condensation, 

membrane budding, phosphatidylserine externalization and activation of a 

family of cysteine proteases called caspases (Cummings and Schnellmann, 

2002).  

 

Cisplatin is an inorganic molecule which contains two ammonia groups in 

the cis position and two chlorine molecules. Upon its entry in cells, cisplatin 

is hydrated and loses its chloride ions and gains two water molecules (Rabik 

and Dolan, 2007). The resultant highly reactive positively charged molecule 

has been shown to interact with intracellular nucleophilic molecules such as 

glutathione, methionine, metallothionein, deoxyribonucleic acid (DNA) and 

ribonucleic acid (RNA). DNA is the major target of cisplatin. Cisplatin 

interacts with DNA to form DNA-protein and DNA-DNA interstrand and 
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intrastrand crosslinks (Siddik, 2003). Reports have shown that the cytotoxic 

effect of cisplatin against neoplastic cells is mostly due to the formation of 

intrastrand bifunctional adducts, which induces a conformational change in 

the DNA structure and initiate cell death by apoptosis (Go and Adjei, 1999, 

Siddik, 2003). 

 

Caspases, a family of aspartic-acid directed proteases, is involved in the 

signalling pathways leading to apoptosis. Among the caspases, the 

proteolytic cleavage of caspase-3 plays a critical role in apoptosis (Polverino 

and Patterson, 1997). Indeed cisplatin exerts its potent chemotherapeutic 

effect specifically by triggering apoptosis in cancer cells via the activation of 

caspase-8, -3 and -6 (Seki et al., 2000). Activation of caspase-8 is the earliest 

event in the caspase cascade, followed by the activation of the intracellular 

protein Bid, which induces the release of cytochrome c from mitochondria 

and sequentially activating Apaf-1, caspase-9 and caspase-3 (Li et al., 1998, 

Luo et al., 1998, Zou et al., 1997, Hakem et al., 1998). Cisplatin-induced 

apoptosis can also be mediated by the activation of death-receptor pathway 

involving the FasL or the mitochondrial pathway, which also involves the 

caspase family of proteins (Rabik and Dolan, 2007, Sheikh-Hamad, 2008) 

(Figure 1.14). In culture cell lines, cisplatin may cause cell death through the 

inhibition of sodium-potassium adenosine triphosphatase, calcium channel 

function and mitochondrial function (Go and Adjei, 1999). 

!
Low concentration of cisplatin given for a prolonged period can also cause 

apoptosis of cells. Studies on non-cancer cells, for example mouse tubular 

cells, have shown that high concentrations of cisplatin (800 µM) cause 
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necrosis whereas low concentrations (8 µM) leads to apoptosis (Lau, 1999). In 

vitro studies have shown that treatment with cisplatin activates caspase-3 in 

the kidney epithelial cells (Cummings and Schnellmann, 2002). Although 

caspases have been associated with apoptosis, they have recently been 

shown to play a role in necrotic cell death. For instance, high doses of 

cisplatin (50 µM), which causes cell death by necrosis, also induced caspase-3 

activation in murine microvascular pancreatic endothelial cells indicating 

that apoptosis and necrosis may share common pathways (Dursun et al., 

2006). 
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!
Figure 1.14. Apoptotic pathways involved in cisplatin treatment. Cisplatin 
binds to DNA to form DNA adducts, thereby inhibiting cell proliferation and DNA 

synthesis. The DNA damage response is transduced via the activation of several 

death pathways. Activation of caspase-3 is the final pathway leading to apoptosis 
(Adapted from (Siddik, 2003).  
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1.5.2 Cisplatin-mediated side effects 
!
Although the use of cisplatin has produced high cure rates, it has also been 

associated with acute and chronic toxicity in normal tissues.  

 

1.5.2.1 Ototoxicity 
!
Ototoxicity is a common side effect of high doses of cisplatin. It occurs in 

about 23-54% of patients receiving cisplatin treatment and the functional 

deficits are observed as hearing loss and/or tinnitus in the frequency range 

beyond 4 kHz (Rabik and Dolan, 2007). Cisplatin causes damage to the outer 

hair cells of the cochlea (inner ear) (Rabik and Dolan, 2007) and the organ of 

corti (Rademaker-Lakhai et al., 2006). It activates specific enzyme in the 

cochlea to induce the release of reactive oxygen species (ROS) in the tissues 

of the inner ear (Rybak et al., 2007). The toxic effect of cisplatin is further 

exacerbated by the reduction of antioxidants level in the cochlea such as 

glutathione (Rademaker-Lakhai et al., 2006). Apoptosis is responsible for the 

outer hair cell death of the cochlea via the release of cytochrome c and the 

activation of caspases-9 and -3 (Rabik and Dolan, 2007).  

 

Cisplatin accumulates in vascular areas of the cochlea to cause vascular 

damage, which resulted in a dose-related hair cell loss. Miettinen et al. have 

shown that administration of 0.1% of cisplatin in guinea pigs induced a 

decrease in blood flow in the cochlea (Miettinen et al., 1997). Detailed 

electron microscopic study of blood vessels of the stria vascularis of guinea 
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pigs have shown that endothelial cells were damaged after treatment with 

cisplatin alone or in combination therapy with Gemtamicin. This included 

mitochondrial damage, depleted organelles, intracytoplasmic vacuole 

formation, lipid bodies and cytoplasmic extrusions located on the surface of 

the lumen. These observations suggested that endothelial cell damage of the 

strial capillaries in the cochlea contribute to cisplatin-induced ototoxicity 

(Kohn et al., 1997).  

 

1.5.2.2 Neurotoxicity 
!
Acute and delayed CNS toxicity are observed in about 30% of patients 

treated with cisplatin in a dose-dependent manner (Dietrich et al., 2004). 

Cisplatin-DNA complex binds to and causes apoptosis of the dorsal root 

ganglion neurones. This produces primary sensory neuropathy, which is 

characterised by a decrease in sensory nerve conduction velocity and 

selective sensory loss in the extremities (Ta et al., 2006).  

 

1.5.2.3 Nephrotoxicity 
!
Above a concentration of 90 mg/m2 IV or 270 mg/m2 IP, cisplatin produces 

dose-dependent renal toxicity (Deng et al., 2001). Cisplatin is excreted mainly 

through the kidney. Its concentration is about 5 times higher in the proximal 

tubular epithelial cells compared to the serum concentration. This difference 

in concentration is associated to cisplatin-induced nephrotoxicity. Rodent 

studies have shown that cisplatin is mainly excreted through glomerular 

filtration and only a very small amount is secreted in the renal tubules. 
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Tubular reabsorption has not been observed. Cisplatin is taken up via the 

kidney specific-organic cation transporter-2 (OCT2) in both the proximal and 

the distal nephrons (Yao et al., 2007). In the proximal tubular cells, cisplatin 

accumulates in the cytosol, mitochondria, nuclei and microsomes. It is 

conjugated to glutathione and metabolized to a reactive thiol through a !-

glutamyl transpeptidase and a cysteine S-conjugate "-lyase-dependent 

pathway. The reactive thiol is responsible for the nephrotoxic effect of 

cisplatin (Yao et al., 2007).    

 

Cisplatin-induced nephrotoxicity involves oxidative stress, apoptosis, 

inflammation and fibrinogenesis. Oxidative stress is one of the factors that 

cause acute renal injury. ROS damage cells by acting on the lipids (lipid 

peroxidation), proteins (denaturation) and DNA. In the presence of cisplatin, 

ROS is produced through various pathways including the xanthine-xanthine 

oxidase system, mitochondria and NADPH oxidase in cells. Cisplatin causes 

increase in free radical and decrease in antioxidant production by inducing 

glucose-6-phosphate dehydrogenase and hexokinase activity, which affect 

the mitochondrial dysfunction. Intracellular calcium level is increased and 

this activates the NADPH oxidase and stimulates ROS production by 

mitochondria. The level of superoxide anion, hydrogen peroxide and 

hydroxyl radical in the kidneys are higher after cisplatin treatment. Reactive 

nitrogen species (RNS) may also be involved in cisplatin-induced 

nephrotoxicity. In rats treated with cisplatin, the level of peroxynitrite and 

nitric oxide was higher compared to the control rats. Peroxynitrite can alter 

the protein structure and function, cause lipid peroxidation, DNA cleavage 
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and reduction in cellular defenses by oxidation of thiol pools (Yao et al., 

2007).  

 

Cisplatin induces inflammatory reactions in the kidney, which are also 

associated to renal injury. Degradation of I#B in a time-dependent manner 

and increase in nuclear factor-#B (NF-#B) binding activity by cisplatin is 

known to induce the expression of pro-inflammatory cytokines such as TNF-

$, which induces apoptosis via the production of ROS. Furthermore, 

cisplatin increases the expression of cytokines and chemokines such as 

monocyte chemoattractant protein-1 (MCP-1), ICAM, HO-1, TNF receptor 1 

and TNF receptor 2 in the kidney (Yao et al., 2007).  

 

Impairment of renal blood flow is also a consequence of cisplatin treatment. 

Clinical studies in patients with non-seminomatous testicular carcinoma 

have shown that those patients exhibit a reduction in effective renal plasma 

flow and an increase in filtration fraction during cisplatin-based therapy 

(Offerman et al., 1984). Furthermore, in vivo data have demonstrated that the 

decrease in glomerular filtration rate in early cisplatin-induced acute renal 

failure was in part due to alteration in renal blood flow and renal vascular 

resistance (Winston and Safirstein, 1985). Micropuncture studies also 

confirmed that a single dose of cisplatin caused a decrease in single nephron 

glomerular filtration rate and an increase in the afferent arteriolar resistance 

as a consequence of a reduction in both glomerular plasma flow and 

transcapillary hydraulic pressure difference (Barros et al., 1989). As a 

consequence, severe decrease in renal blood flow can cause regions of 
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hypoxia in the kidney. The proximal tubules are very sensitive to ischemic 

insult and can undergo cell death through both apoptosis and necrosis (Yao 

et al., 2007).  

 

1.5.3 Cisplatin-induced vascular damage 
!
Until recently, most studies on cisplatin were focussed on the mechanism of 

anti-tumour activity of cisplatin and on its toxic effect in the ear and the 

kidney. However, it is now increasingly becoming evident that cisplatin-

induced vascular toxicity may contribute to vascular injury not only during 

chemotherapy but can persist post-chemotherapy.  

 

The vascular toxicities associated with cisplatin include hepatic veno-

occlusive disease, Raynaud’s phenomenon, myocardial ischemia and 

infarction, cerebrovascular attacks, venous thrombosis and thromboembolic 

events and hypertension (de Vos et al., 2004). Raynaud’s syndrome and acute 

vascular ischemic events develops in 37-50% of patients treated with 

cisplatin-containing chemotherapy (Vogelzang et al., 1981, Hansen et al., 

1990, Bokemeyer et al., 1996). Thrombolic events may occur shortly after 

administration of cisplatin (Weijl et al., 2000), while cumulative doses of 

cisplatin of more than 400 mg/m2 have been associated to renovascular 

hypertension, cardiac ischemia, infarction and cerebrovascular attacks. 

Moreover, long-term survivors of testicular cancer often develop 

cardiovascular complications (Raghavan et al., 1992, Nord et al., 2003). In 

addition, several years after chemotherapy, the long-term survivors of 

testicular cancer were found to have elevated level of plasma vWf, micro-
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albuminuria, inflammation, and an imbalance in the plasma levels of the 

fibrinolytic proteins tissue-type plasminogen activator and plasminogen 

activator inhibitor type 1 (Nuver et al., 2004), which indicate endothelial 

dysfunction.  

 

Cisplatin can directly damage the endothelial cells or indirectly induce 

endothelial cell damage through inflammation or fibrinolysis. A recent study 

demonstrated that cisplatin attenuated the production of NO via the 

inhibition of Akt-eNOS cascades in human umbilical vein endothelial cells 

(HUVEC) and can hence contribute to the development of atherosclerosis 

(Sekijima et al., 2011). Cisplatin has also been reported to induce the release 

of pro-inflammatory cytokines, IL-1 and IL-6 from HUVEC (Shi et al., 1998). 

Furthermore, increased expression of ICAM-1 has been observed on HUVEC 

(Yu et al., 2008) and in human microvascular endothelial cells (HMEC) 

(Nuver et al., 2010) treated with cisplatin. In addition, in a rat model of 

cisplatin-induced nephrotoxicity, ICAM-1 mRNA level was found to be 

elevated and antibodies against ICAM-1 abrogated the renal dysfunction 

(Kelly et al., 1999). These evidence indicate that endothelial dysfunction is 

associated with cisplatin therapy and support the hypothesis that cisplatin 

can initiate or promote inflammation leading to the development of 

cardiovascular complications and atherosclerosis in cancer patients.  

 

Neuropathy associated with cisplatin treatment appears to occur as a result 

of the destruction of the nerve blood supply of the spine (vasa nervorum). In 

their in vitro studies, Kirchmair et al. showed that cisplatin directly causes 
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apoptosis of endothelial cells, leading to the degeneration of the vasa 

nervorum, the destruction of the nerve architecture and the loss of nerve 

function.  Furthermore, their in vivo data confirmed that the neuropathy 

induced by cisplatin was due to the profound endothelial cell apoptosis 

within the vasa nervorum in the rats. Laser Doppler perfusion imaging 

revealed decrease in the nerve blood perfusion and the endothelial cell-

specific BS1 lectin staining demonstrated reduction in the density of the vasa 

nervorum (Kirchmair et al., 2005). Together, these observations indicated 

that damage to the endothelial cells could be the initiating event of the 

neurotoxic side effect of cisplatin. 

 

1.5.4 HO-1 in cisplatin-induced injury 
!
The role of HO-1 in cisplatin-induced nephrotoxicity and acute kidney injury 

has been extensively evaluated. Indeed, the expression of HO-1 was found to 

be induced by cisplatin in the kidney (Agarwal and Nick, 2000). In cisplatin-

induced nephrotoxicity, upregulation of HO-1 expression occurs as early as 6 

hr after cisplatin administration in both the proximal and distal tubules of 

the kidney of a rat model (Shiraishi et al., 2000), like reflecting the increase in 

oxidative stress in the kidney. Indeed, both in vivo and in vitro experiments 

have shown that the expression of HO-1 in the kidney can determine the 

extent of renal injury caused by cisplatin. Inhibition of HO-1 by tin 

protoporphyrin in cisplatin-induced toxic nephropathy exacerbated the 

damage in terms of both structural and functional aspects of renal injury 

(Agarwal and Nick, 2000, Fang et al., 2004). Furthermore, HO-1 null mice 

were found to exhibit more severe renal failure and greater damage 
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(increased in apoptosis in both proximal and distal tubules of HO-1 deficient 

mice and necrosis) compared to wild-type animals treated with cisplatin. In 

the HO-1 null mice, tubular necrosis, degeneration, loss of brush border and 

red blood cell extravasation were observed while the damage in the wild-

type counterparts was significantly mild. Pharmacological overexpression of 

HO-1 in human renal epithelial cells using hemin attenuated cisplatin-

induced cytotoxicity and inflammation to a large extent (Agarwal and Nick, 

2000, Shiraishi et al., 2000). In addition, the pharmacological inhibition of 

HO-1 expression in the kidney by tin protoporphyrin has been shown to 

negatively affect renal hemodynamics and caused a reduction in renal blood 

flow, an increase in renal vascular resistance and an increase in the fractional 

excretion of sodium in rats treated with cisplatin (Agarwal et al., 1995).  

 

1.6 PREECLAMPSIA  
!
The only definitive therapy for preeclampsia is delivery of the baby and the 

placenta. Early delivery often has serious consequences for the health of the 

baby, especially before 32 weeks gestation, whereas watchful waiting often 

employed to allow for fetal lung maturity, in utero, increases maternal risks 

(Ahmed, 2011b). In developing countries, preeclampsia claims the life of 

60,000 mothers every year due to lack of appropriate diagnosis and treatment 

(WHO, 2005).  
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1.6.1 Epidemiology and risk factors 
!
Seven percent of healthy women, with no family history of preeclampsia, 

who start their pregnancy as healthy nulliparas eventually develop 

preeclampsia (Levine et al., 1997). Studies have shown that a genetic link can 

be attributed to preeclampsia; the presence of preeclampsia in a first-degree 

relative increases a woman’s risk of severe preeclampsia by 2- to 4-fold 

(Esplin et al., 2001). The placenta is a product of both mother and father and 

a history of preeclampsia in the father’s mother can also increase the risk 

(Esplin et al., 2001).  

 

The risk of preeclampsia can be increased by medical conditions such as 

chronic hypertension, diabetes mellitus, renal complications, obesity and 

hypercoagulable states (Duckitt and Harrington, 2005). Furthermore, the 

probability of developing preeclampsia is greater in women who had 

previously developed the condition. Preeclampsia only develops in the 

presence of the placenta and disappears quickly after the delivery of the 

placenta. Hence, conditions, which increase the mass of the placenta, such as 

multifetal gestations and hydatidiform mole, are known to promote the 

occurrence of the disorder. Contrary to common-sense expectations, smoking 

during pregnancy reduces the incidence of preeclampsia (England et al., 

2002).  
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1.6.2 Clinical characteristics 
!
Preeclampsia is defined as the de novo onset of hypertension (systolic blood 

pressure ≥ 140 mm Hg or diastolic blood pressure ≥ 90 mm Hg) and 

proteinuria (≥ 300 mg/24hr) after 20 weeks’ gestation. In extreme but rare 

cases, serious complications of preeclampsia can include acute renal failure, 

seizures (eclampsia), pulmonary edema, acute liver injury, hemolysis, 

and/or thrombocytopenia. The last three signs occur together as part of the 

hemolysis, elevated liver enzymes and low platelets (HELLP) syndrome, a 

severe variant of preeclampsia. Apart from the hypertension and proteinuria, 

the central nervous system also plays a role, such as headache and 

hyperrelexia.  

 

It has recently been suggested that preeclampsia be divided into those cases 

with early onset (<34 weeks of gestation) and those with late onset (>34 

weeks of gestation) (von Dadelszen et al., 2003). In general, cases with early-

onset preeclampsia are clinically more severe and usually result in the 

delivery of a very immature, growth-retarded fetus. Late-onset preeclampsia 

frequently does not exhibit the placental changes, such an unmodified spiral 

arteries, characteristic of this disorder (Sebire et al., 2005). 
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1.6.3 Pathogenesis of preeclampsia 
!

1.6.3.1 Placental vascular remodeling 
!
In normal placental development, extravillous cytotrophoblasts invade the 

uterine spiral arteries of the decidua and myometrium. These fetal cells 

replace the endothelial layer of the uterine vessels, transforming them from 

high resistance vessels to flaccid, low resistance cells. This allows the increase 

in uterine blood flow needed to sustain the fetus during pregnancy (Meekins 

et al., 1994).  

 

It is believed that in preeclampsia, this transformation is incomplete, where 

the cytotrophoblast invasion of the arteries is limited to the superficial 

decidua and the myometrial segments remain narrow and undilated 

(Meekins et al., 1994). Furthermore, whereas in normal pregnancy, the 

invasive cytotrophoblast down-regulate the epithelial-type adhesion 

molecules and adopt an endothelial cell-surface adhesion phenotype 

(pseudovasculogenesis); in preeclampsia, cytotrophoblasts do not undergo 

this switch of cell surface integrins and adhesion molecules, and fail to 

adequately invade the myometrial spiral arteries (Zhou et al., 2002) (Figure 

1.15).  However, failure to remodel the uterine arteries is also associated with 

intrauterine growth restriction, where no signs of hypertension and 

proteinuria are observed. Hence this effect cannot be seen as preeclampsia- 

effect. 
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!
Figure 1.15. Abnormal placentation in preeclampsia. In normal placental 
development, invasive cytotrophoblasts of fetal origin invade the maternal spiral 

arteries, transforming them from small-caliber resistance vessels to high-caliber 
capacitance vessels capable of providing placental perfusion adequate to sustain 

the growing fetus. During the process of vascular invasion, the cytotrophoblasts 
differentiate from an epithelial phenotype to an endothelial phenotype, a process 

referred to as "pseudovasculogenesis" or "vascular mimicry" (upper panel). In 

preeclampsia, cytotrophoblasts fail to adopt an invasive endothelial phenotype. 
Instead, invasion of the spiral arteries is shallow, and they remain small-caliber, 

resistance vessels (lower panel) (Lam et al., 2005).  
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1.6.3.2 Endothelial dysfunction and anti-angiogenic factors in 
preeclampsia 

!
Although preeclampsia is of placental origin, the tissue affected most is the 

maternal endothelium. Preeclampsia is characterised by widespread 

endothelial damage, which leads to proteinurea and hypertension. It has 

been proposed that circulating factors, originating from the placenta, 

contribute to the endothelial dysfunction and to the manifestations of the 

disease (Roberts et al., 1989). Many studies have shown that serum markers 

of endothelial cell activation are altered in preeclamptic women, including 

cellular fibronectin, vWF, soluble E-selectin, VCAM-1, platelet-derived 

growth factor and endothelin (Szarka et al., 2010, Aggarwal et al., 2011, Lok 

et al., 2008, Strijbos et al., 2010).  

 

VEGF plays a crucial role in the health of fenestrated and sinusoidal 

endothelium found in the renal glomerulus, brain and liver (Esser et al., 

1998) – organs that are severely compromised in preeclampsia. It is also 

critical for homeostasis (Ferrara, 2004) and activates both VEGFR-1 and 

VEGFR-2 to stimulate NO required for angiogenesis (Ahmad et al., 2006). 

Ahmed et al. were the first to propose that preeclampsia may arise due to 

loss of VEGF activity and by the possible elevation of sFlt-1 (Ahmed, 1997). 

This hypothesis was later confirmed when it was shown that adenoviral 

overexpression of sFlt-1 to pregnant rats mimicked the clinical 

manifestations of preeclampsia (Maynard et al., 2003). Furthermore, cancer 

patients receiving anti-VEGF therapy (e.g. Avastin) exhibit preeclampsia-like 
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symptoms (Kabbinavar et al., 2003), further supporting a role for VEGF in 

preeclampsia. Compelling clinical studies showed that serum levels of sFlt-1 

and PlGF gave the highest strength of association with the clinical 

manifestation of preeclampsia (Levine et al., 2004, Levine et al., 2006, Noori 

et al., 2010). Together these studies strengthen the proposal that loss of VEGF 

activity may be responsible for the clinical signs of preeclampsia.  

 

Dysfunction in eNOS activity promotes endothelial dysfunction due to the 

"uncoupling" of eNOS resulting in the production of superoxide instead of 

NO (Heitzer et al., 2001) and also leads to increase in endothelial cell 

permeability in preeclampsia (Wang et al., 2004). It was recently discovered 

that the anti-angiogenic factor soluble Endoglin inhibits TGF-β signaling in 

preeclampsia, hence preventing the activation of eNOS (Venkatesha et al., 

2006). Neutralisation of TGF-β leads to endothelial dysfunction characterised 

by impaired endothelium-mediated vasodilatation and elevated expression 

of surface adhesion molecules, resulting in increased leukocyte adhesion 

(Walshe et al., 2009). 

 

The physiologic role of PlGF in preeclampsia is less well understood. 

However, PlGF was shown to stimulate NO release (Khaliq et al., 1999, 

Bussolati et al.), hence loss of PlGF may also lead to a reduction in NO 

production. In pregnant rats, inhibition of both VEGF and PlGF is required to 

produce preeclampsia-like symptoms (Maynard et al., 2003), indicating that 

decrease in PlGF may be important in the pathogenesis of sFlt-1-induced 

endothelial dysfunction.  
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1.6.3.3 sFlt-1: A circulating antagonist to VEGF and PlGF 
!
Soluble Fms-like tyrosine kinase-1 (sFlt-1) or soluble VEGF receptor-1 

(sVEGFR-1) is formed from the alternative splicing of the VEGFR-1 (Flt-1) 

receptor, the endothelial receptor for VEGF and PlGF. sFlt-1 contains the 

extracellular ligand-binding domain of VEGFR-1 but lacks the 

transmembrane and intracellular signaling domain. Circulating sFlt-1 acts as 

a potent antagonist of VEGF- and PlGF-mediated biological activities by 

binding these ligands and by preventing ligand-receptor dimerisation with 

full-length VEGF receptors (Kendall and Thomas, 1993) (Fig. 1.9). 

 

In pregnancy, sFlt-1 mRNA is highly expressed in villous and extravillous 

trophoblast and sFlt-1 protein is present in the supernatant from villous 

cultures, indicating that vascular growth in the placenta may be locally 

regulated by this soluble factor produced by the placenta (Clark et al., 1998a). 

Although it was previously thought that sFlt-1 was restricted to the maternal 

circulation of pregnant women, recent studies have shown that detectable 

levels of sFlt-1, of monocytes and endothelial origin, were also present in 

non-pregnant women (Barleon et al., 2001). This indicated that sFlt-1 might 

act as a regulator of VEGF bioavailability, which is of importance as 

continuous low levels of VEGF are essential for endothelial cell proliferation 

and survival (Luttun and Carmeliet, 2003). It has been proposed that sFlt-1 

may regulate the bioavailability of VEGF through its heterodimerisation with 

VEGF receptors, hence abolishing VEGF-mediated signal transduction 
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(Barleon et al., 2001). 

 

In preeclampsia, placental expression of sFlt-1 is significantly elevated, hence 

increasing circulating sFlt-1 (Maynard et al., 2003). Numerous studies in 

rodents have attributed the preeclampsia-like symptoms observed as 

hypertension and proteinuria to be a direct consequence of the increased in 

sFlt-1 expression or circulating levels (Lu et al., 2007, Gilbert et al., 2007, Li et 

al., 2007, Bytautiene et al., 2010, Suzuki et al., 2009, Costantine et al., 2010). A 

recent study however showed that sFlt-1 can only induce hypertension and 

proteinuria in mice above a certain critical threshold (Bergmann et al., 2010). 

In support of this theory, women with fetal growth-restriction, despite 

having elevated levels of sFlt-1 compared to controls, do not exhibit signs of 

hypertension or proteinurea (Wallner et al., 2007).  

 

1.6.3.4 sEng: A circulating antagonist to TGF-!  
!
Dysregulation of TGF-β signaling and elevated levels of soluble Endoglin 

(sEng) have been reported in preeclampsia. TGF-β is an anti-inflammatory 

growth factor (Robertson et al., 2003) that activates eNOS (Venkatesha et al., 

2006) and endoglin is a transmembrane co-receptor for TGF-β1 and TGF-β3. 

sEng is the product of the proteolytic cleavage of the NH2- extracellular 

domain of the full-length membrane-bound endoglin. It binds to TGF-β1 and 

reduce its bioavailability. As a consequence, it limits the activity of TGF-β1 

signalling and eNOS (Jerkic et al., 2004, Toporsian et al., 2005) and hence 

promotes vascular dysfunction. Furthermore, sEng also inhibits angiogenesis 
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to the same extent as sFlt-1 (Venkatesha et al., 2006).  

 

Soluble Endoglin is increased in the circulating level of pregnant women 

many weeks prior to the clinical onset of the preeclampsia in these women 

(Levine et al., 2006). Increase in circulating sEng affects endothelial cell 

integrity in vivo (Walshe et al., 2009) and reduces the number of regulatory T 

cells observed in the systemic circulation of preeclamptic women (Santner-

Nanan et al., 2009). The molecular mechanisms regulating sEng release has 

not been fully elucidated. However, cytokines (TNF-α, IFN-γ) (Cudmore et 

al., 2007) and angiotensin II type 1-receptor autoantibodies (Zhou et al., 2010) 

increase both sFlt-1 and sEng and the stress-responsive HO-1 inhibits their 

release (Cudmore et al., 2007). In pregnant rats, sEng acts synergistically with 

sFlt-1 to induce endothelial dysfunction, hypertension, severe proteinuria, 

and HELLP syndrome (hemolysis, elevated liver enzymes and low platelets) 

(Venkatesha et al., 2006). 
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1.6.4 Inflammation and neutrophil activation in preeclampsia 
!
A generalized systemic inflammation is common to all pregnancies (Willis et 

al., 2003). Redman and colleagues have proposed that preeclampsia arises as 

a result of an excessive maternal intravascular inflammatory response to 

!

!
Figure 1.16. Diagrammatic representation of the role of anti-angiogenic 
factors in preeclampsia. A functional endothelial monolayer requires VEGF, 

PLGF and TGF-β for normal endothelial function via activation of nitric oxide 

(NO). In preeclampsia VEGF protective signal is compromised due to an excess 
of soluble Flt-1 (sFlt-1), which is compounded by a decrease in the expression of 

PlGF and a rise in circulating soluble Eng (sEng). 
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pregnancy, which may occur because either the stimulus or the maternal 

response is too strong and involving both the innate and the adaptive 

immune system (Redman et al., 1999). They also specified that preeclampsia 

is not intrinsically different from normal pregnancy but it is the extreme end 

of a continuous spectrum of inflammatory responses that are a feature of 

pregnancy itself (Redman and Sargent, 2010). It has also been proposed that 

as a consequence of poor placentation and reduction in uterine blood flow, 

the increase in oxidative and endoplasmic reticulum stress, both potent pro-

inflammatory mediators, may be the cause of preeclampsia (Burton et al., 

2009, Redman and Sargent, 2010).  

 

Many studies have stipulated that the contribution of endothelial 

dysfunction in preeclampsia can be viewed in a larger context as part of the 

inflammatory network. Activated leukocytes activate the endothelium and 

vice versa (Zimmerman et al., 1992, Mantovani and Dejana, 1989). More than 

a decade ago, Greer et al. reported that neutrophils were the major immune 

cell type, which were activated and were involved in the pathophysiology of 

preeclampsia (Clark et al., 1998b). However the direct consequence of 

neutrophil activation in preeclampsia has not been shown, although it is 

highly probably that the vascular dysfunction observed in preeclampsia is 

partly due to neutrophil activation and the release of pro-inflammatory 

cytokines [Sabatier, 2000 #2153;Halim, 1996 #1246;Haller, 1996 #1620.  
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As previously described, the human neutrophil is a major component of 

leukocytes and its arsenal includes the plasma membrane-associated electron 

transporting NADPH-oxidase enzyme system and the intracellular primary, 

secondary and tertiary cytoplasmic granules. Neutrophils bind and 

transmigrate through the endothelium via the interaction of endothelial 

adhesion molecules and surface receptor on neutrophils. Activated 

neutrophils release granules, ROS and RNS, which are able to mediate 

vascular damage. Several studies have confirmed that chronic inflammation 

in the decidua and placenta during preeclampsia may lead to local 

neutrophil activation in that compartment. Activation of neutrophils has 

been demonstrated through the marked upregulation of cell surface 

adhesion molecules including, CD11a, CD11b and CD11c, and the 

complement related markers CD35 and CD59 in neutrophils of preeclamptic 

women [Sacks, 1997 #2154; Mellembakken, 2002 #2152; Sabatier, 2000 #2153]. 

Other studies have shown that soluble markers of neutrophil activation, 

which is released in the circulation from the degranulation of activated 

neutrophils, are increased in preeclampsia. These markers include elastases 

and lactoferrin, which are both significantly elevated in preeclampsia (Halim 

et al., 1996, Sacks et al., 1998). Other markers of neutrophil activation include 

$-defensins and calprotectin that have been shown to be elevated in 

preeclampsia (Greenwald and Ganz, 1987, Braekke et al., 2005). 

 

$-defensins are highly concentrated in the granules of neutrophils. They are 

highly water soluble, but can also interact with the lipid environment of a 
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pathogen membrane. Human $-defensins, human neutrophil peptide (HNP) 

1–3 is primarily expressed in neutrophils (Greenwald and Ganz, 1987). 

However, they can also be produced by non-granulocytes including 

monocytes and lymphocytes (Agerberth et al., 2000), as well as natural killer 

cells (Chalifour et al., 2004). Defensins have anti-microbial properties against 

a variety of bacteria, viruses, fungi and parasites. They can modulate the 

production of inflammatory cytokines and chemokines by inducing the 

release of TNF-$ and IFN-! from macrophages (Soehnlein et al., 2008). In 

addition, Miles et al. reported that $-defensins released by apoptotic human 

neutrophils could inhibit the production of NO in chronic inflammation 

(Miles et al., 2009). In preeclampsia, recent reports have shown that $-

defensins is significantly increased compared to control patients (Prieto et al., 

1997).  

 

Calprotectin, also called S100A8/S100A9, is a calcium-binding protein, 

closely correlated with inflammation (Johne et al., 1997). It originates from 

neutrophils and macrophages and has various biological functions, including 

suppression of cell proliferation, apoptosis induction, immune regulation 

and participation in inflammatory reactions (Passey et al., 1999, Striz and 

Trebichavsky, 2004). In infectious or inflammatory conditions, the levels of 

calprotectin in serum, secretion and specific tissues can be detected to reflect 

severity of diseases to some degree as it is specifically expressed in 

inflammatory cells (neutrophils and macrophages), implying that it can be 

regarded as a clinically relevant marker of inflammation (Striz and 

Trebichavsky, 2004). In preeclampsia, calprotectin is also significantly 
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elevated (Braekke et al., 2005, Holthe et al., 2005). Hence, both the vascular 

and the inflammation theory as a cause of preeclampsia have persisted 

although their causational link has not been established.  
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CHAPTER 2 

HYPOTHESIS AND AIMS 
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2.1 HYPOTHESIS   
!
Endothelial dysfunction is the hallmark of vascular diseases, including 

atherosclerosis and preeclampsia. The vascular endothelium plays a vital 

role in the prevention of vascular dysfunction (Gibbons, 1997). It acts as a 

barrier, controls the vascular tone, inflammatory, and haemostatic responses 

as well as angiogenesis (Molitoris et al., 2002). Heme oxygenase-1 (HO-1) is 

an inducible, cytoprotective, anti-inflammatory enzyme that is widely 

acknowledged to provide defense against oxidant damage (Keyse and 

Tyrrell, 1989, Duckers et al., 2001) and to be protective against ischemia-

reperfusion injury (Melo et al., 2002, Katori et al., 2002, Zhang et al., 2004, 

Tsuchihashi et al., 2004). Furthermore, human biliverdin reductase (BVR), a 

water-soluble enzyme that reduces biliverdin (the product of heme 

oxygenase HO-1 and HO-2 activity) to the antioxidant bilirubin, also 

possesses cytoprotective properties (Baranano et al., 2002). The first part of 

this thesis will test whether HO-1 or BVR protect the endothelium from 

toxicological-induced injury by inhibiting caspase activation, pro-

inflammatory placenta growth factor (PlGF), soluble Endoglin (sEng) and 

soluble fms-like tyrosine receptor-1 (sFlt-1) release from the endothelium.  

 

Upregulation of the anti-angiogenic factors, sFlt-1 and sEng, was reported to 

cause endothelial dysfunction and play a key role in the pathogenesis of 

preeclampsia (Maynard et al., 2003, Ahmad and Ahmed, 2004, Venkatesha et 

al., 2006). The mechanisms responsible for the release of these factors have 
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not been fully elucidated. Ahmed and colleagues have challenged the theory 

that the increase in sFlt-1 and sEng is due to hypoxia or oxidative stress as a 

consequence of poor placentation and reduction in uteroplacental blood flow 

{Ahmed and Cudmore, 2009]. This is partly because preeclamptic placenta 

continues to generate substantially higher levels of sFlt-1 into conditioned 

media even 24 h ex vivo when cultured under atmospheric conditions as 

compared with normal pregnancy placental explants (Ahmad and Ahmed, 

2004). The role of inflammation as the main stimulus for the release of sFlt-1 

and sEng has also been proposed (Redman and Sargent, 2009). Hence this 

thesis aims at determining whether neutrophil activation/inflammation play 

a causal role in the release of these anti-angiogenic factors in both in vitro 

experimental cell culture setups and by observational clinical studies.  

 

2.2 AIMS 
!
2.2.1 Cytotoxic drug-induced studies  
!
Cisplatin is a potent anticancer drug. Its benefit is limited due to its long-

term cytotoxic effect on normal cells (Pliarchopoulou and Pectasides, 2010). 

The vascular endothelium is the first point of contact for systemic cytotoxic 

drug such as cisplatin. Hence, damage to the vascular endothelium is likely 

to be one of the initial events, which potentially contribute to, if not worsen 

the side effects associated with cisplatin chemotherapy. Patients treated with 

cisplatin for testicular cancer often develop vascular complications such as 

myocardial infarction, stroke and thromboembolic disease and have 
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increased levels of microalbuminuria and pro-inflammatory mediators 

which increases their risk of developing atherosclerosis (Nuver et al., 2005).  

 

Numerous studies have shown that HO-1 protect against cisplatin-induced 

nephrotoxicity and autophagy of kidney cells (Agarwal et al., 1995, Agarwal 

and Nick, 2000, Bolisetty et al., 2010) and inhibition of HO-1 by tin 

protoporphyrin (SnPP) prior to cisplatin enhances the nephrotoxic side effect 

of cisplatin (Shiraishi et al., 2000, Fang et al., 2004). Few studies have 

investigated the effect of cisplatin on endothelial cells (Yu et al., 2008, Nuver 

et al., 2010), however, none have directly addressed whether cisplatin-

induced endothelial cell damage can be prevented by the induction of HO-1 

in the endothelium. As the endothelium is the first contact point for cisplatin, 

we hypothesized that cisplatin-induced endothelial damage could be 

minimized by over-expression of the stress responsive enzyme, HO-1, which 

has cytoprotective, anti-inflammatory and anti-apoptotic properties. 

Furthermore, we postulate that BVR may also be protective but via the 

upregulation of HO-1. 

 

Pro-inflammatory cytokine, PlGF is required for macrophage infiltration in 

early atherosclerotic lesions in atherosclerosis-prone apolipoprotein-E-

deficient (ApoE-/-) mice (Khurana et al., 2005) and PlGF neutralization by a 

murine anti-PlGF antibody (!PlGF mAb) reduced inflammatory cell 

infiltration and atherosclerotic lesion size in these mice (Roncal et al., 2010). 

