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Abstract

Single-photon avalanche diodes (SPADs) have been widely applied in many applications over
the past few decades thanks to their high sensitivity, high photon detection efficiency and
high timing resolution. Nowadays, they are drawing particular attention in the field of optical
wireless communication (OWC), resulting in wider and deeper studies among the scientific
research community. Compared with positive-intrinsic-negative (PIN) diodes and avalanche
photodiodes (APDs), SPADs provide much higher internal gains and sensitivities, thereby
easily overcoming the thermal noise and enabling the detection of individual photons without
the need for transimpedance amplifiers (TIAs). However, upon detecting a photon, the SPAD is
unable to respond to subsequent incident photons for a certain period of time, called dead time.
This dead time is caused by the quenching circuit, which is of two principal modes: active
quenching (AQ) and passive quenching (PQ). Depending on the structure of this circuit, the
dead time can be constant or variable, in any case, it degrades the photon counting performance
of the SPAD.

In this thesis, a comprehensive analytical approach is presented for modelling the counting
statistics of SPAD detectors in the presence of dead time. To the best of author’s knowledge, this
is the first in-depth study of the impact of dead time in the context of OWC. Using the concepts
of arrival processes and renewal theory, the exact photocount distributions and the count rate
models are derived for AQ and PQ single SPADs. It is shown that, unlike ideal photon counting
detectors, in AQ and PQ single SPADs, the photocounts do not follow a Poisson distribution.
The results confirm that AQ single SPADs generally exhibit less counting losses and therefore,
higher count rates compared to PQ single SPADs and the count rate gap in high photon rate
regimes is substantial. It is also shown that the photocount distribution of a SPAD array can
be well approximated by a Gaussian distribution, for which the mean and variance are dead
time dependent. The numerical results suggest that as the size of the array increases, the gap
between the photon counting performance of AQ and PQ SPAD arrays tends to vanish.

Furthermore, in this thesis, the bit error performance of SPAD-based OWC systems with AQ
single SPADs, PQ single SPADs and AQ SPAD arrays are evaluated. The results show that the
SPAD dead time significantly degrades the bit error ratio (BER) of the systems. The system
with an AQ single SPAD exhibits better BERs compared to the system with a PQ single SPAD.
The effect of dead time is mitigated to some extent when an array is employed. The analytical
and Monte Carlo simulation results are provided for various dead time values, background
count levels and SPAD array sizes.

From a communication theory point of view, the dead time also limits the achievable data
rate of SPAD-based systems. In this thesis, the information transfer rate of SPAD detectors
is also investigated. To this end, the SPAD is modelled as a communication channel. Using
an information theoretic approach, the channel capacity and the capacity-achieving input
distributions for AQ single SPADs and AQ SPAD arrays are obtained for various dead time
values, background count levels, and array sizes.
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Lay summary

Single-photon avalanche diodes (SPADs) are highly sensitive devices capable of detecting very
weak light signals. Nowadays, they are drawing particular attention in the field of optical
wireless communication (OWC), resulting in wider and deeper studies among the scientific
research community. Thermal noise is one of the main sources of noise in any electronic circuit.
In most of the light detectors, the thermal noise is considerable and it significantly limits the
sensitivity of the device. SPADs can overcome this noise thanks to their unique operating
mechanism, thereby offering very high sensitivities. This makes them a promising candidate for
OWC applications dealing with very weak light levels or involving data transmissions through
long distances.

During the light detection, the SPAD experiences inevitable periods of inactivity, called dead
time. Depending on the SPAD physical structure, this dead time can be constant or variable, in
any case, it degrades the SPAD light detection performance. In particular, when the SPAD is
used as a receiver in an OWC system, the dead time results in data loss.

In this thesis, the impact of dead time is deeply studied. A novel analytical method is proposed
for modelling the detection process of a SPAD detector considering the effect of different types
of dead time. First, a single SPAD is studied, and then the approach is extended to an array of
multiple SPADs. The detailed mathematical analyses lead to a number of novel expressions,
which are straightforward to use in other researches. In addition, the accuracy of the proposed
models are evaluated and compared with the experimental results available in the literature.

The proposed models are then applied to study the performance of SPAD-based communication
systems. The effects of a number of parameters and different signalling schemes are addressed,
however, the focus is on investigating the impact of dead time. In SPAD-based OWC systems,
the relative length of dead time compared to the system time slots is the determining factor,
rather than the absolute length of dead time. The results in this thesis show that in systems
employing single SPADs, if this relative length is small, the data loss is negligible. However,
for larger values, the system error probability is significantly increased. From this study, it is
also found that SPAD arrays are more robust to the dead time, and sufficiently large arrays can
tolerate dead time periods equal to the system time slots without any noticeable increase in the
error probability.

In OWC systems, the system time slots during which data is transmitted, determine the data
transmission speed, i.e. the data rate. However, the presence of dead time does not allow
the use of arbitrarily short time slots. In the last part of this thesis, the impact of dead time,
and a number of other parameters on the information rate of single SPADs and SPAD arrays
are studied. The optimum signalling schemes for achieving the highest information rates are
numerically obtained. The results show that the limiting effect of dead time on the maximum
achievable information rate is mitigated in SPAD arrays, and they can offer higher information
rates.
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Chapter 1
Introduction

1.1 Motivation

Optical wireless communication (OWC) has been proposed as a complementary technology

to radio frequency (RF) data communication and as a potential solution to the exponential

increase in demand for wireless data transmission. An OWC system relies on optical signals

to convey information through the atmosphere whether in terrestrial (indoor or outdoor links)

or satellite applications. The optical frequencies range from infrared (IR) to ultraviolet (UV),

including the visible light (VL) spectrum. The total bandwidth available in the optical spectrum

is several hundreds of THz, which is much wider than the RF spectrum [1]. Apart from this

abundant spectral resource, other advantages of OWC over RF communication include, but

are not limited to [2]: i) the optical spectrum is unlicensed; ii) the optical signal does not

interfere with RF-based wireless systems; and iii) OWC can be used in radio radiation restricted

environments.

The high speed OWC has been achieved with significant advances in optoelectronic devices,

which are employed as the front-end elements in OWC systems. At the transmitter side,

the key front-end device is the light source which converts the electrical signal to an optical

signal. Additionally, optics are used to shape the emission pattern of the light source. The

conventional light sources in OWC systems include light emitting diodes (LEDs) and laser

diodes (LDs) [3]. LEDs are semiconductor devices with p-n junctions. An electric current

flow through the p-n junction generates photons by spontaneous radiation, releasing energy in

the form of light. Generally, LEDs have a diffused emission pattern. The emission pattern

defines the angular dependence of the LED output optical power. With decades of research and

development, highly efficient LEDs have been manufactured and utilized in a wide range of

applications [3, 4]. LDs are typically composed of an optical cavity inside which the carriers

and photons are confined in order to maximize their chances for stimulated radiation and light

generation. Compared to LEDs, LDs operate at higher levels of driving current. In addition,

LDs have higher electrical-to-optical conversion efficiencies and wider modulation bandwidths.
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However, they are more expensive than LEDs, and their highly focused emission pattern is a

drawback on account of eye safety regulations. This necessitates the use of appropriate optics

to convert the LD output into a diffused emission pattern in indoor communication and lighting

applications [3].

At the receiver side, light sensing devices, i.e. photodetectors (PDs), are the key element.

Furthermore, optical filters and concentrators may be used to improve the connection quality.

In OWC systems, positive-intrinsic-negative (PIN) diodes and avalanche photodiodes (APDs)

are widely used as PDs. A PIN diode is a diode with a wide, undoped intrinsic semiconductor

region between two heavily doped p-type and n-type semiconductor regions. When a large

reverse biased voltage is applied across the diode, an electrical field is established and the

flow of free electrons and holes, caused by arriving photons, produces a photocurrent. PIN

diodes have no internal gain mechanism, hence, they are unity gain PDs. Since PIN diodes

are semiconductor devices, depending on the choice of the semiconductor materials, the

responsivity of these PDs varies at different wavelengths. The bandwidth of PIN diodes ranges

from several hundreds of MHz to more than 100 GHz [3, 5].

APDs operate with much higher reverse bias voltages than the PIN diodes. In APDs, the

impact ionization and avalanche multiplication mechanisms lead to high internal gains in the

range of 50–500. Consequently, APDs have higher responsivities compared with PIN diodes.

However, the avalanche effect also results in gain-dependent excess noise and extra sensitivity

to temperature changes. Typical bandwidths of APDs range from 100 MHz to 4 GHz in visible

wavelengths [3, 5].

The PIN diodes and APDs have been successfully used in practical OWC links. However,

the performance of these PDs is not satisfactory in photon starving conditions such as long

distance links of space optical communications [6], gas well downhole monitoring systems [7],

and data transmission over plastic optical fibres [8]. In such cases, the optical signal may be

received at levels below the sensitivity of these PDs and get lost in the thermal noise, despite

the use of high gain transimpedance amplifiers (TIAs). Therefore, a PD with a much higher

sensitivity is required to achieve the desired performance. Recently, a novel single-photon

detector, namely single-photon avalanche diode (SPAD), has been proposed for OWC scenarios

involving extremely low signal levels [9, 10]. SPAD is also a semiconductor device with a p-n

junction. The SPAD is operated in the so-called Geiger mode, in that it is biased beyond its

breakdown voltage. So, the absorption of a single photon can initiate an avalanche of charge
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carriers, leading to a very large internal gain. The extremely high gain allows single photons to

be detected effectively [11–13]. After each photon detection, the SPAD needs to be quenched to

recover from the excess charge carriers, and this is accomplished by a proper electronic circuit

known as the quenching circuit. The unavoidable dead time caused by the quenching circuits,

is a major concern when designing the SPAD photodetectors, as it can considerably degrade the

photon counting performance [14–16].

Although the history of single-photon detectors dates back to 1920s [17], the first efforts for

developing solid-state single-photon detectors were made in the late 1960s after the invention

of APDs. In 1989, Cova [18] introduced the Geiger mode operation of the APDs and this

opened the way for the development of SPAD devices. Since this first demonstration, many

groups have contributed internationally to remarkable improvements in the device performance.

The major advances happened in the early 2000s, when the SPADs were implemented within

complementary metal-oxide-semiconductor (CMOS) processes [19–21].

The physical characteristics of the SPAD devices are well defined in literature [22–27].

The device limitations have been examined through extensive experiments [15, 16, 28, 29].

However, SPADs have just recently found applications in the OWC domain, and are not fully

characterized from a communication perspective. Many questions regarding their performance

reliability for OWC applications are still unanswered. Therefore, it is necessary to deeply

understand the characteristics and limitations of these devices from a communication theory

point of view and analyse their performance in this context.
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1.2 Contribution

This thesis investigates the application of SPAD PDs in OWC where the SPAD is characterized

from a communication theory perspective. There are a number of contributory factors playing

a role in the SPAD photon counting functionality, among which the dead time is the most

impactful one. Therefore, this research primarily focuses on the dead time effects. This thesis

aims at addressing the following three research objectives in a systematic approach:

• Establishing a statistical model for the photon counting process of the SPAD.

• Evaluating the error performance of SPAD-based OWC systems.

• Finding the capacity of the SPAD receiver.

By following these objectives, several contributions have been made.

With regard to the first objective, the aim is to derive dead time-modified photon counting

distributions for the SPAD. The effect of dead time on the count rate of SPAD PDs has been

widely studied in the literature. The existing count rate models are not exact, but provide

reasonable estimations of the SPAD actual count rate [29–31]. Some other useful metrics, such

as blocking probability and photon detection efficiency, have also been proposed in this context

[32–34]. However, non of them provides a complete description of the SPAD photon counting

process which is required for the performance evaluation of SPAD-based communication

systems. As the first contribution of this thesis, a comprehensive analytical framework is

proposed for modelling the statistical behaviour of the SPADs in the presence of dead time.

The rigorous analysis is established based on the concepts of arrival processes and renewal

processes. Exact analytical expressions are derived for the probability mass function (PMF),

mean and variance of the SPAD photocounts. Also, exact count rate models are established

and compared with the existing models in the literature. The study is conducted for both

single SPADs and SPAD arrays and expounds the effect of various dead time types imposed

by different quenching circuits, including active quenching (AQ), passive quenching (PQ), and

mixed AQ/PQ circuits. These analytical derivations and mathematical modellings are published

in [35–37].

Following the second research objective leads to the second contribution of this thesis: the

error performance analysis of SPAD-based OWC systems. A major concern for employing
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SPAD PDs in communication systems is whether the existence of dead time causes significant

data loss during the data reception. This question is addressed for SPAD-based OWC systems

with on-off keying (OOK) and binary pulse position modulation (BPPM). Separate case studies

are considered for OWC systems consisting of AQ and PQ single SPADs and SPAD arrays. For

OOK modulation, the optimum threshold for minimizing the error probability is derived. In

addition, the effects of a number of other factors, such as background counts and array size on

the error performance of the system are discussed. The work conducted on the performance

evaluation of SPAD-based OWC systems has led to the publication of [37].

Regarding the third objective, the dead time is a major issue in high data rate links. It results

in inter-slot interference (ISI) and severely degrades the bit error ratio (BER) of the system

in high data rates. Thus, the presence of dead time does not allow the use of arbitrarily

narrow time slots and limits the maximum achievable data rate. As the third contribution

of this thesis, the SPAD is modelled as a communication channel with memory. Using an

information theoretic approach, the information transfer rates and the capacity of the SPAD

channel are investigated. In particular, two case studies are considered. In the first study, the

capacity of single SPADs with a binary signalling scheme is analysed. In the second study, the

capacity of SPAD arrays with a pulse amplitude modulation (PAM) signalling is investigated.

In each study, two auxiliary discrete memoryless channels (DMCs) are proposed and an upper

bound and a lower bound on the capacity are developed. For the regimes where the bounds

are tight and the auxiliary channels well characterize the SPAD channel, the properties of the

capacity-achieving input distributions are discussed. Furthermore, using a numerical algorithm,

the capacity and the capacity-achieving input distributions, subject to peak and average power

constraints, are presented for various array sizes, dead time values and background count levels.

Part of the research conducted on the capacity of SPAD PDs has led to [38, 39] and the rest is

under preparation for publication.
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1.3 Layout

The rest of this thesis is organised as follows. Chapter 2 provides the relevant background

for understanding the operating principle of photon counting receivers. First, the concept of

photodetection is presented and then the conventional PDs used in OWC systems are reviewed.

In particular, the performance specifications of PIN diodes and APDs, in terms of noise, gain,

bandwidth and signal-to-noise ratio (SNR) are reported from the literature. Furthermore, a

brief overview of the applications of the SPADs is given. Also, the operating mechanism and

the main performance metrics of SPAD receivers are discussed.

In Chapter 3, the photon counting behaviour of SPAD receivers in the presence of dead time

is precisely modelled. The concepts of arrival processes and renewal theory are applied for

deriving the exact dead time-modified photocount distributions of AQ, PQ, and mixed AQ/PQ

single SPADs. The approach is also extended to the case of SPAD arrays.

In Chapter 4, the error performance evaluation of SPAD-based OWC systems is presented.

First, OWC systems with single SPAD receivers are considered and the impact of AQ and

PQ dead times on the BER of OOK and BPPM systems is studied. Several case studies are

considered to analyse the effect of various dead time durations, signal and background count

levels. The analysis is then extended to OWC systems with SPAD array receivers.

In Chapter 5, the impact of dead time on the input-output information transfer rate of the SPAD

receivers is investigated. The SPAD is modelled as discrete channel with memory. Upper and

lower bounds on the information rates and the capacity of the SPAD channel are provided. The

capacity of AQ single SPADs is analysed for a binary signalling scheme, and for AQ SPAD

arrays, a PAM signalling scheme is addressed.

In Chapter 6, the key findings of this thesis are summarised, and some concluding remarks are

provided. Finally, the limitations of the presented work are discussed along with possible future

directions.
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Chapter 2
Background

Optical wireless communication (OWC) technology was first developed over a hundred

years ago and recently has attracted a renewed interest. In this chapter, a short overview of

the OWC technology is given. The photodetectors (PDs) commonly used in OWC systems

are then reviewed. The principal function of a PD is converting the received optical signal

into an electrical current through the photodetection process. The underlying physical

characteristics of the photodetection process allow each PD to have its own unique features,

satisfying specific application requirements. Conventional photodetectors in OWC systems are

positive-intrinsic-negative (PIN) diodes and avalanche photodiodes (APDs). In this chapter,

both of these PDs are referred to. In particular, the details of the physical mechanism of

operation, noise properties and performance specifications in terms of gain, bandwidth and

signal-to-noise ratio (SNR) are reported from the literature. In photon starving applications and

long distance transmissions, the optical signal may be received at levels below the sensitivity of

PIN diodes and APDs. In such applications, single-photon detectors are employed which can

enable detection of individual photons without the need for transimpedance amplifiers (TIAs).

For decades, photomultiplier tubes (PMTs) have been the primary choice for OWC systems

among various single-photon detectors. However, they are being replaced by single-photon

avalanche diodes (SPADs) due to their numerous disadvantages. In this chapter, SPADs are

introduced and their operating mechanism and main performance metrics are reviewed. The

related works are also discussed in this chapter.

The rest of this chapter is organized as follows. The literature review on the OWC systems

and the conventional PDs is given in Section 2.1. In Section 2.2, the SPAD PDs are discussed

in detail. Section 2.3 covers the related works. A summary of this chapter is provided in

Section 2.4.
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2.1 Optical Wireless Communication (OWC) Systems

The purpose of designing any communication system is to transfer information from one point

to another. This is accomplished by modulating the information onto an electromagnetic carrier

wave, which is propagated to the destination. The electromagnetic wave is then received

and the information is recovered. Depending on the location of the carrier frequency in the

electromagnetic spectrum, various categories of communication systems are realized: radio

systems, microwave or millimetre systems, and optical systems [1].

In recent years, OWC has attracted substantial attention. An OWC system relies on optical

signals to convey information through the atmosphere whether in terrestrial (indoor or outdoor

links) or satellite applications. The optical frequencies range from infrared (IR) to ultraviolet

(UV) including the visible light (VL) spectrum. This abundant spectral resource is a potential

solution for satisfying the ever increasing demand for wireless capacity. Apart from its high

capacity, OWC offers inherent security while remaining cost effective [1].

The block diagram of a generic OWC system with intensity modulation and direct detection

(IM/DD) is shown in Fig. 2.1. At the transmitter side, intensity modulation (IM) is employed

where the information is modulated onto the intensity of an optical signal. This is achieved by

changing the driving current of an optical source directly in accordance with the transmitted

data or using an external modulator. Light emitting diodes (LEDs) and laser diodes (LDs) are

widely used as the optical sources in OWC systems in order to convert the input electrical signal

into the corresponding optical signal. Some transmitter optics might be used for collimating

and directing the optical signal towards the receiver at the other end of the optical channel.

The receiver is composed from receiver optics, a PD, and a TIA, if necessary, followed by

a demodulator. The optics help to collect and focus the received optical beam to the PD. To

minimize the effects of background noise collected by optical elements with large apertures, the

received signal is usually required to pass through an optical filter before reaching the PD. After

being amplified by the TIA, the original signal is recovered by the demodulator. This detection

process is known as direct detection (DD), meaning that the receiver detects the instantaneous

intensity or power of the optical signal reaching the PD.
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Figure 2.1: Block diagram of an OWC system [1].

2.1.1 Photodetection

The key task of a PD is photodetection, i.e. converting the collected light field into a current

or voltage waveform for subsequent postdetection processing. It is necessary to take into

account the characteristics of the photodetection operation when designing a PD for a specific

application. Particularly, in OWC applications, the system performance depends explicitly on

the statistics of the PD output, thus a proper mathematical model of the PD is required for

designing the optimum detection and decoding schemes.

Photodetection is achieved by using a photosensitive material to respond to incident photons

by producing free charge carriers. These carriers are forced to drift in a given direction by an

externally applied electric field. This carrier flow is seen as a current flow at the PD output.

The general photodetection operation can be represented by the simplified diagram in Fig. 2.2

showing the incident light beam and the external bias circuitry producing the output current

flow. The output photocurrent can also be converted to a voltage by passing through a load

resistor [1, 5].

Typical PDs in OWC applications are primarily of two types: phototube devices and solid-state

devices. In phototubes, the free carriers are produced from a photosensitive material and are

released into a vacuum cavity, where they are collected by a charged anode plate. The PMT

is a phototube device with very high sensitivity [1, 5]. Despite their unique sensitivity, PMTs

have various disadvantages which will be discussed later in this chapter. Therefore, they are

being replaced by solid-state devices in many applications. In solid-state devices, the incident

photons excite electrons at a positive-negative (PN) junction, and the photocurrent corresponds

to an electron flow across the junction [1, 5]. The most widely employed solid-state devices in

OWC systems are PIN diodes and APDs [1, 5].
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Figure 2.2: The basic photodetection model [1, 5].

If during the photodetection, the excited electrons regenerate additional free carriers, the

photomultiplication happens. As a result of this phenomenon, the accumulated current

flow is many times higher than for the primary carriers alone. In phototube devices,

photomultiplication can be achieved by using multiple anode plates to produce secondary

electron emissions and in solid-state devices by avalanching effects [1, 5].

The optical to electrical conversion and the photomultiplication process are both probabilistic

in nature, and the output photocurrent always evolves as a random process in time. As the PD

induces its inherent randomness when responding to any optical field (whether stochastic or

not), this randomness must be properly accounted for in the system design [1].

2.1.2 Photodetectors

The detection of optical radiation differs from conventional radio frequency (RF) field detection

in that the optical signal intensity, not the amplitude of the field, is detected [1]. The basic

physical principle of operation in solid-state PDs is the same. However, they differ in the

subsequent processing of the photogenerated carriers. In the following, the PIN diodes and

APDs are reviewed in detail.
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2.1.2.1 Positive-Intrinsic-Negative (PIN) Diodes

A PIN diode is easy to fabricate. It is basically a diode with a wide, undoped intrinsic

semiconductor region between two heavily doped p-type and n-type semiconductor regions. As

a PD, the PIN diode is reverse biased. Under reverse bias and in the absence of light radiation

only a small leakage current will flow through the diode. When an incident photon of sufficient

energy strikes the diode, an electron-hole pair may be generated. The ratio of the number of

carriers generated by the PD to the number of photons incident on the PD is known as the

quantum efficiency and is denoted by η. The quantum efficiency depends on the photosensitive

material of the diode and also the optical wavelength. The reverse bias electric field rapidly

sweeps the charge carriers out of the junction creating a photocurrent pulse [1, 5, 40, 41].

Commercially available PIN diodes are typically made of silicon (Si), germanium (Ge) or

indium gallium arsenide (InGaAs). Ge and InGaAs PIN diodes have high quantum efficiencies

(> 80%) in the IR region (∼ 1500 nm). Si PIN diodes have even higher quantum efficiencies,

but can only detect wavelengths below the band gap of Si (∼ 1100 nm) [5, 40]. PIN diodes are

unity gain devices, i.e. there is no internal gain mechanism. Therefore, the bandwidth of PIN

diodes is limited only by the time it takes the carriers to travel through the depletion region.

With their fast response times, bandwidths of more than 100 GHz can be easily achieved,

making them ideal for high speed OWC applications [5, 40].

Counting Statistics

Let the incident optical signal power and the background noise power be denoted by Ps and Pn,

respectively. Even if the incident optical power is constant, the number of detected photons,

k, is random and usually modelled by an ergodic and wide-sense stationary Poisson random

process with the following probability mass function (PMF) [1, 41]:

p0(k) =
µk0
k!
e−µ0 , (2.1)

where µ0 denotes the average number of detected photons during a time interval of length T ,

and is given by [1, 41]:

µ0 =
η(Ps + Pn)T

hν
, (2.2)
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where h is the Planck constant and ν is the optical frequency. If µ0 is relatively large, the

Poisson process can be approximated with a Gaussian process [42]. It is very common to use

the terms intensity or rate as the average number of photons per second. If the intensities

of the received optical signal and the collected background noise be denoted by λs and λn,

respectively, then λs = ηPs/hν and λn = ηPn/hν [1].

Noise Sources

The main types of noise commonly associated with the PIN diodes are: photocurrent shot

noise, dark current shot noise and thermal noise. The photocurrent shot noise is the random

fluctuations of the PIN diode photocurrent and arises from the input signal and/or background

radiation. This shot noise is modelled as a Gaussian process with a variance of [1, 41]:

σ2shot = 2q2e (λs + λn)B, (2.3)

where qe is the electron charge andB is the single-sided bandwidth of the postdetection lowpass

filter (LPF) with a unit transfer function.

Other than the photocurrent shot noise, the PIN diode dark current also contributes to the shot

noise effects [1, 41]. The dark current is the relatively small current that flows through the

PIN diode in the absence of any external radiation. The PIN diode dark current consists of

two components: the diode surface leakage current and the bulk leakage current. The surface

leakage current originates from some minority charge carriers generated on the photosensitive

surface of the device. The bulk leakage current arises from the generation of some minority

carriers in the depletion region. Denoting the average dark current by Idark, the average surface

leakage current by Ids and the average bulk leakage current by Idb, we have Idark = Ids + Idb.

Typical values for Idark vary from 1 to 10 nA for Si-based PIN diodes, from 50 to 500 nA for

Ge-based PIN diodes, and from 1 to 20 nA for InGaAs-based PIN diodes [41]. The variance of

the dark current shot noise is given by [1, 41]:

σ2dark = 2qeIdarkB. (2.4)

The photocurrent shot noise and dark current shot noise are also known as external and internal

quantum noises, respectively [43].
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The thermal noise in PIN diodes can arise from the photodiode shunt resistor, Rs, which is

typically on the order of 100 kΩ to 1 GΩ. The corresponding internal thermal noise is modelled

as a zero mean Gaussian process of variance [40, 41]:

σ2shunt =
4kBT

◦B
Rs

, (2.5)

where kB is the Boltzmann constant and T ◦ is the temperature (in Kelvin). In addition to the

PD self thermal noise, the electronic circuitry also produces major thermal noise. This noise

component is mainly caused by the load resistor, RL, and is modelled as a zero mean Gaussian

process of variance [40, 41]:

σ2load =
4kBT

◦B
RL

. (2.6)

Other post-amplification components (e.g. the TIA) and the LPF circuitry also add some

thermal noise to the signal. To take them into account, usually T ◦ in (2.6) is replaced by

an equivalent temperature T ◦eq. Therefore, the PIN diode thermal noise is modelled as a zero

mean Gaussian process of variance σ2th = σ2shunt + σ2load [40, 41].

Photocurrent

The output photocurrent of the PIN diode is the superposition of the PD response to the

absorbed photons, plus the device dark and thermal noise currents [1, 40]:

i(t) =
∑

{tj}
qeh(t− tj) + idark(t) + ith(t). (2.7)

In (2.7), the summation is extended over the photon arrival times {tj}, h(t) is the receiver

impulse response, idark(t) is the PD dark current, and ith(t) is the thermal noise current. It is

commonly assumed that the PIN diode photocurrent has a Gaussian distribution, N (µI , σ
2
I ),

with [40, 41]:

µI = qe(λs + λn) + Idark, (2.8a)

σ2I = σ2shot + σ2dark + σ2th, (2.8b)

where σ2shot and σ2dark are given in (2.3) and (2.4), respectively. Also, σ2th = σ2shunt + σ2load

with σ2shunt and σ2load provided in (2.5) and (2.6), respectively.
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Signal-to-Noise Ratio

The direct detection electrical SNR with a PIN diode is given by [1]:

SNR =
(qeλs)

2

2B

[
q2e (λs + λn) + qeIdark +

2kBT
◦

Rs
+

2kBT
◦
eq

RL

] . (2.9)

The main disadvantage of PIN diodes in OWC systems is their low gain. When operating at

extremely low signal levels, the thermal noise generated by the PD itself can be more significant

than the signal. This thermal-noise-limited situation can severely degrade the SNR of the

system and increase the error probability.

2.1.2.2 Avalanche Photodiodes (APDs)

APDs are similar to PIN diodes, in that they operate under the reverse bias condition [5, 40,

41]. However, unlike PIN diodes, APDs operate with high internal electric fields. Thereby,

the released carriers are accelerated to high velocities and are able to ionize other carriers

through a mechanism known as impact ionization. The secondary carriers in turn generate

additional carriers. When carriers undergo many consecutive impact ionizations, an avalanche

photomultiplication occurs, such that the APD output current flow is many times larger than that

of a PIN diode [1, 5, 40, 41]. In fact, the avalanche breakdown provides an internal gain which

enables the PD to operate above its own thermal noise limit. The impact ionization process

and the avalanche breakdown are random processes. Thus, each primary carrier is associated

with a random gain, G, where the gains associated with different photon detection events are

independent [1, 40]. The exact distribution of g is difficult to characterize [44, 45]. However,

for most practical applications, it is sufficient to characterize the APD by its excess noise factor

F , defined as [1, 5, 46]:

F =
E
[
G2
]

E2 [G]
. (2.10)

where E [·] denotes the expected value. Denote by g the average gain of the APD, that is

g = E [G]. The excess noise factor is usually approximated by F = gx where x is some

exponent obtained through experiments. For example, x is between 0.2 and 0.5 for Si-based

APDs [40]. The average APD gain, g, depends on the bias voltage and is typically in the range

of 100 to 500 for Si APDs and 10 to 40 for most Ge and InGaAs APDs [1, 5, 40].
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The excess noise factor is a function of the carrier ionization ratio, ζ, where ζ is usually defined

as the ratio of hole to electron ionization probabilities. According to Mclntyre’s model, F is

related to ζ by [44]:

F = gζ + (1− ζ)(2− 1

g
). (2.11)

The Mclntyre’s model given in (2.11) considers the statistical nature of the avalanche

multiplication. For a well designed APD, ζ should be much smaller than 1. Typical values for

ζ are between 0.002 to 0.06 for Si APDs, 0.7 to 1 for Ge APDs, and 0.4 to 0.7 for InGaAs

APDs, respectively [44–46].

Furthermore, the response time, and hence, the bandwidth of the APD depends on ζ. After

the initial avalanche, the signal persists until no further avalanche is detected. In the best case

where ζ = 0, the detector response time is limited only by the time it takes for a single electron

to travel through the avalanche region. Typical bandwidths of the APD range from 100 MHz to

4 GHz for visible wavelengths [1, 5].

Counting Statistics

Similar to the PIN diode, in the APD, the number of absorbed photons k (also known as the

primary counts) follows a Poisson distribution given by (2.1) with the mean value given in

(2.2). In response to these k photons, the APD generates m electrons with the conditional

probability distribution Pr{m|k} derived by McIntyre in [44] and experimentally verified by

Conradi in [45]:

Pr{m|k} =

kΓ(
m

1− ζ + 1)

m(m− k)! Γ(
ζm

1− ζ + k + 1)

×
[

1 + ζ(g − 1)

g

] k+ζm
1−ζ

[
(1− ζ)(g − 1)

g

]m−k
,

(2.12)

where Γ(·) is the gamma function. The PMF ofm is obtained by averaging the above expression

over the Poisson distributed random variable k:

pM (m) =

∞∑

k=0

Pr{m|k}p0(k). (2.13)

15



Background

In [47], Webb has provided an approximation to (2.13) which is given by:

pM (m) =
1

√
2πgA

(
1 +

B(F − 1)

A

)3/2
× exp


−

B2

2gA

(
1 +

B(F − 1)

A

)


, (2.14)

whereA = gµ0F , B = m−gµ0 andm ≥ −gµ0/(F −1). The PMF in (2.14) provides a much

simpler expression for analytical calculations. When µ0F/(F − 1)2 is large, the distribution in

(2.14) can be further approximated by a Gaussian distribution [47].

Noise Sources

The principal noises at the output of an APD are: photocurrent shot noise, dark current, and

thermal noise. Modelling these noises is different from the PIN diode case, as the effect of the

avalanche breakdown should be taken into account. The variance of the photocurrent shot noise

is given by [1, 41]:

σ2shot = 2g2Fq2e (λs + λn)B. (2.15)

In APDs, the bulk leakage current is gain-dependent and is amplified by the APD gain.

Therefore, the average dark current of the APD is expressed as Idark = Ids + gIdb. The

typical values for Idark vary from 0.1 to 1 nA for Si APDs, 50 to 500 nA for Ge APDs, and 1

to 5 nA for InGaAs APDs [41]. The shot noise arising from the dark current is modelled as a

Gaussian process with variance [1, 41]:

σ2dark = 2qe
(
g2FIdb + Ids

)
B. (2.16)

In contrast to PIN diodes, the APD self thermal noise is insignificant. This is due to the large

internal gain of the APD. However, the thermal noise contribution of the TIA load resistor,

RL, and the electronic circuitry is considerable. This thermal noise is modelled as a zero mean

Gaussian process of variance [1, 41]:

σ2th =
4kBT

◦
eqB

RL

. (2.17)

Another type of noise in APDs is the noise associated with the avalanche gain mechanism.

When the avalanche process is generated by carriers of higher mobility, the avalanche noise is
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smaller and can be ignored. The reason for this is that the carriers with higher mobility spend

less time within the avalanche region and consequently, a smaller number of secondary carriers

can induce further ionizations. Thus, the avalanche noise becomes negligible.

Photocurrent

The output photocurrent of an APD is expressed as [40]:

i(t) =
∑

{tj}
gjqeh(t− tj) + idark(t) + ith(t), (2.18)

where gj is the gain associated with the jth photon detection event, and h(t) is the APD impulse

response. The mean and variance of the APD output photocurrent are given by Campbell’s

theorem [40, 41]:

µI = gqe(λs + λn) + gIdb + Ids, (2.19a)

σ2I = σ2shot + σ2dark + σ2th. (2.19b)

where σ2shot, σ
2
dark and σ2th are given in (2.15), (2.16) and (2.17), respectively.

Signal-to-Noise Ratio

The direct detection electrical SNR of the APD is given by [1, 40]:

SNR =
(gqeλs)

2

2B

[
g2Fq2e (λs + λn) + g2FqeIdb + qeIds +

2kBT
◦
eq

RL

] , (2.20)

which can also be written as:

SNR =
λs

2B

[
F (1 +

λn
λs

) +
FIdb
qeλs

+
Ids

g2qeλs
+

2kBT
◦
eq

g2q2eλsRL

] . (2.21)

According to (2.21), a high gain reduces the effects of both the dark current and the thermal

noise. As a result, APDs with high gains tend to have less noise and are more sensitive.

When the dark current and the thermal noise are negligible in (2.21), the APD is called
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shot-noise-limited [1]. In this case:

SNRSL , λs
2

2BF (λs + λn)
. (2.22)

The shot-noise-limited SNR depends only on λs and λn. Increasing g beyond the point at which

the shot-noise-limited operation is achieved does not further improve SNR. If the background

noise intensity λn is strong relative to the optical signal intensity λs, (2.22) can be approximated

as [1]:

SNR ≈ λs
2

2BFλn
. (2.23)

The detected SNR improves as the square of λs. Denoting by λs/λn the optical SNR, (2.23)

particularly shows that a low value of optical SNR does not necessarily mean a low electrical

SNR. If λs � λn, (2.22) becomes [1]:

SNRQL , λs
2B

. (2.24)

The above SNR is called the quantum-limited SNR of the APD, and denotes the maximum SNR

obtainable during the photodetection. Even if the background and circuit noises are attenuated,

the maximum SNR does not increase without bound, but rather approaches the quantum-limited

value given in (2.24) [1]. This is because of the inherent shot noise effects in OWC systems. In

fact, OWC systems appear to have an additive quantum noise added during the photodetection,

even in the absence of all circuit and background noise sources. This quantum noise places an

ultimate limit on the APD performance. Also, according to (2.24), the APDs with low quantum

efficiencies produce reduced quantum-limited SNRs, and this is why the APD efficiency can

significantly affect the overall system performance [1].

2.1.2.3 Towards Higher Sensitivities: Single-Photon Detectors

When the detection of extremely weak optical signals is required, the direct detection SNR

of the PIN diodes and the APDs degrades appreciably because of the strong thermal and/or

background noise. That’s where single-photon detectors can be of great help. Numerous

types of single-photon detectors exist, each with their own set of unique features. Among

them are PMTs, members of the class of phototubes. The PMT is a vacuum tube containing

a photosensitive surface called photocathode, an electron multiplier, and an output terminal

known as anode. The electron multiplier is a series of secondary electrodes known as dynodes
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which create an avalanche effect [1, 5].

The photodetection process in the PMT can be described as follows: When an incident photon

is absorbed, a primary electron is generated at the photocathode. For larger light intensities

several primary electrons are generated almost simultaneously. The electric field, established

by the bias network, accelerates the electron towards the first dynode in the tube. Upon reaching

the first dynode, the electron creates secondary electrons that are also accelerated by the electric

field towards the second dynode. This trend continues until the electrons hit the anode. By

this time, the primary electron has been amplified considerably. Therefore, with every single

photon, a large average number of electrons, and thus, a very high current gain, is produced

at the anode. PMTs typically have gains in the range of 105 to 106. Consequently, the PMT

thermal noise is usually insignificant and the PMTs are essentially quantum-limited devices

with very high sensitivities [1, 5].

However, providing such high gains requires high bias voltages (1 to 3 kV). In addition, since

the output photocurrent is so high, the device is required to be electrically reset following each

photon detection. This leads to a dead time during which no further photon can be detected.

Also, because of the time it takes the electrons to traverse the dynode chain, PMTs have an

inherent bandwidth limitation. Typical bandwidths for PMTs are around 20− 200 MHz. Such

bandwidths are considerably lower than the desired information bandwidth in high speed OWC

systems. Some PMTs employ a magnetic field in addition to the electric field in order to reduce

the temporal dispersion of the electrons and to obtain a faster response [1, 5].

While various materials may be used for the photocathode depending on the wavelength

range of interest, traditional vacuum PMTs generally exhibit the best sensitivity in the short

visible and UV ranges. Thereby, the lack of suitable materials at the long visible and near

IR wavelengths is a significant disadvantage. The PMT quantum efficiency is typically on the

order of 10 − 20% at visible wavelengths, and drops off rapidly in the near IR region. In

addition to being slow and inefficient, PMTs are bulky, and require extensive thermal cooling.

Furthermore, PMTs often have high dark current levels and are prone to afterpulsing, an effect

whereby a false output pulse is generated although no photon has been detected. In summary,

the extremely high sensitivity comes at the price of all these disadvantages [1, 5].

Most of the above challenges can be overcome with solid-state counterparts. The solid-state

single-photon detectors have an inherently higher bandwidth because of their smaller size. They
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exhibit higher quantum efficiencies. Typical quantum efficiencies for solid-state detectors range

from 20 to 90% throughout the visible and near IR ranges [26]. In recent years, SPADs are

gaining a growing interest among the research and industry communities. SPADs are basically

specially constructed APDs operated in the so-called Geiger mode. In the Geiger mode, the

APD is biased above its breakdown voltage, as opposed to the linear mode in which the APD

is biased below the breakdown voltage. This generates a very large internal gain that enables

single photon detection. The SPAD dark current is orders of magnitude lower than that of the

conventional APDs and PMTs. In addition, SPADs generally have higher quantum efficiencies.

So, in ultra-low-light applications, SPADs are superior to the conventional APDs.

SPADs are also subject to an unavoidable dead time which limits their count rate. More

recently, SPAD arrays have been developed to keep pace with the ongoing demand for higher

counting rates. SPAD arrays are also known as silicon photomultipliers (SiPMs) and multi-pixel

photon counters (MPPCs). They appear to be a promising technology, with advantages such

as relatively low production costs thanks to the complementary metal-oxide-semiconductor

(CMOS) fabrication technology, compact sizes, immunity to magnetic fields, and low bias

voltage requirements. These devices also offer high photon detection efficiency and excellent

timing resolution [26]. In the next section, the potential applications, the operating mechanism,

and the performance metrics of the SPADs are discussed in detail.

2.2 Single-Photon Avalanche Diode (SPAD)

Since the 2000s, the applications of SPAD PDs have expanded significantly. Nowadays, SPADs

are the key enabling technology for many applications requiring single-photon sensitivity.

Examples include, but are not limited to, light detection and ranging (LIDAR) [48], time of

flight (ToF) three-dimensional imaging [49], positron emission tomography (PET) scanning

[50], fluorescence lifetime microscopy [51], and single-photon experimentation within physics.

Owing to their high power efficiency, high sensitivity, high detection efficiency, and high timing

resolution, SPADs have been deployed in various optical communication applications such as

quantum key distribution [26, 52], deep space laser communications [53], gas well downhole

monitoring systems [7], data transmission over plastic optical fibres [8], and underwater

communications [54, 55]. So far, much effort has been devoted to optimising and improving

their performance for communication purposes [9, 10, 56, 57] and still, there is broad room for
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more improvements.

2.2.1 Operating Mechanism

SPADs are semiconductor devices with p-n junctions and operate based on a simple principle:

if the reverse bias voltage, Vbias, of the p-n junction is raised slightly above the breakdown

voltage, Vbr, a very high electric field is produced. Hence, even a single carrier can trigger

a strong avalanche, leading to a measurable current. The avalanche current rises rapidly to a

steady level which primarily depends on the excess bias voltage, i.e. Vex = Vbias − Vbr, the

effective series resistance of the photodiode and the circuitry [21–24, 28].

The leading edge of the avalanche current is sensed by a discriminator and a synchronized

output pulse is generated. While the bias voltage is above the breakdown level, the avalanche

current continues to flow and the photodiode is not able to detect a subsequent photon.

Reducing the bias voltage below the breakdown threshold, ceasing the current flow, and then

raising the bias voltage above the breakdown level, is accomplished by an electronic circuit

called the quenching circuit. In fact, the quenching circuit restores the SPAD to the operating

conditions for detecting further photons. The quenching process typically lasts a few tens of

nanoseconds. This recovery time is usually termed as the dead time [21–24, 28].

2.2.2 Figures of Merit

The key parameters for assessing the performance of SPAD PDs are as follows:

Dead Time

As discussed earlier, the dead time or recovery time, τ , is the time interval that follows the

detection of a photon, during which the SPAD is unable to resolve a second photon. The type

and length of the dead time depend strongly on the bias circuit and the counting electronics,

rather than the photodiode element itself. The dead time causes some counting losses and limits

the maximum count rate of the SPAD [27]. The effect of dead time on the performance of the

SPAD, when used as an optical receiver, is the main focus of this thesis and is deeply studied

in Chapters 3, 4, and 5.
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Afterpulsing

An afterpulsing is a secondary avalanche event related to an earlier photon detection.

Afterpulsing events are caused by carriers that get trapped during an avalanche breakdown

and are released with a randomly fluctuating delay, when the SPAD is newly biased above

its breakdown voltage. The mechanisms behind afterpulsing are well understood and the

literature on the subject is extensive [19, 58]. This phenomenon is commonly described by a

probability measure known as the afterpulsing probability which is defined as the probability

that an afterpulsing event will happen after detection of a photon.

Because of afterpulsing, the measured number of detections is always higher than the

actual number of detected photons. To suppress afterpulsing in the SPAD devices, τ can

be deliberately lengthened to allow the trapped carriers to be released. In this way, the

afterpulsing probability can be kept below a desired threshold, however, at the expense of a

lower count rate.

