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Abstract

Major depression is a severely debilitating psychiatric condition with high preva-

lence and substantial economic impact. However, its aetiology is largely unknown,

mechanistic understanding remains limited, and treatment outcomes are hard to

predict. Recently, a “computational psychiatry” approach has emerged which em-

braces the idea of using computational models to link brain function, behaviour and

psychiatric illness. This thesis describes the use of computational psychiatry tools

and techniques to advance understanding of abnormalities in decision-making and

neuronal activity associated with depressive illness.

Behaviour during novel reward learning tasks was analysed from patients diagnosed

with major depressive disorder and healthy controls. Formal computational mod-

elling was used to show behavioural impairments associated with depression during

both learning and decision-making phases. Depressed participants displayed lower

memory of rewards and decreased ability to use internal value estimations during

decision-making. Functional MRI results showed decreased reward signals in areas

including the striatum were associated with depression symptoms. Computational

models were used to generate latent variable time-series of internal value estima-

tions which were used for model-based fMRI analyses. Reward value encoding in

hippocampus and rostral anterior cingulate was abnormal in depression and ante-

rior mid-cingulate (aMCC) activity was altered during decision-making. A signal

encoding the difference between the values of the two options was also found in

the aMCC, linking the behavioural model to localised brain function. Depressed

patients showed decreased event-related connectivity between aMCC and rostral

cingulate regions, implying impaired communication between value estimation

and decision-making regions. A large community-based sample of participants

reporting a range of depressive symptoms performed a different probabilistic re-

ward learning task. Mood symptoms were associated with blunted striatal reward

signals. Event-related directed medial prefrontal cortex to ventral striatum effec-

tive connectivity was abnormally decreased related to the severity of depression

symptoms. A generative-embedding machine learning approach was used to clas-

sify never-depressed healthy controls from participants with current or past major

depression. A support vector machine classifier achieved 72% diagnostic accuracy

using estimated connectivity parameters as features.

The thesis replicates previous reports of abnormal depression-related neural activity

in areas including the striatum, hippocampus and prefrontal cortex using novel

reward learning tasks. Findings support the theory about abnormal neural reward

valuation in major depression being a core pathophysiological process which could

be a target for treatment. The thesis also provides important novel evidence for

decreased connectivity between prefrontal and limbic brain regions, and within
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different prefrontal areas in depression. It shows how abnormalities in reward

value based decision-making may be related to abnormal reward activation and

connectivity in the brain, supporting glutamatergic and cortical-limbic related

theories of depression.
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Lay Summary

Clinical depression has an enormous impact, not only affecting the afflicted but also

their loved ones, employers and the wider society. It is not yet known how exactly

processes in the brain are related to depression and how to objectively identify who

is ill, and it is hard to predict which therapy (if any) would work for a specific patient.

Various groups of participants, including depressed patients, healthy controls, and

participants reporting various depression symptoms, performed decision-making

tasks while in a functional magnetic resonance imaging (fMRI) scanner. Com-

putational models were used to succinctly describe and compare behaviour of

participants, which revealed decision-making abnormalities in depression. Pa-

tients showed lower memory of previously observed rewards and difficulties using

estimated reward values to guide their decisions. This behaviour was related to

alterations in brain activity of several regions, including areas in the prefrontal

cortex and the basal ganglia, which are known to be involved in value estimation

and decision-making. Connectivity between implicated brain regions, that is the

information flow between them, was estimated. Results indicated impaired com-

munication between value estimation and decision-making regions in depression.

Based on the strengths of connectivity between brain regions, machine learning

was used to classify participants into never-depressed healthy versus current or past

depression groups with 72% accuracy.

The thesis replicates and significantly extends previous reports of abnormal be-

haviour, brain activity and brain connectivity related to major depression. It pro-

vides important evidence for an association between mood symptoms and de-

creased connectivity between brain regions which are implicated in reward value

based decision-making, supporting prominent theories about depression.
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Chapter 1

Introduction

Depression is immensely devastating and the common conception of it being mere

“low mood” does not begin to capture the severity of this disease. Those who

have suffered from it tell tales of absolute blackness and hopelessness beyond

measure. “It is like living in a body that fights to survive with a mind that tried to

die.” (Anonymous, 2016). In his memoir, William Styron described his suffering in a

brutally honest way:

“Depression is a disorder of mood, so mysteriously painful and elusive

in the way it becomes known to the self — to the mediating intellect

— as to verge close to being beyond description. It thus remains nearly

incomprehensible to those who have not experienced it in its extreme

mode.”

— William Styron, Darkness Visible: A Memoir of Madness

Indeed, due to its debilitating impact and high prevalence, depression ranks as

one of the greatest burdens on societies around the world (Üstün, Ayuso-Mateos,

Chatterji, et al., 2004). It is extremely costly and responsible for one of the highest

rates of “years lived with disability” (YLDs), only rivalled by other extremely common

diseases such as low back pain and migraine (Vos, Flaxman, Naghavi, et al., 2012;

Vos, Abajobir, Abate, et al., 2017). The World Health Organisation projects that

depression will become the leading cause of disease burden by 2030 (WHO report

20071).

Unfortunately, too little is known about this crushing disease and the general con-

sensus is that clinical practice in psychiatry has not advanced significantly in over

50 years (Stephan, Bach, Fletcher, et al., 2016; Stephan, Binder, Breakspear, et al.,

2016). Treatment outcomes are hard to predict and many patients never fully re-

cover (Steele and Paulus, 2019).

Nevertheless, there is hope. Technology and neuroimaging techniques are advanc-

ing rapidly and are leading to exciting new discoveries about the brain, and finally

allow some long standing theories to be tested. The use of computational models

1https://www.who.int/healthinfo/global_burden_disease/GBD_report_2004update_full.pdf

https://www.who.int/healthinfo/global_burden_disease/GBD_report_2004update_full.pdf
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and machine learning techniques is especially promising which has given rise to the

field of “computational psychiatry” (Montague, Dolan, Friston, and Dayan, 2012),

which is promising to lead psychiatry into a new “golden age” (Vinogradov, 2017).

There is substantial evidence for behavioural and neuronal abnormalities during the

performance of reward learning and decision-making tasks in depression (see Chap-

ter 2). This thesis uses computational models to succinctly capture participants’

behaviour during such tasks and then combines this modelling with observed brain

activity during the task to test novel hypotheses about depressive illness.

1.1 Computational Models

Computational or mathematical models have been used prominently in many

areas of science and engineering for a long time. Nowadays they are also used

in neuroscience, such as in computational neuroscience. Models can be used

to capture and describe the essence of a concept or system by abstracting and

simplifying it and eliminating unnecessary complexities.

Marr (1982) famously proposed three levels at which an information-processing

device such as the brain should be understood and models can span one or more

of these levels: (a) the computational level, specifying the goal of the computation,

(b) the algorithmic level, explaining how the goal can be achieved, and (c) the

implementation level, specifying how the algorithm can be physically realised. It

should be noted that although the levels are often practically useful, they are not

necessarily complete nor does every published work fit neatly into one of these

three levels.

In this thesis, I model the behaviour and decision making of participants by trying

to find a model which best captures the choices they make during a controlled

experiment. This is then followed by comparing the models (or parameters of these

models) of participants suffering from depression with healthy control participants,

allowing the analysis of how groups differ.

Computational modelling of behavioural data commonly involves a sequence of

steps and I briefly highlight some here. For more detailed descriptions, explanations

and discussion the reader may want to consult one of the many previous introduc-

tions (e.g. see Wilson and Collins, 2019). Here I focus on conceptual understanding.

More mathematical details about the methods used in this thesis are provided in

the appendices and the cited literature.

The first step is usually to design a model (or a model space consisting of multiple

models), ideally in combination with the design of the experiment, to address a

scientific question. It is important not to forget that all models are an approximation,

so in a sense “wrong”, and the more appropriate question is if they can be useful

(see also Box and Draper, 1987).
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Once the models are defined and data from the experiment is collected, models

are then “fitted” to the data. This means searching for parameters which result in

a model performance most similar to the observed choice behaviour. There are

different approaches one could take but in this thesis I generally use a maximum

likelihood or maximum a posteriori approach which means I let models assign

a probability to each possible action and then try to maximise the probability of

producing the whole sequence of observed actions. Gradient descent is commonly

used to find these maxima.

While this can be done on a per-participant basis, in this thesis the prior assumption

is sometimes made that in general, participants will behave similarly to one another.

Formally this means that first parameter estimation is performed for each partici-

pant and then all these estimates are combined into a single empirical group level

prior, which is used to constrain subsequent parameter estimations of individuals.

Model comparison is a crucial next step and is used to choose the most parsimo-

nious model, meaning a model which is as simple as possible but no simpler. There

are again different approaches but importantly one should always remember that

model comparison is conditional on the defined model space and so a chosen “best”

model should always be viewed relative to the other “worse” models.

Once a model is selected it can then be used to test the original scientific question.

For example, in this thesis I look at potential differences in estimated parameters

between groups of healthy and depressed participants. These parameters might

correspond to underlying constructs of interest not easily detectable from the raw

behavioural data, such as a “learning rate parameter” intended to capture how fast

participants update their previously held beliefs with new information.

So far, a profoundly important property of the discussed models has been neglected:

they can be simulated to generate artificial data. This can and should be done

throughout the process of computational modelling. Ideally models are simulated

before any real data is collected so that, for example, the researcher can identify how

much data will be needed for reliable parameter estimation and model selection.

The method of “parameter recovery” involves simulating data with known parame-

ters and then recovering the parameters by fitting the model to the generated data.

If the original and recovered parameters are very different it might be an indication

of an underpowered experiment or the use of inappropriate methods. Similarly,

“model recovery” can be used to check if the model comparison procedures works as

intended given a set of data and models. Data is simulated from one of the models

(in turn) and then each model is fitted to the artificial data, and model comparison

is used to identify the best fitting model. If the chosen model is different from the

model which actually generated the data this again might be an indication of a lack

of data, or the choice of an inappropriate model comparison method.
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1.1.1 Computational psychiatry

In recent years computational psychiatry has emerged as a subfield of compu-

tational neuroscience (Huys, Moutoussis, and Williams, 2011; Montague, Dolan,

Friston, and Dayan, 2012; Friston, Stephan, Montague, and Dolan, 2014; Wang and

Krystal, 2014; Maia, 2015; Adams, Huys, and Roiser, 2016; Huys, Maia, and Frank,

2016; Stephan, Bach, Fletcher, et al., 2016; Vinogradov, 2017). It embraces the idea

of using computational models to advance understanding of mental illness with the

goal of improving their prediction and treatment.

Both data-driven (applying machine learning) and theory-driven approaches are

used (Huys, Maia, and Frank, 2016). In these thesis I primarily focus on the latter

approach and use prior knowledge or hypotheses about possible mechanisms to in-

form our work although I also explore machine learning (classification) techniques.

Computational psychiatry is not restricted to a single level of description and, for

example, in this thesis I aim to link (depression-related) behaviour with (abnormal)

neuronal function.

Despite the many promises, computational psychiatry has yet to prove itself by

changing real clinical practice (Stephan and Mathys, 2014). It has been argued

that it is already possible for computational research to have an impact in clinical

settings as for example machine learning techniques make it possible to predict

diagnosis or treatment outcomes (Steele and Paulus, 2019). However, practical

implementation is currently hindered by a lack of routine collection of quantita-

tive data and will require a collective effort from researchers, policy and funding

agencies, and practitioners, and a general cultural change (Steele and Paulus, 2019;

McGuire, Sato, Mechelli, et al., 2015).

1.2 Functional magnetic resonance imaging

In this thesis I analyse functional magnetic resonance imaging (fMRI) data. The

use of fMRI has skyrocketed since its development in the early 1990s because it

allows researchers to non-invasively investigate brain activity (Poldrack, Mumford,

and Nichols, 2011; see Figure 1.1). More specifically, it measures changes in the

blood oxygenation level dependent (BOLD) signal. When neurons become active

they need more energy including oxygen which is provided to them through a local

increase in blood flow (haemodynamic response). MRI technology depends on

the observation that haemoglobin has different magnetic properties depending on

how much oxygen it is carrying. An MRI scanner can be used to detect these small

changes in the magnetic signal. For more details about the history and physics of

(functional) MRI please refer to previous literature such as Poldrack, Mumford, and

Nichols (2011) who provide a more detailed overview of the history of fMRI and

its relationship to PET imaging and Buxton (2009) who discusses related physical
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concepts in details. In this thesis I am primarily concerned with making inferences

from fMRI data collected while participants performed a (cognitive) task.
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FIGURE 1.1: The number of matches to a PubMed query of
"fMRI"[All Fields] OR "functional MRI"[All Fields] OR

"functional magnetic resonance imaging"[All Fields] AND

("YEAR/01/01"[PDAT] : "YEAR/12/31"[PDAT]) for YEAR between
1992 and 2019. This was inspired by Poldrack, Mumford, and Nichols

(2011) who showed a similiar plot up to 2010.

While the analysis of fMRI data is complex there are dedicated toolboxes and soft-

ware packages such as SPM (Friston, Ashburner, Kiebel, et al., 2007; Ashburner,

2012), FSL (Jenkinson, Beckmann, Behrens, et al., 2012) and AFNI (Cox, 1996)

available which simplify this task. Analysis usually proceeds in two parts, namely

pre-processing and statistical inference, both of which involve a series of steps.

For example, pre-processing commonly includes a step in which the individual

scans (i.e. the time-series of scans which usually means a whole-brain scan roughly

every two seconds) are realigned to account for head movements. The scans of all

individuals also need to be anatomically normalised to a standard template brain

space so they can be compared and used for group analysis. Spatial smoothing and

temporal filtering are used to reduce noise. Visual quality control is routinely used

to spot possible artefacts although this becomes impractical with very large sets

of data which can, for example, affect machine learning performance (Johnston,

Mwangi, Matthews, et al., 2013).

For the statistical modelling a general linear model (GLM) is commonly used. The

BOLD signal acts as the dependent variable and a design matrix defines the experi-

mental design with a row for each scan and a column for each explanatory variable

such as stimulus timings. The parameters are estimated and used to produce con-

trast images for each individual; for example to find areas which are more active

(compared to an implicit baseline) when a stimulus is shown. These “first level”
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images of individuals are then taken to the “second level” to look at overall group

activation or to compare different groups. The “significance” of these activations or

activation differences can be assessed using t-tests, but given the mass-univariate

approach (i.e. one test is run for every single voxel), voxel significance needs to be

corrected for multiple comparisons (Nichols, 2012).

In addition to this “model-free” approach I also use a “model-based” approach

in this thesis (e.g. see Gläscher and O’Doherty, 2010). Importantly, “model-free”

here does not mean the absence of any model (it clearly relies on multiple models,

including the GLM), but rather that it is not incorporating a computational model

of a cognitive process. In the model-based approach such a model is defined and

some aspect of it is incorporated into the GLM. For example, a model about how

participants learn about the values of certain stimuli and how they then use these

values to make decisions is fitted to their behavioural data. A latent (hidden) variable

such as the value of a certain stimulus at each timepoint throughout the experiment

is then extracted and included as regressor in the GLM (after convolution with a

haemodynamic response function). This allows the researcher to find areas of the

brain which are “encoding” this value (i.e. areas with activity which are correlated

with the predicted signal).

Lastly, it is worth mentioning “connectivity” in the brain which is increasingly

becoming a focus in the field (Kahan and Foltynie, 2013). There are at least three

types to distinguish. Structural connectivity refers to the anatomical connections

between regions. This type of connectivity is not directly accessible using fMRI,

but can be studied using diffusion tensor imaging and it can be used as prior to

constrain other types of connectivity (Friston, 2011). Functional connectivity refers

to undirected statistical dependencies (correlations) between regions (Kahan and

Foltynie, 2013). A high functional connectivity between two regions would mean

their BOLD signals show similar fluctuations over the course of an experiment

(Kahan and Foltynie, 2013). Effective connectivity goes a step further and its aim

is to infer directed influence from one region to another. In this thesis I use the

dynamic causal modelling (DCM) framework (Friston, Harrison, and Penny, 2003)

to estimate this directed connectivity. Models are built to describe how activity in

a region (and external stimuli) might change activity in other regions, then model

comparison is used to select the most parsimonious explanation.

1.3 Organisation of this thesis

The aim of this thesis is to use computational modelling and fMRI to investigate

the relationship between depression symptoms, (abnormal) behaviour and brain

activity and connectivity. This work was done in the context of “reward learning”

as there is a large body of evidence suggesting abnormalities are associated with

depression. More specifically, I asked whether mood symptoms are associated with
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(a) anomalous behaviour, (b) blunted striatal response to reward, (c) value encoding

and the use of values during decision making, and (d) a change in the connectivity

related to prefrontal cortex regions.

Chapter 2 reviews the literature on depression from a computational perspective.

It starts by describing symptoms, diagnosis and statistics of the disorder. Existing

theories are introduced, including possible biological underpinnings which also

forms the basis of the work in the following chapters. A number of studies using

computational approaches are reviewed and a ‘case study’ is used to give an example

of the usefulness of computational models.

Chapters 3 and 4 present the results of an fMRI study involving a group of unmed-

icated patients suffering from depression and a group of healthy controls. The

participants had to estimate the probability that a certain fractal would lead to a

rewarding outcome based on a small number of passive fractal-reward association

trials. Intermittently, participants had to make an active choice between (the reward

probability of) one of the observed fractals and an explicit probability displayed as

a (percentage) number.

Chapter 3 describes the behavioural and computational modelling analyses. Pa-

tients performed worse than controls and the modelling revealed that this was

based on impairments during both the passive observation and the active decision

making phases. Specifically, depressed participants displayed lower memory or in-

creased discounting of observed rewards and a decreased ability to use the internal

estimations of the reward probabilities to make decisions.

Chapter 4 builds on these results and examines the neuronal basis for the group

behavioural differences. Specifically, I used model-based fMRI to look at value

encoding and brain activity during decision making and their relationship with

depression. Replicating previous studies, we found blunted striatal reward activa-

tion in the depressed group. Value encoding was decreased in depression within

brain regions including hippocampus and rostral anterior cingulate, regions which

have been reported to show reward value encoding in healthy subjects. An anterior

mid-cingulate region showed increased activity and decreased (functional) connec-

tivity to rostral cingulate regions in depression. Linking the behavioural model to

brain function, this suggests a possible impairment in the communication of value

estimates from rostral to dorsal prefrontal regions.

Chapter 5 expands on this hypothesis of abnormal connectivity but uses Dynamic

Causal Modelling to also infer the directed effect of one brain region on another.

A large community-based sample of participants took part in a reward learning

study and computational modelling of behaviour, model-free and model-based

fMRI, and DCM were used for analyses. Increased depression symptom severity was

associated with decreased medial prefrontal cortex to ventral striatum top-down
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effective connectivity. This is consistent with a number of theories (see Chapter 2)

positing a role of abnormal cortico-limbic connectivity in depression.

Chapter 6 explores how a combination of data-driven and theory-driven (“gener-

ative embedding”) approaches might help with the detection of past or present

depressive episodes. A machine learning classifier was built to differentiate between

never-depressed healthy participants and lifetime depression patients using esti-

mated DCM effective connectivity parameters as input features. A cross-validated

balanced accuracy of 72% was achieved.

Chapter 7 discusses and brings together the different strands of research and shows

how they integrate into previous research and advance the current understanding

of depression. It addresses a number of common limitations within the wider area

of computational research on depression. Finally, it discusses unexplored avenues

and open questions which will need to be addressed to move research forward in

this field.
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Chapter 2

Background

This chapter reviews the literature about depressive illness and previous computa-

tional approaches towards this devastating disease which inspired the work described

in the following chapters. The contents of this chapter will appear in a shorter form

as chapter in a textbook: S. Rupprechter, V. Valton, and P. Seriès (2020). “Depressive

Disorders from a Computational Perspective”. In: Computational Psychiatry: A

Primer. Ed. by P. Seriès. Cambridge, MA, USA: MIT Press. Chap. 7.

My contributions
A selection of papers to review and the general outline of the textbook chapter were

discussed with my coauthors in the beginning. I drafted the first version of the

chapter which then went through multiple rounds of editing from all authors. I

created Figures 2.1–2.3 and assembled and adapted Figures 2.4 and 2.5 from (Huys,

Pizzagalli, Bogdan, and Dayan, 2013). I also wrote the extended version of the

chapter for this thesis.

2.1 Depressive disorders

Depression and anxiety disorders are the two most common psychiatric disorders

world-wide (Alonso, Angermeyer, Bernert, et al., 2004; Ayuso-Mateos, Vázquez-

Barquero, Dowrick, et al., 2001; Üstün, Ayuso-Mateos, Chatterji, et al., 2004; Vos,

Flaxman, Naghavi, et al., 2012) and display a high level of co morbidity: patients

suffering from one of these illnesses are often affected by the other one as well

(Kessler, Berglund, Demler, et al., 2003). In the United States, Kessler, Berglund,

Demler, et al. (2003) estimated the lifetime prevalence of major depressive disorder

(MDD) at over 16%. Similar figures have been reported for Europe at 13% (Alonso,

Angermeyer, Bernert, et al., 2004).

Diagnosis for MDD is commonly based on the Diagnostics and Statistical Manual

of mental disorders (DSM-V; American Psychiatric Association, 2013). The manual

lists two core symptoms of MDD: depressed mood and loss of interest or pleasure

(anhedonia), of which at least one has to be present for diagnosis. Other symptoms
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include a significant change in weight, insomnia, hypersomnia, psychomotor ag-

itation or retardation, fatigue or loss of energy, feelings of worthlessness or guilt,

a diminished ability to think or concentrate, and recurrent thoughts of death or

suicide. Overall, five or more symptoms have to be present for at least two weeks,

cause significant impairments in important areas of daily life, and should not be

better explained by other psychiatric disorders. The International Classification of

Diseases (ICD-10; World Health Organization, 1992) has similar criteria for diagnosis

of (single) depressive episodes and recurrent depressive disorder. For research stud-

ies, DSM and ICD diagnoses are frequently established using diagnostic systems

such as the Structured Clinical Interview for DSM disorders (SCID, First, Spitzer,

Gibbon, Williams, et al., 2002 or the Mini International Neuropsychiatric Interview

(MINI, Sheehan, Lecrubier, Sheehan, et al., 1998).

Patients often show cognitive deficits on a broad range of tasks probing executive

function and memory (Snyder, 2013; Rock, Roiser, Riedel, and Blackwell, 2014), and

impairments often remain (to some degree) after remission (Rock, Roiser, Riedel,

and Blackwell, 2014). Rock and colleagues argue that cognitive impairments should

be viewed as core features of depression rather than secondary symptoms.

Strikingly, according to the DSM definition, it is possible (in theory; although un-

likely in clinical practice) for two people to receive the same diagnosis of MDD

without sharing a single symptom. One MDD patient may experience depressed

mood, weight gain, constant tiredness and fatigue, and regularly think about ending

their life. Another MDD patient may experience anhedonia, lose a lot of weight, and

go through psychomotor and concentration difficulties while being unable to sleep

properly. The existence of these non-overlapping profiles partly stems from the fact

that categories and symptoms of depression originated from clinical consensus and

do not necessarily have a basis in biology (Insel, Cuthbert, Garvey, et al., 2010; Fried,

Nesse, Zivin, et al., 2014).

As a consequence, some research has started to focus on individual symptoms—for

example anhedonia (Pizzagalli, 2014; see also the case study in Section 2.3)—in

addition to categorical group differences. In the clinical and drug trial literature,

Hamilton Depression Rating (HRSD-17) and Montgomery-Åsberg Depression Rat-

ing Scale (MADRS) are two of the most popular rating scales. In research environ-

ments, the Beck depression inventory (BDI; Beck, Ward, Mendelson, et al., 1961) is

also a popular choice to measure overall depressive severity and a sub-score can be

extracted from items of the questionnaire to quantify anhedonic symptom severity.

These questionnaires also allow a dimensional (as opposed to categorical) approach,

which is emphasised in current research (see below). Compared to SCID or MINI

these dimensional ratings are not diagnostic and, for example, a high anhedonia

score does not necessarily indicate depression and could be related to substance

use or withdrawal (Destoop, Morrens, Coppens, and Dom, 2019).
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Recently, much cognitive research has focused on decreased sensitivity to reward in

depression. There are at least two important reasons for this focus: First, reward

processing appears to align with a lack of interest or pleasure (anhedonia), a core

symptom of depression and one to which we will come back again in the case study

section of this chapter. Second, reward processes are arguably better understood

than mood processes, both at the neurobiological and at the behavioural level.

Indeed, cognitive neuroscience has started to dissociate and delineate different

sub-domains of reward processing, which can be studied independently in relation

to anhedonia (Treadway and Zald, 2013). For example, “incentive salience” (“desire”

or “want”) can be distinguished from “motivation” and “hedonic response” (enjoy-

ment) and we may want to independently study the association of each of these

sub-domains with depression. For instance, your attention and focus on a piece of

chocolate (a potentially rewarding stimulus) is different from how much you enjoy

the chocolate while you are eating it. These two subdomains may also be indepen-

dent from your willingness to expend effort to obtain that piece of chocolate.

Cléry-Melin, Schmidt, Lafargue, et al. (2011) tested depressed patients and healthy

controls on a task in which they could exert physical effort (through grip force on

a handle) to attain monetary rewards of varying magnitudes. They found that de-

pressed participants did not exert more physical effort to obtain higher rewards (as

opposed to lower rewards). However, they believed they had exerted more effort for

higher rewards, as evidenced by their higher effort ratings. Controls, on the other

hand, objectively exerted more effort for greater rewards, but reported subjectively

reduced effort ratings for higher rewards compared to lower rewards. In another

study (Treadway, Bossaller, Shelton, and Zald, 2012), participants were able to ob-

tain varying amounts of money if they managed to make a large number of button

presses within a short time window. Depressed patients exerted less effort (made

less button presses) than controls in order to obtain reward. Together these studies

suggest that depression, and anhedonia in particular, may be related to impair-

ments in the motivation and willingness to exert effort for rewards. This may also

explain why behavioural activation therapies have been reported to work well for

depressed patients: these practices specifically target decreased motivation (Tread-

way, Bossaller, Shelton, and Zald, 2012). However, how such psychological therapies

can be applied successfully in real clinical environments and how effective they are

for severe depression is still debated (DeRubeis, Hollon, Amsterdam, et al., 2005;

Cuijpers, Straten, Bohlmeijer, et al., 2010; Driessen, Cuijpers, Hollon, and Dekker,

2010).

Some researchers have advocated for a network analysis approach to psychopath-

ology, in which major depression and other psychological disorders are conceptu-

alised as clusters of causally connected symptoms (Borsboom and Cramer, 2013).

This drops the assumption that symptoms stem from a single latent cause, but

acknowledges that current psychiatric classifications are not arbitrary as they label
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groups of symptoms which create “reliable patterns of covariance” (Borsboom and

Cramer, 2013).

It is difficult to set a boundary between healthy and pathological mood and indeed

it is unclear whether such a boundary exists at all (Ruscio, 2019). There does not

appear to be a discontinuity at the MDD diagnostic threshold (i.e. five symptoms)

and sub-threshold levels of symptoms can come with noticeable impairment and

may predict escalation and relapse (Ruscio, 2019). Currently, however, there is no

consensus about how to reconcile this apparent continuum of pathological mood

with clinical diagnoses and treatment (Ruscio, 2019).

Recently, the National Institute of Mental Health (NIMH) in the US launched the

Research Domain Criteria (RDoC) project to create a framework for research in

psychiatry (Insel, Cuthbert, Garvey, et al., 2010). Rather than defining categories

of disorders, RDoC uses a dimensional system which recognises the full range of

observable behaviour and neurobiological function. It groups research into dif-

ferent domains including positive valence systems, negative valence systems and

cognitive systems. Each of these can then be studied using different “units” of anal-

ysis, including genes, neural circuits and behaviours. In the future, a practitioner

could then supplement a diagnosis of “major depressive episode” with behavioural

and neuroimaging data from a reward-based learning task to determine the best

treatment (Insel, Cuthbert, Garvey, et al., 2010). However, at least in the near future,

RDoC is not expected to replace DSM or ICD, but rather co-exist beside them to

guide research while being continually updated and improved (Insel, Cuthbert,

Garvey, et al., 2010; Lilienfeld and Treadway, 2016).

2.1.1 Cognitive theories of depression

An early influential theory, inspired by a wealth of animal studies, is that of learned

helplessness (Seligman, 1972; Maier and Seligman, 1976; Abramson, Seligman, and

Teasdale, 1978). The theory suggests that continued exposure to aversive (stressful)

environments over which animals do not have any control lead to behavioural

deficits similar to those observed in depression. In such a framework, the patients’

distress is believed to stem from their perception of a lack of control over the en-

vironment and ensuing rewards or penalties. This, in turn, could explain patients’

distress and lack of motivation to initiate actions. Stress has been proposed as a

mechanism for memory impairments in depression (Dillon and Pizzagalli, 2018)

and Pizzagalli (2014) hypothesised that dysfunctional interactions between stress

and the brain reward system can lead to anhedonia.

A complementary and not necessarily alternative influential theory about depres-

sion concentrated on “negative biases” involved in the development and mainte-

nance of depression (Beck, 2008), and which led to the emergence of cognitive be-

havioural therapies (CBT). This line of research hypothesised that negative schemas
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about the self, the world, and the future form due to adverse early-life experiences.

According to this framework, negative schemas could lead patients to downplay the

magnitude of positive events, or attribute negative valence to objectively neutral

events. Patients would effectively perceive the world through “dark tainted” glasses.

A recent extension of this cognitive theory suggested that negative biases play a

causal role in the development and maintenance of depression (Roiser, Elliott, and

Sahakian, 2012): both low-level perceptual and reinforcement biases and high-level

cognitive control biases could influence negative schemas. It has also been sug-

gested that common antidepressant medications target the negative, presumably

bottom-up perceptual biases rather than targeting mood directly (Harmer, Good-

win, and Cowen, 2009). This would be consistent with observations that while

medications typically have an effect at the synapse level within hours, recovery

from depression is often more gradual and can take several weeks (Roiser, Elliott,

and Sahakian, 2012). In contrast, CBT is proposed to work in a top-down manner,

helping to improve and re-learn affective cognitive control, negative schemas and

expectations (Roiser, Elliott, and Sahakian, 2012).

An alternative extension of Beck’s cognitive theory by Joormann and colleagues

emphasised the role of deficits in emotion regulation in depression (Joormann

and Vanderlind, 2014; Joormann and Stanton, 2016). Most (first) major depres-

sive episodes follow a significant negative life event, but only few people who live

through such events develop the disorder (Joormann and Stanton, 2016). These ob-

servations, they argue, point towards the importance of emotional self-regulation in

MDD (Joormann and Stanton, 2016) and they refer to a substantial amount of litera-

ture showing a distortion of emotion regulation strategies in depression (increased

rumination and suppression, decreased distraction and reappraisal). Underlying

these emotion regulation difficulties may be biases in attention, interpretation and

memory which can all be linked to the emotional response, and deficits in cogni-

tive control, which may hinder an improvement of these strategies (Joormann and

Stanton, 2016).

Overall, there is large overlap between the different theories of depression. Most

cognitive theories place a large emphasis on biases influencing emotional pro-

cessing (Gotlib and Joormann, 2010), but some differ in their explanation of the

development of these biases; for example whether they develop in response to

early stressful life experiences (Beck, 2008; Pizzagalli, 2014) or stem from biased

perceptual and reinforcement processes (Roiser, Elliott, and Sahakian, 2012). A lack

of control (real or imagined) could contribute to the emergence and maintenance

of such biases.
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2.1.2 Biological basis for depression

Helen Mayberg was one of the earliest to point out that rather than depression being

related to the failure of a single brain region, it is likely to be a system wide disorder

affecting multiple regions and the pathways between them (Mayberg, 1997; May-

berg, Lozano, Voon, et al., 2005; Mayberg, 2009). Mayberg and colleagues proposed

a circuit model of depression in which regions are grouped into four clusters reflect-

ing impaired dimensions in depression (Mayberg, 2009): Medial prefrontal cortical

regions (“mood regulation”, active cognitive control, reinforcement, contingencies),

dorsal and parietal cortical regions (“exteroception”, attention, appraisal, action),

ventral limbic regions including subgenual cingulate, anterior insula, hippocam-

pus, and brainstem (“interoception”, drive states, autonomic function, circadian

rhythms), and other subcortical regions including amygdala, ventral striatum, cau-

date, thalamus and midbrain / ventral tegmental area (“mood monitoring”, novelty,

salience, learning, habit).

These regions have been highlighted in a large number of functional imaging studies,

and Mayberg focused on the subgenual section of the anterior cingulate, Brodmann

area 25, which is interconnected with many of them and had been found to be

hyperactive in (treatment resistant) major depression (Mayberg, 2009). This region

was the target of a deep brain stimulation trial involving six treatment resistant

MDD patients of which four were deemed to show sustained remission (Mayberg,

Lozano, Voon, et al., 2005) which led to the initiation of additional stimulation

studies (Mayberg, 2009). The trial ultimately did not work as it did not result in

statistically significant differences between stimulation and control groups and was

halted early (Holtzheimer, Husain, Lisanby, et al., 2017).

Disner, Beevers, Haigh, and Beck (2011) reviewed Beck’s cognitive model and pro-

posed an underlying neurobiological system largely consistent with Mayberg’s lim-

bic-cortical dysregulation model. Two key processes were identified which initiate

and sustain cognitive biases. An impaired bottom-up pathway, involving a hyper-

active amygdala, the subgenual cingulate, ACC, striatum (blunted NAc response

and abnormal caudate and putamen functioning), and hippocampus ending in the

frontal lobe, leads to abnormal responses to emotional stimuli. An impaired top-

down pathway, from the PFC through anterior cingulate and thalamus and ending

in subcortical regions, is related to diminished cognitive control which allows biases

to persist.

Several neurotransmitters, most commonly serotonin and dopamine, are impli-

cated in reward and punishment processing in depression (Eshel and Roiser, 2010).

Dopamine is implicated in reinforcement learning processes (Schultz, 2002) and

has consistently been associated with depression in humans and animals (Pizzagalli,

2014). Serotonin has long been implicated in the processing of aversive stimuli,

response inhibition and learned helplessness and depression may be related to a
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failure of stopping such aversive processes (Deakin, 2013). Antidepressant med-

ications have their most obvious effect altering brain serotonin levels (Eshel and

Roiser, 2010).

Deakin and Graeff (Deakin and Graeff, 1991; Deakin, 2013) made a number of pre-

dictions regarding the involvement of the serotonin system in depressed mood and

anxiety. Instead of conceptualizing depression as a serotonin deficit disorder, they

proposed an overactive dorsal raphe nucleus (DRN) which would affect amygdala

and striatum with overactive projections and an underactive median raphe nucleus

with underactive projections to the hippocampus (Johnston, Tolomeo, Gradin, et al.,

2015).

Notably, Johnston, Tolomeo, Gradin, et al. (2015) used a combined loss-avoidance

and win-gain paradigm and found neuroimaging results consistent with Deakin and

Graeff’s predictions in treatment resistant depression. DRN and amygdala activity

was significantly increased and nucleus accumbens decreased in patients. During

loss events, depressed individuals failed to regulate the hippocampus resulting in

overactivity and this was also correlated with BDI (depression severity) and HADS-A

(anxiety severity) scores.

Dopamine is heavily linked to reward processing and the role of blunted dopamine

transmission in depression has received much attention (Pizzagalli, 2014). This

could potentially help explain behavioural and neuroimaging reports of abnormal

prediction-error based reinforcement learning (Kumar, Waiter, Ahearn, et al., 2008),

but direct human evidence of reduced dopamine transmission during reward learn-

ing tasks is missing (Pizzagalli, 2014; Dunlop and Nemeroff, 2007). Pizzagalli (2014)

hypothesised that stress affects dopamine (reward) pathways which could induce

anhedonia leading to depression.

A large number of neuroimaging studies have repeatedly revealed associations

between depressive mood and changes in activation of various brain regions (Bartra,

McGuire, and Kable, 2013; Zhang, Chang, Guo, et al., 2013; Chase, Kumar, Eickhoff,

and Dombrovski, 2015; Keren, O’Callaghan, Vidal-Ribas, et al., 2018). Hyperactivity

of the amygdala in response to or anticipation of sad or negative stimuli in MDD has

consistently been found, consistent with the conception that the amygdala is part

of the emotion generation and regulation system (Joormann and Stanton, 2016).

Another part of the emotion generation system is the ventral striatum (Joormann

and Stanton, 2016) and multiple studies have shown blunted reward responses in

this area (Bartra, McGuire, and Kable, 2013; Keren, O’Callaghan, Vidal-Ribas, et al.,

2018; Pizzagalli, 2014).

Reduced activation of other subcortical regions, including caudate, putamen, and

thalamus during reward processing in MDD has been reported (Zhang, Chang, Guo,

et al., 2013; Bartra, McGuire, and Kable, 2013; Keren, O’Callaghan, Vidal-Ribas,



16 Chapter 2. Background

et al., 2018). Gradin, Kumar, Waiter, et al. (2011) described decreased reward value

encoding in the hippocampus in treatment resistant depression.

Prefrontal areas are frequently conceptualised as higher level processing parts,

exerting cognitive control and regulating emotions (Joormann and Stanton, 2016).

The orbitofrontal cortex (OFC) and ventromedial prefrontal cortex (vmPFC) are

implicated in the representation of internal values (Chase, Kumar, Eickhoff, and

Dombrovski, 2015). Depression is associated with abnormal activation in these

regions (Pizzagalli, 2014; Cléry-Melin, Jollant, and Gorwood, 2018), possibly related

to abnormal use of reward values during decision-making (see Chapters 3 and 4).

As described previously, abnormal connectivity between prefrontal cortical and lim-

bic/subcortical areas is assumed to play a major role in the onset and continuation

of depression (Mayberg (2009), Joormann and Stanton (2016), Pizzagalli (2014), and

Roiser, Elliott, and Sahakian (2012) and see also Chapter 5).

There is some evidence for volume changes in depression in various areas including

amygdala, hippocampus, and prefrontal areas (Mayberg, 2009). Particularly note-

worthy are large meta-analyses which have concluded that MDD is associated with

reduced hippocampal volume (Schmaal, Veltman, Erp, et al., 2016) and alterations

in cortical thickness, especially in OFC (Schmaal, Hibar, Sämann, et al., 2017). How-

ever, there is considerable variability in findings of changes in volume (Mayberg,

2009), and it is important to note that acute lesions in these areas do not seem to

initiate depressive symptoms (Mayberg, 2009).

Genetics and environmental influences likely play important roles in the aetiology

of depression (Sullivan, Neale, and Kendler, 2000). A genome-wide association

study identified 44 significantly associated genomic regions with depressive symp-

toms (Wray, Ripke, Mattheisen, et al., 2018) which was increased to approximately

100 loci in a recent follow-up meta-analysis (Howard, Adams, Clarke, et al., 2019).

However, effect sizes are small and the explained variance is typically less than

2% (Wray, Ripke, Mattheisen, et al., 2018) which means these effects will likely not

be useful for individual patient predictions in the near future (Steele and Paulus,

2019).

2.1.3 Treatment

One of the reasons why advances in this field are desperately needed is because

existing treatment options are inadequate for many patients (Taghva, Malone, and

Rezai, 2013; Culpepper, 2010).

It has been reported that treatment of depression is ineffective in about half to two

thirds of patients (Culpepper, 2013; Cohen and DeRubeis, 2018). Recently, a large

study in the United States concluded that only about a third of adults who had been

positively screened for depression actually received treatment and only roughly a
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third of adults who did receive treatment for depression had screened positive for

the disorder (Olfson, Blanco, and Marcus, 2016), revealing the inappropriateness

and mismatch between diagnosis and treatment of depression.

The most common treatments are antidepressant medication and psychotherapy

(Olfson, Blanco, and Marcus, 2016) and the combination of the two may further

enhance recovery (Khan, Faucett, Lichtenberg, et al., 2012). Typical antidepressant

classes include selective serotonin reuptake inhibitors (SSRI), selective serotonin-

norepinephrine reuptake inhibitors (SNRI), tricyclic antidepressants (TCA), and

monoamine oxidase (MAO) inhibitors (Shultz and Malone Jr, 2013). Behavioural

therapies typically focus on targeting negative cognitive biases, thoughts and beliefs,

to improve emotion regulation (Beck, 2008; Joormann and Stanton, 2016).

Some studies indicate that deep brain stimulation for treatment resistant depres-

sion might become a viable therapeutic option, but results are still inconsistent

and further work is needed to improve target selection (Taghva, Malone, and Rezai,

2013). Subgenual cingulate (Mayberg, 2009) and ventral striatum are two promising

targets, but small changes of the exact location might lead to substantially different

outcomes (Taghva, Malone, and Rezai, 2013). Other possible therapies for treat-

ment resistant depression include transcranial magnetic stimulation (TMS) and

electroconvulsive therapy (ECT). Advantages of such stimulation techniques in

comparison to lesioning procedures (for example, anterior cingulotomy; Steele,

Christmas, Eljamel, and Matthews, 2008) include reversibility and the possibility of

adjusting features such as the stimulation frequency (Taghva, Malone, and Rezai,

2013), but rely on permanently implanted hardware.

Treatment selection is a difficult problem and there currently is no obvious way to

choose a treatment for a particular patient and it can take many months to Find

a treatment which works (Steele and Paulus, 2019). It has been suggested that

neuroscience techniques could be used to make clinically useful predictions about

treatment outcomes without necessarily understanding the underlying nosology

or mechanisms (Steele and Paulus, 2019). Recently, the availability of larger and

larger amounts of data has enabled machine learning approaches to be used for

treatment outcome predictions with some initial success (Chekroud, Zotti, Shehzad,

et al., 2016).

2.2 Past and current computational approaches

A variety of different computational approaches, ranging from connectionist and

neural networks, to drift diffusion models, reinforcement learning and Bayesian

decision theory, have been used to study the behaviour of MDD patients. I will

briefly describe some of the findings from each of these approaches as well as more

recent models of mood.
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2.2.1 Connectionist models

One early approach that has been used to model depression is a connectionist

approach, which is inspired by the idea that complex functions can naturally arise

from the interaction of simple units (“neurons”) in a network.

Siegle, Steinhauer, and Thase (2004) asked groups of depressed and healthy indi-

viduals to perform a Stroop colours naming task. In this task, colour words are

presented on each trial with different ink colours matching or not matching the

word (e.g. the word “red” written in blue ink), and participants have to name the

ink colour while refraining from reading the word itself (Figure 2.1). The task is

typically used to probe attentional control. Pupil dilation measurements were used

as an indicator for cognitive load, because pupils reliably dilate under cognitively

demanding conditions (Siegle, Steinhauer, and Thase, 2004). Previous studies had

shown impairments within groups of depressed subjects, but the nature of these

impairments varied, with patients sometimes showing slower responses and other

times increased error rates. Siegle, Steinhauer, and Thase (2004) found similar per-

formance patterns for the two groups, but differences in pupil dilation. Depressed

individuals showed decreased pupil dilation, consistent with decreased cognitive

control. A neural network was used to identify possible mechanisms that could

have resulted in these group differences. The modelling suggested that decreased

prefrontal cortex activity could lead to the observed cognitive control differences in

this experiment. Such a disruption might also explain attentional deficits commonly

observed in depression (Siegle, Steinhauer, and Thase, 2004).

blue

FIGURE 2.1: A sketch of the Stroop colour-naming task, as used
by Siegle, Steinhauer, and Thase (2004). Participants had to respond
by indicating the colour of the ink of the word (here red), while ignor-

ing the written word (here blue).

Siegle and Hasselmo (2002) provided another example of how neural network mod-

els can be used to better understand deficits in depression during (negatively biased)

emotional information processing. The task considered was one where emotional

word stimuli were observed, which participants had to label as positive, negative,

or neutral. Patients typically show biases in emotional information processing, for

example quicker responses to negative information (Siegle and Hasselmo, 2002).
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A neural network model was used to simulate classification of emotional stimuli.

It could reproduce the typically observed behaviour of depressed patients: it was

quicker to identify negative information than positive information and showed

larger sustained activity when confronted with negative words. Different mecha-

nisms could lead to these observed abnormalities in the network, including over-

learning of negative information, which can be related to rumination, i.e. the ten-

dency to repetitively think about the causes, situational factors, and consequences

of one’s negative emotional experience. A network that had over-learned on nega-

tive information could be retrained using positive information (akin to a cognitive

behavioural therapy), which resulted in the normalisation of network activity in

response to negative information. The longer the network had “ruminated”, the

longer it took for the “therapy” (i.e. retraining) to work, providing insights into the

recovery from depression using CBT and its interactions with rumination. Siegle

and Hasselmo (2002) therefore suggested that rumination can be predictive of treat-

ment response and should be routinely assessed in depressed individuals. Based

on Siegle’s work, a simulation study looked at the impact of hippocampal atrophy

in depression (Gradin and Pomi, 2008). They reported evidence for links between

atrophy and both cognitive impairments and the maintenance of depression, con-

sistent with a large meta-analysis which reported reduced hippocampal volume in

MDD (Schmaal, Veltman, Erp, et al., 2016).

2.2.2 Drift diffusion models

Drift diffusion models (DDMs) have also been used to better understand the mech-

anisms underlying depressive illness. These models are especially useful when the

modelling of reaction time and accuracy in combination is of primary interest.