We hypothesised that cisplatin may stimulate PlGF release from the 
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endothelium but the upregulation of HO-1 will inhibit both cisplatin-

induced endothelial cell damage and PlGF release from endothelial cells.  

 

The objectives of cytotoxic drug studies were: 

(i) To determine whether cisplatin induces cell death in human umbilical 

endothelial cell (HUVEC) 

(ii) To measure whether cisplatin stimulates the release of the pro-

inflammatory cytokine, PlGF, or the anti-angiogenic growth factors, 

sFlt-1 and sEng from HUVEC.  

(iii) To test if adenoviral over-expression of HO-1 or BVR suppresses 

endothelial cell damage as measured by cleaved caspase-3 

expression, PlGF, sFlt-1 and sEng release from HUVEC 

(iv) To determine whether siRNA-mediated silencing of endothelial HO-1 

causes increase expression of cleaved caspase-3 and endothelial cell 

death induced by cisplatin. 

(v) To assess the effect of over-expression of BVR up-regulated HO-1 and 

hence confer cytoprotection via HO-1  

(vi) To examine the angiogenic properties of HO-1 and BVR over-

expression in endothelial cells  

 

2.2.2 Role of activated neutrophils in soluble endoglin release in 
preeclampsia 

!
Preeclampsia, a maternal hypertensive disorder, is associated with increased 

production of pro-inflammatory cytokines and reportedly marked 
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neutrophil activation (Greer et al., 1991). Endoglin (CD105), a 

transmembrane co-receptor for TGF-"1 and TGF-"3, is predominantly 

expressed by activated, proliferating endothelium during angiogenesis 

(Jerkic et al., 2006, Duwel et al., 2007) and regulates the activity of endothelial 

nitric oxide synthase (eNOS) (Jerkic et al., 2004, Toporsian et al., 2005). 

Proteolytic cleavage of the extracellular domain of endoglin gives rise to 

sEng, which functions to neutralise TGF-" signaling (Venkatesha et al., 2006) 

hence causing vascular dysfunction (Walshe et al., 2009). High plasma sEng 

level is associated with preeclampsia (Levine et al., 2006). In vivo studies have 

shown that sEng acts synergistically with sFlt-1, the natural antagonist of 

vascular endothelial growth factor (VEGF), to induce maternal endothelial 

dysfunction and severe preeclampsia (Venkatesha et al., 2006). Pro-

inflammatory cytokines (Cudmore et al., 2007) and angiotensin-II receptor 

type-1 autoantibodies (Zhou et al., 2010) stimulate sEng release while HO-1 

inhibits its release (Cudmore et al., 2007). The neutrophil is an important 

component of the innate immune system. Its production is increased in 

response to inflammation. Activated neutrophils have the ability to adhere to 

endothelial cells, to generate high levels of reactive oxygen species and 

proteases, which can cause vascular injury or inappropriate endothelial 

activation (Wang et al., 1998b, Lee et al., 2003). As activated neutrophils 

release large quantities of proteinases, which can cleave cell surface 

receptors, we hypothesized that activated neutrophils may contribute to the 

release of sEng from endothelial cells.  
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The objectives of activated neutrophil studies were: 

(i) To investigate whether neutrophils activated by LPS induce sEng 

release from endothelial cells 

(ii) To determine whether endothelial overexpression of HO-1 prevents 

LPS-activated neutrophils from stimulating sEng release. 

(iii) To determine the role of protease and metalloproteinase in the release 

of endothelial sEng by activated neutrophils. 

(iv) To test whether in vitro studies in HUVECs and trophoblasts 

correlate with clinical in vivo measurements of sEng and markers of 

inflammation and neutrophil activation. 

(v) To measure markers of neutrophil activation and inflammation in 

normal and preeclamptic plasma and urine. 

(vi) To determine the magnitude of neutrophil activation and elevation of 

anti-angiogenic factors in preeclampsia. 

(vii) To investigate using the Hill causational criteria to determine 

whether neutrophil activation/inflammation is causational for 

preeclampsia. 

(viii)  To determine causational relationship between anti-angiogenic 

factors and preeclampsia. 
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3.1 MATERIALS 
!
The sources of all purchased materials and gifts are outlined in Appendix I. 

Apparatus and equipment utilised during the studies are detailed in 

Appendix II together with corresponding suppliers. Formulations of all 

solutions and buffers are listed in Appendix III. 

 

Human Umbilical Vascular Endothelial Cells (HUVEC) was obtained from 

umbilical cords, of normal term deliveries at the Birmingham Women’s 

Hospital (BWH), BWH NHS Trust (Ethics number #$%&'(''%)*). Umbilical 

cords remained connected to the placenta and were immediately refrigerated 

at 4°C post-partum, following standard clamping and cutting procedures. 

The method used for HUVEC isolation is described in 1.2.2.1. 

 

3.2 METHODS 
!
3.2.1 General maintenance 
!
All tissue culture work, and other work requiring aseptic conditions, was 

carried out in a class II microbiological safety cabinet. Tissue culture media, 

plastics and supplements were purchased as sterile. Solutions required to be 

sterile were passed through a syringe-driven sterilizing filter (0.22µm pore). 

Glassware was washed and autoclaved prior to use. Cell culture media was 
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stored in accordance with manufacturer guidelines (i.e. at 4°C) and used 

before the expiry date.  

 

3.2.2 Cell types 
!

3.2.2.1 Isolation of Human Umbilical Vein Endothelial Cells 
!
Human Umbilical Vein Endothelial cells (HUVEC) were isolated from the 

veins of umbilical cords through digestion with collagenase as described 

previously (Jaffe et al., 1973). Detached endothelial cells were collected by 

flushing the collagenase solution through the umbilical vein with Medium 

199 (M199), buffered with Earle’s salts and supplemented with 2 mM L-

Glutamine, 100 U/ml penicillin, 10 mg/ml streptomycin, 2.5 ng/ml basic 

Fibroblast Growth Factor, 20 ng/ml Epidermal Growth Factor, and 20% FCS 

into a sterile 50ml tube. The cell suspension was spun at 80 g for 5 minutes 

and the resulting cell pellet re-suspended in 10 ml supplemented M199, 20% 

FCS. Cells were seeded in 0.2% gelatin-coated tissue culture flasks and 

allowed to attach overnight at 37°C in a humidified incubator with an 

atmosphere of 95% air, 5% CO2. The medium was replaced the following day 

to remove erythrocytes and the cells were grown to confluence. 

Immunofluorescence for the human von-Willebrand factor (vWf) was 

employed to ensure the purity of cultures. 
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3.2.2.2 Isolation of human neutrophils from whole blood 
!
Peripheral blood neutrophils were isolated from whole human blood for the 

neutrophil-endothelial co-cultures by dextran sedimentation of erythrocytes 

and density gradient centrifugation of leukocytes. All the procedures were 

conducted at room temperature.  

 

Healthy donors were consented prior to blood collection. About 40 ml of 

blood was taken from the median cubital vein of the anterior forearm of a 

healthy donor by venipuncture. The blood was collected in a 50 ml tube 

containing 100 µL of 0.5M EDTA blood. The tube was inverted gently several 

times to mix and either left at 4°C for no longer than 2 hrs or processed 

immediately. Isolation of neutrophils was performed in two steps: 

 

1) Dextran sedimentation – To remove most of the red blood cells (RBC). The 

RBC sedimented at the bottom of the tube, while the leukocytes and 

lymphocytes remain suspended in the solution. 4% dextran solution was 

added to the whole blood in a 1:6 ratio (1 ml of dextran for 6 ml of blood). 

The tube was inverted several times to ensure adequate mixing and was let 

to stand at room temperature for 45 mins to 1 hr until the separation was 

complete.  

 

2) Percoll gradient – Percoll gradients was prepared from a stock solution of 

isotonic Percoll. The isotonic stock solution of 90% Percoll was made up by 
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mixing 9 ml Percoll and 1 ml of 9% NaCl. By further dilutions with NaCl, 

79% Percoll and 56% Percoll were prepared. For every 40 ml of whole blood, 

three 15 ml tubes were prepared, each containing 15 ml of 56% Percoll.  Then, 

very carefully, to avoid mixing, 5 ml of 79% Percoll was layered below the 

56% Percoll solution. Equal volumes of the clear mixture of leukocytes and 

lymphocytes were carefully overlaid onto the gradients in each tube and 

centrifuged at 100 g, with breaks set to zero for 25 minutes at room 

temperature. A lower band (white ring) between the 56 and 79% Percoll 

denotes the layer that contains the neutrophils. Taking care not to disturb the 

layer of erythrocytes beneath, this layer was carefully aspirated with a 

pipette to a fresh 50 ml tube. PBS was added to the 50 ml mark of the tube to 

wash the neutrophils and the neutrophils were spun at 100 g for 10 minutes. 

The pellet of neutrophils at the bottom of the tube was then resuspended in 

the appropriate tissue culture medium. The neutrophils were counted using 

a haemcytometer and resuspended at a concentration of 1.0 X 106 cells/ml in 

M199 containing 5% FBS. The purity of neutrophil isolation was verified at 

regular intervals by cytospin+! 

 

3.2.3 Cell culture 
!

3.2.3.1 Human Umbilical vein Endothelial cell culture 
!
 HUVEC were maintained in a humidified incubator in an atmosphere of 

95% air, 5% CO2 at 37oC. Cells were seeded in 80 cm2 tissue culture flasks in 

20% FCS (for HUVEC). 2 mM L-glutamine, 10 U/ml penicillin and 0.1 µg/ml 
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streptomycin were added to the media. Confluent cells were sub-cultured by 

aspiration of the media from the cell monolayer and the cells were washed 

with 15 ml of PBS to remove the serum. Cells were detached by 2-minute 

incubation with 1ml of Trypsin/ethylenediaminetetraacetic (EDTA). When 

the cells were detached, 9 ml of media was added to inactivate the digestion 

of the extra-cellular matrix and the cell suspension was transferred to a 

sterile 15 ml conical tube. The cells were centrifuged at 80g (for HUVEC) for 

5 minutes to pellet the cells. The supernatant was aspirated before the cell 

pellet was re-suspended in 10 ml of growth medium. The cells were either 

split between new culture flasks or counted by haemcytometer in 

preparation for experiments requiring a certain number of cells per well 

prior to seeding in T-25 flasks or 6, 12, 24 or 96 well tissue culture plates. The 

cells were then seeded onto gelatin coated culture plates in the following 

manner: 

Table 3.1. Cell density according to different plates 
Tissue Culture Plate 

Type (No. Wells/Plate)  
Seeding density (No. 

Cells/Well) 
Volume/Well (ml) 

6 250,000 1 
12 150,000 0.5 
24 100,000 0.4 
96 10,000 0.1 

 

3.2.3.2 Neutrophil-endothelial cell coculture 
!
As described previously, HUVEC were seeded in 24-well plates and left to 

attach overnight in M199 complete medium containing 20% FCS. Prior to 

their addition onto HUVEC, neutrophils were stimulated with LPS for 10 

minutes, whereas control neutrophils were left untreated. 500 µl of 
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neutrophils suspended in M199 complete medium containing 20% FCS were 

seeded onto the HUVEC at a concentration of 1.0 X 106 neutrophils/ml with 

or without LPS. In separate experiments, neutrophils and HUVEC were also 

cocultured with various inhibitors or stimulators and incubated at 37oC for 

24 hours. After 24 hours, the supernatants were collected in 1 ml eppendorf 

tubes, centrifuged at 10,000 rpm for 5 minutes to remove endothelial cells 

and neutrophils debris. Following centrifugation, supernatant were 

transferred to fresh 1 ml eppendorf tubes and stored at -80oC until analysis.  

 

3.2.3.3 Cell Cryopreservation 
!
A stock of HUVEC was maintained through cryopreservation. HUVEC were 

trypsinised and pelleted before resuspension in 1 ml of pre-cooled culture 

medium containing 10% FCS and 10% Dimethyl Sulfoxide (DMSO). The cell 

suspension was then transferred to sterile cryovials labelled with cell type, 

passage number, and date of storage. The cryovials were cooled in “Mr 

Frosty” at a rate of -1oC/minute down to -80oC. Once frozen, the cryovials 

were transferred to racks and stored in a liquid nitrogen cryostat. When the 

cryopreserved cells were needed, cells were thawed at 37oC in a water bath 

for 10 minutes and immediately transferred to tissue culture flasks 

containing the respective serum containing growth medium. HUVEC were 

incubated for 16 hours to allow cell attachment followed by a wash with PBS 

to remove all traces of DMSO and replacement of the growth medium. 
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3.2.4 Adenoviral infection of cells 
!
Adenoviruses were amplified in HEK-293 cells and purified in house via a 

double caesium chloride gradient. Unless stated otherwise, viruses were 

administered to cells at a concentration of 50 Infective units (IFU) per cell. 

The transduction was carried out in the same culture medium that was used 

to grow the cells (complete M199 for HUVEC) and the cells were incubated 

with the virus for 16-20 hrs before the stimulation of the cells. !

 

To minimise the spread of viruses across the lab environment and to avoid 

cross-contamination of cells, filter tips were always used when handling 

viruses. This reduced the risk of generating viral aerosols. All vials and 

pipette tips that had been in contact with virus were treated with 1% TriGene 

solution prior to disposal. Moreover, all viral work was carried out in a 

designated hood whilst non-viral work was done in a different hood.  

 

The recombinant, replication-deficient adenovirus-encoding rat HO-1 

(AdHO-1) and the Escherichia coli "-galactosidase adenovirus gene (control) 

were used as described previously (Otterbein et al., 1999). Recombinant and 

replication-deficient adenoviruses-encoding BVR (AdBVR) was 

commercially made (Vector BioLabs, Philadelphia, USA). The titres of the 

viruses are shown in Table 3.2.  
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Table 3.2. Titres of adenoviruses 
Virus Titre (IFU/ml) 

Ad"-Gal 1.38 x 1011 
AdBVR 5.25 x 109 / 6.14 x 109 / 1.67 x 1011 
AdHO-1 4.32 x 1011 

 

3.2.5 siRNA gene knockdown  
!
HUVEC were trypsinised as described previously and the cells were 

electroporated with either ~3 µg HO-1 (sense, 5' 

GGCAGAGGGUGAUAGAAGAUU-3'; antisense, 5'-

UCUUCUAUCACCCUCUGCCUU-3') (Kweon et al., 2006), BVR sense, 

GCACGAGGAGCAUGUUGAACUCUUG; antisense, 

CAAGAGUUCAACAUGCUCCUCGUGC) (Zeng et al., 2008) or a universal 

control siRNA (Dharmacon, USA) using the HUVEC kit II and Nucleofector 

(Amaxa GmbH, Cologne, Germany) according to the manufacturer’s 

protocol. Equal volumes of cell suspension were then put to gelatine-coated 

6-well or 96-well plates in the appropriate volume of MCDB 131 medium 

and incubated overnight. The following day, the medium was replaced with 

HUVEC complete medium and the cells were stimulated.  

 

3.2.6 Cisplatin treatment 
!
Confluent HUVEC in 6-, 24- or 96-well plates were treated with different 

concentrations of cisplatin for the indicated period of time. For each 

experiment, a fresh stock solution of cisplatin was prepared in Dimethyl 

sulfoxide (DMSO). A stock solution of 200 mM was prepared by diluting 3 

mg of cisplatin in 50 µl of DMSO and further dilutions was carried out in 



 108!

HUVEC complete media. HUVEC was incubated for 12 and 24 hrs with 

cisplatin and the cells and supernatants were collected and stored at -80oC 

until required.  

 

3.2.7 MTT assay 
!
HUVEC were seeded at a density of 1.0 x 105cells/well in 96-well plates, 

incubated to attach for overnight in complete medium containing 20% FCS. 

The medium was aspirated from the cells and replaced with 100 µl of fresh 

medium containing the cisplatin at appropriate concentrations. After 24-hour 

incubation at 37°C, cisplatin was removed and 80 µl of fresh serum-free 

medium added and 20 µl of MTT (3-(4, 5-Dimethylthiazol–2-yl)-2, 5-

diphenyltetrazolium bromide thizolyl blue) at a concentration of 5 mg/ml 

was added to each well and the plates incubated in the dark at 37°C for 4 

hours. After 4 hours, the medium was carefully aspirated and 150 µl of 99.5% 

DMSO was added to each well to enable the optical absorbance to be read at 

540 nm and 690 nm with the Thermo LabSystems MultiScan Ascent 

microplate photometer. 

 

3.2.8 Quantitative real-time PCR 
!
Sample preparation and real-time polymerase chain reaction were performed 

as described previously (Ahmad et al., 2006). Briefly, mRNA was prepared 

with TRIzol and DNase-1 digestion/purification on RNAeasy columns 

(Qiagen, West Sussex, UK) and reverse transcribed with the cDNA Synthesis 
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Kit (Promega, Madison, Wis). Triplicate cDNA samples and standards were 

amplified in SensiMix containing SYBR green (Quantace, London, UK) with 

primers specific for HO-1 (sense, 5'-GGG TGA TAG AAG AGG CCA AGA 

CT-3'; antisense, 5'-GCA GAA TCT TGC ACT TTG TTG CT-3') (Smith et al., 

2003) or β-actin. The mean threshold cycle for each HO-1 was normalized to 

β-actin and expressed relative to control. 

 

3.2.9 Protein chemistry techniques 
!

3.2.9.1 Preparation of samples for protein analysis 
!
Extraction of protein from cell monolayers – After stimulation, the confluent 

monolayers of cells were washed with ice cold PBS and lysed with ice-cold 

radio immunoprecipitation buffer (RIPA buffer). The plates containing the 

cells were left at room temperature for 5 minutes. Cell lysates were collected 

using a cell scraper and transferred to clean Eppendorf tubes, which were 

kept on ice. The tubes were centrifuged at 13 000 rpm for 4 minutes and the 

supernatants containing the extracted proteins were transferred to clean 

eppendorf tubes. The protein concentration was assessed prior to storage at -

80oC. 

 

3.2.9.2 Estimation of protein concentration 
!
The amount of total protein present in the culture medium was measured 

before the SDS-polyacrylamide gel electrophoresis (SDS-PAGE) analysis 
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using the Bio-Rad protein assay (Bradford assay) to ensure equal loading of 

the protein for Western blotting. Protein standards were prepared from a 

stock solution of 20 mg/ml Bovine Serum Albumin (BSA), diluted in distilled 

water to give a range of concentrations of 0.2 – 1.4 mg/ml. Thawed proteins 

were diluted 1:5 in RIPA buffer and 5 µl of each sample and the BSA 

standards aliquoted in duplicate to each well (using a 96-well plate). 20 µl of 

Reagent ‘A’ and 150 µl of Reagent ‘B’ were added to each well. Reagent ‘A’ 

was made up mixing 20 µl of Reagent S to 1 ml of Reagent A. The colour was 

allowed to develop for 15 minutes and the absorbance was read within 60 

minutes in a Multiskan Ascent 96 well plate reader at 690 nm. Results were 

obtained by plotting of the protein BSA standard concentration against the 

optical density (OD) to give a straight-line graph. Samples were aliquoted to 

30 µg of total cell protein prior to the SDS-PAGE and Western blot analysis.  

 

3.2.10 SDS-polyacrylamide gel electrophoresis 
!

3.2.10.1 Gel preparation 
!
The gels were prepared taking care to ensure the glass plates and spacers 

were level in the casting chamber and that the plate assembly did not leak. 

Separating gels were prepared at a range of different acrylamide percentage 

concentrations dependent on the size of protein being assessed.  The gels 

were prepared in advance taking care to ensure the glass plates and spacers 

were level in the casting chamber and that the plate assembly did not leak. 

Separating gels were prepared at a range of % acrylamide concentrations 

dependent on the size of protein being assessed. Most commonly, 10% 
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acrylamide gels for separation of bands between 40-120 kDa were prepared 

and polymerisation initiated by the addition of Tetramethylethylenediamine 

(TEMED) and 10% ammonium persulphate (APS). Gels were poured into the 

plate assembly, taking care to prevent the formation of air bubbles. The gel 

was then overlaid with 70% ethanol, to prevent gel shrinkage and formation 

of a meniscus, and allowed to polymerise. The 70% ethanol layer was then 

removed and a 5% acrylamide stacking gel prepared as above poured 

carefully onto the polymerised separating gel. Sample loading combs were 

inserted into the stacking gel and the levels topped up during polymerisation 

to ensure against gel shrinkage. The combs were then removed, the 

polymerised gels transferred to the running apparatus and the upper and 

lower chambers of the running apparatus filled with electrophoresis running 

buffer. 

 

3.2.10.2 Loading of protein samples 
!
Either 30 or 50 ,g of total cell protein samples, dependent on the amount of 

the protein of interest present in the sample, were diluted to a final volume 

of 25 ,l in either 2x, reducing or non-reducing sample buffer containing 

bromophenol blue as a tracking dye. Immunoprecipitates were routinely 

resuspended in 50 ,l of 2x reducing sample buffer. Reducing buffer contains 

200 mM mercaptoethanol and DTT, which chemically reduces disulphide 

chains and allows separation of individual peptide chains, while non-

reducing buffer allows detection of full weight proteins. All samples were 

boiled for 5 minutes to reduce disulphide bonds or dissociate protein 
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Antibody binding, prior to loading of equal 25 ,l volumes onto the SDS-

PAGE gel against a positive control and pre-stained Kaleidoscope molecular 

weight markers ranging from 17 to 208 kDa. Gels were electrophoresed at 60 

V until samples had passed through the 5% stacking gel and the voltage then 

increased to 120 V. Electrophoresis was stopped when the bromophenol blue 

tracking dye reached the bottom of the gel. 

 

3.2.10.3 Western Blotting protocol 
!
(i) Assembly of the semi-dry electrophoresis transfer cell unit - The semi-dry 

electrophoresis transfer cell, composed of transfer cell, gel holder, safety lid 

with power cables and removable electrode cards, was used to transfer 

protein from acrylamide gels to nitrocellulose membranes. Following protein 

electrophoresis, the gels were rinsed in transfer buffer prior to transfer to 

facilitate the removal of electrophoresis buffer salts and detergents. Hybond 

ECL nitrocellulose membrane was cut to the dimensions of the gel and 

wetted in transfer buffer for 5 minutes. In addition, two pieces of thick filter 

paper were cut to the dimensions of the gel and completely saturated in 

transfer buffer. The blot transfer cell unit was assembled as shown below; 

care was taken to ensure no air bubbles were between gel and membrane 

affecting the efficiency of the transfer. For transfer of protein to occur, a 

current is passed from the cathode to the anode that is proportional to 0.8 

mA x (the area of the nitrocellulose membrane in cm2). 
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(ii) Membrane blocking - Following transfer of the protein samples onto the 

nitrocellulose membrane, non-specific binding sites were blocked by 

immersing the membrane in blocking solution composed of 5% skimmed 

milk and 0.1% BSA in Tween Tris buffered saline. Membranes were blocked 

for 1 hour at room temperature on an orbital shaker. After blocking, 

membranes were washed in TBST for 15 minutes at room temperature 

followed by two further 10-minute washes in fresh TBST. 

 

(iii) Primary antibody dilution - Following washing, the membrane was 

incubated with a primary antibody. Dilution of the primary antibody 

required to give optimum results for each experiment varied and was 

determined for each antibody used. Furthermore, the time and temperature 

of incubation of the membrane with the primary antibody was optimised for 

each antibody. The dilution of antibody used in this study are summarised in 

the Table below. 

Table 3.3. Dilutions of primary antibodies used.  
Antibodies Species raised in Optimum 

dilution 
Source 

!-actin Mouse monoclonal 1:15 000 Sigma Aldrich, 
UK 

HO-1 Rabbit polyclonal 1:5000 Abcam 

Cleaved caspase-3 Mouse polyclonal 1:500 Cell Signaling 
Tech, Herts, UK 

BVR Rabbit polyclonal 1:5000 Abcam 

  

(iv) Secondary antibody dilution - Before incubation of the membrane with 

secondary antibody, the membrane was washed as described previously. 
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Secondary anti-mouse; IgG:horse radish peroxidase (HRP) labelled 

antibodies were made depending on the species in which primary antibody 

was raised. They were diluted at 1:5000 (v/v) in 5% milk and incubated with 

the membrane for 1 hour at room temperature. 

 

(v) ECL detection - Following incubation of the membrane with the 

appropriate secondary antibody, the membrane was further washed as 

detailed described previously. For the detection process, the membrane was 

transferred in the dark room and drained of TBST. ECL detection solution 1 

was mixed 1:1 with ECL detection solution 2, added to the membrane and 

incubated for 1 minute at room temperature. Thereafter, the detection 

mixture was drained off; the membrane wrapped in Saran Wrap, and 

exposed protein side up to a sheet of autoradiography film (Kodak, XOMAT 

AR) in an autoradiographic film cassette with intensifying screens. Various 

exposure times were used for each membrane to achieve the best results for 

each blot. 

 

3.2.11 In vitro angiogenesis - Tube formation  
!
Assessment of in vitro capillary formation used growth factor-reduced 

Matrigel (Becton Dickinson, Oxford, UK).  Matrigel is a basement membrane 

matrix composed primarily of collagen IV, laminin, entactin, and heparan 

sulfate proteoglycans.  The Matrigel matrix was gently thawed overnight on 

iceand 50 ul was placed into each well of a 96-well culture plate at 4°C and 

allowed to polymerize by incubation at 37°C for 30 minutes.  After 
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polymerization of the Matrigel suspension 10,000 cells were plated to each 

well in culture medium containing 10% FCS.  After cells had attached to the 

Matrigel (90 minutes at 37°C), the FCS containing media was removed and 

agonist or the vehicle alone in media containing 0.2% BSA was added and 

incubated for 4-6 hours at 37°C. The tubular network growth area was 

compared in control and effector-treated Matrigel matrix.  In parallel 

experiments, Trypan Blue exclusion showed that cell viability was >90%.  For 

visualisation of cells, Calcein AM Fluorescent Dye (BD Biosciences, Bedford, 

MA) was added to the cells at a concentration of 4 µM 30 minutes before 

imaging. The cells were observed with a Nikon inverted microscope and 

image analysis for tube length was assessed using Image Pro Plus (Media 

Cybernetics Inc, Bethesda, MD, USA).   

!
3.2.12 Enzyme-linked immunosorbent assay (ELISA) 
!

3.2.12.1 General ELISA Protocol (DuoSet; R&D, UK) 
!
EIA/RIA PLATES (Corning, UK) were coated with 100 µl/well of capture 

antibody in PBS pH 7.4, covered with a plastic film and left in the dark at RT 

overnight. The following day the plates were washed four times with PBS 

containing 0.05 % Tween (PBS-T) and then blocked for 1 hour using 200 

µl/well 1 % BSA in PBS. After three PBS-T washes to remove residual BSA, 

samples were added at 100 µl/well and plates incubated for 2 hours with 

agitation at RT. After washing, 100 µl of biotinylated detection antibody in 

PBS-T was added to each well and incubated for a further two hours at RT 

with agitation. After washing streptavidin-HRP (1:200) in PBS-T was added 
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for 20 minutes then washed off. The hydrogen peroxide-colour substrate 

solution (R&D systems, UK) was added to the plate (see manufacturers 

instructions), incubated until sufficient colour change was observed and the 

reaction stopped using 2N H2SO4. Presence or absence of the protein of 

interest was determined by reading the optical density (OD) at 450 nm 

(adjusted at 540 nm) with a Multiskan Acsent 96 well plate reader and 

subtracting the blank value (sample diluent only) from the sample 

absorbance values. The ELISA used for the in vitro experiments are shown in 

the table below.  

 

Table 3.4. ELISA kit used for in vitro experiments 
Protein of 

interest 
Concentration of 
capture antibody 

Concentration of 
detection 
antibody 

Source 

sFlt-1 2 µg/ml 0.5 µg/ml R&D systems, 
UK 

sEng 0.2 µg/ml 0.4 µg/ml R&D systems, 
UK 

PlGF 0.2 µg/ml 0.4 µg/ml R&D systems, 
UK 

 

3.2.13 Immunohistochemical procedures 
!
Paraffin sections were deparaffinised in xylene and rehydrated with graded 

ethanol to potassium-phosphate-buffered saline solution (KPBS), pH 7.2. 

Following antigen retrieval with citrate buffer, the sections were pretreated 

with 1% hydrogen peroxide for 15 minutes followed by one-hour incubation 

in 5% donkey serum. The sections were then incubated overnight at 4oC with 

a primary antibody. Detection was performed with biotinylated donkey anti-

rabbit or goat anti-mouse IgG (Jackson ImmunoResearch, West Grove, PA) 
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as appropriate followed by avidin-biotin staining (Vectastain Elite ABC, 

Vector Laboratories, Burlingam, CA) and incubated with 3,3-

diaminobenzidine/nickel sulphate as chromogen solution. Specificity of 

staining was confirmed by omitting the primary antibodies. Specific staining 

was evaluated semi-quantitatively in a blinded fashion by examining six 

fields per slide and subjectively scoring on a scale from 0 (no staining) to 5 

(intense blue-black staining) the intensity of the chromogen deposited in the 

placental villous trophoblast, stromal and endothelial cells. Slides stained 

immunohistochemically purposefully were not counterstained so that 

morphological changes were hidden to the examiner. For illustration 

purposes sections were developed using Vector NovaRed (Vector) 

chromogen and were counterstained with hematoxylin.  

Table 3.5. Primary antibodies used for immunohistochemistry.  
Antibodies Species raised 

in/Recognition 
Optimum 
dilution 

Source 

Human Endoglin 
(extracellular 

domain) 

Goat/Human 1:500 R&D systems, 
USA 

MMP-14  
(catalytic domain) 

Mouse 
monoclonal/Human 

1:500 R&D systems, 
USA 

 

 

3.3 CLINICAL STUDIES 
!
3.3.1 Patient population, biological samples, clinical definition 

and clinical laboratory analyses 
!
Maternal blood was collected from women recruited at Yale-New Haven 

Hospital following admission to Labor and Birth or assessment in high- or 

low-risk antepartum units. Patient enrolment was performed depending on 
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clinical presentation in two prospective cohorts, “rule-out preeclampsia” or 

“rule-out preterm birth”, pursuant to protocols approved by the Human 

Investigation Committee of Yale University. For both enrolment cohorts 

patients were followed until delivery or discharge, and medical record data 

was entered prospectively in a de-identified perinatal research database that 

links the medical record information (including laboratory results and 

neonatal assessments for the newborns admitted to Newborn Special Care 

Unit) with the codes on the stored biological samples. This database is 

continuously updated by specific research staff. The decision to recommend 

admission, any clinically indicated laboratory tests or procedures, including 

amniocentesis or delivery of foetus, was made by the primary physician, 

independent of the research protocols. Patient recruitment, sample 

processing and abstraction of data from medical records were performed by 

medical or research staff as appropriate and were independent of me.  

 

After collection, samples for research were transported to the laboratory 

where they were spun at 3000 g and kept at 4oC for 20 minutes, then 

aliquoted in polypropylene cryotubes and stored at -80oC until analysis.  

 

Maternal serums were collected contemporaneously as previously described 

(Oliver et al., 2011). Blood samples were collected by venipuncture prior to 

intravenous administration of fluids and allowed to clot. Blood for plasma 

collection was collected in a tube containing citrate anti-coagulant. The tube 

was spun down at 1500 g for 15 mins. The top yellowish supernatant 
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(plasma) was collected carefully so as to avoid disturbing the white cells in 

the buffy coat. The plasma was stored at -80oC until analysis.  

 

Gestational age was established based on last menstrual period and/or early 

ultrasound evaluations (less than 20 weeks of gestation) in all cases. Severe 

preeclampsia was defined based on the American College of Obstetricians 

and Gynecologists criteria (2002) as gestational age greater than 20 weeks, 

blood pressure of 160 mm Hg systolic or higher or 110 mm Hg diastolic or 

higher on two occasions at least 6 hours apart, and/or proteinuria of at least 

5 g in a 24-hour urine specimen or 3+ or greater on two random urine 

samples collected at least 4 hours apart. Other elements of the diagnosis 

included: intrauterine growth restriction (less than 10th percentile), cerebral 

or visual disturbances (headache, visual change), epigastric or right upper-

quadrant pain, pulmonary edema or cyanosis, oliguria (urinary output less 

than 500 ml in 24 hours) or elements of HELLP syndrome, such as impaired 

liver function tests (greater than two times normal) and/or 

thrombocytopenia (less than 100 000 cells/µl). Chronic hypertension was 

defined as a sustained elevation in blood pressure greater than 140/90 

mmHg before pregnancy or before 20 weeks of gestation. Since preeclampsia 

is a progressive disease and by definition a clinical diagnosis for which no 

acceptable gold standard is yet available, our data was also analysed based 

on an outcome measure (the need for delivery for preeclampsia) rather that 

solely by clinical classification at enrolment.  
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Selection of samples from the biological repository and assignment to either 

control or study groups for the purpose of the analyses included herein was 

based on clinical diagnoses at sample collection and/or outcome and was 

done not by me and prior to my evaluation of analytes of interest or 

statistical analysis.  

 

3.3.2 Urine, creatinine quantification and calculations of fractional 
excretion indicators 

!
For total protein measurements, urine or maternal serum samples were 

diluted 1:12 or 1:60 respectively, with deionised water and 10 µl of the 

diluted sample plated in duplicate. 200 µl of 1:50 bicinchoninic acid reagent 

mixture (BCA protein assay, Thermo Scientific, Rockford, IL) was added and 

incubated 20 minutes at 37oC then read at 500 nm using a microplate reader 

against human serum albumin standards.  

 

For creatinine measurement, urine samples were diluted 1:100 and serum 

samples 1:8 with picric acid (Stanbio Laboratory, http://www.stanbio.com) 

and spun at 12,000 rpm for 30 minutes. 1:4 dilutions of 3% NaOH and sample 

supernatant were plated in duplicate and incubated at room temperature for 

10 minutes then read at 500 nm using a microplate reader against standard 

curves derived from known creatinine concentrations. 
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Fractional excretion indicators (clearance ratios) were calculated using the 

formula: (urine/plasma analyte concentration)÷(urine/plasma creatinine 

concentration) X 100. The fractional excretion of a substance represents the 

proportion of the substance excreted in the urine compared to that filtered by 

the glomeruli and is generally reported relative to creatinine clearance since 

creatinine is neither reabsorbed nor significantly secreted.  

 

3.3.3 Enzyme-linked immunosorbent assay (ELISA) 
!

3.3.3.1 General ELISA protocol (Quantikine kit, R&D, USA) 
!
Assay diluent was added at 100 µl/well to pre-coated plates. Samples and 

standards were then added at 50 µl/well and plates were incubated for 2 

hours with agitation at room temperature. After washing, 100 µl of 

horseradish peroxidate-conjugated detection antibody was added to each 

well and incubated for a further two hours at room temperature with 

agitation. After washing, 200 µl of hydrogen peroxide-colour substrate 

solution (R&D systems, US) was added to the plate (see manufacturers 

instructions), incubated until sufficient colour change was observed and the 

reaction stopped using 50 µl of 2 NH2SO4. Plates were read at 450 nm with 

570-nm wavelength correction using a VERSAmax microplate reader with 

Softmax Pro 3.1.1 software (Molecular Devices, Sunnyvale, CA) and the 

blank value (sample diluent only) was subtracted from the sample 

absorbance values. 
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3.3.3.1.1 ELISA for sEng 
!
96-well polystyrene microplate pre-coated with mouse monoclonal anti-

human Endoglin capture antibody was used. 50 µl of recombinant human 

sEng standard in assay buffer or serum samples (1:30 dilution) were added 

to each well and incubated at room temperature for 2 hours. sEng was 

detected with 200 µL/well of mouse monoclonal anti-human Endoglin 

detection antibody conjugated to horseradish peroxidase for 2 hours and 

detected as described above. 

 

3.3.3.1.2 ELISA for PlGF 
!
96-well polystyrene microplate pre-coated with mouse monoclonal anti-

human PlGF capture antibody was used. 100 µl of recombinant human PlGF 

standard in assay buffer or undiluted serum/urine samples were added to 

each well and incubated at room temperature for 2 hours. PlGF was detected 

with 200 µL/well of mouse polyclonal anti-human PlGF detection antibody 

conjugated to horseradish peroxidase for 2 hours and detected as described 

above. 

 

3.3.3.1.3 ELISA for sFlt-1 
!
96-well polystyrene microplate pre-coated with mouse monoclonal anti-

human sFlt-1 capture antibody was used. 100 µl of recombinant human sFlt-1 

standard in assay buffer or undiluted urine samples were added to each well 
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and incubated at room temperature for 2 hours. sFlt-1 was detected with 200 

µL/well of mouse polyclonal anti-human sFlt-1 detection antibody 

conjugated to horseradish peroxidase for 2 hours and detected as described 

above. 

 

3.3.3.2 ELISA for "-defensins 
!
Plasma !-defensins (HNP 1-3) were assayed according to the manufacturer’s 

protocol (Hycult biotech, Uden, Netherlands).  Human HNP 1-3 is released 

from neutrophils into serum in the process of blood coagulation. This will 

lead to false positive results. Hence, citrated plasma was used for the 

detection of !-defensins (HNP 1-3).  Briefly, plasma samples were diluted 

with the dilution buffer provided at 1:1000 in polypropylene tubes. As 

previously suggested (Craddock et al., 2008), the diluted plasma samples 

were left to incubate for 1 hr at room temperature to reduce interactions 

between !-defensins and immunoglobulins present in plasma prior to their 

addition to the pre-coated plates. Following this, plasma samples and 

standards were added at 100 µl/well and plates incubated for 1 hour with 

agitation at room temperature. After washing, 100 µl of diluted tracer was 

added to each well and incubated for a further 1 hour at room temperature 

with agitation. After washing, 100 µl of diluted streptavidin-peroxidase was 

added to each well for 1 hour.  After washing, 100 µl of TMB substrate 

solution was added to the plate and incubated for 20 – 30 minutes, until 

sufficient colour change was observed and the reaction stopped using 100 µl 

of stop solution to each well. Plates were read at 450 nm with 570-nm 
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wavelength correction using a VERSAmax microplate reader with Softmax 

Pro 3.1.1 software (Molecular Devices, Sunnyvale, CA) and the blank value 

(sample diluent only) was subtracted from the sample absorbance values. 