Dark Counts

Similar to the dark current of PIN diodes and APDs, dark counts are the intrinsic noise of

the SPADs. Dark counts are false detection events in the absence of any optical illumination

and arise mostly due to thermally generated carriers and afterpulsing. Since the SPAD is highly

sensitive, any carrier generated with no illumination can also produce the same current response

as the signal photons, reducing the effective sensitivity of the device [26]. A probability

measure is often used for reporting the effect of dark counts. The dark count probability,

denoted by pdc, is the probability that at least one dark carrier successfully triggers an avalanche

and is approximated as [25]:

pdc = 1− e−Ndcpa , (2.25)

where Ndc is the average number of dark carriers in the multiplication region of the device and

pa is the avalanche probability, the probability that a carrier initiates an avalanche. The average

avalanche triggering rate by dark counts is termed as the dark count rate and is denoted byRdc.

The minimum count rate of the SPAD is limited by Rdc which strongly depends on the SPAD

active area and increases with the temperature and the excess bias voltage. The requirements

of low dark count rates make the device fabrication very delicate [10].
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Photon Detection Efficiency

Photon detection efficiency (PDE) is commonly defined as the overall probability of registering

a count if a photon arrives at the active area of the SPAD. This depends on the SPAD quantum

efficiency η, and the avalanche probability pa. As such, PDE can be approximated as [34]:

PDE = η × pa . (2.26)

For most well designed SPADs, η is quite high (80− 90%) [59]. The avalanche probability, pa,

is generally specific to a particular device structure and increases with the excess bias voltage,

since a higher electric field enhances the triggering probability [27].

Timing Jitter

The timing jitter is the statistical spread of the time interval between the photon arrival

and the generation of an output electrical pulse. In fact, timing jitter represents the timing

uncertainty due to the statistical nature of the impact ionization process. The jitter is typically

reported as either the standard deviation or the full-width at half maximum (FWHM) of the

corresponding distribution histogram. In any photon counting experiment, the maximum clock

rate is determined by the timing jitter, which reduces as the excess bias voltage increases [27].

Crosstalk

Crosstalk is a phenomenon that takes place in SPAD arrays, when the avalanche in one SPAD

triggers an undesired secondary avalanche in a neighbouring SPAD. There are two types of

crosstalk: optical crosstalk and electrical crosstalk. In optical crosstalk, the secondary photons

released by an avalanche elsewhere may cause avalanches. In fact, when one SPAD detects a

photon, secondary photons may be emitted by the SPAD itself. These photons can be detected

by adjacent SPADs, resulting in optical crosstalk. The optical crosstalk increases when the

distance is reduced between array elements; hence, this phenomenon imposes a restriction on

the array density. However, it can be effectively reduced by using optical shields between array

elements. In electrical crosstalk, a carrier generated in one SPAD may trigger an avalanche

elsewhere. The electrical crosstalk is strongly reduced by insulating the multiplication region

of each SPAD [27].
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Fill Factor

Fill factor (FF) of a SPAD array, is the ratio of its photosensitive area to its total area. Generally,

FF is limited by the additional circuitry of the array. In low intensity conditions, FF plays an

important role, as fewer photons arrive at the SPAD. One of the drawbacks of the SPADs

integrated in CMOS technologies is their relatively poor FF [27, 60]. Prior to 2010, the FF was

often less than 10% [9]. Recently, it has been improved through a number of techniques, e.g.

in [60], a FFs of 57% is reported. However, this often comes at the expense of a significant

crosstalk effect.

2.2.3 Quenching Circuits

Quenching circuits directly affect the photon counting performance of the SPAD due to the dead

time they introduce. A slow quenching circuit limits the maximum count rate, or it may impair

the timing response. It is therefore important to choose the quenching circuit most suitable to

the desired application. For designing the quenching circuit and determining optimal operating

conditions of the SPAD to ensure proper static and dynamic SPAD behaviour, detailed and

accurate equivalent circuit models of the SPAD photodiode are essential [22,61]. Such a model

should precisely represent the transient behaviour of the SPAD element and its current-voltage

characteristics [14, 62, 63]. In the last twenty years, quenching circuits have been vastly

developed and their performance has remarkably been improved [20]. In the following, the

main approaches in designing quenching circuits are discussed.

2.2.3.1 Passive Quenching SPADs

Passive quenching (PQ) is the simplest method to quench the SPAD avalanche current. A PQ

circuit consists of a resistor, Rq, connected to the photodiode, as illustrated in Fig. 2.3. When

there are no charge carriers in the depletion layer of the photodiode, the current across Rq

is zero. Accordingly, the SPAD is biased with a voltage larger than its breakdown voltage

(VS = Vbr +Vex) and is ready to operate. The absorption of a single photon can now initiate an

avalanche breakdown. With the avalanche current flow, there will be a large voltage drop over

the resistor, which will reduce the voltage across the SPAD and stop the avalanche (quenching

stage). Then, the resistor Rq will recharge the SPAD and the voltage across the SPAD slowly

increases from Vbr to Vbr + Vex (recharging stage). As long as VS is less than a threshold
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VS(t)

Rq

Vbr+Vex

Vth

_

+

Figure 2.3: Basic configuration of a PQ SPAD [20].

value Vth, the SPAD is unable to detect any other photons, however, incident photons may still

initiate weaker breakdowns, resulting in further voltage drops across the SPAD and prolonging

the dead time. Once the SPAD is fully recharged and its voltage is above the breakdown level

again, the circuit is ready for the detection of a new photon [14, 15, 20].

Fig. 2.4 shows an example voltage waveform for a PQ SPAD. With the arrival of the first

photon, the SPAD voltage drops to the breakdown voltage Vbr. The recharge process then starts

and the SPAD voltage slowly increases. Before the SPAD voltage reaches the threshold voltage

Vth, the second photon arrives and again VS drops to Vbr. As a consequence, the total duration

of dead time is extended. Since the voltage is still lower than the threshold voltage, the second

photon is not registered by the comparator. Once VS exceeds Vth, the dead time finishes and the

SPAD becomes operative again. The third incident photon is then successfully detected. The

PQ SPAD is also identified as a paralyzable detector where any photon arriving during the dead

time is not detected, but it extends the dead time [30, 31].

The dead time depends on the value of the quenching resistor Rq and the total parasitic

capacitance seen by the SPAD. The resistor Rq should be very large to ensure reliable

quenching of the avalanche breakdown. But the larger Rq, the slower the recharge process.

In fact, the main drawback of the PQ SPAD is its slow quenching and recharging processes,

hence, a relatively long dead time, which limits the maximum count rate. If a high count rate is
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Figure 2.4: An example voltage waveform for a PQ SPAD. The PQ SPAD device is a
paralyzable photon detector. The duration of the dead time introduced by the
quenching circuit is not constant, that is, any photon arrival occurring during the
dead time is not counted, but it extends the dead time period [29].

not required, then the PQ circuit is convenient, as it is robust, simple to implement and requires

a minimum of power or area [14, 15, 20].

2.2.3.2 Active Quenching SPADs

Although PQ is a very simple and convenient method, it has the disadvantage of a relatively long

dead time. To overcome this drawback of the PQ SPADs, active quenching (AQ) SPADs have

been introduced [14,16,20]. In Fig. 2.5, an AQ circuit with a switching element is presented. In

this circuit, Rq is very small compared to the ones typically used in PQ circuits. Once a photon

is detected and an avalanche is triggered, the voltage across the SPAD is immediately reduced

by closing the fast active switch, as shown in Fig. 2.5. The fast switch is a double-diffused

metal-oxide-semiconductor (DMOS) field-effect transistor (FET), capable of withstanding the

required voltage and of switching in nanosecond time from a low series resistance (on state) to

a high series resistance (off state) and conversely. Such a fast switch is simple and compact and

has low power dissipation, since the driver dissipates power only during the transitions [14,20].

According to Fig. 2.5, the closing of this switch reduces the voltage across the SPAD to a

voltage below the breakdown voltage, Vbr − Vq, hence, the avalanche is quenched. This is
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Figure 2.5: Basic configuration of an AQ SPAD [20].

to ensure complete termination of the avalanche current in the multiplication region, and to

prevent the dead time being extended by any other photons. The switch is kept closed for a

predetermined period (to minimize afterpulsing). As long as the switch remains closed, the

voltage is below the breakdown level and no new photons can be detected. After the switch

opens, the SPAD will be promptly recharged to the operating voltage, Vbr + Vex. Since Rq is

small, the recharge process happens very fast. However, with such a small resistor the avalanche

current is much larger [14, 16, 20].

More complicated AQ circuits take advantage of a feedback loop to control the bias voltage

[14], where both the quenching and recharge processes are carried out very quickly using pulse

generators. Compared with the PQ SPAD, the configuration of the AQ SPAD is more complex

and requires more logic area and circuit power [14, 16, 20].

Fig. 2.6 shows an example of the voltage waveform for an AQ SPAD. It can be seen that when

a photon arrives, the voltage of the AQ SPAD, VS, drops from Vbr + Vex to below Vbr quickly.

VS is kept below the breakdown voltage for some time and is then increased to Vbr + Vex again

sharply. In this whole process, any photon arriving during the quenching or recharge processes

is not able to trigger an avalanche and is therefore lost. Unlike the PQ SPAD, the dead time

of the AQ SPAD is constant and is not extended by incoming photons. Thus, the AQ SPAD is

identified as a nonparalyzable detector [29].
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Figure 2.6: An example voltage waveform for an AQ SPAD. The AQ SPAD device is a
nonparalyzable photon detector. The duration of the dead time introduced by the
quenching circuit is constant, that is, any photon arriving during the dead time is
neither counted nor has any influence on the dead time duration [20].

Although the actual quenching time might not be so short in AQ SPADs, the quenching

transition and the recharge process are much faster than those in the PQ SPADs. This, along

with the nonextendable dead time of the AQ SPADs lead to higher count rates and less counting

losses, but at the expense of a higher complexity. In AQ SPADs, the avalanche photocurrent

and the afterpulsing probability are higher. Also, AQ circuits generally occupy larger areas

compared to PQ circuits, and this would reduce the FF in SPAD arrays [20].

2.2.3.3 Mixed Active/Passive Quenching SPADs

The quenching and recharge processes do not necessarily have to be both passive or both active.

For satisfying specific application requirements, mixed circuits can be an effective approach to

design simple and compact circuits. Mixed active/passive quenching circuits can combine the

advantages of purely passive and purely active quenching circuits. For example, consider a

circuit with passive quenching and active reset. In such a case, the SPAD is connected to both a

large resistor and an active reset circuitry. When an avalanche is triggered, the avalanche current

flows through the resistor, so the avalanche is initially quenched like in PQ circuits. Then, the
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active circuitry soon senses the avalanche. It keeps the SPAD quenched for a specific dead

time and then actively restores the bias voltage to the operating level [14]. Mixed quenching

circuits typically feature a smaller parasitic capacitance and therefore a much smaller avalanche

photocurrent, as in PQ circuits. They also offer a fast reset and a well-defined dead time, as in

AQ circuits. However, the integration of the photodiode and both quenching parts significantly

limits the FF in SPAD arrays, so integration is feasible for single SPADs or small size arrays

[20].

2.3 Related Works

SPADs have recently found applications in OWC. The interest in this subject was initiated by

the work [64] where MPPCs were proposed for OWC systems dealing with low light levels.

The numerical results in [64] claimed that the MPPC can reach sensitivities of −70 dBm at

8.5 Mbits/s and −59 dBm at 140 Mbits/s, higher than the typical sensitivities of conventional

APDs. Since then, there has been a growing interest in this topic, however, the literature is

still scarce. Most of the related research articles are experimental studies and the theoretical

studies on the subject are limited. In the following, the main contributions of these articles are

highlighted.

2.3.1 Experimental Studies

Fisher et al. [9, 10], have implemented a reconfigurable SPAD array in 130 nm CMOS

technology for photon counting in OWC. The 32 × 32 SPAD array is designed for on-off

keying (OOK), pulse amplitude modulation (PAM) and pulse width modulation (PWM) and

works in two different modes: AQ and PQ. It has a FF of 2.5%, a bandwidth of 100 MHz,

a dead time of 5.9 ns for PQ and 10.5 ns for AQ mode, and a dark count rate of 2.5 kHz per

SPAD. A maximum count rate of 58 GHz is observed, with a sensitivity of −31.7 dBm for a

bit error ratio (BER) of 10−9.

Chitnis et al. [8], have designed and fabricated a small array of 64 SPADs in 0.18 µm CMOS

process and have tested it for OWC. The experimental results show that by using arrays

of SPADs, less optical power is required at the receiver to achieve a target BER. In [65],

same authors have presented the measurement results of a visible light communication (VLC)

receiver consisting of a small array of 60 SPADs. The BER performance of an OOK system
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with and without a decision feedback equaliser, is reported for various data rates and dead times.

For a dead time of 10.8 ns, a data rate of 200 Mbits/s is achieved with OOK modulation and

a decision feedback equaliser. In [56], a SPAD-based VLC receiver achieves a sensitivity of

−64 dBm, a data rate of 100 kbits/s and a BER of 10−5 with PAM signalling. In [57], an optical

link operating in indoor ambient lighting conditions is demonstrated which uses a SPAD array

receiver with 4096 elements. The link operates at a 2 m distance at a data rate of 60 Mbits/s

and a BER of 10−3 without lensing. The results suggest that the use of SPAD arrays can help

to cope with strong background light conditions. In [54], a long distance SPAD-based VLC

system with a red LED is demonstrated. Using a SPAD PD with a dead time of 20 ns, a data

rate of 100 kbits/s and a BER of 1.22× 10−3 is achieved at a distance of 333 m.

In [66,67], the first attempt to determine when SPADs should be preferred to APDs is reported

and the potential benefits of using SPADs, rather than APDs, in the presence of ambient light

are quantified. The effects of dead time and the PDE on the sensitivity of the SPAD arrays are

investigated. The measured link performances of two systems containing an APD and a large

SPAD array (with PDE of only 8%) show that the SPAD-based receiver is more sensitive in the

darkness, while the APD-based receiver is more sensitive in typical ambient light conditions.

The simulation results in [67] suggest that a SPAD receiver with an improved PDE (e.g. 40%) is

significantly more sensitive than the APD-based receiver even in the ambient light conditions.

The experimental results with the large SPAD array also show that, when this large SPAD array

is used as the receiver, the transmitted power needed to obtain a target data rate increases rapidly

once the bit time becomes shorter than the width of the array’s output pulses. The maximum

OOK data rate at which this receiver can operate efficiently is therefore limited by the width of

the output pulses.

In [68, 69], a fully integrated SPAD array receiver is fabricated in a 0.35 µm CMOS process.

The array of four SPADs has a short dead time of 3.5 ns with an AQ circuit and can achieve data

rates of up to 200 Mbits/s. A sensitivity of−43.8 dBm and a BER of 6.5×10−3 at 200 Mbits/s

are reported.

2.3.2 Theoretical Studies

In [7], it is demonstrated for the first time that the problem of continuous downhole monitoring

in the oil and gas industry can be effectively addressed by the use of a SPAD-based VLC

system. In this article, a SPAD array is considered, and the error probability of an OOK
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system is analysed for a 4 km long metal pipe. The authors in [70] have investigated the signal

detection in SPAD-based VLC systems. A low-complexity receiver based on Anscombe root

transformation and an energy-efficient one dimensional constellation are proposed for the signal

detection over the Poisson channels. The authors have extended their methodology in [71, 72]

to design optimal space constellations for SPAD-based multiple-input multiple-output (MIMO)

OWC systems. They have also applied Anscombe root transformation to the conventional

DC-biased optical OFDM (DCO-OFDM) to approximate the Poisson channels by Gaussian

channels without significantly increasing the detection complexity [73]. In [74], an initial

attempt has been made to assess the error performance of PAM in SPAD-based systems.

In [75, 76] the performance of SPAD detectors in long distance VLC links for under water

communication (UWC) is analysed considering the effect of the turbulence-induced fading

resulting from air bubbles in addition to the combined effects of attenuation and scattering.

In [77], a multiple LED parallel transmission scheme is proposed for an under water visible

light communication (UWVLC) system with a single SPAD receiver. In [78–81], various

receiver designs are proposed for SPAD-based systems with Poisson shot noise. The authors

in [82] investigate the likelihood detection of pulse position modulation (PPM) signals for a

photon counting array receiver in the presence of detector timing jitter.

In the aforementioned articles, i.e. [7, 70–82], the impact of SPAD dead time has not been

considered and an ideal Poisson process is assumed for the photon counting process of the

SPAD detector.

In [83] and [84], a SPAD-based orthogonal frequency division multiplexing (OFDM) system

is presented and the nonlinear distortion due to the saturation of the SPAD receiver, as well

as the BER performance of both DCO-OFDM and asymmetrically clipped optical OFDM

(ACO-OFDM) are investigated.

In [85], the feasibility of employing SiPMs for signal detection in UWC systems is addressed.

For a typical under water link, the link performance is evaluated and compared for SiPM-

and APD-based receivers. The numerical results show that the link span can be increased

by the SiPM-based receiver. A follow-up study is conducted in [55], where the practical

considerations regarding the system implementation and the main drawbacks of SiPM devices

are addressed. In particular, the limited transmission data rates and the non-linear distortion in

relatively short ranges are pointed out.
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Authors in [55, 83–85], have assumed a Poisson distribution with dead time modified mean

value for the SPAD photon counting process.

In [86, 87], a novel optical transmission scheme is demonstrated which is suitable for OWC

at ultra-low light levels. This method is inspired by time-correlated single photon counting

(TCSPC) techniques often used for fluorescence lifetime imaging [51] and operates under

the presence of both constant and modulated background noise. A 100 kbits/s link has been

reported with a BER of less than 10−3 at a received power of 8.25 pW. The works of [86, 87]

are fundamentally different as the data transmission is enabled by the encoding of data in the

timing statistics of the received photons, rather than the number of received photons.

In [88, 89], a practical photon counting receiver in optical scattering communication (OSC)

with finite sampling rate, paralyzable dead time, and electrical noise is characterized where it

is shown that the dead time effect leads to sub-Poisson distribution for the number of recorded

pulses. An approximate photocount distribution is derived in [88, 89], which is only applicable

for extremely low photon rates.

In [90], the BER performance of a SPAD array optical receiver is presented. The model

considers important nonidealities including dead time and the SPAD intrinsic parasitic effects

and provides approximations to the error probability of OOK modulation for bit times equal

to the dead time. The results show that the crosstalk makes the major contribution to the BER

as compared to dark counts and afterpulsing. The analysis in this article does not consider the

inter-slot interference (ISI) impairments arising from long dead times.

In [91], the bit error performance of a SPAD-based UWC system is evaluated considering the

characteristics of the underwater channel and also the impact of SPAD dead time. In this article,

our dead time-modified photocount distributions presented in [35] are adopted.
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2.4 Summary

In this chapter, a short overview of OWC was given with focus on the photodetection process.

The common PDs in OWC systems were reviewed. In particular, PIN diodes and APDs

were referred to. The details of their physical mechanism of operation, noise properties and

performance specifications in terms of gain, bandwidth and SNR were reported from literature.

It was discussed that in photon-starving applications and long distance transmissions, where

the optical signal may be received at levels below the sensitivity of PIN diodes and APDs, PDs

with single-photon sensitivity, such as PMTs are required. The advantages and disadvantages

of PMTs were addressed. Then, the SPAD detectors were brought into discussion as a

promising replacement for the PMTs in OWC applications. A short review for the past and

present applications of SPAD detectors was provided. Also, the operating mechanism and the

main performance metrics and the quenching circuits used for resetting the SPAD PDs were

reviewed. Finally, the related research articles were referred to.
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Chapter 3
SPAD Photocount Statistics

While single-photon avalanche diodes (SPADs) are an active area of development, there is not

enough theoretical analysis which would specify their photon counting performance limitations.

The unavoidable dead time caused by the quenching circuit has a substantial impact on the

photon counting performance of these photodetectors. From a communication theory point

of view, the dead time-induced counting losses not only degrade the bit error ratio (BER) of

a system, but also limit the achievable data rates. Particularly, in applications involving high

photon rates and in high data rate optical wireless communication (OWC), the SPAD dead time

causes significant data loss. Therefore, it is of great importance to accurately characterize the

effect of dead time.

The blocking probability of single-photon detectors is a metric which has been widely addressed

in the literature [32, 33]. It is defined as the probability that the detector becomes inoperative

for some time after a detection event. Although, the blocking probability is a useful metric

for assessing the photon counting performance of single-photon detectors, it does not provide

a complete description of the shot noise. It is the photocount distribution that suffices and is

required for the performance evaluation of any SPAD-based OWC system.

In the absence of dead time, the SPAD photocounts follow a Poisson distribution. Likewise, in

the presence of dead time, a Poisson approximation is commonly used [7,55,70–85]. However,

this approximation does not provide an accurate description of the counting process and leads to

inaccurate and unrealistic results when evaluating the bit error performance of the SPAD-based

OWC system.

In this chapter, a comprehensive analytical approach is presented for modelling the SPAD

photon counting process. The mathematical framework is established based on the concepts of

arrival processes and the renewal theory. Throughout this study, it is assumed that the sampling

rate is very high compared to the dead time, so that the counting losses arising from finite

sampling rates are negligible. The photocount statistics of an ideal SPAD without dead time, an

active quenching (AQ) SPAD with a nonparalyzable dead time, a passive quenching (PQ) SPAD
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with a paralyzable dead time and a mixed AQ/PQ SPAD are precisely modelled. The exact

expressions for the probability mass function (PMF), the mean and the variance of photocounts

are derived. This study reveals how the SPAD counting process deviates from a Poisson process

due to the dead time.

Nonparalyzable and paralyzable dead time count rate models are two approximate expressions,

well-known in literature, which provide estimations of the actual count rate of single-photon

detectors [30,31]. These two models have also been adopted for SPAD detectors and have been

verified experimentally [29]. In this chapter, the exact expressions for the count rate of the AQ

and PQ SPADs are also derived and it is shown that these models asymptotically approach the

existing approximate count rate models.

Moreover, in this chapter, the counting statistics of SPAD arrays are studied and approximate

expressions for their PMF, mean and variance are developed. It is shown that the impact of

both AQ and PQ dead times is eliminated in a sufficiently large SPAD array.

All the analytical expressions derived in this chapter are verified by Monte Carlo simulations.

These models are then used in Chapter 4 to assess the bit error performance of the SPAD-based

OWC systems, and in Chapter 5 to obtain the information transfer rate of the SPAD receivers.

The rest of this chapter is organised as follows. In Section 3.1 the required background for

establishing the mathematical framework is provided. In Section 3.2 the photon counting

process of the ideal SPAD is addressed. The statistical modelling of the photon counting

processes of the AQ SPAD, the PQ SPAD, the mixed AQ/PQ SPAD and the SPAD array is

presented in Sections 3.3–3.6. Finally, a summary of the chapter is given in Section 3.7.

3.1 Preliminaries

In this section, the concept of arrival processes with emphasis on Poisson processes is reviewed.

Some of the well-known results from the book by Snyder [92] are presented. Also, some of the

principal elements and results in renewal theory are introduced, where the book by Cox [93] is

closely followed. These mathematical tools are applied in Sections 3.2–3.6 for modelling the

dead time-modified photocount distribution of SPAD receivers.
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Figure 3.1: Arrival and inter-arrival time sequences.

3.1.1 Arrival Processes

An arrival process is a sequence of increasing random variables 0 < t1 < t2 < · · · , known

as arrival times or occurrence times. The arrivals are also referred to as incidents or events.

We denote this sequence by {ti} and assume that the process starts at time t = 0 and multiple

arrivals can not occur simultaneously [94].

As illustrated in Fig. 3.1, the arrival process can be specified by two other stochastic processes.

The first is the sequence of inter-arrival times, w1, w2, . . . , which are positive random variables

such that w1 = t1 and wi = ti − ti−1 for i > 1 and Pr{wi ≤ 0} = 0. Given the sequence

{wi}, the arrival time ti is expressed as:

ti =
i∑

j=1

wj . (3.1)

In order to characterize the arrival process by the sequence {ti}, it is sufficient to determine

the joint probability distribution of the subsequences t1, t2, . . . , tk for all k > 1. Similarly,

the joint probability distribution of w1, w2, . . . , wk for all k > 1 is sufficient to specify the

arrival process. When the inter-arrival times are independent and identically distributed (iid), it

is usually easier to specify the joint distribution of {wi} than that of {ti} [94].

The second alternative for specifying an arrival process is by the counting process K(t)

corresponding to it. The random variable K(t), is the number of events in the interval (0, t].

We denote this counting process by {K(t); t > 0} and assume that Pr{K(0) = 0} = 1, as

arrivals occur at strictly positive times. For any given t′ > t, denote the number of arrivals in

the interval (t− t′] by K̃(t, t′) = K(t′)−K(t). For any given integer i ≥ 1 and t > 0, the ith

arrival time, ti, and the counting random variable, K(t), are related by:

Pr{ti ≤ t} = Pr{K(t) ≥ i}. (3.2)
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Definition 1. The counting process {K(t); t > 0} has the stationary increment property, if

K̃(t, t′) has the same distribution function as K(t′ − t) for every t′ > t [92, 94].

Definition 2. The counting process {K(t); t > 0} has the independent increment property, if

the i-tuple of random variables K(t1), K̃(t1, t2), . . . , K̃(ti−1, ti) are statistically independent,

for every integer i > 0 and every i-tuple of times 0 < t1 < t2 < · · · < ti [92, 94].

3.1.1.1 Poisson Processes

Poisson process is an example of arrival processes for which the inter-arrival times are

iid random variables with exponential distribution; i.e., each random variable Wi has the

probability density function (PDF) fWi(w) = λe−λw for w ≥ 0 and is memoryless1. The

parameter λ is the rate or intensity of the Poisson process and λt is the expected number of

arrivals in the interval (0, t] [92].

Homogeneous Poisson Processes

The Poisson processes are usually characterized by a constant arrival rate λ. In these cases, the

Poisson process is termed as a homogeneous or stationary point process. Homogeneous Poisson

processes have both of the stationary increment and the independent increment properties [92,

94]. Denote by p(k)(t1, t2, . . . , tk) the joint probability density for the first k arrival times t1,

t2, . . . , tk. For a homogeneous Poisson process, p(k)(t1, t2, . . . , tk) is given by [92]:

p(k)(t1, t2, . . . , tk) =




λke−λtk , 0 < t1 < t2 < · · · < tk

0, otherwise.

(3.3)

Non-homogeneous Poisson Processes

Non-homogeneous Poisson processes have a time-varying arrival rate λ(t) for t ≥ 0. These

processes have the independent increment property, however, they do not have the stationary

increment property [92, 94]. For a non-homogeneous Poisson process, p(k)(t1, t2, . . . , tk) is

1A non-negative non-deterministic random variable X is memoryless if for every x ≥ 0 and α ≥ 0,

Pr{X > x+ α} = Pr{X > x}Pr{X > α}.
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given by [92]:

p(k)(t1, t2, . . . , tk) =





(
k∏

i=1

λ(ti)

)
exp


−

tk∫

0

λ(σ)dσ


, 0 < t1 < t2 < · · · < tk

0, otherwise.

(3.4)

The above expression is used later in Section 3.3 for obtaining the photocount distribution of

AQ single SPADs.

3.1.2 Renewal Theory

In the following, the concepts of product density functions and renewal processes are

introduced.

3.1.2.1 Product Density Functions

Consider the counting process {K(t); t > 0} with the arrival time sequence of {ti}, i =

1, 2, . . . . For this counting process, the random variable dK(t) denotes the number of events

in the small interval (t, t+ dt]. A function f1(t)dt can be defined such that [93]:

f1(t)dt = E[dK(t)], (3.5)

where E[dK(t)] represents the average number of events in the interval (t, t+dt]. Accordingly,

the product of two random variables dK(t1) and dK(t2) can be defined as [93]:

f2(t1, t2)dt1dt2 = E[dK(t1)dK(t2)], (3.6)

which is also equal to the joint probability of one arrival event in (t1, t1+dt1] and another arrival

event in (t2, t2 + dt2]. The function f2 is called a product density of order two. Similarly, the

product density function of order k, fk(t1, t2, . . . , tk), is defined as [93]:

fk(t1, t2, . . . , tk)dt1dt2 · · · dtk = E[dK(t1) · · · dK(tk)], (3.7)

where fk(t1, t2, . . . , tk)dt1dt2 · · · dtk represents the joint probability of one arrival event in the

interval (t1, t1 + dt1], one in (t2, t2 + dt2], . . . , and one in (tk, tk + dtk].
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Assuming a Poisson arrival process and provided that 0 < t1 < t2 < · · · < tk, the following

equation holds between the product density of order k and the product densities of order one

[93]:

fk(t1, t2, . . . , tk) = f1(t1)f1(t2 − t1) · · · f1(tk − tk−1). (3.8)

The above equation implies that an event is given at t = 0, and given this arrival event, the

probability that an event occurs between t and t+dt is determined by f1(t)dt and is independent

of what happened before t = 0. This is a conventional assumption in most problems in renewal

theory. For the SPAD, this assumption means that the SPAD is blocked at the beginning of the

counting interval. We will proceed with our mathematical modellings under this assumption

and will relax it at the end.

Define p(k, t) = Pr{K(t) = k}. Thus, p(k, t) denotes the probability of k detection events

during the interval (0, t], given one arrival at t = 0. The generating function (GF) corresponding

to p(k, t) is given by:

G(z, t) =
∞∑

k=0

p(k, t)zk. (3.9)

The following property holds for G(z, t) and the product density of order k [93]:

∂kG(z, t)

∂zk

∣∣∣∣
z=1

=

t∫

0

t∫

0

. . .

t∫

0

fk(t1, t2, . . . , tk) dt1dt2 · · · dtk. (3.10)

For a symmetrical fk with respect to t1, t2, . . . , tk, (3.10) can be written as [93]:

∂kG(z, t)

∂zk

∣∣∣∣
z=1

= k!

t∫

0

dtk

tk∫

0

dtk−1 . . .

t3∫

0

dt2

t2∫

0

f1(t1)f1(t2 − t1) · · · f1(tk − tk−1)dt1.

(3.11)

The following equation is concluded from (3.11):

∂G(z, t)

∂z

∣∣∣∣
z=1

=

t∫

0

f1(t1)dt1. (3.12)

Now, let F1(s) =
∫∞
0 f1(t)e

−stdt be the Laplace transform (LT) of the function f1(t) with

respect to the variable t. The LT of (3.12) is obtained as:

g(z, s) =
1

s
× 1

1− (z − 1)F1(s)
, (3.13)
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where g(z, s) is the LT of the function G(z, t). Let also define P (k, s) as the LT of the function

p(k, t). The following diagram summarizes how the four functions p(k, t), P (k, s), G(z, t),

and g(z, s) are related:

G(z, t)

LT

 (
p(k, t)

GF
6>

LT  (

g(z, s)

P (k, s)

GF

6>

Since g(z, s) is the GF of P (k, s), according to (3.13), P (k, s) can be obtained as [95]:

P (k, s) =
1

s
× [F1(s)]

k

[1 + F1(s)]
k+1

. (3.14)

Therefore, if f1(t) or F1(s) is known for a counting process, P (k, s), and hence, p(k, t) can be

obtained using (3.14).

3.1.2.2 Renewal Processes

Definition 3. A renewal process is an arrival process for which the inter-arrival times are iid

random variables.

Renewal processes are often described by a special type of integral equations known as renewal

equations, which represent the regenerative nature of the process, that is, the property that the

process restarts at each arrival time, independently of the past. In general, a renewal equation

is of the form [93]:

B(t) = b(t) +

t∫

0

B(t− t′)dA(t′), (3.15)

where A(t) is the cumulative distribution function (CDF) of the inter-arrival times, such that

A(0) = 0, b(t) is a known function and B(t) is an unknown function. The solution to this

renewal equation, B(t), is obtained conditioned on the time of the first event and can represent

many quantities in the study of renewal processes [93].

If the counting process {K(t); t > 0} is a renewal process, then a renewal equation can be

constituted for obtaining p(k, t). We make the assumption that there is an initial arrival at

t = 0. This assumption helps us to make our later mathematical derivations tractable, as the
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the properties of the renewal processes will be combined with the product density functions in

which an event at t = 0 is a hidden assumption.

Denote by φ(t) the probability of no events in (0, t], given one event at t = 0. Thus, p(0, t) =

φ(t). It is also apparent that A(t) = 1 − φ(t). For k ≥ 1, the following renewal equation can

be considered:

p(k, t) =

t∫

0

p(k − 1, t− t′)dA(t′). (3.16)

In the above equation, dA(t′) = (−∂φ(t′)/∂t′)dt′ is the probability that the next event occurs

between t′ and t′ + dt′, given the initial event at t = 0. Also, p(k − 1, t− t′)dA(t′) represents

the probability of k − 1 events in the interval (t′, t) and one event at t = t′, given the event

at t = 0. This clearly shows the regenerative nature of the renewal process, i.e., the counting

process restarts at t = t′. By integrating over all admissible values of t′, p(k, t) is obtained.

Therefore, for k ≥ 0, the total integral equation for this renewal process can be written as:

p(k, t) =

t∫

0

p(k − 1, t− t′)(−∂φ(t′)
∂t′

)dt′ + δ(k)φ(t), (3.17)

where δ(.) is the Dirac delta function and δ(k) = 1 for k = 0 and 0 otherwise. The following

equation holds for the GF corresponding to p(k, t):

G(z, t) =

t∫

0

z G(z, t− t′)(−∂φ(t′)
∂t′

)dt′ + φ(t). (3.18)

The LT of the above equation with respect to the variable t is given by:

g(z, s) =
Φ(s)

1 + z(sΦ(s)− 1)
, (3.19)

where Φ(s) is the LT of φ(t). Since g(z, s) is the GF of P (k, s), according to (3.19), P (k, s)

is given by [95]:

P (k, s) = Φ(s)(1− sΦ(s))k. (3.20)

Thus, if φ(t) or Φ(s) is known for a renewal counting process, P (k, s), and hence, p(k, t) can

be obtained using (3.20).

The key results given in (3.14) and (3.20) are used later in Sections 3.3–3.5 for obtaining the
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photocount distribution of AQ, PQ and mixed AQ/PQ single SPADs.

3.2 Ideal SPAD

Assume that the photons arrive at the surface of the SPAD detector according to a Poisson

arrival process. For an ideal SPAD detector, the photocounts follow a Poisson distribution and

the probability of detecting k photons during a time period of (0, Tb] is given by [1, 5, 42]:

p0(k) = p(k, t)|t=Tb =
(λTb)ke−λTb

k!
, (3.21)

where the constant λ is the average photon arrival rate (in photons/s). Throughout this thesis,

we may also use the notation p0(k;λ) to distinguish between various values of the parameter

λ. The mean and variance of the photocounts over the observation time of Tb seconds are given

by [1, 5, 42]:

µ0 = σ20 = λTb. (3.22)

The photon arrival rate λ is related to the power of the optical signal by [1, 5, 42]:

λ =
ηPs

hν
, (3.23)

where η is the quantum efficiency of the SPAD; Ps denotes the power of the incident optical

signal; h is the Planck constant; and ν represents the frequency of the optical signal.

3.3 AQ SPAD

In this section, the dead time-modified photocount distribution of an AQ SPAD is derived.

Recall that in AQ SPADs, any photon arriving during the dead time is lost and has no influence

on the dead time period. It is only after this dead time that the SPAD is able to detect a

subsequent photon. Assume that the dead time is of length τ . If the SPAD is free at the

beginning of the counting interval (0, Tb], the number of photocounts during this period can

not exceed kmax = bTb/τc+ 1, where bxc denotes the largest integer that is smaller than x. In

the sequel, the AQ SPAD photocount distribution pK(k) = p(k, t)|t=Tb is obtained using two

different approaches: Poisson processes and renewal processes.
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3.3.1 Poisson Processes

Assume that t1, t2, . . . , tk are the photon arrival times such that 0 < t1 < t2 < · · · < tk ≤ Tb.

Note that the probability of detecting k > kmax is zero. Therefore, pK(k) = 0 for k > kmax.

The AQ SPAD photon counting process is an inhomogeneous Poisson process with the joint

probability density function p(k)(t1, t2, . . . , tk) given in (3.4). Therefore,

p(0) = e−λTb

p(1)(t1) = λe−λ(Tb−τ)

...

p(k−1)(t1, t2, . . . , tk−1) = λk−1e−λ(Tb−(k−1)τ) ,

(3.24)

where ti+ τ ≤ ti+1 for i = 1, 2, . . . , k−1. The kth arrival time, tk, may or may not fall within

the last τ seconds of the counting interval. Therefore, depending on tk:

p(k)(t1, t2, . . . , tk) =




λke−λ(Tb−kτ), tk < Tb − τ

λke−λ(tk−(k−1)τ), tk > Tb − τ.
(3.25)

For obtaining pK(k), the joint probability density function in (3.25) needs to be integrated over

the region spanned by t1, t2, . . . , tk. Region {R} is defined as the set of all possible values

for arrival times t1, t2,. . . , tk, and it can be divided into two subsets {R1} and {R2} such that

{R} = {R1}∪{R2}. The subset {R1} consists of all possible k-tuples for which the first case

of (3.25) holds, meaning that the detection of all k photons is entirely contained in (0, Tb]. For

the k-tuples of {R2}, the second case of (3.25) holds and the dead time of the last photon (kth

photon) extends out of (0, Tb]. Therefore, the probability of detecting k photons in the interval

(0, Tb] is given by:

pK(k) = p1(k) + p2(k), (3.26)

where,

p1(k) =

∫

{R1}

p(k)(t1, . . . , tk)dt1 · · · dtk (3.27a)

p2(k) =

∫

{R2}

p(k)(t1, . . . , tk)dt1 · · · dtk (3.27b)

The arrival time sequence {ti} belonging to the subset {R1} should satisfy the following
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inequalities:

0 ≤ t1 ≤ t2 − τ

τ ≤ t2 ≤ t3 − τ
...

(k − 2)τ ≤ tk−1 ≤ tk − τ

(k − 1)τ ≤ tk ≤ Tb − τ.

The integral in (3.27a) is calculated as (see Appendix A):

p1(k) =
λk(Tb − kτ)k

k!
e−λ(Tb−kτ). (3.28)

For the subset {R2}, the arrival time sequence {ti} should satisfy the following inequalities:

0 ≤ t1 ≤ t2 − τ

τ ≤ t2 ≤ t3 − τ
...

(k − 2)τ ≤ tk−1 ≤ tk − τ

Tb − τ ≤ tk ≤ Tb

Also, p2(k) in (3.27b) is given by (see Appendix A):

p2(k) =
k−1∑

i=0

λi(Tb − kτ)i

i!
e−λ(Tb−kτ) −

k−1∑

i=0

λi(Tb − (k − 1) τ)i

i!
e−λ(Tb−(k−1)τ). (3.29)

Define ψ(i, λ) = λie−λ/i! and λk = λ(Tb − kτ). Therefore:

pK(k) =

k∑

i=0

ψ (i, λk)−
k−1∑

i=0

ψ (i, λk−1) (3.30)

for k ≤ kmax. This expression provides the probability of counting k photons by an AQ SPAD

with constant dead time τ . A similar approach has been previously used in [96], however, a

wrong assumption has led to invalid expressions.
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3.3.2 Renewal Processes

Recall from Section 3.1.2 that φ(t) is the probability of no photon detection event during the

interval (0, t], given an event at t = 0. Thus, for the AQ SPAD:

φ(t) =




e−λ(t−τ), t > τ

1, t < τ.
(3.31)

The LT of φ(t) is given by:

Φ(s) =
1

s
− λe−τs

s(s+ λ)
. (3.32)

According to (3.20), P (k, s) can be obtained as:

P (k, s) =
1

s

[
λke−kτs

(s+ λ)k
− λk+1e−(k+1)τs

(s+ λ)k+1

]
. (3.33)

The inverse LT from the above equation gives:

∂p(k, t)

∂t
=
λk(t− kτ)k−1

(k − 1)!
e−λ(t−kτ)U(t− kτ)

− λk+1(t− (k + 1)τ)k

k!
e−λ(t−(k+1)τ)U(t− (k + 1)τ),

(3.34)

where U(t) is the unit step function:

U(t) =





1, t ≥ 0

0, t < 0.

Therefore (see Appendix A),

p(k, t) =
k∑

i=0

λi(t− (k + 1)τ)i

i!
e−λ(t−(k+1)τ) −

k−1∑

i=0

λi(t− kτ)i

i!
e−λ(t−kτ). (3.35)

The expression for p(k, t) in (3.35) is the probability of k photocounts in (0, t], given one

photon at t = 0. This means that the SPAD becomes free after t = τ . Therefore, in order to

relax this assumption, t can be replaced by t+ τ in the above equation. Finally:

pK(k) = p(k, t)|t=Tb =

k∑

i=0

ψ(i, λk)−
k−1∑

i=0

ψ(i, λk−1), (3.36)
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Figure 3.2: PMF of AQ SPAD photocounts for Tb = 1 µs, λ = 3× 107 photons/s and different
values of δ (The solid line with marker represents a fitted curve for the discrete
PMF).

for k ≤ kmax. The above expression was previously derived in Section 3.3.1 using the concepts

of Poisson processes.

The PMF obtained in in (3.30)/(3.36) is plotted in Fig. 3.2 and compared with the Monte Carlo

simulation results for different values of dead time ratio, δ = τ/Tb. For performing Monte

Carlo simulations, within a time interval of Tb seconds, a Poisson arrival process with average

rate of λ photons/s is generated which represents the photon arrival times at the SPAD receiver.

Depending on the dead time duration, the total number of detected photons in this time interval

is counted, and this test is repeated for 106 times (to achieve a high accuracy), so that the

histograms in Fig. 3.2 are obtained based on the collected data. In this figure, a time interval

of Tb = 1 µs is considered and λ = 3 × 107 photons/s. Also, δ = 0, 0.02, 0.05 and 0.07

are considered. Note that for a SPAD without dead time, the photocount distribution is Poisson

with mean λTb as discussed in Section 3.2. For the PMF expression in (3.30)/(3.36), some of

the main properties are addressed as follows:

The Unitary Condition

As required for any valid distribution function, for the PMF in (3.36), the equality
∑
k

pK(k) = 1

holds. Furthermore, it is easily seen that lim
τ→0

pK(k) = p0(k), that is, when τ goes to zero, the
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Poisson distribution of an ideal SPAD is recovered.

Mean and Variance

The mean and variance of the photocount distribution in (3.36) are given by (refer to

Appendix C):

µK = kmax −
kmax−1∑

k=0

k∑

i=0

ψ(i, λk), (3.37a)

σ2K =

kmax−1∑

k=0

k∑

i=0

(2kmax − 2k − 1)ψ(i, λk)−
(
kmax−1∑

k=0

k∑

i=0

ψ(i, λk)

)2

. (3.37b)

Again, as dead time goes to zero, the limiting relations lim
τ→0

µK = λTb and lim
τ→0

σ2K = λTb

in (3.37a) and (3.37b) can be verified, where λTb is the mean value of Poisson distribution

corresponding to an ideal SPAD.

Fig. 3.3a presents µK and σ2K for an AQ SPAD as functions of λ where they are compared to an

ideal Poisson counting process. As shown, the difference between µK and σ2K becomes more

significant as λ increases. Let the ratio of the variance to mean be defined as:

ξ =
σ2K
µK

. (3.38)

Fig. 3.3b illustrates this ratio where it approaches to zero as λ goes to infinity, unlike the Poisson

distribution where this ratio is equal to one for all values of λ.

