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Abstract

The discovery of transcription factor binding site (TFBS) motifs remains an impor-

tant and challenging problem in computational biology. This thesis presents MITSU,

a novel algorithm for TFBS motif discovery which exploits stochastic methods as a

means of both overcoming optimality limitations in current algorithms and as a frame-

work for incorporating relevant prior knowledge in order to improve results.

The current state of the TFBS motif discovery field is surveyed, with a focus

on probabilistic algorithms that typically take the promoter regions of coregulated

genes as input. A case is made for an approach based on the stochastic Expectation-

Maximisation (sEM) algorithm; its position amongst existing probabilistic algorithms

for motif discovery is shown. The algorithm developed in this thesis is unique amongst

existing motif discovery algorithms in that it combines the sEM algorithm with a de-

rived data set which leads to an improved approximation to the likelihood function.

This likelihood function is unconstrained with regard to the distribution of motif oc-

currences within the input dataset. MITSU also incorporates a novel heuristic to auto-

matically determine TFBS motif width. This heuristic, known as MCOIN, is shown to

outperform current methods for determining motif width. MITSU is implemented in

Java and an executable is available for download.

MITSU is evaluated quantitatively using realistic synthetic data and several col-

lections of previously characterised prokaryotic TFBS motifs. The evaluation demon-

strates that MITSU improves on a deterministic EM-based motif discovery algorithm

and an alternative sEM-based algorithm, in terms of previously established metrics.

The ability of the sEM algorithm to escape stable fixed points of the EM algorithm,

which trap deterministic motif discovery algorithms and the ability of MITSU to dis-

cover multiple motif occurrences within a single input sequence are also demonstrated.

MITSU is validated using previously characterised Alphaproteobacterial motifs,

before being applied to motif discovery in uncharacterised Alphaproteobacterial data.

A number of novel results from this analysis are presented and motivate two exten-

sions of MITSU: a strategy for the discovery of multiple different motifs within a sin-

gle dataset and a higher order Markov background model. The effects of incorporating

these extensions within MITSU are evaluated quantitatively using previously charac-

terised prokaryotic TFBS motifs and demonstrated using Alphaproteobacterial motifs.

Finally, an information-theoretic measure of motif palindromicity is presented and its

advantages over existing approaches for discovering palindromic motifs discussed.
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Lay summary

One of the most important and challenging problems in computational biology is the

discovery of transcription factor binding site (TFBS) motifs. These are short DNA

sequences which are important in switching the genes of an organism on or off. This

thesis presents MITSU, a new computational method for discovering TFBS motifs.

Many existing computational methods for TFBS motif discovery can perform poorly

because of the way that they search for motifs. These methods are often based on

a technique known as ‘deterministic EM’. MITSU is based on a different technique

known as ‘stochastic EM’, which should give improved results. Using stochastic EM

should also allow biologists to add extra information about motifs, which could lead to

better results. MITSU also has a number of additional features which allow it to im-

prove over other motif discovery methods. For example, MITSU has a feature (known

as MCOIN) which helps it to automatically work out the most likely length of a motif.

Tests on artificial data, and motifs which are already known in bacteria, show that

the stochastic EM method used by MITSU improves on the deterministic EM method,

in terms of the motifs which are discovered. Further tests show why this is the case

and demonstrate some of the additional features of MITSU.

Finally, MITSU is used to discover new motifs in a particular type of bacteria

known as Alphaproteobacteria. The results of these tests show a number of possible

new motifs and also suggest some ways of extending MITSU. These extensions are

then built into MITSU and then tested using the known bacterial motifs.
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Notation and Definitions

N number of input sequences

X = {X1, . . . ,XN} set of N input sequences (observed variables)

Li length of input sequence i

Xi, j the width-W subsequence beginning at position j in sequence i

W width of a motif

t EM iteration number

L = {A,C,G,T} set of DNA nucleotides

θ0 background model

(θ0,A, . . . ,θ0,T ) parameters of the multinomial distribution describing

the background model

θ j column j of the motif model

(θ j,A, . . . ,θ j,T ) parameters of the multinomial distribution describing column

j of the motif model

θ(t) estimated parameters of θ at EM iteration t

Z set of indicator variables (latent variables)

Zi, j indicator variable for Xi, j

(1 if Xi, j is a motif occurrence, 0 otherwise)

Ui, j expected probability that Xi, j is not part of a previously

discovered motif occurrence

Vi, j probabilistic erasing factor associated with Xi, j

Qi latent variable indicating whether or not Xi contains a motif

occurrence (ZOOPS model)

Z(t)
i, j , Q(t)

i expected values of Zi, j, Qi at EM iteration t

γ prior probability of a sequence containing a motif occurrence

(ZOOPS model)

(continues over)
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φ = {θ,γ} complete model parameters

γ(t), θ(t) expected values of γ, θ at EM iteration t

γ′, θ′ proposed values of γ, θ (for stochastic EM)

αM Metropolis ratio (for stochastic EM)

β (= βA, . . . ,βT ) pseudocount/Laplace estimator

(equivalent to prior Dirichlet distribution)

As far as possible, indexing variables are used so that i indexes X sequences, j

indexes positions within Xi, k indexes nucleotides (i.e. k ∈ {A,C,G,T}) and m indexes

positions within a motif (i.e. m ∈ {1, . . . ,W}). Other uses of indexing variables should

be clear from the context in which they are used.

Following convention, species names (e.g. Escherichia coli) are italicised and bio-

logical class names (e.g. Alphaproteobacteria) are capitalised throughout. Gene names

(e.g. ctrA) are also italicised. Consensus and nucleotide sequences are printed in

typewriter font.

The information content of a motif position is defined (following Schneider and

Stephens [145]) as:

2+ ∑
k∈L

θ j,k log2θ j,k,

for a given position j. This assumes that all nucleotides occur equally often in the

original DNA sequence. Where this is not the case, a generalisation to the relative

entropy may be made; this is defined (following Stormo [160]) as:

∑
k∈L

θ j,k log2
θ j,k

θ0,k
.

When the parameter values of θ0 are all equal, the information content and relative

entropy are equivalent.
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Chapter 1

Introduction

This chapter motivates the transcription factor binding site (TFBS) motif discovery

problem, defines TFBS motifs and explains why their discovery is important in compu-

tational biology. The continued interest in solving this problem is also noted (Section

1.1). This is followed by a description of the biological processes behind the problem,

including the basics of gene regulation and protein-DNA interaction, focusing on bac-

terial gene regulation (Section 1.2). Section 1.3 presents a high-level description of the

stochastic EM-based approach used to solve the TFBS motif discovery problem in this

thesis, along with a hypothesis. Finally, Section 1.4 provides a summary of the thesis

chapters.

1.1 The transcription factor binding site motif

discovery problem

Recent advances in genome sequencing have led to a huge increase in the amount of

genome data available for study. Of considerable interest to biologists are transcription

factor binding site (TFBS) motifs. These are short DNA sequence patterns that have

important roles in gene transcription and regulation. Discovery and further analysis of

these sequences remains an important task in the wider challenge of understanding the

mechanisms of gene expression (examples from the recent ENCODE project include

[183, 157, 175]) and the understanding of gene regulatory networks [102]. The under-

standing of regulatory components and networks in pathogenic and industrial bacteria

is essential for the application of systems and computational biology in medicine and

biotechnology. Consequently, there is much continuing interest in developing algo-

1
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rithms which can automatically discover TFBS motifs [9].

The experimental work in this study is focused on motif discovery in Alphapro-

teobacteria. This is a broad class of bacteria containing many species which have use-

ful biotechnological and scientific properties. For example, it includes the Caulobac-

ter species which is used to study cell development and is a vector for vaccine protein

production, the Magnetospirillum species which has potential nanotechnology appli-

cations utilising nanomagnetic particles and the Sinorhizobium species which play a

significant role in nitrogen fixation and plant survival in nutrient depleted regions.

Discovery of TFBS motifs in these species would facilitate the use of these bacteria in

industrial and biotechnology applications.

The information within a gene is expressed by the cellular processes of transcrip-

tion and translation. Transcription is often initiated by the binding of one or more

proteins known as transcription factors to the promoter region of a gene (that is, the

sequence upstream of a gene’s start codon). Transcription factors can regulate gene

expression by either activating or repressing gene transcription. The identification of

these sequences is complicated by the fact that they are often subject to natural DNA

mutations, insertions and deletions. Genes with similar functions or that act in a com-

mon pathway are often regulated by a common transcriptional regulator. It is therefore

expected that the upstream transcription factor binding sites for the expression of these

genes should be reasonably similar (although subject to the above mutations) in terms

of both pattern and width (that is, the number of nucleotides in the site); these con-

served binding sites are called ‘motifs’. A DNA motif is formally defined as being a

DNA sequence pattern which has some biological significance. In the context of this

project, these motifs are biologically significant in that they regulate transcription.

In many cases, motifs are short and reasonably well-conserved, recurring in the

promoter sequences of more than one gene. However, two specialised forms are also

well known [41]: palindromic motifs (also known as ‘inverted repeats’) and gapped

motifs (also known as ‘spaced dyad’ motifs). Palindromic motifs are sequences whose

inverse complement is the same as the original sequence (for example, GAGATCTC).

Experimental work has concluded that DNA sequence motifs are often palindromic, or

quasi-palindromic in nature [11]. It must be noted, however, that this does not mean

that all sequence motifs are (quasi-)palindromic. Gapped motifs consist of two smaller

well-conserved segments, separated by a gap (or ‘spacer’) of non-conserved bases.

The gap is usually of a fixed width, but can be variable [41, 63]. This often (but not

always) means that the transcription factor is a dimer which binds to the DNA at two
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separate contact points over the major groove of the DNA, both of which are often the

same, or palindromes of each other. Studies have suggested that gapped motifs (often

with palindromic patterns) are common, especially in prokaryotes [174, 63].

The motif discovery problem is the task of discovering overrepresented sequences

given a number of DNA promoter regions (usually the upstream sequences of a num-

ber of functionally related genes). These overrepresented sequences are therefore good

candidates for being transcription factor binding sites. Many algorithms have been de-

veloped in order to discover motifs; some of these are reviewed in Section 2.2.

1.2 Transcription factor binding site motifs and gene

regulation

This section introduces the biology behind the computational problem and provides

more detail on bacterial gene regulation. A number of different prokaryotic regula-

tory systems are described. Finally, traditional and bioinformatics-based approaches

to identifying and characterising regulatory motifs are discussed.

1.2.1 Prokaryotic regulatory systems

Regulatory elements in bacteria include sigma factors, small RNAs (sRNAs) and tran-

scriptional regulators. Sigma factors are proteins that enable specific binding of RNA

polymerase to gene promoters. Some bacteria, such as Bacillus subtilis, are known to

use sigma factors as a major control strategy, for example, in the regulation of sporu-

lation. In contrast, other bacteria such as Escherichia coli are noted for the number of

transcriptional regulators that alter transcriptional activity; the majority of these can be

split into two groups: one-component regulators and two-component regulators.

Two-component systems are widely occurring regulatory systems in prokaryotes

[159]. These systems consist of a sensor protein and a regulatory (transcriptional ac-

tivator) protein. The sensor protein senses the level of a metabolite either directly

or indirectly. As the presence of the metabolite is detected, the sensor protein be-

comes autophosphorylated. The phosphorylated form of the sensor protein acts on

the transcriptional activator protein [67, 176]. The transcriptional activator protein has

at least two domains: a protein-binding domain (in order to interact with the sensor

protein) and a DNA-binding domain (in order to interact with the promoter region of
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the DNA). When the (phosphorylated) sensor protein and the transcriptional activa-

tor protein interact, the transcriptional activator protein also becomes phosphorylated.

The phosphorylated transcriptional activator protein binds to the DNA, usually in the

promoter region of the regulated gene. For positive regulation (also known as induc-

tion), the binding of the transcriptional activator enhances the interaction of the RNA

polymerase-sigma factor complex, resulting in an increased rate of transcription. Bio-

chemically, the sensor protein is a histidine kinase and the transcriptional activator is

an aspartate kinase (or, aspartokinase). In some cases, the sensor protein is not a single

protein but a complex of two proteins, both of which are required to form a functional

sensor; these are known as split histidine kinases [4, 134]. The NtrYX regulator dis-

cussed in Section 3.5.2 is an example of a two-component system in Alphaproteobac-

teria.

One-component regulators are proteins in which the sensor domain and the regu-

lator domain are contained within a single protein. These are present in many Gram-

negative bacteria, including the Alphaproteobacteria. The widely occurring CRP/FNR

family of regulators are known to be one-component regulators. The FnrL regulator

discussed in Section 3.5.2 is a member of the FNR family and an example of a one-

component system in Alphaproteobacteria.

There are cases where regulators may act on other proteins rather than on DNA

[31]. Often these are systems known as phosphorelays, or cascades, where the first

protein transfers a phosphate to a second protein whose activity is then altered so as

to either phosphorylate another protein or to act as a DNA-binding regulator. One

important Alphaproteobacterial example of a phosphorelay is the CckA-ChpT-CtrA

regulatory system in Caulobacter crescentus. In this system, the histidine kinase CckA

phosphorylates the ChpT histidine phosphotransferase. ChpT can phosphorylate either

of two response regulators, CpdR or CtrA. CpdR normally inhibits CtrA; however, it

is inactive when it becomes phosphorylated. Uninhibited by CpdR, CtrA is an active

transcriptional regulator that controls flagellar motility and is known to control, either

directly or indirectly, at least 25% of the cell-cycle regulated genes in C. crescentus

[97]. The CtrA motif is discussed further in Section 3.5.2.

1.2.2 Operons

In prokaryotes, protein-coding genes which have a similar metabolic function are often

grouped closely together in the DNA. This arrangement makes it possible to produce
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a single continuous strand of ‘polycistronic’ mRNA which codes for several proteins,

all with the same metabolic goal. The transcription of this group of genes can be con-

trolled by a single promoter. Such a group of genes is called an operon. Well-known

examples of operons in E. coli include the lac operon (which metabolises lactose) and

the trp operon (which synthesises the amino acid tryptophan) [57, 108]. The operon

arrangement is particular to prokaryotes and is important in the context of motif dis-

covery, in that the transcription factor binding site need not be directly upstream of the

gene of interest. For instance, the E. coli lac operon is known to consist of three genes:

in order, lacZ, lacY and lacA. If lacA is the gene of interest, it would normally be as-

sumed that the binding site controlling its expression would be directly upstream of its

start codon. However, because lacA is part of an operon, the binding site controlling its

expression is directly upstream of the first gene in the operon, namely lacZ. Extracting

the upstream of lacA is therefore of little use in discovering the binding site sequence;

depending on the length, the upstream sequence of lacA will consist of the coding se-

quences for lacZ and lacY. The importance of determining operon structure as part of

the process for discovering novel motifs will be made clear when constructing datasets

in Section 3.5.2.

1.2.3 Identifying and characterising motifs

Traditionally, regulators and their consensus sequences or motifs have been identified

through biological approaches. Many regulators have been identified by the isolation

of mutants that either cause a noticeable change in the regulation of the levels of other

proteins or cause major defects in a number of biological systems because they regulate

many different genes. For example, the CtrA regulator discussed above is a global

transcriptional regulator in C. crescentus. It was identified through a temperature-

sensitive mutant strain in which flagella production was affected [138]. CtrA is now

known to regulate genes in many different systems [97]. While regulators are most

often identified by mutant studies, target genes are usually identified by proteomics or

microarray studies.

Once the regulatory protein has been identified, the protein structure is often anal-

ysed using bioinformatics methods. For example, analysis of the FNR regulator con-

firmed it to have a structure consistent with one-component regulators: the N-terminus

of the protein was shown to have a sensor domain, while the C-terminus had a DNA-

binding domain. The DNA-binding domain of the FNR protein forms a winged helix-
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turn-helix motif, which produces a characteristic gapped TFBS motif. It may therefore

be possible to draw some conclusions about the DNA-binding domain of a protein

based on the binding site motif.

The fact that regulatory genes need not be located close to their target genes (and

are often located far away) makes it difficult to identify both regulators and consensus

sequences by bioinformatics methods alone. The Alphaproteobacterial BioR regulator

was identified by Rodionov and Gelfand in this way [142]; however, this is unusual.

The experimental work using uncharacterised data in this thesis will therefore focus on

discovering motifs for regulators where the target genes are already known.

Finally, the fact that not all regulators are found in all bacteria can make the com-

putational discovery of uncharacterised motifs more difficult. Some regulators, such

as FNR and Fur, are found across a wide range of bacterial groups. However, others

are relatively restricted. For instance, the CtrA regulator is found widely in the Al-

phaproteobacteria but does not occur in Gammaproteobacteria (for example, E. coli).

This is particularly relevant for this project, as the Alphaproteobacteria are known to

be very diverse in their metabolic abilities and therefore the regulators which control

these abilities (the diversity of the Alphaproteobacteria is further discussed in Section

3.5). The BioR regulator is known only to occur in the Rhizobiales and Rhodobac-

terales orders within the Alphaproteobacteria class. Similarly, photosynthetic bacteria

are known to have specific regulators for these functions.

1.3 A stochastic Expectation-Maximisation approach to

motif discovery

The majority of TFBS discovery algorithms are probabilistic algorithms, which search

the input data (usually a collection of promoter regions of coregulated genes) for se-

quences which are statistically overrepresented. Deterministic algorithms make up a

large proportion of commonly used algorithms for motif discovery. The deterministic

Expectation-Maximisation (EM) algorithm is one of the first probabilistic algorithms

to be applied to motif discovery [99] and is the basis for a number of others, including

the benchmark motif discovery algorithm MEME [10]. However, the EM algorithm

has several well-known limitations. For example, the EM algorithm is highly sensitive

to its starting parameters. Due to this sensitivity and the use of a local search strategy,

the EM algorithm cannot be guaranteed to converge to the global maximum of the like-
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lihood function, instead converging to an insignificant local maximum or saddle point

of the likelihood function. In general, the steps of the EM algorithm can become either

analytically or computationally intractable in many practical situations.

This thesis uses an approach based on the stochastic EM (sEM) algorithm. The

sEM algorithm is motivated by the limitations of the deterministic EM algorithm, par-

ticularly the issues of intractability. Celeux, et al. [37] note that in the wider field

of probabilistic modelling, the sEM algorithm is generally more successful than the

EM algorithm due to stochastic perturbations, which allow the sEM algorithm to es-

cape stable fixed points of the EM algorithm such as insignificant local maxima of the

likelihood function.

To date, only two algorithms have applied stochastic variants of EM to motif dis-

covery (the SEAM [23] and MCEMDA [24] algorithms) and the power of sEM in a

motif discovery context has not been fully explored. Most notably, these algorithms are

limited to the ‘one occurrence per sequence’ (OOPS) model, which places a constraint

on the distribution of motif occurrences within the input dataset. Further, algorithms

based on stochastic variants of EM have so far not implemented features commonly

found in other motif discovery algorithms, including the ability to automatically de-

termine the most likely motif width from a range of plausible values and the ability to

discovery multiple different motifs within the same dataset.

This thesis explores the power of stochastic EM in a TFBS motif discovery setting.

A novel algorithm for motif discovery known as MITSU is developed [92]; this algo-

rithm combines sEM with a derived data set which leads to an improved approximation

of the likelihood function. Significantly, this likelihood function is unconstrained with

regard to the number of motif occurrences in each input sequence. MITSU also imple-

ments features commonly found in other motif discovery algorithms; for example, an

information-based heuristic known as MCOIN [91] is used to automatically determine

the most likely motif width and a ‘probabilistic erasing’ method is implemented in or-

der to discover multiple motifs within the same dataset. This thesis also explores the

use of the sEM framework to incorporate relevant prior knowledge in order to improve

results. MITSU is implemented in Java; a Java executable is available to download1

and is supported on Linux and OS X.

1Download available at http://www.sourceforge.net/p/mitsu-motif/.
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The algorithm developed in this thesis is used to evaluate the following hypotheses:

1. Transcription factor binding site motif discovery using stochastic

Expectation-Maximisation improves on existing (deterministic) Expectation-

Maximisation-based approaches, in terms of previously established metrics.

2. The incorporation of relevant prior biological knowledge through the stochas-

tic EM framework also improves motif discovery in terms of previously es-

tablished metrics.

1.4 Thesis outline

The following chapters in this thesis are summarised below.

Chapter 2 provides some relevant preliminaries and presents a critical review of

probabilistic algorithms for TFBS motif discovery. This is followed by a discussion

which makes the case for the stochastic EM approach adopted in this thesis.

Chapter 3 briefly describes the realistic synthetic datasets and characterised prokary-

otic datasets constructed and used in the evaluation of the algorithms developed in this

thesis. An analysis of previously characterised E. coli motifs is provided. The inter-

genic sequences in E. coli are discussed and used to motivate the incorporation of a

higher order Markov background model presented in Chapter 6. Finally, a description

of the previously uncharacterised Alphaproteobacterial data used in the study is also

presented.

Chapter 4 begins with a derivation of the expressions central to deterministic EM

in the context of TFBS motif discovery. Two issues with deterministic motif discovery

algorithms are then addressed. Firstly, the EM expressions are generalised in order

to improve flexibility. Secondly, a novel heuristic based on motif containment and

information content (MCOIN) for determining the most likely motif width is presented

and evaluated on realistic synthetic data and previously characterised prokaryotic data.

Chapter 5 begins by extending the framework of Chapter 4 to derive a set of gener-

alised expressions for stochastic EM for motif discovery. This is followed by a practi-

cal implementation of these expressions in a novel stochastic EM-based algorithm for

motif discovery (MITSU). The developed algorithm is evaluated quantitatively on re-

alistic synthetic data and previously characterised prokaryotic data. The advantages of

MITSU over deterministic EM and existing stochastic EM-based approaches for motif

discovery are demonstrated.
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Chapter 6 presents further validation and extension of MITSU. Further validation

is carried out on characterised Alphaproteobacterial motifs before MITSU is applied

to motif discovery in uncharacterised Alphaproteobacterial data. The results of these

tests motivate the extension of MITSU. MITSU is extended to allow discovery of

multiple different motifs and a higher order Markov background model is also in-

corporated. The effects of these extensions on motif discovery are evaluated on re-

alistic synthetic data and previously characterised prokaryotic data. Finally, a novel

information-theoretic of motif palindromicity is presented and its advantages over cur-

rent approaches for discovering palindromic motifs discussed.

Chapter 7 summarises the results of the project and provides conclusions with re-

gard to the aims of the study, highlighting the contributions made. Some limitations

of the current approach are discussed and potential future work is also presented and

discussed. The appendices present dataset listings for the tested Alphaproteobacterial

datasets and more detailed experimental results.





Chapter 2

Background and Related Work

This chapter presents a review of the most important literature on transcription factor

binding site motif discovery and also provides some relevant background knowledge.

The Preliminaries section (2.1) begins with a description of position weight matrices

(PWMs), which are used extensively throughout the thesis as a model of TFBS mo-

tifs. This section also describes sequence logos, a graphical method for representing

PWMs. The performance statistics used in the thesis are also defined.

An in-depth review of the literature on TFBS motif discovery is presented (2.2),

with a focus on probabilistic algorithms. This section begins with a summary of the

various sequence models used in motif discovery algorithms and the assumptions made

by each of these models. The different types of data required by different approaches

are discussed and a case for using only promoter regions of coregulated genes (rather

than adding phylogenetic data) is made. The review extends the algorithmic classifi-

cation presented by Das and Dai [41]; as well as clearly deterministic and stochastic

algorithms, algorithms using variational inference methods and stochastic variations

on the EM algorithm are also considered.

The final section (2.3) provides a comparison of existing algorithms for motif dis-

covery, makes the case for the stochastic EM approach adopted in this thesis and dis-

cusses how this approach relates to the existing literature.

2.1 Preliminaries

A Position Weight Matrix (PWM) is a commonly used way of representing patterns

in biological sequences. Given a number of DNA sequences of equal length (Figure

2.1a), the nucleotides (A, C, G or T) occurring at each position in the sequence are

11
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counted and then normalised by the number of sequences (Figure 2.1b), sometimes

adding small pseudocounts to eliminate zero values. It is therefore possible to inter-

pret each column of the PWM as a multinomial distribution with 4 categories, each

category giving the probability of a certain base appearing at a certain position within

the sequence.

One drawback of the PWM is its assumption of independence between columns

(that is, each position in the binding site contributes independently to the binding affin-

ity), which is not always true biologically [32, 124]. It has been shown that the infor-

mation content of adjacent motif positions is correlated in eukaryotic motifs [56]; in

Section 3.2, this phenomenon is confirmed in E. coli TFBS motifs. Alternative models

of motifs which can account for positional dependencies include Bayesian networks

(for example, [18]) and dinucleotide PWMs (for example, [148, 95]); however, these

models introduce additional complexities, often increasing the number of parameters.

In contrast, the assumption of independence between motif positions allows relatively

simple calculations of sequence probabilities using PWMs (this reduces to a multipli-

cation of the relevant values). This convenience and the fact that PWMs are easily

interpreted as sequence logos (discussed below) are good reasons to use PWMs in this

research. Further, recent quantitative analysis showed that the majority of motifs are

well fitted by PWMs [185].

PWMs are generally represented graphically as a ‘sequence logo’ for ease of read-

ing (Figure 2.2a). This representation uses a stack of letters representing each nu-

cleotide at each position, the height of each letter proportional to its value in the PWM.

A widely used variation scales the values in each column by the information content of

that column (see page xvii), making clear which positions in the sequences are highly

conserved, as positions with low conservation are scaled down (Figure 2.2b). This

rescaling assumes that all four nucleotides occur equally often in the original DNA

sequence. For many organisms this is usually a reasonable assumption, but for other

organisms with a biased GC-content such as Saccharomyces cerevisiae, a correction

factor is required. By scaling the values in each column by the relative entropy (see

page xvii) with respect to the ‘background’ frequency, the significance of any sequence

can be measured regardless of the distribution of nucleotides in the original DNA se-

quence. Figure 2.2c shows the example rescaled using relative entropy to correct for

the low GC-content (38%) of S. cerevisiae: note that the G nucleotide in position 7 now

has more information than the two T nucleotides in positions 8 and 9, even though all

are perfectly conserved. This reflects the fact that nucleotides A and T are more likely
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to be found in the original DNA sequence.

Given a set of known binding sites and a set of binding sites predicted by a motif

discovery algorithm, the performance of that algorithm on a particular dataset may

be assessed at two levels: at the site level (that is, assessing the number of correctly

predicted sites) and at the nucleotide level (that is, for each site, assessing the extent to

which the predicted sites overlap the known sites). Following Tompa, et al. [168], the

following basic statistics at the site level are defined:

• sTP: The number of known sites overlapped by predicted sites.

• sFN: The number of known sites not overlapped by predicted sites.

• sFP: The number of predicted sites not overlapped by known sites.

Following Tompa, et al., a predicted site is deemed to overlap a known site if they

overlap by at least a quarter of the length of the known site (it is noted that this defini-

tion is somewhat arbitrary, but thought to be large enough that if the overlapping site

were removed, there would be a noticeable change in gene expression). Performance

measures at the nucleotide level can be similarly defined:

• nTP: The number of nucleotide positions in both known sites and predicted sites.

• nFN: The number of nucleotide positions in known sites but not in predicted

sites.

• nFP: The number of nucleotide positions in predicted sites but not in known

sites.

Figure 2.3 provides a graphical representation of these statistics.

In this thesis, the performance of a motif discovery algorithm is assessed through

its mean site-level sensitivity (sSn), mean site-level positive predictive value (sPPV)

and the area under the receiver operating characteristic (ROC) curve (AUC). sSn (also

known as recall in machine learning literature [179]) measures the proportion of true

positive sites which are correctly predicted as such. sPPV (also known as precision)

measures the proportion of predicted positive sites which are actually true positives.

In the context of motif discovery, sSn is defined as the fraction of true sites which are

predicted and sPPV is defined as the fraction of predicted sites which are known to be

true (see also [81]); that is: sSn = sT P
sT P+sFN and sPPV = sT P

sT P+sFP . These measures can

be similarly defined at the nucleotide level.
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Figure 2.1: Creating a Position Weight Matrix (PWM). The nucleotide counts at each

position in a set of DNA consensus sequences (a) can be used to calculate a PWM (b).

Adapted from D’haeseleer [48].

Figure 2.2: Visualising DNA motifs. The PWM in Figure 2.1 (b) can be represented

graphically as a sequence logo based on the weights (a), or the weights rescaled using

information content assuming an equiprobable background distribution (b) or relative

entropy to adjust for biased GC-content (c). Pseudocounts have been added to (b) and

(c) in order to eliminate zero values. Adapted from Dhaeseleer [48].
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Figure 2.3: Calculating basic statistics at the site and nucleotide level from known motif

occurrences (in black) and motif occurrences predicted by a motif discovery algorithm

(in white). Adapted from Hu, et al. [81].

AUC is the integral of the ROC curve plotting sSn against the site-level false posi-

tive rate (sFPR = sFP
(sFP+sT N)). The ROC curve is constructed by computing the prob-

ability of each possible site being an occurrence of the motif p(Zi, j = 1|Xi, j,θ) and

ranking each possible site based on this value. sSn and sFPR are plotted for all possi-

ble thresholds of p(Zi, j = 1|Xi, j,θ) and AUC calculated using the trapezoid rule. This

is implemented using the ROCR R package [151].

Although it is claimed that no single statistic captures ‘correctness’ perfectly, Tompa,

et al. consider some single measures which average some of these quantities. Follow-

ing Pevzner and Sze [133], the nucleotide level performance coefficient nPC is defined

as:

• nPC = nT P/(nT P+nFN +nFP).

Hu, et al. also use this definition, noting that nPC is a good overall performance

indicator as it can easily be interpreted: it gives a probable range (in [0:1]) that the true

binding sites are located around the predicted binding sites, a higher number being a

better result [81].

The above classification statistics provide an indication of how well the sites pre-

dicted by a motif discovery algorithm match the true sites. In addition to these statis-

tics, the mean absolute error (MAE) and root mean squared error (RMSE) are used to

assess methods for determining motif width in Section 4.4, comparing the predicted

motif width to the known width. RMSE is a commonly used measure but tends to

exaggerate the effect of estimations which are further from the true value; in contrast,

MAE treats all error sizes equally according to their magnitude. In most practical sit-

uations, the best estimator remains the best regardless of which error method is used

[179].
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2.2 Probabilistic algorithms for motif discovery

Three major classes of commonly-used motif discovery algorithm have been identified

[41]; these are based on the input data required by the algorithm. The first class of

algorithm requires a collection of promoter regions for coregulated genes as input and

typically uses probabilistic techniques to discover motifs. The second class of algo-

rithm requires orthologous promoter regions of a single gene from multiple species as

input and uses phylogenetic footprinting to discover motifs. The third class of algo-

rithm uses a combination of the above approaches. The latter two classes of algorithms

have the disadvantage that they are generally more complex and require expert infor-

mation regarding the similarity between species to achieve good results. This review

will therefore concentrate on the first class of algorithm, however, some algorithms

from the third class of algorithm will be discussed due to their similarity to the first

class.

As noted above, the majority of algorithms in the first class are probabilistic algo-

rithms which search the collection of promoter regions for overrepresented motifs (that

is, motifs that occur more often than could be expected by chance alone). These mo-

tifs are deemed to be biologically significant. Probabilistic algorithms generally use a

probabilistic sequence model (described below) to represent the input sequences. The

parameters of this model are then estimated using maximum likelihood or Bayesian

inference. With respect to this project, it has been noted that probabilistic approaches

are particularly well-suited to motif discovery in prokaryotes, as prokaryotic motifs are

generally longer than those in eukaryotes [41]. In contrast, word- or string-based enu-

merative methods perform better when searching for eukaryotic motifs, which are gen-

erally shorter. Probabilistic algorithms also have the advantage of requiring relatively

few search parameters. However, because of a reliance on probabilistic models, these

algorithms are sensitive to small changes in the input data and are also not guaranteed

to find a globally optimal solution since the model parameters are usually found using

some form of local search such as the Expectation-Maximization (EM) algorithm.

Most probabilistic motif discovery algorithms work on a similar principle, con-

structing a model which consists of two components. The ‘motif’ model component

θ1...W describes a set of similar subsequences of fixed width W and is usually repre-

sented by a 4×W PWM, where θ j,k is the probability that nucleotide k will be found
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at position j in the motif:

θ1...W =


θ1,A θ2,A · · · θW,A

θ1,C θ2,C · · · θW,C

θ1,G θ2,G · · · θW,G

θ1,T θ2,T · · · θW,T

 (2.1)

The ‘background’ model component θ0 accounts for every subsequence in the dataset

which is not deemed to be part of the motif model and is represented by a 4× 1 vec-

tor, where θk is the probability that nucleotide k will be found at any position in the

background:

θ0 =


θA

θC

θG

θT

 (2.2)

The complete model θ = [θ0,θ1...W ] is constructed using the ‘observed’ input data X;

it is assumed that each subsequence in the dataset arises from one of the models, but

at the outset it is unknown which one. This leads to the concept of the ‘latent data’ (or

‘missing data’) Z; in this case, the latent data to be learned is the knowledge of which

model each subsequence in the dataset has arisen from. Once the models have been

constructed, probabilistic motif discovery algorithms use an optimisation algorithm

to simultaneously optimise both models, allowing the values of the latent data to be

estimated and statistically significant motifs to be discovered.

It is possible to further classify probabilistic motif discovery algorithms based on

the probabilistic method used to estimate the parameters of the model. Bishop [27]

considers three main techniques: deterministic methods (such as the EM algorithm),

variational methods and stochastic (or Monte Carlo) methods. Using the above clas-

sifications, it is possible to build a table of algorithms allowing comparison of both

required data and algorithmic method (Table 2.1). Note that the table omits algorithms

which use only phylogenetic footprinting or comparative sequence analysis such as

CONREAL [22], PHYLONET [172] and PhyloScan [34]; generally, these algorithms

are based on some form of alignment or consensus method and are therefore not prob-

abilistic.
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Coregulated genes Coregulated genes and

phylogenetic footprinting

Deterministic EM [99] OrthoMEME [135]

methods MEME [10] PhyME [153]

The Improbizer [5] EMnEM [125]

COMODE [90]

cosmo [21]

ALSE∗ [101]

fdrMotif∗ [103]

SeedSearch∗ [17]

Variational LOGOS [181]

methods

Stochastic Gibbs sampler [98] PhyloGibbs [149]

methods AlignACE [143, 82]

MotifSampler [166]

SEAM [23]

MCEMDA [24]

BioProspector† [107]

Co-Bind† [76]

GLAM2† [63]

Table 2.1: Comparing probabilistic motif discovery algorithms based on required input

data and algorithmic method. ∗ denotes discriminative algorithms (see Section 2.2.2).
† denotes algorithms capable of handling gapped motifs (see Section 2.2.3).