The measurable concentration range was 0.156 – 10 ng/ml.  

 

3.3.3.3 ELISA for calprotectin 
!
Plasma calprotectin (MRP8/14) was assayed according to the manufacturer’s 

protocol (BMA Biomedicals, Rheinstrasse, Switzerland). Citrated plasma 

samples were diluted to 1:1000 in the assay buffer provided. The samples 

and standards were added at 100 µl/well in the pre-coated microtiter plate. 

The plate was incubated for 1 hour with agitation at room temperature. 100 

µl of diluted detection reagent (1:400) was added to each well and the plate 

was incubated overnight (15-17 hours) at 4-8oC with shaking. The following 

day, the plate was washed with purified water. After washing, 200 µl of 

substrate solution was added to each well and incubated for 6-8 minutes at 

room temperature with agitation until sufficient colour change was observed 

and the reaction stopped using 100 µl of stop solution to each well. Plates 

were read at 450 nm with 570-nm wavelength correction using a VERSAmax 

microplate reader with Softmax Pro 3.1.1 software (Molecular Devices, 

Sunnyvale, CA) and the blank value (sample diluent only) was subtracted 

from the sample absorbance values. The measurable concentration range was 

0.02 – 0.2 µg/ml.  

!
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3.3.3.4 ELISA for Fibronectin 
!
Plasma fibronectin was assayed according to the manufacturer’s protocol 

(American diagnostica Inc., Stamford, CT). Citrated plasma was diluted to 

1:300 in the dilution buffer. Plasma samples and standards were added at 100 

µl/well and plates incubated for 1 hour with agitation at room temperature. 

After washing, 100 µl of diluted tracer was added to each well and incubated 

for a further 1 hour at room temperature with agitation. After washing, 100 

µl of detection antibody was added to each well for 30 minutes.  After 

washing, 100 µl of TMB substrate solution was added to the plate and 

incubated for 15 minutes, until sufficient colour change was observed and 

the reaction stopped using 100 µl of stop solution to each well. Plates were 

read at 450 nm with 570 nm wavelength correction using a VERSAmax 

microplate reader with Softmax Pro 3.1.1 software (Molecular Devices, 

Sunnyvale, CA) and the blank value (sample diluent only) was subtracted 

from the sample absorbance  

 

3.4 STATISTICAL ANALYSIS 
!
In vitro studies 

All data are expressed as mean ± Standard deviations. Statistical analysis 

was performed using two-tailed Student’s t-test or Mann-Whitney rank-sum 

tests, as appropriate.  
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Clinical studies 

Comparisons between two groups were performed using Student t tests or 

Mann-Whitney rank-sum tests, as appropriate. Multiple comparison 

procedures were performed using one way or Kruskal-Wallis analysis of 

variance (ANOVA) followed by Student-Newman-Keuls or Dunn’s post-hoc 

comparisons, as appropriate. Relationships between variables (correlations) 

were explored using Spearman rank-order correlations.  

 

SigmaStat 3.0 (Systat Inc. Chicago, IL) or GraphPad Prism (GraphPad Inc.) 

statistical softwares were used as aids for analysis. A p<0.05 was judged to 

denote statistical significance.  
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CHAPTER 4 
!
 

HEME OXYGENASE-1 AND BILIVERDIN 
REDUCTASE PROTECT AGAINST 

CISPLATIN-INDUCED ENDOTHELIAL CELL 
INJURY AND INHIBIT ANGIOGENESIS 
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4.1 INTRODUCTION 
!
Endothelial cell injury due to exposure to cytotoxic agent, like cisplatin, 

disrupts normal endothelial cells function. This results in the loss of 

constitutive protective mechanisms and increase in inflammatory, pro-

coagulant, vasoactive, and fibroproliferative responses to injury, which 

eventually lead to vascular complications. During and post cisplatin therapy, 

evidence of endothelial dysfunction and damage was observed clinically as 

hypertension (Valentova and Mladosievicova, 2010), microalbuminuria, 

atherosclerosis, myocardial infarction, stroke and thromboembolic disease 

(Nuver et al., 2005).  Furthermore, the endothelium being the first point of 

contact for the potent chemotherapeutic drug, cisplatin, it is plausible that 

damage to the normal vascular endothelium may be one of the initial events 

that could contribute or aggravate the well-known toxicities, which include 

ototoxicity, neurotoxicity, and nephrotoxicity, associated to it. Hence, we 

hypothesized that the upregulation of the cytoprotective enzymes, heme 

oxygenase (HO-1) and biliverdin reductase (BVR), would protect the 

endothelium against the cytotoxic effect of cisplatin.   

 

The protective effect of HO-1 stems from its products, carbon monoxide 

(CO), free iron (Fe) and biliverdin, generated from the degradation of heme 

(Jozkowicz et al., 2003). These molecules are associated with anti-apoptotic, 

anti-inflammatory, antioxidant and anti-mutagenic properties (Ollinger et al., 

2007). Apart from reducing biliverdin to bilirubin, BVR can also modulate 
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cell-signaling pathways by virtue of its ability to act as a transcription factor 

(McCoubrey et al., 1995) and to phosphorylate and autophosphorylate 

serine, threonine (Lerner-Marmarosh et al., 2005) and tyrosine residues 

(Hunter and Cooper, 1985). 

 

HO-1 is upregulated by stress stimulus such as heme, heavy metals, 

peroxynitrite, endotoxin, hypoxia, hyperoxia, nitric oxide, and various 

cytokines (Dulak et al., 2008). However, no known inducer of BVR has yet 

been identified. Although, extensive researches have focused on the 

protective role of HO-1 in cisplatin-induced kidney injury (Shiraishi et al., 

2000, Bolisetty et al., 2010) and few studies have demonstrated the damaging 

effect of cisplatin on endothelial cells (Nuver et al., 2010, Yu et al., 2008), 

none have directly addressed whether cisplatin-induced endothelial cell 

injury can be prevented by the induction of HO-1 or BVR in the endothelium.  

 

Cisplatin treatment is also associated with increased circulating levels of pro-

inflammatory mediators including IL-6, IL-1, IL-8 and TNF-α (Toubi et al., 

2003). Indeed, as mentioned earlier, cancer patients treated with cisplatin 

have an increased risk of developing atherosclerosis (Nuver et al., 2004), a 

disease characterized by inflammation. Atherosclerosis can lead to a number 

of complications, including ischemia, acute coronary syndromes (unstable 

angina pectoris and myocardial infarction), and stroke, all of which have 

been observed in patients treated with cisplatin (Nuver et al., 2005). Hence, 

targeting the inflammatory processes may be an attractive target to prevent 



 130!

or treat atherosclerosis. Placenta growth factor (PlGF), a member of the 

vascular endothelial growth factor (VEGF) family, has been implicated in 

vascular remodelling, atherosclerosis, and adverse ischemic events in animal 

models and in humans. It promotes vascular inflammation by binding 

specifically to VEGFR-1 receptor on monocytes (Luttun et al., 2002, Kodama 

et al., 2006, Khurana et al., 2005, Pilarczyk et al., 2008). Furthermore, in the 

atherosclerosis-prone apolipoprotein-E-deficient (ApoE-/-) mice, PlGF was 

required for macrophage infiltration in the early atherosclerotic lesions 

(Khurana et al., 2005) and neutralization of PlGF by an anti-PlGF antibody 

reduced the inflammatory cell infiltration and atherosclerotic lesion size in 

these mice (Roncal et al., 2010). Moreover, endothelial cells treated with PlGF 

have increased level of monocyte chemoattractant protein-1 (MCP-1) and 

increased expression of P-selectin (Fu et al., 2009), hence promoting 

monocyte recruitment and inflammation. Based, on the fact that treatment 

with cisplatin has been associated with increase risk of atherosclerosis, we 

investigated whether the release of PlGF from HUVEC was affected by 

cisplatin treatment.  

 

Angiogenesis is the formation of new blood vessels from pre-existing vessels. 

Tumors rely on a supply of blood flow in order to grow and proliferate, and 

hence induce blood vessel growth by secreting various growth factors, 

including VEGF. Hence, excessive angiogenesis is a characteristic of tumour 

growth. The tumour endothelial cell is an ideal target for anti-cancer therapy 

due to their genomic stability compared to cancer cells, which rapidly mutate 

and acquire drug resistance (Folkman and Klagsbrun, 1987). Recently, HO-1 
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has also been shown to play a role in angiogenesis (Dulak et al., 2004). 

Hence, if we are to propose that upregulation of HO-1 confers protection to 

endothelial cells during chemotherapy, it is important to determine the effect 

of HO-1 over-expression on VEGF-induced formation of new blood vessels. 

While a few studies have demonstrated the pro-angiogenic effect of HO-1 

and CO in endothelial cells (Deramaudt et al., 1998, Jozkowicz et al., 2003), 

the outcome of these reports merits further investigations based on a number 

of discrepancies in relation to the origin of endothelial cell types, the culture 

conditions, the method of induction of HO-1 or the concentration of HO-

1/CO used. Thus, using an adenovirus to over-express HO-1, we 

investigated whether HO-1 and BVR produce any effect on VEGF-induced 

capillary-like tube formation in primary cultured endothelial cells.  

 

In summary, the results of this study demonstrated that the over-expression 

of HO-1 in the endothelium decreases cisplatin-induced damage as assessed 

by cell viability and cleaved caspase-3 expression. Furthermore, over-

expression of BVR upregulates HO-1 expression in endothelial cells and 

together, they protect the endothelium against cisplatin-mediated 

cytotoxicity. Interestingly we also found that cisplatin was associated with an 

increase in PlGF release from the endothelium and that the over-expression 

of HO-1 inhibits this release. Finally we demonstrated that the 

overexpression of HO-1 and BVR inhibits VEGF-induced capillary-like tube 

formation, while the gene silencing of HO-1 and BVR restores the pro-

angiogenic effect of VEGF on capillary-like tube formation.  
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4.2 RESULTS 
 

4.2.1 Toxicity of cisplatin in endothelial cells 
 

To investigate the cytotoxic effect of cisplatin, confluent human umbilical 

vein endothelial cells (HUVEC) were exposed to cisplatin for 24 hours in 96-

wells tissue culture plates and the cell viability was measured by MTT assay. 

Cisplatin caused a decrease in endothelial cell viability at 24 hours at a 

threshold concentration of 25 µM (Figure 4.1C). This is consistent with earlier 

reports, which showed that cisplatin causes cell death in HUVEC from a 

concentration of 25 µM (L'Azou et al., 2005, Lau, 1999, Cummings and 

Schnellmann, 2002). The morphological analysis of the HUVEC monolayer 

using an inverted D-300 Nikon microscope revealed that exposure of cells to 

50 µM of cisplatin for 24 hours caused a considerable reduction in the 

number of cells attached compared to the untreated wells. (Figure 4.1A and 

4.1B). 
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!
Figure 4.1  Cisplatin affects endothelial cell viability. Endothelial cells were 
treated with increasing dose of cisplatin and the cytotoxic effect was assessed by 

MTT assay. (A) and (B) are  representations of the morphological structure of the 
untreated cells and the cisplatin-treated cells (25 µM). (C) Cisplatin decreases the 

cell viability significantly at 25 and 50 µM (** P<0.01) compared to untreated cells.  

Data are expressed as mean ± SEM of three independent experiments performed 
in triplicate.  

 
!
 
!
!
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4.2.2 Overexpression of HO-1 protects endothelial cells from the 
toxic effects of cisplatin 

 

HO-1 inhibits apoptosis in endothelial cells (Brouard et al., 2000). To 

determine the anti-apoptotic effect of HO-1 against cisplatin-induced 

endothelial damage, HUVEC was infected with an adenovirus encoding HO-

1 or "-galactosidase ("-gal) prior to treatment with cisplatin. The results 

showed that the ability of cisplatin to reduce cell viability was significantly 

diminished in HO-1 over-expressing HUVEC compared to Ad"-gal 

expressing cells at 25, 50 and 100 µM of cisplatin (P<0.01) (Figure 4.2A). 

 

 Cisplatin was reported to cause cell death through the caspase-dependent 

pathway in the kidney (Dursun et al., 2006) and microarray study in human 

microvessel endothelial cells (HMEC) showed that the gene expression of the 

caspase family was decreased in HO-1 overexpressed cells, hence decreasing 

apoptosis (Abraham et al., 2003b). In the presence of injurious stimulus or 

cytotoxic drugs, inactive caspases in the cytoplasm of cells are cleaved to 

become active. Western blot analysis showed that the protein expression of 

cleaved caspase-3 (15-19 kD) was significantly reduced in HO-1 over-

expressing HUVEC treated with 25 and 50 µM cisplatin compared to the 

Ad"-gal infected cells (Figure 4.2B). The blot also confirmed the successful 

over-expression of HO-1 (32 kDa) in HUVEC compared to "-gal infected cells 

(Figure 4.2B) and the uniform expression of !-actin indicated equal loading 

of total proteins in each well of the gel for the Western blot. 
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!
!
Figure 4.2 HO-1 protects endothelial cells against cisplatin-induced 
cytotoxicity. HUVEC transfected with 50 IFU of AdHO-1 and Adβ-gal were 
treated with increasing dose of cisplatin for 24 hours. MTT assay was performed 

to assessed the cell viability and a western blot was done to confirm the 

expression of HO-1, cleaved caspase-3 and β-actin. (A) HO-1 clearly protects the 
endothelial against cytotoxic damage by cisplatin because a significant (P<0.01) 

increase in cell viability was obtained at a concentration of 25, 50 and 100 µM of 
cisplatin compared to β-gal. (B) In the presence of over-expressed HO-1, the level 

of cleaved caspase-3 was less compared to β-gal. Data are expressed as mean ± 
SEM of three independent experiments performed in triplicate. 

 
!
!
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4.2.3 Silencing of HO-1 gene in endothelial cells enhances the   
cytotoxic effects of cisplatin 

 

To determine whether gene silencing of HO-1 in endothelial cells would 

exacerbate cisplatin-induced cell death, HUVEC were transfected with HO-1 

small interfering RNA (siRNA) and treated with cisplatin for 24 hours. The 

results showed that knockdown of HO-1 caused a 50% reduction in cell 

viability after treatment with 25 and 50 µM cisplatin (p<0.05) (Figure 4.3A). 

HO-1 immunoblotting confirmed that the HO-1 siRNA considerably reduced 

the HO-1 gene expression in HUVEC (Figure 4.3B) and that the reduction in 

HO-1 increased the level of cleaved caspase-3 compared to the scrambled 

siRNA (mismatch) control (Figure 4.3B). The equal level of expression of !-

actin indicated equal loading of proteins in each well of the gel for the 

Western blot.  
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!
Figure 4.3 siRNA HO-1 increases the endothelial cells susceptibility to 
the cytotoxic effect of Cisplatin. HO-1 gene was knocked-down in HUVECs 

using siRNA and the cells were incubated with cisplatin for 24 hours. Cell viability 
was assessed by MTT assay and western blot was done to confirmed knockdown 

of HO-1 and expression of cleaved caspase-3. (A) The cell viability was 
significantly lower at 25 and 50 µM of cisplatin in the absence on HO-1 compared 

to control siRNA (Mismatch) (p<0.05). (B) Western blots showed that the 
expression of HO-1 was considerably silenced with siRNA and that this caused a 

marked increase in cleaved caspase-3 compared to mismatch with 25 and 50 μM 
of cisplatin. Data are expressed as mean ± SEM of three independent 

experiments performed in triplicate. 
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4.2.4 Overexpression of BVR protects endothelial cells against 
the toxic effect of cisplatin  

 

Human BVR is present at very low concentration is endothelial cells. Like 

HO-1, BVR has been reported to confer protection against chemical-induced 

cell damage (Baranano et al., 2002, Liu et al., 2006).  In this study, we tested 

whether adenoviral over-expression of BVR could rescue endothelial cells 

from cisplatin-induced damage. The results showed that the over-expression 

of BVR protects endothelial cells against cisplatin-induced damage by 

increasing the cell viability at 25 µM and 50 µM cisplatin compared to 

HUVEC infected with Ad"-gal (Figure 4.4A). Furthermore, anti-cleaved 

caspase-3 immunoblot demonstrated that the amount of cleaved caspase-3 

was significantly reduced in BVR over-expressed HUVEC compared to 

control cells exposed to 25 and 50 ,M cisplatin (Figure 4.4B). Interestingly, 

the Western blot also showed that the overexpression of BVR upregulated 

the protein expression of HO-1. Finally, the successful over-expression of 

BVR (41 kDa) in HUVEC was confirmed by Western blotting, which also 

showed, through the uniform expression of !-actin that equal amount of 

proteins were loaded in each well of the gel for the Western blot.  (Figure 

4.4B).  
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!
Figure 4.4  BVR protects endothelial cells against cisplatin-induced 
cytotoxicity. HUVECs transfected with 50 IFU of AdBVR and Adβ-gal was 

treated with increasing dose of Cisplatin for 24 hrs. MTT assay was performed to 
assess the cell viability and a Western blot confirmed the overexpression of BVR, 

HO-1, cleaved caspase-3 and β-actin. (A) BVR confers cytoprotection to 
endothelial cells at a concentration of 25 (p<0.05) and 50 μM (p<0.01) of cisplatin 

compared to β-gal. (B) In the presence of overexpressed BVR, the expression of 
HO-1 is induced and the level of cleaved caspase-3 is reduced with 25 and 50 μM 

of cisplatin. Data are expressed as mean ± SEM of three independent 
experiments performed in triplicate. 

 

 
!
!
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4.2.5 BVR-mediated cytoprotection is dependent on HO-1 
!
Since we showed above that BVR induces the expression of HO-1 in HUVEC, 

we further investigated whether the cytoprotective function of BVR against 

cisplatin-induced endothelial cells damage was dependent on the expression 

of HO-1. Following adenoviral over-expression of BVR in HUVEC, HO-1 

expression was silenced using HO-1 siRNA. Our results showed that the 

knockdown of HO-1 abrogated the cytoprotective effect of BVR against 

cisplatin-induced endothelial cell injury by significantly decreasing the cell 

viability of HUVEC at 25 and 50 µM of cisplatin (p <0.05) (Figure 4.5A). 

Furthermore, the Western blot analysis demonstrated that the expression of 

cleaved caspase-3 was increased in the absence of HO-1 and even when BVR 

was over-expressed in HUVEC.  Successful overexpression of BVR and 

knockdown of HO-1 was also confirmed by the Western blot (Figure 4.5B). 

These results indicate that the presence of HO-1 is essential for the 

cytoprotective function of BVR.  
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!
Figure 4.5 BVR mediated-cytoprotection is dependent on the expression 
of HO-1. HUVEC were transfected with 50 IFU of AdBVR or Adβ-gal. Following 
this, HO-1 gene was silenced in those cells using siRNA and the cells were 

treated with increasing dose of cisplatin for 24 hrs. MTT assay was performed to 

assess the cell viability and a Western blot confirmed the expression of BVR, HO-
1, cleaved caspase-3 and β-actin. (A) BVR-mediated cytoprotection is 

significantly reduced at a concentration of 25 (p<0.05) and 50 μM (p<0.01) of 
cisplatin when HO-1 gene is silenced compared to AdBVR. (B) Western blot 

confirms that knockdown of HO-1 increases cleaved caspase-3 at 25 and 50 μM 
of cisplatin, even in BVR overexpressed cells. Data are expressed as mean ± 

SEM of three independent experiments performed in triplicate. 

!
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4.2.6 Resveratrol rescues endothelial cells from cisplatin-induced 
damage  

 

Resveratrol is a naturally occurring polyphenol, which has many health 

benefits, including anti-inflammatory, anti-oxidative and anti-cancer 

properties (Brisdelli et al., 2009). In vivo studies have shown that resveratrol 

upregulates cellular antioxidant defense mechanisms protecting endothelial 

cells against oxidative stress in aging, diabetes (Pearson et al., 2008, 

Espandiari et al., 2010) and cigarette smoking (Kode et al., 2008, Csiszar et al., 

2008). In our study, we pre-incubated HUVEC with 50 ,M of resveratrol for 8 

hrs and subsequently treated them with both resveratrol and cisplatin. 

Interestingly, we observed that in the presence of resveratrol there was a 

significant increase in cell viability at 25 and 50 ,M of cisplatin compared to 

controls (p<0.05 and p<0.01 respectively)  (Figure 4.6A). In addition, we 

showed that the concentration-dependent increase in resveratrol did not 

affect the viability of HUVEC (Figure 4.6B).  
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!
Figure 4.6 Resveratrol protects endothelial cells against cisplatin-
induced cell damage. MTT assay was performed to determine the cell viability of 
HUVEC in the presence of cisplatin and Resveratrol (50 μM) together and 

Resveratrol alone. (A) Resveratrol increased the endothelial cell viability of 

endothelial cells after treatment with 25 μM (p<0.01) and 50 μM (P<0.05). (B) The 
endothelial cells viability was not affected with increasing dose of resveratrol. 

Data are expressed as mean ± SEM of three independent experiments performed 
in triplicate. 
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4.2.7 Resveratrol induces the expression of HO-1 in HUVEC  
 

Resveratrol can protect endothelial cells from damage through the 

transcription factor Nrf2, which regulates the expression of numerous 

reactive oxygen species detoxifying genes and antioxidant genes, including 

HO-1 (Ungvari et al., 2010). Indeed in our study we observed that resveratrol 

increases both the mRNA level and the protein expression of HO-1 in 

HUVEC in a concentration-dependent manner in a 24 hour period (Figure 

4.7A,B).  

 

 

!
Figure 4.7 Resveratrol induces the expression of HO-1 in endothelial 
cells. (A) Resveratrol induces the expression of HO-1 at the mRNA level in a 
dose-dependent manner over a 24 hr period. Data are expressed as mean ± SD 

of three independent experiments. (B) Representative Western blot shows the 
increase in the protein level of HO-1 in the presence of 10, 50 and 100 µM of 

resveratrol.  

 
!
!
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4.2.8 Cisplatin does not induce the release of anti-angiogenic 
factors 

!
Soluble Fms-like tyrosine receptor-1 (sFlt-1) and soluble endoglin (sEng) are 

anti-angiogenic factors known to contribute to endothelial dysfunction 

(Walshe et al., 2009) and to be elevated in hypertensive non-pregnant human 

(Shah et al., 2010). Since cisplatin induces endothelial cell damage, we 

determined whether 24-hour exposure to cisplatin induced the release of 

sFlt-1 and sEng from HUVEC. Our results showed that cisplatin, even at a 

non-cytotoxic concentration of 1 and 10 µM, did not induced the release of 

either sFlt-1 or sEng from HUVEC (Figure 4.8). The concentration-dependent 

decrease in sFlt-1 and sEng observed was due to reduction in cell viability 

from a concentration of 25 µM onwards of cisplatin as demonstrated 

previously. Thus it appears that cisplatin does not induce endothelial cell 

damage through the release of sFlt-1 or sEng release. Furthermore, these 

findings imply that cisplatin does not possess anti-angiogenic properties.  



 146!

 

!
Figure 4.8 Cisplatin does not stimulate the release of sFlt-1 and sEng 
from endothelial cells. The levels of sFlt-1 and sEng were assayed by 

ELISA after 24 hours incubation with increasing dose of cisplatin in a 24-well 
plate. (A) and (B) Levels of sFlt-1 and sEng were not affected by cisplatin. 

Data are expressed as mean ± SEM of three independent experiments 
performed in duplicate.  
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4.2.9 Overexpression of HO-1 inhibits cisplatin-induced PlGF 
release in endothelial cells 

 

PlGF is present at very low concentration in quiescent endothelial cells. 

However, when the endothelial cells are activated as in pathological 

conditions, its level is increased (Carmeliet et al., 2001). Since both cisplatin 

(Nuver et al., 2004) and PlGF (Roncal et al., 2010) are known to play a role in 

the development of atherosclerosis, we investigated whether cisplatin affects 

the release of PlGF from endothelial cells. Interestingly, HUVEC, treated 

with increasing concentration of cisplatin, released significant amount of 

PlGF as early as 12 hours incubation (p<0.05) (Figure 4.9A). The MTT 

viability assay revealed that at 12 hours, cisplatin was not cytotoxic to 

HUVEC (Figure 4.9B). However cisplatin-induced PlGF release at both 12 

and 24 hours was not dose-dependent, indicating, according to Hill’s criteria 

of causality, that cisplatin was not directly responsible for the release of PlGF 

from HUVEC. Furthermore, at 24 hrs incubation with cisplatin, we found 

that the level of PlGF was significantly elevated in Ad-"gal infected cells 

(Figure 4.10), even at a dose of 25 µM at which cisplatin is known to induce 

cell death. Interestingly, the over-expression of HO-1 in HUVEC significantly 

inhibited the release of PlGF in both the untreated cells and the cisplatin-

treated cells at 10 and 25 µM of cisplatin (p<0.05). These results suggest that 

cisplatin-induced endothelial PlGF release could promote monocyte 

infiltration, hence promoting inflammation and increase the risk of 

atherosclerosis in cisplatin-based chemotherapy.  
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!
Figure 4.9 Cisplatin stimulates the release of PlGF from endothelial 
cells. (A) PlGF release was measured at 12 hours incubation with increasing 
dose of cisplatin in a 24-well plate. Cisplatin caused significant increase in PlGF 

level (*p<0.05) compared to control but not in a dose-dependent manner. (B) The 
viability of the cells was not affected at 12 hours incubation with cisplatin. Data are 

expressed as mean ± SEM of three independent experiments.!
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!
Figure 4.10 HO-1 prevents cisplatin-induced PlGF release from 
endothelial cells. (A) The effect of cisplatin on the release of PlGF was 
investigated after 24 hours incubation with the drug in a 6-well plate by ELISA. In 

the control wells (Ad-βgal), cisplatin induced a significant increase in PlGF at 10 
and 25 µM compared to untreated cells (p<0.05, n=3). Adenoviral overexpression 

of HO-1 at 50 IFU in endothelial cells reduces the level of PlGF independent of 
Cisplatin (p<0.05). Data are expressed as mean ± SEM of three independent 

experiments. 

!
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4.2.10 HO-1 negatively regulates VEGF-mediated 
angiogenesis in endothelial cells 

!
Angiogenesis is important for the survival of tumor cells. Since over-

expression of HO-1 was shown to protect against cisplatin-induced 

endothelial damage, it was important to determine whether over-expression 

of HO-1 could promote or inhibit angiogenesis. We assessed the angiogenic 

function of HO-1 in HUVEC through capillary tube formation on VEGF-

reduced Matrigel. Our results show that siRNA-mediated HO-1 knockdown 

potentiated the formation of VEGF-induced capillary-like network structure 

(Figure 4.11). Conversely, adenoviral over-expression of HO-1 in HUVEC 

significantly inhibited VEGF-induced tube formations compared to β-gal 

over-expressed cells (Figure 4.12). Collectively, these findings show that HO-

1 acts as negative regulators of angiogenesis. 
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Figure 4.11 Loss of HO-1 in HUVEC promotes angiogenesis. (A) Western 

blot showed that the expression of HO-1 was considerably silenced with siRNA. 
(B) Representative photomicrographs of capillary networks of HUVEC 

electroporated with HO-1 siRNA or control siRNA (mm siRNA) after 6 hours on 
VEGF-reduced Matrigel. (C) Quantification of capillary tubes in the presence of 

HO-1 siRNA. Data are expressed as mean (±SEM) or representative of five or 
more separate experiments performed in duplicate. (p < 0.05 compared to mm 

siRNA).  

 
!
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!
Figure 4.12 Heme oxygenase-1 negatively regulates growth factor-
induced angiogenesis.  (A) Representative photomicrographs of endothelial cell 

capillary network formation on HUVEC were infected with 50 IFU/cell of 
adenovirus encoding HO-1 (AdHO-1) or !-gal (Ad!-Gal), plated at a density of 

6x104 on growth factor-reduced Matrigel, prior to stimulation with VEGF (20 ng/ml) 
after 6 hours. (B) Quantification of VEGF induced capillary networks. Data are 

expressed as mean ± SEM or representative of five or more separate 
experiments performed in duplicate. 

 
!
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4.2.11 BVR negatively regulates VEGF-mediated 
angiogenesis in endothelial cells 

!
To date, no studies have investigated the role of BVR in angiogenesis. Hence, 

similar to HO-1, we assessed the angiogenic behaviour of BVR on VEGF-

induced capillary tube formation in HUVEC. Although the protein level of 

BVR is very low and undetectable in HUVECs, we showed that siRNA knock 

down of BVR in HUVEC significantly increased the VEGF-mediated 

capillary tube fomation (Figure 4.12). Conversely, adenoviral overexpression 

of BVR in HUVEC caused a reduction in VEGF-induced capillary tube 

formation (Figure 4.13). Taken together, these findings suggest that BVR 

negatively regulates angiogenesis.  
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!
Figure 4.13 Loss of BVR promotes growth factor-induced angiogenesis. (A) 

Western blot showed that the expression of BVR was considerably silenced with 
siRNA. (B) Representative photomicrographs of capillary networks of HUVEC 

electroporated with BVR siRNA or control siRNA (mm siRNA) after 4 hours on 
VEGF-reduced Matrigel. (C) Quantification of capillary tubes in the presence of 

BVR siRNA. Data are expressed as mean (±SEM) or representative of three or 

more separate experiments performed in duplicate. (p < 0.05 compared to mm 
siRNA).  

 
!
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!
Figure 4.14 BVR inhibits growth factor-induced angiogenesis. (A) Western 

blot to confirm the overexpression of BVR in HUVEC infected with 50 IFU/cell of 

adenovirus encoding BVR (AdBVR) or !-gal (Ad!-Gal). HUVEC were plated at a 

density of 6x104 on growth factor-reduced Matrigel. (B) Representative 

photomicrographs of endothelial cell capillary network formation after 4 hours 
stimulation of HUVEC with VEGF (20 ng/ml). (C) Quantification of VEGF induced 

capillary networks. Data are expressed as mean ± SEM or representative of three 
or more separate experiments performed in duplicate. 

!
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4.3 DISCUSSION 
!
This study demonstrates that cisplatin-induced endothelial cell damage, can 

be attenuated by the endothelial over-expression of HO-1 and BVR. 

Furthermore, it shows that the ability of BVR to protect against cisplatin-

induced cytotoxicity is dependent on the induction of HO-1 by BVR. 

Cisplatin did not affect the release of anti-angiogenic factors, sFlt-1 and sEng 

from endothelial cells. However, it induced the release of PlGF, which was 

inhibited via the over-expression of HO-1 in endothelial cells. Finally, we 

demonstrated that adenoviral over-expression of HO-1 and BVR are anti-

angiogenic as illustrated by the inhibition of capillary-like tube formations in 

primary human endothelial cells, whereas the knockdown of HO-1 and BVR 

promotes angiogenesis.  

 

Our in vitro findings that cisplatin induces endothelial cell damage is 

supported by recent studies that demonstrated that cisplatin causes 

endothelial cell activation by increasing the expression of endothelial 

intercellular adhesion molecule-1 (ICAM-1) (Yu et al., 2008, Nuver et al., 

2010), tissue plasminogen activator (tPA) and plasminogen activator 

inhibitor-1 (PAI-1) (Nuver et al., 2010), hence promoting endothelial-

leukocyte interactions and inflammation. Furthermore, previous 

morphological studies of Kohn and colleagues established, through detailed 

microscopic study of the blood vessels, that cisplatin causes endothelial 

injury such as mitochondrial inclusions, intra-cytoplasmic vacuole formation, 
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lipid bodies and constriction of the lumen of the stria vascularis of the guinea 

pigs (Kohn et al., 1997) as well as damage to the glomerular capillaries of the 

kidney (Kohn et al., 2002) and the liver (Kohn et al., 2005).  

 

Studies have previously showed that the chemotherapeutic effectiveness of 

cisplatin on tumours is mediated by apoptosis via the activation of caspase-8, 

-6 and -3 (Seki et al., 2000). In the present study, Western blot analysis using 

antibody against cleaved caspase-3 showed that cisplatin indeed caused 

activation and cleavage of caspase-3 in a dose-dependent manner in cultured 

endothelial cells with a maximum amount of cleaved caspase-3 generated 

with 50 µM of cisplatin. Although high doses of cisplatin has been generally 

associated with necrotic damage, a study by Dursun and colleagues 

demonstrated that necrotic cell death due to high doses of cisplatin (50 µM) 

could also cause activation of caspase-3 (Dursun et al., 2006). We further 

showed that cisplatin does not possess anti-angiogenic properties due to its 

failure to induce the release of the anti-angiogenic factors, sFlt-1 and sEng, 

from endothelial cells. Hence our study confirms that the cytotoxic effect of 

cisplatin on endothelial cells is mediated via apoptosis. Furthermore, 

together with the previous studies, our study demonstrates that cisplatin 

causes endothelial injury, which is likely to play a role in the vascular 

complications associated with cisplatin-based chemotherapy.  

 

Numerous studies have reported that upregulation of HO-1 in the kidney 

improves pathological conditions such as ischemia-reperfusion injury, 
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glomerular inflammation, renal failure, angiotensin-mediated hypertension 

(Agarwal and Nick, 2000) and protects against cisplatin-induced autophagy 

of kidney cells (Bolisetty et al., 2010). Other studies have shown that agents 

that upregulates HO-1 can protect against cisplatin-mediated ototoxicity 

(Gao et al., 2010, Kim et al., 2009). Our study is the first to show that 

endothelial cells over-expressing HO-1 are protected against the damaging 

effect of cisplatin. We further report that resveratrol, a polyphenol found in 

grapes and red wine can upregulate the expression of HO-1 in endothelial 

cells and that endothelial cells treated with both cisplatin and resveratrol are 

more resistant to cisplatin-mediated damage. Furthermore, among its many 

benefits, resveratrol also protects against cardiovascular disease and cancer 

(Jang et al., 1997, Bhat and Pezzuto, 2002, Pervaiz, 2003). Hence, the inclusion 

of resveratrol in cisplatin-based chemotherapy may benefit patients 

undergoing cisplatin-based chemotherapy by protecting them from 

developing vascular complications.   

 

Similar to HO-1, BVR is known to act as a cytoprotectant (Baranano et al., 

2002, Jansen et al., 2010). A recent study where the expression of BVR was 

induced with doxycycline in NIH 3T3 mouse fibroblastic cell line, 

demonstrated that over-expression of BVR protects against cisplatin-induced 

damage by increasing the cell viability. In the present study, we showed for 

the first time that over-expression of BVR in primary endothelial cells 

induces the expression of HO-1 and protects against cisplatin-induced cell 

damage. Furthermore, we demonstrated, through siRNA knockdown of HO-

1, that the cytoprotective effect of BVR is dependent on the BVR-mediated 
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upregulation of HO-1 in HUVEC. In a recent study, Jansen and colleagues 

demonstrated that the protective effect of pharmacological over-expression 

of HO-1 was almost completely abrogated in BVR-silenced cells, indicating 

that BVR is an essential in HO-1-induced cytoprotection (Jansen et al., 2010). 

Hence, it can be deduced that the presence of both HO-1 and BVR in 

endothelial cells are essential for cytoprotection. Based on these facts, we can 

also speculate that the anti-apoptotic and cytoprotective functions of both 

HO-1 and BVR may be due to bilirubin generated from the reduction of 

biliverdin by BVR. Indeed, bilirubin has previously been shown to protect 

against oxidative stress, lipid peroxidation and ROS (Neuzil and Stocker, 

1994). We can also speculate that, due to the co-dependency of HO-1 and 

BVR for cytoprotection, a feedback loop might exist between the two 

enzymes.   

 

Inflammation plays a major role in the development of atherosclerosis 

(Manabe, 2011). Nuver and coworkers observed in patients ten years after 

cisplatin-based chemotherapy that there was an increase in 

microalbuminuria, a predictive marker of atherosclerosis (Borch-Johnsen et 

al., 1999) and increased levels of inflammatory marker proteins, which may 

contribute to the subsequent development of accelerated atherosclerosis and 

an increased risk for future cardiovascular disease (Nuver et al., 2004). 

Monocytes and macrophages are keys players in inflammation and in the 

pathogenesis of atherosclerosis. In atherosclerosis, PlGF can act as a 

chemoattractant for monocytes and macrophages. It binds to the VEGF 

receptor-1 (VEGFR-1), which is expressed on monocytes, macrophages as 



 160!

well as endothelial cells, hence promoting an inflammatory response 

(Carmeliet et al., 2001). In this context, anti-VEGFR-1 antibody 

administration has been shown to reduce early lesions and macrophage 

infiltration in atherosclerosis-prone apolipoprotein-E-deficient (ApoE-/-) mice 

(Luttun et al., 2002). Furthermore, Khurana et al. has shown that PlGF is 

required for macrophage infiltration in early atherosclerotic lesions in apoE –

/– mice (Khurana et al., 2005) and that neutralization of PlGF by a murine 

anti-PlGF antibody reduced the inflammatory cell infiltration and 

atherosclerotic lesion size in these mice (Roncal et al., 2010). Our study shows 

that even low concentration of cisplatin induces a significant release of PlGF 

from endothelial cells. However, according to the Hill’s criteria of causation, 

the non-dose dependent release of PlGF due to cisplatin treatment suggests 

that cisplatin is not the direct cause for the increase in PlGF release from 

endothelial cells. Instead the stress induced by cisplatin may be a trigger for 

the release of PlGF. Regardless of this lack of causality between cisplatin and 

PlGF release, we can still speculate that, the increase in PlGF may promote 

inflammation during cisplatin-based chemotherapy and increase the risk of 

developing atherosclerosis and cardiovascular complications as has been 

observed during and post cisplatin chemotherapy.  