Asymptotic Mean for Small τ/Tb Ratio

The exact mean value in (3.37a) can also be expressed as follows:

µK = kmax −
kmax−1∑

k=0

Γ(k + 1, λk)

Γ(k + 1)
, (3.39)

where for a positive integer s, Γ(s) = (s − 1)! and Γ(s, x) = e−x(s − 1)!
s−1∑
i=0

xi/i! are the

gamma and incomplete gamma functions, respectively [95]. Defining γ(s, x) = Γ(s, x)/Γ(s),
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Figure 3.3: Mean and variance of AQ SPAD photocounts with Tb = 1 µs, τ = 2 ns: (a)
comparison of mean and variance with ideal Poisson distribution, (b) the variance
to mean ratio.

the following approximation holds for γ(k + 1, λk) when τ/Tb goes to zero [95]:

γ(k + 1, λk) ≈





1, k + 1 > λk

0, k + 1 ≤ λk
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Therefore, γ(k + 1, λk) can be approximated as zero for k + 1 ≤ λTb/(1 + λτ), and 1,

otherwise. Applying the above approximation to (3.39) gives:

lim
τ/Tb→0

µK =
λTb

1 + λτ
. (3.40)

The above expression has been derived in [97] through a different approach.

Effective Count Rate

The effective count rate of the SPAD detector is one of the most important practical

considerations when it comes to high speed applications. The effective count rate is defined as

the rate at which the SPAD can detect photons and is given by [31]:

λ′ =
µK
Tb

. (3.41)

As the dead time incurs counting losses and degrades µK , λ′ is also critically affected by the

dead time. The effective count rate, λ′, is always less than the photon arrival rate, λ. However,

λ′ does not grow boundlessly by increasing λ. Using (3.41) and the exact expression for µK

derived in (3.37a), an exact analytical model for the count rate of the AQ SPAD can be obtained.

In addition, using the approximate expression of µK derived in (3.40), an asymptotic count rate

model is developed as:

λ′ =
λ

1 + λτ
. (3.42)

The above approximate model is well-known in the literature and has been verified through

experiments [29–31].

In Fig. 3.4, the effective count rate of the AQ SPAD is evaluated for various dead time

values and is also compared with Monte Carlo simulation results. In this figure, a normalized

counting interval (Tb = 1) and three different values for dead time (τ = 0.1, 0.01, and

0.001) are considered. For each value of λ, random photon arrival times are generated as a

Poisson process, and depending on the dead time duration, the registered photons are counted

accordingly. Again, the Monte Carlo simulation consists of 106 runs. This number ensures a

high accuracy and a perfect match with the analytical models. This figure demonstrates that the

predictions of the analytical framework perfectly match with the simulation results.

According to Fig. 3.4, as λ increases, λ′ also grows up to a saturation level, meaning that the
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Figure 3.4: Effective count rate of an AQ SPAD (Tb = 1).

SPAD is not able to reach count rates higher than this value. In addition, for a given photon

arrival rate, longer dead times result in lower count rates and a lower saturation level. The count

rate model in (3.42) predicts a saturation level of 1/τ and this can be clearly observed in all the

curves of Fig. 3.4, e.g. with τ = 0.1, λ′sat = 10.

3.4 PQ SPAD

In this section, the dead time-modified photocount distribution of a PQ SPAD is derived. For

PQ SPADs, any photon arrival event is followed by a dead time. Thus, the photons which arrive

during the dead time of the previous photons extend the dead time duration.

Again, define p(k, t) as the probability of k photocounts during the time interval (0, t], given

one detected photon at t = 0. The next photon arrives between t′ and t′ + dt′ with probability

λe−λt
′
dt′. If this photon arrives in (0, τ) it is not detected, but if it arrives after the dead time of

the photon occurring at t = 0, it is counted. Therefore, the following renewal integral equation

can be constituted:

p(k, t) = e−λtδ(k) +

τ∫

0

λe−λt
′
p(k, t− t′)dt′ +

t∫

τ

λe−λt
′
p(k − 1, t− t′)dt′. (3.43)

In the above renewal equation, the first term in the right-hand side accounts for the case where
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no photon arrives at the SPAD. The second term is when the next photon arriving after t = 0 is

lost, because it arrives during the dead time of the photon at t = 0. The last term represents the

case where the next photon arrives after the dead time of the photon at t = 0 is finished, and

therefore this photon is detected. The GF corresponding to p(k, t) is given by:

G(z, t) = e−λt +

τ∫

0

λe−λt
′
G(z, t− t′)dt′ +

t∫

τ

zλe−λt
′
G(z − 1, t− t′)dt′, (3.44)

Differentiating with respect to t gives:

∂G(z, t)

∂t
= λe−λτ (z − 1)G(z, t− τ). (3.45)

According to (3.44), it is clear that G(z, 0) = 1, as p(k, 0) = 1 if k = 0, and 0 otherwise.

Also, since no photon can be detected within the interval (0, τ), it can be concluded that if

0 ≤ t < τ then G(z, t) = 1. And, if k0 be an integer such that k0τ ≤ t < (k0 + 1)τ , then,

G(z, t − k0τ) = 1. This requires G(z, t) to be an upper semi-continuous function of t. Thus,

the recurrence relation in (3.45) can be solved by iteration. Assume:

G(z, t) =

k0∑

i=0

Ai(z)(t− iτ)iU(t− iτ). (3.46)

Substituting (3.46) into (3.45) gives:

A1(z) = λe−λτ (z − 1)A0(z)

2A2(z) = λe−λτ (z − 1)A1(z)

3A3(z) = λe−λτ (z − 1)A2(z)

...

k0Ak0(z) = λe−λτ (z − 1)Ak0−1(z).

In addition, the boundary condition G(z, 0) = 1 directly leads to A0(z) = 1 and the above

equations result in:

Ai(z) = (z − 1)i × λie−iλτ

i!
=

i∑

k=0

(
i

k

)
zk(−1)i−k × λie−iλτ

i!
, (3.47)

52



SPAD Photocount Statistics

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

Figure 3.5: PMF of PQ SPAD photocounts for Tb = 1 µs, λ = 3× 107 photons/s and different
values of δ (The solid line with marker represents a fitted curve for the discrete
PMF).

for i > 0. G(z, t) is then obtained as:

G(z, t) =

k0∑

i=0

i∑

k=0

(
i

k

)
zk(−1)i−k

λie−iλτ

i!
(t− iτ)iU(t− iτ)

=

k0∑

k=0

k0∑

i=k

(
i

k

)
zk(−1)i−k

λie−iλτ

i!
(t− iτ)iU(t− iτ).

(3.48)

According to the definition of generating function G(z, t) in (3.9), p(k, t) is the coefficient of

zk in (3.48):

p(k, t) =

k0∑

i=k

(
i

k

)
(−1)i−k

λie−iλτ

i!
(t− iτ)iU(t− iτ). (3.49)

The expression for p(k, t) in (3.49) is the probability of k photocounts in (0, t] given one photon

arrival at t = 0. Unlike the case of AQ SPADs, relaxing the assumption of one photon at t = 0

is not straightforward, as the PQ SPAD does not necessarily become free at t = τ . However, we

resort to the same approach and replace t by t+τ in the above equation. For the dead time values

and the photon rates considered here, this is a tight approximation. With the modification, k0

is replaced by k0 + 1. Therefore, the counting distribution of a PQ SPAD in the time interval
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(0, Tb] is expressed as:

pK(k) = p(k, t)|t=Tb =

kmax∑

i=k

(−1)i−k
(
i

k

)
λi(Tb − (i− 1)τ)i

i!
e−iλτ , (3.50)

for k ≤ kmax and pK(k) = 0 for k > kmax.

The PMF obtained in (3.50) is plotted in Fig. 3.5 and compared with the Monte Carlo simulation

results for different values of δ = τ/Tb. The approach for performing Monte Carlo simulations

is similar to the one presented for AQ SPADs. In Fig. 3.5, a time interval of Tb = 1 µs is

considered and λ = 3 × 107 photons/s. Also, δ = 0, 0.02, 0.05, and 0.07 are assumed. Note

that for a SPAD without dead time, the photocount distribution is Poisson with mean λTb. For

the PMF expression in (3.50), some of the main properties are addressed as follows:

The Unitary Condition

It can easily be verified that the unitary condition
∑
k

pK(k) = 1 holds for the PMF in (3.50)

and lim
τ→0

pK(k) = p0(k), that is, when τ goes to zero, the PMF in (3.50) approaches the ideal

Poisson distribution.

Mean and Variance

The mean and variance of the photocount distribution in (3.50) are derived as (refer to

Appendix D):

µK = λe−λτTb, (3.51a)

σ2K = λ2e−2λτ (τ2 − 2Tbτ) + λe−λτTb. (3.51b)

The expressions in (3.51) have been derived in [97] through a different approach. Similar to the

AQ SPAD, the limiting relations lim
τ→0

µK = λTb and lim
τ→0

σ2K = λTb in (3.51a) and (3.51b) can

be confirmed, where λTb is the mean value of the ideal Poisson distribution. Fig. 3.6a presents

µK and σ2K as functions of λ. The mean and variance are also compared to an ideal counting

process where it is observed that unlike a Poisson process, µK and σ2K can differ significantly.

Fig. 3.6b illustrates the ratio ξ, as defined in (3.38) where the minimum occurs at λτ = 1 and

the ξ approaches 1 when λτ goes to infinity.
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Figure 3.6: Mean and variance of PQ SPAD photocounts with Tb = 1 µs, τ = 2 ns: (a)
comparison of mean and variance with ideal Poisson distribution, (b) the variance
to mean ratio.

Effective Count Rate

Similar to the AQ SPAD, the effective count rate of the PQ SPAD is defined as:

λ′ =
µK
Tb

. (3.52)
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Therefore, based on (3.51a), the count rate of the PQ SPAD is given by:

λ′ = λe−λτ . (3.53)

The above expression specifies how λ′ depends on τ and why it does not grow boundlessly by

increasing λ. The count rate model of (3.53) is in line with the experimental results presented

in [29], and this confirms the validity of our mathematical modelling.

In Fig. 3.7, the effective count rate of the PQ SPAD is evaluated and compared with Monte

Carlo simulation results. In this figure, a normalized counting interval (Tb = 1) and three

different values for the dead time (τ = 0.1, 0.01, and 0.001) are considered. According to

Fig. 3.7, as λ increases, first λ′ grows up to a peak saturation point and then decreases rapidly.

Longer dead times result in lower count rates, an earlier saturation and a lower peak value.

Referring to (3.53), the peak count rate is λ′sat = 1/(eτ) and it occurs at λ = 1/τ . This can be

clearly observed in all the curves of Fig. 3.7, e.g. with τ = 0.1, λ′sat ≈ 3.7.

In contrast to the AQ SPAD, which reaches a constant effective count rate after saturation, once

the PQ SPAD reaches its maximum count rate, a further increase in the photon arrival rate

will drastically degrade the photon counting performance and lead to reduced count rates. In

fact, the maximum count rate of the PQ SPAD is only achieved at a specific photon arrival rate

(λ = 1/τ ). Furthermore, this maximum count rate is lower than the saturation count rate of an

AQ SPAD with the same τ . This is the reason why AQ SPADs are generally preferred over PQ

SPADs.

3.5 Mixed AQ/PQ SPAD

In this section, the dead time-modified photocount distribution of a mixed AQ/PQ SPAD is

derived. The AQ and PQ SPADs can be considered as special cases of this general hybrid

receiver. Suppose that the detected and lost photons are followed by two different dead times,

τ1 and τ2, respectively. Assuming different dead time values for detected and lost photons

helps to clearly reflect distinct effects of paralyzable and nonparalyzable dead times on the

total renewal process. Assume that τ1 > τ2. In addition, we assume a normalized photon

arrival rate in the analytical derivations, for simplicity. The probability φ(t) that no photon is
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Figure 3.7: Effective count rate of a PQ SPAD (Tb = 1).

detected up to time t, given that a photon is registered at t = 0, is:

φ(t) = [U(t)− U(t− (τ1 − τ2))] + φp(t− (τ1 − τ2))U(t− (τ1 − τ2)). (3.54)

In the above equation, the total probability of not detecting any photons is obtained as follows:

The first term in the right-hand side of (3.54) expresses the condition that no photon is detected

up to t < τ1 − τ2. If any photon arrives during time interval of (0, τ1 − τ2), it is clearly lost

and is followed by a dead time of length τ2, and this dead time won’t extend beyond the dead

time of the registered photon at t = 0, i.e. τ1. Thus, φ(t) = 1 for t < τ1 − τ2. If any photon

arrives after τ1 − τ2, the dead time will be extended beyond τ1. It is then valid to assume that

the detector is in paralyzable mode, where φp(t− (τ1 − τ2)) represents the probability that no

photon is registered in time t− (τ1 − τ2). Applying LT to (3.54) gives:

Φ(s) =
1

s
(1− e−s(τ1−τ2)) + e−s(τ1−τ2)Φp(s). (3.55)

In order to obtain Φp(s) and then Φ(s), the product density of the first order for the paralyzable

mode is easily calculated as:

fp1 (t)dt = U(t− τ2)e−τ2dt. (3.56)
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The above expression results from arguing that a photon is detected only if it arrives after the

dead time of the photon at t = 0 (t > τ2) and it is also not preceded by any photon arrival event

in time interval (0, τ2). Thus:

F p
1 (s) =

1

s
e−(s+1)τ2 . (3.57)

F p
1 (s) and Φp(s) are related through (3.14) and (3.20):

Φp(s) =
1

s
× 1

1 + F p
1 (s)

. (3.58)

Therefore, (3.55), (3.57) and (3.58) result in:

F1(s) =
1

sesτ1+τ2 + es(τ1−τ2) − 1
. (3.59)

The same result is obtained for τ1 < τ2 following exactly the same arguments. According to

(3.14), for general values of τ1 and τ2, the following expression in is obtained for P (k, s):

P (k, s) =
1

s

[(
esτ1+τ2 + es(τ1−τ2)

)−k
−
(
esτ1+τ2 + es(τ1−τ2)

)−(k+1)
]
. (3.60)

The inverse LT then leads to:

p(k, t) =
1

2πi

∫ α+i∞

α−i∞

[
1

s

(
esτ1+τ2 + es(τ1−τ2)

)−k
− 1

s

(
esτ1+τ2 + es(τ1−τ2)

)−(k+1)
]
estds

=
1

2πi

∫ α+i∞

α−i∞

∞∑

r=0

[
e−(k+r)τ2(−1)r

(
k + r − 1

r

)
es(t−kτ1−rτ2)

sk+r+1

]
ds

− 1

2πi

∫ α+i∞

α−i∞

∞∑

r=0

[
e−(k+r+1)τ2(−1)r

(
k + r

r

)
es(t−(k+1)τ1−rτ2)

sk+r+2

]
ds.

(3.61)

The following equality holds for t > 0 [95]:

1

2πi

∫ α+i∞

α−i∞

est

sk
ds =

tk−1

(k − 1)!
.

58



SPAD Photocount Statistics

Thereby, the final expression for p(k, t) is obtained as:

p(k, t) =

K1∑

r=0

(−1)r
(
k + r − 1

r

)
(t− kτ1 − rτ2)k+r

(k + r)!
e−(k+r)τ2

−
K2∑

r=0

(−1)r
(
k + r

r

)
(t− (k + 1)τ1 − rτ2)k+r+1

(k + r + 1)!
e−(k+r+1)τ2 ,

(3.62)

where K1 and K2 are integers such that:

t− kτ1
τ2

− 1 < K1 <
t− kτ1
τ2

t− (k + 1)τ1
τ2

− 1 < K2 <
t− (k + 1)τ1

τ2
.

When τ1 6= 0 and τ2 6= 0, p(k, t) is given by a finite series. Particular cases include:

• With τ1 = τ2 = 0, the Poisson distribution for an ideal SPAD, given in (3.21), is obtained.

• With τ2 = 0, the photocount distribution for an AQ SPAD, given in (3.35), is obtained.

• With τ1 = τ2, the photocount distribution for a PQ SPAD, given in (3.49), is obtained.

3.6 SPAD Array

To eliminate the effect of dead time and to achieve higher count rates, an array of SPADs can be

used. The output of a SPAD array is the aggregate number of all photons detected by individual

SPADs over the same time interval. Other than the dead time of the single SPADs, the fill

factor (FF) of the SPAD array affects the photocount distribution. Figure 3.8 illustrates the

configuration of a rectangular SPAD array. The FF coefficient, CFF, is equal to the ratio of the

active area (the grey areas) to the total area of the array. Assume that the array consists ofNarray

single SPADs, and the photocounts of the array elements are statistically independent. Denoting

by Ki the number of photocounts at the ith element, the output of the array is expressed as:

S =

Narray∑

i=1

Ki. (3.63)

In the absence of dead time, the random variablesKi are iid with Poisson distribution. However,

when the dead time is present, Ki’s follow the PMF expressions given in (3.36) or (3.50), for
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array cell

active area

Figure 3.8: Geometry of a SPAD array.

AQ or PQ SPADs, respectively. Therefore, the PMF pK(ki) for the ith element of the array can

be rewritten with λi and τi denoting the average photon arrival rate and the dead time of the ith

SPAD in the array, respectively. To take the effect of FF into account, λi in the PMF expression

should be replaced by CFFλi.

If the number of array elements, Narray, is large, according to the central limit theorem (CLT),

the dead time-modified photocount distribution of the SPAD array can be approximated by a

Gaussian distribution, that is:

pS(s) ∼ N (µS , σ
2
S), (3.64)

where,

µS =

Narray∑

i=1

µi, (3.65a)

σ2S =

Narray∑

i=1

σ2i . (3.65b)

In (3.65), µi and σ2i are the mean and variance of the photocount distribution of the i th SPAD

in the array as previously derived in (3.37) and (3.51), for AQ and PQ SPADs, respectively.

The approximate counting distribution given in (3.64) is compared with the Monte Carlo

simulation results in Fig. 3.9 for both AQ and PQ SPAD arrays. In these figures, ΛTb is the

average number of photons incident on the whole surface of the array in the counting interval of

length Tb. When obtaining these results, it is assumed that all the array elements are identical
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(b) Narray = 1024

Figure 3.9: PMF of SPAD array photocounts with ΛTb = 300 photons, CFF = 1 (The solid
lines with markers represent fitted curves for the discrete PMFs).

(equal τi’s) and the incident light beam has a uniform spatial distribution over the array surface

(equal λi’s), i.e. Λ is equally divided between the individual SPADs.

In Fig. 3.9a, arrays with 64 SPADs and in Fig. 3.9b, larger arrays with 1024 SPADs are

considered. As shown, the Monte Carlo simulation results and the Gaussian approximations

are perfectly matched and this confirms the validity of the approximation.
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In Fig. 3.9a, it is observed that while for δ = 0.01, the photocount histogram of the AQ SPAD

array approximately matches that of the PQ SPAD array, the difference is still apparent for

δ = 0.1. However, according to Fig. 3.9b, the photon counting behaviour of the AQ and PQ

SPAD arrays tends to match for larger array sizes, provided that the average number of photons

per counting interval does not result in the saturation of the SPAD elements. It is also seen that

for the same δ and ΛTb, the array with 1024 SPADs has a higher mean value. This means that

the counting losses arising from the dead time are mitigated to some extent if a larger array is

used.

Effective Count Rate

The effective count rate of the SPAD array improves as the number of array elements increases.

Assuming identical array elements and constant photon arrival rate, the count rate models of

(3.42) and (3.53) can be modified for an array of Narray SPADs:

Λ′AQ =
Λ

1 +
Λτ

Narray

, (3.66a)

Λ′PQ = Λe
−

Λτ

Narray . (3.66b)

The comparison between the above dead time-modified count rate models and the Monte Carlo

simulations is given in Fig. 3.10. In this figure, the effective count rate of AQ and PQ SPAD

arrays of two different sizes (Narray = 64 and 1024) and three dead time values (τ = 0.1,

0.01 and 0.001) are compared. According to these curves, the saturation and peak count rates

are scaled by the size of the array compared to a single SPAD. Still, the dead time limits the

maximum achievable count rate and determines the saturation level or peak value of the count

rate curve, but the effect is shifted to higher photon rates. According to the expressions in (3.66)

and Fig. 3.10, we can infer that with an array of Narray SPADs, the effective dead time reduces

to τ/Narray.

Recall that in a SPAD array, the incident light intensity is divided between the array elements. It

is then very unlikely that all the SPADs become inactive at the same time. Therefore, the array

can detect a larger portion of the incident light intensity, i.e. a higher number of photons per

counting interval. In addition, the dead time-induced counting losses decrease as the size of the
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Figure 3.10: Analytical (solid and dashed curves) and simulation (asterisks) results for
effective count rate of SPAD arrays (Tb = 1 and CFF = 1).

array increases, such that in sufficiently large arrays AQ and PQ SPADs show a similar photon

counting performance. This can be clearly observed in Figs. 3.9 and 3.10. Therefore, it can be

concluded that using an array of SPADs makes it possible to reduce the effect of dead time and

achieve higher counting rates. This means that SPAD arrays are more robust to dead time and

can tolerate longer dead times, maintaining the required photon counting performance.
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3.7 Summary

In this chapter, the photocount statistics of SPAD photodetectors were studied. The concepts of

arrival processes and renewal processes were applied to investigate the impact of the detector

dead time on the photon counting process of SPADs. Analytical expressions were derived for

the PMF, mean, variance and count rate of the photocounts. The study was conducted for both

single SPADs and SPAD arrays considering the effect of various dead time types imposed by

AQ, PQ and mixed AQ/PQ circuits. It was shown that the commonly used Poisson distribution

can not accurately describe the counting statistics of the SPAD detector with non-zero dead

time. The dead time limits the maximum number of photons the SPAD can detect in the

desired counting interval. Unlike the Poisson distribution with equal mean and variance, for

the SPAD photocount distribution, the mean and variance are not equal and they do not change

linearly with the incident photon rate. As the photon rate increases, the dead time counting

losses increase and the moments deviate more from those of a Poisson distribution. Also, AQ

and PQ single SPADs exhibit distinct photon counting behaviours, especially for longer dead

times and/or in higher photon rates. The AQ single SPADs experience less counting losses and

achieve higher count rates compared to the PQ single SPADs. In the SPAD arrays, the dead

time losses are reduced. The effective dead time decreases with the size of the array and hence,

the gap between the photon counting performance of the AQ and PQ SPADs almost disappears

in sufficiently large arrays, in the photon rate range of interest.

This detailed statistical analysis was necessary to derive the later receiver performance

evaluation results. As the next steps, the models developed in this chapter are to be used in

Chapter 4 for assessing the bit error performance of the SPAD-based OWC systems, and in

Chapter 5 for obtaining the information transfer rate of the SPAD receivers.
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SPAD-based Optical Systems

In recent years, single-photon avalanche diodes (SPADs) have drawn particular attention in

the field of optical wireless communication (OWC), and this has led to a number of analytical

and experimental studies among the scientific research community [8–10, 83]. Most of the

existing studies appreciate the presence and impact of dead time on the overall performance of

the systems and several studies and experiments suggest that the impact of dead time can be

mitigated by employing arrays of SPADs [8, 65, 83]. However, there is a lack of an in-depth

analysis and understanding of how exactly the dead time distorts the data reception and why

systems consisting of SPAD arrays are more tolerant to dead time.

In this chapter, the effect of dead time on the bit error performance of a SPAD-based OWC

system is investigated. The block diagram of this system is shown in Fig. 2.1. An ideal

optical channel is considered here, as the aim is to purely focus on the receiver side. On-off

keying (OOK) and binary pulse position modulation (BPPM) are the modulation schemes

considered in this chapter. In these binary modulation schemes, each bit is sent individually

by transmitting one of two optical pulses over an interval of length Tb seconds and the optical

intensity modulated signal is transmitted by an optical source. In this system, the data rate is

expressed as Rb = 1/Tb bits/s. At the receiver side, direct detection (DD) is applied where

the received optical signal is photodetected by the SPAD. During each bit interval, the number

of photocounts is processed to decide which of two optical pulses is received, and then the

transmitted bit is determined. In this photon counting system, the background noise counts and

the SPAD dead time determine the bit error ratio (BER) of the system. All sources of noisy

counts (arising from dark counts, afterpulsing, and ambient light) are referred to as background

noise and are described by an additive Poisson noise model.

In the first part of this chapter, an OWC system consisting of an active quenching (AQ) or a

passive quenching (PQ) single SPAD is considered. Assuming independent count statistics over

different bit intervals, the photocount distributions derived in Chapter 3 are used for the bit error

performance analysis. The results demonstrate that the SPAD dead time critically degrades the

BER, especially in systems with PQ single SPADs.
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In the second part of this chapter, the bit error performance of an OWC system with a

SPAD array is investigated. Again, by assuming independent count statistics over different

bit intervals and using the Gaussian photocount distributions derived in Chapter 3, the exact

and approximate error probabilities of an OOK system are derived. The results depict that

SPAD arrays are more robust to the dead time losses and larger arrays exhibit shorter effective

dead times. It is also shown that the SPAD array can better cope with the background noise and

requires much lower optical powers to achieve a target BER, compared with single SPADs.

The rest of this chapter is organised as follows. In Section 4.1, OWC systems with single SPAD

receivers are studied. In Section 4.2, OWC systems with SPAD array receivers are addressed.

A summary of the chapter is given in Section 4.3.

4.1 OWC Systems with Single SPAD Receivers

4.1.1 On-Off Keying (OOK)

OOK is a common modulation technique for intensity modulation and direct detection (IM/DD)

systems, because of its bandwidth efficiency, easy implementation, simple receiver design, and

cost effectiveness. In OOK, the information bits are transmitted through the intensity of light,

where the presence of a pulse denotes a bit ‘1’ and the absence of a pulse denotes a bit ‘0’,

during each bit interval.

Denote by λs and λn the photon rates from the signal and the background noise, respectively.

Let Ks = λsTb and Kn = λnTb represent the average number of signal and background noise

photons per bit interval Tb, respectively. Define pn(k) as the probability of detecting k photons

in the bit interval, when ‘0’ has been sent and psn(k) as the probability of detecting k photons,

when ‘1’ has been transmitted. Therefore:

pn(k) = pK(k;λn),

psn(k) = pK(k;λs + λn).
(4.1)

where pK(k;λ) is the dead time-modified photocount distribution of an AQ/PQ single SPAD

given in (3.36)/(3.50).
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Hypothesis Testing

OOK demodulation is accomplished by a classical binary detection process: Let hypothesis

“H0” represent the case when a ‘0’ is sent (noise only) and “H1” represent the hypothesis that

a ‘1’ is transmitted (signal plus noise). The aim is to determine the optimum rule for deciding

which hypothesis is true based on a single observation. This simple binary hypothesis testing

problem is often formulated using the Bayes criterion, where the decision should be made

according to the well-known likelihood ratio test to minimize the probability of error [98]. In

this test, the likelihood ratio is defined as:

L(k) =
Pr{k|H1}
Pr{k|H0}

H1

≷
H0

1, (4.2)

where H0 and H1 are assumed to be equally probable, and Pr{k|Hi} is the probability of

detecting k photons given that Hi is true. With this detection strategy, the probability of error

for the case of equally likely bits is minimized [98].

For an ideal SPAD with Poisson statistics as discussed in Section 3.2, the likelihood ratio test

of (4.2) is expressed as [1]:

L(k) =
p0(k;λs + λn)

p0(k;λn)
= e−λsTb

(
λs + λn
λn

)k H1

≷
H0

1, (4.3)

where p0(k;λ) was defined in (3.21). Taking the natural logarithm from both sides gives:

k
H1

≷
H0

λsTb

ln

(
1 +

λs
λn

) . (4.4)

Therefore, the maximum likelihood test simplifies to a threshold test for an ideal SPAD [1].

For a SPAD detector with dead time, the likelihood ratio is given by:

L(k) =
psn(k)

pn(k)
=
pK(k;λs + λn)

pK(k;λn)

H1

≷
H0

1. (4.5)

The complicated mathematical expressions of psn(k) and pn(k) (for both AQ and PQ single

SPADs), makes the algebraic manipulation of L(k) intractable. For given values of λs and

λn, if L(k) is monotonic with respect to k, the test in (4.5) is equivalent to a single threshold

test, i.e. the maximum likelihood detection is achieved by a threshold comparison. But it
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is even more challenging to check the monotonicity of L(k) using finite differences (discrete

derivatives). For an AQ SPAD with small dead time ratio (δ < 0.1), an approximate photocount

distribution can be provided (see Appendix B) and it can be proved that the above likelihood

ratio test leads to a single threshold test (see Appendix E). For other cases, no such proof

can be provided. However, we conjecture that the threshold detection is optimum in general.

Our extensive numerical investigation of the monotonicity of L(k) and the BER results in

Section 4.1.3 strongly support this conjecture.

Probability of Error

With the maximum likelihood detection rule given in (4.5), the probability of error is expressed

as:

Pe =
1

2

∑

{k:L(k)>1}
pn (k) +

1

2

∑

{k:L(k)≤1}
psn (k) . (4.6)

Hereinafter, the threshold detection is adopted for the error probability calculations. The

number of detected photons is compared with a threshold kth. An error will occur if k ≤ kth

when ‘1’ is sent, or if k > kth when ‘0’ is sent. The probability of error for equally likely bits

is then given by:

Pe =
1

2

kmax∑

k=kth+1

pn (k) +
1

2

kth∑

k=0

psn (k) . (4.7)

This equation holds for both AQ and PQ SPADs, however, for each case, the corresponding

photocount distribution should be considered. The error probability, Pe, highly depends on kth.

The lowest probability of making an error occurs at the value of kth where dPe/dkth = 0. It

is in general challenging to obtain a closed-form expression for kth. Nevertheless, for an AQ

SPAD with τ � Tb, the optimum threshold kth is derived as (see Appendix F):

kth =
λsTb

λsτ + ln

(
1 +

λs
λn

) , (4.8)

and the expression for Pe given in (4.7) simplifies to (see Appendices E and F):

Pe =
1

2
− 1

2

kth∑

k=0

ψ (k, λn(Tb − kthτ)) +
1

2

kth∑

k=0

ψ (k, (λs + λn)(Tb − kthτ)). (4.9)
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4.1.2 Binary Pulse Position Modulation (BPPM)

The basic disadvantage of OOK signalling is that the average photon rates λs and λn must

be known to optimally set the threshold. BPPM signalling avoids this difficulty by using

pulse-to-pulse comparison for detection. In BPPM modulation, the optical pulse is sent in one

of two adjacent time intervals, each of length Tb/2 and then the output counts are compared

over each half-bit interval. A ‘1’ is sent as a pulse in the first half of the bit interval, and a ‘0’

as a pulse in the second half. At the receiver side, the SPAD separately counts the number of

photons over the two half-bit intervals which are then compared for bit decoding. Since the

pulse slot is half of the bit interval, the receiver bandwidth must be higher than for the OOK

system [1].

In BPPM, an error is made if the number of photocounts in the pulsed slot does not exceed that

of the non-pulsed slot. Hence:

Pe =

∞∑

k1=0

∞∑

k2=k1+1

psn(k1)pn(k2) +
1

2

∞∑

k=0

psn(k)pn(k). (4.10)

The second term in (4.10) accounts for the possibility of equal counts in half-bit intervals, in

which case a random choice will be made.

4.1.3 Numerical Results and Discussions

In the following, the bit error performance results are presented and the analytical/numerical

results are compared with Monte Carlo simulation results. The BER results are plotted as

a function of Ks for various Kn values and δ = τ/Tb, where Ks and Kn are defined as

the average Ks and Kn per bit interval, respectively. Therefore, for both OOK and BPPM,

Ks = 0.5λsTb and Kn = λnTb. In all the figures, Tb = 1 µs is considered, unless stated

otherwise. For performing the Monte Carlo simulations, a stream of 106 bits is randomly

generated. Depending on the modulation scheme, in each time slot (bit interval in OOK and

half-bit interval in BPPM), a Poisson process with rate λn (only noise) or λs + λn (signal and

noise) is simulated and the counting process is simulated according to the Monte Carlo methods

presented in Chapter 3. Note that when the SPAD receiver is counting in consecutive intervals

(as in OWC systems), the dead time of the last detected photon in each interval may overlap the

next interval(s), so that the counting statistics of adjacent intervals become correlated. In OWC
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systems, this can be considered as inter-slot interference (ISI). Throughout the calculations and

simulations, it is assumed that the dead time is short relative to the bit intervals (τ ≤ 0.1Tb)

such that the ISI is negligible.

4.1.3.1 AQ SPAD

First, we graphically represent L(k) or lnL(k) given in (4.5) in Fig. 4.1 to support the

statement that the threshold detection is optimum in the presence of dead time. In this figure,

lnL(k) is numerically calculated for admissible values of k. To have a better insight into the

behaviour of the function lnL(k), different values of δ, λs and λn are considered. According

to Figs. 4.1a–4.1f, it is observed that the function lnL(k) (and hence L(k)) is monotonically

non-decreasing for various values of δ, λs and λn. This monotonicity implies that for each

triple of (δ, λs, λn), there exists a unique integer kth, such that the test:

k
H1

≷
H0

kth

is equivalent to the test given in (4.5). Therefore, the maximum likelihood (ML) detection rule

reduces to a single threshold (TH) detection test.

The BER results for the AQ SPAD-based optical system with OOK modulation are provided

in Fig. 4.2. In this figure, the error probability of OOK systems with ML detection and TH

detection are compared with the Monte Carlo simulations, resulting in perfectly matching

curves. The analytical calculations are based on the expressions given in (4.6) for the ML

detection, and (4.8) and (4.9) for the TH detection. According to Figs. 4.2a and 4.2b, ML and

TH detections show an excellent match for all cases, confirming that for the specified range of

values in these figures, the ML detection and the TH detection are equivalent.

In Fig. 4.2a, δ = 0.001 and 0.01 are assumed, while in Fig. 4.2b, the dead time ratio is δ = 0.1.

According to Fig. 4.2a, the BER depends strongly on the background noise level. For Kn = 0

and 2, the BER is slightly affected by the SPAD dead time. This becomes more significant

when Kn increases. Also, it is apparent that for a given Kn, a higher signal power is needed

to maintain the system performance in the presence of a longer dead time. In other words, to

achieve a particular BER, the larger δ is, the higherKs should be. It is observed in Fig. 4.2b that

δ = 0.1 degrades the system performance significantly and the SPAD is saturated with lower

signal and/or background noise levels. In this case, kmax and kth are small, and the ripples in
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Figure 4.1: Log-likelihood ratio for the AQ SPAD (Tb = 1).

the BER curves are because of discrete threshold values. For the quantum-limited cases, i.e.

Kn = 0 curves, the threshold kth is zero and no ripples are observed.

Fig. 4.3 provides the BER results for an AQ SPAD-based optical system with BPPM

modulation. It is observed that, in the absence of the background noise, the effect of dead time
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Figure 4.2: OOK bit error performance of an AQ SPAD-based system: (a) δ = 0.01, 0.001 and
(b) δ = 0.1.

on BER is negligible for small values of Ks, as in Fig. 4.3a. However, when the background

noise is present, the BER becomes very sensitive to the dead time, such that higher dead time

values lead to higher error probabilities. It should also be noted that, as seen in Fig. 4.3b,

the BER severely degrades when δ = 0.1. In this case, the SPAD becomes saturated with

lower signal and/or background noise levels. Also, for stronger background noise levels, the

72



SPAD-based Optical Systems

0 5 10 15 20 25 30
10

-4

10
-3

10
-2

10
-1

10
0

(a)

0 5 10 15 20 25 30
10

-4

10
-3

10
-2

10
-1

10
0

(b)

Figure 4.3: BPPM bit error performance of an AQ SPAD-based system: (a) δ = 0.01, 0.001
and (b) δ = 0.1.

saturation happens at lower signal levels.

Note that OOK uses pulses twice as long as BPPM, and therefore, has higher signal and

background counts. Therefore, a fair comparison between OOK and BPPM systems can be

made if the same average signal and background noise powers are assumed. For the systems
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under consideration, average signal and background noise powers are directly proportional to

Ks and Kn, respectively. Thus, it is fair to compare the BER performance of the OOK and

BPPM systems as presented in Figs. 4.2 and 4.3. Based on Fig. 4.2a and Fig. 4.3a, OOK and

BPPM show almost similar performance when the background noise is present and the dead

time ratio is very small. For larger dead time ratio (δ = 0.1 as in Fig. 4.2b and Fig. 4.3b), in the

presence of the background noise, the OOK system shows slightly better BER values. For ideal

quantum-limited OOK and BPPM (Kn = 0) without any dead time counting losses, OOK has

3 dB better BER performance as discussed in [1]. As illustrated in Figs. 4.2 and 4.3, consistent

results are achieved in the presence of dead time for the range of interest, since the effect of

dead time is insignificant in the quantum-limited conditions.

4.1.3.2 PQ SPAD

In Fig. 4.4, the function lnL(k) given in (4.5) is graphically represented for the PQ SPAD

for various values of δ, λs, λn and all the admissible values of k. It is observed that the

monotonicity direction of lnL(k) depends on λs and λn. For example, keeping λn constant, at a

specific value of λs, the monotonicity of lnL(k) changes from monotonically non-decreasing to

monotonically non-increasing. In Figs. 4.4a and 4.4d with δ = 0.1, in the specified ranges of λs

and λn, the change in the monotonicity direction of lnL(k) is observed. Since the monotonicity

of the function is guaranteed for each specific value of λs and λn, still a single threshold test

is effective. However, care must be taken in probability of error calculations. According to

Figs. 4.4b–4.4c and Figs. 4.4e–4.4f, with δ = 0.001 and 0.01, for the specified ranges of λs

and λn, the function lnL(k) (and hence L(k)) is monotonically non-decreasing, and therefore

the maximum likelihood detection can be achieved by a single threshold detection test.

Fig. 4.5 demonstrates the BER curves of a PQ SPAD-based system with OOK modulation.

In this figure, the error probability with the ML detection, given in (4.6), and the error

probability with the TH detection, given in (4.7), are numerically evaluated and compared with

the simulation results. The threshold value is also obtained numerically. It is again observed

that the ML and TH detection rules yield perfectly matching curves, confirming that these two

detection schemes are equivalent in the range of interest.

Similar to the BER results of the the AQ SPAD, three different values of δ are considered here.

In Fig. 4.5a, δ = 0.001 and δ = 0.01 are assumed, and in Fig. 4.5b the dead time ratio is equal

to 0.1. Again, δ = 0.1 severely degrades the error performance and results in SPAD saturation.

74



SPAD-based Optical Systems

-60

-40

100

-20

0

20

75
50

1025 8640 20

(a) λn = 1, δ = 0.1

0

100

100

200

300

400

75
50

10025 8060400 200

(b) λn = 1, δ = 0.01

0

1000

100

2000

3000

4000

75
50

100025 8006004000 2000

(c) λn = 1, δ = 0.001

-20

10

-10

0

10

8
6

4
1082 640 20

(d) λs = 50, δ = 0.1

0

100

10

200

300

400

8
6

4
1002 8060400 200

(e) λs = 50, δ = 0.01

0

1000

10

2000

3000

4000

8
6

4
10002 8006004000 2000

(f) λs = 50, δ = 0.001

Figure 4.4: Log-likelihood ratio for the PQ SPAD (Tb = 1).

Recall from (3.53) that the maximum count rate of the PQ SPAD occurs at the point λ = 1/τ .

The lowest BER also occurs at this point. Therefore, in each BER curve, the lowest BER

happens at λs + λn = 1/τ or equivalently Ks + Kn = 1/δ. This is clearly seen in Fig. 4.5b,

e.g. forKn = 0, the minimum occurs atKs = 5. After this point, the counting losses due to the
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Figure 4.5: OOK bit error performance of a PQ SPAD-based system: (a) δ = 0.01, 0.001 and
(b) δ = 0.1.

dead time drastically increase. So the BER increases until the paralysis behaviour (see Fig. 3.7)

causes the average photon count of the pulsed slots to become lower than that of the non-pulsed

slots. Our extensive numerical calculations show that at this latter point, the monotonicity of

the likelihood ratio function L(k), given in (4.5) changes from monotonically non-decreasing

to monotonically non-increasing. In such cases, keeping the definition of the hypotheses H0
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Figure 4.6: BPPM bit error performance of a PQ SPAD-based system: (a) δ = 0.01, 0.001
and (b) δ = 0.1.

and H1 as before, the direction of the likelihood ratio test presented in (4.5) should be reversed

and the error probability expressions should be modified accordingly. This has been done for

obtaining the results of Fig. 4.5b.

The error probability of a PQ SPAD-based optical system with BPPM, given in (4.10), is in the
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form of discrete summations, and therefore can be calculated numerically. Fig. 4.6 shows some

plots of the BER results for this system. Similar to the previous cases, in the absence of the

background noise, the effect of dead time on the BER is negligible. However, if the background

noise is present, the dead time degrades the BER. Again, it is seen that the error performance

is severely affected by larger dead time ratios (δ = 0.1) and the lowest BER occurs at the

maximum count rate, as predicted.

4.1.3.3 AQ SPAD vs. PQ SPAD

As stated earlier, when using PQ SPADs, any photon arriving during the dead time is not

detected but is assumed to extend the dead time period, while for AQ SPADs, any photon

arriving during the dead time is neither counted nor has any influence on the dead time duration.

Thus, assuming the same dead time duration, in a bit interval of length Tb, the average

number of photocounts by an AQ SPAD is generally higher than that of a PQ SPAD. This

can be observed from Figs. 3.2 and 3.5. Furthermore, this behaviour directly affects the BER

performance. When the dead time duration only is one order of magnitude lower than the bit

interval (δ = 0.1), the difference of AQ and PQ SPADs is perceptible, as observed in Fig. 4.2b

and Fig. 4.5b for OOK modulation or in Fig. 4.3b and Fig. 4.6b for BPPM. For the AQ SPAD,

increasing the signal photon rate (or the signal count) results in the saturation and the BER will

reach a constant value. However, for the PQ SPAD, by increasing the signal photon rate (or the

signal count), the BER decreases until the SPAD reaches its maximum count rate. At this point,

the lowest possible BER is achieved and higher signal counts degrade the bit error performance.

4.1.3.4 Applicability of Gaussian and Poisson Approximations

The probability mass function (PMF) of the SPAD photocounts is commonly approximated by

a Poisson distribution [7, 83, 84]. In order to investigate the accuracy of this approximation, in

Fig. 4.7, the OOK error probabilities of both AQ and PQ SPAD-based OWC systems, given in

(4.7), are evaluated and compared with when the photocount distribution is approximated by

a Poisson distribution through moment matching, i.e., the rate parameter of the approximated

Poisson distribution is calculated from (3.42) and (3.53), rather than using an ideal Poisson

model which does not take into account the effect of dead time in any wise. In Figs. 4.7a

and 4.7b, δ = 0.01 is assumed, and as can be seen, for both AQ and PQ SPADs, there is

a considerable gap between the exact BER values and the approximate results, especially for
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Figure 4.7: OOK BER performance of (a) AQ, and (b) PQ SPAD-based systems, considering
the exact SPAD photocount distribution, the Poisson approximation, and the
Gaussian approximation.

higher values of Kn.

