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ABSTRACT

The first part of the thesis examines the possibility
that there may exist, in a normal population, individuals
who have an absent or diminished hypoxic drive to breathing,
The method used to assess hypoxic drive in a group of mine
rescue workers measured their ventilatory response to
transient hypoxia on exercise., The method proved repro-
ducible and identified a wide range of hypoxic drive to
breathing in the subjects, including two subjects with re-
producibly low responses. The hypoxic drive measured by
this method did not compare well with the hypoxic drive
measured by conventional steady state CO2 response studies
at rest in a sub-group of the mine rescue workers.

The second part of the thesis therefore examines re-
peated measurements of the hypoxic drive to breathing, at
rest and on exercise, using transient, progressive and
steady state hypoxia methods in four normal subjects. Con=
siderable variability in indices of hypoxic drive is found
with all methods but, when mean values for each index are
used, the ranking of the four subjects for hypoxic drive
is, in general, consistent with all methods. One subject
with a low ventilatory response to transient hypoxia on
exercise was ranked higher with other methods of measuring
hypoxic drive., On the basis of the findings in this sub-
ject, it is suggested that an individual's ventilatory res-
ponse to transient hypoxia on exercise may be explained by
considering the effect of exercise on his steady state
ventilatory response to 002 in hypoxia and hyperoxia. Sub-

jects with an apparently low ventilatory response to tran-



sient hypoxia on exercise may have a normal hypoxic drive
when this is assessed by other methods. This would explain
the discrepancy between ventilatory responses to transient
and steady state hypoxia in the sub-group of mine rescue
workers studied by both methods,

The last part of the thesis examines the effect of
oral therapy with bendrofluazide or frusemide and intra-
venous therapy with salbutamol on the normal steady state
ventilatory response to 002 in hypoxia and hyperoxia.
Frusemide produces a hypokalaemic metabolic alkalosis with

a parallel shift to the right of the CO, response line

2
which is related to the degree of zlkalosis. The drug

also causes a rise in resting end-tidal PCO2. Bendrofluazide
produces a hypokalaemic metabolic alkalosis with a signi-
ficant decrease in the slope of the hyperoxic CO2 response
line and a significant increase in the intercept of the
hypoxic CO2 respnnse line., The end-tidal PCO2 after the

drug is unchanged. ©Salbutamol infusion causes an increase

in the slope of the CO2 response line in hyperoxia and hy-
poxia with no change in intercept. The drug also causes a
hypokalaemia associated with rises in plasma glucose and
serum insulin, suggesting a shift of potassium from the

extracellular to the intracellular space. The clinical im-

plications of these éffects are discussed.



CHAPTER 1

I CARBON DIOXIDE

i) Introduction

The first experiments describing the effect of carbon
dioxide on ventilation were reported by Pfluger in 1868.
His false conclusion that 002 was a less effective ventila-
tory stimulant than O2 lack was due to his use of 30% COz,
a very effective narcotic. In 1885 Miescher-Rusch related
the exhaled 002 concentration to ventilation in man and
concluded that the resting human ventilation was primarily
regulated by carbon dioxide concentration.

In 1905 Haldane and Priestley, using their alveolar
gas sampling method, showed that the alveolar P002 remained
remarkably constant at 5.3 kPa, at Oxford, with a baro-
metric pressure of 100 kPa; on the summit of Ben Nevis,
despite soaking with rain and a barometric pressure of
86 kPa; at the bottom of the Dolcoath mine in Cornwall
with a barometric pressure of 111 kPa; and, finally, in
the pressure chamber in the Brompton Hospital at a baro-
metric pressure of 168 kPa. During these various conditions
the alveolar PO2 varied from 8.3 to 60 kPa. They also noted
in this paper that a rise in PACO2 of 0.2% of an atmosphere
would double alveolar ventilation and in a later paper
(Campbell, Douglas, Haldane and Hobson, 1913), showed that
the ventilatory response to inspired carbon dioxide could
be studied quantitatively in man by an approximately steady
state technique, the rise in ventilation for a given rise

in PACO being unaffected by added oxygen.

2



2.
Schaefer (1958) has documented the enormous variability
in ventilatory response to CO2 in normal man. There is
evidence in man that the ventilatory response to inhaled
CO2 is mediated centrally, provided that the peripheral
chemoreceptors are 'chemically denervated' by raising ar-

terial PO, to about 30 kPa (Lefrancois, Gautier, Pasquis,

2
Cevaer, Hellot and Leroy, 1972). Three important tech-

niques have been used to determine the hyperoxic venti-
latory response to inhaled 002; the Oxford steady-state
method (Lloyd, Jukes and Cunningham, 1958); the rebreath-

ing CO, method (Read, 1967; Read and Leigh, 1967) and

2
the progressive hypercapnia method of Weil and his col-

leagues (Weil, Byrne-Quinn, Sodal, Filley and Grover,
1971). A normal range for the ventilatory response to

CO, in hyperoxia has been established with values for

2
8002 (the slope of the line relating ventilation to P002

1 1

(see Fig. 1)) of 4.3 - 61.3 1l.min -~ kPa - PCO, using the

2
rebreathing method (Rebuck and Read, 1971; Hirshman,
McCullough and Weil, 1975).

ii) Factors influencing the ventilatory response to 002

Genetic factors appear to be important in determining
the ventilatory response to 002 (Beral and Reid, 1971;
Leitch, Clancy and Flenley, 1975; Leitch, 1976). Arkinstall,
Nirmel, Klissouras and Milic-Emili (1974) were unable to
show any differences in the variance for CO2 responses
between monozygous and dizygous twins. They attributed
this to differences between twins in their tidal volume

and frequency response to inhaled CO,, the frequency response
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Figure 1

The ventilatory response to inhaled CO9. The figure shows
the normal linear relationship between ventilation and
arterial or alveolar PCOg. The line is defined by its
slope (S) and its intercept B, Also shown are the effects
of metabolic acidosis and alkalosis on the relationship;

a decrease and increase in B respectively with no change
in S. Hypoxia, on the other hand, increases S without
altering B.



3.
being determined by personality factors whereas there is
a strong genetic component to the tidal volume response.
Saunders, Heilpern and Rebuck (1972) have shown a relation
between extraversion score and CO2 responsiveness in women
which may have a similar basis.

Rebuck, Rigg, Kangalee and Campbell (1974) have shown
that 002 responsiveness is directly related to vital capa-
city and that differences in the tidal volume response to
002 is the major factor relating to interindividual dif-
ferences in ventilatory response to 002. In dogs,
Cherniack, Stanley, Tuteur, Altose and Fishman (1975)
have shown that a decrease in lung volume decreases, and
an increase in lung volume increases the ventilatory res-
ponse to COz. In man, Guz, Noble, Widdicombe, Trenchard
and Mushin (1966) have shown, by bilateral block of the
vagus and glossopharyngeal nerves, that the normal venti-
latory response to C02 is dependent on the integrity of
afferent information from the lungs.

Other factors known to diminish the ventilatory response

to CO, are sleep (Bellville, Howland, Seed and Houde, 1959;

2
Birchfield, Sieker and Heyman, 1958; Reed and Kellogg,
1958; DBulow, 1963) and mechanical loading (Eldridge and
Davis, 1959; Clark and Cochrane, 1972). Induced metabolic
acid-base changes produce changes in the intercept of the

V/PCO, line on the PCO2 axis (Fig. 1). Acidosis lowers

2
the intercept and alkalosis increases it, neither condition
producing a change in slope (Cunningham, Shaw, Lahiri and

Lloyd, 1961; Goldring, Cannon, Heinemann and Fishman,



4.
1968). These findings have recently been confirmed with
the steady-state technique (Cameron, Davis, Linton and
Poole-Wilson, 1972) but, surprisingly, with the rebreath-
ing technique, acidosis and alkalosis had no effect on
the intercept but increased and decreased the slope of
the line respectively.

Recently, the ventilatory response to carbon dioxide
has been shown to be positively correlated with the
ventilatory response to hypoxia (Rebuck, Kangalee, Pengelly
and Campbell, 1973; Hirshman, McCullough and Weil, 1975).
Also, in a small group of subjects with a very extreme
range of ventilatory response to exercise, Rebuck, Jones
and Campbell (1973) have shown a positive correlation
between the ventilatory responses to exercise and 002.

In this respect, it is interesting to note that Byrne-
Quinn, Weil, Sodal, Filley and Grover (1971) found a dimi-

nished ventilatory response to CO, in athletes, while

2
Rebuck and Read (1971) have found the ventilatory response
to 002 to be very high in sprint athletes and very low in
endurance athletes.

iii) Peripheral and central response to 002

In normoxia, the ventilatory response to 002 has a peri-
pheral as well as at least one central component (Gelfand
and Lambertson, 1973). Denervation of the carotid bodies
in man for the treatment of asthma (Nakayama, 1961) has been
reported to cause no change (Holton and Wood, 1965) or a
30% decrease (Lugliani, Whipp, Seard and Wasserman, 1971)

in the slope of the &/PCO line. Similar studies, in

2



5.
patients submitted to carotid endarterectory for transient
ischaemic attacks, show a decrease in the slope of the
%/PCO2 line by 15% (Wade, Larson, Hickey, Ehrenfeld and
Severinghaus, 1970), a finding which is confirmed in un-
anaesthetised chemodenervated dogs (Mitchell, 1965). 1In
normal man oxygen breathing will also depress the venti-

latory response to CO, by about 15% (Lambertsen, Hall,

2
Wollman and Goodman, 1963; Cunningham, Patrick and Lloyd,
1964). Using transient hypercapnia in normal man,
Edelman, Epstein, Lahiri and Cherniack (1973) attribute
roughly one third of the ventilatory response to CO2 to
the peripheral chemoreceptors.

In high altitude residents where the ventilatory
response to hypoxia is markedly reduced and, presumably,
carotid body function depressed, the ventilatory response
to 002 appears to be normal (Milledge and Lahiri, 1967;
Lahiri, Kao, Velasquez, Martinez and Pezzia, 1969), an
apparent decrease noted by Weil, Byrne-Quinn, Sodal,
Filley and Grover (1971) probably being related to the PO2
at which they made their measurements. However, it may be
that loss of peripheral chemosensitivity to oxygen lack in
these subjects is not accompanied by a loss of sensitivity

to CO From the evidence available from studies in nor-

2.
mal man it would seem that as much as 15-30% of the venti-
latory response to CO2 in euoxia is dependent on the peri-
pheral chemoreceptors. The remainder of the ventilatory

response in euoxia, and the entire response in hyperoxia,

is mediated by the central chemoreceptors.



II H' AND CENTRAL CHEMORECEPTORS

i) Early Observations

In 1877 Walter described the ventilatory stimulation
which resulted from the administration of large doses of
dilute hydrocholoric acid in the rabbit. In 1908 Lawrence
Henderson applied the Law of Mass Action to the dissociation
of carbonic acid in living tissues and described the re-
lationship between the carriage of carbon dioxide by, and
the acidity of, the blood. The logarithmic transposition
of his equation by Hasselbalch in 1916 gave the Henderson-
Hasselbalch equation which described the quantitative re-
lationship between acidity and PCO, in a fluid if the bi-

2

carbonate concentration, PCO2 and dissociation constant for

CO2 were known. In 1911 Hans Winterstein proposed that
the acidity of the blood was the principal determinant of

ventilation and the PCO, merely a reflection of the physico-

2
chemical consequences of the Henderson-Hasselbalch equation.
This theory was generally accepted but, in 1919, Haldane,
Kellas and Kennaway and, in 1920, Haggard and Henderson
pointed out that hypoxic hyperventilation was associated
with alkalosis, not acidosis, and could not therefore be
caused by increased acidity in the blood. Winterstein
modified his Reaction Theory in 1921 to cope witk this ob-
jection and postulated that the acidity of the cells of
the respiratory centre, and not of the blood, was the de-
terminant of ventilation. Anaerobic metabolites in the

respiratory centre were the cause of hypoxic hyperventila-

tion. Gesell (1923, 1925) concurred with this view but,
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lacking knowledge of the peripheral chemoreceptors, it is
clear that "the peculiar effects of oxygen" were creating
difficulties for the physiologists of the 'twenties. Gesell
(1925) wrote "for various reasons this phase of the subject
has proved to be exceedingly elusive. A review of the li-
terature indicates uncertainty and vacillation". He could
only suggest that anoxaemia acted by creating lactic or
other acidosis in the centre itself.

ii) The localisation of the central chemoreceptors

Further developments on the effect of 002 and H+ on the
respiratory centres had to wait until the 1950's. 1In 1952
Astrom argued, on the basis of his observation that barbi-
turate anaesthesia abolished the ventilatory response to
CO2 in animals, at a time when the response to anoxia was
well maintained, that a "chemocentre'" must exist for C02,
which normally transmitted its signals to the "respiratory
reflex centre" and which was depressed by barbiturate
anaesthesia. Leusen (1950, 1954a, 1954b) observed that per-
fusion of the cerebral ventricles of a dog with artificial
CSF, containing increased CO2 and H+, stimulated ventilation,
whereas solutions containing less CO2 and H+ depressed venti-

lation. The stimulating effect of CO, might be related to

2
its ability to diffuse rapidly across cell membranes (Jacobs,
1920a, b). These findings were confirmed by Loeschke,
Koepchen and Gertz (1958) who attributed more importance

to H+ concentration in the fluid than to 002, a controversy

which has continued (Leusen, 1972; Loeschke, 1974). Most

workers now agree that the effect of CO2 is mediated by
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changes in H+ and Cunningham (1974) uses the term (002,H+)
to denote this,

In 1963, Mitchell, Loeschke, Massion and Severinghaus
localised an area of chemosensitivity on the ventrolateral
surface of the medulla oblongata of dogs and cats (area M)
and, in 1970, Schlafke, See and Loeschke described a further
area (area L), caudal to area M, which also, when stimulated
with H+, caused an increase in ventilation. Cooling of an
area (area S) between the two chemosensitive areas, after
vagotomy and section of both sinus nerves, resulted in
ventilatory arrest, suggesting that central chemosensitive
activity is relayed through area S to the respiratory
centre.

Recent reviews of the neurophysiology and anatomy of
the "respiratory centre" (Cohen, 1970; Karczewski, 1974)
emphasise how little is known about the central mechanism
regulating ventilation. The chemosensitive cells have not
been positively identified, nor have the postulated path-
ways to the '"respiratory centre" been demonstrated. Re-
cent work (Majcherzyk and Willshaw, 1973) has shown that
peripheral chemoreceptor activity in the cat is inhibited
when the ventral brain stem surface is perfused with alka-
line fluid. If this is substantiated, the influence of
the central chemoreceptors on the control of breathing may

prove to be more complex than is currently believed.
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iii) Central chemoreceptors and acid-base disturbances

Mitchell, Carman, Severinghaus, Richardson, Singer and
Shnider (1965) found CSF H+ to be within the normal range
in chronic states of respiratory or metabolic acidosis or
alkalosis in man. Their findings led them to suggest the
existence of an active transport mechanism regulating CSF
H+. More recent work in rats (Ponten and Siesjo, 1967)
goats (Fencl, Miller and Pappenheimer, 1966) and man (Fencl,
Vale and Broch, 1969) has shown that CSF H+ follows arte-
rial H+ in chronic acid-base disturbances, although the
change in CSF m is only 1/10 of the change in arterial
H+. Discussion on the existence of an active transport
regulation of CSF H+ continues (Leusen, 1972; Siesjo, 1972)
but, at present, there is no definite evidence to support
the suggesticn., Mitchell and Binger's (1965) belief that
ventilatory adjustment to chronic acid-base disturbances
is mediated by the peripheral chemoreceptors with subse-
quent active regulation of CSF Hf is not sustained by the
work quoted above. Fencl, Miller and Pappenheimer (19686)
have shown that ventilation is a singie function of CSF H+
in unanaesthetised goats and have demonstrated the ex-
quisite sensitivity of the central chemoreceptors to small
changes in CSF H+.

Earlier work (Lamberitsen, Semple, Smyth and Gelfand,
1961) had shown that 45% of the ventilatory response to
PCO2 could be removed by restoring arterial H+ to normal,
the remaining 55% of the Ventilatpry response being atiri-

buted to changes in CSF H+. This observation is consistent
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with the suggestion of Fencl et al (1969) that the chemo-
receptor cells are located three-quarters of the way along
a gradient from CSF to blood, and are influenced by the H+
of cerebral interstitial fluid which, in turn, is dependent
on the H' of arterial blood and CSF.

Current concepts therefore suggest that the central
chemoreceptor is sensitive to cerebral interstitial fluid
H+. It is largely responsible for the ventilatory response
to increases in arterial PCO2 (mediated by increased inter-
stitial fluid PCO,), and in H' (since CSF HCOg- and hence

3

interstitial fluid HCO.,- follows arterial HCOa-).

3

The importance of the central chemoreceptors to spon-
taneous respiration is seen in the anaesthetised or dece-
rebrate cat where spontaneous ventilation ceases if peri-

pheral chemoreceptors are denervated and area S is cooled

or ablated (Schlaefke, 1974; Kille, Folgering and Herker, 1972).

III OXYGEN DEFICIENCY

i) Introduction

The "dephlogisticated air" which Joseph Priestley col-
lected on 1st August 1774 was later shown by Lavoisier to
be consumed in human respiration, but its relevance to the
control of ventilation was not appreciated until the follow-
ing century. Bert (1878) demonstrated that the physiolo-
gical effects of high altitudes arose from the diminution
in the partial pressure of oxygen (P02) in the inspired
gas. From his experiments on cats, guinea pigs, sparrows
and himself, in a chamber at a simulated altitude of

28,000 feet, he concluded "oxygen tension is everything,



11,
barometric pressure itself does nothing, or almost nothing".
Rosenthal (1862) considered that the oxygen content of the
blood controlled ventilation, but Hoppe-Seyler in 1879
showed that the arterial blood was almost fully saturated
with oxygen when breathing air, and also that changing from
oxygen to air in a spirometer scarcely altered ventilation.
Boycott and Haldane (1908) showed that the alveolar PCO

2

only began to fall as the inspired PO, fell below 15.5 kPa

2
where the alveolar PO, was about 8 kPa. They concluded that

2

"want of oxygen is at best a very feeble direct stimulus
to ventilation'". With the demonstration that hypoxic hy-
perventilation produced a respiratory alkalosis (Haldane,
Kellas and Kennaway, 1919; Haggard and Henderson, 1920),
it became accepted, in terms of Winterstein's Reaction
Theory (1921), that hypoxia stimulated ventilation by an
action on the respiratory centre.

In 1927, Heymans and Heymans demonstrated that the
carotid and aortic region of the dog contained structures
sensitive, not only to changes in blood pressure but also
to 02 lack and 002 excess in the blood. Further studies
(reviewéd by Heymans and Neil, 1958) established that the
responsible chemoreceptor structures were the carotid and
aortic bodies. The anatomy of the carotid body had al-
ready been described in detail by de Castro (1926, 1928).

ii) The function of the carotid body

The sensitivity of the carotid body to oxygen lack
(von Euler, Liljestrand and Zotterman, 1939; Hornbein,

Griffo and Roos, 1961), CO, excess (von Euler et al, 1939;

2
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Hornbein and Roos, 1963; Biscoe, Purves and Sampson, 1970;
Lahiri and Delaney, 1975a) and ut (Joels and Neil, 1960;
Hornbein and Roos, 1963; Biscoe et al, 1970; Lahiri and
Delaney, 1975a) has since been established. The question
posed by Winterstein's latest formulation of the Reaction
Theory (1956) as to whether all of these stimuli finally
act on the carotid body by altering H+ at a receptor site
has not been resolved. Discussion of possible activation
mechanisms can be found in a recent symposium (Torrance,
1968) and reviews (Biscoe, 1971; Torrance, 1974). Other
suggested mechanisms include an acid-receptor hypothesis,
the receptor being free nerve endings sensitive to ' and
lying in the space between Type I and Type II cells, the

pH of the space being regulated by a PO, sensitive pump

2
(Torrance, 1975). Lahiri and Delaney (1975a) have postu-
lated the presence of a chromophobe group in the carotid
body with the facility to reversibly bind with oxygen, the

binding being influenced by CO, and H+.

2
The physiological role of chemoreceptors led to an

early dispute between Heymans and Comroe (Comroe and Schmidt,
1938; Schmidt and Comroe, 1940), the latter proposing that
chemoreceptors played little active part in normal breath-
ing, only being called into action or prominence by anaes-
thesia, decerebration, severe anoxia or hypercapnia. They
showed that denervation of the carotid bodies had little
effect on the breathing of lightly anaesthetised animals.

Studies in man by Dejours (Dejours, Girard, Labrousse and
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Raynaud, 1957; Dejours, Labrousse, Raynaud and Teillac,
1957; Dejours, Labrousse, Raynaud, Girard and Teillac,
1968; Dejours, 1962) and Hornbein (Hornbein, Roos and
Griffo, 1961; Hornbein and Roos, 1962), employing tran-
sient increases in inspired PO2 have demonstrated that
the peripheral chemoreceptor accounts for 10-15% of resting
ventilation and 6-8% of exercise ventilation at sea level
and as much as 50% of the ventilatory drive after accli-
matisation to high altitude (Dejours, Girard, Labrousse
and Teillac, 1959). The threshold for chemoreceptor acti-
vity in man appears to be about 30 kPa. The parallelism
of the ventilatory response to inhaled 02 and the chemo-
receptor response has been demonstrated in cats (Leitner,
Pages, Puccinelli and Dejours, 1965).

Less is known about the ventilatory response to hypo-
xia than the ventilatory response to 002 largely because
of the difficulties inherent in its measurement (see
later). The hypoxic drive is said to diminish with age
(Kronenberg and Drace, 1973); show a wide range of
values (Hirschman, McCullough and Weil, 1975); be unaf-
fected by added resistive loads (Rebuck and Juniper, 1975)
and be unchanged by acclimatisation to high altitude
(Michel and Milledge, 1963; Lefrancois, Gautier and
Pasquis, 1968; Lahiri, 1972).

iii) Interaction between C6, and 02

Peripheral chemoreceptor block with local anaesthetic
(Guz, Noble, Widdicombe, Trenchard and Mushin, 1966), bi-

lateral carotid body resection (Holton and Wood, 1965;



14,
Lugliani, Whipp, Seard and Wasserman, 1971) or bilateral
carotid endarterectomy (Wade, Larson, Hickey, Ehrenfeld
and Severinghaus, 1970) destroy the human ventilatory
response to hypoxia with some small diminution in the ven-
tilatory response to CDz. When hypercapnia and hypoxia
are presented together to intact man the stimuli interact
in a multiplicative way in their effect on ventilation
(Neilsen and Smith, 1952; Cormack, Cunningham and Geej,
1957; Lloyd and Cunningham, 1963; Rebuck and Woodley,
1975). Torrance (1968), in his review of the neurophysio-
logy of the carotid body, cast doubt on whether the whole
of this multiplicatdive interaction could be accounted for
by 002/02 interaction at the carotid body of the degree
found in animal experiments. Subsequent comparisons
between ventilatory responses to transient and steady state
hypoxia and hypercapnia in man (Edelman, Epstein, Lahin
and Cherniack, 1973) suggested that, in man at 1eést, most
of the interaction of CO2 excess and O2 deficit occurred
centrally.

Since Torrance's review the work of Fitzgerald and
Parks (1971) and Lahiri and Delaney (1975a) have demonstrated
unequivocal multiplicative interaction of these two stimuli
in single and multiple recordings from the carotid body.
Lahiri and Delaney (1975b) have taken the matter to its
logical conclusion by simultaneously studying the effects
of CO2 excess and 02 lack on ventilation and single fibre
discharge in anaesthetised cats. They conclude that multi-

plicative stimulus interaction does occur at the carotid
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body and will contribute to the interaction seen in the
ventilatory response. However, from their calculations,
the ventilatory equivalent of the mean activity of carotid
chemoreceptors alone was not enough to account for the ven-
tilatory interaction of hypoxia and hypercapnia. It
would seem therefore that the simple alternatives (central
multiplication with peripheral addition and central addi-
tion with peripheral multiplication of 002 and 02) proposed
by Cunningham (1974) in his theoretical analysis of the
interaction sites, are not acceptable, at least for the
cat, and we are unlikely to discover whether they do apply
in man,

iv) Oscillations in blood gas tension as ventilatory
stimuli

The intermittent nature of lung ventilation causes
swings in alveolar PO2 and PCOZ, the amplitude and rate of
change of which increases when the rate of 002 elimination
is increased, as in exercise (Haldane and Priestley, 19035;
Krogh and Lindhard, 1913; Dubois, Britt and Fenn, 1952),
These swings went without comment until Yamamoto and Edwards
(1960) increased the load of 002 carried in the wvenous
blood of anaesthetised rats and observed that the animals'
ventilation increased in proportion to the load, so that
the extra 002 was excreted without change of mean arterial
PCOz. They suggested that changes in P002 oscillations in
arterial blood might be responsible for this effect. Al-
though some doubt has been cast on these observations and

their interpretation (Lamb, 1966; Lewis, 1975), they have
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been enthusiastically pursued by workers in the field of
the chemical control of breathing.

It is known that the oscillations in alveolar gas
tensions are transmitted to arterial blood (Purves, 1966;
Band, Cameron and Semple, 1969; TFitzgerald, Leitner and
Liaubet, 1969) and carotid body afferents have been found
which discharge with the periodicity of respiration
(Biscoe and Purves, 1967; Gehrich and Moore, 1973;
Goodman, Nail and Torrance, 1974). Dutton, Fitzgerald
and Gross (1968) have shown that square wave forcing of
002 at 10/min at the carotid body produces a greater in-
crease in ventilation than the same steady mean rise in
PCOZ. These and other observations of the chemoreceptor
response to sudden changes of P02 and PCO2 (Black, McLoskey
and Torrance, 1971) suggest that the oscillations in chemo-
receptor activity reflect oscillations in arterial PCOz.

A series of papers from Oxford have reported the
respiratory effects of tube breathing and of altering the

time patterns of alveolar CO, in man. Earlier work had

2
shown that ventilation would follow alternate breaths of
high and low CO2 mixtures provided that hypoxia was pre-
sent (thus implicating the carotid body) but there was no
mean increase in ventilation with this procedure (Cunningham,
Lyen, McPherson, Marsh and Pearson, 1973; Marsh, Lyen,
McPherson, Pearson and Cunningham, 1973). However, if

the time pattern of the alveolar 002 oscillations was al-

tered by tube breathing or adjustment of the inspired gases

(Goode, Brown, Howson and Cunningham, 1969; Cunningham,
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1972; Cunningham, Howson and Pearson, 1973) then an increased
drive to breathing could be detected. This finding fitted
well with observations that the timing of a stimulus to the
carotid body was important in determining its effect on ven-
tilation (Band, Cameron and Semple, 1970; Black and Torrance,
1971).

The significance of all these observations remains to
be determined. In the dog, oscillations may be important
determinants of ventilatory responses (Dutton and Permutt,
1968). It is true, however, that oscillations (and their
effects) are most prominent at low breathing rates (Band,
Cameron and Semple, 1969). Sophisticated studies by Ponte
and Purves (1974) in cats have demonstrated that at physio-
logical breathing frequencies the phase lag and intensity
of the chemoreceptor response to oscillations begins to
fall off - a finding which the authors find difficult to
reconcile with a prominent physiological role for the pheno-
menon.

The findings in man do not point to any definite phy-
siological role, although Cunningham (1975) has produced a
model, based on his own and others experimental results,
emphasising the importance of the timing of chemoreceptor
activity in relation to "the period of central respiratory
excitation". Sharpening of grouping of chemoreceptor
impulses into bursts by, for example, mild exercise, might
enhance hypoxic sensitivity and explain the hyperpnoea of
exercise or the hyperventilation of hypoxic exercise (see

below). At the other extreme, derangement of such a
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mechanism might explain the disordered control of ventila-

tion seen in some situations in cardiorespiratory disease.