 

In this present study, we showed for the first time the negative regulation of 

HO-1 on cisplatin-induced PlGF release in endothelial cells. Numerous 

studies using pharmacological or gene induction approach have now 

demonstrated the cardiovascular protective function of HO-1 (Wu et al., 

2010). Indeed, a previous report showed that mice deficient in HO-1 and 
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apoE developed larger and more advanced lesions than mice deficient in 

apoE alone fed on a hypercholesterolemic diet (Yet et al., 2003). Thus, agents 

that up-regulate HO-1 will be effective not only by suppressing cisplatin-

induced endothelial cell damage, but also by reducing inflammation caused 

by the release of PlGF, hence protecting against cardiovascular disease.  

 

Apart from the cytoprotective, anti-apoptotic, anti-inflammatory and 

cardiovascular protective function of HO-1, we found that the over-

expression of HO-1 inhibited VEGF-driven capillary-like tube formation, 

while HO-1 siRNA gene ablation promoted VEGF-induced capillary-like 

tube formation in HUVEC, indicating that HO-1 acts as a negative regulator 

of angiogenesis. Despite being novel, these results are in marker conflict with 

earlier studies that have attributed a pro-angiogenic function to HO-1 in 

endothelial cells (Jozkowicz et al., 2003, Malaguarnera et al., 2002, 

Deramaudt et al., 1998). However, based on the type of cells used in previous 

studies and the differential mode of induction of HO-1, we feel we can make 

a cogent argument in support of our data.  

 

Firstly, studies that demonstrated the pro-angiogenic effect of HO-1 

primarily used the immortalised cell lines, namely, human dermal 

microvascular endothelial cell line (HMEC) (Jozkowicz et al., 2003) or 

coronary endothelial cells that is large vessel endothelium (Deramaudt et al., 

1998) or vascular smooth muscle cells (Dulak et al., 2002). As has been 

reported previously, the behaviour of endothelial cells and their functions 
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depend on the vascular bed of origin (Page et al., 1992). Indeed, 

microvascular endothelial cells grown from primary skin (Swerlick et al., 

1992) and heart (McDouall et al., 1997) show significant differences 

compared to HUVEC with respect to their response to inflammatory 

cytokines. Furthermore, the differences between the angiogenic potential of 

HUVEC compared to HMEC has been scrutinized and the outcome has 

revealed that resting or stimulated HUVEC does not produce detectable 

amount of VEGF, whereas resting HMEC produces about 24.9 ng/ml of 

VEGF, which can increase in response to specific stimulus (Nanobashvili J, 

2003). Indeed, in our study, we were unable to detect any VEGF in HUVEC 

overexpressed with HO-1. We fully acknowledge, as previously reported, 

that it is possible that over-expression of HO-1 can induce the release of 

VEGF in HMEC or in rat lung microvessel endothelial cell line (Jozkowicz et 

al., 2002, Abdel-Aziz et al., 2003, Abraham et al., 2003b). However, in view of 

the fact that HUVEC does not produce detectable level of VEGF, the study by 

Pae et al. (Pae et al., 2005), which showed that the pharmacological induction 

of HO-1 causes angiogenesis through the increase in VEGF in HUVEC, can 

be challenged.  

 

Moreover, HMEC and HUVEC differ in their sensitivity to exogenous 

growth factors. While under basal condition, the proliferation of HUVEC is 

very low; this can be increased with growth factors such as VEGF or FGF-2. 

On the contrary, HMEC proliferate spontaneously and their proliferation is 

not enhanced by growth factors. Similarly, the spontaneous outgrowth of 

capillaries is negligible in unstimulated HUVEC, but well pronounced in 
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HMEC (Nanobashvili J, 2003). Based on these observations, we feel the 

studies in HMEC are inappropriate. The study by Jozkowicz et al. attempted 

to address the pro-angiogenic effect of HO-1 by studying capillary tube 

formation using HUVEC and outgrowth of capillaries from HUVEC 

spheroids (Jozkowicz et al., 2003). However, the quality of the representative 

pictures and quantification was poor, which we could argue renders the 

findings of the study inconclusive.  

 

Different experimental conditions could also account for the conflict between 

our study and previous studies. In our study we used adenoviral over-

expression of HO-1, while other studies used specific doses of 

pharmacological inducers of HO-1 (Jozkowicz et al., 2003, Bussolati et al., 

2004) or retroviral transduction of HO-1 (Abraham et al., 2003b, Abdel-Aziz 

et al., 2003, Malaguarnera et al., 2002). In this context, we could argue that 

the use of pharmacological inducer of HO-1 may not specifically target HO-1 

and can also affect other processes unrelated to HO-1. In contrast, the use of 

adenoviral induction provides is a highly specific method to assess the effect 

of HO-1 on angiogenesis. Similarly, we cannot discount the fact that 

adenoviral and retroviral over-expression of HO-1 can affect the function of 

HO-1 in distinctly different ways.  

 

Using adenoviral over-expression or siRNA knockdown of HO-1 makes it 

difficult to modulate the expression of HO-1 in a dose-dependent manner. 

Hence, this limitation in our study raises the question of whether HO-1 has a 
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dual effect on angiogenesis in endothelial cells depending on its level of 

expression. Recently a study by Meng et al. showed that the arsenite-induced 

angiogenesis and capillary tube formation in HMEC is mediated via the 

dose- and time-dependent upregulation of HO-1 by arsenite. Indeed, the 

same study revealed that arsenite was only able to induce tube formation at a 

low concentration ranging from 0.1 to 1 µM, whereas at higher concentration 

of arsenite, no capillary-tube formation was observed. Hence, these 

observations raise the question of whether HO-1 promotes angiogenesis at a 

lower level of induction, whereas it inhibits angiogenesis when substantially 

over-expressed.  

 

This new concept that HO-1 could inhibit angiogenesis can be of therapeutic 

relevance in cancer treatments. Tumours depend on a supply of blood for 

their growth and survival. Since endothelial over-expression of HO-1 inhibits 

angiogenesis, hence HO-1 may inhibit tumour growth by inhibiting the 

differentiation of tumour endothelial cells. In contrast, inhibition of 

angiogenesis will not affect healthy endothelial cells since the rate of 

angiogenesis in those cells are very low. Further experiments are required to 

prove our theory that over-expression of HO-1 inhibit angiogenesis. 

However, if this proves to be accurate, HO-1 will not only have a beneficial 

role in protecting against cisplatin-induced vascular toxicity, but may also 

cause tumour regression.  

 



 165!

The role of biliverdin and bilirubin in angiogenesis has not been fully 

determined. In this study, we show for the first time that over-expression of 

BVR in endothelial cells inhibits capillary-like tube formation, while the gene 

ablation of BVR induces VEGF-driven angiogenesis. Unlike HO-1, BVR does 

not induce the expression of VEGF in endothelial cells, whereas it markedly 

increases VEGF release in keratinocytes (Loboda et al., 2008). To date, the 

effect of bilirubin on VEGF production or angiogenesis is unknown. Further 

work is required to determine the mechanism via which BVR exerts its anti-

angiogenic effect. However, several mechanisms can be proposed. First, as a 

transcription factor, BVR could induce the transcription of anti-angiogenic 

factors. Secondly via its capacity to phosphorylate and autophosphorylate 

serine and tyrosine kinase residues, it can influence anti-angiogenic signaling 

pathways.   

 

In summary, this study has demonstrated that HO-1 and BVR protect against 

cisplatin-induced endothelial cell damage by increasing cell viability. HO-1 

also inhibits the endothelial release of the pro-inflammatory chemokine, 

PlGF. To date, there are no clear and widely accepted recommendations on 

the prevention of vascular complications during cisplatin therapy, hence we 

can speculate that agents which upregulate HO-1/BVR should be included 

in cisplatin-based chemotherapy to improve therapeutic outcome. In 

addition, the over-expression HO-1 and BVR can potentially help in reducing 

tumour growth during chemotherapy. Indeed studies in breast cancer cells 

have shown that HO-1 inhibits breast cancer cell invasion via the 

suppression of the expression of matrix metalloproteinase-9 (Lin et al., 
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2008a). Another study demonstrated that HO-1 and its product, CO, 

suppress photocarcinogenesis in hairless mouse exposed to UVA radiation 

(Allanson and Reeve, 2007) and a more recent study illustrated that HO-1 

over-expression in prostate cancer cells led to a marked decrease in cell 

proliferation and migration (Gueron et al., 2009). Collectively, these studies 

provide support for the beneficial effect of HO-1 in certain type of cancers.  
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CHAPTER 5 
 

ACTIVATED NEUTROPHILS INDUCE THE 
RELEASE OF SOLUBLE ENDOGLIN FROM 

ENDOTHELIAL CELLS 
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5.1 INTRODUCTION 
 

Endoglin is a 180 kDa integral membrane bound glycoprotein, expressed 

constitutively on the endothelial cell surface, which served as a co-receptor 

for transforming growth factor-beta 1 (TGF-"1) and TGF-"3, in the presence 

of TGF-" type II receptor (Duff et al., 2003, Bernabeu et al., 2009). Its soluble 

form, soluble endoglin (sEng), which is generated from the proteolytic 

cleavage of the extracellular domain of endoglin (Gougos and Letarte, 1990), 

is elevated in various disease conditions, including cancer (Li et al., 2000, 

Fonsatti et al., 2003), systemic sclerosis (Wipff et al., 2008), malaria (Dietmann 

et al., 2009), Alzheimer’s disease (Juraskova et al., 2010), type II diabetes 

(Blazquez-Medela et al., 2010), atherosclerosis (Blann et al., 1996) and in 

obstructive sleep apnea and hypertension (Mohsenin and Urbano, 2011). The 

role of sEng has been most extensively studied in preeclampsia, a pregnancy 

and human specific hypertensive disorder. In pregnant women, circulating 

sEng is elevated many weeks prior to the clinical onset of preeclampsia 

(Levine et al., 2006, Rana et al., 2007, Romero et al., 2008, Erez et al., 2008, 

Baumann et al., 2008, Lim et al., 2009, Foidart et al., 2010). Soluble Endoglin 

functions to limit the activity of TGF-" signalling and endothelial nitric oxide 

synthase (eNOS) (Jerkic et al., 2004, Toporsian et al., 2005), hence inducing 

endothelial dysfunction. Together soluble Fms-like tyrosine kinase receptor-1 

(sFlt-1), another anti-angiogenic factor, sEng is known to induce 

preeclampsia-like symptoms in pregnant rats (Venkatesha et al., 2006).  
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Preeclampsia has been previously described as an excessive maternal 

inflammatory response to pregnancy (Redman et al., 1999) and studies have 

shown that neutrophils are activated in preeclamptic patients (Greer et al., 

1991, Lee et al., 2003, Sabatier et al., 2000, Tsukimori et al., 2005, Aly et al., 

2004). Indeed, neutrophils are the archetypal inflammatory leukocytes and 

during inflammation, they are the first type of leukocytes to leave the blood 

and migrate to the injurious site to defend the host in response to 

chemoattactants, such as IL-8 (Savill, 1993). They induce “endothelial cell 

activation” by releasing cytokines, such as TNF-α or IFN-Υ, which in turn 

upregulate adhesion molecules on endothelial cells, hence amplifying the 

leukocyte-endothelial cell interaction and the inflammatory process (Lush 

and Kvietys, 2000, Ley and Reutershan, 2006). Previous studies have shown 

that pro-inflammatory cytokines such as interferon-γ (IFN-Υ) or TNF-α 

(Cudmore et al., 2007) stimulate sEng release while, the stress-responsive 

enzyme heme oxygenase-1 (HO-1), inhibits its release (Zhou et al., 2010). We 

hypothesized that, since sEng is formed from the proteolytic cleavage of the 

extracellular domain of endoglin and activated neutrophils release large 

quantities of proteinases, including elastase, cathepsin, and 

metalloproteinases (MMP), which are able to cleave cell surface receptors 

(Tosi et al., 1990, Champagne et al., 1998), activated neutrophils may 

contribute to the shedding sEng from endothelial cells. Furthermore, to 

support the rationale of this study, many studies have proposed that 

neutrophil activation in preeclampsia may contribute to the pathogenesis of 

the disorder (Greer et al., 1991, Lee et al., 2003, Sabatier et al., 2000, 

Tsukimori et al., 2005, Aly et al., 2004) (Belo et al., 2003, Gupta et al., 2007). 
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However, no study has yet demonstrated the potential link between 

neutrophil activation and the release of anti-angiogenic factors in 

preeclampsia. Hence, we tested this hypothesis by co-culturing activated 

neutrophils with human umbilical vein endothelial cells in vitro and assayed 

for the levels of sEng released in the conditioned media.   

 

Our data demonstrate that the direct contact of LPS-mediated activated 

neutrophils to the endothelial cells induced the release of sEng from 

endothelial cells but not sFlt-1. We further demonstrate that the inhibition of 

MMP using a broad-spectrum non-specific inhibitor reduced both the basal 

and the activated neutrophil-induced release of sEng from endothelial cells. 

However, the specific inhibition of MMP-2 and MMP-9 did not affect the 

release of sEng in co-culture experiments. Hence, it is likely that the 

membrane bound MMP could mediate the release of sEng from endothelial 

cells.   
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5.2 RESULTS 
 

5.2.1 Activated neutrophils increase sEng release from 
endothelial cells  

 

Neutrophils can be activated by Toll-like receptor (TLR) agonists (Kutsuna et 

al., 2004, Suzuki et al., 1999, Yuo et al., 1989), which are important mediators 

of the innate immune system. TLR4 is a receptor for Gram-negative bacteria, 

lipopolysaccharide (LPS) and some viruses. The concentration of LPS in 

plasma or blood of patients with sepsis is about 200 ng/ml (Ngo et al., 2009). 

Previous studies have shown that the level of neutrophil activation in 

preeclampsia is almost similar to the level of neutrophil activation in sepsis 

(Sacks et al., 1998). For our in vitro studies, we opted to use a maximum 

concentration of 100 ng/ml of LPS, which is more appropriate to mimick 

inflammation in cultured endothelial cells.  Hence, to determine whether 

activated neutrophils induce sEng release from endothelial cells, neutrophils 

were co-cultured with confluent human umbilical vein endothelial cells 

(HUVEC) in the presence of the TLR4 ligand, LPS (100 ng/ml).  Neutrophils 

were first stimulated with LPS for 10 minutes before being added to HUVEC 

for 24 hours. The level of sEng was assayed by enzyme linked 

immunosorbent assay (ELISA), which showed that sEng release from 

HUVEC was significantly increased by about 3-fold in the presence of LPS-

stimulated neutrophils (p < 0.05) compared to LPS-treated HUVEC (Figure 

5.1A). Although, previous studies have shown that LPS activates endothelial 

cells and upregulates adhesion molecules (Zhang et al., 2011), in our study, 

LPS  did not stimulate the release of sEng from HUVEC, indicating that LPS-
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induced endothelial cell activation per se is not responsible for the cleavage of 

endoglin from endothelial cells. In contrast, when HUVEC were co-cultured 

with quiescent neutrophils there was an increase in sEng release, which did 

not reach statistical significant at 95% confidence interval (Figure 5.1A). A 

minimum concentration of 0.01 ng/ml of LPS on neutrophils was sufficient 

to elicit a statistically significant release of sEng from HUVEC and the release 

of sEng was directly proportional to the increase in concentration of LPS 

used (Figure 5.1 B). Overall, these results suggest that LPS-mediate 

neutrophil activation plays a role in the shedding of sEng from endothelial 

cells.  
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!
Figure 5.1. LPS-activated neutrophils increase the release of sEng from 
endothelial cells. (A) HUVEC were co-cultured with or without neutrophils for 24 
hours in the presence or absence of LPS (100 ng/ml). LPS-stimulated neutrophils 

co-cultured with HUVECs causes a significant release of sEng of HUVEC 
compared to quiescent neutrophils (p<0.05). (B) Neutrophils were pre-treated with 

different concentration of LPS for 10 mins and added to HUVEC and co-cultured 
for 24 hours. Increasing concentration of LPS induces a dose-dependent release 

of sEng in the neutrophils/HUVECs co-culture.  Data are mean ± SEM of 4 
independent experiments performed in duplicate. 

 
!
!
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5.2.2 Activated neutrophils fails to induce sFlt-1 release from 
HUVEC  

 

Soluble Fms-like tyrosine kinase receptor-1 (sFlt-1) binds to and antagonizes 

vascular endothelial growth factor (VEGF) and placental growth factor 

(PlGF), thereby lowering circulating levels of unbound VEGF and PlGF. This 

altered balance causes generalized endothelial dysfunction resulting in multi-

organ disease (Luttun et al., 2004). In pregnant rats, sFlt-1 treatment induces 

preeclampsia-like symptoms including hypertension, proteinuria, and 

glomerular endotheliosis (Maynard et al., 2003). Previous studies have 

reported that complement activation arises in inflammatory conditions and 

that the products of the complement cascade trigger the release of sFlt-1 from 

monocytes (Girardi et al., 2006). Since no studies have demonstrated the 

effect of neutrophil activation on the release of sFlt-1, we investigated 

whether LPS-induced activation of neutrophils affected the release of sFlt-1 

when co-cultured with HUVEC. Our results showed that activated 

neutrophils do not induce the release of sFlt-1 from endothelial cells or from 

neutrophils (Figure 5.2). 
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!
 
Figure 5.2. LPS-activated neutrophils have no effect on the release of sFlt-1 
from endothelial cells. HUVECs were co-cultured with or without neutrophils for 24 
hours in the presence and absence of LPS (100 ng/ml). The level of sFlt-1 in the 

supernatant was measured by ELISA. The release of sFLt-1 was not affected by the 
presence of either quiescent or LPS-activated neutrophils. Data are mean ± SEM of 4 

independent experiments performed in duplicate. 

!
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5.2.3 Over-expression of HO-1 does not inhibit neutrophil-
induced sEng release 

 

Many studies have shown that HO-1 and its products can inhibit neutrophil 

recruitment and neutrophil-endothelial cell interactions in inflammatory 

conditions by downregulating selectins and cell adhesion molecules (Freitas 

et al., 2006, Soares et al., 2004, Otterbein et al., 2003). A recent study 

demonstrated that the downregulation of ICAM-1 expression by HO-1 and 

its products could prevent neutrophil recruitment (Dal-Secco et al., 2010). In 

addition, adenoviral and pharmacological over-expression of HO-1 in 

HUVEC also inhibits cytokine-induced sEng release from endothelial cells 

(Cudmore et al., 2007), (Zhou et al., 2010).  

 

To determine whether the inhibitory effect of HO-1 on sEng release was 

maintained in the presence of activated neutrophils, HO-1 was over-

expressed in HUVEC using an adenovirus prior to the addition of activated 

neutrophils. Our results confirmed that over-expression of HO-1 indeed 

inhibits the release of sEng from HUVEC in the absence of neutrophils 

(Figure 5.3A). However, when quiescent or activated neutrophils were co-

cultured with HUVEC, HO-1 failed to block the release of sEng from 

endothelial cells (Figure 5.3B). Neutrophils bind to ICAM-1 via its β2-integrin 

receptor (Dustin and Springer, 1988). Hence, this could indicate that the 

interaction of neutrophils β2-integrin with ICAM-1 does not participate in the 

release of sEng from endothelial cells. In addition, since HO-1 is associated 
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with anti-oxidative and anti-inflammatory properties (Loboda et al., 2008), it 

is also possible that the production of reactive oxygen from activated 

neutrophils is not responsible for the release of sEng from HUVEC. 

 

 

!
Figure 5.3. HO-1 overexpression fails to suppress LPS-stimulated neutrophils 

from inducing endothelial sEng release. HUVECs were infected with 50 

infective units/cell of AdHO-1. (A) HO-1 negatively regulated the level of sEng 

release in HUVECs (p< 0.01) (B) Neutrophils and HUVEC cells coculture were 

treated with or without TLR-4 ligand (LPS, 100 ng/ml) for 24 hours. In the 

presence of activated neutrophil, HO-1 did not inhibit the release of sEng from 

HUVECs. sEng level in culture medium was measured by ELISA. Data are mean 

± SEM of 3 experiments performed in duplicate. (C) Representative blots to 

confirm over-expression of HO-1 in HUVECs.  

!
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5.2.4 Neutrophil induced sEng release from endothelial cells is 
mediated by metalloproteinases  

 

The release of sEng from the endothelial cells is dependent on the direct 

contact of neutrophils on the endothelial cell surface and not via the release 

of soluble factors from LPS-activated neutrophils (data not shown). Hence, 

we postulated that the adherence of neutrophils to the endothelium and the 

degradation of the basal lamina followed by the subsequent migration of 

neutrophils across the endothelial layer could participate in the generation of 

sEng. The degradation of the basal lamina and extracellular matrix of 

HUVEC require the concerted action of various proteolytic enzymes 

including serine proteases and MMP (Khandoga et al., 2006). However, pre-

incubation with the serine protease inhibitor, phenylmethylsulfonylfluoride 

(PMSF) did not affect sEng release (data not shown). In contrast, pre-

incubation with the broad-spectrum MMP inhibitor GM6001 (also known as 

Ilomastat or Galardin) reduced the basal release of sEng from HUVEC by 

50%. In the presence of activated neutrophils, GM6001 significantly reduces 

sEng release by 1.5-fold (p < 0.002) (Figure 5.4). These results indicate that 

MMP are likely to be involved in regulating neutrophil-induced sEng 

cleavage from endothelial cells. 
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!
Figure 5.4. GM6001 partially inhibits activated neutrophil-induced sEng 
release from HUVEC. HUVEC co-cultured with LPS-stimulated neutrophils were 
treated with 25 mM of the MMP inhibitor (GM6001) for 24 hours.  Inhibition of 

MMP significantly reduced the release of sEng from HUVECs (p < 0.002). Data 
are mean ± SEM of 3 experiments performed in duplicate. 

!
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5.2.5 MMP-2/9 inhibitor does not affect shedding of sEng 
!
Soluble matrix metalloproteinases-2 and -9 (MMP-2/9) are of the gelatinase 

class of MMP. Degranulation of activated neutrophils releases large amount 

of the tertiary granules, MMP-9, which is responsible for the conversion of 

inactive proMMP-2 produced by HUVEC to the active form MMP-2 

(Schwartz et al., 1998).  Previous studies have shown that MMP-9 is 

responsible for the shedding of TNF-α from the membrane (Gearing et al., 

1995). Hence, we used a specific MMP-2/9 inhibitor to determine the 

potential role of these enzymes in regulating the release of sEng from 

HUVEC/neutrophils co-cultures. Our analysis revealed that the inhibition of 

MMP-2/9 produced no effect on the release of sEng (Figure 5.5), indicating 

that gelatinases produced from the degranulation of neutrophils are not 

involved in the shedding of sEng from HUVEC.  
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5.2.6 Expression of MMP-14 and Eng in the placenta  
 

A recent study identified MMP-14 (or MT1-MMP) as the most abundant 

membrane bound MMP in HUVEC, which was responsible for the shedding 

of sEng in endothelial cells and in cancer cells. The same study showed that 

the co-expression of Endoglin and membrane-bound MMP-14 on the same 

cell led to a strong increase in soluble Endoglin release from endothelial cells 

!
Figure 5.5. MMP-2/9 does not affect the release of sEng from endothelial 
cells. HUVEC co-cultured with LPS-stimulated neutrophils were treated with 100 

and 200 µM of the MMP-2/9 inhibitor for 24 hours.  Inhibition of MMP-2/9 did not 
affect the release of sEng from HUVEC. Data are mean ± SEM of 3 experiments 

performed in duplicate.  
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(Hawinkels et al., 2010). The surface-anchored membrane type 1 matrix 

metalloproteinase (MT1-MMP or MMP-14) can degrade a wide range of 

extracellular matrix components that includes collagens, laminins, 

fibronectin and the structural proteoglycan aggrecan (Polette and Birembaut, 

1998). Since the expression of Endoglin has been shown to be elevated in the 

human placental syncytiotrophoblast and circulating sEng is elevated in 

preeclampsia (Venkatesha et al., 2006), we investigated the expression of 

MMP-14 in relation to Endoglin in human placenta tissues. Placental sections 

were incubated with the catalytic domain of anti-MMP-14 and the 

extracellular domain of anti-Eng, stained with Vector NovaRed and 

counterstained with Hematoxylin.  Positive immunostaining for MMP-14 

and endoglin was detected in the bilayer of the syncytiotrophoblast and 

cytotrophoblast of normal control samples (Figure 5.6 C, E). Interestingly, 

preeclamptic placenta section showed strong endoglin staining in the bilayer 

of syncytiotrophoblast that was accompanied by low MMP-14 expression in 

the same location. We speculated that the reduction in MMP-14 might be due 

to active MMP-14 being shed during the process of cleaving endoglin to 

produce sEng. However, in order to confirm this, the activity of MMP-14 in 

the circulation and placental tissues needs to be assessed.  
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Figure 5.6. Immunolocalisation of MMP-14 and Eng in the placenta. (A) and 

(B) show the negative control from Endoglin and MMP-14 respectively.  (C) 

Intense staining for MMP-14 and (E) moderate staining for endoglin was detected 

in the bilayer of syncytiotrophoblast (syn) of normal placenta. (D) Weak staining 

for MMP-14 and (F) intense staining of endoglin in preeclamptic compared to 

normal were observed in the syncytiotrophoblast. Original magnification: x40. 

!
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5.3 DISCUSSION  
!
In the present study, we show that sEng release from endothelial cells was 

increased as a result of direct contact of LPS-mediated activated neutrophils 

on endothelial cells, suggesting that activated neutrophils may contribute to 

systemic endothelial dysfunction by stimulating the release of this soluble 

anti-angiogenic factor. We further showed that the release of sEng could be 

partially inhibited with a broad-spectrum inhibitor, but not with a specific 

inhibitor of MMP-2 and MMP-9. We also show that the over-expression of 

HO-1 failed to inhibit the release of sEng from endothelial cells in the 

presence of activated neutrophils.   

 

Our in vitro study is the first to demonstrate that LPS-mediated activated 

neutrophils induce the release of sEng from endothelial cells. LPS activates 

neutrophils by binding to its receptor TLR-4 on the neutrophils. It regulates 

important neutrophil functions, including adhesion, generation of reactive 

oxygen species and activation of the nuclear factor–KB pathway (Hayashi et 

al., 2003). In atherosclerosis and preeclampsia, where the level of sEng is 

known to be elevated (Blann et al., 1996, Venkatesha et al., 2006), the 

expression of TLR-4 on neutrophils is also increased in these two disorders 

(Satoh et al., 2008, Xie et al., 2010). LPS, produced from gram-negative 

bacteria, is unlikely to be elevated in non-infectious inflammatory conditions. 

However, endogenous agonists of TLR-4, such as hyaluronic acid or high 

mobility group box 1 (HMGB1), may mediate the release of sEng. Hence it 

would be of interest to determine the levels of these endogenous agonists 

and their relationship with sEng in the clinical settings in order to validate 
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our in vitro findings.  

 

Although sEng is generated from the cleavage of the extracelluar domain of 

the membrane bound Endoglin, the potential role of MMP, as a possible 

mechanism of sEng release has not been extensively studies. MMP are a 

family of zinc-dependent proteinases that digest specific extracellular matrix 

components in many physiological and pathological processes, including 

inflammation, bacterial infection, wound healing, and cancer cell 

invasiveness (Egeblad and Werb, 2002). They are released from the cells as 

inactive pro-enzymes (zymogens) and are activated extracellularly by other 

proteinases (Goetzl et al., 1996, Vaday and Lider, 2000). Activated 

endothelial cells express a variety of MMP, while activated neutrophils can 

release large quantities of soluble metalloproteinases upon degranulation 

(Epstein and Weiss 1989). We showed in the present study that MMP are 

partially responsible for the release of sEng from endothelial cells mediated 

by LPS-activated neutrophils. However, the secreted form of MMP, MMP-2 

and -9, did not affect the release of sEng from endothelial cells. Hence this 

led us to think that membrane-bound MMP could instead play a role in the 

release of sEng. Indeed, a recent study reported that the membrane bound 

MT1-MMP, most commonly known as the MMP-14, is the most abundant 

metalloproteinases in endothelial cells (Hawinkels et al., 2010). Hawinkels 

and colleagues demonstrated that over-expression of MMP-14 caused sEng 

shedding from the endothelial cell surface and only the membrane bound, 

but not circulating MMP-14, was able to mediate this process (Hawinkels et 

al., 2010). Previous studies have reported that the expression of Endoglin is 
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elevated in the syncytiotrophoblast of the preeclamptic placenta (Venkatesha 

et al., 2006). In our study, we showed for the first time that in the placenta of 

preeclamptic patients, a strong expression of Endoglin is accompanied by a 

low expression of MMP-14 in the syncytiotrophoblast layer. Accordingly, 

strong MMP-14 expression in the syncytiotrophoblast of control placentas 

was accompanied with low endoglin levels at the same location. These 

results are in accordance with the study by Hawinkels and colleagues who 

observed in cancer cells that strong MMP-14 was accompanied by lower or 

absence of endoglin staining and vice versa (Hawinkels et al., 2010). Hence 

the role of MMP-14 in relation to sEng should be further explored in 

preeclampsia.  

 

It was interesting to see in this study that in the presence of activated 

neutrophils, the overexpression of HO-1 did not inhibit the release of sEng 

from endothelial cells. Earlier studies had demonstrated that adenoviral or 

pharmacological induction of HO-1 inhibits the release of sEng in response 

to cytokines (Cudmore et al., 2007, Zhou et al., 2010). Our results, however, 

suggest that the generation of endothelial-derived sEng in response to 

activated neutrophil is independent of mechanisms, which are responsible 

for suppressing sEng release by HO-1. Furthermore, the rolling of 

neutrophils on the endothelium is mediated by mainly E-selectins interacting 

with their respective carbohydrate ligands on neutrophils. Adhesion and 

transmigration of neutrophils to the endothelial cells are mediated by "2- 

integrins CD11a/CD18, CD11b/CD18, CD11c/CD18 interacting with 

various ligands, including the endothelial cells intercellular adhesion 
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molecules (ICAM-1) (Smith, 1993). LPS is a powerful activator of both 

neutrophils and endothelial cells. It induces the upregulation of cell adhesion 

molecules, such as ICAM-1 and E-selectins in order to facilitate the binding 

and transmigration of neutrophils to and across the endothelium (Lorenzon 

et al., 1998, Bannerman and Goldblum, 1999). Numerous studies have shown 

that the HO-1 pathway can inhibit leukocyte-endothelial interactions (Freitas 

et al., 2006, Otterbein et al., 2003, Soares et al., 2004, Vicente et al., 2003). 

Furthermore a recent study demonstrated that the product of HO-1, CO, 

regulates neutrophil migration due a reduction in the 

neutrophil/endothelium interaction by downregulation of LPS-induced 

ICAM-1/CD54 expression on endothelial cells. The same study showed that 

HO-1 and its products did not affect the expression of β2-integrin, the 

counter-receptor for ICAM-1 (Dal-Secco et al., 2010). Another study showed 

that biliverdin (another product of HO-1) downregulates the expression of 

selectins in endothelial cells (Vachharajani et al., 2000). Interestingly, in our 

study, we showed that over-expression of HO-1 did not inhibit the release of 

sEng in the presence of activated neutrophils, indicating that sEng release is 

not mediated via the selectin or β2-integrin/ICAM-1 signalling pathway.  

 

In summary, these results suggest that in situations where large number of 

neutrophils are activated by circulating ‘danger’ signals and subsequently 

accumulate in the vasculature, sEng may be cleaved from endothelium and 

released into circulation. Neutralization of TGF-" functions by sEng leads to 

endothelial dysfunction characterized by impaired endothelium-mediated 

vasodilatation and elevated expression of surface adhesion molecules, which 
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results in increased leukocyte adhesion (Walshe et al., 2009), hence 

promoting inflammatory processes. Although our study shows that LPS-

mediated activated neutrophils induce the release of sEng from cultured 

endothelial cells, these observations need to be validated in the clinical 

settings of either infectious disorder such as sepsis or in "non-infectious" 

inflammatory conditions such as atheresclerosis and preeclampsia. 
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CHAPTER 6 

!

INCREASE IN CIRCULATING ANTI-
ANGIOGENIC FACTORS IS INDEPENDENT 

OF NEUTROPHIL ACTIVATION IN 
PREECLAMPSIA 
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6.1 INTRODUCTION 
 

Preeclampsia is a human-specific hypertensive disorder of pregnancy that 

affects about 5% of all pregnant women (WHO, 2005). It is characterized by 

the de novo development of hypertension (systolic blood pressure ≥ 140 

mmHg or diastolic pressure ≥ 90 mmHg) and proteinuria (≥300 mg/24hr) 

after 20 weeks’ of gestation. Extreme variant of preeclampsia may include 

hemolysis, elevated liver enzymes and low platelets count (HELLP) 

syndrome. The placenta plays a key role in the genesis of this disorder as its 

removal at the time of delivery results in rapid resolution of the clinical 

symptoms (Pijnenborg et al., 1998). Early-onset preeclampsia occurs before 

34 weeks of gestation and is associated with placental damage and usually 

results in premature delivery and fetal growth restricted fetus. In contrast, 

late-onset preeclampsia happens after 34 weeks of gestation and frequently 

does not display the classical placental changes normally associated to this 

disorder (von Dadelszen et al., 2003, Sebire et al., 2005). In the context of this 

study, all the preeclamptic samples were of early-onset origin. 

 

Although the exact etiology of the disorder is unknown, the loss of vascular 

endothelial growth factor (VEGF) activity due to increase in soluble Fms-like 

tyrosine-receptor-1 (sFlt-1) (Maynard et al., 2003, Bergmann et al., 2010, 

Costantine et al., 2010) and the loss of transforming growth factor-β (TGF-!) 

activity as a consequence of elevated soluble Endoglin (sEng) (Venkatesha et 

al., 2006) appear increasingly to be responsible for the clinical signs of early-
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onset preeclampsia.  A number of studies have also claimed that, as in 

cardiovascular disease, oxidative stress-induced endothelial activation 

(Roberts and Redman, 1993, Roberts et al., 1989), endothelial dysfunction due 

to loss of nitric oxide bioavailability (Chambers et al., 2001, Kinzler et al., 

2004) and excessive inflammation (Redman et al., 1999) may cause early-

onset preeclampsia.  

 

Indeed, Redman and colleagues showed that the inflammatory changes in 

peripheral blood leukocytes associated with normal pregnancy and 

preeclampsia were similar to sepsis (Sacks et al., 1998). They postulated that 

preeclampsia is the consequence of an excessive inflammatory response to 

pregnancy and that the intravascular inflammatory response is not an 

epiphenomenon but is in fact the cause of the clinical syndrome of 

preeclampsia (Redman et al., 1999). This theory gained support as earlier 

studies had demonstrated that neutrophil activation is confined to the 

maternal circulation in pregnancy-induced hypertension, where it may 

contribute to vascular damage (Greer et al., 1991). Indeed, mild activation of 

neutrophils was noted during normal pregnancy in response to 

syncytiotrophoblasts’ apoptotic debris that enter the maternal circulation 

(Sargent et al., 2003) and further evidence of neutrophil activation in 

preeclampsia included the production of reactive oxygen species (Sacks et 

al., 1998, Morris et al., 1998, Tsukimori et al., 2008) and the release of 

neutrophils granules into the circulation (Halim et al., 1996, Rebelo et al., 

1996). For example, human --defensins, a specific marker of neutrophil 

activation released in the circulation upon the degranulation of neutrophils, 
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and calprotectin (also called S100A8/S100A9) that is predominantly found in 

neutrophils (Kostakis et al., 2010), are both increased in preeclampsia (Holthe 

et al., 2005, Prieto et al., 1997). Likewise, interleukin-6 (IL-6), a pro-

inflammatory cytokine secreted by both activated leukocytes and endothelial 

cells, is elevated in severe preeclampsia (Clark et al., 1998b, Tosun et al., 

2010, Szarka et al., 2010). Thus, the idea that inflammation per se causes 

preeclampsia has persisted without solid causational evidence (Hill, 1965).  

 

In contrast, the argument first articulated over a decade ago that 

preeclampsia may arise due to loss of VEGF activity by the possible elevation 

of sFlt-1 (Ahmed, 1997) gained momentum when biological evidence showed 

that adenoviral over-expression of sFlt-1 and sEng to pregnant rats mimicked 

the full spectrum of the clinical manifestations of preeclampsia (Maynard et 

al., 2003, Venkatesha et al., 2006). These anti-angiogenic factors compromise 

endothelial vascular function (Maynard et al., 2003, Venkatesha et al., 2006) 

and play a pivotal role in the development of the maternal syndrome of 

preeclampsia (Ahmed, 2011a). Furthermore, the early increase in the 

maternal circulating levels of sFlt-1 and sEng, which precedes the onset of 

the disorder, (Levine et al., 2004, Levine et al., 2006) fulfils the Hill’s temporal 

relationship criterion of causation (Hill, 1965).  

!

Numerous studies support the theory that activated neutrophils are likely to 

contribute to the endothelial damage associated with preeclampsia (Segel et 

al., 2011), whereas activated endothelium can also release cytokines or 
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chemokines that can activate neutrophils (Ward and Varani, 1993). Hence, it 

is unclear whether neutrophil activation is the cause or the consequence of 

endothelial damage (Clark et al., 1998b) or is associated with a rise in 

circulating anti-angiogenic factors. No case-control gestational-matched 

studies have investigated the inter-relationship between neutrophil 

activation and anti-angiogenic factors in women with severe preeclampsia.  