To have a better insight, the AQ and PQ SPAD photocount distributions have also been

approximated by a Gaussian distribution in Fig. 4.7, using a similar moment matching

approach. The mean and variance of the Gaussian distribution are approximated as in (3.37)
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for the AQ SPAD, and as in (3.51) for the PQ SPAD. Although the Gaussian approximation

shows higher accuracy compared with the Poisson approximation, the differences are still

noticeable. Note that by increasing the dead time ratio, the accuracy of these approximations

will be more degraded. By comparing the results of these approximations for AQ and PQ

SPADs, it is observed that the approximations show slightly higher accuracy for AQ SPADs,

and the reason is that the counting losses due to the paralyzable dead time are generally higher

than that of the nonparalyzable dead time. According to these observations, the use of Poisson

or Gaussian approximations does not provide enough accuracy for assessing the bit error

performance of OWC systems, and this highlights the importance of our statistical modelling

for a precise error analysis for potential optical communication applications.

4.2 OWC Systems with SPAD Array Receivers

As seen in Figs. 4.2–4.6, the BER of SPAD-based OWC systems strongly depends on the value

of dead time such that, for example, δ = 0.1 results in BER ≥ 10−3. Several studies and

experiments suggest that the impact of dead time can be mitigated by employing arrays of

SPADs [8–10, 65, 83]. Also, the use of SPAD arrays helps to cope with strong background

radiation [57]. In the following, the SPAD array photocount distribution derived in Chapter 3

is applied to analyse the bit error performance of an OWC system with a SPAD array. Notice

that AQ SPAD arrays are considered as the baseline scenario in this section, as they generally

outperform PQ SPAD arrays, if the array is not large and exhibit almost the same performance,

if the array is sufficiently large.

4.2.1 On-Off Keying (OOK)

Denote the signal and background noise photon rates per SPAD by λs and λn, respectively.

Thus, Ks = λsTb and Kn = λnTb are the corresponding average number of photons per bit

interval for each array element. Assuming that the signal and noise intensities have a uniform

spatial distribution over the array area, we have:

Λs = Narrayλs,

Λn = Narrayλn,
(4.11)
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where Λs and Λn are the average signal and background noise photon rates for the whole array.

Similarly, Ka
s = NarrayKs and Ka

n = NarrayKn are the corresponding average aggregate

number of photons per bit interval.

Let pn(s) and psn(s) denote the probabilities of s photocounts when ‘0’ or ‘1’ are transmitted,

respectively. Thus:

pn(s) = pS(s;Λn),

psn(s) = pS(s;Λs + Λn),
(4.12)

where pS(s;Λ) is the dead time-modified photocount distribution of a SPAD array given in

(3.64).

Hypothesis Testing

Recall from Section 4.1, the classical binary detection problem with two hypothesises “H0”

and “H1”. The receiver attempts to determine the correct bit based upon a single observation

of the aggregate number of array photocounts over each bit interval. The likelihood ratio test is

defined as:

L(s) =
psn(s)

pn(s)

H1

≷
H0

1 (4.13)

where psn(s) and pn(s) were defined in (4.12) and are Gaussian distributed according to (3.64).

Thus, let psn(s) ∼ N (µsn, σ
2
sn) and pn(s) ∼ N (µn, σ

2
n). The above likelihood ratio test then

simplifies to a single threshold test with the optimum threshold given by (see Appendix G):

sth =

µn
σ2n
− µsn
σ2sn

+

√(
µn
σ2n
− µsn
σ2sn

)2

−
(

1

σ2n
− 1

σ2sn

)(
µ2n
σ2n
− µ2sn
σ2sn

+ 2 ln
σn
σsn

)

1

σ2n
− 1

σ2sn

. (4.14)

This threshold can be further approximated as (see Appendix G):

sth =
µsnσn + µnσsn
σn + σsn

. (4.15)

Note that this threshold depends on µn, µsn, σn, and σsn which are all functions of Λs and Λn.

A technical challenge with OOK systems is that for determining sth, Λs and Λn must be known

exactly.
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Probability of Error

In OOK demodulation, the number of array photocounts is compared with the threshold sth

provided in (4.14). With this threshold, the minimum error probability is ensured. An error will

occur if s ≤ sth for a bit ‘1’, or if s > sth for a bit ‘0’. The probability of error for equally

likely bits is [1]:

Pe =
1

2

∞∑

s=bsthc+1

pn(s) +
1

2

bsthc∑

s=0

psn(s). (4.16)

Pe can be approximated as:

Pe
∼= 1

2

∫ ∞

sth

pn(s) ds +
1

2

∫ sth

0
psn(s) ds

=
1

2
Q

(
sth − µn
σn

)
+

1

2
Q

(
µsn − sth
σsn

)
,

(4.17)

where, Q(x) = 1/
√

2π
∫∞
x exp(−α2/2) dα is the Q-function. With the approximate threshold

given in (4.15), Pe further simplifies to:

Pe
∼= Q

(
µsn − µn
σsn + σn

)
. (4.18)

The above approximate error probability suggests that Pe depends only on µsn−µn. Therefore,

any contribution to both µsn and µn, such as from dark counts, would not effect the µsn − µn
term, this will, however, contribute to the variances. Defining the signal-to-noise ratio (SNR)

as:

SNR =
(µsn − µn)2

(σsn + σn)2
, (4.19)

Pe can also be written as:

Pe = Q
(√

SNR
)
. (4.20)

4.2.2 Numerical Results and Discussions

In the following, the bit error performance results of the OWC systems with SPAD arrays

are presented. The results are focused on AQ SPAD arrays, as they generally outperform PQ

SPAD arrays, albeit in larger array sizes, the performance gap tends to become insignificant.

Throughout the calculations and simulations, it is assumed that the array elements are identical.

In all the figures, T = 1 µs and CFF = 1 are considered and the BER results are reported as a
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Figure 4.8: OOK BER performance with a SPAD array of Narray = 64 and δ = 0.1.

function of Ka
s or Ka

n or δ for different array sizes.

In Fig. 4.8, the exact error probability given in (4.16) is numerically evaluated and compared

with the approximate error probability of (4.18) and also the Monte Carlo simulation results

for an array of 64 SPADs with a dead time ratio of δ = 0.1. Although, the discrete threshold

values cause some ripples in the curves, (4.18) can well approximate the error probability.

Hereinafter, the approximate error probability expression given in (4.18) is adopted for the

BER calculations.

4.2.2.1 ISI

As discussed in Chapter 3, the SPAD arrays are expected to be more robust to dead time losses.

Therefore, in this section, longer dead times are also considered. However, care must be taken

regarding the ISI impairments. While, the primary effect of the SPAD dead time is to cause

some counting losses in each interval, its secondary effect is to incur counting losses in the

neighbouring intervals. From a communication theory perspective, this can be regarded as the

ISI effect. Therefore, ISI is an outcome of the photon counting process of the SPAD receiver.

So far, all the analytical modellings have focused on the primary effect of the SPAD dead

time and the secondary effect has not been taken into account. It has been assumed that the

dead time is short enough compared to the counting interval (τ ≤ 0.1Tb), so that the counting
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Figure 4.9: The effect of ISI on the BER results.

processes of the neighbouring intervals are disjoint and the ISI is negligible. However, the ISI

effect is noticeable for longer dead times. In such cases, the single SPAD photocount statistics

should be modified accordingly. Nevertheless, the complicated photon counting behaviour of

the single SPADs, makes this mathematical analysis intractable. Therefore, for longer dead

times (τ > 0.1Tb), we resort to Monte Carlo simulations to obtain the ISI-modified PMF, mean

and variance of the AQ and PQ single SPADs. These modified photocount statistics are then

applied to obtain those of the SPAD arrays. In all the numerical and simulation results of this

section, the ISI effect is considered, unless stated otherwise. In order to obtain the ISI-modified

photocount distribution of the single SPADs through Monte Carlo simulations, when generating

a Poisson arrival process and recording the number of photocounts according to the dead time

effects, the arrival time of the first photon in each counting interval is compared with the arrival

time of the last photocount in the previous interval to see whether the first photon is lost or not.

In scenarios with long dead times or high photon rates, this effect is noticeable.
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Fig. 4.9 presents the effect of ISI on the BER of two arrays with 64 and 1024 SPADs. For each

array two cases are considered, a short dead time (δ = 0.1) and a long dead time (δ = 1). As

predicted, for δ = 0.1, the ISI is negligible in both arrays. However, the long dead time of

δ = 1 results in significant ISI impairment for the array of size Narray = 64, while the array of

1024 SPADs is very robust to the ISI. These results indicate that large arrays can suppress the

ISI effectively. Nonetheless, note that the ISI is stronger in higher photon rates. If the photon

rate is very high, such that all the SPADs in a large array are saturated, then even the large array

may not be able to alleviate the adverse impact of ISI. This case does not take place for the

photon rate regimes considered in this thesis.

4.2.2.2 Array Size

In Fig. 4.10, the BER of three SPAD arrays with Narray = 16, 64, and 1024 are compared for

δ = 0.1 and δ = 1. To make a fair comparison, it is assumed that the total sensitive area of the

arrays is equal. Therefore, the average number of signal counts or background noise counts per

bit interval is the same for all three arrays. Please note that with this assumption, each SPAD

in the array of 1024 SPADs receives less signal and background noise levels compared to each

SPAD in the array of 64 elements. According to Fig. 4.10a, all arrays perform the same for

Ka
n = 1, while for Ka

n = 5 arrays with 64 and 1024 elements slightly outperform the array of

16 SPADs. For δ = 1 as in Fig. 4.10b, arrays with larger sizes show better error performance

for various average background noise levels.

4.2.2.3 Dead Time

Fig. 4.11 shows the effect of dead time on the average number of photons per bit time (i.e. Ka
s )

required by the SPAD array to achieve a particular BER for OOK modulation. In this figure

the BER = 10−3 contours are displayed as a function of δ and Ka
s for a single SPAD and three

different array sizes. The average background noise count level is Ka
n = 1 in Fig. 4.11a and

Ka
n = 5 in Fig. 4.11b.

The counting losses due to the dead time are mitigated to some extent when several SPADs

operate in parallel inside an array. It is very unlikely that all the SPADs of an array become

inactive at the same time. In low photon rate regimes, if the dead time is short (compared to

the bit interval), the use of large size SPAD arrays does not offer considerable performance
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Figure 4.10: BER results of SPAD array receivers with (a) δ = 0.1 and (b) δ = 1.

improvements. In high photon rate regimes, or in the case of long dead times, larger array

sizes are required. In such cases, smaller arrays may not achieve the target BER even in higher

SNRs, as increasing the optical power leads to the saturation of the SPAD array. According

to Fig. 4.11a, for shorter dead time durations (δ < 0.5), all three arrays provide BER ≤ 10−3

with Ka
s ≈ 16. However, for longer dead times (δ > 0.5), larger arrays require fewer number

of photons, i.e. lower optical power, to achieve BER = 10−3. For instance, for Narray = 16,
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Figure 4.11: The BER = 10−3 contours as a function of the dead time ratio and the average
number of photons per bit time required by the SPAD array.

if δ < 1, the target BER can be achieved with Ka
s < 30. As the dead time increases, many of

the arriving photons get lost and Ka
s increases very rapidly, such that Ka

s > 80 is required for

δ > 1. This sharp increase in Ka
s is due to the saturation of the SPAD array. With Narray =

1024 the limiting effect of dead time is almost eliminated, such that regardless of the value of δ,

BER = 10−3 is guaranteed with Ka
s < 20. Note that depending on the background noise level,
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Figure 4.12: Power gain of a SPAD array of Narray = 1024 for BER = 10−3.

the target BER may not be achieved at all; e.g. as in Fig. 4.11a, for Narray = 64 and δ > 4.

Consider a target BER of 10−3 and denote by ηarray the ratio of required Ks for a single SPAD

to the required Ka
s for a SPAD array. This ratio can be interpreted as the power gain of the

SPAD array compared to the single SPAD for achieving the target BER of 10−3:

ηarray

∣∣∣∣
BER=10−3

=
Ks

Ka
s

. (4.21)

Note that the total active area of the array is assumed to be the same as that of the single SPAD.

Thus, it is fair to say that the SPAD array requires less power to achieve a target BER. Fig. 4.12

depicts ηarray for the array of 1024 SPADs. To obtain some of the curves in this figure, minor

data extrapolation has been applied.

4.2.2.4 Background Noise

In Fig. 4.13, the required Ka
s for achieving some target BERs is plotted as a function of Ka

n

for Narray = 64 and 1024. According to this figure, the minimum required Ka
s to achieve the

target BER is constant for Ka
n ≤ 10−2. However, for Ka

n > 10−2, the required Ka
s grows as

Ka
n increases. For Narray = 64, as shown in Fig. 4.13a, a higher Ka

s is needed to maintain the

system performance in the presence of dead time. However, for Narray = 1024 (see Fig. 4.13b)

the effect of dead time is negligible even for larger values of Ka
n.
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Figure 4.13: The BER contours as a function of the average number of signal counts per bit
time and average background counts per bit time.
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4.3 Summary

In this chapter, the effect of dead time on the bit error performance of SPAD-based OWC

systems were investigated. A data rate of 1 Mbits/s was assumed. In the first study, OWC

systems with single AQ or PQ SPADs and dead time ratios of δ = 0.001, 0.01, and 0.1

were considered. A theoretical study was conducted to obtain the error probability of OOK

and BPPM binary modulation schemes. Assuming negligible ISI (for δ ≤ 0.1) and hence,

independent count statistics over different bit intervals, the photocount distributions derived in

Chapter 3 were used for the bit error performance analysis. All the analytical derivations were

supported by Monte Carlo simulation results. It was found that the dead time distorted count

statistics result in higher bit error rates. With the binary modulation schemes, if δ ≤ 0.01,

BER values of less than 10−3 were achieved, however, δ = 0.1 critically degraded the bit error

performance of both AQ and PQ single SPADs. Nevertheless, the impact of dead time was

negligible in quantum-limited conditions. The results demonstrated that with a longer dead

time, a higher signal intensity is required to maintain the system performance, e.g. in the AQ

SPAD-based OWC system, assuming OOK modulation and constant average background noise

of Kn = 2, for a BER value of 10−4, the reduction of dead time by one order of magnitude led

to almost 3 dB improvement in the average signal count. The improvement was about 3.8 dB

for BPPM. It was shown that PQ SPAD-based OWC systems with δ = 0.1 can not achieve

BER values lower than 10−3. In general, for longer dead times, AQ SPADs significantly

outperform PQ SPADs. For shorter dead times, AQ SPADs still provide slightly better bit

error performance. The SPAD photocount distribution was also approximated by Gaussian

and Poisson distributions which are commonly used in the literature. It was concluded that

these approximate distributions can not provide enough accuracy in the performance analysis

of SPAD-based OWC systems.

In the second study, OWC systems with SPAD arrays and dead time ratios of δ = 0.1 and

1 were considered. The focus was on AQ SPAD arrays, as they generally outperform PQ

SPAD arrays. It was verified that the dead time ratio of δ = 0.1 is small enough to ensure

negligible ISI. Then, by assuming independent count statistics over different bit intervals and

using the Gaussian photocount distributions derived in Chapter 3, the exact and approximate

error probabilities of an OOK system were derived. Simulations were carried out to verify the

analytically predicted bit error probabilities. For δ = 1, the ISI-modified Gaussian photocount

distributions were obtained through Monte Carlo simulations and then were applied for the
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performance analysis. With δ = 1, the ISI was noticeable for Narray = 64, while it was

negligible for Narray = 1024. It was then concluded that larger arrays can suppress the ISI

effectively. The performance results also showed that compared with a single SPAD of the same

sensitive area, the SPAD array was more robust to dead time. The SPAD array could tolerate

longer dead time durations maintaining the system performance and required less signal power

to achieve the same probability of error.

91



92



Chapter 5
Information Transfer Rate of SPAD

Receivers

In Chapter 4, the reliability performance of single-photon avalanche diode (SPAD) receivers

for optical wireless communication (OWC) applications was specified by system error

probabilities. Another key performance metric is the maximum achievable data rate of the

system. In SPAD-based systems, the transmission data rate needs to be chosen in such a way

that a reliable photon counting performance is ensured for the SPAD receiver. In particular, the

factor which limits the maximum data rate in SPAD-based communication systems, is dead

time.

If the SPAD is assumed as a communication channel, then the limiting effect of dead time can

be assessed by the input-output information transfer rate of the corresponding channel. In this

context, the relevance of the channel capacity as a performance metric is clear. As long as the

information transfer rate through the SPAD channel is less than its capacity, it is possible to

make the error probability arbitrarily small with proper modulation and coding schemes.

In this chapter, the information transfer rate and the capacity of SPAD receivers in the presence

of dead time is investigated. Recall from Chapter 4 that the SPAD dead time not only results

in counting losses in each time interval, but also leads to inter-slot interference (ISI) distortion.

When the ISI is negligible, the SPAD can be considered as a discrete memoryless channel

(DMC). However, with the ISI, the SPAD channel is not memoryless and falls into the category

of finite-state channels (FSCs) [99].

The capacity analysis of FSCs with general input distributions is mathematically intractable in

general [100–103]. Therefore, in this chapter, the capacity analysis is conducted for two special

cases of binary and pulse amplitude modulation (PAM) signalling. Even for these simplified

cases, obtaining the capacity of the SPAD channel is still cumbersome and hence, lower and

upper bounds on the capacity are developed instead. In particular, two auxiliary DMCs are

proposed which provide an upper and a lower bound on the SPAD channel capacity.
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First, the binary signalling scheme is considered and the analysis is conducted for active

quenching (AQ) single SPADs. The bounds are derived for two cases of hard decision (HD)

and soft decision (SD) outputs. Then, the information rates of AQ SPAD arrays with PAM

signalling are analysed. A discrete-time Gaussian channel model with input-dependent mean

and variance is assumed for the auxiliary DMC channels. Using a numerical algorithm, the

capacity of the auxiliary channels, subject to peak and average power constraints, are acquired.

Over a range of parameter values for which the lower and upper bounds are very tight, the

capacity of the SPAD array channel is characterized by its bounds. As such, the auxiliary DMC

models are adopted as a benchmark to study the properties of the capacity-achieving input

distributions. The channel capacity and the capacity-achieving input distributions, subject to

peak and average power constraints, are then presented for several array sizes, dead time values

and background count levels.

The rest of this chapter is organised as follows. In Section 5.1, the relevant background from

information theory is provided. Section 5.2 provides the SPAD channel model and discusses

the choice of auxiliary channels for bounding the SPAD channel capacity. The capacity analysis

of AQ single SPAD with binary signalling is conducted in Section 5.3. The analysis for AQ

SPAD array and PAM signalling is provided in Section 5.4. A summary of the chapter is given

in Section 5.5.

5.1 Preliminaries

In this section, some of the well-known results in information theory, that are needed in this

chapter, are summarized. Hereinafter, the book by Cover and Thomas [104] is followed very

closely.

Definition 4. The entropy of a discrete random variable X with probability mass function

(PMF) pX(x) is given by:

H(X) , −
∑

x

pX(x)log2pX(x). (5.1)

Definition 5. The entropy of a discrete random variable Y conditioned on a discrete random
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variable X is given by:

H(Y |X) , −
∑

x,y

pXY (x, y)log2pY |X(y|x). (5.2)

where pXY (x, y) is the joint probability of the random variables X and Y , and pY |X(y|x) is

the conditional probability of Y given X .

Differential entropies and conditional differential entropies of continuous random variables

are defined by replacing the summation with an integration. They are denoted by h(X) and

h(Y |X), respectively.

Definition 6. The entropy rate of a stochastic process X is defined by:

H(X ) , lim
L→∞

1

L
H(X1, X2, . . . , XL) (5.3)

when the limit exists. The right-hand side expression is the per-symbol entropy rate.

Proposition 7. If {X1, X2, . . . , XL} is a sequence of independent and identically distributed

(iid) random variables, then:

H(X ) = H(X). (5.4)

5.1.1 Discrete Memoryless Channels (DMCs)

A DMC consists of two finite alphabet sets Ax and Ay and a PMF pY |X(y|x), such that for

every x and y, pY |X(y|x) > 0, and for every x ∈ Ax,
∑

y pY |X(y|x) = 1. The PMF pY |X(y|x)

is termed as the forward channel law, X is the input and Y is the output of the channel.

Let {X1, X2, . . . , XL} and {Y1, Y2, . . . , YL} be the ensembles of input and output sequences

of length L, respectively. Further, let {x1, x2, . . . , xL} ∀xi ∈ Ax be an arbitrary sequence of

L inputs and {y1, y2, . . . , yL} ∀yi ∈ Ay be the corresponding output sequence. In a DMC, the

following equation holds:

Pr{yi|x1, x2, . . . , xi, y1, y2, . . . , yi−1} = pY |X(yi|xi) (5.5)

for i = 1, 2, . . . , L. The above equation represents the memoryless property of the DMC. Note

that pY |X(·|·) may depend on i, i.e., the channel may be time-varying.
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Definition 8. The mutual information between the input X and output Y of a DMC with the

input distribution pX(x) and the forward channel law pY |X(y|x) is defined as:

I(X;Y ) ,
∑

x,y

pXY (x, y)log2
pXY (x, y)

pX(x)pY (y)

,
∑

x,y

pX(x)pY |X(y|x)log2
pY |X(y|x)

pY (y)

(5.6)

where pY (y) is the channel output distribution defined as:

pY (y) ,
∑

x

pX(x)pY |X(y|x), ∀y ∈ Ay. (5.7)

The mutual information can also be written as:

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X). (5.8)

For continuous random variables, differential entropies are used. For a DMC, H(Y ) is a

concave and H(Y |X) is a linear function of the input probability distribution pX(x). Hence,

the mutual information of a DMC is a concave function of the input probability distribution

pX(x) [99, 102, 104].

Definition 9. The capacity of a DMC is defined as the maximum mutual information between

the input X and the output Y :

C , max
pX

I(X;Y ), (5.9)

with pX(x) ≥ 0 ∀x ∈ Ax and
∑

x pX(x) = 1. Any pX(x) that maximizes (5.9) is called a

capacity-achieving input distribution. Note that this maximization does not necessarily lead to

a unique distribution.

In general, there is no analytical solution for computing the channel capacity. For DMCs,

the Blahut-Arimoto algorithm [105, 106] is an elegant iterative algorithm to determine the

capacity-achieving input distribution and to compute the capacity.
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5.1.2 Discrete Channels with Memory

In this class of channels, the outputs yi are in general no longer independent events given the

input sequence. This means that (5.5), the condition for a channel to be memoryless, does not

hold for these channels; the discrete channel is then said to have memory. In these channels,

errors typically occur in clusters and are signal dependent. The characterization of channels

with memory is in general more difficult than DMCs. Ideally, such a characterization should be

mathematically tractable and should accurately represent the properties of the channel memory.

Definition 10. The information rate between the input process X = {X1, X2, . . . } and the

output process Y = {Y1, Y2, . . . } of a discrete-time channel with memory is given in the limit

as:

I(X ;Y) , lim
L→∞

1

L
I(X1, X2, · · · , XL;Y1, Y2, · · · , YL), (5.10)

when the limit exists.

There are a number of variations of the channels with memory in the literature [100, 101].

However, in many cases of practical interest, the computation of (5.10) is complex or even

intractable. Analytical simplifications of (5.10) are usually not available, even if the input

symbols Xi are iid. The complexity of the direct numerical computation of:

I(L) , 1

L
I(X1, X2, · · · , XL;Y1, Y2, · · · , YL), (5.11)

is exponential in L, but the sequence I(1), I(2), I(3), . . . converges rather slowly even for

channels with small memory [102, 103].

Definition 11. The capacity of a channel with memory, with the input process X and the output

process Y is defined by:

C , lim
L→∞

max
p
XL

1

L
I(X1, X2, · · · , XL;Y1, Y2, · · · , YL), (5.12)

In [99], Gallager defined a class of the channels with memory known as FSCs. A FSC is

a discrete-time channel for which the distribution of the channel output depends on both the

channel input and the underlying channel state. This allows the channel output to depend

implicitly on previous inputs and outputs via the channel state. Each FSC consists of an

input process X , a nonobservable state process S, and an observable output process Y . The
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Gallager’s definition of FSCs is as follows:

Definition 12. The output at time i of a FSC is statistically independent of the state at time i,

given the state at time i− 1 and the input at time i:

Pr{yi, si|xi, si−1} = Pr{yi|xi, si−1}Pr{si|xi, si−1}, (5.13)

where xi, si and yi are the input, the channel state and the output at time i, respectively.

5.2 SPAD Channel Model

Recall from Chapter 4 that in OWC systems, the SPAD dead time has two effects on the photon

counting process. The primary effect is to cause some counting losses in each time interval.

The secondary effect is incurring counting losses in the neighbouring intervals, i.e. the ISI

distortion. Both effects limit the maximum achievable data rate through increasing the error

probability. A realistic model for the SPAD channel (whether single or array) should therefore

consider both effects.

The ISI occurs if the dead time of the last detected photon in one interval overlaps with the next

time slot. This leads to a temporal inactivity of the SPAD at the beginning of the time interval,

thereby distorting the output (the number of photocounts). Without ISI, the photocount statistics

of neighbouring time slots are independent. In such a case, the SPAD channel is memoryless

and therefore can be modelled as a DMC [99]. With ISI, however, the memoryless property is

lost and the neighbouring time slots become correlated. In this case, the SPAD can be assumed

as a FSC [99] for which the information rate given in (5.10) determines the achievable rate of

reliable communication through the SPAD channel for a specific input distribution. The channel

capacity is the supremum of this information rate over all admissible input distributions.

For tractability, it is assumed that the input random variables are iid. This simplifying

assumption is widely used in the literature [107, 108]. With this assumption, the resulting

information rate will be a lower bound of the expression in (5.10). But with a slight abuse

of notation, it is reported as the “information transfer rate” in this chapter. Despite this

simplification, calculating the capacity of (5.12) for the SPAD channel is still intractable and

hence, we resort to limiting the focus to binary and PAM signalling schemes and establishing

lower and upper bounds on the capacity.
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In this study, the bounds are inspired by [102, 103, 107, 108]. For each bound, an auxiliary

channel model is adopted that somehow approximates the actual SPAD channel. The accuracy

of this approximation affects the tightness, but not the validity of the bounds.

5.2.1 Upper Bound

For the upper bound, the auxiliary channel is an ISI-less DMC [102,107,108]. More precisely,

a DMC which is only subject to the primary effect of dead time. Hence, the PMF expressions

developed in Chapter 3 can be used in this case. Hereinafter, this channel is referred to as

DMC1.

5.2.2 Lower Bound

Similarly, for the lower bound, the auxiliary channel DMC2 is considered. In this DMC, there is

an output power degradation that rises due to the memory introduced by the ISI [102,107,108].

For the SPAD receiver, this power degradation should be accounted for in the forward channel

law, i.e. the photocount distributions. Since the analytical expressions of the ISI-modified

photocount distributions are not available, the required PMFs are obtained through Monte

Carlo methods. To this end, considering both of the dead time effects, the photon counting

process of the SPAD is simulated. The process is allowed to operate for enough time (e.g.

106 consecutive counting intervals) to reach the so-called equilibrium conditions.1 Once in

equilibrium, the photocount distribution of consecutive intervals are independent. And the

steady state photocount distribution can be used for the lower bound calculations [108].

In the following sections, the capacity analysis is conducted for two case studies: i) the AQ

single SPAD channel with binary signalling, and ii) the AQ SPAD array channel with PAM

signalling. In each study, the capacity of the auxiliary DMCs are analysed and bounds on the

SPAD channel capacity are developed.

1According to [39], the SPAD photon counting process can be described by a hidden Markov process with
stationarity and ergodicity properties. Therefore, it has a unique stationary distribution regardless of the initial state
distributions. The stationary distribution is also known as the equilibrium or steady state distribution.
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5.3 Information Rates of AQ Single SPAD with Binary Signalling

5.3.1 Capacity Analysis for DMCs

In the binary signalling scheme, the input X takes the value 1 when a signal is present, and

0 otherwise. Let pX(1) = q and pX(0) = 1 − q. In addition, let pn(k) and psn(k) be

the probabilities of k photocounts in a detection interval of length T when ‘0’ or ‘1’ is sent,

respectively. Two categories can be realised depending on the receiver output: SD and HD. In

SD, the output is equal to the number of photocounts. In HD, the output takes only two values,

‘0’ and ‘1’, as determined by a likelihood ratio test.

5.3.1.1 Soft Decision

In this case, the output Y is equal to the number of photocounts in the counting interval where

Y can take all non-negative integer values 0, 1, 2, ..., kmax. Therefore, it follows that:

pY |X(k|0) = pn(k),

pY |X(k|1) = psn(k).
(5.14)

According to (5.6), the mutual information I(X;Y ) is given by:

I(X;Y ) =
∑

k

[
(1− q)pn(k) log2

pn(k)

pY (k)
+ qpsn(k) log2

psn(k)

pY (k)

]
, (5.15)

Using (5.7) and (5.14), the marginal PMF pY (k) is expressed as:

pY (k) = (1− q)pn(k) + qpsn(k). (5.16)

With (5.15) and (5.16), I(X;Y ) can be numerically calculated for any given value of q. Then,

the channel capacity C can be obtained according to (5.9). Since the SD capacity is expressed

as a function of the forward channel law pY |X(y|x), it is a function of dead time, and the

average signal and background noise counts.
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5.3.1.2 Hard Decision

In this case, the output Y takes only two values, 0 and 1, as determined by a likelihood ratio

test. The conditional probability, pY |X(y|x), for the four possible combinations of the binary

input-output pair, (x, y), is calculated as:

pY |X(0|0) = Pr {k ≤ kth|0} =

kth∑

k=0

pn(k), (5.17a)

pY |X(1|0) = 1− pY |X(0|0), (5.17b)

pY |X(0|1) = Pr {k ≤ kth|1} =

kth∑

k=0

psn(k), (5.17c)

pY |X(1|1) = 1− pY |X(0|1), (5.17d)

where kth denotes the optimum threshold for the maximum likelihood detection and has been

derived for the AQ single SPAD in Appendix F. Also, the marginal PMF pY (y) is given by:

pY (0) = (1− q)
kth∑

k=0

pn(k) + q

kth∑

k=0

psn(k), (5.18a)

pY (1) = (1− q)
(

1−
kth∑

k=0

pn(k)

)
+ q

(
1−

kth∑

k=0

psn(k)

)
. (5.18b)

Based on (5.6), (5.17) and (5.18), the mutual information is then calculated. Note that,

pY |X(y|x) in (5.17) is a function of a priori probability q, since it depends on kth which is

a function of q.

5.3.2 Bounds on the Capacity of AQ Single SPAD

Define the DMC1 as:

pn(k) = pK(k;λn),

psn(k) = pK(k;λs + λn),
(5.19)
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where pK(k;λ) is the dead time-modified photocount distribution of an AQ single SPAD given

in (3.36), without ISI impairments. Also, define the DMC2 as:

pn(k) = p̃K(k;λn),

psn(k) = p̃K(k;λs + λn),
(5.20)

where p̃K(k;λ) is the dead time and ISI-modified stationary photocount distribution of an AQ

single SPAD, as discussed in Section 5.2.2. Let ISDU and IHD
U be the SD and HD mutual

informations of the DMC1 and ISDL and IHD
L , those of the DMC2. Therefore:

ISDL ≤ CSD ≤ ISDU , (5.21)

IHD
L ≤ CHD≤ IHD

U , (5.22)

where CSD and CHD are the SD and HD capacities of the AQ single SPAD, respectively.

5.3.3 Numerical Results and Discussions

In this section, some numerical results on the bounds and the capacity of AQ single SPADs are

provided. In particular, the effects of three parameters are investigated: Ks, Kn, and δ. In each

figure, the bounds or the capacity are presented as functions of one of these parameters while

the two others remain fixed. In order to optimize the operating conditions and the structure of a

SPAD receiver to achieve its maximum information transfer rate, the effect of these parameters

should be treated simultaneously.

In Fig. 5.1, the upper and lower bounds on the SD and HD capacities of the AQ single SPAD

are shown as functions of the average signal count, Ks. In this figure, a dead time ratio of

δ = 0.1 and average background noise counts of Kn = 0, 5 and 10 are assumed. The SD and

HD capacities of an ideal SPAD with δ = 0 are also provided as benchmarks.

Fig. 5.1a shows that in the quantum-limited condition of Kn = 0, the bounds are perfectly

matching and the SD and HD cases overlap. In addition, the dead time has no impact on the

capacity of the SPAD channel in quantum-limited conditions. It can be observed in Figs. 5.1b

and 5.1c that when Kn > 0, the SD and HD capacities are no longer the same and soft

outputs offer higher information rates compared with the hard outputs. According to Figs. 5.1b

and 5.1c, for the SD (HD) case, ISDU (IHD
U ) with δ = 0.1 is lower than CSD (CHD) with δ = 0
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Figure 5.1: Bounds on the capacity of AQ single SPAD as functions of Ks.
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for the whole range of Ks values. This is also observed in the lower bounds. Thus, in the

presence of dead time, both bounds are decreased. As a results, the information rates, and

hence, the capacity of a SPAD with δ = 0.1 are less than those of an ideal SPAD with δ = 0.

Figs. 5.1 also illustrates that higher average signal counts lead to higher capacity values for

both SD and HD cases. However, the capacity cannot exceed 1 bits/channel use. The minimum

Ks required for achieving this capacity depends on δ and Kn. For example, with δ = 0.1 and

Kn = 5, the SD capacity reaches the maximum value of 1 for Ks ≥ 40, and the limiting effect

of dead time vanishes. This happens at a higher Ks if a higher Kn is considered (see Fig. 5.1c).

In addition, if δ is smaller, this capacity is achieved at lower signal levels. This trend suggests

that by choosing a proper signal intensity in practice, the information transfer rate of the single

SPAD receiver can be maximized.

For the range of signal and background noise levels shown in Fig. 5.1, the upper and lower

bounds are tight in both SD and HD cases. Note that for smaller dead time ratios, e.g. δ = 0.01

or 0.001, the bounds would be even tighter. Therefore, it can be concluded that for δ ≤ 0.1 and

the range of parameters considered here, the ISI is insignificant for both SD and HD cases. As

such, the AQ single SPAD can be assumed as a DMC. In the sequel, this assumption is used

for obtaining the rest of the results.

Fig. 5.2 presents the mutual information, I(X;Y ), of the AQ single SPAD as a function of a

priori probability, q, for both SD and HD categories. The red solid curves represent the SPAD

channel with soft outputs, and the blue dashed curves represent the SPAD channel with hard

outputs. In Fig. 5.2a the effect of average signal count, Ks, is displayed for Ks = 5, 15, 30,

with an average background noise count of Kn = 5 and a dead time ratio of δ = 0.02. In

Fig. 5.2b the effect of Kn is illustrated for Kn = 1 and 10, assuming Ks = 20 and δ = 0.02.

In Fig. 5.2c the effect of dead time ratio is presented for δ = 0 and 0.1, assuming Ks = 15 and

Kn = 5. These results indicate that the mutual information decreases with decreasing average

signal counts (see Fig. 5.2a), increasing average background noise count (see Fig. 5.2b), and

increasing dead time (see Fig. 5.2c). It is observed that the peak value of each curve which

represents the channel capacity, occurs at or near q = 0.5 in most cases.

An obvious distinction between the two types is that the HD exhibits discontinuities in the

I(X;Y ) curves. This is due to the discrete nature of the decision threshold kth which jumps

from one integer to the next at certain values of q. Furthermore, as mentioned earlier, the SD
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Figure 5.2: Mutual information, I(X;Y ), versus a priori signal probability, q.
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Figure 5.3: Capacity of AQ single SPAD as a function of Kn for Ks = 20.

provides a higher mutual information compared with the HD, thereby always having a higher

capacity than the HD case. This is because the slot photocounts provide additional information

in the SD case.

Since both the input and the output take the values 0 and 1, a hard output SPAD receiver can

be considered as an asymmetric binary channel with varying error transition probability, i.e.

pY |X(1|0) and pY |X(0|1). Therefore, the channel capacity can not exceed 1.

The effect of background noise counts is shown in Fig. 5.3 for Ks = 20 and δ = 0.1, 0.01.

According to this figure, for larger values of δ, the limiting effect of the background noise

appears in smaller values of Kn. In other words, with larger values of δ the capacity becomes

more sensitive to background noise. This can also be interpreted as follows: keeping the

average background noise count below an optimum value (1 for the SD and 0.1 for the HD

according to Fig. 5.3), will help to overcome the limiting effect of dead time on the capacity.

In Fig. 5.4, the capacity curves are plotted versus δ for Ks = 10, 20, 50 and Kn = 5. As seen

in this figure, with higher signal levels (Ks = 50), the SPAD achieves CSD = 1 for δ ≤ 0.1

and CHD = 1 with δ ≤ 0.07. With lower signal levels (Ks = 10), the capacity becomes more

sensitive to the dead time such that for δ > 0.01, CSD and CHD decrease significantly.
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Figure 5.4: Capacity of AQ single SPAD as a function of δ for Kn = 5.

5.4 Information Rates of AQ SPAD Array with PAM Signalling

5.4.1 Capacity Analysis for DMCs

In the PAM signalling scheme, the intensity of the input signal, Λs, can vary between discrete

time slots while remaining constant within each time interval. The channel input X is the

average number of incident photons in a time interval of length T . Therefore, X is proportional

to the incident light intensity and is non-negative. The channel output Y is the number of

photocounts in each time interval, corrupted by background counts, N , with an intensity of Λn.

According to the discussions in Section 3.6, where the photocount distribution of the SPAD

array was modelled by a Gaussian distribution, a discrete-time Gaussian channel is considered

here. Therefore, the channel model for the auxiliary channels can be expressed as Y = S(X +

N), where X , N and Y denote the random variables for the channel input, noise and channel

output, respectively. S(·) represents the number of photocounts which implicitly depends on

the intensity of the optical signal, and hence the channel input X . Furthermore, S(X + N) is

Gaussian distributed with mean µS(X +N) and variance σ2S(X +N). Accordingly,

pY |X(y|x) =
1√

2πσ2S(x+ n)
exp
−(y − µS(x+ n))2

2σ2S(x+ n)
, (5.23)
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where x ∈ R+ and y ∈ Z+. Due to practical considerations and device limitations, such

as the saturation of SPAD receivers at high intensities, the input signal is subject to peak and

average power constraints. Also, since X is proportional to the light intensity, the constraints

are directly imposed on X . In addition, X should be non-negative. Thus,

0 ≤ X ≤ A, (5.24a)

E [X] ≤ E , (5.24b)

where A and E are the peak and average power, respectively. Without loss of generality, it is

assumed that 0 ≤ E ≤ A and A is finite.

For the channel model in (5.23), µS(x + n) and σ2S(x + n) are signal-dependent, unlike the

classical Gaussian channels [109]. Such a class of Gaussian channels whose conditional output

distribution given the channel input is Gaussian with input-dependent mean and variance are

termed as conditionally Gaussian (CG) channels [110] or additive Gaussian signal-dependent

noise (AGSDN) channels [111]. Although the properties of such channels have been studied

in the literature, their capacity is not yet known [110, 111]. Nevertheless, it is well known

that subject to peak and average power constraints, the channel capacity is achievable and the

capacity-achieving distribution is unique and discrete with a finite number of mass points for

finite A and E . In what follows, some of the findings in the aforementioned reference articles

are adopted to study the capacity of auxiliary DMCs.

Assume an input distribution defined over constellation ψx = {x1, x2, . . . , xb}, where 0 ≤
x1 < x2 < · · · < xb ≤ A, with probability distribution ψp = {p1, p2, . . . , pb}. Let PX denote

the corresponding cumulative distribution function (CDF), that is:

dPX = p1δ(x− x1) + p2δ(x− x2) + · · ·+ pbδ(x− xb). (5.25)

Also, let PX be the set of all input distributions satisfying the constraints defined in (5.24):

PX ,
{
PX :

∫ A

0
dPX = 1,E [X] ≤ E

}
. (5.26)

For each PX , denote the corresponding distribution of Y by pY (y;PX), the marginal entropy

of Y by H(Y ;PX), the conditional entropy of Y given X by H(Y |X;PX), and the mutual
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information between Y and X by I(PX). Recall from Section 5.1:

pY (y;PX) =

∫

x
pY |X(y|x)dPX

H(Y ;PX) = −
∑

y

pY (y;PX) log2 pY (y;PX)

H(Y |X;PX) =
1

2

∫

x
log2[2πeσ

2(x+ n)] dPX

I(PX) = H(Y ;PX)−H(Y |X;PX)

=

∫

x

[∑

y

pY |X(y|x) log2
pY |X(y|x)

pY (y;PX)

]
dPX

(5.27)

And the channel capacity is:

C = max
PX∈PX

I(PX) . (5.28)

Let the capacity-achieving values of ψx, ψp, and PX subject to constraintsA and E , be denoted

by ψ∗x(A, E), ψ∗p(A, E), and P ∗X(A, E), respectively. In the following, some of the main

properties of the capacity-achieving distribution are summarized.

• Existence and uniqueness: There exists a unique probability measure P ∗X satisfying the

bounded-input and average power constraints which maximizes I(PX) [110, Theorem 1].

• Necessary and sufficient condition: P ∗X is capacity-achieving if and only if there exists

α ≥ 0 such that for all x ∈ [0,A] [110, Theorem 2]:

Q(x;P ∗X)− I(P ∗X)− 1

2
log2[2πeσ

2(x+ n)]− α(x− E) ≤ 0, (5.29)

where

Q(x;PX) = −
∑

y

pY |X(y|x) log2 pY (y;PX). (5.30)

• Discreteness: The capacity-achieving distribution, P ∗X , is discrete and consists of a finite

set of mass points [110, Theorem 3].

• Mass point at zero: The capacity-achieving distribution always contains a mass point

located at zero [110, Corollary 3]. That is, 0 ∈ ψ∗x(A, E). Therefore,

α =
1

E

[
I(P ∗X)−Q(0;P ∗X) +

1

2
log2[2πeσ

2(n)]

]
. (5.31)
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Algorithm 1 Search algorithm for finding the capacity-achieving input distribution.
Input: A, E
Output: C, P ∗X

1: procedure CAPACITY(A, E)
2: b← 2
3: Solve (5.28) such that ‖ψx‖ = b.
4: Determine α(b) according to (5.31).
5: if α(b) < 0 then
6: b← b+ 1
7: go to 3
8: end if
9: if (5.29) holds for all x ∈ [0,A] then

10: return C and P ∗X
11: else
12: b← b+ 1
13: go to 3
14: end if
15: end procedure

Although the above properties of the capacity-achieving distributions for the CG channels

are known, closed-form analytical expressions are unknown in general. Therefore, numerical

methods are applied in order to compute the capacity and capacity-achieving distributions for

the SPAD array channel. The optimal input distribution and the capacity of the DMCs can be

obtained via the algorithm presented in Algorithm 1.