For example, Pe, Vandekerckhove, and Kuppens (2013) modelled behaviour on

the emotional flanker task to analyse negative biases in depression. In this task,

participants are shown a positively or negatively valenced word that they are asked

to classify according to valence. The central stimulus is flanked by two additional

words with positive, negative or neutral valence (Figure 2.2). The authors hypothe-

sised that higher depressive symptomatology and rumination (as measured by self

report questionnaires) are related to negative attentional biases (i.e. a bias towards

negative target words). Classical analyses showed that the higher the rumination

score, the stronger the facilitation effect (computed from accuracy scores) of nega-

tive distracters on negative targets and the weaker the facilitation effect of positive

distracters on positive targets. After controlling for depression, only the former

effect remained. A DDM analysis on the other hand revealed more effects involving

the drift rate, which corresponds to the rate at which information is being processed.

The drift rate was negatively correlated with rumination scores on trials where a

negative target word was flanked by positive words and was positively correlated

with rumination scores on trials where negative words flanked a negative or positive
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word. After controlling for depression scores, rumination still predicted attentional

bias for negative information, but depression scores were no longer predictive af-

ter controlling for rumination. The computational modelling therefore revealed

that rumination was associated with an enhanced processing of words flanked by

negative words and decreased processing in the presence of positive flankers.

A B

abuse
love
abuse

friend
honest
friend

FIGURE 2.2: A sketch of two types of trials of the emotional flanker
task, as used by (Pe, Vandekerckhove, and Kuppens, 2013). Partici-
pants had to classify the word in the centre according to its valence.
(A) An incongruent trial, in which the target word love and the flank-
ing word abuse have differing valence. (B) A congruent trial, in which
the valence of the flanking word is the same as the valence of the
target. (Note that Dutch, four letters long, monosyllabic words were

used by Pe, Vandekerckhove, and Kuppens (2013)).

In addition to negative biases, depression is also associated with impairments in

executive function (Snyder, 2013). Dillon, Wiecki, Pechtel, et al. (2015) used a com-

bination of three drift diffusion processes to account for behaviour on a different

(non-emotional) version of the flanker task. In this version, stimuli and distracters

were three arrows pointing left or right. The central and flanking arrows could

either be congruent (pointing in the same direction) or incongruent. Depressed

and healthy participants had to indicate the direction of the arrow in the middle.

The authors’ goal was again to address inconsistent findings of previous studies,

which had sometimes found enhanced executive functioning in depression during

tasks that demand careful thought. Depression can lead to increased analytical

information processing (c.f. rumination), which results in worse performance dur-

ing tasks requiring fast decisions, but can also lead to increased accuracy when

careful approach is necessitated and reflexive responses need to be inhibited. Dillon,

Wiecki, Pechtel, et al. (2015) found that depressed participants were more accu-

rate but slower than controls on incongruent trials. They decomposed behaviour

on the flanker task into three different mechanisms that might be affected by de-

pression, and which were modelled by separate drift diffusion processes: (1) a

reflexive mechanism biased to respond according to the flankers, (2) a response

inhibition mechanism able to suppress the reflexive response, and (3) executive

control responsible for correct responses in the presence of incongruent flankers.
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The analysis of model parameters showed that the drift rate for the executive control

mechanism was lower in depression, which on its own would lead to slower, but

also less accurate responses. However, this executive control deficit was offset by

an additional decreased drift rate in the reflexive mechanism. This could explain

impaired executive function but highly accurate responses in MDD (Dillon, Wiecki,

Pechtel, et al., 2015).

One more example comes from Vallesi, Canalaz, Balestrieri, and Brambilla (2015),

who used DDMs to better understand deficits in the regulation of speed-accuracy

trade-offs in depression. At the beginning of each trial, a cue signalled whether

participants should focus on speed or accuracy. It was found that MDD patients,

unlike controls, adjusted their decision threshold based on the instructions for the

previous trial, with speed instructions decreasing the decision boundary (indepen-

dently of the cue for the current trial). That is, patients had difficulties overcoming

instructions from the previous trial and flexibly switching between fast and accurate

decision-making. In addition, drift rates within the patient group were generally

lower than in the control group, indicating a slowing down of cognitive processing,

which is commonly found in MDD patients.

2.2.3 Reinforcement learning models

In reinforcement learning models, behaviour is captured on a trial-by-trial basis.

An agent makes a decision based on some internal valuation of the objects in the

environment, observes an outcome, and then uses this outcome to update the

internal values. There exists substantial behavioural and neural evidence, often

supported by computational modelling, for impaired reinforcement learning during

depression (see Chen, Takahashi, Nakagawa, et al., 2015 for a review).

Chase, Frank, Michael, et al. (2010) fitted a Q-learning model to the behaviour

of MDD patients and healthy controls on a probabilistic selection task. On each

trial, one of three possible stimulus pairs was displayed and participants had to

choose one of the stimuli, which were followed by positive or negative feedback

according to different probabilities. They did not find evidence for their initial

hypothesis that patients would preferentially learn from negative outcomes due

to a tendency in depression to focus on negative events. Participants’ anhedonia

scores, however, negatively correlated with positive and negative learning rate

as well as the exploration-exploitation (softmax) parameter. The study therefore

provided evidence that depression, and specifically anhedonia, is related to altered

reinforcement learning. Huys, Pizzagalli, Bogdan, and Dayan (2013) performed a

meta-analysis on the Signal Detection Task (Pizzagalli, Jahn, and O’Shea, 2005).

In contrast to the previous study, they concluded that anhedonia is principally

associated with blunted sensitivity to reward as opposed to an impaired ability to

learn from experienced rewards. The task and their approach is covered in more

detail in the case study section below.
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Temporal difference (TD) prediction-error learning signals have been linked to the

firing of dopamine neurons in the brain (Montague, Dayan, and Sejnowski, 1996;

Schultz, 1998; Schultz, 2002; O’Doherty, Dayan, Schultz, et al., 2004) and there exists

substantial evidence that these neurons play an important part in the experience

of pleasure and reward (Dunlop and Nemeroff, 2007). Using fMRI and a Pavlovian

reward-learning task, Kumar, Waiter, Ahearn, et al. (2008) investigated whether TD

learning signals would be reduced in MDD patients. The authors indeed found

blunted reward prediction error signals in the patient group and additionally a

correlation between such blunting and illness severity ratings. This provides a link

between an impaired physiological TD learning mechanism and reduced reward

learning behaviour as observed in anhedonia.

The previous study by Kumar, Waiter, Ahearn, et al. (2008) investigated Pavlovian

learning during which participants passively observed stimulus-outcome associ-

ations. An early study to look at instrumental learning through active decision-

making in depression was performed by Gradin, Kumar, Waiter, et al. (2011). Stimuli

were associated with different reward probabilities, which slowly changed. Predic-

tion errors and expected values of a Q-learning model were regressed against fMRI

brain activity. Compared to healthy controls, depressed patients did not display

behavioural differences. However, physiologically they showed reduced expected

reward signals as well as blunted prediction error encoding in dopamine-rich ar-

eas of the brain. This blunting correlated with anhedonia scores. This shows that

model-based fMRI can reveal differences in reward learning; even in the absence of

behavioural effects.

2.2.4 Bayesian decision theory

At a more abstract level, Bayesian decision theory (BDT) has been used to explain

common symptoms of depression such as anhedonia, helplessness and pessimism

(Huys, Vogelstein, Dayan, and Bottou, 2008; Trimmer, Higginson, Fawcett, et al.,

2015; Huys, Daw, and Dayan, 2015). Bayesian decision theory allows formulation of

optimal behaviour during a task and then analysis of how sub-optimal behaviour

can arise.

Huys, Vogelstein, Dayan, and Bottou (2008) fitted a Bayesian reinforcement learning

model to the behaviour of depressed and healthy participants in two reward learn-

ing tasks. Importantly, their formulation of the model included two parameters,

describing sensitivity to reward and a prior belief about control (cf. helplessness).

Higher values of the control parameter corresponded to stronger beliefs about the

predictability of outcomes following an action. Individuals who believe they have

a lot of control over their environment would predict that previously rewarded

actions will likely be rewarded again, while someone with a low control prior would

expect weaker associations between action and reward. Huys, Vogelstein, Dayan,

and Bottou (2008) then showed how a linear classifier could be used to distinguish



2.2. Past and current computational approaches 23

between healthy and depressed participants after they had played a slot machine

game, based purely on the two values of individuals’ parameters. This suggests that

model parameters obtained by fitting a behavioural task, such as a probabilistic

learning task, could be used to classify MDD to a high accuracy. The objective

classification of illness is an important goal of computational psychiatry (Stephan

and Mathys, 2014).

A comprehensive evaluation framework formulated through BDT was introduced

by Huys, Daw, and Dayan (2015), in which they discuss how depressive symptoms

can arise from impairments in utility evaluation and prior beliefs about (the control

over) outcomes. They theorised that it is primarily model-based reinforcement

learning, rather than model-free learning, which is abnormal in depression.

A theoretical description of how optimal decision-making can lead to (seemingly)

depressed behaviour and inaction similar to learned-helplessness in a probabilistic

environment can also be found in (Trimmer, Higginson, Fawcett, et al., 2015). They

concluded that to understand a patient’s current depressed behaviour, the history

of the individual should be considered by describing it much further back in the

past than what is the current norm. Imagine, for example, that Bob gets fired from

his job due to “corporate restructuring” due to an economic crisis. Further, no other

company seems interested in hiring while the economy is in this downswing, which

is unlikely to change for the foreseeable future. Best efforts and repeated attempts

to get a new job fail and adverse events in the environment increase (e.g. he loses

friends or family or becomes homeless). Bob starts to learn that his actions do not

seem to influence his environment. Negative outcomes appear unavoidable and

over time his willingness to try to escape his situation decreases. Distressed and

desperate, Bob starts to show symptoms reminiscent of depression. He has “learned

to be helpless”.

2.2.5 A model of momentary happiness

Rutledge, Skandali, Dayan, and Dolan (2014) developed a computational model to

describe healthy participants’ “momentary happiness” during a decision-making

task including gain and loss components. Subjects repeatedly chose between a fixed

option which would always result in the indicated outcome and a risky option which

would yield one of two possible indicated outcomes with equal probabilities. After

every two to three trials, participants were asked to rate their current happiness on

a sliding scale. Overall earnings increased over the course of the experiment but

overall happiness did not change although trial-by-trial variance was observed. The

computational model which best described the variation in happiness over time

indicated that momentary happiness was best described as a function of recent

reward expectations and prediction errors, rather than simply as a function of recent

rewards.
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The model has been applied multiple times and it has been shown that activity in

the ventral striatum is correlated with future happiness ratings and that fluctuations

in momentary happiness can reliably be related to expectations, rewards and RPEs

in a quantitative fashion (Rutledge, Skandali, Dayan, and Dolan, 2014; Rutledge,

Skandali, Dayan, and Dolan, 2015; Rutledge, De Berker, Espenhahn, et al., 2016;

Eldar, Rutledge, Dolan, and Niv, 2016).

Based on previous studies (c.f. Sections 2.1.2-2.2.3) linking depression to altered re-

ward prediction errors and dopamine function, the same computational happiness

model was used in an fMRI study as well as a large smartphone-based study both

including MDD subjects and healthy controls (Rutledge, Moutoussis, Smittenaar,

et al., 2017). Depression did not reduce the emotional impact of RPEs on happiness,

but the estimated base happiness was significantly negatively associated with sever-

ity of depression symptoms. In contrast to earlier studies (Kumar, Waiter, Ahearn,

et al., 2008; Gradin, Kumar, Waiter, et al., 2011), RPE signals in the ventral striatum

were not significantly different between groups. Rutledge, Moutoussis, Smittenaar,

et al. (2017) concluded that the underlying dopaminergic system responsible for

producing RPEs (Rutledge, Skandali, Dayan, and Dolan, 2015) is likely intact in

depression and previous results (Pizzagalli, Holmes, Dillon, et al., 2009; Kumar,

Waiter, Ahearn, et al., 2008; Gradin, Kumar, Waiter, et al., 2011; Robinson, Cools,

Carlisi, et al., 2012) may reflect other downstream changes in the brain’s reward

learning system (e.g. see Kumar, Goer, Murray, et al., 2018). This also supports the

previously mentioned idea that depression is primarily characterised by altered

goal-directed decision-making and model-based reasoning (Huys, Daw, and Dayan,

2015). Importantly, there was no learning and no ambiguity involved in the task

used by Rutledge, Skandali, Dayan, and Dolan (2014) and Rutledge, Moutoussis,

Smittenaar, et al. (2017), and altered ventral striatal signals from previous studies

may be related to an impairment in the model-based system active during rein-

forcement learning. While the computation of the (dopaminergic) prediction error

may not fundamentally be affected in depression, the inputs to the computation

might be different in depression (see also the concept of reward sensitivity in the

case study described in Section 2.3), especially when task and environment are com-

plex. Depression is associated with learning abnormalities, especially in rewarding

contexts, and the disorder might be related to difficulties in estimating or keeping

track of uncertainty (Pulcu and Browning, 2019).

The precise mathematical description of the generative process which results in (a

change in) happiness ratings has the advantage of showing exactly what is formally

described in the model. For example, as pointed out by Pulcu and Browning (2017),

a possible influence of (negative) self-appraisal is not considered. It also becomes

clear from the model that it can only describe momentary changes in emotional

state, but not long-term changes in mood which will be important to consider when

studying depression. Repeatedly asking participants how they feel during a task
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may also result in “demand effects” as they might believe they should report higher

happiness after a win (Pulcu and Browning, 2017). It is perhaps a bit surprising

that small unexpected rewards or losses could repeatedly change subjects’ emo-

tional state from “very unhappy” to “very happy” and back within minutes. These

considerations might also help explain the fact that although participants reported

variations in momentary happiness, their overall mood did not change between

start and end of the experiment. The monetary compensation earned throughout

the task did not appear to change overall happiness at all. It is worth noting that in

a study involving successful mood induction (Vinckier, Rigoux, Oudiette, and Pes-

siglione, 2018) the model best describing mood variation did not include expected

value or RPEs but only the effect of (positive and negative) feedback. Nevertheless,

the computational approach of describing momentary changes in happiness is

promising and has been shown to work well within both healthy and ill participants

(Rutledge, Skandali, Dayan, and Dolan, 2014; Rutledge, Moutoussis, Smittenaar,

et al., 2017). It is now necessary to look at longer time-scales (i.e. long-term mood

rather than momentary happiness) and study how variations in mood can be related

to major depression (see Eldar, Roth, Dayan, and Dolan, 2018 for initial work looking

at mood variation within healthy participants during a period of seven days).

In this thesis I assume that the mood of participants remains essentially stable over

the course of the experiments. More specifically, I assume that any small variation

in the mood of a participant would not change their depression severity rating. In

the study described in Chapters 3 and 4 participants were not shown the potentially

rewarding outcomes after their choices so (the lack of) feedback should not have

influenced their momentary mood. More interestingly, in Chapter 5 I describe a

study in which participants did receive rewards (in the form of points) depending on

their choices and the study also included an element of (lack of) control. Although

it is possible that their momentary happiness changed following the outcomes and

their corresponding prediction errors, we assumed that any such variation would

not (systematically) change their self-reported depression severity ratings.

2.3 A case study: How does reward learning relate to anhe-

donia?

This section will provide a “case study” of the use of computational modelling in de-

pression: a meta-analysis published by Huys, Pizzagalli, Bogdan, and Dayan (2013)

of a behavioural task that has consistently revealed reward-learning impairments in

depressed and anhedonic individuals and other closely related groups.

Anhedonia is a core symptom of depression. Different behavioural tasks have been

used to show that reward feedback objectively has less impact on participants who

subjectively report anhedonia (Huys, Pizzagalli, Bogdan, and Dayan, 2013). How-

ever, there are different ways through which such a relationship could be realised.
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The goal of the meta-analysis was to find out whether anhedonia was principally

associated with the initial rewarding experience of stimuli, or the subsequent learn-

ing from these rewards. The two mechanisms are important to disentangle, as they

would likely correspond to distinct aetiologies and different strategies for therapies

(Huys, Pizzagalli, Bogdan, and Dayan, 2013).

2.3.1 Signal detection task

The Signal Detection Task (see Figure 2.3) consists of many (often 300) trials. In

each trial one of two possible stimulus pictures (cartoon faces) is shown and the

participant is prompted to indicate which picture was observed. This can be quite

difficult, because the stimuli look very similar—they only differ slightly in the length

of their mouth—and are only displayed for a fraction of a second. If participants

correctly identify a stimulus, they sometimes receive a reward (e.g. in the form of

points) and sometimes receive no feedback. Participants are told to maximize their

reward.

long or short?tim
e

FIGURE 2.3: A sketch of the signal detection task (Huys, Pizzagalli,
Bogdan, and Dayan, 2013). On each trial participants observe one of
two possible cartoon faces which only differ slightly in the lengths
of their mouths. They have to indicate which face they observed.
The reward structure is asymmetrical with one of the stimuli being

rewarded more frequently than the alternative.

The most important aspect of the task is the asymmetrical reward structure. Unbe-

knownst to participants, one of the stimuli (called the “rich” stimulus) is followed

by reward approximately three times as often as the alternative “lean” stimulus. If

participants are not certain about the stimulus, they can incorporate knowledge

about their reward history into their decision and choose the rich stimulus so as to

maximize their chances to accumulate rewards. Healthy individuals have consis-

tently shown to develop a response bias towards the rich option (Huys, Pizzagalli,

Bogdan, and Dayan, 2013).
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Using the Signal Detection Task, Pizzagalli, Jahn, and O’Shea (2005) found a reduced

ability in (healthy) participants with high depression (BDI) scores to adjust their

behaviour based on their reward history, while low BDI participants developed a

stronger response bias towards the rich stimulus. Similarly, worse performance has

been observed in MDD patients (Pizzagalli, Iosifescu, Hallett, et al., 2008), stressed

individuals (Bogdan and Pizzagalli, 2006), euthymic (i.e. neutral mood) bipolar

outpatients (Pizzagalli, Goetz, Ostacher, et al., 2008), as well as volunteers receiving

medication (Pizzagalli, Evins, Schetter, et al., 2008), and even healthy participants

with a history of MDD (Dutra, Brooks, Lempert, et al., 2009; Pechtel, Dutra, Goetz,

and Pizzagalli, 2013).

These studies used signal detection theory and summary statistics from raw be-

haviour to analyse the data. Huys, Pizzagalli, Bogdan, and Dayan (2013) extended

this by using trial-by-trial reinforcement learning (RL) modelling to better under-

stand the evolution of the behaviour through time, and get to a finer granularity in

the analysis of the behaviour.

While anhedonia has been associated with a diminished ability to use rewards to

guide decision-making (such as in studies listed above), there exist varied possibili-

ties for this impairment. Of primary interest in this case study was the distinction

between the primary reward sensitivity, the immediately experienced consumma-

tory pleasure following reward, and the learning from reward. Huys, Pizzagalli,

Bogdan, and Dayan (2013) included these two factors as parameters into a reinforce-

ment learning model. Figure 2.4 shows how changes in either reward sensitivity (ρ)

or learning rate (ε) could lead to the empirically observed changes in response bias.

2.3.2 A basic RL model

A standard Q-learning update rule incorporates learning rate in the following way:

Qt+1(at, st) = Qt(at, st) + ε× δt (2.1)

where st is the displayed stimulus on trial t, at is the action on trial t (i.e. which

button was pressed), Qt(at, st) denotes the internal value assigned to the stimulus

action pair (at, st) at trial t, r ∈ 0, 1 is the observed outcome, and δt = ρr−Qt(at, st) is

the prediction error. Note that Huys, Pizzagalli, Bogdan, and Dayan (2013) included

a reward sensitivity parameter ρ that scales the true value of the reward. A lowering

of the learning rate ε increases the time needed to learn about the stimulus-action

pairs, while a lowering of the reward sensitivity ρ alters the asymptotic (average)

values of Q that are associated with each pair.

In addition, Huys, Pizzagalli, Bogdan, and Dayan (2013) included a term, γI(at, st),

encoding participants’ ability to follow the task instructions (i.e. press one key for

the short mouth stimulus, and the other key for the long mouth stimulus), where:
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FIGURE 2.4: Modeling the signal detection task. Response bias on
simulated data (adapted from Huys, Pizzagalli, Bogdan, and Dayan
(2013)). Three blocks of 100 trials were simulated and the develop-
ment of the response bias is shown across these blocks in each bar
chart. On the left, a typical pattern of group differences is shown,
with controls developing a strong response bias over the three blocks,
and patients showing a reduced bias. The middle chart shows how
a reduced reward sensitivity (ρ) could lead to these observed differ-
ences. The right chart shows how a reduced learning rate (ε) could

also lead to similar differences.

I(at, st) = 1 if stimulus st required action at, and

I(at, st) = 0 if action at is the wrong response to stimulus st.

Higher values for the parameter γ indicate a better ability to follow instructions

and will result in generally higher accuracy. The two terms for I and Q were added

together to form a “weight” for a particular stimulus-action pair (on trial t):

Wt(at, st) = γI(at, st) +Qt(at, st) (2.2)

These weights are related to the probability of choosing action a when stimulus s

was presented. From the above equation we can see that the probability of choosing

an action does not only depend on following the task instructions (I), but also on

the internal value based on previous experience (Q). Huys, Pizzagalli, Bogdan, and

Dayan (2013) used the popular softmax decision function to map these weights to

action probabilities:

p(a|st) =
1

1 + exp(−(Wt(at, st)−Wt(āt, st)))
(2.3)

Wt(āt, st) is the weight associated with choosing the wrong action for stimulus s at

trial t. The softmax gives the probability that individuals choose the correct action
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given a certain stimulus. While individuals’ parameters are not directly accessible,

it is possible to infer them by fitting the model to their sequence of actions, i.e. by

finding parameters that maximize the probability that the model would produce a

similar sequence of actions when presented with the same sequence of stimuli.

2.3.3 Including uncertainty in the model

The above model ignores one central aspect of the Signal Detection Task: stimuli

are only displayed very briefly and so participants can never be certain about which

of the two stimuli they actually observed. To account for perceptual uncertainty

about the stimulus, Huys, Pizzagalli, Bogdan, and Dayan (2013) expanded the model

to assume that when participants compute their internal weights that guide their

decision, they incorporate the possibility for both stimuli to have been presented.

This leads to an updated equation for the weights, which now includes a term for

stimulus s as well as a term for the alternative stimulus s:

Wt(at, st) = γI(at, st) + ζQt(at, st) + (1− ζ)Qt(at, s̄t) (2.4)

Huys, Pizzagalli, Bogdan, and Dayan (2013) used the parameter ζ to capture the

average certainty (i.e. their belief) about which stimulus they actually observed, and

called this model “Belief”.

2.3.4 Testing more hypotheses

Reinforcement learning models can be used to describe specific hypotheses about

the behaviour of participants while performing the task. Model comparison then

allows one to find the model that “best fits” the data, by which is generally meant

that the model is neither too simplistic nor too complex and can explain how the

data was generated. Usually, model comparison is used to test different hypotheses,

heuristics, or strategies that participants may employ to solve the task. One other

such hypothesis about performance in the Signal Detection Task is that participants

could feel as if they are being punished when they do not receive a reward on a given

trial. In the models described above, the reward r was coded as 1 or 0 (presence

or absence of reward). Huys, Pizzagalli, Bogdan, and Dayan (2013) changed the

model to test the possibility that participants would perceive a lack of reward as

punishment by including a punishment sensitivity parameter ρ−. The prediction

error term therefore becomes

δt = ρrt + ρ−(1− rt)−Qt(at, st) (2.5)

A final possibility is that participants might completely ignore the stimuli and

only focus on the values of actions. Huys, Pizzagalli, Bogdan, and Dayan (2013)
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formalised an “Action” model by setting the ζ parameter of the model “Belief” (in

Eq. 2.4) to 0.5, which results in the weights equation randomly. Huys, Pizzagalli,

Bogdan, and Dayan (2013) then attempted to relate the estimated model parameters

to measures of depressive symptoms severity, and in particular to anhedonia. The

authors used the anhedonic depression (AD) questionnaire and an anhedonia sub-

score from the BDI. They performed a correlation analysis to investigate whether

primary reward sensitivity (ρ) or learning (ε) was most associated with anhedonia

(Figure 2.5B). They found a negative correlation between ρ and AD, but no significant

correlation between ε and AD. This suggested that reward sensitivity rather than

learning rate is primarily impaired in anhedonic depression.

FIGURE 2.5: Results of the signal detection task (adapted from Huys,
Pizzagalli, Bogdan, and Dayan (2013)). (A) Results of the model com-
parison. Compared to the three alternative models, the model “Belief”
was shown to be the most parsimonious explanation for the data. (B)
Linear correlation coefficients between anhedonic depression and
reward sensitivity (left; significant at p < .05) and learning rate (right;
not significant) parameters. (See Huys, Pizzagalli, Bogdan, and Dayan

(2013) for details on this hierarchical regression analysis.)

2.3.5 Limitations

There are limitations to these results. For example, Huys, Pizzagalli, Bogdan, and

Dayan (2013) found that reward sensitivity and learning rate were strongly negatively

correlated, meaning changes in one of the parameters could be compensated by

changes in the other parameter. The authors addressed this by showing that the

relationship between AD and reward sensitivity (but not learning rate) remained

significant in the majority of simulated data-sets (i.e. choices simulated using the

estimated parameters). In addition, they reported that the significant correlation

remained after orthogonalising reward sensitivity parameter with respect to the

learning rate parameter. Nevertheless, the two parameter can, at least to some

extent, explain similar features of the data, and future work will need to address

this using a different tasks. Huys, Pizzagalli, Bogdan, and Dayan, 2013 did not

provide exact details of some of the estimated statistics such as the estimated linear

coefficients and their scales of the hierarchical regression model. It is possible that

a slight increase in power would have led to an additional positive association of AD

with learning rate (c.f. Figure 2.5).
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Additionally, the reward sensitivity parameter could not be distinguished from a

temperature parameter typically included in the softmax decision rule. Indeed, in

the formulation of the model these two parameters could be substituted for each

other exactly. This means that differences in the reward sensitivity parameter might

have masked differences in the exploration-exploitation behaviour of participants.

Huys, Pizzagalli, Bogdan, and Dayan, 2013 found a negative correlation between

ρ and anhedonic depression but no significant correlations between ρ and BDI

anhedonia subscore. This is surprising given the strong correlation between the

two questionnaires and further increases the difficulty of interpreting the presence

or absence of associations between (correlated) questionnaire scores and (corre-

lated) model parameters. More work is required to pinpoint which depression and

anhedonia symptoms are related to a difference in reward sensitivity and in which

contexts this association is important. Notably, when individual data-sets of this

meta-analysis were analysed separately it was shown that neither model parame-

ter categorically separated any of the groups (such as MDD patients from healthy

controls; Huys, Pizzagalli, Bogdan, and Dayan, 2013).

One aspect of reward processing that the study did not explore is effort, which is a

large part of everyday decision making. Because in the signal detection task partici-

pants always have to exert the same amount of effort (a button press) independent

of the stimulus they chose, it was not possible to address this here.

2.4 Discussion

Depression is a devastating disease with a major societal impact and rising preva-

lence (Vos, Flaxman, Naghavi, et al., 2012), which make it an important area of study.

Due to unclear boundaries between categorical definitions of psychiatric disor-

ders, current research often focuses on dimensional measures such as neuroticism

or depression symptoms such as anhedonia, both of which have been identified

as promising endophenotypes of depression (Pizzagalli, 2014). However, it has

been noted that anhedonia itself encompasses various subdomains (e.g. hedonic

response to pleasurable stimuli, but also motivation to pursue such stimuli) and

these also need to be teased apart (Treadway and Zald, 2013).

Patients suffering from depression routinely display impairments in a range of dif-

ferent experimental paradigms (Snyder (2013), Rock, Roiser, Riedel, and Blackwell

(2014), and Chen, Takahashi, Nakagawa, et al. (2015) and see also Chapter 3). Differ-

ent computational tools and techniques (connectionist models, diffusion models,

reinforcement learning techniques, Bayesian decision theory) have been used to

describe this (abnormal) behaviour and brain activity in depression, to gain insight

into cognitive and neural processes, and to make predictions.
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An important aim for computational psychiatry is the development of compu-

tational assays that can be used to separate patients into subgroups, generate

treatment recommendations, and make predictions for the outcome of those treat-

ments (Stephan, Bach, Fletcher, et al., 2016; Stephan and Mathys, 2014; Chekroud,

Zotti, Shehzad, et al., 2016). As Huys, Maia, and Frank (2016) put it, “Aspects of

decision-making that have predictive value may become useful for the guidance

of treatment or for alternative (and complementary) classifications of psychiatric

disorders and individual patients.” Reinforcement learning has been described as

especially promising in this regard (Hitchcock, Radulescu, Niv, and Sims, 2017) and

has indeed shown potential for classification of depression from purely behavioural

data without the need for (subjective) questionnaires (Huys, Vogelstein, Dayan, and

Bottou, 2008).

Commonly observed pessimistic cognitive biases and thoughts in depression have

been explained using prior beliefs within the framework of Bayesian decision the-

ory (Huys, Daw, and Dayan, 2015; Stankevicius, Huys, Kalra, and Seriès, 2014).

Simulations of neural network models have shown that biases could arise from a

combination of different mechanisms including over-learning of negative informa-

tion and rumination (Siegle and Hasselmo, 2002). Drift diffusion models have been

used to explain how aberrant behaviour relates to executive control deficits (Dillon,

Wiecki, Pechtel, et al., 2015; Vallesi, Canalaz, Balestrieri, and Brambilla, 2015) and

rumination (Pe, Vandekerckhove, and Kuppens, 2013).

RL models in which behaviour is fitted on a trial-by-trial basis make it possible to

measure group differences in behaviour that are not obvious from raw data. The

described case study (Huys, Pizzagalli, Bogdan, and Dayan, 2013) pooled data from

various studies using the same experimental paradigm and fitted different reinforce-

ment learning models according to hypotheses of the behaviour of participants. The

goal was to better understand anhedonia and how it is related to aberrant reward

processing. Results indicated that the symptom is primarily associated with the

initial experience of reward, rather than the reward learning mechanism.

At a neuronal level, there is substantial evidence that dopamine neuron activ-

ity encodes reward prediction errors (among other things; Schultz, 1998; Iglesias,

Tomiello, Schneebeli, and Stephan, 2017). Work by Kumar, Waiter, Ahearn, et al.

(2008) and Gradin, Kumar, Waiter, et al. (2011) revealed that in depression prediction

error signals appear reduced in the striatum and other dopamine rich regions of

the brain, suggesting that symptoms of depression are associated with an abnormal

encoding of reward learning signals.

It is worth noting that in the meta-analysis of Huys, Pizzagalli, Bogdan, and Dayan

(2013), the authors found the two parameters of interest (reward sensitivity and

learning rate) to be highly negatively correlated. Small changes in one of the pa-

rameters could therefore be compensated by changes in the other parameter, and
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Huys, Pizzagalli, Bogdan, and Dayan (2013) had to perform additional analyses in

order to increase their confidence in the fitted parameter values. The authors used

the popular softmax function to model decision probabilities, but decided against

adding a temperature (or exploration-exploitation) parameter, because it would

have traded off against the important reward sensitivity parameter. Changes in one

of these parameters could have been compensated by changes in the other parame-

ter. The larger question here is how to reliably distinguish between parameters. At

least some computational variables are thought to be encoded in the brain (Iglesias,

Tomiello, Schneebeli, and Stephan, 2017), for example dopamine neurons’ activ-

ity is believed to encode prediction errors. However, to discover these biological

correlates we need reliable estimates that are not confounded by other parameters.

The signal detection task was not initially designed with RL modelling in mind

for example, and one could think about running a subtask to isolate exploration-

exploitation behaviour and estimate the temperature parameter independently.

Replication of results, especially involving a larger number of participants, will also

be important before useful computational assays can be developed. Paulus, Huys,

and Maia (2016) proposed a pipeline, consisting of phases analogous to generic

drug development stages, which will allow computational psychiatry to translate

findings from neuroscience into clinical practice.

Current research has often focused on reward. While the omission of a reward might

be felt as punishment by participants (as was assumed by Huys, Pizzagalli, Bogdan,

and Dayan, 2013), Chen, Takahashi, Nakagawa, et al. (2015) point out that reward

and punishment processing involve different neural bases. They hypothesise that

depression might be characterised by a gain-loss asymmetry, so that patients ex-

perience decreased reward sensitivity but increased punishment sensitivity (see

also Johnston, Tolomeo, Gradin, et al., 2015). As mentioned above, reward process-

ing can also further be sub-divided into different domains. The association between

anhedonia and the motivation to exert effort could not be addressed in our case

study. In natural settings, patients weigh the pros (reward outcome) against the

cons (effort required) to make a decision (cost-benefit analysis). Therefore, when an

individual displays an abnormally large effort sensitivity, perceiving efforts as more

effortful than they objectively are, they may decide against engaging in a potentially

rewarding activity. The effort cost might be perceived as outweighing the potential

reward outcome. This is also related to what is observed in Parkinsons’ patients

who display high levels of apathy (a symptom akin to anhedonia; Husain and Roiser,

2018). In the future, scientists may want to design tasks that enable them to test

hypotheses about different reward learning domains such as effort sensitivity and

reward sensitivity.

While much research points towards behavioural deficits of patients suffering from

MDD, there is also evidence for improved performance in depression (Beevers, Wor-

thy, Gorlick, et al., 2013). Replications and robust (computational) techniques will
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be needed to pinpoint exactly when impairments occur and how they relate to aber-

rant brain activity. Memory impairments are common in depression (Rock, Roiser,

Riedel, and Blackwell, 2014; Snyder, 2013), but computationally they seem as of yet

still largely unexplored. Notably, Dombrovski, Clark, Siegle, et al. (2010) included a

memory parameter in their reinforcement-learning model and found that depressed

suicide attempters discounted previously observed rewards more than healthy con-

trols. It has been proposed that many observed impairments in schizophrenia could

potentially be explained by deficits in the memory of patients (Strauss, Robinson,

Waltz, et al., 2010; Collins, Brown, Gold, et al., 2014). Future research might want to

consider whether memory (encoding and/or retrieval) impairments could also be a

(partial) explanation for many of the observed abnormalities in depression.

2.5 Summary

Behavioural impairments are prevalent in depression and computational meth-

ods provide a useful tool to tease apart different (neural) mechanisms that might

influence learning and decision-making. Computational modelling of behaviour

in participants with depression has provided refinement and additional evidence

for theories of MDD, which suggest that negative (perceptual) biases, deficient

cognitive control, impaired reward learning, and beliefs about the controllability

of the environment are all important aspects of the disease. Clever task design

and replication involving larger samples, combined with robust computational

techniques, are now needed to advance the field. It is important as well not to

neglect the study of patients with moderate-severe mood disorder (rather than par-

ticipants with low mood or mild forms of depression, who are often easier to study)

and particularly treatment resistant patients who are common in secondary care

psychiatric services. We need to move from methods which are able to distinguish

between groups of patients and healthy control participants, to methods which

show convincing individual patient differences along symptom dimensions. This

will ultimately be necessary to allow objective treatment recommendations and

predictions of outcomes for individuals.

The work described in this thesis uses tools and techniques from computational

psychiatry to test for behavioural and brain imaging differences between patients

suffering from depression, participants showing various depressive symptoms,

and healthy controls. Behaviour during reward learning tasks was analysed and

modelled in a similar way as described in the case study report of this chapter. It

was found that patients were impaired in their use of internal value estimations

(Chapter 3; Rupprechter, Stankevicius, Huys, Steele, et al., 2018). These results were

used to describe hypotheses about differences in the underlying neuronal function

of value encoding and decision making (Chapter 4; Rupprechter, Stankevicius, Huys,
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Series, et al., 2020). Consistent with studies reviewed in this chapter, we reported

abnormal activity in striatum, hipppocampus and anterior cingulate (Chapter 4).

Given these results and the evidence for abnormal activity (and functional con-

nectivity) of cortical and limbic regions in depression, I set out to directly test the

hypothesis of abnormal cortico-limbic reward-related effective connectivity be-

ing associated with depressive symptoms. Corroborating a number of theories

reviewed in this chapter, I found that increased severity of depressive symptoms

was associated with decreased connectivity from the medial prefrontal cortex to

the ventral striatum (Chapter 5). In a last “proof of concept” study I then tested

whether estimated effective connectivity parameters could be used as features for a

data-driven (machine learning) computational psychiatry approach: differentiat-

ing never-depressed healthy controls from participants with past or present major

depression (Chapter 6). Results were promising and yielded good classification

performance.
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Chapter 3

Major Depression Impairs the Use
of Reward Values for
Decision-Making

This chapter consists of a slightly modified version of a published journal article: S.

Rupprechter, A. Stankevicius, Q. J. M. Huys, J. D. Steele, et al. (2018). “Major Depres-

sion Impairs the Use of Reward Values for Decision-Making”. In: Scientific Reports

8.13798. Supplementary Materials for this chapter are included in Appendix A.

The study was designed as a follow up to the work of Stankevicius, Huys, Kalra,

and Seriès (2014) in which the authors used computational modelling to show a

relationship between optimism and prior belief about reward in a healthy sample.

The experiment consisted of about 240 observation trials intermitted by exactly 60

decision trials. Participants observed brief displays of various fractal stimuli which

were followed by a binary reward outcome signal in the form of a full (reward) or

empty (no reward) treasure chest. Sixty different fractals were shown (each followed

by a treasure chest) and on average each type of fractal was observed 4 times. The

exact number of how often a particular fractal stimulus was displayed was drawn

from a Poisson distribution with mean 4. After a fractal had been shown its allotted

number of times it was then included in a single decision trial at a later time point.

A choice had to be made between an explicit reward probability (the proportion

of filled circles out of 10 total circles) and a previously observed fractal for which

subjects had to estimate the reward probability. For example, a simple model might

assume participants keep track of the total number of times a fractal was observed

and the number of times it was followed by reward. They could use this to calculate

the proportion of rewarded events and compare it to the explicit proportion to

choose the more rewarding option. Stankevicius, Huys, Kalra, and Seriès (2014)

expanded on this idea and assumed participants behaved as Bayesian observers

who also integrated their prior belief about the probability of reward into their

decision making. This prior belief (or more precisely the mean of the assumed
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prior distribution) significantly correlated with participants’ self-reported optimism

scores. More optimistic subjects had a higher prior belief that fractal stimuli would

lead to a reward.

Cognitive biases in depression are closely related to the absence of an optimism

bias (Sharot, 2011) and increased pessimistic biases (see Chapter 2) and therefore

future research about the effects of depressive symptoms on the performance in

this task was indicated (Stankevicius, Huys, Kalra, and Seriès, 2014). It was decided

that in addition to potential behavioural differences between a group of depressed

patients and healthy controls, the neural basis of the value estimation and decision

making was of interest and so an fMRI study was designed. Because two separate

groups were recruited, analysis focused on group comparisons, but correlation

analyses are also provided in the Supplement (Appendix A). To capture the BOLD

signal, a few important changes to the timings of the task had to be made which are

also discussed in the Supplement (Appendix A). Overall, these changes probably

contributed to the fact that we did not replicate the relationship between optimism

scores and a prior belief about reward. Nevertheless, other behavioural group

differences are described in this paper. Computational modelling was used to

analyse smaller components of the behaviour and results indicated lower memory

of observed rewards and an impaired ability to use internal value estimations when

making a choice in the depressed group.

My contributions
I specified and implemented the models and analysis. I also created the figures,

wrote the first version of the manuscript, and drafted the first response to the peer

reviewers. All this was only made possible through invaluable contributions by my

coauthors with whom I discussed the analysis strategy and the results and who

edited multiple versions of the manuscript. They had also already optimised the

experiment for fMRI and collected the data at the start of my Ph.D. program.
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Abstract

Depression is a debilitating condition with a high prevalence. Depressed patients

have been shown to be diminished in their ability to integrate their reinforcement

history to adjust future behaviour during instrumental reward learning tasks. Here,

we tested whether such impairments could also be observed in a Pavlovian con-

ditioning task. We recruited and analysed 32 subjects, 15 with depression and 17

healthy controls, to study behavioural group differences in learning and decision-

making. Participants had to estimate the probability of some fractal stimuli to be

associated with a binary reward, based on a few passive observations. They then

had to make a choice between one of the observed fractals and another target for

which the reward probability was explicitly given. Computational modelling was

used to succinctly describe participants’ behaviour. Patients performed worse than

controls at the task. Computational modelling revealed that this was caused by

behavioural impairments during both learning and decision phases. Depressed

subjects showed lower memory of observed rewards and had an impaired ability to

use internal value estimations to guide decision-making in our task.

3.1 Introduction

Although major depressive disorder (MDD) is a debilitating condition with a high

prevalence and substantial economic impact (Pizzagalli, 2014). A core symptom of

clinical depression is anhedonia (World Health Organization, 1992) and patients

often display impairments in executive function, working memory and attention

(McIntyre, Cha, Soczynska, et al., 2013; Rock, Roiser, Riedel, and Blackwell, 2014).

Another common symptom during depressive episodes is “bleak and pessimistic

views of the future” (World Health Organization, 1992). The theory of learned

helplessness posits that people with a pessimistic explanatory style (attributing
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their helplessness to a stable, global, internal cause) are at greater risk of develop-

ing depression (Abramson, Seligman, and Teasdale, 1978). There exists extensive

evidence that patients diagnosed with MDD exhibit features of Beck’s Negative Cog-

nitive Triad, which is characterized by negative and pessimistic views about oneself,

the world and the future (Beck, Rush, Shaw, and Emery, 1979), consistent with a

pervasive pessimistic cognitive bias. The Beck Depression Inventory (BDI, Beck,

Ward, Mendelson, et al., 1961) and the Beck Hopelessness Scale (BHS, Beck and

Steer, 1988) both measure aspects of this triad and Cognitive Behavioural Therapy

(CBT), which targets these negative biases can be an effective treatment for depres-

sion (Beck, 2005; Butler, Chapman, Forman, and Beck, 2006). Here we used a novel

experimental paradigm and computational models of decision-making in order

to supplement these subjective clinical interviews and rating scales with objective

behavioural evidence.

Behavioural impairment in MDD has consistently been found with at least two tasks

(see Chen, Takahashi, Nakagawa, et al. (2015) for a review): the Iowa Gambling Task

(see Must, Horvath, Nemeth, and Janka (2013) for a mini review) and the Signal

Detection Task (see Huys, Pizzagalli, Bogdan, and Dayan (2013) for a meta-analysis).

In both paradigms, participants repeatedly choose between options and observe

probabilistic reward outcomes based on their choices. Depressed patients are

impaired in their ability to properly integrate their reinforcement history to adjust

future behaviour.

We used a probabilistic reward-learning task, which has previously been reported

to demonstrate individual behavioural differences that were associated with Life

Orientation Test - Revised (LOT-R; which measures optimism) scores (Stankevicius,

Huys, Kalra, and Seriès, 2014), as well as neuroticism scores (see Supplement) in

healthy subjects. In the task, participants were asked to maximize their rewards

by choosing between fractal stimuli, for which they could estimate the probability

of reward from previous passive observations, and another target associated with

an explicit reward probability value. Here we tested patients with depression as

well as healthy controls and used a computational modelling approach to describe

their behaviour. This allowed us to formulate specific hypotheses, corresponding to

distinct computational models, about both the learning and the decision process

during the task. While focusing on group differences, we also explored how par-

ticipants’ ratings of depression severity, optimism and neuroticism affected their

performance across groups.

Specifically, we tested whether there was objective evidence for: (a) a behavioural

difference in learning and decision-making between MDD subjects and healthy

controls, and (b) a pessimistic bias about the likelihood of reward in MDD, and then

performed exploratory analyses, probing for (c) a correlation between computa-

tional model parameters and ratings of depression severity or neuroticism.
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3.2 Methods and Materials

3.2.1 Participants

The main dataset analysed here consists of thirty-nine subjects (Tables 3.1 and S1)

including 19 patients meeting DSM-IV criteria for a diagnosis of MDD and 20 control

participants without a history of depression or other psychiatric disorder. The task

was performed during fMRI scanning and in the following this will be referred

to as “fMRI dataset”. Importantly, patients were unmedicated. Diagnosis was

made according to the MINI PLUS (v5.0) structured diagnostic interview (Sheehan,

Lecrubier, Sheehan, et al., 1998). The mean BDI score of the patient group (24.7)

can be regarded as “moderate severity” depression (see Supplement for additional

information on questionnaire scores). Data collection took place at the Clinical

Research Imaging Centre, Ninewells Hospital and Medical School, Dundee. The

study was approved by the East of Scotland Research Ethics Service (UK Research

Ethics Committee, study reference 13/ES/0043) and all experiments were performed

in accordance with relevant guidelines and regulations. Written informed consent

was obtained from all subjects.

MDD and control groups of the fMRI dataset were matched for age, sex and Na-

tional Adult Reading Test (NART) scores, which were used to estimate premorbid

IQ (Bright, Jaldow, and Kopelman, 2002). Exclusion criteria included claustrophobia,

serious physical illness, pre-existing cerebrovascular, neurological disease, previous

history of significant head injury, and receipt of any medication likely to affect brain

function. All subjects were recruited using the University of Dundee advertisement

system HERMES and were paid £20 plus up to £10 dependent on task performance.

Four patients and three controls were excluded from further analysis from the fMRI

dataset, after performance results showed that they did not choose the higher re-

ward (in the 48 trials in which the reward probability was not the same) in at least

50% of cases. Two additional participants were excluded from all analysis, because

they did not complete the study. Model comparison and primary data analysis,

which used the fMRI dataset, therefore included 15 participants with MDD and 17

controls.