 

In the previous chapter (Chapter 5), we had shown that activated neutrophils 

cause the release of sEng from the endothelial cells. Here we investigated 

whether our in vitro findings would correlate in the clinical setting of 

preeclampsia. Hence, the aim of this study was to determine whether a direct 

relationship could be demonstrated between the increase in the anti-

angiogenic factors and increases in --defensins, calprotectin and IL-6 to 

assess the clinical significance of increased inflammatory status during 

preeclampsia. In addition, we investigated whether plasma level of 

fibronectin, a marker of endothelial cell injury, is elevated in preeclampsia as 

previously demonstrated (Halligan et al., 1994, Sen et al., 1994, Friedman et 

al., 1995) and whether endothelial cell injury correlated with neutrophils 

activation/inflammation and release of sEng.  

 

Our findings show a direct correlation between increase in --defensins and 

calprotectin, supporting our rational in using these markers as a measure of 

neutrophil activation. However, although sEng, sFlt-1/PlGF ratio, 

fibronectin, --defensins, calprotectin and IL-6 were elevated in preeclampsia, 
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there was no direct relationship between the increase in these factors and the 

markers of neutrophil activation. In addition, we found that the increase in 

sEng and sFlt-1/PlGF ratio bear a direct relationship with diastolic blood 

pressure in the severe preeclamptics and their matched controls cohort.  

 

6.2 RESULTS 
 

6.2.1 Patient selection 
 

The clinical characteristics of the pregnant women included in our study are 

shown in Table 6.1. The study population consisted of 27 women with 

normal pregnancy, 45 women with severe preeclampsia without IUGR 

(intrauterine growth restriction) and 36 women with chronic hypertension. 

There was no statistically significant difference in gestational age at blood 

collection. Women with severe preeclampsia were of lower parity and had 

significantly higher body weights and blood pressure. All of the control 

subjects had negative urine dipstick protein reading, whereas the 

preeclamptic subjects were positive. Patients with chronic hypertension also 

had positive urine dipstick reading. Five of the patients with severe 

preeclampsia had evidence of HELLP (hemolysis, elevated liver enzymes 

and low platelets) syndrome. Control women delivered a healthy baby at 

term. As expected, severe preeclampsia women delivered at gestational ages 

significantly lower compared to their controls. The exclusion criteria in the 

three study groups were the presence of infectious disease or medical 

complications including autoimmune disorder, diabetes mellitus and 

inflammatory conditions.  
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Table 6.1. Clinical characteristics of patient groups included in the study 

Characteristics 
Pregnant 
control 
(n=27) 

Severe 
preeclampsia 

(n=45) 

Chronic 
hypertension 

(n=13) 

P-value 
 

Patient age at 
delivery (years) 

29 (15-40) 
 

27 (14-42) 
 

36 (32-40) 0.0004 * 
 

Weight (kg) 
73.90 (62.3-

102.7) 
 

87.75 (56.40-
149.5) 

 

110 (81.8-
147.7 

0.0075 * 
 

Parity 1 (0-10) 
 

0 (0-6) 
 

2 (0-5) 
 

0.0042 * 
 

Gestational age 
at collection 

(weeks) 

29.75 (21.4-
33.5) 

 

30.5 (24.1-34.2) 
 

32.3 (23.5-
38.6) 

 

ns 
 

Gestational age 
at delivery 

(weeks) 

39 (37.20-41) 
 

30.5 (24.1-34.2) 
 

38.1 (29.7-40) 
 

<0.0001* 
 

Systolic blood 
pressure > 20 

weeks (mm Hg) 

106 (90-140) 
 

168 (130-220) 
 

152 (100-220) 
 

<0.0001* 
 

Diastolic blood 
pressure > 20 

weeks (mm Hg) 

63 (50-76) 
 

101 (88-130) 
 

91 (70-120) 
 

<0.0001 * 
 

Dipstick 
proteinuria 

- 3 (0-4) 
 

2.55 (0.15-
9.34) 

 

- 

Values shown as median and range (minimum and maximum values) 
*P <0.05, Mann-Whitney test 
 



 196!

 

6.2.2 Gestational pattern of serum sEng in uncomplicated 
pregnancy 

 

We first evaluated the gestational patterns associated with the release of 

sEng in the following groups: non-pregnant, pregnancies in early gestation 

(10-16 weeks), mid-gestation (21-33 weeks) and at term (37-42 weeks). We 

confirmed, as previously reported (Levine et al., 2006), that the level of sEng 

in pregnancy was stable until 33 weeks of gestation and increased 

significantly to a median concentration of 8.455 ng/ml (95% CI, 4.648-22.65 

ng/ml) at term until delivery (p<0.001) (Figure 6.1). In the non-pregnant 

group, the median concentration of serum sEng was 3.722 ng/ml (95% CI, 

3.043 – 5.534 ng/ml). During pregnancy at early gestation, the level of sEng 

appears to increase slightly with a median concentration of 5.496 ng/ml (95% 

CI, 2.665 – 7.426 ng/ml) and remained approximately stable at mid-gestation 

(4.271 ng/ml; 95% CI, 2.762 – 12.01 ng/ml). All of these pregnant women 

were normotensive during pregnancy and delivered appropriately sized 

infants. 
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!
 

Figure 6.1. Circulating levels of sEng throughout normal pregnancy. Serum 

levels of sEng (nanograms/milliliter) in non-pregnant (NP), early gestation (EP), mid 

gestation (MP) and at term (TP) pregnancies. Horizontal bars represent median 
values. 

!
!
!
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6.2.3 Maternal serum level of sEng in pregnancies   complicated 
by inflammatory conditions 

 

To evaluate the relationship between inflammation and the production of 

sEng during pregnancy, we compared the level of sEng in pregnancies 

complicated by disease conditions known to cause inflammation. The 

median level of sEng in systemic inflammation, subclinical chorioamnionitis 

and clinical amnionitis were 4.44 ng/ml (95% CI, 0.0837-13.84 ng/ml), 5.274 

ng/ml (95% CI, 3.24-26.07) and 4.894 ng/ml (95% CI, 4.108-5.026) 

respectively. The median level of sEng in each of these inflammatory 

conditions was low and similar to the level of sEng in the patients at mid-

gestation (4.271 ng/ml; 95% CI, 2.762 -12.01 ng/ml) (Figure 6.2). Importantly, 

we also showed (see Insert in figure 6.2) that there was no significant 

difference in the median levels of sEng between pregnancy at mid-gestation 

(21-33 weeks) (4.271 ng/ml; 95% CI, 2.762 -12.01 ng/ml) and the idiopathic 

pre-term delivery group (7.07 ng/ml; 95% CI, 3.685-61.28 ng/ml). Hence, we 

decided that it was appropriate to use the non-pathological, the mid-

gestation pregnant group, as the gestational age-matched controls for severe 

preeclampsia rather than the idiopathic pre-term group.  
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Figure 6.2. Circulating level of sEng in inflammatory conditions during 
pregnancy. Serum levels of sEng (nanograms/milliliter) in pregnancies 

complicated by systemic inflammation (Syst. Inflam), severe preeclampsia (sPE), 
subclinical chorioamnionitis (subclinical CA), clinical chorioamnionitis (clinical CA). 

The “insert” shows that the level of sEng does not vary significantly between mid-
pregnancy (MP) and idiopathic preterm (Id-PT) pregnancy. Horizontal bars 

represent median values.  

!
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6.2.4 Maternal serum sEng is elevated in severe preeclampsia 
 

In our case-control study, women, diagnosed with severe preeclampsia, had 

approximately a 20-fold increase in their median levels of serum sEng (70.10 

ng/ml; 95% CI, 6.701-437.9 ng/ml) compared to gestational age-matched 

controls (4.271 ng/ml; 95% CI, 2.762 -12.01 ng/ml; p <0.001) (Figure 6.3A). In 

contrast, women with chronic hypertension during pregnancy exhibited only 

a slight increase in serum sEng (7.413 ng/ml; 95% CI, 3.573-26.98) compared 

to their gestational age matched controls (4.271 ng/ml; 95% CI, 2.762 -12.01 

ng/ml; p <0.05) (Figure 6.3B). These observations suggest that the increase in 

sEng in our study appears to be more prominent to severe preeclampsia.  
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Figure 6.3. Elevated level of circulating sEng in severe preeclampsia and 
chronic hypertension. Serum levels of sEng (nanograms/milliliter) in (A) severe 
preeclamptics (sPE) compared to gestational age-matched controls (MP) (B) in 

pregnancies complicated by chronic hypertension (CrHT) compared to gestional 
age-matched controls (MP). Horizontal bars represent median values.  
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6.2.5 Plasma levels of markers of neutrophil activation are 
increased in severe preeclampsia 

 

Human !-defensins, HNP 1-3, are unique to neutrophils and activation of 

neutrophils leads to their rapid release. Thus, only one cell type, neutrophils, 

may be the source of HNP 1-3 measured in plasma during infection and 

inflammation. In normal plasma, low levels of HNP 1-3 are present, ranging 

from undetectable levels to 50-1000 ng/ml (Zhang et al., 2002a). To 

determine the extent of neutrophil activation, we assayed the levels of 

circulating !-defensins in the plasma of pregnant women. In severe 

preeclampsia, the median plasma level of !-defensins was increased by a 

modest 1.5-fold (136.1 ng/ml; 95% CI, 118.4-4180 ng/ml) compared to the 

gestational age-matched normal pregnancy (122.9 ng/nl; 95% CI, 116-507 

ng/ml; p <0.05). Interestingly, there was no significant increase in the 

median level of !-defensins between the non-pregnant (117.7 ng/ml; 95% CI, 

116.8-170 ng/ml), the early gestational age (117 ng/ml; 95% CI, 116-221 

ng/ml), the mid gestational age (122.9 ng/ml; 95% CI, 116-507 ng/ml) and 

the gestational age-matched chronic hypertension (118 ng/ml; 95% CI, 115-

1120 ng/ml) groups (Figure 6.4 A).  

 

Calprotectin (MRP8/14) is also released from activated neutrophils and is an 

indication of the severity of inflammation. In normal plasma, the range of 

calprotectin is 0.5-3.5 μg/ml. In our study, we observed that the median 

plasma level of calprotectin was increased by approximately 2-fold in severe 
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preeclampsia (40.74 µg/ml; 95% CI, 3.149 – 503.6 µg/ml) compared to the 

mid-gestational age control groups (18.84 µg/ml; 95% CI, 4.718 – 108.5 

µg/ml; p <0.05) (Figure 6.4B). Together, these results suggest that neutrophil 

activation is significantly, but only slightly, elevated in severe preeclampsia 

compared to matched controls.  
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!
Figure 6.4. Markers of neutrophil activation are elevated in severe 
preeclampsia. (A, B) Plasma levels of α-defensins (nanograms/milliliter) and 

calprotectin in non-pregnant (NP) and at early (EP), mid (MP) and term (TP) 
gestation and in pregnancies complicated by severe preeclampsia (sPE) and 

chronic hypertension (CrHT). Horizontal bars represent median values.  

!
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6.2.6 "-defensins is positively correlated with calprotectin in 
severe preeclampsia 

 

To demonstrate a direct relationship between !-defensins and calprotectin, 

we used the Spearman rank correlation analysis to determine their degree of 

association. Our analysis showed a linear relationship (R2=0.533) and a 

significant positive correlation between maternal plasma !-defensins and 

calprotectin (Spearman’s correlation, 0.6585; p < 0.0001; Figure 6.5). In the 

mid-gestational age control group, in which both the levels of !-defensins 

and calprotectin were low, there was a weak positive correlation between !-

defensins and calprotectin (Spearman’s correlation, 0.4096; p=0.0378) (data 

not shown). The linear relationship between these two markers of neutrophil 

activation strongly suggests that degranulation of activated neutrophils leads 

to the release of both !-defensins and calprotectin.  
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Figure 6.5. Correlation and linear regression analysis between α-defensins 
and calprotectin in severe preeclampsia. Maternal plasma α-defensins 

concentrations (nanograms/milliliter) correlates positively with maternal plasma 
calprotectin concentrations (micrograms/milliliter). The line represent regression 

line and the dotted lines represent the 95% CI of the regression line.  

!
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6.2.7 Correlation between sEng and neutrophil activation in 
severe preeclampsia 

 

Since both sEng and the markers of neutrophil activation are elevated in 

severe preeclampsia, albeit at different magnitudes, we investigated whether 

neutrophil activation, as demonstrated in our cell culture studies (Chapter 5) 

plays a significant role in the increase in sEng in severe preeclampsia. No 

correlation between !-defensins and sEng (Spearman’s correlation, 0.1312; p 

= 0.4136) or calprotectin and sEng (Spearman’s correlation, 0.2273; p = 

0.1332) was observed in severe preeclampsia (Figure 6.6 A, B), indicating that 

the increase in and magnitude of neutrophil activation does not play a major 

role in the dramatic elevation of sEng in severe preeclampsia.  
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Figure 6.6. Correlation between the markers of neutrophil activation and 
sEng in severe preeclampsia. Plasma α-defensins (nanograms/milliliter) and 
Plasma calprotectin (micrograms/milliliter) do not correlate with serum sEng 

concentration (nanograms/milliliter).  

!
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6.2.8 IL-6 levels in elevated in preeclampsia and correlates with 
the markers of neutrophil activation 

 

IL-6 is a pro-inflammatory cytokines secreted by both activated leukocytes 

and activated endothelial cells. Several studies have previously shown that 

the pro-inflammatory cytokine IL-6 is elevated in severe preeclampsia and 

contribute to endothelial cell activation (Clark et al., 1998b, Tosun et al., 2010, 

Szarka et al., 2010). We confirmed that IL-6 is indeed elevated by 2-fold in 

severe preeclampsia (1.092 pg/ml; 95% CI, 0.181 – 151.3 pg/ml) compared to 

gestational age-matched controls (0.6455 pg/ml; 95% CI, 0.141 – 3.874 pg/ml; 

p<0.01). However, we found no significant difference between the non-

pregnant group (0.478 pg/ml; 95% CI, 0.058 – 3.392) and the control group 

for severe preeclampsia (Figure 6.7).  

 

We tested whether the increase in IL-6 in severe preeclampsia correlates with 

the markers of neutrophil activation, !-defensins and calprotectin. Indeed IL-

6 exhibited a positive non-linear relationship with both !-defensins 

(Spearman’s correlation, 0.5672; p < 0.0001) and calprotectin (Spearman’s 

correlation, 0.3615; p = 0.0172) (Figure 6.7), indicating the neutrophil 

activation and inflammation are not independent phenomenon in severe 

preeclampsia.   
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Figure 6.7. Circulating IL-6 is elevated in severe preeclampsia and 
correlated with neutrophil activation. (A) Serum levels of IL-6 
(picograms/milliliter) in non-pregnant (NP), severe preeclamptics (sPE) and 

gestational age-matched control (MP). Serum IL-6 correlates positively with both 

(B) plasma α-defensins concentrations (nanograms/milliliter) and (C) plasma 
calprotectin concentrations (micrograms/milliliter).  

 

!
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6.2.9 Correlation between IL-6 and sEng in severe preeclampsia 
!
We investigated whether there is a relationship between IL-6 and sEng. 

There was no correlation between IL-6 and sEng (Spearman’s correlation, 

0.05293; p = 0.7360) in severe preeclampsia (Figure 6.8) indicating that 

inflammation may not directly modulate the increase in sEng in severe 

preeclampsia.  

 

!

!
 

Figure 6.8. Relationship between IL-6 and sEng. Serum IL-6 

(picograms/millilitre) does not correlate with serum sEng (nanograms/milliliter). 

!
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!
6.2.10 Urine sFlt-1/PlGF ratio in severe preeclampsia  
!
We analysed the urine level of sFlt-1 and PlGF and calculated the ratio of 

urine sFlt-1/PlGF. As previously demonstrated (Buhimschi et al., 2005), the 

median urine sFlt-1/PlGF ratio was significantly higher in the severe 

preeclampsia (5.419; 95% CI, 0.4061-45.42) compared to the control group 

(0.034; 95% CI, 0-0.26; p<0.0001) (Figure 6.9A), and correlated positively with 

serum sEng (Spearman’s correlation, 0.5239; p = 0.0004).  However, urine 

sFlt-1/PlGF ratio did not correlate with --defensins (Spearman’s correlation, 

-0.0626; p = 0.7009), calprotectin (Spearman’s correlation, -0.1937; p = 0.2249) 

or IL-6 (Spearman’s correlation, 0.08624; p = 0.5919) (Figure 6.9 B, C, D). 

Together our data indicate that in severe preeclampsia, neutrophil 

activation/inflammation is independent of the release of sFlt-1 or the 

decrease in PlGF.  
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Figure 6.9. Urine sflt-1/PlGF ratio is elevated in severe preeclampsia. (A) 
Urine sflt-1/PlGF ratio is elevated in severe preeclamptics (sPE) compared to 

gestational age-matched control. (B, C, D) Plasma α-defensins concentrations 

(nanograms/milliliter), calprotectin concentrations (micrograms/milliliter) and 
serum IL-6 (picograms/milliliter) do not correlate with urine sFlt-1/PlGF ratio. 

!
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6.2.11 Serum sEng and urine sFlt-1/PlGF ratio correlate with 
diastolic blood pressure 

!
Severe preeclampsia is associated with an increase in blood pressure of 

>160/90 (systolic/diastolic). We investigated whether the sEng and the 

markers of neutrophil activation and inflammation correlated with the 

clinical sign of preeclampsia measured as increase in diastolic blood pressure 

in the severe preeclamptics and their matched controls cohort. sEng 

correlated positively with diastolic blood pressure (Spearman’s correlation, 

0.6017; p<0.0001) and sFlt-1/PlGF ratio also correlated positively with 

diastolic blood pressure (Spearman’s correlation, 0.601; p<0.0001) (Figure 

6.10 A, B). This indicates that sEng and urine sFlt-1/PlGF ratio may play a 

causal role in the increase of diastolic blood pressure. In contrast, α-defensins 

(Spearman’s correlation, 0.387; p>0.05), calprotectin (Spearman’s correlation, 

0.2526; p>0.05) and IL-6 (Spearman’s correlation, 0.34; p>0.05) did not 

correlate with the diastolic blood pressure (Figure 6.11 A, B, C), suggesting 

that the rise in diastolic blood pressure is independent of neutrophil 

activation/inflammation.  
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!

!
Figure 6.10.  Relationship between sEng, urine sFlt-1/PlGF ratio and 
diastolic blood pressure in control and severe preeclamptic patients. Both 
serum sEng (nanograms/milliliter) and urine sFlt-1/PlGF ratio correlates positively 

with linear regression with diastolic blood pressure in control and severe 
preeclamptic patients combined. The line represent regression line and the dotted 

lines represent the 95% CI of the regression line. 

!
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!

 
Figure 6.11.  Relationship between α-defensins, calprotectin, IL-6 and 
diastolic blood pressure in control and severe preeclamptic patients. α-

defensins (nanograms/milliliter), calprotectin (micrograms/milliliter) or IL-6 

(picograms/milliliter) does not correlate with diastolic blood pressure in control and 
severe preeclamptic patients combined.  

!
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6.2.12 Fibronectin levels in elevated in preeclampsia but 
does not correlate with neutrophil activation 

 

Cellular fibronectin is an important extracellular matrix glycoprotein of the 

endothelium that mediates important cell-to-cell interactions (Ruoslahti, 

1988). Activated neutrophils and their products can cause degradation of 

fibronectin on the endothelial surface (Forsyth and Levinsky, 1990). Hence, 

fibronectin has been used as a marker of endothelial injury (Stubbs et al., 

1984, Halligan et al., 1994, Sen et al., 1994, Friedman et al., 1995). Previous 

studies have shown that the total cellular fibronectin levels are elevated in 

preeclamptic patients (Uzun et al., 2010). Since endothelial dysfunction is 

associated with preeclampsia, we chose to examine whether neutrophil 

activation in severe preeclampsia plays a significant role in endothelial cell 

injury via the generation of cellular fibronectin. Our data confirmed that a 

plasma level of cellular fibronectin is indeed increased by approximately 2-

fold in severe preeclampsia (175.5 µg/ml; 95% CI, 35.14 – 1099 µg/ml) 

compared to mid-gestation controls (93.17 µg/ml; 95% CI, 53.73 – 193.3 

µg/ml; p < 0.001). There was no increase in cellular fibronectin between the 

non-pregnant group (88.79 µg/ml; 95% CI, 48.31- 406.4 µg/ml) and the 

pregnancies at mid gestation (Figure 6.12A).   

 

The increase in circulating cellular fibronectin indicates that endothelial cell 

injury is a specific feature of severe preeclampsia. However the Spearman 

rank correlation analysis showed that there was no correlation between !-

defensins and fibronectin in severe preeclampsia (Spearman’s correlation, 

0.003833; p = 0.98) (Figure 6.12 B) or between calprotectin and fibronectin 
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(Spearman’s correlation, 0.06159; p = 0.6912) (Figure 6.12 C), probably 

indicating that the magnitude of neutrophil activation in severe preeclampsia 

is not sufficient to directly contribute to endothelial cell injury observed in 

preeclampsia.  

 

 

!

!
Figure 6.12. Circulating level of fibronectin is elevated in severe 
preeclampsia. (A) Serum levels of fibronectin (micrograms/milliliter) in severe 
preeclamptics (sPE) compared to gestational age-matched controls (MP) and non-

pregnant (NP). Horizontal bars represent median values. (B) Plasma α-defensins 
concentrations (nanograms/milliliter) and plasma calprotectin concentrations 

(micrograms/milliliter) do not correlate with serum fibronectin concentration 
(micrograms/milliliter).  

 

!
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6.2.13 Correlation between fibronectin and soluble endoglin 
in severe preeclampsia 

 

Since both cellular fibronectin (Halligan et al., 1994, Sen et al., 1994, Friedman 

et al., 1995) and sEng (Walshe et al., 2009) are involved in endothelial cell 

injury and dysfunction. We investigated the relationship between fibronectin 

and sEng. sEng and fibronectin did not correlate with each other in severe 

preeclampsia (Spearman’s correlation, 0.07639; p = 0.6221) (Figure 6.13), 

indicating that the increase in sEng in severe preeclampsia is not caused by 

endothelial injury or that sEng does not directly cause endothelial injury.  

 

!

!
Figure 6.13. Relationship between fibronectin and α-defensins and sEng in 
the maternal circulation. Plasma α-defensins concentrations 
(nanograms/milliliter) do not correlate with serum fibronectin concentration 

(micrograms/milliliter).  

!
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6.2.14 sEng is negatively correlated with PlGF in severe 
preeclampsia 

 

To confirm that the groups of patients showed the similar characteristics of 

preeclampsia as previously reported (Staff et al., 2007), we measured the 

serum level of PlGF. In the non-pregnant group, the level of PlGF was 

negligible (0 pg/ml; 95% CI, 0 – 15.66 pg/ml). As expected, there was a 4-

fold reduction in PlGF in severe preeclampsia (85.15 pg/ml; 95% CI, 7.87 – 

294.8 pg/ml) compared to the mid-gestation control group (401.2 pg/ml, 

95% CI, 126.3 -1528 pg/ml; p < 0.0001) (Figure 6.14 A). We also confirmed 

that there was a negative correlation between PlGF and sEng (Spearman’s 

correlation, 0.4666; p=0.0021). The linear regression analysis demonstrates 

this correlation (Figure 6.14 B). This confirmed that the population of patients 

used for this study was appropriate. 
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!

!
Figure 6.14. Circulating levels of serum PlGF is reduced in severe 
preeclampsia and negatively correlates with serum sEng. (A) Serum levels of 

PlGF (picograms/milliliter) in non-pregnant (NP), mid-gestation pregnancy (MP), 
severe preeclamptics (sPE) and chronic hypertension (CrHT). Horizontal bars 

represent median values. (B) Negative correlation between circulating levels of 
sEng (nanograms/milliliter) and PlGF (picograms/milliliter).  

!
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6.3 DISCUSSION 
 

This study shows a direct correlation between increase in --defensins and 

calprotectin demonstrating neutrophil degranulation during preeclampsia 

and a significant correlation between these markers of neutrophil activation 

and IL-6 indicating increased inflammatory status at the time of the clinical 

manifestation of the disease. Although sFlt-1/PlGF ratio and sEng, IL-6 and 

--defensins and calprotectin were all elevated in preeclampsia, the present 

study found that there was no relationship between the increase in the anti-

angiogenic factors and neutrophil activation/inflammation demonstrating 

that it is highly unlikely that inflammation is the cause of the maternal signs 

of preeclampsia. Furthermore, while sEng and sFlt-1/PlGF ratio both 

correlated positively with diastolic blood pressure, none of the markers of 

neutrophil activation/inflammation correlated with blood pressure. This 

further strengthens the argument that neutrophil activation/inflammation 

does not play a major role in preeclampsia. 

 

Oxidative stress is an inflammatory stimulus mediated by several factors 

including those associated with the activation and degranulation of 

neutrophils resulting in the generation of reactive oxygen species. Recently, 

Redman and Sargent hypothesized that the main placental problem that 

leads to the onset of preeclampsia is oxidative stress and the authors 

proposed that oxidative stress induces the release of sFlt-1 and sEng via 

nuclear factor kappa-B (NF#B) to a similar or greater extent than hypoxia 
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(Redman and Sargent, 2009). Univariate analysis of our data showed that 

women with preeclampsia had a 20-fold increase in serum sEng and 

approximately a 2-fold increase in the markers of neutrophil activation, !-

defensins and calprotectin, as well as in the circulating levels of pro-

inflammatory IL-6. This is consistent with the results of similar earlier studies 

on sEng (Venkatesha et al., 2006), !-defensins (Prieto et al., 1997), calprotectin 

(Holthe et al., 2005) and IL-6 (Luppi et al., 2006). However, increase in 

maternal circulatory levels of the aforementioned factors does not 

demonstrate direct causation of clinical symptoms of preeclampsia. 

Correlation analysis showed that there was no meaningful relationship 

between neutrophil activation and the increase in sEng observed in 

preeclampsia. This is in contrast to a previous report that claimed a positive 

correlation between calprotectin and sEng in preeclampsia (Staff et al., 2007). 

The observed differences are likely to be the consequence of gestational age 

differences among groups as acknowledged by the authors (Staff et al., 2007). 

Indeed, consistent with the study by Levine and colleagues (Levine et al., 

2006), we showed that circulating maternal sEng concentration increases 

with gestational age, likely reflecting growth in placental volume and 

production of sEng from the placenta. Hence, to account for this possible 

confounder, the patient groups were matched for gestational age in our 

study. 

 

Clinical manifestation of severe preeclampsia is also associated with 

increased urinary output of sFlt-1 and a decreased output of PlGF 

(Buhimschi et al., 2005) and sEng is elevated in the urine of women who 
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develop early-onset preeclampsia (Buhimschi et al., 2010). The present study 

found that elevated sEng in the maternal serum was associated with elevated 

urine sFlt-1/PlGF ratios in severe early-onset preeclampsia. Furthermore, 

these results are supported by a strong negative correlation between elevated 

circulating levels of sEng and PlGF in the maternal circulation. Nevertheless, 

the urinary sFlt-1/PlGF ratio did not correlate with circulating levels of --

defensins, calprotectin or IL-6, which suggests that the degree of neutrophil 

activation and inflammation that occurs in severe preeclampsia plays an 

insignificant role in the increase in anti-angiogenic factors. Hence, these 

results refute the proposition that the release of anti-angiogenic factors and 

the clinical signs of preeclampsia are due to excessive neutrophil 

activation/inflammation during preeclampsia.  

 

In addition, our results shed important clues on the role of inflammation in 

the pathogenesis of preeclampsia. The pro-inflammatory cytokine IL-6 is 

secreted by activated leukocytes and is classically known to activate acute 

phase response genes such as C-reactive protein and adhesion molecules 

(Kvale et al., 1992), indicating its potential role in the initiation and 

propagation of inflammation in preeclampsia. Indeed, many studies 

including ours (Vince et al., 1995, Conrad et al., 1998, Greer et al., 1994) have 

shown that IL-6 is elevated in preeclampsia, however a few studies have 

reported no change in plasma IL-6 in preeclampsia compared to 

uncomplicated pregnancy (Al-Othman et al., 2001, Ellis et al., 2001). Orshal et 

al. reported that IL-6 has the ability to directly modulate the mechanisms of 

contraction and relaxation in systemic vessels of pregnant rats by impairing 
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the endothelium-dependent nitric oxide-mediated relaxation (Orshal and 

Khalil, 2004) indicating a potential association between IL-6, endothelial 

dysfunction and hypertension during preeclampsia. We observed no 

correlation between the increase in blood pressure and the increase in IL-6 in 

the cohort of severe preeclamptic patients and their matched controls 

indicating that the magnitude of inflammation in severe preeclampsia is not 

sufficient to cause increase in blood pressure. To further support the present 

findings that neutrophil activation/inflammation is unlikely to be directly 

involved in the release of maternal sEng levels in preeclampsia, a recent 

study showed that despite the increase in complement activation in 

preeclampsia (Derzsy et al., 2010), there was no relationship between 

complement activation and the release of angiogenesis related factors in 

preeclamptic women (Lynch et al., 2010). In support of that, we showed that 

although the level of α-defensins is elevated in systemic inflammation, sEng 

level remained unchanged compared to controls.  

 

We agree that a correlation cannot simply imply causation. However, if there 

is no relationship between two variables, then there is no causal connection. 

Hence, in view of our correlation analysis and supported by the findings of 

other groups (Lynch et al., 2010), we can conclude that inflammation does not 

play a causative role in the release of anti-angiogenic factors in preeclampsia. 

Furthermore, by considering the Hill’s criteria of causation, we can further 

support this conclusion. In prognostic research, factors associated with the 

outcome, whether they are causal or not, are of interest. In contrast, causality 

is of significant importance in aetiological research (Sheehan et al., 2008). The 
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determination of causality by observational data is tricky as it is not always 

clear which of the two associated variables is the cause and which is the 

effect, or whether both are a common effect of a third unobserved variable or 

confounder. However, according to Hill, causation can be determined using 

the temporal relationship, which implies that the cause of a disorder must 

precede the clinical signs of that disorder (Hill, 1965, Sheehan et al., 2008). 

Indeed previous studies, including ours has demonstrated that neutrophil 

activation (Greer et al., 1991, Barden et al., 1997) and the humoral mediators 

of inflammation (Peracoli et al., 2007, Szarka et al., 2010, Greer et al., 1994) are 

elevated at the time of diagnosis of preeclampsia. However, a previous 

prospective nested case control study revealed that at 18 weeks of gestation, 

the levels of inflammatory parameters including IL-6 were not elevated in 

women who later developed preeclampsia compared to matched healthy 

controls (Djurovic et al., 2002). Hence, also according to the temporal criteria 

of causality, we can confute the long held concept that preeclampsia is caused 

by excessive inflammation (Redman et al., 1999). In contrast, numerous 

studies have shown that maternal circulatory sFlt-1 is elevated as 5-10 weeks 

before the onset of preeclampsia (Levine et al., 2004, Levine et al., 2006, 

Chaiworapongsa et al., 2005) and sEng is elevated as early as 11-13 weeks of 

gestation prior to the development of preeclampsia (Rana et al., 2007, Romero 

et al., 2008, Erez et al., 2008, Baumann et al., 2008, Lim et al., 2009, Foidart et 

al., 2010). Decrease in urinary PlGF also precedes the onset of preeclampsia 

(Levine et al., 2005). Collectively, these observations provide evidence of the 

cause and effect relationship between sFlt-1, sEng and PlGF and 

preeclampsia. Furthermore, increasing experimental data also shows that the 
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clinical signs of preeclampsia can be largely attributed to high levels of sFlt-1 

and sEng (Levine et al., 2004, Levine et al., 2006, Maynard et al., 2003, 

Venkatesha et al., 2006, Makris et al., 2007, Roberts et al., 2006, Agunanne et 

al., 2010) and that neutralization of sFlt-1 below a critical threshold eliminates 

the signs of preeclampsia in mice (Li et al., 2007, Bergmann et al., 2010). 

 

Endothelial dysfunction and injury has been reported to be a key component 

of the pathophysiology of preeclampsia (Wallenburg and Visser, 1994). 

Activated neutrophils and their degranulation products can degrade the 

endothelial extracellular matrix, cleaving collagen and cellular fibronectin 

(Hynes, 1986, O'Reilly et al., 2008). Under normal circumstances, the level of 

cellular fibronectin is low in the plasma (<2%), but rises in conditions 

characterized by endothelial injury. Several studies (Halligan et al., 1994, Sen 

et al., 1994, Friedman et al., 1995), including ours has shown that the plasma 

levels cellular fibronectin is elevated in preeclampsia. Previously, Madazli et 

al. reported that the levels of fibronectin and VCAM-1 levels positively 

correlated with each other in preeclampsia and that the elevation in 

fibronectin also positively correlated with diastolic blood pressure (Madazli 

et al., 2000). In contrast, another study showed that there was no correlation 

between plasma levels of cellular fibronectin and diastolic blood pressure in 

preeclamptic patients and their controls (Aydin et al., 2006). We showed that 

there was no correlation between the levels of neutrophil activation and the 

increase in plasma levels of cellular fibronectin in severe preeclampsia, 

indicating that the magnitude of neutrophil activation plays a minor role in 

endothelial cell injury in preeclampsia. Although, some studies have 
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attributed the elevation in circulating VCAM-1 as a measure of leukocyte 

activation (Lyall et al., 1994), this is unlikely to reflect neutrophil activation 

since neutrophils lack the counterreceptor for VCAM-1 and cannot bind to 

VCAM-1. Hence, increased expression of VCAM-1 reflects endothelial cell 

activation, but not neutrophil activation. Furthermore, in our study, the 

increase in fibronectin did not correlate with diastolic blood pressure in the 

preeclamptic and matched control groups combined (data not shown).  

 

The conflicting results between different groups could be explained by the 

fact that the reported correlations or absence of correlations may be 

confounded by several variables, including the type of test used to evaluate 

the levels of fibronectin, the study population, and the type of fibronectin 

measured. Indeed, it has been previously reported that the plasma level of 

intact cellular fibronectin, as measured in our study, could be fragmented in 

severe preeclampsia, hence leading to an underestimation of the plasma 

levels of intact cellular fibronectin detected by ELISA (De Jager et al., 1996).  

Furthermore, many studies, which have reported that women with 

preeclampsia have higher levels of plasma fibronectin, have failed to provide 

details about the type of fibronectin or the total fibronectin measured. In our 

study, although we measured the plasma level of total cellular fibronectin, 

we acknowledge that further measurements and analysis of the different 

fragments of fibronectin in the plasma should be done before any conclusion 

of the role of fibronectin in preeclampsia can be drawn.   
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We also reported that the increase in sEng and fibronectin in severe 

preeclampsia did not correlate with each other. This is not surprising given 

the evidence from the rodent study by Venkatesha and colleagues who 

reported that sEng by itself induced only mild endothelial dysfunction 

assessed by the increase in blood pressure and proteinuria in pregnant mice, 

in comparison to the concerted action of sEng and sFlt-1 which cause severe 

kidney damage, hypertension and proteinuria as well as elevated liver 

enzymes in pregnant mice. They also showed that the combination of sEng 

and sFlt-1 caused an increase in capillary permeability in the lungs and liver 

of the same mice, indicating disruption in endothelial integrity and 

considerable vascular damage and leakage (Venkatesha et al., 2006). 

Furthermore, extensive vascular damage of the placenta was only observed 

in sFlt-1 and sEng treated mice and not in mice treated with either agent 

alone (Venkatesha et al., 2006). Therefore in theory, we would expect the 

combined effect of circulating sFlt-1 and sEng to correlate with the levels of 

fibronectin. However, considering the magnitude of elevation of fibronectin 

in preeclampsia compared to the substantial elevation of both sEng and sFlt-

1, it is highly unlikely that a positive correlation between sEng/sFlt-1 and 

fibronectin will be observed. !

!

In conclusion, our study shows that inflammation does not play a central 

role in the release of anti-angiogenic factor or is responsible for preeclampsia. 

However, we do acknowledge that genetic, environmental or other external 

conditions can affect an individual’s susceptibility to inflammation. Hence in 

order to confirm this new hypothesis, similar studies in various centres need 
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to be conducted. Nevertheless, these results question the long held view that 

inflammation is the cause of preeclampsia and warrant new thinking in 

regards to the pathogenesis of this hypertensive disorder specific to human. 



 231!

 
 
 
 
 
 
 
 
 

CHAPTER 7 
 

GENERAL DISCUSSION AND FUTURE 
WORK 
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7.1 General discussion and future work 
!
Cytoprotective function of HO-1 and BVR 

The results presented in the first part of this thesis demonstrate the 

multifunctional role of HO-1 in preventing endothelial injury, which is 

commonly associated with cisplatin chemotherapy and preeclampsia. We 

showed that the over-expression of HO-1 as well as substances known to 

upregulate HO-1 expression could prevent drug-induced endothelial 

damage. Specifically, we showed that resveratrol, a dietary antioxidant 

polyphenol, found in grapes, red wine and peanuts, upregulates HO-1 in 

endothelial cells and protects against cisplatin-induced injury. Since, 

resveratrol have ./01231452!effects against cardiovascular disease and cancer, 

including all stages of carcinogenesis (Jang et al., 1997, Bhat and Pezzuto, 

2002, Pervaiz, 2003), the use of resveratrol in cisplatin-based chemotherapy 

merits further investigation.   