2.2.1 Different types of sequence model

Motif discovery algorithms make different assumptions about the distribution of motif

occurrences within the DNA sequences which make up the input dataset. These as-

sumptions can affect the results of a motif discovery algorithm. The One Occurrence

Per Sequence (OOPS) model is the simplest sequence model and assumes that each

sequence in the dataset contains exactly one motif occurrence [99]. Early motif dis-

covery algorithms were based on this model, but were limited: the performance of

the OOPS model is reduced when input sequences do not contain a motif, or contain

more than one occurrence of the motif. In practice, this is difficult to ensure when
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constructing datasets, as gene coexpression does not imply coregulation: if the input

dataset is constructed from coexpressed genes (a reasonable method to use), not all

sequences in the dataset can be guaranteed to contain a motif [166]. The OOPS model

was later extended to the Zero or One Occurrence Per Sequence (ZOOPS) model,

which increases flexibility by allowing sequences which do not contain a motif oc-

currence. The most flexible sequence model is the Two Component Mixture (TCM)

model, which assumes that there are zero or more non-overlapping occurrences of the

motif in each sequence in the dataset [10].

The theoretical differences between these types of sequence model are reflected

in the number of model parameters. The parameters of the OOPS model are the nu-

cleotide frequencies for each column in the PWM (motif model), the nucleotide fre-

quencies for the background model and a parameter for the motif width. The ZOOPS

model requires an additional parameter for the prior probability of a sequence con-

taining an occurrence of the motif. The TCM model replaces this parameter with a

different parameter representing the prior probability that any position in an input se-

quence is the start of a motif occurrence [11]. Many recent motif discovery algorithms

are based on the TCM sequence model. This allows greatest flexibility if there is some

uncertainty in the distribution of motifs within the input sequences.

2.2.2 Motif discovery algorithms based on deterministic methods

Motif discovery algorithms based on deterministic methods make up a large proportion

of commonly used algorithms and use the EM algorithm, or a variant of that algorithm.

The EM algorithm is a classic general optimisation technique for finding maximum

likelihood solutions for probabilistic models with latent variables [46, 2]. Although the

EM algorithm had been proposed many times for special cases, it was not generalised

until 1977 [46] and its convergence properties were not proved until 1983 [180]. The

EM algorithm is an iterative technique; some initial values for the model parameters

are chosen and then two steps are carried out repeatedly until convergence is reached.

In the expectation step, or E-step, the current estimates for the model parameters θ(t)

are used to calculate the expected value of the log likelihood function, with respect

to the distribution of the latent data given the observed data; this is known as the Q
function. The expected value of a random variable is the integral of that variable with

respect to its probability measure. That is, if the probability distribution of X admits a
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probability distribution function f (x),

E[X ] =
∫

∞

−∞

x f (x)dx. (2.3)

The Q function is therefore calculated:

Q (θ|θ(t)) = EZ|X,θ(t)[ln p(X,Z|θ)] =
∫

p(Z|X,θ(t))lnp(X,Z|θ) dZ. (2.4)

In the context of motif discovery, this can be viewed as calculating the probability

for each width-W subsequence in the dataset that it is an occurrence of the motif,

or equivalently estimating the position of occurrences of the motif within the input

dataset. The maximisation step, or M-step, evaluates a new estimate of the parameters

by maximising the expected value of the log likelihood function:

θ
(t+1) = argmax

θ

Q (θ|θ(t)) (2.5)

In the context of motif discovery, this can be viewed as reestimating the model pa-

rameters given the current estimates for the motif position within the input dataset. It

can be shown that each iteration of the EM algorithm is guaranteed to increase the

log likelihood of the model, if the likelihood is not already at a maximum. The EM

algorithm is deemed to have converged when the increase in log likelihood falls below

some small threshold. The EM algorithm has become popular due to its relative sim-

plicity and stability (that is, it converges in a known and steady fashion) [25]. Due to

its broad applicability, the EM algorithm has been widely used in a variety of areas,

including computer vision and natural language processing. It has also been used in

many different probabilistic motif discovery algorithms.

Deterministic methods using coregulated genes

The EM algorithm was first used for motif discovery by Lawrence and Reilly [99].

Although the algorithm was first used to discover protein motifs, it is equally appli-

cable to the discovery of DNA motifs. The algorithm uses the basic EM algorithm

as described by Dempster, et al. [46] to find a single motif from sequence data in an

unsupervised manner; that is, no prior knowledge of the motif is required in order to

discover it. Given a motif width to search for, Lawrence and Reilly’s algorithm first

estimates the start location of the motif within the input sequences and then maximises

the expected likelihood of the data given the current estimates of the parameters. These

two steps are repeated iteratively until convergence as described above. Unlike previ-

ous motif discovery algorithms, which required that the motif occur at the same point
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procedure EM

Estimate initial model parameters θ

until EM algorithm converges, do
E-step: reestimate motif position using current θ

M-step: reestimate θ using current motif position

end
Print discovered motif

end EM

Algorithm 2.1: Pseudocode describing Lawrence and Reilly’s original EM algorithm for

motif discovery.

within each input sequence, the algorithm presented by Lawrence and Reilly is novel

in that the motif position within the sequences does not have to be conserved, allowing

more flexibility in choosing input sequences. However, the performance of the algo-

rithm is reduced when given input sequences which do not contain the motif. This is

due to Lawrence and Reilly only implementing the OOPS sequence model. Despite

this limitation, Lawrence and Reilly successfully applied their algorithm to motif dis-

covery in the CRP dataset (this dataset is discussed in Section 3.6.1). The algorithm

has also been the basis for many more recent EM-like motif discovery algorithms such

as MEME and The Improbizer. Pseudocode describing Lawrence and Reilly’s EM

algorithm is presented in Algorithm 2.1.

The MEME (Multiple EM for Motif Elicitation) algorithm [10] is perhaps the best

known use of EM for motif discovery. It is based on the method used by Lawrence

and Reilly [99] and incorporates a number of features which improve the algorithm for

DNA motif discovery. Perhaps most important of these features is the introduction of

the ZOOPS and TCM sequence models. As noted above, these sequence models relax

the assumption made by the OOPS model that each input sequence contains exactly

one motif occurrence and therefore allow MEME to be relatively robust when given

some input sequences which do not contain a motif occurrence. The TCM model ex-

tends the ZOOPS model to allow for an arbitrary number of motif occurrences per

sequence and therefore allows MEME to successfully predict multiple motifs within

a single input sequence. The TCM model allows the greatest flexibility in the dis-

tribution of motif occurrences and is therefore of greatest benefit when searching for

motif sequences in uncharacterised data. It is noted that the TCM model also has the

secondary advantage in that it allows MEME to estimate the number of times a motif
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appears in a dataset. The second novel feature of MEME is a ‘probabilistic erasing’

step, which allows more than one motif to be discovered in a dataset; once a motif

has been found (it is assumed that the first discovered motif is the most significant),

it is effectively ‘erased’ by a dynamically calculated prior distribution, which allows

another run of the EM algorithm to discover another less significant motif. Clearly,

the success of this feature depends on any previously discovered motifs being correct.

The third novel feature of MEME attempts to address a fundamental problem of EM

approaches, that of returning suboptimal solutions as a result of only finding a local

maximum of the likelihood function. As noted above, the EM iteratively maximises

the log likelihood of the model until convergence is reached. At this point, the gradient

of the likelihood function will be 0 (or very close to 0). However, it is entirely possible

(and indeed likely) that the maximum point returned by the EM algorithm is a local

maximum or saddle point of the likelihood function, rather than a global maximum1

[23]. MEME addresses this problem by trying a number of different starting points

within the parameter space, running the EM algorithm for a small number of iterations

at each starting point and evaluating the log likelihood of the model. The EM algorithm

is then run to convergence using the starting point which looks to be most promising.

It is clearly desirable for a motif discovery algorithm to automatically determine

the width of a motif; an algorithm with this ability would not require the user to know

this information in advance. However, automatically determining the width of an un-

known motif automatically is not a a trivial problem. Bailey and Elkan introduce a

novel ‘motif-width’ heuristic function in later versions of MEME [11], based on the

maximum likelihood ratio test. This function computes a score for each model based

on the log likelihood and the number of free parameters and chooses the model with the

highest score over all widths. This heuristic was replaced by an width estimator based

on the E-value of the resulting multiple alignment [9]. This estimator is discussed

further in Section 4.4. Pseudocode describing MEME is presented in Algorithm 2.2.

Although MEME has some limitations, it has been noted for being remarkably

consistent in its results in recent comparisons of motif discovery algorithms by Das

and Dai [41], Hu, et al. [81] and Tompa, et al. [168]. It has been used experimentally

by Baker, et al. [15] and Heikkenen, et al. [79], amongst others, returning good results

which have been proved experimentally in some cases. It is also available as a web

1It may be helpful here to consider the analogous 2-dimensional problem of finding the highest
point in Scotland by only walking in an uphill direction: eventually a point will be reached where it is
impossible to walk uphill any further, but this point is clearly not guaranteed to be Ben Nevis.
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procedure MEME

for N do (where N is the number of motifs to be found)

for each motif width do
for each TCM prior parameter value do
Estimate initial model parameters θ, based on width and TCM prior values

until EM algorithm converges, do
E-step: reestimate motif position using current θ

M-step: reestimate θ using current motif position

end
Test if removing outer columns from motif or implementing

palindrome constraint improves motif score

end
end
Print discovered motif which maximises motif score

‘Erase’ motif from dataset by updating prior

end
end MEME

Algorithm 2.2: Pseudocode describing the basic MEME algorithm.

service2 [8]. In addition, MEME continues to be used as the basis for a number of

other algorithms, for example the recent MEME-ChIP [113].

The Improbizer [5] is largely based on MEME [10], but with some small variations

based on ideas proposed by Lawrence, et al. [98]. The Improbizer differs from MEME

in its initial estimates of the motif model and in how this estimate is evolved through the

iterative process. The motif model is initially estimated using non-overlapping 6-mers

from the dataset, rather than being estimated by maximum likelihood as in MEME.

After each iteration of the EM algorithm, a check is carried out to determine whether

an addition or subtraction of a column on either side of the motif model will increase

the score of the model. Due to its reliance on MEME, The Improbizer shares many

of the same limitations as MEME. However, the addition of the check after each EM

iteration as described above may reduce the chance of returning ‘shifted’ motifs. The

Improbizer has been used experimentally with some success by Banerjee and Slack

[16] and Gaudet, et al. [68], as well as in the experimental work carried out by Ao, et

al. to identify elements that activate expression in Caenorhabditis elegans [5]. Like

2http://meme.sdsc.edu/meme4 5 0/intro.html
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MEME, The Improbizer is available as a web service3.

COMODE (COnstrained MOtif DEtection) [90] introduces the idea of information

content profiles and uses these profiles to constrain a supervised search for motifs. It

has been shown that the information content at each position of the motif is propor-

tional to the number of contacts between the transcription factor protein and the DNA

at the binding site [121]. That is, there is a direct relationship between information

content and the structural footprint of the transcription factor upon the DNA. It follows

that motifs bound by structurally similar DNA binding domains should have similar

information content profiles. COMODE searches for motifs matching a given infor-

mation content profile (for example, a gapped motif may have a ‘high-low-high’ pro-

file). The statistical model underlying COMODE again models the data as motif and

background positions. Keles, et al. implement the OOPS and ZOOPS models within

COMODE but note that using a constrained motif model means that the M-step of the

EM algorithm no longer has a closed-form solution; carrying out the M-step requires

solving a nonlinear constraint problem at each EM iteration, which can be computa-

tionally intensive. This also causes problems with the TCM model as the smoothing

step used in MEME cannot be included in a straightforward way; a cutting heuristic is

proposed to deal with the discovery of multiple motif occurrences within a single input

sequence [90] (this heuristic is discussed further when it is implemented as part of the

MITSU algorithm developed in this thesis; see Section 5.3.1).

The advantage of the constraints proposed by Keles, et al. is that the discovery of

structured but statistically subtle motifs is improved. Based on tests with yeast motifs

extracted from SCPD, the supervised search is shown to perform substantially better

than unconstrained search when discovering motifs with weak signals using both the

OOPS and ZOOPS models. The cutting heuristic is also demonstrated on the even

skipped gene in Drosophila and shown to discover multiple motifs within a single

input sequence [90].

Bembom, et al. [21] focus on a number of methodological improvements to CO-

MODE, particularly with regard to the data-adaptive selection of various model pa-

rameters, including the choice of sequence model and the Markov background order.

The cutting heuristic described by Keles, et al. is implemented and extended; tests

demonstrate that the heuristic is fairly robust with regard to different choices for the

value of the cutting parameter. Following tests of various model selection methods, the

Bayesian information criterion is chosen to select the most likely motif width, maxi-

3http://users.soe.ucsc.edu/˜kent/improbizer/improbizer.html
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mum likelihood is used to choose the best fitting sequence model and likelihood-based

cross-validation is used to choose the order of the Markov background model. A simi-

lar constraint system to COMODE is implemented, but in a more user-friendly manner;

again, it is concluded that using a constraint set to supervise the motif search improves

performance in the case of low motif abundance, or structured motifs with low motif

conservation. The improved version of COMODE is repackaged as cosmo, which is

available as a standalone application and Bioconductor package.

Discriminative motif discovery algorithms

Despite their differences, the previously discussed motif discovery algorithms have

had one similarity, in that all the input sequences have been believed to contain a mo-

tif. That is, sequences believed not to contain a motif have not been intentionally

added to the input set; it is assumed that the motif discovery algorithm used will be

robust enough to deal with any of these sequences if they are present (although clearly

this depends greatly on the type sequence model used: see Section 2.2.1). However,

there exists a class of algorithms which require sequences believed not to contain a

motif as part of the input dataset. These algorithms are known as ‘discriminative motif

discovery algorithms’ and generally use these sequences to verify and score any dis-

covered motifs: if motifs discovered within sequences believed to contain a motif are

also discovered within sequences believed not to contain a motif, they are less likely

to be biologically significant. Three EM-based discriminative motif discovery algo-

rithms are discussed below, although many more algorithms utilising other methods

exist, including DEME [140], DIPS [152] and DME [155].

SeedSearch [17] takes a two stage approach, first exhaustively searching for all pat-

terns given a motif width (for example, all width-7 patterns), then filtering out the most

significant patterns using a discriminative approach and a set of sequences believed not

to contain a motif. In the second stage of the algorithm, an EM approach is used to

create a PWM based on the most significant patterns found in the first stage of the

algorithm. Although the presented results show a great deal of variance, Barash, et al.

note two potential improvements over algorithms such as MEME. Firstly, SeedSearch

runs faster than MEME, as the second stage of the algorithm runs very quickly after

the initial preprocessing has been carried out. Secondly, SeedSearch tends to return

fewer spurious motifs (for example, poly A’s), although this is dependent on the input

sequences used.

ALSE [101] uses the EM algorithm to discover a motif which is then verified after
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convergence of the EM algorithm. Although Leung and Chin claim their technique is

based on the simulated annealing method, Das and Dai [41] note that there is no ran-

dom walk step, so the technique does seem to be most closely related to EM. Leung and

Chin suggest that using the p-value as a score of correctness (as in SeedSearch [17])

could be improved by performing a probabilistic analysis rather than a hyper-geometric

analysis. However, it is unclear how much of the improvement in the presented results

is due to this new scoring method alone. ALSE is shown to improve on MEME [10]

and SeedSearch in experiments on simulated data and in tests on real biological data

(using the SCPD yeast [187] and TRANSFAC eukaryotic [178] databases); however,

results seem to be highly dependent on the initial parameter estimation and may not

be globally optimal, due to the EM approach. ALSE has not been widely used in

experiments, but is available as a download4.

fdrMotif [103] is also a discriminative motif discovery algorithm based on an EM

approach. However, unlike ALSE, fdrMotif aims to combine the optimisation and

the statistical scoring of the discovered motif model, rather than optimising and then

scoring afterwards. fdrMotif is based on the MEME framework, but with a variation

on the normalisation procedure in the E-step of the EM algorithm which tests for motif

significance. Like ALSE, fdrMotif is reliant on ‘many sets’ of sequences believed

not to contain a motif and generates random sequences if not enough are available.

Li, et al. [103] compare fdrMotif to MEME based on tests using eukaryotic ChIP

and ‘simulated ChIP’ data. On both types of data, fdrMotif compares well to MEME

in terms of precision and slightly outperforms MEME in terms of sensitivity [168].

However, there does not seem to be a clear advantage, except for not having to score

motifs after they have been discovered. Like ALSE, fdrMotif does not appear to have

been used experimentally besides the tests run by Li, et al. [103].

SeedSearch [17], ALSE [101] and fdrMotif [103] have not been widely used in

bioinformatic analyses, besides the tests carried out by their respective authors. Al-

though discriminative algorithms clearly have promise and counterintuitively, sequences

which do not contain a motif can be helpful in motif discovery, the improvement

they give over non-discriminative methods appears to be marginal. As with the other

EM-based algorithms, there is no guarantee that any discovered motifs are globally

optimal. Both Li, et al. [103] and Redhead and Bailey [140] reach a similar con-

clusion regarding the improvements of discriminative methods over traditional non-

discriminative methods, Redhead and Bailey noting that although their discriminative

4http://alse.cs.hku.hk
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algorithm DEME gives good results on synthetic data, on real-world data DEME was

shown to be as good as, but not better than non-discriminative algorithms. Algorithms

implementing a discriminative approach remain an active area of research, for exam-

ple, the recent DLocalMotif algorithm [119].

Deterministic algorithms using coregulated genes and phylogenetic footprinting

Like The Improbizer [5], OrthoMEME [135] is based on the MEME [10] framework

and uses a generalisation of MEME in an attempt to solve the ‘two-species heteroge-

neous data problem’. In this problem, the input sequences to the algorithm consist of a

collection of coregulated genes from one genome together with their orthologous genes

in another closely related genome. Although there are clear advantages to this hetero-

geneous approach, it raises the additional issue of how to treat the data from different

species. OrthoMEME uses an additional parameter to denote the species of the input

sequence, but is otherwise very similar to MEME. Like MEME, OrthoMEME tries to

address the problem of comparing motif scores over different widths. However, it does

this by simply dividing the log likelihood of the model by the motif width, based on

the somewhat simplistic assumption that log likelihood scales linearly with increasing

motif width (as noted above, model comparison over different motif widths is compli-

cated by the issue of different numbers of model free parameters). OrthoMEME has

been used very little experimentally, although Prakash, et al. [135] present results of

experiments on a number of eukaryotic genomes.

PhyME [153] is a generalisation of OrthoMEME [135] that allows for input se-

quences from any number of different related genomes (given enough computing power

and processing time). The idea behind PhyME is to combine two important aspects

of motif significance - overrepresentation and cross-species conservation - into one

probabilistic score. Unlike the algorithms discussed previously, which have generally

used a PWM-based approach to model the motif of interest, PhyME uses a Hidden

Markov Model (HMM). The parameters of the HMM are initialised and then trained

using the Baum-Welch algorithm (a particular form of the Generalised EM (GEM) al-

gorithm), which converges to maximum likelihood parameters using EM. In order to

incorporate phylogenetic relationships within this model, PhyME uses a probabilistic

evolutionary model as part of the computation of subsequence probabilities (that is, the

probability of generating a width-W subsequence from the current model). This evo-

lutionary model was initially proposed by Sinha, et al. to model binding site evolution

in Drosophila species [154]. Although PhyME is relatively complex in training the
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HMM parameters, it scales well with increasing numbers of input sequences, allowing

a large number of input sequences to be analysed simultaneously in a relatively short

time. Like MEME, PhyME carries out a small number of iterations at different HMM

parameter starting values and calculates the likelihood of the model each time, before

running the most promising starting values to convergence in an attempt to discover

the global maximum likelihood. Sinha, et al. [153] present the results of PhyME on a

number of eukaryotic datasets; the algorithm has also been used experimentally by de

Jong [43]. PhyME is available to download on request from the authors.5

Like OrthoMEME, EMnEM (Expectation Maximization on Evolutionary Mixtures

[125]) is based on the MEME framework and is claimed to be an evolutionary ex-

tension of MEME. EMnEM combines the mixture model used by MEME and other

variant algorithms with a probabilistic model of evolution, which considers DNA se-

quences from different species to have been generated by an unseen ancestral sequence.

Different subsequences of this ancestral sequence are assumed to evolve at different

rates. Subsequences with a slow evolution rate are more conserved and therefore

deemed to be motifs; subsequences with a higher evolution rate are less conserved

and are deemed to be part of the background. EMnEM differs from all of the previ-

ously discussed algorithms in that it requires input sequences to be aligned in order

to give a smaller search space. However, this in turn constrains the input data to se-

quences from closely related species which can be aligned; both Moses, et al. and Das

and Dai [41] note that this may not be possible with species at large evolutionary dis-

tances. In tests, EMnEM was compared with MEME on data from five Saccharomyces

genomes taken from the SCPD database [187] and was shown to consistently rank the

‘correct’ motif higher than MEME. MEME did find the motifs, but ranked them behind

‘false positive’ results; it is claimed that the use of phylogenetic information can help

reduce the number of false positives, allowing EMnEM to outperform MEME in this

regard. EMnEM is available as a software download6 but has not been used widely in

experiments.

Approaches for chromatin immunoprecipitation (ChIP) data

Chromatin immunoprecipitation (ChIP) coupled either with microarray (ChIP-chip)

or massively parallel DNA sequencing (ChIP-seq) is a relatively new and powerful

method for experimentally mapping the genome-wide binding sites of transcription

5http://veda.cs.uiuc.edu/cgi-bin/phyme/download.pl
6http://www.moseslab.csb.utoronto.ca/alan/emnem.html
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factors. The resolution of binding regions identified by ChIP-seq is usually on the

order of a few hundred base pairs. These regions are ideal candidates for scanning

with motif discovery algorithms. However, it has been noted that traditional motif

discovery algorithms cannot handle the increased volumes of data output by ChIP-x

experiments. The primary limiting factor is computational efficiency. Bailey has noted

that many algorithms (including MEME) do not scale well to very large (ChIP-scale)

datasets; the running time of MEME is noted to scale non-linearly with dataset size,

which makes it impractical with very large datasets [7]. Ma, et al. also draw a similar

conclusion [112]. A secondary problem of choosing initial parameter values is also

noted by Bi; it is claimed that EM convergence becomes very slow when poor initial

parameter values are chosen and that this problem becomes worse as the dataset size

increases to ChIP-scale [23]. Recent trends in computational motif discovery have

therefore attempted to address the need for more powerful and robust approaches in

handling high throughput data (for example, ChIP-seq).

The number of motif discovery algorithms specifically designed for ChIP data has

increased dramatically in recent years. While some aspects of traditional algorithms

are retained (for example, DREME [7] uses a discriminative approach), many are spe-

cific to their application on ChIP data. For instance, traditional motif discovery algo-

rithms generally assume no prior knowledge regarding motif position (that is, all posi-

tions within a sequence are a priori equally likely to be motif occurrences). However,

algorithms designed for ChIP data often employ positional information as transcrip-

tion factors are more likely to bind to areas near the peaks of the ChIP intensity profile.

Examples of this include CentriMO [14], ChIPMunk [94] and POSMO [112].

Discussion of deterministic methods

Although motif discovery algorithms based on deterministic methods are similar in

that they all use the EM algorithm in some form, there are differences between them

which allow some algorithms to outperform others. As noted above, Lawrence and

Reilly’s EM algorithm [99] is limited in that it only implements an OOPS sequence

model, which reduces the performance of the algorithm when sequences which do not

contain a motif are included in the input dataset. As the OOPS model assumes that

every sequence contains a motif, a genuine motif in a few of the input sequences may

be disregarded in favour of a spurious motif that occurs in all of the input sequences.

This is clearly not desirable, although the situation is realistic: it is often not possible

to say for certain whether a sequence contains a motif or not. The increased flexibility
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of the TCM sequence model introduced by Bailey and Elkan [10] allows increased

performance in such situations and is more likely to return the genuine motif. As a

result, the TCM model has been implemented in subsequent deterministic motif dis-

covery algorithms (SeedSearch is an exception, implementing only the ZOOPS model

[17, 101]). Lawrence and Reilly’s EM algorithm is also limited in terms of finding

the global maximum likelihood and as a result is more likely to converge to a local

maximum in the likelihood. Again, this results in a less significant motif being re-

turned. Combined with the fact that EM can only discover one motif from a dataset,

this severely limits the performance of the algorithm. As noted above, Lawrence and

Reilly’s EM algorithm was the first motif discovery algorithm which could deal with

unaligned input sequences. This feature has been used in almost all motif discovery

algorithms since, with the exception of EMnEM [125], which requires sequences to be

aligned before motif discovery can begin.

MEME [10] and The Improbizer [5] deal with the issue of finding the global max-

imum in different ways. As noted above, MEME tests a number of different starting

points in the parameter space (for both the model parameters and the TCM prior (or

‘mixing’) parameter). It is clear to see how this can improve the search for a global

maximum; however, the success of such an approach depends greatly on the complex-

ity of the likelihood function. In contrast, The Improbizer takes each non-overlapping

6-mer from the dataset as a starting point, adding or removing columns as required

to improve the score function. Theoretically, the approach used by MEME should be

more thorough in its exploration of the parameter space due to the different start points

for the TCM prior parameter used. Although the value of this parameter changes with

each iteration of EM, choosing different initial values for this parameter should im-

prove performance, especially if the likelihood function is expected to be complex.

PhyME [153] works on a similar principle to MEME, trying out different initial HMM

parameter values in an attempt to find the global maximum likelihood.

Like MEME, The Improbizer can search for multiple motifs in a single dataset by

using an ‘erasing’ prior distribution. If it is expected that promoter regions contain

more than one motif (as noted above, gene expression can be initiated by cooperative

binding of multiple transcription factors), it makes sense to search for more than one

motif. The success of this sequential approach to multiple motif discovery is dependent

on previously discovered motifs being correct; for instance, if a motif is only partially

discovered and erased on one pass, the part of the motif which was not erased may

affect motif discovery in subsequent passes of the algorithm. The use of the sequential
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approach would appear to make MEME more powerful than The Improbizer when

searching for multiple motifs, as a more thorough examination of the parameter space

is made, making it more likely that any previously discovered motifs would be correct.

The discriminative motif discovery algorithms noted only search for single motifs.

This is likely a consequence of their approach; similar to Lawrence and Reilly’s EM

algorithm, it must be known in advance that the input sequences in the ‘positive’ set

contain a motif (and the sequences in the ‘negative’ set contain no motif occurrences).

To know in advance that an input sequence definitely contains more than one known

motif is very unlikely, if not impossible, when dealing with uncharacterised data.

As noted above, automatically determining the width of an unknown motif is a

hard problem, as models of different widths cannot be directly compared using only

the likelihood function of the models [11]. This is a consequence of the different num-

bers of free parameters of the models; the maximum value of the likelihood function is

bound to increase by the addition of more parameters (that is, increasing motif width).

Bishop [27] makes a similar observation regarding the phenomenon of ‘overfitting’

and the numbers of free parameters when comparing models. MEME currently uses

a score function based on the E-value of the resulting multiple alignment [9]. In con-

trast, OrthoMEME [135] uses a much more simplistic scoring function, dividing the

likelihood by the width of the motif model. While this may work as a rough approx-

imation, it does not take into account the issues of overfitting and would not be able

to handle alternative motif forms such as palindromic motifs, where the motif width

and the number of free parameters do not increase together (as a guide, the number of

free parameters in palindromic motif models is around half that of regular motifs of the

same width). The scoring function used by MEME takes these alternative motif forms

into account and strongly penalises models of higher widths. Heuristics to determine

the most likely motif width are discussed further in Section 4.4.

Although discriminative algorithms such as fdrMotif [103] seem to offer little im-

provement over non-discriminative algorithms in terms of results in de novo motif

discovery, they have some interesting features which could be adapted to improve non-

discriminative algorithms. fdrMotif and EMnEM [125] use similar methods to control

the number of false positive results (that is, sites incorrectly identified as a motif). This

in turn increases the proportion of correct motifs returned by the algorithm. fdrMotif

uses an additional parameter called the false discovery rate, which was originally de-

veloped to control the number of false positive results in multiple hypothesis testing.

Given a PWM representing a subsequence, the log likelihood score is computed and
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the subsequence deemed to be significant if the score is equal to or greater than a cer-

tain threshold. EMnEM uses a simpler but similar method, calculating the log ratio of

the likelihood of the discovered motif to the likelihood of a sequence known not to be

a binding site. If the log ratio is greater than zero, the discovered motif has a greater

likelihood than the false positive and should be returned. Controlling the number of

returned false positive results would clearly improve the overall performance of motif

discovery algorithms, even though such an approach could be overly cautious. Of all

of the motif discovery algorithms reviewed by Tompa, et al. [168], Weeder [131] gave

the best results. This is thought to be due at least in part to the cautious use of the

algorithm; the overall performance of Weeder was increased by not returning results

which may possibly be wrong.

Algorithms based on variational methods

Although deterministic methods have been used successfully for motif discovery, they

often have issues of computational and analytical intractability with regard to the two

steps in the EM algorithm. The E-step is usually the more problematic, as it requires

the evaluation of the expectation of the log likelihood with respect to the posterior dis-

tribution of the latent variables p(Z|X,θ) (Equation 2.4). Although this is relatively

straightforward for simple problems, for many practical problems, it is not possible to

evaluate the posterior distribution or evaluate the expectation of the log likelihood with

respect to this distribution. There are a number of reasons why it may not be possible

to evaluate the posterior distribution. Most often, it is that the posterior distribution

takes a complex form which is not analytically tractable. However, the posterior dis-

tribution may also have so many dimensions that it becomes impossible to work with

directly. In addition to these problems, to evaluate the posterior distribution, the dis-

tribution must be normalised, which requires some form of integration or summation,

depending on the type of variables involved. The required integration may not have

an analytical solution, or the dimensionality of the problem may be too high to com-

pute numerical solutions. In contrast, summations over all possible states of discrete

variables are always possible in theory, but the exponential number of states may be

prohibitively expensive to compute in practice, depending on the dimensionality of the

problem. In situations where evaluation of the posterior distribution is impossible, ap-

proximate approaches must be used. Approximate approaches fall into two categories:

deterministic and stochastic. Deterministic approximate approaches will be discussed

in the next section; stochastic approximate approaches will be discussed in the follow-
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ing section.

Deterministic approximate approaches are based on analytical approximations to

the posterior distribution, for example by assuming that the posterior distribution takes

a form which can be factorised in a particular way, or by assuming that it has a para-

metric form which can also be simplified. Deterministic approximate approaches gen-

erally have the advantages that they are not computationally demanding and scale well

to large problems; indeed, such approaches have wide applicability. Clearly, the main

disadvantage of a deterministic approximate approach is that the success of the ap-

proximation relies on being able to find an appropriate and tractable approximating

distribution, which is not always a trivial problem. A family of deterministic approxi-

mation methods known as variational inference will be discussed.

Variational inference aims to approximate the complicated posterior distribution

with a simpler distribution, chosen from a restricted family of distributions [27]. The

family of simpler distributions is necessarily restricted so that it comprises of only

tractable distributions (that is, distributions that can be integrated); however, care must

be taken to make the family of distributions rich and flexible enough to provide a

good approximation to the posterior distribution. The optimal form of the simpler

distribution is obtained by minimising the difference between the posterior distribution

and the simpler approximating distribution. This difference is typically measured using

the Kullback-Leibler (KL) divergence7, which has some useful information theoretic

properties and allows one to compute the similarity of two distributions. Minimising

the difference between the two distributions allows a lower bound on the log likelihood

to be maximised, in a similar manner to the maximisation of the likelihood function

seen previously [182, 181].

Formally, given observed variables X and latent variables Z, the goal of varia-

tional inference is to find an approximation for the intractable posterior distribution

p(Z|X) (following Bishop [27], it is assumed for simplicity that model parameters θ

are absorbed into Z). In order to approximate the posterior distribution, an approxi-

mating distribution q(Z) is introduced. q(Z) can be any tractable distribution. The log

7The KL divergence is known as a ‘divergence’ measure rather than a ‘distance’ measure because
of its asymmetric properties. That is, the KL divergence measured from one probability distribution
p(x) to another q(x) is not equal to the KL divergence measured from q(x) to p(x). Bishop [27] notes
that using the reversed form of the KL divergence results in a related but quite different deterministic
approximation method known as ‘expectation propagation’ (EP). EP is not discussed here as Bishop also
notes that using EP for multimodal distributions can lead to poor approximations, in particular where
EP is applied to mixtures.
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marginal probability lnp(X) can be written8:

lnp(X) = L(q)+DKL(q||p), (2.6)

where

L(q) =
∫

q(Z)ln
{

p(X,Z)
q(Z)

}
dZ (2.7)

and the KL divergence of p from q is defined (in the continuous case) as:

DKL(q||p) =−
∫

q(Z)ln
{

p(Z|X)

q(Z)

}
dZ. (2.8)

If it were possible to choose any distribution as q(Z), then DKL(q||p) would reduce

to zero when q(Z) is equal to the posterior distribution p(Z|X). However, because

p(Z|X) is intractable, it is only possible to minimise DKL(q||p). Doing so allows q(Z)

to be as close as possible to p(Z|X) while remaining tractable.