In Algorithm 1, the inputs are A and E . The algorithm initializes with a binary distribution

(b = 2). In each iteration, first the optimal PX which maximizes I(PX) is obtained using

the method presented in [109]. Since a mass point at x = 0 always exits, α(b) is determined

using (5.31). Failure of the necessary condition α(b) > 0 indicates that this PX is not optimal

and the current number of mass points, b, is not sufficient. Thus, the number of mass points

should be increased by one, and the distribution function PX which maximizes the information

rate (subject to constraints) should be determined again. If α(b) > 0, then the necessary and

sufficient condition in (5.29) is tested. If it is satisfied, then PX is the capacity-achieving

probability measure. Otherwise, b is increased by one and the procedure is repeated.
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5.4.2 Bounds on the Capacity of SPAD Array

Consider the auxiliary channel DMC1 for which:

µ(x+ n) = µS(Λ+ Λn),

σ2(x+ n) = σ2S(Λ+ Λn),
(5.32)

where µS and σ2S are the dead time-modified mean and variance of the photocount distribution

of a SPAD array given in (3.65). The above expressions does not take the effect of ISI

impairments into account. Similarly, consider DMC2 with:

µ(x+ n) = µ̃S(Λ+ Λn),

σ2(x+ n) = σ̃2S(Λ+ Λn),
(5.33)

where µ̃S and σ̃2S are the dead time and ISI-modified mean and variance of the stationary

photocount distribution of a SPAD array and are obtained based on Monte Carlo methods.

Denote by IU, IL and I the mutual informations of the DMC1, DMC2 and the SPAD channel,

respectively. Also, let the corresponding capacities be denoted by CU, CL and C. Therefore:

IL ≤ C ≤ IU. (5.34)

5.4.3 Numerical Results and Discussions

In the following, some numerical results are provided for the above capacity analysis. As stated

earlier in this section, the mean and variance of the SPAD array photocounts and both of the

DMC channels are signal-dependent due to the dead time. Therefore, dead time is the parameter

which determines the degree of signal dependency.
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Figure 5.5: Bounds on the capacity of SPAD array for several array sizes: A = 50, E = 20
and Ka

n = 5.

Fig. 5.5 illustrates the bounds on the SPAD array channel capacity as a function of dead time

ratio δ for A = 50, E = 20, Ka
n = 5, and various array sizes. The range of interest is δ ≤ 1.

For δ ≤ 0.1, the bounds are tight for all the array sizes. They remain tight for 0.1 < δ ≤ 1 if

Narray ≥ 256.
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Figure 5.6: Bounds on the capacity: A = 50, E = 20 and Ka
n = 5.

For comparison purposes, the upper and lower bounds of Narray = 64 and 1024 are extracted

from Fig. 5.5 and are shown in Fig. 5.6.
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Figure 5.7: Bounds on the capacity of SPAD array for Narray = 64: (a),(b) E = 20; (c),(d)
A = 50.

Fig. 5.7 shows the upper and the lower bounds (the capacities of the DMC auxiliary channels)

for Narray = 64, as a function of the peak power constraint, A, in Figs. 5.7a and 5.7b, and

as a function of the average power constraint, E , in Figs. 5.7c and 5.7d. In these figures, two

different background noise levels (Ka
n = 5 and 10) and two dead time ratios (δ = 0.1 and 1)

are considered. From Figs. 5.7a and 5.7c, it is seen that for δ = 0.1, the bounds are tight,

confirming the negligible effect of ISI. However, according to Figs. 5.7b and 5.7d, with δ = 1,

the ISI is apparent, leading to a gap between the bounds.
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Figure 5.8: Bounds on the capacity of SPAD array for Narray = 1024: (a),(b) E = 20; (c),(d)
A = 50.

In Fig. 5.8, the bounds are provided for the array of Narray = 1024 considering two different

background noise levels and dead time ratios. As observed in this figure, the bounds are

remarkably tight for Narray = 1024 for all the presented parameter values. According to our

extensive numerical investigation of the bounds, the following conclusions can be drawn; the

capacity of:

• the SPAD array of Narray = 64 with δ ≤ 0.1,

• the SPAD array of Narray = 1024 with δ ≤ 1,

can be accurately approximated by their bounds. This means that in these cases, the SPAD array

can be well approximated by the auxiliary DMCs. Figs. 5.6– 5.8 also support these statements.

In the following numerical results, this approximation is used and the effect of different

parameters on the capacity and the capacity-achieving input distribution are investigated.
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Figure 5.9: SPAD array capacity-achieving distributions for Narray = 64, δ = 0.1 and Ka
n =

5: (a),(b) E = 20; (c),(d) A = 50.

In Fig. 5.9 the effect of peak power constraint, A, and the average power constraint, E , on the

optimal mass points (ψ∗x) and the corresponding probability measure (ψ∗p) is presented for the

array of 64 SPADs. In these figures, the parameters δ and Ka
n are assumed to remain fixed as

δ = 0.1 and Ka
n = 5. Similarly, in Fig. 5.10, ψ∗x and ψ∗p are provided for an array of 1024

SPADs with δ = 1 and Ka
n = 10.

In Fig. 5.11 the effect of dead time on ψ∗x and ψ∗p is shown for the array of Narray = 1024.

From Figs. 5.9– 5.11, the following remarks are deduced:

• The capacity-achieving measure (ψ∗x, ψ
∗
p) contains two mass points at x = 0 and x = A,

for all the parameter values. In [110], it is proved that x = 0 is always a mass point of

(ψ∗x, ψ
∗
p). However, it is not proved whether x = A is also a mass point in general.

• As A increases, more mass points are required for achieving the capacity. In the
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Figure 5.10: SPAD array capacity-achieving distributions forNarray = 1024, δ = 1 andKa
n =

10: (a),(b) E = 20; (c),(d) A = 50.

presented range of parameters, the variance of the signal-dependent noise term is almost

a linear function of the signal power. As a result, for higher values of A, the average

signal-dependent noise power is higher; hence, a signalling scheme with a larger

constellation size is more favourable.

• As E increases, the capacity also increases almost until E ≈ 0.5A. After this point, the

channel capacity remains constant.

Another important observation is that for Narray = 1024, if δ ≤ 1, the capacity-achieving

measure (ψ∗x, ψ
∗
p) does not depend on δ (see Fig. 5.11). This means that in this large array the

impact of dead time is effectively cancelled. As a numerical example, assuming a typical dead

time of 10 ns, using a PAM signalling scheme with 5 levels, this array can achieve the capacity

of 1.8 bits/channel use or equivalently a maximum data rate of 180 Mbits/s with A = 50 and

E = 20.
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5.5 Summary

In this chapter the information transfer rate of SPAD receivers was studied. The SPAD was

modelled as a communication channel with finite memory and the information rates with binary

and PAM signalling schemes were analysed. Two auxiliary channels were used for establishing

upper and lower bounds on the capacity.

The analysis of the binary signalling was conducted for AQ single SPADs. The mathematical

expressions for the mutual information of the auxiliary channels were derived and the bounds

on the capacity of the SPAD channel were obtained. For the single SPADs with dead time ratios

δ ≤ 0.1, the bounds were very tight for a wide range of signal and background noise levels,

showing that the dead time induced-ISI was negligible for δ ≤ 0.1. Therefore, the capacity

of the AQ single SPAD could be tightly approximated by those of the auxiliary channels. The

results showed that with lower signal levels, the capacity becomes more sensitive to the dead

time losses. Also, keeping the average background noise count below an optimum value will

help to overcome the limiting effect of dead time on the capacity.

The analysis of the PAM signalling was carried out for the AQ SPAD arrays. A discrete-time

Gaussian channel model with input-dependent mean and variance was adopted for the auxiliary

channels. Using a numerical algorithm, the capacity of the auxiliary channels, subject to

average and peak power constraints was evaluated, and the bounds on the capacity of the SPAD

array were established. The numerical results were provided for δ = 0.1, 1 and Narray = 64,

1024. For Narray = 1024, the bounds were very tight for both δ = 0.1 and δ = 1 over a wide

range of signal and background count levels. This, again confirmed that in larger arrays the ISI

was insignificant. Thus, the SPAD array of Narray = 1024 could be well approximated as a

memoryless channel. As such, it was found that for a large array, the channel capacity, subject

to the average and peak power constraints, is achievable. The capacity-achieving distribution is

discrete, consists of a finite set of mass points, and always contains a mass point at zero.
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Chapter 6
Conclusions and Future Research

In this thesis, the general objective was to investigate the application of single-photon avalanche

diode (SPAD) photodetectors (PDs) for optical wireless communication (OWC). A series of

fundamental studies related to the impact of SPAD dead time were presented. To the best of

the author’s knowledge, this is the first comprehensive study in this context. The contribution

of this thesis was threefold: First, a novel analytical method was proposed for modelling the

statistical photon counting behaviour of SPADs in the presence of different types of dead time.

This method was used to obtain the photocount distributions for active quenching (AQ) and

passive quenching (PQ) single SPADs and SPAD arrays. Second, the effect of dead time on

the error performance of SPAD-based OWC systems were deeply analysed. Finally, the effect

of dead time on the information transfer rate of SPADs were studied through an information

theoretic approach.

6.1 Summary

In Chapter 2, a short overview of the OWC was given, with a focus on the photodetection

process, the main task of optical PDs. The common PDs used in OWC systems were reviewed.

In particular, positive-intrinsic-negative (PIN) diodes and avalanche photodiodes (APDs)

were referred to. The details of their physical mechanism of operation, noise properties

and performance specifications in terms of gain, bandwidth and signal-to-noise ratio (SNR)

were reported from the literature. It was discussed that in photon starving applications and

long distance transmissions, where the optical signal may be received at levels below the

sensitivity of PIN diodes and APDs, photodetectors with single-photon sensitivity, such as

photomultiplier tubes (PMTs) are required. The advantages and disadvantages of PMTs were

addressed. Then, the SPAD PDs were brought into discussion as a promising replacement for

the PMTs in OWC applications. A short overview of the past and present applications of the

SPADs was provided. Also, the operating principle and the main performance metrics of the

SPAD receivers were reviewed. Active and passive quenching circuits, used for resetting the
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SPAD PDs, were introduced. It was highlighted that these quenching circuits directly affect

the photon counting performance of the SPAD receivers due to the dead time they introduce

for the recovery process. The background presented in this chapter was required for a better

understanding of the fundamental differences between the conventional PDs and the SPADs

and conducting the research in this thesis.

In Chapter 3, a novel statistical model for the SPAD photon counting process in the presence

of dead time was presented. The mathematical analysis was based on the concepts of arrival

processes and renewal processes. Exact expressions were derived for the probability mass

function (PMF), mean, variance and the count rate of the SPAD photocounts. The study was

conducted for both single SPADs and SPAD arrays and expounded the effect of various dead

time types imposed by AQ, PQ and mixed AQ/PQ circuits. In contrast to the commonly used

Poisson distribution, the new expressions accurately took the effect of dead time into account.

The proposed expressions for the mean of AQ and PQ single SPAD photocounts precisely

predicted the SPAD effective count rates and were in line with the experimental data available

in the literature. The mathematical models derived in Chapter 3 were the foundation of the

studies in the subsequent chapters of this thesis.

In Chapter 4, the bit error performance of the SPAD-based OWC systems was analysed. In

these systems, not only the primary counting losses arising from dead time were degrading the

link performance, but also an inter-slot interference (ISI) distortion was realized. This ISI was

due to the overlap of dead times of the previous interval(s). In this study, two scenarios were

considered: OWC systems with single AQ or PQ SPAD receivers, and OWC systems with

AQ SPAD array receivers. A data rate of 1 Mbits/s with binary modulation schemes (on-off

keying (OOK) and binary pulse position modulation (BPPM)) was considered.

In the first scenario, a theoretical study was undertaken for deriving the error probability of

OOK and BPPM schemes. Dead time ratios of δ = 0.001, 0.01, and 0.1 were considered for

which the ISI effect was insignificant. Assuming independent count statistics over different

bit intervals, the photocount distributions derived in Chapter 3 were used for the bit error

performance analysis. Analytical and simulation results were provided for several dead time

ratios and background noise levels. It was verified that the dead time degrades the bit error

performance of the system. While with δ ≤ 0.01, bit error ratios (BERs) of less than 10−3

could be attained, δ = 0.1 critically degraded the BER, such that the systems with PQ single

SPADs could not reach BER values better than 10−2, unless in quantum-limited conditions. In
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the AQ SPAD-based OWC system, with OOK modulation and constant average background

noise of Kn = 2, for a BER value of 10−4, the reduction of dead time by one order of

magnitude led to almost 3 dB improvement in the average signal count. The improvement

was about 3.8 dB for BPPM. In general, with longer dead times, higher signal intensities were

required for achieving a target BER. It was also found that in quantum-limited OWC systems,

the effect of dead time becomes negligible. The results showed that OWC systems with AQ

single SPADs generally outperform those with PQ single SPADs in terms of error probability.

Compared with the proposed photocount distributions, the Gaussian and Poisson distributions

commonly used in the literature were shown to be inaccurate in the performance analysis of

OWC systems. This in turn highlights the importance of this statistical modelling for a precise

error analysis of potential OWC applications.

In the second scenario, the focus was on AQ SPAD arrays and the bit error performance

of an OOK system was analysed. For two dead time ratios of δ = 0.1 and 1 and two

different array sizes (Narray = 64 and 1024), the impact of ISI on the BER of the system

was investigated. The results showed that for δ = 0.1, the impact of ISI was negligible in both

arrays. However, for δ = 1, the ISI was noticeable in the smaller array. The ISI-modified

Gaussian photocount distributions were obtained through Monte Carlo simulations and then

were applied for the performance analysis. The performance results demonstrated that the

SPAD array was more robust to the background noise and could tolerate longer dead times

maintaining the system performance. Compared with a single SPAD of the same sensitive area,

the SPAD array required less signal power to achieve a target BER. For instance, a SPAD array

of sizeNarray = 1024 provided a power gain of 3 dB compared to a single SPAD, for achieving

BER= 10−3 with δ = 0.1 and Ka
n = 2.

A follow-up study was presented in Chapter 5 to investigate the impact of dead time on

the information rate of the SPAD receiver. The SPAD was modelled as a communication

channel with a finite memory arising from the dead time-induced ISI distortions. Since the

capacity analysis of the memory channels with general input distributions was mathematically

intractable, two special cases of binary and pulse amplitude modulation (PAM) signalling were

considered. Even for these simplified cases, calculating the capacity of the SPAD channel was

still cumbersome and hence, lower and upper bounds on the capacity were developed instead.

To establish each bound, an auxiliary channel model was proposed and used. For the upper

bound, the auxiliary channel was an ISI-less discrete memoryless channel (DMC) with the
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primary dead time-induced counting losses. For this channel, the photocount distributions of

Chapter 3 were adopted. For the lower bound, the auxiliary channel was a DMC with the

primary counting losses and an additional source of counting losses due to the ISI. For the

photocount distribution of this channel, the stationary state distribution of the SPAD channel

with ISI was used, which was obtained through Monte Carlo simulations.

The capacity analysis of the binary signalling was conducted for AQ single SPADs. The

mathematical expressions for the mutual information of the auxiliary channels were derived

and the bounds on the capacity of the SPAD channel were obtained. For single SPADs with

dead time ratios δ ≤ 0.1, the bounds were very tight for a wide range of signal and background

noise levels, showing that the ISI effect was negligible for δ ≤ 0.1. Therefore, the capacity of

the AQ single SPAD could be tightly approximated by those of the auxiliary channels. It was

concluded that with lower signal levels, the capacity becomes more sensitive to the dead time

losses. Also, keeping the average background noise count below an optimum value will help to

overcome the limiting effect of dead time on the capacity.

The capacity analysis of the PAM signalling was carried out for AQ SPAD arrays. The same

auxiliary channels were used. In this case, a discrete-time Gaussian channel model with

input-dependent mean and variance was adopted for the auxiliary channels. Using a numerical

algorithm, the capacity of the auxiliary channels, subject to average and peak power constraints

was evaluated, and hence, the bounds on the capacity of the SPAD array were established. The

numerical results were provided for δ = 0.1, 1 and Narray = 64, 1024. For Narray = 1024, the

bounds were very tight for both δ = 0.1 and δ = 1 over a wide range of signal and background

noise levels. This, again confirmed that in larger arrays the ISI was insignificant. Thus, the

SPAD array of Narray = 1024 could be well approximated as a memoryless channel. As such,

it was found that for a large array, the channel capacity, subject to the average and peak power

constraints, is achievable. The capacity-achieving distribution is discrete, consists of a finite set

of mass points, and always contains a mass point at zero.

The results of this analysis can be used for the theoretical optimization of the device structure

and operating conditions to maximize the achievable data rate.
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6.2 Key Findings

This thesis has provided new insights into the application of SPAD detectors for OWC. It

reveals a fundamental limit of the SPAD detectors which is dead time. The new findings of this

research lead to a better comprehension of the dead time effects.

The proposed mathematical models for the SPAD photon counting process under the limits

of dead time, allow an accurate description of SPAD blocking losses. These models are

particularly required for maximum likelihood detection analysis and assessing the performance

of any SPAD-based OWC system in terms of error probability or data rate. The capacity and

capacity-achieving distributions of SPADs can be used for designing efficient modulation

schemes, and optimizing the device structure and operating conditions to maximize the

achievable data rate. These results can also serve as a benchmark for evaluating the efficiency

of practical SPAD-based optical systems.

The research presented in this thesis highlights a trade-off between the SPAD photon counting

performance and the data rates of OWC systems; in high data rates the existence of dead time

causes significant counting losses and thus, significant data loss. Commercially available SPAD

devices have dead times in the range of a few nanoseconds to tens of nanoseconds. With binary

modulation schemes and an AQ single SPAD of dead time τ , the data rate can not exceed 1/τ .

For a PQ single SPAD, the limit is even lower than 1/τ . As a numerical example, assume an

AQ single SPAD with a dead time of 10 ns. For a data rate of 100 Mbits/s, the bit interval

equals to the dead time, that is 1 bit of information per photon. However, at this data rate,

the error performance is not reliable. The capacity results of Chapter 5 ensure that this AQ

single SPAD can achieve a maximum data rate of 10 Mbits/s with a reliable error performance,

given the best operating conditions. Instead, for an AQ SPAD array of 1024 elements, the

maximum achievable data rate is 100 Mbits/s, again given the best operating conditions. It can

then be concluded that the commercially available single SPAD devices can achieve a reliable

performance with a maximum data rate of a few Mbits/s. This is up to a few hundreds of

Mbits/s for the case of large SPAD arrays.

The data rate can be improved to some extent with the help of advanced modulation techniques;

but, the inherent limitation of dead time remains. To achieve data rates in the range of Gbits/s,

SPAD devices with much shorter dead times are required. SPADs are still a relatively immature

technology, thus, in this current stage, they are suitable for scenarios in which the high data rate
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is not a mandatory requirement. With further technological advances, they may become capable

of targeting higher data rates.

6.3 Limitations and Future Work

There is much work yet to be done in this topic. A number of findings and limitations

in this work inspire potential future research directions, which are important for the further

development of SPAD-based OWC.

In the analysis presented in Chapter 3, the impact of dead time has been addressed. However,

a number of other factors, such as afterpulsing and timing jitter have not been considered.

Afterpulsing leads to false detection events. The literature on afterpulsing is extensive. The

available models of afterpulsing can be combined with the analytical expressions of this thesis

to obtain a more realistic model for describing the SPAD photon counting process. Several

practical studies have also been devoted to investigate the timing jitter phenomenon, however,

there is a lack of proper analytical models for it. Timing jitter essentially perturbs the timing

resolution of the SPADs. It is generally shorter than the dead time and thus, results in less

counting losses compared to the dead time. However, in high data rates, it plays a significant

role. Future research can consider the joint impact of dead time, timing jitter and afterpulsing.

This will give insights into the actual photon counting performance of SPAD receivers in

practice.

In Chapter 3, an idealised assumption had to be made so that the analysis can be tractable.

It was assumed that the SPAD is free at the beginning of each counting interval. Despite

this simplifying assumption, the mathematical derivations were still cumbersome. This

assumption relates to the ISI impairments when the SPAD is counting in consecutive intervals.

In Chapters 4 and 5, it is was observed that for relatively short dead times, this assumption had

no noticeable effect on the results. However, for larger dead times, it led to underestimated

error probabilities and also overestimated channel capacities. For such cases, the ISI-modified

photocount distribution of the SPAD receiver was obtained through Monte Carlo simulations.

The statistical modelling of this ISI effect can be the subject of future research.

Moreover, in Chapter 4, only the bit error performance of binary signalling schemes were

studied. The investigation of higher order modulation schemes is also of great importance. In

such schemes, the ISI effect becomes even more significant. This again necessitates modifying
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the SPAD photocount distributions in consideration of ISI. As such, the capacity of SPAD

receivers can be estimated with higher accuracies using the mathematical tools available for

finite-state channels (FSCs). Then, optimized modulation schemes can be designed to improve

the link performance and to achieve higher data rates.

Another possible direction for future research is to consider sequence detection schemes to

account for the dead time induced channel memory. Designing maximum-likelihood sequence

detection (MLSD) schemes will help to improve the total error performance of the system.

Furthermore, the performance analyses conducted in Chapter 4 were only focused on the

receiver photon counting performance. The characteristics of the transmitter and the optical

channel were not addressed. For specific applications such free space optics (FSO), visible

light communication (VLC) or under water communication (UWC), the corresponding light

propagation characteristics can be incorporated with the receiver model developed in this thesis

to perform a comprehensive performance evaluation of the end-to-end SPAD-based system.

Here, at the University of Edinburgh, efforts are underway to improve the structure of the

SPAD devices in order to decrease the dead time duration, and also to implement SPAD arrays

for mitigating the effect of dead time. Our research group is mainly focusing on the area of

OWC and our interest lies in utilizing SPAD receivers in this area. Experimental works are in

progress to validate the proposed analytical models in this current thesis. Further measurements

will be carried out to characterize the ISI impairments so as to design proper modulation and

coding techniques to attain the maximum potential of the SPAD receivers in OWC applications.
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Appendix A
Mathematical Derivations

A.1 Integral in (3.27a)

The integral in (3.27a) is calculated as follows:

p1(k) =

∫

{R1}

p(k)(t1, t2, · · · , tk)dt1dt2 · · · dtk

=

Tb−τ∫

tk=(k−1)τ

· · ·
t3−τ∫

t2=τ

t2−τ∫

t1=0

λke−λ(Tb−kτ)dt1dt2 · · · dtk

= λke−λ(Tb−kτ)
Tb−τ∫

tk=(k−1)τ

· · ·
t3−τ∫

t2=τ

t2−τ∫

t1=0

dt1dt2 · · · dtk

= λke−λ(Tb−kτ)
Tb−τ∫

tk=(k−1)τ

Ik−1(tk)dtk,

(A.1)

where Ik−1(tk) is a (k − 1)-tuple integral and is readily solved by recursion:

Ik−1(tk) =
(tk − (k − 1)τ)k−1

(k − 1)!
. (A.2)

Using (A.2), p1(k) is obtained:

p1(k) =
λk(Tb − kτ)k

k!
e−λ(Tb−kτ). (A.3)
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A.2 Integral in (3.27b)

The integral in (3.27b) is evaluated as detailed below:

p2(k) =

∫

{R2}

p(k)(t1, t2, . . . , tk−1, tk)dt1 · · · dtk

=

Tb∫

tk=Tb−τ

tk−τ∫

tk−1=(k−2)τ

· · ·
t3−τ∫

t2=τ

t2−τ∫

t1=0

λke−λ(tk−(k−1)τ)dt1 · · · dtk

= λkeλ(k−1)τ
Tb∫

tk=Tb−τ

e−λtkIk−1(tk)dtk,

(A.4)

where Ik−1(tk) is given in (A.2). Now, let’s proceed with the final integral left to obtain p2(k).

Define:

Sm−1 =

Tb∫

Tb−τ

(x− (k − 1)τ)m−1

(m− 1)!
e−λxdx. (A.5)

An integration by parts gives:

Sm−1 = − 1

λ
× (Tb − (k − 1)τ)m−1

(m− 1)!
e−λTb

+
1

λ
× (Tb − kτ)m−1

(m− 1)!
e−λ(Tb−τ)

+
1

λ
×

Tb∫

Tb−τ

(x− (k − 1)τ)m−2

(m− 2)!
e−λxdx.

(A.6)

Now define:

Am =
(Tb − (k − 1)τ)m

m!
e−λTb − (Tb − kτ)m

m!
e−λ(Tb−τ), (A.7)

Thus, Sm−1 given in (A.6) can be expressed as:

Sm−1 = − 1

λ
Am−1 +

1

λ
Sm−2, (A.8)
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Solving the above recursive equation for Sm−1 gives:

Sm−1 =−
m−1∑

i=1

Aj
λm−i

+
S0
λm−1

=−
m−1∑

i=1

1

λm−i
× (Tb − (k − 1)τ)i

i!
e−λTb +

m−1∑

i=1

1

λm−i
× (Tb − kτ)i

i!
e−λ(Tb−τ)

− 1

λm
(e−λTb − e−λ(Tb−τ))

=− 1

λm
×
m−1∑

i=0

λi(Tb − (k − 1)τ)i

m!
e−λTb +

1

λm
×
m−1∑

i=0

λi(Tb − kτ)i

m!
e−λ(Tb−τ)

(A.9)

Finally, according to (A.4):

p2(k) =λkeλ(k−1)τ × Sk−1

=
k−1∑

i=0

λi(Tb − kτ)i

m!
e−λ(Tb−kτ) −

k−1∑

i=0

λi(Tb − (k − 1)τ)i

m!
e−λ(Tb−(k−1)τ) (A.10)

A.3 Solving (3.34)

From (3.34), p(k, t) can be derived as follows:

p(k, t) =

t∫

kτ

λk(t′ − kτ)k−1

(k − 1)!
e−λ(t

′−kτ)dt′ −
t∫

(k+1)τ

λk+1(t′ − (k + 1)τ)k

k!
e−λ(t

′−(k+1)τ)dt′

=

t−kτ∫

0

λk(t′)k−1

(k − 1)!
e−λt

′
dt′ −

t−(k+1)τ∫

0

λk+1(t′)k

k!
e−λt

′
dt′ (A.11)

With an approach similar to the one used for (A.5), the above integral is evaluated. Thus:

p(k, t) =

k∑

i=0

λi(t− (k + 1)τ)i

i!
e−λ(t−(k+1)τ) −

k−1∑

i=0

λi(t− kτ)i

i!
e−λ(t−kτ) (A.12)
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Appendix B
An Asymptotic Expression for AQ

PMF

The PMF in (3.36) can be rewritten as:

pK(k) =
k∑

i=0

ψ(i, λk)−
k−1∑

i=0

ψ(i, λk−1)

= ψ(k, λk) +

k−1∑

i=0

[
ψ(i, λk)− ψ(i, λk−1)

]

= ψ(k, λk) +
k−1∑

i=0

ψ(i, λk)

[
1−

(
Tb − (k − 1)τ

Tb − kτ

)i
e−λτ

]
.

(B.1)

Define A and B as follows:

A =

k−1∑

i=0

ψ(i, λk)

[
1−

(
Tb − (k − 1)τ

Tb − kτ

)i
e−λτ

]

︸ ︷︷ ︸
B

.

Two asymptotic cases can be considered:

• Large λ (λ� 1): The limiting relation lim
t→∞

tαe−t = 0 results in lim
λ→∞

A = 0.

• Small δ (τ � Tb): Since lim
δ→0

B = 0 and ψ(k, λk) is finite, lim
δ→0

A = 0 is concluded.

Therefore, for the above two cases, the following approximation can be adopted:

pK(k) ≈ ψ(k, λk) . (B.2)
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Appendix C
Mean and Variance of AQ PMF

By definition, the mean value of the distribution in (3.36) is:

µK =

kmax∑

k=0

kpK(k)

=

kmax∑

k=0

k ×
{

k∑

i=0

ψ(i, λk)−
k−1∑

i=0

ψ(i, λk−1)

}
. (C.1)

Replacing k − 1 by k in the summation index of the second term in the right-hand side of the

previous expression gives:

µK =

kmax∑

k=0

k∑

i=0

kψ(i, λk)−
kmax−1∑

k=0

k∑

i=0

(k + 1)ψ(i, λk)

=

kmax∑

i=0

kmaxψ(i, λkmax)−
kmax−1∑

k=0

k∑

i=0

ψ(i, λk)

≈ kmax −
kmax−1∑

k=0

k∑

i=0

ψ(i, λk). (C.2)

where the approximation
kmax∑
i=0

ψ(i, λkmax) ≈ 1 is used. The above expression for µK in (C.2)

can be further simplified to:

µK =

kmax−1∑

k=0

∞∑

i=k+1

ψ(i, λk), (C.3)

Next, the limit of this expression for τ → 0 or kmax → ∞ is taken. Although it follows

directly from lim
τ→0

pK(k) = p0(k) that lim
τ→0

µK = λTb, a direct proof can also be obtained in

the following way; the right-hand side of (C.3) is a double series whose terms can be ordered
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in an infinite matrix:

e−λTb ×




0 (λTb)
1

1!
(λTb)

2

2! . . . (λTb)
m

m! . . .

0 0 (λTb)
2

2! . . . (λTb)
m

m! . . .

0 0 0 . . . (λTb)
m

m! . . .

...
...

...
. . .

...

0 0 0 . . . (λTb)
m

m! . . .

...
...

...
...

. . .




The rows and columns of the above matrix are indexed by summation indices of (C.3), k and i,

respectively. Summation of the first m rows of this matrix gives:

Sm = e−λTb ×
[
m∑

i=0

i× (λTb)i

i!
+m×

∞∑

i=m+1

(λTb)i

i!

]

= e−λTb ×
[

(λTb)×
m−1∑

i=0

(λTb)i

i!
+m×

∞∑

i=0

(λTb)i

i!
−m×

m∑

i=0

(λTb)i

i!

]
. (C.4)

As m goes to infinity, the summation of the second and third terms clearly goes to zero.

Furthermore, using the Taylor series expression lim
m→∞

m−1∑
i=0

(λTb)i/i! = eλTb :

lim
τ→0

µK = lim
m→∞

Sm = λTb. (C.5)

With an approach similar to the one used for deriving µK , the variance of the distribution in

(3.36) can be obtained as:

σ2K =

kmax−1∑

k=0

k∑

i=0

(2kmax − 2k − 1)ψ(i, λk)−
(
kmax−1∑

k=0

k∑

i=0

ψ(i, λk)

)2

. (C.6)

The limiting relation lim
τ→0

σ2K = λTb can also be verified, where the product λTb is the variance

of the original Poisson distribution.
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Mean and Variance of PQ PMF

According to (3.9) and (3.50), the generating function G(z, t) and its derivatives are given by:

G(z, Tb) =

kmax∑

k=0

pK(k)zk

=

kmax∑

i=0

(z − 1)i
λi(Tb − (i− 1)τ)i

i!
e−iλτ , (D.1)

∂G(z, Tb)

∂z
=

kmax∑

k=0

kpK(k)zk−1

=

kmax∑

i=1

i(z − 1)i−1
λi(Tb − (i− 1)τ)i

i!
e−iλτ , (D.2)

∂2G(z, Tb)

∂z2
=

kmax∑

k=0

k(k − 1)pK(k)zk−2

=

kmax∑

i=2

i(i− 1)(z − 1)i−2
λi(Tb − (i− 1)τ)i

i!
e−iλτ . (D.3)

Therefore, the mean and variance of the PQ PMF in (3.50) are derived as:

µK =

kmax∑

k=0

kpK(k) =
∂G(z, Tb)

∂z

∣∣∣∣
z=1

= λe−λτTb. (D.4a)

σ2K =

kmax∑

k=0

k2pK(k)−
(
kmax∑

k=0

kpK(k)

)2

=

[
∂2G(z, Tb)

∂z2
+
∂G(z, Tb)

∂z
−
(
∂G(z, Tb)

∂z

)2
]∣∣∣∣∣
z=1

= λ2e−2λτ (τ2 − 2Tbτ) + λe−λτTb.

(D.4b)

Finally, the limiting expressions lim
τ→0

µK = λTb and lim
τ→0

σ2K = λTb are verified.
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Appendix E
Special Property of AQ PMF in

Threshold Detection

Assuming kth < kmax, the probability of counting at most kth photons is calculated as:

kth∑

k=0

pK(k) =

kth∑

k=0

[
k∑

i=0

ψ(i, λk)−
k−1∑

i=0

ψ(i, λk−1)

]

(∗)
=

kth∑

i=0

kth∑

k=i

ψ(i, λk)−
kth−1∑

i=0

kth∑

k=i+1

ψ(i, λk−1)

(∗∗)
= ψ(kth, λkth) +

kth−1∑

i=0

[
kth∑

k=i

ψ(i, λk)−
kth−1∑

k′=i

ψ(i, λk′)

]

= ψ(kth, λkth) +

kth−1∑

i=0

ψ(i, λkth)

=

kth∑

i=0

ψ(i, λkth),

(E.1)

where in (∗) the order of summations is changed and for (∗∗) a change of variable k′ = k − 1

is used. According to (E.1), for an AQ SPAD receiver with the dead time τ , the probability of

counting up to kth photons in a bit interval of length Tb, is the same as that of:

• an ideal single-photon detector with the same quantum efficiency, but counting photons

during an interval of length Tb − kthτ .

• an ideal single-photon detector with the quantum efficiency reduced by the factor (1 −
kthτ

Tb
) and counting photons during an interval of length Tb.

The above result significantly simplifies the error probability calculations for the AQ SPADs.
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Appendix F
Optimum Threshold for AQ Single

SPAD

With the approximate PMF given in (B.2), the likelihood ratio test in (4.5) reduces to:

L(k) =
ψ(k, λsnk )

ψ(k, λnk)

H1

≷
H0

1, (F.1)

where λnk = λn(Tb − kτ) and λsnk = (λs + λn)(Tb − kτ). Substituting ψ(i, λ) = λie−λ/i!

gives:

L(k) = e−λs(Tb−kτ)
(
λs + λn
λn

)k H1

≷
H0

1. (F.2)

Taking the natural logarithm from both sides gives:

k
H1

≷
H0

λsTb

λsτ + ln

(
1 +

λs
λn

) . (F.3)

Therefore, for an AQ SPAD, the maximum likelihood detection simplifies to a threshold

detection for short dead times or in low photon rate regimes.

The optimum threshold in (F.3) can also be derived through minimizing the probability of

error given in (4.7) through solving dPe/dkth = 0. For an AQ SPAD, it is shown that (see

Appendix E):
kth∑

k=0

pK(k) =

kth∑

i=0

ψ(i, λkth).

Therefore, (4.7) can be rewritten as:

Pe =
1

2

(
1−

kth∑

i=0

ψ(i, λnkth)

)
+

1

2

kth∑

i=0

ψ(i, λsnkth). (F.4)
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The rule of differentiating summations is given by [1]:

d

dx

[
x∑

k=0

f (k)

]
= f (x) . (F.5)

Using (F.5), the equation dPe/dkth = 0 can be solved for finding the optimum threshold value.

For the asymptotic cases of λn � 1 or τ � Tb, dPe/dkth = 0 leads to:

ψ(kth, λ
n
kth

) = ψ(kth, λ
sn
kth

). (F.6)

Substituting ψ(i, λ) = λie−λ/i! gives:

(
λn

λs + λn

)kth
= e−λs(Tb−kthτ) .

Taking the natural logarithm of both sides results in:

kth ln

(
λn

λs + λn

)
= −λsTb + kthλsτ.

Therefore, the threshold value, kth, which minimizes Pe of an AQ SPAD, occurs at:

kth =
λsTb

λsτ + ln

(
1 +

λs
λn

) . (F.7)
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Optimum Threshold for SPAD Array

According to (4.13), the likelihood ratio is defined as:

L(s) =
psn(s)

pn(s)

H1

≷
H0

1,

where psn(s) ∼ N (µsn, σ
2
sn) and pn(s) ∼ N (µn, σ

2
n) are the approximate probability mass

functions (PMFs) for the SPAD array photocounts. Substituting the Gaussian expressions for

psn(s) and pn(s) in the above likelihood ratio test gives:

L(s) =

1√
2πσ2sn

exp

(
−(s− µsn)2

2σ2sn

)

1√
2πσ2n

exp

(
−(s− µn)2

2σ2n

)

=
σn
σsn

exp

(
s2
(

1

2σ2n
− 1

2σ2sn

)
− s

(
µn
σ2n
− µsn
σ2sn

)
+

(
µ2n
2σ2n
− µ2sn

2σ2sn

))
.

(G.1)

Taking the natural logarithm results in the following inequality:

s2
(

1

2σ2n
− 1

2σ2sn

)
− s

(
µn
σ2n
− µsn
σ2sn

)
+

(
µ2n
2σ2n
− µ2sn

2σ2sn

)
H1

≷
H0

ln
σsn
σn

. (G.2)

This is a polynomial inequality of degree 2 and is easily solved as:

s
H1

≷
H0

sth (G.3)

where sth ≥ 0 and is given by:

sth =

µn
σ2n
− µsn
σ2sn

+

√(
µn
σ2n
− µsn
σ2sn

)2

−
(

1

σ2n
− 1

σ2sn

)(
µ2n
σ2n
− µ2sn
σ2sn

+ 2 ln
σn
σsn

)

1

σ2n
− 1

σ2sn

. (G.4)
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The threshold value in (G.4) can be further approximated as:

sth =
µsnσn + µnσsn
σn + σsn

. (G.5)
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Abstract—This paper presents the characterization of single
photon avalanche diodes (SPADs) for optical communication
applications. SPAD-based optical receivers can provide a sig-
nificantly improved single-photon detection sensitivity compared
with conventional photodiodes. However, an undesirable dead
time introduced by the quenching circuit decreases the perfor-
mance of these receivers. Using a precise analysis, we show that
in the presence of dead time, the photon arrival process does not
follow a Poisson process. Also, the effective count rate is evaluated
and shown to depend critically on dead time. The effect of SPAD
dead time on the error performance of an on-off keying (OOK)
modulation optical communication system is also investigated. It
is shown that, when background counts due to dark current and
afterpulsing are small, the performance degradation of the SPAD-
based receiver due to dead time losses is negligible. However, for
systems with considerable background counts, the bit error rate
(BER) degrades rapidly with increasing dead time.

Keywords—Single Photon Avalanche Diode (SPAD), photon
counting, optical receivers, on-off keying (OOK).

I. INTRODUCTION

The state-of-the-art photodetectors, avalanche photodiodes
(APDs), are susceptible to circuit gain-dependent excess noise
which limits their maximum gain. However, APDs can be used
in the so-called ‘Geiger mode’ in which the extremely high
gain allows single photon events to be detected effectively
and single-photon detection sensitivity can be improved.
In Geiger mode, the diode is biased beyond its breakdown
voltage and the absorption of a single photon will then initiate
an avalanche of charge carriers, which can easily be detected.
However, after each photon detection event, the APD needs to
be quenched to recover from the excess charge carriers. This
quenching process introduces a finite recovery time, known
as the ‘dead time’, during which the device does not respond
to another incident photon.

Geiger-mode APDs, also termed as single-photon
avalanche diodes (SPADs), have been successfully employed
in a number of applications, including three-dimensional
imaging [1], quantum key distribution [2] and deep space
laser communications [3]. Recently, SPADs have been
proposed for use in optical communication applications [4],
[5], and in particular, for some visible light communication
(VLC) applications where long distance transmission requires
highly sensitive receivers capable of detecting a single
photon. For example, the potential application of SPADs can
be in the gas extraction industry, or in downhole monitoring
communication systems [6].

However, to the best of our knowledge, a comprehensive
study of the characteristics of SPAD receivers has not yet
been published. In this paper a detailed analysis of detection
statistics and the main characteristics of SPAD-based optical

receivers are presented. In particular, analytical modelling and
simulation results are provided which predict the performance
of a SPAD-based receiver.

The rest of the paper is organized as follows. The
photocount statistics of a SPAD receiver are discussed in
Section II, and how the actual count statistics deviate from
the Poisson process in the presence of detector dead time is
explained. We develop a mathematical model for the dead time
modified count probability and employ Monte Carlo methods
to verify the validity of the analytical models. In Section III,
the major constraints which limit the achievable count rate of
SPAD receivers are addressed. Available count rate models
in literature are adopted and confirmed to be applicable
to SPAD receivers through Monte Carlo simulations. The
mathematical count probability derived in Section II is then
used in Section IV to predict the error performance of an
on-off keying (OOK) modulation optical system. Finally,
concluding remarks are given in Section V.

II. PHOTOCOUNT STATISTICS

In the absence of SPAD dead time, the detection of photon
arrival events can be modeled as a Poisson arrival process for
which the probability of detecting k photons over a time period
of [0, Tb) is given by:

p0(k; λTb) =
(λTb)ke−λTb

k!
, (1)

where the constant λ is the average photon arrival rate, hence,
λTb is the average number of photons arriving at the SPAD
during the observation time of Tb seconds. The photocount
rate λ is related to the power of the optical signal by:

λ =
ηQEPs

hν
, (2)

where ηQE is the quantum efficiency of the SPAD; Ps denotes
the power of the incident optical signal; h is the Planck’s
constant; and ν represents the frequency of the optical signal.

When the SPAD dead time is considered, the actual count
statistics can be very different from the photon arrival statistics
and the photon counts are no longer Poisson distributed. Any
incident photons which arrive after the initial photon event and
before the end of the quenching process, go undetected. In this
study, a SPAD detector with constant dead time is considered
which cannot record counts for a time interval of fixed dura-
tion, Td, immediately following the registration of a count. It
is assumed that the SPAD is ready to operate at the beginning
of the counting interval of [0, Tb). Therefore, the maximum
observable count during this period is kmax = �δ� + 1, where
δ = Tb/Td and �x� denotes the largest integer that is smaller
than x. The probability of k photons being detected during the
time interval of [0, Tb) where k ≤ kmax is computed here.
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Assume that k < kmax. Let the time of arrival of photons
be denoted by t1, t2, ..., tk where 0 ≤ t1 ≤ t2 ≤ ... ≤ tk < Tb.
The sample function density on the interval [0, Tb) for this
counting process is p(t1, t2, ..., tk, K = k; λ, Tb, Td), which
can be treated as an ideal counting process affected by dead
time. Hereinafter, for simplicity of notations, the sample func-
tion density is denoted by p(t1, t2, ..., tk, K = k) which can
be calculated as [7]:

p(K = 0) = e−λTb

p(t1, K = 1) = λe−λ(Tb−Td)

...

p(t1, t2, ..., tk−1, K = k − 1) = λk−1e−λ(Tb−(k−1)Td).

(3)

where ti + Td ≤ ti+1 for i = 1, 2, ..., k − 1. The kth arrival
time, tk, may or may not fall within the last Td seconds of the
counting time Tb. Therefore, depending on tk:

p(t1, t2, ..., tk,K = k) ={
λke−λ(Tb−kTd), tk < Tb − Td

λke−λ(tk−(k−1)Td), tk > Tb − Td.
(4)

In order to obtain the probability of receiving k photons
over the period [0, Tb), the probability density in (4) needs to
be integrated over the region spanned by t1, t2, ..., tk. Region
{R} is defined as the set of all possible values for arrival times
t1, t2,..., tk, and it can be divided into two subsets {R1} and
{R2} such that, {R} = {R1}∪{R2}, where {R1} consists of
all possible k-tuples which hold the first case of (4), meaning
that the detection of all k photons are entirely contained in
[0, Tb), while k-tuples of {R2} hold the second case of (4)
and the dead time of the SPAD after detecting the last (kth)
photon extends out of [0, Tb). Therefore, the probability of
detecting k photons in the interval [0, Tb) is given by:

pK(k) = p1(k) + p2(k) , (5)

where,

p1(k) =

∫

{R1}

p(t1, ..., tk, K = k)dtk...dt1

p2(k) =

∫

{R2}

p(t1, ..., tk, K = k)dt1...dtk

(6)

The photon arrival times t1, t2, ..., tk belonging to subset {R1}
must satisfy the following inequalities,

0 ≤ t1 ≤ Tb − kTd

t1 + Td ≤ t2 ≤ Tb − (k − 1)Td

...
tk−1 + Td ≤ tk ≤ Tb − Td .