 

An essential feature of this study is that we provide the first evidence that 

BVR induces the expression of HO-1 in endothelial cells. Furthermore, we 

show that the cytoprotective function of BVR against cisplatin-induced 

damage is dependent on the upregulation of HO-1 by BVR. Previous studies 

had demonstrated that BVR induces the expression of HO-1 in HEK293A 

cells (Kravets et al., 2004) and that silencing of BVR gene dramatically 

reduces the cytoprotective effect of HO-1 against superoxide anion and 

arsenite, indicating the essential role of BVR in the HO-1-mediated 
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cytoprotection. Furthermore, it has been reported that the expression of BVR 

in primary endothelial cells, even at very low level, is important for the 

protective function of HO-1 (Jansen et al., 2010). We show that the ability of 

BVR to protect against cisplatin-induced endothelial cell damage is 

dependent on its upregulation of HO-1 in endothelial cells. Accordingly, we 

can speculate that there may exist in endothelial cells a feedback loop 

between HO-1 and BVR (Figure 7.1). Further work is required to determine 

the mechanism through which BVR induces HO-1 gene expression in 

endothelial cells, whether via direct DNA binding, in its capacity as a 

transcription factor, or via its ability to phosphorylate serine and threonine 

residues. Furthermore, since the cytoprotective effect of BVR depends on the 

upregulation of HO-1, it is likely that bilirubin which also possesses 

antioxidant and cytoprotective properties (Stocker et al., 1987) would also 

prevent cisplatin-induced endothelial cell damage. The determination of 

bilirubin level is required to determine the mechanism through which BVR 

over-expression confers protection to endothelial cells.  

 

Ideally, it would be important to show in an in vivo setting the importance of 

HO-1 and BVR in endothelial cells against cytototoxic damage using the cre-

Lox system, which will allow in vivo endothelial-specific over-expression of 

HO-1 or BVR. In this way, it could be confirmed that endothelial specific 

over-expression of HO-1 or BVR protects against cisplatin induced injury in 

vivo and that the loss of endothelial HO-1 or BVR exacerbates the damage. 

Furthermore, there is a need to identify drugs that can induce BVR. This 

approach will allow the translation of our findings into the clinical setting.  
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Cancer patients treated with cisplatin have an increased risk of developing 

coronary arterial disease and atherosclerosis (Nuver et al., 2004). Cisplatin 

also upregulates the expression of ICAM-1 in endothelial cells, hence 

promoting the interaction between leukocytes and the endothelium in a 

time- and dose-dependent manner (Yu et al., 2008), thereby potentiating 

inflammatory responses. HO-1 has been shown to downregulate the 

expression of ICAM-1 in endothelial cells of the microcirculation (Dal-Secco 

et al., 2010). Hence over-expression of HO-1 would also protect against 

cisplatin-mediated inflammatory processes. PlGF has been implicated in 

vascular remodelling, atherosclerosis, and adverse ischemic events in animal 

!
Figure 7.1. Schematic diagram illustration the possible feedback loop 
between HO-1 and BVR.  
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models and in humans. As discussed before, neutralization of PlGF by an 

anti-PlGF antibody reduced the inflammatory cell infiltration and 

atherosclerotic lesion size in ApoE-/- mice (Roncal et al., 2010). Hence, the 

cardiovascular complications observed during and post cisplatin 

chemotherapy may be aggravated by increase in PlGF levels. Hence it might 

be important to evaluate the effect of cisplatin in PlGF -/- mice fed on a high 

cholesterol diet. We would predict that the incidence of atherosclerosis and 

damage would be less in the PlGF -/- mice treated with cisplatin compared to 

the wild type animals.  

 

In addition to its cytoprotective, anti-apoptotic, anti-oxidative and anti-

inflammatory properties, HO-1 have recently been shown to have a role to 

play in angiogenesis (Dulak et al., 2004). In this study, we showed that 

adenoviral over-expression of HO-1 and BVR in endothelial cells inhibits 

VEGF-induced capillary-tube formation, while the siRNA knockdown of 

HO-1 and BVR promotes capillary-tube formation. Despite being novel, 

these novel results are in marked conflict with earlier studies that have 

attributed a pro-angiogenic function to HO-1 in endothelial cells (Jozkowicz 

et al., 2003, Deramaudt et al., 1998). Studies have shown that HO-1 and CO, 

but not biliverdin or bilirubin, induces VEGF in vascular smooth muscle cells 

and HMEC (Dulak et al., 2002). Furthermore, adenoviral over-expression of 

HO-1 in the mice myocardium has been associated with an increase in VEGF 

levels as well as increased in vascularization as demonstrated by the 

detection of higher capillary and arteriole densities in the peri-infarct region 

(Lin et al., 2008b). These evidences prompted researchers to attribute the pro-
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angiogenic properties of HO-1 to the increase in VEGF. However, while a 

few studies have demonstrated the pro-angiogenic effect of HO-1 and CO in 

endothelial cells (Deramaudt et al., 1998, Jozkowicz et al., 2003), the outcome 

of these reports warrants further investigations based on a number of 

discrepancies in relation to the origin of endothelial cell types, the method of 

induction of HO-1 or the concentration of HO-1/CO used. Since none of the 

previous studies have provided quantitative measurement of the expression 

or activity of HO-1 or BVR and that adenoviral over-expression or siRNA 

knockdown of HO-1 makes it difficult to modulate the expression of HO-1 in 

a dose-dependent manner, the limitation of previous studies including ours 

raises the question of whether HO-1 has a dual effect on angiogenesis in 

endothelial cells depending on its level of expression. Hence we propose that 

future work on this should focus on manipulating the expression of HO-1 in 

a dose-dependent way using specific dose of pharmacological inducers of 

HO-1 (such as hemin) in HO-1 deficient cells and evaluating HO-1 activity 

through the measurement of CO release and determining at which 

concentration of hemin used does HO-1 inhibits tube formation. A cell 

viability assay to determine the maximum dose of hemin, which is not 

cytotoxic to cells, should be performed beforehand. Alternatively, our group 

has shown has also shown that CO, at a concentration of 250 ppm, inhibits 

angiogenesis as well as inhibits VEGFR-2 phosphorylation. VEGFR-2 is a 

tyrosine kinase receptor, which upon phosphorylation as a result of binding 

of its ligand VEGF-A promotes angiogenesis. CO inhibits VEGFR-2 

phosphorylation. Hence we could also determine the minimum dose at 

which inhibition of phosphorylation of VEGFR-2 occurs, i.e. the dose at 
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which CO will inhibit angiogenesis, and use that specific dose to determine 

VEGF-induce capillary tube formation, endothelial cell migration or 

proliferation.  

!

Inflammation and preeclampsia 

Although our in vitro studies by themselves would have led us to postulate 

that neutrophil activation in preeclampsia could be directly responsible for 

the release of sEng, as shown in chapter 5, the same observations were not 

reflected in our clinical data indicating in vitro studies can give rise to false 

positive concepts.  

The clinical findings shed important clues on the role of inflammation and 

anti-angiogenic factors in the pathogenesis of preeclampsia. We conclusively 

demonstrated that neutrophil activation and inflammation does not play a 

causal role in the development of preeclampsia. While sEng and urine sFlt-

1/PlGF ratio bear a positive linear relationship with diastolic blood pressure, 

no such relationship was observed with the markers of neutrophil activation 

or inflammation. A previous prospective nested case control study revealed 

that at 18 weeks of gestation, the levels of inflammatory parameters including 

IL-6 were not elevated in women who later developed preeclampsia 

compared to healthy controls (Djurovic et al., 2002). Hence, also according to 

the temporal criteria of causality, we can confute the long held concept that 

preeclampsia is caused by excessive inflammation (Redman et al., 1999). In 

contrast, numerous studies have shown that maternal circulatory sFlt-1 is 

elevated as 5-10 weeks before the onset of preeclampsia (Levine et al., 2004, 
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Levine et al., 2006, Chaiworapongsa et al., 2005) and sEng is elevated as early 

as 11-13 weeks of gestation prior to the development of preeclampsia (Rana et 

al., 2007, Romero et al., 2008, Erez et al., 2008, Baumann et al., 2008, Lim et al., 

2009, Foidart et al., 2010). Decrease in urinary PlGF also precedes the onset of 

preeclampsia (Levine et al., 2005). Collectively, these observations provide 

evidence of the cause and effect relationship between sFlt-1, sEng and PlGF 

and preeclampsia. Furthermore, increasing experimental data also shows that 

the clinical signs of preeclampsia can be largely attributed to high levels of 

sFlt-1 and sEng (Levine et al., 2004, Levine et al., 2006, Maynard et al., 2003, 

Venkatesha et al., 2006, Makris et al., 2007, Roberts et al., 2006, Agunanne et 

al., 2010) and that neutralization of sFlt-1 below a critical threshold eliminates 

the signs of preeclampsia in mice (Li et al., 2007, Bergmann et al., 2010).  

 

In conclusion, our study shows that inflammation does not play a central 

role in the release of anti-angiogenic factor or is responsible for preeclampsia. 

Since various factors including genetic, environmental or other external 

conditions can affect an individual’s susceptibility to inflammation, we 

recognise that in order to confirm this new hypothesis, similar studies in 

various centres need to be conducted. Nevertheless, these results question 

the long held view that inflammation is the cause of preeclampsia and 

warrant new thinking in regards to the pathogenesis of this hypertensive 

disorder specific to human. 
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Role of HO-1 in preeclampsia 

All diseases have an inflammatory component and preeclampsia is no 

exception. However, as we demonstrated, it is not the increased in 

inflammation per se that causes preeclampsia. In 2000, a new concept was 

proposed as to the cause of preeclampsia. Ahmed and colleagues proposed 

that it is the loss of endogenous protective factors that may predispose 

women during pregnancy to preeclampsia (Ahmed et al., 2000). They 

demonstrated that the loss of HO activity promoted placental damage 

induced by TNF-α, which could be prevented by increasing HO activity by 

the pharmacological inducer, hemin (Ahmed et al., 2000). This led them to 

propose that a lack of HO/CO activity could be the predisposing factor 

during pregnancy leading to preeclampsia. They subsequently showed that 

HO-1 inhibits the release of sFlt-1 and sEng and that HO-1 deficient mouse 

with systemic endothelial damage, has significant elevation in circulating 

sEng (Cudmore et al., 2007). Furthermore, a recent publication showed that 

the angiotensin receptor agonistic auto-antibody stimulate sEng in vivo by 

the upregulation of TNF-α and this upregulation can be prevented by 

induction of HO-1 using hemin (Zhou et al., 2010). Further experimental 

studies have confirmed that cigarette smoke extract induces HO-1 expression 

in trophoblasts (Ahmed et al., 2000) and decreases sFlt-1 release from 

placental villous explants without altering placental apoptotic status 

(Mehendale et al., 2007). In addition, CO treatment has been shown to 

enhance HO-1 expression in endothelial cells (Thom et al., 2000).  

  

To confirm the in vitro data, clinical studies have shown that preeclamptic 
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women have significant decreased CO concentrations in their exhaled breath 

compared to those with healthy pregnancies indicating a decreased HO 

activity (Baum et al., 2000, Kreiser et al., 2004). Paradoxically, although, 

smoking during pregnancy is associated with spontaneous abortion; 

stillbirth, preterm labor, fetal growth restriction and placental abruption, the 

incidence of preeclampsia is reduced by a third in smokers (Conde-Agudelo 

et al., 2008), compared to snuff (smokeless tobacco) users (England et al., 

2002). This indicates that it is the combustible product of tobacco, carbon 

monoxide that confers the protection. Furthermore, women who smoke have 

reduced circulating sFlt-1 and increased PlGF (Levine et al., 2006).  

 

The hypothesis that HO-1 mediated CO release protects against 

preeclampsia is strengthen by mounting evidence that this stress response 

gene and its gaseous product confer protection during pregnancy in both in 

vitro and animal studies (Cudmore et al., 2007, Zhou et al., 2010, Ahmed et 

al., 2000, Acevedo and Ahmed, 1998). A study has shown that the HO-1 

mRNA is decreased in the blood of preeclamptic women at term and that 

this reduction was inversely correlated with disease severity (Nakamura et 

al., 2009). However, the most compelling evidence, which can lead us to 

think of HO-1 as a cause for preeclampsia, comes from a recent study using 

fetal placental cells (chorionic villous sampling, CVS) from women at 11 

weeks gestation. Farina and colleagues showed that the expression of HO -1 

mRNA was decreased in CVS from women who went on to develop 

preeclampsia compared to controls (Farina et al., 2008). This data opens up 

the possibility that this very early decrease in HO-1 could lead, at least in 
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part, to the elevated anti-angiogenic factors seen in preeclamptic women 

later in pregnancy (Figure 7.2). The HO enzyme system generates three 

molecules (Biliverdin, Fe2+ and CO), which are unique in that they all have 

biological activity. Biliverdin is an antioxidant, which is rapidly reduced by 

biliverdin reductase to bilirubin, another potent antioxidant. The interactive 

role of these in preeclampsia still needs to be evaluated.  

 

 

!
Figure 7.2 Schematic diagram illustrating that loss of HO-1 may trigger 
preeclampsia. This diagram shows that loss of HO results in the rise of the anti-
angiogenic factors, soluble Flt-1 (sFlt-1) and soluble Endoglin  (sEng), which then 

mops up the angiogenic growth factors (VEGF and TGF-β). As a consequence of 
this, enzymes called endothelial nitric oxide synthase (eNOS) that produce nitric 

oxide (NO) are not fully activated. This results in the generation of superoxide and 
free radicals, hence promoting vascular dysfunction. 

!
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APPENDIX I 

Chemical Reagents and Suppliers 

Acetic acid (glacial):    Sigma, Poole, U.K. 

Acrylamide solution (40%):  Bio-Rad, Hemel Hempstead, U.K. 

Adenovirus: 

Ad"-gal: Gift: C.Kontos, Duke University, 

U.S.A. 

AdHO-1: Gift: J.Alam, Louisiana State 

University, U.S.A. 

AdBVR:    Vector Biolabs, Philadelphia, U.S.A. 

--defensins ELISA    Hycult Biotech, Uden, Netherlands 

"-mercaptoethanol:    Sigma, Poole, U.K. 

Bio-Rad protein assay:   Bio-Rad, Hemel Hempstead, U.K. 

Bovine serum albumin:   Sigma, Poole, U.K. 

Bromophenol blue:    Sigma, Poole, U.K. 

Calcein AM Fluorescent dye  BD Biosciences, Oxford , U.K. 

Calprotectin (MRP8/14) ELISA BMA Biomedicals, Switzerland  

Cell scrapers:     Sarstedt, Leics, U.K. 
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Cisplatin     Sigma, Poole, U.K. 

Collagenase A:    Boehringer Mannheim, Sussex, U.K. 

DABCO:     Sigma, Poole, U.K. 

DAKO StreptABC Complex/HRP Duet kit: Dako, Denmark. 

Decon-90:     Phillip Harris, Staffs, U.K. 

Dextran     Sigma, Poole, UK. 

Diaminobenzidine:    Sigma. Poole, U.K. 

DMEM:     ICN, Basingstoke, U.K. 

DMEM (phenol red free):   GibcoBRL, Paisley, UK. 

DMSO:     Sigma, Poole, U.K. 

DPEX mounting medium:   BDH, Poole, U.K. 

DTT:      Pharmacia, Herts., U.K. 

ECL detection kit:    Amersham, Buckinghamshire, U.K. 

EDTA:     Sigma, Poole, U.K. 

Endothelial cell growth supplement Sigma, Poole, U.K. 

EGF:      Peprotech, London, U.K. 

Ethanol (99.7-100%):   BDH, Poole, U.K. 

Ethyl acetate:     BDH, Poole, U.K. 

Fibronectin ELISA    American Diagnostica, CT, U.S.A. 
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Foetal calf serum: GibcoBRL Life Technologies, 

Scotland. 

Formaldehyde:    Sigma, Poole, U.K. 

Gelatin:     Sigma, Poole, U.K. 

Glycerol:     Sigma, Poole, U.K. 

Glycine:     CN Biosciences, Nottingham, U.K. 

Goat serum:     Sigma, Poole, U.K. 

HAMS-F12:     ICN, Basingstoke, U.K. 

Hanks buffered saline solution HBSS: Sigma, Poole, U.K. 

Hematoxylin     Vector, Burlingame, CA, U.S.A. 

Hybond ECL nitrocellulose membrane: Amersham Int., Buckinghamshire, 

U.K. 

Hydrogen chloride:    Sigma, Poole, U.K. 

Hydrogen peroxide    JT Baker Inc., CA, U.S.A. 

Human IL-6 ELISA    Pierce-Endogen, IL, U.S.A 

Isopropanol:     Sigma, Poole, U.K. 

Kaleidoscope pre-stained standards: Bio-Rad, Hemel Hempstead, U.K. 

Kodak, Biomax MR film:   Anachem, Luton, U.K. 

L-Glutamine:     Sigma, Poole, U.K. 
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L-NNA:     CN Biosciences, Nottingham, U.K. 

Lipopolysaccharide    Sigma, Poole, U.K.  

Leupeptin:     Sigma, Poole, U.K. 

M199 (Earles buffer):   Sigma, Poole, U.K. 

Marvel dried milk:    Sainsbury's, U.K. 

Mayer's Haematoxylin:   Sigma, Poole, U.K. 

Matrigel     BD Biosciences, Oxford, UK 

Methanol:     BDH, Poole, U.K. 

MOPS:     Sigma, Poole, U.K. 

MMP 2/9 inhibitor    Calbiochem, UK. 

MTT      Sigma, Poole, U.K. 

Nitrogen (industrial):   BOC, Surrey, U.K. 

NP-40:     Sigma, Poole, U.K. 

OCT embedding medium:   Agar Scientific, Essex, U.K. 

Oxygen (industrial):    BOC, Surrey, U.K. 

Penicillin: GibcoBRL Life Technologies, 

Scotland. 

Percoll     Sigma, Poole, U.K. 

Phenylmethylsulfonyl fluoride (PMSF): Sigma, Poole, U.K. 
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Phosphatase Inhibitor Cocktail I:  Sigma, Poole, U.K. 

Phosphatase Inhibitor Cocktail II:  Sigma, Poole, U.K. 

Phosphate buffered saline tablets (PBS): Sigma, Poole, U.K. 

PlGF Duoset ELISA:    R&D systems, Abingdon, U.K. 

PlGF Quantikine ELISA   R&D systems, Minneapolis, U.S.A. 

Potassium chloride:    Sigma, Poole, U.K. 

Protease Inhibitor Cocktail:  Sigma, Poole, U.K. 

Resveratrol     Sigma, Poole, U.K. 

RNA easy columns    Qiagen, West Sussex, UK 

Scott's solution:    Sigma, Poole, U.K 

sEng Duoset ELISA:    R&D systems, Abingdon, U.K. 

sEng Quantikine ELISA   R&D systems, Minneapolis, U.S.A. 

sFlt-1 Duoset ELISA    R&D systems, Abingdon, U.K. 

sFlt-1 Quantikine ELISA   R&D systems, Minneapolis, U.S.A. 

Sodium acetate:    Sigma, Poole, U.K. 

Sodium chloride:    Sigma, Poole, U.K. 

Sodium citrate:    Sigma, Poole, U.K. 

SDS:      Sigma, Poole, U.K. 

Sodium hydroxide:    Sigma, Poole, U.K. 
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Sodium iodide:    Sigma, Poole, U.K. 

Sodium nitrite:    Sigma, Poole, U.K. 

Special Gases: 

0% O2, 5% CO2, bal N2:  Air products, U.K. 

1% O2, 5% CO2, bal N2:  Air products, U.K. 

5% O2, 5% CO2, bal N2:  Air products, U.K. 

20% O2, 5% CO2, bal N2:  Air products, U.K. 

40% O2, 5% CO2, bal N2:  Air products, U.K. 

Streptomycin: GibcoBRL Life Technologies, 

Scotland. 

sVEGFR-1 Duoset ELISA:   R&D systems, Abingdon, U.K 

SYBR green      Quantace, London, UK 

TCA:      Sigma, Poole, U.K. 

TEMED:     Bio-Rad, Hemel Hempstead, U.K. 

Triethanolamine:    Sigma, Poole, U.K. 

Tris:      CN Biosciences, Nottingham, U.K. 

TRITC-phalloidin:    Sigma, Poole, U.K. 

Triton X-100:     Sigma, Poole, U.K. 

Trypsin/EDTA:    Sigma, Poole, U.K. 
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Tween-20:     Sigma, Poole, U.K. 

VEGF165: RELIATech, Brauschweig, 

Germany. 

Whatman 3 MM paper:   Whatman, Kent, U.K. 

Wortmannin:     Calbiochem, Nottingham, U.K. 

Xylene:     JT Baker Inc., CA, U.S.A. 
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APPENDIX II 

Equipment and Suppliers 

Cell culture Pipettes (5ml and 10 ml): Fahrenheit Lab Supplies, U.K. 

Centrifuge (Sigma 2K 15):   Sigma, Poole, U.K 

Class II cell culture cabinets:  Triple Red, Oxfordshire, U.K. 

Conical tubes (15 ml):   GibcoBRL, Paisley, U.K 

Coverglass:     Surgipath, St Neots, U.K  

Cryovials:     GibcoBRL, Paisley, U.K 

Developing Cassettes: Amersham Int., Buckinghamshire, 

U.K 

Disposable Scalpels:    Appleton Woods, Birmingham, U.K 

Eppendorfs:     Sarstedt, Leicester, U.K 

Falcon tubes (14 and 50 ml):      Falcon/BDH, Poole, U.K 

Filter units (swinnex 47 and 22):  Millipore, Hertfordshire, U.K  

Filters (0.22 mm):    Millipore, Hertfordshire, U.K 

Flasks (25 and 80 cm2):   GibcoNUNC, Paisley, Scotland 

Gilson pipettes:    Anachem, Luton, U.K 

Gilson tips (blue):    Appleton Woods, Birmingham, U.K 



 250!

Gilson tips (yellow):    Sarstedt, Leicester, U.K 

Glass Pasteur pipettes 9”:   Fisher Scientific, Loughborough, 

U.K. 

Glassware:     Phillip Harris Scientific, U.K. 

Horizontal gel electrophoresis system: GibcoBRL Life Technologies, 

Scotland 

Intensifying screens:   Amersham, Buckinghamshire, U.K 

Micro-centrifuge:    Phillip Harris Scientific, U.K. 

Microscope slides (Superfrost):  Surgipath, St Neots, U.K  

Mini sub DNA gel:    Bio-Rad, Hemel Hempstead, U.K. 

Mini-monitor (900):    Mini-instruments, Essex, U.K 

Modular Incubators:   ICN, Basingstoke, U.K. 

Multiwell Plates (6, 12 and 24-wells): Fahrenheit Lab Supplies, U.K. 

NOA 270/280B Analyser:   Analytix, Durham, U.K. 

Orbital shaker:    Phillip Harris Scientific, U.K. 

Petri dishes (30 and 90 mm2): GibcoBRL Life Technologies, 

Scotland.  

pH meter:     Corning costar, High Wycomb, U.K. 

Polytron Homogeniser PT1200:  Phillip Harris Scientific, U.K. 



 251!

Rotary shaker (R100):   Luckham, Basingstoke, U.K 

Round petri dishes:    Fahrenheit Lab Supplies, U.K. 

Scintillation counter: Canberra Packard, Pangbourne, 

U.K. 

Shaking water bath:    Grant Instruments, Cambridge, U.K 

Sonicator (T460):    Camlab, Cambridge, U.K. 

Spectrophotometer 8452A:   Hewlett Packard, Bracknell, U.K. 

Spinmix:     Sanyo-Gallenkamp, Leicester, U.K. 

Square petri dishes:    Fahrenheit Lab Supplies, U.K. 

Syringes (1ml - 50 ml):   Appleton Woods, Birmingham, U.K 

Transfer-blot electrophoresis transfer cell: Bio-Rad, Hemel Hempstead, U.K. 

Universals (30 ml):    Phillip Harris Scientific, U.K. 

Vertical gel electrophoresis units:  Bio-Rad, Hemel Hempstead, U.K. 

Water-Jacketed Incubator:   Sanyo-Gallenkamp, Leicester U.K. 

Weight Balance:    Sartonius Limited, Surrey, U.K 
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APPENDIX III 

Solutions and Buffers 

Antibiotics: 100 µg/ml Streptomycin, 100 µg/ml 

Penicillin. 

4% Dextran solution  4 g of Dextran in 96 ml of 0.9% NaCl 

Formaldehyde gel-loading buffer: 50% Glycerol, 1 mM EDTA, 0.25% 

Bromophenol blue, 0.25% Xylene Cyanol 

FF 

Mops buffer 10x: 200 mM MOPS, 50 mM Sodium acetate, 10 

mM EDTA pH 7.0 

90% Percoll solution 9 ml Percoll, 1 ml 9% NaCl 

75% Percoll solution 4 ml 90% Percoll, 1 ml 0.9% NaCl 

56% Percoll solution 14 ml 90% Percoll, 11 ml 0.9% NaCl 

4% Polyacrylamide gels: 2.5 ml of a 38% acrylamide, 2% bis-

acrylamide solution, 12 g urea, 2.5 ml 10 x 

TBE in a final volume of 25 ml in ultrapure 

water, 150 µl 10% APS and 25 µl temed  

Phosphate buffered saline: 5 Phosphate buffered saline tablets into 

1000 ml d.H2O results in pH 7.4, 10mM 

NaPO4, 2.7mM KCl, 127mM NaCl  
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Resolving gel 7.5%: 3.64 ml of 40% Acrylamide, 2 ml of 2% 

Bis/Acryl, 5 ml of 1 M Tris, 4.06 ml d.H2O, 

5 ml of 0.4% Gelatin solution, 10 µl 

TEMED, 100 µl 10% Ammonium 

persulphate 

RIPA buffer 50mM Tris Hcl pH7.4, 1% IGEPAL (NP-

40), 0.25% Na deoxycholate, 150nM NaCl, 

1mM EGTA, 1mM PMSF 1µg/ml 

aprotinin, pepstatin, leupeptin, 1mM 

Na3VO4, 1mMNaF 

Running buffer:   0.05% Tris, 0.384 M Glycine, 0.1% SDS 

Sample buffer 2X: 0.02 M tris-HCL pH 8, 2mM EDTA, 2% 

SDS, 10% Mercaptoethanol 20% Glycerol 

Bromophenol Blue to colour 

Sample buffer 4x: 0.04 M Tris, 4 mM EDTA, 4% SDS, 40% 

Glycerol, 0.02% Bromophenol blue 

Separating buffer:   1.875 M Tris, 0.5% SDS, pH 8.8 

Separating gel: 4.55 ml 40% Acrylamide, 2.5 ml Bis-Acryl, 

3.75 ml Separating buffer, 7.6 ml d.H2O, 19 

µl TEMED, 188 µl 10% Ammonium 

persulphate 

Solubilisation solution: 1 mM bicarbonate buffer pH 7.6, 1 mM 

EDTA, 0.01% Triton X-100 
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Stacking gel buffer:   0.625M Tris, 0.5% SDS, pH 6.8 

Stacking gel: 1.5 ml of 40% Acrylamide, 0.8 ml Bis-Acryl, 

3 ml Stacking buffer, 9.6 ml d.H2O, 15 ml 

TEMED, 150 ml Ammonium persulphate. 

Transfer buffer: 190mM Glycine, 25mM Tris, 40% 

Methanol. 

TTBS: 0.1M Tris, 0.3M NaCl, 0.1% Tween-20 pH 

7.5. 
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BACKGROUND & AIMS: Hepatitis C virus (HCV) in-
fection leads to progressive liver disease, frequently cul-
minating in fibrosis and hepatocellular carcinoma. The
mechanisms underlying liver injury in chronic hepatitis C
are poorly understood. This study evaluated the role of
vascular endothelial growth factor (VEGF) in hepatocyte
polarity and HCV infection. METHODS: We used po-
larized hepatoma cell lines and the recently described
infectious HCV Japanese fulminant hepatitis (JFH)-1 cell
culture system to study the role of VEGF in regulating
hepatoma permeability and HCV infection. RESULTS:
VEGF negatively regulates hepatocellular tight junction
integrity and cell polarity by a novel VEGF receptor
2– dependent pathway. VEGF reduced hepatoma tight
junction integrity, induced a re-organization of occludin,
and promoted HCV entry. Conversely, inhibition of hep-
atoma expressed VEGF with the receptor kinase inhibitor
sorafenib or with neutralizing anti-VEGF antibodies pro-
moted polarization and inhibited HCV entry, showing an
autocrine pathway. HCV infection of primary hepato-
cytes or hepatoma cell lines promoted VEGF expression
and reduced their polarity. Importantly, treatment of
HCV-infected cells with VEGF inhibitors restored their
ability to polarize, showing a VEGF-dependent pathway.
CONCLUSIONS: Hepatic polarity is critical to nor-
mal liver physiology. HCV infection promotes VEGF
expression that depolarizes hepatoma cells, promot-
ing viral transmission and lymphocyte migration into
the parenchyma that may promote hepatocyte injury.

Keywords: VEGF; Tropism; HCC; Angiogenesis.

Hepatitis C virus (HCV), the sole member of the
Hepacivirus genus in the Flaviviridae, poses a

global health burden with an estimated 170 million in-
fected individuals. The acute phase of infection is often
subclinical and a majority of individuals develop persis-
tent infection with progressive liver pathology, frequently
culminating in fibrosis and hepatocellular carcinoma
(HCC). HCV infection is the leading indication for liver
transplantation in many parts of the world. The mecha-
nisms underlying liver injury in HCV infection are poorly
understood with 2 nonexclusive models being proposed.
The “immunopathogenic” model argues that disease is

largely mediated by the host immune response, whereas
the “cytopathic” model suggests that HCV replication
and protein expression may induce cell injury.1 The re-
cent discovery that the Japanese fulminant hepatitis
(JFH)-1 strain of HCV can replicate and release infectious
particles in cultured cells (HCVcc)2– 4 allows studies to
assess the effect(s) of virus replication on hepatocellular
properties.

HCV has a short positive sense RNA genome encoding
3 structural, Core, E1, and E2 glycoproteins, and 7 non-
structural proteins (p7, NS2–NS5).5 The E1E2 glyco-
proteins interact with cell surface receptors to facilitate
particle entry via low pH and clathrin-dependent endo-
cytosis.6 Recent evidence suggests that a number of host
cell molecules are important for HCV entry: tetraspanin
CD81, scavenger receptor class B member I, and several
members of the tight junction (TJ) protein family includ-
ing Claudin-1, -6, and -9,7 and occludin.8 Recent data
from our laboratory show that hepatoma polarity limits
HCV entry, suggesting that agents that disrupt hepato-
cyte permeability may promote HCV infection.9

Vascular endothelial growth factor (VEGF) originally
was discovered for its effect(s) on endothelial cell perme-
ability.10 The critical role of VEGF in pathologic angio-
genesis has lead to the development and clinical testing
of VEGF inhibitors to limit tumor growth.11 However,
recent research suggests a diversity of roles for VEGF in
maintaining normal adult tissue.12,13 We show a role for
VEGF in regulating hepatocyte TJ integrity, polarity, and
permissivity to HCV infection. Neutralization of endog-
enous HepG2-expressed VEGF promotes polarization
and significantly inhibits HCV entry, confirming that an
autocrine pathway is in operation. HCV infection in-
creases primary hepatocyte and hepatoma VEGF expres-

Abbreviations used in this paper: BC, bile canaliculi; CLDN1, clau-
din-1; CMFDA, 5-chloromethylfluorescein diacetate; HCVcc, cell cul-
ture-derived HCV; HCVpp, HCV pseudotype particles; IFN, interferon;
JFH, Japanese fulminant hepatitis; MRP2, multidrug-resistant protein
2; PHH, primary human hepatocytes; TJ, tight junction; VEGF-A, vascu-
lar endothelial growth factor A; VEGFR, vascular endothelial growth
factor receptor; ZO-1, zona occludens-1.
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sion, which reduces their polarity. Importantly, VEGF
antagonists restore the ability of infected hepatoma cells
to polarize. In summary, our data support a model in
which HCV up-regulation of VEGF expression induces a
localized disruption of hepatocellular TJs that promotes
viral transmission in the liver, providing a potential ther-
apeutic opportunity for the use of VEGF antagonists to
treat chronic hepatitis C infection.

Materials and Methods
Cell Lines and Antibodies
HepG2 and Huh-7.5 cells (C. Rice, Rockefeller

University, NY) were propagated in Dulbecco’s modified
Eagle medium supplemented with 10% fetal bovine se-
rum and 1% nonessential amino acids. WIF-B9 cells (D.
Cassio, Centre National de la Recherche Scientifique,
Paris, France) were maintained in Coon’s F12 media
supplemented with 5% fetal bovine serum, 1% nonessen-
tial amino acids and hypoxanthine, aminopterin, and
thymidine. Primary human hepatocytes (PHH) were iso-
lated and cultured as previously reported.14 Liver sinu-
soidal endothelial cells were cultured in endothelial basal
media supplemented with 10% human serum and human
growth factor (Peprotech, London, UK). All cells were
maintained at 37°C, 5% CO2, with the exception of
WIF-B9 cells that require 7% CO2. HepG2 cells expressing
CD81, AcGFP.CD81, and AcGFP.claudin-1 (CLDN1)
were generated by lentiviral transduction as previously
described.15

The following primary antibodies were used: anti–mul-
tidrug-resistant protein 2 (MRP2) (M2 III-6; Abcam,
Cambridge, UK); anti-NS5A 9E10 (C. Rice, Rockefeller
University); anti-CD81 (2s131); anti-occludin (Zymed,
San Francisco, CA); anti-CLDN1 JAY.8 (Invitrogen, Carls-
bad, CA); anti-CLDN1 1C5-D9 (Novus, Littleton, CO),
and anti–zona occludens-1 (ZO-1) (Zymed). Secondary
labeled antibodies: Alexa 488 goat anti-mouse immuno-
globulin (Ig)G; Alexa 488 goat anti-rabbit IgG, Alexa 633
goat anti-mouse IgG, and Alexa 633 goat anti-rabbit IgG
were purchased from Invitrogen.

Pharmacologic Treatments and Compounds
HepG2 cells were seeded at 4 – 6 ! 104/cm2 on

tissue culture plastic or glass coverslips and allowed to
polarize for 3 days before incubating with the following
treatments at nontoxic concentrations: recombinant hu-
man VEGF-A, placental-induced growth factor, interfe-
ron-! (IFN!) (Peprotech) and VEGF-E (RELIATech,
Wolfenbüttel, Germany); neutralizing anti-VEGF mono-
clonal antibody VG76e;16 Sorafenib, a small molecular
inhibitor of tyrosine protein kinases (D. Palmer, Univer-
sity of Birmingham, UK); VEGFR-2 kinase inhibitor
Ki8751 (Calbiochem, Nottingham, UK); and anti-VEGF
monoclonal antibody 2c3 (R. Brekken, UT Southwestern
Medical Center) that inhibits VEGFR-2 activation.17 Hu-

man VEGF was measured by enzyme-linked immunosor-
bent assay following the suppliers recommended instruc-
tions (Peprotech).

Cell Polarity Determination
HepG2 and WIF-B9 cells were allowed to grow for

3 and 11 days, respectively, to polarize before fixing with
3% paraformaldehyde for 30 minutes at room tempera-
ture. Cells were permeabilized with 0.1% Triton/0.5%
bovine serum albumin in phosphate-buffered saline
(PBS) and stained with anti-MRP2 and Alexa-Fluor 488
goat anti-mouse. Nuclei were visualized using 4=, 6=-
diamidino-2-phenylindole (Invitrogen) and their polarity
index was determined by counting the number of MRP2-
positive apical structures per 100 nuclei using a Nikon
Eclipse TE2000-S fluorescence microscope (Nikon, To-
kyo, Japan).

Determination of TJ Barrier Function
To determine the functionality of TJs and whether

they restrict paracellular diffusion of solutes from the
bile-canalicular (BC) lumen to the basolateral medium
(barrier function), HepG2 cells were incubated with 5
mmol/L 5-chloromethylfluorescein diacetate (CMFDA;
Invitrogen) at 37°C for 10 minutes to allow translocation
to the BC lumen. After washing extensively with PBS, the
capacity of BC to retain CMFDA was enumerated using a
fluorescence microscope. WIF-B9 cells were treated with 5
mmol/L fluorescein diacetate (Sigma, Poole, UK) at 37°C
for 10 minutes before washing and quantifying the fre-
quency of BC retaining fluorescein diacetate.

HCV Pseudotype Particles Generation and
Infection
Pseudoviruses were generated by transfecting

293T cells with plasmids encoding a human immunode-
ficiency virus provirus expressing luciferase and HCV
strain H77 E1E2 region, the murine leukemia virus en-
velope, or a no-envelope control, as previously de-
scribed.18 Virus-containing media were added to target
cells for 4 hours, unbound virus was removed, and the
media was replaced with Dulbecco’s modified Eagle me-
dium/3% fetal bovine serum. At 72 hours postinfection
the cells were lysed, luciferase substrate was added, and
luciferase activity was measured for 10 seconds in a
luminometer (Lumat LB 9507; Berthold, Bad Wildbad,
Germany). Specific infectivity was calculated by subtract-
ing the mean no-envelope control pseudotype particle
relative light unit signal from the HCV pseudotype par-
ticle (HCVpp) or murine leukemia virus pseudotype par-
ticle signals. Infectivity was presented relative to un-
treated control cells (ie, the mean luciferase value of the
replicate untreated cells was defined as 100%).

HCVcc Generation and Infection
J6/JFH virus was generated as previously de-

scribed.2 Briefly, RNA was transcribed in vitro from full-
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length genomes using the Megascript T7 kit (Ambion,
Austin, TX) and electroporated into Huh-7.5 cells. At 72
and 96 hours after electroporation supernatants were
collected and stored immediately at !80°C. Virus-con-
taining media were added to target cells plated as de-
scribed earlier and infected cells were detected by meth-
anol-fixation and staining for NS5A with monoclonal
antibody 9E10 and Alexa-488 anti-mouse IgG. Infection
was quantified by enumerating NS5" foci and infectivity
was defined as the number of focus forming units/mL.