IV THE HYPERPNOEA OF MUSCULAR EXERCISE

i) Neurogenic vs. Chemical Control

In 1913, Krogh and Lindhard noted a sudden increase in
ventiiation at the initiation of exercise which "in many
cases was proportional to the work load". They attributed
this increase in ventilation to irradiation of motor im-
pulses to the respiratory centre. Asmussen, Christensen
and Nielsen (1943), using cuffing of exercising limbs, de-
monstrated that a nervous rather than a humoral effect was
responsible for the increase in ventilation. In a companion
paper (Asmussen, Nielsen and Wieth-Pederson, 1943) they
showed that electrically induced exercise produced similar
increases in ventilation to natural exercise and concluded
that a reflex from the exercising limbs was more likely to
be responsible than the cortical irradiation of Krogh and
Lindhard. They attributed most of the ventilatory increase
during light exercise to this reflex effect (Asmussen and
Nielsen, 1947). Comroe (1944) supported this view as a
result of his experiments on man and animals (Comroe and
Schmidt, 1943) and dismissed any contribution from reflexes
arising from chemical receptors in the limbs, lungs, great
veins, atria and peripheral chemoreceptors.

Dejours, Mithoefer and Labrousse (1957) considered
that the local chemical environment of the "proprioceptors"

was an important determinant of the ventilatory response to
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exercise but, in their experiments, as in subsequent experi-
ments on the ventilatory response to static exercise (Wiley
and Lind, 1971; Myrhe and Anderson, 1971), it is impossible
to exclude a contribution from pain receptors. The elegant
cross—-circulation experiments of Kao (Kao, Michel, Mei and
Li, 1963; Kao, Michel and Mei, 1964) further confirmed that
the major contribution to the increase in ventilation in
exercising, anaesthetised dogs was neural, not ﬁumoral.

The conventional view expressed by Dejours (1963, 1964)
ascribes the rapid increase in véntilation which happens
at the start of exercise, occurs within the first half
breath (Jensen, Vejby-Christensen and Strange-Petersen,
1972), and is unrelated to the prevailing chemical back-
ground (Cunningham, Lloyd and Spurr, 1966), to a reflex
originating in exercising limbs. The contribution of this
reflex appears to persist throughout exercise and to make
a larger contribution to total ventilation in unaccustomed
exercise such as downhill walking rather than conventional
walking (D'angelo and Torelli, 1971). Beaver and Wasserman
(1968, 1970) do not necessarily find rapid transients at
the start of exercise and feel that the differences in indi-
vidual response indicate that the ventilatory response to
the start of exercise is a conditioned reflex.

The receptors for this reflex have not been identified
positively. Comroe and Schmidt considered that they lay
around the articular capsule; evidence for (Flandrois,
Lacour, Islas-Maroquin and Charlot, 1967; Kindermann and

Pleschka, 1973) and against (McLoskey, Matthews and Mitchell,
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1972) a contribution from muscle spindles has been pre-
sented and at leasttwo groups of workers (Kalia, Senapati,
Panda and Panda, 1972; McLoskey and Mitchell, 1972) con-
sider that the reflex arises from group III myelinated or
unmyelinated fibres in the muscles.

In 1963 and 1967 Cunningham, reviewing the literature,
was able to state that the hyperpneoa of exercise could be
attributed to the sum of contributions from neurogenic
sources and from observed chemical changes particularly
in PCO, and H' reported by himself and others.

ii) The role of the peripheral chemoreceptor

It had long been known that addition of oxygentto
inspired air (Asmussen and Nielsen, 1947, 1958; Bannister
and Cunningham, 1954) reduced ventilation in light and
moderate to severe exercise, implying a role for the peri-
pheral chemoreceptors in this hyperpnoea. However, ex-
periments in patients with carotid body resection revealed
no differences between their ventilatory response to exer-
cise and those of controls, implying that the peripheral
chemoreceptor contribution in euoxia was small, if present
(Lugliani, Whipp, Seard and Wasserman, 1971). More recent
studies on similar patients have shown that carotid body
resection has no effect on the first breath of exercise
or on the steady-state ventilation although the rate of
rise of ventilation is diminished (Wasserman, Whipp, Koyal
and Cleary, 1975). This observation might suggest that
peripheral chemoreceptors are essential for a rapid adapta-

tion to exercise but that, in their absence, other mecha-
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nisms, e.g. central chemoreceptors, are able to compensate.
It also dismisses, as experiments in animals (Parida, Senapati
and Kalia, 1969; Davies and Lahiri, 1973) and man (Eisele,
Ritchie and Severinghaus, 1967) already have, the possibility
that sympathetic activation of the chemoreceptor is important
for the control of ventilation during exercise (Biscoe and
Purves, 1967a and b).

The importance of the peripheral chemoreceptors for
the increase in ventilation in hypoxic steddy state exer-
cise is also shown in Lugliani's study, although he did not
observe the same potentiation of the effect of hypoxia on
ventilation during exercise which has been observed by
others (Asmussen and Nielsen, 1957; Cunningham, Spurr and
Lloyd, 1968; Flenley, Cooke, King, Leitch and Brash, 1973;
Masson and Lahiri, 1975). However, when the subject is
euoxic the contribution of the peripheral chemoreceptor
to ventilation during exercise constitutes the same or a
smaller percentage of the total ventilation as at rest, al-
though the absolute value will obviously increase with in-
creasing levels of exercise (Masson and Lahiri, 1975;
Dejours, 1962).

In hypoxic exercise, however, the effect of hypoxia
on ventilation appeared to be greater during exercise than
at rest (Masson and Lahiri, 1975), resulting in falls in

PCO, and H+. The same workers noted that the ventilatory

2
effect of hypoxic exercise was increased if P002 was main-
tained constant at resting levels and that addition of

CO2 to inspired gas during this stabilisation procedure
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increased ventilation even if PCO2 was below the resting
threshold. They also showed that the effect of exercise
on the ventilatory response to CO2 in hypoxia and hyperoxia
was to produce parallel shifts of the slopes of the response
to the left with a reduction in the intercept, i.e. exer-
cise did not increase hypoxic sensitivity, in keeping with
the finding of Davies and Lahiri, in the hypoxic anaesthe-
tised cat, that chemoreceptor activity is not increased in
exercise.

Possible explanations of the increased ventilation in
hypoxic exercise include;

a) a major contribution from arterial PCO2 oscillations
(Cunningham, 1972, 1974) which requires proof.

b) a contribution from the known effect of catecholamines
on the ventilatory response to hypoxia (Cunningham,
Hey and Lloyd, 1958; Cunningham, Hey, Patrick and
Lloyd, 1963) which would be possible in man (Clancy,
Critchley, Leitch, Kirby, Ungar and Flenley, 1975;
Clancy, Critchley and Leitch, 1975) but would not ex-
plain the increased drive seen in the cat (Davies and
Lahiri, 1973).

c) the neurogenic component of the exercise stimulus to
breathing may interact centrally with other afferent
inputs from e.g. the peripheral and central chemore-
ceptors, hence the lowering of threshold of the ven-
tilatory response to 002 in hypoxia and hyperoxia

which most workers find.
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It seems unlikely that the nature of the contributions
of different components of the control system will be clear
until the central interactions are open to study. It is
probably true, as Guz (1975) says, that "It does not seem
as though the question of the existence and meaning of the

neurogenic component can be solved with present methods".
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CHAPTER 2 BACKGROUND TO THE PRESENT STUDY

I CONTROL OF VENTILATION IN CHRONIC RESPIRATORY FAILURE

i) Diminished ventilatory response to CO, and 02
therapy =

In 1520 Scott noted that '"the ease and apparent comfort

with which emphyrematous patients inspire high percentages
of carbon dioxide for short periods is very striking". Nu-
merous studies since then have confirmed that the ventila-
tory response is markedly reduced in patients with chronic
airways obstruction and chronic respiratory failure (Donald
and Christie, 1949; Tenney, 1954; Alexander, West, Wood
and Richards, 1955; Clark, 1968; Godfrey, Edwards, Copland
and Gross, 1971). This diminished sensitivity to CQz-can-
not be explained by the observed alterations in the buffer-
ing capacity of the blood (Flenley, Franklin and Miller,
1970) or the increased work of breathing (Flenley and
Miller, 1968) found in these patients and depression of the
sensitivity of the respiratopy centre (presumably the cen-
tral chemoreceptors) to 002 has been suggested.

In patients with type II respiratory failure in which
hypoxaemia is combined with CO2 retention (Campbell, 1965)
acute exacerbations of disease can lead to worsening of
the hypoxia and hypercapnia. The hazards of oxygen therapy
were first described in 1949 by Barach and Donald and sub-
sequently documented in greater detail (Comroe, Bainson
and Coates, 1950; Westlake, Simpson and Kaye, 1955). In-
appropriately high inspired oxygen concentrations in these

patients will relieve their hypoxaemia but produce marked
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elevation of arterial PCOz, resulting in CO2 narcosis and
often death. The mechanism of this was believed to be re-
lated to inhibition of the hypoxic drive to breathing in
these patients by the high arterial oxygen tensions obtained.
Since such patients had a poor ventilatory response to COz,
they were dependent on their hypoxic drive to continue ven-
tilation. Treatment with controlled oxygen therapy
(Hutchison, Flenley and Donald, 1964; Campbell, 1965),
allowed restoration of PO2 to levels at which tissue oxy-
genation was adequate, and which were not so high as to
abolish the all-important hypoxic drive to breathing.

ii) Pink Puffers and Blue Bloaters

The disease spectrum of chronic bronchitis and em-
physema has been divided, on the basis of pathological,
clinical and physiological observations, into two extreme
types (Robin and O'Neill, 1963; Burrows, Fletcher, Heard,
Jones and Wootliff, 1966; Filley, Beckwith, Reeves and
Mitchell, 1968; Schuren and Huttemann, 1973). Type A
disease, in the 'pink and puffing' patient, consists of pre-
dominant emphysema with an increase in the total lung
capacity (TLC), a decrease in transfer factor for carbon
monoxide (TCO) and surprisingly normal arterial PO2 and

PCO Type B disease, in the 'blue and bloated' patient,

9°
is characterised by predominant bronchitis, a reduction in TLC
and a normal TCO combined with hypoxia and hypercapnia.

These patients develop polycythaemia, pulmonary hypertension
and right heart failure and the diminished ventilatory res-

ponse to 002. which has been reported in chronic obstructive



26.
airways disease, is most prominent in this group of patients
where it appears to be related to the degree of 002 reten-
tion (Flenley, Franklin and Miller, 1970; Howell, 1973).

iii) Hypoxic drive to breathing in chronic bronchitis

Quantitation of the hypoxic drive to breathing in such
patients has been hampered by the need for arterial blood
gas sampling, and most workers have been satisfied by the
observation that, if relief of hypoxaemia depresses venti-
lation in such patients, then an important hypoxic drive
to breathing must exist. The definitive study of the hy-
poxic drive to breathing in such patients was reported by
Flenley, Franklin and Miller in 1970. In this study, using
the Oxford steady state method of assessing the hypoxic
drive to breathing, these authors demonstrated absence of
a hypoxic drive to breathing in two patients. These two
patients had been known to be hypoxic, hypercapnic, poly-
cythaemic and to have right heart failure for many years,
i.e. they were 'blue bloaters'.

The absence of hypoxic drive in these two patients may
simply have been a consequence of their disease. An al-
ternative explanation is that these men had always lacked
a hypoxic drive to breathing and that with the development
of caronic bronchitis, they were therefore predisposed to
the hypoxic complications of the disease, namely polycythae-
mia, pulmonary hypertension and right heart failure. Is it
possible that a person's premorbid hypoxic drive to breath-
ing could determine the clinical presentation and course

of chronic bronchitis and emphysema in some patients?
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II EVIDENCE FOR ABSENT HYPOXIC DRIVE TO BREATHING IN MAN

In 1905 Haldane and Priestley described a subject who
"continued to breathe from a bag air with a gradually di-
minishing oxygen percentage until unconsciousness occurred.
No marked hyperpnoea or even discomfort was experienced at
any part of the experiment'., Other isolated cases of ab-
sent ventilatory response to hypoxia have been recorded in
normal man (Brown, 1956) and an absent or markedly diminished
hypoxic drive to breathing has been recorded in two groups
of subjects, high altitude residents and patients with cyan-
toic congenital heart disease.

There is now an extensive literature on the diminished
hypoxic drive to breathing found in high altitude natives.
This diminished hypoxic drive is found in natives of the
Himalayas and Andes, both at rest (Milledge and Lahiri,
1967; Lahiri, Kao, Velasquez, Martinez and Pezzia, 1969;
Lefrancois, Gautier and Pasquis, 1968; Lefrancois, Gautier,
Pasquis, Cevaer, Hellot and Leroy, 1972; Severinghaus,
Bainton and Carcelen, 1966) and on exercise (Lahiri,
Milledge, Chattopadhyay, Bhattacharyya and Suiha, 1967;
Lahiri and Edelman, 1969; Lahiri, Kao, Velasquez, Martinez
and Pezzia, 1970; Lahiri, Milledge and Sorensen, 1972)
whether the method used involves transient or steady state
hypoxia. One study (Sorensen and Severinghaus, 1968a) has
confirmed the findings of others that the defect in hypoxic
drive persists when high altitude residents have lived at
sea level for many years, and suggests that birth at, and

exposure to, altitude for only 2-4 years is associated with
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a diminished ventilatory response to hypoxia. In coantrast,
when sea level man lives at high altitude for many years
(Sorensen and Severinghaus, 1968b), he retains a normal
hypoxic drive to breathing. Whether the change in hypoxic
drive is related to hypoxia at birth at these high altitudes
or has a genetic basis will only be resolved by studies of
the offspring of high altitude natives born at sea level.

Another group of workers have found a similar atte-
nuation of hypoxic drive to breathing in native residents
of Leadville, Colorado (3,100 m), but this group (Weil,
Byrne-Quinn, Sodal, Filley and Grover, 1971) also found
attenuation of the drive in non-native residents which was
proportional to the time of residence at high altitude.

In another study (Byrne-Quinn, Sodal and Weil, 1972) they
found that children born and resident in Leadville had simi-
lar hypoxic drives to those living in Denver (1,600 m) and
they were therefore forced to conclude that the altered
physiology must be a result of prolonged exposure to hypoxia.
The possibility of genetic differences between the North
American subjects and the Himalayan and Andean subjects may
explain the different findings. However, it may be that
hypoxic drive to breathing is lost by exposure to hypoxia

in the first four years of life.

The conclusions from studies of hypoxic drive in patients
with cyanotic congenital heart disease are also equivocal.
Sorensen and Severinghaug (1968c), using steady state methods,
studied 5 patients more than one year after correction of

Tetralogy of Fallot and found an absent hypoxic drive to
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breathing in this group. Edelman, Lahiri, Bra;do, Cherniack
and Fishman (1970) studied six patients with cyanotic con-
genital heart disease before operation using a transient
hypoxic stimulus and confirmed these findings. However,
the two patients in this group who were restudied after
corrective surgery had normal hypoxic drives to breathing.
The findings of the first group are consistent with the
hypothesis that hypoxia from the stage of birth permanently
depresses the hypoxic drive to breathing whereas the
second study suggests that the depression is reversible.

In view of the small numbers studied, a firm conclusion can-
not be made from these results, but, taken with the evidence
from the high altitude studies, it does raise the possibi-
lity that hypoxia at birth or following it may depress the
hypoxic drive to breathing.

A recent study (2Zwillich, Sutton, Pierson, Creagh and
Weil, 1975) has demonstrated marked reduction of hypoxic
ventilatory drive in patients with the obesity-alveolar
hypoventilation syndrome and suggested that, in obesity,
diminished hypoxic drive may contribute to the hypoxia and
hypercapnia which is found in these patients. A further
study of these patients has shown marked improvement of
clinical state, blood gases and hypoxic drive to breathing
after prolonged treatment with progesterone (Sutton, Zwillich,
Creagh, Pearson and Weil, 1975) with relapse on withdrawal
of therapy.

The evidence that people with absent or diminished hy-

poxic drive to breathing are found in special situations
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such as cyanotic congenital heart disease, high altitude
and the obesity alveolar hypoventilation syndrome has sti-
mulated the present search for such individuals in a normal

population,

IITI THE PURPOSE OF THE PRESENT INVESTIGATION

1% The first part of the present investigation was stimu-
lated by the finding of an absent hypoxic drive to
breathing in 2 patients with chronic obstructive air-
ways disease who had the more severe hypoxic manifes-
tations of this disease,

2, Review of the literature confirms the findings of iso-
lated cases of normal people who do not increase their
ventilation in response to a hypoxic stimulus.

3. Absence of the hypoxic drive to breathing has also been
recorded in high altitude natives and in patients with
cyanotic congenital heart disease or the obesity alveo-
lar hypoventilation syndrome. Review of the literature
on these fields does not allow a firm conclusion on
whether the absence of drive is congenital, or acquired
as a result of lifelong hypoxia in such situations,

4. The hypothesis is therefore advanced that there may
exist in the normal population a number of individuals
who may lack a hypoxic drive to breathing. Should these
then develop obstructive airways disease, they may be
more predisposed to the complications of hypoxia, with
the development of polycythaemia, pulmonary hypertension

and right ventricular failure (as seen to be the case
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in the obesity-alveolar hypoventilation syndrome).
The object of this investigation is to quantitate the
hypoxic drive to breathing in a normal population with
the object of detecting such individuals who may have

a diminished or absent hypoxic drive to breathing.
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CHAPTER 3 METHODS OF MEASURING THE HYPOXIC DRIVE TO BREATHING

I STEADY STATE METHODS

A number of methods have been used to demonstrate and
attempt to quantitate the hypoxic drive to breathing. The
earliest used, based on the pioneer studies of Nielsen and
Smith (1951), was the steady state method. With this method
the ventilatory response to CO2 is measured at different

PO, levels after a steady state of ventilation has been

2
achieved (Lloyd, Jukes and Cunningham, 1958), The ventila-
tory response to CO2 is found to be linear at any P02 and,
if_the line is extrapolated to the P002 axis (Fig. 1), de=-
fines an intercept or 'threshold' for PCOz. The effect of
hypoxia on this line is to inq;ease the slope of the line
without, in general, influencing the intercept. Thé rela=-
tionship between ventilation and carbon dioxide can be ex-
pressed in the form V= SfPCOz - B), where S is the slope
of the line and B the intercept on the 002 axis., The rela-
tionship between S and PO2 can be described by a hyperbolic

relationship where the expression S = D (1 + A ) can
Pao? - C

be applied. Combination of the two equations gives one single
equation representing the whole V, PCOZ, P02 relationship at

PCOzs above the resting level by V = D(P002 - B)(1 + A )

P02 -

The methods for determining the various parameters of
these equations have been described (Lloyd and Cunningham,
1963) (Fig. 2), the parameter A, the shape parameter of the

hyperbola, and C, the PO, at which S tends to become infinite,

2
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Figure 2

The parameters of the Cunningham equation (from Lloyd and
Cunningham, 1963). The relationship between the slope
(SCO2) of the ventilatory response to CO2 and the PO2 at
which that slope was measured. The slope (SCOg) equals

\'s .
(PCO3 ? B) (see Fig., 1),

D = the slope of the response at infinite PO2.
C = the PO2 at which ventilation tends towards infinity.
A = the shape parameter of the curve and is used as 2a

measure of hypoxic drive,
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being measures of hypoxic drive. Determination of these
parameters for any one subject is time consuming but the
method has been used, e.g., to determine the effect of nora-
drenaline on the hypoxic sensitivity parameter A (Cunningham,
Hey, Patrick and Lloyd, 1963). The method is time consuming
and other authors have applied the method in alternative
ways. Flenley, Franklin and Miller (1970) measured the

slope of the CO, response line at high and low PO, and used

2 2

the ratio of the slopes as a measure of hypoxic drive.
Kronenberg, Hamilton, Gabel, Hickey, Read and Severinghaus
(1972) defined the slopes of the 002 response in hyperoxia
and at a PAO2 of 40 mmHg and used as their index of hypoxic
sensitivity the 5640, defined as the increase in ventilation
caused by lowering PO2 to 40 mmHg at a 002 tension which
gives GE = 4£/m1n/m2 in hyperoxia. This method has been
used in the investigation of blunted hypoxic drive at high
altitude (Severinghaus et al, 1966; Sorensen and Severinghaus,
1968a and b) and in cyanotic congential heart disease
(Sorensen and Severinghaus, 1968c).

Apart from the time required to establish a suitable
steady=state for enough measurements, the steady-state method
is open to further criticism, if it is to be used to detect
absent drive, for there is now evidence that the effect of
hypoxia on ventilation may be the resultant of two opposing
forces: a peripheral chemoreceptor drive to ventilation
and a central nervous system depressant effect (Cherniack,

Edelman and Lahiri, 1973). A depressant effect of steady-

state hypoxia on ventilation in familial dysantonomia, where
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circulatory reflexes are impaired, and cerebral blood flow
falls with the resulting hypotension, has been demonstrated
(Edelman, Cherniack, Lahiri, Richards and Fishman, 1970),
but these subjects did respond with ventilatory stimulation
to transient hypoxia, showing that an active peripheral
chemoreceptor reflex was being overcome by central depression.
The studies of Kronenberg, Hamilton, Gabel, Hickey, Read
and Severinghaus (1972) have also demonstrated the presence
of hypoxic depression of ventilation during the determina-

tion of steady-state CO,, response lines in hypoxia.

2

II PROGRESSIVE ISOCAPNIC HYPOXIA

A recent development has been the introduction of me-
thods using progressive isocapnic hypoxia where PO2 is
lowered progressively over 15 mins (Weil, Byrne-Quinn,
Sodal, Filley and Grover, 1970) or 4 mins (Kronenberg et
al, 1972), while the resultant hypocapnia is prevented by
the addition of PCO2 to the inspired gas. With this method

the relationship between VE and PO, can again be expressed

2
by an exponential equation of the form

V=V ¢ A0, - 32

where ?0 is the ventilation at infinitely high PO,, A is
the shape parameter of the curve and the constant 32 is the
average P02, obtained by extrapolation in 18 studies in 6
normal subjects, at which ventilation tends to infinity.
Objections to the use of this method are the need for
sophisticated computer facilities to allow control of PCO2

and again the demonstration, in some subjects, of significant
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hypoxic depression of ventilation (Kronenberg et al, 1972).

III TRANSIENT HYPOXIA

The use of transient methods with transient induction
of hypoxia by giving the subject several breaths of N2' or
relief of aypoxia by giviug several breaths of 100% 02,
while the subject is breathing a hypoxic gas mixture, has
been pioneered by Dejours and his co-workers (Dejours,
Girard, Labrousse and Raynaud, 1957; Dejours, Labrousse,
Raynaud and Teillac, 1957; Dejours, Labrousse, Raynaud,
Girard and Teillac, 1958; Dejours, 1959, 1963, 1968).
Other workders have used single breaths of high concentra-
tions of CO2 as a test of carotid chemosensitivity (Sorensen
and Cruz, 1964; Gabel, Kronenberg and Severinghaus, 1973)
but this is open to the objection that the subjects can
'taste' such concentrations of 002 (Cunningham, 1972), that
there may be 002 receptors in the airways (Rybak, 1974)
and that vital capacity manoeuvres imply cognition with
possible effects on the response. The absolute changes
measured during a transient stimulus can be increased by
givipg it during exercise, just as exercise will potentiate
the increase in ventilatinn observed during steady-state
hypoxia (Flenley, Cooke, King, Leitch and Brash, 1973).

The advantage of the use of transients is that the changes
in ventilation observed simply reflect chemoreceptor ac-
tivity without the complication of CNS depression. The
disadvantage is that the change in ventilation produced by

carotid body stimulation produces secondary changes, parti-
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Figure 3

To show the effect of 3 breaths of 30% oxygen or 3 breaths
of nitrogen on ventilation and POg during mild exercise
breathing air, With 30% oxygen there is a rise in PO, with
"switching off'" of the peripheral chemoreceptors and a re-
sulting fall in ventilation; with nitrogen there is a fall
in PO2, with "switching on" of the peripheral chemoreceptors
and a resultant increase in ventilation,
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cularly in PCOZ, which act at the chemoreceptor, and later
centrally, to modify the chemoreceptor response. Reynolds
and Millhorn (1973) have shown that the transient ventila-
tory response to hypoxia follows the same course for the
first minute after the hypoxic stimulus whether the PA.CO2
is controlled or not and it may be that this test is more
useful quantitatively than Dejours himself believes (Dejours,
1962). The use of the 'oxygen test' (Dejours, 1963) was
considered for this study but discarded on the grounds of
inconvenience in preparing and supplying large volumes of
hypoxic gas mixtures and the difficulties caused by altera-
tions in mass spectrometer sensitivity, when it was exposed,
even for a short time, to high concentrations of 02. Instead,
the N2 test was selected and mild steady state exercise was
used to magnify the ventilatory changes observed. (Fig. 3)

The method selected, of giving breaths of N2 to the
subject while he breathes air, bas been used before at rest
(Lefrancois, Gautier, Pasquis, Cevaer, Hellot and Leroy,
1972) and on exercise (Lahiri and Edelman, 1969) to demon-
strate that the decreased hypoxic drive of high altitude
natives is due to lack of carotid body chemosensitivity,
rather than to hypoxic depression of ventilation. It ap-
pears to be a sensitive and capable method of assessing the
absence of a hypoxic drive to breathing although its value
in quantitating a present hypoxic drive has yet to be deter-

mined.
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SUMMARY

1. Review of presently available methods of assessing the
hypoxic drive to breathing has shown that the steady-
state and progressive hypoxia methods pose problems
respectively of time consumption and the need for ex-
tensive computer facilities. Both methods appear to
pose the problem of hypoxic central depression of ven-
tilation.

2. Transient hypoxia appears to be a sensitive index of
the presence of a hypoxic drive to breathing mediated
by the carotid bodies, although it may be less satis-
factory for adequate absolute quantitation of the res-
ponse because of the associated secondary changes.
Exercise magnifies the absolute response to transient
hypoxia and this method has been used successfully to
demonstrate a poor peripheral chemoreflex drive to
breathing in high altitude natives.

3. The use of transient hypoxia induced by inhalation of
3 breaths of nitrogen during mild exercise has therefore
been selected as the test of hypoxic drive to breathing

for this study.
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CHAPTER 4 HYPOXIC DRIVE TO BREATHING : METHODS

Studies were undertaken in the years 1971, 1972 and
1974. The results to be presented later are based on the
study of 43 subjects carried out in 1972, 26 of these
subjects were also studied in 1971 and 9 were restudied in
1974 when, in addition to the transient hypoxic drive to.
breathing, the steady state ventilatory response to CO2
and hypoxia was also measured. -

Subjects and Procedure

The subjects were 2all mine rescue workers from the
mining districts around Edinburgh, who were attending a
Mine Rescue course in Edinburgh at the time, All were
familiar with the use of breathing apparatus and mouthpieces
and volunteered for the studies, after the nature and pur-
pose of the experiments had been explained to them.

On arrival at the Department of Medicine in the after-
noon, each subject had his height, weight, FEVI.O' FVC and
lung volumes measured. The MRC Questionnaire on Respira-
tory Symptoms was administered and a routine examination
of the cardiovascular and respiratory systems was carried
out. A venous blood sample was withdrawn for haemoglobin
estimation and a 12-lead electrocardiograph (ECG) was taken,
All ECG's were normal and no abnormalities were detected
on examination.