The first integral in (6) can be calculated as:

p1(k) =
(λ(Tb − kTd))

k

k!
e−λ(Tb−kTd) . (7)

For the subset {R2}, the detecting times t1, t2, ..., tk of
photons must satisfy the following inequalities:

Tb − Td ≤ tk ≤ Tb

(k − 2)Td ≤ tk−1 ≤ tk − Td

...
0 ≤ t1 ≤ t2 − Td .

and,

p2(k) =

k−1∑

i=0

λi(Tb − kTd)
i

i!
e−λ(Tb−kTd)

−
k−1∑

i=0

λi(Tb − (k − 1)Td)
i

i!
e−λ(Tb−(k−1)Td) .

(8)

Therefore:

pK(k) =

k∑

i=0

ψ (i, λ (Tb − kTd))

−
k−1∑

i=0

ψ (i, λ (Tb − (k − 1)Td)) ,

(9)

where ψ(x, y) = yxe−y/x! is used for simplicity.
Consider the case where k = kmax. In this case, the dead

time of last detected photon ends outside the interval [0, Tb),
then:

p(t1, t2, ..., tk, K = k) = λke−λ(tk−(k−1)Td) , (10)

pK(k) =

∫

{R′}

p(t1, ..., tk, K = k)dt1...dtk , (11)

where the domain of integration {R′} is defined by the
following inequalities:

(k − 1)Td ≤ tk ≤ Tb

(k − 2)Td ≤ tk−1 ≤ tk − Td

...
Td ≤ t2 ≤ t3 − Td

0 ≤ t1 ≤ t2 − Td .

The integral in (11) is then calculated as:

pK(k) = 1 −
k−1∑

i=0

ψ (i, λ (Tb − (k − 1)Td)) . (12)

pK(k) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

k∑
i=0

ψ(i, λ(Tb − kTd)) −
k−1∑
i=0

ψ(i, λ(Tb − (k − 1)Td)) k < kmax

1 −
k−1∑
i=0

ψ(i, λ(Tb − (k − 1)Td)) k = kmax

0 k > kmax

(13)
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Figure 1. Probability distribution of SPAD photocounts for Tb = 1 μs,
λ = 3 × 107 photon/s and δ = 0.02.

It is therefore concluded that the probability of counting
k photons by a SPAD with fixed dead time Td is given by
(13). The probability mass function (PMF) obtained in (13)
is plotted in Fig. 1 and compared with the Monte Carlo
simulation results. In Fig. 2, the PMF is plotted for different
values of δ = Td/Tb. Note that for a receiver with no dead
time, the photocount distribution is Poisson with mean λTb.
In the presence of dead time, the PMF is shifted towards the
lower end as shown in Fig. 2. Furthermore, the probability
density is zero for k > kmax.

III. EFFECTIVE COUNT RATE

In all counting systems there are a number of practical con-
straints which limit the minimum and/or maximum achievable
count rate. In the case of SPAD-based devices, background
noise and dead time losses are the two main limiting factors.
While dead time gives restrictions on the highest measurable
count rate, noise causes the limitation in the low count rate
region. The maximum count rate of commercial SPADs is
restricted to a few MHz, due to the slow recharging process
after a detection event, and it is also affected by afterpulsing,
which is an additional source of counting errors and refers to
avalanche events that originate from the emission of carriers
that were trapped in the multiplication region during previous
avalanche events.

SPADs can be considered as a new generation of Geiger-
Muller (GM) detectors which have been widely studied in
published research [8] and various models for their achievable
count rates have been developed which take into account the
effects of dead time losses [9]. Regarding dead time losses,
a SPAD is quite similar to GM counters except the noise
effect is different; unlike GM counters, the background noise,
an intrinsic characteristic of SPADs, is due to the thermal
generation, not an external source of counts.

Detailed studies for GM counters have identified two ideal-
ized models for dead time modified count rate, the paralyzable
and the nonparalyzable dead time models [8]. These models
can also be used for SPAD detectors, provided that all the
device characteristics concerning noise and afterpulsing are
taken into account.
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Figure 2. Probability distribution of SPAD photocounts for Tb = 1 μs,
λ = 3 × 107 photon/s and different values of δ.

In a nonparalyzable SPAD, any photon arriving during the
dead time is neither counted nor has any influence on the
dead time duration; while for the paralyzable case, any photon
arrival occurring during the dead time is not counted but is
assumed to extend the dead time period. In these two cases
the relationship between the true counting rate (i.e. photon
rate), λ, and the effective count rate (i.e. observed rate), λ′, is
given by [8]:

paralyzable : λ′ = λe−λTp ,

nonparalyzable : λ′ =
λ

1 + λTnonp
,

(14)

where Tp and Tnonp are the paralyzable and nonparalyzable
dead times, respectively. In addition, assuming a time interval
of Tb seconds, the maximum predicted count rate for the
nonparalyzable case would be 1/Tnonp, which is also called
‘saturation count rate’, meaning that a SPAD is not able to
reach count rates higher than this value. For the paralyzable
case, however, the peak count rate would be lower than 1/Tp,
because each photon arriving during dead time, prolongs the
dead time duration.

Note that two approaches can be followed to recover the
SPAD after a successful detection: passive quenching and
active quenching. In general, passive quenched circuits show
a paralyzable dead time behavior, whereas active quenching
generates a short nonparalyzable dead time [10].

The comparison between the Monte Carlo simulations
and the above dead time modified count rate models for a
single SPAD, for a count interval of Tb = 1 μs is given
in Fig. 3. These Monte Carlo simulations demonstrate that
the predictions of the analytical framework perfectly match
with the simulation results. The nonparalyzable case reaches
the theoretical saturation count rate of 1/Tnonp and the peak
count rate of the paralyzable type occurs at 1/(eTp), accurately
predicted by the paralyzable model.

In Fig. 4, the effect of SPAD dead time on the achievable
count rate is investigated. As shown, for a given photon rate,
when the dead time is increased, the achievable count rate
decreases and both paralyzable and nonparalyzable SPADs will
reach a lower peak or saturation count rate.
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Figure 3. Effective count rate comparison of nonparalyzable and paralyzable
SPAD receivers with respect to photon rate (Tnonp = Tp = 30 ns).

IV. PERFORMANCE EVALUATION

SPADs can be used as photon counting receivers in optical
communication systems. In a photon counting receiver the
dominant noise source is the background counts which mainly
arises from dark counts, afterpulsing and ambient light, and
will determine the achievable BER. However, the dead time is
another limiting factor for the performance of any SPAD-based
receiver. In the following, the effect of background counts and
the dead time on the performance of a SPAD-based receiver is
investigated and the bit error probability for OOK modulation
is provided. In OOK modulation each bit is transmitted by
either pulsing the light source on or off during each bit time
interval, say Tb seconds long, so that one data bit is sent
every Tb seconds. Hence the system transmits at the bit rate
Rb = 1/Tb.

Assuming that λs and λn are the average photon rates from
source and background noise, respectively, Ks = λsTb and
Kn = λnTb are the contributions to the average count from
the signal and background noise per bit interval Tb. When a
“0” bit is transmitted, the average number of photons impinged
on the SPAD per bit time interval is Kn, and when a “1” bit
is transmitted, the average number of received photons per bit
time interval is Ks + Kn. Therefore, according to (13), pn(k)
and psn(k), the probability that exactly k photons are counted
by the SPAD in the counting interval of Tb seconds, when “0”
or “1” are sent, respectively, are given by:

pn(k) = pK(k; λn, Tb, Td) ,

psn(k) = pK(k; λs + λn, Tb, Td) .
(15)

In this system, decoding is simply achieved by a threshold
comparison. The number of counted photons is compared with
a threshold mT. A decoding error will occur if k ≤ mT when
a “1” bit is sent, or if k > mT, when a “0” bit is sent. Hence
the probability of error for equally likely bits is:

Pe =
1

2
Pr {k > mT|0} +

1

2
Pr {k ≤ mT|1} . (16)
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Figure 4. Effective count rate comparison of nonparalyzable and paralyzable
SPAD receivers for different dead time values.

Considering the dead time modified count probabilities in (15):

Pe =
1

2

∞∑

k=mT+1

pn (k) +
1

2

mT∑

k=0

psn (k) . (17)

In (17), the upper limit of the first summation can be
replaced by kmax. The error probability, Pe, highly depends
on mT which can be selected to yield the lowest probability
of making an error. This occurs at the value of mT where
dPe/dmT = 0. Using the definition of incomplete gamma
function and the rules of differentiating summations [11]:

d

dx

[
x∑

k=0

f (k)

]
= f (x) ,

d

dx

[
n∑

k=x

f (k)

]
= −f (x − 1) ,

(18)

it can be shown that the threshold value mT which minimizes
Pe occurs when the following equation holds:

Γ(mT, K4) − Γ(mT, K2)

=
Γ(mT + 1, K3) − Γ(mT + 1, K1)

mT
,

(19)

where K1 = λn(Tb − mTTd), K2 = λn(Tb − (mT − 1)Td),
K3 = (λs + λn)(Tb − mTTd), and K4 = (λs + λn)(Tb −
(mT −1)Td) have been used for simplicity of representing the
equation. This equation can be solved numerically to obtain
mT.

The probability of error given in (17) is evaluated and
compared with simulation results in Fig. 5, using the threshold
obtained in (19). Independent count statistics are assumed for
each transmitted bit and Tb = 1 μs is further assumed. In
this figure, BER is plotted as a function of Ks for different
values of Kn and δ. As demonstrated, Monte Carlo simulations
and analytical calculations result in perfectly matching curves.
Also note that the threshold depends on the average number of
received photons from both source and background noise, and
this highlights a technical challenge with the OOK systems,
as Ks and Kn must be known exactly to optimally set the
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Figure 5. Analytical (solid curves) and simulation (asterisks) BER results of
a SPAD-based receiver for different values of δ and Kn.

threshold.
Note that the performance of the SPAD-based receivers de-

pends strongly on the background count statistics. For SPADs
with no background noise, the effect of dead time on BER
is negligible for small values of Ks as in Fig. 5. However,
when background noise is present, the performance becomes
very sensitive to the dead time. According to Fig. 5, even for
Kn = 1, the performance is sensitive to the SPAD dead time,
and this becomes more apparent, when Kn increases. Also,
it is apparent that for a given Kn, a higher signal power is
needed to maintain the system performance in the presence
of detector dead time. In other words, to achieve a particular
BER, the larger δ is, the higher Ks should be.

In Fig. 6, BER is plotted as a function of δ. As shown,
when Kn = 1 and for different values of Ks (black curves), at
small values of δ, the effect of dead time on the BER is almost
negligible. As the dead time increases, however, the BER starts
to increase and a slight distortion is observed. This increasing
trend of BER with respect to δ is more significant for larger
values of Ks, and as Ks increases, the distortion in the BER
curve occurs at a lower value of δ. As shown in Fig. 6, for
Ks = 30 and different values of Kn (red curves), as the dead
time increases, the BER starts to increase, and δ > 0.03 results
in a significant distortion in the BER curves.

V. CONCLUSION

In this paper, a comprehensive study of SPAD-based optical
receivers is conducted and the effect of SPAD dead time on the
photon counting process and maximum achievable count rate is
investigated. It is shown that, unlike conventional photodetec-
tors for which the detection process can be well approximated
by a Poisson arrival process, SPAD count statistics are affected
by its dead time, and the number of detected photons over a
fixed time interval does not follow a Poisson distribution. In
addition, the error performance of an OOK modulation optical
system is derived in terms of SPAD dead time and background
counts. It is shown that the distorted count statistics result in a
higher bit error rates, and a higher signal intensity is required
to maintain system performance.
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Abstract—In this paper a novel photon counting receiver for
optical communication applications is proposed. The proposed
receiver is a single photon avalanche diode (SPAD) array which
can provide a significantly improved detection sensitivity com-
pared to conventional photodiodes. First, the detection statistics
and main characteristics of a single SPAD receiver is presented,
and the effects of the SPAD dead time, which is introduced
by the quenching process, on the counting probability and
effective count rate are studied. The approach is then extended
to account for SPAD arrays. Using a Gaussian approximation,
the counting distribution of a large size SPAD array is derived
and effective count rate of arrays with different sizes is evaluated
and compared. It is found that even in SPAD arrays, dead time
still has a significant role in the maximum achievable count rate,
and the fill factor of the array greatly affects the performance
and count rate and has to be carefully dealt with. The impact of
SPAD background counts and fill factor on the error performance
of an on-off keying (OOK) modulation optical communication
system is also investigated. It is shown that the bit error rate
(BER) depends critically on back ground counts and improves
with increasing fill factor.

Keywords—Single Photon Avalanche Diode (SPAD), SPAD
arrays, photon counting, optical receivers, on-off keying (OOK).

I. INTRODUCTION

Visible light communications (VLC) has recently been
an area of interest, and new devices have been proposed as
potential transmitters and/or receivers for VLC systems. There
has been significant progress towards the realization of optical
receivers fully integrated with the standard digital CMOS
technology. Recent trends towards integrated CMOS high-
speed optical receivers have specially employed avalanche
photodiodes (APDs), but the maximum achievable gain of an
APD is limited due to low sensitivity and the gain-dependent
excess noise. This requires the use of intricate high gain
transimpedance amplifiers (TIAs), limiting amplifiers (LA) and
adaptive equalizers.

To address these challenges, APDs can be used in the
so-called ‘Geiger mode’ as single photon avalanche diodes
(SPADs). In Geiger mode, the SPAD is biased beyond its
breakdown voltage. As a result, due to the high electric field,
the absorption of a single photon will initiate an avalanche
of charge carriers which leads to a large internal gain. The
extremely high gain allows single photon events to be detected
effectively and single-photon detection sensitivity can then be
improved. However, after each photon detection event, the
SPAD needs to be quenched to recover from the excess charge
carriers. This quenching process introduces a finite recovery

time, known as the ‘dead time’, during which the device
does not respond to another incident photon. Two approaches
can be followed to recover the SPAD after a successful
detection: passive quenching and active quenching. In general,
passively quenched circuits show an extended or paralyzable
dead time behavior, whereas active quenching generates a short
constant or nonparalyzable dead time. In a SPAD device with
nonparalyzable deadtime, any photon arriving during the dead
time is neither counted nor has any influence on the dead time
duration; while for the paralyzable case, any photon arrival
occurring during the dead time is not counted but is assumed
to extend the dead time period [1].

Various types of SPADs have been successfully employed
in a number of applications, including three-dimensional imag-
ing [2], quantum key distribution [3], and deep space laser
communications [4]. The high sensitivity and time resolution
of SPADs have recently highlighted the potential of employing
SPADs as photon counting receivers for VLC systems [5]–
[8]. They can be used with the long term aim of power
efficient and highly sensitive receivers and are particularly
attractive because they are able to closely approach quantum-
limited sensitivity in the detection of weak optical signals in
long distance communications, such as in the gas extraction
industry, or in downhole monitoring systems [9].

Nevertheless, to the best of authors’ knowledge, there
is limited published research on the detection statistics of
SPAD receivers in literature. In [10], we presented a thorough
characterization and detailed analysis of detection statistics of
a single SPAD with nonparalyzable dead time, operating as an
optical receiver. In this paper, we extend our previous approach
and characterize an array of SPADs for optical communication
applications. In particular, analytical modelling and simulation
results are provided which predict the performance of a SPAD-
based array receiver. Throughout this paper, a SPAD device
with a nonparalyzable dead time is considered.

The rest of the paper is organized as follows. The photo-
count statistics and count rate of a single SPAD and a SPAD
array are discussed in Section II, and how the count statistics
and effective count rate are affected by SPAD dead time is
explained. An approximate mathematical model for the count
probability of a SPAD array is developed and Monte Carlo
methods are employed to verify the validity of the analytical
models. Furthermore, the major constraints which limit the
achievable count rate of SPAD receivers are addressed. The
mathematical counting distribution of the SPAD array derived
in Section II is then used in Section III to predict the error
performance of an on-off keying (OOK) modulation optical
system. Finally, concluding remarks are given in Section IV.
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II. PHOTOCOUNT STATISTICS

A. Single SPAD

1) Probability Mass Function (PMF): In the absence of
SPAD dead time, the detection of photon arrival events can be
modeled as a Poisson arrival process for which the probability
of detecting k photons over a time period of [0, Tb) is given
by:

p0(k;λTb) =
(λTb)ke−λTb

k!
, (1)

where the constant λ is the average photon arrival rate, hence,
λTb is the average number of photons arriving at the SPAD
during the observation time of Tb seconds. The photocount
rate λ is related to the power of the optical signal by:

λ =
ηQEPs

hν
, (2)

where ηQE is the quantum efficiency of SPAD; Ps denotes the
power of the incident optical signal; h is the Planck’s constant;
and ν represents the frequency of the optical signal.

When the SPAD dead time is considered, however, the
actual count statistics can be very different from the photon
arrival statistics and the photon counts are no longer Poisson
distributed. Any incident photons which arrive after the initial
photon event and before the end of the quenching process,
go undetected. In this study, a SPAD detector with constant
dead time is considered which cannot record counts for a
time interval of fixed duration, τ , immediately following the
registration of a count. It is assumed that SPAD is ready to
operate at the beginning of the counting interval of [0, Tb).
Therefore, the maximum observable count during this period
is kmax = ⌊δ⌋ + 1, where δ = Tb/τ and ⌊x⌋ denotes the
largest integer that is smaller than x. In [10], the detection
statistics of a single SPAD was investigated and it was shown
that the probability of k photons being detected during the
time interval of [0, Tb) is given by [10]:

pK(k) =





k∑
i=0

ψ(i, λk) −
k−1∑
i=0

ψ(i, λk−1) k < kmax

1 −
k−1∑
i=0

ψ(i, λk−1) k = kmax

0 k > kmax

(3)

where λk = λ(Tb − kτ), λk−1 = λ(Tb − (k − 1)τ) and the
function ψ(i, λ) is defined as:

ψ(i, λ) =
λie−λ

i!
. (4)

2) First and second moments: The mean and variance of
the photocount distribution in (3) are:

µK = kmax −
kmax−1∑

k=0

k∑

i=0

ψ(i, λk), (5)

σ2
K =

kmax−1∑

k=0

k∑

i=0

(2kmax − 2k − 1)ψ(i, λk)

−
(

kmax−1∑

k=0

k∑

i=0

ψ(i, λk)

)2

.

(6)

Figure 1. Geometry of a SPAD array.

It can readily be verified that as dead time goes to zero,
the PMF in (3) approaches the ideal Poisson distribution. In
such a case, the limiting relations limτ→0 µK = λTb and
limτ→0 σ

2
K = λTb in (5) and (6) can also be confirmed, where

λTb is the mean value of the ideal Poisson distribution.

3) Approximation of PMF for large mean counts: In the
case where the mean count is large, it can be shown that the
count distribution of (3) may be approximated as

pK(k) ≈ ψ(k, λk), (7)

for k ≤ kmax.

4) Effective count rate: In a SPAD-based receiver, back-
ground noise and dead time losses limit the minimum and/or
maximum achievable count rate. While dead time gives re-
strictions on the highest measurable count rate, noise is the
limitation in the low count rate region. The maximum count
rate of commercial SPADs is restricted to a few MHz, due to
the slow recharging process, also called ‘quenching process’,
after a detection event, and it is also affected by afterpulsing,
which is an additional source of counting errors and refers to
avalanche events that originate from the emission of carriers
that were trapped in the multiplication region during previous
avalanche events.

SPADs can be considered as a new generation of Geiger-
Muller (GM) detectors which have been widely studied in
published research [11], [12]. Provided that all the device
characteristics concerning noise and afterpulsing are taken into
account, a SPAD with constant dead time can be treated as
a nonparalyzable GM counter, in which any photon arriving
during the dead time is neither counted nor has any influence
on the dead time duration. According to the nonparalyzable
dead time count rate model, the relationship between the true
counting rate (i.e. photon rate), λ, and the effective count rate
(i.e. observed rate), λ′, is given by [11]:

λ′ =
λ

1 + λτnonp
, (8)

where τnonp is the nonparalyzable dead time. Note that as-
suming a time interval of Tb seconds, the maximum predicted
count rate for the nonparalyzable case would be 1/τnonp,
which is termed ‘saturation count rate’, meaning that a SPAD
is not able to reach count rates higher than this value.
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B. SPAD Array

To increase the capacity of the photon counts, an array of
SPADs may be considered which outputs the superposition of
the photon counts from the individual SPADs. Other than the
dead time of the single SPADs, the Fill Factor (FF) of the
SPAD array affects the photocount distribution. FF is defined
as the ratio of the SPAD total active area to the total array area
and it represents the probability that the incoming photons hit
the active area.

Figure 1 illustrates the configuration of a rectangular SPAD
array consisting of R × C single SPADs as the cell element
of the array. The FF coefficient of this array is given by:

CFF =
lw

(l + g)(w + g)
. (9)

Array elements are indexed with the subscripts mn , where
1 ≤ m ≤ R and 1 ≤ n ≤ C, to denote their position within
the array.

1) Probability distribution, mean and variance: In the ab-
sence of dead time, Poisson counting process will be observed
at each element of the array. However, when dead time is
present and the effect of FF is considered, the PMF in (3) can
be rewritten for the mnth element of the array as pK(kmn)
with parameters

kmax,mn =

⌊
Tb

τmn

⌋
+ 1 ,

λ′
kmn

= CFFλmn(Tb − kmnτmn) ,

where λmn is the average photon arrival rate at mnth SPAD
and τmn is the dead time of the mnth element.

Assuming independent statistics for each SPAD in the
array, the joint sample function density of the SPAD array
can be described as:

Pr(n) =

R∏

m=1

C∏

n=1

pK(kmn), (10)

where n ≡ [k11, k12, ..., kR(C−1), kRC ].

Considering independent random variables, Kmn , as the
number of photon counts at mnth element of the array, a new
random variable can be defined as:

X =

R∑

m=1

C∑

n=1

Kmn , (11)

Therefore, the probability distribution of X is expressed as:

pX(x) =
∑

k11

∑

k12

...
∑

kR(C−1)

Pr(n′), (13)

where n′ ≡ [k11, k12, ..., kR(C−1), x−
R∑

m=1

C−1∑
n=1

kmn ].

It is in general challenging to obtain a closed-form ex-
pression for (13), nevertheless, an approximate expression for
pX(x) can be obtained when the number of array elements is
large. In that case, according to Central Limit Theorem (CLT),
the dead time modified counting distribution of a SPAD array
can be approximated by a Gaussian distribution:

pX(x) ∼ N (µX , σ
2
X), (14)
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Figure 2. Probability distribution of a 64 × 64 SPAD array photocounts for
Tb = 1 µs, λ = 3 × 107 photon/s, CFF = 0.64 and δ = 0.005.
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Figure 3. Probability distribution of a 64 × 64 SPAD array photocounts for
Tb = 1 µs, λ = 3 × 107 photon/s, CFF = 0.64 and different values of δ.

where,

µX =

R∑

m=1

C∑

n=1

µmn ,

σ2
X =

R∑

m=1

C∑

n=1

σ2
mn .

Here, µmn and σ2
mn are the mean and variance of the photo-

count distribution of the mnth SPAD in the array.
The exact counting distribution in (13), calculated using

numerical methods, and the approximate counting distribution
obtained in (14) are plotted in Fig. 2 and compared with the
Monte Carlo simulation results. In Fig. 3, (14) is plotted for
different values of δ = τ/Tb. As shown, the Monte Carlo sim-
ulation results and the Gaussian approximation are perfectly
matched and this confirms the validity of the approximation
approach. Also note that as the dead time increases, both
the mean and variance of the photon counts decrease and
this is in total agreement with the analytical approximations.

2015 4th International Workshop on Optical Wireless Communications (IWOW)

134

Publications

153



10
5

10
6

10
7

10
8

10
9

10
10

10
11

10
12

10
13

10
5

10
7

10
9

10
11

10
13

10
15

Photon rate (photon/s)

C
ou

n
t
ra
te

(p
h
ot
on

/s
)

 

 

τ =1 ns

τ =10 ns

τ =100 ns

1× 1

8× 8

64× 64

Figure 4. Analytical (solid curves) and simulation (asterisks) results for
effective count rate of different SPAD arrays with CFF = 0.64 for various
dead time values.

Furthermore, note that throughout this paper, in all simulation
results, practical values for SPAD parameters are assumed
which are all adoped from [6] and [7].

2) Effective count rate: For a SPAD array, the achievable
count rate is expected to be improved as the number of array
elements increases. Assuming identical array elements and
constant photon arrival rate, the nonparalyzable count rate
model in (8) can be modified for a SPAD array of size R×C
elements as:

λ′ =
λRC

1 + λτnonp
, (15)

The comparison between the Monte Carlo simulations and the
above dead time modified count rate model for a SPAD array,
is given in Fig. 4 where the observed count rate for arrays of
different sizes are compared. According to these curves, the
saturation count rates are scaled by the size of array compared
to a single SPAD. Also note that the dead time has a significant
effect on the maximum achievable count rate and it determines
the saturation level of the count rate.

III. PERFORMANCE EVALUATION

SPADs can be used as photon counting receivers in optical
communication systems. In a photon counting receiver the
dominant noise source is the background counts which mainly
arises from dark counts, afterpulsing and ambient light, and
will determine the achievable BER. However, the dead time is
another limiting factor for the performance of any SPAD-based
receiver. In the following, the effect of background counts and
the dead time on the performance of a SPAD-based receiver is
investigated and the bit error probability for OOK modulation
is provided.

In OOK modulation each bit is transmitted by either
pulsing the light source on or off during each bit time interval,
say Tb seconds duration, so that one data bit is sent every Tb

seconds. Hence the system transmits at the bit rate Rb = 1/Tb.
Assuming λs and λn as the average photon arrival rates

from source and background noise, respectively, Ks = λsTb

and Kn = λnTb are the contributions to the average count
from the signal and background noise counts per bit interval
Tb for each array element. When a “0” bit is transmitted, the
average number of photons impinged on each single SPAD per
bit time interval is Kn, and when a “1” bit is transmitted, the
average number of received photons per bit time interval is
Ks +Kn. Therefore, according to (13), p0(x) and p1(x), the
probability that exactly x photons are counted by the SPAD
array in the counting interval of Tb seconds, when “0” or “1”
are sent, respectively, are given by:

p0(x) = pX(x;λn) ,

p1(x) = pX(x;λs + λn) .
(16)

In this system, decoding is simply achieved by a threshold
comparison. The number of counted photons is compared with
a threshold xT. A decoding error will occur if x ≤ xT when
a “1” bit is sent, or if x > xT, when a “0” bit is sent. Hence
the probability of error for equally likely bits is [13]:

Pe =
1

2
Pr {x > xT|0} +

1

2
Pr {x ≤ xT|1} . (17)

Considering the count probabilities in (16):

Pe =
1

2

∞∑

x=xT+1

p0 (x) +
1

2

xT∑

x=0

p1 (x) . (18)

In order to calculate the probability of error in (18), the
Gaussian approximation in (14) can be applied to p0(x) and
p1(x) so that p0(x) ∼ N (µ0, σ

2
0) and p1(x) ∼ N (µ1, σ

2
1).

Note that the array size is assumed to be sufficiently large,
hence, this approximation is valid. Therefore, Pe can be
approximated as:

Pe
∼= 1

2

∫ ∞

xT

p0(x) dx +
1

2

∫ xT

0

p1(x) dx

=
1

2
Q

(
xT − µ0

σ0

)
+

1

2
Q

(
µ1 − xT

σ1

)
.

(19)

where, Q(x) = 1/
√

2π
∫∞

x
exp(−α2/2) dα is the Q-function.

The error probability, Pe, highly depends on xT which can be
selected to yield the lowest probability of occurring an error.
This occurs at the value of xT where dPe/dxT = 0. It can
be shown that the threshold value xT which minimizes Pe is
given by (20) which can be further approximated as:

xT =
µ1σ0 + µ0σ1

σ0 + σ1
. (21)

When this threshold is used, the resulting Pe in (19) is
simplified to:

Pe
∼= Q

(
µ1 − µ0

σ1 + σ0

)
. (22)

xT =

µ0

σ2
0

− µ1

σ2
1

+

√(
µ0

σ2
0

− µ1

σ2
1

)2

−
(

1
σ2
0

− 1
σ2
1

){(
µ2

0

σ2
0

− µ2
1

σ2
1

)
+2 ln

(
σ0

σ1

)}

1
σ2
0

− 1
σ2
1

, (20)
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Figure 5. Analytical (solid curves) and simulation (asterisks) BER results of a
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and τ = 1 ns).

Note that with the assumption of a Gaussian distribution,
Pe depends only on the difference of the photodetected mean
values. Thus any contribution to both means, such as from
dark current or background noise, would not effect the µ1−µ0

term, these will however contribute to the variances. Defining
the signal-to-noise-ratio (SNR) as:

SNR =
(µ1 − µ0)

2

(σ1 + σ0)
2 (23)

Pe can also be written as:

Pe = Q
(√

SNR
)
. (24)

The probability of error given in (22) is evaluated and
compared with simulation results in Fig. 5, using the threshold
obtained in (21). Independent count statistics are assumed for
each transmitted bit, and it is assumed that the array elements
are identical and Tb = 1 µs. In this figure, BER is plotted
as a function of Ks for different values of Kn and CFF. As
shown, Monte Carlo simulations and analytical models result
in perfectly matching curves. Also note that the threshold
depends on the average number of received photons from
both the source and background noise, and this highlights a
technical challenge with the OOK system, as λs and λn must
be known exactly to optimally set the threshold.

According to this figure, it can also be concluded that
the array FF has an important role in the performance of a
SPAD-based array receiver where the increase in the array FF
improves the system performance.

IV. CONCLUSION

In this paper, a comprehensive study of SPAD-based op-
tical receivers is conducted. The detection statistics and main
characteristics of single SPAD and SPAD array receivers are
discussed and it is shown that, the counting distribution of a
large size SPAD array can be well approximated by Gaussian
distribution. The effects of SPAD dead time and array fill
factor on the photon counting process and the maximum
achievable count rate is also investigated. In addition, the

error performance of an OOK modulation optical system is
studied and it is concluded that as the background counts
increase, a higher signal power is needed to maintain the
system performance.
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Abstract—In this paper, the information rate of single photon
avalanche diode (SPAD) receivers with active quenching circuits
for optical communication systems is studied. The SPAD receiver
is modeled as a discrete memoryless channel (DMC), and the
information transfer rate is studied using an information theo-
retic approach. To assess the input-output information transfer
rate of the SPAD optical receiver, a channel capacity metricis
proposed which is a function of several parameters including
average signal photon count, SPAD dead time, and SPAD average
background counts. The proposed metric can be used for theoret-
ical optimization of the device structure and operating conditions.
Performance results are presented based on the proposed metric.

Index Terms—Single Photon Avalanche Diode (SPAD), active
quenching, photon counting, dead time, channel capacity.

I. I NTRODUCTION

Single Photon Avalanche Diodes (SPADs) are gaining in-
terest in the field of optical wireless communications (OWC)
owing to their high power efficiency, high sensitivity, high
detection efficiency, and high timing resolution [1]–[3]. SPADs
are able to closely approach quantum-limited sensitivity in
the detection of weak optical signals and this has recently
highlighted the potential of employing them in applications
where long distance transmission requires highly sensitive
receivers capable of detecting a single photon [4], [5].

SPADs are semiconductor devices with p-n junctions and
are operated in avalanche breakdown photon counting mode,
also termed as ‘Geiger mode’. In Geiger mode, the p-n junc-
tion is biased above the breakdown voltage such that individual
photons trigger an avalanche breakdown. The avalanche break-
down results in a strong output current spike which is then
individually counted [6]. Every time an avalanche breakdown
occurs, the output current has to be quenched by lowering the
bias voltage down to or below breakdown voltage to stop the
avalanche event, and in order to detect a subsequent photon,
the bias voltage must be raised again. This is accomplished
by a suitable electronic circuit known as ‘quenching circuit’.
During the quenching process, SPAD is unresponsive for a
circuit specific ‘dead time’. Two approaches can be followedto
design a quenching circuit: passive quenching (PQ) and active
quenching (AQ). The configurations of PQ and AQ circuits are
presented in [7]. In general, PQ SPADs are identified as par-
alyzable detectors where any photon arrival occurring during
the dead time is not counted but is assumed to extend the dead
time period; while in an AQ SPAD device, the duration of the

dead time introduced by the quenching process is constant, that
is, any photon arriving during the dead time is neither counted
nor has any influence on the dead time duration. Thus AQ
SPADs are defined as nonparalyzable detectors and generally
have higher count rates than PQ SPADs [7].

Quenching circuits directly affect the performance of the
device because of the dead time they introduce for the re-
covering process. The relatively long dead time due to the
slow recovery process, limits counting rates, and results in
a considerable count loss relative to an ideal dead time-free
photon counting detector, however second order effects such as
afterpulsing, prevent arbitrarily short dead time. The dead time
of commercially available SPAD receivers vary in the range of
a few nanoseconds to tens of nanoseconds, causing significant
losses for communication links with slot widths of the same
order. This has motivated recent studies on characterizing
losses due to the SPAD dead time [8], [9]. Furthermore,
while dead time confines the highest measurable count rate,
background noise limits the low count rates.

To date, there has been extensive work on designing
SPAD receivers for a number of applications including three-
dimensional imaging [10], quantum key distribution [11], and
deep space laser communications [12], and much effort has
been devoted to optimizing the SPAD key performance metrics
(e.g. detection efficiency, dead time, dark count rate, timing
jitter, etc.) to improve its performance for communication
purposes [1], [2], [4], [13]. In all the aforementioned articles,
the impact of SPAD dead time and dark current on the
performance of the systems have been experimentally explored
and it is reported that due to these non-idealities the output rate
is limited. Currently, efforts are underway to integrate SPAD
elements directly with quenching circuitry using standarddig-
ital CMOS technology. Aiming to achieve higher output rates
for optical communication applications, SPAD arrays fully
integrated with the CMOS technology have been implemented.
Nevertheless, highest achievable data rates are still restricted to
a few tens of MHz. The effect of dead time can be mitigated
by improving the performance of active quenching circuits
and by device multiplexing techniques. For example in [2],
a reconfigurable 32×32 SPAD array receiver integrated in
standard 130 nm CMOS is presented for optical links and
the properties of the receiver for optical communications are
investigated, and a data rate of 100 MHz is reported.

While SPAD detectors remain an active area of develop-
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ment, there does not exist enough theoretical analysis which
would specify the performance limitations of these receivers.
In [8], we studied the effect of dead time on the photocount
statistics of a single SPAD receiver where the probability of
detection and the error probability in an optical communication
system were analyzed. Also, in [9], the counting distribution
and count rate of SPAD arrays were discussed. The aim
of this study is to investigate how the maximum achievable
information transfer rate of a SPAD receiver is limited by non-
ideal behavior of an AQ circuit.

The rest of this paper is organized as follows. In Section II,
a brief review of SPAD photocounting statistics in the presence
of dead time is given, and the impact of dead time on the max-
imum achievable count rate of the SPAD receiver is discussed.
In Section III, the modeling of a SPAD device as a discrete
memoryless channel (DMC) with binary inputs is presented,
and the channel capacity metric is introduced to assess the
information transfer rate of the SPAD receiver. In Section IV,
the numerical results are presented, and discussions on the
effect of various parameters on the information transfer rate of
the SPAD receiver are provided. Finally, concluding remarks
are given in Section V.

II. SPAD COUNTING STATISTICS

In the following, the key statistical characteristics of AQ
SPADs are summarized:

1) Probability Mass Function (PMF): In the absence of
SPAD dead time, the detection of photon arrival events can be
modeled as a Poisson arrival process for which the probability
of detectingk photons over a time period of[0, Tb) is given
by [14], [15]:

p0(k;λ) =
(λTb)ke−λTb

k!
, (1)

where the constantλ is the average photon arrival rate (in
photons/sec), and hence,λTb is the average number of photons
arriving at the SPAD during the observation time ofTb

seconds. The photocount rateλ is related to the optical signal
power by [14], [15]:

λ =
ηQEPs

hν
, (2)

whereηQE is the quantum efficiency of SPAD;Ps denotes the
incident optical signal power;h is the Planck’s constant; and
ν represents the optical signal frequency.

When the SPAD dead time is considered, however, the
photon counts are no longer Poisson distributed. Assuming
that the SPAD detector is ready to operate at the beginning of
the counting interval, the maximum observable counts during
this period iskmax = ⌊Tb/τ⌋+1, whereτ is the dead time and
⌊x⌋ denotes the largest integer that is smaller thanx. In [8],

it was shown that the probability ofk photons being detected
during the time interval of[0, Tb) is given by:

pK(k;λ) =





k∑
i=0

ψ(i, λk) −
k−1∑
i=0

ψ(i, λk−1) k < kmax

1 −
k−1∑
i=0

ψ(i, λk−1) k = kmax

0 k > kmax

(3)

whereλk = λ(Tb − kτ); and the functionψ(.) is defined as:

ψ(i, λ) =
λie−λ

i!
. (4)

2) First and second moments: The mean and variance of
the photocount distribution in (3) are derived as:

µK = kmax −
kmax−1∑

k=0

k∑

i=0

ψ(i, λk), (5)

σ2
K =

kmax−1∑

k=0

k∑

i=0

(2kmax − 2k − 1)ψ(i, λk)

−
(

kmax−1∑

k=0

k∑

i=0

ψ(i, λk)

)2

.

(6)

It can be verified that as dead time goes to zero, the PMF
in (3) approaches the ideal Poisson distribution. In such a case,
the limiting relationslimτ→0 µK = λTb and limτ→0 σ

2
K =

λTb can also be confirmed, whereλTb is the mean of the
ideal Poisson distribution.

3) Effective count rate: For a SPAD detector, background
counts and dead time losses limit the minimum and maximum
achievable count rates. While dead time puts restrictions on
the highest measurable count rate, background noise limitsthe
lowest count rate. The maximum count rate of commercial
SPADs is restricted to a few MHz, and the main reason of
this low bandwidth response is the slow quenching process
after a detection event. There is another source of counting
errors called afterpulsing, and it refers to avalanche events
that originate from the emission of carriers trapped in the
multiplication region during previous avalanche events. The
afterpulsing phenomenon, prevent arbitrarily short dead time,
and hence, limits the maximum achievable count rate indi-
rectly.

According to the nonparalyzable dead time model for
single-photon detectors, the relationship between the actual
count rate (i.e., incoming photon rate),λ, and the effective
count rate (i.e., observed rate),λ′, is given by [16], [17]:

λ′ =
λ

1 + λτ
, (7)

where τ is the nonparalyzable dead time for an AQ SPAD.
Note that, the maximum predicted count rate would be equal
to 1/τ , assuming a time interval ofTb seconds. This is termed
as ‘saturation count rate’, which means that an AQ SPAD is
not able to reach count rates higher than this value.
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III. C HANNEL CAPACITY

The reliability performance of SPAD receivers is specified
by the error and detection probabilities. The maximum achiev-
able data rate is another key metric to characterize SPAD
receivers, and this determines whether or not it is suitablefor
optical communication systems. To address this question, the
SPAD detector can be assumed as a communication channel,
and in this case the channel capacity would be the appropriate
metric to assess the input-output information transfer rate
of the SPAD receiver. In this context, the relevance of the
channel capacity as a performance metric is clear. As long
as the transfer rate of information through the SPAD device
is less than the SPAD capacity, it is possible to make the
error probability arbitrarily small with proper modulation and
coding. In the following, the capacity of the SPAD receiver as
a communication channel is investigated.

A. Discrete Memoryless Channel (DMC)

Here, the SPAD receiver is modeled as a DMC which
comprises a finite input alphabetX = {x1, x2, ..., xN}, and
a finite output alphabetY = {y1, y2, ..., yM}. Let pX(xi) be
the probability that the inputX takes the valuexi, for i = 1, 2,
...,N , and letpY (yj) be the probability that the outputY takes
the valueyj , for j = 1, 2, ...,M . DefinepXY (xi, yj) as the
joint probability of the random variablesX andY evaluated
for xi andyj , and also definepY |X(yj|xi) as the conditional
probability, which expresses the probability of observingthe
output symbolyj given the input symbolxi. The mutual
informationI(xi; yj) between the eventsX = xi andY = yj

is given by [18], [19]:

I(xi; yj) = log
[
pY |X(yj |xi)

]
− log [pY (yj)]

= log

[
pY |X(yj |xi)

pY (yj)

]
,

(8)

where the logarithm is taken to the base 2. The average mutual
information between the inputX and the outputY is then:

I(X ;Y ) =
∑

xi

∑

yj

pXY (xi, yj) log

[
pY |X(yj |xi)

pY (yj)

]
, (9)

which can be rewritten for simplicity as:

I(X ;Y ) =
∑

x

∑

y

pXY (x, y) log

[
pY |X(y|x)
pY (y)

]

=
∑

x

∑

y

pX(x)pY |X(y|x) log

[
pY |X(y|x)
pY (y)

]
,

(10)

wherex and y represent the values of the random variables
X andY . Also, the marginal PMFpY (y) is given by:

pY (y) =
∑

x

pX(x)pY |X(y|x) . (11)

Therefore, if the conditional probabilitypY |X(y|x) is given for
the channel,I(X ;Y ) in (10) can be maximized with respect
to pX(x) to obtain the channel capacity as:

C = max
pX (x)

I(X ;Y ) . (12)

(a) Soft Decisions

(b) Hard Decisions

Fig. 1. DMC modeling of a SPAD receiver.

Assuming a binary signaling case for the SPAD receiver,
the inputX takes the value 1 when a signal is present, and
0 when there is no incoming photon. Two categories may be
considered depending on the SPAD output and the type of
information provided to the decoder by the SPAD receiver:

1) The SPAD receiver makes no explicit symbol decision,
but passes on the slot counts directly to the decoder.
This process is termed as “soft decision”. The soft
decision capacity is expressed as a function of the
channel conditional probabilitypY |X(y|x).

2) The SPAD is designed such that it makes estimates of
each input symbol, passing on these estimates to the
decoder. This process is termed as “hard decision”. The
“hard decision” capacity is expressed as a function of
the probability of symbol errors.

Fig. 1 shows the DMC model for the SPAD receiver with
soft and hard outputs. In the following, the soft and hard
decision capacities for the SPAD receiver with dead time are
discussed.