To further validate our results, we also analysed a second dataset we had previously

collected to validate the experiment outside the scanner. In the following, this will

be referred to as “Pilot dataset”. It included 3 MDD and 21 control participants

(Tables 3.1 and S1). Recruitment and assessment was performed in the same way as

above and the same ethics statement applies. Model comparison was performed on

the fMRI dataset and the best performing model was then separately fitted to the

Pilot dataset.
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Group N Age Sex (F/M) BDI Neuroticism LOT-R NART

fMRI Patients 15 17 – 41 12 / 3 24.7± 13.1 46.3± 7.1 9.1± 5.5 46.8± 4.2

fMRI Controls 17 18 – 33 13 / 4 4.2± 5.6 29.8± 8.0 18.4± 3.1 46.6± 3.2

Pilot Patients 3 N/A N/A 27.7 50.7 9.3 45.3

Pilot Controls 21 N/A N/A 10.1± 12.2 34.4± 11.5 14.5± 5.5 44.0± 11.3

TABLE 3.1: Demographics of participants from both dataset versions
(see Table S1 for more details). BDI, Beck Depression Inventory;
LOTR, Life Orientation Test - Revised; NART, National Adult Reading
Test; Data given as n or mean± std. Due to the small number of Pilot

patients, standard deviations are not shown for this group.

3.2.2 Experiment

The paradigm (Figure 3.1) was adapted from Stankevicius and colleagues (Stanke-

vicius, Huys, Kalra, and Seriès, 2014). The experiment was implemented in MAT-

LAB R2007b (The MathWorks, Inc., Natick, MA) using the Psychophysics Toolbox

(Brainard, 1997; Pelli, 1997; Kleiner, Brainard, Pelli, et al., 2007). Additional details

about the experiment are provided in the Supplement and the fMRI analysis will be

reported elsewhere. Here we focus on behavioural differences, model fitting and

best model identification.

£
O1

O1

£
Decision

65%
Time

O2

Reward

No Reward

Reward

... - O1 - O2 - O1 - O3 - O1 - O2 - O1 - D1 - O2 - O4 - D2 - ...

FIGURE 3.1: Experimental paradigm. Subject passively observed
different fractal stimuli which were followed by reward (a pound sym-
bol) or no reward (blank screen). Interleaved with these observations
were decision prompts in which they had to make a choice between
one of the observed fractals (for which they could estimate reward
probability) and an explicit numeric probability value in order to
maximize their reward. An example of a longer sequence is shown at

the bottom with the encased subsequence depicted above.

Participants passively observed fractal stimuli, which were followed by either a

reward (depicted by a pound symbol) or no reward (no symbol). Interleaved with

these observations were decision screens, during which they were asked to make

a choice between one of the fractal stimuli they had observed, and an explicit
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numeric probability value. Participants were asked to choose the higher probability

(or reward) value option, which required them to estimate the value of the fractal

stimuli they had observed. There were seven possible differences in the numeric

value probability. Either option could have a higher probability value of 10%, 20%

or 30% (each of which was the case for 8 decision trials) or they could have the same

probability of reward (in 12 trials). Our Pilot dataset used a slightly different task,

in which possible differences ranged from -90% to +90% instead (in 10% intervals,

each displayed in 4 decision trials).

Participants observed a variable number of fractals between decision screens, but

each fractal was observed exactly four times before it was used within a decision.

Each fractal was used in a single decision and in total participants made 60 decisions

(and therefore observed fractals 240 times). The sequence of observations and

decisions was pseudo-random, and identical for all subjects. Performance feedback

was only given at the end of the experiment. Data collection for each subject lasted

approximately 2 hours, which included collection of rating scale data (see Table S1).

3.2.3 Behavioural Performance Data Analysis

We tested for differences in average reaction time, IQ (NART) and other question-

naire scores between the groups using Welch’s t-tests. We measured participants’

performance in terms of how often the fractal was chosen as a function of the dif-

ference between the probabilities of the two options (assuming exact estimations

for the fractal probabilities; i.e. if a fractal was followed by reward three times, and

followed by non-reward once, the fractal probability would be 75%). We fitted a

sigmoid function with two parameters (intercept α, slope β) to the psychometric

curves of individuals:

ς(x) = α+
1

1 + exp(−β × x)
. (3.1)

3.2.4 Computational Modelling

Three different families of models were fitted to the data (see Table 3.2 for a sum-

mary), representing distinct hypotheses about how participants make decisions

during the task. All models assume that participants estimate an internal “value”

for each fractal they observe and compare this value to the displayed probability

when asked to make a choice.

First, we fitted variations of a family of reinforcement learning (RL) models that

incorporate trial-by-trial prediction errors and a learning rate parameter. During

each trial, the fractal is associated with an expectation about reward based on the

internal value and this expectation is updated after observing the reward or lack

thereof. Such RL models have been used extensively to describe reward-based

learning and much research has gone into understanding the connection between
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Name V update p(choose fractal i) Parameters

RL-basic V t+1
i = V t

i + ε(rti − V t
i ) σ(β(V t

i − φi)) v0, ε, β

RL-learning V t+1
i = V t

i + ε+(1− V t
i )rti + ε−V t

i (1− rti) σ(β(V t
i − φi)) v0, ε+, ε−, β

RL-unbiased V t+1
i = V t

i + ε(rti − V t
i ) σ(β(V t

i − φi)) ε, β

RL-learning-unbiased V t+1
i = V t

i + ε+(1− V t
i )rti + ε−V t

i (1− rti) σ(β(V t
i − φi)) ε+, ε−, β

Leaky V t+1
i = AV t

i + rti σ(β(V t
i /4− φi)) A, β

Leaky-ρ V t+1
i = AV t

i + ρrti σ(β(V t
i /4− φi)) A, ρ, β

Bayesian Vi = ni+α
Ni+α+γ

σ(β(Vi − φi)) α, β, γ

TABLE 3.2: Model specification. The second column shows how
internal values for a fractal i are updated after observing an outcome
r in trial t. The Bayesian model does not model learning on a trial-by-
trial basis. The third column depicts the choice rule that is used to
calculate the probability of choosing the fractal over the alternative
option (Equation 3.3). The initial value is set to zero or modelled by
v0. φi is the displayed probability when asked to make a choice for
fractal i. ε is the learning rate; β is the inverse temperature parameter;
A is the memory parameter; ρ is the reward sensitivity parameter; α
and γ are the parameters of the Beta prior. Ni and ni are the number
of times a fractal i was observed and followed by reward respectively.

See main text and Supplement for additional details.

prediction errors and the dopamine system (Schultz, 2002). In two of the models

(“RL-basic” and “RL-learning”), the initial value parameter was allowed to vary be-

tween 0 and 1, and could therefore act in a similar way as the mean of the prior belief

in the Bayesian model (see below). The other two RL models (“RL-unbiased” and

“RL-learning-unbiased”) kept the bias parameter fixed at 0.5, which corresponded

to a prior belief that reward was equally likely from the fractal or the explicit option.

Two of these models (“RL-learning” and “RL-learning-unbiased”) aimed at testing

whether learning was different following rewards versus no-rewards (“punishment”)

by including separate learning parameters for each outcome. It has been proposed

that there may be heightened asymmetry between learning from positive and nega-

tive outcomes in depression and separate learning rate parameters can be used to

account for this (see Chen, Takahashi, Nakagawa, et al. (2015) for a review). They

were also used in the previous version of this task (Stankevicius, Huys, Kalra, and

Seriès, 2014).

Next, we fitted the winning model of Stankevicius, Huys, Kalra, and Seriès (2014)

(see Table 3.2 and Supplement), which tests the hypothesis that subjects behave as

Bayesian observers during the task. This model assumed that at the decision time

for a given fractal, participants estimate the number of times the fractal was followed

by a reward (the likelihood) and combine this evidence with a prior belief about

the probability of rewards associated with the fractals. Although the observations

are not modelled on a trial-by-trial basis, this model assumes that the likelihood

is computed by (implicitly) counting, and perfectly remembering, the number of

times each fractal is associated with reward. In the original experiment, Stankevicius,
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Huys, Kalra, and Seriès (2014) found that the mean of the participants’ prior belief

distribution correlated positively with their optimism scores (LOT-R). A more recent

analysis of the same data also revealed a negative correlation of the prior mean with

neuroticism scores (see Supplement). This means optimists and people scoring low

on neuroticism overestimated the reward associated with fractal stimuli and that in

this task, optimism and neuroticism acted as a prior belief, biasing performance in

situations of uncertainty.

This Bayesian model comes with some limitations. First of all, it does not allow us

to distinguish between observation and decision phases, because it ignores indi-

vidual observation trials. More importantly, the model assumes perfect memory

of observations, which is an unrealistic assumption, especially since memory im-

pairments in MDD are exceedingly common (McIntyre, Cha, Soczynska, et al., 2013;

Rock, Roiser, Riedel, and Blackwell, 2014; Ebmeier, Donaghey, and Steele, 2006;

McDermott and Ebmeier, 2009; Gotlib and Joormann, 2010).

To overcome these limitations, we therefore also fitted two additional trial-by-trial

models (“Leaky” and “Leaky-ρ”), which include neither a learning rate nor a pre-

diction error, but which include a discounting factor (also termed a “memory”

parameter). Note that the Leaky model is equivalent to the Bayesian model assum-

ing a flat prior and non-optimal (“leaky”) memory. Internal value estimates are

updated after observing fractal i and associated reward r at observation t as

V t+1
i = A× V t

i + rti , (3.2)

where A (0 < A < 1) is the memory parameter (the closer it is to 0, the more

a subject “forgets” about their observations and the less they take into account

previously observed rewards) and rti = +1 if observation t of fractal i was rewarded

and 0 otherwise. Initial internal values were set to zero. A second model in this

family (Leaky-ρ) includes a scaling (“reward sensitivity”) parameter on observed

rewards, to capture participants’ subjective valuations of observed rewards. Notably,

reward processing (dysfunction) has been identified as a promising phenotype of

depression (Pizzagalli, 2014).

The probability of choosing an action was calculated by passing estimated and

explicitly displayed reward probability values through a softmax function. For the

Leaky model, fractal i was chosen (as opposed to the displayed reward probability

φi) with probability

p(choose fractal i) = σ(β × (f(Vi)− φi)) =
1

1 + exp(−β × (f(Vi)− φi))
, (3.3)
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where f(x) = x/4 is a deterministic function which transforms the internal value

estimates to a probability comparable to φ. The shape of the sigmoid function

was determined by the β parameter. The higher this inverse temperature parame-

ter, the more deterministic decisions become, while lower values lead to “noisier”

decision-making. When the values of actions are unknown, this parameter governs

the balancing of exploration and exploitation in reinforcement learning (Sutton and

Barto, 1998). Higher values mean actions are chosen more greedily, lower values

lead to suboptimal actions being chosen more often to explore the environment.

Here participants were asked to maximize their reward, which means they were

asked to always choose the option with the higher probability of reward and there

was no advantage of “exploring” the other option. Each fractal was only associated

with a single decision and feedback was only given at the end of the experiment

and not after each decision. This makes it unlikely that individuals consciously

decided to choose the option they thought had a lower probability just to explore

the alternative. More plausibly, participants made wrong choices when they either

were not certain about what they had observed or had incorrectly estimated the

probability of a certain fractal leading to reward. Note that variations in the two

parameters (A and β) produce separable behavioural effects. Beta affects the prob-

ability of choosing the option estimated to have higher probability of reward on

all decision-trials. Memory primarily affects the trials in which the fractal should

have a higher chance of reward (if perfectly estimated) than the displayed numeric

probability (see Supplement).

3.2.5 Model Fitting and Model Comparison

We used model fitting and comparison procedures previously described by Huys

and colleagues (Dombrovski, Clark, Siegle, et al., 2010). Parameters were maximum

a posteriori (MAP) estimates incorporating an empirical prior, estimated from

the data. Parameters were initialized with maximum likelihood values; then an

expectation-maximization procedure was used to iteratively update the estimates

(see Supplement). We calculated the integrated Bayesian Information Criterion

(iBIC; Huys, Cools, Gölzer, et al., 2011) for all fitted models to find the model that

best fitted the data, taking into account complexity. Simulations were run to verify

that both the fitting and comparison procedure recovered reasonable parameters

and chose the correct type of model when generating and re-fitting data using

known parameters and models (see Supplement).

3.3 Results

3.3.1 Model-free Analysis

A summary of all questionnaire scores of the two groups is displayed in Table S1.

National Adult Reading Test (NART) scores indicated no difference in IQ between
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the groups (t(26.3) = 0.158, p = 0.876). Overall, participants did not respond in 17

of 1920 trials (0.89%). Mean response times were not significantly different between

groups (RT patients µ ± σ = 2286 ± 455ms; RT controls µ ± σ = 2185 ± 360ms;

t(26.6) = 0.692, p = 0.495).

Figure 3.2 shows the fitted sigmoid curves using the average of the fitted parame-

ters for each group. The fitted offset parameter (α) was not significantly different

between groups (t(28.1) = 0.023, p = 0.982), but the slope parameter (β) was sig-

nificantly different (t(26.3) = −2.383, p = 0.025), with controls having steeper

curves (β controls µ± σ = 0.566± 0.316), indicating they were significantly better

at learning (β patients µ± σ = 0.350± 0.185). Stankevicius, Huys, Kalra, and Seriès

(2014) recorded a systematic bias in optimistic people towards choosing fractals.

We did not find such a systematic bias in healthy participants (as compared to

MDD patients) towards choosing fractals, but the difference in the slope parameters

indicated performance differences between the groups that we further examined

using computational modelling. We were particularly interested in understand-

ing whether those differences stemmed from observation phase or decision phase

abnormalities.
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FIGURE 3.2: Average sigmoid functions (solid lines) fitted to psycho-
metric curves (dashed lines) of the two groups of the fMRI dataset.
Dashed lines depict the average proportion of responses in which the
fractal was chosen as a function of the difference between estimated
and explicit reward probabilities. Solid lines show the average of
simple sigmoid functions fitted to the psychometric curves of indi-
viduals. A perfect observer would never choose the fractal when the
explicit probability is higher (-30%, -20%, -10%) and always choose
the fractal when the estimated probability is higher (10%, 20%, 30%).
An unbiased observer would be expected to choose the fractal in half
of the trials when reward probability is the same for both options.

Error bars represent between subjects standard errors.
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3.3.2 Model-based Analysis

Model selection using iBIC showed that the Leaky model best described participants’

performance in our data (Figure 3.3), indicating that in our dataset participants did

not seem to rely on their prior beliefs, but were limited by their episodic memory.

0 20 40 60 80 100 120
iBIC

Bayesian
Leaky

Leaky-
RL-basic

RL-learning
RL-learning-unbiased

RL-unbiased

FIGURE 3.3: Results of the model comparison. iBIC values of different
models relative to the best fitting model Leaky. A difference of 10 or
higher is considered strong evidence for the model with the lower

value (Huys, Pizzagalli, Bogdan, and Dayan, 2013).

The memory parameter differed significantly between groups (z = −2.153, p =

0.031; A patients µ± σ = 0.90± 0.04, median = 0.91; A controls µ± σ = 0.92± 0.09,

median = 0.96). This indicates that patients discounted their estimated values more

than controls on each trial, possibly indicating impairments in episodic memory.

The choice sensitivity parameter (β) was also significantly different between groups

(z = −2.341, p = 0.019; β patients µ±σ = 4.67±1.45, β controls µ±σ = 5.89±1.33),

meaning that controls found it easier to follow their internal estimations, while

patients chose more randomly. There was a trend suggesting a correlation between

parameter estimates (r = 0.349, p = 0.051). We performed additional simulations by

systematically varying the parameters to see if parameter recovery of one parameter

was systematically influenced by the other parameter and convinced ourselves that

parameter correlation did not cause problems during inference (see Supplement).

We were also interested in understanding whether there existed interesting rela-

tionships between model parameters and questionnaire scores. This exploratory

analysis revealed a negative relationship between beta and neuroticism across the

two groups (see Supplement). As this was indistinguishable from a group level effect,

we then combined our fMRI dataset with our Pilot dataset and focused on healthy

participants only. Within the pooled control groups, there was also a significant

negative relationship between beta and neuroticism (t(35) = −2.679, p = 0.011)

after controlling for dataset version (Figure S6). This means high neuroticism was

related to more variable decision-making in controls.

Further analyses details are reported in the Supplement.
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3.4 Discussion

Here we used a probabilistic reward-learning task associated with computational

modelling to capture behavioural differences between groups of depressed and

healthy participants. We found evidence for impairments in MDD subjects during

both learning and decision-making. Our results demonstrate a strong association

between depression and participants’ inability to make decisions based on their in-

ternal value estimations. MDD patients also showed decreased memory of observed

rewards throughout the task. We did not find evidence for a systematic pessimistic

bias about the likelihood of reward in depressed participants (see Supplement for a

discussion).

Depression is characterized by behavioural, emotional and cognitive symptoms

(Gotlib and Joormann, 2010). It is well established that MDD patients display

cognitive impairments including deficits in executive function, working memory,

attention and psychomotor processing speed (McIntyre, Cha, Soczynska, et al., 2013;

Rock, Roiser, Riedel, and Blackwell, 2014). Behavioural differences in reinforcement

learning performance between groups of depressed and healthy participants have

been reported previously (see Chen, Takahashi, Nakagawa, et al. (2015) for a review).

In the Iowa Gambling Task subjects repeatedly choose from one of four different

decks of cards with different reward and punishment contingencies (unknown to

the player). High immediate rewards (or losses in an adapted version) are followed

by even higher losses (or rewards) at unpredictable points for some decks. Other

decks are associated with lower immediate rewards but even lower unpredictable

losses. MDD patients typically choose more often from disadvantageous decks, dis-

playing a worsened sensitivity to discriminating reward and punishment (see Must,

Horvath, Nemeth, and Janka (2013) for a mini review). In the Signal Detection

Task participants observe in each trial one of two hard to distinguish stimuli for a

very short time and are asked to indicate which stimulus they observed. Correct

answers are sometimes rewarded, but unbeknownst to subjects, one of the stimuli is

rewarded three times as often as the alternative. Whilst healthy people show a bias

towards choosing the more frequently rewarded option, MDD patients do not de-

velop this bias (see Huys, Pizzagalli, Bogdan, and Dayan (2013) for a meta-analysis),

an effect thought to be related to anhedonia.

In both the Iowa Gambling Task and the Signal Detection Task participants undergo

instrumental conditioning, in which chosen actions are reinforced or punished.

Subjects learn from their individual choices and the rewards that follow, and will

not experience the same reinforcement history, because their rewards depend on

their choices. Findings of differences in behaviour or neural activity between groups

therefore have to deal with potentially confounding effects of unequal reinforce-

ment histories. Our experiment contains a Pavlovian conditioning phase, during

which conditioned stimuli (fractals) are paired with reward and no choices are
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made. All participants passively observed the exact same sequence of stimuli and

these rewards. Participants could not learn from their instrumental choices in our

task, because each fractal stimulus was only associated with a single decision and

feedback was only displayed at the end of the experiment.

Computational modelling was used to capture the behaviour of participants dur-

ing the task and formal model comparison to choose the best fitting model, from

which we identified the best fitting parameters for each participant. MDD patients

performed worse on our task and the model-based analysis showed that this was

due to differences in two model parameters. First, patients discounted (or forgot)

previous reward history more than comparison subjects, consistent with reported

impairments in memory and attentional deficits (McIntyre, Cha, Soczynska, et al.,

2013; Rock, Roiser, Riedel, and Blackwell, 2014). Dombrovski and colleagues found

suicide attempters (but intriguingly not non-suicidal depressed elderly people) had

lower memory parameter values than control participants in a probabilistic reversal

learning task (Dombrovski, Clark, Siegle, et al., 2010). Our finding is also consis-

tent with another recent study by Pulcu and colleagues which reported increased

discounting of rewards in MDD (Pulcu, Trotter, Thomas, et al., 2014), although

discounting in our task was related to past rewards, while Pulcu and colleagues’ task

involved future rewards. Notably, a link between memory and delay discounting has

previously been reported (Bickel, Yi, Landes, et al., 2011; Wesley and Bickel, 2014).

Second, we found MDD patients had more difficulty following their internal value

estimations of different stimuli, making decisions more randomly. It is possible that

patients had a lower confidence in their ability to perform the task, similar to how

learned helplessness theories view depression as a consequence of an organism’s

diminished belief about its ability to influence outcomes (Abramson, Seligman, and

Teasdale, 1978). Taken together, our results therefore suggest that MDD is associated

with dysfunctions in both learning and decision-making.

Neuroticism is associated with a vulnerability to many common psychiatric disor-

ders including depression (Widiger and Oltmanns, 2017; Ormel, Bastiaansen, Riese,

et al., 2013). Stress reactivity is thought to be a core aspect of neuroticism, with

individuals scoring highly on neuroticism showing greater sensitivity to aversive

(stressful) events (Ormel, Bastiaansen, Riese, et al., 2013). A large population based

study concluded that neuroticism increases vulnerability to depression because

of increased sensitivity to stressful life events (Kendler, Kuhn, and Prescott, 2004).

In addition to group differences discussed above, we were interested in exploring

possible relationships between participants’ fitted model parameter values and

questionnaire scores. Within control participants, across two different versions of

the task, we recorded a negative relationship between self-reported neuroticism

and a model parameter capturing a subject’s ability to use internal value estimates,

meaning higher neuroticism scores were associated with a more variable decision

process. Taking this exploratory analysis further, we found that this association also
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existed across healthy and MDD groups. However, we could not reliably distinguish

this from a group-level effect, and future work is needed to address this.

In conclusion, our results demonstrate impairments in MDD in a probabilistic

reward-learning task during both learning and decision-making phases of the ex-

periment. Patients, naturally scoring higher on neuroticism than controls, had a

decreased memory of previous rewards and were less able use internally estimated

values to guide decision-making in our task.
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Future work

As mentioned in the preamble of this chapter, I was not involved in the design of

this study. This section briefly explores a few things that could have been done

differently and/or might be fruitful avenues for future work with regard to study

design.

Ideally study design goes hand in hand with model and parameter recovery sim-

ulations as, for example, this makes it possible to estimate the minimum number

of trials and participants which should be included. For example, I ran additional

parameter recovery simulations which showed considerably better parameter es-

timates for the Leaky model when the number of trials was doubled (i.e. number

of fractals doubled, but each fractal still only observed four times). Thirty-two sets

of parameters were drawn randomly from the estimated group prior distribution

(from the real data) and then used to generate artificial data. This was repeated

ten times, including five times for which double the amount of data (120 fractals)

was generated. Unsurprisingly, the mean of the root mean square errors for the

inverse temperature parameter was lower by 0.38 (which is approximately 1/6 of

the variance of beta values fitted to the real data) when the recovery simulations

included more data. The estimation of the memory parameter showed almost no

change (< 0.003 difference).

Under idealised assumptions, one could therefore estimate how many trials are

needed for some maximum desired error. Similarly, one could use simulations to

estimate how many participants would be needed per group to be able to reliably

distinguish between models or find a difference in parameters. That is, similar

to classical power analysis, for some assumed effect size one could estimate the

number of required participants. Importantly however, experimental design (which

as mentioned above should happen hand in hand with model design and simu-

lations) is always critical to be able to achieve the desired effect and answer the

experimenters’ question and can greatly affect how well models can be fit.

It is important to note that fMRI stipulates additional constraints, such as a maxi-

mum time an experiment may run, which need to be considered. The scanner is

a loud and uncomfortable environment and participants will lose concentration

and motivation. While short scanning sessions might therefore be preferable, the

BOLD response is sluggish and usually requires trials to be at least a few seconds

long. In addition, while events were jittered to optimise disambiguation of the

haemodynamic response, power estimation in fMRI is generally difficult and in

our case impossible as no similar data previously existed. Experimental designs

therefore always involve a trade-off between optimal computational requirements

and practical feasibility, and the current study relied on expert knowledge of one of

the authors (J.D. Steele) to achieve this.
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In the original experiment (Stankevicius, Huys, Kalra, and Seriès, 2014) the authors

reported a relationship between self-reported optimism scores and participants’

prior belief about reward associated with fractal stimuli which we did not replicate

in this study. Notably, Stankevicius, Huys, Kalra, and Seriès (2014) also performed

control experiments and found that reducing the uncertainty by showing each

fractal much more often would eliminate the difference between optimistic and

pessimistic participants.

For the current study the paradigm was changed in various ways to optimise it for

fMRI. Trials lasted longer and fractals were observed for several seconds rather than

only a fraction of a second. Participants also had to undergo a lengthy training

session and each fractal was observed exactly 4 times rather than a random number

of times between 2 and 10. These adjustments likely decreased participant’s uncer-

tainty about the reward probabilities and might have been part of the reason for the

non-replication (see also Appendix A).

It might have been worth to adjust the paradigm a bit more to increase the chance of

replication. I might have suggested that each fractal should be involved in multiple

decisions, after they have been observed a various number of times. Outcomes

would still not be shown after decisions and so participants would still only learn

from passive observations and not their own choices. For example, each fractal

could be involved in three decisions; after it had been observed three, four and five

times. Not only would this likely have kept some of the uncertainty of the original

experiment about the number of times a certain fractal had been observed, but

might also have allowed us to study the effects of a change in this uncertainty and

might have improved the ability to estimate and interpret memory parameters.

Simulations could show if parameter or model recovery could be improved by

having different fractals be observed different number of times which would further

increase uncertainty.

While our models differed in how they assumed people observed and updated their

internal value estimations, they all used the same softmax decision model. (The

Leaky models can be rewritten to move the division by four to the value update

equations.) The softmax function first calculates the difference between estimated

and explicit probabilities and uses this to calculate a “probability” between zero

and one. It is worth noting that for most models of all three families of models, the

estimated value is sometimes underestimated. For example, in the Leaky model

if A is 0.9 the value of a fractal would be around 3.44/4 = 0.86 rather than 1 after

four reward observations. Similarly, for a learning rate of 0.25 in the RL-unbiased

model, the estimated value would be around 0.75 after four reward observations1,

and because α and γ in the Bayesian model are constrained to be positive the model

can also underestimate the internal value. The reward sensitivity parameter of the

1The RL model would eventually converge to the correct value, but that requires many more
observations.
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Leaky-ρ model could compensate for such possible underestimation, but model

comparison showed that even though the model in a sense is “more correct”, the

data did not support the added complexity and the simpler Leaky model was the

“better” model.

Note that if the proposed changes to the study paradigm above were implemented

the Leaky model might need to be reworked or extended because it would be

less likely that participants would assume a fixed number of four observations.

Simulations could be used to check if a scaling parameter within the decision model

could reliably be estimated.

It would have been possible to adjust the explicit probability, φ, in the decision

model to account for the potential underestimation bias. As the underestimation

depends on A, the most obvious way to adjust exactly would be to just get rid of

the memory parameter as otherwise it might not be estimable. This means A could

simply be set to 1, which would result in a model equivalent to the Bayesian model

assuming no (or a flat) prior. I implemented this model, but model comparison

showed that it was “worse” than the Leaky model (∆iBIC = 15.5, which is very

similar to the Leaky-ρ model).

Another possibility would have been to allow A to be greater than 1, which might

be interpreted as participants overvaluing rewards received farther in the past. I

again implemented this model and model comparison slightly favoured this new

model compared to the Leaky model (∆iBIC = 6.4). Parameter estimates of bothA

and β were highly correlated between the two models (r = 0.91 and r = 0.97 respec-

tively). While the group difference in the inverse temperature parameter remained

significantly different, the difference in the A parameter was not significant using

this model (z = −1.511, p = 0.131; A patients µ± σ = 0.94± 0.05, median = 0.93; A

controls µ± σ = 0.96± 0.08, median = 0.99).

Due to the strong correlations between parameter estimates of our Leaky model and

the new potentially better model it is unlikely that results of Chapter 4, for which

we did not directly rely on a significant group difference, would have been very

different had the new model be used instead. To be completely certain, a re-analysis

of the model-based results would be necessary. Note however that before drawing

strong conclusions from the model comparison results above, it will be necessary to

perform simulations using these models to make sure they can adequately explain

the data, and parameter and model recovery show acceptable performance. Future

work might consider the exact implications of possible overvaluation of rewards and

whether such a model should be included. As always with computational modelling

work, there might be models which explain the data “even better”, and any inference

we drew in Chapters 3–4 should be seen as implicitly conditioned on the model

space we considered.
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Abnormal Reward Valuation and
Event-Related Connectivity in
Unmedicated Major Depressive
Disorder

This chapter consists of a slightly modified version of a published journal article:

S. Rupprechter, A. Stankevicius, Q. J. M. Huys, P. Series, et al. (2020). “Abnormal

reward valuation and event-related connectivity in unmedicated major depressive

disorder”. In: Psychological Medicine, pp. 1–9. Supplementary Materials for this

chapter are included in Appendix B.

The work described in this chapter directly follows our behavioural analysis in the

previous chapter in which we had identified behavioural abnormalities in depres-

sion. We reported a lower memory or higher discounting factor in the MDD group,

possibly signalling impairments in working memory. In addition, the depressed

group had a significantly lower choice sensitivity parameter, indicating that they

found it more difficult to base their decisions on their internal value estimations.

Here, we aimed to identify the neural substrates of these abnormalities. More

specifically, we wanted to look at possible group differences in the strength of

the value encoding signal. Our “best” behavioural model was used to simulate

the evolution of their internally estimated values for each participant and these

estimated values were then used as model-based parametric modulators. During

fractal trials the value of the displayed fractal was of interest. During decision trials

we used the difference between the two displayed values (i.e. the difference between

estimated and explicit probability value). This difference of the values corresponded

exactly to the input the decision model received.

Altered value encoding signals were found in areas including hippocampus and

rostral anterior cingulate regions, while differences during decision making were



56
Chapter 4. Abnormal Reward Valuation and Event-Related Connectivity in

Unmedicated Major Depressive Disorder

especially pronounced in an anterior mid cingulate area. Due to the hypothesis that

MDD is associated with abnormalities in a distributed network rather than changes

in isolated areas of the brain, we then turned to connectivity analysis. We wanted

to identify if areas exhibiting abnormal encoding or use of reward values would

also show a change in connectivity. We indeed found weaker connectivity between

mid cingulate (“decision making”) and rostral anterior cingulate (“value encoding”)

areas in MDD patients.

My contributions
I preprocessed the fMRI data and performed the model-free and model-based anal-

ysis. I considered and proposed specific testable hypotheses relevant to this work

and discussed them with my coauthors. I interpreted the results in the context of the

translational neuroscience background literature after discussing it with my coau-

thors. I created the figures, wrote the first version of the manuscript, and drafted the

first response to the peer reviewers. All this was only made possible through invalu-

able contributions by my coauthors with whom I discussed the analysis strategy

and the results, and who edited multiple versions of the manuscript.
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Abstract

Background. Experience of emotion is closely linked to valuation. Mood can

be viewed as a bias to experience positive or negative emotions and abnormally

biased subjective reward valuation and cognitions are core characteristics of major

depression.

Methods. Thirty-four unmedicated subjects with major depressive disorder and

controls estimated the probability that fractal stimuli were associated with reward,

based on passive observations, so they could subsequently choose the higher of

either their estimated fractal value or an explicitly presented reward probability.

Using model-based functional magnetic resonance imaging, we estimated each

subject’s internal value estimation, with psychophysiological interaction analysis

used to examine event-related connectivity, testing hypotheses of abnormal reward

valuation and cingulate connectivity in depression.

Results. Reward value encoding in the hippocampus and rostral anterior cingulate

was abnormal in depression. In addition, abnormal decision-making in depression

was associated with increased anterior mid-cingulate activity and a signal in this

region encoded the difference between the values of the two options. This localised

decision-making and its impairment to the anterior mid-cingulate cortex (aMCC)

consistent with theories of cognitive control. Notably, subjects with depression had

significantly decreased event-related connectivity between the aMCC and rostral

cingulate regions during decision-making, implying impaired communication be-

tween the neural substrates of expected value estimation and decision-making in

depression.

Conclusions. Our findings support the theory that abnormal neural reward valu-

ation plays a central role in major depressive disorder (MDD). To the extent that
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emotion reflects valuation, abnormal valuation could explain abnormal emotional

experience in MDD, reflect a core pathophysiological process and be a target of

treatment.

4.1 Introduction

Psychiatric disorders are the leading cause of disability world-wide with major

depressive disorder (MDD) the commonest cause (Whiteford, Degenhardt, Rehm,

et al., 2013). Severe and enduring mental illness is associated with a reduction in

lifespan of 5–15 years (Chang, Hayes, Perera, et al., 2011) and suicide is a leading

cause of death in young adults (WHO, 2018). However, understanding of illness

mechanisms remains rudimentary, there are no biomarkers in clinical use, clinical

outcomes are difficult to predict for individual patients and it is widely recognised

clinical practice in psychiatry has not progressed significantly in the past 50 years

(Stephan, Bach, Fletcher, et al., 2016; Stephan, Binder, Breakspear, et al., 2016).

Better understanding of illness mechanisms is crucial for progress.

Dolan has argued that emotional experience is closely linked to valuation (Dolan,

2002). Normal mood can be viewed as a bias to experience positive or negative

emotions and abnormally biased subjective reward valuation (anhedonia) and

cognitions are core characteristics of MDD (Gradin, Kumar, Waiter, et al., 2011;

Kumar, Waiter, Ahearn, et al., 2008). The origin and persistence of core symptoms

of MDD, such as anhedonia, helplessness, rumination and cognitive biases can

be explained as arising from biased internal processing; i.e. a biased evaluation of

internal states and biased cognitions (Huys and Renz, 2017; Huys, Daw, and Dayan,

2015). Such a decision-theoretic approach allows quantitative coupling of valuation

and action which is a central aspect of emotion (Dolan, 2002). A behavioural meta-

analysis found evidence for reduced primary reward value sensitivity in depression

(Huys, Pizzagalli, Bogdan, and Dayan, 2013) and other recent reviews have argued

for blunted reward valuation in anxiety and depression (Bishop and Gagne, 2018;

Rizvi, Pizzagalli, Sproule, and Kennedy, 2016) modulated by stress vulnerability

(Pizzagalli, 2014). This conceptualisation of MDD is consistent with the National

Institute of Mental Health (NIMH), Research Domain Criteria (RDoC, Cuthbert and

Insel (2013)) framework, implying a blunted positive valence system, increased

sensitivity of the negative valence system and cognitive biases in line with both

(Johnston, Tolomeo, Gradin, et al., 2015).

Model-based functional magnetic resonance imaging (fMRI) can be used to de-

termine brain region encoding of signals derived from a computational model

such as estimated value or reward prediction error (RPE) (O’Doherty, Hampton,

and Kim, 2007). Meta-analyses have highlighted the importance of the striatum

and ventromedial prefrontal cortex (vmPFC) as regions encoding value (Bartra,

McGuire, and Kable, 2013; Chase, Kumar, Eickhoff, and Dombrovski, 2015). Using



4.2. Methods and Materials 59

model-based fMRI with an instrumental task, we reported blunted encoding of

expected reward value in chronically medicated patients with treatment-resistant

MDD and schizophrenia (Gradin, Kumar, Waiter, et al., 2011); however, the effect

of medication on these results was unclear. A recent meta-analysis of fMRI and

electroencephalography studies found converging evidence for blunted striatal

activation and feedback-related negativity responses to reward in depression which

may precede the first episode of illness (Keren, O’Callaghan, Vidal-Ribas, et al.,

2018). Very recently, we reported behavioural evidence for impairments in both the

learning and decision-making phases of a novel Pavlovian conditioning task using

computational modelling (Rupprechter, Stankevicius, Huys, Steele, et al., 2018).

Here we extend that behavioural analysis to identify the neural substrates of these

abnormalities.

Although a number of studies have reported RPE abnormalities (e.g. most recently,

Kumar, Goer, Murray, et al., 2018), to our knowledge only a few have tested for

expected reward value encoding abnormalities using fMRI with a computational

model in MDD patients: we reported blunted reward value encoding (Gradin, Ku-

mar, Waiter, et al., 2011) and reduced reward value signals have been reported in

elderly depressed patients with a history of suicide attempts (Dombrovski, Szanto,

Clark, et al., 2013). In addition, Greenberg et al. reported that healthy subjects

but not unipolar unmedicated depressed patients showed the expected theoretical

inverse relationship between prediction error and reward expectancy, mediated

by anhedonia (Greenberg, Chase, Almeida, et al., 2015) with similar observations

in medicated depressed patients with MDD or bipolar disorder (Chase, Nusslock,

Almeida, et al., 2013). Notably though, Greenberg et al. did not find evidence for

blunted reward value or RPE signals in unmedicated unipolar depression (Green-

berg, Fournier, Sisitsky, et al., 2015).

Here we tested the following four hypotheses: (a) is it possible to replicate previous

findings of blunted striatal reward response signals in MDD (Keren, O’Callaghan,

Vidal-Ribas, et al., 2018), (b) do unmedicated subjects with MDD exhibit abnormal

brain encoding of learned Pavlovian reward values during decision making, (c) are

there correlations between aberrant brain encoding and illness severity and (d) is

there evidence for abnormal event-related connectivity in MDD for brain regions

identified as exhibiting abnormal encoding of reward values.

4.2 Methods and Materials

4.2.1 Participants

The study was approved by the East of Scotland Research Ethics Committee (REC

reference 13/ES/0043) and written informed consent obtained from all subjects.

Thirty-nine subjects comprising 19 satisfying DSM-IV criteria for MDD not receiving

antidepressant medication and 20 healthy controls matched on age, sex and IQ
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(NART; Nelson and Willison, 1991) were recruited. Diagnosis was made according

to MINI Plus v5.0 structured diagnostic criteria (Sheehan, Lecrubier, Sheehan, et al.,

1998). Demographics and illness severity (Beck Depression Inventory, BDI; Beck,

Steer, Ball, and Ranieri, 1996) scores are summarised in Table 4.1 with more de-

tails in Supplementary Materials. Exclusion criteria were claustrophobia, serious

physical illness, pre-existing cerebrovascular or other neurological disease, previous

history of significant head injury and receipt of medication likely to affect brain

function. Subjects were recruited using the University of Dundee advertisement

system HERMES and compensated for participation (£20) with up to £10 extra de-

pending on task performance. One MDD subject and four controls were excluded

due to problems with fMRI data acquisition, so data from 18 MDD subjects and 16

controls were analysed. Power estimation in fMRI is recognised as difficult because

of the complexity of the analyses and not possible in this instance as no previous

similar data existed to allow such an estimate. We did however know on the basis of

previous work that the behavioural data, acquired in the same experimental session,

showed a significant abnormality (Rupprechter, Stankevicius, Huys, Steele, et al.,

2018).

Group N Age range Sex (F/M) BDI NART

Patients 18 18 – 33 15 / 3 25.9± 12.9 45.8± 4.5

Controls 16 17 – 41 10 / 6 5.4± 5.6 47.3± 3.6

Comparison
z = −1.27
p = 0.205

z = 1.37
p = 0.169

z = 4.22
p < 0.0001

z = −1.01
p = 0.313

TABLE 4.1: Clinical characteristics of subjects Group. BDI, Beck
Depression Inventory; NART, National Adult Reading Test. Data are
displayed as n or mean ± standard deviation. For more details see

online Supplementary materials.

4.2.2 Paradigm

The task was adapted from our earlier work (Stankevicius, Huys, Kalra, and Ser-

iès, 2014) and described in detail in Supplementary Materials. Subjects passively

observed a series of different fractals; each fractal was always followed by either a

reward symbol (£) indicating “value” or a blank screen indicating “no value”. Each

fractal was observed on four occasions. Participants had to form an internal es-

timate of the value (reward probability) associated with each fractal (i.e. number

of observed rewards divided by total number of observations). The fractal then

appeared at a later time in a single decision trial where subjects were asked to

choose the higher reward probability, which required comparison of their internally

estimated value for the fractal with a displayed numeric value. Participants made

a choice by pressing one of two available buttons (“choose fractal” and “choose

explicit probability”). Either option could have a value 10, 20 or 30% higher than
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FIGURE 4.1: Pavlovian learning paradigm. Participants passively
observed different fractals followed by reward or no reward. From
these observations they estimated the probability of reward for each
fractal then choose the higher of their estimated fractal value or an

explicitly presented value.

the other or be of equal value. Either option could have a value 10, 20 or 30% higher

than the other or be of equal value. This means a total of 240 fractals (60×4) were ob-

served with 60 decisions being made. The sequence of observations and decisions

were interleaved in a pseudo-random order and identical for all subjects. The study

was divided into four sessions of 15 min each, between which there were periods

where participants could briefly rest. Each session was split into three blocks and

during each block participants made five decisions after having observed 5 × 4

fractals. Participants did not receive feedback during the task but were told their

performance scores would be converted into money they would receive at the end

of the experiment. The task is summarised in Figure 4.1.

4.2.3 Computational Modelling of Behaviour

To measure individuals’ performance, their psychometric response curves were

plotted as the percentage of times a fractal option was chosen as a function of the

difference between the probabilities associated with each option with curves fitted

with a sigmoid function (Rupprechter, Stankevicius, Huys, Steele, et al., 2018). The

slopes of the sigmoid curves were significantly steeper for controls compared to

MDD (p = 0.025) and detailed computational analyses indicated that MDD was

associated with impaired value learning. Details on these behavioural analyses are

summarised in the Supplementary Materials and have been published elsewhere

(Rupprechter, Stankevicius, Huys, Steele, et al., 2018).

Briefly, to reveal which decision-making components explained the performance

difference, three different families of models were compared, reflecting distinct

hypotheses about how participants make decisions. All models assumed partic-

ipants internally estimated a value for each observed fractal then compared this
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estimate to the explicitly presented value when making a decision. For model fitting,

parameters were estimated using maximum a posteriori estimates incorporating

an empirical prior estimated from behavioural data initialised using maximum

likelihood estimates. Thereafter, expectation–maximisation was used to iteratively

improve the value estimates and the model that best fitted the behavioural data,

taking into account model complexity, was identified using the integrated Bayesian

information criterion (Huys, Pizzagalli, Bogdan, and Dayan, 2013; Rupprechter,

Stankevicius, Huys, Steele, et al., 2018). Here we focus on the best model identified

from that work (Rupprechter, Stankevicius, Huys, Steele, et al., 2018) as this was

used for model-based fMRI analyses.

The model that best described observed behaviour was termed “Leaky” and in-

cluded a retrospective discounting factor or memory loss parameter (Rupprechter,

Stankevicius, Huys, Steele, et al., 2018). Internal value estimates were assumed to

be updated after observing fractal i and associated reward r occurring at time t as

V t+1
i = A× V t

i + rti , (4.1)

where A is a memory parameter (range 0− 1) and smaller A reflected increased for-

getting or retrospective discounting, r was unity if a £ reward symbol was observed

and zero otherwise. The probability of choosing fractal i was calculated using a

softmax function

p(choose fractal i) = σ(β × (f(Vi)− φi)) =
1

1 + exp(−β × (f(Vi)− φi))
, (4.2)

incorporating estimated value (V ) and explicitly presented value (φ) where f(x) =

x/4 is a transformation of the internal value estimate compared to the explicitly

displayed reward probability of the alternative choice. The inverse temperature β

determined the ability of participants to use internal value estimations to make

decisions. Smaller values of β indicated a more variable use of internal values.

4.2.4 Image Acquisition and Pre-processing

Functional whole brain images were acquired using a 3T Siemens Magnetom Tim

Trio scanner using an echo-planar imaging sequence with the following parameters:

repetition time = 2500 ms, echo time = 30 ms, flip angle = 90◦, field of view = 224

mm, matrix = 64× 64, 37 slices, voxel size 3.5× 3.5× 3.5 mm. The first four blood

oxygen level-dependent volumes were discarded as standard because of transient

effects. Data were pre-processed using Statistical Parametric Mapping 12 (SPM121)

with functional images realigned to the first image, unwarped and co-registered

1https://www.fil.ion.ucl.ac.uk/spm/

https://www.fil.ion.ucl.ac.uk/spm/
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to the segmented T1 weighted structural image. An estimated deformation field

was used to spatially normalise the images and an 8 mm Gaussian kernel used to

smooth the functional images.

Random-effects, event-related designs were used for analyses. Three event times

were of particular interest: (a) when participants observed a fractal stimulus and

may have retrieved their previously estimated value for that fractal, (b) when par-

ticipants observed a rewarding Pavlovian association (£ symbol) indicating reward

value or alternatively a blank screen in the case of zero value, this being the trial

“outcome event” and (c) when participants were prompted to choose between the

estimated value of an observed fractal and an explicit probability value this being

the “decision event”. For first level analyses, events were modelled as truncated

delta functions and convolved with the SPM12 canonical haemodynamic response

function without time or dispersion derivatives. Vectors representing these events

were entered into first level analyses for each subject and six rigid body motion re-

alignment parameters estimated during pre-processing included as covariates of no

interest. Activation at these event times was investigated using both model-based

and standard fMRI strategies, testing for significant activations across and between

groups and for correlations of activity with illness severity scores.

Given strong evidence for blunted striatal responses to rewards in depression, we

used the results of an automated meta-analysis of fMRI studies on healthy subjects

(“Neurosynth”, Yarkoni, Poldrack, Nichols, et al., 2011) with the search term “reward”

which identified 922 studies. We then chose voxels with the global maximum z-

score in left and right hemisphere located in left (-12, 10, -8) and right (12, 10, -8)

nucleus accumbens (NAc). For each participant in our study we extracted median

beta values from the reward contrast maps from a 5 mm sphere centred at these

co-ordinates, then tested for significant group differences using Welch’s t test.