The design of the transient hypoxic drive experiment

is shown in figure 4.. After recording of gas and volume

calibrations on an analogue magnetic tape, the study began.
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Figure 4

The design of the transient hypoxia studies in the miners.
The vertical black bars in the inspired gas section indi-
cate inspiration of three breaths of N2. The hatched areas
above indicate when VOz, VCO2 and RQ were measured and when
data (PgTO2, PETCO2, VT, f) were recorded respectively.
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The subjects were studied in the treadmill room of the
Department of Medicine at least 2 hours after a meal,
They walked on a level treadmill at about 3 m.p.h. breath-
ing air through the breathing valve and its attached as-
sembly, Between the 7th and 9th minutes of exercise
mixed expired gas samples were collected and ventilation
was measured on the dry gas meter to alliow calculation of
oxygen uptake (?02), carbon dioxide output (VCOz) and
respiratory exchange ratio (R.Q.). At intervals of 2-3
minutes thereafter (see fig. 4) a tap was turned to allow
the inspiration of three tidal volumes of nitrogen with
return to air breathing afterwards., Two minutes after
the final three breaths of nitrogen, the VOZ and VCOz were
again measured over a 2 minute period. Following this
measurement another tap was turned to allow the subject
to breathe a mixture of 14% 02 in nitrogen for 6 minutes,
the ventilation again being measured in the last two
minutes of this period.

Data were collected on the tape recorder (see later)
before, during and after each transient inhalation of
nitrogen.

Methods

The general arrangement of apparatus for the experi-

ment is shown diagrammatically in figure 5.
Treadmill
From each subject's height and weight, a speed of

level walking was selected, using the nomogram of Workman

and Armstrong (1964), which was predicted to produce an
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Figure 5

General arrangement of apparatus for studies of transient
hypoxic drive on exercise, The subject walks on a level
treadmill breathing through a valve to which air, N2 or
14% 02 can be supplied as inspired gas. The expired gas
passes through the valve, a pneumotachograph, a mixing
box and a condenser to a dry gas meter. A mass spectro-
meter probe continuously samples POy and PCOg near the

lips. The off-line analysis of the data thus obtained is
discussed in the text,.
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oxygen consumption of 1000 ml.min-l.

Breathing Valve

The subject breathed through an Otis-McKerrow breath-
ing valve which had been modified to allow insertion of
the mass spectrometer probe three centimetres from the
mouthpiece. In later experiments, the pressure near the
lips was also recorded from a similar site in the valve,
The expiratory pressure for the valve at different coanstant
filow rates is shown in figure 6 for the valve and tubing
alone and also when the valve was attached to the rest
of the breathing assembly. By a system of two taps at-
tached to the inspiratory side of the valve it was possible
to switch the inspired gas from air to either 100% Nz.
from a suspended Douglas bag, or to 14% O2 in nitrogen,
which was stored in a 350 litre Collins spirometer. The
subjects were not blindfolded in 1971 and 1972 and it is
difficult to exclude the possibility that they may have
seen the turning of the tap. Every attempt was made to
disguise this, and the close correspondence between re-
sults obtained in 1971/72 and those in 1974, when the sub-
jects were blindfiolded, supports the belief that conscious
effects on respiration were unimportant in determining the
responses observed (see Results).

Pneumotachograph and Integrator

The expired air from the respiratory valve passed
through a heated Fleisch No. 3 pneumotachograph. The dif-
ferential pressure across the pneumotachograph was recorded

by a Furness controls micromanometer (£ 12,5 mm.Wg) and
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Figure 6

The expiratory pressure-flow characteristics of the Otis-
McKerrow breathing valve at constant flow rates B, with
valve only and A, with valve plus pneumotachograph, mixing-
box, condenser and dry gas meter on the expiratory side of
the valve.
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flow was electronically integrated to provide tidal volume
for each breath, The integrator was automatically zeroed
during inspiration by venting both pressure lines to at-
mosphere, thus minimising integrator drift,

The relationship between a constant flow of humidified
air at 37°C and the output of the pressure transducer is
shown in figure 7. This was linear. The relationship
between integrated transducer output and breathing fre-
quency for a constant tidal volume is shown in figure 8.
This relationship showed that frequency changes in the
physiological range did not affect measurement of volume
from the integrated output of the pneumotachograph. The
effect of different gas mixtures on the pressure trans-—
ducer output is shown in figure 9. 30% 02, air and 100%
Nz,humidified, and at 3700, produced similar relationships
between pressure transducer output and flow. In contrast,
100% oxygen under the same conditions, produced a higher
transducer output for a given flow rate. On the basis of
these findings no oxygen mixtures of greater than 30%
were used in hyperoxic studies, thus avoiding the need for
a correction factor for volume.

In 1971 and 1972 the pneumotachograph was calibrated
by pumping air, using a 2 litre syringe, through the valve
and pneumotachograph 5 times before and after each study
on one subject. These volume calibration signals were re-
corded on the tape recorder with an identifying marker
trace. The mean value of the 10 calibrations was taken,

for analysis of the tape recorded data, to be 2 litres,
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The relationship between pressure transducer output from

the Fleisch no. 3 pneumotachograph (arbitrary units) and

constant flow of humidified air at 37°C through the pneu-
motachograph (%.min)
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The relationship between frequency of breathing (Hp) at
constant tidal volume (300 ml) and integrated flow from

the Fleisch no. 3 pneumotachograph (mm deflection on
Mingograph recorder).
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The relationship between pressure transducer output from
the Fleisch no. 3 pneumotachograph (arbitrary units) and
flow of diff?rent humidified gases at a temperature of
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In 1974, with on-line computer facilities, a more
accurate method of calibration was used. The pneumotacho-
graph signal was integrated in the computer between suc-
cessive rotations (10.6 litres) of the CD4 dry gas meter
dial. From this comparison, together with the barometric
pressure and the temperature of the gas in the dry gas
meter, the calibration factor of the pneumotachograph to
volume expressed as BTPS could be derived. The calibra-
tion factor used was not updated instantly. Instead, a
weighted average of the last seven calibration factors
was used. Hence the system is not calibrated until 63.6
litres of gas have passed through the system, taking
about 6 minutes for studies at rest and 2-3 minutes for
exercise studies at 3 m.p.h. breathing air. (Fig. 10)

Thereafter, the volume calibration factor remained
steady, and any marked deviation from the mean level in-
dicated a defect in the tidal volume recording system,
e.g. failure of the heater on the pneumotachograph with
resultant changes in sensitivity. Experiments in which
this happened were discarded. An additional theoretical
advantage of the updating system was that minor discrepancies
in pneumotachograph recorded volume occurring throughout
the experiment would be corrected in terms of the dry gas
meter measured volume.

Mixed expired air sampling

Expired air passed from the pneumotachograph to a
mixing box and mixed expired air was sampled from the out-

let of this box, after flushing of the dead space, in two
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Figure 10

To show the operation of the on-line computer volume cali-
bration factor. An animal respirator 'breathed" through

the breathing valve and assembly with a constant tidal
volume of 285 ml.min~! at a rate of 27 breaths min—1., The
graph on the left shows the computer measure of tidal volume
against time, the volume reaching a constant value after

400 secs, On the right, the graph shows the volume cali-
bration factor (see text) also plotted against time. This
factor also achieves constancy after 400 secs, As discussed
in the text, achievement of volume calibration factor stabi-
lity at the start of an experiment was essential to ensure
fidelity of tidal volume measurements by the computer.
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50 ml syringes driven by a Harvard pump. This gas was ana-
lysed for oxygen concentration using the Servomex 101A
paramagnetic oxygen analyser (Ellis and Nunn, 1968) cali-
brated with air and 100% Nz. Carbon dioxide concentration
was measured using the Uras 111 infra-red carbon dioxide
analyser (Patrick, 1963) previously calibrated with gases
analysed on the Lloyd-Haldane apparatus.

Parkinson-Cowan CD4 Dry Gas Meter

From the mixing box expired air passed through a con-
denser to a Parkinson-Cowan CD4 dry gas meter. Figure 11
shows the calibration of the dry gas meter using a Tissot
spirometer, which had itself been calibrated by water dis-
placement. All volumes measured by the dry gas meter were
corrected using the correction factor of 1.06 derived from
the calibration data. The temperature of the gas leaving
the dry gas meter was measured by a thermistor thermometer.
The volume recorded by the dry gas meter was detected by
a photoelectric cell placed under the dial and converted
to a digital display for easy recording.

Varian M3 Mass Spectrometer

The Varian M3 Mass Spectrometer was used to continuously
measure oxygen and carbon dioxide tensions near the lips.
Samples were taken through a 2 metre heated probe which
was inserted into the breathing valve close to the mouth-
piece attachment. N2 and Argon concentrations were also
measured. The mass spectrometer sampled 7.5 cc of gas per

minute with a delay of 700-800 msecs., The mass spectro-

meter proved extremely stable. In 1971 and 1972, the mass
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Calibration of the Parkinson-Cowan CD4 dry gas meter
against a Tissot spirometer, All volumes in 2.min~1
STPD. The straight line is the line of identity. By
comparison of the actual with the identical relationship
the CD4 calibration factor of 1.06 was derived and used
to correct all volumes measured on the CD4 dry gas meter.
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spectrometer was calibrated with 100% N2 and 3 or 4 002/02
gas mixtures, previously analysed by the Lloyd-Haldane
apparatus, at the start bf each experimental day. These
calibration signals were recorded on the tape recorder and
were used for the entire afternoon (generally'studies on
3 subjects).

In 1974, a trolley carrying 100% Nz and 4 002/02 mix-
tures, previously analysed by the Lloyd-Haldane apparatus,
was used to calibrate the mass spectrometer, The Lloyd-
Haldane analyses and barometric pressure were typed into
the computer, the calibration gas mixtures then being
sampled in tufn by the mass spectrometer probe. A line
of best fit, using least squares linear regression, was
then derived by the computer, relating mass spectrometer
output on each of its four gas channels (tuned to 02, COz,
N2 and Ar) to the gas compositions derived from the Lloyd-
Haldane anélysis. The computer programme then produced a
display, following calibration of:

1. The residual root sum squared of 02, 002

and N, in %.

2
2. The largest individual deviation of 02, co

2
and N, in %, identifying the calibration gas
concerned.

3. The probe delay time.

4., The dry gas composition of air based on the
calibration gases,

An example of such a calibration procedure output is shown

in text table 1.



TEXT TABLE 1

The computer display following gas calibration

(see text)

Residual RSS Deviation of %
Largest Individual Deviation of %

Residual RSS Deviation of %
Largest Individual Deviation of %

Residual RSS Deviation of %
Largest Individual Deviation of %

Delay 740 msec

Measured dry air composition:

co,, 0.10%
0, 21.16%
N, 77.81%

Axr 0.93%

0.058
0.044

0.162
0.114

0.682
0.398

Tap 5

Tap 2

Tap 3
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In computing gas composition thereafter, the programme
first converted the four mass spectrometer outputs to per-
centage compositions and then adjusted these compositions
by multiplying each by a common factor so as to make the
sum equal 100%. In this way, the dry gas composition was
obtained, corrected for any gain drift in the ﬁass spectro-
meter common to all iouf channels as, for example, changes
in sensitivity due to blocking of fhe input probe, or any
change in the barometric pressure since calibration.

This calibration procedure proved useful in detecting
'rogue' calibration gases, for example, after a new cali-
bration mixture had been prepared in a fresh cylinder, and
served as a check on the accuracy of the Lloyd-Haldane
analysis, assuming that the calibration was linear.

This calibration facility also allowed accurate assess-
ment of the stability of the mass spectrometer with time.
Text table 2 shows the results of O2 and CO2 estimations
after initial calibration using 4 02/002 mixtures and 100%
nitrogen. The 02 and 002 percentages are shown as measured
by the mass spectrometer at time 0 mins and time 180 mins
compared with the gas concentrations determined by Lloyd-
Haldane analysis. The mass spectrometer percentage for

O, and CO, at zero minutes agrees well with the Lloyd-

2 2

Haldane measurements with the exception of the difference
of 0.18% for oxygen in the second mixture (tap 2). After
3 hours the maximum changes in O2 and 002 percentage re-
corded when the mass spectrometer is again exposed to the

same calibration mixtures is 0.08% for CO2 and 0.03% for



TEXT

TABLE 2

Percentage Og and COg in 100% Ng and four COg/O0g
mixtures as analysed by the Lloyd Haldane apparatus
and, following calibration of the mass spectrometer
with these gases, at 0 and 180 minutes on the mass
spectrometer (same calibration as Text Table 1)

CO,% ' 0,%
Mass Mass Mass Mass
Spec. Spec. Spec. Spec.
Haldane 0 mins 180 mins Haldane O mins 180 mins
Tap 1 0 -0.02 -0,03 0 0.02 0.05
2 2.05 2.03 2.01 7.27 7.09 7.09
3 8.25 8.27 8.19 20.92 20.96 20.99
4 4,45 4,43 4,39 19.16 19,17 19.17
5 7.37 7.35 7.28 14,87 14.89 14.91
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0 The results shown in text table 2 refer to the same

9
calibration as text table 1 where tap 2 was identified as
having the largest individual deviation. In practice,
largest individual deviations of up to 0.25% were tolerated
in experiments in the current series.

In earlier studies using the mass spectrometer a rise
in measured PCO2 was recorded transiently after the probe
has been exposed to 100% 02. This was attributed by the
manufacturers to the production of 002 inside the mass
spectrometer by the oxidation of omnipresent carbides. It
was therefore important to assess the effect on PCO2 of
exposing the probe to 100% N2 and also to 30% 02, repre-
senting the extremes of oxygen percentages used in the
present study. Figures 12 and 13 show the results of ex-
periments carried out using an animal respirator instead
of a subject to "breathe" a 5% CO2 in air mixture through
the breathing assembly described above. The mass spectro-
meter probe continuously sampled 02 and CO2 concentrations
near the mouthpiece of the valve. Figure 12 shows the
effect of inhalation of 4, 3 and 7 breaths of 100% N2 on

the measurement of the % CO, inspired. Within 4 breaths

2
of exposure to 100% N2 the inspired 002 % has returned to
the control value. The depression of 002 by 0.2-0.3% for
4 breaths may be due to the effect of the nitrogen which
could therefore cause a minimal "artificial" hypocapnia
in the experimental studies. In contrast, in Figure 13,
the effect of switching from a mixture of 5% CO2 in air

to a mixture of 4.8% CO, and 30% 0, in nitrogen for 7

2
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Figure 12

The effect of a brief exposure to 100% N9 on the mass spec-
trometer sensitivity to COg. The mass spectrometer is

sampling the percentage CO5 inspired (5%) in air displayed

on the y axis, and breath number is displayed on the x axis. itg
At the points indicated by the upward deflections on the

marker trace, 4, 3 and 7 breaths of 100% nitrogen were in-
spired. See text for further explanation.
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Figure 13

The effect of a 7 minute exposure to 30% Oy in 4.8% COo
and Np on the mass spectrometer sensitivity to COg. The
mass spectrometer is sampling the percentage CO5 inspired
(5%) in air displayed on the y axis, and breath number is
displayed on the x axis. At breath number 30 the inspired
gas is switched to 4.8% COg in 30% Og and Ng (the initial
rapid downward deflection is due to COy free gas in the
dead space). At breath 133, the inspired gas is restored
to 5% COg in air. See text for further explanation.
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minutes can be seen to be negligible with a rapid return

of inspired CO, percentage to normal when the inspired

2
gas is changed back to 5% CO2 in air.

Data Processing

1971 and 1972

In 1971 and 1972, the analogue data (tidal volume

(VT), oxygen tension (P ) and carbon dioxide tension

ET 2
(PETcoz) were displayed during the experiment on a large
screen o3cilloscope (Fig.14) and recorded as required on
a Bell and Howell VR 3360 FM tape recorder along with a
marker track which indicated the data being recorded. Gas
calibrations were performed at the start of an experimental
period using 100% N2 and 4 002/02 mixtures which had been
analy<ed on the Lloyd-Haldane apparatus. Volume calibra-
tions were performed at the beginning and end of each in-
dividual study using a 2 litre syringe as previously des-
cribed. For each subject the analogue data were recorded
on tape for the three episodes of transient hypoxia to
include 15 breaths preceding and 10 breaths following the
first breath of nitrogen. The tapes for the entire series
with the tape recorder and information on the barometric
pressure, relative humidity and gas calibrations for each
study were then transferred to the Edinburgh Regional Com-
puting Centre for off-line analysis on the PDP-15 computer.
For each study on one subject there were available 10
volume calibrations, 5 before and 5 after the experimental
data. Each volume calibration was digitised at 100/sec

and the highest value for each accepted. The mean of the



5r
o)
e
uJ.x
a
& 2Ar B
SAVAVAVATAVAVAVAVAVS
Ll
o
1L
"IV UL LN
;L"‘
E ol
Figure 14

The analogue data of POy, PCOg and tidal volume from which
the analogue to digital conversion was made. The diagram
was traced by hand from a Mingograph paper reproduction for
the purpose of photography.
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10 highest values was set to equal 2 litres and provided
the calibration for analysis of the intervening tidal
volumes. Each of these was digitised in the same way and
converted into volume units (ml) by reference to the cali-
bration. The computer also measured the interval between
end of expiration for a given breath (i.e. the time at
which tidal volume had returned to zero) and the end of
expiration of the following breath, so giving a value for
the duration of each breath. The computer than calculated
for each breath a value for instantaneous minute ventila-

tion (?E inst) from the relationship

. . 60

VE ALSE - vT x breath duration

The gas calibrations/readings were also digitised at

a rate of 100/sec. With the known value of barometric
pressure these dry gas calibrations could be converted
into partial pressures of oxygen and carbon dioxide. The
digital value for a given gas calibration was taken as the
mean of 100 consecutive readings at 100/sec. From the 1li-
near regression of partial pressure on digital value any
subsequent measured partial pressure could be interpreted.
The end-tidal values of PCO2 were determined by digitising
the analogue signal for CO2 at the lips measured by the
mass spectrometer, again at 100/sec. and, using a "moving
window" technique, with an aperture of 8 digits, identify-

ing the point at which PCO, fell consistently. The end-

2
tidal PCO2 was then expressed as the average PCO2 over 8
digitised values before PCO2 fell at the start of inspi-

ration. The end-tidal PO2 was measured over the same time



49,
interval as the end-tidal PCOZ.

The computer then produced a print out identifying
the subject and the date of the experiment, followed by
breath by breath values for time (from start of the study),
breath duration, tidal volume, GE inst, PET02’ PETCO2 and
a marker indicating when the tap had been turned to nitro-
gen. Subsequent analysis of the data was carried out by

hand using conventional desk calculators.

1974

In 1974, the data were handled on line by the Depart-
ment of Medicine PDP 11-40 computer, programmed by Dr.
P.K, Wraith. Before an experiment, the Lloyd-Haldane ana-
lyses of the gas calibrations were entered via the visual
display unit, along with the value for barometric pressure
into the computer. The initial calibration relating dry
gas meter volume to pneumotachograph volume was performed
electronically by switching a predetermined voltage into
the input of the flow measuring amplifier. The gas cali-
bration mixtures were then presented to the mass spectro-
meter probe and the computer displayed the parameters of
the linear regressions between the calibration analysis
and the mass spectrometer readings, as shown in text table
1, with the value for probe delay and the composition of
air, as measured by the mass spectrometer set on the gas
calibration mixtures.

When the experiment began, the computer received as
analogue signals, P_,.0 P...CO,, PN PETAr, gas flow

ET 2 "ET ET 2°
dry gas meter volume and gas temperature and an inspira-
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tory/expiratory signal from mouth pressure. The computer
integrated flow for each breath and the pneumotachograph
volume output was continuously updated, as discussed pre-
viously, in terms of dry gas meter volume throughout the
experiment. The programme produced an on-line digital

display of inspired 02 and CO, percentage, end-tidal

2
PO, and PCDz, tidal volume, frequency and volume and gas

2
calibration data. The data were stored on disc or dec-
tape and could be retrieved in the form of a digital print
out of the entire experiment, a statistical summary of
sections or as a graphic display on a visual display unit

which could be hardcopied on paper.

Data Analysis

For each subject data before, during and after three

separate switches to N, were available, each consisting

2
of about 20 control breaths followed by the three N2
breaths and, on average, 7 post-switch breaths. Since
breath frequency for any one subject was similar for all
three switches, the data were analysed by superposition

of the data from the three switches (see Fig. 15). The
control value for ventilation was taken as the mean of the
60 control breaths from the three switches, with the signi-
ficance limits calculated as * %;% nf this population.

The superposition method (Fig.15) allowed a smoothing out
of the natural breath by breath fluctuation in ?E inst.

The maximal ventilation following the nitrogen breaths

from the superposed data was expressed as a percentage of

the control mean to give a "mean highest breath value for
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To illustrate the principle of "superposition". The graphs

show a plot of instantaneous minute ventilation for each
breath plotted against breath number. The top graph shows
breath by breath values for ventilation before, during (in-
dicated by the box) and after three breaths of nitrogen had
been substituted for air on three occasions in the same
subject. The lower graph is derived from the upper by
lining up the breath numbers on the first breath of nitro-
gen and taking the mean of the three superimposed breaths
which results. The parallel lines on the lower graph in-

dicate the 95% confidence limits of the control ventilation
derived as described in the text.
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each subject.

Relationship between end-tidal PO2 and Pei,O2 during

inhalation of three breaths of Nz on exercise

The normal relationship between alveolar and arterial

PO, will be disturbed by the inhalation of 3 breaths of

2
100% N2 and one might predict reversal of the alveolar to
arterial oxygen tension gradient at some stage during this
procedure. The arterial and end-tidal PO2 during such a
switch were therefore studied.

Arterial PO2 was obtained by rapid sampling in 5
syringes linked by a tap system to an indwelling arterial
catheter in 3 subjects. The time of each arterial sample
was indicated by a signal marker on the output which, for
this experiment, was recorded on a Mingograph. This al-
lowed, when the delay time of the mass spectrometer probe
had been corrected, a temporal consideration of the end
tidal and arterial PO2 during a switch. Arterial blood
PO2 was measured by a Radiometer electrode calibrated by
tonometered blood.

The result of one such study is shown in Fig. 16
where the close correspondence between lowest end-tidal
and lowest arterial PO2 is demonstrated. The results of

this and 4 other studies on 2 subjects are shown in Table

1. The lowest arterial PO, recorded was always within

2

2.'kPa of the lowest end-tidal PO, with a tendency for

2

PaO2 to be lower than pETO2'
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Steady state ventilatory response to 002 and hypoxia

These studies were performed on 10 mine rescue workers
in 1974 using the on-line computer facilities. The sub-
Jects sat in a comfortable chair listening to classical
music through headphones, breathing through the assembly
described above. Gases were supplied to the inspiratory
side of the valve at a flow of 100 1/min from a rotameter
which could supply any 02, N2 or 002 mixture required.
The gases passed from the rotameter through a humidifier
past the inspiratory inlet of the breathing valve, and
then to a compliant reservoir in which the pressure was
adjusted to fluctuate about atmospheric by applying va-
riable suction with a vacuum cleaner.

The computer digital display allowed the operator to
adjust the inspired gases to ensure PETO2 values of 6.7

or 25 kPa and the ventilatory response to 002 was measured

at these two P_.O.,s. The order of inspired gases was air,

ET 2
2% 002 at a PET02 of 25 kPa, 2% 002 at a PET02 of 6.7 kPa,
5% co, at a BET02 of 25 kPa and 5% 002 at a PETO2 of 6.7

kPa. The data were stored within the computer in the

last three minutes of each ten minute period on a given

gas mixture, provided that the operator was certain from
the display and the minute by minute dry gas meter readings
that ventilation and PETCO2 were stable. If they were un-
stable, which happened rarely, the period on that particu-
lar inspired gas was prolonged until stability was achieved

and data were only then stored in the ~omputer.
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The computer could produce a simple print-out of the
breath by breath respiratory variables recorded but, in
addition, it was programmed to produce a statistical sum-
mary of the data. This summary excluded breaths outside
3 standard deviations of the mean ventilation, a simple
device which proved effective in rejecting artefactual
breaths caused, for example, by swallowing. A visual
graphic display was also prepared for each subject show-
ipg the CO2 response lines * 95% confidence limits at a
PETO2 of 6.7 and 25 kPa. This display could be copied
and retained for use (Fig. 17). Each breath was accepted
for inclusion in this graph if the PET02 lay within 20-~30
kPa for the hyperoxic and 6.25-7.00 kPa for the hypoxic
line. All breaths at a given inspired 002 were accepted

if they were within * 0,25 kPa of the mean PETCOZ
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Figure 17

An example of the hard copy of a CO5 response study re-
corded from the computer graph plotting assembly. Venti-
lation is displayed on the y and PprCOg on the x axis., Each
point represents a single breath and the lines indicate the
lines of best fit at PppO9s of 6.7 and 25 kPa with their

95% confidence limits. The values for the slope (S) and

the intercept (B) of the hypoxic and hyperoxic line are
shown in the top right hand corner of the copy.
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CHAPTER V - HYPOXIC DRIVE TO BREATHING : RESULTS

i) Subjects
The height, weight, age, FEV, FEV/FVC ratio, Hb and

smoking history of the subjects studied are shown in Table
2 and represented graphically in Fig. 18. Their age ranged
from 20 to 44 years. None of the subjects w@fe anaemic
and all, except one, had FEV/FVC ratios of greater than
65%. Twenty six of the 43 subjects were smokers.

ii) Exercise

The basic data obtained in 1971 and 1972 (%E, ﬁoz,
icoz, RQ, VE/?Oz and §E14/§E21 are shown in Table 3.

The mean ventilation, measured by the dry gas meter,
for the subjects studied in 1971 was 28.83 * 5.33 (SD)

|

l.nin~" BTPS. The mean ﬁoz was 1216 & 148 @l.min~" with

a mean RQ of 0.84 * 0.03. The ratio of ventilation to
ﬁoz (ﬁﬂ/ﬁoz) was 23.6 + 3.0 l.min"te~!. The ratio.of ven-
tilation measured in the last 2 minutes of the 6 minute
period breathing 14% O2 to the ventilation breathing air
(§E14/VE21) was 109.6 * 8.4% with a range of 97-125%.
In 1972 the mean ventilation was 29.25 + 4.86 l.min™ 1
BTPS. The mean VO, was 1198 + 158 ml.min~' with a mean
RQ of 0.90 * 0.04. The ﬁE/ﬁoz ratio was 24.4 t 2.4 and
the VE,,/VE,, ratio was 112.3 *+ 7.6 with a range of 93-128%.
Linear regression analysis of the data available for
the subjects who were studied in both 1971 and 1972 showed
a significant correlation for ?E/ﬁoz (r = 0.83, n = 25,

P<0.001) between the two years but an insignificant corre-
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Histograms showing the age, height, weight,
haemoglobin concentration, forced expiratory
volume in one second and the forced expiratory
volume - forced vital capacity ratio in the

42 miners of the study (subject 43 is not in-
cluded in the histograms).
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lation for iE14/ﬁE21 (r = 0.37, n = 26, P<0.1). The iE/ﬁoz
ratio for each subject would thus appear to be highly re-
producible from year to year whereas the ?E14/§E21 ratio
is not reproducible.

iii) The Control Period

The mean control ventilation, measured by pneumotacho-
graph, tidal volume and frequency with 95% confidence li-

nits, PETO2 and PETCO2 in 1971 and 1972 are shown in Table

4.

In 1971 the control tidal volume was 1542 * 366 ml
with a frequency of 19.4 * 5.3 breaths min-l. The mean
pEToz and pETCO2 for the control period were 13.42 = 0.71
kPa and 5.56 * 0,51 kPa respectively.

In 1972 the mean control tidal volume was 1385 % 255
ml with a frequency of 19.3 * 3.9. The mean control PE‘TO2
was 13.38 £ 0.8 kPa and the mean PETcoz was 6.03 + 0.43 kPa.