Beal and Ghahramani [20] incorporate variational inference into the EM frame-

work in the variational Bayesian EM algorithm (VBEM; also simply known as the

variational EM, or VEM, algorithm). Comparing the VEM algorithm to the EM algo-

rithm, Beal and Ghahramani note that instead of maximising the likelihood as in the

EM algorithm, the VEM algorithm maximises a lower bound on the likelihood. In all

other ways, the two algorithms are identical, except that it is expressed in the terms

of the expected parameters. Indeed, it is noted that the VEM M-step computes a dis-

tribution over parameters, rather than a maximum likelihood estimate and that if the

distribution is restricted to a point estimate (that is, a Dirac delta function), the VEM

algorithm reduces to the ordinary EM algorithm.

VBEM has been applied to other research in computational biology (for example,

modelling transcriptional regulatory networks [106]), but only forms the basis of one

motif discovery algorithm. LOGOS (Local and Global motif Sequence model, [181])

uses variational EM for motif discovery; unlike the deterministic algorithms discussed

in Section 2.2.2 which used a single probabilistic model, LOGOS takes a different

approach and consists of two interacting submodels [181, 174], each modelling a dif-

ferent aspect of the input data. A local alignment model known as Hidden Markov

Dirichlet-Multinomial (HMDM, [182]) is used to incorporate biological prior knowl-

edge and positional dependencies within a single motif subsequence. As in PhyME,

a Hidden Markov model (HMM) is used to globally model all the motifs within the

8A similar decomposition is used for extensions of the EM algorithm such as the ECM (expectation
conditional maximization) algorithm; using such a decomposition allows both steps of the EM algorithm
to be viewed as different maximisations.
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dataset. The use of the HMDM model is novel in that it allows prior knowledge to be

used to return more biologically plausible motifs. For example, as noted above, motif

positions with a high information content are more likely to be adjacent to positions

which also have a high information content [56]. Xing, et al. use this positional cluster-

ing as one of the main motivations for the HMDM model. Use of the HMDM model

should theoretically model these features better than regular models, which assume

independence between motif positions. While the HMDM model is useful for these

motif-level features, this model alone cannot predict the locations of motifs within

the dataset so the HMM model is used for this purpose. As noted above, it is intu-

itively reasonable that incorporating prior knowledge as in the HMDM model can help

improve the results of motif discovery algorithms. However, incorporating this knowl-

edge increases the complexity of the full data model. Variational EM is therefore used

to approximate the complex distribution in the E-step with a simpler tractable distri-

bution, the optimal form of which is obtained by minimising the KL divergence as

described above.

Like many of the EM-based motif discovery algorithms discussed above, LOGOS

is capable of discovering multiple motifs in a dataset [181, 88]. However, unlike

EM-based algorithms, LOGOS discovers multiple motifs simultaneously through the

HMM. Xing, et al. argue that simultaneous discovery of multiple motifs is a better

strategy than sequential discovery, particularly when motif concentrations are high. It

is argued that in sequential discovery, less significant motifs are treated as background

positions, which can potentially cause suboptimal estimation of both the background

and the motif model parameters.

Xing, et al. test LOGOS on semi-realistic data and real eukaryotic data (yeast data

from the SCPD database [187] and Drosophila data). In these tests, LOGOS appears

to outperform MEME and AlignACE (see below). Xing, et al. claim that the results

of their tests suggest that algorithms such as MEME or AlignACE are not powerful

enough to handle non-trivial motif detection. However, Xing, et al. note that the

datasets used are unusually large (input sequences are up to 5,000nt in length) and

that results may vary depending on the quality of the dataset. In addition, LOGOS

is not tested on prokaryotic data; this would be a study worth carrying out. LOGOS

is not available as a web service or software implementation so it has not been in-

cluded in independent evaluations of motif discovery algorithms [41, 81, 168] or used

experimentally other than in the tests carried out by Xing, et al.. As a result, it is not

possible to compare LOGOS to other motif discovery algorithms. While LOGOS has
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some advantages and it is clearly an interesting technique, there are some disadvan-

tages. Firstly, as noted above, approximate methods are inherently inexact; this may

become a problem depending on the complex distribution that is being approximated.

Clearly, the closer the approximating distribution is to the real distribution, the better

the results will be. However, the form of the approximating distribution is bound by

the set of tractable distributions. The relative complexity of LOGOS is another issue;

however, this would appear to be the cost of incorporating prior biological knowledge

into a motif discovery algorithm.

Published evaluations of deterministic motif discovery algorithms

Two extensive evaluations of motif discovery algorithms [168, 81] have included algo-

rithms based on deterministic methods. Tompa, et al. [168] compare 13 motif discov-

ery algorithms, including MEME [10] and The Improbizer [5]. These algorithms were

tested using datasets created from the TRANSFAC [178] database. Overall, MEME

was shown to outperform The Improbizer in motif discovery in all datasets, particularly

in datasets containing yeast transcription factors. MEME also outperforms The Impro-

bizer in terms of average site performance and higher precision, although Tompa, et. al

urge caution in comparing algorithms solely on precision as this statistic is undefined

for datasets where no motif was predicted. Despite MEME’s higher performance as

noted, MEME and The Improbizer are comparable in terms of overall nucleotide level

specificity (that is, the number of motif positions correctly predicted). This means that

although the motifs that MEME discovers are good, MEME completely misses other

motifs. In contrast, although motifs discovered by The Improbizer are less good, it

picks up more motifs overall. Tompa, et al. note that there are limitations to their

evaluation, due to the variations in the tested algorithms (for instance, varying as-

sumptions regarding the input data). Perhaps most importantly, because TRANSFAC

only contains eukaryotic transcription factors, the datasets used were restricted to eu-

karyotic data. It is noted that it would be beneficial to carry out a similar evaluation

using prokaryotic data. Hu, et al. [81] carry out such an evaluation (using E. coli

data) on 5 motif discovery algorithms, however MEME is the only deterministic algo-

rithm evaluated. Although this means that a comparison of deterministic algorithms

using prokaryotic data cannot be made here, Hu, et al. do compare MEME to other

motif discovery algorithms. MEME is found to have the best sensitivity and has the

highest motif level success rate. MEME is also deemed to be one of the best algo-

rithms in the test in terms of scalability (finding motifs as the input dataset becomes
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larger). Although Tompa, et al. note that there is no ‘gold standard’ for comparing

motif discovery algorithms, it is clear from the results presented by the creators of

other deterministic algorithms that MEME is the current benchmark deterministic mo-

tif discovery algorithm. This is perhaps not surprising, since MEME is one of the

oldest deterministic motif discovery algorithms and has been steadily improved since

its original description. Clearly, later motif discovery algorithms have not had as much

time to make an impact.

Model Representation

Many of the above motif discovery algorithms use similar representations of the motif

and background model. With the exception of PhyME [153], the probabilistic algo-

rithms use a PWM to represent the motif model and a similar single column vector

representing the background model. It may seem that using a PWM to represent a mo-

tif is overly simplistic and by doing so, much of the detailed features of the real-world

motif are lost. However, PWMs have been shown to be a very good approximation of

the real-world situation; along with their simplicity and readability, this makes them a

good method of model representation [114]. Some of the algorithms above use addi-

tional heuristics in order to better model DNA sequence motifs, which often conform to

known alternate forms. These alternate forms can cause problems for motif discovery

algorithms which do not include some additional heuristic to deal with them. Lawrence

and Reilly [99] note that alternate model representations for dealing with palindromic

sequences and gapped motifs can be made by changing the formulae at the heart of

their EM method, although there are no clear details on exactly how this should be

done. Bailey and Elkan [11] explain in more detail how DNA palindromes are repre-

sented in MEME. MEME models DNA palindromes by enforcing a constraint on the

parameters of corresponding columns of the PWM, while still allowing columns to be

independent. An additional heuristic allows MEME to automatically choose whether

to enforce the palindrome constraint or not, depending on whether or not it improves

the motif score function. Although The Improbizer [5] is very similar to MEME, Ao,

et al. do not mention any special representations for handling palindromic or gapped

motifs.

It is perhaps also worth noting here how the motif discovery algorithms work with

the input dataset. Most algorithms follow the method proposed by Lawrence and Reilly

[99], where given a set of input sequences and motif width W , the set of input se-

quences is split up into every possible width-W subsequence, each of which is sim-
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plistically assumed to be independent and a potential motif. However, PhyME [153]

uses a different splitting technique, parsing the input DNA sequences into a set of non-

overlapping occurrences of the motif and background models. This seems to imply

that a ‘hard’, or deterministic assignation is made to each input sequence ‘occurrence’

and not a probabilistic one.

Issues with deterministic methods

Although deterministic methods have been used successfully for motif discovery, some

limitations remain. Analysis has shown that the EM algorithm converges in a known

and predictable way towards a maximum in the likelihood function [180]. This be-

haviour would be perfectly adequate if there were a single point of maximum likeli-

hood. However, the likelihood function is seldom a smooth function with one maxi-

mum point, but usually a complex function with a number of local maxima and saddle

points, all of which can act as convergence points for the EM algorithm. In the context

of motif discovery, numerous local maxima can correspond to biologically significant

motifs when more than one motif is present in the dataset, however, ideally algorithms

should discover the most significant motif, corresponding to the global maximum point

in the likelihood function, followed by other motifs in order of significance. Algo-

rithms such as MEME [10] and PhyME [153] attempt to find the global maximum

likelihood point by running the EM algorithm from a number of different initial start-

ing parameters, but this still cannot guarantee convergence to the global maximum,

depending on the complexity of the likelihood function. Hu, et al. [81] note that

the effectiveness of a ‘multi-start’ approach is limited for large search spaces such as

those found in datasets with long sequences and that experimentation is required to

judge how much of an impact complex likelihood functions have on the performance

of motif discovery algorithms.

It seems intuitive that incorporating additional information regarding motif se-

quences will significantly improve the results of motif discovery algorithms [128].

Indeed, experiments have shown the value of incorporating various forms of additional

prior information to MEME. Bailey and Elkan [11] demonstrate that adding a heuris-

tic for automatically identifying (quasi-)palindromic motifs and adding information

regarding which motif elements share common properties (this is demonstrated using

amino acids in protein analysis but is applicable to a lesser extent in DNA) can im-

prove the ability of MEME to discover motif sequences. Bailey, et al. [9] demonstrate

that using position-specific prior distributions to incorporate additional information
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can substantially improve the results returned by MEME. However, the addition of

prior knowledge increases the complexity of the probabilistic model, which can lead

to either the E-step or the M-step, or both steps, in the EM algorithm becoming either

analytically or computationally intractable. Two relatively simple extensions of EM

attempt to address the issues of intractability in either the E-step or M-step of the EM

algorithm, as discussed in the next section.

Extensions of the EM algorithm

The expectation conditional maximization (ECM) algorithm [120] addresses the prob-

lem of an intractable M-step by carrying out several computationally simpler con-

strained maximisations of the likelihood function rather than one maximisation over

all the model parameters [25]. For example, the model parameters may be grouped

into a number of arbitrary sets, then each set maximised separately while the other

groups are held fixed. The ECM algorithm is a special case of the generalized EM

(GEM) algorithm. The GEM algorithm does not attempt to maximise the likelihood

function in the M-step, but instead aims to change the model parameters in such a way

that the likelihood function is increased (typically using some form of nonlinear opti-

misation strategy such as the conjugate gradients algorithm). It can be shown that the

GEM algorithm converges to a maximum and each iteration of the GEM algorithm is

guaranteed to increase the likelihood function. However, the GEM algorithm usually

converges significantly slower than the EM algorithm [84].

It is also possible to similarly generalise an intractable E-step of the EM algo-

rithm, by viewing both the E-step and the M-step of the EM algorithm as increasing

the same function [130]. This is particularly useful, as the E-step often includes high-

dimensional integration, which is hard to determine [25]. In this ‘incremental’ view

of the EM algorithm, known as the incremental EM (IEM) algorithm [130], the distri-

bution for only one of the model parameters is recalculated in each E-step. Again, it

can be shown that the IEM algorithm converges in the same way as the EM algorithm.

Although deterministic exact approaches are used as alternatives to the EM algorithms

in areas such as image segmentation and optical communication (GEM) and analysing

robotic sensor data (IEM), they have not so far been used in motif discovery algo-

rithms. This is likely because the other issue of EM (finding a global maximum) is

more pressing and requires alternative approaches to solve. These approaches will be

discussed in the following sections.
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2.2.3 Motif discovery algorithms based on stochastic methods

As noted above, stochastic approximate methods are a widely-used alternative to vari-

ational methods when evaluation of the posterior distribution is impossible. These

methods are collectively known as Monte Carlo methods9 [27, 115]. As noted in Sec-

tion 2.2.2, evaluation of the posterior distribution is required in order to evaluate the

expectation of the log of the complete likelihood with respect to the posterior distribu-

tion of the latent variables. Monte Carlo techniques approach this problem in a slightly

different way based on numerical sampling: the evaluation of the posterior distribution

is not of direct interest, but the evaluation of a function (for example, the expectation)

with respect to the posterior distribution is of interest. The general idea behind Monte

Carlo methods is to obtain a set of independent samples from the posterior distribu-

tion. These samples allow the required expectation to be approximated by a finite sum,

which can be calculated quite easily. This approximation gets better and better with

increasing numbers of independent samples due to the law of large numbers; given

infinite computational time, Monte Carlo methods generate exact results (the approx-

imation arising from the fact that only finite computational time is available in any

practical situation) [27]. Simple Monte Carlo strategies for evaluating the expectation

of functions such as importance sampling and rejection sampling suffer from a num-

ber of severe limitations in problems with more than one or two dimensions. In higher

dimensional problems, a framework known as Markov chain Monte Carlo (MCMC),

which scales well with increasing dimensionality is often used.

The most commonly used Monte Carlo method for motif discovery is Gibbs sam-

pling [70]. Given a complex multivariate distribution p(z) = p(z1, . . . ,zM), from which

direct sampling is impossible, Gibbs sampling allows samples to be taken from p(z)
by considering a series of conditional distributions; at each step, the value of one

of the variables zi is replaced by a value drawn from the distribution of that vari-

able conditioned on the remaining variables p(zi|z\i). For example, suppose that

p(z) = p(z1,z2,z3) and the values of the variables at step t are z(t)1 , z(t)2 and z(t)3 . At

step t+1, z(t)1 is replaced by a sample from the conditional distribution:

z(t+1)
1 ∼ p(z1|z

(t)
2 ,z(t)3 ). (2.9)

9Such methods were developed at Los Alamos during the development of the hydrogen bomb in
the late 1940s and named after the Monte Carlo Casino, where inventor Stanisław Ulam’s uncle often
gambled.
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Next, z(t)2 is replaced by a sample from the conditional distribution

z(t+1)
2 ∼ p(z2|z

(t+1)
1 ,z(t)3 ). (2.10)

Finally, z(t)3 is replaced by a sample from the conditional distribution

z(t+1)
3 ∼ p(z3|z

(t+1)
1 ,z(t+1)

2 ). (2.11)

The variables now have values z(t+1)
1 , z(t+1)

2 and z(t+1)
3 . The procedure is repeated for

steps t+2, . . . ,T . Although from the algorithm description the practicality of using

Gibbs sampling clearly depends on being able to find appropriate conditional distribu-

tions, this is usually possible [27].

Stochastic methods using coregulated genes

Gibbs sampling was first used for motif discovery by Lawrence, et al. [98, 161]. Like

the EM approach described in [99], Lawrence, et al. describe a Gibbs sampling algo-

rithm to discover protein motifs, although their algorithm is equally applicable to the

discovery of DNA motifs. Like Lawrence and Reilly’s EM-based algorithm [99] and

MEME [10], Lawrence, et al.’s algorithm iteratively updates a motif model and a back-

ground model. Indeed, it is noted that the algorithm can be seen as a stochastic analog

of the EM procedure used in deterministic algorithms [98]. The Gibbs sampling algo-

rithm also evolves a separate data structure which contains the start positions for the

best motif alignment within the dataset (the algorithm uses the OOPS sequence model).

Given a motif width W to search for, the algorithm randomly chooses potential motif

starting points a within each input sequence and uses these as initial values. Having

chosen these initial starting points, the algorithm iteratively carries out two steps. In

the first step, a single input sequence z is chosen, either randomly or by cycling through

each sequence in some order. The parameters of the motif and background models are

calculated based on the current values of a for all input sequences except z. The sec-

ond step of the algorithm considers all width-W subsequences within z to be a possible

instance of the motif and calculates the probability of each subsequence given both the

current motif and background models. A new subsequence is then chosen from z using

a weighted probability and the corresponding a updated. This procedure is carried out

iteratively to discover a motif. The main idea is that the more accurate the motif model

constructed in the first step, the more accurate the motif location calculated in the sec-

ond step will be, and vice versa. The basic algorithm is described in pseudocode in

Algorithm 2.3.
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procedure Gibbs sampling

Randomly choose initial motif starting points a

until a motif is found do
Step 1: choose sequence z at random, update θm and θb from all other a

Step 2: calculate probability of all other width-W subsequences in z

and choose new a with weighted probability

end
Print N discovered motifs

end Gibbs sampling

Algorithm 2.3: Pseudocode describing Lawrence, et al.’s Gibbs sampling algorithm for

motif discovery.

The reliance on a random ‘jump’ means that stochastic methods (including Gibbs

sampling) do not converge steadily and predictably as deterministic methods do. This

presents a problem in that it is generally difficult to tell how many iterations should

be carried out. While Gibbs sampling has no sufficient convergence criteria, necessary

convergence criteria do exist, for example, the Gelman-Rubin potential scale reduction

factor (PSRF) [69]. Gelman and Rubin’s approach to diagnosing MCMC convergence

involves obtaining several parallel Markov chains and comparing variances, between

chains and within each chain. The PSRF represents a factor of difference between

these variances; as the PSRF decreases towards 1, the chains are more likely to have

converged to the same target distribution. In their Gibbs sampling-based motif dis-

covery algorithm, Lawrence, et al. propose a similar heuristic approach based on the

recurrence of the same result using different initial conditions [98]. Like the extended

versions of MEME, Lawrence, et al.’s algorithm attempts to automatically determine

the best motif width by comparing a number of different models over different motif

widths. As noted by Bailey and Elkan [12], this cannot be done by simple comparison;

Lawrence, et al. use a similar comparison method based on the number of model free

parameters, a quantity known as the ‘information per parameter’, which allows models

over different motif widths to be compared.

Like LOGOS [181], Lawrence, et al.’s algorithm allows for simultaneous discovery

of multiple motifs, although the details of how this is done are not presented. Again,

it is argued that simultaneous discovery of multiple motifs is preferable to sequential

discovery as simultaneous discovery allows information about one motif to aid the

discovery of other motifs. The main disadvantage of Lawrence, et al.’s algorithm is
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that during the optimisation process, it can often get locked into a local maximum that

is a ‘shifted’10 version of the motif (for example, if the motif is the 8 bases starting at

position a, the algorithm can often return the 8 bases starting at position a-1 or a+1).

Lawrence, et al. suggest that this situation can be avoided by inserting a ‘shifting’

step every M iterations, comparing the likelihood of the current motif model with the

likelihood of the shifted motif model and switching to one of the shifted patterns if

it has a higher likelihood. Lawrence, et al. successfully apply their algorithm to a

number of proteins including lipocalins and prenyltransferases [98]. It has also been

used in studies including Petersen, et al. [132] and has formed the basis of other similar

motif discovery algorithms.

AlignACE (Aligns Nucleic Acid Conserved Elements, [143]) is based on Lawrence,

et al.’s Gibbs sampling algorithm but adds a number of extensions to the basic algo-

rithm. Perhaps most interestingly, simultaneous searching for multiple motifs is re-

placed by a MEME-like approach where the best motif is found and then subsequently

masked [143, 174]. Roth, et al. claim that such an approach allows for a more ef-

ficient search for subtle motifs [143]. A maximum a priori log likelihood score is

used to judge motifs discovered during the run of the algorithm; this score is used to

gain a measure for how overrepresented the motif is within the input sequences. In

a similar way to the discriminative algorithms discussed above, AlignACE provides a

measure which takes into account the whole genome sequence from which the input

sequences were taken. Again, any motifs returned should be overrepresented in the

input sequences but relatively much less common in the genes which make up the rest

of the genome [168]. Finally, AlignACE considers both strands of DNA, not just the

single strand given as input to the algorithm. This means that when potential transcrip-

tion factor binding sites are examined, either the site or its reverse complement (but

not both) are added to the current alignment [143]. Roth, et al. [143] demonstrate

AlignACE by applying to three extensively studied regulatory systems in S. cerevisiae.

Hughes, et al. [82] also used AlignACE to analyse groups of genes in the S. cere-

visiae genome; motifs found in this experiment were later confirmed by laboratory

experiments. In addition to these tests, AlignACE has been used in other experiments

including a search for motifs in E. coli by Grainger, et al. [71] and in S. cerevisiae

and E. coli in two studies by Wade, et al. [169, 170]. It is also available as a software

10Lawrence, et al. use the term ‘phase shifted’ to describe such motifs. Following Bailey and Elkan
[10], the term ‘shifted’ will be used here, as it does not carry any notions of periodicity.
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download11.

Like AlignACE, MotifSampler [166] is based on the basic Gibbs sampling algo-

rithm presented by Lawrence, et al. but makes two modifications in order to improve

results. Unlike the previously discussed motif discovery algorithms, MotifSampler

does not use a single nucleotide frequency distribution as the background model. In-

stead, MotifSampler uses a higher order Markov process to construct a background

model which is designed to better represent the data; this model has been shown to im-

prove motif discovery when using a Gibbs sampling approach [165]. While not used

in other motif discovery algorithms, Thijs, et al. [166] note that this method is used in

contemporary gene detection algorithms (including GLIMMER [44], HMMgene [93]

and GeneMark.hmm [110]). The background model is usually created using all non-

coding sequences from the full genome of the species being studied. Although this

clearly requires the full genome data to be available before the algorithm can be ap-

plied, Thijs, et al. claim that the background model can be created from only the input

dataset if required (based on the assumption that the dataset contains only non-coding

sequences). In addition to improving motif discovery, use of the higher background

model means that the algorithm runs faster, as a result of the background model re-

maining constant throughout the algorithm. This is in contrast to other motif discovery

algorithms, which simultaneously iteratively improve the background model and the

motif model. The second modification to the original Gibbs sampling approach is the

introduction of a probability distribution to estimate the number of copies of a mo-

tif in a sequence. This estimation is represented by adding another latent parameter,

which is estimated along with the motif model. By application of Bayes’ theorem, the

expected number of copies of the motif in each input sequence can be calculated. Al-

though Thijs, et al. do not explicitly mention particular sequence models, the addition

of this parameter implies the use of the TCM sequence model (see Section 2.2.1). The

MotifSampler algorithm is described in Algorithm 2.4.

Thijs, et al. demonstrate MotifSampler on two main datasets, using plant and bac-

terial data [166]. The bacterial dataset was constructed using FNR regulated genes

from six different species, including Rhodobacter and Sinorhizobium species. Motif-

Sampler was shown to successfully detect the FNR binding site with high probability.

Besides these tests, MotifSampler has been used by Le Crom, et al. to discover motif

sequences in yeast [100]. It has also been made available as a web service12.

11http://arep.med.harvard.edu/mrnadata/mrnasoft.html
12http://bioinformatics.psb.ugent.be/webtools/MotifSuite/motifsampler.php
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procedure MotifSampler

Compute mth-order background model θb from full genome data

Randomly choose initial motif starting points a

for N do (where N is the number of motifs to be found)

until a motif is found do
Step 1: choose sequence z at random, update motif model θm from all other a

Step 2: calculate probability of all other width-W subsequences in z

and choose new a with weighted probability

end
Print discovered motif

Mask discovered motif

end
end MotifSampler

Algorithm 2.4: Pseudocode describing the MotifSampler algorithm

Stochastic variants of deterministic methods

Monte Carlo methods have also been incorporated into deterministic algorithms, as an

approximation to the E-step of the EM algorithm, in a procedure known as the Monte

Carlo EM (MCEM) algorithm [173]. This algorithm takes advantage of the fact that

the expectation of a random variable (2.3) can be approximated as a finite sum over

samples from its probability distribution function, that is:

E[X ] =
∫

∞

−∞

x f (x)dx≈ 1
L

L

∑
l=1

X (l). (2.12)

This approximation becomes exact in the limit L→ ∞. In the MCEM algorithm, the

integral to be calculated in the E-step is replaced with a finite sum over a number of

samples from the posterior distribution [173, 87]:

Q (θ|θ(t))≈ 1
L

L

∑
l=1

ln p(X,Z(l)|θ). (2.13)

This sampling step (or S-step) replaces the E-step in the algorithm. The M-step re-

mains the same, but is often known as the update, or U-step. A particular instance of

the MCEM algorithm known as ‘stochastic EM’ draws just one sample in each E-step

[27]. This can be viewed as a ‘hard’ assignment of data points to either the motif

or background model. Celeux, et al. note that stochastic variations on the determin-

istic EM algorithm are generally more successful for two main reasons. Firstly, the
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stochastic perturbations resulting from the sampling step of these variations guide the

algorithm away from stable fixed points of the EM algorithm, such as saddle points and

insignificant local maxima of the likelihood function. This is achieved by allowing a

non-zero probability of accepting updated parameters with a lower likelihood than the

current parameters at each EM iteration. Secondly, the ‘underlying EM dynamics’ re-

sulting from the deterministic U-step mean that the algorithms generally converge in a

relatively small number of iterations, in comparison to full stochastic methods [37].

Stochastic EM has been utilised for motif discovery in the SEAM (Stochastic EM-

type Algorithm for Motif-finding) algorithm [23]. Here, stochastic EM is used in an

attempt to overcome the limitations inherent in the deterministic EM algorithm, pri-

marily the problem of converging to a local maximum of the likelihood function. One

clear advantage of using stochastic EM is that the basic multinomial mixture model

used in deterministic EM can be retained, while the stochastic sampling step allows

the algorithm to escape local optima of the likelihood function and discover motifs

which are statistically more significant. Notably, SEAM also modifies the determin-

istic update step of the sEM algorithm to either accept or reject the samples drawn in

the S-step, using the Metropolis algorithm to test how good the new samples are. The

use of the Metropolis algorithm in the U-step of the SEAM algorithm means that the

U-step is no longer deterministic (as in the original sEM algorithm). Therefore, while

sEM as it is originally defined may converge faster than fully stochastic approaches

(for instance, Gibbs sampling), SEAM cannot be guaranteed to have this property.

SEAM only implements the OOPS sequence model; although other sequence mod-

els are discussed, they are not implemented. Bi demonstrates the performance of

SEAM using two yeast datasets and three E. coli datasets, including the ‘gold standard’

CRP dataset [23]; like Lawrence and Reilly’s EM algorithm [99], although SEAM was

designed to discover protein motifs, it is equally applicable to the discovery of DNA

motifs. SEAM is shown to improve performance over a deterministic EM-based al-

gorithm in searching for a global optimum in the likelihood function [23]. SEAM

is not available as a software download or as a web service and has not been used

experimentally besides the tests carried out by Bi.

MCEMDA (Monte Carlo EM Motif Discovery Algorithm) [24] takes a similar ap-

proach to SEAM, but implements Monte Carlo EM rather than stochastic EM, draw-

ing three samples from each sequence in the E-step instead of one.13 Like SEAM,
13Although three samples are drawn at each iteration, only the best is used. This is not quite true to

the original spirit of MCEM, which would take an average: this approach is noted, but ultimately not
implemented as it was thought to be too inefficient.
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procedure SEAM

Randomly choose initial motif starting points z(t=0)

Calculate initial model θ and value of entropy function G(θ)

until a stationary distribution (equilibrium) do
S-step:

for each input sequence do
Compute conditional likelihood for each position, sample a position

end
Form a new sample z′, compute θ′ and G(θ′)

U-step:

Draw u∼ Unif [0,1]

Update z(t+1) = z′ if u≤ exp(−∆G)

end
Return optimal alignment z∗ and associated motif model θ∗

end SEAM

Algorithm 2.5: Pseudocode describing the SEAM algorithm

MCEMDA only implements the OOPS sequence model. Perhaps the most notable

point discussed is how to choose the number of samples to be taken at each iteration. It

is noted that if only one sample is taken, this reduces to the stochastic EM algorithm, as

implemented in SEAM. If the number of samples is increased, the algorithm behaviour

becomes increasingly deterministic (as the number of samples increases, the algorithm

tends to behave like the EM algorithm). However, it is difficult to determine a theoret-

ical value for the number of samples which should be taken, as this varies according to

the dataset used. MCEMDA is tested on a small number of motifs, including three E.

coli motifs from RegulonDB. However, it is unclear what advantage MCEMDA offers

over SEAM. Again, MCEMDA is not available as a software download or as a web

service and has not been used experimentally besides the tests carried out by Bi [24].

Algorithms capable of detecting gapped motifs

While all of the previously discussed algorithms have been successful to some extent

in detecting ungapped motifs, relatively few attempts have been made to design algo-

rithms capable of detecting gapped motifs. Bi notes that most motif finding methods

assume a contiguous motif and thus do not explore the properties of a discontinuous

structured motif [26] The main reason for this is that motif discovery becomes much
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harder when gaps are introduced, due to an ‘explosion’ in the number of possible vari-

ations [63]. In their review of motif discovery algorithms, Wei and Yu [174] note only

two probabilistic algorithms with this capability: BioProspector [107] and Co-Bind

[76]. However, Frith, et al. note a number of non-probabilistic algorithms such as

PRATT [89], SAM [83] and HMMER [55]. BioProspector and Co-Bind are discussed

below, as well as later algorithm GLAM2 [63], which was published after Wei and

Yu’s review.

BioProspector [107] is similar to MotifSampler in that it also extends Lawrence,

et al.’s Gibbs sampling algorithm by introducing a higher order background model in

order to better capture the characteristics of the local DNA environment [107]. Bio-

Prospector uses up to third order Markov background models, but also gives the option

of using a 0th order background model as used by other algorithms. Like MotifSam-

pler, BioProspector implements the TCM sequence model to allow for the case of

zero or multiple motif copies per sequence, giving more flexibility than Lawrence,

et al.’s algorithm. Liu, et al. claim that both of these additions greatly improve the

performance of the algorithm [107]. Perhaps more importantly, BioProspector also

introduces a strategy for searching for gapped motifs; rather than a single PWM rep-

resenting the motif model θm, BioProspector generally uses two PWMs (that is, θm1

and θm2). The first PWM is initialised by randomly choosing a starting point within

each sequence (as in Lawrence et al.’s algorithm); the second is then initialised using

the alignment position a fixed gap away from the first. Where the gapped motif is also

palindromic, only one PWM need be used. Wei and Yu note that this feature is impor-

tant, as gapped motifs are prevalent in prokaryotes [174]. Liu, et al. successfully use

BioProspector to find motifs in three real-world datasets: S. cerevisiae (RAP1 protein),

B. subtilis (‘TATA box’ gapped motif) and E. coli (CRP protein). BioProspector was

particularly successful in discovering the gapped TATA box motif, despite low conser-

vation in the data, using the two PWM strategy described above. This strategy was also

applied to the CRP data. While algorithms analysing this data in the past had used a

single PWM model with reasonable results, the two PWM model used by BioProspec-

tor was shown to greatly improve results [107]. Besides these tests, BioProspector has

been used by Mukherjee, et al. [127] to discover motif binding sites in yeast and is

also available as a software download14.

Co-Bind (Cooperative Binding, [76]) is specifically designed to model gapped mo-

tifs, or cooperatively acting transcription factors within close proximity to each other.

14http://ai.stanford.edu/˜xsliu/BioProspector/
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Like BioProspector, Co-Bind uses a two PWM approach to model both parts of the

gapped motif and maximises the joint likelihood of both PWMs to discover gapped

motifs. GuhaThakurta and Stormo note that such an approach is particularly useful in

the case where two halves of a gapped motif are insignificant (either in terms of prob-

ability or information content) individually, but significant when taken together. That

is, Co-Bind is able to identify both halves of gapped motifs which would not have been

found if searched for individually by conventional motif discovery algorithms. Like the

previously described Gibbs sampling algorithms, given some random initialisation, the

two PWMs are iteratively improved to detect the motif. As noted above, due to the ran-

dom nature of Monte Carlo strategies, it is very hard to decide on convergence criteria

for algorithms based on Gibbs sampling. GuhaThakurta and Stormo solve this problem

by simply running Co-Bind for a fixed number of iterations [76]. It is assumed that the

number of iterations is large enough that the algorithm will be at or near convergence

after they have been carried out. While this greatly simplifies the problem, it is clear

that the number of iterations must be chosen carefully. Too few iterations would mean

that the algorithm is far from convergence by the limit (Bishop [27] and Gamerman and

Lopes [66] demonstrate that this is entirely possible, dependent on the model and the

initial parameter values), while too many iterations would mean many wasted cycles

after convergence has been reached. GuhaThakurta and Stormo demonstrate Co-Bind

on semi-synthetic and real data extracted from the SCPD database; four sets of yeast

genes shown experimentally to be regulated by two factors were constructed. In both

tests, Co-Bind was shown to improve on the performance of BioProspector (the only

comparable algorithm) in the identification of motifs with small gaps. Co-Bind was

also shown to discover weak-signal motifs which could not be found using other motif

discovery algorithms. Co-Bind has been used experimentally by Pramila, et al. [136]

to identify motifs in yeast, which were later confirmed experimentally [75]. It is also

available as a software download15.

GLAM2 (Gapped Local Alignment of Motifs, [63]) is a generalisation of Lawrence,

et al.’s original Gibbs sampling algorithm as described above. However, GLAM2 uses

a technique known as simulated annealing to optimise the initial estimations for the

model parameters. As noted above, the original Gibbs sampling algorithm had a ten-

dency to return shifted motifs as a consequence of the random optimisation procedure

[98]. GLAM2 attempts to avoid this by using simulated annealing, which generally

increases the likelihood of the motif model but sometimes decreases it in order to es-

15http://stormo.wustl.edu/software.html
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cape from local maxima in the likelihood function. GLAM2 is novel in that as well as

allowing for longer gaps in motifs, it also allows for arbitrary insertions and deletions

of single bases within motifs. Allowing for such natural mutations is important as they

can negatively impact the result of a motif discovery algorithm. Frith, et al. demon-

strate GLAM2 by searching for previously discovered protein kinase substrate motifs

within the PROSITE protein database [150] and a gapped DNA motif in the mouse

genome [63]. GLAM2 is available as a software download16 and since 2009, GLAM2

has been used as part of the online MEME Suite [8], allowing the discovery of gapped

motifs.