For model-based fMRI, the Leaky model was used to calculate the value of each

fractal on each trial. The estimated value was used as a first level analysis parametric

modulator at the time when the fractal stimulus was presented. Additionally, the

difference between the internally estimated fractal probability value and the dis-

played explicit probability value was calculated and used as a parametric modulator

at the decision time. The value difference was defined as Vchosen − Valternative, i.e.

the value of the chosen option minus the value of the alternative option. Notably,

our model uses the value difference to assign probabilities for choosing each option

at the decision time. We therefore expected to observe a value difference encoding

signal in regions identified as being active at the decision time.

Event-related functional connectivity between brain regions activated during the

task was calculated using the generalised psychophysiological interaction (gPPI)

method (McLaren, Ries, Xu, and Johnson, 2012), which tested the hypothesis that

value-based decision making involves a distributed network and MDD is associated
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with abnormal connectivity in that network. Specifically, we assessed how the “deci-

sion event” (the psychological state) modulated activity within brain networks that

included our anterior mid-cingulate cortex (aMCC, Tolomeo, Christmas, Jentzsch,

et al., 2016) seed region. For each participant, we calculated the contrast at the first

(i.e. subject) level (connectivity at decision time > implicit baseline) and then took

these contrasts to a standard second (i.e. group) level analysis using SPM12.

For all calculations, activity was corrected for multiple comparisons using a Monte

Carlo method (Slotnick, Moo, Segal, and Hart Jr, 2003) with simultaneous require-

ment for a cluster extent threshold of 108 contiguous resampled voxels and a voxel

threshold of p < 0.05, resulting in a whole brain corrected cluster threshold of

p < 0.01. This threshold was enforced for all contrasts. With the exception of the

NAc ROI-selection as described above, inference was performed on a whole-brain

level and follow-up ROI analyses were based on local maxima of these whole-brain

activations.

4.3 Results

There was no significant difference between MDD and control groups in the number

of (missed) behavioural responses from subjects during the paradigm: two group t

test p = 0.728. Since behavioural responses were matched and subjects were not

given feedback during the task, all events were matched between groups.

4.3.1 Striatal Reward Response

Given strong evidence for blunted striatal reward response in depression (Gradin,

Kumar, Waiter, et al., 2011; Johnston, Tolomeo, Gradin, et al., 2015; Steele, Kumar,

and Ebmeier, 2007), we performed both a whole-brain analysis as well as a region

of interest (see Section 4.2.4) analysis. The outcome event time was associated

with strong activations in regions including the bilateral striatum (10, 12, -4), (-10,

18, 0), aMCC (-10, 10, 48) and bilateral dorsolateral cortex (-46, 8, 24), (44, 6, 32).

Consistent with our first hypothesis using the Region of Interest (ROI) approach,

striatal activation to reward symbols were significantly blunted in unmedicated

MDD in right NAc (12, 10, -8), t(25.54) = 2.907, p = 0.007 with a trend for left NAc

(-12, 10, -8), t(22.80) = 1.953, p = 0.063 (Figure 4.2a). Using voxel-based methods

not confined to the NAc, we found significantly blunted activation in left (-22, 14,

-16) and right striatum (12, 4, -4), (22, 26, 10) (Figure 4.2b). This is consistent with

our independent studies of chronically medicated patients with treatment-resistant

MDD (Gradin, Kumar, Waiter, et al., 2011; Johnston, Tolomeo, Gradin, et al., 2015;

Steele, Kumar, and Ebmeier, 2007) and other reports from independent groups (e.g.

Keren, O’Callaghan, Vidal-Ribas, et al., 2018).
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FIGURE 4.2: Reward events. (a) Reward activation in NAc ROIs, (b) de-
creased reward activation in MDD participants compared to healthy
controls (HC) in the striatum. All regions significant at p < 0.01

whole-brain corrected.

4.3.2 Reward Value Encoding

At the fractal presentation time, the estimated value of the presented fractal was

used as a parametric modulator at the first level. Single group second level analy-

ses showed positive encoding of reward value (activation) in controls (Figure 4.3a)

in areas including hippocampus (-38, -28, 0), (46, -26, -2) and rostral ACC (rACC)

(14, 50, -2) and negative encoding (deactivation) of reward value in MDD subjects

(Figure 4.3b) in hippocampus (-30, -30, -2), (36, -26, -2) and rACC (14, 50, -10). A

subsequent two-group comparison revealed significantly larger positive value en-

coding in controls compared to MDD participants (Figure 4.3c, d) in hippocampus

(-36, -32, 2), (48, -26, 4) and rACC (14, 50, -8). Having observed these positive and

negative value encodings within the hippocampus, we extracted estimated contrast-

beta values from the maximum difference voxel (-36,-32,2) and illustrate it split

by group in Figure 4.3d. Note that this post-hoc analysis was primarily performed

for more detailed visualisation rather than inference purposes. We then predicted

that encoding signals in the two regions showing group differences (rACC and hip-

pocampus) would also be related to depression severity; i.e. variation in depression

severity within the depressed group might similarly be related to a change in value

encoding. To test this we again extracted contrast-betas from local-maxima voxels

and ran regression analyses. Within MDD subjects only, there was a significant

negative correlation of BDI illness severity with extracted contrast-betas from the

rACC (r = −0.59, p = 0.009; (14,50,-8); Figure 4.3e) but not hippocampus (r = −0.02,

p = 0.931; (-36,-32,2)).

In addition to classical statistical inference it is important to test for individual

patient predictive accuracy (Steele and Paulus, 2019). Logistic regression with leave-

one-out cross-validation was used to classify participants as MDD or controls using

median beta values of the value encoding contrast at rACC and left hippocampal

ROIs. The classifier achieved an individual subject accuracy of 79% (area under the
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FIGURE 4.3: Reward value encoding at fractal presentation time.
(a) Positive value encoding within healthy controls. (b) Negative
value encoding in depressed participants. (c) Larger value encod-
ing in healthy controls (HC) compared to MDD participants in hip-
pocampus and rostral ACC. All regions significant at p < 0.01 whole-
brain corrected. (d) Group comparison of value encoding in hip-
pocampal ROI (-36,-32,2). (e) Within MDD subjects negative correla-
tion between BDI illness severity and rAC (14,50,-8) value encoding

(r = −0.59, p = 0.009).
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Receiver Operating Characteristic (ROC) curve Area Under Curve (AUC) = 0.86; see

Supplementary Materials).

4.3.3 Decision Making

The decision event time was associated with strong activation in regions including

the aMCC (-2, 14, 50) and bilateral anterior insula (-28, 22, -2), (32, 26, -6) across

both groups (Figure 4.4a), a pattern consistent with activation of cognitive control

processes as identified in a large meta-analysis (Shackman, Salomons, Slagter, et al.,

2011). Bilateral insula, subgenual anterior cingulate cortex (-2, 28, -2) and aMCC (-

12, 20, 32) (22, 28, 42) activity was significantly increased in MDD subjects compared

to controls (Figure 4.4b), with the aMCC region (-6, 26, 36) correlating positively

with BDI illness severity scores within the MDD group alone.

The difference between the value of the chosen option and the value of the alter-

native option was used as a parametric modulator at the first level. In the softmax

decision rule, the value difference is used together with the beta inverse tempera-

ture parameter to calculate choice probabilities. Across participants, we observed a

significant negative correlation of value difference encoding in regions including

the aMCC region (-14, 16, 48), (12, 24, 28) (Figure 4.4c). In addition, a negatively

correlated absolute value difference encoding signal was also observed in regions

including aMCC (-4, 24, 46), (10, 10, 46) (Figure 4.4d) and a positively correlated

absolute value difference signal was observed in regions including the rACC (-16, 42,

8), (-4, 50, -14), (24, 38, 4) (Figure 4.4e). Mean value difference and mean absolute

value difference were weakly correlated across participants (r = 0.36, p = 0.037). We

did not identify a significant difference between groups for either value encoding

parameter within these dorsal and rostral cingulate regions (see Supplementary

Materials).

4.3.4 Event-related Connectivity

The aMCC region from the decision event time activation across groups was used

as a seed region for a gPPI analysis, to test whether this region exhibited abnormal

event-related connectivity in MDD compared to controls. Significantly weaker

connectivity at the decision time between the dACC and posterior, mid and rostral

cingulate cortex regions (-12, 42, 4), (8, 50, 8) in MDD was identified as shown in

Figure 4.4f.

4.3.5 Post-hoc Correction for Grey Matter Variation

Because there is evidence for hippocampal volume reductions in recurrent depres-

sion (Schmaal, Veltman, Erp, et al., 2016; Schmaal, Hibar, Sämann, et al., 2017)

an additional analysis was done (see also Supplementary Materials) to test for the

effect of grey matter variation on fMRI findings. For every participant the estimated
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FIGURE 4.4: Activation during decision making. (a) Activation across
all participants (p < 0.05 FWE threshold). (b) Larger activations in
MDD compared to controls. (c) Negative value difference encoding
signal across participants. (d) Negative absolute value difference
encoding signal across participants. (e) Positive absolute value differ-
ence encoding signal across participants. (f) Decreased event-related
connectivity in depression between dorsal cingulate region and other
cingulate regions. All regions significant at p < 0.01 whole-brain

corrected.
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forward deformation field was used to normalise the grey matter probability image,

thereby obtaining for each resampled voxel an estimate of the probability that a

voxel was grey matter. Beta values in the hippocampal and rostral anterior cingulate

of the fMRI contrast images were then multiplied by these grey matter probabilities

and two group t tests used to test for differences. The results still showed signifi-

cant fMRI group differences: left hippocampus t(21.36) = 3.313, p = 0.003; right

hippocampus t(31.03) = 2.501, p = 0.018; rACC t(31.19) = 2.890, p = 0.007.

4.4 Discussion

To our knowledge, this is the first study to test hypotheses about abnormal reward

value encoding and event-related connectivity in patients with unmedicated MDD.

In our previous detailed behavioural analyses (Rupprechter, Stankevicius, Huys,

Steele, et al., 2018) we reported impaired behavioural performance in MDD caused

by impairments in both value learning and decision phases of our Pavlovian task;

MDD subjects also showed lower memory of observed reward and had an impaired

ability to use internal value estimations to guide decision making (Rupprechter,

Stankevicius, Huys, Steele, et al., 2018). Here we sought to identify the neural

substrates of these behavioural abnormalities.

Consistent with our first hypothesis, we found that the striatal reward activation

was blunted as was the reward signal in an independently defined NAc ROI of

unmedicated MDD subjects. This is consistent with our previous independent

studies on chronically medicated treatment-resistant MDD (Gradin, Kumar, Waiter,

et al., 2011; Johnston, Tolomeo, Gradin, et al., 2015; Steele, Kumar, and Ebmeier,

2007) and reports by independent groups (Keren, O’Callaghan, Vidal-Ribas, et

al., 2018; Zhang, Chang, Guo, et al., 2013). Whilst the region is often referred to

generically in the literature as the “striatum”, which includes the NAc and caudate,

the region of significantly blunted reward activation during our Pavlovian task also

prominently included the region between the two NAc (Figure 4.2b) which is the

septum (Mai, Majtanik, and Paxinos, 2015). This structure is part of the septo-

hippocampal system which is strongly implicated in anxiety and in the action of

antidepressant and anxiolytic medication (Gray and McNaughton, 2000). Notably,

using a very different instrumental task to study an independent group of treat-

ment-resistant medicated patients with MDD, we also observed septal reward signal

blunting and similarly asymmetric blunting of the NAc (Figure 4.3b; Johnston,

Tolomeo, Gradin, et al., 2015). Further study of septal reward response blunting in

MDD is indicated.

Consistent with our second hypothesis, we found brain regions with decreased

reward value signal encoding in MDD, in particular hippocampus and rACC. We

have previously reported decreased reward value encoding in the hippocampus of

an independent group of chronically medicated patients with treatment-resistant
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MDD using an instrumental learning task (Gradin, Kumar, Waiter, et al., 2011)

and as noted above, there is strong evidence for hippocampal abnormalities in

treatment-resistant and recurrent MDD (Johnston, Tolomeo, Gradin, et al., 2015;

Schmaal, Veltman, Erp, et al., 2016). Here, using a novel Pavlovian reward task with

unmedicated MDD subjects, we report positive reward value encoding in the hip-

pocampus of controls and negative reward value encoding of reward value in MDD.

Interestingly, a recent Pavlovian study using aversive stimulus learning reported

positive encoding of an aversive conditioned stimulus signal in the habenula of

controls and negative encoding in MDD (Lawson, Nord, Seymour, et al., 2017).

Recent meta-analyses and reviews have provided substantial evidence for the in-

volvement of regions in the PFC including the rACC in the encoding of reward

value (Bartra, McGuire, and Kable, 2013; Chase, Kumar, Eickhoff, and Dombrovski,

2015). The ventromedial PFC (vmPFC) is thought to be a key region involved in

value-based decision making (Gläscher, Hampton, and O’doherty, 2008; Treadway,

Bossaller, Shelton, and Zald, 2012). Notably, Glaescher and colleagues reported

that the vmPFC encoded value signals from a computational model in addition

to the amygdala-hippocampal complex, although these value signals were related

to actions and expected outcomes (Gläscher, Hampton, and O’doherty, 2008). Re-

duced expected reward value signals have previously been reported in the vmPFC of

suicide attempters (Dombrovski, Szanto, Clark, et al., 2013). Importantly and consis-

tent with our third hypothesis, we found a significant negative correlation between

illness severity and rACC value encoding within MDD subjects alone. Consequently,

there is considerable evidence for reward value encoding in the hippocampus

and vmPFC of healthy subjects, and in addition to the present study, evidence for

blunted reward value encoding in two independent studies: on MDD (Gradin, Ku-

mar, Waiter, et al., 2011) and attempted suicide (Dombrovski, Szanto, Clark, et al.,

2013). This suggests these two regions are part of the neural substrates of impaired

value learning observed in our behavioural analyses (Rupprechter, Stankevicius,

Huys, Steele, et al., 2018).

The aMCC has been highlighted as crucial for decision making in a large meta-

analysis of healthy subjects (Shackman, Salomons, Slagter, et al., 2011), and it

has been suggested that abnormalities of anterior cingulate reward-linked com-

putational function and connectivity could explain core symptoms in a variety of

disorders including MDD (Holroyd and Umemoto, 2016). Consistent with this, we

have reported decision-making abnormalities in treatment-resistant MDD patients

receiving aMCC therapeutic lesions (Tolomeo, Christmas, Jentzsch, et al., 2016)

and evidence for electro-convulsive therapy therapeutically altering aMCC connec-

tivity in an independent group of patients with treatment-resistant MDD (Perrin,

Merz, Bennett, et al., 2012). Also consistent with our second hypothesis, in the

present study we found abnormally increased activation in MDD and encoding

of a value difference signal in the aMCC region at the decision time, linking our
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behavioural model (Rupprechter, Stankevicius, Huys, Steele, et al., 2018) to localised

brain function. Consistent with our fourth hypothesis, event-related connectivity

analysis at the decision time revealed reduced connectivity between the aMCC and

more rostral ACC regions, in MDD compared to controls. An influential theory

of aMCC function linking cognitive control, valuation and motivation, proposes

that the underlying function of the aMCC is to determine how much control to

allocate (Shenhav, Botvinick, and Cohen, 2013). Consistent with our interpretation,

the theory posits that the aMCC receives value-representation inputs from regions

such as the vmPFC which are used to monitor outcomes and adjust the level of con-

trol. There is evidence that abnormal anterior cingulate cortex maturation during

adolescence contributes to the development of MDD reflected by inflexible aMCC

connectivity (Ho, Sacchet, Connolly, et al., 2017). The present work suggests this

could be related to impairment in the communication of value estimates from the

rACC to the aMCC where these estimates are used to guide decision making.

A large meta-analysis of subcortical regions found decreased hippocampal volume

in recurrent depression (Schmaal, Veltman, Erp, et al., 2016) and a later meta-

analysis reported a range of cortical structural abnormalities including the rACC

(Schmaal, Hibar, Sämann, et al., 2017) although see Shen, Reus, Cox, et al. (2017). We

therefore did additional analyses addressing the possibility of structural differences

influencing our results (Results section and Supplementary Materials). The value en-

coding signals remained significantly different between groups and our conclusions

are unaltered. Reward and loss have different value functions with overlapping but

different neural substrates which are relevant for MDD (Johnston, Tolomeo, Gradin,

et al., 2015) but we could not address this using our current paradigm, although

see Lawson, Nord, Seymour, et al. (2017). A possible limitation of our analyses is

that the voxel threshold p < 0.05 was within the permitted range but not the ideal

range. We therefore repeated the analyses using a more stringent voxel threshold

p < 0.01 and found the results analogous with the exception of the encoding of neg-

ative value difference across subjects which was not significant (see Supplementary

Materials).

4.5 Conclusions

A close link between emotional experience and valuation has previously been pro-

posed (Dolan, 2002). Diverse symptoms of MDD can be explained within a deci-

sion-theoretic framework in which abnormal valuation plays a central role (Huys,

Daw, and Dayan, 2015; Huys and Renz, 2017). We reported behavioural evidence

for abnormal reward value learning and decision making in depression (Chapter 3,

Rupprechter, Stankevicius, Huys, Steele, et al., 2018) and here we identified the

neural substrates of these abnormalities as being the striatum, septo-hippocampal

system and anterior cingulate, with both reward value encoding and event-related
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connectivity being abnormal. This supports the theory that abnormally biased

neural valuation plays a central role in MDD, and suggests there is impaired com-

munication between the neural substrates of valuation and decision making in

depression.

To the extent that emotion reflects valuation, abnormal valuation could explain

abnormal emotional experience in MDD, reflect a core pathophysiological process

and be a target of treatment. Finally, MDD may not be the only common psychiatric

illness associated with abnormal neural valuation, as there is also evidence for

schizophrenia (Gradin, Kumar, Waiter, et al., 2011) and addiction (Redish, 2004;

Redish, Jensen, and Johnson, 2008), implying different psychiatric disorders may

reflect different disorders of neural valuation.
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Blunted Medial Prefrontal
Cortico-Limbic Reward-Related
Effective Connectivity and
Depression

This chapter consists of a slightly modified version of a published journal article:

S. Rupprechter, L. Romaniuk, P. Seriès, et al. (2020). “Blunted Medial Prefrontal

Cortico-Limbic Reward-Related Effective Connectivity and Depression”. In: Brain

(accepted). Supplementary Materials for this chapter are included in Appendix C.

My contributions
This work is part of a larger Scotland-wide research project called STratifying Re-

silience and Depression Longitudinally (STRADL) with the goal of “subtyping major

depressive disorder (MDD) on the basis of its aetiology, using detailed clinical, cog-

nitive, and brain imaging assessments” (Navrady, Wolters, MacIntyre, et al., 2017;

Habota, Sandu, Waiter, et al., 2019).

I performed the computational modelling analysis, processed the fMRI data and ran

the activation and connectivity analyses. I was critically involved in the planning of

the analysis strategy and proposed and implemented the specific testable hypothe-

ses relevant to the existing literature after discussion with coauthors. I interpreted

the results in the context of existing translational neuroscience research which was

discussed with coauthors. I created the figures and wrote the initial version of the

manuscript. My collaborators made critical contributions to the planning of the

project, the analysis strategy, the interpretation of results, and the writing of the

manuscript.
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Abstract

Major Depressive Disorder is a leading cause of disability and significant mortality

yet mechanistic understanding remains limited. Over the past decade evidence has

accumulated from case-control studies that depressive illness is associated with

blunted reward activation in the basal ganglia and other regions such as the medial

prefrontal cortex. However it is unclear whether this finding can be replicated in

a large number of subjects. The functional anatomy of the medial prefrontal cor-

tex and basal ganglia has been extensively studied and the former has excitatory

glutamatergic projections to the latter. Reduced effect of glutamatergic projections

from the prefrontal cortex to the nucleus accumbens has been argued to underlie

motivational disorders such as depression, and many prominent theories of Ma-

jor Depressive Disorder propose a role for abnormal cortico-limbic connectivity.

However, it is unclear whether there is abnormal reward-linked effective connec-

tivity between the medial prefrontal cortex and basal ganglia related to depression.

Whilst resting-state connectivity abnormalities have been frequently reported in

depression, it has not been possible to directly link these findings to reward-learning

studies. Here we tested two main hypotheses. First, mood symptoms are associated

with blunted striatal reward prediction error signals in a large community-based

sample of recovered and currently ill patients, similar to reports from a number of

studies. Second, event-related directed medial prefrontal cortex to basal ganglia

effective connectivity is abnormally increased or decreased related to the severity

of mood symptoms. Using an RDoC approach, data were acquired from a large

community-based sample of subjects who participated in a probabilistic reward

learning task during event-related fMRI. Computational modelling of behaviour,
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model-free and model-based fMRI, and effective connectivity dynamic causal mod-

elling analyses were used to test hypotheses. Increased depressive symptom severity

was related to decreased reward signals in areas which included the nucleus ac-

cumbens in 475 participants. Decreased reward-related effective connectivity from

the medial prefrontal cortex to striatum was associated with increased depressive

symptom severity in 165 participants. Decreased striatal activity may have been

due to decreased cortical to striatal connectivity consistent with glutamatergic and

cortical-limbic related theories of depression and resulted in reduced direct path-

way basal ganglia output. Further study of basal ganglia pathophysiology is required

to better understand these abnormalities in patients with depressive symptoms and

syndromes.

5.1 Introduction

Major Depressive Disorder (MDD) is a leading cause of disability worldwide and a

cause of significant mortality, yet there is wide agreement that its treatment has not

changed fundamentally in over half a century (Steele and Paulus, 2019). However,

there is now substantial evidence from a series of independent neuroimaging stud-

ies acquired over more than a decade, that MDD is associated with blunted reward

signals in the medial prefrontal cortex and particularly in the basal ganglia (Forbes,

Christopher May, Siegle, et al., 2006; Steele, Kumar, and Ebmeier, 2007; Kumar,

Waiter, Ahearn, et al., 2008; Pizzagalli, Holmes, Dillon, et al., 2009; Eshel and Roiser,

2010; Gradin, Kumar, Waiter, et al., 2011; Zhang, Chang, Guo, et al., 2013; Pizzagalli,

2014; Johnston, Tolomeo, Gradin, et al., 2015; Stringaris, Vidal-Ribas Belil, Artiges,

et al., 2015; Rothkirch, Tonn, Köhler, and Sterzer, 2017; Keren, O’Callaghan, Vidal-

Ribas, et al., 2018; Kumar, Goer, Murray, et al., 2018), consistent with earlier large

behavioural decision making studies (Forbes, Shaw, and Dahl, 2007) and the conclu-

sions of a large behavioural meta-analysis on decision making in depression (Huys,

Pizzagalli, Bogdan, and Dayan, 2013).

In addition to studies on task-based reward processing, there are now many studies

of resting state connectivity in major depressive disorder (Kaiser, Andrews-Hanna,

Wager, and Pizzagalli, 2015; Kaiser, Whitfield-Gabrieli, Dillon, et al., 2016); how-

ever, the link between blunted reward signals in task-based reward learning studies

and possible event-related connectivity abnormalities in MDD remains unclear.

Functional connectivity abnormalities present during a resting-state study may

be different from event-related effective connectivity abnormalities during rein-

forcement learning studies involving valenced (reward or punishment) feedback.

Recognition of different types of connectivity is important, because a number of

prominent theories propose a role for abnormal connectivity in depression (May-

berg, Lozano, Voon, et al., 2005; Disner, Beevers, Haigh, and Beck, 2011; Roiser,
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Elliott, and Sahakian, 2012; Russo and Nestler, 2013; Pizzagalli, 2014) without distin-

guishing different types of connectivity. Whilst most MDD neuroimaging studies

have focused on resting state undirected functional connectivity, a recent exception

reported blunted striatal reward prediction error signals and blunted reward-linked

ventral tegmental (VTA) area to striatal event-related connectivity (Kumar, Goer,

Murray, et al., 2018). The VTA projection is dopaminergic, has been extensively

studied in animals and is part of the classical basal ganglia thalamocortical circuit

(Alexander and Crutcher, 1990; Alexander, Crutcher, and DeLong, 1991).

Event-related fMRI studies of reward learning tasks in humans report consistent

activation of the basal ganglia and rostral-subgenual medial prefrontal cortex (e.g.

Kim, Shimojo, and O’Doherty, 2011; Johnston, Tolomeo, Gradin, et al., 2015) which

are prominent parts of the limbic basal ganglia thalamocortical circuits. The medial

prefrontal cortex to basal ganglia projection has been studied in animals and is

glutamatergic (Alexander and Crutcher, 1990; Alexander, Crutcher, and DeLong,

1991). We were particularly interested in whether the effective connectivity for this

medial prefrontal projection was abnormal in volunteers with increased depressive

symptoms and decreased brain reward responses. The rostral cingulate is important

as influential Positron Emission Tomography (PET) imaging studies reported abnor-

mal metabolic activity in MDD (Drevets, Price, Simpson Jr, et al., 1997; Mayberg,

Lozano, Voon, et al., 2005) which motivated a subgenual deep brain stimulation

international treatment trial (Holtzheimer, Husain, Lisanby, et al., 2017).

Here we analysed behaviour and fMRI data from a large community-based sample

of volunteers. A dimensional approach was chosen because the Research Domain

Criteria (RDoC, Insel, Cuthbert, Garvey, et al., 2010) approach aims to explore the

“full range of variation from normal to abnormal”, recognising current diagnostic

systems “do not adequately reflect relevant neurobiological and behavioural sys-

tems — impeding not only research on aetiology and pathophysiology but also the

development of new treatments” (Cuthbert and Insel, 2013). Our behavioural task

included an aspect of control, as there have been reports that reward processing

may be affected by whether an individual values making their own choices and in

our previous work (Romaniuk, Sandu, Waiter, et al., 2019), we found evidence for an

association between the inherent value of choice and activation in MDD-related

regions including striatum and medial prefrontal cortex.

Two primary hypotheses were tested: (a) mood symptoms are associated with ab-

normally blunted reward and/or reward prediction error signals, similar to reports

from a number of clinical studies, and (b) there is abnormal (increased or decreased)

event-related, directed rostral anterior cingulate to basal ganglia effective connectiv-

ity, linked to the severity of mood symptoms. In addition motivated by our previous

work (Romaniuk, Sandu, Waiter, et al., 2019), we also tested the hypothesis that

(c) individuals learned differently from outcomes depending on whether they had

control over decisions, related to the presence of mood symptoms.
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5.2 Materials and methods

5.2.1 Participants

Subjects were recruited via the Stratifying Resilience and Depression Longitudinally

(STRADL) study (Navrady, Wolters, MacIntyre, et al., 2017; Habota, Sandu, Waiter,

et al., 2019). The STRADL clinical cohort is a subset of the Generation Scotland

Scottish Family Health Study who were originally recruited in Scotland 2006–2011,

aged over 18 at the time (Smith, Campbell, Linksted, et al., 2012). Generation

Scotland participants residing in north east Scotland (Grampian and Tayside areas)

were invited to attend a clinic in Aberdeen or Dundee for MRI scanning, other

testing and sample collection.

5.2.2 Clinical Interview and Questionnaire Data

All participants were assessed for a lifetime history of MDD using the Structured

Clinical Interview for DSM-IV disorders (SCID, First, Spitzer, Gibbon, Williams, et al.,

2002). Diagnostic criteria were based on the Diagnostic and Statistical Manual of

Mental Disorders (DSM-IV-TR). Participants also completed a series of question-

naires which included The Quick Inventory of Depressive Symptomatology (QIDS,

Rush, Trivedi, Ibrahim, et al., 2003) which is sixteen-item inventory designed to as-

sess the severity of depression symptoms, and the Hospital Anxiety and Depression

Scale (HADS, Zigmond and Snaith, 1983) anxiety subscale (seven items) which was

used to assess symptoms of anxiety (Habota, Sandu, Waiter, et al., 2019).

5.2.3 Participant Selection and Analyses

Computational modelling of behaviour and event-related fMRI analyses were per-

formed on 475 participants which included twenty subjects with a current Major

Depressive Episode (MDE) (Table 5.1). For Dynamic Causal Modelling (DCM) 165

subjects were selected who had sufficiently strong fMRI signals in the regions of

interest. Sufficiently strong signals are required for DCM to be valid, despite depres-

sive symptoms being associated with blunting of signal strength in clinical studies.

Data selection is summarised in Fig. S9 and further described in the Supplementary

material which contains additional analyses, showing that varying the inclusion

criteria did not significantly influence the DCM results. Importantly, included

and excluded subjects did not differ significantly with respect to QIDS depression

severity scores.

5.2.4 Scanning and Behavioural Paradigms

T1 weighted images and fMRI data were acquired at Dundee and Aberdeen Uni-

versities. For fMRI acquisition in Dundee, a 3T Siemens PRISMA was used with TR

1.56 sec, TE 22 ms, FA 70 degrees, FOV 217 mm, matrix 64 × 64, 32 axial slices; in
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Healthy participants Past MDD Current MDE

Number of subjects 345 110 20

Age (range, mean± sd)
28–78
60± 8.8

27–72
57± 8.4

37–65
56± 8.7

Sex (F/M) 177 / 168 78 / 32 16 / 4

QIDS–SR (range, mean± sd)
0–12
3.39± 2.08

1–22
5.41± 3.84

9–21
14.55± 3.79

HADS–A (range, mean± sd)
0–12
3.13± 2.44

0–17
5.04± 3.35

6–20
10.65± 3.62

TABLE 5.1: Demographic and clinicals details. QIDS = Quick Inven-
tory of Depressive Symptomatology–Self Report; HADS = Hospital
Anxiety and Depression Scale; GHQ = General Health Questionnaire;

sd = standard deviation

Aberdeen a 3T Philips ACHIEVA was used with TR 1.56 sec, TE 26 ms, FA 70 degrees,

FOV 217 mm, matrix 64× 64, 32 axial slices. Subjects completed 66 trials of a proba-

bilistic reward learning task (Romaniuk, Sandu, Waiter, et al., 2019) which involved

choosing one of two stimuli (yellow or blue squares). Participants were not told that

the stimuli were associated with different reward probabilities (80% for the yellow

square, 20% for the blue square) and feedback on their choices was provided by dis-

play of a number of points: 100 points for a “win” or reward, 0 points for “no win” or

no reward. During the first phase of each trial a cue indicated whether participants

would be allowed to freely make a choice between the two squares or whether the

computer would choose for them and they had to follow that choice. Phases were

jittered, allowing for disambiguation. The number of trials was split into 33 “choice”

and 33 “no choice” trials with the task being summarised in Figure 5.1.

CUE

You
choose

Computer
chooses

SELECTION OUTCOME

100

1500ms

2000ms 1500ms

FIGURE 5.1: Probabilistic reward learning task. Subjects completed
trials of a probabilistic reward learning task which involved choosing
one of two stimuli. During the first phase of each trial a cue indicated
whether participants would be allowed to freely make a choice be-
tween the two squares or whether the computer would choose for
them and they had to follow that choice. During the second phase a
choice was made or confirmed. During the third phase an outcome

(“no reward” or “reward”) was presented.
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5.2.5 Computational modelling of behaviour

Five reinforcement learning models represented distinct hypotheses about how

subjects learned during the task (Table S1). The aims of the modelling were to

(a) correlate model parameter estimates with depressive symptom severity scores,

(b) estimate reward prediction error (RPE) signals for use in model-based fMRI

analyses and (c) compare learning during choice vs. no-choice trials. Model 1

assumed participants only learned from choice outcomes and ignored no-choice

outcomes, model 2 assumed participants learned equally well during both choice

and no-choice trials, model 3 assumed participants learned at different rates on

choice vs no-choice trials, model 4 assumed reward outcomes were experienced

differently depending on the choice vs. no-choice condition (i.e. different “reward

sensitivity” parameters) and model 5 assumed both learning and outcomes were

experienced differently (different learning rates and reward sensitivity parameters).

Fitted parameters were maximum a posteriori estimates and models were compared

using the integrated Bayesian Information Criterion (iBIC, Huys, Pizzagalli, Bogdan,

and Dayan, 2013) (Supplementary material).

5.2.6 Image pre-processing and GLM voxel based fMRI analyses

SPM12 was used for analyses with functional images realigned to the first image, un-

warped and slice time corrected. The T1 weighted structural image was segmented

and functional images were co-registered to the bias corrected T1 image. Images

were spatially normalised and smoothed using an 8mm Gaussian kernel. Additional

details are presented in the Supplementary material.

An event-related design was used for the first-level analysis. A first level general

linear model (GLM) design matrix included two columns for onsets of choice or

no-choice cues, four columns of possible outcomes (reward or no-reward dur-

ing choice or no-choice trials), two columns for responses (button-press) during

choice/no-choice trials, and one column for nuisance regressors (response time-out

or incorrect response during no-choice trials). Six rigid body motion realignment

parameters estimated during pre-processing were included as covariates of no in-

terest. For model-based fMRI analyses, the four outcome columns were replaced by

a single column of all outcome events and a column of the parametric modulator:

reward/no-reward outcome coded as 1 or 0, or the estimated Reward Prediction

Error (RPE) signal. Events were modelled as truncated delta-functions and con-

volved with the SPM12 canonical haemodynamic response function without time

or dispersion derivatives.

Contrast estimates from each subject’s first level analysis were taken to the sec-

ond level. Of interest was (a) the reward activations and RPE encoding signals

across all participants calculated using contrasts for the corresponding paramet-

ric modulator (as expected a contrast of reward(choice + no-choice) outcome >



80
Chapter 5. Blunted Medial Prefrontal Cortico-Limbic Reward-Related Effective

Connectivity and Depression

no-reward(choice + no-choice) outcome in the GLM matrix not using parametric

modulators gave similar results), (b) reward response during choice conditions com-

pared to reward response during no-choice conditions (reward(choice) outcome >

reward(no-choice) outcome), and (c) correlations with depressive symptom scores

across participants.

Multiple comparisons of effects linked to depressive symptom severity were cor-

rected using a whole brain cluster corrected threshold of p < 0.001, comprising

a simultaneous requirement for a p < 0.05 voxel threshold and >131 contiguous

supra-threshold voxels, this being estimated using Monte Carlo simulations (Sup-

plementary Materials, Slotnick, Moo, Segal, and Hart Jr, 2003).

5.2.7 Dynamic Causal Modelling of Event-Related Effective Connectiv-
ity

DCM (Friston, Ashburner, Kiebel, et al., 2007) was used to investigate how the

severity of depressive symptoms was associated with a small network of three brain

regions active during the task. Our connectivity hypotheses concerned between-

subject level inferences, meaning we tested for an association between QIDS scores

and the general task-independent connectivity (DCM “A” matrix).

Brain regions were selected to test the hypotheses of a mood linked change in ef-

fective connectivity between regions involved in the brain’s reward network. The

left ventral striatum (VS) centred at MNI (-12,10,-14) (local reward activation max-

imum; see results and Table S2) was selected because there is extensive evidence

for blunted activation in MDD (Steele, Kumar, and Ebmeier, 2007; Kumar, Waiter,

Ahearn, et al., 2008; Pizzagalli, Holmes, Dillon, et al., 2009; Eshel and Roiser, 2010;

Gradin, Kumar, Waiter, et al., 2011; Zhang, Chang, Guo, et al., 2013; Pizzagalli, 2014;

Johnston, Tolomeo, Gradin, et al., 2015; Rothkirch, Tonn, Köhler, and Sterzer, 2017;

Keren, O’Callaghan, Vidal-Ribas, et al., 2018; Kumar, Goer, Murray, et al., 2018).

A medial prefrontal cortex (mPC) region was selected centred at (-2,52,18) (local

maximum of reward-choice activation; Figure 5.2C, Table S4) because this region

usually co-activates with the VS on reward delivery (O’Doherty, Dayan, Schultz,

et al., 2004; Gradin, Baldacchino, Balfour, et al., 2014; Johnston, Tolomeo, Gradin,

et al., 2015) and the mPC has direct projections to the striatum (Alexander and

Crutcher, 1990; Alexander, Crutcher, and DeLong, 1991). In addition, a visual cortex

region centred at (-8,-88,-4) (local maximum during reward outcome display; Table

S2) was chosen as the brain region receiving experimentally-controlled inputs. This

visual region and VS were also constrained anatomically using the pericalcarine

and accumbens Freesurfer masks (Reuter, Schmansky, Rosas, and Fischl, 2012). For

each participant we extracted the first principal component of the time series of

12mm spheres which were centred at the above MNI coordinates, but importantly

were further constrained by liberal individual activation thresholds as well as the
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above mentioned anatomical masks, meaning signals were only extracted from a

subset of the voxels contained in the spherical regions of interest.

A bilinear DCM with one state per region and no stochastic effects was assumed and

a fully connected model of 9 connections including inhibitory self-connections was

fitted. There are known direct excitatory glutamatergic projections from the anterior

cingulate to the striatum (Alexander and Crutcher, 1990; Alexander, Crutcher, and

DeLong, 1991) and the possible effects of depression symptoms on this direct top-

down connection were of particular interest. All other connections were assumed to

be indirect. Four outcome types (“reward” [choice + no-choice trials], “no-reward”

[choice + no-choice], “choice” [reward + no-reward], “no-choice” [reward + no-

reward]) were used as driving inputs to the visual cortex (“outcome display”); see

Supplementary material for control analyses using an alternative input specification.

It was assumed that each of these four outcome conditions could also modulate

each of the intrinsic (endogenous, task-invariant) connections. The display of

choice / no-choice cues served as additional inputs to the visual area and responses

(choice / no-choice condition button presses) drove activity in any region. Inputs

were mean-centred so that parameters of the endogenous (“A” matrix) connectivity

specified the average effective connectivity between regions and the modulations

(“B” matrix) added or subtracted from this average.

For each participant, the full DCM was fitted to the data and the percentage of the

variance explained was calculated. As recommended in the SPM documentation

and online SPM discussion groups (Zeidman, 2019), we only included participants

for which the variance explained by the model was at least 10% (Supplementary

material). The Parametric Empirical Bayes (PEB) framework (Friston, Litvak, Oswal,

et al., 2016) was used to model commonalities and differences across participants.

The group-level between-subject PEB design matrix included a column of ones,

corresponding to the mean connectivity across participants, and a zero-mean cen-

tred column of our covariate of interest (QIDS depression scores). Five additional

mean-centred covariates included HADS anxiety scores, age, sex, collection site

and current MDE diagnosis (see Supplementary material for additional analyses

without these covariates). The group-level within-subject design matrix was defined

as the identity matrix, which means we assumed the covariates could potentially

have an effect on every within-subject DCM parameter. The full PEB model was

inverted to obtain parameter estimates and the model’s “free energy”.

Bayesian Model Reduction (Friston, Litvak, Oswal, et al., 2016) was employed to

rapidly estimate different reduced PEB models within which certain parameters

were “switched off”. An automatic “greedy” search procedure was used to iteratively

prune parameters that did not contribute to the free energy. The models identified

at the final iteration were combined using Bayesian Model Averaging (Figure 5.4A)

(Penny, Mattout, and Trujillo-Barreto, 2006). Our main analysis focussed on a PEB
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model including 9 DCM (“A” matrix) parameters (see Supplementary material for

additional analyses).

To increase confidence in our results, a large number of control analyses were per-

formed (Supplementary material). Most notably, during these analyses different

variance-explained thresholds were used, and different covariates were included

in the second level design matrix (e.g., only QIDS was included as covariate). Ad-

ditional control analyses also included an analysis of individual symptoms (as

opposed to the QIDS sum of individual symptom scores) to address both a skew in

overall QIDS scores and the possibility of correlation effects being influenced by a

group-level (i.e. never-depressed healthy participants versus MDE subjects) effect.

This is described in detail in the Supplementary material. Bootstrap split-sample

replication was used to test the effective connectivity hypothesis.

5.3 Results

5.3.1 Behavioural analyses

There was no significant Spearman’s correlation between QIDS depression score

and number of rewards gained (Spearman’s ρ(475) = 0.064, p = 0.164) on the task,

or between QIDS score and number of missed trials (Spearman’s ρ(475) = 0.064,

p = 0.164), facilitating interpretation of the imaging results. Formal model com-

parison identified model 3, which assumed subjects learned at different rates from

choice and no-choice outcomes, as the most parsimonious description of decision

making behaviour (Supplementary material). Learning rates for choice trials were

larger than learning rates for no-choice trials for most (440 of 475, 93%) partici-

pants. These results indicate that whilst participants learned from all outcomes,

they learned most from outcomes over which they had more control. However

there were no significant Spearman’s correlations between parameter estimates and

mood scores (Supplementary material). We repeated this correlation analysis using

a “default” Bayesian hypothesis test and found strong evidence for the absence of a

correlation between depressive symptom severity scores and each of the three pa-

rameters (1/30 < BF10 < 1/10, (Wetzels and Wagenmakers, 2012)) (Supplementary

material).

5.3.2 GLM voxel based fMRI analyses

As expected, across all 475 participants, significant reward activations were identi-

fied in areas including the VS (-12,10,-14) (10,8,-10), ventromedial prefrontal cortex

(-4,52,-10), orbitofrontal cortex (-24,34,-20) (30,34,-16) and mPC (-10,28,0), as well

as activations in the occipital lobe visual areas (10,-86,-6) (-10,-88,-8). As hypothe-

sised, significant negative correlations between reward activation magnitude and

mood symptom (QIDS) scores were found in areas including the striatum (8,10,16)
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FIGURE 5.2: Correlations between depressive symptom scores and re-
ward signal encoding. Higher depressive symptoms were associated
with lower striatal reward response. (A) decreased reward activation
/ RPE encoding signal in putamen / ventral striatum, (B) increased
deactivation / negative RPE encoding signal in caudate and insula,
(C) decreased RPE encoding signal in midbrain, (D) increased reward
activation / RPE encoding in occipital lobe, with regions significant
at p < 0.001 whole-brain corrected. (E) Negative correlation of QIDS
scores with striatal activity (26,4,0) (Spearman’s ρ = −0.16, p < .001).
(F) Negative correlation of QIDS scores with striatal activity (-16,10,6)

(Spearman’s ρ = −0.20, p < .001).
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CBA

FIGURE 5.3: Activations comparing choice with no-choice conditions.
Activated regions during reward outcomes during choice compared
to reward outcomes during no-choice conditions: (A) insula, (B)
amygdala, (C) medial prefrontal cortex. Regions significant at p <

0.001 whole-brain corrected.

(-10,8,22) (-16,12,4), and also in the insula (-34,18,-12) (30,16,-16) and dorsomedial

prefrontal cortex (-4,30,50). Additionally, a positive correlation with QIDS scores

was found in the occipital lobe (10,-86,20) (-8,-90,10).

A conjunction analysis of correlations with group-level activations and deactiva-

tions was done revealing that higher depressive symptoms were associated with

decreased activation in the ventral striatum, and increased deactivation in caudate

/ dorsal striatum, anterior insula and dorsomedial prefrontal cortex. Results of

RPE signal encoding correlations were as expected very similar (Supplementary

material), due to a correlation between the RPE signal and simple binary reward

outcome signals. Notably though, higher depressive symptoms were associated with

decreased RPE signal encoding (only) in two additional areas: midbrain / ventral

tegmental area (VTA) (-2,-16,-16) and mPC (-2,34,14). These results are shown in

Figure 5.2. Figures 5.2A-D show the results of the initial whole-brain analyses, while

Figures 5.2E-F show subsequent ROI analyses. For the ROI analyses we extracted

local maxima voxels from the estimated contrast-beta values (see also Table S10).

The primary purpose of these follow-up ROI analyses was not to show the signifi-

cance of the results (which was always done on a whole-brain level), but to depict

the correlation results and the distribution of the individual beta and QIDS values

in more detail.

Across participants, reward activations were significantly larger during choice com-

pared to no-choice conditions in regions including mPC (0,52,16), insula (36,18,-

12) (-28,18,-14) and amygdala (-22,-6,-14) (22,-4,-12) (Figure 5.3). Higher depres-

sive symptoms were also associated with decreased choice vs. no-choice response

difference in regions including the precuneus (0,-46,36) and increased response

difference in regions including left insula (-36,16,0) and subgenual ACC (4,28,0).

Additional results are presented in the Supplementary Materials.
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5.3.3 Dynamic causal modelling of event-related effective connectivity

The mean of the explained variance across the 165 participants with sufficiently

strong fMRI signals was 21.90%. There were no statistically significant differences

in mean QIDS scores between the 165 participants with explained variance greater

than 10% (mean QIDS = 4.6) and excluded (mean QIDS = 4.4) participants (Welch’s

t-test: p = 0.618). Additional analyses showed that alternative variance thresholds

led to similar DCM results (Supplementary material).

At the group level and consistent with known anatomy, there was insufficient ev-

idence for effective connectivity from V1 to VS and from VS to mPC, but all other

connections had a high probability. Details about group-commonalities are pre-

sented in the Supplementary material; here we focus on associations with QIDS

mood symptoms. Of particular interest was the directed influence (connectivity)

from the mPC to the VS. This was found to be negatively correlated with mood

symptom scores (Figure 5.4B); higher depression scores were related to a decreased

top-down mPC to VS influence. Notably, we did not find this association with

anxiety scores (Supplementary material). The analyses also revealed complicated

indirect interactions between the visual cortex and both cortical and subcortical

regions. Specifically, higher depressive symptoms were negatively associated with

the connection from the accumbens and positively associated with the connection

to the mPC.

Additional control analyses were done to verify that our results did not depend on

the exact specifications of the model, covariates and variance threshold criteria. The

negative association between depressive symptom severity and directed influence

from the mPC to VS was found for each analysis strategy (Supplementary material).