Comparison of results in the subjects studied in 1971
and 1972 shows a high correlation for frequency of breathing
(r = 0.90, n = 26, P<0.001). There was a significant corre-
lation between 1971 and 1972 control values for PETO2 (r =
0.44, n = 26, P<0.05) and PCO, (T = 0.52, n = 26, P<0.01).
However, the difference in mean P002 between 1971 and 1972
(Table 4) suggests that some methodological error is pre-
sent and the results are therefore displayed graphicazly
in Fig.19, where all the points lie to one side of the line
of identity suggesting the possibility of a consistent

error,
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It is unlikely that the difference observed was phy-
siological since the level of exercise and the resistance
of the breathing circuit were the same in both years. The
possibility of a shift in the zero or gain of the mass
spectrometer is excluded by the check of these variables
carried out at the end of each day and also by the absence
of similar differences in PEToz‘ The possibility remains
of a consistent error in the off line data analysis by the
Regional Computing Centre for the 1972 PCO2 data. It is
CO,, zero was in-

ET 72
corporated into the en bloc analysis of the 1972 data.

not inconceivable that an error in the P

The 1971 data produces values for PETCO2 which are physio-
logical and agree with values found in later studies of
this and other kinds in 1974. It is important to stress
that, because of this inconsistency, the PCO2 data for
1972 has been excluded from further analysis. It is not
relevant to the main theme of this thesis.

iv) The Effect of Inhaling 3 Breaths of Nitrogen
During Exercise

On PO, (Table 5)

The lowest PO2 always occurred after the third breath
of nitrogen and averaged, in 1971 4.21 * 1.16 kPa and, in
1972, 3.71 + 1.0 kPa, The lowest 902 in 1971 for each sub-
Jject was highly correlated with the 1972 value (r = 0.50,

n = 26, P<0.001).
Analysis of the 1972 data where FRC was measured shows

that the lowest Poz, as might be expected, correlated with

the ratio, mean tidal volume of N2 divided by FRC, and this
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relationship is shown in Fig. 20.

On Ventilation

The ventilatory response to the hypoxic stimulus is
expressed as the ratio of the highest GE inst occurring
after the 3 breaths of nitrogen to the mean control venti-
lation. The mean highest breath value (mean HBV) (Table
5) is derived from superposition of three studies in each
individual as described in methods (Fig. 15). In order
to indicate the variation between single studies in each
subject the highest breath values for each of the three
studies on each individual in 1972 are shown in Fig. 21,

The range of mean HBV was 114-217% in 1972 and 100-
204% in 1971. The reproducibility of the test is shown
in Fig. 22 where the 1971 values are plotted against the
1972 values for the 26 subjects who were studied on both
occasions. There is a highly significant relationship be-
tween these values (r = 0.67, n = 26, P<0.001) and, more
importantly, the subjects with the two lowest values in
1971 also had the two lowest values in 1972. The histogram
of mean HBV in 1972 for the 42 miners is shown in Fig. 23.

The first breath to achieve a significant increase in
&E inst was on average 3.2 (1971) or 3.5 (1972) breaths
after the first inspiration of nitrogen. The greater the
ventilatory response the earlier the first breath to sig-
nificance was likely to be (see Table 5). The position of
the highest breath was on average at breath 4.0 in 1971
and 4.8 in 1972, the difference probably being related to

the overall greater magnitude of ventilatory responses in
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1972.

In only one subject, subject 42, did the rise in venti-
lation fail to achieve significance in both studies in 1971
and 1972, Subject 18 had no significant rise in 1971
but this subject showed the greatest variation in control
ventilation in that study with resultant stretching of the
95% confidence limits of the control ventilation. Subject
41 had éonsistently low values- for HBV in 1971 and 1972
with a very late, but significant, rise in ventilation.
Subject 43 did not achieve a significant rise in ventilation
but the reasons for this are discussed below.

The major component of the increase in ventilation
was that due to changes in tidal volume (Table 5). This

increased following the N, stimulus on average to 162%

2
in 1971 and 165% in 1972, whereas breathing frequency in-
creased to a maximum on average for the groups of 125%

in 1971 and 122% in 1972. Not surprisingly, the great ma-
jority of changes in tidal volume achieved 95% significance
whereas fewer of the frequency changes did so (Table 5).

Examples of a high, middle and low ventilatory response

are shown in Fig. 24 with the associated P 02 and PETCO

ET 2

changes.
On PCO2

The hyperventilation secondary to the transient hypo-
xia was associated with falls in PCO2 to mean lowest values
for the groups in 1971 of 4.81 % 0.39 kPa and, in 1972, of
4.81 £ 0.51 kPa. The average position of the lowest PCO2

was 3.8 * 0.7 and 4.1 + 0.8 breaths after the first breath
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of nitrogen (Table §5).

v) Regression Analysis of the 1972 Data

Multiple regression analysis of the 1972 data using
the Edinburgh Multi-Access System (EMAS) reveals that 25.3%
of the variance in mean HBV can be explained on the basis
of differences in PETOE' Addition of other variables ex-
plains only a further 9% of the variance..

% variance in mean

Variable Degigzﬁogf HBV?ggg;gégﬁglby
Lowest PETO2 41 25.3
Vo, 40 30.4
Control PET02 39 31.9
Control PETCO2 38 32.1
Control VE 37 34.0

I presume that the remaining variance (66%) results from
differences in hypoxic drive.

Linear regression analysis showed a strongly negative
correlation between lowest PO2 and mean HBV (r = =0.50,
n = 42, P<0.001). Linear regression analysis also revealed
a weakly positive correlation between VE14/VE21 and mean
HBV (r = 0.38, n = 42, P< 0,05) and a weakly negative cor-
relation between ?E/VOz and HBV (r = 0.30, n = 42, P<0.08).

vi) Studies in 1974

Repeat studies with N, transients were carried out in

2
1974 in 6 subjects who had been studied both in 1971 and
1972 and in 3 subjects who had been studied only 1in 1972.

They were selected largely on the basis of having had high
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or low mean HBVs in the previous studies, the intention
being to repeat the transient hypoxia studies and also to
measure the steady state ventilatory response to inhaled
CO2 at Pozs of 6.7 and 25-30 kPa at rest. In addition,
in four subjects, 3 "dummy" switches were performed with
3 breaths of air to exclude subjective responses to the
turning of the taps.

N, transients

-2
The control and experimental data are shown for the

1974 studies in Table 6. The ?02 was slightly lower in
all subjects than in previous studies with a mean value

of 1068 = 76 (SD) ml-min-l. The lowest P..0, achieved was
also slightly higher than in previous studies with a mean
value of 5.12 + 1.2 kPa, Subjects 1 and 2, who had high
values for mean HBV in 1971 and 1972, had similarly high
values on this occasion (Table 7). Subject 43 hyperventi-
lated during the study as he had done in 1972 with high
ﬁE/ﬁOz, low PETCO2 and high PETO2 values and, once again,
showed no significant ventilatory response to transient
hypoxia. All the other subjects showed significant rises
in ventilation although the responses in subjects 18 and
36 were less than on previous occasions, possibly also re-
lated to hyperventilation in these 2 subjects (Tables 6
and 7). Subject 41, who had previously shown minimal but
significant rises in 1971 and 1972, had a similar response
on this occasion. Subject 42, who had previously had no

significant rise in 1971 and 1972, achieved a mean HBV of

149% on this occasion (Tables 6 and 7).
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The results of the four subjects who had three 'dummy'
breaths of air as well as three breaths of N2 on 3 occa-
sions are shown in Fig. 25. There was no significant venti-
latory response when air was substituted for nitrogen in

these four subjects with widely differing responses.-

The steady state ventilatory response to inhaled COo at POo
6.7 and 25-30 kPa in the 9 subjects restudied in 1974

A typical 002 response plot is shown in Fig. 17. The
control data breathing air for these studies. are shown in
Table 8. The tabulated values for hypoxic and hyperoxic

slopes and intercepts of the CO, response line are shown

2
in Table 9. The hypoxic drive as calculated from these

graphs is presented in the same table with hypoxic drive
expressed as 1) the ratio of the hypoxic to the hyperoxic
slopes; 1i) as AV50 where AVS50 is the change in ventila-

tion when PETO2 is lowered from 25-30 kPa to 6.7 kPa at the

subject's control resting PETCO2 in the same study. (Fig. 26)

It is clear from the control ventilation and end tidal

PO2 and PCO, in 3 of these studies in subjects 18, 36 and

2
43 that the subjects were hyperventilating before the studies
began. It is not surprising therefore that they had low
values for the intercept of the lines on the PET002 axis.
This hyperventilation, which was seen previously in subject
43 on exercise, is presumably cortically mediated and there-

fore renders the CO, response lines difficult to interpret.

2
This added drive may have been constant throughout the
study, in which case the ratio of the slopes of the lines

is still meaningful. However, it is much more likely that
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the cortically mediated drive varied throughout the 002
response study and it would therefore be unwise to base
any conclusions on these results alone.

The mean HBV values from the 1974 subjects is shown
plotted against the ratio of the slopes in Fig. 27 and
it is clear that there is no obvious relationship between
these two variables in this small group. When mean HBV
is plotted agaiast AV50, it is possible that a very loose
linear relationship might exist but more points in the
middle range would have to be established before the
significance of this could be commented on (Fig. 28).

In view of the finding of hyperventilation in three
of these subjects during the procedure, the possibility
that hyperventilation alkalosis might have been responsible
for the range of HBV established in 1971 and 1972 was re-
examined. Only one subject, 43, persistently hyperventi-
lated in 2 studies on exercise and he did indeed have a
low ventilatory response to transient hypoxia on both oc=
casions. However, there is no evidence of overventilation
in any of the other subjects in either 1971 or 1972 (VE/VOZ
ratios, PETcoz) and there is no significant association
between mean BV and PET002 on either occasion.

The possibility is further examined in Fig. 29 where
comparisons between HBV measured in 1971 and 1974 are com=

pared with P in 1971 and 1974. In only one subject

102
(18) can the differences in HBV be explained on the basis

of differences in PETCO2 and he was a subject who was
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readily identified in 1974 as a hyperventilator. 1In view

of the difficulties in interpreting PETCO2 in 1972, no con-

clusions have been based on the PCO. data from that study.

2
It would seem that there is little or no relationship
between the hypoxic drive when measured as the ventilatory
response to transient hypoxia on exercise and the hypoxic
drive when measured as the ventilatory response to steady
state hypoxia during 002 inhalation at rest for those 9
subjects 'in whom this comparison has been made.
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CHAPTER 6 HYPOXIC DRIVE TO BREATHING : DISCUSSION

The present study has demonstrated a wide range of
ventilatory response to transient hypoxia during exercise,
identifying one subject with a persistently low respouse
on three occasions, and another who did not achieve a sig=-
nificant increase in ventilation when exposed to transient
hypoxia on 2 out of 3 separate occasions on exercise,

Exercise of the type employed has proved to be a use-
ful method for studying subjects unaccustomed to labora-
tory experimentation in whom the opportunities and time
available for trainiang in the laboratory are not available.
Modest treadmill exercise at a speed of about 3 m.p.h. on
the level was sufficient to distract all the subjects from
the procedure being carried out and the values for Vﬂjvuz
and RQ obtained for the subjects indicate that a satisfac-
tory exercise steady state was obtained. Only one subject
hyperventilated in the study in 1972 and the later limited
studies in 1974 indicate that, at least in the four sub-
jects studied, the ventilatory responses obtained were
found ounly when three breaths of nitrogen were given and
were absent when air was substituted for nitrogen in the
circuit. The ventilatory responses obtained bore no rela-
tion to the age, height, weight, TLC, FEV, FEV/¥FVC ratio,
smoking history or Hb level of the men and were unrelated
to the ?02 achieved on exercise.

The magnitude of the ventilatory response was shown

to bear some relation to the PETOZ achieved following the
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3 breaths of nitrogen but this only explained one quarter
of the variance of the observations. The unexplained re-
mnainder was presumably a reflection of the hypoxic drive
to breathing present in the subjects.
The timing of the ventilatory response, with the maxi-
mum instantaneous ventilation being achieved on average

1-2 breaths after the lowest end-tidal PO is in keeping

9
with a reflex from the carotid body, the lung to carotid
body circulation time at this modest degree of exercise
being about 5-6 seconds. The quality of the response,
which was largely mediated by changes in tidal volume, is
in keeping with the finding of Pearson and Cunningham (1973)
that, following step changes in chemical drive, the imme-
diate ventilatory response is mediated almost entirely by
changes in VT and not frequency;, this representing a de-
parture from the Hey relationship (Hey, Lloyd, Cunninghan,
Jukes and Bolton, 1966).

The ventilatory response to transient hypoxia on
exercise is reproducible, as the comparison of the 1971
and 1972 results shows and, from the point of view of the
present study, importantly, the two lowest responders in
1971 were also the two lowest responders in 1972, Neither
of the low responders were hyperventilators and this is
important fotr it would appear that hyperventilation on
exercise, as was seen in subject 43, may result in appa-

rent absence of the hypoxic drive. This would be in keep-

ing with Masson and Lahiri's (1975) observations that pro-
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nounced lowering of PCO2 during hypoxic exercise can pro-

duce striking changes in minute ventilation probably because
the effect of hypoxia on the carotid body is multiplied by

CO, at normal PCO, levels (Lahiri and Delaney, 1975). It

2 2
has been said (Dejours, 1962) that transients are an un-
satisfactory way of quantitating the hypoxic drive, mainly
because the changes secondary to hypoxic hyperventilation,
like hypocapnia with its resultant effects on the carotid
body (Delaney and Lahiri, 1975) and cerebral blood flow
(Lassen, 1959) will interfere with the responses. Cer-
tainly, this may be true for subjects with a vigorous venti-
lgtory response, in whom the hypocapnia at the height of
the response is considerable, but this is less likely to
influence the response in subjects with only small increases
in ventilation, and therefore similarly small decreases in
PCOz. The primary aim of this study was not to "absolutely"
quantify the hypoxic drive tc breathing but to identify
subjects with little or no hypoxic drive to breathing.

The study has succeeded in identifying one subject
with a response which is persistently low but significant
in its presence on three occasions. One other subject had
no significant response on two occasions but, on the third
occasion, the respounse was significant and moderate in
quantity. This latter observation, coupled with the re-
producibility data where marked differences are seen in

individuals (although in the group the response is repro-

ducible) suggests that there may be considerable day to
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day or within day variation in the entity referred to as
the "hypoxic drive to breathing". This is an area which
has been poorly investigated but is well recognised in,
and accounts for some of the difficulties of, estimating
the steady state ventilatory response to COZ in hypoxia
(Cunningham, 1974).

The stuuies of steady state ventilatory response to
002 in hypoxia and hyperoxia at rest in the subjects were
performed, in both high and low responders to transient
hypoxia on exercise, to determine if the exercise test had
defined subjects with an absent hypoxic drive. Steady

state CO, responses have been used successfully to demon-

2
"strate reduced hypoxic drive both in high altitude natives
(Milledge and Lahiri, 1967; Lahiri, Kao, Velasquez,
Martinez and Pezzia, 1969) and in patients with cyanotic
congenital heart disease (Sorensen and Severinghaus, 1967),
whereas transient hypoxia on exercise has only been used
for this purpose in a few normal and high altitude subjects
(Lahiri and Edelman, 1969).

The results of these CO2 response studies were disap-
pointing. Three of the nine subjects hyperventilated
during the procedure (emphasising once again how exercise
was useful in this respect), thus rendering interpretation
of their 002 response curves of dubious value. However,
even if these results are ignored, there appears to be no

relation between the mean highest breath value and the

ratio of the slope of the hypoxic to the hyperoxic CO?
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response line. The lack of correlation is exemplified by
the finding of the lowest slope ratio in subject 42 who
had the lowest mean HBV in 1971 and 1972 and an almost
identical slope ratio. in subject 2 who had the second
highest mean HBV response in 1972 (Text Table 4). Simi-
larly, a very high slope ratio was found in subject 41,
the one subject with a consistently low mean HBV in 1971,
1972 and 1974, The possibility that the differences might
be due not only to differences in slope but also in inter-
cept of the hypoxic and hyperoxic lines was examined by
comparison with the AV50 (which is related to Sorensen
and Severinghaus' (1967) AV40). When AVS50 is plotted
against mean HBV for this group of nine there is some sug-
gestion that there may be a linear relationship, but this
is largely because of the considerable differences in hy-
poxic and hyperoxic intercepts found in the two highest
HBV responders resulting in higher values for AV50. Further
steady state 002 response studies would be needed to con-
firm that a real linear relationship exists between mean
HBV and AV50 in this situation. However, this finding is
an indication that a ratio of slopes is not necessarily
an accurate indication of hypoxic drive - differences in
intercepts of the hypoxic and hyperoxic lines can cause
large differences in ventilation at resting _PCO2 (which is
the level which concerns us in this study) between indi-
viduals who have the same slope ratio (see graphs of HBV

vs AVS50 and vs %%%b'
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Lahiri, Kao, Velasquez, Martinez and Pezzia (1969),
in high altitude natives, found a mean change in slope

1 kPa-l

of 6.75 1l.min~ in 6 high altitude natives compared
with a change in slope of 12.0 1.min"} xpa~! in normals
when slopes at 20 and 6.7 kPa were compared, When the
present 1974 results are viewed in this way (Text Table
3), 5 subjects tend towards the value established in the
high altitude natives; 4 of them had low drives on testing
with ftransients (subjects 34, 36, 42 and 43) and one (sub-
jJect 1) had the highest drive on transient testing in
1972. Four subjects had normal or supranormal values for
AS; subjects 2 and 18 were known to have high and moderate
drives on transient testing; subject 41 was known to have
a persistently low drive on transient testing and subject
37, who had a supranormal AS,was at the lower end of the
transient responses. Comparison of the results in this
way does little further to explain the discrepancies be-
tween hypoxic drive as assessed by these transient and
steady state methods.

It is possible to compare the present data in terms
of slope ratios with the results of Sorensen and Severinghaus
on normal subjects, high altitude natives (1968a) and also
in patients with corrected Tetralogy of Fallot (1968b).
Their results are expressed as the ratio of slope at 5.3
kPa to slope at 33 kPa. Using my own data from detailed
steady state studies in 4 subjects (Chapters 7 and 8), I

have used the mean ratios of their slopes at 5.3 and 6.7



TEXT TABLE 3

To show the results of measurement of hypoxic drive
using the steady state ventilatory response to COg
at two different POgs. The table shows the change
in slope recorded when the response is measured at a
POg of 6.7 kPa in comparison with that recorded at a
POy of 20 kPa. The data for highlanders and low-
landers are taken from the work of Lahiri, Kao,
Velasquez, Martinez and Pezzia (1969).

Change in slope
PO, 20 =~ 6.7 kPa

2
(1?..:11:1!1-1 kPa"l'PCOZ)
6 highlanders (at altitude) 6.75 £ 4.5
2 lowlanders (at sea level) i2,0
Present Study. Subject 1 6.80
2 15.40
18 15.54
34 T2k
36 6.26
37 41.81
41 10.26
42 8.10

43 8.91
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kPa to adjust the data of Sorensen and Severinghaus to a
ratio of the slope at 6.7 kPa to the hyperoxic slope.
The values of these corrected slopes are shown for normal
people, high altitude natives, natives with chronic moun-
tain sickness and patients with corrected Fallots Tetralogy
in Text Table 4. Two of the present subjects have slope
ratios of the same order as the mean slope for the high
altitude natives, but one (subject 2) is a vigorous and
one (subject 42) a weak responder to transient hypoxia on
exercise, Three others, subjects 18, 37 and 41 with mo-
derate, low and low responses to transient hypoxia on
exercise respectively, are unequivocally in the high nor-
mal range while the remainder, containing individuals with
high and low responses to transient hypoxia on exercise
occupy an intermediate position. None of the subjects in
this study reach the low values for slope ratio:which are
found in patients with chronic mountain sickness and cor-
rected Tetralogy of Fallot.

The results of the present study raise one important
problem, There seems to be, in the subjects studied by
both methods, no consistent relationship between the venti-
latory response to transient hypoxia on exercise and the
ventilatory response to steady state hypoxia during 002
breathing at rest.

The lack of correlation may be related to the obvious
differences between the two tests. There is now a consi-

derable body of evidence to suggest that ventilation in



TEXT TABLE 4

To show values for the ratio of the ventilatory response
to CO2 (S) at 6.7 kPa over the response at 20 kPa for
different groups of subjects studied by Sorensen and
Severinghaus (1968) and the nine subjects of the present

study..
Mean ratio
S6.7/520

23 sea level natives 2.10

9 high altitude natives 1.60

9 chronic mountain sickness 1.10

5 Tetralogy of Fallot 0.90

Present Study. Subject 1 1.80

2 1,60

18 2.87

34 1.85

36 1.83

37 2.74

41 2.38

42 1,57

43 1,73



71.
hypoxia is greater on exercise than at rest (Asmussen

and Nielsen, 1957; Cunningham, Spurr and Lloyd, 1968;
Masson and Lahiri, 19785) so it therefore seems unlikely
that the inability to demonstrate hypoxic drive on exer-
cise n two subjects who had an apparently considerable
hypoxic drive at rest, is related only to differences in
muscular activity. Another difference between the two
studies is in the use of transient hypoxia in the one and
steady state hypoxia in the other, Here the arguments
would again run counter to the actual findings, for tran-
sient hypoxia produces greater ventilatory changes than
equivalent steady state hypoxia (Dejours, 1962) and steady
state hypoxia may depress ventilation (Kronenberg,
Hamilton, Gabel, Hickey, Read and Severinghaus, 1969),
further lowering the response,

It seems more likely that the differences result from
the fact that, in the rest study, the ventilation in hy-
poxia was measured against a background of hypercapnia,
whereas, in the exercise study, the subjects were, more
or less, normocapnic.

It would appear that this study has identified sub-
jects who have little or no ventilatory response to tran-
sient hypoxia in normocapnic exercise although all do
have a hypoxic drive when this is measured by steady state
methods in hypercapnia. Since the augmentation of venti-
lation by hypoxia during exercise appears to be due to

some form of central interaction which is dependent on
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the peripheral chemoreceptor afferent input (Masson and
Lahiri, 1975), it seems reasonable to suggest that the
subjects with a low mean HBV have little or no peripheral
chemoreceptor response to hypoxia in normocapnic exercise.
It is possible that this lack of response is related to
activity of inhibitory efferents to the carotid body
(Biscoe, 1971) but such an effect has never been demon-
strated in animal studies. Since the augmenting effect
of exercise on hypoxic ventilation is dependent on P002
(Masson and Lahiri, 1975), it may be that these subjects

have higher thresholds for PCO, during exercise than nor-

2
mal man (although there is no evidence that they are any
different at rest). If this were so, in normocapnia,
there would be little POszCO2 interaction at the carotid
body with resultant diminution in the effect of earotid
body activity on ventilation (Lahiri and Delaney, 1975).
In the hypercapnic steady state studies at rest however,

with the PCO, threshold exceeded, multiplicative inter-

2
action between PO2 and PCO2 with respect both to chemore-
ceptor activity and ventilation would occur.

It seems unlikely that changes in oscillation in ar-
terial PCO2 (Cunningham, 1972) will play a major role in
determining the response to transient hypoxia, for they
would not be expected to change during the inhalation of
three breaths of nitrogen.

The remaining possibility, tkat in subjects with a

low mean HBV, the peripheral chemoreceptor is being stimu-
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lated but that its input to the brain stem is, instead of
being magnified by the altered central excitatory state
induced by exercise (Masson and Lahiri, 1975), being ig-
nored, This possibility has never been described in animal
studies nor is our understanding of 'central interaction'
as yet adequate enough to allow that it will soon be pos-
sible to refute the suggestion.

Whether subjects with a diminished hypoxic drive as
assessed by transient hypoxia on exercise would be pre-
disposed to the hypoxic complications of chronic bronchifis
is unclear. The two chronic bronchitics with such hypoxic
complications quite clearly had no hypoxic drive in steady
state studies at rest whereas the subjects of the present
study had.

In “iew of the poor correlation between hypoxic drive
as assessed by steady state studies at rest and transients
on exercise, it was decided to conduct further studies in
detail in 4 subjects with repeated measutements of the
hypoxic drive using transients, progressive and steady
state hypoxia at rest and during exercise. These studies
will allow the assessment of the variability of each mea-
surement and also permit examination of the relationship,
if any, between them with a view to clarifying the rele-

vance of the findings which are discussed above.
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SUMMARY

1, The use of transient hypoxia during exercise has de-
tected a wide range of hypoxic drive to breathing in
43 healthy mine resuce workers.

2. The reproducibility of the method has been established
in repeat studies at yearly intervals in 26 of these
miners although variation of the response appears to
occur in some individuals,

3. Two subjects had little or no significant hypoxic
drive to breathing on three separate occasions on
which it was measured by the transient method. These
subjects would therefore appear to fit into the cate-
gory of normal men with diminished or absent hypoxic
drive to breathing who may be predisposed to the hy-
poxic complications of chronic bronchitis and emphy-
sema should they develop the disease,

4. There was little or no relationship between the hy-
poxic drive expressed as mean HBV and the hypoxic d
drive demonstrated in steady state ventilatory res-
ponse to 002 studies at two different POzs.

5. Because of the differences between the steady state
and transient findings, further examination of the
interaction between rest/exercise, transient/steady
state and normocapnic/hypercapnic states is proposed
in order to compare the different available methods

of measuring hypoxic drive to breathing and establish

their reproducibility.
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CHAPTER 7 COMPARISON OF METHODS OF MEASURING
THE HYPOXIC DRIVE TO BREATHING :
METHODS AND RESULTS

I METHODS

With the facility of on-line computation it was possible
to investigate the disparity between hypoxic drives assessed
by the 2 different methods as discussed in the last chapter.
The first method used involved transient hypoxia in normo-
capnic subjects during exercise; the second method involved
steady state hypoxia during COz inhalation at rest. The
present study was concerned to assess the hypoxic drive
in normal subjects using transient hypoxia at rest and on
exercise, steady state hypoxia at rest and on exercise and
also one further technique, previously described by Weil,
Byrne-~ Quinn, Sodal, Filley and Grover, 1970, progressive
hypoxia at rest and on exercise. The ventilatory response
to exercise in normoxia and hypoxia was also determined for
each subject.
Subjects

The subjects were two male doctors aged 29 and 33, and
two male laboratory technicians aged 22 and 23. The heights,
welights, lung volumes determined by helium dilution and
transfer factor determined by the single breath method are
shown in Table 10. All were normal. Informed consent was
obtained, before the study started, to all the procedures but,
since subjects were always blindfolded and listening to
stereo music of their choice throughout the experimental
period, they were usually unaware of the nature of the ex-

periment being performed on any particular occasion.
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Methods

The apparatus has been described in detail in Chapter
4, All of the present experiments were performed using the
on-line computing facilities provided by the PDP 11-40 com-
puter. Throughout the experiments a visual display unit
displayed averaged values for inspired 002 and 02 percen-
tage, end-tidal PO2 and PCOz, tidal volume, frequency and
instantaneous minute ventilation for every 10 breaths. An
error monitor was also used in experiments where PET02 was
being kept constant to display the PET02 of every breath
and allow appropriate adjustments to inspired gases to be

made on the basis of any persistent shift in P 02 which

ET
was detected.

Transient hypoxia

Each subject was studied at least 2 hours post pran-
dially on 2 occasions each at rest and at a level of exer-
cise on the treadmill calculated to give an oxygen consump-
tion of about one litre per minute. In each rest study
the subject was given transients of 1, 3, 5 or 7 breaths
of 100% nitrogen in random order on three occasions with
intervals of 5 (after 1 and 3 breaths) or 7 minutes (after
5 or 7 breaths) between each transient. The computer was
switched on after 10 minutes rest during which ﬁoz, {J’CO2
and RQ were measured and remained on throughout the study,
continuously recording for each breath the inspired O2 and
CO2 percentage, PET02’ pETcoz, tidal volume, frequency and
instantaneous minute ventilation.
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The exercise studies followed a similar pattern. ?02,
I?CO2 and RQ were measured between the 7th and 10th minutes
of steady state exercise and thereafter 1, 2, 3 or 4 breaths
of nitrogen were administered in random order each transient
being repeated on three occasions., Intervals of 3 minutes
(after 1 and 2 breaths of Nz) or 5 minutes (after 3 or 4
breaths of nitrogen) were left between transients, A con-
tinuous computer recording was also obtained.