Stochastic algorithms using coregulated genes and phylogenetic footprinting

Like the deterministic algorithms discussed in Section 2.2.2, stochastic algorithms

which can take advantage of phylogenetic footprinting can be effective if the rele-

vant expert knowledge is available. PhyloGibbs [149] is a Gibbs sampling algorithm

that takes phylogenetic relationships between species into account, in the same way as

the deterministic algorithms PhyME and EMnEM. In many ways, PhyloGibbs can be

seen as a stochastic analogue of PhyME, as both algorithms use the same evolutionary

model for the evolution of binding sites. PhyloGibbs and PhyME are also similar in

that the input dataset need not be already aligned (as noted earlier, EMnEM requires

a global multiple alignment as input; Siddharthan, et al. claim that, as well as being

inflexible, such an approach can adversely affect the performance of a motif discov-

ery algorithm [149]). Clearly, the main difference between these algorithms is that

PhyloGibbs uses a Gibbs sampling approach rather than an EM-like approach. This

allows the simultaneous discovery of multiple motifs, in the same way as other Gibbs

sampling-based algorithms. Like GLAM2, PhyloGibbs uses simulated annealing in

an attempt to find a global optimum in the likelihood function. Siddharthan, et al.

test PhyloGibbs on synthetic data and real data from five Saccharomyces species; Phy-

loGibbs is shown to outperform PhyME, EMnEM and benchmark non-phylogenetic

algorithm MEME. Besides these tests, PhyloGibbs has been used experimentally by

Galgano, et al. [64] to discovery motif sequences in human genes and Ferreira, et

al. [62] to discover motif sequences in tomato genes. It also available as a software

download17.

16http://acb.qfab.org/acb/glam2/
17http://www.phylogibbs.unibas.ch/cgi-bin/phylogibbs.pl
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Discussion of stochastic methods

Like the deterministic motif discovery algorithms discussed in Section 2.2.2, stochas-

tic motif discovery algorithms have some important differences despite their appar-

ent similarities. Lawrence, et al.’s basic Gibbs sampling method [98] and AlignACE

[143] both implement the OOPS sequence model. As noted above, this limits the per-

formance of the algorithm when input sequences do not contain a motif. Later algo-

rithms MotifSampler and BioProspector implement the TCM sequence model, which

improves the flexibility of the algorithm in such situations and allows an estimate for

the distribution of motifs within the dataset to be made.

MotifSampler [166] and BioProspector [107] are also novel in that they implement

a higher order (usually 3rd order) Markov background model rather than the single

nucleotide frequency distribution models used by other motif discovery algorithms.

Although there are some drawbacks to using a Markov background model (most no-

tably that the full genome data must be available in order to create such a model),

doing so improves the performance of an algorithm in motif discovery. Algorithmic

efficiency is also improved as the background model need only be calculated once then

reused, rather than be initially estimated and then updated at each iteration of the algo-

rithm [166]. This is particularly important in stochastic algorithms, where in general,

many more iterations are required in comparison to deterministic algorithms. The use

of higher order Markov background models is discussed further in Section 6.3.

While all of the stochastic algorithms discussed above are capable of searching

for multiple motifs, there are differences in their methods for doing so. The original

Gibbs sampling method introduced by Lawrence, et al. [98] makes use of the fact

that stochastic algorithms allow for simultaneous discovery of multiple motifs, that

is, several PWMs are initialised and iteratively updated to discover a number of dif-

ferent motifs. However, later algorithms based on Lawrence, et al.’s approach use a

MEME-like method, repeatedly discovering a single motif and then probabilistically

masking or erasing it. While Lawrence, et al. [98] claim that simultaneous discovery

of multiple motifs allows knowledge of one motif to inform discovery of other motifs,

it is subsequently claimed by Roth, et al. that sequential discovery allows for more

efficient motif discovery, particularly with regard to subtle motifs [143].

Recent studies have suggested that gapped motifs are reasonably common, espe-

cially in prokaryotes [174, 63]. This agrees with analysis of the dataset of characterised

E. coli motifs used in this study (Section 3.2); of the 20 motifs within this dataset, 8
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were judged to be gapped, based on observation of the information content profile of

the motif. The ability to discover gapped as well as ungapped motifs is therefore de-

sirable. The novel two-PWM approach introduced by BioProspector [107] appears to

work well and has also been implemented in Co-Bind [76] and GLAM2 [63]. How-

ever, it is still limited in that the gap between the two PWMs is fixed. Removing this

constraint would allow more flexible discovery of gapped motifs; it is possible that this

could be implemented in a similar way to the automatic determination of motif width

procedure in other motif discovery algorithms.

Published evaluations of stochastic motif discovery algorithms

The evaluation of motif discovery algorithms carried out by Tompa, et al. [168] in-

cluded AlignACE [143] and MotifSampler [166] (as well as GLAM2’s predecessor

GLAM). In tests using TRANSFAC data, AlignACE was found to be comparable to

MEME [10] in almost every aspect other than sensitivity and nucleotide-level correla-

tion in the mouse and yeast datasets, where MEME performed slightly better. Motif-

Sampler outperformed MEME in nucleotide-level correlation in the yeast dataset, gain-

ing the second best score (after Weeder). However, MotifSampler performed slightly

worse than MEME and AlignACE in terms of site-level precision. No explanation

is given for this, however it is noted that in contrast to the other evaluated algorithms,

MotifSampler’s performance increased when using real data rather than synthetic data.

It is possible that this is due to the introduction of a higher order Markov background

model, which may work better on the background sequences in real data rather than the

randomly generated background in synthetic data. GLAM was shown to be worse than

almost all other algorithms, although Tompa, et al. point out that it is possible that

GLAM returned more potential motifs than other algorithms, returning more weak

motifs and decreasing its relative performance. As noted above, the datasets used by

Tompa, et al. were restricted to eukaryotic data. Hu, et al. [81] carry out tests using

prokaryotic data on AlignACE, MotifSampler and BioProspector. Like Tompa, et al.,

Hu, et al. show that AlignACE is comparable to MEME and that MotifSampler and

BioProspector perform slightly better in terms of motif discovery. It is possible that

this is a result of the higher order Markov background model. Hu, et al. also compare

the performance of the algorithms on datasets of different sizes to compare scalability.

BioProspector and MEME are shown to be the best probabilistic algorithms when in-

put sequence length increases; however, Hu, et al. note that in general, Gibbs sampling

strategies tend to become inefficient with increasing sequence length. Given that Bio-
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Prospector is also a Gibbs sampling-based algorithm, this conclusion may need further

investigation.

Model representation

In general, the stochastic algorithms discussed represent the motif and background

models in the same way as the deterministic algorithms discussed in Section 2.2.2. As

noted, the simplicity and readability of PWMs make them an ideal representation of

both models. The stochastic algorithms capable of discovering gapped motifs intro-

duce a variation on this representation, using two PWMs to represent a gapped motif

(each PWM represents one of the contact points of the dimer). This two-PWM ap-

proach, introduced by Liu, et al. and implemented in BioProspector [107], has been

used successfully in the discovery of gapped motifs. The success of this approach has

led other algorithms to incorporate similar approaches. As noted above, current im-

plementations of the two-PWM approach for gapped motif discovery are somewhat

limited in that the ‘gap’ between PWMs is fixed, either as part of the algorithm or as a

user-defined parameter. However, in practice, the size of the gap may be variable, al-

though constrained to a narrow range due to the shape of the DNA molecule. It would

therefore be desirable for the width of the gap to be automatically determined, in much

the same way as MEME and other algorithms automatically determine the width of

a motif sequence. Of the algorithms capable of discovering gapped motifs, only Bio-

Prospector mentions using a different representation for palindromic motifs. In this

case, only one PWM is required. It is assumed here that similar model constraints

are used in BioProspector as in MEME and that some heuristic process exists which

allows BioProspector to change between model representations as required.

Issues with stochastic methods

Although stochastic methods such as Gibbs sampling remove some of the limitations

of deterministic methods such as the EM algorithm, they bring their own limitations.

Unlike the EM algorithm, which has been shown to converge in a known and pre-

dictable way [180], stochastic methods are unpredictable in their convergence due to a

random step [27]. This random step clearly helps to avoid local optima but also makes

it hard to determine when convergence has occurred. This is a very difficult problem in

general; Robert and Casella [141] summarise convergence diagnostic techniques. Con-

cerns over convergence detection and the time taken to reach convergence led Xing,
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et al. to use variational methods over stochastic methods in LOGOS [181]. The time

taken to reach convergence is also a valid concern; Bishop notes that the Metropolis-

Hastings algorithm (of which Gibbs sampling is a special case) can have very slow

convergence rates depending on the distribution [27]. Although more sophisticated

Monte Carlo methods (for example, slice sampling [129] or hybrid Monte Carlo) have

been introduced in an attempt to increase the rate of convergence, the nature of the

random processes which make up these methods means that it is hard to choose one

technique which is consistent and predictable in its convergence in the same way that

deterministic methods are.

2.3 Comparing probabilistic approaches to

motif discovery

It can be seen from the above discussions that each of the three algorithmic techniques

have both advantages and disadvantages. Although used in LOGOS [181], variational

inference is ruled out here for a number of reasons. Firstly, stochastic methods can

more closely approximate the true distribution given enough time (based on the law

of large numbers), in comparison with variational inference, which will always remain

approximate. How close this approximation is to the true distribution depends heav-

ily on the chosen approximating distribution (recall that this must be chosen from the

set of tractable distributions). The choice of the approximating distribution is usually

based on some assumption of how the complex posterior distribution factorises; given

this, variational methods are deemed to lack generality for the situation proposed. If

prior knowledge is to be incorporated into the model, some assumption must also be

made about the form of this knowledge. Replacing some form of prior knowledge

with another form of prior knowledge means that the original assumptions regarding

the factorisation must be updated and this may involve changing the approximating dis-

tribution, possibly every time another form of knowledge is incorporated; clearly, one

system which can be used regardless of the knowledge to be incorporated is desirable.

Deterministic and stochastic motif discovery algorithms generally have comple-

mentary advantages and disadvantages. Deterministic algorithms have the advantages

that they are relatively simple and are well understood, converging to a solution in a

steady, well-defined way. This convergence is usually reasonably fast and always con-

verges to the same model, given the same input data. However, the converged model
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may be a local optimum of the likelihood function and therefore the returned motif

may not be the most significant in the dataset. Deterministic algorithms are also lim-

ited in that it is hard to incorporate prior knowledge in anything but the simplest cases.

They also only admit sequential discovery of multiple motifs, although as discussed,

this may be a better strategy than simultaneous motif discovery. Stochastic algorithms

are also relatively simple (although perhaps slightly more complex than determinis-

tic algorithms) and perhaps have the most important advantage that they are able to

escape local optima in order to return the most significant motif in the dataset. The

stochastic methods discussed also have the advantage that they are much more flexible

in incorporating prior knowledge; doing so has been shown to improve results. Unlike

deterministic algorithms, stochastic algorithms allow either sequential or simultaneous

motif discovery and are the only current algorithms that can handle gapped motifs (al-

though a similar deterministic implementation of the method for discovering gapped

motifs may be possible). The main potential disadvantages of stochastic algorithms

stem from the random processes at the heart of the method. Most importantly, conver-

gence of stochastic algorithms is not well defined and generally much slower than con-

vergence of deterministic algorithms; is is entirely possible that stochastic algorithms

spend an unpredictable number of iterations jumping around the search space, effec-

tively leaving the algorithm on a plateau before converging. It should also be noted that

unlike deterministic algorithms, stochastic algorithms generally give slightly different

results given the same input data and additional parameters for different random seeds.

This means that such algorithms usually have to be run multiple times to achieve a

consensus of results.

Stochastic EM appears to be a promising approach for motif discovery. Unlike

deterministic EM, the sampling step in stochastic EM allows the algorithm to escape

local maxima of the likelihood function and return improved results. Given that it

is expected that the likelihood function in the motif discovery problem is generally

complex and multimodal, this would appear to be advantageous.

The ‘ideal’ motif discovery algorithm

Given the above discussion, it is possible to construct a list of desirable features that

would be included in the ‘ideal’ motif discovery algorithm.

• Implementation of the TCM sequence model - Implementation of this model

would remove the requirement that each input sequence contain at most one
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motif occurrence, which cannot be guaranteed when analysing uncharacterised

data.

• Incorporation of prior knowledge - A framework for easily incorporating vari-

ous forms of prior knowledge would be most beneficial; ideally, this would allow

prior knowledge to be simply ‘slotted in’. The HMDM model as used to encode

knowledge of motif-level site dependencies in LOGOS could be viewed as a

form of prior knowledge. Other forms of knowledge may be possible.

• Ability to discover multiple motifs - Again, this makes sense as it is assumed

the dataset contains multiple motifs. Ideally, multiple motifs will be returned

in order of significance. Consensus seems to suggest that sequential discovery

is the best strategy for discovering multiple motifs; it can be implemented in

either deterministic or stochastic algorithms and seems to have an advantage

over simultaneous discovery of multiple motifs.

• Automatic determination of motif width - Implementation of this would elim-

inate one of the user parameters. This will require some model comparison

method, such as that used in MEME.

• Control of the false discovery rate - In evaluation, discriminative algorithms

and ‘cautiously run’ algorithms such as Weeder show the effect of controlling

the number of false positives, either by comparison with random sequences or

by more sophisticated methods.

• Implementation of a higher order background model - Using a higher or-

der Markov background model has been shown to improve the results of al-

gorithms such as MotifSampler and BioProspector. By constructing the back-

ground model only once, this is also likely to improve sequential motif discovery

and algorithmic efficiency.

• Ability to discover gapped motifs - If it is assumed that gapped motifs are

prevalent, it makes sense to implement a method for their discovery. This may

require a stochastic approach. It would also be desirable to implement a heuristic

that automatically switches between gapped and non-gapped motifs.



Chapter 3

Data

This chapter describes the datasets created for the evaluation of the motif discovery al-

gorithms, beginning with the construction of large data collections of DNA sequences

containing motifs at varying conservations (Section 3.1). This is followed by a descrip-

tion of the E. coli data collection; these datasets contain previously characterised motif

sequences from the RegulonDB database (Section 3.2). An additional collection of

prokaryotic datasets created from ChIP data is then described in Section 3.3. Section

3.4 presents a collection of E. coli intergenic sequence data; this data is used in order

to create more realistic synthetic datasets and is used in the evaluation of a higher order

Markov background model in Section 6.3. Section 3.5 gives a brief description of the

Alphaproteobacteria class of bacteria and provides a summary of the Alphaproteobac-

teria data used in the study. Particular attention is paid to the operon structure of this

data, whose motifs have not been previously characterised. Finally, additional datasets

are described in Section 3.6.

3.1 Realistic synthetic data

Five realistic synthetic data collections, each consisting of 1,000 datasets, were created

in order to test the MCOIN heuristic presented in Section 4.4 and the MITSU algorithm

presented in Chapter 5. Each dataset contained 20 input sequences of length 200 nu-

cleotides (nt). Input sequences were created by extracting 200nt from the EcoGene

[144] database of E. coli intergenic sequences, representing ‘background’ positions.

Datasets were created so that each data collection had different mean levels of motif

conservation, ranging from 0.51 to 2.00 bits/col: Motif positions within each sequence

were chosen at random and a synthetic motif inserted. Synthetic motifs were cre-
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ated by choosing nucleotides (A, C, G, T) at random and randomly mutating positions

in the motif occurrences so that the levels of conservation at each position could be

controlled. This ‘point mutation’ method of constructing datasets allows motif con-

servation to be varied and has also been used in other studies (for example, by Li, et

al. [102]). A motif width of 12nt was used in all synthetic datasets. A comparison

of methods for determining motif width in Bembom, et al. used datasets containing

real (human) motifs with a minimum mean information content of 0.76 bits/col [21];

the realistic synthetic data used in this study contains many motifs at lower levels of

motif conservation, as analysis of known E. coli TFBS motifs indicated that significant

numbers of motifs had mean conservation levels of less than 0.76 bits/col.

3.2 E. coli datasets

Twenty datasets incorporating known E. coli TFBS sequences were created (Table

3.1). Background sequences were created as for realistic synthetic data. Positions

within each 200nt input sequence were chosen at random and a known TFBS sequence

inserted. Known E. coli TFBS sequences were extracted from RegulonDB [65] for in-

sertion in the background positions. One notable concern was that, if the sole evidence

for the TFBS sequences was computational prediction, this may introduce some cir-

cularity to the predictions made in this study. That is, the predictions made in this

study may simply reproduce results which were previously computationally predicted.

However, TFBS data from RegulonDB is supported by literature with experimental

evidence; in the majority of cases this evidence stems from classical experimentation

such as DNA footprinting and/or site mutation expression analysis and is not supported

solely by human or computational inference1.

Each motif occurrence is embedded in one background sequence, hence the num-

ber of motif occurrences in RegulonDB defined the number of input sequences. The

mean number of input sequences was 15, ranging from 2 to 99 input sequences (me-

dian: 9). Using known motif occurrences in this manner preserves the true biological

conservation of the motif. The mean motif conservation was 1.13 bits/col, ranging

from 0.49 to 2.00 bits/col (median: 1.04 bits/col). The mean motif width was 16nt,

ranging from 10 to 21nt (median: 17nt).

The data collection was split into two groups based on mean information content

1The experimental evidence for the TFBS sequences extracted from RegulonDB is provided as sup-
plementary material in [91].
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High conservation Low conservation

Name W ∗ N Name W ∗ N

Ada 13 4 ArgR 18 35

CaiF 16 8 DeoR 16 7

CueR 19 3 FruR 18 18

IlvY 21 4 Fur 19 99

LacI 21 3 GntR 20 17

MalI 12 2 MalT 10 20

MelR 18 11 Nac 15 18

MetR 13 7 RcsB 14 11

PurR 16 20

SoxR 19 2

TorR 10 10

XylR 18 4

Table 3.1: Summary of characterised E. coli TFBS motifs used in tests with real data.

For each motif, transcription factor name is given, along with known width (W ∗, nt) and

number of motif occurrences (N).

per column. The split was made at a value of 1 bit/col, producing a ‘high conservation’

group containing 12 datasets and a ‘low conservation’ group containing 8 datasets.

In the ‘high conservation’ group, the mean number of input sequences was 7, ranging

from 2 to 20 input sequences. The median number of input sequences was 4. The mean

motif conservation was 1.36 bits/col, ranging from 1.02 to 2.00 bits/col (median: 1.31

bits/col). The mean motif width was 16nt, ranging from 10 to 21nt (median: 17nt).

In the ‘low conservation’ group, the mean number of input sequences was 28, ranging

from 7 to 99 input sequences (median: 18). The mean motif conservation was 0.78

bits/col, ranging from 0.49 to 0.99 bits/col (median: 0.79 bits/col). The mean motif

width was 16nt, ranging from 10 to 20nt (median: 17nt). Table 3.1 illustrates some of

the diversity within the chosen E. coli motifs. The sequence logos of selected motifs

(Figure 3.1) illustrate the diversity in terms of motif conservation.

Eisen has noted that “transcription factors rarely contact a single base without in-

teracting with adjacent bases” [56]. It follows that there should be some correlation

between positions of high information content within a motif. That is, motif positions

with a high information content will frequently be adjacent to positions which also have
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Figure 3.1: Diversity of E. coli motifs: Sequence logos for four E. coli motifs illustrate

the diversity of motifs in terms of information content profile. (a) FruR has a number of

perfectly conserved positions in the centre of the motif, flanked by positions which are

less well-conserved. (b) The gapped motif of DeoR illustrates the opposite: two well-

conserved segments are separated by an unconserved ‘gap’. (c) All positions in the

MalI motif are perfectly conserved. (d) The Nac motif has few well-conserved positions.

a high information content and similarly, positions with a low information content will

frequently be neighboured by positions which also have a low information content.

This correlation in positional information content has been shown in eukaryotic motifs

from the TRANSFAC database [56]. Figure 3.2 confirms that this correlation is also

present in the characterised motifs within the E. coli datasets (Pearson product-moment

correlation coefficient: r = 0.55, p < 2.20× 10−16). As the information content of a

given motif position increases, the mean information content of its neighbouring po-

sitions also increases. The importance of this clustering for motif discovery will be

noted in Chapters 4 and 5.

3.3 Diverse prokaryotic datasets from ChIP data

In order to create a more diverse database from current genome-wide data, additional

datasets containing previously characterised motifs from a range of prokaryotic species

were constructed. One particular motivation for including these additional datasets is

that they ensure that results are not unique to E. coli motifs in particular and that tested

methods are widely applicable to prokaryotic TFBS motifs. The motifs in this collec-

tion were determined through ChIP methods. As with the E. coli motifs described in

Section 3.2, the prokaryotic motifs used here are generally supported by experimental

evidence such as electrophoretic mobility shift assays (EMSA). It is noted that the use

of ChIP methods alone is not a solution to the circularity problem mentioned in Section

3.2, as many studies which have used ChIP methods for motif discovery simply per-
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Figure 3.2: Information content for a given motif position vs. the mean information con-

tent of the neighbouring positions within known E coli motifs. A small amount of jitter

has been added in order to help distinguish multiple data points at the same coordi-

nates. The least squares regression line is printed in black.
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form computational discovery (generally using MEME or AlignACE) on the (∼500nt)

peaks returned by ChIP analysis.

Species Name W ∗ N

E. coli CRP 22 34

E. coli LexA 20 25

E. coli PurR 16 28

E. coli RutR 16 19

V. cholerae Fur 21 55

V. cholerae RpoN 15 37

M. tuberculosis DosR 18 24

M. tuberculosis LexA 18 23

B. subtilis Spo0A 12 94

Table 3.2: Summary of known prokaryotic TFBS motifs used in tests with real data. For

each motif, the species and transcription factor name is given, along with known width

(W ∗, nt) and number of motif occurrences (N).

Nine datasets incorporating known prokaryotic motifs discovered by ChIP meth-

ods were created (Table 3.2). Motifs from diverse species including E. coli [72, 170,

39, 147], the Gammaproteobacterium Vibrio cholerae [42, 52], the Actinobacterium

Mycobacterium tuberculosis [111, 156] and the Bacillus Bacillus subtilis [123] were

used. Background sequences for the E. coli datasets were created as for the datasets

described in Section 3.2. Background sequences for other species were created by ran-

domly choosing nucleotides, altering the weighting to reflect GC-content as required.

Again, positions within each 200nt input sequence were chosen at random and a known

TFBS sequence inserted.

As with the E. coli datasets, each known motif occurrence is embedded in one

background sequence, hence the number of occurrences for each motif defined the

number of input sequences; the mean number of input sequences was 38, ranging from

19 to 94 input sequences (median: 28). Again, the use of known motif occurrences

allows the true motif conservation to be retained. The mean motif conservation was

0.99 bits/col, ranging from 0.56 to 1.25 bits/col (median: 1.04 bits/col). The mean

motif width was 16nt, ranging from 10 to 22nt (median: 16nt). Like the E. coli TFBS

motifs, the prokaryotic motifs display a great diversity, as demonstrated in Figure 3.3.



3.4. Intergenic data 63

(a)

0.0

1.0

2.0

b
it

s
 

5′
A
G
C
T

A
CGC

A
T
A

T
A
C

T
G
A

A
T
C

T
C
AC

T
A
G

A
T

G
T

T
C

T
GAG

A
T

G
A
T

3′

(b)

0.0

1.0

2.0

bi
ts

 

5′
A
C
TGGT

A
C

C
G
T
A

A
T
C

A
GA

C
C
A
T

C
A
T

C
A
T

A
T

C
T

T
G

G
A
C

3′

(c)

0.0

1.0

2.0

b
it

s 
5′
C
A
T

C
A
G
T

A
T
C
G

G
AC

A
T
C

G
A

TA
T
C

A
C
T

T
A
C
G

T
G

A
C
T

A
T
C

G
C
A

T
G
A

3′

(d)

0.0

1.0

2.0

b
it

s
 

5′
A
T

T
G
A

A
G

T
GGT

C
A

A
C

GG
A
TT

A GTC
AG
T
C

T
C

G
C
T

3′

Figure 3.3: Diversity of prokaryotic motifs: Sequence logos for four TFBS motifs illus-

trate the diversity of motifs in terms of information content profile. (a) The M. tuber-

culosis LexA motif is reasonably well-conserved at all positions. (b) The V. cholerae

RpoN motif is clearly gapped, with two well-conserved sections separated by a number

of unconserved positions. Both the E. coli RutR motif (c) and the M. tuberculosis DosR

motif (d) display high levels of palindromicity.

3.4 Intergenic data

As noted in Section 3.1, background positions in the realistic synthetic datasets were

created by extracting E. coli intergenic sequences from the EcoGene database [144].

Retaining the actual intergenic sequences creates more realistic test data in comparison

to randomly choosing nucleotides with given probabilities. 2,509 intergenic sequences

were extracted; although the majority of these sequences were relatively short, there

were some longer sequences. The minimum sequence length was 47nt and the maxi-

mum length was 960nt; the mean sequence length was 172.98nt. Figure 3.4 presents a

histogram of intergenic sequence lengths.

Intergenic sequences account for approximately 9.5% of the E. coli genome. Anal-

ysis of the intergenic sequences shows that there are some significant differences be-

tween the E. coli intergenic sequences and the full E. coli genome, in terms of nu-

cleotide distribution. For example, the GC-content of the intergenic sequences is cal-

culated to be 40.3%, in comparison to the full genome, which has a GC-content of

50.7%. There are also some noticeable differences in the frequencies of particular di-

and trinucleotides. Perhaps unsurprisingly given the differences in GC-content, the

frequencies of the AA, TA and TT dinucleotides are increased in the intergenic se-

quences: p(Xi, j = A|Xi, j−1 = A), p(Xi, j = A|Xi, j−1 = T ) and p(Xi, j = T |Xi, j−1 = T )

are increased to 0.3553, 0.2461 and 0.3557 from 0.2958, 0.1858 and 0.2975 respec-

tively. Similarly, p(Xi, j = C|Xi, j−1 = G) and p(Xi, j = G|Xi, j−1 = C) are decreased to

0.2537 and 0.2163 from 0.3262 and 0.2939 respectively. The relative frequency of

the rarest trinucleotide in the full genome, CTA, increased in the intergenic sequences:
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Figure 3.4: Histogram of E. coli intergenic sequence lengths.
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p(Xi, j = A|Xi, j−1 = T,Xi, j−2 = C) increased from 0.1134 to 0.1755. The most sig-

nificant change was for the trinucleotide CTG: p(Xi, j = G|Xi, j−1 = T,Xi, j−2 =C) de-

creased from 0.4359 in the full genome to 0.2928 in the intergenic sequences. This

difference in nucleotide distribution has been noted previously; poly-A, poly-T and

poly-AT repeats have been shown to occur often in intergenic sequences [86]. These

repeats can present a problem when attempting to discover motifs with a high AT-

content.

The differences in nucleotide (and particularly di- and trinucleotide) composition

between the full genome and the intergenic sequences motivates the construction of

a background model which is more complex than a simple 0th order, or ‘frequency’,

model. It is a reasonable assumption that transcription factor binding sites to be dis-

covered will be located within intergenic regions. Therefore, it has been argued that

a background model constructed using intergenic data should be more successful at

modelling positions which are not part of motif occurrences (for example, by Thijs, et

al. [166]). The construction, implementation and evaluation of more complex back-

ground models in the context of both deterministic and stochastic EM is described in

Section 6.3.

3.5 Alphaproteobacteria datasets

Alphaproteobacteria is a class of bacteria in the phylum Proteobacteria. Its members

are very diverse, with a wide range of genome sizes and metabolic abilities. Genome

sizes, measured in megabasepairs (Mb), vary from intracellular pathogens such as

Rickettsia prowazekii (1.1Mb) and Bartonella quintana (1.58Mb), through average size

genomes in Caulobacter crescentus (4.02Mb) and Sinorhizobium meliloti (3.65Mb) to

the large genome of Bradyrhizobium japonicum (10.3Mb). The GC-content of Al-

phaproteobacterial genomes also varies widely, from 57-70%. Over the past decade,

genome sequences for around 260 Alphaproteobacterial species2 have been determined

and show great diversity in genome size and architecture; this is partially due to the

rapid adaptation of the bacteria to deal with different habitats3.

Genes are not necessarily conserved between closely-related species and as few

as 33% of genes in one species may have a homolog in another Alphaproteobacterial

2For which their genomes have been completely sequenced and published, according to the GOLD
database.

3Due to their great diversity, the Proteobacteria are named after Proteus, the Greek god of the sea
capable of assuming many different forms [158].
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species. There are also many species-specific genes, reflecting adaptation to particular

environments. Looking at the correlation between increase in genome size and number

of genes in a particular functional group there are dramatic increases in numbers for

genes involved in adaptation (for example, energy metabolism, transport and regula-

tory functions) whilst some species with some of the smallest genomes have virtually

no regulatory genes [30]. Approximately 200 protein-coding and non-coding genes

are present in all Alphaproteobacterial genomes [30].

Many Alphaproteobacterial species are aquatic; this includes the SAR11 clade and

Rhodobacter species, which together are estimated to comprise as much as 30-50% of

all bacteria in the ocean surface waters. The well characterised C. crescentus is a fresh

water aquatic bacterium.

Despite their differences, many of the free living Alphaproteobacteria found in

microaerobic habitats share the following characteristics: a capacity for autotrophic

growth, multiple and complex chemotaxis systems, iron transport systems, adaptations

for growth at low nutrient concentrations and the capacity for membrane invagination.

The photosynthetic bacteria Rhodobacter sphaeroides, Rhodobacter capsulatus and

Rhodospirillum centenum are all capable of autotrophic growth with hydrogen.

3.5.1 Selected Alphaproteobacteria species

Regarding the aims of this project, the heterogeneity of the Alphaproteobacterial species

presents a number of potential problems, hence the choice of Alphaproteobacterial

species to be studied is important. As noted above, genome sizes are highly diverse;

this becomes important when selecting species for testing, as small genomes will have

both fewer regulatory genes and fewer target genes. Ideally, the majority of species

selected for analysis should contain the regulatory region of interest (the regulators

studied are described in Section 3.5.2) and a reasonable number of target genes. The

diversity of metabolism within the Alphaproteobacteria means that regulatory genes

for particular functions (such as photosynthesis) will be restricted to a narrow evo-

lutionary group. A phylogenetic analysis of Alphaproteobacterial species should aid

selection of species in this case. However, it should be noted that there is also a bias

in terms of the species that have been sequenced and therefore are available for study:

particular species with specific functions of interest (for instance, photosynthetic bac-

teria and symbionts) will be highly represented amongst the available genomes.

Table 3.3 presents the species initially selected for study. Two species from each of
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the Acidiphilium, Bartonella, Brucella, Caulobacter, Ehrlichia, Gluconacetobacter,

Methylobacterium, Orientia, Rhizobium, Rhodopseudomonas, Rickettsia, Wolbachia

and Zymomonas genera were chosen, covering a wide range of species from the two

main Alphaproteobacterial subclasses, Caulobacteridae and Rickettsidae (the remain-

ing subclass, Magnetococcidae, contains relatively few species).

The genes coding for the prokaryotic 16S ribosomal RNA (16S rRNA) are often

used in phylogenetic analysis due to their high level of conservation between species.

Alignment of these genes allows the construction of a phylogenetic tree, which shows

the inferred evolutionary relationships between species; species joined together in the

tree are inferred to have descended from a common ancestor. The 16S rRNA se-

quences for the 26 Alphaproteobacterial species in Table 3.3 were extracted from the

greengenes database [47]; these sequences were then aligned using ClustalW and a

phylogenetic tree (Figure 3.5) created using the neighbour-joining method in MEGA

[164]. While Ferla, et al. [61] have noted there is some disagreement on the Alphapro-

teobacterial phylogeny, the constructed tree displays a high degree of similarity with

accepted Alphaproteobacterial phylogenetic trees [77, 177], with clear clusters corre-

sponding to biological order. The tree in Figure 3.5 is observed to split into two main

branches based on subclass, with one branch comprising the genera from the Rickettsi-

dae subclass (Ehrlichia, Orientia, Rickettsia and Wolbachia) and the other comprising

the genera from Caulobacteridae.

3.5.2 Alphaproteobacterial TFBS motifs

In this section, two datasets containing previously characterised Alphaproteobacterial

motifs are constructed. These datasets are used to validate the motif discovery algo-

rithm developed in Chapter 5 (MITSU). A further dataset containing uncharacterised

data is also constructed; MITSU will be applied to this dataset in order to make some

novel predictions about the TFBS motif and consensus sequence for this previously

uncharacterised regulator.

Characterised Alphaproteobacterial motifs

The characterised CtrA and FnrL motifs will be used to validate MITSU. Construction

of datasets containing these motifs is outlined below; in the cases of CtrA and FnrL, the

genes controlled by these regulators have been determined through previous studies.
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Species NCBI Accession number

Acidiphilium cryptum str. JF5 CP000697

Acidiphilium multivorum str. AIU301 AP012035

Bartonella clarridgeiae str. 73 FN645454

Bartonella quintana str. Toulouse BX897700

Brucella abortus str. S19 CP000887 - CP000888

Brucella melitensis str. M28 CP002459 - CP002460

Caulobacter crescentus str. CB15 AE005673

Caulobacter sp. str. K31 CP000927

Ehrlichia canis str. Jake CP000107

Ehrlichia ruminantium str. Welgevonden CR925678

Gluconacetobacter diazotrophicus str. PAI 5 AM889285

Gluconobacter oxydans str. 621H CP000009

Methylobacterium extorquens str. CM4 CP001298

Methylobacterium nodulans str. ORS 2060 CP001349

Orientia tsutsugamushi str. Boryong AM494475

Orientia tsutsugamushi str. Ikeda AP008981

Rhizobium etli str. CFN 42 CP000133

Rhizobium leguminosarum bv trifolii str. WSM 2304 CP001191

Rhodopseudomonas palustris str. BisA53 CP000463

Rhodopseudomonas palustris str. BisB18 CP000301

Rickettsia rickettsii str. Iowa CP000766

Rickettsia typhi str. Wilmington AE017197

Wolbachia pipientis str. wPip AM999887

Wolbachia sp. str. wRi CP001391

Zymomonas mobilis str. ATCC 10988 CP002850

Zymomonas mobilis str. ZM4 ATCC 31821 AE008692

Table 3.3: Species name and NCBI accession number for the 26 Alphaproteobacte-

rial species initially selected for study. While the majority of the Alphaproteobacteria

have only one chromosome, Brucella abortus str. S19 and Brucella melitensis str.