We investigated the association of connection strengths with individual symptoms

assessed with QIDS (rather than the sum-of-scores) and also performed this anal-

ysis after excluding current and past MDE participants. This exploratory analysis

revealed a more specific negative association between symptoms of “concentration

or decision making difficulties” and the top-down connection from mPC to VS and

this result was replicated after a stepwise exclusion of current MDE and past MDE

participants (Supplementary material).

5.3.4 Bootstrap split-sample replication of mPC to VS effective connec-
tivity correlation

The dataset was randomly split into two halves repeatedly and the second level PEB

model (without BMR) estimated for each half. Figure 5.5 shows the histogram of

results for 100 splits (200 second level models) of the association between QIDS

and mPC to VS effective connectivity. The association was negative in 98% of cases,

showing the QIDS blunted effective connectivity result can be replicated on a split-

sample basis.
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FIGURE 5.4: Effective connectivity analyses. (A) Individual DCMs
were taken to the second level where BMR was performed to “prune”
connections. BMA was then used to average the DCMs, weighted
by their probabilities. (B) Top-down control of the prefrontal cortex
over the ventral striatum was decreased with increasing depression

symptom severity.

5.4 Discussion

Data from a large community-based study was used to test hypotheses that mood

symptoms were associated with blunted reward signal. Increased depressive symp-

toms were indeed found to be negatively correlated with reward-linked signals in

the striatum, consistent with many independent studies (Forbes, Christopher May,

Siegle, et al., 2006; Steele, Kumar, and Ebmeier, 2007; Kumar, Waiter, Ahearn, et al.,

2008; Pizzagalli, Holmes, Dillon, et al., 2009; Eshel and Roiser, 2010; Gradin, Ku-

mar, Waiter, et al., 2011; Zhang, Chang, Guo, et al., 2013; Pizzagalli, 2014; Johnston,

Tolomeo, Gradin, et al., 2015; Rothkirch, Tonn, Köhler, and Sterzer, 2017; Keren,

O’Callaghan, Vidal-Ribas, et al., 2018; Kumar, Goer, Murray, et al., 2018) and a large
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FIGURE 5.5: Association between QIDS and mPC to VS effective
connectivity. Histogram after 100 random splits in the total data.

community-based studies which used reward anticipation during a Monetary In-

centive Delay task which did not include a decision making component (Stringaris,

Vidal-Ribas Belil, Artiges, et al., 2015; Pornpattananangkul, Leibenluft, Pine, and

Stringaris, 2019). We also tested whether individuals learned differently from out-

comes depending on whether they had control over decisions. Subjects did learn

differently from outcomes depending on whether they had control over their de-

cisions that lead to the outcomes; however, we did not find a clear influence of

depressive symptoms. Matched behaviour but differences in brain function might

indicate a compensatory mechanism. Future studies should consider the possibility

that depression might also alter the interaction between cortico-limbic connectivity

and task-related events such as choice vs. no-choice reward outcomes.

Previous independent clinical studies have reported RPE abnormalities in MDD

(Kumar, Waiter, Ahearn, et al., 2008; Gradin, Kumar, Waiter, et al., 2011; Dombrovski,

Szanto, Clark, et al., 2013; Kumar, Goer, Murray, et al., 2018). Here we found

decreased RPE signal encoding in many of the same striatal areas as decreased

reward responses. It is difficult to disentangle RPE encoding from a binary reward

signal (Chowdhury, Guitart-Masip, Lambert, et al., 2013) in our task as the signals

are correlated which is common. However, we also found the VTA was associated

with an RPE (but not binary) signal which was negatively correlated with mood score,

consistent with an independent study on treatment-resistant depression (Gradin,

Kumar, Waiter, et al., 2011). The VTA is strongly implicated in the brain’s reward

system and RPE signals (Schultz, Dayan, and Montague, 1997) and is a source of

dopaminergic projections to the VS and frontal cortex (Alexander and Crutcher,

1990; Alexander, Crutcher, and DeLong, 1991). Reduced reward-linked effective

connectivity from the VTA to striatum has been reported (Kumar, Goer, Murray,

et al., 2018).
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There is substantial evidence for resting-state connectivity abnormalities in MDD

(Kaiser, Andrews-Hanna, Wager, and Pizzagalli, 2015; Kaiser, Whitfield-Gabrieli,

Dillon, et al., 2016), indicating that this illness is not only associated with abnor-

malities in isolated brain regions but also interactions between these brain regions.

Recent reviews and meta-analyses point towards widespread network dysfunction

in MDD but much of the work has focused on undirected functional connectivity

or connectivity measured during the resting state. Notably, a recent functional

connectivity study using resting-state fMRI data reported decreased cingulo-striatal

connectivity in children related to anhedonia (Pornpattananangkul, Leibenluft,

Pine, and Stringaris, 2019).

Here we identified significant directed medial prefrontal cortex to striatal reward-

linked effective connectivity. This projection has been reported to consist of ex-

citatory glutamatergic neurons from studies on animals(Alexander and Crutcher,

1990; Alexander, Crutcher, and DeLong, 1991). A glutamatergic hypothesis of de-

pression has been proposed (Sanacora, Treccani, and Popoli, 2012) and reduced

glutamatergic projections from the prefrontal cortex to the striatum have been

argued to underlie motivational disorders such as addiction (Kalivas, 2009) and

depression (Russo and Nestler, 2013). Indeed, many prominent theories of MDD

propose a role for abnormal cortical-limbic connectivity such as Beck’s cognitive

model (Disner, Beevers, Haigh, and Beck, 2011), Mayberg’s cortical-limbic dys-

regulation model (Mayberg, 1997), Pizzagalli’s stress interaction model (Pizzagalli,

2014) and Roiser’s neuropsychological model (Roiser, Elliott, and Sahakian, 2012).

Different abnormalities have been reported for the medial prefrontal cortical re-

gion. Mayberg’s deep brain stimulation was applied to the subgenual cingulate

Brodmann area 25 which they found overactive in depression using long timescale

PET imaging (Mayberg, Lozano, Voon, et al., 2005), whilst reward-related activity in

the medial prefrontal region used in our connectivity model has been reported de-

creased using short timescale event-related fMRI (e.g., Johnston, Tolomeo, Gradin,

et al. (2015)).

We also found evidence for changes in effective connectivity between the visual

processing area and both nucleus accumbens and cingulate cortex. Alterations

in these indirect connections are more difficult to interpret and we did not have

strong a priori hypotheses about them. As these connections are likely indirect

it is unclear if associations with depression exist between only some or all of the

intermediate regions. It is notable that the connection from nucleus accumbens

to visual region may occur via the amygdala (Dolan, 2002; Amaral, Behniea, and

Kelly, 2003), a region strongly implicated in depression, so it is possible that the back

projection from the amygdala to early visual areas is affected by depression. Areas

in the occipital lobe have been shown to have a much wider range of function than

typically assumed and might play a role in mood and anxiety disorders (Li, Zhang,

Zhang, et al., 2020). Abnormal activity and connectivity involving the occipital
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cortex in anxiety might underlie increased perception of threatening or feared

stimuli (Bruehl, Delsignore, Komossa, and Weidt, 2014; Yang, Liu, Meng, et al., 2019).

Although altered occipital lobe function has sometimes been reported in depression

(Fitzgerald, Laird, Maller, and Daskalakis, 2008), results are inconsistent and likely

depend on experimental context (Müller, Cieslik, Serbanescu, et al., 2017).

Decreased accumbens activity may be due to decreased cortical to striatal connec-

tivity, consistent with prominent theories of depression. Most (95%) accumbens

neurons are GABAergic medium spiney neurons, so a decrease in blood oxygen

level dependent (BOLD) activity during fMRI may reflect a change in the inhibitory

output from the accumbens, with opposite effects for D1-type direct pathway ver-

sus D2-type indirect pathway neurons (Russo and Nestler, 2013). Reward-gain

tasks are controlled by activation of the D1-type direct pathway and punishment-

avoidance tasks by inactivation of the D2-type indirect pathway (Nakanishi, Hikida,

and Yawata, 2014). Here the task was reward-gain similar to our previous indepen-

dent clinical case-control studies (Steele, Kumar, and Ebmeier, 2007; Gradin, Kumar,

Waiter, et al., 2011; Johnston, Tolomeo, Gradin, et al., 2015) although we have also

reported punishment-avoidance accumbens abnormalities in treatment-resistant

MDD (Johnston, Tolomeo, Gradin, et al., 2015). Striatal BOLD activation in the

present study may therefore predominately have reflected activation of D1-type

direct pathway medium spiney neurons, and blunting of this signal with depressive

symptoms impairment of the direct pathway.

The strengths of this work are between-study replication of blunted reward-linked

striatal signals in a large community based sample and the novel finding of blunted

medial prefrontal cortex to striatal event-related connectivity which was replicated

on a split-sample within-study basis. There are however some limitations as po-

tential avenues for future work. During both computational and imaging analyses

a common model was assumed for all participants although in principle models

could differ between subjects (Stephan, Penny, Daunizeau, et al., 2009). DCM is

a region of interest approach and we chose our regions to test for hypothesised

differences between activated regions. Future studies should consider tasks which

activate additional regions such as the amygdala and hippocampus (Mayberg, 1997;

Drevets, Price, and Furey, 2008; Roiser, Elliott, and Sahakian, 2012; Pizzagalli, 2014;

Johnston, Tolomeo, Gradin, et al., 2015; Schmaal, Veltman, Erp, et al., 2016) and

explore trans-diagnostic (Cuthbert and Insel, 2013) constructs such as anhedonia.

We did not have a hypothesis about abnormal connectivity in one hemisphere

compared to another. To maximise the number of included subjects we focused

on the hemisphere which had the strongest signals across subjects. Exploration of

possible covariates was done to determine whether our conclusions about a signifi-

cant negative association could be confounded by such effects, not because we had

specific hypotheses about these. Our conclusions were unchanged (Supplementary
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Material). To make an unbiased estimate of cortico-limbic connectivity it was neces-

sary to include subjects who had sufficient signals to allow valid estimation, despite

depression being associated with reward-signal blunting. When this was done a

significant negative association with depression severity was found, which was not

dependent on the precise criteria used for selecting data. Including all subjects,

even those with the weakest signals, resulted in connectivity estimates being dom-

inated by noise, although a non-significant negative trend remained (Figure S8).

Importantly, none of the analyses suggested significantly increased cortico-limbic

connectivity (Supplementary Material). We did not have a specific hypothesis about

which sub-symptom of depression would be associated with altered cortical to sub-

cortical connectivity and note that our finding of an association with concentration

or decision making difficulties will need to be independently replicated.

In conclusion, using an RDoC positive valence system approach with a large com-

munity-based sample, we found evidence that depressive symptom severity was

related to blunting of reward-linked striatal activity, consistent with a series of

previous studies on MDD. Decreased striatal activity may be due to decreased

cortical to striatal event-related effective connectivity consistent with prominent

theories of depression, and here have resulted in decreased direct pathway basal

ganglia output. Further study of basal ganglia pathophysiology is required to better

understand these abnormalities and develop new treatments.
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Future work

As in Chapter 3, I was not involved in the design of this study. This section briefly

explores a few things that could have been done differently and/or might be fruitful

avenues for future work with regard to the study design.

As mentioned previously, the connectivity results should be viewed as implicitly

conditioned on the experimental (reward learning) context. Future work will need

to address whether depression severity is also associated with a change in top-

down connectivity during other contexts. A study could include multiple contexts,

such as a reward and a punishment or stress context, in which case it could be

tested if depression severity is associated with endogenous connectivity and/or

with modulation of that connection by the experimental context.

We had to exclude a sizeable number of participants because their estimated DCMs

“flatlined”, meaning there was not enough evidence from the data to support a

deviation from the zero-centred prior. I suspect that this was, at least in part, due to

the limited number of trials in this study. As discussed in Chapter 3, fMRI imposes

certain requirements on study design, one of them being trial length of several

seconds which limits the overall number of trials within a study. Nevertheless,

future work should consider increasing the overall length of the experiment and

the number of trials. In an ideal world simulations during the design of a study

could help to reliably estimate the minimum amount of data needed for good DCM

estimability, but at the moment it is not entirely clear how such simulations could

be performed.

The current study included an element of controllability. In half of the trials partici-

pants were allowed to choose freely but instead had to accept the computer’s choice.

Being able to make choices and exerting control over one’s environment has inher-

ent value and affects reward processing (Romaniuk, Sandu, Waiter, et al., 2019). The

theory of learned helplessness posits that prolonged and continues perception of a

lack of control over the environment can lead to depressed behaviour (Chapter 2).

The value of personal choice and its association with depressive symptoms was

previously studied in more detail within a subset of the current data (Romaniuk,

Sandu, Waiter, et al., 2019). They reported striatal activation during the antici-

pation of choice, which was decreased with higher depression symptom severity,

suggesting decreased value of choice. Here we found that participants learned more

from outcomes following their own choices compared to outcomes following the

computer’s choices, but we found no association with depression symptom severity.

It would be interesting to extend the current paradigm to allow for a more direct

measurement of the value of control. For example, in some of the trials participants

might be allowed to “pay” a certain amount of points in order to be allowed to

make their own choice. However, the amount they would be willing to pay would

presumably depend on various things, including their value of control but also
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the expected outcome which in turn would be influenced by their internal value

estimation and their belief about the predictability of the outcomes.

A different variation of the paradigm might allow to improve on this by having the

computer offer the participant a number of points to take away the control from

them (and make a random choice) after a learning period. If current reward contin-

gencies were kept the same (20% or 80% probability of 100 points) and participants

had learned them perfectly, the expected value of their own choice would be 80

points, while the expected value of the computer’s choice would be 50 points. This

means the subject should accept any offer over 30 points if making their own choice

did not have any inherent value. Computational modelling could be used to infer

their estimated internal values of the stimuli and estimated expected value of their

choice. Simulations could be used to estimate the type and amount of data (i.e.

number of trials, reward contingencies, etc.) required for reliable estimates of these

internal values. It might therefore be possible to estimate how much a participant

values having a choice in terms of number of points by combining information

about their acceptance or refusal of various amounts of points with their internal

value estimation.

The paradigm could also be translated into the punishment or loss domain by

simply making the good option be an outcome of zero points and the alternative

be a loss of points. The inherent value of control might not be the same during

reward and punishment processing and/or this asymmetry could be increased in

depression (Chen, Takahashi, Nakagawa, et al., 2015).
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Chapter 6

A generative embedding approach
to detecting lifetime depression

This chapter consists of a “proof-of-concept” study which shows how a “generative

embedding” approach, combining a generative dynamic causal model (Chapter 5)

with a discriminative support vector machine model, can be used for classification of

lifetime depression using functional MRI data.

Supplementary Materials for this chapter are included in Appendix D.

6.1 Introduction

The search for biomarkers of psychiatric disorders is a central goal of computational

psychiatry (Adams, Huys, and Roiser, 2016; Huys, Maia, and Frank, 2016). Imaging

biomarkers might be especially promising, but clinically useful biomarkers have

yet to be found, with unreliable diagnoses and too few replicated imaging findings

posing challenges for precision medicine in psychiatry (Abi-Dargham and Horga,

2016).

Huys, Maia, and Frank (2016) argued that there exist at least two complementary

approaches to computational psychiatry. So far in this thesis I have mainly de-

scribed “theory-driven” approaches. I used prior knowledge from previous research

to inform hypotheses about disease mechanisms. Models at multiple levels of

abstraction, including behaviour, neural activation and functional and effective

connectivity, incorporated this prior knowledge and were then used to test predic-

tions. Alternative “data-driven” approaches do not generally incorporate knowledge

about possible mechanisms (Huys, Maia, and Frank, 2016). Instead, (supervised)

machine-learning methods are trained on the raw data and then used for regression

or classification. This could, for example, be used to predict the outcome of a spe-

cific pharmacotherapy treatment without knowing anything about the underlying

mechanism of the drug (Huys, Maia, and Frank, 2016).
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Using a large sample, Chekroud, Zotti, Shehzad, et al. (2016) showed that a classifier

could be used to predict pharmacological treatment response of MDD patients. A

large number of features from several psychiatric questionnaires as well as infor-

mation about demographics, previous depressive episodes and medication were

included. After training these predictors were ranked based on their weights to

obtain features predictive of remission (e.g. currently being employed, total years of

education) and non-remission (e.g. baseline QIDS-SR severity). However, only few

objective features were available and many of the top 25 predictors were subjective

self-report features.

Mwangi, Ebmeier, Matthews, and Steele (2012) trained a machine learning classifier

on structural MRI scans to classify (carefully defined treatment-resistant) MDD

patients versus healthy controls with high accuracy. Costafreda, Chu, Ashburner,

and Fu (2009) found that structural neuroanatomy could be used to predict treat-

ment response to antidepressant medication but not CBT. Structural imaging data

has several advantages over functional MRI data. It is usually cheaper and quicker

to acquire and does not depend on a specific paradigm as well as participants’

comprehension and cooperation (Mwangi, Ebmeier, Matthews, and Steele, 2012).

However, a patient’s brain may appear normal in terms of structure (at least at the

resolution of MRI) with typical abnormalities only appearing when the brain is

“at work” (Abi-Dargham and Horga, 2016). Studies based on functional MRI have

shown potential for classification of healthy controls versus MDD (Fu, Mourao-

Miranda, Costafreda, et al., 2008) or treatment-resistant MDD (Johnston, Tolomeo,

Gradin, et al., 2015) patients and prediction of treatment response to antidepressant

medication (Mourão-Miranda, Hardoon, Hahn, et al., 2011).

While theory-driven approaches are often used when mechanistic insights are pur-

sued, and machine-learning approaches are generally used when the development

of clinically useful applications is the main goal (Huys, Maia, and Frank, 2016), the

combination of the two approaches might be especially powerful (Huys, Maia, and

Frank, 2016; Brodersen, Schofield, Leff, et al., 2011). A theory-based generative

model can be used to project the raw data into a lower-dimensional space which

can increase efficiency and reliability, while also aiding interpretability, of a subse-

quently trained classifier (Huys, Maia, and Frank, 2016; Brodersen, Schofield, Leff,

et al., 2011).

An early study employing such a “generative embedding” strategy has shown great

promise for its use in psychiatric disease identification. A dynamic causal model

was fitted to fMRI time-series data and a classifier was then trained on the DCM

parameters, achieving near-perfect classification accuracy (Brodersen, Schofield,

Leff, et al., 2011). More recently, Queirazza, Fouragnan, Steele, et al. (2019) showed

that generative embedding, relying on previous knowledge about reinforcement

learning impairments in depression, has the potential to predict CBT treatment

response. A model-based fMRI approach was used to calculate contrasts encoding
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reward prediction errors which were then used as features for classification. Notably,

this generative embedding can lead to the discovery of “mechanistic biomarkers”

which might provide important insights into key pathophysiological processes

(Queirazza, Fouragnan, Steele, et al., 2019).

In previous work (Chapter 5) an association between depression symptom severity

and top-down connectivity from the medial prefrontal cortex to the ventral striatum

was found. Here I extended this work using a generative embedding approach to

test the hypothesis that effective connectivity parameter estimates can be used to

classify never-depressed healthy subjects versus participants with lifetime MDD.

Notably, the main goal of this approach was to determine whether there was enough

information contained solely within estimated connectivity parameters to iden-

tify an individual’s depression status with good accuracy. This means that while

achieving high accuracy was important, the goal was not to build a classifier which

maximises predictive accuracy which could probably be improved by including

additional features such as age, sex, and questionnaire scores. Indeed, in clinical

practice such a classifier would most likely be useless as most clinicians would not

be interested in whether a patient is ill (why else would they be here?), but how to

best help them.

6.2 Materials and methods

Participants and their estimated DCM parameters from earlier work (Chapter 5)

were selected (n=165) and split into two groups of never-depressed healthy sub-

jects (n=112) and lifetime-depression subjects (n=53, of which 12 subjects suffered

from current MDD and 41 participants were identified as having had at least one

past major depressive episode). The Python library scikit-learn (v0.22.1) was used

(Pedregosa, Varoquaux, Gramfort, et al., 2011) to implement the classification task.

6.2.1 Classifier

A soft-margin linear support vector machine (SVM) with elastic net regularisa-

tion was chosen to perform the multivariate classification. An implementation

with stochastic gradient descent learning was used. The maximum number of

iterations was set to 5000 as larger numbers did not change performance. Two

hyper-parameters were optimised: A regularisation parameter, α, which multiplied

the (elastic net) regularisation term and an elastic net mixing parameter, ρ, which

controlled the combination of L1 and L2 penalty.

6.2.2 Cross-validation and performance measures

A nested cross-validation (CV) scheme (Figure 6.1) was used which consisted of

an “inner loop” using repeated under-sampled 5-fold CV and an “outer loop” using
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FIGURE 6.1: The nested cross-validation scheme. The outer loop
is used to estimate the generalisation performance of the whole
pipeline. Feature (and hyper-parameter) selection, and training is

performed in an inner cross-validated loop.

leave-one-out (LOO) CV to estimate generalisation performance.

Before each of the 10 repetitions within the inner CV, the majority class (never-

depressed healthy controls) was randomly down-sampled to the same number as

the minority class (lifetime MDD subjects) due to the slightly imbalanced classes.

Further analysis showed that a repeated stratified 5-fold CV inner loop performed

very similarly (see Supplementary Materials). The inner loop used area under

the receiver operating characteristic curve (ROC-AUC) as the scoring function to

optimise. Selection and standardisation of features and optimisation of hyper-para-

meters were performed within the inner loop to avoid leaking knowledge from the

testing data into the training process.

The outer loop used LOO-CV to maximise the number of subjects during training.

For each left-out subject the whole “pipeline” of feature-selection, feature-scaling,

and classification was estimated using (inner) cross-validation on N-1 subjects and

then applied to the left-out subject. This means we estimated the generalisation

performance of the whole pipeline and for each (left-out) subject we estimated a

whole new (cross-validated) classifier.

The main measures of interest were (balanced) accuracy, sensitivity (the propor-

tion of actual lifetime MDD cases correctly identified as such) and specificity (the

proportion of never-depressed participants correctly identified as such) as well as
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positive and negative predictive value. In addition, the ROC curve for each of the N

classifiers (one per left-out subject) was calculated (on its training data).

We compared the accuracy of our classification with the expected distribution of

accuracies of a random classifier without any features. This classifier was assumed

to know the true frequency of the two classes and a sample was classified as class

C with probability n(C)/N , where n(C) is the number of samples in class C and

N is the total number of samples. After all samples were “classified”, the accuracy

of the whole sample was computed. This procedure was repeated 108 times to

obtain the expected distribution of accuracies. The accuracy obtained from the

SVM classifier was then compared to this distribution to quantify the proportion of

random classifiers it outperformed.

6.2.3 Features

Mean estimates of posterior expectations of dynamic causal modelling parameters

of the single fitted full model for each participant were used as features. Possible

features included (mean) estimates of the intrinsic connectivity (DCM “A” matrix),

modulations (DCM “B” matrix) and inputs (DCM “C” matrix). Importantly, these

estimates were not constrained by the hierarchical group PEB model and therefore

no information about the association with depression severity (or other covariates)

was leaked (see also discussion).

Within the inner loop a (cross validated) grid search over combinations of features

(A only, A+B, A+C, A+B+C) was performed. The addition of estimated variance of

A and B parameters as additional features was explored to test the possibility that

lifetime MDD is associated with a change in precision of estimated connectivity

parameters.

Data were included from two different collection sites using two different scanners

(see Chapter 5) because such a multi-centre approach can improve the generalis-

ability of results. Accuracy performance measures are reported separately for each

location because the number of participants were not balanced across them. For

additional analysis a collection-site-indicator was included as possible feature to

test if explicit information about the site would improve classification performance.

To identify the most important features for classification the weights for each feature

from each classifier were extracted. For each feature the median absolute value of

its weight across classifiers was then calculated (setting a weight of zero when the

feature was not included) and features were then ranked according to these weights.

6.2.4 Alternative classifiers

A linear SVM has the advantage of allowing a straightforward ranking and interpreta-

tion of feature weights. During further analysis a radial basis function (RBF) kernel
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SVM was employed to see if a non-linear kernel would lead to increased accuracy,

essentially trading off interpretability for performance. Finally, a logistic regression

classifier was also tested.

6.3 Results

Using DCM features and a leave-one-out nested CV scheme, a regularised soft-

margin linear SVM classifier achieved a balanced accuracy of 72% (accuracy 70%,

PPV 53%, NPV 85%). The accuracy of 70% was higher than 99.99% of all simulated

accuracies of a random classifier. 76 of 112 (68%) never-depressed healthy subjects

and 40 of 53 (75%) subjects with lifetime depression were classified correctly. Further

inspection showed that 9 of 12 (75%) current MDD subjects and 31 of 41 (76%) past

MDD subjects were classified correctly. ROC curves are shown in Figure 6.2. The

mean ROC-AUC was 0.85.
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FIGURE 6.2: Receiver Operating Characteristic (ROC) curves for each
training data set; i.e. a curve is displayed for each trained model after
one subject was left-out. The area under the mean curve was 0.85.

On average, based on the median values of weights, 33 features were used by the

classifier to make predictions (Table 6.1). Interestingly, the only intrinsic (A matrix)

connectivity estimate not included was the connection from the medial prefrontal

cortex to the ventral striatum which is the connection which was found to be

associated with depressive severity.
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The accuracies differed between sites with 74% (N=107) and 64% (N=58). The

addition of explicit information about the collection site decreased the accuracy to

67%. Adding information about estimated parameter variance did not change the

results as selected features did not differ from the original classifier. Performance of

an alternative classifier using an RBF kernel performed was almost identical to the

classifier with a linear kernel, while a logistic regression classifier performed worse

(see Supplementary Materials).

6.3.1 Predictive accuracy

It is likely that predictive accuracy could have been increased by including addi-

tional features and/or exploring the use of different classifiers. Indeed, exploratory

analysis revealed that simply by including questionnaire scores (QIDS-SR, HADS-A,

and neuroticism), age, and sex as additional features the cross-validated balanced

accuracy increased to 76% (accuracy 81%, sensitivity 60%, specificity 91%). However,

it should be noted again that the goal of this work was not to just maximise accuracy

by any means possible but rather to show that estimated connectivity parameters

contain sufficient information about depression status so that a prediction would

be feasible.

6.4 Discussion

A generative embedding approach, combining DCM parameter estimates and a

support vector machine classifier, was shown to be able to predict diagnosis of 53

lifetime depression participants versus 112 never-depressed healthy controls with

a balanced accuracy of 72%. Data were collected at two separate collection sites.

Participants performed a probabilistic reward learning task during fMRI scanning

and a DCM was fitted to their behaviour and neuronal data (Chapter 5). Estimated

parameters were used as features to train a machine learning classifier which re-

sulted in good cross-validated predictive accuracy (70%), sensitivity (75%), and

specificity (68%). The results show that estimated effective connectivity parameters

contain information about depression status.

The identification of reliable and clinically useful biomarkers for objective diag-

noses is an important goal in the field of computational psychiatry (Adams, Huys,

and Roiser, 2016; Huys, Maia, and Frank, 2016). Neuroimaging has a lot of poten-

tial in this regard (Abi-Dargham and Horga, 2016; Stephan, Iglesias, Heinzle, and

Diaconescu, 2015), and the current generative embedding work provides a proof-of-

concept of how task-based fMRI data could be used for objective diagnosis.

In a clinical setting, it would arguably be most practical to use T1-weighted struc-

tural scans for prediction. They are very quick to acquire (<5 minutes), do not

require cooperation or understanding from the participant (other than not moving)

and the necessary equipment and trained staff are already in place at sites with an
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MRI scanner (Steele and Paulus, 2019). Using structural MRI scans, Costafreda, Chu,

Ashburner, and Fu (2009) reported a diagnostic accuracy of 68% for 37 depressed

patients versus 37 healthy controls. Predicting remission or non-remission after

eight weeks of treatment of 18 patients who received antidepressant medication was

possible with 89% accuracy. Prediction of CBT treatment outcome of 12 patients

was however not possible (Costafreda, Chu, Ashburner, and Fu, 2009). A study

including 23 refractory depressive disorder, 23 non-refractory depressive disorder,

and 23 healthy control participants reported accuracies between 67% and 76% for

the three between-groups classifiers (Gong, Wu, Scarpazza, et al., 2011). Using struc-

tural scans from two different sites, trained machine learning models were able to

distinguish between 30 MDD patients and 32 controls with 90% accuracy (Mwangi,

Ebmeier, Matthews, and Steele, 2012), and were able predict the patients’ illness

severity well (Mwangi, Matthews, and Steele, 2011). Johnston, Steele, Tolomeo, et al.

(2015) reported 85% accuracy for the classification of 20 participants with lifetime

depression versus 21 never-depressed controls using structural MRI.

Although these studies show there is promise in this approach, Abi-Dargham and

Horga (2016) argued that many pathological features of psychiatric disorders may be

elusive and not detectable using current neuroimaging techniques. While a diseased

brain may appear typical at rest it may display abnormalities while performing a

task (Abi-Dargham and Horga, 2016)—for example, effective connectivity may play

an important role in depression (Chapter 5).

Task-based fMRI studies using whole brain functional images as features for ma-

chine learning have shown potential for diagnostic classification. An early study

using the brain activity pattern during a sad-faces processing achieved 86% accuracy

in the classification of 19 MDD patients versus 19 controls (Fu, Mourao-Miranda,

Costafreda, et al., 2008), and in a subset of the data it was shown that 7 patients

who responded to CBT could be distinguished from 7 non-responders with 79%

accuracy (Costafreda, Khanna, Mourao-Miranda, and Fu, 2009). A later study in-

cluded 19 treatment-resistant MDD patients and 21 healthy controls performing

an instrumental reinforcement learning task (Johnston, Tolomeo, Gradin, et al.,

2015). They showed that diagnostic classification based on fMRI contrast images of

both win and loss events was possible with 84% and 97% accuracy respectively. A

recent study by Bürger, Redlich, Grotegerd, et al. (2017) included 36 bipolar and 36

unipolar depressed patients and 36 healthy controls who performed an emotional

face matching task. Classifiers based on contrast images achieved between 63% and

72% accuracy in distinguishing unipolar depressed participants from depressed

bipolar patients or healthy controls (Bürger, Redlich, Grotegerd, et al., 2017).

It is worth noting that small studies often include homogeneous patient groups

and confidence in the accuracy of the diagnosis can be high. Studies including

large samples will usually include more heterogeneous groups which can increase

generalisability to real world data even though accuracy will often be lower (Schnack
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and Kahn, 2016). However, it is also worth emphasising that quality control is crucial

which might sometimes be neglected in large studies (Johnston, Mwangi, Matthews,

et al., 2013). While a routinely collected image may be acceptable for radiologists,

small artefacts in the image, which can be caused by a participant’s movement or

non-optimal scanner setup, can have large effects on machine learning classifiers.

Artefacts can increase inter-subject variance and might not be balanced between

groups (Johnston, Mwangi, Matthews, et al., 2013).

The current study included a far greater number of participants than most previous

studies and the data was collected at two different sites, making the results poten-

tially more generalisable than previous work. It focused on the identification of

lifetime (past or current) MDD rather than just current depression and highlighted

that differences in effective connectivity may be a an important feature of depres-

sive illness; perhaps indicating that abnormal connectivity is either a vulnerability

factor or a (permanent) consequence of the disease. As the mean age of our sample

was almost sixty (Table 5.1), and the typical age of onset of depression is much

younger (Kessler and Bromet, 2013), it is tempting to conjecture that almost all

lifetime MDD cases have already materialised.

To assess the importance of individual features we inspected the weights the classi-

fier assigned to them. Results showed that a large number of network parameters

were important for the diagnostic classification. A linear relationship between de-

pression symptoms severity and the task-independent top-down connectivity from

prefrontal cortex to ventral striatum was found using a hierarchical DCM approach

(Chapter 5). Here, feature ranking indicated that this connection was not important

for the prediction of lifetime depression. This might be surprising as both remitted

and currently depressed patients usually report higher depressive severity, but no-

tably, the correlation found in Chapter 5 was found to not just be an effect of group

and the results in this chapter further support this notion.

Although the number of current-MDD patients was limited, we found that predictive

accuracy was very similar for patients who were currently depressed and subjects

who had previously experienced depression. This indicated it was not “easier” for

the classifier to predict MDD (or greater severity of depression symptoms) and

feature weights likely represent a more fundamental difference between never-

depressed healthy participants and lifetime sufferers. Changes in connectivity

might be related to greater susceptibility to depression or a consequence of the

illness, but with the available data it is not possible to distinguish between these

possibilities. Notably, compared to other clinical studies the severity of depression

in our sample was mild and very few volunteers were long term patients. For

example, Mwangi, Ebmeier, Matthews, and Steele (2012) only recruited treatment-

resistant MDD patients with severe and enduring illness, making (identification

of) brain structure abnormalities (c.f. Schmaal, Veltman, Erp, et al., 2016; Schmaal,



102Chapter 6. A generative embedding approach to detecting lifetime depression

Hibar, Sämann, et al., 2017) more likely and therefore perhaps more applicable for

automatic classification.

It is important to point out that the DCM region selection was performed using

a combination of individual activation and brain anatomy but also whole group

activation. This means left-out data influenced the region selection and therefore

(indirectly) DCM parameter estimation of the training data. To get a completely

unbiased estimate it would have been necessary to repeat region selection and

DCM estimation for each left-out participant, which would have resulted in the

estimation of 1652 = 27225 models. Given our large sample, the substantial compu-

tational time required (≈ 15 minutes to fit a single model), and the likely very small

influence every individual participant had on region selection we did not go down

this route. Importantly, the whole brain contrasts used for region selection were

activations and not QIDS correlations and therefore did not include any information

about depression severity or status. In Chapter 5 we included information about

depression at the second level. For each participant we first estimated a single full

DCM which included parameters for all the connections and modulations. We then

took these parameter estimates to the group level where we included information

about depression severity. QIDS was included as covariate and model comparison

(and model reduction) was performed on the second level, meaning models with

and without associations of connections with depression severity were compared.

In the current chapter we only used the estimated DCM parameters from the full

DCM of each participant without going to the group level.

We could have also incorporated a group model into the current work by first

estimating a group model (with or without additional covariates such as QIDS) for

each training fold and then using individual estimates constrained by this group

prior as features for the classification. For each left out subject we would then first

apply the group prior to re-estimate their DCM before using the parameters as

features. This might be a fruitful path for future studies including less data. It should

be noted that this makes the assumption that subjects are sampled from a single

population distribution.

A fundamental challenge to the development of clinically useful biomarkers for

psychiatry is the lack of gold standards for diagnoses (Abi-Dargham and Horga,

2016). In our case this issue might be further compounded by the fact that past

or remitted MDD are even more difficult to diagnose accurately. Mourão-Miranda,

Hardoon, Hahn, et al. (2011) showed how one approach to this might be to use

a one-class approach in which patients are modelled as “outliers”, although this

does not provide any information about the specific diagnosis. Possibly the most

promising approach for future work might be to include multiple groups displaying

different pathological phenotypes.
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Increasing evidence points towards connectivity abnormalities in the brain in de-

pression (Chapter 5). Our work indicates that information about an individual’s

connectivity profile during a reward-based decision-making task could be used

to predict their diagnosis with high accuracy. Importantly, it provides additional

evidence for the importance of connectivity in the disease and highlights the po-

tential of currently available data-driven approaches (see also Steele and Paulus,

2019). It also indicates that a patient’s connectivity profile might contain other

vital information related to their depression, for example which therapy would best

be suited for them. Although that question would be of much greater interest to

clinicians, the current data can not help answer it. However, the novel generative

embedding approach incorporating effective connectivity parameters could readily

be applied to a suitable data set. A longitudinal study might be a good way to ap-

proach this. Data collected at different time points, for example before the start of

(different types of) treatments and a year later, could be used to train a model to

predict an individual’s probability of recovery given a specific treatment. Ethical

concerns aside, this could then be used in a randomised doubly blinded control trial

in which clinicians and the model prescribe treatment for different sets of patients

to compare outcomes.

In conclusion, we found support for our hypothesis that a generative embedding

approach to detecting lifetime depression is viable. A generative model (DCM)

was fitted to fMRI data and its parameters were then used for diagnostic classifi-

cation. Results showed that for best performance a large number of connectivity

estimates were included during feature selection, indicating that lifetime depression

is related to a large number of changes in whole-brain connectivity. Generative

embedding approaches, combining effective connectivity models with machine

learning models, might be promising not only for diagnosis but also prognosis of

treatment outcomes.
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Rank Weight (median) Feature

1 0.39 B(VA to VA, no-choice)

2 0.34 A(VA to VA)

3 -0.33 B(mPC to mPC, no-choice)

4 -0.32 B(VS to mPC, choice)

5 0.30 A(VA to mPC)

6 -0.24 B(VA to mPC, no-reward)

7 -0.24 B(VS to mPC, reward)

8 -0.24 A(VS to VA)

9 0.21 B(VA to VA, reward)

10 -0.20 B(mPC to mPC, no-reward)

11 0.19 B(VA to VS, no-choice)

12 -0.18 A(mPC to VA)

13 0.18 B(VS to mPC, no-choice)

14 0.16 B(VA to mPC, reward)

15 0.15 A(mPC to mPC)

16 -0.14 B(VA to VS, choice)

17 0.13 B(mPC to VS, choice)

18 -0.12 B(mPC to VA, reward)

19 -0.12 B(mPC to VA, no-choice)

20 -0.11 A(VA to VS)

21 0.10 B(VA to VA, no-reward)

22 -0.10 B(VA to VS, no-reward)

23 -0.08 B(VS to VA, no-choice)

24 0.08 B(VA to VA, choice)

25 -0.07 A(VS to mPC)

26 0.06 B(VA to mPC, choice)

27 -0.06 B(VA to mPC, no-choice)

28 -0.05 B(VS to VA, reward)

29 -0.04 B(VS to VS, reward)

30 -0.04 A(VS to VS)

31 0.04 B(VA to VS, reward)

32 0.03 B(VS to VS, no-reward)

33 0.03 B(mPC to mPC, choice)

TABLE 6.1: Ranking of features. Median weights were calculated
across classifiers and features were then ranked according to the
absolute weight. Features not included in this table had a median

weight of zero.
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Chapter 7

Discussion

In this thesis I described my contributions towards improving the scientific under-

standing of depression. A computational approach was used, employing mathemat-

ical models to describe decision making behaviour and neuronal activity. Evidence

was reported supporting the notion that depressive symptomatology is associated

with individual differences in behaviour and brain function.

Chapter 2 reviewed the literature from a computational perspective, aiming to

be accessible for students. Major depression, its symptoms and diagnosis, and

theories about biological bases were described. Previous studies incorporating

computational models, including neural network, drift diffusion, and reinforcement

learning models, were then reviewed. A case study, relating reward learning to the

core depression symptom anhedonia, was described in detail.

Chapters 3-4 described the investigation of value-based decision-making abnor-

malities in major depressive disorder. A novel experimental task was performed

by a group of unmedicated patients suffering from major depressive disorder and

a group of matched healthy control participants during fMRI scanning. Fractal

images were displayed, followed by a binary outcome picture indicating “reward”

or “no-reward”. Based on four observations for each type of fractal, subjects were

asked to estimate the probability of reward. For example, if a fractal was followed by

reward three times and followed by no-reward once, they were expected to estimate

the probability of reward as 3/4 = 75%. During intermittent decision trials a choice

(in favour of the higher number) between this estimated probability and an explicit

probability, for example 65%, had to be made. In Chapter 3 the behavioural and

computational modelling analysis was described. Multiple models, representing

distinct hypotheses about participants’ learning, were fitted to the data and the

best model was chosen using formal model comparison. Results indicated that

the patient group was characterised by behavioural impairments during both the

passive observation (value estimation) phases and the active decision making trials.

Depressed subjects displayed lower memory or increased discounting of previous

value estimations and their ability to use their value estimations to make decisions

appeared diminished.
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The following Chapter 4 was devoted to the analysis of the neuronal basis of the

groups’ behaviour. Model-free fMRI analysis was used to replicate results of pre-

vious studies showing blunted reward activation in the striatum in depression. At

decision time a mid-cingulate cortex (aMCC) region, an area crucial for decision

making, showed increased activity in depression. The best-fitting computational

model of behaviour was simulated, given the estimated parameters of individu-

als, to generate value signals for use in model-based fMRI analysis. Positive value

encoding was larger in controls compared to patients in areas notably including

(para-)hippocampus and rostral anterior cingulate (rACC). Within the latter region

there was a significant negative correlation between patients’ illness severity and

the strength of their value encoding signal. A logistic regression classifier was able

to correctly predict diagnostic status of 27 out of 34 (79%) participants just from

the encoding signal strength of the two regions. Importantly, there is compelling

evidence for the involvement of prefrontal regions in internal value representation

in healthy subjects (Gläscher, Hampton, and O’doherty, 2008; Bartra, McGuire, and

Kable, 2013). Decisions were modelled, as is common, by assuming that a choice

between two options depended on the difference between the values of the two

options. This was formalised by applying a softmax decision function, including

a steepness of temperature parameter, to the difference of individuals’ estimated

fractal value and the alternative explicit numeric probability value. Further link-

ing the behavioural model to localised brain function, there were significant value

difference encoding signals in aMCC and rACC across participants. MDD patients

displayed reduced connectivity between aMCC and rACC regions, suggesting im-

pairments in the communication and use of reward value estimates related to these

rostral and dorsal prefrontal regions in depression.

Hence Chapters 3 and 4 provided support for the hypotheses of abnormal reward

learning function in major depressive disorder. Behaviour and fMRI revealed group

differences which were related to abnormal reward valuation in MDD. A number of

brain regions were highlighted, prominently including ventral striatum and ventral

and dorsal prefrontal cortex regions.

Chapter 5 included data from a large community-based sample of individuals who

performed a novel reward-based learning task. In each trial participants had to

choose between a yellow and a blue square stimulus which were associated with

different reward probabilities. However, subjects were only allowed to choose for

themselves in half of the trials and had to follow the computer’s choice otherwise. A

dimensional approach was chosen for the analysis, in line with recommendations

from the Research Domain Criteria (RDoC; Insel, Cuthbert, Garvey, et al., 2010),

looking at variation across different levels of illness severity. Replicating a number of

previous studies, it was found that increased mood symptoms were associated with

decreased reward signals in regions including the striatum. Results of a Dynamic

Causal Modelling (DCM) analysis showed that effective connectivity between basal
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ganglia and prefrontal cortex was related to mood symptoms. Specifically, increased

depression symptom severity was associated with decreased top-down medial

prefrontal cortex to ventral striatum connectivity. Importantly, various theories

about depression have proposed that abnormal cortical-limbic connectivity plays

an important role and these results provided important supporting evidence using

an effective connectivity analysis based on a community-based sample.

Chapter 6 presented a novel generative embedding approach to detecting life-

time depression. Estimated DCM parameters were used as features for a support

vector machine classifier which achieved a balanced accuracy of 72%. The proof-

of-concept study showed how combining a theory-driven model with machine

learning methods may allow for accurate prediction of diagnoses. Furthermore, it

also provided novel support for the supposition that major depression is related to

(information contained within) effective connectivity. The identification of objec-

tive biomarkers is an important goal of computational psychiatry and neuroimaging

based biomarkers are especially promising in a clinical setting (Abi-Dargham and

Horga, 2016). It is conceivable that parameters of computational models of be-

haviour showing abnormalities in MDD (c.f. Chapter 3) might be especially useful

in other settings. For example, automated assessment or screening to decide who

should come into the clinic for further assessment.

It is worth highlighting a few shared limitations. Depression comes in many shapes,

forms and severities. Two MDD patients could experience almost entirely different

sets of symptoms owing to the fact that a standard diagnosis is mostly based on

clinical consensus without good understanding of the biological basis (Chapter 2).

While mild depression can be difficult to distinguish from normal everyday mood

swings, patients with moderate to severe depression will display more symptoms

with higher impact than what is required as minimum for diagnosis. It is crucial

to study the full range of emotions as is emphasised by approaches such as RDoC

and it is also important to realise that severe and/or treatment-resistant depression

might be more than just “mild depression but slightly more extreme”. There might be

similar differences between mild and severe depression as there are between healthy

and mild-moderate depression (Otte, Gold, Penninx, et al., 2016) and there are

discussions about the possibility that treatment-resistant MDD might be a unique

subtype of depression (Fagiolini and Kupfer, 2003). While both pharmacotherapy

and psychotherapy are recommended treatment options for mild and moderate

depression, only medication treatment might be effective and is recommended for

patients with severe depression (Otte, Gold, Penninx, et al., 2016; National Institute

for Health and Care Excellence (NICE), 2010). It is therefore worth emphasising

that the results in this thesis are based on moderate depression (Chapters 3-4) and

mild/subthreshold depression symptoms (Chapters 5-6).

Severely depressed patients are especially hard to recruit into studies because

they are less common and by definition very unmotivated. In addition they are
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usually medicated and it would be unethical to stop the therapy, and comor-

bidity is likely (Otte, Gold, Penninx, et al., 2016). This means studies including

treatment-resistant severely depressed patients (e.g. Steele, Kumar, and Ebmeier,

2007; Mwangi, Ebmeier, Matthews, and Steele, 2012) necessarily include small-

er samples but confidence in diagnosis is increased and the group will be much

more homogeneous. The likelihood of detectable brain function and structure

abnormalities is also higher which might be a partial explanation for higher di-

agnostic accuracy (e.g. Mwangi, Ebmeier, Matthews, and Steele, 2012) in smaller

machine learning studies (Schnack and Kahn, 2016). However, larger machine

learning studies such as the one described in Chapter 6 which included a rela-

tively heterogeneous1 sample will have larger generalisability at the cost of lower

accuracy (Schnack and Kahn, 2016; see also discussion in Chapter 6).