Steady state ventilatory response to CO, in hypoxia and

hzgeroxia

The studies at rest were performed along similar lines

to the previous studies on the miners. However, since the
intention was to derive the respiratory parameters (Lloyd
and Cunningham, 1963) from these studies, measurements were

made not only at PETozs of 6,67 and 30 kPa but also at

5.33 and 9.33 kPa. The sequence of inspired gas mixtures

was as follows: air, 2% CO, at P 30 kPa, 2% CO, at

ET02 2
6.67 kPa, 5 or 6% CO, at 30 kPa, 5 or 6% CO, at 9.33 kPa

5 or 6% CO, at 6.67 kPa and 5% 002 at 5.33 kPa. An

Ppq0ys 2
attempt was made to keep ventilation constant at the high
CO2 measurements which meant that small reductions in in-
spired COZ were required as the PETO2 was reduced. The com-
puter was switched on to record all variables between the
7th and 10th minutes on any one inspired gas mixture, pro-
vided ventilation and PET02 had been constant for the pre-
ceding 2 minutes. The computer produced a statistical sum-
mary of the data recorded for each section from which the

002 response lines could be drawn by hand. Alternatively,
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the data could be produced in the same form as the miners' .
CO2 response data on the graph plotter with the CO2 response
lines drawn for pETOQS of 6,67 and 30 kPa. FEach study was
repeated three times on different days on each subject.
The CO2 response on exercise was measured at the same exer-
cise level as for the transient studies. Early studies
showed that attempts to define a hypoxic and hyperoxic CO2
response line with several points on each line was too
exhausting during exercise if the steady state was rigidly
ensured. The subjects therefore had their hypoxic (PETO2
6.67 kPa) and hyperoxic lines determined on 2 occasions on
separate days. The subject exercised breathing air and the
&02' fYCO2 and RQ were measured between 7 and 10 minutes.
Thereafter the PETO2 was adjusted using rotameters to either
6.67 or about 30 kPa and a computer recording taken for 3
minutes when a steady state had been achieved., This was re-
peated on several other occasions with increasing concentra-
tions of CO2 in the inspired gas. The steady state was de-
fined as above. The CO2 response lines in hypoxia and hy-
peroxia were then drawn from the statistical summary of the
data and their slope and intercept determined by conventional

linear regression techniques.

Progressive hypoxia

The ventilatory response to progressive hypoxia as
described by Weil, Byrne-Quinn, Sodal, Filley and Grover,
1970, was determined at rest and on exercise of the same
degree as above., In the control period the usual measure-

ments of %02, \'ICO2 and RQ were carried out in the 7-10
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minute period with the subject breathing air. The inspired

gas was supplied in the closed circuit previously described

at a flow rate of 100 %£.min"'. From the computer display

the mean PETCO2 was determined in the control period. . Follow-

ing measurement of ?02 breathing air, the inspired gas had

1 of N. added to it and 4 litres min~' air

2
subtracted every minute, until the end-tidal PO2 had fallen

4 litres min~

to about 5.33 kPa (on the error monitor). 002 was added to

the inspired gas in $-1% amounts when the P 002 fell per-

ET
sistently below the control value so that, throughout the

study, PETCOZ was maintained at the resting value. The study

was continuously recorded on the computer which was able to

display graphically the VE /PET002 plot for each breath

inst
in the study. ZEach subject had 3 progressive hypoxia studies
performed at rest and on exercise on separate days.

Data processing

Curves were fitted by the computer to the progressive

hypoxia VEinst/pEToz plot according to the equation
B o= 145y
ET 2

where parameter 1 = ventilation at infinite pETOZ’ parameter
2 = the shape parameter of the curve and parameter 3 = the

PET02 at which ventilation tends towards infinity., Similarly,

by plotting PETcgz - against PETOZ' the parameters of the

Cunningham equation were determined, using the same programme

for curve fitting, to describe the steady state CO2 response
relationships. Examples of curves determined in this way

for progressive hypoxia at rest and on exercise and for the
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steady state CO, response are shown in Figs. 30-32.

2

The transient data were analysed in the way described
for the miners' study, taking 30 control breaths before
each transient, and expressing the response for each tran-
sient as the ratio of the highest VEinst to the control
ventilation., 1In addition, each group of 6 transients at
rest and on exercise were superposed to give the average
response curve with significance limits and the mean
highest breath value determined from this curve.

Steady state ventilatory response to exercise in normoxia,
hypoxia and isocapnic hypoxia

Using on-line computer facilities the ﬁEinst' PEToz

and P 902 and UCO, were determined in the steady-state

ET O2° 2
at rest and on exercise for each of three states -
a) normoxia
b) hypoxia (end tidal PO2 controlled at 6.67 kPa)
c) isocapnic hypoxia (end tidal PO2 at 6.67 kPa;
end tidal PCO2 controlled at the level in the
air study).
The level of exercise was identical to that in previous
exercise studies in the same subjects. For both the rest
and exercise studies, the following proforma was observed:
1) Air breathing for 10 minutes. 902 and VCO2 measured
between 7-10 minutes.
2) PETOZ lowered to 6.7 kPa and VEinst’ PETCO2 and PETO2
measured between 17-20 minutes and stored on computer.
3) Air substituted for hypoxic gas mixture. VEinst' PETCO2

and P._.0, measured between 27-30 minutes and stored on

ET 2
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FIGURE 30 An example of an isocapnic progressive hypoxia
study at rest in subject II. The illustration
is a photograph of the hard copy of the computed
results displayed on a graph plotter. FEach point
represents the instantaneous minute ventilation
and end-tidal POg2 for a single breath. The curve
was fitted by the computer.
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An example of an isocapnic progressive hypoxia
study on exercise in subject III. The illustra-
tion is a photograph of the hard copy of the com-
puted results displayed on a graph plotter., Each
point represents the instantaneous minute venti-
lation and end-tidal PO, for a single breath.

The curve was fitted by the computer.
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FIGURE 32 An example of the results of the steady state
ventilatory response to CO at rest in subject
I with a computer fitted curve. The slope of
the ventilatory response to COg (SCOg or VEjnpgt/
PCO2 - B) is plotted against the PETO2 at which
that slope was measured, Each point represents
values for a single breath.
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computer.

4) P_.0, lowered to 6.7 kPa and P_,CO, stabilised at the

ET 2 ET "2

level obtaining in section 3). VEinst’ PETCO2 and

PETOZ measured between 37-40 minutes and stored on com-

puter.
11 RESULTS

The results to be reported in this section are divided
into three main sections, ventilatory responses to transient,
progressive and steady state hypoxia, and each section in
turn is concerned with the responses at rest and on exercise.
A fourth section reports the results of the ventilatory

responses to exercise.

s (a) Transient hypoxia at rest : N, transients

Fig. 33 shows an example of the ventilatory response to
1, 3, 5 and 7 breaths of nitrogen at rest. This figure shows
the response from 6 separate studies with each number of
transients superposed, taking the first breath of NZ as the
index breath in the manner described in Chapter 4. Table 11
gives the metabolic data for each study in all four subjects,
the ﬁoz, {TCO2 and RQ for each subject being acceptable. The
control data for each subject (control ventilation % SD,

control PETOZ + SD, control PETCO2 + 8D) are given in Tables

12-15 and were all within the normal range. Tables 12-15

also show the lowest P obtained following the inhalation

ETO2

of Nz, the highest VE in the 6 breaths following the

inst

lowest pETOZ and the ratio of the highest VEinst to control

ﬁE (the highest breath value) for each individual transient
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FIGURE 33 An example of the mean breath by breath venti-
latory response to 1, 3, 5 and 7 breaths of nitro-
gen in subject II. The arrows indicate the final
breath of nitrogen. The lines represent the 95%
confidence limits of the control ventilation (see
text).
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study. Tablel6é shows the mean highest breath values derived
from the superposed curves (e.g. Fig. 33) with details of
the highest breath position and of the first breath after
the switch to nitrogen to achieve significance at the 95%
level.

With one breath of nitrogen the mean lowest pETOZ
(tables 12-15) obtained ranged from 11,11 kPa in subject
I to 11.50 in subject II. None of the subjects had sig-
nificant ventilatory responses to this minimal siimulus.
With 3 breaths of nitrogen the mean lowest PETO2 ranged
from 8.17 kPa in subject I to 8.84 kPa in subject III.
This degree of hypoxia resulted in significant stimulation
of ventilation in subjects II, III and IV with percentage
increases in ventilation ranging from 7-15% (Table 16),
the highest breath value occurring 3 breaths on average

after the lowest P Five breaths of nitrogen caused a

ETOZ'
fall to a mean lowest PETO2 ranging from 5.81 kPa in sub-
ject I to 6.77 kPa in subject IV. A significant increase
in ventilation was seen in all 4 subjects, ranging from
13-27% and occurring on average 2 breaths after the lowest
PETOZ' Seven breaths of nitrogen further reduced the mean

lowest P T02' which ranged from 4.64 kPa in subject I to

E
4,97 kPa in subject 4 and the resulting significant increase
in ventilation ranged from 32-57%. |

The individual ventilatory responses for each subject
are shown in Fig. 34, significant increases in HBV (i.e.
outside 2SD of control ventilation) being indicated by the

closed circles.
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1. (b) Transient hypoxia on exercise : N, transients

An example of the ventilatory responses to 1, 2, 3 and
4 breaths of N2 during steady state exercise in subject III
is shown in Fig. 35, which represents the "smoothing out"
of 6 separate studies for each stimulus level by superposi-
tion. The metabolic data are shown in Table 11, a mean
ﬁoz on exercise of 986 ml.l:nin_1 being obtained. The control

v \
data for each subject (VE, pEToz’ PETCOZ’ are shown in

Tables 17-20. The control PETCO2 was on average slightly

higher on exercise, the mean pETcoz for all subjects being

5.22 kPa compared with a mean resting PETCO2 of 5.09 kPa.
)|

The mean exercise ventilation ranged from 23.55 £.min”

for subject III to 30.25 %£.min" ' for subject IV, with VE/

?02 ratios ranging from 22.9 g.min~ 1271 4n subject III to

27.5 E.min-1£"1 in subject I. Tables 17-20 also show the

lowest P_.0O,, the highest ¥E and the highest breath

ET 2’ inst
values for each individual transient study. Table 16 shows

the mean highest breath values derived from the superposed
curves (e.g. Fig. 35) with details of the highest '‘breath
position and of the first breath after the switch to nitro-

gen to lie outwith the 95% confidence limits of the control

VEinst before the switch,

With one breath of N2 the mean lowest PETO2 ranged

from 9.21 kPa in subject III to 10.29 kPa in subject II

(Tables 17-20). 8Significant increases in VE were seen

inst
only in subjects III and IV with mean highest breath wvalues

of 108 and 109% respectively (Table 16). 2 breaths of N2
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caused a fall to a mean lowest pEToz ranging from 6.29 kPa
in subject III to 7.40 kPa in subject IV and significantly
increased mean highest breath values of 108-112% were seen
in all subjects except subject IV, the highest breath value
being observed on average 3 breaths after the lowest pETOZ'
Following three breaths of nitrogen the mean lowest PETO2
ranged from 4.61 kPa in subject IXII to 5.72 kPa in subject
IV. Significant increases in ventilation were seen in all
subjects although that seen in subject IV lay on the 95%
confidence limits. The mean highest breath value ranged
from 109-122% and the position of the highest breath value
was on average 2 breaths after the lowest pEToz. Four
breaths of N2 caused falls to a mean lowest PETO2 ranging
from 3.40 kPa in subject III to 4.16 kPa in subject IV,

All subjects had significant increases in ventilation, the
mean highest breath value ranging from 113-137% and occurring
on average 2 breaths after the lowest PETOE‘

The individual ventilatory responses for each subject
are shown in Fig., 36, significant increases in HBV (i.e.
outside 2SD of control ventilation) being indicated by the
closed circles. As in the rest studies, there is consi-
derable variation between individual measurements at one
stimulus level in one subject but, when the studies are com-
pared, the most striking feature is the marked response of
subject I¥ to transient hypoxia at rest whereas, on exercise,
there is little or no response until 4 breaths of N2 have
been given (Fig. 40). He would certainly have gqualified as

a low responder to 3 breaths of N2 on exercise had he been
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included in the miners' study for, in him, all measurements
of response to three breaths of N2 give HBVs of less than
120%. When the six studies are superposed, the mean HBV

for this subject with three breaths of N, is only 108% and

2
barely reaches statistical significance. With 4 breaths of

N2 the mean HBV is still the lowest of the 4 subjects, reach-

ing only 113%.

1. (c) Comparison of ventilatory responses to transient
hypoxia at rest and on exercise

Figs. 37-40 show the equivalent of the \'?E/po2 plots for
all the transient hypoxia studies in subjects I-IV. The
figures show the plot of the HBV for each transient study
plotted against the lowest PETO2 attained in that study.

The significant responses are shown by closed circles and
their significance determined by the fact that the HBV ex-
ceeded 2SD of the 30 control breaths. The most striking
finding from these plots is that, for a given PET02, if only
the significant responses are considered, the HBV is greater
at rest than on exercise. That is, for a given PETOZ’ the
increase in ventilation observed after a given hypoxic sti-
mulus is greater at rest than on exercise, when expressed
as a percentage of the control ventilation. In subject IV
particularly, who had a strikingly low and marginally signi-
ficant response to 3 breaths of nitrogen on exercise, there
appears to be a much more striking response to similar changes
in pETOZ
Fig. 41 shows the transient data presented in a way

when they are induced at rest.

which attempts to relate the ventilatory response to the de-
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gree of hypoxic stimulus for the studies at rest and on exer-
cise. In the Figure, the maximal change in ﬁEinst from
control observed after a given stimulus is plotted against

that stimulus (the lowest P Each VE point

gr02) inst/PETO2
is the mean of six observations, the open circles represent-
ing measurements made at rest and the closed circles measure-
ments made on exercise. The points selected are all below

a PETO2 of 7 kPa and, although it is appreciated that the
{?E/PETO2 plot is hyperbolicgin this region of low pETO2’
where the curve is steepening and a small range of PETO2 is
being considered, the slopes of the lines joining the points
do provide some indication of each subject's sensitivity to
transient hypoxia. The calculated slopes of the iE/PEToz
lines are given in Table 22. The values of these slopes
confirm the fact that, at rest, subject IV ranks high for
sensitivity to transient hypoxia whereas, on exercise, if
comparable PETO2 ranges are considered, subject IV ranks
lowest for ventilatory response to transient hypoxia,.

2, (&) Progressive hypoxia studies at rest

THe results of the progressive hypoxia studies at rest
are shown in Table 23, Three studies were performed on
three subjects, but only 2 studies on subject III. The re-
sults show the values of parameters 1, 2 and 3 from the
equation iE =1 + 56_2:_5. Parameter 1 is the ventilation

2

at infinite pEToz; parameter 2 is the shape parameter of

the hyperbola (the A of Weil et al, 1970), which represents

hypoxic sensitivity and parameter 3 is the PETO2 at which
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ventilation tends towards infinity. The values for para-
meter 1 were fairly constant for each individual as were the
values for parameter 3 (Table 23). Parameter 2, however,
was less reproducible. In subject I the mean value was
9.24 with a range of 9.15 - 9.36. However, the range of
values in the other three subjects was greater and, in sub-
ject II, the mean value was 4.15, with a range from 2.46 -
5.82. On the basis of the mean values for parameter 2, the
ranking of subjects in order of sensitivity to progressive
hypoxia at rest was III > I > II > iV, III and I being simi-
lar and having approximately twice as large a value for
parameter 2 as subjects II and IV.

The PETCO2 at rest was maintained constant at resting

end tidal P 002 levels during these studies and the values

ET

for mean PETCO2 + 8D are also given in Table 23. An example
of the breath by breath PETCO2 during such a study in one
subject is shown in Fig. 42.

2. (b) Progressive hypoxia studies on exercise

The ﬁoz achieved on exercise is shown in Table 24, The
same parameters as were derived for the rest studies have
been derived for the exercise studies and the results and
the mean PETCO2 t SD for each study are shown in Table 25.
Parameters 1 and 3 for each subject were less reproducible
than at rest, the range of parameter 1 being 19.75 - 20.79
in subject I and 8.29 - 21.96 in subject II, while parameter
3 varied from 4.38 - 4.83 in subject I and from 2.41 - 4,46

in subject 2.
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Exercise produced an increase in parameter 2 for all

subjects but, again, the ranges of the results in an indi-
vidual subject varied, being 27.62 - 30.16 in subject II
and as wide as 22,38 - 41,6 in subject IV, The mean PETCO2
on exercise was higher in all 3ubjects'than the mean PETCO2
in the rest study. The differences were less than 0.25 kPa
in three subjects and, in the other, subject III, the exer-

cise P 002 was 0.47 kPa greater than the rest P_ _CO, (Tables

ET ET "2

22 and 24).

An example of the PETCOZ during a study is shown in
Fig. 43. Ranking of subjects in order of mean response to
progressive hypoxia on exercise is as follows: I > III > IV

> II, I and III having almost identical values.

3. (a) Steady state CO, response studies at rest

Three studies were performed in each subject to define

the slope of the ventilatory response to CO, at PTTCO?S of

25-30 kPa, 9.33 kPa, 6.67 kPa and 5.33 kPa. The PETO2 at

which the measurements were obtained, the slope of the venti-
latory response to CO2 at the given PETO2 s (assuming a
common BCO2 equal to that determined for the hyperoxic line),

the values for BCO, at high P 02 and at a P_. 0O, of 6.67

2 ET ET 2
kPa, and the ratios of the slopes of the various hypoxic

lines to the hyperoxic slope are shown in Table 26.

The mean values for BCO2 at PETozs of 25-30 kPa and

6.67 kPa did not differ by more than 0,30 kPa which was cer-

tainly within the differences in BCO, observed for the hyper-

2
oxic line alone observed in any one subject and, therefore,

the use of a common B, namely that of the hyperoxic line for
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determining the slopes of the hypoxic lines was felt to be

permissible., The mean hyperoxic BCO, ranged from 4.38 to

2

5.02 kPa PETCO2 in the four subjects.

The mean slope of the hyperoxic line ranged from 10,65

1

g.min"tkpa~l in subject I to 20,52 %.min"YkPa in subject II.

The hyperoxic siope was reproducible, the narrowest range
of values observed being from 12.96 - 14,16 z.minnlkpa in
subject I and the widest range being from 12,50 - 16,94
%.min"YkPa in subject III.

The hypoxic lines were much less reproducible even al-
though the PET02 at which a given line was measured never
varied by more than 0.4 kPa and was, in most cases, much
less variable than this. Nor could the differences in

slope at a given P be related in any way to the minor

1’2
differences between PETozs observed in different studies.

The ranges obtained at a given P in the same subject are

ET"2
shown in Table 26, with the mean values for each study quoted
and the range expressed as a percentage of the mean,

The poor reproducibility of all but the hyperoxic line
is evident from the results presented in Table 26. The per-
centage range to mean value for the three studies in each

subject show that this percentage varies from 8.9 - 30.7%

for the hyperoxic line, 18,7 - 42,4% for the line at P_. O

ET 2
of 9,33 kPa, 19.0 - 62.1% for the line measured at PETO2 of
6.67 kPa and 19 - 53.9% for the line measured at a Pp.0, o

5.33 kPa.

The average increase in slope over the hyperoxic slope
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for this group of four subjects was 38% at a PETO2 of 9.33

kPa, 66% at a PETO2 of 6.67 kPa and 101% at a PETO2 of 5.33

kPa. If the ratio of mean slopes at the two lower PETozs

are used as an index of hypoxic drive, the ranking at a .

PET02 of 6,67 kPa is III > II > I > IV and, at a P

5.33 kPa, III > IV > II > I,

ErC2 °f

The parameters of the equation

U = D(PyCOy - B)(1 + 5—p——p)

can be derived from the parameters established by the curve

fitting programme when ﬁE/P TCO2 - B is plotted against

E

pETCOZ‘ In the equation

VE Parameter 2

= Parameter 1 + = -
PETCO2 - B PETCO2 Parameter 3

Parameter 1 is D, Parameter 2 is AD and Parameter-3 is C,

BCO2 is already known, i.e.

VE DA

= D +
PpqpC0, - B B0, - C

The values for Parameters 1, 2 and 3 and for Parameters

A, B. C and D derived from all three studies in each of the
four subjects are shown in Table 27. Again, as would be ex-
pected from the earlier analysis of slopes, considerable
variation from study to Study is observed within each sub-
Ject. The values for D corrdspond closely, as would be ex-
pected, with each subject's hyperoxic slope. On the basis
of the mean values for A, which is used as index of hypoxic

drive, the ranking of the subjects for hypoxic drive measured
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by this method is III > I > IV > II.

3. (b) Steady state CO, response studies on exercise
The steady state ventilatory response to 002 was measured

four times in each subject, twice at a PETO2 of 6,67 kPa and

twice at a PETO2 of 25-30 kPa.

Hyperoxic Steady State CO, Response on Exercise

The mean VO, measured breathing air in these studies

1

2

for the group of subjects was 1046 ml.min =, with a mean RQ

of 0.82 (Table 28). The two ﬁE/PETCO relationships for each

2
subject in hyperoxic are shown in each subject in Figs. 44
and 45, where the mean hyperoxic CO2 response line at rest
is provided for comparison. It is obvious from the figures
that the \.YE/PETCO2 relationship is linear in hyperoxic exer-
cise. The slopes and intercepts of these lines derived by
linear regression are detailed in Table 29. The slopes are
similar to the slopes obtained at rest (a mean value of

1 1

15.68 compared with 14,75 &.min” "kPa =~ at rest) and the most

striking effect of exercise, which is also clear in the

figures, is to diminish the intercept B of the CO, response

2
line so that, on exercise, the mean value for the group is

3.54 kPa PETCO2 compared with a mean value for BCO2 at rest

of 4,62 kPa.

Hypoxic Steady State 002 Response on Exercise

In the hypoxic studies performed at a mean PET02 of
6.57 kPa, the mean @02 breathing air was 991 ml.min-1 with a
mean RQ of 0.83.

The two VE/PETCO2 relationships in hypoxia for the four
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subjects are shown in Figs. 44 and 45, where the COZ response

line at the same PETO2 at rest is drawn for comparison. The

relationships were linear, as in hyperoxia, and reproducible
except in subject IV where one line had, on linear regression,
almsot twice the slope of the other (Table 29). The values
for PET02, SCO2 and BCO2 for the other subjects are also shown
in Table 29. The mean exercise slope in hypoxia on exercise

was very slightly less than at rest (22.89 compared with

24.85%.min" 1kpa~1

PCOz). As in hyperoxia, the main effect
of exercise was to lower the intercept of the line on the
PETCO2 axis, the mean intercept for the group being 3.42

kPa compared with a mean value of 4.78 kPa at a pEToz of

6.67 kPa at rest,

Comparison of Hypoxic Drive at Rest and on Exercise between

Sﬁbjects

The results for "hypoxic drive" as determined by these

different methods have all been reported earlier in this
chapter with the exception of the steady state exercise
studies. Quantitation of hypoxic drive is difficult to
compare in these exercise studies for those in hypoxia and
hyperoxia were carried out on different days. The method
least likely to give rise to error is to calculate, using
the slope and intercept for each individual study, the
ventilation at the PETCO2 recorded in the control period
when the subject was breathing air. Although there may be
minor differences in control PETCO2 from day to day it is,

nevertheless, a consistent reference point., Data are avail-

able to allow calculation of this control PETCO2 for all the
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studies with the exception of one hypoxic study in subject
III. The control values of PETCO2 and the calculated ven-
tilations with their means are shown in Table 30. The
difference between the hypoxic and hyperoxic ventilations
at control PETCO2 is taken to be an index of hypoxic drive
in these steady state studies. The differences between the
control PETCO2 values for different studies in each subject
are small (Table 29).

i) Rest

The ranking order of the intensity of the hypoxic drive
in the four subjects as assessed by these three different
methods at rest is shown in Table 31. The overall ranking
is also shown on a simple points basis for the three methods
taking parameter A as the index of steady state hypoxic
drive, parameter 2 as the index of hypoxic drive in progres-
sive hypoxia and the slope of the line relating lowest PETO2
to VEinst (Table 22) as the best index (since it includes
the stimulus as well as the response and the measurements
are made over the same range of PET02) for assessing response
to transient hypoxia.

On this basis, subject III has the greatest hypoxic
drive with all three methods and subject II the lowest hy-
poxic drive with all three methods. Subject I and subject
IV occupy intermediate and equal positions, the only inter-
esting observation here being that subject IV did occupy
equal fimst position with regard to the transient stimulus,

If the ranking is done on the basis of the ratio of
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the slopes of the steady state 002 response at PET028 of
6,67 kPa and 5.33 kPa to those at 30 kPa and the mean
highest breath values with 5 and 7 breaths of nitrogen
are also included (Table 31), the ranking order is unchanged.
Nevertheless, it is clear that, if the ratio of slopes at
PETozs of 6.67 and 30 kPa had been used as the only index
of hypoxic drive, subject II, who clearly ranks last in
the overall picture in Table 31, would have been on that
account alone ranked second in order of intensity of his
hypoxic drive.

ii) Exercise

Table 32 shows the ranking for the different methods
of assessing hypoxic drive on exercise. The steady state
drive is measured as described above, the progressive hy-
poxia diive as parameter 2, and the transient drive again
on the basis of the slopes relating lowest PETO2 to VE
(Table 22 ), The transient response is more difficult to
evaluate on exercise for the range of PETO2 over which
slopes were measured was not necessarily the same for all
subjects. However, the ranges for subjects II and IV are
clearly similar and the ranking for subjects I and III has
been derived from the slope over the lower of the two PEsz
ranges available. Had the alternative slopes been used for
these subjects, the overall ranking for hypoxic drive on
exercise would have been unaffected.

As at rest, subject Il clearly has the overall greatesg

hypoxic drive on exercise, add subject II has the lowest drive

with the others occupying intermediate positions.
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The most striking observation is that subject IV ranks
second for the steady state hypoxic drive and lowest for
the transient hypoxic drive. Even allowing for possible
sources of error in making comparisdns for the steady
state between different davs, the steady state drive is
clearly so much more obvious in subject IV than the tran-.
sient drive that it is difficult to gainsay.

With progressive hypoxia the ranking at rest and on
exercise was almost identical (the two subjects ranked
1 and 2 had almost identical values on both occasions).

In the transient studies, subjects I, III and IV were
all very similar at rest but exercise produced marked in-
creases in slope in subjects II and III, allowing improve-
ment and maintenance of their ranking respectively, where-
as little or no increase in slope respectively was seen in
subjects I and IV,

Comparison of the mean HBV with 3 breaths of N2 with
the ratio of slopes in steady state at PETOZS of 6.67 and
30 kPa, as was done for the miners, shows identical placing
in the ranking order of the highest (III) and lowest (II)
responders with each method with the other two exchanging
positions.

4. Studies of the Ventilatory Response to Exercise

The ventilatory responses to exercise in hypoxia, nor-
moxia and isocapnic hypoxia for the four subjects are shown
in Fig. 46 as the linear relationship between minute venti-

lation and oxygen uptake. The oxygen uptake, ventilation and
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PETCO2 at which the ventilation was measured at rest and

on exercise are shown in Table 33. The PETozs at which
ventilation was measured are shown in Table 34. Table 35
gives the slopes and intercepts of the ?E/VOz line. The
ﬁE/?Oz ratio calculated only from the exercise poiht has been
selected as the most reliable index of the ventilatory res-
ponse to exercise since it was shown in the miners' study
that it was highly reproducible.