M28 both have two chromosomes. Accession numbers for plasmids are not shown.

Note that Methylobacterium extorquens str. CM4 is synonymous with Methylobacterium

chloromethanicum str. CM4. As of 2005, the former name is recommended; however,

gene locus IDs remain based on the latter (beginning ‘Mchl’).
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Figure 3.5: Phylogenetic tree created from the 16S rRNA regions of the 26 selected

Alphaproteobacterial species listed in Table 3.3. The tree was created using the

neighbour-joining method in MEGA. The numbers on the nodes indicate bootstrap

scores (100 replicates) observed in the analysis. The phylogenetic tree splits into two

main branches corresponding to the Alphaproteobacterial subclasses Caulobacteridae

and Rickettsidae (dotted line)
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CtrA The cell cycle transcriptional regulator A (CtrA) transcription factor is a well-

characterised one-component regulator found in the Alphaproteobacteria but not the

Gammaproteobacteria. It plays an important role in controlling the cell cycle in the

model organism Caulobacter crescentus. CtrA has been shown to, either directly or

indirectly, control at least 25% of the 553 cell cycle-regulated genes in C. crescentus

[96]. CtrA is also thought to be important in chemotaxis [97]. The phosphorylated

form of the CtrA transcription factor directly controls genes involved in cell division,

DNA methylation and flagellar and pili biogenesis; it is also known to repress the

initiation of DNA replication [96]. The CtrA transcription factor is known to bind to

DNA as a dimer, with a well-defined consensus sequence TTAA-N7-TTAAC; in addi-

tion, Laub, et al. have identified a second (ungapped) consensus sequence TTAACCAT

which is thought to be a possible extension of the 3’ half-site [96].

Laub, et al. report 55 genes which have been experimentally determined to be di-

rectly regulated by CtrA in C. crescentus CB15 [96]. These genes can be hierarchically

clustered based on their expression profiles, yielding five clusters. Almost all of the

genes in the two largest clusters (28 out of 30 genes in clusters D and E in Laub, et

al.’s study) have expression profiles which suggest that their induction is driven pre-

dominantly by CtrA [96]. Two datasets named CtrA-cD and CtrA-cE were created

using the 200nt upstream sequence for each gene in clusters D and E, respectively;

each cluster contained 15 genes. A third dataset, CtrA-cDE, was created by combin-

ing the datasets for clusters D and E. Tables A.1 and A.2 in Appendix A (pages 203

and 204) list the gene product annotations for the genes in the CtrA-cD and CtrA-cE

datasets, respectively. The results of experiments using the CtrA datasets are presented

in Section 6.1.

FnrL The E. coli fumarate and nitrate reductase (FNR) transcription factor is im-

portant in the expression of a number of genes involved in anaerobic metabolism.

FnrL is a one-component homologue of the FNR regulator found in the Alphapro-

teobacteria [54, 184]. In combination with the PrrBA two-component system and the

AppA/PpsR antirepressor/repressor system, FnrL has been shown to control expres-

sion of photosynthesis genes in R. sphaeroides [184]. Like CtrA, the FnrL transcrip-

tion factor is known to bind to DNA as a dimer, with a canonical consensus sequence

TTGAT-N4-ATCAA [54].

Dufour, et al. note that 63 genes have been experimentally determined to be regu-

lated by FnrL in R. sphaeroides 2.4.1 [54]. Table A.3 in Appendix A (page 205) lists
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the gene product annotations for these genes. The genome of R. sphaeroides consists

of two chromosomes and five naturally occurring plasmids. Chromosome 1 is much

larger than chromosome 2; 57 of the genes in Table A.3 are found in chromosome 1 but

only 6 in chromosome 2. Following Dufour, et al., the FnrL-63 dataset was constructed

by extracting the 300nt upstream sequences for each gene.

A subset of 20 genes from the above dataset have also been shown to be part of

the predicted core FNR regulon that is conserved across many Alphaproteobacterial

species [54]. Table A.4 in Appendix A (page 207) lists the gene product annotations

for these genes. As before, the 300nt upstream sequences for each gene were extracted

to construct the FnrL-20 dataset.

Having determined the R. sphaeroides genes which are part of the predicted core

FNR regulon, datasets were created using the homologous genes in the Alphapro-

teobacterial species selected for study (Table 3.3). The Alphaproteobacterial genera

Bartonella, Ehrlichia, Rickettsia and Wolbachia are known not to possess proteins in

the CRP/FNR protein superfamily and were therefore not studied [54]. Further, it is

interesting to search for the FnrL motif in species which were not studied by Dufour,

et al.; this leaves 7 species, namely A. multivorum str. AIU301, B. abortus str. S19,

B. melitensis str. M28, O. tsutsugamushi str. Boryong, O. tsutsugamushi str. Ikeda,

Z. mobilis str. ATCC 10988 and Z. mobilis str. ZM4 ATCC 31821. The genes used

in these datasets are listed in Appendix A. The results of experiments using the FnrL

datasets are presented in Section 6.1.

Previously uncharacterised Alphaproteobacterial motifs

The NtrX regulator is chosen for tests aimed at the discovery of novel motifs from

previously uncharacterised data. The lack of previously identified regulatory regions

and motifs makes the construction of datasets more complex. Although the regulons

controlled by NtrX are known, a list of NtrX-controlled genes has not been determined.

NtrX The nitrogen assimilation transcription regulator (NtrYX) two-component sys-

tem is involved in the adaptation of B. abortus to oxygen-limited conditions [35]. The

NtrY sensor protein is activated under low oxygen tension and the regulatory protein

NtrX regulates the expression of denitrification genes, allowing respiration of nitrate

instead of oxygen [45]. NtrX also regulates the expression of high-affinity cytochrome

oxidases, which enable efficient respiration at low oxygen concentration [109]. High-

affinity cytochrome oxidases are known to be essential for bacterial virulence under
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anaerobic conditions. In Brucella species, the NtrYX pathway is involved in bacterial

virulence, causing brucellosis4. NtrYX has also been linked to the virulence of the

Betaproteobacterium Bordetella bronchiseptica.

In other bacterial species, NtrX is known to regulate several additional systems. For

instance, in the photosynthetic bacterium Rhodobacter capsulatus, it has been demon-

strated that NtrX is involved in the regulation of the photosynthetic genes puf and puc,

which are upregulated under low oxygen tension [73]. Recent proteomic analysis of

Brucella suis has shown that NtrX increases the expression of several enzymes in-

cluding those involved in fatty acid oxidation and citrate fermentation [40]. A recent

study has also suggested that NtrX plays a part in the expression of genes controlling

flagellum formation in Sinorhizobium meliloti [171]. The NtrX transcriptional acti-

vator protein is found reasonably widely in Alphaproteobacteria; however, neither a

regulatory motif nor a consensus sequence has yet been defined for NtrX.

Homologous genes were determined using the BLAST tool. The non-redundant

protein sequences of the selected Alphaproteobacterial species were searched using a

protein-protein BLAST (blastp, version 2.2.29+). The default parameters were used,

with the exception of the ‘expect threshold’ parameter, which was set to 10−8, in order

to ensure that only close homologs were returned. If no results were returned for a

particular species, no homologs were judged to be present.

Homologs of the ntrX gene were revealed to be present in 24 of the Alphapro-

teobacteria selected for study (Table 3.3). Only the species in the Wolbachia genus did

not have a homologous gene. Having determined the species in which ntrX is present,

further BLAST searches were carried out in order to discover genes known to be regu-

lated by ntrX. Dahouk, et al. [40] have determined ten regulons to be regulated by ntrX

in Brucella suis, namely those coding for nitrate reductase (narGHIJK operon), nitrite

reductase (nirKV operon), nitric oxide reductase (norBCDEFQ operon), nitrous ox-

ide reductase (nosDFLRXYZ operon), cytochrome oxidases (cydCDAB and ccoNOQP

operons), nitrogen fixation (nifA), succinoglycan (exoB, exoY, exoK, exoN, and exoU),

flagellin (flaA and flaD) and the regulatory genes visN and visR. Although these reg-

ulons have been determined in Brucella suis, it is unlikely that all of the Alphapro-

teobacteria selected for study contain all of these genes. BLAST protein searches are

used to determined which regulons are present in each species. Beyond determining

whether a species contains ntrX-regulated genes, it is also important to determine the

4Also known by many other names, including Malta fever, Mediterranean fever and Rock fever of
Gibraltar (in humans) and Bang’s disease (in animals).
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order of these genes, particularly in cases where genes form part of an operon (the

operon mechanism is described in Section 1.2). In such cases, the ntrX binding site

is most likely to be upstream of the first gene in the operon. However, this gene need

not be the same in all species, therefore extra care is required in order to determine the

upstream sequences likely to contain motif occurrences. Following Dufour, et al. [54],

operon predictions were obtained from the VIMSS database5, where they were pre-

dicted using the computational method for predicting prokaryotic operons described

by Price, et al. [137].

Homologs of the narG (nitrate reductase) gene were determined to be present in

six of the Alphaproteobacteria selected for study (Table 3.4). narG was determined to

be one of several subunits in the nar operon, although not necessarily the first; narK is

determined to be the first gene in the operon equally often. It is noted that the operon

is also often predicted to include the surA gene (coding for peptidyl-prolyl cis-trans

isomerase) and a gene coding for a hypothetical protein; it is unclear whether these

genes are genuinely part of the nar operon, or just predicted to be part of the operon .

The nirK (nitrite reductase) gene was found in four of the Alphaproteobacterial

species (Table 3.5). The nirK gene is predicted to work alone, instead of as part of an

operon.

The norB (nitric oxide reductase) gene is found in three species (Table 3.6). A

clear nor operon is only observed in R. etli str. CFN 42; however, the structure of

the predicted operon in B. abortus str. S19 suggests that the clpA/B gene may be

synonymous with norQ and that the first unnamed gene in B. abortus str. S19 and R.

palustris str. BisA53 (denoted ‘?’) is norC. Similarly, it is possible that the second

unnamed gene in R. palustris str. BisA53 is norQ.

Similarly, the nosD (nitrous oxide reductase) gene was only found in three species

(Table 3.7). The operon structure is more complex in this case, although the first gene

in the operon is nosR for both Rhodopseudomonas species. As for narG above, it is

unclear whether the hypothetical protein predicted as part of the operon in B. abortus

S19 is genuinely part of the nos operon. If not, the first gene would again be nosR.

The cydC (cytochrome oxidase) gene is found widely in the selected Alphapro-

teobacterial species, occurring in 11 species (Table 3.8). It is noted that the cyd operon

occurs twice in A. cryptum str. JF-5, suggesting that the genes have been duplicated.

However, the gene product annotation for each occurrence is different, which sug-

gests that while the duplicated genes may have once had the same function, they have

5www.microbesonline.org
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Species Gene product annotation Locus ID Operon

B. abortus str. S19 NarG, respiratory nitrate reduc-

tase, alpha subunit

BAbS19 II08330 narKGYJIsurAhp

B. melitensis str. M28 nitrate reductase subunit alpha BM28 B0294 narKGHJIsurAhp

M. nodulans str. ORS

2060

nitrate reductase subunit alpha Mnod 2128 narGYJIsurAhp

Caulobacter sp. str.

K31

nitrate reductase subunit alpha Caul 3864 narKKGYJIsurAhp

A. cryptum str. JF-5 nitrate reductase subunit alpha Acry 1581 narGYJIsurAnarK

A. multivorum str.

AIU301

respiratory nitrate reductase sub-

unit alpha

ACMV 16270 narGYJVhphp

Table 3.4: Alphaproteobacterial species determined to contain narG genes. Genes

coding for hypothetical proteins are denoted ‘hp’.

Species Gene product annotation Locus ID Operon

B. abortus str. S19 Copper-containing nitrite reductase precursor BAbS19 II08720 nirK

B. melitensis str. M28 Copper-containing nitrite reductase precursor BM28 B0251 nirK

R. palustris str. BisA53 nitrite reductase, copper-containing RPE 4071 nirK

R. etli str. CFN 42 nirK nitrite reductase RHE PF00525 nirK

Table 3.5: Alphaproteobacterial species determined to contain nirK genes.

Species Gene product annotation Locus ID Operon

B. abortus str. S19 Cytochrome c oxidase, subunit I BAbS19 II08830 ?norBclpA/BnorD

R. palustris str. BisA53 cytochrome c oxidase, subunit I RPE 0621 ?norB?

R. etli str. CFN 42 nitric oxide reductase protein RHE PF00516 norCBQD

Table 3.6: Alphaproteobacterial species determined to contain norB genes. Unnamed

genes are denoted ‘?’.

Species Gene product annotation Locus ID Operon

B. abortus str. S19 Carbohydrate binding and

sugar hydrolysis

BAbS19 II08560 hpnosRZDccmAnosYLapbE

R. palustris str.

BisB18

periplasmic copper-binding RPC 0429 nosRZDccmAnosYLapbE

R. palustris str.

BisA53

periplasmic copper-binding

protein

RPE 3096 nosRZDccmAnosYLapbE

Table 3.7: Alphaproteobacterial species determined to contain nosD genes. Genes

coding for hypothetical proteins are denoted ‘hp’.
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evolved to perform different functions. The operon structure is highly variable. Al-

though cydDC is a common operon structure (either on its own or in combination with

other genes), cydC occurs without cydD in three species.

Similar to cydC, the ccoN (cytochrome oxidase) gene is found widely in the se-

lected Alphaproteobacterial species, occurring in eight species (Table 3.9). Although

the operon structure is similarly complex, ccoN is usually the first gene within the

operon. It is noted that the operon appears twice in both M. nodulans str. ORS 2060

and R. etli str. CFN 42. In the latter case, the operon appears once in plasmid D and

once in plasmid F; however, the genes have different names. This suggests that the

fixNOQP genes in R. etli str. CFN 42 (and B. abortus str. S19) are synonymous with

the ccoNOQP genes. The operons in the Methylobacterium and Rhodopseudomonas

species all contain ccNO?cccA. Based on the operon structure of the remaining species,

the unnamed gene (marked ‘?’) may be ccoQ and similarly cccA may be synonymous

with ccoP. As with the analysis of narG, it is unclear whether the napH, fixH, zntA and

fixS genes are genuinely part of the cco operon, or incorrectly predicted to be part of

the operon.

Homologs of the nifA (nitrogen fixation) gene were determined to be present in

eight of the Alphaproteobacteria selected for study (Table 3.10). Like the nirK gene,

the nifA gene was confirmed not to be part of an operon.

Of the exo genes, only exoN, exoU and exoY were found, occurring in only one of

the selected species. Results for the flagellin-coding genes flaAD and the regulatory

genes visNR were inconclusive in the Alphaproteobacterial species initially selected for

study. A BLAST protein search for the Campylobacter flaA gene (performed as de-

scribed above) produced some partially conserved proteins, but no significant results.

Similarly, a search for visN returned a partial match against the LuxR gene family in

the Rhizobium species, but no significant results in the initially selected species. The

exo, fla and vis regulons were therefore not studied further.

The occurrences of regulons controlled by ntrX in the selected Alphaproteobacte-

rial species are summarised in Table 3.11. Datasets were constructed for the nar, nir,

nor, nos, nif, cyd and cco regulons using the 200nt upstream region for the genes de-

termined to be first in each operon in each species. Tables A.5-A.11 in Appendix A list

the gene product annotations for the genes in these datasets. Further datasets were con-

structed using combinations of these datasets. A cytochrome oxidase dataset consisting

of 22 sequences was constructed by combining the cyd and cco datasets. A ‘nitrogen’

dataset was constructed by combining the nar, nir, nor, nos and nif datasets. This
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Species Gene product annotation Locus ID Operon

G. diazotrophicus str. PAI 5 Nif-specific regulatory protein GDI 0429 nifA

M. extorquens str. CM4 Fis family transcriptional regulator Mchl 1311 nifA

M. nodulans str. ORS 2060 Fis Family transcriptional regulator

NifA

Mnod 4004 nifA

R. etli str. CFN 42 transcriptional regulator NifA protein RHE PD00228 nifA

R. leguminosarum bv. trifolii

str. WSM2304

Fis family transcriptional regulator Rleg2 5044 nifA

R. palustris str. BisA53 transcriptional regulator NifA RPE 4543 nifA

R. palustris str. BisB18 transcriptional regulator NifA RPC 4475 nifA

Zymomonas mobilis str.

ZM4 ATCC 31821

transcriptional regulator NifA ZMO1816 nifA

Table 3.10: Alphaproteobacterial species determined to contain nifA genes.

dataset consisted of 24 sequences. The results of experiments using the NtrX datasets

are presented in Section 6.1.
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Species Regulator

nar nif nir nor nos cyd cco

A. cryptum str. JF-5 + +

A. multivorum str. AIU301 + +

B. clarridgeiae str. 73

B. quintana str. Toulouse

B. abortus str. S19 + + + + + +

B. melitensis str. M28 + +

C. crescentus str. CB15 + +

Caulobacter sp. str. K31 + + +

E. canis str. Jake

E. ruminantium str. Welgevonden

G. diazotrophicus str. PAI 5 + +

G. oxydans str. 621H +

M. extorquens str. CM4 + +

M. nodulans str. ORS 2060 + + +

O. tsutsugamushi str. Boryong

O. tsutsugamushi str. Ikeda

R. etli str. CFN 42 + + + + +

R. leguminosarum bv. trifolii str. WSM2304 + + +

R. palustris str. BisA53 + + + + + +

R. palustris str. BisB18 + + + +

R. rickettsii str. Iowa

R. typhi str. Wilmington

Z. mobilis str. ATCC 10988

Z. mobilis str ZM4 ATCC 31821 +

Table 3.11: Occurrences of NtrX-controlled regulons in selected Alphaproteobacterial

species.



80 Chapter 3. Data

3.6 Additional datasets

3.6.1 CRP

The well-known cAMP receptor protein (CRP) dataset has been used in several studies

of motif discovery algorithms (for example, those by Bi [23], Lawrence, et al. [98] and

Stormo and Hartzell [162]). Briefly, CRP is a prokaryotic transcription factor that is

important in the regulation of genes involved in energy metabolism. The CRP dataset

consists of 18 sequences, each of which is 105nt in length. The dataset contains 24

CRP binding sites determined either by footprinting experiments or sequence similar-

ity to confirmed binding sites; each sequence in the dataset contains one or two sites.

Each binding site is 22nt in width. The mean motif conservation is calculated to be 0.48

bits/col; however, it is noted that this value does not account for the motif structure.

The CRP transcription factor is known to bind as a dimer, with consensus sequence

N3-TGTGA-N6-TCACA-N3. The known binding site motif is shown in Figure 3.6.

Mean conservation is calculated here to be 0.91 bits/col in the 5’ conserved region and

0.74 bits/col in the 3’ conserved region.

0.0

1.0

2.0

b
it

s 

5′
A
T

G
A
T

A
C
T

T
G

A
T

T
A
G

T
G
A

T
G
A

G C
G
T

T
A
C

G
A

T
A
C

G
A A

T
A
T

3′

Figure 3.6: CRP motif sequence logo constructed from the 24 binding sites contained

in the CRP dataset.

3.6.2 MalI/SoxR

In order to test the ability of MITSU to discover multiple motifs within a single

dataset, a small dataset containing the E. coli MalI and SoxR motifs was created. The

MalI/SoxR dataset is the union of the individual datasets created in Section 3.2, con-

sisting of two sequences containing occurrences of the MalI motif and two sequences

containing occurrences of the SoxR motif. As noted in Table 3.1, the MalI motif is 12nt

in width and the SoxR motif is 19nt in width. Both motifs are perfectly conserved.



Chapter 4

Improving deterministic motif

discovery algorithms

This chapter examines the theoretical issues and derivations of the deterministic EM

algorithm in its application to motif discovery, starting with a basic explanation of how

EM is used to solve the motif discovery problem. This is followed by a definition of

the EM expressions used in these algorithms, including a discussion of how different

sequence models affect these expressions (Sections 4.1 and 4.2). Existing implemen-

tations of deterministic motif discovery algorithms have several areas which require

improvement. Section 4.3 addresses the fact that implementations of the EM algo-

rithm for motif discovery often assume that all input sequences (that is, a number of

promoter regions upstream of coregulated genes) are of equal length. This is solved by

generalising the EM expressions, allowing input sequences to have unequal lengths at

the expense of slightly more complex expressions. Having explored how the alterna-

tive statistical assumptions about the distribution of motif occurrences impact on the

EM calculations, Section 4.4 turns to a practical issue in motif discovery that cannot

be addressed by modifying the statistical model: that of choosing the most likely motif

width. A novel heuristic (named MCOIN) for determining motif width is presented;

experimental results show that MCOIN improves on the current most popular method

(E-value of the resulting multiple alignment) as a predictor of motif width.

The general EM algorithm is explained in Section 2.2.2. Briefly, some initial val-

ues for the model parameters (θ) are estimated, then two steps are repeatedly carried

out. In the expectation step, or E-step, the current parameter values are used to evalu-

ate the (posterior) probability of the latent data (Z) given the observed data (X). This

probability is then used in the maximisation step, or M-step, to reestimate the parame-
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ters. The E-step and M-step are repeated until the parameter values converge, or until

a fixed number of iterations have been carried out.

The EM algorithm is used in the context of motif discovery as follows: The initial

values for the motif model (that is, the initial PWM parameters) are estimated. In the

OOPS and ZOOPS models, this estimation is often carried out by choosing a motif

start point at random for each input sequence and then counting the numbers of each

nucleotide at each motif position, creating a consensus model from these start points.

Alternatively, the initial model may be created by maximum likelihood (effectively

a consensus over all W -mers in the dataset). For each width-W subsequence in the

dataset, the E-step of the algorithm calculates the probability of that subsequence be-

ing an occurrence of the motif, based on the current motif model parameters. This

procedure can be viewed as estimating the position of occurrences of the motif within

the input dataset. The M-step reestimates the model parameters by maximising the ex-

pected value of the log likelihood function. That is, the model parameters are adjusted

in order to maximise the log likelihood given the current estimates for the motif posi-

tions within the input dataset. These two steps are repeated iteratively; the algorithm is

deemed to have converged when there is very little (or no) change in the motif model

parameters between subsequent iterations, or equivalently, if there is no change in the

estimated motif positions between subsequent iterations.

As noted in Section 2.2.2, the EM Q function is the expected value of the complete

data (that is, {X,Z}) log likelihood function. Both steps of the EM algorithm depend

on the Q function: the E-step of the algorithm requires calculating the parameters of

the Q function; Q is then maximised in the M-step. The ability to define the Q func-

tion is therefore of prime importance in the EM algorithm. The Q function generally

becomes more complex with increasing model complexity. This will be illustrated in

the context of motif discovery by the Q functions for the OOPS and ZOOPS models.

The original OOPS and ZOOPS model expressions were defined by Bailey and

Elkan [6, 10]. Here, they are updated, generalised and presented in a notation that

remains consistent when extended for use with the stochastic EM-based algorithm for

motif discovery developed in Chapter 5.
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4.1 Expectation-Maximisation expressions

for the OOPS model

The OOPS sequence model assumes that there is exactly one motif occurrence in each

input sequence. This means that for each sequence, W positions will be part of the

motif occurrence and all other positions may be treated as background. The condi-

tional probability of sequence Xi given the hidden variables is defined as the product of

probabilities over the W positions within the motif (θm: recall that these values are the

PWM parameters) and the remaining background positions (θ0) within that sequence.

Assuming that the motif occurs at position j in sequence Xi, the conditional probability

of sequence Xi given the hidden variables is defined as:

p(Xi|Zi, j = 1,θ), ∏
l∈∆i, j

∏
k∈L

θ
I(Xi,l=k)
0,k

W

∏
m=1

∏
k∈L

θ
I(Xi, j+m−1=k)
m,k . (4.1)

where the indicator variables select the relevant model parameters according to the ob-

served nucleotide at the position in question and ∆i, j denotes the background positions

(that is, all positions not contained within the motif occurrence). It is assumed for

simplicity that all input sequences are of equal length; the number of possible motif

positions within each sequence is represented as M. It is also assumed that the prior

distribution of motif start sites within a sequence is uniform, that is:

p(Zi, j = 1|θ) = p(Zi, j = 1),
1
M
. (4.2)

The complete data joint probability can be written:

p(X ,Z|θ) =
N

∏
i=1

p(Xi,Zi|θ)

=
N

∏
i=1

p(Xi|Zi,θ) p(Zi|θ)

=
N

∏
i=1

[
M

∏
j=1

p(Xi|Zi, j = 1,θ)Zi, j
1
M

]
, (4.3)

where (4.3) takes advantage of the fact that all Zi, j in a sequence will be 0 apart from

one; that is, only one position in a sequence will be a motif start point. Since taking

logs transforms a product into a sum, the log likelihood function for the complete data

is therefore:

ln p(X ,Z|θ) =
N

∑
i=1

[
ln
(

1
M

)
+

M

∑
j=1

Zi, j ln p(Xi|Zi, j = 1,θ)

]
(4.4)
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and the Q function is the expected value of the log likelihood function, with respect to

the conditional distribution of Z given X under the current estimate of parameters θ(t):

Q (θ|θ(t)) = EZ|X ,θ(t) [ln p(X ,Z|θ)]

= EZ|X ,θ(t)

[
N

∑
i=1

{
ln
(

1
M

)
+

M

∑
j=1

Zi, j ln p(Xi|Zi, j = 1,θ)

}]

=
N

∑
i=1

{
ln
(

1
M

)
+

M

∑
j=1

EZ|X ,θ(t)
[
Zi, j
]

ln p(Xi|Zi, j = 1,θ)

}
. (4.5)

Z(t)
i, j is defined as the expected probability of a motif start point at position j in sequence

i:

Z(t)
i, j , EZ|X ,θ(t)

[
Zi, j
]

= 1 · p(Zi, j = 1|Xi,θ
(t))+0 · p(Zi, j = 0|Xi,θ

(t))

= p(Zi, j = 1|Xi,θ
(t)). (4.6)

Substituting definition (4.6) into (4.5) gives:

Q (θ|θ(t)) =
N

∑
i=1

{
ln
(

1
M

)
+

M

∑
j=1

Z(t)
i, j ln p(Xi|Zi, j = 1,θ)

}
, (4.7)

the expression for the EM Q function in the OOPS model. Bailey and Elkan continue

by summing out the prior term and rearranging to give:

Q (θ|θ(t)) =

[
N

∑
i=1

M

∑
j=1

Z(t)
i, j ln p(Xi|Zi, j = 1,θ)

]
+N ln

1
M
. (4.8)

The expression for the EM Q function given by Keles, et al. [90] is the same as that in

Equation 4.8 (with the omission of the N ln 1
M term) and is described as being ‘up to

a constant’; as will be noted, this term is indeed invariant with respect to θ and can be

ignored for the purposes of EM.

4.1.1 E-step

The E-step of the EM algorithm requires the evaluation of the probability of the latent

data p(Z|X ,θ(t)). That is, p(Zi, j = 1|Xi,θ
(t))≡ Z(t)

i, j must be evaluated for each position

in each input sequence. This can be carried out by making use of (4.1); using Bayes’

theorem, Z(t)
i, j is defined as:

Z(t)
i, j =

p(Xi|Zi, j = 1,θ(t))

∑
M
j=1 p(Xi|Zi, j = 1,θ(t))

, (4.9)

for all i ∈ {1, . . . ,N} and j ∈ {1, . . . ,M}.
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4.1.2 M-step

The M-step of the EM algorithm requires the maximisation of the Q function (4.7) in

order to determine new parameter values. The prior term (∑N
i=1 ln 1

M ) is invariant with

respect to θ and so can be ignored. Therefore, an analytical solution maximising:

Q (θ|θ(t)) =
N

∑
i=1

M

∑
j=1

Z(t)
i, j ln p(Xi|Zi, j = 1,θ) (4.10)

is required. Substituting (4.1) into (4.10) gives:

Q (θ|θ(t)) =
N

∑
i=1

M

∑
j=1

Z(t)
i, j ln

{
∏

l∈∆i, j

∏
k∈L

θ
I(Xi,l=k)
0,k

W

∏
m=1

∏
k∈L

θ
I(Xi, j+m−1=k)
m,k

}

=
N

∑
i=1

M

∑
j=1

Z(t)
i, j

{
∑

l∈∆i, j

∑
k∈L

I(Xi,l = k) ln θ0,k

+
W

∑
m=1

∑
k∈L

I(Xi, j+m−1 = k) ln θm,k

}
(*)

=
N

∑
i=1

M

∑
j=1

Z(t)
i, j ∑

l∈∆i, j

∑
k∈L

I(Xi,l = k) ln θ0,k

+
N

∑
i=1

M

∑
j=1

Z(t)
i, j

W

∑
m=1

∑
k∈L

I(Xi, j+m−1 = k) ln θm,k (4.11)

Note that (*) is equivalent to the expression for the Q function given by Keles, et al.

To simplify the expansion (4.11), the expected counts for each nucleotide k ∈L at each

position in the motif (m = 1, . . . ,W ) and the background (m = 0) can be defined:

Nm,k ,

∑
N
i=1 ∑

M
j=1 Z(t)

i, j ∑l∈∆i, j I(Xi,l = k), m = 0,

∑
N
i=1 ∑

M
j=1 Z(t)

i, j I(Xi, j+m−1 = k), m 6= 0.
(4.12)

Substituting (4.12) into (4.11) gives:

Q (θ|θ(t)) = ∑
k∈L

N0,k ln θ0,k +
W

∑
m=1

∑
k∈L

Nm,k ln θm,k

=
W

∑
m=0

∑
k∈L

Nm,k ln θm,k. (4.13)

Maximisation of (4.13) with respect to θ is achieved by maximising separately for each

m ∈ 0, . . . ,W and taking advantage of Gibbs’ inequality, where it can be shown that for

two (discrete) probability distributions f and g:

argmax
g

f ln g = f . (4.14)
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θm is already a (multinomial) probability distribution and Nm can be changed into this

form by normalising over k. The parameter updates of the M-step are therefore the

normalised ratio of expected nucleotide counts:

θ
(t+1)
m,k =

Nm,k

∑k∈L Nm,k
, (4.15)

for m ∈ {0, . . . ,W} and k ∈ L .

4.2 Expectation-Maximisation expressions

for the ZOOPS model

The ZOOPS model assumes that each input sequence either contains exactly one oc-

currence of the motif, or no occurrences of the motif. The ZOOPS model accounts for

this by introducing an additional indicator variable which indicates whether a particu-

lar input sequence contains a motif occurrence or not. The new indicator variable Qi

is defined as Qi , ∑
M
j=1 Zi, j. That is, Qi = 1 if sequence i contains a motif occurrence

and 0 otherwise. The OOPS model then becomes a special case of the ZOOPS model

where all input sequences contain a motif occurrence. If sequence i contains a motif

occurrence, the conditional probability of i given the hidden variables is the same as in

the OOPS model:

p(Xi|Zi, j = 1,θ), ∏
l∈∆i, j

∏
k∈L

θ
I(Xi,l=k)
0,k

W

∏
m=1

∏
k∈L

θ
I(Xi, j+m−1=k)
m,k . (4.16)

As in the OOPS model, (4.16) is the product of probabilities over the W positions

within the motif and the remaining background positions. The conditional probability

for a sequence which does not contain a motif occurrence is also defined as the prod-

uct of probabilities, this time using background probabilities for all positions within

sequence i:

p(Xi|Qi = 0,θ),
Li

∏
l=1

∏
k∈L

θ
I(Xi,l=k)
0,k , (4.17)

where Li is the length of input sequence i. As in the OOPS model, a uniform distribu-

tion of start sites within a sequence is assumed. If the prior probability of a sequence

containing a motif occurrence is defined as γ, it follows from the assumption of equal

input sequence length that the prior probability of any position being a motif start point

is:

λ , p(Zi, j = 1|θ) = γ

M
. (4.18)
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For simplicity the model parameters are now collected and denoted as φ = (θ,γ). It

is noted that the model parameters now include the prior probability of a sequence

containing a motif occurrence, in addition to the motif and background models from

the OOPS model. The complete data joint probability can be written as:

p(X ,Z|φ) =
N

∏
i=1

p(Xi,Zi|φ)

=
N

∏
i=1

p(Xi|Zi,φ) p(Zi|φ)

=
N

∏
i=1

[(
M

∏
j=1

p(Xi|Zi, j = 1,θ)Zi, j

)
× p(Xi|Qi = 0,θ)(1−Qi)

×λ
Qi× (1− γ)(1−Qi)

]
. (4.19)

As in the OOPS model, (4.19) takes advantage of the fact that all Zi, j in a sequence will

be 0 apart from one. The first term in (4.19) is the expression for a sequence containing

a motif occurrence (4.16). The second term is the expression for a sequence without a

motif occurrence (4.17). Only one of these terms will be used, depending on the value

of Q for sequence i. If Qi = 0, then all Zi, j will be 0, cancelling the first term and

using the second. If Qi = 1, then Zi, j = 1 for some j and the first term is used while

the second term is cancelled. This cancelling works similarly for the prior terms. Note

that the prior term for positions in a sequence was 1/M before as every sequence had

a motif occurrence. Now only γ of sequences contain a motif, the prior on positions

within a sequence is γ/M = λ (and the prior term for a sequence not containing a motif

is 1−γ, from above). The log likelihood function for the complete data may be written:

ln p(X ,Z|φ) =
N

∑
i=1

(
M

∑
j=1

Zi, j ln p(Xi|Zi, j = 1,θ)

)

+
N

∑
i=1

(1−Qi) ln p(Xi|Qi = 0,θ)

+
N

∑
i=1

Qi ln λ+
N

∑
i=1

(1−Qi) ln (1− γ). (4.20)

Again, Z(t)
i, j is defined as the expected probability of a motif start point at position j in

sequence i:

Z(t)
i, j , EZ|X ,φ(t)

[
Zi, j
]

= 1 · p(Zi, j = 1|Xi,φ
(t))+0 · p(Zi, j = 0|Xi,φ

(t))

= p(Zi, j = 1|Xi,φ
(t)), (4.21)



88 Chapter 4. Improving deterministic motif discovery algorithms

and, as Qi is dependent on Zi, j, Q(t)
i is defined as the expected probability of sequence

i containing a motif occurrence (this reduces to a sum of the relevant Z(t)
i, j values):

Q(t)
i , EZ|X ,φ(t) [Qi]

=
M

∑
j=1

EZ|X ,φ(t)
[
Zi, j
]

=
M

∑
j=1

Z(t)
i, j . (4.22)

The Q function is the expected value of the log likelihood function (4.20), with respect

to the conditional distribution of Z given X under the current estimate of parameters

θ(t):

Q (φ|φ(t)) = EZ|X ,φ(t) [ln p(X ,Z|φ)]

= EZ|X ,φ(t)

[
N

∑
i=1

(
M

∑
j=1

Zi, j ln p(Xi|Zi, j = 1,θ)

)

+
N

∑
i=1

(1−Qi) ln p(Xi|Qi = 0,θ)

+
N

∑
i=1

Qi ln λ+
N

∑
i=1

(1−Qi) ln (1− γ)

]
.