The analysis of fMRI relied on many underlying assumptions and parameter settings.

For example, it was assumed that BOLD signal reflects cognition and that the general

linear modelling approach is sensible. Parameter settings affect a variety of things

such as the amount of spatial smoothing or which brain template to use for spatial

normalisation. In this thesis standard SPM settings (and its subjacent assumptions

about neurophysiology and analysis strategy) were used as much as possible and it

is reassuring that when alternative settings were explored they usually yielded very

similar results. Regarding the computational modelling of behaviour we made the

assumptions that all participants’ parameters were sampled from the same group

prior which was empirically estimated (see Chapter 3 and Appendix A for details).

One big advantage of this approach is that it can improve parameter estimation

and suppress outliers. However, it would also be reasonable to assume that, for

example, patients and controls would be better modelled using separate prior

distributions. In principle this would be straightforward to address using formal

model comparison (i.e. comparing a model using a single prior versus a model

using two separate priors). In practice this raises questions whether there should

be also be different priors for individual parameters (as opposed to the whole set

of parameters) and how to address the co-variance of parameters across different

priors. In addition, studies, such as the one described in Chapter 5, might include

participants which would not clearly fall into either a patient or a control group.

This thesis was written within the context of the brain’s positive reinforcement

or reward system. As discussed in Chapter 2, depression is strongly associated

with abnormalities in reward processing and its sub-domains. However, there

is good evidence that aversive processing is also impaired in depressive illness.

Although an omission of an expected reward may be felt as punishing, reward and

punishment processing likely involve different neuronal bases (Chen, Takahashi,

Nakagawa, et al., 2015). It has been suggested that in addition to decreased reward

1The study included subjects with a range of depression symptom severities but was still homoge-
neous in the sense that it primarily included “old, white, Scottish” participants.
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processing depression is also characterised by increased aversive processing (Chen,

Takahashi, Nakagawa, et al., 2015; Johnston, Tolomeo, Gradin, et al., 2015). Indeed,

most initial major depressive episodes follow a major negative life event (Pizzagalli,

2014). The most common antidepressants work by altering serotonin levels in the

brain (Eshel and Roiser, 2010) and the neurotransmitter has long been implicated

in aversive processing (Deakin, 2013). The presented results should therefore be

seen as implicitly conditioned on a reward processing context. For example, the

DCM analysis focused on “task-independent” connectivity, as opposed to the “task-

dependent” driving inputs and modulations, but although the DCM framework

(attempts to) divide connectivity in this way, the results are still dependent on the

context of the task.

In the case study (Chapter 2) I described how the absence of expected reward could

be perceived as punishment. Huys, Pizzagalli, Bogdan, and Dayan (2013) included

this in one of their models by adjusting the reward prediction error depending

on presence or absence of reward. The model included two separate sensitivity

parameters scaling reward and no-reward outcomes. Similarly, Chapter 3 included

models which tested whether learning was different following reward versus no-

reward (“punishment”). Two different learning rate parameters were included which

scaled the prediction error depending on the outcome. These experiments could

potentially be translated into the punishment domain in a straightforward way, by

changing the outcome to zero points (positive outcome) or a loss of points (negative

outcome).

Depression seems to be characterised by an abnormal response to negative feed-

back (Eshel and Roiser, 2010). This reaction can either be a hypersensitivity or a

“catastrophic response” to failure (Beats, Sahakian, and Levy, 1996; Tavares, Clark,

Furey, et al., 2008), or it could indicate a difficulty to learn from negative out-

comes (Eshel and Roiser, 2010), depending on the context or type of punishment.

However, associations between increased decision-making performance during

tasks with the goal of punishment minimisation have also been reported (Beevers,

Worthy, Gorlick, et al., 2013). Katz, Matanky, Aviram, and Yovel (2020) reported

meta-analytic evidence for enhanced punishment sensitivity in both depression

and anxiety, but altered reward sensitivity only in depression. Depression and

anxiety are highly comorbid (Watson, 2009), and anxiety is especially common in

more severe depression (Kessler, Chiu, Demler, and Walters, 2005). The two disor-

ders also represent risk factors of each other, and share some symptoms and basic

mechanisms (Katz, Matanky, Aviram, and Yovel, 2020).

As discussed in Chapter 1, analysis of the brain can be done at different levels of

analyses. Although largely ignored in this thesis, biophysical computational models

of major depression do exist (Mäki-Marttunen, Kaufmann, Elvsåshagen, et al., 2019).

For example, Ramirez-Mahaluf, Roxin, Mayberg, and Compte (2017) showed how a
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change in neurotransmitter uptake could cause aberrant activity in cortical regions,

and how simulated clinical treatments could counteract this.

Other environmental conditions and lifestyle factors not discussed in this thesis

have been shown to influence (and be influenced by) depression symptoms. For

example, sleep, diet, and exercise play important roles in the development, progres-

sion and treatment of depression (Lopresti, Hood, and Drummond, 2013). Treat-

ment of insomnia may prevent the development of depression (Alvaro, Roberts, and

Harris, 2013). Depression symptoms have been shown to be associated negatively

with Mediterranean diet and positively with the high consumption of sweets, fast

food, and processed pastries (Lopresti, Hood, and Drummond, 2013). Although

inconclusive, there is some evidence for the efficacy of exercise as therapy for de-

pression (Cooney, Dwan, Greig, et al., 2013).

In this thesis variations of a “two-alternative forced choice” task were used, in com-

bination with reinforcement learning, to study decision making. Participants were

presented with two options and had to choose one of them within a small time

frame. An outcome was then presented from which subjects could learn. An associ-

ation between major depression and behavioural differences in one of the tasks was

found (Chapter 3), but there did not appear to be an association between depression

symptom severity and performance during a different task (Chapter 5). Notably, a

number of previous fMRI studies reporting significant differences in brain activity

did not find behavioural differences between groups of MDD patients and healthy

controls (Gradin, Kumar, Waiter, et al., 2011; Johnston, Tolomeo, Gradin, et al., 2015).

Differences in brain function in the absence of (statistically significant) behavioural

effects might indicate compensatory mechanisms but it is unclear when and how

exactly such mechanisms work—and why sometimes they do not. Furthermore it is

not always obvious how behaviour during studies within an artificial experimental

environment maps onto behaviour in the real world. This artificial nature of tasks

might be especially pronounced during fMRI scanning where subjects are put into a

tight, uncomfortable tube, commonly with their head fixed and are asked to lie very

still (Muehlhan, Lueken, Wittchen, and Kirschbaum, 2011). It is also possible that

the effects of such an aversive environment are greater for MDD patients compared

to healthy participants.

It will be important to study depression in ecologically valid environments. A recent

study utilised smartphones to collect data during real world activities and showed

how this data may be used to predict changes in users’ depression symptom severity

(Canzian and Musolesi, 2015). Smartphone applications have great potential for

disease screening, monitoring and managing (BinDhim, Shaman, Trevena, et al.,

2015) although in their review about mobile apps offering support for depressed

users Huguet, Rao, McGrath, et al. (2016) found that current efficacy is questionable.

Further studies about how to improve effectiveness and usability while increasing

participants’ engagement and minimising dropout are needed.
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Ultimately one of the most important goals of depression research is to develop

effective treatments but better understanding of the disease is needed. Neural

substrates and associated abnormalities need to be reliably identified in patients so

they can be translated to animal models. These can then be used to screen novel

antidepressants. The computational psychiatry approach promises to lead to many

new insights into neurobehavioural mechanisms and aid in the discovery of novel

therapeutic targets. While applied computational psychiatry and drug discovery

will likely still require many years of research, it has been argued that currently

available neuroscience techniques can and should be used today (McGuire, Sato,

Mechelli, et al., 2015; Steele and Paulus, 2019). This requires additional training for

psychiatrists and a collaborative effort with stakeholders, politicians and funding

agencies and a general cultural change (Steele and Paulus, 2019; McGuire, Sato,

Mechelli, et al., 2015). Importantly, this also means that NHS psychiatric services

need to routinely collect quantitative data from individual patients (Steele and

Paulus, 2019). Objective clinically useful predictions for individual patients are

possible using machine learning techniques (Steele and Paulus, 2019) and they,

maybe for the first time in over half a century, give hope for tangible clinical progress.

And so I will end this thesis the same way it began; with a quote from William Styron.

But this time it endows us with hope. The hope that depression is not the end. The

hope that restoration is possible. The hope of a return to the shining world.

“For those who have dwelt in depression’s dark wood, and known its

inexplicable agony, their return from the abyss is not unlike the ascent of

the poet, trudging upward and upward out of hell’s black depths and at

last emerging into what he saw as ‘the shining world.’ There, whoever has

been restored to health has almost always been restored to the capacity for

serenity and joy, and this may be indemnity enough for having endured

the despair beyond despair.

E quindi uscimmo a riveder le stelle.

And so we came forth, and once again beheld the stars.”

— William Styron, Darkness Visible: A Memoir of Madness
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This chapter contains the Supplementary Materials for Chapter 3 which was pub-

lished as S. Rupprechter, A. Stankevicius, Q. J. M. Huys, J. D. Steele, et al. (2018).

“Major Depression Impairs the Use of Reward Values for Decision-Making”. In:

Scientific Reports 8.13798.



Supplement 

Major depression impairs the use of reward values

for decision-making

S. Rupprechter, A. Stankevicius, Q. J. M. Huys, J. D. Steele, P. Seriès

Experiment Details

First, personality and clinical questionnaires were filled out and an interview was conducted, which

lasted approximately one hour. This was followed by a training session lasting between 10 and 20

minutes. Final 15 minutes of preparation included subjects changing and a safety check by the NHS

personnel. Scanning lasted approximately 50 minutes and the experiment ended with a 5 minutes

debriefing session and monetary reimbursement. Every participant was paid £20. Their scores were

converted into a percentage and rounded up. Performance-dependent bonus was defined as that

percentage number divided by ten, so for example if they correctly responded in 66% of trials, they

would receive an additional £7.

The 60 trials were divided into 4 periods, which again were split into three blocks each. After each

period (every 15 minutes), there was a brief rest period. In each block, participants observed five

different  fractals  exactly  four  times  and made  5  decisions.  Fractals  were  presented  for  3  to  4

seconds and outcomes for 2.5 to 3.5 seconds. Decisions had to be made within 5 seconds. Null

events (blank screens without interaction) and decisions (responding to a simple response prompt)

were sometimes displayed  (between 1.25 and 7.5 seconds) to obtain a baseline of brain activity.

Other modifications from the original task of Stankevicius et al.  (6) included the display of the

reward as a pound symbol instead of a treasure chest and simplified instructions that were more

accessible to people suffering from depressive symptoms.
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Figure  S1. Correlation  matrix  of  questionnaire  scores  of  the  fMRI  dataset.  As  expected,

questionnaire scores are often correlated with on another. See the section about additional analysis

details  below  for  more  information  about  correlations  between  beta,  neuroticism  and  other

questionnaire scores.

Figure S2. Average reaction times of participants in the fMRI dataset. Error bars represent standard

errors. Mean response times were not significantly different between groups (Welch’s t-test; t(26.6)

= 0.692, p = .495).
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Questionnaire Patients Controls Score Range p-value

fMRI dataset

BDI 24.7 ± 13.1 4.2 ± 5.6 0 – 63 < 0.001

BDA 4.8 ± 2.9 0.5 ± 0.9 0 – 12 < 0.001

BDI\A 19.9 ± 10.8 3.7 ± 4.8 0 – 51 < 0.001

DSAB 15.0 ± 4.0 18.1 ± 2.7 0 – 24 0.013

HAD-A 12.3 ± 5.2 4.2 ± 2.3 0 – 21 < 0.001

HAD-D 8.6 ± 4.8 1.4 ± 2.1 0 – 21 < 0.001

HAMA 17.3 ± 7.0 1.4 ± 2.6 0 – 56 < 0.001

LOT-R 9.1 ± 5.5 18.4 ± 3.1 0 – 24 < 0.001

MADRS 17.7 ± 6.6 1.4 ± 2.6 0 – 60 < 0.001

NART 46.8 ± 4.2 46.6 ± 3.2 0 – 50 0.873

RSE 13.5 ± 6.9 24.5 ± 4.9 0 – 30 < 0.001

SHAPS 37.8 ± 8.5 49.6 ± 6.0 14 – 56 < 0.001

Agreeableness 39.5 ± 7.2 46.7 ± 5.9 12 – 60 0.004

Conscientiousness 36.3 ± 10.5 45.1 ± 7.0 12 – 60 0.008

Extraversion 30.5 ± 8.1 44.5 ± 5.2 12 – 60 < 0.001

Neuroticism 46.3 ± 7.1 29.8 ± 8.0 12 – 60 < 0.001

Openness 41.1 ± 5.1 46.5 ± 4.4 12 – 60 0.003

Pilot dataset

BDI 27.7 10.1 ± 12.2 0 – 63 -

DSAB 13.7 14.8 ± 3.9 0 – 24 -

HAD-A 9.0 11.1 ± 3.5 0 – 21 -

HAD-D 7.3 8.4 ± 1.5 0 – 21 -

HAMA 18.0 5.1 ± 7.1 0 – 56 -

LOT-R 9.3 14.5 ± 5.5 0 – 24 -

MADRS 18.0 5.1 ± 7.1 0 – 60 -

NART 45.3 44.0 ± 11.3 0 – 50 -

RSE 18.7 9.5 ± 6.6 0 – 30 -

SHAPS 7.7 7.0 ± 1.1 14 – 56 -

Agreeableness 43.0 45.0 ± 5.8 12 – 60 -

Conscientiousness 32.0 43.3 ± 8.2 12 – 60 -

Extraversion 27.7 41.6 ± 6.9 12 – 60 -

Neuroticism 50.7 34.4 ± 11.5 12 – 60 -

Openness 46.7 46.2 ± 6.3 12 – 60 -
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Table S1. Summary of questionnaire scores of participant groups and p-values for Welch’s t-tests

(fMRI dataset). Due the small number of patients included in the Pilot dataset, we did not calculate

standard deviations for them and did not perform t-tests. BDI = Beck Depression Inventory; DSAB

= Digit Score Part B; HAD = Hospital Anxiety and Depression Scale; HAMA = Hamilton Anxiety

Rating  Scale;  LOT-R  =  Life  Orientation  Test  –  Revised;  MADRS  =  Montgomery-Åsberg

Depression Rating Scale; NART = National Adult Reading Test; RSE = Rosenberg Self-Esteem

Scale; SHAPS = Snaith-Hamilton Pleasure Scale; Scores displayed as mean ± std.
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Figure S3. Boxplots of four questionnaires assessing depressive symptom severity (fMRI dataset).

Patients  had significantly  higher  scores  than  controls  on  the  three  scales  measuring  depressive

severity  (BDI,  HAD-D,  MADRS)  and  significantly  lower  scores  on  SHAPS,  which  measures

pleasure (see Table S1). 
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Figure S4. Boxplots of four questionnaires assessing depressive symptom severity (Pilot dataset).

Note that the Snaith-Hamilton Pleasure Scale (SHAPS) was scored differently here: Each answer

was scored either as zero (for two of the four possible answer options) or one (two alternative

options), instead of scoring it one through four.
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Additional Analyses Details

For our winning model we also tested whether our groups were better described using a shared

population prior or separate priors for each group.  Our data (fMRI dataset) was best described

using a single population prior (∆iBIC = 13.5).

Estimated model parameters were compared between groups using a Wilcoxon rank sum test which

does not require an assumption of normality. (We used MATLAB’s  jbtest and  lillietest to test for

normality. In both cases the tests rejected the null hypothesis that the data comes from a normal

distribution for the memory parameter for one of the groups, but not for the beta parameter. Using

Welch’s t-test instead gave us an almost identical result in terms of p value for the beta parameter.)

Pearson correlation analysis across groups was performed, for which we reported classical p values.

Below, we additionally used a Bayesian hypothesis test (1).  A Bayes factor (BF10) larger than 3

indicates substantial evidence in favour of the alternative hypothesis (presence of a correlation).

Classical  p  values  may overestimate  the  evidence  against  the  null  hypothesis  (2),  but  are  also

reported.  All analyses were performed in MATLAB (R) R2017a (The MathWorks, Inc., Natick,

MA).

Additional correlations with beta

Neuroticism was significantly negatively correlated with the inverse temperature parameter (r =

-0.491, p = .004) across groups in the fMRI dataset (Figure S5). Because it is possible that this

correlation is a function of group differences, we performed additional analyses taking into account

group and also included our Pilot dataset after separately fitting the Leaky model. After controlling

for  group  in  the  fMRI  dataset,  there  was  a  non-significant  but  trending  negative  relationship

between beta and neuroticism (r=-0.301, p=.100). This is unsurprising because the majority of our

controls scored low in neuroticism, while most of our patients scored high. After controlling for

group in the Pilot dataset, there was a significant negative correlation between beta and neuroticism

(r=-0.433, p=0.039). Note that this dataset includes several control participants who scored high on

neuroticism. In the pooled data, we again found a significant negative relationship between beta and

neuroticism (t=-2.986, p=.004) after controlling for group and dataset version. Similarly, there was a

significant negative relationship between beta and neuroticism (t(35)=-2.679, p=.011) combining

only the control participants of both datasets, controlling for dataset version (reported in the main

text). There was no significant correlation within the combined patients after correcting for dataset

version (t(15)=-1.082, p=.297).
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In  the  fMRI  dataset  (but  not  the  Pilot  dataset)  there  were  also  (weaker)  positive  correlations

between β and extraversion (r = 0.423, BF10 = 2.46, p = .016), RSE (r = 0.410, BF10 = 2.01, p = .

020), and LOT-R (r = 0.382, BF10 = 1.38, p = .031) scores, with this being at an “anecdotal” level

of evidence (BF10 < 3). Since these scores were negatively correlated with neuroticism (Figure S1),

we performed additional analyses to check whether neuroticism was the driving factor in these

correlations and concluded that it was indeed so:

We  fitted  an  additional  general  linear  regression  model  (using  MATLAB’s  fitglm)  including

coefficients for neuroticism, extraversion, RSE, LOT-R, group membership and dataset version to

the combined dataset. None of the coefficients were significant, but the p-value for neuroticism

shows  a  trend  (t=-1.826,  p=.074),  while  all  other  coefficients  were  non-significant  (p  >  0.6),

indicating that neuroticism should be the variable of interest (Table S2).

Model 1: Beta ~ 1 + Neuroticism + Extraversion + RSE + LOTR + Group + Dataset

We then created a linear regression model by stepwise regression (stepwiseglm), starting from the

above Model 1, using the differences in the deviances of models as the criterion. Predictors where

removed (stepwise) if the deviance was greater than 0.05 and only neuroticism remained in the final

model (t=-3.286, p=.002):

Model 2: Beta ~ 1 + Neuroticism

This shows that indeed neuroticism is the variable of interest and was the driving factor for the

correlations between the other variables and beta in the fMRI dataset and suggests a possible link

between participants' neuroticism and their difficulty in making decisions based on their internal

value estimations across groups.

Coefficient t p

Neuroticism -1.826 0.074

Extraversion -0.321 0.749

RSE -0.290 0.772

LOT-R  0.367 0.715

Group -0.437 0.664

Dataset Version -0.510 0.612

Table S2. Results of t-tests on individual coefficients of Model 1.
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Optimism and previous results

The original Life Orientation Test (LOT) was revised (3) to the current form (LOT-R) after criticism

that LOT scores could not be distinguished from neuroticism scores and correlations with optimism

disappeared when controlled for neuroticism (4).  However, it has been shown that even these LOT-

R scores are not independent from neuroticism scores (5).  After re-analysing the published data

from Stankevicius et al. (6) using the methods described here (see Model Fitting Procedure), we

were not only able to confirm that LOT-R scores corresponded to a prior belief about rewards (r = .

524, p < 0.001), but also found that neuroticism was similarly related to a (negative) prior belief (r =

-.327, p = 0.019). 

In the present fMRI data,  the prior mean did not significantly correlate with LOT-R (r=-0.255,

p=.159)  nor  with  neuroticism (r=0.322,  p=.072),  nor  with  the  first  principal  component  of  our

questionnaires  measuring  depression  severity  (r=0.115,  p=.532),  nor  with  any of  the  individual

depression  questionnaire  scores  (BDI,  HAD-D,  MADRS,  SHAPS),  suggesting  that  neither

optimism, nor neuroticism, nor depression biased participants towards choosing a certain option.

We do not know for certain why we were unable to directly replicate previous results, but we have

several  hypotheses  and are  planning to  address  this  in  future  work.  Overall,  we think  that  we

introduced too  many important  changes  from the  original  experiment  and so  the  tasks  are  not

directly comparable any more: In our Pilot and fMRI experiments, trials lasted a lot longer than in

the published task (several seconds instead of fractions of a second). This was necessary to be able

to capture the BOLD response during scanning, but initially made the task too easy. We tried to

compensate for that by reducing the space of possible differences between the probability of reward

associated with the two targets (-30% to 30% instead of -100% to 100%), which introduced much

more uncertainty in the decisions. It is likely that the scanner induced additional uncertainty and

pressure and so overall the task was very hard. 

There were other differences as well: Each fractal was observed a variable number of times in the

published  data,  while  in  the  novel  tasks  each  fractal  was  observed  exactly  four  times.  While

participants only performed a short trial version of the task in the original version, here we trained

our subjects extensively (between 10 and 20 minutes) before the main experiment. In addition, (a)

there might be trait-cohorts interactions, (b) we might not have enough participants to reliably find

the effect, (c) the saliency of the rewards might have been different (empty or full treasure chest

versus a pound symbol or empty screen),  and (d) the performance-related monetary reward the

participants received after the experiments was different and likely led to differences in motivations.
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Figure  S5. A scatter  plot  of  neuroticism and  β,  a  parameter  in  our  best  fitting  Leaky  model

capturing  participants'  ability  to  follow  internal  value  estimations,  and  their  correlation  across

patients  and  control  subjects  of  both  datasets  (shown without  controlling  for  group  or  dataset

version: r=-0.408, p=.002; regression line with 95% confidence interval; after controlling for both

group  and dataset version: t=-2.986, p=.004). 
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Figure  S6. A scatter  plot  of  neuroticism and  β,  a  parameter  in  our  best  fitting  Leaky  model

capturing  participants'  ability  to  follow  internal  value  estimations,  and  their  correlation  across

control subjects of both datasets (without controlling for dataset version; regression line with 95%

confidence interval).

Bayesian model

The Bayesian model was introduced in detail by Stankevicius et al. (6). We briefly describe it here

for completeness:

At each decision point, participants are assumed to know how often the fractal i used in the decision

was shown ( N i ) and how often it was followed by reward ( ni ). It is further assumed that

subjects behave as Bayesian observers and use Bayes rule to compute a posterior, from which they

extract the mean to make decisions.  The prior is modelled as a Beta distribution, which is conjugate

to the binomial distribution. It can be shown that the posterior mean takes on the following form: 

where alpha and beta control the shape of the Beta distribution. The mean is then plugged into a

softmax function to obtain the probability of choosing fractal i as in the other models:
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Reward Sensitivity

In  previous  work  (12),  the  inverse  temperature  parameter  has  also  been  interpreted  as  reward

sensitivity and it has been argued that in some cases it can be substituted exactly for a reward

sensitivity parameter (9) in a RL model.  This however only holds when all options in the softmax

are estimated from observed rewards, which is not the case here, as we show in an example:

In our model, on the first timestep we will have  V (1 )
=ρ r1 . After the second timestep we will

have V (2 )
=A V (1 )

+ρ r ( 2)  which we can rewrite as V (2 )
=ρ ( A r (1 )

+r (2) ) . In general, after each step

we will have a  V  value that is a combination of  A  and  r  scaled by  ρ . Within the

softmax function there is a subtraction term  x – y  which is multiplied by  β .  This can be

rewritten as β x − β y , which means that the β  parameter scales both x  and y , just as

ρ  would scale each of the variables if they are both estimated on a trial-by-trial basis. However,

if one of these values is instead fixed (as is the case for our explicit probability),  ρ  will only

scale one of the variables, while  β  will still scale both of them, which makes the parameters

distinguishable.

Our beta parameter should therefore not be interpreted as being equivalent to a reward sensitivity

parameter. In our model, a high inverse temperature likely indicates that participants were able to

perform better in the highly uncertain environment and put more trust in their own estimations.

Lower  beta  values  indicate  that  participants  put  less  trust  in  their  estimations  and chose  more

randomly. It is perfectly possible (and given previous research it is indeed likely) that patients were

less  reward  sensitive  than  controls,  and  some  of  this  difference  may  be  captured  by  the  beta

parameter. It is, for example, possible that patients put less trust in their estimations because they

were less sensitive to the rewards in the first place, but this is not explicitly modelled here. To

reliably distinguish beta from reward sensitivity, we would need an additional reward sensitivity

parameter, which we included in one of our models (Leaky-rho). However, model comparison did

not reveal this to be the most parsimonious model and so we did not pursue this further.

Model Simulations

We provide additional mesh plots where we simulated data using the model while we systematically

varied both parameters (Figure S7). The plots show that variations in the two parameters lead to

different  effects:  While  the  number  of  correct  responses  alone  can  not  be  used  to  distinguish
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between the parameters, the effects are very different when separately looking at trials on which a

fractal response was correct and trials on which an explicit probability response was correct.

There is a clear positive correlation between the beta value and the (average) number of correct

responses on trials on which the explicit option was correct. Variations in the memory parameter

have little effect in that case. However, the memory parameter is important on trials on which the

fractal was the correct choice and higher values lead to more correct choices. The beta parameter

modulates  this  relationship  between  memory  and  number  of  correct  choices.  High beta  values

results in a large effect of memory on the number of correct responses, while low beta values flatten

out this effect.
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Figure  S7. Simulations  of  our  model  using  different  parameter  values  for  memory  (discount

parameter A) and β. The number of correct responses averaged over 100 simulations is shown. The

left column (A-C) shows the number of correct choices on trials for which ‘fractal’ was the correct

response as a function of the two parameters from different viewpoints of the grid. The right column

(D-F) shows the same for the number of correct choices on trials for which the explicit probability

was the correct response.
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Model Fitting Procedure

We used model fitting and comparison procedures that have been used previously by Huys et al. (7,

8, 9). For completeness, we will describe them here in detail.

The goal of the model fitting procedure is to find estimates of the parameter vector θi for each

participant i. This can be done by maximizing the probability that the observed choice data Ci came

from the distribution governed by this θ:

Repeating this procedure for each participant separately without any constraints can however lead to

poor estimates and ignores the fact that we would expect parameters of different individuals to be

comparable (e.g. to be of the same order of magnitude). One simple way to deal with this would be

to  enforce  hard  constraints  on  the  parameter  estimates,  but  a  more  principled  way is  to  use  a

maximum a posteriori estimate and add a prior with information about the likely range of parameter

values (10):

One option for such a prior is to estimate it from the data. Making the random effects assumption

that  parameters  of  individuals  are  samples  from  an  overall  group  distribution  and  that  this

distribution  is  a  Normal  distribution  with  mean  μ  and  variance  Σ,  we  can  use  Expectation-

Maximisation to simultaneously estimate group and individual parameters (7, 8, 9).

In the E-step (kth iteration) a Laplace approximation (mean mu and variance V) is used to estimate

the parameters of individuals:

In  the  M-step  the  population  parameters  are  updated,  taking  into  account  the  uncertainty  of

parameter estimations of individuals (weighted mean vector and covariance matrix):
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To enforce constraints, parameters were transformed through non-linear functions with support on

the real line. To avoid falling into local minima, multiple random initialisations were used. The

procedure  proved  to  be  quite  stable  over  multiple  runs,  repeatedly  estimating  very  similar

parameters.

Model Comparison Procedure

Having fitted our models, we want to find out which model has the highest probability of being the

correct model given our data (11). This means that for some model M we are interested in finding

its posterior probability

The probability of the choice data P(C) will be the same under all models and since we have no

prior preference for any of the models, P(M) will also be equal for all models, which means that

when we take  the  ratio  of  posterior  model  probabilities  they  will  both  cancel  out.  The model

evidence remains and can be rewritten as

which we then approximate (7, 8, 9) with

where |M| is the number of fitted prior parameters, |C| is the overall number of choices and the

difference in iBIC values of two models will be an approximation to the log Bayes Factor (9). The

“i” in front of BIC stands for “integrated”, because to compute log(p(C| , M)) we integrate overθθ

parameters so that

This can be approximated by sampling from our estimate prior and averaging over those samples (7,

8, 9):

For our winning model we also tested whether our groups were better described using a shared

population prior or separate priors for each group. For this, iBIC values of the fits of separate group

Rupprechter et al., 2018 16
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priors were added and compared to the iBIC value of a single population prior. Our data was best

described using a single population prior (∆iBIC = 13.5).

Simulations

It is important to check that models can be recovered given the available data and so we performed

model  recovery  simulations.  Models  were  simulated  to  produce  the  same  amount  of  actually

available data (32 subjects, 60 decisions) and then the generating model and an alternative model

were fit to the data and standard model comparison was used to decide which model produced the

better fit.

These simulations showed that Leaky and Leaky-ρ could not reliably be distinguished with the

amount of data we have and Leaky was often selected as best model even when Leaky-ρ produced

the data.  Importantly,  however,  our second and third best-fitting reinforcement  learning models

could reliably be recovered from data they generated in most simulations as shown in Table S3.

Bayesian RL-basic RL-learning RL-unbiased RL-learning-unbiased

12/15 12/15 15/15 14/15 15/15

Table S3. Model recovery table showing how often each model was recovered from data they had

generated (15 simulations) against the Leaky model. Leaky always had the lower iBIC value (15/15

against all models) when fitted to data it had generated.

To check whether  the model  fitting procedure is  actually  able  to  recover  parameters  given the

amount of data available to us, we simulated 32 participants with 60 decisions each from known

parameters. To get sensible parameter values, we randomly sampled from the estimated group prior.

Errors were consistently lower for our procedure than standard maximum likelihood estimations

and  our  procedure  also  avoids  outliers  sometimes  produced  by  MLE  by  pushing  estimations

towards the group mean. Figures S8 and S9 show a first example of the recovery of memory A and

inverse temperature β parameters for the model Leaky, while Figures S10 and S11 show the same

for a second example and Figures S12 and S13 for a third example. Simulations of other models

showed similar parameter recovery.

Rupprechter et al., 2018 17
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Figure S8.  Example 1 (A): Parameter recovery simulation of the memory parameter A using a

group prior  (MAP) and simple maximum likelihood (ML). The red line shows the values  with

which the data was actually generated. Note how MAP estimation leads to improvements over ML

estimation, in particular by eliminating the outlier lying on the zero boundary.

Figure S9. Example 1 (β): Parameter recovery simulation of the inverse temperature parameter β

using a group prior (MAP) and simple maximum likelihood (ML). The red line shows the values

with which the data was actually generated.

Rupprechter et al., 2018 18
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Figure S10. Example 2 (A): Parameter recovery simulation of the memory parameter A using a

group prior  (MAP) and simple maximum likelihood (ML). The red line shows the values  with

which the data was actually generated.

Figure S11. Example 2 (β): Parameter recovery simulation of the inverse temperature parameter β

using a group prior (MAP) and simple maximum likelihood (ML). The red line shows the values

with which the data was actually generated.

Rupprechter et al., 2018 19

132 Appendix A. Supplementary Materials for Chapter 3



Figure S12. Example 3 (A): Parameter recovery simulation of the memory parameter A using a

group prior  (MAP) and simple maximum likelihood (ML). The red line shows the values  with

which the data was actually generated.

Figure S13. Example 3 (β): Parameter recovery simulation of the inverse temperature parameter β

using a group prior (MAP) and simple maximum likelihood (ML). The red line shows the values

with which the data was actually generated.

Rupprechter et al., 2018 20
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Parameter correlation

There was a trend suggesting a correlation between parameter estimates (r = 0.349, BF10 = 0.91, p

= .051). We performed additional parameter recovery simulations (Figures S14, S15, S16) in which

we systematically varied parameters to further convince ourselves that parameter correlations did

not systematically influence the fitting of parameters. We simulated individual participants, with

one of the values fixed to be the same for everybody (e.g. setting the memory A=0.9) while varying

the other parameter across participants (e.g. have participants with betas in the range of 4 until 9).

Most  importantly,  for  the  beta  parameter  we  did  not  find  that  different  realistic  values  of  the

memory parameter had a systematic influence on the quality of the parameter recovery (Figure

S14).

Rupprechter et al., 2018 21
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Figure  S14. Recovery  of  the  beta  parameter,  while  fixing  the  memory  parameter  A to  certain

realistic values: (A) A=0.80, (B) A=0.85, (C) A=0.90, (D) A=0.95, (E) A=0.99. Subfigure (F) shows

(A-E) combined. For each recovery plot, 68 participants were simulated, making 120 decisions. It

can be seen that the parameter recovery of the beta parameter is not systematically influenced by the

setting of the memory parameter.

Rupprechter et al., 2018 22
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Figure S15. Recovery of the memory (A) parameter, while fixing the inverse temperature parameter

β to certain values: (A)  β=2, (B)  β=4, (C)  β=6, (D)  β=8, (E)  β=10. Subfigure (F) shows (A-E)

combined. For each recovery plot, 68 participants were simulated, making 120 decisions. For very

low  (and  probably  mostly  unrealistic)  β  values,  the  recovery  of  the  memory  parameter  was

noticeably worse than for all the other more realistic values of 4 and above.

Rupprechter et al., 2018 23
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Figure S16. Recovery of the fixed parameters. (Left) Beta parameters were fixed at values 2, 4, 6,

8, and 10 and recovered well. The corresponding recoveries of the systematically varying memory

parameters are shown in Figure S14. (Right) Memory parameters were fixed at values 0.80, 0.85,

0.90, 0.95, and 0.99 and recovered well. The corresponding recoveries of the systematically varying

beta parameters are shown in Figure S15. 
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Supplementary Materials

Abnormal Reward Valuation and Event-Related Connectivity in Unmedicated 
Major Depressive Disorder

Experiment Details

Written informed consent was obtained then, questionnaires and an interview conducted which

lasted  an  hour,  then  task  training  for  10-20  minutes  followed  by  50  minutes  scanning  then

debriefing lasting 5 minutes. Participants were paid £20 plus a performance dependent bonus of

up to £10. Final scores were converted into a percentage.

    Subjects passively observed fractals; each was always followed by either a reward symbol (£)

indicating ‘value’ or a blank screen indicating ‘no value’.  After each fractal was observed on four

occasions it appeared, at some later time, in a single decision trial where subjects were asked to

choose the higher reward probability; their internally estimated value for the fractal or an explicit

numeric value. Either option could have a value 10% 20% or 30% higher than the other or equal

value.  This means a total  of 240 fractals (60x4) were observed with 60 decisions being made.

Fractals were presented for 3 to 4 seconds. Outcomes were presented for 2.5 to 3.5 seconds.

Decisions had to be made within a 5 second response window. Null events (blank screens) and null

decisions  (requiring  a  button  press  in  response  to  a  cross  in  the  centre  of  the  screen)  were

randomly interspersed throughout the experiment.  The sequence of observations and decisions

were interleaved in a pseudo-random order and identical for all subjects. The study was divided

into 4 sessions of 15 min each between which there were periods where participants could briefly

rest. Each session was split into 3 blocks and during each block participants made 5 decisions.

Participants  did not  receive feedback  during the task  but  were told their  performance scores

would be converted into money they would receive at the end of the experiment. The task is

summarised in Figure 1 (main text).

Behavioural modelling

We recently published a detailed computational modelling analysis of participants’ behaviour on

the task (Rupprechter et al., 2018). Here we summarise the approach and main findings. We fitted

seven different models, representing distinct hypotheses about participants’ decision-making, to

the data. All models assume that participants estimate an internal value for each fractal stimulus

and compare this internal value to the explicit value at decision time. To model the probability of

choosing an action, the value difference was passed into a standard softmax function, which also
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included an  inverse  temperature  parameter  β.  Higher  values  of  β lead  to  more  deterministic

decision-making. The parameter can be interpreted as an individual’s ability to use their internal

value estimations to make decisions.

    Four different variations of reinforcement learning (RL) models were defined. These models

incorporate  trial-by-trial  prediction  errors  and  learning  rate  parameters.  After  an  outcome  is

observed, the expected value of the fractal that was displayed is updated by adding the prediction

error (difference between expected value and reward outcome coded as 1 or 0) scaled by the

learning rate. The initial value was either set to a fitted initial value parameter (in two of the RL

models) or fixed at 0.5 corresponding to a prior belief that reward was equally likely from either

option. Two models included separate learning rates for separate reward outcomes, aiming to test

whether  learning  would be different  following  rewards  versus  no-rewards.  We also fitted the

winning  model  of  the  original  study  by  Stankevicius  et  al.  (2014)  which  tested  the  Bayesian

observer hypothesis. This model assumed that participants would count the number of times each

fractal was followed by reward and combine this evidence with a prior belief about the probability

of rewards associated with fractals. The model does not explicitly model the observation phase of

the  experiment  and instead assumed at  the decision  time perfect  counting had occurred.  To

overcome these limitations, we fitted two additional models (‘Leaky’ and ‘Leaky-ρ’) which also

assumed participants would count the number of times a fractal was followed by reward, but this

was  modelled  on  a  trial-by-trial  basis.  In  addition,  a  memory  or  discounting  parameter  was

included, which assumed that subjects forgot about some of the previously observed values.

    Model  fitting was based on maximum  a posteriori estimates,  which included an empirical

Gaussian prior  estimated from the data.  Parameters were initialised with maximum likelihood

estimates and then an expectation-maximization procedure applied to iteratively update these

estimates until  convergence.  The integrated  Bayesian  Information Criterion (iBIC)  was used to

identify the model that best fit the data while also penalizing for model complexity. 

    The best fitting model according to iBIC was the  Leaky model, which updated the value for

fractal i on trial t as where A is a memory parameter and smaller A reflected increased forgetting

or retrospective discounting, and r was unity if a £ reward symbol was observed and zero 

otherwise.

As  above,  the  probability  of  choosing  a  fractal  i was  calculated  using  a  softmax  function

incorporating estimated value (V) and explicitly presented values (phi)
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where  f(x) = x/4 is a transformation of the internal value estimate comparable to the explicitly

displayed reward probability.

    We identified differences between the groups in both memory parameter (z = −2.15, p = 0.031;

A patients μ ± σ =0.90 ± 0.04, median = 0.91; A controls μ ± σ = 0.92 ± 0.09, median = 0.96) and

softmax  β parameter (z = −2.34, p = 0.019; β patients μ ± σ = 4.67 ± 1.45, β controls μ ± σ = 5.89 ±

1.33). This indicates MDD patients discounted more of their estimated values and found it harder

to follow their internal value estimations.

Logistic Regression

Logistic regression models were fitted using glmfit in MATLAB to the data of all participants except

one, which was then used to predict the group of the left-out participant (using  glmval and a

threshold  of  0.5).   This  was  repeated  all  participants.  Overall,  we  were  able  to  classify  27

participants (14 patients, 13 controls) correctly, which corresponds to an accuracy of 79% (27 out

of 34, precision=76%, recall=81%). The area under the ROC curve, for which the p threshold was

varied between 0 and 1 and true and false positive rates were calculated, was approximately 0.86

(Figure S5).

Value difference signal encoding: Group comparison

Beta  values  were extracted from the first  level  contrast  images  of  each  participant  and then

compared between two groups. We did not find a group difference with betas extracted from a

5mm sphere within the aMCC region identified as being active during decision making (-2,14,50)

for  value  difference  (t(29.09)=-0.30,  p=0.764)  or  absolute  value  difference  (t(29.28)=-0.990,

p=0.330) signal encoding. We also did not find a group difference of value difference encoding in

slightly  different  aMCC  ROIs  ([-14,16,48]:  t(23.47)=-1.33,  p=0.197;  [12,24,28]:  t(24.32)=0.42,

p=0.682). Neither did we find a group difference of absolute value difference encoding in different

aMCC ([-4,24,46]: t(23.92)=-0.69, p=0.498; [10,10,46]: t(28.49)=-1.55, p=0.132) or rACC ([-16,42,8]:

t(29.72)=-1.21, p=0.237; [-4,50,-14]: t(29.04)=-1.86, p=0.074) regions of interest.
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Connectivity analysis

The  conditions  included  in  the  gPPI  analysis  were  outcome  time,  fractal  presentation  time,

decision prompt time, button press time, and null events.  Event-related connectivity methods are

not as well established as some other areas of neuroimaging,  so we also explored beta series

correlation analysis (BASCO toolbox; Göttlich et al. 2015), as an additional method to infer event-

related  functional  connectivity  between  a  dACC  seed  region  and  other  brain  regions.

Encouragingly, we obtained a similar result as gPPI, with controls showing stronger connectivity

between dACC and rACC than patients at the decision-time (Figure S6).

Structural differences

To address the possibility of structural differences influencing our results (see discussion in main

text),  we  performed  additional  analyses.  For  every  participant,  we  obtained  a  grey  matter

probability  image  (c1*.nii  in  SPM)  during  preprocessing  of  the  T1  structural  image  and  an

estimated forward  deformation  field  image  (y_*.nii  in  SPM)  used  to  normalise  the  functional

images.  The deformation field was used to normalise the grey matter probability image, including

a resampling of voxels in the same way as was done for the functional scans;  giving for each

resampled voxel, an estimate of the probability that a voxel was grey matter. We then multiplied

beta values in the hippocampal and rACC ROIs (5mm) of contrast images for value encoding at

fractal presentation time by these grey matter weights.  From each ROI the mean values were

calculated and between group Welch’s  t-tests  done.  The results  still  showed significant  group

differences  after  these  adjustments  (L  hippocampus  (-36,-32,2)  t(21.36)=3.313,  p=0.003;   R

hippocampus (48,-26,4) t(31.03)=2.501, p=0.018; rACC (14,50,-10) t(31.19)=2.890, p=0.007)

Interpretation of Results

We were cautious in interpreting our results:  i) At a behavioural level we found decreased ‘value

memory’ and at an imaging level we found decreased ‘value encoding’ in the brain. Theories of

decision making posit that value estimations are used as the basis of decision making.  Therefore,

altered value encoding could have been the cause of  the observed behavioural  abnormalities.

However,  as  both  behaviour  and  brain  encoding  were  abnormal  we  were  cautions  about  a

possible circular argument in interpreting our data further than we have in the main text.   ii)

Regarding abnormalities in decision-making, we made the prediction that we would find both an

activation across participants and a group difference in cortical signals at the decision time. We

further hypothesized a signal encoding ‘value difference’ because in our behavioural model, this is
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the variable  which enters at  the decision event  time.  Importantly  though,  these variables  are

related. While it would be possible to test for a direct correlation between the signal encoding and

estimated inverse temperature parameters at the second level, interpretation with our data would

be difficult.

Control analyses

We  repeated  our  analysis  using  a  decreased  individual  voxel  threshold  (p<0.01)  for  multiple

comparison corrections and reproduced the figures from the main text (Figures S1-S4). Results

were  broadly  similar,  with  the  exception  of  negative  value  difference  encoding  signal  across

participants which was not significant (Figure S4). Additional Monte Carlo simulations showed that

with an assumed individual voxel type 1 error of p=0.01 a smaller cluster size of k=102 would be

needed to correct for multiple comparisons at the same cluster correction threshold of p<0.01.

The  script  (cluster_threshold_beta.m)  can  be  found  on  the  author’s  webpage

(https://www2.bc.edu/sd-slotnick/scripts.htm).

Figure S1.  Decreased reward activation in MDD participants compared to healthy controls in the

striatum. Display threshold p<0.01 and k=108; c.f. Figure 2B.
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Figure S2.  Reward value encoding at fractal presentation time. (A) Positive value encoding within

healthy controls. Note that the cluster size here is k=66; c.f. Figure 3A. (B) Negative value encoding

in depressed participants.  Display threshold p<0.01 and k=108; c.f.  Figure 3B.  (C)  Larger value

encoding in healthy controls compared to MDD participants in hippocampus. Display threshold

p<0.01 and k=108; c.f. Figure 3B – left. (D) Larger value encoding in healthy controls compared to

MDD participants in rostral ACC. Note that the cluster size here is k=91; c.f. Figure 3B – right. 
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Figure S3.  Activation during decision making. (A) Larger activations in MDD compared to controls.

Note that the cluster  size  here is  k=103; c.f.  Figure 4B.  (B)  Negative absolute value difference

encoding signal across participants. Display threshold p<0.01 and k=108; c.f. Figure 4D. (C) Positive

absolute value difference encoding signal across participants. Note that the cluster size here is

k=97 and the cluster size for the second cluster further down (ventral) is k=144; c.f. Figure 4E. (D)

Decreased  event-related  connectivity  in  depression  between  dorsal  cingulate  region  and  other

cingulate regions. Display threshold p<0.01 and k=108; c.f. Figure 4F.
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Figure S4.  Negative value difference encoding signal across participants was not significant in the

anterior mid-cingulate region at an individual voxel threshold of p<0.01; c.f. Figure 4C.
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Figures

Figure S5.  The ROC curve (AUC = 0.86) of our logistic regression classifier.