Comparison of the ﬁE/ﬁOz ratios in hypoxia and normo-
xia shows that there is little increase in ratio in hypoxia
when P_..CO

ET 2
and 12% in subjects I and III respectively, by 6% in sub-

is allowed to fall. The slope increases by 14

ject IV and by 5% in subject II. However, when pETCOZ is

kept constant at '"mormoxic pETcoz" during the hypoxic studies,
i.e. in isocapnic hypoxia, differences between the VE/VO2
ratios in normoxia and hypoxia are more obvious. The PETO2
was well controlled in all studies (Table 33).

When P 002 was kept constant, the increase in the

ET
VE/V02 ratio was more marked, ranging from a 23% increase

in subject II to a 74% increase in subject III, with subjects
I and IV having 50 and 45% increases respectively (Table 35).
The ratio of the ventilatory response to exercise in iso-
capnic hypoxia to that in normoxia clearly relates to a
subject's hypoxic drive. The ratio is highest in subject

IITI and lowest in subject II, who had the highest and lowest

overall hypoxic drives respectively in the earlier studies,

with subjects I and IV occupying intermediate positions.,
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CHAPTER 8 COMPARISON OF METHODS OF MEASURING THE
HYPOXIC DRIVE TO BREATHING : DISCUSSION

The values for the ventilatory response to 002 at rest
in the four subjects were in the established normal range for
this variable (Rebuck and Read, 1971) and as reproducible as
when measured by the rebreathing method (Lyall, Bourne and

Cameron, 1975). The slopes of the CO, response lines in

2
hypoxia were much more variable - a phenomenon which has
plagued respiratory physiologists for many years but which
none of them have ever studied. Anderton, Harris and
Slawson (1964) demonstrated small differences between hy-
poxic COZ responses done in series on the same day in normal
man but no-one has provided data on the day to day variabi-
lity of this response in individual subjects. The marked
differences in slope of the Coz response line at any low

PO2 in a given subject are much greater than the variabi-
lity recorded in measuring the hyperoxic 002 response line,
Differences in P02 or procedure from day to day were not
responsible for the differences, which must be attributed
either to day to day variation in chemoreceptor response to
hypoxia or to differences in the CNS response to a given
chemoreceptor input. In view of the known depressing effect
of hypoxia on CNS function (Kronenberg, Hamilton, Gabel,
Hickey, Read and Severinghaus, 1972) in steady state studies,
it is tempting to assume that variation in the balance be-
tween hypoxic stimulation and depression from day to day is
responsible for the differences observed. The differences

in slopes of hypoxic CO, response lines from study to study

2



98,
are responsible for the differences observed in Cunningham's
parameter A in each subject. These differences were con-
siderable with the tightest range for A being 2.11-2.70 in
subject IV and the loosest range being 2.18-6.06 in subject
III. The values recorded for parameter A in all four sub-
Jects are similar to values recorded by others in sea
level man (Michel and Milledge, 1963; Milledge and Lahiri,
1967; Lloyd and Cunningham, 1963) and none was as low as
the mean values found in high altitude native Sherpas with
diminished hypoxic drive to breathing (Milledge and Lahiri,
1967).

The effect of exercise on the ventilatory response to
002 in hypoxia and hyperoxia was similar to that reported
by other workeérs. In hyperoxia, the G/pcoz line shifted in
parallel fashion to the left with no significant change in
slope in all four subjects and a decrease in the intercept
of the line on the PCO2 axis as previously reported by
others (Niélsen, 1936; Asmussen and Nielsen, 1957;
Bhattacharyya, Cunningham, Goodé, Howson and Lloyd, 1970).
In hypoxic exercise, the relationship between GE and PCO2
was linear with no evidence of the decrease in slope found
at higher ventilation by Bhattacharyya, Cunningham, Goode,
Howson and Lloyd (1970). Two patterns of response were ob-
served (Figs. 47-50). In subjects I and III there was a
shift to the left of the hypoxic CO2 response lines compared
with rest, with a decrease in both the intercept and the slope
of the lines, the hypoxic intercept being less than the hy-

peroxic intercept.
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FIGURE 47 The mean COg response lines in hypoxia (PgpOg %

6.7 kPa) and hyperoxia (PgpOg ~ 30 kPa) derived
from 3 studies at rest and 2 studies on exercise
in Subject I. The vertical arrow indicates the
increase in ventilation to be expected for a fall
in POy on exercise if PCOgp remains constant at
control levels, The oblique arrow indicates the
ventilation expected at the same POy for a fall
in PCOg such as is found by the third breath of
No in transient hypoxic studies in this subject
(see Fig. 51 and text).
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FIGURE 48 The mean COg response lines in hypoxia

(PE70g v 6.7 kPa) and hyperoxia (PppOg ~v

30 kPa) derived from 3 studies at rest and
2 studies on exercise in subject II, The
vertical arrow indicates the control PCO9
during exercise in this subject., An analy-
sis similar to that in Figure 47 is diffi-
cult to depict diagrammatically, but can be
pursued using data from Figure 52,
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FIGURE 49

The mean COo response lines in hypoxia (Pgm0g
6.7 kPa) and hyperoxia (P09 ~ 30 kPa) derived
from 3 studies at rest and 2 studies on exercise
in subject III., The vertical arrow indicates the
increase in ventilation to be expected for a fall
in PO2 on exercise if PCO2 remains constant at
control levels., The oblique arrow indicates the
ventilation expected at the same POy for a fall
in PCO2 such as is found by the third breath of
N2 in transient hypoxia studies in this subject
(see Figure 51 and text),
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FIGURE 50 The mean COg response lines in hypoxia (PgpOg ~
6.7 kPa) and hyperoxia (PrpOg ~ 30 kPa) derived
from 3 studies at rest and 2 studies on exercise
in subject IV, The vertical arrow indicates the
increase in ventilation to be expected for a fall
in POy on exercise if PCOg remains constant at
control levels. The oblique arrow indicates the
ventilation expected at the same POg for a fall
in PCO2 such as is found by the third breath of
N2 in transient hypoxia studies in this subject
(see Figure 51 and text),
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In subjects II and IV, however, the slope of the hypoxic
002 response line was similar to or greater than that

found at the same PO, in the rest studies and, although

2
the hypoxic intercept was less on exercise than at rest,
it was not less than the hyperoxic intercept on exercise.
As a result, the hypoxic and hyperoxic 002 response lines
in these subjects crossed each other at a ventilation of
about 20 R.min-l. The '"cross-~over" effect is also seen in
the studies of Bhattacharyya, Cunningham, Goode, Howson
and Lloyd (1970)on subject 204, The effect of exercise on

the hypoxic CO, response lines was similar to that found in

2
the subjects studied by Masson and Lahiri (1975), who also
found a linear relationship between ventilation and PCO2
in ranges similar to those of the present study.

The progressive hypoxia studies at rest demonstrated
a similar variability in response. Although in subject I
the hypoxic drive parameter2(Weil's parameter A) was very
reproducible, in the least reproducible subject, subject
II, the value for parameter 2 ranged from 2.46 to 5.82 kPa,
indicating considerable day to day variation., The values
for parameter 2 found in these studies were, for all four
subjects, less than the lowest normal value reported by
Weil and his colleagues (Hirshman, McCullough and Weil, 1975).
This difference is probably related to slight but significant
differences in techniques. Weil, Byrne-Quinn, Sodal, Friesen,
Underhill, Filley and Grover (1970) lowered the PETO2 from

a level of 16 kPa to 5.3 kPa keeping the P TCO constant at

E 2
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the levels found at a PETO2 of 16 kPa. In the present study,
the PETcoz was kept constant at the level obtaining in nor-
moxic ventilation with a PET02 of about 13 kPa. The small

differences in P..,,CO, which would result from the fact that

ET 2
there would be depression of hypoxic drive in Weil's studies

with the higher starting P,0, would explain the differences

ET
found, since elevation of the P__CO, at which the measurement

ET "2
of 2 is made is known to produce significant increases in
the value for 2 (Weil, Byrne-Quinn, Sodal, Friean, Underhill,
Filley and Grover, 1970).

Similarly, the values for parameter 2 found on exercise
in the present studies are less than those reported by Weil,
Byrne-Quinn, Sodal, Kline, McCullough and Filley (1972).
However, the eéffect of exercise in the present studies is,
as reported in the above study, to increase the value of
parameter 2, Considerable variability in the values for
parameter 2 was again found, this being most marked in sub-
ject II. Although Hirschman, McCullough and Weil (1975)
have repeated studies on the same subject on as many as
fifteen occasions using this technique, there is no published
information on the reproducibility of parameter 2. The source
of the variability is again open to speculation, but it may
be significant that marked hypoxic depression of ventilation
has been detected in progressive hypoxia studies conducted
over only four minutes (Kronenberg, Hamilton, Gebel, Hickey,
Read and Severinghaus, 1972). It does not seem unreasonable,

therefore, to speculate that an imbalance between stimulation

and depression of ventilation by hypoxia may again be res-
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ponsible for this effect.

In the studies reported by Weil and his co-workers, the
PET02 at which ventilation tended to infinity was fixed at
4.27 kPa for all curve fitting procedures at rest and on
exercise., In the current studies the computer was pro-
grammed to fit a curve of best fit by least squares regres-
sion techniques, without restriction of any of the para-
meters. Some support for Weil's curve fitting technique
is to be found in the close correspondence of the values
for this parameter found in the present studies with the
empirical value which he selected.

There is little information available in the literature
with which to compare the results of the transient hypoxia
studies at rest and on exercise. Lahiri and Edelman (1969)
studied one normal subject at rest and demonstrated that,
after 3 breaths of N2 with a minimum PET02 of 7.7 kPa, the
mean highest breath value was 207% occurring at the fourth
or fifth breath; with 5 breaths of nitrogen with a minimal
PETOZ of 3.8 kPa, the mean highest breath value was 264%
at the tenth to twelfth breath. The PETO2 recorded in this
one subject and his response are much lower and higher res-
pectively than those found in the present study. However,
their subject was a respiratory physiologist with an un-
usually slow breathing rate. In the same paper, Lahiri and
Edelman report studies on three sea level acclimatised high

altitude natives. At rest three breaths of N, produced a

2
minimal PET02 of 9.0 kPa with no ventilatory response and



102,
five breaths of nitrogen produced a minimal pETO2 of 6.6
kPa with a mean highest breath value of 115%, considerably
less than that seen in the normal for a similar minimal
pETOZ' The single breath N2
Lefrancois and Lacaisse (1959) produced an average mean

test of Girard, Teillac,

highest breath value of 150% for a PETO2 of 6,3 kPa in
normal subjects, which is not too dissimilar to the values
for highest breath value and pETOZ found with seven breaths
of nitrogen in the four subjectSof this study (Figs. 37-40).
The results of the studies of ventilatory response to
transient hypoxia in exercise can also be compared with
Lahiri and Edelman's (1969) work at the same level of exer-
cise. Their one normal subject with three breaths of nitro-
gen had a mean highest breath value of 173% with a minimal
PETOZ of 2.4 kPa, The highlanders, with five breaths of

nitrogen had a similar minimal P with a mean highest

ETO2
breath value of only 120%. In the present studies only sub-
ject III had a moderate ventilatory response on exercise and,
although significant increases in ventilation were seen in
all subjects with three or four breaths of nitrogen, subjects
I, ITI and IV would certainly have been classified at the
lower end of the response range found in the miners' study
with three breaths of nitr »gen on exercise,.

The major problem in interpreting transient hypoxia
studies is in relating the ventilatory responses observed
to the stimulus level of minimal PE 02. Conventional ﬁE/

P02 plots, with highest breath value plotted against mini-

mal pETO2’ are shown for all four subjects at rest and on
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exercise in Figures 37-40. It is not possible to fit a
curve to thsse pnlots and derive an index of hypoxic drive
(as has been done for steady state and progressive hypoxia)
because of the large number of insignificant values at the
higher '"minimal PETOZ' levels. An alternative analysis has
been attempted in Fig. 41 where only the values of venti-
latory response obtained at the lower minimal PETozs have
been used. Here the mean change in ventilation above con-
trol is plotted against the stimulus level of minimal PETO2
for both the rest and exercise studies.- the stimulus levels
being roughly comparable. In subjects II and III the slope
of the line relating the change in veuntilation to the PETO2
is greater on exercise than at rest. Although the PET02
range of the exercise measurements is slightly lower than
in the rest measurements, this does suggest that the hypoxic
drive to breathing is increased in these subjects on exer-
cise., In subjects I and IV, on the other hand, the slope
of the ﬁE/P O, lines is identical at rest and on exercise,

ET 2
even although the PETOz range of the exercise line is lower
than that at rest. These two subjects would therefore ap-
pear to have no greater hypoxic drive on exercise than at
rest when assessed by transient methods. These statements
require two qualifications. Firstly, the time course of the
fall in PETO2 differed in the two studies. On exercise,

PETO2 fell rapidly and was low for a shorter period of time
than at rest. From what is known of chemoreceptor physiology,
a rapid change of PETO2 would be a greater stimulus to venti-

lation than a slow fall to the same PETOZ; conversely a
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longer period of hypoxia would be a greater stimulus to the
chemoreceptor than a short period. No allowance has been
made in the analysis for the differential effects of these
two factors in the four subjects studied. Secondly, the
fall in pETcoz, which inevitably occurs with hypoxic hyper-
ventilation, would also have a different time course and
extent in the two studies and might influence chemoreceptor
activity centrally or peripherally. Iso PCO2 studies would
be necessary to assess the importance of this factor which
may be an important determinant of the ventilatory response
to transient hypoxia particularly on exercise (vide infra).

The ranking of the subjects by the three different
methods of measuring hypoxic drive at rest and on exercise
was remarkably consistent, clearly identifying subject II
as having the lowest and subject III as having the highest
hypoxic drive. One finding is relevant to the discrepancy
between ventilatory responses to transient and steady state
hypoxia observed in the miners' study. Subject IV, who has
an average hypoxic drive when assessed by all other methods,
has a remarkably low ventilatory response to transient hy-
poxia on exercise, whether this is expressed as the mean
highest breath values avhieved after three or four breaths
of nitrogen (Table 16) or as the slope of the VE, . /P..O,
relationship (Table 21), This finding in subject IV may be
due to the physiological effects of the lowered PETCO2 which
results from the hypoxic hyperventilation. The mean maxi-
mal falls in P_,.CO, from the control value for P_.CO, for

ET "2 ET 72
all four subjects following transient hypoxia are shown in
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Text Table 5. In subject IV, P fell by 0.26 kPa with

ET 02
three breaths and by 0.35 kPa with four breaths of nitrogen.

If these changes in PETCO! are considered in the context

of the steady state ventilatory response to 002 on exercise
in this subject, it is possible to construct an explanation
for his minimal ventilatory response to transient hypoxia
(Fig. 50). With transient hypbxia, ventilation will in-
crease as indicated by the vertical arrcw in Fig, 50. How=-
ETCO2 will tend to lower ven-
tilation (by an action at the carotid body) as indicated

ever, the resulting fall in P

by the oblique arrow in Fig. 50. The overall effect will

be determined by the configuration of the CO, response lines

2
on exercise; 1in subject IV, the configuration is such that

even this small fall in PETCO2 will effectively "abort"

the ventilatory response to transient hypoxia. In subject
III, on the other hand, whose response is analysed in a

similar way in Fig. 49, even greater falls in PETCO2 would

not produce the same degree of limitation of the ventilatory
response to transient hypoxia, for the effect of exercise

on the CO, response lines in this subject is quite different

2
to that found in subject IV. Similar analyses for subjects

I and II (Figs. 47 and 48) indicate, as was the case, that
their transient response might also be limited by hypocapnia
of the degree found in their transient hypoxia studies on
exercise (Text Table 5).

These considerations nmust remain largely speculative

for they are based on hypoxic cxercise CO, response lines

2

02 of 6.7 kPa whereas the P

measured at a PET

ETO2 fell to



TEXT TABLE 5

To show the mean control PppyOgs (+ SD) prior to inhalation of 3 or 4
breaths of nitrogen on exercise in subjects I-IV. The mean lowest

PETO02 occurring in the five breaths following the switch to nitrogen
is also shown with the calculated differences from the control value.

Three breaths N, Four breaths N,
Control Lowest Difference Control Lowest Difference
Subject PEI‘(X)2 PETmz PETCD2 Pm.a)2
(kPa,) (kPa) (kPa) (kPa) (kPa) (kPa)
I 5.27 £ 0,10 4.96 0.31 5.29 £ 0.10 4.79 0.50
II 4,81 £ 0,10 4.66 0.15 4.86 £ 0.11 4,51 0.35
III 5.58 £ 0,09 5.16 0.42 5,53 £+ 0,10 4.83 0.70

IV 5.13 £ 0,13 4,87 0.26 5,31 £ 0,12 4,96 0.37
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lower levels in the transient hypoxia studies. It would be
dangerous to measure hypoxic 002 response lines at a lower
PETOZ on exercise but, from the observations made on the
available data, it is possible to propose a hypothesis
which explains why a subject, who apparently has an intact
hypoxic drive when this is measured at rest and on exercise
by five other methods, falls at the lower end of a measured
range of hypoxic drive (the miners' study) when transient
hypoxia on exercise is used to measure his hypoxic drive,

The hypothesis is tuat transient hypoxia on exer-

cise will increase ventilation and lower PCO, in subjects

2
with an intact hypoxic drive. The extent of this increase
in ventilation will be determined by the effect of exer-
cise on the ventilatory response to 002 in hyperoxia and
hypoxia in individual subjects, for the fall in PCO2 will
tend to limit ventilation by diminishing carotid body ac-
tivity. Where the configuration of the hypoxic and hypero-
xic 002 response lines is such that both the hypoxic inter-
cept and slope are greater than the hyperoxic (as in sub-
Ject 1IV), the hypocapnia may substantially limit the ven-
tilatory response; where the hypoxic intercept is lower
than the hyperoxic and the hypoxic slope is similar to or
less than the hyperoxic (as in subject III), the effect of
the hypocapnia on ventilatory response will be much less
marked. This effect is most likely to be mediated by the
peripheral chemoreceptors, for the time course of events is

too rapid to implicate the central chemoreceptors. The

effect implies a reduction in the multiplicative interaction
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of CO, excess and oxygen lack in the carotid bodies. Since

2
a significant increase in ventilation following three breaths
of nitrogen is usually observed by the time of the second

or third breath of nitrogen, the resultant hypocapnia

(Fig. 51) would be capable of influencing carotid body
activity by the fourth or fifth breath or possibly earlier,
although the minimal P002 would not reach the carotid body
until later. It is, therefore, possible that hypocapnia
could influence ventilation at the time when it is rising

to its maximum which was, on average, in the four subjects

of the present study, at the fifth breath (Table 16). A
similar time course of ventilatory response has been ob-
served in hypoxic, hypercapnic subjects at rest when 002

is withdrawn from the inspired air (Miller, Cunningham,

Lloyd and Young, 1974). 1In Miller et al's study, the sig-
nificant falls in breath by breath ventilation were observed
by the second or third breath after CO2 had been removed
from the inspired gas, There are no data in the present
study on the lung to carotid body circulation time but,

since the studies were performed on exercise, the circulation
time is unlikely to have been greater than in their study.

It would seem therefore that the recorded fall in PETCO2

in the present studies could exert a significant effect on
the carotid chemoreceptor and hence the ventilatory res-
ponse to transient hypoxia in the manner described above.
Some support for this hypothesis is to be found in the

studies of ventilatory response to exercise in these four

subjects (Tables 33-35 and Fig. 46). When PETQO2 was allowed
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to fall in hypoxic exercise (by amounts not dissimilar to
ETCO2 following transient hypoxia (Table 33)),
the VE/VO, relationship only increased by 5 and 6% in subjects

the fall in P

II and IV whereas it increased by 12 and 14% respectively
in subjects III and I. However, when PETCO2 was maintained
constant in hypoxic exercise, more striking increases in
the \:’E/W}O2 relationship were seen, ranging from 23 - 74%
(Table 35), which bore a close relationship to the overall
ranking of these subjects on the basis of all the texts of
hypoxic drive (Tables 31 and 32). Subjects II and IV were
the subjects with less reduction of hypoxic than hyperoxic
intercept in the steady state CO2 response studies on exer-
cise. It seems likely that they were therefore more sensi-
tive to the fall in pET002 induced by hypoxia during exer-
cise for such a fall would act in a similar way to that
described in Figs. 47-50 to limit the hyperventilation,
Holding PETCO2 constant ailowed the full expression of each
subject's hypoxic drive on exercise without the restraints
imposed by hypocapnia.

The effect of lowering P 002 on the ventilatory res-

ET
ponse to transient hypoxia has already been seen in the
miners' study where subject 43, who hyperventilated markedly,
had no significant ventilatory response. The findings in
the present study suggest that there may be individuals with
an intact hypoxic drive using conventional methods who, by
virtue of the effect of exercise on their steady state hy-

poxic and hyperoxic CO2 tesponse curves, have a limited

ventilatory response to transient hypoxia on exercise. This
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limitation of response is due to the lowering of PET002
consequent on the initial ventilatory response, the fall
in P002 restricting, by a carotid body-mediated mechanism,
any further ventilatory response. Such individuals would
have an intact hypoxic drive when assessed by methods where
PCO3 does not fall, such as isocapnic progressive hypoxia
or the steady state ventilatory response to 002, either at
rest or on exercise. The response to transient hypoxia at
rest need not be diminished in such subjects for it is the
effect of exercise on the steady state ventilatory responses
to CO2 and hypoxia which is responsible for the limitation
of the ventilatory response.

The findings of the present study can be summarised as
follows:

1. In general, agreement between measurement of hypoxic
drive by transient, progressive and steady state hy-
poxia at rest and on exercise is good. A single mea-
surement of hypoxic drive using any method is not re-
liable, and the reproducibility of findings with any
one method in any one subject is such that the good
agreement between methods mentioned can only be attri-
buted to repeated studies of individual subjects with
each method,so that a mean index of hypoxic drive could
be obtained for each method.

2 Low values for the ventilatory response to transient
hypoxia on exercise in one subject in particular, who

appeared to have an intact hypoxic drive when assessed
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by other methods at rest and on exercise, can be ex-
plained by the effect of exercise on the steady state
ventilatory response to 002 in hypoxia and hyperoxia

in this subject.
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CHAPTER 9 THE EFFECT OF CERTAIN DRUGS ON THE STEADY
STATE VENTILATORY RESPONSE TO INHALED COgqg
IN HYPOXIA AND HYPEROXIA : INTRODUCTION,
METHODS AND RESULTS

INTRODUCTION

A number of drugs are known to influence the chemical
control of breathing (Lambertsen, 1964) but the studies to
be reported here are particularly concerned with drugs which
are commonly used in the management of patients with severe
reversible or irreversible obstructive airways disease,
respiratory failure and cor pulmonale. Two separate studies
are reported, concerned with frusemide and bendrofluazide,
the two diuretics most commonly used in patients with cor
pulmonale, and salbutamol, a Bo adrenergic drug used for
its bronchodilator effect in chronic bronchitis and in asthma.

1. Frusemide and Bendrofluaxide

Both of these diuretic drugs produce a metabolic alka-
losis (Goodman and Gilman, 1965). Some workers (Alexander,
West, Wood and Richards, 1955; Fencl, Muller and Pappenheimer,
1966; Goldring, Cannon, Heinemann and Fishman, 1968; Tunis,
Goldring and Heinemann, 1969; Iff and Flenley, 1972) have
shown that changes in the control of ventilation as assessed

by the ventilatory response to CO,, can follow in metabolic

2
alkalosis, while others have been unable to confirm this

(Roberts, Poppell, Vanamee, Beak and Randall, 1956; Stone,
1962). Iff and Flenley (1972) showed that frusemide could
cause hypoventilation with a rise in end tidal 802 tension
and an increase in the intercept of the ventilation / PCO2

response line at high oxygen tensions in normal man. Goldring
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et al (1968) had already shown that thiazide diuretics
did not produce hypoventilation in metabolic alkalosis
leading Iff and Flenley (1972) to recommend the thiazide
diuretics as the treatment of choice for domiciliary treat-
ment of cor pulmonale. However, the studies of Goldring
et al (1968) and Iff and Flenley (1972) were made at normal
or raised oxygen tensions. Since patients with cor pulmo-
nale are universally hypoxic, the present study was designed
to assess the effects of bendrofluazide and frusemide on
the ventilatory response to 002 during both hypoxia and hy-
peroxia in normal subjects.

2. Salbutamol

The mechanism by which catecholamines stimulate venti-
lation in animals (Young, 1957) and man (Whelan and Young,
1953; Heistad, Wheeler, Mark, Schmid and Abboud, 1972;
Stone, Keltz, Sarkar and Singzon, 1973) is still imperfectly
understood. Noradrenaline has been shown to stimulate ven-
tilation in the cat by an action which is dependent on the
integrity of the peripheral chemoreceptors (Joels and White,
1968). In man, it is known that the potentiating effect
of noradrenaline on the ventilatory response to inhaled 002
is dependent on the presence of hypoxia (Cunningham, Hey,
Patrick and Lloyd, 1963; Cunningham, Lloyd and Patrick,
1963) suggesting a similar mechanism. Salbutamol is an
adrenergic agent which differs from noradrenaline in that
its activity is restricted to B receptors (Hartley, Jack,

Lunts and Ritchie, 1968) whereas noradrenaline is predomi-
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nantly an < adrenergic agent with weak B activity. Although
salbutamol is used clinically for its bronchodilator effect,
it is used in patients with asthma and chronic bronchitis
who already have disturbances in the control of breathing
(Flenley, Franklin and Miller, 1970; Rebuck and Read, 1971)
and effects of this drug on the control of breathing could
be clinically important, B receptors have been implicated
in the respiratory response to both noradrenaline and iso-
prenaline in hypoxia (Heistad, Wheeler, Mark, Schmid and
Abboud, 1972) and the present study was designed to study
the effect of salbutamol on the chemical control of venti-
lation in normal man in hypoxia and hyperoxia using the
steady state vmjtilatory response to coz.

The effect of the drug on heart rate and the plasma
urea and electrolytes was also measured, these results then
leading to further studies in which the serum insulin and
plasma glucose were measured.

METHODS

The breathing assembly used was the same assembly &}
described in Chapter 4 and the order and timing of admini-
stration of the different gas mixtures was identical. Venti-
lation was measured over three minute intervals in the
steady state using the Parkinson-Cowan CD4 gas meter.

PETO2 and PETCO2 were sampled as before using the Varian
M3 mass spectrometer. Recording of the analogue trace for
P_.0, and P CO, was made on an Elema-Schonander Mingograph

ET 2 ET 72
running at a speed of 25 mm.sec-l. The mass spectrometer
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was previously calibrated with gases analysed on the Lloyd-
Haldane apparatus so that 7.5 mm on the paper corresponded

to 1 kPa 9002 and to 2 kPa PO,. Control of PO, during the

2
experiment was achieved by reference to the PO2 meter on
the mass spectrometer where the position of the selected
low end tidal PO2 of 6.7 kPa had been marked. The end tidal

values for PO, and PCO2 for the 3 minute periods during

2
which steady state ventilation was measured were determined
by drawing a straight line by eye through the highest points
of the alveolar plateaux for that three minute period. All
lines were drawn by the same observer and measurement of
end tidal PCO2 by this method was considered to be accurate
to * 0.07 kPa and that of end tidal PO2 by + 0.14 kPa,
SUBJECTS

The subjects for the diuretic experiments were eight
healthy male doctors aged 27-32 years whose height and
weight are shown in Table 3s5.