B. Soft Decision Capacity

Defineλs as the average incoming signal photon rate. Note
that the SPAD receiver has an internal source of Poisson
distributed noise, due to background counts such as dark
counts and afterpulsing. Let the average photon rate from the
background noise be denoted byλn. Therefore, whenX = 0,
the average number of photons in the time interval[0, Tb) is
Kn = λnTb, and if X = 1, the average number of received
photons isKs + Kn = (λs + λn)Tb. According to (3), the
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probabilities that exactlyk photons are counted by the SPAD
receiver in the counting interval ofTb seconds, denoted as
pn(k) andpsn(k), for the corresponding input values ofX = 0
andX = 1, are given by:

pn(k) = pK(k;λn) ,

psn(k) = pK(k;λs + λn) .
(13)

For the soft decision case, the output of the SPAD receiver,
Y , is equal to the number of counts registered during the
counting interval of[0, Tb); thusY can take all non-negative
integer values 0, 1, 2, ...,kmax. Furthermore, it follows that:

pY |X(y|0) = pn(k) ,

pY |X(y|1) = psn(k) .
(14)

AssumingpX(x = 1) = q andpX(x = 0) = 1−q, the average
mutual informationI(X,Y ) given in (10) is expressed as:

I(X ;Y ) =

kmax∑

k=0

{
(1 − q) pn(k) log

[
pn(k)

pY (k)

]

+ q psn(k) log

[
psn(k)

pY (k)

]}
,

(15)

wherepY (k) is given using (11) as:

pY (k) = (1 − q) pn(k) + q psn(k) . (16)

With (15) and (16),I(X ;Y ) can be calculated for any given
value of q, and thus the channel capacityC can be found
using (12). For the SPAD receiver considered here, the channel
capacity is a function of source statistics, SPAD dead time,and
average signal and background counts.

C. Hard Decision Capacity

In this case, the outputY may take only two values, 0 and 1,
as determined by a likelihood-ratio test. Thus, the conditional
probabilities,pY |X(y|x), for the four possible combinations
of the binary input-output pair,(x, y), can be calculated as:

pY |X(0|0) = Pr {k ≤ kTH|x = 0} =

kTH∑

k=0

pn(k), (17)

pY |X(1|0) = 1 − pY |X(0|0), (18)

pY |X(0|1) = Pr {k ≤ kTH|x = 1} =

kTH∑

k=0

psn(k), (19)

pY |X(1|1) = 1 − pY |X(0|1), (20)

where kTH denotes the optimum threshold for maximum
likelihood detection, which is given by:

kTH =
Ks + ln

(
1−q

q

)

Ksδ + ln
(
1 + Ks

Kn

) , (21)

andδ = τ/Tb is the dead time ratio. Based on (17)–(20), and
using (10), the average mutual information is calculated as:

I(X ;Y )=

1∑

y=0

{
(1 − q) pY |X(y|0) log

[
pY |X(y|0)

pY (y)

]

+ q pY |X(y|1) log

[
pY |X(y|1)

pY (y)

]}
.

(22)

Note that,pY |X(y|x) in (22) is a function ofa priori proba-
bility q, since it depends onkTH, andkTH given in (21) is a
function of q.

IV. N UMERICAL RESULTS

Figs. 2–4 present performance results for the average mutual
information,I(X ;Y ), of the SPAD receiver as a function ofa
priori probability,q, for both soft decision and hard decision
categories, based on (15) and (22) from Section III. The solid
curves refer to the SPAD receiver with soft decision output,
and the dashed curves represent the SPAD receiver with hard
decision output. In Fig. 2 the effect of average signal count,
Ks, is studied forKs = 5, 15, 30, with an average background
count ofKn = 10 and a dead time ratio ofδ = 0.05. In Fig. 3
the effect of average background count,Kn, is studied for
Kn = 5, 10, assumingKs = 20 andδ = 0.05. In Fig. 4
the effect of the dead time ratio is studied forδ = 0, 0.05,
0.1, assumingKs = 20 andKn = 10. These results indicate
that, the average mutual information decreases with decreasing
signal mean (see Fig. 2), increasing background counts mean
(see Fig. 3), and increasing dead time (see Fig. 4). It is
observed that the peak value of each curve which represents
the channel capacity, occurs at or nearq = 0.5 in most cases.

An obvious distinction between the two types of SPAD
receivers is that the hard decision SPAD exhibits disconti-
nuities in theI(X ;Y ) curves. This is because of discrete
nature of the decision thresholdkTH which jumps from one
integer to the next at certain values ofq. Furthermore, SPAD
receivers with soft outputs result in higher average mutual
information compared with the receivers with hard outputs.
Thus, the hard decision SPAD gives a lower capacity than
the SPAD receiver with soft outputs in all cases. This is
because the slot counts provide additional information to the
decoder in the soft decision case. Since both input and output
take the values 0 and 1, a hard output SPAD receiver may
be considered as an asymmetric binary channel with varying
error transition probability, i.e.pY |X(1|0) and pY |X(0|1).
Therefore, the channel capacity would not exceed 1.

Figs. 5–7 provide performance results for soft and hard
decision capacities of the SPAD receiver, based on (15) and
(22) from Section III. In Fig. 5, it is shown how the capacity
is affected by the average signal count,Ks. In this figure, an
average background count ofKn = 10 and two dead time
ratios of δ = 0.1, 0.001 are assumed. As shown in Fig. 2,
higher average signal counts result in higher capacity values
for both soft decision and hard decision cases. However, the
capacity cannot exceed 1 and the minimum average signal
count required for achieving the maximum capacity depends
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Fig. 2. Average mutual information,I(X; Y ), versusa priori signal proba-
bility, q, with δ = 0.05, Kn = 10.
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Fig. 3. Average mutual information,I(X; Y ), versusa priori signal proba-
bility, q, with δ = 0.05, Ks = 20.
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Fig. 4. Average mutual information,I(X; Y ), versusa priori signal proba-
bility, q, with Ks = 20, Kn = 10.

on the dead time of the receiver. Also, it can be observed from
this figure that whenδ = 0.001, forKs ≥ 20, the proposed
capacity metric reaches it maximum value of 1 for both hard
and soft decision cases and the limiting effect of dead time
vanishes. This happens at a higher value (Ks ≥ 100) when
larger dead time ratio (δ = 0.1) is considered. This trend
suggests that by choosing a proper incoming photon rate in
practice, the information capacity of the SPAD receiver can
be maximized.

The effect of SPAD background counts is shown in Fig. 6
whereKs = 100 andδ = 0.1, 0.001. According to this figure,
whenδ = 0.001, background counts with mean counts lower
than 100 have a negligible impact on the capacity. However,
as the average background count increases, the capacity is
severely limited. For larger values of the dead time ratio,
the limiting effect of background counts appears in lower
values of mean background count. Again, it is seen that higher
values of dead time ratio lead to a larger gap between the
soft decision and the hard decision capacities. Furthermore,
this figure depicts that if the dead time ratio is small (δ =
0.001), keeping the average background count lower than 110
photons/s, will help overcome the limiting effect of dead time
on the capacity. However, for larger dead time ratio values
such asδ = 0.1, the maximum capacity is achieved only if
Kn ≤ 4 for hard decision case andKn ≤ 10 for soft decision
case.

In Fig. 7, the capacity curves are plotted as a function
of dead time ratio whereKn = 1 andKs = 10, 100 are
considered. As seen in this figure, dead time ratio values larger
than 0.1 severely degrade the capacity. Hence, it is of greatest
importance to keep dead time as small as possible.

Figs. 5–7 are presenting capacity results as a function of
three parameters:Ks, Kn, and δ. In each figure, the effect
of one parameter is studied while the two other parameters
are fixed. In order to optimize the operating conditions and
structure of a SPAD receiver to achieve maximum capacity, the
effect of these parameters should be treated simultaneously.

V. CONCLUSIONS

In this study, the input-output information transfer rate of
AQ SPAD receivers is investigated. The AQ SPAD receiver is
modeled as a DMC with binary inputs, and a channel capacity
metric is proposed to study the effect of SPAD dead time and
background counts on the SPAD information transfer rate for
both soft decision and hard decision categories. It is identified
that soft decision outputs improve the capacity compared with
the hard decision case. The proposed channel capacity metric
is suitable for theoretical optimization of the device structure
and operating conditions to maximize the achievable data rate.
Future research will consider the effects of afterpulsing and
timing jitter on the capacity of SPAD receivers, which may
provide valuable insights into the fundamental limits of SPAD
receivers for optical communication systems.
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Fig. 5. Capacity of the SPAD receiver as a function of averagesignal count,
Ks, with Kn = 10 and δ = 0.1, and 0.001.
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Fig. 6. Capacity of the SPAD receiver as a function of averagebackground
count,Kn, with Ks = 100 andδ = 0.1, and 0.001.
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Abstract— In this paper, a comprehensive analytical approach
is presented for modeling the counting statistics of active
quenching and passive quenching single-photon avalanche
diode (SPAD) detectors. It is shown that, unlike ideal photon
counting receiver for which the detection process is described
by a Poisson arrival process, photon counts in practical SPAD
receivers do not follow a Poisson distribution and are highly
affected by the dead time caused by the quenching circuit. Using
the concepts of renewal theory, the exact expressions for the
probability distribution and moments (mean and variance) of
photocounts in the presence of dead time are derived for both
active quenching and passive quenching SPADs. The derived
probability distributions are validated through Monte Carlo
simulations and it is demonstrated that the moments match with
the existing empirical models for the moments of SPAD photo-
counts. Furthermore, an optical communication system with on–
off keying and binary pulse position modulation is considered
and the bit error performance of the system for different dead
time values and background count levels is evaluated.

Index Terms— Single photon avalanche diode (SPAD), optical
wireless communications, photon counting, dead time, active
quenching, passive quenching, on-off keying (OOK), binary pulse
position modulation (BPPM).

I. INTRODUCTION

IN RECENT years, there has been a growing interest
in optical wireless communications (OWC) as a promising

complementary solution to radio frequency (RF) technolo-
gies [1]. OWC systems primarily use positive-intrinsic-
negative (PIN) diodes and avalanche photodiodes (APDs) as
optical receivers. PIN diodes have simple structure and are
relatively inexpensive. The main disadvantage of PIN diodes
is their low gain. When operating at extremely low signal
levels, their thermal noise can be more significant than the
signal. Compared to PIN diodes, APDs are more complicated
and expensive. They outperform PIN diodes with respect to
sensitivity, as their internal gain reduces the thermal noise
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effect. However, the random multiplication process introduces
additional gain-dependent excess noise, and this limits the
maximum achievable gain of an APD. Therefore, high
gain low noise transimpedance amplifiers (TIAs) are usually
required for detection of relatively weak optical signals [2].

In photon-starving applications and long distance transmis-
sions, the optical signal can be received at levels below the
sensitivity of these conventional optical receivers and get lost
in the thermal noise. Single photon avalanche diodes (SPADs)
appear to be a more proper choice in such applications. SPADs
provide very large internal gain, thereby easily overcoming
thermal noise and enabling the detection of individual photons
without the need for TIAs. Thanks to their high single-photon
sensitivity and high gain, SPADs have enabled rapid progress
in many applications [3]–[5]. These receivers are able to
closely approach quantum-limited sensitivity in the detection
of weak optical signals and have drawn particular attention
in OWC [6]–[12].

SPADs are semiconductor devices with p-n junctions and
operate based on a simple principle: if the reverse bias voltage
of the p-n junction is raised slightly above the breakdown
threshold voltage, a very high electric field is produced, and
a single electron-hole pair, can trigger a strong avalanche,
leading to a large internal gain and a measurable current.
This current rises rapidly and continues until the avalanche
is quenched by lowering the bias voltage down to or below
breakdown threshold [13], [14]. To detect a subsequent photon,
the bias voltage must be raised again above breakdown level.
Reducing the bias voltage below the threshold and restoring
the SPAD to the operative level, is accomplished by quenching
circuit. The quenching process introduces a finite recovery
time, known as dead time, during which the device does not
respond to another incident photon [15].

There are two principal quenching modes: passive
quenching (PQ) and active quenching (AQ). In general, AQ
circuits offer shorter dead times and higher count rates
compared with PQ circuits, but are more complex, more
expensive to fabricate and larger in size [16]. The photon
counting process of PQ SPADs is similar to paralyzable
detectors where any photon arriving during dead time is not
counted, but extends the dead time period. In AQ SPADs,
similar to nonparalyzable detectors, the dead time is constant,
and any photon arriving during dead time is neither counted
nor it extends the dead time duration [16].

SPADs are still a relatively immature technology whose
performance is degraded by the unavoidable dead time.

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/
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The dead time is a limiting factor for the achievable data rate
in OWC systems. Because of demands for higher data rates,
several studies has been recently dedicated to reducing the
effect of dead time by employing arrays of SPADs [17]–[20].
From a communication theory point of view, it is of great
importance to investigate the effect of dead time on the perfor-
mance of an SPAD-based OWC system. For this purpose,
the statistical dead time-affected photon counting behavior of
SPAD receivers needs to be precisely modeled.

A. Previous Works
In [21], the paralyzable and nonparalyzable count rate

models are introduced which are the most well-known models
for estimating the count rate of a single-photon detector. These
two models have also been adopted for SPAD detectors to
predict the approximate count rate [22]. The count rate is a
useful metric for assessing how fast the detector can detect
incoming photons. However, it does not provide a complete
description of the detected and lost photons, required for error
performance evaluation of communication systems. In [6],
a SPAD-based visible light communications (VLC) system
with OOK modulation is proposed to address the problem of
continuous downhole monitoring in the oil and gas industry.
In this article, a SPAD array is considered, and the counting
losses due to SPAD’s dead time have not been taken into
account. In [7] and [8], a SPAD-based optical orthogonal
frequency division multiplexing (OFDM) system is presented
and the nonlinear distortion due to the saturation of SPAD
receiver, as well as the bit error ratio performance of both
DC-biased optical OFDM and asymmetrically clipped optical
OFDM are investigated. Li et al. [7], [8] have assumed Poisson
statistics for the distribution of SPAD photocounts, which is
not an accurate approximation in the presence of dead time.
In [23], the method of contour integration is used for deriving
the photon counting distribution of a single-photon detector
with paralyzable dead time. In [24], using the concepts of
Poisson point processes, the effect of a nonparalyzable dead
time is studied. In [25], a practical photon counting receiver
in optical scattering communication with finite sampling rate,
paralyzable dead time, and electrical noise is characterized
where it is shown that the dead time effect leads to sub-Poisson
distribution for the number of recorded pulses. The approxi-
mate photocount distribution derived in [25], is only applicable
if the photon rate is sufficiently low. In [26], we studied
the statistical behavior of an AQ SPAD receiver and inves-
tigated the effect of nonparalyzable dead time on the bit error
performance of an optical system. We extended our approach
in [27] and an array of AQ SPADs was characterized for
OWC applications. We also studied the information transfer
rate of an AQ SPAD in [28] where the AQ SPAD receiver
was modeled as a discrete memoryless channel, and the
information transfer rate was studied using an information
theoretic approach.

B. Our Contribution
In this study, we establish a mathematical framework

and precisely model the photon counting behavior of SPAD
receivers. We apply the concepts of renewal theory to develop

exact expression for the probability distribution of photon
counts in the presence of a general type of dead time, and then
provide the exact probability distribution, mean and variance
of AQ and PQ SPAD photocounts. Moreover, we study the bit
error performance of a SPAD-based optical link. This study
shows that the counting process of a SPAD receiver in the
presence of dead time cannot be accurately approximated by
a Poisson distribution. To the best of our knowledge, there
exists limited, if not any analytical work to find the exact
photocount distribution of SPAD photocounts, considering the
impact of dead time. Although the main focus of this article
is on SPAD detectors, but the approach can be applied to a
variety of single-photon detectors with similar photon counting
behavior.

The rest of this paper is organized as follows. In Section II,
the concepts of renewal theory are applied for modeling the
exact dead time-modified photocount distribution of a detector
with a general type of dead time. The exact photocount
distribution of AQ and PQ SPAD receivers are then derived
in Section III using the results obtained in Section II, and
Monte Carlo methods are employed to verify the validity of
the analytical models. The system model of a SPAD-based
optical system is described in Section IV, and in Section V,
the numerical and analytical results are compared and discus-
sions on the bit error performance of the system are provided.
Finally, concluding remarks are given in Section VI.

II. DESCRIPTION OF THE THEORETICAL FRAMEWORK

In this section, first the concepts of “product density func-
tions” and “renewal processes” are introduced. These tools are
then applied for modeling the dead time-modified photocount
distribution of SPAD receivers based on a general approach
that can be applied to both AQ and PQ SPADs.

A. Product Density Functions

Consider a stochastic point process N corresponding to
events occurring at times {ti}, i = 0, 1, . . . . Let N(t)
represent the stochastic variable denoting the number of events
in the time interval (0, t). Then dN(t) denotes the number of
events in the small interval (t, t + dt]. A function f1(t)dt is
defined such that [29]:

f1(t)dt = E[dN(t)], (1)

where E[dN(t)] represents the average number of events
in interval (t, t+dt]. Accordingly, the product of two stochastic
variables dN(t1) and dN(t2) is defined as [29]:

f2(t1, t2)dt1dt2 = E[dN(t1)dN(t2)], (2)

which is also equal to the joint probability that an event
occurs in (t1, t1 + dt1] and another event occurs in (t2, t2 +
dt2]. The function f2 is called a product density of
order 2. Similarly, the product density function of order k,
fk(t1, t2, . . . , tk), is defined as [29]:

fk(t1, t2, . . . , tk)dt1dt2. . .dtk = E[dN(t1) . . . dN(tk)], (3)

where fk(t1, t2, . . . , tk)dt1dt2. . .dtk represents the probability
that an event occurs in the interval between t1 and t1 + dt1,
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∂kG(z, t)

∂zk

∣∣∣∣
z=1

= k!

∫ t

0

dtk

∫ tk

0

dtk−1 . . .

∫ t3

0

dt2

∫ t2

0

f1(t1)f1(t2 − t1) . . . f1(tk − tk−1)dt1, (7)

one event between t2 and t2 + dt2, …, and one between tk
and tk + dtk.

Provided that t1, t2, . . . , tk are ordered (t1 < t2 < · · · < tk)
and the general class of Poisson processes is considered,
the following equation holds between the product density of
order k and the product densities of order one [29]:

fk(t1, t2, . . . , tk) = f1(t1)f1(t2 − t1) . . . f1(tk − tk−1). (4)

We shall now apply the above tools to the problem of
modeling the exact counting distribution of a SPAD receiver
impaired by dead time. The aim is to determine p(k, t),
the probability that k photons have been detected during time
interval (0, t). It is clear that what happens between t and t+dt
is not only dependent on the fact that k photons have been
detected in time interval (0, t), but also upon the detection
time of last photon, due to dead time. Hence, the usual method
of expressing p(k, t+dt) in terms of p(k, t) is mathematically
involved. We first determine G(z, t), the generating function
(G.F.) corresponding to p(k, t), which is given by:

G(z, t) =

∞∑

k=0

p(k, t)zk. (5)

The following property holds for G(z, t) and the product
density of order k [29]:

∂kG(z, t)

∂zk

∣∣∣∣
z=1

=

∫ t

0

∫ t

0

. . .

∫ t

0

fk(t1, t2, . . . , tk)dt1dt2. . .dtk. (6)

Note that fk is symmetrical in t1, t2, . . . , tk, and (6) can be
written as (7) at the top of this page. The following equation
is then deduced from (7):

∂G(z, t)

∂z

∣∣∣∣
z=1

=

∫ t

0

f1(t1)dt1 (8)

Now, let the Laplace transform (L.T.) of the function f1(t)
with respect to the variable t be F1(s) =

∫∞
0 f1(t)e

−stdt.
Taking the L.T. of (8) gives:

g(z, s) =
1

s
× 1

1 − (z − 1)F1(s)
, (9)

where g(z, s) is the L.T. of the function G(z, t). Let also
define P (k, s) as the L.T. of the function p(k, t). The following
diagram summarizes how the four functions p(k, t), P (k, s),
G(z, t), and g(z, s) are connected:

G(z, t)

L.T.

�����������

���������

p(k, t)

G.F.
�����������

���������

L.T. �����������

���������
g(z, s)

P (k, s)

G.F.

�����������

���������

Since g(z, s) is the G.F. of P (k, s), according to (9), P (k, s)
can be obtained as [30]:

P (k, s) =
1

s
× [F1(s)]

k

[1 + F1(s)]
k+1

. (10)

From this, it can be concluded that if f1(t) or F1(s)
is known for the point process associated with the SPAD’s
photon counting process, P (k, s), and hence, p(k, t) can be
obtained.

B. Renewal Processes

By definition, a counting process ω = {N(t) : t ≥ 0}
with the occurrence time sequence of {ti}, is called a renewal
process if the inter-occurrence times w1 = t1 − t0, w2 = t2 −
t1, . . . are independently and identically distributed random
variables. In the case of a Poisson point process, the inter-
occurrence times are independently and identically distributed
exponential random variables [29]. In this work, assuming
a Poisson arrival process for incoming photons, the photon
counts form a renewal counting process with:

p(k, t) = Pr{N(t) = k}. (11)

For renewal processes, the usual method for obtaining
p(k, t) is through renewal integral equations in which p(k, t)
is expressed in terms of p(k − 1, t). This requires the use of
product density functions as introduced earlier. First, please
note that the equation in (4) between the product densities
of order 1 and k implies that given an event at t = 0,
the probability that an event occurs between t and t + dt is
determined by f1(t)dt and is independent of what happened
before t = 0.

Consider a SPAD detector with dead time τ (whether
paralyzable or nonparalyzable or a combination of both).
For simplicity, normalized photon arrival rate is assumed
throughout the derivations. Given a photon registered at t = 0,
if the next photon arrives in the time period of (0, τ) it is not
detected, but if it arrives after the dead time of the photon
occurring at t = 0, it is counted. The probability that the
next photon arrives between t′ and t′ +dt′, given that the first
photon is registered at t = 0, can be expressed by the function
(−∂φ(t′)/∂t′)dt′ where φ(t) represents the probability that no
photon arrives between 0 and t, given that a photon arrived at
t = 0 [29]. The integral equation for this renewal process can
be written as:

p(k, t) =

∫ t

0

p(k − 1, t− t′)(−∂φ(t′)
∂t′

)dt′ + δ(k)φ(t), (12)

where δ(k) = 1 for k = 0 and 0 otherwise. In the
above renewal equation, the first term in the right-hand side,
accounts for the case where the next photon arrives between
t′ and t′ + dt′. This photon is not detected if 0 < t′ ≤ τ .
The second term represents the case where no photon arrives

Publications

164



4046 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 66, NO. 9, SEPTEMBER 2018

p(k, t) =

K1∑

r=0

(−1)r

(
k + r − 1

r

)
(t− kτ1 − rτ2)

k+r

(k + r)!
e−(k+r)τ2−

K2∑

r=0

(−1)r

(
k + r

r

)
(t− (k + 1)τ1 − rτ2)

k+r+1

(k + r + 1)!
e−(k+r+1)τ2 ,

(16)

during time interval (0, t). The following equation holds for
the G.F. corresponding to p(k, t):

G(z, t) =

∫ t

0

zG(z, t− t′)(−∂φ(t′)
∂t′

)dt′ + φ(t). (13)

Taking the L.T. of the above equation with respect to the
variable t gives:

g(z, s) =
Φ(s)

1 + z(sΦ(s) − 1)
, (14)

where Φ(s), is the L.T. of the function φ(t). Since g(z, s)
is also the G.F. of P (k, s), according to (14), P (k, s) is
given by [30]:

P (k, s) = Φ(s)(1 − sΦ(s))k. (15)

Thus, if φ(t) (and hence, Φ(s)) is known for SPAD’s photon
counting renewal process, p(k, t) can be obtained by finding
the inverse L.T. of the above equation.

C. A Solution for SPAD Receivers with Dead Time

The above results can now be applied to derive the proba-
bility distribution function p(k, t) of the number of detected
photons, k, in a time interval of (0, t) in the presence of
detector dead time. Here, a general approach is proposed
which provides the dead time-modified photocount distribution
of any photon counting detector. Note that AQ and PQ SPADs
are special cases and will be addressed later in Section III.

Suppose that detected and lost photons are followed by
two different dead times, τ1 and τ2, respectively. Assuming
different dead time values for detected and lost photons,
helps to clearly reflect distinct effects of paralyzable and
nonparalyzable dead times on the total renewal process. For
such a detector, we have the following results.

Theorem 1: For a general photon counting detector with
dead times τ1 and τ2, the probability distribution function,
p(k, t), of the number of detected photons, k, in a time interval
(0, t) is given by (16) at the top of this page where K1 and K2

are integers such that:

t− kτ1
τ2

− 1 < K1 <
t− kτ1
τ2

t− (k + 1)τ1
τ2

− 1 < K2 <
t− (k + 1)τ1

τ2
.

Proof: Assume that τ1 > τ2. The probability φ(t) that
no photon is detected up to time t, given that a photon is
registered at t = 0, is:

φ(t) = [�(t) − �(t− (τ1 − τ2))]

+φp(t− (τ1 − τ2))�(t − (τ1 − τ2)), (17)

where �(t) is the unit step function, and is equal to 1 if t ≥ 0,
and 0, otherwise. In the above equation, the total probability
of not detecting any photons is obtained as follows: The first
term in the right-hand side of (17) expresses the condition that
no photon is detected for t < τ1 − τ2. If any photon arrives
during time interval of (0, τ1 − τ2), it is clearly lost and is
followed by a dead time of length τ2, and this dead time won’t
extend beyond the dead time caused by the registered photon
at t = 0, i.e. τ1. Thus, φ(t) = 1 for t < τ1 − τ2. If any photon
arrives after τ1−τ2, the dead time will be extended beyond τ1.
It is then valid to assume that the detector is in paralyzable
mode, where φp(t−(τ1−τ2)) represents the probability that no
photon is registered in time t−(τ1−τ2). Applying L.T. to (17)
gives:

Φ(s) =
1

s
(1 − e−s(τ1−τ2)) + e−s(τ1−τ2)Φp(s). (18)

In order to obtain Φp(s) and then Φ(s), the product density
of the first order for the paralyzable mode is easily calculated
as:

f1
p(t)dt = �(t− τ2)e

−τ2dt. (19)

The above expression results from arguing that a photon is
detected if it arrives after the dead time of the photon at t = 0
is finished (t > τ2) and it is also not preceded by any photon
arrival event in time interval (0, τ2). Thus:

F1
p(s) =

1

s
e−(s+1)τ2 . (20)

F1
p(s) and Φp(s) are related through (9) and (14):

Φp(s) =
1

s
× 1

1 + F1
p(s)

. (21)

Therefore, (18), (20) and (21) result in:

F1(s) =
1

sesτ1+τ2 + es(τ1−τ2) − 1
. (22)

The same result is obtained for τ1 < τ2 following exactly
the same arguments. According to (10), for general values
of τ1 and τ2, the expression in (23) at the top of next page
is obtained for P (k, s). Applying the inverse L.T. then leads
to (24). Using the following equality for t > 0:

1

2πi

∫ α+i∞

α−i∞

est

sk
ds =

tk−1

(k − 1)!
,

the final expression in (16) for p(k, t) is obtained. This
completes the proof for Theorem 1.

When τ1 �= 0 and τ2 �= 0, p(k, t) is given by a finite series.
Particular cases include:

• With τ2 = 0, the photocount distribution for an AQ SPAD
is obtained.
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P (k, s) =
1

s

[(
esτ1+τ2 + es(τ1−τ2)

)−k

−
(
esτ1+τ2 + es(τ1−τ2)

)−(k+1)
]

(23)

p(k, t) =
1

2πi

∫ α+i∞

α−i∞

[
1

s

(
esτ1+τ2 + es(τ1−τ2)

)−k

− 1

s

(
esτ1+τ2 + es(τ1−τ2)

)−(k+1)
]
estds

=
1

2πi

∫ α+i∞

α−i∞

∞∑

r=0

[
e−(k+r)τ2(−1)r

(
k + r − 1

r

)
es(t−kτ1−rτ2)

sk+r+1

]
ds

− 1

2πi

∫ α+i∞

α−i∞

∞∑

r=0

[
e−(k+r+1)τ2(−1)r

(
k + r

r

)
es(t−(k+1)τ1−rτ2)

sk+r+2

]
ds (24)

• With τ1 = τ2, the photocount distribution for a PQ SPAD
is obtained.

• With τ1 = τ2 = 0, the Poisson distribution for an ideal
detector is obtained.

Note that the dead time of detected and lost photons are not
the same in general, e.g. for an AQ SPAD. In the next section,
AQ and PQ SPADs are studied in detail.

III. SPAD’S COUNTING STATISTICS

In the absence of dead time, photon detection events of
a SPAD receiver are modeled as a Poisson process and
the probability of counting k photons during a time period
of (0, Tb) is given by [1]:

p0(k) =
(λTb)ke−λTb

k!
, (25)

where the constant λ is the average photon arrival rate
(in photons/s), hence, λTb is the average number of
photons arriving at the SPAD during the observation time
of Tb seconds. The photon arrival rate λ is related to the power
of the optical signal by [1]:

λ =
ηQEPr

hν
, (26)

where ηQE is the quantum efficiency of the SPAD; Pr denotes
the power of the incident optical signal; h is the Planck’s
constant; and ν represents the frequency of the optical signal.

In the presence of dead time, however, the photon counts no
longer follow a Poisson distribution. In this section, the results
of previous section are applied to study the counting statistics
of AQ and PQ SPAD receivers. Throughout this work, it is
assumed that the sampling rate is very high compared to dead
time, so that the counting losses arising from finite sampling
rates are negligible. It is also assumed that the SPAD uses
the rising edge of a pulse as an event to count. Therefore,
the total number of counted photons during the counting
interval of (0, Tb) is obtained by recording the number of
rising edges of the pulse train and it can not exceed kmax =
�Tb/τ� + 1, where �x� denotes the largest integer that is
smaller than x.

A. AQ SPAD

For AQ SPADs, after each photon detection, the detector
is inactive for a constant time τ . A photon is detected if and
only if no detection event has taken place during a time τ

preceding it, and any photon arriving during the dead time
is neither counted nor has any influence on the dead time
duration.

Theorem 2: The photocount distribution of an AQ SPAD
with nonparalyzable dead time of τ , during the time interval
of (0, Tb) is given by:

pK(k) =

k∑

i=0

ψ(i, λk+1) −
k−1∑

i=0

ψ(i, λk), (27)

for k < kmax. Function ψ(i, λ) is defined as ψ(i, λ) =
λie−λ/i!, and λk = λ(Tb − kτ).

Proof: Assuming τ2 = 0 in (16), the photocount distrib-
ution for an AQ SPAD is obtained:

p(k, t) =
∞∑

r=0

(−1)r

(
k + r − 1

r

)
λk+r(t− kτ)

k+r

(k + r)!

−
∞∑

r=0

(−1)r

(
k + r

r

)
λk+r+1(t− (k + 1)τ)k+r+1

(k + r + 1)!

(28)

for k < kmax, and p(k, t) = 0 for k ≥ kmax. Note that in (16)
normalized photon arrival rate (i.e. λ = 1) was assumed and
in (28) this assumption is released. The expression for p(k, t)
can be further simplified to:

p(k, t) =

k∑

i=0

λi(t− (k + 1)τ)i

i!
e−λ(t−(k+1)τ)

−
k−1∑

i=0

λi(t− kτ)i

i!
e−λ(t−kτ). (29)

Hence, pK(k) = p(k, t)|t=Tb
and the theorem follows.

The above expression is in line with results previously
derived in [24] and [26]. The probability mass function (PMF)
obtained in (27) is plotted in Fig. 1 and compared with Monte
Carlo simulation results for different values of dead time ratio,
δ = τ/Tb. In this figure, a time interval of Tb = 1 μs is
considered and λ = 3×107 photons/s. Also, δ = 0, 0.02, 0.05,
and 0.07 are assumed. Note that for a receiver without dead
time, the photocount distribution is Poisson with mean λTb.
For the PMF expression in (27), some of the main properties
shall be addressed as follows:

1) The Unitary Condition: As required for any valid
distribution function, for the PMF in (27), the equality∑
k

pK(k) = 1 holds. Furthermore, it is easily seen that

Publications

166



4048 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 66, NO. 9, SEPTEMBER 2018

Fig. 1. Probability distribution of AQ SPAD photocounts for Tb = 1 μs,
λ = 3 × 107 photon/s and different values of δ.

limτ→0 pK(k) = p0(k), that is, when τ goes to zero, the orig-
inal Poisson distribution is recovered.

2) First and Second Moments:
Proposition 3: The mean and variance of the photocount

distribution in (27) are:

μK = (kmax − 1) −
kmax−2∑

k=0

k∑

i=0

ψ(i, λk+1), (30)

σ2
K =

kmax−2∑

k=0

k∑

i=0

(2kmax − 2k − 3)ψ(i, λk+1)

−
(

kmax−2∑

k=0

k∑

i=0

ψ(i, λk+1)

)2

. (31)

Proof: Please refer to Appendix B.
Again, as dead time goes to zero, the limiting relations
limτ→0 μK = λTb and limτ→0 σ

2
K = λTb in (30) and (31)

can be verified, where λTb is the mean value of the ideal
Poisson distribution.

Fig. 2a presents μK and σ2
K for an AQ SPAD as functions

of λ where they are compared to an ideal Poisson counting
process. As shown, the difference between μK and σ2

K

becomes more significant as λ increases. Let the ratio of the
variance to mean be defined as:

ξ =
σ2

K

μK
. (32)

Fig. 2b illustrates this ratio where it approaches to zero as λ
goes to infinity, unlike the Poisson distribution where this ratio
is equal to one for all values of λ.

3) Asymptotic Mean for Large Tb/τ Ratio: The exact mean
value in (30) can also be expressed as follows:

μK = (kmax − 1) −
kmax−2∑

k=0

Γ (k + 1, λk+1)

Γ (k + 1)
, (33)

where for a positive integer s, Γ (s) = (s − 1)!

and Γ (s, x) = e−x(s − 1)!
s−1∑
i=0

xi

i!
are the gamma function

Fig. 2. First and second moments of AQ SPAD photocounts with Tb = 1 μs,
τ = 2 ns: (a) comparison of mean and variance with ideal Poisson distribution,
(b) the variance to mean ratio.

and incomplete gamma function, respectively [30]. Defining
γ(s, x) = Γ (s, x)/Γ (s), the following approximation holds
for γ(k + 1, λk+1) when Tb/τ goes to infinity [30]:

γ(k + 1, λk+1) ≈
{

1, k + 1 > λk+1

0, k + 1 ≤ λk+1

.

Therefore, γ(k + 1, λk+1) can be approximated as zero for
k ≤ (λTb − λτ − 1)/(1 + λτ), and 1, otherwise. Applying
the above approximation to (33) gives:

lim
Tb/τ→∞

μK =
λTb

1 + λτ
. (34)

Thus, the asymptotic count rate of an AQ SPAD, i.e. the
average number of recorded photons per second, is given by:

λ′ =
λ

1 + λτ
. (35)

This expression is in line with the asymptotic expressions
presented in [31] and the practical models provided in [22].

Publications

167



SARBAZI et al.: STATISTICAL MODELING OF SPAD RECEIVERS FOR OWC 4049

Fig. 3. Probability distribution of PQ SPAD photocounts for Tb = 1 μs,
λ = 3 × 107 photon/s and different values of δ.

B. PQ SPAD

For PQ SPADs, any photon arrival is followed by dead
time, and the ones occurring during the dead time of previous
photons, extend the dead time duration.

Theorem 4: The photocount distribution of a PQ SPAD
with paralyzable dead time of τ , during the time interval
of (0, Tb) is given by:

pK(k) =

kmax−1∑

i=k

(−1)i−k

(
i

k

)
λi(Tb − iτ)i

i!
e−iλτ , (36)

for k < kmax and pK(k) = 0 for k ≥ kmax.
Proof: Assuming τ1 = τ2 = τ in (16), the photocount

distribution for a PQ SPAD is obtained which is further
simplified to:

p(k, t)

=

K∑

r=0

(−1)r

(
k+r

r

)
λk+r(t−(k + r)τ)k+r

(k+r)!
e−(k+r)λτ . (37)

With a change of variable i = k + r:

p(k, t) =

K+k∑

i=k

(−1)i−k

(
i

k

)
λi(t− iτ)i

i!
e−iλτ . (38)

where K is an integer such that:

t

τ
− (k + 1) < K <

t

τ
− k

With pK(k) = p(k, t)|t=Tb
, and therefore K + k = kmax − 1,

the expression in (36) is obtained. Hence, the theorem follows.

The PMF obtained in (36) is plotted in Fig. 3 and compared
with the Monte Carlo simulation results for different values
of δ = τ/Tb. In Fig. 3, a time interval of Tb = 1 μs is
considered and λ = 3×107 photons/s. Also, δ = 0, 0.02, 0.05,
and 0.07 are assumed. Note that for a receiver without dead
time, the photocount distribution is Poisson with mean λTb.
For the PMF expression in (36), some of the main properties
are addressed as follows:

Fig. 4. First and second moments of PQ SPAD photocounts with Tb = 1 μs,
τ = 2 ns: (a) comparison of mean and variance with ideal Poisson distribution,
(b) the variance to mean ratio.

1) The Unitary Condition: It can easily be verified that the
unitary condition

∑∞
k=0 pK(k) = 1 holds for the PMF in (36)

and limτ→0 pK(k) = p0(k), that is, when τ goes to zero,
the PMF in (36) approaches the ideal Poisson distribution.

2) First and Second Moments:
Proposition 5: The mean and variance of the photocount

distribution in (36) are derived as:

μK = λe−λτ (Tb − τ), (39)

σ2
K = λ2 e−2λτ (3τ2 − 2 Tbτ) + λe−λτ (Tb − τ). (40)

Proof: Please refer to Appendix C.
Similar to AQ SPAD, the limiting relations limτ→0 μK =

λTb and limτ→0 σ
2
K = λTb in (39) and (40) can be confirmed,

where λTb is the mean value of the ideal Poisson distribution
(see Appendix C). Fig. 4a presents μK and σ2

K for a PQ SPAD
as functions of λ. The mean and variance are also compared
to an ideal counting process where it is observed that unlike
a Poisson process, μK and σ2

K can differ greatly. Fig. 4b
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illustrates the ratio, ξ, as defined in (32) where the minimum
occurs at λτ = 1 and the ratio approaches 1 when λτ goes to
infinity.

3) Asymptotic Mean for Large Tb/τ Ratio: For the case
when the ratio Tb/τ is large, yet the dead time cannot be
ignored, the following asymptotic expression for mean value
is obtained:

lim
Tb/τ→∞

μK = λTbe
−λτ . (41)

Therefore, the asymptotic count rate of a PQ SPAD, i.e. the
average number of recorded photons per second, is given by:

λ′ = λe−λτ . (42)

This expression is in line with the asymptotic expressions
presented in [31] and the practical models provided in [22].

IV. SPAD-BASED OPTICAL COMMUNICATION SYSTEMS

SPADs have been used as photon counting receivers
in OWC systems [7], [17], [19], [20]. Free space optics (FSO),
VLC, wireless IR, deep space communications are all exam-
ples of such OWC applications. In this section the effect of
dead time on the bit error performance of a SPAD-based
optical system with on-off keying (OOK) and binary pulse
position modulation (BPPM) is studied. The SPAD’s dead time
also limits the maximum achievable data rate of the system.
The dead time of commercially available SPAD devices varies
in the range of a few nanoseconds to tens of nanoseconds.
Using binary modulation schemes, a reliable bit error perfor-
mance with maximum data rate of a few Mbits/s can be
achieved. For example, with OOK modulation, the highest data
rate to be achieved by an AQ SPAD with dead time τ can not
exceed 1/τ , and this is due to saturation of SPAD receiver [26].
For a PQ SPAD receiver the maximum achievable data rate is
even lower than 1/τ . Note that the maximum achievable data
rate depends on not only the dead time, but also the operating
conditions [28]. Throughout this paper, a data rate of 1 Mbits/s
is assumed.

In the following, the bit error performance of a SPAD-based
optical system with OOK and BPPM is derived. In these binary
modulation schemes, each bit is sent individually by transmit-
ting one of two optical pulses over a duration of Tb seconds
and the optical intensity modulated signal is transmitted by
an optical source. In this system the bit rate is expressed as
Rb = 1/Tb bits/s. At the receiver side, direct detection is
applied where the received optical signal is photodetected by
the SPAD. The number of photons counted by the SPAD is
processed to decide which of two optical pulses was received,
and then the transmitted bit during each Tb second bit interval
is determined. In this photon counting system, the background
counts and the SPAD’s dead time determine the achievable bit
error ratio (BER) of the system.

A. On-Off Keying

OOK is one of the most common modulation techniques
for intensity-modulation direct-detection (IM/DD) systems,
because of its easy implementation, simple receiver design,

bandwidth efficiency and cost effectiveness. In OOK, the infor-
mation bits are transmitted through the intensity of light, where
presence of a pulse denotes bit “1” and absence of a pulse
denotes bit “0”, during each slot time.

Define the contributions to the signal and background noise
counts per bit interval by Ks = λsTb and Kn = λnTb, respec-
tively, where λs and λn are the average photon rates from
signal and background noise. When a “0” bit is transmitted,
the average number of photons arrived at the SPAD receiver
per bit time interval is Kn, and when a “1” bit is transmitted,
the average number of received photons per bit time interval
is Ks +Kn. Therefore, pn(k) and psn(k), the probability that
exactly k photons are counted by the SPAD in the counting
interval of Tb seconds, when “0” or “1” are sent, respectively,
are given by:

pn(k) = pK(k;λn, Tb, τ),

psn(k) = pK(k;λs + λn, Tb, τ). (43)

OOK demodulation is accomplished by a classical binary
detection process: Let hypothesis “H0” represent the case
when a “0” is sent and “H1” represent the hypothesis that
a “1” is transmitted. The aim is to determine the optimum
rule for deciding which hypothesis is true based on a single
observation. This simple binary hypothesis-testing problem is
often formulated using the Bayes criterion, where the decision
should be made according to the well-known likelihood-
ratio test to minimize the probability of error. In this test,
the likelihood ratio is defined as:

L(k) =
psn(k)

pn(k)

H1

≷
H0

1 (44)

where it is assumed that H0 and H1 are equally probable.
With this maximum likelihood detection rule, the probability
of error is expressed as:

Pe =
1

2

∑

{k:L(k)>1}
pn (k) +

1

2

∑

{k:L(k)≤1}
psn (k). (45)

For an ideal photon detector with Poisson statistics (without
dead time), the likelihood-ratio test in (44) simplifies to a
single threshold detection. For the SPAD receiver, however,
the complicated mathematical expressions of psn(k) and pn(k)
(for both AQ and PQ SPADs), makes the algebraic manipula-
tion of L(k) intractable. For given values of λs and λn, if L(k)
is monotonic with respect to k, the test in (44) is equivalent
to a single threshold test, i.e. the maximum likelihood detec-
tion is achieved by a threshold comparison. But it is even
more challenging to check the monotonicity of L(k) using
finite differences (discrete derivatives). For an AQ SPAD with
small dead time ratio (δ < 0.1), an approximate photocount
distribution can be provided (see Appendix A) and it can be
proved that the above likelihood-ratio test leads to a single
threshold test (see Appendix D). For other cases, no such proof
can be provided. However, we conjecture that the threshold
detection is optimum in general. Our extensive numerical
investigation of the monotonicity of L(k) and and the BER
results in Section V strongly support this conjecture.