Figure S6. Functional connectivity. Significantly higher functional connectivity in HC compared to

MDD subjects between a dACC seed region with rostral ACC and PCC, obtained using beta series

correlations (Göttlich et al., 2015).
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Tables

Questionnaire Patients Controls

BDI 25.9 ± 12.9 5.4 ± 5.6

DSAB 15.1 ± 4.0 16.9 ± 2.4

HAD-A 12.7 ± 5.1 4.3 ± 2.5

HAD-D 8.6 ± 4.6 1.8 ± 2.0

HAMA 18.8 ± 6.9 1.8 ± 2.7

LOT-R 9.0 ± 5.1 18.4 ± 3.1

MADRS 18.8 ± 6.9 1.8 ± 2.7

NART 45.8 ± 4.5 47.3 ± 3.6

RSE 13.3 ± 6.9 23.7 ± 4.6

SHAPS 38.6 ± 8.7 49.2 ± 5.9

Agreeableness 39.6 ± 6.5 45.6 ± 5.7

Conscientiousness 36.4 ± 10.0 44.8 ± 7.2

Extraversion 31.2 ± 7.6 43.3 ± 4.2

Neuroticism 46.9 ± 7.1 31.4 ± 6.9

Openness 41.5 ± 5.4 45.8 ± 5.3

Table S1. Clinical characteristics of participants. BDI = Beck Depression Inventory; DSAB = Digit

Score Part B; HAD = Hospital Anxiety and Depression Scale; HAMA = Hamilton Anxiety Rating Scale;

LOT-R = Life Orientation Test – Revised; MADRS = Montgomery-Åsberg Depression Rating Scale;

NART = National Adult Reading Test; RSE = Rosenberg Self-Esteem Scale; SHAPS = Snaith-Hamilton

Pleasure Scale; Scores displayed as mean ± std.

Appendix B. Supplementary Materials for Chapter 4 149



Reward response

Regions t z
MNI coordinates [mm]

Voxels in 
cluster

x y z

Controls + Patients

striatum, 
midcingulate, 
dorsolateral 
cortex, 
occipital lobe

12.19 7.39 -14 -90 2 94077

4.89 4.20 10 12 -4

4.44 3.89 -10 18 0

8.28 6.01 -10 10 48

8.25 6.00 -46 8 24

7.14 5.48 44 6 32

Controls > Patients

Striatum, 
nucleus 
accumbens

4.58 3.99 22 26 10 27510

4.48 3.92 -22 14 -16

4.45 3.9 -48 -36 30

Cerebellum 4.44 3.89 -30 -52 -42 1691

2.9 2.71 8 -70 -28

2.83 2.65 -28 -64 -52

thalamus 3.4 3.12 2 -32 2 357

2.31 2.21 10 -24 -2

2.31 2.21 20 -18 -2

Cerebellum 3.05 2.84 36 -52 -44 461

2.55 2.42 4 -58 -48

2.51 2.38 40 -58 -48

FFA 3.03 2.82 48 -60 -18 229

2.48 2.36 46 -52 -22

2.28 2.18 46 -70 -16

Auditory 
cortex / insula

3.01 2.8 -38 -18 4
127
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Value encoding

Regions t z
MNI coordinates [mm]

Voxels in 
cluster

x y z

Controls (activations)

Occipital lobe 6.29 4.34 -16 -102 4 748

Precuneus, L 
hippocampus, 
caudate, 
prefrontal cortex

5.7 4.1 8 -58 40 16096

5.62 4.06 -8 -54 52

5.58 4.04 0 -52 48

Occipital lobe

4.19 3.36 26 -96 -4 337

2.91 2.55 34 -94 4

2.74 2.43 10 -88 -6

Supramarginal 
gyrus

3.98 3.24 58 -44 32 645

3.27 2.8 48 -46 36

2.3 2.09 40 -52 32

R Supp motor 
area

3.66 3.04 16 -2 56 183

2.41 2.19 16 -6 68

R temporal 
gyrus, R 
hippocampus

3.61 3.02 66 -20 -4 744

3.51 2.95 34 -50 10

3.06 2.65 66 -10 0

brainstem

2.36 2.14 10 -38 -46 160

2.32 2.11 0 -32 -54

2.16 1.99 0 -20 -36

Patients (deactivations)

Occipital lobe, 
hippocampus

8.38 5.21 18 -88 18 20400

8.07 5.11 38 -68 -8

5.47 4.1 -2 -86 -6

Medial 
prefrontal 
cortex, rostral 
ACC

4.16 3.41 14 50 -10 1035

3.3 2.86 2 34 -18

3.01 2.66 2 24 -22

Motor cortex

3.68 3.11 -38 -8 36 730

3.09 2.72 -4 -16 54

2.7 2.43 -48 -8 34

Motor cortex

3.6 3.06 16 -26 68 898

3.51 3 20 -30 54

3 2.65 4 -26 70

R amygdala
3.55 3.03 30 8 -18 213

1.95 1.83 30 -2 -16
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Brainstem
3.2 2.79 6 -16 -42 108

2.42 2.22 -2 -18 -36

Brainstem 2.64 2.38 2 -38 -48 119

Corpus callosum
2.57 2.33 8 -2 28 115

2.01 1.88 -4 -6 26

Controls > Patients

Hippocampus, 
precuneus

4.88 4.19 -36 -32 2 18480

4.57 3.98 50 -4 18

4.4 3.86 -32 -68 16

Medial 
prefrontal 
cortex, rostral 
ACC, R anterior 
insula

3.73 3.37 14 50 -8 2169

3.61 3.28 28 12 44

3.41 3.12 28 20 12

Precuneus

2.92 2.73 -10 -58 48 161

2.06 1.98 4 -64 54

2.03 1.96 -4 -66 56

Brainstem 2.84 2.66 0 -20 -38 122

L anterior insula

2.65 2.5 -28 12 16 109

2.33 2.23 -36 18 16

2.17 2.09 -30 26 18

Brainstem 2.63 2.49 4 -38 -48 108
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Decision making

Regions t z
MNI coordinates [mm]

Voxels in
cluster

x y z

Controls + Patients

Anterior insula, 
dorsal ACC (aMCC), 
striatum

16.68 Inf 32 26 -6 111774

14.21 Inf 16 0 -6

14.07 Inf -28 22 -2

14.74 Inf 26 -66 -4

14.61 Inf -16 -68 12

14.02 Inf -26 -62 -8

12.91 7.59 -2 14 50

Patients > Controls

Insula

4.21 3.73 8 0 26 1185

3.26 3.01 34 -22 24

2.89 2.7 -8 -4 22

sgACC 4.06 3.62 -2 28 -2 176

Occipital lobe

3.44 3.15 -34 -88 24 384

2.94 2.74 -48 -74 26

2.44 2.32 -36 -76 44

insula

3.3 3.04 -38 -8 20 675

3.23 2.99 -36 -26 22

3.14 2.91 -44 -24 20

(para)hippocampus
, brainstem

3.25 3 -20 -28 -18 950

3.19 2.95 14 -36 -20

3.19 2.95 12 -22 -16

dACC

3.21 2.97 22 28 42 741

3.11 2.88 -12 20 32

3.01 2.81 6 38 34

PCC

3.14 2.91 -2 -56 28 1651

2.93 2.74 6 -52 18

2.9 2.71 2 -60 22

Supp motor area
3.09 2.87 -8 -18 62 157

1.96 1.9 4 -12 64

Temporal lobe, 
hippocampus

3.07 2.86 -22 -34 4 154

2.05 1.98 -12 -32 12

Temporal lobe, 
hippocampus

3.06 2.85 42 -34 4 534

2.84 2.66 40 -52 -6

2.56 2.42 28 -36 0
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Occipital lobe 2.92 2.73 42 -60 28 113

Occipital lobe

2.76 2.6 -40 -70 2 266

2.39 2.28 -34 -76 -4

1.93 1.87 -40 -58 -12

Prefrontal cortex

2.72 2.57 54 24 32 245

2.38 2.26 36 6 34

2.16 2.08 52 14 40

Temporal lobe

2.68 2.52 -42 -34 -4 456

2.67 2.52 -36 -44 -14

2.24 2.15 -38 -46 -6

Occipital lobe 2.6 2.46 36 -70 -10 121
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Participant Details

Table  1 (in  the main text)  and Table  S23 contain details  about  participants’  demographics and clinical
information. Diagnostic screening showed that our sample included 20 participants satisfying criteria for
MDD,  110  participants  matching  remitted  MDD,  and  345  never-depressed  subjects.  Dynamic  Causal
Modelling (DCM) of event-related connectivity was done with data from an initial 301 participants (after
excluding participants  with  insufficient  signal  in  our  regions of  interest,  19  MDE remained,  who were
further  filtered to include subjects  for  whom the  explained variance of  the full  DCM for  each subject
exceeded variable minimum thresholds (see DCM section below).  This is summarised in Figure S11.
    QIDS scores covered a wide range (0 to 23), although the distribution was skewed (Figure S1). Additional
non-parametric Spearman’s rank correlation tests were used to test for the relationship between QIDS and
reward signals to minimize the risk of outliers affecting our mass-univariate GLM results (see below). Figure
S2 shows a histogram of the number of missed trials.

Figure S1. Histogram of participants’ QIDS scores.

Figure S2. Histogram of number of missed trials.

Participants with more than 21 missed trials were excluded (77 participants).
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Computational modelling

Table S1. Model specification. 
Name Description      Value update: Parameters

M1 only learn from choice condition , 
M2 learn equally from choice/no-choice 

conditions
, 

M3 learn differently from choice/no-choice 
conditions

, , 

M4 experience reward differently during 
choice/no-choice conditions

, , 

M5 learn and experience reward differently 
during choice/no-choice conditions

, , , 

The third column shows how internal values are updated after observing an outcome r in trial t. Choices
were modelled probabilistically by passing the value difference to a logistic sigmoid function: p(choose V1) =
1 / (1 + e^(-β (V1 – V2))). ε is the learning rate with c and n being indicators for separate choice/no-choice
learning rates; β is the inverse temperature parameter; ρ is the reward sensitivity parameter with c and n
being indicators for separate choice/no-choice parameters.

Model-fitting and model comparison

Parameter estimation (for each model) followed a hierarchical procedure. For each participant, we first
estimated  maximum  likelihood  (ML)  estimates  and  then  combined  these  into  a  group  prior  (normal
distribution). The prior was then used to estimate maximum a posteriori (MAP) parameter values for each
participant. These estimates were again combined into a single group prior and the procedure was iterated
until  convergence.  We  used  the  integrated  Bayesian  information  criteria  (iBIC)  to  perform  model
comparison. Sampling was used to estimate an integral over parameters, which was used to approximate
the  model  evidence.  iBIC  scores  were  computed  for  each  model  and  compared  to  choose  the  most
parsimonious model. More details are available (Supplements of Huys et al. 2013 and Rupprechter et al.
2018).

Computational modelling results

Model comparison identified Model 3 as the most parsimonious model (Figure S3) and subsequent analyses
only focussed on this model. For each participant we calculated the asymptotic internal value estimations
for the two stimuli as the average over the last 10 trials. The results are depicted in Figure S4, which shows
that  participants’  value  estimations  are  close  to  the  actual  probabilities  of  the  two  stimuli.  The  two
estimated  learning  rate  parameters  of  the  winning  model  were  highly  correlated  across  participants
(Pearson’s r=0.883, p<10-10)  but parameter recovery simulations showed they could both be recovered.
Spearman’s correlations were calculated between QIDS scores and each the three model parameters. No
correlation was significant (choice learning rate:  Spearman’s ρ=0.046, p=0.316; no-choice learning rate:
Spearman’s ρ=0.056, p=0.226; inverse temperature parameter: Spearman’s ρ=0.076, p=0.098).  We then
performed a  “default  Bayesian hypothesis  test”  (Wetzels  & Wagenmakers,  2012)  which allowed us  to
quantify evidence for the null hypothesis of no correlation. This relies on estimated Pearson correlations
which were all similar to the Spearman’s correlations and non-significant (choice learning rate: r=0.032,
p=0.487; no-choice learning rate: r=0.047, p=0.302; inverse temperature parameter: r=0.017, p=0.704). The
estimate  Bayes  factors  were:  choice  learning  rate:  BF10=0.047,  no-choice  learning  rate:  BF10=0.062,
inverse  temperature  parameter:  BF10=0.039.  These  values  can  be interpreted as  “strong” evidence  in
favour of the null (Wetzels & Wagenmakers, 2012).
    Whilst Huys et al. (2013) found meta-analytic evidence for an association of depressive symptom scores
(specifically anhedonia) and a “reward sensitivity” model parameter, which is closely related to our “inverse
temperature” model parameter, we did not find this effect. Differences between studies could account for
this.   It  is  important to note that we used an overall  depressive symptoms score instead of  a specific
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anhedonia score.  Additionally the signal detection task used by Huys et al. involves many more trials and
the influence of reward sensitivity on behaviour might only become apparent after many trials.

Figure S3. Model comparison results.

iBIC scores relative to the lowest (i.e. best) iBIC score are shown. M3 which includes different learning rates
depending on choice or no-choice condition was the most parsimonious model. M1 assumed participants
did not learn from no-choice trials. M2 assumed participants learned equally well from both conditions
(same learning rate parameter). M4 assumed that it was reward responsiveness that was dependent on
condition but  not  learning  rate  (one  learning  rate  parameter,  two reward  sensitivity  parameters).  M5
assumed both learning rate and reward sensitivity were dependent on condition.

Figure S4. Asymptotic internal value estimations. 

Yellow dots are asymptotic value estimations for the yellow stimulus (80% reward probability) and blue
dots are asymptotic value estimations for the blue stimulus (20% reward probability). The black dotted lines
show the average asymptotic value estimations across participants for the two stimuli, which are close to
the true reward probabilities.
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Neuroimaging analyses

Pre-processing details

SPM12 (version 7487) was used for analyses. Functional images were manually checked for artefacts before
pre-processing.  The first six blood oxygen level-dependent volumes were discarded as standard because of
transient  effects.  Functional  images  were  realigned  to  the  first  image  using  a  rigid  body  spatial
transformation (6 parameters)  and unwarped.  The estimated movement parameters were plotted and
manually  inspected  for  excessive  motion.  If  such  excessive  motion  was  identified,  the  corresponding
functional  images  were  inspected  and  participants  were  excluded  if  there  were  noticeable  excessive
movement.  Slice  timing  correction  was  performed  with  the  middle  slice  as  the  reference  slice.  (We
therefore  did  not  use  the  additional  slice  timing  correction  model  included  as  part  of  DCM.)  The  T1
weighted  structural  image  was  segmented  using  SPM12  tissue  probability  maps  and  the  ICBM  space
template for European brains and functional images were co-registered to the bias corrected T1 image. The
estimated deformation field was then used to spatially normalise the images and an 8 mm FWHM Gaussian
kernel was used to smooth the normalised images. The registration was inspected manually using SPM’s
checkreg tool and participants were excluded if the registration quality was judged insufficient.

Freesurfer ROIs

Raw T1 images were segmented and parcellated using FreeSurfer version 5.3 (Dale et al., 1999; Fischl et al.,
1999; Fischl et al., 2004) and the Desikan-Killany atlas (Desikan et al., 2006). FreeSurfer output was visually
quality checked, major errors were excluded and minor errors were corrected manually.  To create ROI
masks, FreeSurfer parcellations were reoriented to the original image and converted back to NIfTI format.
Using  FSL  5.0  (Smith  et  al.,  2004;  Woolrich  et  al.,  2009;  Jenkinson  et  al.,  2012),  these  images  were
thresholded to isolate each ROI and then binarised to create a mask. ROIs were normalised in the same way
as functional images using the estimated deformation field.

Multiple comparisons correction

To correct  for  multiple  comparisons  we  used  Monte  Carlo  simulations  (Slotnick  & Schacter,  2004)  to
establish a cluster extent threshold. This relies on the fact that the larger a cluster the less likely it is that
each individual voxel in the cluster shows spurious activity and survives an individual voxel threshold. The
script  we  used  can  be  downloaded  from  the  author’s  website
(https://www2.bc.edu/sd-slotnick/scripts.htm) who also defended this method in subsequent publications
(Slotnick, 2017). The parameters we used are as follows: x_matrix=64; y_matrix=64; slices=32; dim_xy=3.4;
dim_z=4.5;  mask_name='none';  mask_bytes=0;  mask_plot=0;  FWHM=8;  dim_resampled=2;
iterations=5000; p_corrected=0.001; p_voxel=0.05. Note that in Tables S2-S9 we usually list a small number
of local maxima at least 8mm apart but we focus on interpreting clusters of activity rather than individual
voxels.

Signal dropout

For group level analyses, SPM only includes voxels which are included in the mask of every individual. Signal
dropout of voxels within a single participant therefore excludes those voxels from further analyses for all
participants, which can become a problem when a large number of participants are involved. For first level
analyses the masking threshold was therefore lowered to 0.4 to increase the included area. An explicit
mask  was  used  to  constrain  analysis  to  voxels  within  the  brain  (SPM’s  intracranial  volume  mask;
mask_ICV.nii). Nevertheless, a few areas were excluded due to signal dropout (Figure S5), including parts of
the right VS and a region in the PFC including subgenual ACC and OFC.
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Figure S5. Group-level signal dropout. 

The second level mask (white) is shown as overlay on a Colin brain. Left: Dropout in the right VS (12,10,-12);
the inset of the bottom right shows a small part of the right VS which is included in the mask (10,8,-10). 
Right: Dropout in the subgenual ACC and OFC (0,32,-18).
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fMRI results tables

Table S2. Reward activation across participants.
Reward > No-reward (p<0.05 FWE correction)

k T x y z
19270 40.05 10 -86 -6 Occipital lobe

38.91 -20 -80 -14
38.43 -10 -88 -8

710 15.38 -52 0 48 Premotor cortex L
6.77 -40 -2 62

426 12.12 -16 44 50 dPFC
5.89 -32 34 48
5.47 -22 22 64

1311 10.97 -58 -8 -12 Temporal gyrus L
9.66 -58 -30 0
7.97 -50 -40 2

3036 10.61 -12 10 -14 Ventral striatum, vmPFC
9.95 -4 54 -10
9.87 -6 66 16

237 9.18 -22 -30 -2 Hippocampus L
117 7.91 54 38 6 PFC

6.76 52 42 -2
5.80 56 34 16

48 7.80 22 42 50 PFC
6.23 14 50 46

177 7.62 -26 -56 52 Parietal lobe L
97 7.04 24 -56 52 Parietal lobe R
73 6.56 24 -28 -2 Hippocampus R

122 5.91 -28 -8 2 Putamen L
82 5.68 -28 -8 -22 Hippocampus L
79 5.47 62 0 -14 Temporal lobe R

5.33 58 -6 -18
3 5.32 46 50 2 PFC
3 4.97 16 38 58 PFC

19 4.96 -22 -42 -48 Cerebellum
3 4.93 6 58 38
2 4.86 -4 54 42
3 4.75 20 16 22
3 4.75 28 48 36
4 4.72 62 18 26
1 4.66 58 8 -18
1 4.63 32 36 48
1 4.58 -24 14 -24
1 4.57 -26 18 -24
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Table S3. Reward deactivation across participants.
No-reward > Reward (p<0.05 FWE correction)

k T x y z
4938 13.22 42 -72 42 Angular gyrus R

13.00 58 -56 34
6.82 64 -52 -8

6654 12.54 0 22 50 SMA, dPFC / MCC
11.99 12 16 62
10.40 42 14 46

1156 11.39 46 16 0 Insula R
9.65 34 22 0

2925 10.17 -58 -62 28 Angular gyrus L
9.59 -58 -50 44
9.56 -62 -46 38

787 9.92 -40 18 2 Insula L
9.28 -30 22 -8

1347 8.62 4 -62 48 Precuneus
7.72 8 -66 64

192 7.36 -12 6 6 Caudate L
333 7.23 22 54 18 PFC

6.29 32 52 8
153 6.73 -32 -58 -32 Cerebellum

5.75 -24 -72 -32
4.85 -14 -78 -30

87 6.28 14 6 6 Caudate R
159 6.18 -30 52 16 PFC
16 5.41 -44 -60 -46 cerebellum
15 5.15 48 -4 -36 Temporal lobe R

Table S4. Effects of choice reward outcomes.
Reward (choice) > Reward (no-choice) (p<0.05 FWE correction)

k T x y z
1290 8.76 36 18 -12 Insula R

7.43 46 26 -2
5.41 34 20 -28

2394 8.50 0 52 16 mPFC /  rostral ACC
6.96 4 42 26
6.46 18 58 28

259 6.83 -28 18 -14 Insula L
165 6.20 -32 -92 6 Occipital lobe

65 5.33 -22 -6 -14 Amygdala L
142 5.32 -34 -82 -10 Occipital lobe

4.97 -30 -74 -14
74 5.26 22 -4 -12 Amygdala R

5.13 22 6 -8
5 4.75 -12 4 -10 VS L
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Table S5. Negative association between depressive severity and reward outcome signals in areas of 
reward activation across participants.
Conjunction analysis (each p<0.001 whole brain cluster corrected):
    (1) negative association of reward outcome signal with QIDS
    (2) activation across participants during reward outcome

k T x y z
3580 3.50 26 4 0 Putamen R + L, OFC

3.20 32 -2 6
2.99 -26 18 -20

168 2.51 -6 -60 -32 Cerebellum
2.37 -6 -52 -34
2.13 -16 -44 -40

Table S6. Negative association between depressive severity and reward outcome signals in areas of 
reward deactivation across participants.
Conjunction analysis (each p<0.001 whole brain cluster corrected):
    (1) negative association of reward outcome signal with QIDS
    (2) deactivation across participants during reward outcome

k T x y z
1629 4.01 -16 10 6 Caudate L, insula L

4.00 -34 18 -10
3.65 -14 8 16

478 3.84 18 8 6 Caudate R
1727 3.38 -4 30 50 dmPFC, ACC

3.23 10 32 48
2.57 24 56 20

162 3.22 -36 22 46 PFC L
2.00 -34 16 36

260 3.17 -42 -62 -48 Cerebellum
2.79 -38 -62 -36

860 2.74 -58 -46 34 Angular gyrus L
2.40 -60 -58 18
2.28 -52 -56 30

459 2.47 28 24 -6 Insula R
2.30 28 20 10
2.27 54 6 14

198 2.38 42 24 44 PFC R
2.12 36 20 40
2.05 32 14 30
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Table S7. Positive association between depressive severity and reward outcome signals in areas of 
reward activation across participants.
Conjunction analysis (each p<0.001 whole brain cluster corrected):
    (1) positive association of reward outcome signal with QIDS
    (2) activation across participants during reward outcome

k T x y z
1403 3.13 10 -86 20 Occipital lobe

2.92 4 -82 2
2.84 -8 -90 10

Table S8. Negative association between depressive severity and reward prediction error signals in areas 
of positive RPE signals across participants.
Conjunction analysis (each p<0.001 whole brain cluster corrected):
    (1) negative association of RPE signal with QIDS
    (2) positive RPE signal encoding across participants

k T x y z
3304 3.98 32 -2 6 Putamen R + L, pallidum R + L, OFC R, 

midbrain / VTA3.87 22 -2 2
3.30 32 -14 4
2.26 8 -16 -10

327 3.10 -42 12 -30 Temporal lobe L
2.40 -34 4 -30
2.23 -36 6 -22

198 2.89 -28 -62 -46 Cerebellum L
2.16 -38 -64 -46
1.71 -38 -62 -38

872 2.58 16 36 10 ACC
2.55 -10 38 22
2.40 14 42 24

161 2.53 -34 22 -16 OFC L
2.47 -26 20 -20
1.88 -50 28 -16
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Table S9. Negative association between depressive severity and reward prediction error signals in areas 
of negative RPE signals across participants.
Conjunction analysis (each p<0.001 whole brain cluster corrected):
    (1) negative association of RPE signal with QIDS
    (2) negative RPE signal encoding across participants

k T x y z
632 3.14 46 14 -2 Insula R

2.94 46 12 6
2.83 56 6 6

384 2.86 -34 12 12 Insula L
2.69 -42 10 2
2.39 -38 16 -4

160 2.72 -12 10 2 Caudate L
2.02 -16 20 2

143 2.58 -40 -62 14
324 2.54 -4 28 52 dmPFC

2.39 10 32 48
2.28 -4 38 48

165 2.28 -52 -56 32 Parietal lobe
2.10 -54 -58 42
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Control analyses

We repeated our correlation analyses  using  a  GLM with  additional  covariates  “site”,  “sex”,  and “age”
(mean-centred).  We  also  performed  additional  control  analysis  excluding  103  participants  who  were
related to another participant (372 remaining). The results of these analyses were very similar to the results
in Tables S2-S9 and here we only show that the negative association between depressive severity and
reward signals in the striatum (Figure S6).

Figure S6. Correlations with depressive symptom scores.

This shows the results of conjunction analyses of activation or deactivation across participants and negative
association with depressive symptoms (see also Figure 2 in the main text). (A and D) Results following the
inclusion of additional covariates site, sex and age. (B and E) Results following the exclusion of related
participants.  (C  and  F)  Results  following  exclusion  of  related  participants  and  inclusion  of  additional
covariates.
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Non-parametric correlations
Additional non-parametric Spearman correlation tests were performed between QIDS scores and median
contrast (reward > baseline) beta values extracted of 4mm spheres centred around local maxima of the
GLM analyses (Table S10). The results agree with the previous analysis, with the exception that the positive
association between depressive symptoms scores and reward signal encoding in the occipital lobe was not
significant.

Table S10. Spearman rank correlation analysis between reward signals and QIDS scores. 

x y z Spearman’s ρ p

18 8 6 -0.150 0.001 basal ganglia

26 4 0 -0.159 0.0005 putamen

32 -2 6 -0.127 0.005 putamen

-24 6 6 -0.152 0.0009 putamen

20 6 -6 -0.127 0.006 ventral striatum

-12 10 2 -0.121 0.008 ventral striatum

-16 10 6 -0.198 1.34e-05 caudate

-4 30 50 -0.156 0.0006 medial PFC

16 36 10 -0.127 0.006 rostral ACC

-34 18 -10 -0.183 6.15e-05 insula

4 -82 2 0.089 0.054 occipital lobe

10 -86 20 0.071 0.124 occipital lobe

-8 -90 10 0.044 0.337 occipital lobe

The median estimated beta values from individuals’ contrast files were extracted from voxels within 4mm
spheres centred around coordinates of significant reward signals. Correlations were calculated between
these beta values and depressive severity scores and results are presented here.
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Figure S7. Scatter plot of QIDS scores and median reward-contrast beta estimates.
Participants with QIDS scores larger than 11 were excluded and correlations remained significant after 
these exclusions. (A) 4mm spheres centred at (26,4,0); Spearman’s ρ=-0.140, p=.003. (B) 4mm sphere 
centred at (-16,10,6); Spearman’s ρ=-0.180, p<.001.
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DCM Analysis

Dynamic  causal  modelling  (DCM12.5;  Friston  et  al.  2003)  was  used  to  test  for  effective  (directed)
interactions between brain regions. DCM treats the brain as a deterministic non-linear dynamic system
which  receives  inputs  and  then  produces  outputs.  The  unknown  (arbitrary)  function  describing  the
evolution  of  the  neuronal  states  is  parameterised  using  a  bilinear  approximation,  which  reduces  the
parameters to three important sets: (a) the interaction between neuronal systems in the absence of input
(“A” matrix), (b) the change of this interaction induced by (experimentally-controlled) inputs (“B” matrix),
(c) extrinsic experimentally-controlled inputs (“C” matrix). A haemodynamic model (containing additional
parameters which are usually not of interest) is used to map the underlying neuronal state changes to the
haemodynamic response (i.e. the observed BOLD signal).

Time-series extraction

For the time-series extraction a GLM was used containing columns for outcomes, reward outcomes, choice
outcomes, choice cues, no-choice cues, choice responses, no-choice responses and nuisance regressors,
and an “effects of interest” F contrast was computed (including all effects except nuisance regressors). ROIs
were defined as a combination (logical  AND) of  the following ROIs:  (a)  12mm spheres centred around
coordinates of (group-level) local maxima (see main-text), (b) subject-specific whole brain mask (mask.nii
from first level analysis), (c) thresholded SPM mask using a liberal threshold (p<0.15; note that this was
used to exclude noisy voxels and was not used to infer statistical significance) for the reward (visual area
and VS) or choice (mPC) contrast, (d) anatomical FreeSurfer masks for the visual area (pericalcarine) and VS
(striatum). Time-series were extracted from each of these (combined) ROIs,  adjusted for the effects of
interest. We were not able to extract time-series from all three regions for 174 participants (because in at
least one region there were no voxels in the combined mask).

Variance thresholds

We used a script included with SPM (spm_dcm_fmri_check.m) to calculate the proportion of explained
signal  by  the  model.  As  suggested  in  the  function’s  documentation  and  the  SPM  mailing-list
(https://www.jiscmail.ac.uk/cgi-bin/webadmin?A0=SPM), we set an a priori threshold at 10% and excluded
participants  below  this  threshold.  Examples  of  models  with  low  variance  explained  were  inspected
manually and many of these models seemed to have “flat-lined”, meaning estimates did not converge from
their prior mean.

Control analyses

We performed several control analyses to verify that our results did not depend on the exact specification
of the model. First, we increased the threshold of the minimum explained variance to 15% and repeated
the  PEB  analysis  with  the  remaining  99  participants  (mean  variance  explained  28.31%).  Similarly,  we
reduced the threshold to 7.5% and repeated the analysis with 208 participants (mean variance explained
19.20%) and also computed the top-down connection strength as a function of the threshold (see Variance
threshold section below). Second, we repeated the analysis without including covariates and with including
only anxiety (HADS-A) as covariate. Third, we estimated a single PEB model for both “A” and “B” DCM
matrices (54 parameters; only using QIDS and site as covariates to limit the dilution of evidence). Last, we
re-defined the experimentally-controlled inputs as outcome(choice, reward), outcome(choice, no reward),
outcome(no-choice,  reward),  outcome(no-choice,  no-reward)  in  addition  to  the  (unchanged)  inputs
cue(choice), cue(no choice), response(choice) and response(no choice).  It was again assumed that each of
the four outcome conditions could modulate each of the endogenous connections.
    Results of control analyses are displayed in Tables S12-S17. Although the exact values of estimated
parameters varied and automatic pruning did not always identify the exact same connections as important,
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there was generally a large overlap between the individual results. Importantly, the negative association
between QIDS depressive severity and intrinsic connectivity strength from mPC to VS remained for  every
single analysis strategy. Note that any parameter not pruned during the automatic search is important and
useful in that it contributes to the free energy, even if the posterior probability is less than 95%.

PEB-BMA results: intrinsic connections (A matrix)

Tables S11-S17 list posterior probabilities and effect sizes of intrinsic connections related to commonalities
and differences across participants. Results for different variance thresholds are shown and with various
covariates included. The connection from mPC to VS is highlighted in all tables. It is the only connection
that has non-zero probability of there being an effect of QIDS for every single analysis strategy.
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Table S11. BMA results of intrinsic connections.

P(common) P(QIDS) P(HADS-A) P(site) P(age) P(sex) P(MDD)

A(1,1) 1 1 0 1 0.72 0 0

A(2,1) 1 1 0 0.62 0 0 0

A(3,1) 0 0 0 0.51 0 0 1

A(1,2) 1 0 0 0.56 0 0 0

A(2,2) 1 0 1 0 1 0 0

A(3,2) 1 1 0 1 0 1 0

A(1,3) 1 1 0.73 0.8 0.63 0 0

A(2,3) 0 0 0 1 0 1 0

A(3,3) 1 0 1 0 0 0.66 0

E(common) E(QIDS) E(HADS-A) E(site) E(age) E(sex) E(MDD)

A(1,1) 0.480 -0.019 0.000 0.152 -0.006 0.000 0.000

A(2,1) 0.121 0.013 0.000 0.021 0.000 0.000 0.000

A(3,1) 0.000 0.000 0.000 0.013 0.000 0.000 0.145

A(1,2) 0.450 0.000 0.000 -0.032 0.000 0.000 0.000

A(2,2) -0.369 0.000 0.031 0.000 0.006 0.000 0.000

A(3,2) 0.065 -0.011 0.000 -0.048 0.000 0.086 0.000

A(1,3) -0.232 -0.030 -0.017 0.060 0.004 0.000 0.000

A(2,3) 0.000 0.000 0.000 -0.095 0.000 0.135 0.000

A(3,3) -0.245 0.000 -0.013 0.000 0.000 -0.054 0.000

165 participants; 10% variance threshold; P(x) shows the posterior probability of the estimates (E(x)) being 
non-zero. The first column identifies the connection as A(TO, FROM), where 1=visual area, 2=mPC, 3=VS; 
e.g. A(1,2) is the connection from mPC to visual area
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Table S12. BMA results of intrinsic connections using an increased quality threshold.

P(common) P(QIDS) P(HADS-A) P(site) P(age) P(sex) P(MDD)

A(1,1) 1 1 0 1 0.54 0 1

A(2,1) 1 1 0 0.71 0 0 0

A(3,1) 0.73 0.71 1 1 0 1 0.7

A(1,2) 1 0 0 1 0.53 0 0

A(2,2) 1 1 0 0 0 0 0

A(3,2) 1 1 0 1 0 1 0

A(1,3) 1 0.77 1 1 0 0 0

A(2,3) 1 0 0 0.77 0 1 0

A(3,3) 1 0 1 0 1 1 0

E(common) E(QIDS) E(HADS-A) E(site) E(age) E(sex) E(MDD)

A(1,1) 0.424 -0.032 0.000 0.122 -0.003 0.000 0.596

A(2,1) 0.135 0.017 0.000 0.028 0.000 0.000 0.000

A(3,1) -0.024 0.009 -0.016 0.059 0.000 -0.077 0.107

A(1,2) 0.429 0.000 0.000 -0.085 0.003 0.000 0.000

A(2,2) -0.316 0.022 0.000 0.000 0.000 0.000 0.000

A(3,2) 0.068 -0.010 0.000 -0.082 0.000 0.109 0.000

A(1,3) -0.179 -0.018 -0.033 0.088 0.000 0.000 0.000

A(2,3) 0.114 0.000 0.000 -0.052 0.000 0.178 0.000

A(3,3) -0.311 0.000 -0.020 0.000 0.006 -0.169 0.000

99 participants; 15% variance threshold; P(x) shows the posterior probability of the estimates (E(x)) being 
non-zero. The first column identifies the connection as A(TO, FROM), where 1=visual area, 2=mPC, 3=VS; 
e.g. A(1,2) is the connection from mPC to visual area.
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Table S13. BMA results of intrinsic connections using a decreased quality threshold.

P(common) P(QIDS) P(HADS-A) P(site) P(age) P(sex) P(MDD)

A(1,1) 1 1 0 1 0 0 0

A(2,1) 1 1 0 0 0 0 0

A(3,1) 0.73 0 0 0.51 0 0 1

A(1,2) 1 0.63 0 0.56 0 0 0

A(2,2) 1 0 1 0 1 0 0

A(3,2) 1 1 0 1 0 0 0

A(1,3) 1 1 0.76 0.59 0.51 0 0

A(2,3) 0 0 0 1 0 0.65 0

A(3,3) 1 0 1 0 0 1 0

E(common) E(QIDS) E(HADS-A) E(site) E(age) E(sex) E(MDD)

A(1,1) 0.539 -0.021 0.000 0.157 0.000 0.000 0.000

A(2,1) 0.104 0.010 0.000 0.000 0.000 0.000 0.000

A(3,1) -0.021 0.000 0.000 0.012 0.000 0.000 0.153

A(1,2) 0.436 -0.009 0.000 -0.031 0.000 0.000 0.000

A(2,2) -0.361 0.000 0.033 0.000 0.005 0.000 0.000

A(3,2) 0.058 -0.010 0.000 -0.039 0.000 0.000 0.000

A(1,3) -0.247 -0.027 -0.018 0.034 0.003 0.000 0.000

A(2,3) 0.000 0.000 0.000 -0.082 0.000 0.066 0.000

A(3,3) -0.243 0.000 -0.012 0.000 0.000 -0.110 0.000

208 participants; 7.5% variance threshold; P(x) shows the posterior probability of the estimates (E(x)) being 
non-zero. The first column identifies the connection as A(TO, FROM), where 1=visual area, 2=mPC, 3=VS; 
e.g. A(1,2) is the connection from mPC to visual area.
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Table S14. BMA results of intrinsic connections using a PEB matrix without covariates.

P(common) P(QIDS) E(common) E(QIDS)

A(1,1) 1 0.96 0.471 -0.023

A(2,1) 1 0.98 0.121 0.012

A(3,1) 0 0 0.000 0.000

A(1,2) 1 0 0.447 0.000

A(2,2) 1 1 -0.366 0.023

A(3,2) 1 0.76 0.069 -0.007

A(1,3) 1 1 -0.237 -0.042

A(2,3) 0 0 0.000 0.000

A(3,3) 1 0 -0.244 0.000

165 participants; 10% variance threshold; P(common) and P(QIDS) show the posterior probability of the 
estimates (E) being non-zero. The first column identifies the connection as A(TO, FROM), where 1=visual 
area, 2=mPC, 3=VS; e.g. A(1,2) is the connection from mPC to visual area.

Table S15. BMA results of intrinsic connections using a PEB matrix with a single covariate (anxiety).

P(common) P(QIDS) P(HADS-A) E(common) E(QIDS) E(HADS-A)

A(1,1) 1 0.95 0 0.475 -0.023 0.000

A(2,1) 1 0.97 0 0.120 0.012 0.000

A(3,1) 0 0 0 0.000 0.000 0.000

A(1,2) 1 0 0 0.449 0.000 0.000

A(2,2) 1 0 1 -0.366 0.000 0.031

A(3,2) 1 0.78 0 0.069 -0.008 0.000

A(1,3) 1 0.92 0.82 -0.236 -0.027 -0.022

A(2,3) 0 0 0 0.000 0.000 0.000

A(3,3) 1 0 0.7 -0.245 0.000 -0.008

165 participants; 10% variance threshold; P(common), P(QIDS), and P(HADS-A) show the posterior 
probability of the estimates (E) being non-zero. The first column identifies the connection as A(TO, FROM), 
where 1=visual area, 2=mPC, 3=VS; e.g. A(1,2) is the connection from mPC to visual area.
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Table S16. BMA results of intrinsic connections using an alternative input specification.

P(common) P(QIDS) E(common) E(QIDS)

A(1,1) 1 0 0.674 0.000

A(2,1) 0.98 0 0.050 0.000

A(3,1) 0.62 0.93 -0.015 0.010

A(1,2) 1 0 0.453 0.000

A(2,2) 1 0 -0.402 0.000

A(3,2) 1 0.98 0.071 -0.014

A(1,3) 0 0 0.000 0.000

A(2,3) 0.7 0 0.042 0.000

A(3,3) 1 0 -0.396 0.000

141 participants; 10% variance threshold; common variance explained = 19.89%; P(common) and P(QIDS)
show  the  posterior  probability  of  the  estimates  (E)  being  non-zero.  The  first  column  identifies  the
connection as A(TO, FROM), where 1=visual area, 2=mPC, 3=VS; e.g. A(1,2) is the connection from mPC to
visual area.  See Control analyses section for input specification.

Table S17. BMA results of intrinsic connections using an alternative input specification and anxiety as 
covariate.

P(common) P(QIDS) P(HADS-A) E(common) E(QIDS) E(HADS-A)

A(1,1) 1 0 0.62 0.677 0.000 0.012

A(2,1) 0.98 0 0 0.051 0.000 0.000

A(3,1) 0.64 1 0.46 -0.016 0.012 -0.004

A(1,2) 1 0 0.93 0.457 0.000 0.023

A(2,2) 1 0.66 1 -0.401 -0.013 0.024

A(3,2) 1 1 0 0.072 -0.015 0.000

A(1,3) 0 0 0 0.000 0.000 0.000

A(2,3) 0.71 0 0 0.046 0.000 0.000

A(3,3) 1 0 0.57 -0.397 0.000 -0.008

141 participants;  10% variance threshold; mean variance explained = 19.89%; P(common),  P(QIDS) and
P(HADS-A) show the posterior probability of the estimates (E) being non-zero. The first column identifies
the connection as A(TO, FROM), where 1=visual area, 2=mPC, 3=VS; e.g. A(1,2) is the connection from mPC
to visual area.
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PEB results: modulations (B matrix)
Tables  S18-S21  list  posterior  probabilities  and  effect  sizes  of  modulations  of  connections  related  to
commonalities and differences (QIDS) across participants. Table S21 lists posterior probabilities and effect
sizes of a control analysis for which a single PEB model was defined for both intrinsic connectivity and
modulations.

Table S18. BMA results of modulations by reward outcome conditions.

P(common) P(QIDS) E(common) E(QIDS)

B(1,1) 1 0 -1.346 0.000

B(2,1) 0 0 0.000 0.000

B(3,1) 0 0 0.000 0.000

B(1,2) 0 0.82 0.000 -0.069

B(2,2) 0.98 0.88 -0.579 -0.068

B(3,2) 0 0 0.000 0.000

B(1,3) 0 0 0.000 0.000

B(2,3) 0.62 0 0.185 0.000

B(3,3) 1 0 -0.775 0.000

P(common) and P(QIDS) show the posterior probability of the estimates (E) being non-zero. The first 
column identifies the modulation of connection as B(TO, FROM), where 1=visual area, 2=mPC, 3=VS; e.g. 
B(1,2) is the modulation of the connection from mPC to visual area.

Table S19. BMA results of modulations by reward omission conditions.

P(common) P(QIDS) E(common) E(QIDS)

B(1,1) 0 0 0.000 0.000

B(2,1) 0 0 0.000 0.000

B(3,1) 0 0 0.000 0.000

B(1,2) 0 0 0.000 0.000

B(2,2) 1 0 -0.957 0.000

B(3,2) 0 0 0.000 0.000

B(1,3) 0.88 0.99 0.492 0.187

B(2,3) 0 0 0.000 0.000

B(3,3) 1 0 -1.223 0.000

P(common)  and  P(QIDS)  show the  posterior  probability  of  the  estimates  (E)  being  non-zero.  The  first
column identifies the modulation of connection as B(TO, FROM), where 1=visual area, 2=mPC, 3=VS; e.g.
B(1,2) is the modulation of the connection from mPC to visual area.
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Table S20. BMA results of modulations by choice outcome conditions.

P(common) P(QIDS) E(common) E(QIDS)

B(1,1) 1 0 -0.626 0.000

B(2,1) 1 0 -0.238 0.000

B(3,1) 1 0 0.251 0.000

B(1,2) 0.99 0 -0.519 0.000

B(2,2) 0.98 0 -0.615 0.000

B(3,2) 0 0 0.000 0.000

B(1,3) 0 0 0.000 0.000

B(2,3) 0 0 0.000 0.000

B(3,3) 1 1 -0.959 0.114

Bayesian model average results. P(common) and P(QIDS) show the posterior probability of the estimates (E)
being non-zero. The first column identifies the modulation of connection as B(TO, FROM), where 1=visual 
area, 2=mPC, 3=VS; e.g. B(1,2) is the modulation of the connection from mPC to visual area.

Table S21. BMA results of modulations by no-choice outcome conditions.