=
N

∑
i=1

(
M

∑
j=1

EZ|X ,φ(t)[Zi, j] ln p(Xi|Zi, j = 1,θ)

)

+
N

∑
i=1

(1−EZ|X ,φ(t)[Qi]) ln p(Xi|Qi = 0,θ)

+
N

∑
i=1

EZ|X ,φ(t)[Qi] ln λ

+
N

∑
i=1

(1−EZ|X ,φ(t)[Qi]) ln (1− γ)

=
N

∑
i=1

(
M

∑
j=1

Z(t)
i, j ln p(Xi|Zi, j = 1,θ)

)

+
N

∑
i=1

(1−Q(t)
i ) ln p(Xi|Qi = 0,θ)

+
N

∑
i=1

Q(t)
i ln λ+

N

∑
i=1

(1−Q(t)
i ) ln (1− γ), (4.23)

where (4.21) and (4.22) have been substituted as required. This is equivalent to the

expression given by Bailey and Elkan and by Keles, et al.
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4.2.1 E-step

As in the OOPS model, the E-step requires the evaluation of the probability of the

latent data p(Z|X ,θ), that is, Z(t)
i, j for each position. Again, Bayes’ theorem is used to

define Z(t)
i, j in terms of (4.16) and (4.17):

Z(t)
i, j =

p(Xi|Zi, j = 1,θ(t))λ(t)

p(Xi|Qi = 0,θ(t))(1− γ(t))+∑
M
j=1 p(Xi|Zi, j = 1,θ(t))λ(t)

, (4.24)

for all i ∈ {1, . . . ,N} and j ∈ {1, . . . ,M}.

4.2.2 M-step

The M-step of the EM algorithm requires the maximisation of the Q function (4.23)

in order to find new values for the parameters (φ). To simplify the problem, it is noted

that Q (φ|φ(t)) can be split into two terms; the first relying only on θ and the second

relying only on γ (recalling that λ can be expressed as a function of γ). Maximisation

of Q (φ|φ(t)) can be achieved by maximising separately over each term. The first term

in Q (φ|φ(t)):

N

∑
i=1

(
M

∑
j=1

Z(t)
i, j ln p(Xi|Zi, j = 1,θ)

)
+

N

∑
i=1

(1−Q(t)
i ) ln p(Xi|Qi = 0,θ) (4.25)

requires maximisation over θ. Substituting (4.16) and (4.17) gives:

N

∑
i=1

(
M

∑
j=1

Z(t)
i, j ln

{
∏

l∈∆i, j

∏
k∈L

θ
I(Xi,l=k)
0,k

W

∏
m=1

∏
k∈L

θ
I(Xi, j+m−1=k)
m,k

})

+
N

∑
i=1

(1−Q(t)
i ) ln

{
Li

∏
l=1

∏
k∈L

θ
I(Xi,l=k)
0,k

}

=
N

∑
i=1

(
M

∑
j=1

Z(t)
i, j

{
∑

l∈∆i, j

∑
k∈L

I(Xi,l = k) ln θ0,k +
W

∑
m=1

∑
k∈L

I(Xi, j+m−1 = k) ln θm,k

})

+
N

∑
i=1

(1−Q(t)
i )

{
Li

∑
l=1

∑
k∈L

I(Xi,l = k) ln θ0,k

}
. (4.26)

Rearranging and grouping the ‘motif’ and ‘background’ terms together yields:

N

∑
i=1

(
M

∑
j=1

Z(t)
i, j ∑

l∈∆i, j

∑
k∈L

I(Xi,l = k) ln θ0,k +(1−Q(t)
i )

Li

∑
l=1

∑
k∈L

I(Xi,l = k) ln θ0,k

)

+
N

∑
i=1

M

∑
j=1

Z(t)
i, j

W

∑
m=1

∑
k∈L

I(Xi, j+m−1 = k) ln θm,k (4.27)
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As in the OOPS model, the expected counts for each nucleotide k ∈ L at each position

in the motif (m = 1, . . . ,W ) and the background (m = 0) can be defined in order to

simplify the expression:

Nm,k ,

∑
N
i=1

[
∑

M
j=1 Z(t)

i, j ∑l∈∆i, j I(Xi,l = k)+(1−Q(t)
i )∑

Li
l=1 I(Xi,l = k)

]
, m = 0,

∑
N
i=1 ∑

M
j=1 Z(t)

i, j I(Xi, j+m−1 = k), m 6= 0
(4.28)

Note that the m = 0 case now includes the indicator variable Qi, unlike the analogous

expression in the OOPS model. The m 6= 0 case is the same as it was for the OOPS

model. Substituting (4.28) into (4.27) gives:

∑
k∈L

N0,k ln θ0,k +
W

∑
m=1

∑
k∈L

Nm,k ln θm,k

=
W

∑
m=0

∑
k∈L

Nm,k ln θm,k, (4.29)

exactly as the OOPS model. Maximisation over θ is therefore performed in the same

way, using Gibbs’ inequality. The parameter updates for θ are again the normalised

ratio of expected nucleotide counts:

θ
(t+1)
m,k =

Nm,k

∑k∈L Nm,k
, (4.30)

for m∈ {0, . . . ,W} and k∈L , as in the OOPS model. Calculating the parameter update

for γ requires maximising the second term in Q (φ|φ(t)) over γ. The second term is:

N

∑
i=1

Q(t)
i ln λ+

N

∑
i=1

(1−Q(t)
i ) ln (1− γ). (4.31)

Substituting λ using (4.18) and further substituting S , 1
N ∑

N
i=1 Q(t)

i gives:

NS ln
γ

M
+N(1−S) ln (1− γ). (4.32)

Splitting the first log term gives and rearranging gives:

N(S ln γ+(1−S) ln (1− γ))−NS ln M. (4.33)

Note that (NS ln M) is invariant with respect to γ and can be ignored in terms of max-

imisation. A maximisation for:

N(S ln γ+(1−S) ln (1− γ)) (4.34)
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is required. This maximisation may be carried out analytically; doing so yields a max-

imum at γ = S. The parameter update for γ is therefore:

γ
(t+1) = S =

1
N

N

∑
i=1

Q(t)
i . (4.35)

Intuitively, the new value for the fraction of sequences containing a motif occurrence

is simply the empirical fraction, based on the updates from the E-step.

4.3 Generalising ZOOPS expressions for

Expectation-Maximisation

This section provides a generalisation of the ZOOPS sequence model expressions used

in deterministic EM for motif discovery that removes the requirement that input se-

quences must be of equal length. Definition of these expressions is important, as they

will be used as the basis for the stochastic EM algorithm for motif discovery developed

in Chapter 5. In particular, removing the constraint of equal input sequence length is

vital in successfully implementing the cutting heuristic which allows discovery of mul-

tiple occurrences of a motif within a single input sequence (Section 5.3.1), a technique

that fulfils the same role as the TCM model in MEME. Removing the assumption that

all input sequences are the same length increases flexibility at the expense of some ad-

ditional mathematics; fortunately, removing this assumption does not fundamentally

alter the calculations required in the E- and M-steps for the ZOOPS model.

The expressions for the conditional probability of a sequence with and without a

motif occurrence (4.16 and 4.17) remain the same as in the ZOOPS model. Again, γ is

defined as the prior probability of a sequence containing a motif occurrence. However,

the previous definition for the prior probability of a position being a motif start position

(λ) becomes problematic in the general setting developed here. In the ungeneralised

ZOOPS model, λ could be used as a mathematical convenience as a prior for all se-

quences; now assuming that input sequences need not have equal lengths means that

the prior term on each sequence will be different and a single prior is inappropriate.

The simplest solution is to substitute Li−W +1 = M, therefore:

λ =
γ

Li−W +1
. (4.36)

The dependence of the prior term on the length of the input sequence Li is now clear.

Note that if Li is the same for each input sequence and M is set to Li−W + 1, this
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is equivalent to the previous definition. The definition of Qi is modified in order to

account for the possibility of different sequence lengths: Qi ,∑
Li−W+1
j=1 Zi, j. As before,

Qi = 1 if sequence i contains a motif occurrence and 0 otherwise. Following the new

definition of λ (4.36), the generalised expression for the complete data joint probability

becomes:

p(X ,Z|φ) =
N

∏
i=1

p(Xi,Zi|φ)

=
N

∏
i=1

p(Xi|Zi,φ) p(Zi|φ)

=
N

∏
i=1

[(
Li−W+1

∏
j=1

p(Xi|Zi, j = 1,θ)Zi, j

)
× p(Xi|Qi = 0,θ)(1−Qi)

×
(

γ

Li−W +1

)Qi

× (1− γ)(1−Qi)

]
. (4.37)

The log likelihood function for the complete data is therefore:

ln p(X ,Z|φ) =
N

∑
i=1

(
Li−W+1

∑
j=1

Zi, j ln p(Xi|Zi, j = 1,θ)

)

+
N

∑
i=1

(1−Qi) ln p(Xi|Qi = 0,θ)

+
N

∑
i=1

Qi ln
(

γ

Li−W +1

)
+

N

∑
i=1

(1−Qi) ln (1− γ). (4.38)

While the definition of Z(t)
i, j (4.21) remains the same as before, the definition of Q(t)

i is

updated:

Q(t)
i , EZ|X ,φ(t) [Qi]

=
Li−W+1

∑
j=1

EZ|X ,φ(t)
[
Zi, j
]

=
Li−W+1

∑
j=1

Z(t)
i, j . (4.39)
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Finally, the Q function is generalised, using the updated definitions above:

Q (φ|φ(t)) = EZ|X ,φ(t) [ln p(X ,Z|φ)]

= EZ|X ,φ(t)

[
N

∑
i=1

(
Li−W+1

∑
j=1

Zi, j ln p(Xi|Zi, j = 1,θ)

)

+
N

∑
i=1

(1−Qi) ln p(Xi|Qi = 0,θ)

+
N

∑
i=1

Qi ln
(

γ

Li−W +1

)
+

N

∑
i=1

(1−Qi) ln (1− γ)

]
.

=
N

∑
i=1

(
Li−W+1

∑
j=1

EZ|X ,φ(t)[Zi, j] ln p(Xi|Zi, j = 1,θ)

)

+
N

∑
i=1

(1−EZ|X ,φ(t)[Qi]) ln p(Xi|Qi = 0,θ)

+
N

∑
i=1

EZ|X ,φ(t)[Qi] ln
(

γ

Li−W +1

)
+

N

∑
i=1

(1−EZ|X ,φ(t)[Qi]) ln (1− γ)

=
N

∑
i=1

(
Li−W+1

∑
j=1

Z(t)
i, j ln p(Xi|Zi, j = 1,θ)

)

+
N

∑
i=1

(1−Q(t)
i ) ln p(Xi|Qi = 0,θ)

+
N

∑
i=1

Q(t)
i ln

(
γ

Li−W +1

)
+

N

∑
i=1

(1−Q(t)
i ) ln (1− γ). (4.40)

4.3.1 Generalised E-step

The new definition of λ is used in the generalisation of the E-step. The probability of

the latent data p(Z|X ,θ) is evaluated for each position:

Z(t)
i, j =

p(Xi|Zi, j = 1,θ(t)) γ

Li−W+1

p(Xi|Qi = 0,θ(t))(1− γ(t))+∑
Li−W+1
j=1 p(Xi|Zi, j = 1,θ(t)) γ

Li−W+1

, (4.41)

where (4.36) is substituted into (4.24) and (4.16) and (4.17) are used as required.

4.3.2 Generalised M-step

The M-step now requires maximising the generalised Q function (4.40) over θ and γ

(note that as a result of the substitution (4.36), there are now no terms including λ).
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Selecting the terms in Q (φ|φ(t)) relying on θ, substituting (4.16) and (4.17) gives:

N

∑
i=1

(
Li−W+1

∑
j=1

Z(t)
i, j

{
∑

l∈∆i, j

∑
k∈L

I(Xi,l = k) ln θ0,k +
W

∑
m=1

∑
k∈L

I(Xi, j+m−1 = k) ln θm,k

})

+
N

∑
i=1

(1−Q(t)
i )

{
Li

∑
l=1

∑
k∈L

I(Xi,l = k) ln θ0,k

}
. (4.42)

where M is also replaced with Li−W + 1. The expected counts for each nucleotide

k ∈ L at each position are defined as before (again, replacing m with Li−W + 1 and

making use of the indicator variable Qi):

Nm,k ,

∑
N
i=1

[
∑

Li−W+1
j=1 Z(t)

i, j ∑l∈∆i, j I(Xi,l = k)+(1−Q(t)
i )∑

Li
l=1 I(Xi,l = k)

]
, m = 0,

∑
N
i=1 ∑

Li−W+1
j=1 Z(t)

i, j I(Xi, j+m−1 = k), m 6= 0.
(4.43)

Substituting (4.43) into (4.42) gives the expression from (4.29) and so the parameter

updates for θ are therefore:

θ
(t+1)
m,k =

Nm,k

∑k∈L Nm,k
, (4.44)

for m ∈ {0, . . . ,W} and k ∈ L , as before. The second term in Q (φ|φ(t)) is now max-

imised over γ. From above, the generalised expression is:

N

∑
i=1

Q(t)
i ln

(
γ

Li−W +1

)
+

N

∑
i=1

(1−Q(t)
i ) ln (1− γ). (4.45)

This is rearranged, substituting S , 1
N ∑

N
i=1 Q(t)

i as before to give:

NS ln
(

γ

Li−W +1

)
+N(1−S) ln (1− γ). (4.46)

Splitting the first log term and rearranging gives:

N(S ln γ+(1−S) ln (1− γ))−NS ln (Li−W +1). (4.47)

Note that (NS ln (Li−W + 1)) is invariant with respect to γ and so this term can be

ignored for the purposes of maximisation. This leaves the same expression as before

(4.34); performing the maximisation gives the same parameter updates (4.35).

4.4 MCOIN: a novel heuristic for determining

TFBS motif width

As shown in the preceding sections, increasing the flexibility of the statistical model

(in moving from the OOPS model to the ZOOPS model, then further generalising the
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ZOOPS model) by altering the EM calculations allows greater practicality for applying

motif discovery algorithms. However, a number of practical problems which cannot

be solved by altering the EM calculations remain. One of the most important of these

is automatically determining the width of a motif. In a 2010 study, two decades on

from the first motif discovery algorithms, Li, et al. noted that “determining the actual

motif length for a given set of motif-containing sequences remains an unsolved prob-

lem” [102]. In this section, a novel heuristic for automatically determining the width

of a motif in PWM-based motif discovery algorithms, based on Motif COntainment

and INformation content (MCOIN) is validated. Based on tests with previously char-

acterised prokaryotic TFBS motifs, MCOIN is shown to outperform the E-value of the

resulting multiple alignment as a predictor of motif width, using mean absolute error.

MCOIN is also shown to improve the overall correctness of results, based on receiver

operating characteristic (ROC) analysis. Finally, it is shown that the performance of

MCOIN will improve as the performance of the core motif discovery algorithm im-

proves.

Automatically determining the width of a novel TFBS motif is a desirable prop-

erty for motif discovery algorithms since the true motif width is generally not known

a priori. An ideal algorithm would be executed over a range of reasonable candidate

widths and return the most likely result based on some criterion. This is an important

but challenging computational problem, as the likelihood function maximised by motif

discovery algorithms cannot be used directly to compare models with different motif

widths [98]. The difficulty partially stems from the fact that the maximum value of the

joint likelihood of the model given the data and the latent data is bound to increase with

increasing motif width as a consequence of the increasing number of free parameters

[11, 90, 98]. The complexity of the problem is increased when additional constraints

on the parameters (for example, the palindrome constraint in the popular MEME al-

gorithm) are employed, as the maximum likelihood value of models with parameter

constraints will be lower than unconstrained models of the same motif width. To some

degree, this problem corresponds to the more general problem of model selection in

statistics. A number of general model selection criteria which incorporate adjustments

for model dimensionality (for example, the Akaike information criterion (AIC) [3] and

the Bayesian information criterion (BIC) [146]) have been used in other areas with suc-

cess. However, these criteria have generally not performed well at determining motif

width in known datasets [98].

The complexity of the computational problem is further increased by the diver-
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sity of TFBS motifs (Figure 3.1 illustrates this diversity in E. coli motifs). Clearly,

biologists are interested in the true motif width; however, while some motifs provide

statistically strong signals, the majority of motifs are more subtle and in the worst

cases may be statistically indistinguishable from random artefacts in a given set of

DNA sequences [9]. This subtlety means that the most statistically significant motif

width need not match the biologically known true motif width. As an example, the true

width of the FruR motif in E. coli is known to be 18nt. However, the sequence logo

and known FruR binding sites (Figure 4.1) show that the outermost motif positions are

very poorly conserved, providing little information above that of background ‘noise’.

Furthermore, motif discovery algorithms cannot guarantee to return the best possible

result at each candidate width. Such algorithms often display a phenomenon known

as ‘shifting’ (Figure 4.1), where a motif is only partially recovered, along with some

additional non-motif ‘background’ positions [98]. This is in part due to the above fact

that, from a statistical viewpoint, the true boundaries of a motif are often unclear. Al-

though strategies to deal with this phenomenon have been devised, none can provide

a guarantee that shifting is completely eliminated. This means that, even if the true

motif width were known in advance, a motif discovery algorithm is not guaranteed to

discover this motif perfectly. A heuristic which is robust in practice is therefore re-

quired. Such a heuristic should be able to cope with both cases where a statistically

strong motif signal is present and where the motif signal is more subtle.

Attempts at a heuristic to automatically determine motif width in a deterministic

(Expectation-Maximization, or EM-based) algorithm have included functions based

on the maximum likelihood ratio test (LRT) [12], methods based on V-fold cross-

validation [90] and the Bayesian information criterion (BIC) [21]. However, in prac-

tice, estimators based on the E-value of the resulting multiple alignment are used in-

stead [9]. The E-value (described below) of the multiple alignment of predicted motif

occurrences is an approximate p-value for testing the hypothesis that the predicted mo-

tif occurrences were generated from the predicted model against the null hypothesis

that the predicted occurrences were generated by the background model. Typically,

E-values are calculated for models at each candidate width and the model with the

minimum E-value chosen.
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Figure 4.1: E. coli FruR motif sequence logos and occurrences: (a-e) Known and in-

ferred E. coli FruR motif sequence logos. (a) The known E. coli FruR motif. The central

part of the motif has a number of well-conserved positions; however, the outermost

positions are very poorly conserved and may be incorrectly statistically regarded as

background. A heuristic for determining the most likely width is required to be robust in

statistically unclear situations such as this. (b) A motif discovery algorithm may become

locked in a non-optimal local maximum of the likelihood function which corresponds to

a shifted version of the true motif. (c) The most statistically significant model in a set of

candidate models may only represent a portion of the true motif. (d) From the candidate

set of computationally discovered models, MCOIN chooses the model at W ∗+1, which

corresponds well with the true motif. (e) The E-values estimator chooses the model at

W ∗−3, which corresponds less well with the true motif. (f) Known occurrences of the

E. coli FruR motif. Note that logos (d) and (e) correspond to the discovered model at the

chosen motif width and not to the known FruR occurrences (f). This explains why, for

example, column 13 of model (e) contains a contribution from the nucleotide G despite

the corresponding position in the known occurrences (11) always being nucleotide T.
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4.4.1 Approach

The MCOIN heuristic is based on two orthogonal concepts: motif containment and

mean information content per column. If it is assumed that the motif discovery algo-

rithm discovers the true motif within the dataset as well as possible at every candidate

width {Wmin, . . . ,Wmax}, then the algorithm discovers the true motif exactly at the true

width W ∗. It follows that, at candidate widths smaller than the true width (that is,

{Wmin, . . . ,W ∗−1}), only a portion of the true motif is discovered while at candidate

widths larger than the true width (that is, {W ∗+1, . . . ,Wmax}), the full motif is dis-

covered, along with a number of background positions. Clearly, these models must be

similar and are describing the same underlying motif. If it is known that the models

for widths W − 1 and W are describing the same motif and also assumed that model

selection criteria (for example, BIC) will favour the shorter model due to it having

fewer free parameters, then the model with width W −1 can be removed from the set

of candidate models as the width-W model also describes the same motif.

Retaining the assumption that the motif discovery algorithm discovers the true mo-

tif as well as possible at every candidate width, it follows that the model at the true

width W ∗ will also be removed as a result of it being contained within the model at

width W ∗+ 1. The result of discarding models based only on containment would be

to discard all but the longest model. Clearly, it would preferable to discard models at

widths Wmin to W ∗− 1 in favour of the model at width W ∗, but this model not to be

discarded in favour of longer models. Calculating the mean information content per

column (IC/col) for each model allows a method of stopping containment at widths

greater than W ∗. If, for example, the IC/col of the model at width W ∗ is B bits, the

model at width W ∗+ 1 will have these same columns plus an additional background

column, which will have a very low information content (if each nucleotide in the

background model is equiprobable, the information content of this column will be 0

bits); the low information content of this additional background column will make the

IC/col of the model at W ∗+1 less than B bits. The model selection process can there-

fore be modified, discarding a shorter model in favour of a longer model only if the

shorter model is contained within the longer model and the IC/col of the longer model

is similar to that of the shorter model.

At a high level, this is implemented as follows: the PWM of the shortest model

(Wmin) is tested against each longer model (Wmin+1, . . . ,Wmax), calculating the Jensen-

Shannon distance per column (JSD/col) for each comparison. The Jensen-Shannon
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distance [59] is a modification of the Jensen-Shannon divergence [105] and is used

as a measure of similarity; intuitively, the lower the JSD/col, the more similar the

PWMs are. The IC/col ratio of the longer model to the shorter model is then calcu-

lated. If this is significantly lower than 1, it is assumed that the additional column in

the longer model is not information-rich and the longer model is longer than the true

motif width. If the shorter model is ‘contained’ within the longer model (that is, the

minimum JSD/col is smaller than some similarity threshold tsim, where 0 ≤ tsim ≤ 1)

and the models have similar information (that is, the IC/col ratio of the longer model to

the shorter model is greater than some information threshold tin f o), the shorter model

is removed from the set of candidate models. The process is repeated for model widths

Wmin+1 to Wmax−1 (the longest model is always kept in the set of candidate models).

The remaining model with the lowest BIC score is chosen as the best estimate of motif

width.

4.4.2 Method

Predicting motif occurrences

The first step is to predict the positions of motif occurrences in the input sequences X .

Following motif discovery at a particular width W , a model φ = {θ,λ} is predicted,

where θ = {θ0,θ1} represents the background (θ0) and motif (θ1) models and λ rep-

resents the prior probability that a given position within the input sequences is a motif

occurrence1. Using the predicted model, a log-odds scoring matrix LO and threshold t

may be calculated:

LOm,k = ln
(

θm,k

θ0,k

)
, form ∈ {1, . . . ,W} , k ∈ L (4.48)

t = ln
(

1−λ

λ

)
(4.49)

Together, LO and t form a Bayes-optimal classifier; each width-W subsequence xi is

scored (using Equation 4.50) and deemed to be a motif occurrence if s(xi)> t [12].

s(xi) =
W

∑
m=1

∑
k∈L

LOm,k I(k,xi,m), (4.50)

where I(k,xi,m) is an indicator function which is 1 if and only if the nucleotide at xi,m

is k and 0 otherwise and xi, j is the nucleotide in the jth position of sample xi. Let xpred

1This assumes the two-component mixture (TCM) model, which allows any number of non-
overlapping motif occurrences.
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be the set of non-overlapping predicted motif occurrences and npred be the number of

predicted motif occurrences |xpred|.

Calculating the BIC for candidate models

The motif discovery algorithm is run over a number of reasonable candidate widths and

a model φ= {θ,λ} is returned for each width. It is assumed that the unknown true motif

width W ∗ is within the range of tested candidate widths, that is, Wmin ≤W ∗ ≤Wmax.

For each width W ∈ {Wmin, . . . ,W ∗, . . . ,Wmax}, φ(W ) is used to create a set of pre-

dicted sites xpred , as described above. For each width, the log likelihood of a particular

model φ(W ) given the set of predicted sites can be calculated:

lnL(φ(W )|xpred) =
npred

∑
i=1

ln [p(xi|θ1)λ+ p(xi|θ0)(1−λ)] , (4.51)

where the distributions for the motif and the background model (following [12]) are

defined as:

p(xi|θ1) =
W

∏
m=1

∏
k∈L

θm,k
I(k,xi,m) (4.52)

and

p(xi|θ0) =
W

∏
m=1

∏
k∈L

θ0,k
I(k,xi,m). (4.53)

Following [146], the BIC for each model is calculated using:

−2lnL(θ,λ|xpred)+P · ln(npred), (4.54)

where P is the number of free parameters in the model, equal to 3(W +1). There now

exists a set of models
{

φ(Wmin), . . . ,φ(W
∗), . . . ,φ(Wmax)

}
; each model with its own BIC

score, based on its log likelihood (calculated using its set of predicted sites) and the

number of model parameters. MCOIN is now applied, as described in the next section.

MCOIN heuristic

The approach used by MCOIN is partly based on the similarity between two motif

models of different widths. A measure of this similarity between two motif models is

therefore required. As noted in Section 2.1, each column of the PWM can be inter-

preted as an independent multinomial distribution with four categories, each category

giving the probability of a certain nucleotide appearing at a certain motif position. It

follows that a measure of motif similarity can be obtained by comparing each column
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in a given motif model θA with the corresponding column in another motif model θB;

that is, measuring the similarity between the two multinomial distributions.

The Kullback-Leibler (KL) divergence2 is a commonly used method for comparing

two probability distributions, as it has some useful information theoretic properties

[115] and gives a single figure for the similarity between the two distributions. For

two probability distributions p and q, the KL divergence of q from p is defined in the

discrete case as:

DKL(p||q) = ∑
i

p(i)log2
p(i)
q(i)

. (4.55)

However, there are some issues with using the KL divergence in this context. Per-

haps most importantly, the KL divergence has no upper bound: the KL divergence

DKL(p||q) = 0 when p = q and tends towards infinity as p becomes the complement of

q. The KL divergence is asymmetric (that is, in general, DKL(p||q) 6= DKL(q||p)) and

does not satisfy the triangle inequality (that is, DKL(x||z)≤DKL(x||y)+DKL(y||z)); for

these reasons, it is known as a ‘divergence’ measure rather than a ‘distance’ measure.

The KL divergence can also prove problematic when p(i) or q(i) = 0 for some i (the

special cases 0log0
x and xlog x

0 are defined as 0 and ∞ respectively). This latter property

is generally not an issue in the context of motif discovery, as the incorporation of pseu-

docounts into motif discovery algorithms eliminates any 0 entries. However, PWMs

created from consensus sequences may well have 0 entries, depending on the data used

to create them.

In cases such as this, the Jensen-Shannon (JS) divergence3 [105], based on the KL

divergence, is more appropriate as it is bounded in [0:1] (assuming the base 2 logarithm

is used in the KL divergence) and can deal with 0 entries (both special cases reduce to

0log0
x , which is defined as 0, as before). Given two probability distributions p and q,

the JS divergence of q from p is defined as:

DJS(p||q) = 1
2

DKL(p||m)+
1
2

DKL(q||m), (4.56)

where the probability distribution m (known as the ‘mixture’ distribution) is defined

as m = 1
2(p+ q). The JS divergence DJS(p||q) = 0 when p = q and tends towards 1

as p becomes the complement of q. Unlike the KL divergence, the JS divergence is

symmetric by definition. While the JS divergence as defined in Equation 4.56 does not

satisfy the triangle equality, the square root of the JS divergence does [59]. Taking the

square root of the JS divergence therefore provides a distance function, or metric, in
2The KL divergence is often known as the relative entropy.
3The JS divergence is sometimes known as the information radius.
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the mathematical sense4. This is known as the Jensen-Shannon distance. Based on the

mathematical properties outlined above, the Jensen-Shannon distance is used as the

measure of motif model similarity within MCOIN.

The approach used by MCOIN is also based on the information content of a motif

model. The expression for the information content of a given motif position introduced

by Schneider and Stephens [145] (page xvii) is extended to define the mean informa-

tion content per column of a given motif model θ1 as:

IC/col(θ1) =
1

W

W

∑
m=1

∑
k∈L

θm,klog2

(
θm,k

θ0,k

)
. (4.57)

MCOIN relies on two threshold parameters, tsim and tin f o. The value of tsim may be

chosen to be anywhere between 0 and 1. Choosing a good value for tsim is important.

If this value is too small, smaller models are required to match longer models more

exactly before being discarded. Therefore, fewer models are discarded and MCOIN

tends to choose models of shorter widths, leading to an underestimation of the true mo-

tif width. In contrast, if the value of tsim is too large, shorter models may be discarded

in favour of longer models when they are dissimilar, leading to an overestimation of

true motif width. The optimal value of tsim was calculated using tests on the realistic

synthetic data collection described in Chapter 3; root mean squared error was min-

imised at tsim = 0.32. Tests using the previously characterised E. coli data described

in Chapter 3 validated this parameter value: root mean squared error was minimised

when 0.30 ≤ tsim ≤ 0.32. A value of tsim = 0.32 is used here; this is reasonable as

the value of tsim should be kept low in order to ensure that two models are reasonably

similar before discarding the shorter in favour of the longer. Tests which removed the

motif discovery phase of the algorithm showed that the mean information content per

column ratio alone was sufficient to choose the true motif width. That is, the value

of tsim had no effect. From this it can be concluded that, as motif predictions become

stronger, the exact value of tsim becomes less important. At current motif discovery

algorithm performance levels, a value of 0.32 gives successful results with the data

used in this study. However, it may be possible to change this value data-adaptively.

The second threshold parameter, tin f o, is calculated based on a perfectly conserved

motif model having a mean information content per column of 2 bits. The ‘best case’

background column is defined here as having an information content of 1 bit (equiv-

alent to a PWM column such as (0.5,0.5,0.0,0.0)T , where any two nucleotides are

equiprobable). It is then possible to calculate the ‘best case’ IC/col ratio between
4The square root of the JS divergence is also proportional to the Fisher information metric.
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Assume that the width-12 model θ
(12)
1 represents the motif to be discovered. It follows

that models θ
(i)
1 (i < 12) are ‘sub-model’s of θ

(12)
1 and that θ

(13)
1 is the same as θ

(12)
1 ,

but with 1 additional background column. Models θ
(i)
1 (i ≤ 12) will have an average

IC/col of ∼ 2 bits; however, the average IC/col of θ
(13)
1 will be less. If the additional

background column in θ
(13)
1 is defined as having 1 bit of information as above, the

theoretical IC/col ratio can be calculated:

IC/col(θ(13)
1 )≈ 1

13
[12×2+1×1] = 1.9231 bits

IC/col(θ(13)
1 )

IC/col(θ(12)
1 )

≈ 0.9615

now define tin f o(12||13) = 0.9615: if the actual IC/col ratio IC/col(θ(13)
1 )

IC/col(θ(12)
1 )

is less than

0.9615, it is assumed that the full motif is of width 12 and that the loss in informa-

tion content is due to the addition of a background position. In contrast, calculating
IC/col(θ(12)

1 )

IC/col(θ(11)
1 )

gives a value ∼ 1; θ
(11)
1 is therefore discarded in favour of θ

(12)
1 .

Example 4.1: Calculating the ‘best case’ IC/col ratio.

two models of any given widths. If the actual IC/col ratio is less than the calculated

‘best case’, the longer model is deemed to have unwanted background positions and

the shorter model is not discarded in favour of the longer model. Example 4.1 illus-

trates how the ‘best case’ IC/col ratio is calculated. The calculation for the information

threshold tin f o can be generalised as:

tin f o(W1||W2) =
2W1 +(W2−W1)

2W2
, W2 >W1. (4.58)

This is equivalent to adding the required number of columns W2−W1 at 1 bit/col.

MCOIN is described in pseudocode in Algorithm 4.1.

E-value of the resulting multiple alignment

The E-value of the multiple alignment of predicted motif occurrences [80] is an ap-

proximate p-value for testing the hypothesis that the predicted motif occurrences were

generated from the predicted model against the null hypothesis that the predicted oc-

currences were generated by the background model. The E-value is then an estimate

of the expected number of multiple alignments with statistical significance as great

or greater than the observed alignment. Briefly, the E-value is calculated by com-
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procedure MCOIN

Define the similarity threshold tsim.

for a =Wmin to Wmax−1 do
for b = a+1 to Wmax do
Calculate information threshold tin f o(a||b) =

2a+(b−a)
2b

for offset = 0 to b−a do
Calculate similarity (mean Jensen-Shannon distance per column) using:

sim =
1
a

a

∑
j=1

√
DJS( f (a)j || f

(b)
j+o f f set),

Calculate mean information content per column ratio using:

in f =
IC/col(θ(b)1 )

IC/col(θ(a)1 )
.