Immunoprecipitation and Western Blotting
Polarized HepG2 cells were harvested in lysis

buffer (PBS, 1% Brij97, 20 mmol/L Tris [pH 7.5], 300
mmol/L NaCl, 2 mmol/L CaCl2, and 2 mmol/L MgCl2)
containing protease and phosphatase inhibitors (Roche,
Burgess Hill, UK). Lysates were clarified by centrifugation
(20,000g, 10 min), precleared with Protein G–Sepharose
(GE Healthcare, Little Chalfont, UK), and 100 !g was
incubated with Protein G–Sepharose beads precoated
with anti-occludin or irrelevant isotype-matched control
antibody at 4°C for 90 minutes. The beads were collected
by centrifugation, washed thoroughly in lysis buffer, and
the precipitated proteins eluted with Laemmli buffer.
Proteins were separated by 10% sodium dodecyl sulfate–
polyacrylamide gel electrophoresis, transferred to polyvi-
nylidene difluoride membranes, and probed with anti-
occludin, antiphosphoserine, antiphosphothreonine, or
antiphosphotyrosine (Millipore, Watford, UK) (1 !g/mL)
and horseradish-peroxidase– conjugated anti-rabbit or
anti-mouse IgG antibodies. Proteins were detected by
enhanced chemiluminescence (Geneflow, Fradley, UK).

Quantification of CD81, Claudin-1, and
Occludin Localization
Parental HepG2 cells and those transduced to

express AcGFP tagged CD81 and CLDN1 were allowed to
polarize on glass coverslips, fixed in ice-cold methanol,
and TJs were localized by staining for occludin and ZO-1
as previously reported.9 Coverslips were mounted on
glass slides and viewed on a Zeiss Meta Head Confocal
Microscope with a 63# water immersion objective (Zeiss,
Jena, Germany). Cells were imaged with the microscope
settings optimized for each fluorescent protein to obtain
the highest signal-to-noise ratio. Protein expression at
the basolateral, cytoplasmic, and TJ locations (arbitrary
fluorescence units/pixel) provides 500 –1000 measure-
ments per cell. The data from 10 cells were normalized,
and the localized expression was calculated.

Statistical Analysis
Results are expressed as the mean $ 1 standard

deviation of the mean, except where stated to the con-
trary. Statistical analyses were performed using the Stu-
dent t test in Prism 4.0 (GraphPad, San Diego, CA) with
a P value of less than .05 considered statistically signifi-
cant.

Results
VEGF Regulates Hepatocellular TJ Integrity
and Polarity
Hepatocytes in the liver are polygonal and multi-

polar, with at least 2 basal surfaces facing the circulation
and a branched network of grooves between adjacent
cells constituting the apical or BC surface. A majority of
hepatocyte-derived cell lines and primary hepatocytes de-
differentiate in culture and fail to develop a polarized
phenotype.19 Human HepG2 and human–rat hybrid
WIF-B9 hepatoblastoma cell lines polarize and develop
apical cysts that are equivalent to BC in the liver. Polar-
ization can be quantified by enumerating MRP2-positive
BC per 100 nuclei (polarization index) and TJ integrity
can be assessed by determining the frequency of BC
retaining CMFDA or fluorescein diacetate (Figure 1A).
VEGF-A induced a dose-dependent decrease in HepG2
and WIF-B9 polarity and TJ integrity (Figure 1B and C).
Because VEGF is expressed in many tumor-derived cell
lines, we were interested to investigate whether HepG2 or
WIF-B9 cells express VEGF and whether endogenous
protein can act in an autocrine manner to regulate cell
polarity. Both cell lines express VEGF (Figure 1D) and
neutralization of endogenous VEGF with anti-VEGF
VG76e or receptor kinase antagonist Sorafenib for 24
hours promoted HepG2 polarization (Figure 1E). Similar
data were observed after inhibitor treatment of WIF-B9
cells (data not shown). Neutralization of endogenous
HepG2-expressed VEGF had a more significant effect
on polarity than expected from the recombinant
VEGF-A dose-response titrations (Figure 1B), which
may represent differences between extracellular and
cell-bound forms of VEGF that will not be measured
accurately by enzyme-linked immunosorbent assay or
altered expression of VEGF splice variants in hepatoma
cells. To ascertain whether PHHs express VEGF we
isolated cells from 2 independent donors and quanti-
fied soluble VEGF levels. PHHs expressed VEGF at
comparable levels with WIF-B9, whereas liver sinusoi-
dal endothelial cells failed to secrete detectable levels
of VEGF (Figure 1D). PHHs failed to polarize suffi-
ciently (%3% polarization index) to analyze the ef-
fect(s) of VEGF inhibitors on TJ integrity.9

VEGF acts through binding 2 high-affinity tyrosine
kinase receptors, VEGF receptor (VEGFR)-1 (Fms-like
tyrosine kinase 1) and VEGFR-2 (fetal liver kinase-1/
kinase insert domain receptor). To investigate the recep-
tor dependency of VEGF-mediated effects on hepatocel-
lular TJs, HepG2 cells were pretreated with the broad-
spectrum inhibitor Sorafenib or VEGFR-2 antagonist
Ki875120 for 24 hours followed by VEGF-A or IFN" for 1
hour. Treating HepG2 cells with VEGF for a short time
period of 1 hour reduced TJ integrity by 25%– 40%. Pre-
treatment with both inhibitors ablated the effects of
VEGF-A on TJ integrity, while having no detectable ef-
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fect(s) on IFN!-induced depolarization, suggesting a
VEGFR-2– dependent pathway (Figure 2A). Furthermore,
incubation of VEGF-A with a 5-fold molar excess of
anti-VEGF monoclonal antibody 2c3, which blocks
VEGF association with VEGFR-2,17 abrogated the effect
of VEGF-A but not IFN! on HepG2 TJ integrity (Figure
2B). Finally, when HepG2 cells were treated with VEGF-E,
a specific VEGFR-2 ligand, we noted a reduction in TJ
integrity whereas the VEGFR-1 selective ligand placental-
induced growth factor had no effect, confirming that
VEGF regulates TJ integrity via a VEGFR-2– dependent
pathway (Figure 2D).

VEGF Regulates Hepatocellular Permissivity
for HCV Entry

We previously reported that polarization of
HepG2-CD81 limits HCV entry.9 To study the effects of
VEGF on HCV infectivity, HepG2 cells were allowed to
polarize over 3 days and were treated with VEGF-A or
VEGF-E and challenged with HCV J6/JFH. Both treat-
ments led to a significant increase in HCV infectivity
(Figure 3A) and concomitant decrease in TJ integrity.
VEGF-A had no effect on HCV-RNA replication in
HepG2 or Huh-7.5 cells (data not shown). To ascertain

Figure 1. VEGF regulates hepatocellular TJ integrity and polarity. (A) HepG2 polarity was quantified by fixing the cells in 3% paraformaldehyde and
staining for the BC marker MRP2. Enumerating the frequency of MRP2! BC per 100 stained nuclei using CMFDA (4=, 6=-diamidino-2-phenylindole)
enabled us to determine a polarity index. TJ barrier function was measured by quantifying the frequency of BC retaining CMFDA. Representative
images depict apical expressed MRP2 and BC annotated with arrows and their retention of fluorescent CMFDA. Scale bar, 10 "mol/L. (B) HepG2
cells were allowed to polarize for 3 days and treated with VEGF-A for 24 hours. Treated and untreated cells were stained for MRP2 to quantify their
polarity or incubated with CMFDA to measure TJ barrier function. Polarity index and TJ integrity were determined by quantifying the number of
MRP2! BC per 100 nuclei that retained CMFDA in 5 fields of view on 3 replicate coverslips. (C) WIF-B9 cells were grown for a minimum of 11 days
to develop hepatic polarity and treated with VEGF-A for 24 hours; polarity and TJ integrity were assessed as described earlier. (D) HepG2, WIF-B9,
and PHHs from 2 independent donors, and liver sinusoidal endothelial cells (LSEC) were plated and the extracellular media was collected from 100,000
cells over a 24-hour time period and assessed for VEGF using a human VEGF enzyme-linked immunosorbent assay. (E) HepG2 cells were allowed
to polarize for 3 days and were pre-incubated in serum-free Dulbecco’s modified Eagle medium for 4 hours before treating with control dimethyl
sulfoxide, neutralizing anti–VEGF-A antibody VG76e (1.3 mg/mL), or receptor kinase antagonist Sorafenib (10 nmol/L) for 24 hours. Cells were fixed
and their polarity index was measured. *P " .01 (t test).
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whether VEGF modulates HCV entry, we studied HCVpp
infection, which measures HCV glycoprotein specific–
receptor dependent internalization. VEGF-A and VEGF-E
promoted a significant increase in HCVpp entry but
had no detectable effect on murine leukemia virus
pseudotype particle infection, confirming VEGF modu-
lation of an HCV glycoprotein-specific pathway (Figure
3A). To investigate whether endogenous VEGF affects
HepG2 permissivity to support HCV replication, polar-
ized HepG2-CD81 cells were treated with VG76e or Sor-
afenib for 16 hours and challenged with HCVcc J6/JFH

and HCVpp. Both inhibitors significantly reduced HCVcc
and HCVpp infection, with no detectable effect on mu-
rine leukemia virus pseudotype particle entry (Figure 3B).

We recently reported that HCV can transmit by cell-
free particle infection of naive target cells and by cell-to-
cell transfer.21 To assess the role of cell polarity and
VEGF in HCV transmission, we monitored the frequency
of HCV-infected HepG2-CD81 over time in comparison
with the permissive Huh-7.5 cell line. We previously re-
ported that HepG2-CD81 cells are approximately 700-
fold less permissive at supporting HCV replication than

Figure 2. VEGF regulation of hepatoma TJ integrity and polarity is VEGFR-2–dependent. HepG2 cells were allowed to polarize for 3 days, incubated
in serum-free Dulbecco’s modified Eagle medium for 4 hours followed by: (A) control dimethyl sulfoxide, Sorafenib (10 nmol/L), or VEGFR-2
antagonist Ki8571 (10 nmol/L) for 24 hours, followed by treatment with VEGF-A (10 ng/mL) or IFN! (10 ng/mL) for 1 hour; (B) VEGF-A (10 ng/mL)
or IFN! (10 ng/mL) pretreated with irrelevant IgG (5 mg/mL) or anti–VEGF 2c3 (5 mg/mL) for 1 hour, or (C) treated with mock (control), placental-
induced growth factor (PlGF) (50 ng/mL), VEGF-E (50 ng/mL), or VEGF-A (50 ng/mL) for 1 hour. TJ barrier function was assessed by quantifying the
number of CMFDA! BC in a minimum of 5 fields of view on 3 replicate coverslips, where *P " .01, **P " .001, ***P " .0001 (t test).

Figure 3. VEGF regulates HCV entry into polarized HepG2 cells. (A) HepG2-CD81 cells at 3 days postplating were untreated or treated with VEGF-A
(10 ng/mL) or VEGF-E (10 ng/mL) for 1 hour and challenged with HCVcc J6/JFH (black bars), HCVpp (white bars), or murine leukemia virus
pseudotype particles (MLVpp) (gray bars). *P " .01 (t test). (B) HepG2-CD81 cells at 3 days postplating were untreated or treated with neutralizing
anti–VEGF-A antibody VG76e (1.3 mg/mL) or receptor kinase antagonist Sorafenib (10 nmol/L) for 16 hours and challenged with HCVcc J6/JFH
(black bars), HCVpp (white bars), or MLVpp (gray bars). Infectivity is expressed relative to control. **P " .001 (t test).
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Huh-7.5 cells.9 Thus, reduced levels of virus inocula were
used to infect Huh-7.5 cells in this comparative transmis-
sion experiment. The number of NS5A-expressing
HepG2-CD81 cells in the culture remained constant after
48 and 96 hours postinfection (167 ! 7.0 at 48 hours to
186 ! 7.4 at 96 hours). In contrast, the number of
NS5A-expressing Huh-7.5 cells increased from 579.5 !
19.5 to 875 ! 27 between 48 and 96 hours postinfection.
Similarly, the levels of HCV RNA remained constant in
HepG2-CD81 cells. In summary, these data show that
HCV can initiate a primary infection of HepG2-CD81
cells, however, there are no second-round infection
events, which most likely is explained by the low permis-
sivity of HepG2 cells to support HCV-RNA replication
and protein expression levels that may be required for
particle assembly. Thus, we were unable to study the
effect of VEGF antagonists on HCV transmission in po-
larized HepG2 cells.

HCV Infection Perturbs Hepatocellular
Polarity in a VEGF-Dependent Manner
Several recent reports have suggested that HCV

infection induces VEGF expression in Huh-7 cells;22,23 we
confirm and extend these observations, showing that
J6/JFH infection of HepG2, Huh-7.5, and PHH induces
VEGF expression (Figure 4A). Similar increases in VEGF
expression were observed in JFH-1- and H77/JFH-in-
fected Huh-7.5 cells (data not shown). To ascertain
whether infection perturbs hepatocellular polarity,

HepG2-CD81 cells were infected with J6/JFH and moni-
tored for their ability to polarize over a 48-hour time
period. Naive HepG2-CD81 cells showed a 91.4% increase
in polarization over 48 hours (Figure 4B). HCV J6/JFH-
infected cells showed a significantly reduced frequency of
polarized cells after 48 hours (50.5% increase) (Figure 4B).
This is particularly noteworthy if one considers that the
frequency of NS5A-expressing HepG2-CD81 cells was
less than 2% of the population, suggesting a significant
bystander effect. Treatment of naive and infected HepG2-
CD81 cells with VG76e or Sorafenib promoted their
polarization and abrogated the depolarizing effects of
HCV, confirming a VEGF-dependent pathway (Figure 4B).

Effect of VEGF on TJ Protein Localization
To define the mechanism(s) of VEGF-induced

changes in HepG2 TJ integrity and polarity that promote
HCV entry, we studied the effect(s) of VEGF-A on occlu-
din, CLDN1, CD81, and ZO-1 localization. We previously
reported that occludin and ZO-1 localize as a discrete
band surrounding the BC in polarized HepG2 cells. In
contrast, CLDN1 and CD81 were detected at the baso-
lateral and apical surfaces.9 VEGF-A treatment signifi-
cantly reduced occludin expression at TJs, promoting
basolateral and intracellular pools (Figure 5A). In con-
trast, there was no significant change in CLDN1, CD81,
or ZO-1 localization (Figure 5B). Occludin, similar to
many TJ proteins, is a phosphoprotein and phosphory-
lation/dephosphorylation of both tyrosine but predomi-

Figure 4. HCV infection increases VEGF expression, which reduces hepatoma polarity. (A) HepG2-CD81, Huh-7.5, and PHHs from 2 donors were
inoculated with mock or HCVcc J6/JFH, pretitrated to achieve comparable levels of infection in the different target cells. Infected HepG2-CD81,
Huh-7.5, and PHHs contained 2.6 " 107, 2.9 " 107, and 1.9 " 107 HCV RNA copies/106 cells, respectively. Extracellular media was collected from
100,000 uninfected (white bars) or HCV-infected cells (black bars) over a period of 24 hours and assessed for VEGF expression using a human
VEGF-A enzyme-linked immunosorbent assay. *P # .01, **P # .001, ***P # .0001 (t test). (B) HepG2-CD81 cells were infected with mock or HCV
J6/JFH for 4 hours, unbound virus was removed by extensive washing, and the cells were untreated or treated with anti–VEGF-A antibody VG76e
(1.3 mg/mL) or Sorafenib (10 nmol/L) for 48 hours. Cells were fixed and the frequency of NS5A$ and polarized cells in duplicate coverslips was
assessed. Less than 2% of infected HepG2-CD81 cells expressed NS5A antigen at 48 hours postinfection. Relative polarity is presented as the
increase in polarized cells over 48 hours for uninfected (white bars) and J6/JFH-infected (black bars) cells. **P # .001 (t test).
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nantly serine/threonine residues, play an important role
in regulating occludin localization and its subsequent
role in TJ assembly.24 –26 Western blotting shows that
occludin runs predominantly as a single band in lysates
prepared from polarized HepG2 cells, whereas VEGF-A
treatment results in a second lower molecular weight
band that may represent less phosphorylated occludin
(Figure 5C). To investigate the effects of VEGF on occlu-
din phosphorylation, we immunoprecipitated occludin
from untreated and VEGF-A–treated HepG2 cells and
probed the precipitates with antiphosphoserine or anti-
phosphotyrosine by Western blotting. VEGF-A treatment
reduced the levels of serine-phosphorylated occludin and
had no effect on tyrosine-phosphorylated occludin levels
(Figure 5D).

Discussion
We show that VEGF regulates TJ integrity and

hepatocellular polarity through a VEGFR-2– dependent
pathway (Figures 1 and 2). We previously reported that
hepatoma polarization limits the availability of basolat-
eral-expressed TJ protein viral receptors and reduces HCV
entry,9 hypothesizing that cytokine or growth factor–
induced changes in hepatocyte permeability will promote

HCV entry. Indeed, VEGF treatment of polarized HepG2
led to a significant increase in HCV entry (Figure 3A).
Furthermore, neutralization of hepatoma-expressed
VEGF with inhibitors targeting extracellular VEGF or
intracellular VEGF-R kinases significantly inhibited HCV
entry (Figure 3B). HCV infection of primary hepatocytes
or hepatoma cells increased VEGF expression and re-
duced cell polarization. Importantly, VEGF inhibitors
restored the ability of infected hepatoma cells to polarize,
confirming a VEGF-dependent pathway. Hepatic polarity
is critical to the function of the liver and cholestatic
disease occurs when TJs, which seal the bile canaliculi,
lose function, permitting leakage of proteins and bile
acids between apical and basal compartments.27–29 Cho-
lestatic HCV disease occurs in the early posttransplant
period and generally is associated with high levels of
intrahepatic HCV RNA and may reflect viral-induced
cytopathic injury.30 –32 The data presented in this article
support a role for viral encoded proteins promoting
VEGF-dependent alterations in TJ integrity and hepato-
cyte polarity.

VEGF initially was recognized as an endothelial-spe-
cific growth factor that regulated vascular permeability
and angiogenesis. A majority of investigations studying

Figure 5. VEGF modulates occludin localization and phosphorylation. (A) HepG2 cells were allowed to polarize for 3 days and were untreated
(control) or treated with VEGF-A (10 ng/mL) for 1 hour, TJ integrity was assessed, and occludin (OCLN) localization was ascertained by staining with
an OCLN-specific antibody. VEGF-A reduced the frequency of CMFDA! BC by 48% and representative images show a re-organization of OCLN to
basolateral membranes. (B) To quantify the effect of VEGF on OCLN localization and to ascertain the effect on other TJ-associated proteins and viral
co-receptor CD81, polarized HepG2 cells expressing AcGFP.CLDN1 and AcGFP.CD81 were untreated (control) or treated with VEGF-A (10 ng/mL)
for 1 hour and stained with anti-OCLN or anti–ZO-1. OCLN, CLDN1, CD81, and ZO-1 localization at basolateral (black), intracellular (white), and TJ
(grey) locations was quantified. (C) Polarized HepG2 cells were untreated or treated with VEGF-A (10 ng/mL) for 1 hour and OCLN immunoprecipi-
tates were subjected to sodium dodecyl sulfate–polyacrylamide gel electrophoresis and Western blotting with anti-OCLN. (D) To determine the
phosphorylation status of precipitated OCLN after VEGF-A treatment, sodium dodecyl sulfate–polyacrylamide gel electrophoresis separated proteins
were probed with antiphosphoserine or antiphosphotyrosine and protein loading confirmed using anti–!-actin.
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the role of VEGF in HCC have characterized the effect of
VEGF antagonists on tumor development and metasta-
sis. Indeed, several recent reports have shown that VEGF
inhibitors significantly can increase the life expectancy of
subjects with HCC.33–35 A systematic study of VEGF ex-
pression in adult VEGF–!-galactosidase mice showed a
defined subset of cells expressing VEGF, including hepa-
tocytes in the liver.36 Our data support a role for VEGF in
regulating hepatocyte polarity, consistent with an earlier
report from Schmitt et al37 who showed a protein kinase
C-"– dependent pathway underlying VEGF perturbation
of HepG2 TJs. The protein kinase C dependency of this
pathway is consistent with our earlier report that phorbol
ester activation of protein kinase C depolarized HepG2
and increased HCV entry.9 The observation that PHHs
secrete VEGF (Figure 1) suggests that this pathway is in
operation in nontumor cells; however, given the difficul-
ties in studying primary hepatocyte polarization19 we
were unable to assess the effects of VEGF on hepatocyte
polarity.

HCV infection of hepatoma cells has been reported to
induce oxidative stress and calcium signaling that stabi-
lizes hypoxia inducible growth factor 1a, a transcription
factor that regulates angiogenic cytokines, including
VEGF,22,23,38,39 suggesting a role for HCV in HCC devel-
opment and metastasis. Hassan et al23 recently reported
increased VEGF immunostaining of liver biopsy speci-
mens from HCV-infected subjects, suggesting a role for
HCV core protein in hepatic angiogenesis. Several onco-
genic viruses, hepatitis B virus, human papillomavirus-
16, and Kaposi’s sarcoma herpes virus have been reported
to activate hypoxia inducible growth factor 1a and pro-
mote VEGF expression, suggesting an important pathway
in tumor development.40 In addition to the angiogenic
properties of increased VEGF expression, our data sup-
port a model in which HCV-infected hepatocytes secrete
VEGF, which induces a localized depolarization of hepa-
tocytes that promotes viral transmission between adja-
cent hepatocytes, consistent with the recent report by
Liang et al41 showing infected foci in the liver of HCV
chronically infected subjects.

Proinflammatory cytokines modulate epithelia and en-
dothelia permeability by a variety of mechanisms.42 We
previously reported that tumor necrosis factor-" and
IFN# reduced HepG2 TJ integrity and yet had no demon-
strable effect on HCV entry,9 suggesting independent
pathway(s) to perturb TJ protein localization, some of
which modulate HCV entry. Our recent data suggest that
VEGF inhibitors will promote hepatocellular TJ integrity
and reduce HCV infection of naive cells within the con-
text of an inflamed liver and may have minimal effect(s)
on cytokine-mediated changes to epithelial permeability.

VEGF has been reported to stimulate the phosphory-
lation/dephosphorylation of occludin via protein kinase
C and mitogen-activated protein kinase pathways in a
cell-type– dependent manner.37,43,44 VEGF stimulation of

brain microvessel endothelial cells leads to a dephosphor-
ylation of occludin, disruption of TJ protein localization,
and increased permeability.45 In contrast, VEGF stimu-
lates occludin phosphorylation at serine 490 and in-
creases permeability of bovine retinal endothelial
cells.44,46,47 Our data show that VEGF reduces occludin
localization at TJs in HepG2 cells, while having no sig-
nificant effect(s) on CLDN1, CD81, or ZO-1 localization
(Figure 5A and B). The VEGF-A– dependent reorganiza-
tion of occludin is accompanied by an altered serine
phosphorylation pattern. In summary, our data support
a model in which HCV up-regulation of VEGF expression
disrupts occludin localization, reduces TJ integrity, and
promotes viral transmission. These data highlight a po-
tential role for VEGF antagonists to help control HCV
infection in addition to their known properties of regu-
lating HCC growth and development.
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Activation of Proteinase-Activated Receptor 2 Stimulates
Soluble Vascular Endothelial Growth Factor Receptor 1

Release via Epidermal Growth Factor Receptor
Transactivation in Endothelial Cells

Bahjat Al-Ani, Peter W. Hewett, Melissa J. Cudmore, Takeshi Fujisawa, Mahmoud Saifeddine,
Hannah Williams, Wenda Ramma, Samir Sissaoui, Padma-Sheela Jayaraman, Motoi Ohba,

Shakil Ahmad, Morley D. Hollenberg, Asif Ahmed

Abstract—The proteinase-activated receptor 2 (PAR-2) expression is increased in endothelial cells derived from women
with preeclampsia, characterized by widespread maternal endothelial damage, which occurs as a consequence of
elevated soluble vascular endothelial growth factor receptor-1 (sVEGFR-1; commonly known as sFlt-1) in the maternal
circulation. Because PAR-2 is upregulated by proinflammatory cytokines and activated by blood coagulation serine
proteinases, we investigated whether activation of PAR-2 contributed to sVEGFR-1 release. PAR-2–activating peptides
(SLIGRL-NH2 and 2-furoyl-LIGRLO-NH2) and factor Xa increased the expression and release of sVEGFR-1 from
human umbilical vein endothelial cells. Enzyme-specific, dominant-negative mutants and small interfering RNA were used
to demonstrate that PAR-2–mediated sVEGFR-1 release depended on protein kinase C-!1 and protein kinase C-", which
required intracellular transactivation of epidermal growth factor receptor 1, leading to mitogen-activated protein kinase
activation. Overexpression of heme oxygenase 1 and its gaseous product, carbon monoxide, decreased PAR-2–stimulated
sVEGFR-1 release from human umbilical vein endothelial cells. Simvastatin, which upregulates heme oxygenase 1, also
suppressed PAR-2–mediated sVEGFR-1 release. These results show that endothelial PAR-2 activation leading to increased
sVEGFR-1 release may contribute to the maternal vascular dysfunction observed in preeclampsia and highlights the PAR-2
pathway as a potential therapeutic target for the treatment of preeclampsia. (Hypertension. 2010;55:689-697.)

Key Words: PAR-2 ! sVEGFR-1/sFlt-1 ! endothelium ! factor Xa ! HO-1 ! preeclampsia

Preeclampsia is a pregnancy specific multiorgan syndrome
characterized by widespread maternal endothelial dam-

age with a clinical presentation of hypertension and protein-
uria after 20 weeks’ gestation.1 Women with preeclampsia are
at an increased risk of developing cardiovascular disease.2

The antiangiogenic factors, soluble vascular endothelial growth
factor receptor 1 (VEGFR; sVEGFR-1, also known as sFlt-1)
and soluble endoglin, are increased dramatically before the
clinical onset of preeclampsia.3 Elevated sVEGFR-1 antago-
nizes the action of vascular endothelial growth factor and
placenta growth factor resulting in impaired human placental
angiogenesis4 and glomerular endothelial cell damage, protein-
uria, and hypertension in rodent models,5 indicating that it is a
major contributory factor to the development of preeclampsia.
Furthermore, the anti-inflammatory enzyme heme oxygenase 1
(HO-1), which is decreased in preeclamptic placentas6 and

regulates inflammatory angiogenesis,7 suppresses sVEGFR-1
release from endothelial cells.8

During placentation, the trophoblasts invade the maternal
tissues but avoid immune rejection.9 Preeclampsia is associ-
ated with a failure to switch from the T helper 1 cytokine
profile (eg, interferon-#, tumor necrosis factor [TNF]-$,
interleukin [IL]-8, and IL-18) to T helper 2 cytokine profile
(eg, IL-4 and IL-10), indicating a lack of immune tolerance.10

A rise in circulating levels of proinflammatory cytokines (eg,
TNF-$ and IL-1!) upregulates tissue factor expression lead-
ing to activation of the coagulation system, which can result
in disseminated intravascular coagulation, particularly in
early onset severe preeclampsia11 and eclampsia.12

The main physiological activators of the proteinase-activated
receptors (PAR-1 and PAR-2) are serine proteinases, such as
thrombin and factors VIIa and Xa (FXa).13 PAR-2 plays an
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important role in inflammation and regulates vascular func-
tion.14,15 Proinflammatory cytokines, including interferon-! and
TNF-", induce PAR-2 expression and, in turn, PAR-2 activation
promotes the production of interferon-!, TNF-", IL-8, and IL-18
in various cell types, including the endothelium.16 Indeed, T-cell
proliferation, interferon-!, and IL-18 levels are significantly
reduced in PAR-2 knockout mice,16,17 whereas endotoxin-
stimulated macrophages show significantly greater IL-10 ex-
pression18 and enhanced IL-4 secretion19 in PAR-2 null mice.
PAR-2 expression is reported to be increased in human umbil-
ical vein endothelial cells (HUVECs) derived from preeclamptic
pregnancies, and the conditioned medium from preeclamptic
placental villous tissue explants upregulates PAR-2 in cultured
endothelial cells.20 Although PAR-2 activity is known to be
upregulated in the vasculature in inflammatory conditions,21 the
potential relationship between PAR-2 activation and sVEGFR-1
release is unknown. Therefore, we speculated that the activation
of PAR-2 could increase endothelial sVEGFR-1 release. In this
study, we report the ability of PAR-2 agonists to increase
sVEGFR-1 release from endothelial cells via protein kinase C
(PKC)–mediated intracellular transactivation of epidermal
growth factor (EGF) receptor (EGFR) 1 and subsequent down-
stream mitogen-activated protein (MAP) kinase signaling. Fur-
thermore, we show that PAR-2–stimulated sVEGFR-1 release
was suppressed by HO-1 overexpression and enhanced by HO-1
knockdown, indicating that HO-1 is a central regulator of
sVEGFR-1 expression.

Materials and Methods
A full description of materials and methods used can be found in the
online Data Supplement (please see http://hyper.ahajournals.org).

Cell Culture
HUVECs were isolated and cultured as described.8 Human embry-
onic kidney cells (HEK-293) were maintained in DMEM containing
10% FCS, whereas porcine aortic endothelial cells (PAECs) express-
ing PAR-2 (PAEC-PAR-2) and cells containing the vector alone
(PAEC-pCDNA3.1B) were propagated in G418-containing F12-
HAM nutrient mix supplemented with 10% FCS.

Adenoviruses
The recombinant, replication-deficient adenoviruses encoding rat
HO-18 and dominant-negative PKC (dnPKC) isozymes22 were am-
plified and titered and the optimal multiplicity of infection deter-
mined by Western blotting as 50 infectious units (ifu) per cell for
HO-1 and 100 ifu per cell for the dnPKC isozyme adenoviruses.
HUVECs were infected overnight with adenoviruses and then
incubated for 24 hours in basal medium containing 5% FCS.

Small Interfering RNA-Mediated
Gene Knockdown
The small interfering RNAs (siRNAs) targeted against c-Src,23

HO-1,8 and PKC#1 (sense: 5!-GGGAGAAACUUGAACGCAAtt-3!;
antisense: 5!-UUGCGUUCAAGUUUCUCCCtt-3!) and a universal
control siRNA (Dharmacon) were introduced into HUVECs using
the Amaxa Nucleofector HUVEC II kit (Amaxa) and incubated
overnight before treatment.

ELISAs
The sVEGFR-1 concentration in cell supernatants was determined as
described.4 EGFR was measured using the EGFR DuoSet IC ELISA
(R&D Systems) and phosphorylated EGFR by a sandwich ELISA
using an anti-EGFR capture antibody and phosphotyrosine
detection antibody.

Western Blotting
After stimulation, cells were lysed in radioimmunoprecipitation
assay buffer and 30 $g of protein were Western blotted using rabbit
antiphospho-extracellular signal–regulated kinase (ERK)1/2, anti–
Src phospho-Y416, or anti–Raf-1-phospho-S338 (Cell Signaling)
antiactivated EGFR (BD Biosciences) antibodies.4

VEGFR-1 Promoter Reporter Assays
A 1.3-Kb fragment of the human VEGFR-1 promoter-luciferase
construct was used to determine the ability of PAR-2 to activate the
VEGFR-1 gene. The reporter plasmid was constructed by cloning a
PCR fragment corresponding with sequences from "1214 to #155
relative to the first exon in the VEGFR-1 gene into the BglII and
HindIII sites of pGL2 (Promega). HEK293 cells, which express
functional PAR-2,24 and porcine aortic endothelial cells were trans-
fected with the VEGFR-1 promoter construct using Exgen 500
(Fermentas). For details see the online Supplemental Methods.

Statistical Analysis
All of the data are expressed as the mean$SEM. Statistical analysis
was performed using the 2-tailed Student t test. P%0.05 was
considered statistically significant.

Results
PAR-2 Activation Stimulates sVEGFR-1 Release
Endothelial cells derived from patients with preeclampsia
exhibit increased PAR-2 expression.20 To determine the
effect of PAR-2 activation on sVEGFR-1 production,
HUVECs were stimulated with the PAR-2 selective activat-
ing peptides (SLIGRL-NH2 and 2f-LIGRLO-NH2) or FXa for
24 hours and sVEGFR-1 quantified in the culture medium by
ELISA. PAR-2 activating peptides induced sVEGFR-1 re-
lease, whereas the corresponding reverse-control peptides
(LRGILS-NH2 and 2f-OLRGIL-NH2) failed to induce
sVEGFR-1 release (Figure 1A). Similarly, FXa (100 nmol/L)
induced sVEGFR-1 release. A 1.3-Kb human VEGFR-1
promoter luciferase reporter was used to assess the ability of
PAR-2 to activate the VEGFR-1 gene in PAECs and HEK293
cells. Activation of PAR-2 significantly increased VEGFR-1
promoter activity, indicating that PAR-2 regulates the pro-
duction of sVEGFR-1 transcription (Figure 1B and Figure
S2A, available in the online Data Supplement). To confirm
that the sVEGFR-1 release was generated through PAR-2
activation, HUVECs were coincubated with 2f-LIGRLO-NH2

and the PAR-2 antagonist, FSLLRY-NH2,25 which abolished
both the sVEGFR-1 release and VEGFR-1 promoter activity
(Figure 1C and 1D). Moreover, specificity of PAR-2-stimulated
VEGFR-1 promoter activity was demonstrated in PAECs engi-
neered to express PAR-2 (Figure S1) but not in PAECs trans-
fected with empty vector (Figure 1E and 1F). Furthermore,
PAR-2 activation induced robust activation of VEGFR-1 pro-
moter and also increased sVEGFR-1 release from trophoblasts
(Figure S2C), and PAR-2 activators did not significantly alter
cellular activity, confirming that the effect on sVEGFR-1 ex-
pression was not because of an increase in endothelial cell
proliferation or survival (Figure S2B).

PAR-2–Induced sVEGFR-1 Release Depends on
PKC and Src Activity
Both PKC26 and Src27 are involved in PAR-2 signaling.
Soluble VEGFR-1 release and VEGFR-1 promoter activity
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were blocked by a PKC inhibitor (Ro-32-0432), indicating its
involvement in PAR-2–mediated sVEGFR-1 production
(Figure 2A and 2B). HUVECs express PKC!, PKC"1, PKC#,
and PKC$ isozymes.28 To evaluate the PKC subtype involved
in PAR-2–mediated sVEGFR-1 release, HUVECs were in-
fected with adenoviruses encoding dominant-negative
isozymes of PKC. PAR-2–induced release of sVEGFR-1 was
inhibited by both PKC! and PKC$, and the basal level of
sVEGFR-1 was suppressed by the overexpression of PKC"
in endothelial cells (Figure 2C). PKC"1 knockdown in
HUVECs abrogated PAR-2–mediated sVEGFR-1 release
(Figure 2D). Western blot analysis confirmed endogenous
expression of PKC isozymes and the modulation by adeno-
virus overexpression or knockdown (Figure 2C). Similarly,
Src family kinase inhibitor PP2 inhibited sVEGFR-1 release
and VEGFR-1 promoter activity, implicating its involvement
in PAR-2–stimulated sVEGFR-1 expression (Figure 3A and
3B). These results were confirmed using siRNA-mediated
knockdown of Src (Figure 3C and 3D).

MAP Kinase Activation and EGFR Transactivation
Are Required for PAR-2–Induced
sVEGFR-1 Expression
The activation of G protein–coupled receptors including PAR-1,
PAR-2, and angiotensin II receptors, is widely reported to

phosphorylate MAP kinase via PKC-mediated transactivation of
EGFR.29–31 To investigate whether MAP kinase activation is
required for PAR-2–induced sVEGFR-1 release, HUVECs were
preincubated with MAP kinase kinase (MEK)1/2 inhibitor
(U0126) and stimulated with PAR-2 ligand. Inhibition of MEK-
1/2, which is immediately upstream of ERK-1/2 in the MAP
kinase pathway, resulted in a complete loss of PAR-2–mediated
sVEGFR-1 release (Figure 4A) and VEGFR-1 promoter activity
in HEK-293 (Figure 4B) and caused a loss of PAR-2–mediated
ERK-1/2 phosphorylation (Figure 4C). Furthermore, the over-
expression of dominant-negative PKC" and PKC$ or Src-kinase
inhibition suppressed PAR-2–mediated ERK-1/2 phosphoryla-
tion (Figure 4D and 4E).

To determine the sequence of events leading to PAR-2–
mediated sVEGFR-1 release, we examined the phosphorylation
of Src at Y416 and Raf-1 at S338 in relation to downstream
activation of ERK-1/2 and whether PKC activation is upstream
of Src and Raf-1 in PAR-2–stimulated VEGFR-1 release.
Overexpression of dominant-negative PKC" or PKC$ attenu-
ated PAR-2–stimulated Src phosphorylation and completely
inhibited the phosphorylation of Raf-1 (Figure 4F). In addition,
the PKC (GF109203X) and Src (PP2) inhibitors completely
abrogated 2f-LIGRLO-NH2–stimulated phosphorylation of
Raf-1 (Figure 4G). Collectively, these data demonstrate that
PAR-2 stimulates sVEGFR-1 expression and release by activat-
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Figure 1. Selective PAR-2 activation stimulates sVEGFR-1 release in endothelial cells. A, Confluent HUVECs and (B) HEK-293 cells
transfected with a !1.3-kb fragment of the VEGFR-1 promoter with a luciferase reporter were incubated with PAR-2 activating peptide
(100 %mol/L of SLIGRL-NH2 or 50 %mol/L of 2f-LIGRLO-NH2) or FXa (100 nmol/L) for 24 hours, and the cell supernatants assayed for
sVEGFR-1 by ELISA and VEGFR-1 promoter activity in cell lysates were determined by luciferase assay. The corresponding reverse
peptides (LRGILS-NH2 or 2f-OLRGIL-NH2) were used as negative controls. C, HUVECs and (D) HEK-293 cells transfected with
VEGFR-1 promoter were incubated for 24 hours with 2f-LIGRLO-NH2 (10 %mol/L) in the presence or absence of a PAR-2 antagonist
(400 %mol/L of FSLLRY-NH2), and sVEGFR-1 levels in cell supernatants (C) or promoter activity (D) were determined. E, Porcine aortic
endothelial cells expressing PAR-2 (PAEC-PAR-2) or (F) control cells (PAEC-pcDNA3.1B) were transfected with the VEGFR-1 promoter
and stimulated for 24 hours with PAR-2 activating peptide (10 %mol/L of 2f-LIGRLO-NH2) or control peptide (10 %mol/L of 2f-OLRGIL-
NH2), and luciferase activity in the cell lysates was determined. Results are the mean ("SEM) of 3 experiments. *P#0.01 (A and C),
P#0.05 (B), and *P#0.001 (D and E) vs control.
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ing PKC, leading to sequential Src, Ras, Raf-1, and ERK-1/2
activation.