Hereinafter, the threshold detection is adopted for error
probability calculations, where the number of counted photons
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is compared with a threshold mT. An error will occur if
k ≤ mT when a “1” bit is sent, or if k > mT, when a “0” bit
is sent. The probability of error for equally likely bits is then
expressed as:

Pe =
1

2

kmax∑

k=mT+1

pn (k) +
1

2

mT∑

k=0

psn (k). (46)

This equation holds for both AQ and PQ SPADs, however,
for each case, the corresponding photocount distribution
should be considered. The error probability, Pe, highly
depends on mT which can be selected to yield the lowest
probability of making an error. This occurs at the value of mT

where dPe/dmT = 0. It is in general challenging to obtain a
closed-form expression for (46), nevertheless, for the case of
an AQ SPAD, it is shown that (see Appendix E) given same
conditions (i.e. same threshold, sampling time, and radiation
intensity), the error performance of an AQ SPAD with dead
time is the same as that of a similar SPAD without dead
time, but with a quantum efficiency reduced by the factor
(1 − (mT + 1)τ/Tb). According to (66):

Pe =
1

2

(
1 −

mT∑

k=0

ψ(k, λn(Tb − (mT + 1)τ ))

)

+
1

2

mT∑

k=0

ψ(k, (λs + λn)(Tb − (mT + 1)τ )). (47)

Solving the equation dPe/dmT = 0 for finding the optimum
threshold value leads to:

mT =
λsTb − λsτ

λsτ + ln
(
1 + λs

λn

) . (48)

B. Binary Pulse Position Modulation

The basic disadvantage of OOK signaling is that the average
photon rates λs and λn must be known, to optimally set
the threshold. BPPM signaling avoids this difficulty by using
pulse-to-pulse comparison for detection. In BPPM modulation,
the optical pulse is sent in one of two adjacent time intervals,
each of length Tb/2 and then the output counts are compared
over each half-bit interval. A “1” bit is sent as a pulse
in the first half of the bit interval, and a “0” bit as a pulse
in the second half. At the receiver side, the SPAD separately
counts the number of photons over the two half-bit intervals
and then they are compared for bit decoding. Since the pulse
time is half of the bit duration, the receiver bandwidth must
be higher than for the OOK system [1].

With the same approach as used for OOK, the bit error
probability of the BPPM system is the probability that signal
slot photon count does not exceed non-signal slot photon
count. Hence:

Pe =
∞∑

k1=0

∞∑

k2=k1+1

psn(k1)pn(k2) +
1

2

∞∑

k=0

psn(k)pn(k). (49)

where the second term in (49) accounts for the possibility of
equal counts in each half-bit interval, in which case a random
choice will be made.

V. NUMERICAL RESULTS AND DISCUSSION

In this section, bit error performance results are presented
where analytical results are compared with Monte Carlo simu-
lation results. Throughout the calculations and simulations,
independent count statistics are assumed for each transmitted
bit and Tb = 1 μs is considered. In all figures, BER results
are plotted as a function of Ks for various Kn values and δ =
τ/Tb, where Ks and Kn are defined as the average signal
count and background count per bit interval, respectively.
Therefore, for both OOK and BPPM, Ks = 0.5λsTb andKn =
0.5λnTb.

A. AQ SPAD

The BER results for an AQ SPAD-based optical system
with OOK modulation are provided in Fig. 5. In these
figures, the error probability of OOK systems with maximum
likelihood (ML) detection and threshold (TH) detection are
compared with Monte Carlo simulation results, resulting
in perfectly matching curves. The analytical calculations are
based on the expressions given in (45) for ML detection,
and (47) and (48) for TH detection.

According to Figs. 5a and 5b, ML and TH detection show an
excellent match for all cases, confirming that for the specified
range of values in these figures, the ML detection and TH
detection are equivalent.

In Fig. 5a, moderately small values of δ = 0.001 and δ =
0.01 are assumed, while in Fig. 5b the dead time ratio
is δ = 0.1 which is quite large for communication purposes.
As observed in Fig. 5b, the large value of dead time ratio
degrades the system performance as the SPAD is saturated
with lower signal and/or background noise levels. In these
cases, kmax and mT are small, and the ripples in the BER
curves are direct results of discrete threshold values. For the
quantum-limited cases, i.e. Kn = 0 curves, the threshold mT

is zero and no ripples are observed.
According to Fig. 5a, the performance of the AQ SPAD

receiver depends strongly on the background count statistics,
and even for Kn = 0 and 1, the error probability is slightly
affected by the SPAD dead time. This becomes more signifi-
cant, when Kn increases. Also, it is apparent that for a given
Kn, a higher signal power is needed to maintain the system
performance in the presence of longer dead time. In other
words, to achieve a particular BER, the larger δ is, the higher
Ks should be.

Fig. 6 provides the BER results for an AQ SPAD-based
optical system with BPPM modulation. It is observed that,
in the absence of background noise, the effect of dead time
on BER is negligible for small values of Ks as in Fig. 6a.
However, when background noise is present, the performance
becomes very sensitive to the dead time such that higher
dead time values lead to higher error rates. It should also be
noted that, as seen in Fig. 6b, the error performance severely
degrades when large dead time ratio (δ = 0.1) is assumed.
In this case, the SPAD gets saturated with lower signal and/or
background noise levels. Also, for stronger background counts,
the saturation happens at lower signal levels.
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Fig. 5. OOK bit error performance of an AQ SPAD-based system: (a) δ =
0.01, 0.001 and (b) δ = 0.1.

Note that OOK uses pulses twice as long as BPPM, and
has higher signal and background counts. Therefore, a fair
comparison between OOK and BPPM systems can be made if
the same average signal and background power are assumed.
For the systems under consideration, average signal and back-
ground noise power are directly proportional to Ks and Kn,
respectively. Thus, it is fair to compare the error performance
of OOK and BPPM systems as presented in Figs. 5 and 6.

As in Fig. 5a and Fig. 6a, OOK and BPPM show almost
similar performance when the background noise is present
and the dead time ratio is moderately small. For large dead
time ratio (δ = 0.1 as in Fig. 5b and Fig. 6b), in the
presence of background counts, OOK system shows slightly
better BER values. For ideal quantum-limited photon-counting
OOK and BPPM (Kn = 0) without dead time counting
losses, OOK has 3 dB better performance as discussed in [1].
In the presence of dead time, consistent results are achieved,
however, the effect of dead time is insignificant in the range
of interest as illustrated in Figs. 5 and 6.

Fig. 6. BPPM bit error performance of an AQ SPAD-based system: (a) δ =
0.01, 0.001 and (b) δ = 0.1.

B. PQ SPAD

Fig. 7 demonstrates the error performance results of a PQ
SPAD-based system with OOK modulation. In this figure,
the error probability with ML detection, given in (45), and
the error probability with TH detection, given in (46) are
numerically evaluated and compared with simulation results.
The threshold value is also obtained numerically. It is again
observed that ML and TH detection rules result in perfectly
matching curves, confirming that these two detection schemes
are equivalent in the range of interest.

Similar to BER results for the AQ SPAD, three different
values for dead time ratio are considered here. In Fig. 7a,
δ = 0.001 and δ = 0.01 are assumed, while in Fig. 7b
the dead time ratio is equal to 0.1. Again, large dead time
ratio (δ = 0.1) severely degrades the error performance and
results in SPAD’s saturation. According to (42), for a PQ
SPAD, the maximum count rate occurs at the point λ = 1/τ .
The lowest BER also occurs at this point which is clearly
seen in Fig. 7b. After this point, the counting losses due to
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Fig. 7. OOK bit error performance of a PQ SPAD-based system: (a) δ = 0.01,
0.001 and (b) δ = 0.1.

dead time drastically increase. The BER also increases until
the paralysis behaviour (see Fig. 4) results in the average
photon count of pulsed slots becoming lower than that of
non-pulsed slots. Our extensive numerical calculations show
that at this latter point, the monotonicity of the likelihood
ratio function L(k), given in (44) changes from monotonically
nondecreasing to monotonically nonincreasing. In such cases,
keeping the definition of hypotheses H0 and H1 as before,
the direction of the likelihood ratio test presented in (44)
should be reversed and the error probability expressions should
be modified accordingly. This has been done for obtaining the
results of Fig. 7b.

The probability of error for a PQ SPAD-based optical
system with BPPM modulation, given in (49), is in the
form of discrete summations, and therefore can be calculated
numerically. Fig. 8 shows some plots of the BER results
for such a system. Similar to previous cases, in the absence
of background noise, the effect of dead time on BER is
almost negligible. However, an increase in the dead time value

Fig. 8. BPPM bit error performance of a PQ SPAD-based system: (a) δ =
0.01, 0.001 and (b) δ = 0.1.

degrades the error performance. Again, it is seen that the
error performance is severely affected by large dead time ratio
(δ = 0.1) and the lowest BER occurs at the maximum count
rate, as predicted.

As seen in Figs. 5–8, the BER of the OWC system strongly
depends on the value of dead time and large dead time values
increase the BER to levels even beyond 10−3. The dead time
of commercially available SPAD devices vary in the range of
a few nanoseconds to tens of nanoseconds, causing significant
losses for communication links with slot widths of the same
order. However, for data rates in the orders of a few tens
of Mbits/s and lower, the dead time ratio is small enough
(≤0.01) and assuming binary modulation schemes such as
OOK and BPPM, BER values of less than 10−3 can be
achieved, as shown in Figs. 5a, 6a, 7a and 8a for AQ and
PQ cases, respectively. These results highlight the need to
develop SPAD detectors with much reduced dead time to be
able to achieve higher data rates with reliable performance and
arbitrary small bit error probability.
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Fig. 9. BER performance of (a) AQ, and (b) PQ SPAD-based systems with OOK modulation considering exact SPAD photocount distribution, Poisson
approximation, and Gaussian approximation.

C. AQ SPAD vs. PQ SPAD

As stated in Section I, when using PQ SPADs any photon
arrival occurring during the dead time is not counted but is
assumed to extend the dead time period, while for AQ SPAD
devices, any photon arriving during the dead time is neither
counted nor has any influence on the dead time duration. Thus,
assuming the same dead time duration, in a bit interval of Tb

seconds, the average number of counted photons by an AQ
SPAD is generally higher than that of a PQ SPAD. This can
be observed from Figs. 1 and 3. Furthermore, this behavior
directly affects the BER performance. When the dead time
duration only is one order of magnitude lower than the bit
interval (δ = 0.1), the difference of AQ and PQ SPADs is
perceptible, as observed in Fig. 5b and Fig. 7b for OOK
modulation or in Fig. 6b and Fig. 8b for BPPM. For an
AQ SPAD, increasing the signal photon rate (or signal count)
results in the saturation of SPAD and the BER will reach a
constant value. However, in a PQ SPAD, by increasing the
signal photon rate (or signal count), the BER decreases until
the SPAD reaches its maximum count rate. At this point,
the lowest possible BER is achieved and higher signal counts
degrade the error performance.

D. Applicability of Gaussian and Poisson Approximations

The probability distribution of SPAD photocounts is
commonly approximated by a Poisson distribution where the
effect of dead time is neglected. In order to investigate the
accuracy of this approximation, in Fig. 9, the OOK error prob-
abilities of both AQ and PQ SPADs, given in (47) and (46),
respectively, are evaluated and compared with the case when
the photocount distribution is approximated by a Poisson
distribution through moment matching, i.e., the rate para-
meter of the approximated Poisson distribution is calculated
according to (35) and (42) as in [7] and [8], rather than using
an ideal Poisson model which does not take into account

the effect of dead time. Please note that in Figs. 9a and 9b,
δ = 0.01 is assumed, and as can be seen, for both AQ and PQ
SPADs, there is a considerable difference between the exact
BER values and the Poisson approximation results, especially
for higher values of Kn.

To have a better insight, the AQ and PQ SPAD photo-
count distributions have also been approximated by Gaussian
distribution in Fig. 9, using a similar moment matching
approach. The mean and variance of the Gaussian distribution
are approximated as in (30) and (31) for AQ SPAD, and
as in (39) and (40) for PQ SPAD. Although the Gaussian
approximation shows higher accuracy compared with the
Poisson approximation, the differences are still noticeable.
Note that by increasing the dead time ratio, the accuracy of
these approximations will be more degraded. By comparing
the results of these approximations for AQ and PQ SPADs,
it is observed that the approximations show slightly higher
accuracy for AQ SPADs, and the reason is that the counting
losses due to paralyzable dead time are generally higher
than that of nonparalyzable dead time. According to these
observations, the use of Poisson or Gaussian approximations
does not provide enough accuracy for assessing the bit error
performance of OWC systems, and this highlights the impor-
tance of our statistical modeling for a precise bit error analysis
for potential optical communication applications.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, a complete analytical framework is presented
for modeling the statistical behavior of photon counting
receivers. This rigorous analysis expounds the impact of
paralyzable and nonparalyzable dead times on the counting
statistics of SPAD detectors, and provides exact expressions
for the probability distribution, mean and variance of active
and passive quenching SPAD photocounts. The proposed
expressions for mean of AQ and PQ SPAD photocounts
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precisely predict the SPAD effective count rates and are
in line with empirical count rate models and experimental data
available in literature. The proposed probability distributions
are particularly required for maximum likelihood detection
analysis and assessing the bit error performance of any SPAD-
based OWC system. In this study, the effect of dead time on
the bit error performance of an OWC system with OOK and
BPPM modulation schemes is investigated and it is found that
that the dead time-distorted count statistics result in higher bit
error rates, and a higher signal intensity is required to maintain
system performance. In the AQ SPAD-based OWC system,
assuming OOK modulation and constant average background
count of Kn = 1, for a BER value of 10−4, the reduction of
dead time by one order of magnitude leads to almost 3 dB
improvement in the average signal count. The improvement is
about 3.8 dB if BPPM modulation is considered. PQ SPAD-
based OWC systems with large dead time ratios (δ = 0.1) can
not achieve BER values lower than 10−3. In general, for large
dead time values, AQ SPADs outperform PQ SPADs signifi-
cantly, and for small dead time values, AQ SPADs still provide
slightly better bit error performance. It is also found that
in quantum-limited OWC systems, the effect of dead time is
negligible. Compared with Gaussian and Poisson distributions
commonly used in literature, our proposed probability distrib-
utions provide significant accuracy in performance analysis of
OWC systems. This in turn highlights the importance of our
statistical modeling for a precise bit error analysis for potential
optical communication applications. Moreover, it is concluded
that in applications involving high photon rates, such as
high data rate optical wireless communications, the SPAD
dead time causes significant data loss. Using commercially
available SPAD devices with dead time values in the range
of a few nanoseconds to tens of nanoseconds, a reliable bit
error performance with maximum data rate of a few Mbits/s
could be achieved through binary modulation schemes. Thus,
this study highlights the need to develop SPAD devices with
much reduced dead time to be able to achieve higher data rates
in the range of Gbits/s.

There is much work yet to be done in the analysis of
SPAD-based optical systems. It is of great importance to
consider modulation schemes with higher spectral efficien-
cies and less sensitive to the fluctuations in the background
and signal strengths. However, in higher order modulation
schemes, the existence of dead time does not allow arbitrarily
narrow time slots, as the SPAD’s dead time can overlap two
adjacent time slots. Therefore, for future works, the photocount
statistics should be modified accordingly.

APPENDIX A
APPROXIMATE PMF FOR AQ SPADS

WITH λ � 1 OR τ 	 Tb

The PMF in (27) can be re-written as:

pK(k) =
k∑

i=0

ψ(i, λk+1) −
k−1∑

i=0

ψ(i, λk)

= ψ(k, λk+1) +

k−1∑

i=0

(
ψ(i, λk+1) − ψ(i, λk)

)

= ψ(k, λk+1)

+

k−1∑

i=0

ψ(i, λk+1)

[
1− (Tb−kτ)i

(Tb−(k + 1)τ)i
e−λτ

]
. (50)

Define A and B as follows:

A =

k−1∑

i=0

ψ(i, λk+1)

[
1 − (Tb − kτ)i

(Tb − (k + 1)τ)i
e−λτ

]

︸ ︷︷ ︸
B

.

Two asymptotic cases can be considered:
• λ � 1: The limiting relation limt→∞ tαe−t = 0 results

in limλ→∞A = 0.
• τ 	 Tb: Since limδ→0 B = 0 and ψ(k, λk+1) is finite,

limδ→0A = 0 is concluded.
Therefore, for the above two cases, the following approxima-
tion can be adopted:

pK(k) ≈ ψ(k, λk+1). (51)

APPENDIX B
MEAN AND VARIANCE OF THE AQ PMF

By definition, the mean value of the distribution in (27) is:

μK =

kmax−1∑

k=0

kpK(k)

=

kmax−1∑

k=0

k ×
{

k∑

i=0

ψ(i, λk+1) −
k−1∑

i=0

ψ(i, λk)

}
. (52)

Replacing k by k + 1 in the summation index of the second
term in the right-hand side of the previous expression gives:

μK =

kmax−1∑

k=0

k∑

i=0

kψ(i, λk+1)−
kmax−2∑

k=0

k∑

i=0

(k + 1)ψ(i, λk+1)

=

kmax−1∑

i=0

(kmax − 1)ψ(i, λkmax) −
kmax−2∑

k=0

k∑

i=0

ψ(i, λk+1)

≈ (kmax − 1) −
kmax−2∑

k=0

k∑

i=0

ψ(i, λk+1). (53)

where the approximation
kmax−1∑

i=0

ψ(i, λkmax) ≈ 1 is used,

as λkmax is very small. The above expression for μK in (53)
can be further simplified to:

μK =

kmax−2∑

k=0

∞∑

i=k+1

ψ(i, λk+1). (54)

Next, the limit of this expression for τ → 0 or kmax → ∞
is taken. Although it follows directly from limτ→0 pK(k) =
p0(k) that limτ→0 μK = λTb, a direct proof can also be
obtained in the following way; the right-hand side of (54) is a
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double series whose terms can be ordered in an infinite matrix:

e−λTb ×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 (λTb)1

1!
(λTb)2

2!
(λTb)m

m!

0 0 (λTb)2

2! . . . (λTb)m

m! . . .

0 0 0 (λTb)m

m!
...

. . .
...

0 0 0 . . . (λTb)m

m! . . .
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

The rows and columns of the above matrix are indexed by
summation indices of (54), k and i, respectively. Summation
of the first m rows of this matrix gives:

Sm = e−λTb ×
[

m∑

i=0

i× (λTb)i

i!
+m×

∞∑

i=m+1

(λTb)i

i!

]

= e−λTb ×
[
(λTb) ×

m−1∑

i=0

(λTb)i

i!

+m×
∞∑

i=0

(λTb)i

i!
−m×

m∑

i=0

(λTb)i

i!

]
,

(55)

As m goes to infinity, the summation of the second and third
terms clearly goes to zero. Furthermore, using the Taylor series

expression limm→∞
m−1∑
i=0

(λTb)i/i! = eλTb , one has:

lim
τ→0

μK = lim
m→∞

Sm = λTb. (56)

With an approach similar to the one used for deriving μK ,
the variance of the distribution in (27) can be obtained as:

σ2
K =

kmax−2∑

k=0

k∑

i=0

(2kmax − 2k − 3)ψ(i, λk+1)

−
(

kmax−2∑

k=0

k∑

i=0

ψ(i, λk+1)

)2

. (57)

and the limiting relation limτ→0 σ
2
K = λTb is verified,

where the product λTb is the variance of the original Poisson
distribution.

APPENDIX C
MEAN AND VARIANCE OF THE PQ PMF

According to (5) and (36), the generating function G(z, t)
and its derivatives are given by:

G(z, Tb) =

kmax−1∑

k=0

pK(k)zk

=

kmax−1∑

i=0

(z − 1)i λ
ie−iλτ

i!
(Tb − iτ)i, (58)

∂G(z, Tb)

∂z
=

kmax−1∑

k=0

kpK(k)zk−1

=

kmax−1∑

i=1

i(z − 1)i−1λ
ie−iλτ

i!
(Tb − iτ)i, (59)

∂2 G(z, Tb)

∂z2 =

kmax−1∑

k=0

k(k − 1)pK(k)zk−2

=

kmax−1∑

i=2

i(i− 1)(z − 1)i−2λ
ie−iλτ

i!
(Tb − iτ)i.

(60)

Therefore, the mean and variance of the distribution function
in (36) are derived as:

μK =

kmax∑

k=0

kpK(k) =
∂G(z, Tb)

∂z

∣∣∣∣
z=1

= λe−λτ (Tb − τ).

(61)

σ2
K =

kmax∑

k=0

k2 pK(k) −
(

kmax∑

k=0

kpK(k)

)2

=

[
∂2 G(z, Tb)

∂z2 +
∂G(z, Tb)

∂z
−
(
∂G(z, Tb)

∂z

)2
]∣∣∣∣∣

z=1

= λ2 e−2λτ (3τ2 − 2Tbτ) + λe−λτ (Tb − τ). (62)

Finally, the limiting expressions limτ→0 μK = λTb

and limτ→0 σ
2
K = λTb are verified.

APPENDIX D
THRESHOLD DETECTION FOR AQ SPADS WITH

λn � 1 OR τ 	 Tb

With the approximate PMF given in (51), the likelihood
ratio test in (44) reduces to:

L(k) =
ψ(k, λsn

k+1)

ψ(k, λn
k+1)

H1

≷
H0

1 (63)

where λn
k+1 = λn(Tb−(k + 1)τ ) and λsn

k+1 = (λs + λn)(Tb−
(k + 1)τ ). Substituting ψ(i, λ) = λie−λ/i! gives:

L(k) = e−λs(Tb−(k+1)τ)

(
λs + λn

λn

)k H1

≷
H0

1 (64)

Finally, taking the natural logarithm from both sides gives:

k
H1

≷
H0

λsTb − λsτ

λsτ + ln
(
1 + λs

λn

) . (65)

Therefore, for an AQ SPAD, the maximum likelihood detec-
tion simplifies to a threshold detection if λn � 1 or τ 	 Tb.

APPENDIX E
SPECIAL PROPERTY OF AN AQ SPAD

IN THRESHOLD DETECTION

Here, the error probability of threshold detection for an AQ
SPAD is derived. Assuming mT < T/τ , the probability of
counting at most mT photons, is calculated as:

mT∑

k=0

pK(k)
(∗)
=

mT∑

i=0

mT∑

k=i

ψ(i, λk+1) −
mT−1∑

i=0

mT∑

k=i+1

ψ(i, λk)

(∗∗)
= ψ(mT, λmT+1)

+

mT−1∑

i=0

[
mT∑

k=i

ψ(i, λk+1) −
mT−1∑

k′=i

ψ(i, λk′+1)

]
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= ψ(mT, λmT+1) +

mT−1∑

i=0

ψ(i, λmT+1)

=

mT∑

i=0

ψ(i, λmT+1) (66)

where, in (∗), the order of summations is changed and for (∗∗),
a change of variable k′ = k − 1 is used. According to (66),
the probability of counting up to mT photons, for an AQ SPAD
receiver with dead time τ in a bit interval of Tb seconds, is the
same as that of a SPAD receiver without dead time counting
photons at the same rate, but during a bit interval of Tb −
(mT + 1)τ seconds, or the same as that of a similar SPAD
without dead time, but with a quantum efficiency reduced by
the factor (1 − (mT + 1)τ/Tb). This result greatly simplifies
the error probability calculations for an AQ SPAD.
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Abstract—A single photon avalanche diode (SPAD) receiver
can provide a significantly improved detection sensitivity over
conventional photodiodes. However, upon detecting a photon,
the SPAD receiver is unable to respond to subsequent incident
photons for a certain period of time called dead time. When the
SPAD receiver is counting in consecutive intervals and its dead
time is relatively long compared to the counting interval, the
dead time in one interval may overlap the next intervals, causing
counting losses in those intervals. In this paper, the photocount
statistics of an active quenching SPAD receiver with a long dead
time is investigated. While detecting in consecutive time intervals,
the SPAD receiver can be modeled as a Markov chain. It is shown
that the SPAD experiences a transient period, before eventually
reaching its steady state. The duration of the transient period
increases with both the dead time and the signal photon rate. The
bit error performance of the system with an on-off keying (OOK)
modulated signal is also evaluated. Our results show that the
SPAD’s dead time significantly degrades the error performance
of high data rate links.

Index Terms—Single photon avalanche diode (SPAD), active
quenching, dead time, Markov process, blocking probability,
inter-symbol interference (ISI).

I. INTRODUCTION

Single photon avalanche diodes (SPADs) are semiconduc-
tor devices with extremely high sensitivity. This feature has
opened the door to many optical wireless communication
(OWC) applications, dealing with very low intensity levels
down to a single photon, where conventional positive-intrinsic-
negative (PIN) diodes and avalanche photodiodes (APDs) can
not provide sufficient optical sensitivity. Examples of potential
applications include, but are not limited to, deep space optical
communications [1], gas well downhole monitoring systems
[2], data transmission over plastic optical fibers [3], and
underwater communications [4], [5].

When the SPAD receiver detects a photon, it becomes
inactive, or blocked, for a certain period of time called dead
time, caused by a quenching circuit. It is only after this dead
time period that the SPAD is able to detect a subsequent
photon. Active quenching (AQ) and passive quenching (PQ)
are the two main types of quenching circuits. SPADs with
AQ circuits have a constant dead time, while in PQ SPADs
photons arriving during the dead time extend its duration [6].

Several experiments demonstrate that the performance of
SPAD receivers is degraded by their unavoidable dead time [3],
[7]–[10]. However, there is limited theoretical studies focusing
on the impact of dead time [11]–[14]. In any SPAD-based

OWC system, the counting losses arising from the dead time,
not only result in higher error probabilities, but also limit the
maximum achievable data rate [15]–[18].

In [15] and [18], we presented a thorough characterization
of single SPADs, where we derived the exact photocount
distribution of both AQ and PQ SPAD receivers in the presence
of dead time. It was assumed that the dead time is sufficiently
shorter than the counting interval, so that independent counting
statistics could be assumed for consecutive counting intervals.
Based on this assumption, the bit error performance of a
SPAD-based OWC system was investigated. However, if the
dead time is long relative to the counting period, the mathe-
matical models of [15] and [18] can not be applied. In such
cases, the dead time of the last detected photon in one interval
is extended to the next interval(s), and the counting statistics
of adjacent time slots are correlated, hence, the memoryless
property of the SPAD receiver is lost.

In this paper, we study the effect of a long dead time on
the photocount distribution of AQ SPADs. We model the AQ
SPAD with a Markov chain and obtain the transient and steady
state probabilities for unmodulated and on-off keying (OOK)
modulated input signals. The photocount distribution is then
derived which can be used for the error performance analysis
of a SPAD-based OWC system.

The rest of this paper is organized as follows. In Section II,
the photocount statistics of a SPAD detector in a single-
slot counting mode are briefly summarized. In Section III,
the SPAD’s counting behavior in a consecutive-slots counting
mode is discussed, where the photocount distribution in the
presence of a long dead time is derived based on a Markov
model for the SPAD receiver. In Section IV, some numerical
results are provided. Finally, concluding remarks are given in
Section V.

II. COUNTING STATISTICS IN A SINGLE COUNTING

INTERVAL

A. Ideal Detector

For an ideal single-photon detector, photon detection events
are modeled as a Poisson process for which the probability
of detecting k photons over a counting interval of length T is
given by [19], [20]:

p0(k) =
(λT )ke−λT

k!
, (1)
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where the constant λ is the average photon arrival rate (in
photons/s). The mean and variance of the photon counts over
the time period of T seconds are given by:

µ0 = σ2
0 = λT. (2)

B. Short Dead Time

In an AQ SPAD with dead time τ , after each photon detec-
tion, the SPAD is blocked, and any incident photon during this
period is lost. Assuming that the SPAD is ready to operate at
the beginning of a counting interval of length T , the maximum
number of photons to be detected is kmax = ⌊T/τ⌋+1, where
⌊x⌋ denotes the largest integer that is smaller than x. Let the
dead time ratio be defined as δ = τ/T . If the dead time
duration is short relative to the counting interval, i.e. δ < 1,
the probability of detecting k photons is given by [15], [18],
[21]:

pK(k) =





k∑
i=0

ψ(i, λk) −
k−1∑
i=0

ψ(i, λk−1), k < kmax

1 −
k−1∑
i=0

ψ(i, λk−1), k = kmax

0, k > kmax

(3)

where the function ψ(i, λ) is defined as ψ(i, λ) = λie−λ/i!,
and λk = λ(T − kτ). The mean and variance of the photo-
count distribution in (3) are [18]:

µK = kmax −
kmax−1∑

k=0

k∑

i=0

ψ(i, λk). (4a)

σ2
K =

kmax−1∑

k=0

k∑

i=0

(2kmax − 2k − 1)ψ(i, λk)

−
(

kmax−1∑

k=0

k∑

i=0

ψ(i, λk)

)2

.

(4b)

As dead time approaches zero, the probability mass func-
tion (PMF) in (3) approaches the ideal Poisson distribution
in (1). Also the limiting relations limτ→0 µK = µ0 and
limτ→0 σ

2
K = σ2

0 hold.

C. Long Dead Time

In the case of δ ≥ 1, the SPAD can detect at most
one photon (kmax = 1) in the counting interval, and the
photocounts follow a Bernoulli distribution:

pK(k) =

{
e−λT , k = 0
1 − e−λT , k = 1

(5)

Accordingly, other than limiting kmax, the dead time does
not appear in the pK(k) expression, i.e. if the dead time is
longer than the counting interval, no matter how long it is, the
photocount distribution is not affected. For the PMF expression
in (5), the mean and variance are given by:

µK = 1 − e−λT . (6a)

σ2
K = e−λT (1 − e−λT ). (6b)

III. COUNTING STATISTICS IN CONSECUTIVE COUNTING

INTERVALS

Some applications may require the SPAD receiver to count
in consecutive intervals. Of particular interest are SPAD-based
OWC systems, where the counting process is performed in
consecutive time slots (e.g. bit intervals in OOK modulation).
In these systems, the existence of dead time does not allow
the use of arbitrarily narrow time slots for transmitting optical
pulses; as the SPAD’s dead time can overlap two adjacent
time slots, causing the detection statistics of neighboring time
slots to become correlated. Hence, the photocount statistics
over a given time slot also depends on the received optical
intensity over the previous time slots. This effect can be
considered as inter-symbol interference (ISI) in OWC systems
[3]. Depending on the length of the counting time interval
compared to the dead time, the following two cases are
considered:

A. τ < T

In this case, the aforementioned effect is insignificant, i.e.
the counting statistics over different time slots can be assumed
as independent. The SPAD detector can then be regarded as a
memoryless system. Accordingly, the expressions for the PMF,
the mean and the variance of the SPAD’s photocounts given
in (3) and (4) can be applied for the performance analysis of
the OWC systems [15], [17], [18].

B. τ ≥ T

In this case, the aforementioned effect becomes apparent,
and the memoryless property of the SPAD’s photon counting
process is lost. Therefore, the PMF, the mean and the variance
of the SPAD’s photocounts given in (5) and (6) do not
describe the real Bernoulli process accurately. In the following,
we study this case and are especially concerned with the
modifications to the original Bernoulli photocount distribution.

Suppose that τ = mT , where m is an integer value.
This assumption is made for simplicity and mathematical
tractability, and could be relaxed without changing the key
results. During each counting interval of length T , the SPAD
is either free or blocked by the dead time of detected photons
in current/previous time slot(s). Let the SPAD receiver be
modeled by the Markov chain illustrated in Fig. 1.

In the state 0, the SPAD is free. It remains in this state,
with probability α, if no photon arrives. If a photon arrives,
it is detected and the SPAD proceeds to the state m (with
probability 1−α). Once in the state m, the SPAD proceeds to
the state m− 1 in the next interval (with certainty), provided
that m > 1. This continues until reaching the state 1. In all
of these states apart from the state 1, no incident photon is
detectable. In the state 1, the SPAD is still partially blocked.
It may return to the state 0 with probability β and the process
repeats itself or it may return to the state m with probability
1 − β, if another detection event happens.

Denote the number of incident and detected photons during
the nth counting interval by Xn and Kn, respectively. Let
Sn represent the state of the SPAD detector during the nth
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Fig. 1. Markov model of the SPAD receiver.

counting interval. Sn takes values in S = {0, 1, . . . ,m} with
Sn = 0 indicating that the SPAD is free, Sn = 1 indicating
that the SPAD is partially blocked, and Sn = i > 1 indicating
that the SPAD is totally blocked in the nth interval and will
remain blocked throughout intervals n, n+ 1, . . . , n+ i− 2.
Define q(n)

i = Pr{Sn = i}, for i = 0, 1, . . . ,m. According to
the Markov model in Fig. 1, α and β are given by:

α = Pr{Sn = 0|Sn−1 = 0}. (7)

β = Pr{Sn = 0|Sn−1 = 1}. (8)

In the following, the state probabilities are determined for
two different cases, unmodulated and OOK-modulated Xn.

B.1. Unmodulated Signal

Suppose that Xn is an unmodulated signal, described by a
Poisson distribution with rate parameter λ. In this case, Xn and
Xm are independent for m 6= n. Also, the number of incident
photons during any time interval is independent of the SPAD’s
state, i.e. Xn and Sn are independent. Since Sn−1 = 0 results
in Sn being independent of what happened in the previous
intervals, the conditional probability α given in (7) can be
easily obtained as:

α = e−λT . (9)

The conditional probability β given in (8), depends on all the
non-zero states preceding it. It can be shown that β in the nth
interval is given by:

β(n) =

cmax∑
i=1

q
(n−mi)
0 ψ(i, λT )

cmax∑
i=1

q
(n−mi)
0 (1 −

i−1∑
j=0

ψ(j, λT ))

, (10)

where cmax = ⌊n−1
m ⌋. The following equations hold for the

Markov chain of Fig. 1:

q
(n)
0 = α q

(n−1)
0 + β(n−1) q

(n−1)
1 ,

q
(n)
1 = q

(n−1)
2 ,

q
(n)
2 = q

(n−1)
3 ,

...

q
(n)
m−1 = q(n−1)

m ,

q(n)
m = (1 − α) q

(n−1)
0 + (1 − β(n−1)) q

(n−1)
1 .

(11)

The SPAD undergoes a transient period during which the
occupancy probability of each state, q(n)

i , changes with n.
Since this Markov chain is aperiodic and irreducible, the SPAD
will eventually reach a steady state, and the state probabilities
will thereafter remain almost constant. Let the steady state
probabilities be defined as qi = limn→∞ q

(n)
i . The qi satisfy:

q0 = α q0 + β q1,

q1 = q2 = · · · = qm,

qm = (1 − α) q0 + (1 − β) q1,

(12)

where (see Appendix A),

β = lim
n→∞

β(n) =
1 − e−λT

λT
, (13)

Solving
m∑

i=0

qi = 1 gives:

q0 =
1

1 +mλT

qi =
λT

1 +mλT
i = 1, . . . ,m.

(14)

The limit λ → ∞ results in q0 → 0 and qi>0 → 1/m. The
SPAD cycles through all of the states continuously and it never
goes to the free state (state 0).

Denote p(n)
K (k) the probability of detecting k photons in the

nth interval. With τ ≥ T , the SPAD can detect at most one
photon per counting interval, T . Therefore:

p
(n)
K (k) = Pr{Kn = k} =





m−1∑
i=0

q
(n)
i , k = 0

q
(n)
m , k = 1

(15)

In the steady state, the photocounts follow a Bernoulli distri-
bution given by:

pK(k) = lim
n→∞

p
(n)
K (k) =





1 + (m− 1)λT

1 +mλT
, k = 0

λT

1 +mλT
, k = 1

(16)

For the above PMF expression, the mean and variance are
expressed as:

µK =
λT

1 +mλT
. (17a)

σ2
K =

λT + (m− 1)λ2T 2

(1 +mλT )2
. (17b)

The probability that the SPAD is blocked after each detec-
tion event is termed as the blocking probability and is a useful
metric for assessing its photon counting performance [22].
For the Markov model presented in this paper, the blocking
probability is defined as:

p
(n)
B = 1 − q

(n)
0 . (18)
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B.2. On-Off Keying Modulated Signal

In this case, it is assumed that Xn is an OOK modulated signal.
Let Bn ∈ {0, 1} where {Bn} are independent and identically
distributed with Pr{Bn = 1} = 0.5. The mean photon rate in
the nth slot is given by:

λ(n) =

{
λn, Bn = 0

λs + λn, Bn = 1
(19)

where λs and λn represent the signal and background noise
photon rates, respectively.

Following a similar approach, the steady state expressions
for α and β can be obtained:

α =
1

2
αn +

1

2
αsn

=
1

2
e−λnT +

1

2
e−(λs+λn)T . (20)

β =
1

2
βn +

1

2
βsn

=
1 − e−λnT

2λnT
+

1 − e−(λs+λn)T

2(λs + λn)T
. (21)

The steady state probabilities are then given by:

q0 =
β

β +m(1 − α)

qi =
1 − α

β +m(1 − α)
, i = 1, . . . ,m.

(22)

and the steady state Bernoulli distribution is expressed as:

pK(k) =





β + (m− 1)(1 − α)

β +m(1 − α)
, k = 0

1 − α

β +m(1 − α)
, k = 1

(23)

For this case, the approximate probability of error is:

Pe ≈ 1

2
+
q0
2

(αsn − αn) +
q1
2

(βsn − βn). (24)

IV. RESULTS AND DISCUSSIONS

In this section, some numerical results on the evolution
of the state probabilities and the photon counting distribu-
tions are provided. Figs. 2–4 correspond to the case of an
unmodulated input signal. In these figures, exact numerical
results are obtained by initializing the system of Fig. 1 in
the state 0, and letting the state probabilities evolve, thus
calculating β(n) and q(n)

i in each interval, n. For approximate
numerical results, β(n) is replaced by its steady value given
in (13). The Monte Carlo simulation results are obtained by
generating a Poisson arrival process, counting the number of
detected photons in each interval, and then determining the
state probabilities. It is assumed that the SPAD receiver is
initially free to detect photons. This assumption is equivalent
to q(0)0 = 1 in numerical calculations.

5 10 15 20
0

0.2

0.4

0.6

0.8

1

Fig. 2. Evolution of p
(n)
K (0) for a SPAD with τ = T . The transient period

is shorter for smaller photon rates (unmodulated signal).
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(b) λ = 5

Fig. 3. Evolution of p
(n)
K (0) for a SPAD with τ = 2T (unmodulated signal).
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As the first example, consider a system with m = 1. This
system consists of two states: 0 and 1, and p

(n)
K (0) = q

(n)
0 .

Fig. 2 illustrates the evolution of the probability of state 0
for this system. The results for three different values of λ
are provided in this figure. Note the transient period before
reaching the steady state. As can be seen, for λ = 1 and
λ = 2, the system reaches the steady state for n ≥ 5. For
larger values of λ, e.g. λ = 5, this takes longer (n ≥ 10).
Note that for analyzing the performance of such a system (in
terms of error probability, capacity, etc.), we can allow the
system to pass through the transient period and approximate
the system performance by its steady state performance.

Fig. 3 corresponds to a system with m = 2. The transient
period varies with m and λ significantly as in Figs. 3a and 3b.
The duration of the transient period increases nonlinearly with
each of these parameters. For λ = 5, the steady state is not
reached even after 50 intervals.

In Fig. 4, the SPAD’s steady state blocking probability is
plotted for three different values of m. According to this
figure, the blocking probability increases rapidly with λ and
it approaches 1. In fact, for larger values of λ, the SPAD
continuously remains blocked. This effect is termed as the
saturation of the SPAD receiver.

Fig. 5 illustrates the steady state bit error probability in
the presence of an OOK modulated signal as a function of
data rate, R = 1/T . In this figure, a constant dead time
(τ = 10 ns) is considered. Ks = λsT and Kn = λnT ,
are the average signal and background noise counts per bit
interval, respectively. Recall from Section III that m = τ/T .
As R is increased, m is also increased, hence the SPAD’s dead
time overlaps more bit intervals, increasing the probability of
errors. This figure presents the trade-off between the bit error
ratio (BER) and the data rate where the SPAD’s dead time
does not allow the use of arbitrarily short bit intervals (i.e.
high data rates), as this significantly degrades the bit error
performance. Note that even for R = 100 Mbits/s (m = 1),
the BER is still high (≥ 10−3). This highlights a fundamental
limitation of using single SPAD receivers for high data rate
communications.

V. CONCLUSIONS

In this paper, we have characterized the counting statistics
of an AQ SPAD receiver with a dead time length equal
to or longer than the counting interval. We have illustrated
that in such a case, the SPAD’s counting process is first
subject to a transient phase and then, it reaches a steady
state. We have shown that in the steady state, the SPAD’s
photocounts follow a Bernoulli distribution. The steady state
Bernoulli probability distribution allows a simple and accurate
approximation of blocking losses for scenarios with sparse
event arrival rates, and is particularly required when assessing
the bit error performance of any high data rate SPAD-based
OWC system.

This study provides valuable insights into the fundamental
limits of SPAD receivers for optical communication systems.

0 2 4 6 8 10
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0.6
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Fig. 4. SPAD’s steady state blocking probability (unmodulated signal).

100 200 300 400 500
10-2

10-1

100

Fig. 5. BER curves of a SPAD-based system with OOK modulation as a
function of data rate: τ = 10 ns, and Kn = 0.01 photons/bit.

It highlights the trade-off between the photon counting perfor-
mance and the data rate, as the existence of dead time causes
significant counting losses when operating in high data rates.

APPENDIX A
CALCULATING β IN THE STEADY STATE

According to (10), β is given by:

β(n) =

cmax∑
i=1

q
(n−mi)
0 ψ(i, λT )

cmax∑
i=1

q
(n−mi)
0 (1 −

i−1∑
j=0

ψ(j, λT ))

where cmax = ⌊n−1
m ⌋. In the following, the steady state value

of β is obtained. For this, the limit of the above expression
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for n → ∞ is taken. β(n) can be rewritten as:

β(n) =

cmax∑
i=1

q
(n−mi)
0 ψ(i, λT )

cmax∑
i=1

q
(n−mi)
0

∞∑
j=i

ψ(j, λT )

(25)

Assume a threshold nTH, for which ψ(i, λT ) ≈ 0 if i > nTH.
For cmax → ∞, nTH < cmax holds. Hence,

β(n) =
nTH∑
i=1

q
(n−mi)
0 ψ(i, λT )

nTH∑
i=1

q
(n−mi)
0

∞∑
j=i

ψ(j, λT ) +
cmax∑

i=nTH+1

q
(n−mi)
0

∞∑
j=i

ψ(j, λT )

(26)

The right term in the denominator is approximately zero as
q
(n−mi)
0 is finite and ψ(j, λT ) ≈ 0 for j > nTH. Also, as n

approaches ∞, q(n−mi)
0 in (26) can be replaced by the steady

state value q0. Therefore,

β(n) =

nTH∑
i=1

q0ψ(i, λT )

nTH∑
j=1

j∑
i=1

q0ψ(j, λT )

=

nTH∑
i=1

ψ(i, λT )

nTH∑
j=1

jψ(j, λT )

(27)

Define:

A =

nTH∑

i=1

(λT )i

i!

B =

nTH∑

i=1

(λT )i

(i − 1)!

As it was previously assumed that nTH is sufficiently large,
such that ψ(i, λT ) ≈ 0 for i > nTH, A and B can be
approximated as follows:

A ≈ eλT − 1

B ≈ λTeλT

Therefore,

β = lim
n→∞

β(n) =
1 − e−λT

λT
(28)
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