Remove φ(a) from the set of candidate models IF:

sim < tsim AND in f > tin f o(a||b).

end
end

end
Return the remaining model with the lowest BIC as the best estimate of motif width.

end MCOIN

Algorithm 4.1: Pseudocode outlining the MCOIN heuristic.

puting the log-likelihood ratio of each column of the resulting multiple alignment of

predicted sites and computing the p-value for each based on the background model.

The p-value of the product of column p-values is computed as described by Bailey

and Gribskov [13], then multiplied by the number of possible ways to select positions

for the given number of sites in the set of input sequences to give the E-value. The

E-value is calculated for models at each candidate width and minimised to select the

best estimate of motif width [9, 21]. Calculating E-values for a number of different

motif widths raises the issue of correcting the calculated E-values for multiple tests.

However, methods for dealing with multiple tests such as the Bonferroni correction or

the Benjamini-Hochberg procedure are not applied in this case, since it is the minimum

E-value which is of interest, rather than the actual calculated value.
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4.4.3 Results and Discussion

MCOIN was evaluated quantitatively using a mixture of realistic synthetic and previ-

ously characterised E. coli and diverse prokaryotic data. The datasets were constructed

as described in Chapter 3. The results presented in Tables 4.1, 4.3, 4.5 and 4.7 show

that, in general, mean site-level sensitivity (sSn) and positive predictive value (sPPV)

decrease with decreasing motif conservation. The decrease in sSn is a result of the

motif discovery algorithm predicting fewer sites in total. That is, at lower motif con-

servations, fewer sites score highly enough such that s(xi)> t (see Equation 4.50). This

leads to an increase in the number of false negative results (sites incorrectly classified

as ‘background’) and therefore a decrease in sSn. The decrease in sPPV is attributable

to background sites better matching the weaker motif model; as the model becomes

weaker, the difference in scores between true motif occurrences and spurious back-

ground sites decreases. This can lead to an increase in the number of false positive

results (sites incorrectly classified as motif occurrences) and therefore a decrease in

sPPV.

Realistic synthetic data: width determination without motif discovery

MCOIN was initially evaluated on realistic synthetic data (as described in Section 3.1)

without the motif discovery phase of the algorithm. That is, for each dataset, the

heuristic was tested using a set of candidate models which were constructed as if the

motif discovery algorithm had discovered the motif in that dataset as well as possible

at each candidate width. For each dataset, all candidate widths from W ∗−4 to W ∗+4

were tested. MCOIN is compared against the E-values estimator and also (following

[21]) evaluations using the known width (equivalent to having a set of candidate models

consisting only of W ∗). Results of these evaluations are summarised in Tables 4.1 and

4.2.

Note from Table 4.2 that the width predicted by MCOIN closely matches the true

width in almost all cases; the error in the predicted width increases slightly as mean

motif conservation is decreased. The E-values estimator initially matches MCOIN but

quickly begins to underestimate motif width, leading to a much larger increase in the

error in predicted width. MCOIN shows a clear performance advantage in terms of

predicted width at all conservation levels.

Given that the widths predicted by MCOIN generally match the known width, it

is unsurprising that the classification-based results (Table 4.1) match those in the case
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Conservation Known width (W ∗) MCOIN (W ∗±4) E-values (W ∗±4)

(mean bits/col) sSn sPPV AUC sSn sPPV AUC sSn sPPV AUC

2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.49 0.98 0.94 1.00 0.98 0.94 1.00 0.97 0.93 1.00

1.08 0.80 0.93 1.00 0.80 0.93 1.00 0.82 0.79 1.00

0.76 0.49 0.89 0.99 0.49 0.89 0.99 0.56 0.71 0.99

0.51 0.23 0.79 0.99 0.23 0.79 0.99 0.23 0.77 0.98

Table 4.1: Mean site-level sensitivity (sSn), positive predictive value (sPPV ) and area

under the ROC curve (AUC) for five collections of realistic synthetic data at varying

levels of motif conservation. Best results are printed in bold. In these tests, the motif

discovery phase of the algorithm was removed and the set of candidate models con-

structed as if the motif discovery algorithm had performed as well as possible at each

candidate width.

Conservation MCOIN (W ∗±4) E-values (W ∗±4)

(mean bits/col) MAE RMSE MAE RMSE

2.00 0.00 0.00 0.00 0.00

1.49 0.00 0.00 0.12 0.50

1.08 0.00 0.06 1.55 1.84

0.76 0.01 0.09 1.79 2.04

0.51 0.07 0.39 3.33 3.60

Table 4.2: Mean absolute error (MAE) and root mean squared error (RMSE) for five

collections of realistic synthetic data at varying levels of motif conservation. Best results

are printed in bold. In these tests, the motif discovery phase of the algorithm was

removed and the set of candidate models constructed as if the motif discovery algorithm

had performed as well as possible at each candidate width.
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where the width is known. As noted above, sSn decreases with decreasing motif con-

servation. A similar, but less sharp, decrease is seen in sPPV. Although the E-values

estimator slightly outperforms MCOIN in terms of sSn for the data collections with

mean motif conservation of 1.08 bits/col and 0.76 bits/col (0.82 compared to 0.80 and

0.56 compared to 0.49, respectively), the corresponding values of sPPV are outper-

formed by MCOIN (0.93 compared to 0.79 and 0.89 compared to 0.71, respectively).

Combining these results with the results presented in Table 4.1, this is likely a result

of the E-values estimator choosing models at non-optimal widths which predict more

sites overall at the expense of more false positive predictions.

Realistic synthetic data: width determination with motif discovery

Subsequent evaluations use models discovered by an EM-based algorithm using the

TCM model; the motif discovery phase of the algorithm is run as it would normally.

Again, for each estimator, all candidate widths from W ∗− 4 to W ∗+ 4 are tested.

Results of evaluations on each of the five data collections are summarised in Tables 4.3

and 4.4; detailed results for Table 4.3 are provided in Table B.1 in Appendix B.

Note that the results for predictions at the known width are generally lower than

when the motif discovery phase of the algorithm was removed. These results illustrate

the fact that the core motif discovery algorithm is far from perfect: even when the true

motif width is known, performance in terms of sSn and sPPV may be low. In all data

collections, both MCOIN and the E-values estimator are shown to have a performance

similar to or better than that at the known width in terms of classification-based mea-

sures. As noted by [21], this may be attributed to the fact that predicted sites are only

required to overlap the known site by a quarter in order to be counted as a true positive.

As noted above, results for all three classification-based measures generally de-

crease as mean motif conservation also decreases (Table 4.3). At higher levels of motif

conservation, MCOIN is shown to outperform the E-values estimator in terms of sSn.

In this test, MCOIN generally chooses models which increase sSn, at the expense of

sPPV. That is, MCOIN chooses models which tend to predict more false positive sites.

While it would be preferable to have fewer false results (that is, higher values for both

sSn and sPPV) overall, it may be preferable to increase sSn at the expense of sPPV.

For example, when searching for putative binding sites to be verified experimentally,

it may be more useful to have more false positives than false negatives. The E-values

estimator is shown to achieve a higher sPPV in all cases; this matches the findings of

[21], where the E-values estimator was shown to achieve a slightly higher sPPV than
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Conservation Known width (W ∗) MCOIN (W ∗±4) E-values (W ∗±4)

(mean bits/col) sSn sPPV AUC sSn sPPV AUC sSn sPPV AUC

2.00 0.84 0.25 0.99 0.93†‡ 0.42† 1.00†‡ 0.91† 0.79†∗ 0.99†

1.49 0.26‡ 0.07 0.98 0.28†‡ 0.15† 0.99†‡ 0.21 0.45†∗ 0.98†

1.08 0.02∗‡ 0.01 0.96 0.01 0.01† 0.96†‡ 0.01∗ 0.23†∗ 0.96

0.76 0.00 0.00 0.94∗ 0.00 0.00 0.93 0.00 0.12† 0.94∗

0.51 0.00 0.00 0.93∗ 0.00 0.00 0.93 0.00 0.09† 0.93∗

Table 4.3: Mean site-level sensitivity (sSn), positive predictive value (sPPV ) and area

under the ROC curve (AUC) for five collections of realistic synthetic data at varying

levels of motif conservation. Best results are printed in bold. In these tests, the motif

discovery algorithm was allowed to run as it would normally. Results marked † are

statistically significant with regard to the known width, results marked ∗ are statistically

significant with regard to the MCOIN heuristic and results marked ‡ are statistically

significant with regard to the E-values estimator, all at p≤ 0.05 (see main text).

Conservation MCOIN (W ∗±4) E-values (W ∗±4)

(mean bits/col) MAE RMSE MAE RMSE

2.00 1.60 2.06 1.80 2.28

1.49 1.59 2.08 2.46 2.82

1.08 1.97 2.42 2.16 2.51

0.76 2.38 2.74 1.84 2.22

0.51 2.38 2.71 1.95 2.32

Table 4.4: Mean absolute error (MAE) and root mean squared error (RMSE) for five

collections of realistic synthetic data at varying levels of motif conservation. Best results

are printed in bold. In these tests, the motif discovery algorithm was allowed to run as

it would normally.
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other estimators on datasets containing human TFBS motifs. At higher levels of motif

conservation, MCOIN is also shown to outperform the E-values estimator in terms of

AUC.

While MCOIN generally matches the E-values estimator in terms of overall cor-

rectness based on AUC values, this does not represent the full picture. It follows from

the above that an estimator may appear to perform well even if the chosen width does

not match the true width [21]. Errors in the predicted width are presented in Table

4.4. It is noted from these results that the error in width predicted by both estimators

generally increases as mean motif conservation is decreased. However, at higher lev-

els of motif conservation, MCOIN outperforms the E-values estimator using both error

measures.

Statistical significance tests for the results in this section were performed using a

paired one-sided Wilcoxon signed rank test5. The majority of results marked as being

statistically significant in Table 4.3 are significant with p-values < 2.20×10−16. The

sSn result for the E-values estimator on the group with mean conservation 1.08 bits/col

was significantly higher than that of MCOIN (p = 7.05×10−7). The AUC results for

MCOIN were significantly higher than those of the E-values estimator for the groups

with mean conservation 2.00, 1.49 and 1.08 bits/col (p = 2.26× 10−7, p = 6.66×
10−12 and p = 5.09×10−9, respectively). The AUC result for MCOIN for the group

with conservation 1.08 bits/col was significantly higher than that for the known width

(p = 7.22× 10−6). The AUC results for the known width and the E-values estimator

on the groups with mean conservation 0.76 and 0.51 bits/col were significantly higher

than those for MCOIN (p = 2.86× 10−3 and p = 5.55× 10−4, respectively for the

known width and p = 8.22×10−7 and p = 1.18×10−6, respectively for the E-values

estimator).

E. coli and prokaryotic ChIP data

MCOIN was then evaluated in the same manner using the previously characterised

E. coli TFBS sequences described in Section 3.2 and the diverse prokaryotic TFBS

sequences as described in Section 3.3. The results of this evaluation are summarised in

Tables 4.5-4.8. Detailed results for Tables 4.5 and 4.7 are provided in Tables B.2 and

B.3 respectively in Appendix B.

The heterogeneity of the motifs in both data collections may suggest that results

5p-values smaller than the machine epsilon in R (2.20×10−16) are presented as ‘< 2.20×10−16’.
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Conservation Known width (W ∗) MCOIN (W ∗±4) E-values (W ∗±4)

(mean bits/col) sSn sPPV AUC sSn sPPV AUC sSn sPPV AUC

‘high’ (1.36) 0.81∗ 0.22‡ 0.96 0.72 0.29‡ 0.96 0.70 0.17 0.95

‘low’ (0.78) 0.63 0.41 0.96 0.69 0.51‡ 0.98 0.66 0.32 0.97

overall (1.13) 0.74 0.30‡ 0.96 0.71 0.38‡ 0.96‡ 0.68 0.23 0.96

Table 4.5: Mean site-level sensitivity (sSn), positive predictive value (sPPV ) and area

under the ROC curve (AUC) for 20 datasets created using real E. coli data. Best mean

results are printed in bold. Results marked ∗ are significant with regard to the MCOIN

heuristic and results marked ‡ are significant with regard to the E-values estimator, all

at p≤ 0.05 (see main text).

Conservation MCOIN (W ∗±4) E-values (W ∗±4)

(mean bits/col) MAE RMSE MAE RMSE

‘high’ (1.36) 2.08 2.43 2.92 3.12

‘low’ (0.78) 1.75 2.06 3.00 3.20

overall (1.13) 1.95 2.29 2.95 3.15

Table 4.6: Mean absolute error (MAE) and root mean squared error (RMSE) for 20

datasets created using real E. coli data. Best results are printed in bold.

Conservation Known width (W ∗) MCOIN (W ∗±4) E-values (W ∗±4)

(mean bits/col) sSn sPPV AUC sSn sPPV AUC sSn sPPV AUC

0.99 0.75 0.67 0.99 0.75 0.68 0.99 0.73 0.67 0.99

Table 4.7: Mean site-level sensitivity (sSn), positive predictive value (sPPV ) and area

under the ROC curve (AUC) for 9 datasets created using real prokaryotic data deter-

mined through ChIP experiments. Best results are printed in bold. The datasets used

are summarised in Table 3.2.

Conservation MCOIN (W ∗±4) E-values (W ∗±4)

(mean bits/col) MAE RMSE MAE RMSE

0.99 1.44 1.86 2.33 2.73

Table 4.8: Mean absolute error (MAE) and root mean squared error (RMSE) for 9

datasets created using real prokaryotic data determined through ChIP experiments.

Best results are printed in bold. The datasets used are summarised in Table 3.2.
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for these datasets could be equally varied. However, both MCOIN and the E-values

estimator are reasonably robust in terms of predicted sites (Tables 4.5 and 4.7). While

the sSn results for the low conservation group in the E. coli data collection are lower

than that for the high conservation group, sPPV increases with decreasing motif con-

servation. This is a result of the smaller set of predicted sites containing fewer false

positive results and can be attributed to the small number of datasets tested. When com-

bined, the reduction in the number of false positive predictions and the consistently

high AUC values suggest that models are chosen where true motif occurrences are

predicted with greater confidence. For both the E. coli and prokaryotic ChIP data col-

lections, MCOIN outperforms the E-values estimator in terms of classification-based

results. The prokaryotic ChIP data collection shows a slight improvement in sSn and

sPPV values (Table 4.7); this improvement is greater in the E. coli data collection (Ta-

ble 4.5). It is also noted that the classification-based results for MCOIN better match

those at the known width than the results of the E-values estimator.

The MCOIN sPPV results for all three groups of E. coli results (Table 4.5) are

shown to be significantly higher than those of the E-values estimator (p = 1.82×10−2,

p = 1.12×10−2 and p = 4.66×10−4 for the ‘high conservation’, ‘low conservation’

and ’overall’ groups, respectively). The MCOIN AUC result for the ‘overall’ group is

also significantly higher than that of the E-values estimator (p = 2.92×10−2). The sSn

result for the ‘high conservation’ group at the known width is significantly higher than

the corresponding MCOIN result (p = 2.96×10−2). Finally, the sPPV results for the

‘high conservation’ and ‘overall’ groups at the known width are significantly higher

compared to those of MCOIN (p = 2.05×10−2 and p = 3.93×10−3, respectively).

Tables 4.6 and 4.8 present the mean error in motif width based on both data collec-

tions. MCOIN is shown to outperform the E-values estimator for both data collections.

Although the mean error in motif width for models predicted by MCOIN appears to

decrease with decreasing motif conservation in the E. coli data collection, this is ex-

plained by the small number of datasets tested. The small number of datasets tested

also accounts for the fact that the error in motif widths predicted by the E-values es-

timator is relatively high for both real data collections, given the results previously

obtained on realistic synthetic data.

As noted above, performance in terms of AUC may be improved by choosing a

better motif model at a non-optimal width. The E. coli RcsB motif provides an example

of this (Figure 4.2 illustrates some of the observations made here). At the true width

(W ∗ = 14nt), the motif is discovered relatively poorly (sSn = 0.27, sPPV = 0.21, AUC
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Figure 4.2: E. coli : RcsB motif ROC curves: ROC curves (plotted for 0≤ sFPR≤ 0.5)

for the most likely E.coli RcsB motif, as chosen using the known width (left), MCOIN

(centre) and E-values based estimator (right). The curve colour illustrates the threshold

of p(Zi, j = 1|Xi, j,θ), from 1.0 (red) to 0.0 (blue). Although MCOIN and the E-values

estimator both underestimate the known motif width, site-level predictions are improved

as the true motif is relatively weakly discovered at the true width. Performance in terms

of AUC may be increased by choosing stronger and/or unshifted motif models at non-

optimal widths. MCOIN displays improvement over the known motif width and the E-

values estimator in all three classification performance measures.

= 0.88). Both MCOIN and the E-values based estimator improve AUC by choosing

models at shorter widths. The E-values estimator chooses the model at W ∗−2 (sSn =

0.27, sPPV = 0.09, AUC = 0.97) and MCOIN chooses the model at W ∗−4 (sSn = 0.64,

sPPV = 0.39, AUC = 0.99). MCOIN displays improvement in all measures; it may

be concluded that, although the chosen width is not the true motif width, the model

chosen by MCOIN is a better model overall. Similar results are noted in the CaiF,

FruR and PurR motifs in the E. coli data collection and the B. subtilis Spo0A motif in

the prokaryotic ChIP data collection. As noted above, the model at the optimal width

need not be the closest match to the biologically known motif. The results presented

in Figure 4.2 also show that the model chosen by MCOIN gives more predictions at

higher values of p(Zi, j = 1|Xi, j,θ), compared to the model chosen by the E-values

estimator and the model at the true width. Similar results are noted for some other E.

coli motifs, although this cannot be guaranteed for all motifs.

Comparing Tables 4.5 and 4.7 to Table 4.3, MCOIN is shown to give excellent

classification-based results (particularly on the prokaryotic ChIP datasets) given the

overall mean motif conservation and the results on realistic synthetic data. This is due

to the conservation of individual positions within each motif: while the conservation

of positions in each synthetic motif is uniform and independent, this pattern of conser-
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Figure 4.3: E. coli : GntR motif ROC curves: ROC curves (plotted for 0≤ sFPR≤ 0.1)

for the most likely E.coli GntR motif, as chosen using the known width (left), MCOIN

(centre) and E-values based estimator (right). The curve colour illustrates the threshold

of p(Zi, j = 1|Xi, j,θ), from 1.0 (red) to 0.0 (blue). All three estimators predict the GntR

motif much better than expected, considering the low conservation of the motif and the

results of the experiments using realistic synthetic data.

vation is not mirrored in real TFBS motifs. Analysis of the previously characterised

motifs used in this study indicates that motifs with low mean conservation may have

several positions which are very well or even perfectly conserved. This matches well

with previous studies [56], which noted that the conservation of a given motif position

is correlated with the conservation of surrounding motif positions, producing clusters

of well-conserved positions, which may aid TFBS motif discovery algorithms. This

phenomenon is clear in a number of E. coli motifs, particularly GntR (Figure 4.3),

which has a mean conservation of 0.74 bits/col; the synthetic data results suggest rela-

tively low values of sSn and sPPV for this motif. However, the GntR motif has a cluster

of reasonably well-conserved positions, with a maximum conservation of 1.61 bits/col

and is discovered well at the known width (sSn = 0.82, sPPV = 0.70, AUC = 0.99),

with similar results for both the MCOIN and E-values based estimators (sSn = 0.71,

sPPV = 0.71, AUC = 0.99 and sSn = 0.71, sPPV = 0.48, AUC = 1.00, respectively).

4.4.4 Conclusions

Determining the width of a TFBS motif is an important and challenging problem with

direct relevance to computational motif discovery. MCOIN is a novel heuristic for

determining the width of a motif, based on motif containment and information con-

tent. Results of tests on two data collections of previously characterised prokaryotic

motifs show that MCOIN outperforms the E-value of the resulting multiple alignment

(currently the most widely used estimator) as a predictor of motif width, using mean
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absolute error and root mean squared error. MCOIN is also shown to choose mod-

els which improve the overall correctness of predicted motif sites, based on site-level

sensitivity, positive predictive value and the area under the ROC curve.

MCOIN also has a clear advantage over methods based on cross-validation with

limited numbers of folds, as all available data is used for motif discovery, improving

discovery results. Further, the results of experiments which removed the motif discov-

ery phase of the algorithm show that, as the performance of this phase improves, the

performance of MCOIN as a predictor of motif width also improves: as the discov-

ered model becomes stronger and better models the true motif, the error in the width

estimated by MCOIN will decrease.



Chapter 5

MITSU: a novel stochastic and

entropy-based

Expectation-Maximisation algorithm

for motif discovery

This chapter presents a novel algorithm for motif discovery based on stochastic EM

(sEM). This algorithm is used to evaluate the primary hypothesis, that transcription

factor binding site discovery using stochastic EM improves on deterministic EM-based

approaches, in terms of previously established metrics. The chapter begins with a high-

level explanation of how sEM can be used to solve the motif discovery problem. The

derivations in Section 5.1 provide a confirmation of the equivalence of sequence mod-

els in previous studies. This leads to the first major contribution of this chapter: a set

of generalised expressions which implement the ZOOPS sequence model in the con-

text of sEM (Section 5.2). Section 5.3 presents the second major contribution of this

chapter: a novel stochastic EM-based algorithm for motif discovery named MITSU.

Section 5.4 evaluates MITSU quantitatively on realistic synthetic data and previously

characterised prokaryotic data and discusses the results in relation to the primary hy-

pothesis of the thesis.

The general stochastic EM algorithm is introduced in Section 2.2.3. As with the

deterministic EM algorithm, initial values for the model parameters are estimated, then

two steps repeatedly carried out. The sEM algorithm replaces the expectation step of

deterministic EM with a sampling step, known as the S-step. In this step, the prob-

ability of the latent data given the observed data and the current parameter estimates

115



116 Chapter 5. MITSU: a novel stochastic EM algorithm for motif discovery

is computed and a pseudosample simulated. The update step, or U-step, of the algo-

rithm (equivalent to the M-step in deterministic EM) updates the model parameters;

however in sEM this update is based on the pseudo-complete sample (that is, the ob-

served data and the pseudosample). The S-step and the U-step are repeated until the

parameter values converge. Detecting convergence of the algorithm and choosing an

appropriate stopping rule is more difficult for stochastic EM than deterministic EM;

how this is achieved in MITSU is described in Section 5.3.4. The sEM algorithm is

used in the context of motif discovery (using the OOPS sequence model) as follows:

The initial values for the motif model are estimated (as before, either by consensus

model or maximum likelihood). For each input sequence, the S-step of the algorithm

calculates the probability of each width-W subsequence being an occurrence of the

motif, based on the current model parameters. One subsequence is then sampled based

on these probabilities. This procedure can be viewed as estimating the position of the

motif within that input sequence. Note that since, in the context of motif discovery,

sEM effectively makes a hard assignment of each width-W subsequence to one of the

mixture components, this step designates the sampled position as a motif occurrence

and the remaining positions as background positions. Once each input sequence has

been sampled, the U-step updates the motif model parameters by taking a consensus

of the sampled positions. These two steps are repeated iteratively until convergence.

5.1 Equivalence of OOPS sequence model expressions

The following derivation confirms that, despite notational differences, the expressions

for deterministic EM-based motif discovery are the same in the work of Bailey and

Elkan [10] and Bi [23]. Bi extends his deterministic EM expressions for the OOPS

model to stochastic EM; therefore, a line may be traced from Bailey and Elkan’s orig-

inal deterministic EM expressions to Bi’s stochastic EM expressions, which form the

basis for the algorithm developed in this thesis.

Bi uses a different notation to that used by Bailey and Elkan. The differences

between the two methods are noted here. In Bi’s notation, [A,a] refers to the (latent)

alignment (equivalent to [Z,z] in the current notation) and [S,s] refers to the (observed)

sequence data (equivalent to [X ,x] in the current notation). Bi represents the model θ

as Θ and also uses the notation ai = l as an indicator variable, equivalent to Ai,l = 1.
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Latent data (Z(t)
i, j )

Bailey and Elkan define the expectation of the latent data (at iteration t) for the OOPS

model as:

Z(t)
i, j , p(Zi, j = 1|Xi,θ

(t)) =
p(Xi|Zi, j = 1,θ(t))

∑
M
l=1 p(Xi|Zi,l = 1,θ(t))

, (5.1)

for all i ∈ {1, . . . ,N} and j ∈ {1, . . . ,M}. As before, M represents the number of

possible width-W subsequences in an input sequence. Bi defines the expectation of

the latent data as:

p(ai = l|Si,Θ
(t)) =

p(Si|ai = l,Θ(t)))

∑
Li−W+1
j=1 p(Si|ai = j,Θ(t)))

. (5.2)

Simply interchanging Bi’s notation with Bailey and Elkan’s notation shows that Equa-

tions (5.1) and (5.2) are equivalent.

Conditional probability for a sequence

Bailey and Elkan define the conditional sequence probability for sequences containing

a motif (all sequences in the OOPS model) as:

p(Xi|Zi, j = 1,θ), ∏
l∈∆i, j

∏
k∈L

θ
I(Xi,l=k)
0,k

W

∏
m=1

∏
k∈L

θ
I(Xi, j+m−1=k)
m,k (5.3)

This can be viewed as the product of two terms: the first term calculates probabilities

for each position outside the motif (∆i, j is the set of positions in Xi which lie outside

the motif when the motif starts at position j), while the second term calculates the

probability for the motif sequence.

Bi defines the probability as:

p(Si|ai = l,Θ) = ∏
y∈Ac

i,l

∏
k∈K

θ
I(Si,y=k)
0k

W

∏
m=1

∏
k∈K

θ
I(Si,l+m−1=k)
mk . (5.4)

Again, interchanging Bi’s notation with Bailey and Elkan’s notation (note that K is the

set of nucleotide letters {A,C,G,T} and Ac
i,l denotes the complement of the motif po-

sitions, that is, the background positions) shows that these expressions are equivalent.
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Joint (log) likelihood function

Further confirmation of the equivalence is given by the joint (log) likelihood function

for the OOPS sequence model. This is defined by Bailey and Elkan as:

ln p(X ,Z|θ) =
N

∑
i=1

M

∑
j=1

Zi, j ln p(Xi|Zi, j = 1,θ)+N ln
1
M
, (5.5)

This can be shown to be equivalent to the Q function as defined by Bi:

Q (Θ;Θ
(t)) =

N

∑
i=1

Li−W+1

∑
l=1

p(ai = l|Si,Θ
(t)) ln p(Si|ai = l,Θ)p0(ai|Θ) (5.6)

Firstly note that the site prior p0(ai|Θ) is defined as uniform over all width-W subse-

quences in input sequence i; that is,

p0(ai|Θ) = p0(ai) =
1

Li−W +1
. (5.7)

Rewriting with the current notation and substituting Equation (5.1), this becomes:

N

∑
i=1

M

∑
j=1

Z(t)
i, j ln p(Xi|Zi, j = 1,θ)

1
M
. (5.8)

Splitting the log term and rearranging gives:

N

∑
i=1

M

∑
j=1

Z(t)
i, j ln p(Xi|Zi, j = 1,θ)+Z(t)

i, j ln
1
M
. (5.9)

Since ln 1
M does not rely on Z, this may be summed out: note that ∑ j Zi, j = 1, therefore

∑i, j Zi, j = N. Carrying out this final substitution derives Bailey and Elkan’s expression

(Equation 5.5).

A density for Monte Carlo sampling

Finally, it can be shown that the density used by Bi can be derived from the above

expressions. Therefore, a line can be traced from the original EM definitions due to

Bailey and Elkan through to the sEM expressions used by Bi. This is important, for

two reasons. Firstly, it confirms the correctness of the expressions used in SEAM.

Secondly, the method for deriving the OOPS model sEM expressions will be used

in this thesis as a template for deriving sEM expressions that implement the ZOOPS

sequence model. The idea underlying SEAM [23] and MCEMDA [24] is to replace

the computation and maximisation of Q (θ|θ(t)) by the much simpler computation of
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p(Zi, j = 1|Xi,θ
(t)), drawing a number1 of samples Z(t) (S-step), followed by an update

to θ based on the pseudo-complete samples (X ,Z(t)) (U-step).

A suitable density to represent an input sequence Xi is required. Bi substitutes

Equation (5.4) into Equation (5.2), which results in the expression:

p(ai = l|Si,Θ
(t)) =

∏y∈Ac
i,l

∏k∈K θ
I(Si,y=k)
0k ∏

W
m=1 ∏k∈K θ

I(Si,l+m−1=k)
mk

∑
Li−W+1
j=1

{
∏y∈Ac

i,l
∏k∈K θ

I(Si,y=k)
0k ∏

W
m=1 ∏k∈K θ

I(Si, j+m−1=k)
mk

} .
(5.10)

To ease computation, Equation (5.10) may be divided through by the common (back-

ground) term ∏y∈Ac
i,l

∏k∈K θ
I(Si,y=k)
0k to get the target density for the OOPS model:

p(ai = l|Si,Θ
(t)) =

∏
W
m=1 ∏k∈K

(
θ
(t)
mk

θ
(t)
0k

)I(Si,l+m−1=k)

∑
Li−W+1
j=1

{
∏

W
m=1 ∏k∈K

(
θ
(t)
mk

θ
(t)
0k

)I(Si, j+m−1=k)
} . (5.11)

Bi also suggests that the accuracy of the computation may be increased by taking logs.

Doing this and converting to the current notation yields:

p(Zi, j = 1|Xi,θ
(t)) = exp

 W

∑
m=1

∑
k∈L

I(Xi, j+m−1 = k) ln

θ
(t)
m,k

θ
(t)
0,k


/Φ(i), (5.12)

where Φ(i) is a normalising factor such that ∑
M
j=1 p(Zi, j = 1|Xi,θ

(t)) = 1.

5.2 Defining expressions for stochastic

Expectation-Maximisation

This section presents the first novel result: a set of generalised expressions which

implement the ZOOPS (‘zero or one occurrences per sequence’) sequence model in

the context of stochastic EM for motif discovery. This builds upon the work of Bi; the

OOPS (‘one occurrence per sequence’) model presented in [23] is generalised here and

rewritten in a consistent notation. The OOPS model is then extended naturally to the

ZOOPS model, based on Bailey and Elkan’s original definitions and using a similar

approach to that adopted by Bi.

1In SEAM, one sample (equivalent to a full alignment) is drawn, following the sEM algorithm. In
MCEMDA, based on the MCEM algorithm, multiple samples are drawn.
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5.2.1 OOPS model stochastic EM expressions

The SEAM algorithm replaces the computation and maximisation of Q (θ|θ(t)) with the

computation of p(Zi, j = 1|Xi,θ
(t))≡ Z(t)

i, j , drawing a sample from each input sequence

(S-step), followed by an update to θ based on the pseudo-complete samples (U-step).

S-step

A suitable density is required in order to sample from each input sequence Xi. As

shown in the previous section, this density is defined:

p(Zi, j = 1|Xi,θ
(t)) = exp

 W

∑
m=1

∑
k∈L

I(Xi, j+m−1 = k) ln

θ
(t)
m,k

θ
(t)
0,k


/Φ(i) (5.13)

where Φ(i) is a normalising factor such that ∑
Li−W+1
j=1 p(Zi, j = 1|Xi,θ

(t)) = 1. To

actually perform the sampling, the empirical cumulative density function C(Zi, j =

1|Xi,θ
(t)) is constructed. A random number r ∼ Unif[0,1] is drawn and a start site

ji chosen such that

C(Zi,( ji−1) = 1|Xi,θ
(t))< r ≤C(Zi, ji = 1|Xi,θ

(t)). (5.14)

Zi, ji becomes the sample for the sequence Xi. The procedure is repeated for all input

sequences i ∈ {1, . . . ,N}.

U-step

As in the deterministic EM algorithm, the second step of the stochastic EM algorithm

updates the parameters of the model. The U-step requires the construction of a pro-

posed model θ′ based on the samples from the S-step; in sEM, the parameters of the

proposed model are the normalised ratio of nucleotide counts at each position in the

motif. This is in contrast to the parameter updates in deterministic EM, which are

the normalised ratio of expected nucleotide counts at each position in the motif. The

parameters of the proposed model are therefore:

θ
′
m,k =

∑
N
i=1 I(Xi, ji+m−1 = k)+βk

∑
N
i=1 ∑k∈L I(Xi, ji+m−1 = k)+β

, (5.15)

for m ∈ {1, . . . ,W} and k ∈ L . Bi does not reestimate the background model, but this

could be reestimated if desired. β = ∑k∈L βk is a vector of pseudocounts (also known

as a Laplace estimator), equivalent to a Dirichlet prior distribution. The principle
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reason for including pseudocounts in the parameter updates is to ensure that the value

of each parameter never becomes zero. If the value of a parameter becomes zero

at a given iteration, it will remain at zero for subsequent iterations. This becomes

problematic when scoring subsequences using the motif model, as a probability of

zero at one position in the motif would cancel the probabilities at other positions no

matter how well the other positions matched the motif model. The use of pseudocounts

avoids this situation. The choice of values for β is reasonably important, as overly

large values would make the motif model more general by contributing more to the

parameter values. Following Bailey and Elkan [10], the values of βk are kept low

(βk = 0.001) in the algorithm developed in this thesis.

The Metropolis algorithm is used to decide whether θ′ is kept or not. In SEAM,

this is implemented by calculating the values of the entropy function G(·) of the current

model (θ(t)) and the proposed model (θ′). The entropy function is described in Section

5.3.2. The change in G(·) is defined as:

∆G = G(θ(t))−G(θ′) (5.16)

and the Metropolis ratio is defined as:

αM(θ′,θ(t)) = min {1,exp(−∆G)} . (5.17)

A random number u ∼ Unif [0,1] is drawn and the model updated to the proposed

model only if u is less than or equal to the Metropolis ratio, that is:

θ
(t+1)
m,k =

θ′m,k, if u≤ αM(θ′,θ(t)),

θ
(t)
m,k, otherwise

(5.18)

for m ∈ {1, . . . ,W} and k ∈ L .