The subjects for the salbutamol experiments were seven
healthy male doctors aged 25-35, whose heights and weights
are given in Table 37. Some subjects participated in both

series of experiments and all gave informed consent.

DESIGN OF EXPERIMENTS

Frusemide and Bendrofluazide

Each subject had studies with both diuretics, the order
being randomly allocated, with an interval of at least three
weeks separating the two studies. The subjects took either

frusemide 0.242 mmol (80 mg) or bendrofluazide 0,024 mmol
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(10 mg) orally without potassium supplements at 1800 hours
on each of four successive days. The isoxic steady state

ventilatory response to CO, was determined between 1600 and

2
1800 hours on the first day at an end tidal PO, of 6.7 kPa

2
(SEM 0.07 kPa, n = 64) and 29.3 - 33.3 kPa on the first day
before taking the drug and again on the fifth day after
taking the drug for four days. Plasma urea and electrolytes
were measured in venous samples drawn on the first and fifth
days immediately before the respiratory studies were per-

formed.

Salbutamol

The isoxic steady state ventilatory response to inhaled

002 at an end tidal PO2

and at a PO2 of 29.3 - 33.3 kPa was determined 10 minutes

after the start of an infusion of either salbutamol 10 ug.

of 6.55 kPa (SEM 0.05 kPa, n = 28)

min-1 or a similar volume of 0.9% saline (40 ml). Studies-
on each subject were always separated by at least one week.
Plasma urea, electrolytes and total 002 content were mea-
sured in venous samples drawn without stasis immediately be-
fore and after the infusion.

As a result of the changes detected in plasma potas-
sium during the main part of the study, three of the sub-
Jjects were restudied in the fasting state during the infusion
of salbutamol at a dose of 10 ug.min'l for one hour while
they were breathing air,

The venous plasma potassium, plasma glucose and serum
insulin were measured at 10 minute intervals during and

after the infusion. The serum insulin was assayed by a
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double antibody technique (Hales and Randle, 1963) using
the reagents in the radioimmunoassay kit supplied by the
Radiochemical Centre, Amersham, Bucks.

In one fasting subject potassium excretion in the urine
and venous plasma potassium were also measured, following a
water load at 20 minute intervals before, during and after
an infusion of salbutamol in a dose of 10 ug.min_1 while
the subject was breathing air.
RESULTS
Frusemide

a) Effect of administration of frusemide (0.242 mmol
(80 mg)) daily for 4 days

Paired comparisons of control and experimental values
in each subject (Table 38) showed the plasma potassium and
chloride values to be significantly decreased (P<0.05) and
the plasma urea significantly increased (P<0.05) by fruse-

mide. However, the rises in plasma total CO, content (P<0.1)

2

and PETCO2 (P<0.5) were both insignificant. Frusemide pro-

duced no significant change in the slope (S) or the inter-

cept (B) of the CO, response lines obtained during either

2
hypoxia or hyperoxia (Table 38, Figs. 5% and 53).

b) Effect of administration of bendrofluazide (0.024 mmol
(10 mg)) daily for 4 days

Similar paired comparisons (Table 39) showed a signifi-
cant decrease in plasma potassium (P<0.01) and chloride
(P<0.01) with a significant increase in both plasma urea
and total plasma CO, (P<0.01)., There was an insignificant

rise in PETCOZ when breathing air, and also no significant



Ventilation
L./min.
BTPS.

1104

Dw LC. AW. AG.L.
90+
70
I 10 3 T ] 1
JTH JBL.L A.G.
80+
704

lPET COp kPa

FIGURE 52 COg response lines at an end tidal POg of
29.3 - 33.3 kPa in eight subjects before

(

) and after (

————————

) 0.242 mmol.

(80 mg) of frusemide daily for four days.



110 '
DW. LC. AW. AGL.

90

704

50-

304

Ventilation
l/min. 104
B.TPS.

1104

.Pg7 CO2 kPa.

FIGURE 53 CO9 response lines at an end tidal PO2 of
6.7 kPa in eight subjects before (
and after (-------—- ) 0.242 mmol (80 mg) of
frusemide daily for four days.

)



117,
change in the intercept of the 002 response line (B) during
hyperoxia. However, there was a significant decrease in

the slope (S) of the CO, respnnse line during hyperoxia

2
(P<0.01) (Table 39 and Fig. 54). During hypoxia, bendro-
fluazide produced a significant increase in the intercept

of the CO, response line (P<0.05) but, although the mean

2
value of the slbpes of the line was reduced, there was no
significant difference on paired t-testing (P<0.1) (Table
39 and Fig. 595).

Salbutamol

a) Ventilatory response to CO, and hypoxia

The 002 response lines in hypoxia and hyperoxia during
the control and salbutamol infusions are shown for all seven
subjects in Figs. 56 and 57. The slope of the line increased
in all seven subjects with no significant change in inter-
cept in both hypoxia and hyperoxia. The mean increase in
slope was 48% in hyperoxia and 44% in hypoxia (Fig. 58 and
Table 40) with the former increase being significant at the
5% level on paired t-testing.

b) Plasma biochemistry

The control infusion produced no significant changes in
the plasma urea, Na+, K+, or total CO2 content in the five
subjects in whom measurements were made. The salbutamol in-
fusion had no effect on plasma Na.+ or total 002 content
(Table 41) but did produce a highly significant fall in the

plasma potassium from a mean value of 3.99 mmol.f.-1 to a

mean value of 3.10 mmol.l_l.
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c) Heart rate (Table 40)

The drug produced marked increases in heart rate rang-
ing from 25% when the subjects were breathing air to a mean
increase of 50% in combined hypoxia and hypercapnia. For
a given inspired 002 concentration the heart rate was sig-
nificantly higher (P<0.05) in hypoxia than in hyperoxia.

d) Plasma potassium, glucose and serum insulin (Fig. 59)

In the three subjects studied plasma potassium fell
progressively after the start of the infusion and began to
return towards normal within 30 minutes of stopping the in-
fusion.

The fall in plasma potassium was associated with in-
creases in plasma glucose and insulin which also returned
towards normal after the end of the infusion.

e) Urinary excretion of potassium (Fig. 60)

There was a fall in total urinary potassium excretion
during the salbutamol infusion which was closely associated

with the fall in plasma potassium in the one subject studied.
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CHAPTER 10 DRUGS AND VENTILATORY RESPONSE TO CO, :
DISCUSSION =

Frusemide and Bendrofluazide

Frusemide had no significant effect on either end
tidal 002 tensions (PETCOZ)’ the intercept (B) or the slope
of the CO2 response line (Table 37, Figs. 52 and 53) when
the subjects were breathing hypoxic or hyperoxic gas mik—
tures. This result differs from the findings of an earlier
study (Iff and Flenley, 1972) when the PETCO2 and the inter-

cept of the CO, response line were both increased after

2
frusemide, with the production of a metabolic alkalosis.
However, the metabolic alkalosis encountered in the present
study was less than that found in Iff and Flenley's study.
The absence of significant overall alkalosis on this occa-
sion is probably related to the constant dose of the drug
employed, for if the two heaviestsubjects (85 and 95 kg)
are excluded from the analysis, the plasma total 002 after
the drug was significantly higher than that before the drug
on paired t-testing in the remaining six subjects (P<0.01).
Further, if the change in plasma total 002 is plotted against
the change in intercept of the 002 response line incorporat-
ing results from both this and the previous study (Iff and
Flenley, 1972), a significant linear relationship is then
established (Fig. 61).

The shift in intercept of the CO2 response line after
frusemide therapy (Iff and Flenley, 1972) is probably due

to a rise in cerebrospinal fluid bicarbonate concentration

(CSF Hcog) and fall in hydrogen ion concentration (H+).
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Such changes in CSF are known to shift the intercept to
the right, presumably by an action on the central chemo-
receptors (Fencl, Muller and Pappenheimer, 1966; Fencl,
Vale and Brock, 1969). Although previous studies in man
(Bradley and Semple, 1962; Mitchell, Carman, Severinghaus,
Richardson, Singer and Schnider, 1965) have suggested that
CSF H+ is remarkably stable, it now seems from studies in
rats (Ponten and Siesjo, 1967), goats (Fencl et al, 1266)
and man (Fencl et al, 1969) that the H' and HCO; of CSF
follow changes in the plasma H+ and HCOE in chronic meta-
bolic alkalosis. Case reports (Lifschitz, Brash, Cuomo
and Mann, 1972; Oliva, 1972) have confirmed that alveolar
hypoventilation can arise in severe metabolic alkalosis,
but only when the CSF HCOE concentration is markedly raised.
It now appears that even a mild metabolic alkalosis pro-
duced by frusemide therapy may cause alveolar hypoventila-
tion, as shown by a rise in PETCO2 and an appropriate shift

to the right of the intercept of the CO, response line (Iff

2
and Flenley, 1972).

The results after bendrofluazide were surprising and
may be summarised as an increase in the intercept of the
CO2 response line in hypoxia with a decrease in the slope
of the line, which was only significant when there was no
oxygen deficieney (Table 38 and Fig. ©62).

If the change in total plasma CO2 after bendroflua-
zide therapy is plotted against the change in the intercept

of the CO, response line in hyperoxia after this drug, there

2
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is no significant relationship, in contrast to the findings
with frusemide (Fig. 61). Unlike frusemide, bendrofluazide
does not produce a rise in the intercept of the 002 response
line in hyperoxia, this being consistent with the unchanged
P coz, and hence P CO after the drug. Goldring, Cannon,
Heinemann and Fishman (1968) also found no change in either

the intercept of the CO, response line or the arterial PCO2

2
in thiazide-induced alkalosis; nor did they show a de-
crease in the slope of the 002 response line. However, their
subjects inhaled CO2 in air and therefore had arterial oxy-
gen tensions of about 13 kPa whereas, in the present study,
there is depression of the slope of the line at a PETO2 of

30 kPa but not at a PETOZ of 6.7 kPa. The present results
indicate that, when the peripheral chemoreceptors are in-

activated by a high PO the primary effect of bendroflua-

91
zide is to depress the response of the central chemorecep-
tors to the rise in H+ of CSF or brain interstitial fluid,
which follows the inhalation of C02.
This depression of central sensitivity to 002 by

thiazides could result from changes in the central chemo-
receptor cells after the drug, for it cannot be accounted
for by the increases in CSF buffering. CSF HCOE is raised
after both thiazides and ethacrynic acid (Goldring, Cannon,
Heinemann and Fishman, 1968), yet only thiazides produce
depression of the slope of the 002 response, Whether the
effect seen is related to changes in carbonic anhydrase
activity at the central chemoreceptor remains to be es-

tablished. The effect was seen 24 hours after the last
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dose of the drug when most of the drug would have been ex-
creted (Goodman and Gillman, 1965) and drugs like bendro-
fluazide have only weak carbonic anhydrase activity (Maren,
1967).

In contrast to the effect of bendrofluazide on the
002 response line in hyperoxia, the drug produces no signi-

ficant change in the slope of the CO, response line when

2
the subjects are hypoxic (Fig. 55). This can be explained
either by suggesting that, in the presence of hypoxia, the
depressant effect of bendrofluazide on the central chemore-
ceptors is overcome by normal peripheral chemoreceptor ac-
tivity, or by suggesting that, for a given degree of hypoxia,
bendrofluazide itself stimulates the peripheral chemore-
ceptors to discharge more frequently, and that this increased
discharge overcomes the central depression. The shift to

the right of the 002 response line which is only seen in
hypoxia suggests the former rather than the latter mechanism
to explain the lack of change in slope. Hayes and Torrance
(1974) have shown that acetazolamide shifts the carotid

nerve discharge/PCO, relationship to the right at low PO2

2
tensions in cats, suggesting that carbonic anhydrase inhi-
bitors may diminish the response of the carotid body to
002,¢possib1y by an action on the postulated ut pump (Torrance,
1975). Their findings are in keeping with a shift to the
right of the 002 response line in hypoxia only in this

study, and suggest the possibility of significant persis-

tence of carbonic anhydrase inhibition even 24 hours after

the last dose of bendrofluazide.
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In both this study, and that of Goldring, Cannon,
Heinemann and Fishman (1968), thiazides produced a signi-
ficant decrease in serum potassium which was greater than
that seen after frusemide. TFurther studies, with oral
potassium supplements used to prevent this hypokalaemia,
will be required to assess the importance of this factor
in determining these ventilatory responses.

Although the mechanisms of the effects on the control
of veatilation following bendrofluazide treatment remain
open to both speculation and further investigation, the
results of this study could have important implications
if these findings in normal man can be extrapolated to
patients with disturbances of ventilatory control. A
patient with acute exacerbation of chronic bronchitis and

emphysema, with CO, retention and hypoxaemia, is usually

2
treated with controlled O, therapy with the aim of re-

2
lieving hypoxaemia, without further ventilatory depression
(Hutchison, Flenley and Donald, 1964). Obviously bendro-
fluazide is not desirable in such a situation, for it may
well potentiate any ventilatory depression from relief of
hypoxia, whereas frusemide would appear to carry little

risk of such undesirable sequelae.

Salbutamocl

The dose of salbutamol used was in the middle of the
dose range shown to cause significant bronchodilation in
patients with asthma (Warrell, Robertson, Newton Howes,
Conolly, Patterson, Beilin, Dollery, 1970; Paterson,

Courtenay, Evans and Prime, 1971; Marlin and Turner, 1975)
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and smaller than doses currently being evaluated in pre-
mature labour (Davis, 1975). The results with this dose
show a significant increase in the slope of the line re-

lating ventilation to PCO, in normal subjects inhaling

2
CO2 enriched mixtures in both hyperoxia and hypoxia with
no significant change of the slope of the line.

It is not easy to interpret this finding. Salbutamol
certainly stimulates ventilation when infused in this

dose and lowers PCO, as shown in the three subjects who

2
were studied breathing air (Fig. 63). The drug has a plasma
half life of 2 hours (Martin, Hobson, Page and Harrison,
1971) and it is therefore not surprising that stimulation

of ventilation is more marked at the end of the one hour
infusion when the concentration of salbutamol will be
highest in the blood. This finding, in the context of the
protocol used in determining the 002 response lines (Fig.
64), suggests a possible reason for the finding of uniform
increases in slope in hypoxia and hyperoxia. The high

PCD2 points were determined at the end of the infusion,

when the concentration of salbutamol in the blood would

be higher than at the beginning of the infusion, with pos-
sible consequent greater increases in ventilation at the
high than at the low points, and an apparent increase in
slope of the line. The true effect of the drug may simply

be to produce a parallel shift of the CO, response line to

2
the left. The studies in one subject with infusion of in-
creasing doses of salbutamol at 10 minute intervals, while

PCO2 was kept constant at a low or a high level, do help to
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resolve this question (Fig. 65). At the two highest dose

levels the slope of the CO, response line is still increased,

2
suggesting that the effect on slope observed in the main
series of experiments is real and not simply a function of
the time during the infusion at which the measurements of
ventilation and PCO2 were made. Salbutamol would therefore
appear to increase the ventilatory response to CO2 not only
in hypoxia but also in hyperoxia.

In the cat there is little doubt that the stimulant
effect of noradrenaline on ventilation is dependent on the
peripheral chemoreceptors and is abolished when 100% 02 is
breathed (Joels and White, 1968). In man, recent observa-
tions have produced conflicting results. Heistad, Wheeler,
Mark, Schmid and Abboud (1972) found that both noradrenaline
and isoprenaline stimulated ventilation and that this ef-
fect was blocked by breathing 100% O2 or by blockade of B
receptors by propranoclol. The ventilatory response to hy-
poxia was not blocked by propranolol. Stone, Keltz, Sarkar
and Singzon (1973) also found that infusion of a similar
dose of noradrenaline stimulated ventilation but they were
unable to inhibit this effect with B blockade using similar
doses of propranolol to those used by Heistad et al and
they did not study the effect of oxygen breathing on the
response. Heistad et al (1971) suggest that catecholamines
stimulate ventilation by an action on B receptors and, since

the effect is blocked by 100% O they implicate the carotid

2'
body in this response. The present study shows nothing to

support this hypothesis. The increase in sensitivity to CO2
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was seen both at low PO, and at a level of hyperoxia which

2
is believed to 'block' carotid body mediated responses
(Dejours, 1962)., If the carotid body is to be implicated

in the increased sensitivity to CO, during salbutamol in-

2
fusion, as has been suggested for noradrenaline (Cunningham,
Hey, Patrick and Lloyd, 1963), then it is necessary to
postulate that hyperoxia of a degree adequate to 'block'
stimulation of the carotid body in other circumstances

does not do so when salbutamol is infused.

The changes observed in 02 uptake and CO2 output with
infusion of salbutamol are not great enough to explain the
effect on ventilation, which would appear to be independent
of metabolism since PCO2 falls during infusion of the drug
when air is breathed. Other metabolic effects of the drug
may be responsible for the ventilatory effects. The fall
in serum potassium found, as discussed below, is probably
related to a shift of potassium from the extracellular to
the intracellular spaces. ©Such a shift would lower cell
membrane potential since by the Nernst equation

Em = %’-"— 1ln, 5—§

ki

(Em = membrane potential, Kg and KI = potassium concentra-
tion outside and inside the cell respectively). A fall in
membrane potential of the cells of the respiratory centre
would render them more excitable and would explain why the
increased sensitivity to inhaled coz is seen to an equal
degree in both hypoxia and hyperoxia. This hypothesis could
be tested by studying the influence of glucose and insulin

infusion on the ventilatory response to 002.
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The marked fall in plasma potassium observed during in-
fusion of salbutamol was associated with rises in plasma
glucose and serum insulin, Salbutamol, like other B adre-
nergic agents, probably stimulated glycolysis (Porte, 1967)
and insulin release (Imura, Kato, Ikeda, Morimoto and
Yawata (1971) resulting in a shift of potassium from the
extracellular to the intracellular space., The fall in '
urinary potassium excretion observed in one subject is
consistent with such an actinon.

B adrenergic agents increase the heart rate but
salbutamol is allegedly a Bz adrenergic agent with ten
times less effect on the heart rate than isoprenaline
(Paterson, Courtenay, Evans and Prince, 1971), when given
by intravenous infusion to asthmatic patients. Neverthe-
less, the moderate therapeutic dosage employed in the pre-
sent experiments produced striking increases in heart
rate in normal subjects, with associated palpitations,
flushing and tremor.

There is no doubt that intravenous infusion of sal-
butamol in the dose studied can produce bronchodilation
in patients with stable (Paterson, Courtenay, Evans and
Prime, 1971) and severe (Marlin and Turner, 1975) asthma.
It is unlikely that the effects on the chemical control
of breathing demonstrated in this study will be of much
benefit when it is used in this situation for, in such
patients, the ventilatory drive from non-chemical sources

is already markedly increased. The drug may, however, be
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of value in increasing ventilatory drive in bronchitic
patients with the hypercapnia of chronic ventilatory fai-
lure.

The marked tachycardia caused by the drug is disturb-
ing for it is in the context of tachycardia, hypoxia and
acidosis, which may oecur simultaneously in status asthma-
ticus, that serious cardiac arrhythmias may result (Collins,
McDevitt, Shanks and Swanton, 1969; Shanks and Swanton,
1971). The hypokalaemic effect of salbutamol is equally
disturbing for falls of potassium of such a degree may also
be associated with cardiac dysrhythmias in digitalised
patients (Lown, 1956). If this drug is to be given by in-
fusion to patients with severe asthma, monitoring of plasma
potassium and electrocardiogram would appear to be neces-

sary precautions.
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CHAPTER 11 CONCLUSIONS

The object of the first part of this study was to
detect diminished or absent hypoxic drive to breathing
in normal man. The method selected, namely the ventila-
tory response to transient hypoxia induced by three breaths
of nitrogen on exercise, had been little used previously,
but on grounds of theory and convenience appeared to be a
suitable way of screening a population for the absence of
hypoxic drive.

The results show that the method gives a reproducible
index for hypoxic drive in most subjects when three highest
breath values are measured in each subject on the same day
(Fig. 21). The mean highest breath value, derived from
these three studies, is also reproducible from year to
year (Fig. 22). The method demonstrates a wide range of
hypoxic drive and, particularly relevant to the purpose of
the present study, identified two subjects with reproducibly
low values of mean highest breath value, one of whom had no
significant ventilatory response to transient hypoxia on
exercise on two occasions. The responses in these two sub-
jects were similar to or less than the ventilatory responses
observed in high altitude natives tested in a similar way,
although lower PETozs were achieved in the latter study
where five breaths of nitrogen were given (Lahiri and Edelman,
1969).

Assessment of the hypoxic drive to breathing using the
steady state ventilatory response to carbon dioxide at high

and low PETOZS at rest in nine subjects, with widely differ-
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ing ventilatory responses to transient hypoxia on exercise,
showed that there was no obvious correlation between the
hypoxic drive as assessed by the two methods, subjects
with maximal and minimal responses in the transient studies,
havéng identical responses in the steady state studies.

In an attempt to investigate these differences in
response the second part of the study investigated the
hypoxic drive to breathing using transient, progressive
and steady state methods in four subjects at rest and on
exercise. These studies show that a single measurement of
hypoxic drive using progressive or steady state hypoxia
may be misleading, for, in some subjects, considerable
variability in the index of hypoxic drive was found. The
variability of the ventilatory response to carbon dioxide
in hyperoxia was less than that found in hypoxia and it
is suggested that this may reflect day to day differences
of the known inhibitory effect of hypoxia on central ner-
vous system function, although it may also reflect day to
day differences in peripheral chemoreceptor response to
hypoxia.

In general, however, when the mean values for hypoxic
drive derived from two or more studies, using the three
methods at rest and on exercise, are compared, the ranking
of the four subjects with each method is remarkably consis-
tent. Nevertheless, one subject had a ventilatory response
to transient hypoxia on exercise which was inappropriately
low in comparison with the other assessments of his hypoxic

drive and certainly as low as the responses found in the
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two poorest responders in the miners' study. The effect
of exercise on the steady state ventilatory response to
002 in hypoxia in this subject was to produce an increase

in the slope of the CO, response line and less decrease

2
in the intercept of the line than was found in similar
studies in him in hyperoxia. The configuration of the
steady state CO2 response lines in this subject is such
that it is possible to postulate that the small fall in
PETCO2 induced by his initial ventilatory response to
hypoxia would be sufficient to diminish or abolish the
peripheral chemoreceptor contribution to his drive to
breathing and, thus, effectively abort his ventilatory
response to transient hypoxia.

Application of a similar analysis to the steady state
002 response curves of the other three subjects on exer-
cise would be consistent with the effects of a similar
mechanism determining their ventilatory response to tran-
sient hypoxia on exercise. The studies of the ventilatory
response to exercise in normoxia, hypoxia and isocapnia
also point to an important role for CO2 in determining
ventilatory responses to hypoxia on exercise.

It is possible to conclude from this part of the study
that the differences between the steady state and transient
responses observed in the miners' study may have two ex-
planations. Firstly, estimations of the steady state hy-
poxic drive to breathing are variable from day to day and
it is possible that this variability may play some part

in the poor correlation observed between the transient and
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steady state responses observed in the miners. Secondly,
measurements of hypoxic drive made against a background of
normocapnia or hypercapnia correlate well. It would appear,
however, that there may be subjects with a perfectly ade-
quate hypoxic drive when this is measured in normocapnia
or hypercapnia who have a poor response to transient hypo-
xia on exercise., It is suggested that this may be due to
a fall in PCO2 in these subjects, as a result of their ini-
tial ventilatory response, such that PCO2 falls near to
or below the threshold for the carotid body in exercise
with effective limitation of the ventilatory response.
Confirmation of this explanation will require much more
detailed studies of the effect of exercise on the steady
state vdntilatory response to 002 at different Pozs than
is available in this or in other published work. Correla-
tion of the findings with ventilatory responses to transient
hypoxia in the same subjects will be necessary. Measure-
ment of the lung to carotid body circulation time will be
important to determine if the time course of the suggested
sequence of events is possible and appropriate. It may
well be that a similar mechanism to the above explains
the low responses to transient hypoxia on exercise found
reproducibly in two miners in whom, unfortunately, no data
on the effect of exercise on their steady state ventilatory
response to CO2 are available.

The ventilatory response to transient hypoxia on exer-
cise would appear therefore not to be, on its own, an ade-

quate test for the detection of normal people with absent
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hypoxic drive. Nevertheless, it is simple to apply and
could usefully be employed to select individuals for further
study using more sophisticated methods although, on the
basis of the first and second parts of this study, many of
the subjects selected in this way would have a normal hy-
poxic drive. Apart from the need to investigate further
the discrepancies between the transient hypoxia studies on
exercise and other indices of hypoxic drive already men-
tioned, there is clearly also need for a study on the re-
producibility of the currently available methods of assess-
ing hypoxic drive and a comparison of the different methods
in the same population of normal subjects.

The third part of the study was concerned with the
effects of drugs on the steady state ventilatory responses
to carbon dioxide in hypoxia and hyperoxia. Frusemide
produces a mild metabolic alkalosis with an appropriate

shift to the right of the hyperoxic CO, response line.

2
Unfortunately, the present studies did not produce the
degree of metabolic alkalosis nor the rise in PETCO2 found
in a previous study (Iff and Flenley, 1972) but the re-
sults do not contradic% thelr suggestion that frusemide
should be the diuretic of choice in hypoxic bronchitic
patients receiving controlled oxygen therapy. Frusemide
would be a less desirable diuretic for hypoxic bronchitic
patients in the absence of controlled oxygen therapy for
any rise in alveolar P002 will cause a fall in alveolar

PO Such changes were small in the normal subjects studied

2.
by Iff and Flenley but could be much greater and of clinical
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significance in hypoxic patients receiving larger doses
of frusemide continuously, in whom the metabolic changes
may be greater.

Bendrofluazide depressed the slope of the CO2 response
line in hyperoxia and increased the intercept in hypoxia,
with no change in the PETCOZ breathing air. The latter
finding suggests that bendrofluazide may be a more appro-
priate diuretic for domiciliary treatment of hypoxic bron-
chitics for it will not tend, as frusemide does, to lower
the PO,. The increased threshold to 002 in hypoxia and

2

the decreased sensitivity to CO,,, which was only signifi-

2
cant in hyperoxia, are the reverse of those to be hoped

for in patients with chronic bronchitis and respiratory
failure where the sensitivity of the ventilatory response
to CO2 is already markedly reduced. The relevance of the
present findings to the management of such patients re-
mains to be assessed. A double blind cross-over trial with
both drugs, in patients with stable chronic respiratory
failure, to assess the effect of the drugs on arterial

PO, and PCO

2 2
the changes observed in normal people to the management of

will he needed to clarify the relevance of

patients with chronic respiratory failure.