P(common) P(QIDS) E(common) E(QIDS)

B(1,1) 1 0 -0.527 0.000

B(2,1) 1 0 -0.180 0.000

B(3,1) 1 0 0.147 0.000

B(1,2) 1 0 -0.660 0.000

B(2,2) 1 0 -0.916 0.000

B(3,2) 0 0 0.000 0.000

B(1,3) 0 0 0.000 0.000

B(2,3) 0 0 0.000 0.000

B(3,3) 1 0 -1.050 0.000

P(common) and P(QIDS) show the posterior probability of the estimates (E) being non-zero. The first 
column identifies the modulation of connection as B(TO, FROM), where 1=visual area, 2=mPC, 3=VS; e.g. 
B(1,2) is the modulation of the connection from mPC to visual area.
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Table S22. Control analysis BMA results of intrinsic connections and modulations  

P(mean) P(QIDS) P(site) E(mean) E(QIDS) E(site)
A(1,1) 1 0.71 1 0.441 -0.011 0.147
A(2,1) 1 1 0 0.123 0.012 0.000
A(3,1) 1 0 0.58 -0.033 0.000 0.014
A(1,2) 1 0 0.55 0.443 0.000 -0.030
A(2,2) 1 1 0 -0.457 0.027 0.000
A(3,2) 1 0.72 1 0.069 -0.006 -0.045
A(1,3) 1 1 1 -0.230 -0.039 0.092
A(2,3) 0 0 1 0.000 0.000 -0.091
A(3,3) 1 0 0 -0.376 0.000 0.000

reward

B(1,1) 1 0 1 -1.115 0.000 -0.361
B(2,1) 0 0 0 0.000 0.000 0.000
B(3,1) 0 0 0 0.000 0.000 0.000
B(1,2) 0 1 1 0.000 -0.098 -0.381
B(2,2) 1 0 1 -1.166 0.000 0.417
B(3,2) 0 0 1 0.000 0.000 0.177
B(1,3) 0 0 0 0.000 0.000 0.000
B(2,3) 0 0 0 0.000 0.000 0.000
B(3,3) 1 0 1 -1.179 0.000 0.383

reward
omission

B(1,1) 0.52 1 0 -0.169 0.074 0.000
B(2,1) 0 0 0 0.000 0.000 0.000
B(3,1) 0 0 0 0.000 0.000 0.000
B(1,2) 0 0 0 0.000 0.000 0.000
B(2,2) 1 0 1 -1.155 0.000 0.463
B(3,2) 0 0 0 0.000 0.000 0.000
B(1,3) 0 1 1 0.000 0.216 0.487
B(2,3) 0 0 0 0.000 0.000 0.000
B(3,3) 1 0 0 -1.340 0.000 0.000

choice

B(1,1) 1 0 0 -0.906 0.000 0.000
B(2,1) 1 0 0 -0.122 0.000 0.000
B(3,1) 1 0 0 0.106 0.000 0.000
B(1,2) 0 0 0 0.000 0.000 0.000
B(2,2) 1 0 0 -1.175 0.000 0.000
B(3,2) 0 0 0 0.000 0.000 0.000
B(1,3) 0 0 0 0.000 0.000 0.000
B(2,3) 0 0 0 0.000 0.000 0.000
B(3,3) 1 1 0 -1.210 0.087 0.000

no-choice

B(1,1) 1 0 0.62 -0.845 0.000 -0.122
B(2,1) 1 0 0 -0.105 0.000 0.000
B(3,1) 0.52 0 0 0.038 0.000 0.000
B(1,2) 1 0 0 -0.309 0.000 0.000
B(2,2) 1 0 0 -1.174 0.000 0.000
B(3,2) 0 0 0 0.000 0.000 0.000
B(1,3) 0 0 0 0.000 0.000 0.000
B(2,3) 0 0 0 0.000 0.000 0.000
B(3,3) 1 0.59 0 -1.297 -0.038 0.000

(See Tables S12 and S21 for legends.)
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Summary of main DCM results

Modulation of connectivity

On average across subjects, reward outcomes modulated visual area, mPC and VS self-connectivity. Self-
inhibition was decreased during reward outcomes leading to increased overall activation in these regions
(as  observed  during  model-free GLM  analysis).  No  difference  in  modulation was associated  with  QIDS
scores.  Similarly,  no-reward  outcomes  modulated  self-connectivity  of  mPC  and  VS.  Self-inhibition  was
decreased leading to overall increased activation. Both mPC and VS showed stronger negative modulation
during no-reward than during reward outcomes (leading to decreased inhibition and therefore stronger
activation during no-choice outcomes). In addition, differences in the no-reward modulation of the VS to
the visual  area (inhibitory)  connection were positively  associated with  QIDS scores.  This  means higher
depressive symptoms were associated with increased excitation / decreased inhibition from VS to the visual
area.
    Outcomes during both choice and no-choice conditions modulated the following connections: visual
area→visual area, visual area→mPC, visual area→VS, mPC→visual area, mPC→mPC, VS→VS. Self-inhibition
was decreased for all regions, leading to increased activation. Self-inhibition of the visual area was stronger
and self-inhibition of VS and mPC was weaker during choice outcomes compared to no-choice outcomes.
Visual area to VS connectivity was increased during both choice and no-choice outcomes, and higher during
choice  compared  to  no-choice  outcomes.  Choice  and  no-choice  outcome  conditions  decreased  the
connectivity from the visual area and mPC and from mPC to the visual area. Compared to choice outcomes,
no-choice outcomes had a weaker negative modulation effect on the visual area→mPC connection, but a
stronger  negative  modulation effect  on  the  mPC→visual  area  connection.  Higher  depressive  symptom
scores were associated with increased modulation of VS self-inhibition during choice outcomes only. This
means that while outcomes from participants’ own choice overall led to an increase in VS activity (through
decreased inhibition), in participants with higher depressive symptoms this increase was reduced. 

Summary of DCM results organised by region

Visual  area: There was evidence for effective (excitatory)  endogenous connectivity to mPC, which was
increased with higher depressive symptoms. The region’s self-inhibition was weaker in participants with
higher depressive symptoms. The medial PFC region had an excitatory influence on the visual area, while VS
had  an  inhibitory  influence  and  the  connection  strength  was  negatively  associated  with  depressive
symptoms. Choice and no-choice outcomes were associated with increased influence on VS. Self-inhibition
was weaker (resulting in increased activity) during all outcomes except no-reward outcomes. Both choice
and no-choice conditions decreased the connectivity to and from mPC. Higher depressive symptoms were
associated with decreased inhibition from VS during no-reward outcomes.
mPC: There was evidence for excitatory endogenous connections to and from the visual area and to VS. The
excitation from the visual area and the mPC self-inhibition increased with higher depressive symptoms. The
influence of mPC on VS decreased with higher depressive symptoms.  Self-inhibition was weaker during all
outcomes compared to baseline. Both choice and no-choice outcomes decreased the connectivity to and
from the visual area.
VS: Received excitatory input from mPC and its activity exerted inhibitory influence on the visual area. The
influence from mPC was decreased with higher depressive symptoms. The connection strength to the visual
area was negatively associated with depressive symptoms. Self-inhibition was weaker during all outcomes
compared to baseline. Choice and no-choice outcomes were associated with increased influence of the
visual area, with stronger modulation during choice than no-choice outcomes. Higher depressive symptoms
were associated with increased influence on the visual area during no-reward outcomes and stronger self-
inhibition during choice outcomes.
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Variance threshold

In Figure  S8 we plot  the association of  QIDS with  VS  to VS connectivity as  a function of  the variance
threshold. It shows the expected values (c.f. E(QIDS) of A(3,2) in previous tables) of the second level PEB
model (without BMR). Covariates included (zero-mean centred) QIDS, HADS anxiety, site age and sex. As
expected, it roughly follows an inverted U shape. At low thresholds noise suppresses the association and at
high thresholds too few participants remain.

Figure S8. Association of fop-down connection strength with QIDS as a function of variance threshold.

The association of the covariate of interest (QIDS) with the connection from VS to accumbens as a function
of the variance threshold in the estimated PEB model. As described earlier, our a priori chosen threshold
was 10%.

To make an unbiased estimate of connectivity it  was necessary to include data from subjects who had
sufficient signals.  To convince ourselves of the validity of our findings we performed a large number of
control analyses. Importantly, there was no significant difference in depression symptom severity between
included and excluded participants, making it extremely unlikely that exclusions biased our main results.

We varied the DCM threshold criterion, including up to 301 participants (see Table S23),  and observed
exactly what we predicted (Figure S8): at very low thresholds the reward activation signals are so low that
noise  dominates  which  suppresses  the  negative  association,  although  a  non-significant  negative  trend
remains when all subjects were included.  (At very high thresholds so few subjects were included that the
statistical  power was affected and the association was not significant).   In  Tables S12-13 we show the
results of another two full BMA analyses using higher and lower thresholds with very similar results to the
main text analysis. Finally, we show that the negative association also holds within random splits of the
data (Figure 5).
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Consequently we believe it is extremely unlikely that the exact number of inclusions biased our main result,
which is the association between depression symptom severity and effective cortico-limbic connectivity.
Rather  than lowering  the variance threshold  post-hoc,  which would have allowed us  to  include more
participants,  we chose to be consistent with DCM recommendations on signal threshold to allow valid
inferences, so used additional control analyses to provide an unbiased estimate of abnormal connectivity.

In summary, when we used data with sufficient signals to make valid inferences we found a significant
negative  association  between  cortico-limbic  connectivity  and  depressive  symptoms,  when  there  was
insufficiently strong signals we couldn’t draw conclusions, and none of the analyses suggested a significant
positive relationship between cortico-limbic connectivity and depressive symptoms.
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Analyses of individual depression symptoms

There are some potential issues of the correlation analysis we performed so far. QIDS scores are skewed
and correlation results might be affected by the heteroscedasticity. Closely related to this, we performed
the analysis across groups and since the MDD group naturally displayed higher depressive symptom scores,
it is possible our results related more closely to a group effect rather than an effect of increasing symptom
severity  (although we did try to account for that by including an additional group-indicator covariate).
Finally, the sum of the 16 individual symptom scores of our depression questionnaire might hide additional
variation related to individual symptoms (Fried & Nesse, 2015).
    To begin to address these potential concerns, we performed additional analyses for which we included
each individual QIDS symptom (i.e. question) in the PEB design matrix. In the questionnaire each question
was  coded  as  a  number  from  0  to  3  with  increasing  severity.  For  the  design  matrix  columns  were
transformed to code absence (score=0) or presence (score>0) of the symptom and not mean centered so
that the mean column corresponded to a participant without any symptoms and each symptom column
coded the additive effect of having the symptom. Other covariates (anxiety, age, sex, site) were again zero-
mean centered. This means we essentially performed a list of ‘group comparisons’ of ‘participants reporting
a specific symptom’ (e.g. concentration/decision-making difficulties) versus ‘participants who did not report
this symptom’.
    We also repeated this analysis after excluding current MDD participants and then again after excluding
both current MDD and remitted MDD participants. Results are shown in the additional Supplement Tables
document).  The top-down connection from the prefrontal  cortex to the accumbens was related to the
presence of a number of symptoms, most notably “concentration or decision making difficulties” which was
found in  a variety of  different analyses strategies including the analysis  which did not  include past  or
present MDD participants. This means participants reporting changes in their usual capacity to concentrate
or make decisions had a decreased top-down connectivity.  We also found evidence for decreased top-
down  control  in  participants  displaying  changes  in  their  general  interest,  a  substantial  sub-part  of
“anhedonia”,  but this  was only  true when all  participants were included.  Importantly  however,  only  4
never-depressed participants reported “general  interest” symptoms, but 18 reported “concentration or
decision making difficulties”. We note that these are exploratory analyses and we did not have strong
hypotheses about which symptoms would be most associated with the connection from VS to VS.
    As a final remark, it is worth mentioning that the symptom of decreased energy (one of the three core
symptoms  of  a  major  depressive  episode  as  defined  in  ICD-10  and  also  related  to  “motivation”)  was
associated with increased VS (self-)inhibition which would also lead to decreased activation as observed in
many previous fMRI studies.  In  this  study blunted reward response associated with  overall depressive
symptoms severity was mainly found in caudate and putamen. This might mean that blunting in different
parts of the striatum could be related to (severity of) different depression symptoms.
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Figure S11. Project overview and analysis workflow.
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Table S23. Demographic and clinical details after exclusions (c.f. Figure S11)

Controls Past MDD Current MDD

652 participants
(excluding 3 of 
unknown group)

Number of 
subjects

463 156 30

QIDS (range, 
mean ± std)

0 – 14,
3.59 ± 2.24

1 – 22,
5.42 ± 3.84

7 – 21,
13.9 ± 3.53

HADS-A (range,
mean ± std)

3.24 ± 2.53 5.17 ± 3.58 11.13 ± 3.83

475 participants

Number of 
subjects

407 129 26

QIDS (range, 
mean ± std)

0 -14,
3.52 ± 2.23

1 – 22,
5.33 ± 3.77

7 – 21,
14.12 ± 3.78

HADS-A (range,
mean ± std)

0 – 15,
3.20 ± 2.56

0 – 17,
5.15 ± 3.55

6 – 20,
11.15 ± 3.82

475 participants
(c.f. Table 1)

Number of 
subjects

345 110 20

QIDS (range, 
mean ± std)

0 – 12,
3.39 ± 2.08

1 – 22,
5.41 ± 3.84

9 – 21,
14.55 ± 3.79

HADS-A (range,
mean ± std)

0 – 12,
3.13 ± 2.44

0 – 17,
5.04 ± 3.35

6 – 20,
10.65 ± 3.62

301 participants

Number of 
subjects

214 68 19

QIDS (range, 
mean ± std)

0 – 12, 
3.36 ± 2.07

1 – 22, 
5.43 ± 3.85

9 – 21, 
14.47 ± 3.88

HADS-A (range,
mean ± std)

0 – 12, 
3.09 ± 2.51

0 – 17, 
5.37 ± 3.46

6 – 20, 
10.42 ± 3.56

165 participants

Number of 
subjects

112 41 12

QIDS (range, 
mean ± std)

0 – 10, 
3.21 ± 1.86

1 – 22, 
5.73 ± 4.35

10 – 21, 
14.00 ± 3.95

HADS-A (range,
mean ± std)

0 – 12, 
3.08 ± 2.55

0 – 17, 
5.32 ± 3.73

6 – 20, 
11.50 ± 3.90

QIDS = Quick Inventory of Depressive Symptomatology (Self Report;) HADS = Hospital Anxiety 
and Depression Scale
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Additional computational modelling

It was possible to fit our computational models to the behaviour of 562 participants as some participants
were excluded for fMRI pre-processing reasons (see Figure S11). In our hierarchical fitting approach every
included participant  can potentially  influence every  other  participant (by  changing the empirical  group
prior) and model comparison might also be affected. We therefore repeated our model fitting and model
comparison including all 562 participants. The winning model remained the same. For each approach we
extracted  the  estimated  parameters  from  the  winning  model  for  the  included  participants.  All  three
parameters were nearly identical for all participants (Pearson’s r>.99 for each parameter). We note that for
model-based fMRI we used the estimated parameters (and simulated hidden variables) from the model
which was fitted to all participants.

Model recovery simulations

To assess the strength of our model comparison results,  we performed model recovery simulations by
simulating  data  from  one  of  the  models  and  then  fitting  each  model  to  the  simulated  data.  Model
comparison was then used to see if it correctly identified the model which simulated the data as “best-
fitting”  model.  Each  model  was simulated 20  times using  562  participants  and  66 trials  to  match  our
experimental data. Table S24 shows the results of these model recovery simulations. It can be seen that
while simple models (including our winning model)  were recovered well,  there was too little data (per
individual) to reliably support the recovery of the more complicated models against their simpler versions.
Given the similarity of models 3 (our winning model) and 5 (which also includes separate reward sensitivity
parameters), we ran additional analysis to compare these two models and see if our result of increased
learning with increased control was also reproducible using a more complicated version of our winning
model.  There  was  a  large  significant  correlation  between the  instrumental  learning  rates  (Spearman’s
ρ=0.553,  p<10-10)  and  between the  Pavlovian  learning  rates  (Spearman’s  ρ=0.601,  p<10 -10)  of  the  two
models. As in our winning model, analysis of the alternative model 5 showed that the large majority of
participants had a higher learning rate for choice trials than for no-choice trials (553 of 562, 98%; model 3:
499 of 562 or 89%). We repeated these model recovery simulations with only the included 475 participants
which again gave us very similar results (Table S25) and we also repeated the correlation analysis between
QIDS and model parameters which led us to the same conclusions.
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Table S24. Model recovery (475 participants)

Best-fitting model

Simulating
model

M1 M2 M3 M4 M5

M1 20 0 0 0 0

M2 0 20 0 0 0

M3 0 2 18 0 0

M4 0 7 1 8 4

M5 0 0 9 7 4

Table S25. Model recovery (475 participants)

Best-fitting model

Simulating
model

M1 M2 M3 M4 M5

M1 20 0 0 0 0

M2 0 20 0 0 0

M3 0 0 20 0 0

M4 0 13 0 7 0

M5 0 0 16 1 3
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Tables B1-B6 include (zero-mean centered) HADS anxiety, site, age and sex covariates of no interest

Table B1: All 165 participants: BMA Expectations
Nr Pname mean HADS site age sex QIDS1 QIDS2 QIDS3 QIDS4 QIDS5 QIDS6 QIDS7 QIDS8 QIDS9 QIDS10 QIDS11 QIDS12 QIDS13 QIDS14 QIDS15 QIDS16

1 A(1,1) 0.35 0.00 0.16 -0.08 0.00 0.00 0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.25 0.00 0.00 0.00
2 A(2,1) 0.00 0.00 0.04 0.00 0.00 0.00 0.08 0.08 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.10 0.00
3 A(3,1) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00
4 A(1,2) 0.33 0.00 0.00 0.00 0.00 0.00 0.17 0.00 0.00 0.00 0.00 0.00 -0.09 0.00 0.00 0.23 0.00 -0.28 0.00 0.00 0.00
5 A(2,2) -0.38 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.15 0.07 0.12 -0.32 0.00 0.00 0.00 0.29 -0.15
6 A(3,2) 0.09 0.00 -0.04 0.00 0.02 -0.04 0.00 0.00 0.09 0.00 0.12 0.00 0.00 0.00 -0.09 0.00 0.00 -0.08 0.00 0.00 0.00
7 A(1,3) 0.00 -0.12 0.06 0.09 0.00 0.00 -0.17 -0.19 0.00 0.00 0.00 0.21 0.00 0.00 0.00 0.00 0.00 0.00 -0.19 0.00 0.00
8 A(2,3) 0.00 0.00 -0.10 0.00 0.07 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.00 -0.13 0.00 0.00
9 A(3,3) -0.20 0.00 0.00 0.00 -0.06 -0.14 0.00 0.00 -0.20 0.13 0.23 0.00 0.00 0.00 0.00 0.00 -0.31 -0.23 0.21 0.00 0.00

Table B2: All 165 participants: BMA Probabilities
Nr Pname mean HADS site age sex QIDS1 QIDS2 QIDS3 QIDS4 QIDS5 QIDS6 QIDS7 QIDS8 QIDS9 QIDS10 QIDS11 QIDS12 QIDS13 QIDS14 QIDS15 QIDS16

1 A(1,1) 1.00 0.00 1.00 1.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
2 A(2,1) 0.00 0.00 1.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.54 0.00 0.00 0.00 0.00 0.00 1.00 0.00
3 A(3,1) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.54 0.00 0.00 0.00 0.00
4 A(1,2) 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.62 0.00 0.00 1.00 0.00 1.00 0.00 0.00 0.00
5 A(2,2) 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.59 1.00 1.00 0.00 0.00 0.00 1.00 1.00
6 A(3,2) 1.00 0.00 1.00 0.00 0.66 0.68 0.00 0.00 1.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.67 0.00 0.00 0.00
7 A(1,3) 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00
8 A(2,3) 0.00 0.00 1.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.56 0.00 1.00 0.00 0.00
9 A(3,3) 1.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00

Table B3: HC+rMDD (MDD excluded) participants: BMA Expectations
Nr Pname mean HADS site age sex QIDS1 QIDS2 QIDS3 QIDS4 QIDS5 QIDS6 QIDS7 QIDS8 QIDS9 QIDS10 QIDS11 QIDS12 QIDS13 QIDS14 QIDS15 QIDS16

1 A(1,1) 0.38 0.00 0.17 -0.09 0.00 0.00 0.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.40 0.00 0.00 0.00
2 A(2,1) 0.00 0.00 0.02 0.00 0.00 0.00 0.08 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.00
3 A(3,1) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.06 0.00 0.00 0.00 0.00 -0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 A(1,2) 0.34 0.00 0.00 0.00 0.00 0.00 0.17 0.00 0.00 0.00 0.32 0.26 -0.20 0.00 0.00 0.15 0.00 -0.35 0.00 0.00 0.00
5 A(2,2) -0.34 0.14 0.00 0.03 -0.02 -0.08 0.00 0.00 -0.10 0.00 0.00 0.00 -0.12 0.00 0.13 -0.41 0.00 0.00 0.00 0.39 -0.26
6 A(3,2) 0.08 0.00 -0.04 0.00 0.04 0.00 0.00 0.00 0.05 0.00 0.14 0.00 0.00 0.00 -0.10 0.00 0.00 0.00 0.00 0.00 0.00
7 A(1,3) 0.00 -0.12 0.07 0.07 0.00 0.13 -0.19 -0.21 0.00 0.00 0.00 0.28 0.00 0.00 0.00 -0.14 0.00 0.00 -0.23 0.00 0.00
8 A(2,3) 0.11 0.00 -0.12 0.00 0.08 0.07 -0.11 0.00 0.00 0.00 0.00 0.00 0.00 -0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00
9 A(3,3) -0.20 0.00 0.00 0.00 -0.06 -0.13 0.00 0.00 -0.22 0.12 0.23 0.20 0.00 0.00 -0.12 0.00 0.00 -0.33 0.18 0.00 0.00

Table B4: HC+rMDD (MDD excluded) participants: BMA Probabilities
Nr Pname mean HADS site age sex QIDS1 QIDS2 QIDS3 QIDS4 QIDS5 QIDS6 QIDS7 QIDS8 QIDS9 QIDS10 QIDS11 QIDS12 QIDS13 QIDS14 QIDS15 QIDS16

1 A(1,1) 1.00 0.00 1.00 1.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
2 A(2,1) 0.00 0.00 0.63 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00
3 A(3,1) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 A(1,2) 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.64 0.00 1.00 0.00 0.00 0.00
5 A(2,2) 1.00 1.00 0.00 0.66 0.52 1.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 1.00 1.00 0.00 0.00 0.00 1.00 1.00
6 A(3,2) 1.00 0.00 1.00 0.00 1.00 0.00 0.00 0.00 0.65 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
7 A(1,3) 0.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.59 0.00 0.00 1.00 0.00 0.00
8 A(2,3) 1.00 0.00 1.00 0.00 1.00 0.66 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00
9 A(3,3) 1.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 1.00 0.00 0.00

Table B5: HC (rMDD + MDD excluded) participants: BMA Expectations
Nr Pname mean HADS site age sex QIDS1 QIDS2 QIDS3 QIDS4 QIDS5 QIDS6 QIDS7 QIDS8 QIDS9 QIDS10 QIDS11 QIDS12 QIDS13 QIDS14 QIDS15 QIDS16

1 A(1,1) 0.48 0.00 0.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.16 -0.14 0.00 0.00 0.00
2 A(2,1) 0.00 0.05 0.05 0.00 0.00 0.00 0.10 0.09 0.00 -0.12 0.00 0.00 0.00 0.14 -0.14 0.44 0.00 0.00 0.00 0.00 0.00
3 A(3,1) 0.00 0.00 0.04 0.00 -0.03 0.00 0.00 0.00 -0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 A(1,2) 0.33 0.00 0.00 0.00 0.00 0.00 0.15 0.00 0.00 0.00 0.51 0.65 -0.23 0.00 0.00 0.65 0.00 -0.18 -0.11 0.00 0.00
5 A(2,2) -0.48 0.10 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.27 0.00 0.00 0.21 0.00 0.00 0.00 0.00 0.00 0.00 -0.24
6 A(3,2) 0.09 0.00 -0.06 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.09 0.00 0.00 0.00 -0.09 0.00 0.00 0.00 0.00 0.00 0.00
7 A(1,3) 0.00 -0.16 0.00 0.04 0.00 0.00 -0.21 -0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.56 0.00 -0.35 0.35
8 A(2,3) 0.00 -0.06 -0.12 0.00 0.06 0.17 0.00 -0.12 0.00 0.00 0.44 -0.25 0.00 0.00 0.24 0.00 0.00 0.00 -0.25 0.00 0.00
9 A(3,3) -0.21 0.06 0.00 0.00 -0.05 0.00 0.00 0.00 -0.25 0.00 0.00 0.00 0.00 0.00 -0.22 -0.29 0.00 -0.35 0.24 0.00 -0.17

Table B6: HC (rMDD + MDD excluded) participants: BMA Probabilities
Nr Pname mean HADS site age sex QIDS1 QIDS2 QIDS3 QIDS4 QIDS5 QIDS6 QIDS7 QIDS8 QIDS9 QIDS10 QIDS11 QIDS12 QIDS13 QIDS14 QIDS15 QIDS16

1 A(1,1) 1.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.51 0.52 0.00 0.00 0.00
2 A(2,1) 0.00 1.00 1.00 0.00 0.00 0.00 1.00 1.00 0.00 1.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00
3 A(3,1) 0.00 0.00 1.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 A(1,2) 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 0.00 0.58 0.65 0.00 0.00
5 A(2,2) 1.00 1.00 0.00 0.53 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
6 A(3,2) 1.00 0.00 1.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.60 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
7 A(1,3) 0.00 1.00 0.00 0.63 0.00 0.00 1.00 0.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 1.00 1.00
8 A(2,3) 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 0.00 0.00 1.00 1.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00
9 A(3,3) 1.00 1.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00



Tables B7-B12 do not include additional covariates of no interest

Table B7: All 165 participants: BMA Expectations
Nr Pname mean QIDS1 QIDS2 QIDS3 QIDS4 QIDS5 QIDS6 QIDS7 QIDS8 QIDS9 QIDS10 QIDS11 QIDS12 QIDS13 QIDS14 QIDS15 QIDS16

1 A(1,1) 0.42 0.00 0.15 0.00 -0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.26 0.00 0.00 0.00
2 A(2,1) 0.00 0.00 0.09 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00
3 A(3,1) 0.00 0.00 0.00 0.00 -0.07 0.00 0.00 0.00 0.00 -0.07 0.00 0.00 0.00 0.00 0.04 0.00 0.00
4 A(1,2) 0.31 0.00 0.17 0.05 0.00 0.00 0.00 0.00 -0.06 0.00 0.00 0.23 0.00 -0.31 0.00 0.00 0.00
5 A(2,2) -0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.17 0.00 0.06 0.00 0.00 0.00 0.00 0.28 0.00
6 A(3,2) 0.09 -0.08 0.00 0.04 0.11 0.00 0.15 0.00 0.00 0.00 -0.09 0.00 0.00 -0.12 0.00 0.00 0.00
7 A(1,3) 0.00 0.00 -0.12 -0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.32 0.00 0.00 -0.17 0.00 0.00
8 A(2,3) 0.00 0.00 0.00 0.00 0.00 0.00 0.19 0.00 0.00 0.00 0.00 0.00 0.08 0.00 -0.04 0.00 0.00
9 A(3,3) -0.23 -0.11 0.00 0.00 -0.18 0.18 0.19 0.00 0.00 0.00 0.00 0.00 -0.36 -0.20 0.23 0.00 0.00

Table B8: All 165 participants: BMA Probabilities
Nr Pname mean QIDS1 QIDS2 QIDS3 QIDS4 QIDS5 QIDS6 QIDS7 QIDS8 QIDS9 QIDS10 QIDS11 QIDS12 QIDS13 QIDS14 QIDS15 QIDS16

1 A(1,1) 1.00 0.00 1.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
2 A(2,1) 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.62 0.00 0.00
3 A(3,1) 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.66 0.00 0.00
4 A(1,2) 1.00 0.00 1.00 0.54 0.00 0.00 0.00 0.00 0.55 0.00 0.00 1.00 0.00 1.00 0.00 0.00 0.00
5 A(2,2) 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.55 0.00 0.00 0.00 0.00 1.00 0.00
6 A(3,2) 1.00 1.00 0.00 0.59 1.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 0.00
7 A(1,3) 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
8 A(2,3) 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.53 0.00 0.48 0.00 0.00
9 A(3,3) 1.00 1.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00

Table B9: HC+rMDD (MDD excluded) participants: BMA Expectations
Nr Pname mean QIDS1 QIDS2 QIDS3 QIDS4 QIDS5 QIDS6 QIDS7 QIDS8 QIDS9 QIDS10 QIDS11 QIDS12 QIDS13 QIDS14 QIDS15 QIDS16

1 A(1,1) 0.49 0.00 0.07 0.00 -0.18 0.00 -0.16 0.00 0.00 0.00 0.00 0.00 0.00 -0.40 0.00 0.00 0.00
2 A(2,1) 0.00 0.00 0.08 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.00
3 A(3,1) 0.00 0.00 0.00 0.00 -0.07 0.00 0.00 0.00 0.00 -0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 A(1,2) 0.33 0.00 0.17 0.00 0.00 0.00 0.34 0.29 -0.20 0.00 0.00 0.26 0.00 -0.37 0.00 -0.08 0.00
5 A(2,2) -0.43 0.00 0.00 0.00 0.00 0.00 0.21 0.00 -0.17 0.00 0.17 -0.24 0.00 0.00 0.00 0.33 -0.08
6 A(3,2) 0.10 -0.07 0.00 0.00 0.09 0.00 0.18 0.00 0.00 0.00 -0.09 0.00 0.00 0.00 0.00 0.00 0.00
7 A(1,3) 0.00 0.08 -0.14 -0.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.42 0.00 0.00 -0.17 0.00 0.00
8 A(2,3) 0.00 0.03 0.00 0.00 0.00 0.00 0.26 0.00 0.00 0.00 0.00 0.00 0.00 -0.10 0.00 0.00 0.00
9 A(3,3) -0.21 -0.11 0.00 0.00 -0.21 0.11 0.16 0.19 0.00 0.00 -0.07 0.00 0.00 -0.30 0.19 0.00 0.00

Table B10: HC+rMDD (MDD excluded) participants: BMA Probabilities
Nr Pname mean QIDS1 QIDS2 QIDS3 QIDS4 QIDS5 QIDS6 QIDS7 QIDS8 QIDS9 QIDS10 QIDS11 QIDS12 QIDS13 QIDS14 QIDS15 QIDS16

1 A(1,1) 1.00 0.00 0.62 0.00 1.00 0.00 0.64 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
2 A(2,1) 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00
3 A(3,1) 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 A(1,2) 1.00 0.00 1.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 0.00 1.00 0.00 0.51 0.00
5 A(2,2) 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 1.00 0.00 1.00 1.00 0.00 0.00 0.00 1.00 0.65
6 A(3,2) 1.00 1.00 0.00 0.00 1.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
7 A(1,3) 0.00 0.65 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
8 A(2,3) 0.00 0.48 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.55 0.00 0.00 0.00
9 A(3,3) 1.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00 0.00 0.00 0.67 0.00 0.00 1.00 1.00 0.00 0.00

Table B11: HC (rMDD + MDD excluded) participants: BMA Expectations
Nr Pname mean QIDS1 QIDS2 QIDS3 QIDS4 QIDS5 QIDS6 QIDS7 QIDS8 QIDS9 QIDS10 QIDS11 QIDS12 QIDS13 QIDS14 QIDS15 QIDS16

1 A(1,1) 0.49 0.00 0.00 0.00 -0.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.18 0.00 0.00 0.00 0.00
2 A(2,1) 0.00 0.00 0.06 0.12 0.00 0.00 0.00 0.00 0.00 0.00 -0.06 0.32 0.00 0.00 0.00 0.22 0.00
3 A(3,1) 0.00 0.00 0.00 0.00 -0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 A(1,2) 0.33 0.00 0.15 0.00 0.00 0.00 0.51 0.68 -0.23 0.00 0.00 0.66 0.00 -0.22 -0.11 0.00 0.00
5 A(2,2) -0.50 0.00 0.00 0.00 0.00 0.00 0.41 0.00 -0.09 0.20 0.12 0.00 0.00 0.00 -0.06 0.00 0.00
6 A(3,2) 0.10 -0.07 0.00 0.00 0.09 0.00 0.17 0.00 0.00 0.00 -0.09 0.00 0.00 0.00 0.00 0.00 0.00
7 A(1,3) 0.00 0.00 -0.15 -0.18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.17 0.00 0.45 0.00 0.00 0.00
8 A(2,3) 0.03 0.14 0.00 -0.13 0.00 0.00 0.46 -0.25 0.00 0.00 0.20 0.00 0.00 0.00 -0.28 0.00 0.00
9 A(3,3) -0.23 0.00 0.00 0.00 -0.24 0.00 0.00 0.00 0.00 0.00 -0.21 0.00 0.00 -0.36 0.22 0.00 0.00

Table B12: HC (rMDD + MDD excluded) participants: BMA Probabilities
Nr Pname mean QIDS1 QIDS2 QIDS3 QIDS4 QIDS5 QIDS6 QIDS7 QIDS8 QIDS9 QIDS10 QIDS11 QIDS12 QIDS13 QIDS14 QIDS15 QIDS16

1 A(1,1) 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.54 0.00 0.00 0.00 0.00
2 A(2,1) 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.68 1.00 0.00 0.00 0.00 1.00 0.00
3 A(3,1) 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 A(1,2) 1.00 0.00 1.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 0.00 0.64 0.66 0.00 0.00
5 A(2,2) 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.69 1.00 1.00 0.00 0.00 0.00 0.51 0.00 0.00
6 A(3,2) 1.00 1.00 0.00 0.00 1.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
7 A(1,3) 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.53 0.00 1.00 0.00 0.00 0.00
8 A(2,3) 0.52 1.00 0.00 1.00 0.00 0.00 1.00 1.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00
9 A(3,3) 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 1.00 1.00 0.00 0.00



Tables B13-B18 only include a single symptom Tables B19-B24 include a single symptom (concentration / decision making difficulties)
    (concentration / decision making difficulties)  and additional covariates of no interest (HADS anxiety, site, age, sex)

Table B13: All 165 participants: BMA Expectations Table B19: All 165 participants: BMA Expectations
Nr Pname mean QIDS10 Nr Pname mean HADS site age sex QIDS10

1 A(1,1) 0.48 0.00 1 A(1,1) 0.48 0.00 0.16 -0.04 0.00 0.00
2 A(2,1) 0.12 0.00 2 A(2,1) 0.12 0.03 0.00 0.00 0.00 0.00
3 A(3,1) 0.00 0.00 3 A(3,1) 0.00 0.00 0.00 0.00 0.00 0.00
4 A(1,2) 0.45 0.00 4 A(1,2) 0.45 0.00 -0.03 0.00 0.00 0.00
5 A(2,2) -0.42 0.20 5 A(2,2) -0.41 0.08 0.00 0.06 0.00 0.15
6 A(3,2) 0.09 -0.09 6 A(3,2) 0.09 0.00 -0.04 0.00 0.04 -0.11
7 A(1,3) -0.17 -0.26 7 A(1,3) -0.23 -0.15 0.07 0.04 0.00 0.00
8 A(2,3) 0.00 0.00 8 A(2,3) 0.00 0.00 -0.09 0.00 0.06 0.00
9 A(3,3) -0.25 0.00 9 A(3,3) -0.25 -0.05 0.00 0.00 -0.03 0.00

Table B14: All 165 participants: BMA Probabilities Table B20: All 165 participants: BMA Probabilities
Nr Pname mean QIDS10 Nr Pname mean HADS site age sex QIDS10

1 A(1,1) 1.00 0.00 1 A(1,1) 1.00 0.00 1.00 0.67 0.00 0.00
2 A(2,1) 1.00 0.00 2 A(2,1) 1.00 0.70 0.00 0.00 0.00 0.00
3 A(3,1) 0.00 0.00 3 A(3,1) 0.00 0.00 0.00 0.00 0.00 0.00
4 A(1,2) 1.00 0.00 4 A(1,2) 1.00 0.00 0.55 0.00 0.00 0.00
5 A(2,2) 1.00 0.99 5 A(2,2) 1.00 1.00 0.00 1.00 0.00 1.00
6 A(3,2) 1.00 0.93 6 A(3,2) 1.00 0.00 1.00 0.00 0.86 1.00
7 A(1,3) 1.00 1.00 7 A(1,3) 1.00 1.00 0.85 0.64 0.00 0.00
8 A(2,3) 0.00 0.00 8 A(2,3) 0.00 0.00 1.00 0.00 0.89 0.00
9 A(3,3) 1.00 0.00 9 A(3,3) 1.00 1.00 0.00 0.00 0.65 0.00

Table B15: HC+rMDD (MDD excluded) participants: BMA Expectations Table B21: HC+rMDD (MDD excluded) participants: BMA Expectations
Nr Pname mean QIDS10 Nr Pname mean HADS site age sex QIDS10

1 A(1,1) 0.48 0.00 1 A(1,1) 0.49 0.00 0.17 -0.08 0.00 0.00
2 A(2,1) 0.11 0.00 2 A(2,1) 0.11 0.02 0.00 0.00 0.00 0.00
3 A(3,1) -0.03 0.00 3 A(3,1) -0.03 0.00 0.02 0.00 0.00 0.00
4 A(1,2) 0.46 0.00 4 A(1,2) 0.46 0.00 0.00 0.00 0.00 0.00
5 A(2,2) -0.43 0.18 5 A(2,2) -0.42 0.08 0.00 0.06 0.00 0.14
6 A(3,2) 0.09 -0.07 6 A(3,2) 0.10 0.00 -0.05 0.00 0.04 -0.08
7 A(1,3) -0.16 -0.23 7 A(1,3) -0.20 -0.15 0.07 0.00 0.00 0.00
8 A(2,3) 0.00 0.00 8 A(2,3) 0.00 0.00 -0.10 0.00 0.08 0.00
9 A(3,3) -0.26 0.00 9 A(3,3) -0.25 0.00 0.00 0.00 0.00 0.00

Table B16: HC+rMDD (MDD excluded) participants: BMA Probabilities Table B22: HC+rMDD (MDD excluded) participants: BMA Probabilities
Nr Pname mean QIDS10 Nr Pname mean HADS site age sex QIDS10

1 A(1,1) 1.00 0.00 1 A(1,1) 1.00 0.00 1.00 0.92 0.00 0.00
2 A(2,1) 1.00 0.00 2 A(2,1) 1.00 0.57 0.00 0.00 0.00 0.00
3 A(3,1) 0.87 0.00 3 A(3,1) 0.87 0.00 0.60 0.00 0.00 0.00
4 A(1,2) 1.00 0.00 4 A(1,2) 1.00 0.00 0.00 0.00 0.00 0.00
5 A(2,2) 1.00 0.97 5 A(2,2) 1.00 1.00 0.00 1.00 0.00 0.97
6 A(3,2) 1.00 0.75 6 A(3,2) 1.00 0.00 1.00 0.00 0.94 0.85
7 A(1,3) 1.00 0.97 7 A(1,3) 1.00 1.00 0.87 0.00 0.00 0.00
8 A(2,3) 0.00 0.00 8 A(2,3) 0.00 0.00 1.00 0.00 1.00 0.00
9 A(3,3) 1.00 0.00 9 A(3,3) 1.00 0.00 0.00 0.00 0.00 0.00

Table B17: HC (rMDD + MDD excluded) participants: BMA Expectations Table B23: HC (rMDD + MDD excluded) participants: BMA Expectations
Nr Pname mean QIDS10 Nr Pname mean HADS site age sex QIDS10

1 A(1,1) 0.46 0.00 1 A(1,1) 0.47 0.00 0.16 0.00 0.00 0.00
2 A(2,1) 0.10 0.00 2 A(2,1) 0.11 0.05 0.02 0.00 0.00 -0.05
3 A(3,1) 0.00 0.00 3 A(3,1) 0.00 0.00 0.04 0.00 -0.02 0.00
4 A(1,2) 0.46 0.00 4 A(1,2) 0.46 0.00 0.00 0.00 0.00 0.00
5 A(2,2) -0.45 0.00 5 A(2,2) -0.45 0.07 0.00 0.03 0.00 0.00 QIDS-SR individual symptoms information:
6 A(3,2) 0.09 -0.07 6 A(3,2) 0.09 0.00 -0.06 0.00 0.05 -0.09 QIDS-16: 1. Falling asleep

7 A(1,3) -0.16 0.00 7 A(1,3) -0.16 -0.13 0.00 0.00 0.00 0.00 QIDS-16: 2. Sleeping during the night

8 A(2,3) 0.00 0.00 8 A(2,3) 0.00 0.00 -0.14 0.00 0.05 0.00 QIDS-16: 3. Waking up too early

9 A(3,3) -0.24 -0.23 9 A(3,3) -0.25 0.00 0.00 0.00 0.00 -0.22 QIDS-16: 4. Sleeping too much

QIDS-16: 5. Feeling sad

Table B18: HC (rMDD + MDD excluded) participants: BMA Probabilities Table B24: HC (rMDD + MDD excluded) participants: BMA Probabilities QIDS-16: 6. Decreased appetite

Nr Pname mean QIDS10 Nr Pname mean HADS site age sex QIDS10 QIDS-16: 7. Increased appetite

1 A(1,1) 1.00 0.00 1 A(1,1) 1.00 0.00 1.00 0.00 0.00 0.00 QIDS-16: 8. Decreased weight

2 A(2,1) 1.00 0.00 2 A(2,1) 1.00 0.95 0.58 0.00 0.00 0.52 QIDS-16: 9. Increased weight

3 A(3,1) 0.00 0.00 3 A(3,1) 0.00 0.00 1.00 0.00 0.70 0.00 QIDS-16: 10. Concentration/decision making

4 A(1,2) 1.00 0.00 4 A(1,2) 1.00 0.00 0.00 0.00 0.00 0.00 QIDS-16: 11. View of myself

5 A(2,2) 1.00 0.00 5 A(2,2) 1.00 0.98 0.00 0.72 0.00 0.00 QIDS-16: 12. Thoughts of suicide or death

6 A(3,2) 1.00 0.71 6 A(3,2) 1.00 0.00 1.00 0.00 1.00 0.86 QIDS-16: 13. General interest

7 A(1,3) 1.00 0.00 7 A(1,3) 1.00 1.00 0.00 0.00 0.00 0.00 QIDS-16: 14. Energy level

8 A(2,3) 0.00 0.00 8 A(2,3) 0.00 0.00 1.00 0.00 0.80 0.00 QIDS-16: 15. Feeling slowed down

9 A(3,3) 1.00 1.00 9 A(3,3) 1.00 0.00 0.00 0.00 0.00 1.00 QIDS-16: 16. Feeling restless
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Tables D.1-D.18 shows details about the trained classifiers. Each classifier was

trained using the nested cross-validation scheme depicted in Figure 6.1. See Ta-

ble D.1 for the caption relevant for all other tables.

Classifier Linear SVM Accuracy 70% (72%)
Inner-loop CV Undersampled k-fold Healthy controls 76/36

Lifetime MDD 40/13
Features A, A+B, A+C, A+B+C

TABLE D.1: Classifier #1 details. Classifier states the inner-loop clas-
sifier type. Inner-cross validations were always repeated 10 times.
Accuracy shows overall leave-one-out accuracy (and balanced ac-
curacy in parentheses). Healthy controls shows the number of cor-
rectly/incorrectly classified controls. Lifetime MDD shows the num-
ber of correctly/incorrectly classified lifetime MDD cases. Features
lists the possible feature sets (which could be selected in the inner-

loop).

Classifier Linear SVM Accuracy 70% (72%)
Inner-loop CV Stratified k-fold Healthy controls 76/36

Lifetime MDD 40/13
Features A, A+B, A+C, A+B+C

TABLE D.2: Classifier #2 details.

Classifier Linear SVM Accuracy 70% (72%)
Inner-loop CV Undersampled k-fold Healthy controls 87/25

Lifetime MDD 23/30
Features A, A+site, A+B, A+B+site, A+B+C, A+B+C+site

TABLE D.3: Classifier #3 details.
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Classifier Linear SVM Accuracy 65% (65%)
Inner-loop CV Stratified k-fold Healthy controls 72/40

Lifetime MDD 35/18
Features A, A+site, A+B, A+B+site, A+B+C, A+B+C+site

TABLE D.4: Classifier #4 details.

Classifier Linear SVM Accuracy 71% (73%)
Inner-loop CV Undersampled k-fold Healthy controls 76/36

Lifetime MDD 41/12
Features A, A+B, A+var(A), A+B+var(A)+var(B)

TABLE D.5: Classifier #5 details.

Classifier Linear SVM Accuracy 71% (73%)
Inner-loop CV Stratified k-fold Healthy controls 76/36

Lifetime MDD 40/13
Features A, A+B, A+var(A), A+B+var(A)+var(B)

TABLE D.6: Classifier #6 details.

Classifier RBF SVM Accuracy 70% (70%)
Inner-loop CV Undersampled k-fold Healthy controls 79/33

Lifetime MDD 37/16
Features A, A+B, A+C, A+B+C

TABLE D.7: Classifier #7 details.

Classifier RBF SVM Accuracy 71% (71%)
Inner-loop CV Stratified k-fold Healthy controls 79/33

Lifetime MDD 38/15
Features A, A+B, A+C, A+B+C

TABLE D.8: Classifier #8 details.

Classifier RBF SVM Accuracy 66% (63%)
Inner-loop CV Undersampled k-fold Healthy controls 81/31

Lifetime MDD 28/25
Features A, A+site, A+B, A+B+site, A+B+C, A+B+C+site

TABLE D.9: Classifier #9 details.
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Classifier RBF SVM Accuracy 64% (61%)
Inner-loop CV Stratified k-fold Healthy controls 76/36

Lifetime MDD 29/24
Features A, A+site, A+B, A+B+site, A+B+C, A+B+C+site

TABLE D.10: Classifier #10 details.

Classifier RBF SVM Accuracy 71% (71%)
Inner-loop CV Repeated k-fold Healthy controls 79/33

Lifetime MDD 38/15
Features A, A+B, A+var(A), A+B+var(A)+var(B)

TABLE D.11: Classifier #11 details.

Classifier RBF SVM Accuracy 71% (71%)
Inner-loop CV Stratified k-fold Healthy controls 79/33

Lifetime MDD 38/15
Features A, A+B, A+var(A), A+B+var(A)+var(B)

TABLE D.12: Classifier #12 details.

Classifier Logistic Regression Accuracy 62% (62%)
Inner-loop CV Undersampled k-fold Healthy controls 69/43

Lifetime MDD 33/20
Features A, A+B, A+C, A+B+C

TABLE D.13: Classifier #13 details.

Classifier Logistic Regression Accuracy 63% (63%)
Inner-loop CV Stratified k-fold Healthy controls 70/42

Lifetime MDD 34/19
Features A, A+B, A+C, A+B+C

TABLE D.14: Classifier #14 details.

Classifier Logistic Regression Accuracy 63% (60%)
Inner-loop CV Undersampled k-fold Healthy controls 77/35

Lifetime MDD 27/26
Features A, A+site, A+B, A+B+site, A+B+C, A+B+C+site

TABLE D.15: Classifier #15 details.
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Classifier Logistic Regression Accuracy 65% (63%)
Inner-loop CV Stratified k-fold Healthy controls 78/34

Lifetime MDD 30/23
Features A, A+site, A+B, A+B+site, A+B+C, A+B+C+site

TABLE D.16: Classifier #16 details.

Classifier Logistic Regression Accuracy 62% (62%)
Inner-loop CV Undersampled k-fold Healthy controls 70/42

Lifetime MDD 33/20
Features A, A+B, A+var(A), A+B+var(A)+var(B)

TABLE D.17: Classifier #17 details.

Classifier Logistic Regression Accuracy 63% (63%)
Inner-loop CV Stratified k-fold Healthy controls 70/42

Lifetime MDD 34/19
Features A, A+B, A+var(A), A+B+var(A)+var(B)

TABLE D.18: Classifier #18 details.
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