Subsequently, we investigated whether EGFR transactiva-
tion is required for PAR-2–induced ERK1/2 activation and
sVEGFR-1 expression. However, early studies reported the
absence of EGFR in endothelial cells,32 and EGFR-1 has only
recently been detected in HUVECs.33 ELISA and Western
blot analysis confirmed the presence of functional EGFR in
HUVEC lysates (Figure S3). To investigate whether PAR-2
activation can lead to EGFR transactivation, HUVECs were
stimulated with PAR-2 peptide or EGF, and EGFR phosphory-
lation was determined by ELISA. PAR-2 activation increased
EGFR phosphorylation in HUVECs, which was inhibited by the
EGFR kinase inhibitor AG1478 (3 !mol/L; Figure 5A).34 In
addition, 2f-LIGRLO-NH2, FXa, and EGF induced similar
levels of Raf-1S338 phosphorylation in endothelial cells (Figure
S3C). EGFR inhibition abrogated sVEGFR-1 release and down-
stream ERK-1/2 phosphorylation in response to the PAR-2
agonists demonstrating the requirement of EGF transactivation
for PAR-2–mediated sVEGFR-1 release (Figure 5B). Further-

more, the inhibition EGFR resulted in the loss of ERK-1/2
activity after the acute stimulation of HUVECs with either
2f-LIGRLO or FXa (Figure 5C). As anticipated, the inhibition of
ERK-1/2 prevented sVEGFR-1 production in response to FXa
and EGF (Figure S3D).

Src activity has been reported to act both upstream and
downstream of EGFR transactivation after PAR-2 stimulation in
different cell types.27,35 PAR-2–induced EGFR phosphorylation
was inhibited by the Src inhibitor PP2, indicating that Src
activity is required for EGFR transactivation (Figure 5D). In
addition, the PAR-2–mediated activation of Src was not inhib-
ited by AG1478, supporting these findings (Figure 5E). Trans-
activation of the EGFR by PAR-2 can occur through the release
of EGFR agonists, such as transforming growth factor-" or
heparin-binding EGF from the cell surface through the activation
of matrix metalloproteinases (MMPs).30 To determine whether
the transactivation of the EGFR by PAR-2 observed in our
studies occurred via a similar extracellular route, HUVECs were
preincubated with the MMP inhibitor, GM6001, or the reverse-
control peptide (rGM6001; 10 !mol/L), before stimulation with
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Figure 2. PAR-2–induced sVEGFR-1 release from endothelial cells depends on PKC activity. A, HUVECs and (B) HEK293 cells trans-
fected with a VEGFR-1 promoter luciferase reporter construct were pretreated with the PKC inhibitor (Ro-32-0432; 1 !mol/L) for 45
minutes and then stimulated with PAR-2 activating peptide (10 !mol/L of 2f-LIGRLO-NH2) for 24 hours, and the cell culture superna-
tants were assayed for sVEGFR-1 by ELISA (A) and cell lysates assayed for luciferase activity (B), respectively. C, HUVECs were
infected overnight with 100 ifu per cell of adenoviruses expressing dominant-negative PKC" (dnPKC"), PKC# (dnPKC#), PKC$
(dnPKC$), or empty vector (EV), incubated for 24 hours, and the expression of PKC isoforms were examined in cell lysates by Western
blotting. These cells were stimulated with PAR-2–activating peptide (10 !mol/L of 2f-LIGRLO-NH2) for 24 hours, and the conditioned
medium was assayed for sVEGFR-1 by ELISA. D, PKC-#1 siRNA was introduced into HUVECs using an Amaxa nucleofector and the
knockdown of PKC#1 confirmed by Western blotting. PAR-2–mediated sVEGFR-1 release was inhibited in cells treated with PKC-#1
siRNA. Results represent the mean (!SEM). *P"0.01 (A and B vs control and C vs EV#2f-LIGRLO); *P"0.05 (D vs control).
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2f-LIGRLO-NH2 (10 !mol/L) or FXa (200 nmol/L; Figure 5F).
The MMP inhibitor did not significantly suppress sVEGFR-1
release, indicating that MMPs are not involved in PAR-2–
stimulated sVEGFR-1 release. On the basis of these results, we
conclude that the PAR-2–mediated transactivation of EGFR
occurs through an intracellular route via a PKC- and Src-
dependent pathway.

Statins and HO-1 Activity Downregulate
PAR-2s-Induced sVEGFR-1 Release
Statins (which upregulate HO-1), HO-1, and its gaseous
product CO act as negative regulators of sVEGFR-1

release in endothelial cells.8 Consistent with this concept,
simvastatin inhibited PAR-2–mediated sVEGFR-1 release
(Figure 6A) and VEGFR-1 promoter activity (Figure 6B
and 6C). The overexpression of HO-1 also significantly
inhibited the release of sVEGFR-1 (Figure 6D), whereas
loss of HO-1 enhanced VEGFR-1 promoter activity (Fig-
ure 6E). The lipid soluble CO-releasing molecule
(CORM-2) reduced PAR-2–induced sVEGFR-1 release,
whereas the inactive CORM-2 had no significant effect
(Figure 6F). These results further support a potentially
beneficial role for HO-1 and its product CO in preeclamp-
sia, as reported previously.8
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Discussion
This study shows that receptor-selective PAR-2 activation
induces VEGFR-1 promoter activity and sVEGFR-1 release
from endothelial cells through the sequential activation of
PKC, Src, Raf-1, and ERK-1/2 and depends on EGFR
transactivation (Figure 7). Furthermore, it demonstrates that
upregulation of HO-1 with Simvastatin or overexpression of
HO-1 or CO suppresses PAR-2–mediated sVEGFR-1 release
and supports our earlier study showing that the HO-1/CO
pathway inhibits cytokine-induced sVEGFR-1 release.8

The transactivation of the EGFR by G-coupled protein
receptors, including PAR-1, PAR-2, and PAR-4, is well
established.29,30,36 Inhibition of Src or EGFR completely
abrogated PAR-2–mediated sVEGFR-1 expression, indicat-
ing that both Src and EGFR activation is required in concert
with PKC for the efficient release of sVEGFR-1 in response
to PAR-2. In this study, Src activity was required for
PAR-2–mediated EGFR transactivation. This is consistent
with a recent report showing that EGFR transactivation and
MAP kinase activity in PAR-2–induced chloride secretion in
intestinal epithelial cells depended on Src activation35 and a
similar mechanism in cardiomyocytes after PAR-4 stimula-
tion.36 The inhibition of either the Src or EGFR did not
completely block PAR-2–stimulated ERK-1/2 phosphoryla-

tion, suggesting that ERK-1/2 may also be activated directly
by PKC via Raf-1. However, activation of ERK-1/2 appears
to be the final pathway for PAR-2–mediated release of
sVEGFR-1. In many cell systems, EGFR transactivation is
mediated by the proteolytic cleavage of cell membrane–
bound EGFR ligands, including transforming growth factor-!
and heparin-binding EGF by MMP such as the TNF-!–
converting enzyme.29,30 PAR transactivation of EGFR was
reported to occur in an MMP-independent manner, requiring
Src activation in cardiac fibroblasts36 and intestinal epithelial
cells.35 In this study, MMP inhibition did not prevent PAR-
2–mediated sVEGFR-1 release supporting EGFR transacti-
vation occurring via an intracellular route. The observation
that EGFR transactivation leads to increased sVEGFR-1
release may have broader significance in preeclampsia. The
infusion of angiotensin II selectively upregulates the pro-
duction of sVEGFR-1 in pregnant mice.37 Angiotensin II
type 1 receptor density increases in preeclamptic placen-
tas,38 and angiotensin II type 1 activating autoantibodies
induce a preeclampsia-like condition in mice.39 Given the
ability of angiotensin II to transactivate the EGFR31 and
the signal transduction pathway identified for PAR-2 in
this study, we suggest that this represents a common
mechanism by which G protein– coupled receptors could
induce sVEGFR-1 production.
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PAR-2 inhibition can suppress TNF-! expression in in-
flammatory settings40 and improve wound healing in mice by
reducing inflammation.41 Given the increased procoagulant
activity observed in preeclampsia and the ability of the
coagulation proteases factors VIIa and FXa to activate
PAR-2, coupled with the reported increased PAR-2 expres-
sion on endothelium derived from preeclamptic women,20 we
suggest that PAR-2 activation may be a contributing factor to
the increases in circulating sVEGFR-1 in this syndrome.
Furthermore, the reported increased expression of PAR-1 in
the endothelium20 and placenta42 of preeclamptic women,
combined with the observed excessive generation thrombin,
the ligand for PAR-1, in preeclampsia, indicates that other
PAR receptors may also be involved in sVEGFR-1 produc-
tion in this setting. Although the trophoblast is the main
source of sVEGFR-1, and PAR-2 activation increases
sVEGFR-1 release from trophoblasts, this study confirms that
the endothelium may be a significant source of sVEGFR-1.
PAR-2 activation leading to sVEGFR-1 release from the
endothelium is relevant not only in the placental-based
perturbation in preeclampsia, but inflammatory conditions,
such as cardiovascular diseases and sepsis, may contribute
directly to the endothelial dysfunction.

A recent report showed that, in mice lacking PAR-2,
exposure to antiphospholipid antibodies did not induce fetal
injury or miscarriage. Furthermore, statin treatment reduced
the adverse effects of PAR-2 activation induced by antiphos-
pholipid antibodies and prevented pregnancy loss.43 HO-1
activity is essential for the successful outcome of pregnancy,44

and HO protein expression is reduced in preeclamptic placen-
tas.6 The concentration of CO in the exhaled breath of women
with preeclampsia is significantly less than in normal preg-
nancy,45 indicating lower HO activity in these patients. HO-1
and CO inhibit VEGF-stimulated sVEGFR-1.8 In this study,
we demonstrate that upregulation of HO-1 with Simvastatin
or activation of the HO-1 pathway suppresses PAR-2–
mediated sVEGFR-1 release. More importantly, these studies
highlight the potential efficacy of statins in controlling
complications of pregnancy, which are being investigated in
a randomized, placebo-controlled trial (Statins to Ameliorate
early onset Pre-eclampsia [StAmP]) for use of statins to
ameliorate early onset preeclampsia.

Perspectives
The antiangiogenic soluble factor sVEGFR-1 (commonly
know as sFlt-1) appears to be “the final common pathway”
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inducing the maternal clinical signs of preeclampsia. This
study demonstrates that activation of the proinflammatory
receptor PAR-2 caused the endothelium to release
sVEGFR-1, and the lipid-lowering statin, simvastatin was
found to completely block sVEGFR-1 expression. Recently,
Redecha et al43 showed that PAR-2 activation caused tropho-
blast injury and fetal death, which was also blocked by
simvastatin. Collectively, the findings indicate that PAR-2
activation leading to increased sVEGFR-1 release may con-
tribute to vascular dysfunction in pregnancy and identifies the
PAR-2 pathway as a potential therapeutic target.
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Aims Endothelial dysfunction is a hallmark of preeclampsia. Desensitization of the phosphoinositide 3-kinase (PI3K)/Akt
pathway underlies endothelial dysfunction and haeme oxygenase-1 (HO-1) is decreased in preeclampsia. To identify
therapeutic targets, we sought to assess whether these two regulators act to suppress soluble endoglin (sEng), an
antagonist of transforming growth factor-b (TGF-b) signalling, which is known to be elevated in preeclampsia.

Methods
and results

Vascular endothelial growth factor-A (VEGF-A), fibroblast growth factor (FGF-2), angiopoietin-1 (Ang-1), and insulin,
which all activate the PI3K/Akt pathway, inhibited the release of sEng from endothelial cells. Inhibition of the PI3K/Akt
pathway, by overexpression of phosphatase and tensin homolog (PTEN) or a dominant-negative isoform of Akt
(Aktdn) induced sEng release from endothelial cells and prevented the inhibitory effect of VEGF-A. Conversely, over-
expression of a constitutively active Akt (Aktmyr) inhibited PTEN and cytokine-induced sEng release. Systemic deliv-
ery of Aktmyr to mice significantly reduced circulating sEng, whereas Aktdn promoted sEng release. Phosphorylation of
Akt was reduced in preeclamptic placenta and this correlated with the elevated level of circulating sEng. Knock-down
of Akt using siRNA prevented HO-1-mediated inhibition of sEng release and reduced HO-1 expression. Further-
more, HO-1 null mice have reduced phosphorylated Akt in their organs and overexpression of Aktmyr failed to sup-
press the elevated levels of sEng detected in HO-1 null mice, indicating that HO-1 is required for the Akt-mediated
inhibition of sEng.

Conclusion The loss of PI3K/Akt and/or HO-1 activity promotes sEng release and positive manipulation of these pathways offers
a strategy to circumvent endothelial dysfunction.
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Introduction
Neutralization of transforming growth factor (TGF)-b leads to
endothelial dysfunction characterized by impaired endothelium-

mediated vasodilatation and elevated expression of surface
adhesion molecules, resulting in increased leucocyte adhesion.1

Endoglin (CD105), a transmembrane co-receptor for TGF-b1
and TGF-b3, is predominantly expressed by activated, proliferating
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endothelium during angiogenesis2,3 and regulates the activity of
endothelial nitric oxide synthase (eNOS).4,5 Proteolytic cleavage
of the extracellular domain of endoglin gives rise to soluble endo-
glin (sEng), which functions to neutralize TGF-b signalling.6

It has been shown that an increase in circulating sEng has direct,
significant, negative effects on endothelial health in vivo.1 Soluble
endoglin was also shown to abrogate in vitro tube formation,
prevent TGF-b1 induction of eNOS phosphorylation, and
abolish activation of TGF-b1-mediated Smad 2/3-dependent luci-
ferase reporter activity.6 In addition, sEng was shown to enhance
lung and liver microvascular permeability, cause focal endotheliosis
in kidney glomeruli, and block TGF-b-induced rat arterial vasodila-
tion.6 High levels of plasma sEng have been associated with vascu-
lar disorders, such as systemic sclerosis,7 atherosclerosis,8 familial
hypertension,7 malaria,9 and most notably preeclampsia;10 a
novel risk factor for cardiovascular disease in women.11 Recently,
sEng was implicated as a likely cause of the reduced number of
regulatory T cells observed in the systemic circulation of pree-
clamptic women.12 In addition, sEng was shown to act synergisti-
cally with soluble Flt-1 (sFlt-1), the natural antagonist of vascular
endothelial growth factor (VEGF), to induce maternal endothelial
dysfunction and severe preeclampsia in animal studies.6

Haeme oxygenase-1 (HO-1) is an inducible, cytoprotective, and
anti-inflammatory enzyme. It is widely acknowledged to provide a
defence against oxidant damage13,14 and to be protective against
ischaemia-reperfusion injury.15–18 Haeme oxygenase-1 null mice
have systemic endothelial damage and have greatly elevated circu-
lating sEng.19 Haeme oxygenase-1 inhibits sEng release, from the
placenta and the endothelium, mediated by proinflammatory cyto-
kines, such as, tumour necrosis factor (TNF-a) and interferon-g
(IFN-g).19 Significantly, a recent publication showed that the angio-
tensin receptor agonistic auto-antibody stimulates sEng, in vivo, by
upregulation of TNF-a and this upregulation can be prevented by
induction of HO-1 using haemin20 confirming our earlier study.

Cellular systems employ a number of endogenous protective
mechanisms to defend against cell damage and death. The phos-
phoinositide 3-kinase (PI3K)/Akt and HO pathways are two impor-
tant examples. Activation of the PI3K/Akt pathway is crucial for
endothelial cell homeostasis and survival after vascular injury.21

Numerous growth factors, including VEGF-A,22 basic fibroblast
growth factor (FGF-2),23 angiopoietin-1 (Ang-1),24 and insulin,25

exert their protective effect via activation of the PI3K/Akt pathway.
To date, the mechanism responsible for sEng release has not

been addressed. In this study, we sought to understand the
mechanistic regulation of sEng release and investigated the involve-
ment of two central regulators of vascular homeostasis; the PI3K/
Akt and inducible HO-1 pathways.

Methods
Reagents and antibodies
Recombinant VEGF and FGF-2 were purchased from RELIATech
(Brauschweig, Germany). Angiopoietin-1 was purchased from R&D
Systems (Abingdon, UK). Monoclonal antibody, anti-PTEN (A2B1)
and polyclonal antibodies, anti-Endoglin (C-term), anti-Endoglin
(N-term) were from Autogen Bioclear Ltd (Wiltshire, UK). Mono-
clonal antibody, anti-HO-1 was purchased from Abcam (UK).

Intracellular signalling protein antibodies anti-Akt and
anti-phospho-Akt (ser 473) antibodies were purchased from New
England Biolabs Ltd (Hertfordshire, UK). Polyclonal rabbit anti-HO-1
antibody was purchased from StressGen Biotechnologies Corporation
(Canada). Human TNF-a and IFN-g, monoclonal anti-b-actin, insulin,
and all other cell culture reagents and chemicals purchased from
Sigma-Aldrich Company Ltd (Dorset, UK).

Soluble endoglin ELISA
Soluble endoglin was measured in culture supernatants using the com-
mercial ELISA kits according to manufacturer’s instructions (R&D
Systems, UK).

Cell culture
Human umbilical vein endothelial cells (HUVECs) were isolated,
characterized, and cultured as previously described.26 Experiments
were performed on third or fourth passage cells. Human umbilical
vein endothelial cells were stimulated with VEGF (20 ng/mL), TNF-a
(10 ng/mL), or IFN-g (10 ng/mL) and media collected and assayed
for sEng by ELISA.

Adenoviral gene transfer
Recombinant, replication-deficient adenoviruses directing the
expression of wild-type (WT) human PTEN (AdPTEN), catalytically
inactive human PTEN (AdPTENdn), dominant-negative Akt (Thr308
to Ala and Ser473 to Ala, AdAktdn), and constitutively active, myristoy-
lated Akt (AdAktmyr) were generously provided by Dr Christopher
Kontos (Duke University, USA) and AdCMV (empty vector used for
control infections) adenoviruses were amplified in HEK-293A cells
and purified using the BD Adeno-XTM purification kit (BD Bio-
sciences). Viral titres were estimated by using the BD Adeno-XTM

rapid titer kit. Human umbilical vein endothelial cells were infected
by incubation with adenovirus in M199 containing 5% fetal calf
serum (FCS) overnight at 378C prior to addition of stimulants or
vehicle control for up to 24 h. Optimal multiplicity of infection for
the adenoviruses was determined by western blotting. The recombi-
nant, replication-deficient adenovirus encoding rat HO-1 (AdHO-1)
was used as described previously.27

siRNA transfection
Human umbilical vein endothelial cells were trypsinized and !1 × 106

cells electroporated with !3 mg of HO-1,28 Akt-1, or control siRNA
using the HUVEC kit II and Nucleofector (Amaxa GmbH, Cologne,
Germany) as described previously.29

Quantitative real-time PCR
Sample preparation and real-time PCR was performed as described
previously.29 Briefly, mRNA was prepared using TRIzol and DNase-1
digestion/purification on RNAeasy columns (Qiagen), and reverse
transcribed with the cDNA Synthesis Kit (Promega). Triplicate
cDNA samples and standards were amplified in SensiMix containing
SYBR green (Quantace) with primers specific for endoglin (Forward:
GTC-TCA-CTT-CAT-GCC-TCC-AGC-T; Reverse: GG-CTG-
TCC-ATG-TTG-AGG-CAG-T) or b-actin. The mean threshold cycle
(CT) for HO-1 was normalized to b-actin and expressed relative to
control.

Western blotting
Proteins were extracted from HUVEC with RIPA buffer and subjected
to SDS–PAGE on 10% gels, transferred to nitrocellulose membranes
(Amersham-Pharmacia, UK). Membranes were incubated with
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appropriate antibodies at 48C overnight. Antibody reactions were
detected using the ECL detection kit (Amersham-Pharmacia, UK).
Ratios of protein expression to loading control were determined by
densitometry using ImageJ software.

Placental tissue and serum collection and
preparation
Institutional Ethics Committee approved the tissue and serum collec-
tion and written informed consent was obtained. Eligible cases were
singleton pregnancies with a diagnosis of preeclampsia. Preeclampsia
as diagnosed if a previously normotensive woman had two repeat
(4 h apart) diastolic blood pressure measurements of ≥90 mmHg
after week 20 of gestation, together with proteinuria of .300 mg in
a 24-h urine specimen or 2+ protein dipsticks in two repeat measure-
ments (4 h apart). Human placental tissue and serum were obtained
from normal pregnancies and gestationally matched pregnancies com-
plicated by preeclampsia.

Animals
All procedures and animal care were approved by Institutional Ethics
Committees and were in accordance with UK Home Office licensing
regulations. C57/Bl6J animals with targeted deletion of the HO-1

gene by neomycin resistance gene insertion30,31 were supplied by
Prof Anupam Agarwal (University of Alabama, Birmingham, USA)
and rederived in accordance with local regulations. Mice were injected
in the tail vein with AdAktmyr (5 × 109 pfu), AdAktdn or control
Adbgal. Five days post-injection blood was harvested by cardiac punc-
ture and organs collected for histology, western blotting, and liver
explant culture.

Ex vivo liver explant culture
Mice were sacrificed and their livers excised and cut into 1 mm2

pieces. Six to ten pieces of liver were equilibrated for 4 h in phenol
red-free DMEM containing 5% FCS in 24-well plate. Medium was
changed to fresh phenol red-free DMEM containing 5% FCS and
after 24 h conditioned medium was collected and stored at and liver
explants were collected and stored at –808C prior to assay for sEng
by ELISA. The explant protein was also harvested and protein
content assayed.

Statistical analysis
All data are expressed as the mean (+SEM). Statistical comparisons
were performed using one-way ANOVA followed by the Student–

Figure 1 Survival factors and Akt activation repress soluble endoglin release from endothelial cells. All experiments were conducted using
confluent human umbilical vein endothelial cells. Cells were incubated with (A) VEGF-A (20 ng/mL), (B) FGF-2 (20 ng/mL); angiopoieitn-1
(Ang-1;400 ng/mL), or insulin (200 nmol/L). (C) Human umbilical vein endothelial cells infected with adenoviruses encoding PTEN
(AdPTEN), a dominant-negative PTEN mutant (AdPTENdn) or empty vector (AdCMV). All experiments were conducted in M199/5%FCS
for 24 h and cell supernatants collected for soluble endoglin (sEng) quantification by ELISA. All results are the mean (+SEM) of three exper-
iments performed in triplicate (n ¼ 9). ***P, 0.001, *P, 0.05 vs. vehicle. **P, 0.01 and ***P, 0.001 vs. AdCMV.
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Newman–Keuls test as appropriate. Statistical significance was set at a
value of P, 0.05.

Results

Soluble endoglin release is suppressed by
survival factors via activation of the
phosphoinositide 3-kinase/Akt pathway in
endothelial cells
To assess the impact of pro-survival factors on sEng release in a
model system, isolated endothelial cells were incubated with
VEGF-A, FGF-2, Ang-1, and insulin, which all activate the PI3K/
Akt signalling.22–25 These factors reduced the release of sEng
from endothelial cells (Figure 1A and B) suggesting that vascular
protection reduces shedding of endothelial membrane-bound
endoglin. To examine whether the PI3K/Akt pathway regulates
endoglin shedding, HUVEC were infected with adenoviruses
encoding phosphatase and tensin homolog (PTEN), the phospha-
tase that inhibits PI3K signalling (AdPTEN) or inactive PTEN
(AdPTENdn)

32 (see Figures 3C and 5A for overexpression).
AdPTENdn, which potentiates the PI3K pathway, thus activating
Akt, significantly decreased the release of sEng (Figure 1C),

whereas overexpression of PTEN, which depletes the cell of phos-
phatidylinositol 3,4,5-trisphosphate, the substrate required for Akt
activation, induced a two-fold increase in sEng release (Figure 1C).

Inhibition of Akt activity using an adenovirus encoding a
dominant-negative Akt construct, (Ad-Aktdn)

33 increased endoglin
mRNA expression in HUVEC (Figure 2A) and prevented
VEGF-A-mediated repression of sEng release (Figure 2B).
However, when AdAktdn was co-infected with AdPTENdn, the
ability of AdPTENdn to inhibit sEng release was lost (Figure 2C)
suggesting that PI3K is acting via Akt to modulate sEng release.
Tail vein injection of AdAktdn into mice resulted in increased Akt
expression in liver tissue after six days (Figure 2D inset). Liver
explants established from AdAktdn infected mice showed increased
secretion of sEng (Figure 2D). These data demonstrate that inhi-
bition of the survival protein, Akt, in vitro and in vivo, augments
the levels of cleaved endoglin released from cells.

To further investigate this phenomenon, we went on to examine
whether positive modulation of Akt, could suppress sEng release.
Interestingly, overexpression of constitutively active myristilated
Akt (Aktmyr) did not inhibit endoglin mRNA expression, nor did
it inhibit basal sEng release from HUVEC (Figure 3A and B).
However, when co-expressed with PTEN, Aktmyr completely
abrogated PTEN-mediated upregulation of endoglin mRNA

Figure 2 Akt inhibition induces the release of soluble endoglin. (A) Relative endoglin mRNA levels in human umbilical vein endothelial cells
after infection with an adenovirus encoding dominant-negative Akt (AdAktdn) or b-galactoside control adenovirus (Adbgal). **P, 0.01 vs.
Adbgal. Soluble endoglin (sEng) level from Aktdn overexpressing human umbilical vein endothelial cells (B) stimulated with VEGF-A (20 ng/
mL) or (C) co-infected with AdPTENdn.(D) C57/B6J mice were injected i.v. with AdAktdn or Adbgal and 5 days later blood and organs analysed.
Soluble endoglin levels in conditioned medium of liver explants from mice at 24 h. Soluble endoglin release was normalized to total protein
content of the explants and soluble endoglin quantified by ELISA. All results are the mean (+SEM) of three experiments performed in triplicate
(n ¼ 9). **P, 0.01 vs. Adbgal. Inset—immunoblot of mouse liver lysates for Akt.
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Figure 4 Phosphorylation of Akt is decreased in preeclamptic placenta and correlates inversely with soluble endoglin. (A) Lysates of placenta
from normal or preeclamptic pregnancies were immunoblotted with antibodies against phosphorylated Akt (pAkt-ser 473) and b-actin. (B)
Densitometric analysis showing ration of pAkt:b-actin in A. (C) Correlation between plasma soluble endoglin and pAkt:b-actin ratio of placenta.
*P, 0.05.

Figure 3 Akt activation inhibits the release of soluble endoglin. (A) Relative endoglin mRNA and (B) soluble endoglin protein levels after
human umbilical vein endothelial cells were infected with AdCMV, AdPTEN, and/or myristylated Akt (AdAktmyr). (C) Immunoblot with anti-
bodies against; endoglin (N-terminus), endoglin (C-terminus), phosphorylated Akt [pAkt (ser 473)], Akt, PTEN, and b-actin. (D) Aktmyr over-
expressing cells incubated with interferon-g (IFN-g;10 ng/mL) or tumour necrosis factor-a (TNF-a; 50 ng/mL). All experiments (unless stated
otherwise) were conducted in M199/5%FCS for 24 h and cell supernatants collected for soluble endoglin quantification by ELISA. All results are
the mean (+SEM) of three experiments performed in triplicate (n ¼ 9). *P, 0.05, **P, 0.01. Mice were injected i.v. with AdAktmyr or Adbgal
and 5 days later blood and organs analysed. (E) Endoglin levels in liver from mice at 24 h. Endoglin was normalized to total protein and quanti-
fied by ELISA. All results are the mean (+SEM) of three experiments performed in triplicate (n ¼ 9). ***P, 0.001 vs. Adbgal.
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(Figure 3A) and release of the soluble protein (Figure 3B). Human
umbilical vein endothelial cell lysates immunoblotted for the N
and C termini of endoglin confirmed the upregulation of endoglin
following PTEN overexpression and Aktmyr, which increased the
level of phosphorylated Akt, inhibited this upregulation
(Figure 3C). Consistent with these findings, the pro-inflammatory
cytokine-mediated release of sEng was inhibited by Aktmyr

(Figure 3D) and systemic administration of AdAktmyr to mice
resulted in decreased endoglin protein in liver tissues compared
with control animals (Figure 3E).

Akt is reduced in the preeclamptic
placenta and inversely correlates with
maternal soluble endoglin
Preeclampsia is characterized by widespread endothelial cell dys-
function and the progressive elevation of circulating sEng. Western
blot analyses of placental lysates demonstrated that phosphorylation
of Akt was significantly reduced in preeclamptic placenta compared
with placenta from normal pregnancies (Figure 4A and B). Further-
more, the level of placental Akt phosphorylation inversely correlated
with maternal plasma sEng levels (Figure 4C). Thus, the rise in circu-
lating sEng paralleled the fall in Akt activity.

Haeme oxygenase-1 suppresses soluble
endoglin release via Akt
We previously demonstrated that HO reduces the release of sEng
under basal and cytokine-stimulated conditions.19 This has been
recently confirmed in a study showing that TNF-a-induced sEng
release from endothelial cells and placental explants could be abro-
gated by upregulation of HO activity by haemin.20 Interestingly, acti-
vation of Akt by overexpression of AdPTENdn, which induced Akt
phosphorylation, also upregulated HO-1 protein in endothelial
cells (Figure 5A). Knockdown of Akt1, using siRNA, significantly
induced sEng release (Figure 5B) and more importantly, prevented
the inhibition of sEng caused by overexpression of HO-1
(Figure 5B). In addition, HO-1 expression in HUVEC was also pre-
vented by siRNA-mediated knockdown of Akt1 (Figure 5C).We pre-
viously demonstrated that knockdown of HO-1, using siRNA,
induced sEng release,19 here we show that knockdown of HO-1
potentiates the IFN-g and TNF-a-induced sEng release
(Figure 5D). In addition, overexpression of Aktmyr could not
prevent the upregulation of sEng after loss of HO-1 (Figure 6A),
suggesting that HO-1 and Akt regulate sEng release
interdependently.

Figure 5 Haeme oxygenase-1 requires Akt to inhibit soluble endoglin release. (A) Lysates from human umbilical vein endothelial cells infected
with AdCMV, AdPTENdn, and/AdAktdn were immunoblotted with antibodies against phosphorylated Akt [pAkt (ser 473)], Akt, PTEN, HO-1,
and b-actin. (B) Knockdown of Akt1 (siAkt) in human umbilical vein endothelial cells overexpressing HO-1 or bgal. (C) Immunoblot of Akt
siRNA treated human umbilical vein endothelial cells for HO-1 and b-actin. (D) Knockdown of HO-1 (siHO-1) in human umbilical vein endo-
thelial cells and stimulation with interferon-g (10 ng/mL) or tumour necrosis factor-a (TNF-a; 50 ng/mL). All experiments were conducted in
M199/5%FCS for 24 h and cell supernatants collected for soluble endoglin (sEng) quantification by ELISA. All results are the mean (+SEM) of
three experiments performed in triplicate (n ¼ 9). *P, 0.05, **P, 0.01.
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HO-1-null mice exhibit elevated circulating sEng19 and western
blotting of organs from HO-1 null mice showed a decrease in
phosphorylation of Akt (Figure 6B). Furthermore, Aktmyr overex-
pression in WT animals resulted in reduced circulating sEng
(Figure 6C). Moreover, Aktmyr overexpression failed to suppress
the circulating levels of sEng in HO-1 null mice (Figure 6C). To
investigate this further, liver explants were established from
adenoviral-infected mice, cultured for 24 h and supernatants
assayed for sEng. Explants from AdAktmyr infected WT and
HO-1 heterozygous mice, produced significantly less sEng com-
pared with Adbgal-infected controls (Figure 6D). Liver explants
from HO-1 null mice released significantly more sEng than WT
and heterozygous mice and consistent with our in vitro studies,
overexpression of AdAktmyr had no effect on sEng release from
liver explants in HO-1 null mice (Figure 6D) demonstrating that
HO-1 and Akt play pivotal, interdependent roles in suppressing
the release of sEng in vivo.

Discussion
Serum sFlt-1 and sEng are increased in pregnant women prior to
the clinical symptoms of preeclampsia.10 Inhibition of VEGF or

TGF-b signalling by high circulating sEng activates the endothelium
to promote vascular dysfunction.1,6 The salient finding highlighted
by this study is the identification of PI3K/Akt signalling, in concert
with HO-1, as a central negative regulator of endoglin shedding in
vivo. The significance of this finding is reinforced by the observation
that Akt phophorylation is decreased in the preeclamptic placenta
and inversely correlates with the maternal circulating levels of sEng.
In addition, survival factors that exert their protective effects via
Akt, such as VEGF-A, FGF-2, Ang-1, and insulin, all negatively regu-
late sEng release from endothelial cells. Our finding that VEGF sup-
presses sEng release from endothelial cells suggests that in
preeclampsia, the increase in placental sEng6,19 is likely to be
further compounded by the loss of VEGF-A activity due to the
concomitant rise in its antagonist, sFlt-1, in the maternal
circulation.

Knockdown of HO-2 reduces Akt phosphorylation in vivo34 and
carbon monoxide, the gaseous product of HO, stimulates Akt
phosphorylation in hepatocytes35 and endothelial cells36 support-
ing a positive feedback loop between the HO and PI3K/Akt path-
ways. In this regard, it is important to remember that the loss of
HO activity may be a causative factor in preeclampsia, as HO-1
protects against TNF-a-induced placental damage37 and

Figure 6 Akt requires haeme oxygenase-1 to inhibit soluble endoglin release. (A) Soluble endoglin (sEng) release from human umbilical vein
endothelial cells after knockdown of haeme oxygenase-1 (siHO-1), and control (siCtrl) in human umbilical vein endothelial cells overexpressing
Aktmyr or bgal. (B) pAkt levels in organs of haeme oxygenase-1 wild-type and haeme oxygenase-1-deficient mice. Mice were injected i.v. with
AdAktmyr or Adbgal and 5 days later blood and organs analysed. (B) Plasma soluble endoglin levels in wild-type and haeme oxygenase-1-
deficient mice. (C) Soluble endoglin levels in conditioned medium of liver explants from haeme oxygenase-1 wild-type, heterozygous, and
haeme oxygenase-1-deficient mice at 24 h. In explant studies, soluble endoglin release was normalized to total protein content of the explants
and soluble endoglin quantified by ELISA. All results are the mean (+SEM) of three experiments performed in triplicate (n ¼ 9). *P, 0.05,
**P, 0.01, ***P, 0.001.
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suppresses cytokine-mediated sEng and sFlt-1 release.19 The most
compelling evidence for this comes from a recent study using faetal
placental cells from women at 11 weeks gestation. Farina et al.38

showed that the expression of HO-1 mRNA decreased in chorio-
nic villous samples (faetal cells) from women who went on to
develop preeclampsia. This very early decrease in HO-1 could
explain, at least in part, the elevated levels of anti-angiogenic
factors seen later in pregnancy in preeclamptic women. Transform-
ing growth factor-b1 stimulates HO-1 expression via the PI3K/Akt
pathway in human lung epithelial cells.39 Thus, loss of TGF-b1 sig-
nalling, due to the rise in sEng in preeclampsia, may further com-
promise maternal endothelial HO activity. Our data show that
PI3K/Akt activation is decreased in the organs of HO-1 null mice
and that increased PI3K/Akt activation induces HO-1 expression
in endothelial cells and loss of such a positive feedback system
may lead to greater loss of endothelial integrity under conditions
of high circulating sEng, observed in a number of vascular dis-
orders. The predominant upstream regulator of HO-1 expression
is Nuclear factor-like 2 (Nrf-2). Nuclear accumulation of Nrf-2 and
HO-1 expression was shown to be PI3K-dependent and
MEK-MAPK independent in the endothelium.40 The interdepen-
dency between PI3K/Akt and HO-1 identified in this study needs
further investigation to determine whether they are regulated at
the level of Nrf-2.

It has been shown that an increase in circulating sEng has direct,
significant, negative effects on endothelial health in vivo.1 It abro-
gates TGF-b-mediated signalling, enhances lung and liver microvas-
cular permeability, causes focal endotheliosis in kidney glomeruli
and blocks TGF-b1-induced vasodilation.6 The involvement of
sEng in a number of wide-ranging pathologies demonstrates that
sEng is not only marker of endothelial integrity but also a
contributing factor of endothelial dysfunction. Our discovery of a
co-dependency between HO-1 and Akt in relation to sEng
release implies that dysfunction of only one of these factors in
the endothelium may explain the resultant increase in sEng in
these disorders. Interestingly, both TNFa and sEng are elevated
in malaria41 and the level correlates with disease severity,9

whereas HO-1 and CO protect against malaria progression.42

In conclusion, the discovery that PI3K/Akt and HO-1 provide
key co-dependent and inhibitory signals required to suppress
sEng release strongly suggests that the positive manipulation of
PI3K/Akt and/or HO pathways would provide potential thera-
peutic targets in preventing excessive sEng release in vascular dis-
orders including preeclampsia.
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