Salbutamol increased the slope of the 002 response
lines in hypoxia and hyperoxia. Whether this effect is due,
as discussed, to its metabolic effects, of which the fall
in plasma potassium is the most striking, remains to be
confirmed, as it could be, by studying the effects of a

glucose and insulin infusion on the ventilatory response
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to COZ' The effect on the CO2

to be independent of the carotid body since it is similar

response line would appear

in both hypoxia and hyperoxia. The importance of the ef-
fect of salbutamol on ventilatory control is also unclear,
In asthma, where the drug is most likely to be used, the
ventilatory drive from other sources is already high and
it will make no further significant contribution to this
drive. In chronic respiratory failure, the side effects
and the availability of more potent ventilatory stimulants,
such as doxapram hydrochloride (Leitch, Clancy and
Flenley - unpublished work), do not indicate that it will
be of much value. The most important finding of the
salbutamol studies is that intravenous infusion of the
drug can produce quite marked hypokalaemia. Since it is
likely to be used by this route in patiente with status
asthmaticus, who are already hypoxic, with a tachycardia
and often an acidosis, it seems essential that monitoring
0of the serum potassium and electrocardiogram should be

carried out routinely in these patients.
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TABLE 1 Lowest arterial P02 (paoz) recorded by rapid
sampling of arterial blood compared with low-
est end tidal PO2 (PETOZ) on computer print

out. (1 kPa = 7.5 mmHg)
P_O PO
Subject Study a2 ET"3
(kPa) (kPa)
DCF 1 5.47 5.87
2 6.13 6.40
3 5.07 6.13
AGL 1 6.93 5.20
2 4,67 6.80



TABLE 2 To show age, height, weight, haemoglobin concentration, FEV; g, TLV/FVC
ratio and smoking history in the 43 subjects who were studie

SUBJECT AGE HEIGHT ~ WEIGHT  gonroGoBIN o FEV, .o  FEV/FVC  SMOKER

No, (yrs.) (cm.) (kg.) g.% 2 % (+ or =)
1 5 © 166 67 16.4 3.50 84 +
2 41 170 71 © 14,5 3.80 81 -
3 25 184 83 14.2 4.60 84 +
4 22 174 73 15.0 4,65 85 -
5 29 172 83 15.9 3.80 81 =
6 22 175 61 14,4 4.65 73 +
7 25 - s 14.6 4.65 84

8 44 176 81 15.4 3.40 82 -
9 30 171 72 14.5 4.70 82 +
10 35 171 86 16.1 3.40 82 +
11 34 176 84 13,9 4,35 87 +
12 31 184 79 15.9 4,80 83 +
13 35 - 182 87 - 4,30 93 +
14 30 172 70 13.7 3.90 75 “
15 37 162 71 15.1 3.90 85 +
16 42 169 74 14.8 3.95 72 .
17 d2 - 7 4@ 79 13,7 3.30 65 =
18 34 190 86 . 15.1 5.00 79 +
19 42 162 82 - 2.60 76 -
20 34 161 66 14.6 3.35 74

21 29 167 66 15.9 3.90 92 +
22 35 168 69 14,7 2.90 68 +
23 37 168 66 14.4 5.10 86 +
24 a4 177 88 14.6 3.25 71 +
25 22 169 76 14.1 4.50 83 +
26 25 168 61 14.7 3.40 72 +
27 27 169 67 16.1 3.60 71 +
28 35 164 72 14.6 3.90 85 +
29 20 170 64 - 5.00 90 =
30 36 166 64 15.0 4,40 87 +
31 36 164 66 14.4 3,40 81 +
32 34 169 76 14.2 4.20 79 +
33 32 184 96 16.3 4,60 84 -
34 38 177 77 14,2 3.75 60 =
35 38 171 78 14,3 = - +
36 35 174 920 15.0 3.00 71 .
37 35 168 73 14.9 3.90 75 +
38 45 168 79 15.2 3.50 78 -
39 31 183 83 . 15.2 . . 5,60 90 -
40 27 177 78 15.0 4.80 84 +
41 29 175 84 13.7 5,00 89 =
42 32 173 65 14,6 4,55 81 +
43 31 171 69 14,2 4,90 91 =



TABLE 3 To show thg exercise ventilation (measured by dry gas meter) (ﬁg), the oxygen con-
sumption (V0s), carbon digxide output (ﬁcoz), respiratory quotient (RQ), ventilatory
response to exercise (YE/VOg) and the ratio of ventilation breathing 14% OZ to that
breathing 21% oxygen (VE14f%ﬁ21 for all studies in 1871 and 1872,

The results for subject 43 are excluded from the mean value for reasons whieh will
be apparent in the text,
Vg Y oo B.Q. LA Y514/ V501
2 2 2
SUBJECT 2 /min BTPS ml/min ml /min 2§
No. 1971 1972 1971 1972 1971 1972 1971 1972 1971 1972 1971 1972
1 20.87 23,98 1006 1096 824 995 0.82 0.91 20,7 21,9 104 120
2 29,94 32,25 1255 1373 1031 1217 0.82 0.89 23.9 23.5 161 111
3 27,46 26,46 1264 1195 1069 1051 0.85 0.88 21.7 22.1 113 109
4 30.86 1383 1252 0.91 22.3 115
5 25.5 26,32 1185 1252 964 998 0.82 0.80 21.5 21.0 120 128
6 29.88 1187 1043 0.88 25.2 109
T 25,76 1112 999 0.90 23.2 113
8 43,09 30.2 1252 1040 1047 1040 0.84 0.92 34.4 29.0 93 116
9 20.26 21.7 912 1027 791 892 0.87 0,87 22,2 21.1 125 121
10 30.75 29.41 1419 1323 1206 1204 0,85 0,91 21.7 22,2 104 122
11 28.59 1132 1016 0.90 25.3 112
12 29.11 1170 1029 0.88 24,9 118
13 25,04 27.68 1174 1242 1174 1109 0.79 0.89 21.3 22.3 110 120
14 24,18 25,61 1096 1166 929 1090 0.85 0.94 22,04 22,0 102 110
15 38.55 42,37 1473 1539 1255 1436 0,86 0,93 26,2 27.5 125 106
16 26,77 29.47 1171 1270 978 1074 0.84 0,85 22,9 23,6 105 114
17 36.15 36.39 1330 1227 1163 1248 0.88 1,03 27.2 29.7 108 103
18 32.8 1333 1177 0.89 24.6 117
19 25,46 20.2 1194 556 941 783 0.79 0.82 21,32 21.1 113 124
20 26,32 24.49 1145 1075 1027 1003 0.90 0.94 23,0 22.8 108 116
21 26.5 1143 997 0.87 23.2 112
22 25,95 988 868 0.88 26.3 118
23 25.48 1104 999 0,91 23.1 115
24 31.71 1180 1040 0.89 30.5 104
25 27.4 1185 986 0.84 23.1 110
26 23.71 22.15 946 965 762 826 0.81 0.86 25,1 23.0 108 107
27 29,26 1168 1027 0.88 25,1 105
28 30.77 33.44 1339 1321 1134 1241 0,85 0,94 23.0 25.3 123 119
29 29,89 24,67 1340 1029 1104 911 0.83 0.89 22,3 24,0 117 117
30 27.14 1108 1024 0.93 24.5 112
31 30.15 1044 1044 0.93 28.9 108
32 27.81 26.67 1242 1115 1112 1072 0.90 0.96 22.4 23.9 104 105
33 31.79 1379 1283 0.94 23.1 93
34 29.75 1244 1126 0.91 23.9 112
35 34.3 33.13 1457 1429 1249 1291 0.86 0.91 23.5 23.2 112 118
36 38.45 1498 1297 0,87 25.7 123
37 32,62 35.14 1255 1374 1049 1255 0.84 b.91 26.0 25.6 97 106
38 28,48 25,95 1167 1069 945 977 0.81 0,91 24 .4 24,3 107 107
39 42,53 1591 1495 0,94 26.7 108
40 25.44 32.12 1133 1248 980 1095 0.87 0,88 22.5 25,7 102 95
41 28,29 26.93 1367 1212 1179 1084 0.86 0,90 20.7 22,2 118 121
42 30.33 28,45 1062 983 874 910 0.83 0,93 28.6 28.9 108 100
Mean 28.83 29.25 1216 1198 1032 1083 0.84 0.90 23.6 24 .4 109.6 112.3
SD 5.33 4,86 148 158 139 153 0,03 0,04 3.0 2,4 8.4 7.6
43 39.04 43,31 1083 1149 964 1054 0.89 0.92 36.04 37.7 - 82



CT

-
To show the control wentilation (VE) (measured by pnevmotachograph), tidal volume (TV), frequency (f), end
tidal PO2 ard end tidal PCOs for all studies in 1971 awd 1972, Ventilation, tidal volume and frequency are
shown * 95% confidence limits, Subject 43 is excluded from the calculation of means for reasons  discussed
in the text.

(1 kPa = 7,5 mmHg)

VENTILATION TIDAL VOLUME FREQUENCY pET02 PETCDQ
(!t.m:l.n_1 BTPS) (mls) breaths min~} kPa kPa
1971 1972 1971 1872 1871 1972 1971 1972 1971 1972
19,10 + 3,24 20.65 * 3,09 1412 + 415 1423 * 209 14,2 + 4.8 14,3 2 " 13,84 k2,23 S.21 6.33
32,81 = 12,46 25,01 t 5,25 1559 * 273 1133 + 220 21.4 + 8,8 22.4 + - 13,47 13.36 5,39 6,23

24,27 + 6,06 21.68 * 3,90 2424 = 970 1643 + 619 11,9 :+ 6,6 14.4 + . 12,85 13,27 6,08 65.73
25,95 % 4,15 1169 + 281 22,3+ . 13,01 5.67
34,98 + 1C,14 23,1 * 4,62 2083 + 790 1480 + 538 17.8 + 4.0 16,3 . 12,95 12,64 5,40 5.49
26.25 * 6.30 1333 + 397 20.4 ¢ . 13.88 6,12
20.64 * 4,54 1159 =+ 480 18.8+ . 12,51 6,13
31,53 £+ 5,67 25.44 * 3.30 1027 + 234 1065 =+ 111 31.2 £ 5,5 23,92 . 14,59 13.84 4,93 5.80
19,78 * 3,16 18,15 * 2,90 1641 + 487 1354 + 222 12,5 + 3.3 13.4= . 12,60 12,63 6,13 6,25
28,52 + 6,84 24,73 * 5,19 1547 + 340 1410 = 372 18,8 + 5,2 18 = . 14.33 i2,91 5.96 6.29
23.58 t 4,71 1126 + 399 21,6¢ . 13,01 5.75
26,36 * 5,27 1380 = 332 19.7+ . 15.00 5.93
25,26 £ 7,57 22,42 % 3,58 1905 £ 677 1521 + 358 14,8 + 4,5 17.22 . 13.63 13.64 5.67 6.37
25,66 * 4,61 23.01 * 3,91 1507 + 284 1540 + 249 17.1 = 2,0 15.1¢ . 13.32 13.28 5.69. 6.59
28,97 * 7,24 39.04 * 6,63 925 £ 257 1276 = 229 32,7 £ 7.9 31,3+ . 13.91 14,40 S5.44 5,97
25,09 * 5,26 25.29 * 3,28 1344 = 165 1393 * 150 18.1 £ 3.7 18,2+ . 13,75 12,71 5.67 5.77
31,73 * 10,78 28.4 * 3,97 1503 + 229 1338 =+ 211 21.2 + 5.8 21,43 . 12,05 12,71 4.40 5.78
29.1 * 7.8 20.9B * 6,59 1816 * 462 1805 % 473 15.6 + 2,7 16,8+ . 14,25 14,29 5.27 5.67
23.53 * 4.70 22,33 * 2,90 1291 + 197 1287 1 121 18.7 + 1.9 17,5+ . 13.37 12,60 5,88 6.07
23,22 £ 2,32 20.12 * 2,61 1420 * 246 1311 * 384 16.6 + 2,7 16.5¢ B 13.59 12,53 5,79 6.35
21,35 * 4,91 1028 =+ 173 21 ¢ . 12.87 6,45
23.44 £ 3,75 1065 * 146 22,44 12,84 5.41
21.99 * 6,15 2162 + 693 10.4% 13,65 6.07
26.28 * 3,15 1266 * 115 20,3z . 13.63 5.08
25.68 * 3,59 1483 + 553 18.41 » 13,85 5.585
29,94 * 11,37 18,32 * 2,38 1313 * 562 727 + 180 25,3 + 8.1 25,9+ . 13.79 13,49 5.08 6.95
27.60 t 3,31 1742 * 460 16,82 . 14,39 5.61

12,93 12,34 5.73 6.35
13.15 13.07 6.09 6,21

31,32 £ 2.81 27.53 * 2,47 1489 * 158 1453
23,38 £ 7.48 30,11 * 3,91 1106 + 340 1273
+

M

171 21,3 = 1.8 19.0¢
266 21,4 + 7,5 24,1+

+
-

°
e os] = =) 0 OWWM O 00U WO W 0N WO N WU = O 0N DU N O BN Y O

24,39 6.58 23.78 t 3,80 1620 + 392 1475 *+ 307 15.8 + 4.6 16.42 . 13.76 14,85 5.77 6.75
27.16 * 4,61 1091 + 183 25,1+ . 13.40 5.24
25,12 £ 4,27 21.8 * 3,48 1514 + 392 1200 *+ 143 17.3 + 4,6 17.02 . 13.01 13.59 5.89 6.56
26.98 * 3,50 1382 + 296 20 = o 12,57 6.12
25.9 * 4,14 1373 + 315 19,2+ . 11,95 5.91
28,13 * 5,06 31.24 * 2,49 1340 £ 119 1517 + 173 21.4 *+ 3,5 20,7: - 11.85 13.71 4,48 5.92
33.9 * 4,74 1587 = 273 21,.6¢ . 13.80 5.51

I+

38.3 * 11,1 32.7T6
37.17 £ 5.94 24.33
: 32.19

I+

14,15 14,35 5,29 5.60
14.19 13.28 5.37 5.79
13.51 5.89

4,91 1880 * 422 1540
2,91 2024 * 371 1738
4,18 1456

229 20.4 ¢+ 4,9 21,.3%
316 18,5 ¢+ 2,6 14,4%
170 22,2¢

I+
UL
.

H

Lo = W W O N W W R W W e b e e WK W H R W L e W e = B B DWW W s B
.

24,46 * 5,13 23.79 * 4.75 2034 * 672 1802 * 491 12,8 £ 3,2 13.9* . 13,88 15.41 5.84 6.51
25,13 * 3,51 23,99 * 2,87 1452 * 150 1383 £ 129 17.6 ¢ 1.6 17,6* % 12,44 12,67 6,27 6,59
25,58 + 5.62 23,9 * 5,49 915 + 230 1130 = 401 29,0 =+ 6,5 22,9+ P 14,72 14,49 4,88 5.80
27.55 * 6,30 25.38 t 4,13 1542 + 378 1385 + 298 19.4 ¢+ 4.6 19,3+ . 13.43 13.39 5.56 6,03
4,87 4.25 366 255 5.3 3.9 0.71 0,80 0.51 0,43

38 * 5.32 1876 + 316 19,7 + 3.8 16.14 3.57



Results of 1971 and 1972 transient hypoxia studies in individoal subjects.
latici expressed as % control, the mean highest breath value and its position and the position of the first breath te achieve sipnifican

Also shiown are the Lighest tidal volume and frequency recorded after the stimulus, the lowest Pg and 1’0)2 after the stimulus and the po

tion of the lowest Ppp,

The table shows the 95% confidence lunits of the control ven

(1kPa = 7.5 nmmilg)
ONFIDENCE ~ MEAN HIGHESY ~ POSITION OF POSITION OF HIGHEST TIDAL HIGHEST LOWEST PO, LOWEST P00, FOSITION
iITS OF EREATH VALUE  MEAN HIGHEST FIRST EREATH VOLLSE FREQUENCY LOVLST
NTROL. V. BREATH VALUR  TO SIGNITICANCE POy
ontrol ) (% control) (ml) (breaths min™1) (kPa) (kPa)

1972 1971 1972 1971 1972 1971 1972 1971 1972 1971 1972 1971 1972 1971 1972 1971 19

15 178 217 4 5 > 2 2151 2297 21.3 20.7 4.61 2,92 5.31 4.8 4

21 204 211 5 5 2 3 2511 1827 24.7 31.0 3.59 3.31 4.63 4.99 5

18 191 208 5 5 4 2 3279 3262 24.6 20.3 3,11 2.29 4.77 5.17 4

16 207 5 3 2729 30.5 3.35 4.48

20 183 205 4 5 3 3 3849 2714 19.9 19.8  3.03  2.23 4.35 417 4

24 203 4 3 3052 23.3 3.28 5.16

22 203 n 3 2930 21.6 2.17 4.88

13 136 203 5 5 5 3 1905 2170 36.6 30.9 6.50 4.19 4.48 4.76 6

16 179 198 5 5 2 4 2305 1988 19.6 19.7 3.25 3.49 5.07 5.13 4

21 155 194 3 4 3 2 2451 2215 23.9 27.4 3.6 2.57 4.83 4.85 4

20 181 4 3 2790 21.4 3.32 4.71

20 180 5 3 2816 24.4 4.0 4.8

16 144 169 3 3 3 3 2898 2634 19.9 18.1 3.57 4.93 4.67 5.45 4

17 162 169 4 4 3 3 2640 2679 19.9 17.2 3.41  2.41 4.79 5.41 4

7 127 188 4 5 4 4 1838 2151 39.3 3.8 3.57 313 5.07 4.7 4

3 165 166 1 4 2 2 2454 2307 21.5 21.5 4.33 415 4.76 4.93 4

14 140 164 5 5 5 3 2407 2185 25.0 25.9 4.59  3.69 3.83 4.81 4

22 147 164 3 g 3 4 3259 2800 19.3 18.8 4.63  3.49 4.68 4.61 3

13 155 161 q 5 3 3 2035 1957 25.2 22,3 4.24 3.86 5.0 5.13 4

13 128 161 5 s 3 3 2111 2239 23.2 212 3.04 2.43 5.21 5.11 3

23 156 5 4 1920 26.7 3.25 5.55

16 155 5 4 1756 26.1 4.45 4.72

23 155 4 3 2640 17 4.67 5.08

12 155 5 4 2131 22.1 4,13 4.4

14 153 4 3 3219 22.7 2.96 4.57

13 137 151 5 5 - 4 2121 1338 36.4 29.7 7.29 5.39 4.89 6.36 3

12 150 5 4 2258 21.1 3.73 4,76

9 148 147 4 4 2 2 2510 2689 22.4 19.7 3.45 3.13 4.9 5.45 3

13 150 145 4 5 4 4 2052 1818 28.6 28.9 6.32 7.12 5.23 5.65 4

16 187 142 4 5 3 4 2824 1831 21.1 21.1 3.83 3.68 4.76 5.89 4

17 140 5 5 1623 28.2 4.64 4.48

16 153 138 5 4 4 3 2048 2053 21.3 19.7 3.7 4.29 5.24 5.97 5

13 137 6 5 1851 23.5 4.51 5.27

16 133 5 3 2753 22.5 4.36 5.27

8 127 132 4 4 3 4 2240 2276 24.7 o5 3.8 3.89 4.12 5.25 3

14 131 5 5 " 2499 25.8 2.37 4.84

15 145 129 4 5 4 4 2818 2008 22.2 26.6 5.71 3.55 4.59 4.79 4

12 122 128 3 4 3 3 279 2180 21.7 20.7 3.49 3.69 4.85 5.07 3

13 122 6 5 1788 29.3 4.03 §5.21

20 149 121 3 5 3 5 3093 1954 21.8 20.5 3.07 4.36 4.84 6.48 3

12 121 117 10 6 = 6 1879 2102 19.8 19.1 4.32 4.37 5.68 6.01 4

23 100 114 3 6 = - 2326 1546 29.4 25.5 5.29 5.13 4.51 5.45 3

16 151 162 4.0 4.8 3.2 3.5 2492 2289 24.4 23.6 4,21 3.71 4.81 511 3.8 4

4 25 29 498 465 5.5 4.4 1.16 1.01 0.39 0.51 0.7 ¢

14 116 7 7 2267 3.55 3.57
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TABLE 7 The mean highest breath values in 1971 and 1972
for subjects who were restudied in 1974

Subject 1971 1972 1974
| 178 217 209

2 204 211 183

18 147 164 125

34 133 149

36 131 116

37 129 123

41 121 117 126

42 100 114 141

43 116 108



LE 8 Control end tidal Poz, PC02! ventilation, oxygen consumption,
carbon dioxide output and respiratory quotient for the CO2
response studies in 1974

1gect PrnOs PrCO, Vv, (CD4) v02 vcoz RQ
) kPa kPa %.min" BTPS m/min"l m/min’1
1 13.31 5.57 7.46 243 234 0.96
2 12,77 5.65 9.56 264 246 0.93
8 15.21 3.79 13.27 298 232 0.78
4 12.97 5.37 7.32 282 224 0.80
6 14.61 4,32 12.00 394 286 0.72
7 14.36 4.88 8.76 243 234 0.96
1 13.79 4,99 9.16 294 229 0.78
2 18.21 5.37 7.76 268 192 0.71
3 13.69 4.04 10.10 260 162 0.68
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TABLE 10 The ages, heights, weights, lung volumes and transfer factor for
carbon monoxide in subjects I-1IV

Subject I I1 III IV

Age (years) 22 29 33 22
Weight (kg) 60 62 82 72
Height (cm) 165 180 174 175
PEVLO (litres ATPS) 3.35 4,40 4,35 4,60
FVC (1litres ATPS) 4,25 5.38 5.30 5,25
FEV/FVC (%) 79 82 82 €8
Total lung capacity

(litres BIPS) 5,51 7.40 6.79 6.71
Vital capacity

(litres BIPS) 4.41 5.90 5.52 5.39
Residual volume

(litres BIPS) 1.10 1.50 1.27 1.32
RV/TLC (%) 20 20 19 20
T00 mmol.min* kPa

Actual 8.59 9.23 11.50 9.97

Predicted £ SD 11,37 + 1,74 12,19 £+ 1,74 10.80 11,98 + 1,74



TABLE 11 Og2 uptake, CO2 output and respiratory quotient in
transient hypoxia studies at rest and on exercise.

Subject Study VO, VCO, R.Q.
No - -
ml.min 1 ml,min 1

REST
I N211 232 184 0,79
N220 235 179 0.786
II N206 281 223 0.79
N207 225 134 0.60
III N208 297 233 0.78
N214 271 192 0.71
1V N213 317 278 0.88
N223 232 179 0.77

EXERCISE
1 N226 864 733 0.85
N212 887 775 0.87
II N210 890 738 0.83
N2EXO1 911 729 0.80
i 8 4 N209 960 874 0.91
N215 1095 865 0.79
IV N2EX02 1167 896 0.77

N2EX04 1111 1025 0.92
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TEBLE 22 The three columns show for a2all 4 subjects at rest
and on exercise:

1)

2)

3)

the two PgpO,'s at which comparisons of venti-
latory response to transient hypoxia have bcen
made (lowest Ppm0Og range).

the difference between the mean highest venti-
latory responses at these PypnOgs.

Ratio of the difference in ventilation to the
difference in PrT02's at which the measurements
of ventilation have been made.

Lowest Difference in Ratio
P3T02 ventilatory avE .
Range response /ﬁPETO2
kPa " L.min~' BTPS
REST
SUBJECT _
I 5.81 - 4.64 1.30 g 5 |
II 6.36 - 4,90 0.37 0.25
III 6.54 - 4.97 1.78 - 1.13
IV 6.77 - 4,70 2.33 1.13
EXERCISE
SUBJECT
I(1) 6.64 ~ 5.03 0.85 0.52
I(ii) 5.03 - 3.78 1.82 1.46
IX 5.61 - 4.17 3.87 2,69
TELCE) 6.29 - 4,61 3.07 1.83
ITII(ii) 4.61 - 3.40 4,80 3.97
Iv 5.72 - 4,16 1581 1.03
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TABLE 24 Mean values for oxygen uptake,
carbon dioxide output and res-
piratory quotient during the
progressive hypoxia on exercise

studies.
Subject VO, VCOq R.Q.
ml.min-1 111]..!1111:!"1
1 844 662 0.77
II 831 641 0.76
III 1051 900 0.86

IV 1221 966 0.79
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TABLE 36 Heights and weights of subjects
participating in the diuretic

study
Subject Height Weight
(cm) (kg)
JBI 170 60
AGL 180 62
AW 172 71
JTH 183 95
MFS 176 67
DW 173 70
AG 181 85

LC 174 82



TABLE 37 Heights and weights of subjects
participating in the salbutamol

study

Subject Height Weight

(cm) (kg)
JcC 178 78
ND 178 70
ADBH 175 77
AGL 180 62
LC 174 82
DJW 173 70

RJEL 180 73



TABLE 38

Urea

Sodium
Potassium
Chloride
Total CO

2

pETC02

Hyperoxic B

Hypoxic B

Hyperoxic S

Hypoxie S

Carbon dioxide response, plasma urea and electro-
lytes and end tidal CO2 tension before and after
0.242 mmol (80 mg) of frusemide daily for four
days in eight normal subjects, Values shown are
means * SD., *P <0.05. PETCO2 = end tidal CO2
tension; hyperoxic B and hypoxic B = intercept
of the CO2 response line in hyperoxia and hypoxia
respectively; hyperoxic S and hypoxic S = slope
of the CO2 response line in hyperoxia and hypo-
xia respectively; 6.0 mmol/l urea = 36 mg/100 ml.

Before After

(mmol 171) 5.9 % 0.9 7.6 t 1.4"
(mmol 11y 142.9 + 2.5 140.5 + 1.2

(mmol 1"1) 4.20 *+ 0.42 3.78 % 0,37
(mmol 11y 104.6 + 3.4 99.9 + 2.8"
(mmol 171y 27.4 + 3.4 20.4 + 3.2

(kPa) 5.37 + 0.30 5.42 + 0.35
(kPa) 5.01 + 0.34 5.07 + 0.51
(kPa) 4.97 + 0.39 4.85 + 0.37
(1 min~! kpa~ly 24.23 : 7.35 24.38 + 9.82
(1 min~! xpa~l)  44.86 £21.90 32.93 +11.02



TABLE 39

Urea

Sodium
Potassium
Chloride
Total CO

2
PETCO2
Hyperoxic B
Hypoxic B
Hyperoxic S

Hypoxic S

Carbon dioxide response, plasma urea and electro-
lytes, and end tidal CO2 tension before and after
0.024 mmol (10 mg) of bendrofluazide daily for
four days in eight normal subjects. Pr7CO2 = end
tidal carbon dioxide tension; hyperoxic B and
hypoxic B = intercept of the CO2 response line in
hyperoxia and hypoxia respectively; hyperoxic S
and hypoxic S = slope of the CO3 response line in
hyperoxia and hypoxia respectively; **P<0,01;
*P<0,05, 6.0 mmol/l urea £ 36 mg/100 ml, +sD

Before After

(mmol 171y 5.4 t 0.6 6.8 + 1.00"
(mmol 171y 140.9 * 2.0 139.8 + 1.7
(mmol 1°1) 3.91 £ 0.19 3.39 + 0.36° "
(mmol 171y 104.1 * 1.5 97.5 + 0.3
(mmol 1”1 26.8 * 1.9 31.5 * 4.0
(kPa) 5.31 + 0.25 5.49 + 0,21
(kPa) 4.95 £ 0.11 4.99 + 0.30
(kPa) 4.93 + 0.23 5.33 + 0.34"
(1 min~! kPa~ly) 25.50 * 10.20 17.10 = 5.25™
(1 min~! kpa~l) 47.63 + 26.93 34.65 + 10.65



TABLE 40 Mean ventilatory and heart rate responses (* SD)
_ during control (0.9% saline) and salbutamol (10
pg/min) infusion in seven men. (S is slope and
B intercept of line relating steady state venti-

lation to PCO2 during inhalation.)

Control Salbutamol
Ventilatory responses:
Hyperoxic S *
(1 min 1 kpa-1) 20.85 + 7.28 30.75 £+ 9.75
Hyperoxic B (kPa) 4,71 + 0.46 5.11 =+ 0,47
Hypoxic S *
(1 min 1 kpa-1) 38,10 + 14,7 54.83 + 22,1
Hypoxic B (kPa) 4,65 *+ 0,31 4,77 ¢+ 0.4
Heart rate (beats/min)
breathing:
*%
Air _ 63 + 12 79 + 14
*
2% CO, in hyperoxia 65 + 9 87 + 18" "
*x
2% CO, in hypoxia 71 + 8 103 + 16
*k
5% 002 in hyperoxia 67 ¢+ 8 97 = 14
* K
5% €O, in hypoxia 75 £ 9 113 % 15
* P<0,05

** P<0,01
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