5.2.2 ZOOPS model stochastic EM expressions

This section presents a novel set of generalised expressions which implement the

ZOOPS sequence model in the context of sEM. The method used to derive an ex-

pression for the sampling step is the same as in the OOPS model in Section 5.2.1; the

relevant ZOOPS expressions as derived by Bailey and Elkan are used as required. Spe-

cial consideration is given to the parameter update step, as the additional parameters

in the ZOOPS model (namely the prior probability of a sequence containing a motif

occurrence, γ) also require updating at each EM iteration.
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Latent data (Z(t)
i, j )

Bailey and Elkan’s definition of the expectation of the latent data in the ZOOPS model

is generalised here as:

Z(t)
i, j = p(Zi, j = 1|Xi,θ

(t)) =
f j

f0 +∑
Li−W+1
k=1 fk

, where (5.19)

f0 = p(Xi|Qi = 0,θ(t))(1− γ
(t)), and (5.20)

f j = p(Xi|Zi, j = 1,θ(t))( γ(t)

Li−W+1), 1≤ j ≤ Li−W +1. (5.21)

Equation (5.21) makes use of the substitution in Equation (4.36), used in the generali-

sation of the ZOOPS model for deterministic EM. The definition of Z(t)
i, j in the ZOOPS

model contains two terms: one representing sequences with a motif occurrence and

the other representing sequences without a motif occurrence. Here, the variable Qi is

defined in the general form as: Qi = ∑
Li−W+1
j=1 Zi, j. That is, Qi = 1 if Xi contains a motif

occurrence and Qi = 0 otherwise. γ(t) is the expected value of the prior probability of a

sequence containing a motif occurrence at iteration t. In the U-step, this will be shown

to be the empirical fraction of sequences containing a motif occurrence, based on the

expected values of Qi calculated in the S-step, as in the deterministic EM algorithm.

Conditional probability for a sequence

The conditional probability for a sequence containing a motif p(Xi|Zi, j = 1,θ(t)) re-

mains the same as in the OOPS model (Equation 5.3). The conditional sequence prob-

ability for a sequence without a motif occurrence is defined as:

p(Xi|Qi = 0,θ) =
Li

∏
l=1

∏
k∈L

θ
I(Xi,l=k)
0,k . (5.22)

That is, every position in the sequence is regarded as being a background position.

S-step

As in the OOPS model, the S-step for the ZOOPS model samples from each input

sequence Xi; substituting the conditional likelihoods for sequences with and without

motif occurrences (Equations 5.3 and 5.22, respectively) into the expression for the
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expectation of the latent data in the ZOOPS model (Equation 5.19) yields:

Z(t)
i, j = (

∏l∈∆i, j ∏k∈L θ
I(Xi,l=k)
0,k ∏

W
m=1 ∏k∈L θ

I(Xi, j+m−1=k)
m,k

)(
γ

Li−W+1

)
 (

∏
Li
l=1 ∏k∈L θ

I(Xi,l=k)
0,k

)
(1− γ(t)) +

∑
Li−W+1
j=1

{(
∏l∈∆i, j ∏k∈L θ

I(Xi,l=k)
0,k ∏

W
m=1 ∏k∈L θ

I(Xi, j+m−1=k)
m,k

)(
γ

Li−W+1

)}
(5.23)

Multiplying through by (Li−W +1) yields:

Z(t)
i, j =

(
∏l∈∆i, j ∏k∈L θ

I(Xi,l=k)
0,k ∏

W
m=1 ∏k∈L θ

I(Xi, j+m−1=k)
m,k

)
γ (Li−W +1)

(
∏

Li
l=1 ∏k∈L θ

I(Xi,l=k)
0,k

)
(1− γ(t)) +

∑
Li−W+1
j=1

{(
∏l∈∆i, j ∏k∈L θ

I(Xi,l=k)
0,k ∏

W
m=1 ∏k∈L θ

I(Xi, j+m−1=k)
m,k

)
γ

} (5.24)

and dividing through by p(Xi|background) as before yields:

Z(t)
i, j =

∏
W
m=1 ∏k∈L

(
θm,k
θ0,k

) I(Xi, j+m−1=k)
γ

(Li−W +1)(1− γ(t))+∑
Li−W+1
l=1

{
∏

W
m=1 ∏k∈L

(
θm,k
θ0,k

) I(Xi,l+m−1=k)
γ

} . (5.25)

This density was presented by Bi [23], but no derivation of the density was provided,

nor were expressions given for the S- and U-steps of the sEM algorithm.

Note that the equivalent expression for the OOPS model (Equation 5.13) summed

to 1 over each sequence Xi by definition: each sequence contained a motif occur-

rence. However, this is no longer the case; in the ZOOPS model, it is expected that

p(Zi, j = 1|Xi,θ
(t))) will tend to (near) 0 for all positions in sequences without a motif

occurrence. To sample from each sequence, Z(t)
i, j ≡ p(Zi, j = 1|Xi,θ

(t))) is calculated

for each position using Equation (5.25). These values are then normalised such that

∑
Li−W+1
j=1 Z(t)

i, j = 1 (denote the normalised Z(t)
i, j values as Z̄(t)

i, j ). For sequences without

a motif occurrence (that is, with all Z(t)
i, j values near 0), this will effectively mean that

the values of Z̄(t)
i, j approximate the uniform prior distribution; although this means that

a sample is chosen from that sequence with near-uniform probability, it will be shown

in the U-step that this is of little consequence, as the samples from such sequences will

have little weight in forming a proposed model. As with the OOPS model, sampling

is performed by constructing the empirical cumulative distribution of the normalised

values C(Z̄(t)
i, j ), drawing r ∼ Unif[0,1] and choosing a start site ji such that:

C(Z̄(t)
i,( ji−1))< r ≤C(Z̄(t)

i, ji). (5.26)
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Again, Z̄i, ji becomes the sample for sequence Xi and the procedure is repeated for all

input sequences i ∈ {1, . . . ,N}.

U-step

Again, the U-step requires the construction of a proposed model φ′ = (θ′,γ′) based

on the samples from the S-step. However, new update expressions must be defined

for the ZOOPS model. As not all sequences may contain a motif, it is reasonable to

put less weighting on sequences that do not contain a motif when constructing the

proposed model. The latent variables Qi are useful here: recall that they take the value

1 if a sequence contains a motif occurrence and 0 otherwise. If the true values of Qi

were known, it would be possible to construct the proposed model from sequences

where Qi = 1, or perhaps only sample from these sequences. However, the value of Qi

is never calculated; only the expected value Q(t)
i is calculated. So there is no way of

knowing for certain in advance which sequences contain a motif occurrence. However,

the samples for each sequence drawn in the S-step can be weighted by the expectation

that the sequence contains a motif occurrence. As the algorithm reaches convergence,

it is expected that Qi→ 1 for sequences containing a motif and Qi→ 0 for sequences

without a motif occurrence. By weighting the samples using the Q(t)
i values, samples

from sequences without a motif occurrence will contribute less to the proposed model

as the algorithm converges. The parameters for the proposed motif model are defined

as:

θ
′
m,k =

∑
N
i=1 I(Xi, ji+m−1 = k)Q(t)

i +βk

∑
N
i=1 ∑k∈L I(Xi, ji+m−1 = k)Q(t)

i +β

, (5.27)

for m ∈ {1, . . . ,W} and k ∈ L . The parameter updates are similar to that for the OOPS

model, but now take into account the fact that not all sequences may contain a motif

occurrence. Again, the background model is not reestimated, but could be reestimated

if desired. As before, β = ∑k∈L βk is a vector of pseudocounts (Laplace estimator),

equivalent to a Dirichlet prior distribution.

A reestimate is also required for the other parameter in the model, γ. As in the de-

terministic EM derivations, the proposed value for the fraction of sequences containing

a motif occurrence is just that, based on the values of Q(t)
i calculated in the S-step:

γ
′ =

1
N

N

∑
i=1

Q(t)
i . (5.28)

The update of γ from the expected values of the latent variables Qi is therefore per-

formed deterministically, unlike the update of θ, which is based on the sampled values
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of the latent variables Zi, j. A deterministic update is used here for a number of rea-

sons. As the expected values of Qi are calculated based on the current expected values

of Zi, j, the two sets of latent variables cannot be sampled independently; doing so

would lead to an inconsistency between Z and Q. It may be possible to implement

a more complex sampling scheme which accounts for this dependence, ensuring that

the relationship between Z and Q (Equation 4.39) remains consistent. However, this is

beyond the scope of this project. Additionally, at present, the Bayes-optimal classifier

used in MITSU (defined in Equations 5.35-5.37) relies on the value of γ. The impli-

cations of updating γ based on a number of samples from Q on motif prediction are

therefore also unclear.

As with the OOPS model, the Metropolis algorithm is used to decide whether to

keep φ′ or not. Again, this is implemented by calculating the values of the entropy

function G(·) for the current and proposed models. The entropy function is described

in Section 5.3.2. However, it is noted here that the entropy function for the ZOOPS

model is dependent on both θ and γ; the model parameters are therefore collected as

φ = (θ,γ) and the value of the entropy function for the model φ is therefore denoted as

G(φ). The change in G(·) is defined as:

∆G = G(φ(t))−G(φ′) (5.29)

and the Metropolis ratio is defined as:

αM(φ′,φ(t)) = min {1,exp(−∆G)} . (5.30)

A random number u∼Unif [0,1] is drawn and the parameters updated to the proposed

parameters only if u is less than or equal to the Metropolis ratio, that is:

θ
(t+1)
m,k =

θ′m,k, if u≤ αM(φ′,φ(t)),

θ
(t)
m,k, otherwise,

(5.31)

for m ∈ {1, . . . ,W} and k ∈ L and

γ
(t+1) =

γ′, if u≤ αM(φ′,φ(t)),

γ(t), otherwise.
(5.32)

5.2.3 A comparison of sequence sampling methods

As noted above, SEAM replaces the computation and maximisation of the expected

complete-data log likelihood function (Q -function) with the much simpler estimation
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of the posterior distribution Z(t)
i, j = p(Zi, j = 1|Xi,θ

(t)) for each input sequence Xi, sim-

ulating a pseudo-sample from this distribution and updating the model θ based on the

pseudo-complete samples [23]. The expression for the distribution has been noted pre-

viously (Equation 5.10). In a given EM iteration t, one sample is drawn from each

density. This is done by evaluating Z(t)
i, j for all j ∈ {1, . . . ,Li−W +1}, summing to

calculate the normalising factor Φ(i), then dividing each Z(t)
i, j by Φ(i). The values of

Z(t)
i, j are sorted (largest first improves the efficiency of the sampling) and the empirical

cumulative distribution function constructed. A uniform random number u∼Unif[0,1]

is drawn and the empirical cumulative distribution function scanned until the value for

a given position exceeds u. This position is chosen as the sample for sequence Xi. This

method is equivalent to the weighted ‘roulette wheel selection’ (sometimes known as

‘fitness proportionate selection’) method in genetic algorithms. Having sampled each

input sequence, a proposed model θ′ is constructed from the samples and the current

model θ(t) updated to the proposed model if the Metropolis ratio is satisfied [23]. It

is noted that, in using this method, the probability that a given position j in input se-

quence i is a motif occurrence (Z(t)
i, j ) must be evaluated for every position in i at every

EM iteration in order to calculate the density. This may be inefficient, especially at

later EM iterations, when the majority of Z(t)
i, j values are expected to be near zero. This

motivates the consideration of alternative sampling strategies which could sample from

an input sequence without having to evaluate Z(t)
i, j at each position.

One potential solution is to use a Markov Chain Monte Carlo (MCMC) strategy to

sample from each input sequence. The simplest MCMC strategy (Metropolis algorithm

with independence sampler) uses a uniform proposal distribution to sample from the

target distribution p(Zi, j = 1|Xi,θ
(t)); use of the uniform proposal distribution greatly

simplifies the calculation of the acceptance probability in the Metropolis algorithm.

Analysis of the posterior distribution for a given input sequence p(Zi, j = 1|Xi,θ
(t))

shows that there is a large variation in the values taken by this distribution. Further, the

value of p(Zi, j = 1|Xi,θ
(t)) at a given position j is not an indicator of the value at neigh-

bouring positions j−1 or j+1. Despite these issues, it can be shown that the Metropo-

lis algorithm with independence sampler does indeed converge to p(Zi, j = 1|Xi,θ
(t))

when taking large numbers of samples. However, this method is only an improve-

ment on the roulette wheel selection method if the computational cost of drawing the

required number of samples is substantially smaller than the cost of evaluating Z(t)
i, j

at each position. As the number of samples is reduced, the lack of structure within

the values of p(Zi, j = 1|Xi,θ
(t)) with regard to j means that the convergence of the
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independence sampler towards p(Zi, j = 1|Xi,θ
(t)) will become considerably poorer.

Further, the lack of structure between values at adjacent positions means that it is

impossible to choose an alternative standard proposal distribution from which to draw

samples; unimodal distributions such as the Gaussian and Cauchy distributions which

are regularly used in MCMC will not fit the target distribution well. As sEM converges,

it is reasonable to expect that the motif model will become stronger and (at least in

the OOPS sequence model) match one position in the input sequence much better

than any other position, tending towards a single point of high probability. Although

the distribution is expected to become unimodal as the algorithm becomes closer to

convergence, it still cannot be modelled well by a standard proposal distribution as all

probability mass will be at one position.

It is noted that more complex sampling strategies (for instance, with samples at

a given EM iteration informed by the samples from previous iterations) may work

well in this context. However, such strategies are beyond the scope of this project

and, following the SEAM algorithm [23], a roulette wheel selection method is used to

sample from the input sequences in the algorithm presented in the following section.

5.3 MITSU: a novel stochastic and entropy-based

Expectation-Maximisation algorithm for

motif discovery

This section builds on the results of the previous sections in order to set out the sec-

ond major result of this chapter: the complete MITSU (Motif discovery by ITerative

Sampling and Updating)2 algorithm for motif discovery. Section 5.3.1 begins by out-

lining the cut heuristic which is used in MITSU in order to remove the ZOOPS model

constraint on motif distribution. This is followed by the definition of a new entropy

function which is consistent with the improved sequence model used by MITSU. Clas-

sification in this sequence model is discussed (5.3.3), before Section 5.3.4 discusses

the problem of determining convergence in sEM and describes the solution imple-

mented by MITSU. Section 5.3.5 concludes by describing the MITSU algorithm in

pseudocode.

2In Japanese, the word mitsu is the root word for mitsudo, meaning ‘density’. Since stochastic EM
samples from a probability density at each iteration, this name seems doubly appropriate.
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5.3.1 Removing the ZOOPS constraint

Despite overcoming the limitations of the OOPS sequence model, the ZOOPS se-

quence model still enforces some constraints on the distribution of motif occurrences;

it is assumed that each input sequence contains at most one occurrence of a motif.

However, there are many biological examples of promoter regions which contain mul-

tiple copies of the same transcription factor binding site [21]. This is the primary moti-

vation for the two-component mixture (TCM) model introduced by Bailey and Elkan,

which allows an arbitrary number of non-overlapping motif occurrences in each input

sequence [10]. Bembom, et al. have also noted that the OOPS and ZOOPS models

perform significantly worse than TCM if their assumptions on the distribution of motif

occurrences do not hold [21]. The difficulty in guaranteeing that these assumptions

hold strengthens the motivation for implementing a sequence model which is uncon-

strained with regard to the distribution of motif occurrences.

The likelihood function for the TCM model is more computationally complex than

those for the OOPS and ZOOPS models. As a result, exact methods based on the

TCM model have been avoided in favour of more tractable approximations [21]. The

TCM model presented by Bailey and Elkan uses a derived dataset consisting of all

overlapping subsequences of width W from the original dataset [10]. Some proportion

of these subsequences are motif occurrences; the remainder are background. While

the subsequences in this derived dataset are necessarily overlapping, the likelihood

function is based on a sample of independent sequences [21]. Bembom, et al. note that

the effect of this violation of the independence assumption is unclear. An additional

smoothing step is required in order to counter the faulty independence assumption and

reduce the degree to which two overlapping subsequences can both be assigned to the

motif component of the model.

Keles, et al. suggest an alternative cutting heuristic which involves deriving a dif-

ferent dataset from the original, then applying motif discovery to the derived dataset,

using the ZOOPS model [90]. The main advantages of this method are that no addi-

tional steps are required to deal with the assumption of independence and the approxi-

mation to the likelihood function is improved. This method is improved by Bembom,

et al. [21] and is implemented in MITSU. Briefly, Bembom, et al.’s method cuts the

original dataset into a small number of overlapping subsequences of a given length

U , such that each subsequence contains the first (W − 1) positions of the next sub-

sequence. The ZOOPS model is then applied to this derived dataset. The previous
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studies implementing this heuristic have shown that the method is fairly robust with

respect to the choice of cut length U but have suggested that this parameter may be

optimised using cross-validation [90, 21]. The cut heuristic is implemented here as an

inner loop within the motif discovery algorithm (Section 5.3.5). The ZOOPS model

is applied to derived datasets with varying values of U and the parameter settings that

yield the highest value of G(·) are returned as the best motif model. It will be shown in

Section 5.4.3 that the cut heuristic in combination with the ZOOPS model successfully

allows discovery of multiple copies of the same motif within a single input sequence,

in the context of motif discovery using sEM.

5.3.2 Defining an entropy function

Motivation

As noted above, the entropy function G(θ) is used in SEAM to monitor convergence

and the strength of a particular motif model θ. Although introduced by Bi as an ‘en-

ergy’ function [23], G(θ) is actually an entropy-based function, proportional to the

sum of entropies for the motif and background models. G(θ) is defined:

G(θ) = N

(
∑
k∈L

θ0,k ln θ0,k +
W

∑
m=1

∑
k∈L

θm,k ln θm,k

)
. (5.33)

Bi notes that G(θ) is related to the relative entropy discussed by Stormo, which has

been shown to be proportional to the DNA-protein binding strength [160].

One consequence of implementing and optimising the entropy function G(θ) rather

than a likelihood-based function as in MEME (the Q function for the OOPS model

is given in Equation 4.8, page 84) is the difference in distributions which optimise

these functions. Algorithms which optimise a likelihood-based function (for example,

MEME) tend to discover motif models with positions (that is, PWM columns) which

have a significantly different distribution from the background model. In contrast, the

entropy-based function implemented in SEAM is maximised in the case where the dis-

tribution of the probability mass at a given position is significantly more concentrated

than the background; that is, positions where the probabilities are more diffuse will be

penalised by the entropy function.

Analysis of the E. coli dataset described in Section 3.2 illustrates why maximising

an entropy-based function may be useful for motif discovery. Figure 5.1 plots the high-

est probability at each position for each motif in the E. coli dataset against the infor-
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Figure 5.1: Information content of E. coli motif positions, plotted against the probability

of the dominant nucleotide at that position. Upper and lower bounds of information con-

tent are plotted for comparison. Maximising entropy by optimising G(θ) may improve

motif discovery by tending towards models with a more concentrated probability mass

at each position.

mation content (relative entropy) of that position. Upper and lower bounds for the in-

formation content are plotted for comparison; given a highest probability of p at a par-

ticular position, these bounds are reached with motif columns of [p,(1− p),0,0]T and[
p, (1−p)

3 , (1−p)
3 , (1−p)

3

]T
, respectively. While some positions are close to the bounds,

there are a large number of positions with information content between these bounds;

this gives scope for a trade-off between increasing the highest probability at a position

and increasing the information content. The definitions of information content and

relative entropy (page xvii) make clear that these quantities rely on all nucleotides at

a given position. Therefore, it is possible to increase the entropy at a given position

while the highest probability at that position remains constant, by altering the probabil-

ities of the three remaining nucleotides. It follows that maximising G(θ) may result in

stronger motif models (that is, with increased information content) as a consequence

of having a more concentrated probability distribution at each position. Optimising

the entropy-based function rather than a likelihood-based function therefore allows a

different search, which may be useful for motif discovery.
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The entropy function G(θ) as defined by Bi is used in the context of the OOPS se-

quence model in SEAM. However, the properties of the OOPS entropy function mean

that the function becomes problematic when used with the ZOOPS sequence model

and cut heuristic, which are used in combination in order to implement discovery of

multiple motifs within a single input sequence in MITSU. The main problem stems

from the fact that G(θ) is scaled by the number of input sequences N (Equation 5.33).

N is assumed to be constant in the SEAM algorithm; however, it follows that the values

of G(θ) cannot be fairly compared between datasets with differing values of N. Em-

ploying the cutting heuristic means that the value of N may double, or triple, depending

on the cut length (U). A method of fairly comparing values of G(θ) is required. Of fur-

ther interest are the properties of the entropy function, particularly how it varies with

changing motif conservation and varying values of γ. Recall that γ is the proportion

of input sequences containing a motif occurrence; it is therefore related to N and the

number of motif occurrences within the dataset.

Figure 5.2 shows how G(θ) varies with motif conservation. Here, the lower bound

of G(θ) is plotted; that is, motif conservation is defined as the probability of the

dominant nucleotide at each motif position, with the probability of the remaining nu-

cleotides being split equally. For example, a motif conservation of c is equivalent to a

motif model with columns [c, (1−c)
3 , (1−c)

3 , (1−c)
3 ]T . G(θ) has a negative value, increas-

ing exponentially with increasing motif conservation3. G(θ) was designed for use with

the OOPS sequence model and therefore includes no factor to account for the fact that

only some proportion of the input sequences may contain a motif occurrence (this is

assumed to be all input sequences in the OOPS model); the values of G(θ) plotted in

Figure 5.2 would not vary as the proportion of sequences containing a motif occur-

rence varied. Using the OOPS entropy function G(θ) in situations where the OOPS

assumptions do not hold (for example, in the ZOOPS setting) can become problematic.

Example 5.1 shows how this may be a problem.

In the case of MITSU, the ZOOPS model is used in combination with a cutting

heuristic, in order to discover multiple motif occurrences within a single input se-

quence. However, as noted above, G(θ) is independent of γ, the proportion of se-

quences containing a motif occurrence. This becomes even more problematic when

the dataset is cut in order to discover multiple motifs in an input sequence, as illus-

trated in Example 5.2.
3It is noted that Bi’s entropy function drops the negative sign from the conventional definition of

entropy; maximising G(θ) therefore corresponds to minimising a conventional entropy. Following Bi,
the ZOOPS entropy function (to be discussed shortly) is defined similarly.
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Figure 5.2: A plot of the lower bound of the original (OOPS) motif entropy function

(Equation 5.33), assuming N = 10 and w = 10. While G(θ) increases with increasing

motif conservation, it is independent of the proportion of input sequences containing a

motif occurrence (γ).

Entropy function definition

Together, the issues discussed above motivate the definition of a new entropy function

which can be used in sEM-based motif discovery with the ZOOPS sequence model.

This new function should remain consistent when used in conjunction with the cutting

heuristic implemented in MITSU. Here, a modification to the original entropy function

is presented, such that:

G(φ) =
1

γN

(
∑
k∈L

θ0,k ln θ0,k +
W

∑
m=1

∑
k∈L

θm,k ln θm,k

)
, (5.34)

where there is now a direct reliance on the proportion of sequences containing a motif

occurrence (γ) and, as before, the model parameters are now collected and denoted as

φ = (θ,γ). It can be shown that the new (ZOOPS) entropy function G(φ) satisfies the

requirements; the properties of the G(φ) are discussed in the following section.
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Figure 5.3: A plot of the lower bound of the ZOOPS motif entropy function (Equation

5.34), for varying proportions of input sequences containing a motif occurrence (γ).

As in Figure 5.2, it is assumed that N = 10 and w = 10. It is observed that G(φ) is

dependent on both motif conservation and γ.
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function (Equation 5.34).
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A dataset of size N contains two motifs of equal width W and equal conservation C

in differing proportions: motif A occurs in all sequences, while motif B occurs in half

the sequences. It would be preferable to discover motif A first due to its occurrence

in all sequences; however, this cannot be guaranteed when using the original entropy

function (Equation 5.33), as both motifs have equal values of G(θ).

Example 5.1: The OOPS entropy function can become problematic in the ZOOPS set-

ting.

A dataset X of size N = 10 contains a single, perfectly conserved motif. The motif

occurs twice in the first sequence and once in the remaining sequences. The sEM

algorithm is run on X and discovers one occurrence of the motif in each input sequence

(that is, the second occurrence in the first sequence is missed). X is then ‘cut’ to

give a derived dataset X ′ with 2N = 20 sequences, each half the length (ignoring the

cut overlap for now). In X ′, 11 sequences contain one motif occurrence. The sEM

algorithm is run again and discovers all occurrences. The constructed model in each

case has the same value of G(θ); however, the second case is preferable to the first, as

all occurrences of the motif are discovered.

Example 5.2: The OOPS entropy function cannot handle cases where the cutting

heuristic is used to discover multiple motif occurrences in a sequence.

Properties of G(φ)

The dependence of the ZOOPS entropy function G(φ) on motif conservation and the

proportion of sequences containing a motif occurrence (γ) is shown in Figure 5.3.

Again, the lower bound is plotted, with motif conservation defined as above. G(φ)

is shown to increase with increasing motif conservation; however, for any given mo-

tif conservation level, G(φ) now decreases as the proportion of sequence containing a

motif occurrence decreases. Figure 5.4 shows the 3-dimensional surface plot for G(φ),

plotting the value of G(φ) against both motif conservation and copy number (equal

to γN). The 3-dimensional plot confirms that the G(φ) is maximised with a perfectly

conserved motif occurring in every input sequence. The inclusion of the γN factor in

the definition of G(φ) means that the function is unaffected in cases where datasets are

derived by the cut heuristic (γ and N cancel each other in such cases). It can be shown

that the following three useful properties hold:
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If two motifs are equally conserved, the motif with the higher number of occur-

rences will have a higher value of G(φ). This follows as a direct result of the γN

factor in the definition of G(φ). Consider a dataset consisting of 10 sequences, each

containing a perfectly conserved motif A and 5 of the sequences also containing a

secondary motif B. The proportion of sequences containing these motifs are clearly

γA = 1.0 and γB = 0.5. This difference in the number of motif occurrences reduces

the theoretical maximum value of G(φ) for motif B; it follows that the higher value of

G(φ) for motif A means that it is more likely that the motif discovery algorithm will

converge to a model representing the motif with the higher number of occurrences. It

should be noted that this property holds (on a much smaller scale) even without the γN

factor in the entropy function. The reason for this is due to how the sEM expressions

for the ZOOPS model update the motif model at each iteration. The expected proba-

bility that a sequence contains a motif occurrence Q(t)
i is used to weight the samples

from each input sequence. In sequences which do not contain a motif occurrence, Q(t)
i

tends towards 0, but in practice remains very slightly above 0. This has the effect of

adding some noise to the motif model, hence producing a slightly lower value of G(φ).

All else being equal, a higher proportion of sequences containing a motif oc-

currence will yield a higher value of G(φ). Again, this follows directly from the

definition of G(φ) (Equation 5.34). If the number of input sequences N and the motif

conservation (through θ) are held constant, increasing γ also increases G(φ).

Given two motifs of equal prevalence and unequal motif conservation, the mo-

tif discovery algorithm will tend to discover the motif with the higher value of

G(φ) (equivalently, the higher motif conservation). To confirm that the sEM al-

gorithm used in MITSU tends to discover better conserved motifs, a test dataset was

constructed. Ten input sequences were created, each containing a perfectly conserved

motif A. A secondary motif B was added to each sequence, but with mutations such

that 1 letter in each occurrence was changed and 1 letter in each position was changed

(a conservation of 90%). Calculating the expected values of G(φ) for motifs A and

B using Equation 5.34 confirms that the value of G(φ) for motif B is lower than that

for motif A. Running MITSU with 1,000 random seeds returned motif A perfectly in

around 8% of runs. Motif B was returned perfectly in around 1% of runs (a similar

percentage of runs converge to slightly weaker versions of motif C). This result should

perhaps not be surprising, as the algorithm is designed to avoid becoming trapped in
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local optima.

The ZOOPS entropy function G(φ) and the cutting heuristic

Example 5.3 demonstrates how the cutting heuristic affects G(φ). Where the ZOOPS

assumption holds (that is, there is at most one motif occurrence per input sequence),

the γN factor in definition of G(φ) ensures that all cuts of the dataset should yield the

same value of G(φ). Where the ZOOPS assumption does not hold (that is, there is at

least one sequence with more than one motif occurrence), the γN factor ensures that

the cut with the highest expected copy number is returned as the best result.

Conclusion

The ZOOPS entropy function defined in Equation 5.34 is adopted in MITSU. How-

ever, it is noted that other alternative entropy functions may be possible; since the

sEM accept/reject mechanism is based on a difference of entropies, substituting other

functions based on the model entropy should have little effect on this mechanism.
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In Figure 5.5, dataset A consists of 10 input sequences, each containing a motif

occurrence. Each sequence is cut in half to construct dataset B; half of these

sequences now contain motif occurrences, while the rest do not. Therefore,

NA = 10,NB = 20,γA = 1.0,γB = 0.5. Assume that in each case the motif is discovered

perfectly. The γN factor in the definition of G(φ) ensures that, in theory, the motif

model has the same value of G(φ) in both datasets.

Dataset C contains a perfectly conserved motif similar to A, but contains an ad-

ditional motif occurrence in the first input sequence. This additional occurrence

is not discovered by the algorithm. Again, each sequence is cut in half to con-

struct dataset D. This time, the algorithm discovers every occurrence; therefore,

NC = 10,ND = 20,γC = 1.0,γD = 0.55. The γN factor in the definition of G(φ) ensures

that a higher expected copy number gives a higher value of G(φ); therefore, dataset D

is returned as the best result.

Example 5.3: Demonstrating properties of the ZOOPS entropy function on cut datasets.

Figure 5.5: Cut datasets demonstrating properties of the ZOOPS entropy function (refer

to Example 5.3).
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5.3.3 Classification in the stochastic EM ZOOPS model

MITSU’s use of the ZOOPS sequence model in the context of sEM raises a further is-

sue, that of predicting the positions of motif occurrences given the output motif model.

When using the OOPS sequence model, the positions in each sequence corresponding

to the samples drawn in the last iteration of the algorithm are deemed to be the occur-

rences of the motif. This is the method of prediction used in SEAM. However, since

the ZOOPS model used by MITSU allows sequences to contain no motif occurrences,

some further work is required in order to determine the position of predicted motif

occurrences. Bailey and Elkan state that a Bayes-optimal classifier may be formed,

classifying a subsequence Xi, j as a motif occurrence if:

p(Xi, j|motif model)
p(Xi, j|background model)

>
p(background)

p(motif)
, (5.35)

where the terms on the right hand side are prior probabilities. In their original defini-

tions, these prior terms are defined in terms of λ; however, following the substitution

made in generalising the EM expressions (Equation 4.36, page 91), these prior terms

are defined here as:

p(background) = 1− γ

Li−W +1
(5.36)

and

p(motif) =
γ

Li−W +1
, (5.37)

for a given sequence Xi. Motif classification is implemented in MITSU as follows. For

each sequence in the derived dataset, each position is scored using the log-odds matrix

formed from the motif and background models. The subsequence with the largest log-

odds score is classified as an occurrence of the motif, with the additional constraint

that Equation 5.35 must also hold. This results in at most one occurrence per sequence

within the derived dataset, with zero occurrences, where the constraint does not hold.

This method improves on the method used in SEAM in that by discovering a motif

model first and then performing classification of positions, poor final sample positions

are allowed to be discarded in favour of positions which better fit the discovered model.

That is, the sEM sampling procedure may select a non-matching position in a given

sequence by chance (recall that at each iteration of the algorithm, there is a non-zero

probability of accepting a sample which reduces the likelihood); if the algorithm were

stopped at this point and the final samples regarded as motif occurrences, an incor-

rect occurrence would be predicted, despite having predicted a good motif model. By

predicting motif occurrences using the predicted motif model rather than using the
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positions sampled in the final iteration of the algorithm, this scenario is avoided. Of

course, it may be expected that the majority of the time, the final samples will indeed

be the motif occurrences; however, this may depend on how strong the motif model is.

Predicting more than one occurrence per sequence

MITSU uses the Bayes-optimal classifier to predict motif occurrences in the derived

dataset, using the ZOOPS sequence model. The cutting heuristic outlined above means

that, although each derived sequence may contain at most one motif occurrence, the se-

quences in the original dataset may contain more than one predicted motif occurrence.

Once the predictions of motif occurrences in the derived sequences have been made,

the final step is to map these predictions back to their positions in the original dataset.

This is relatively trivial and involves reversing the cutting procedure which was used

to create the derived dataset, ensuring that the overlaps between cuts are dealt with

appropriately.

5.3.4 Stochastic EM convergence and stopping rules

In this section, it is shown that sEM is known to converge in general. Convergence of

sEM in the context of MITSU is shown through example in Section 5.4. The difficulty

of defining a suitable stopping rule for sEM is also discussed, as well as how stopping

is implemented in MITSU.

Stochastic EM convergence

A Markov chain requires two properties to ensure that the chain converges to the

desired distribution: the desired distribution must be an invariant distribution of the

chain. The chain must also be ergodic [115].4

A distribution is invariant (or stationary) with respect to a Markov chain if every

step in the chain leaves that distribution unchanged. A given Markov chain may have

more than one invariant distribution (for example, if the transition probabilities are

given by the identity transformation, then any distribution will be invariant). MacKay

also notes that an invariant distribution is an eigenvector of the transition probability

matrix with eigenvalue 1 [115]. Diebolt and Ip [49] state that for sEM, alternately

imputing pseudo-complete data (S-step) and performing a subsequent maximisation

(U-step) generates a Markov chain that converges to an invariant distribution under the

4Many chains also satisfy detailed balance, but this is not a requirement.
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mild condition that all parameters are positive. The use of pseudocounts when updating

the motif model parameters ensures that this is the case; indeed, this is always the case

when using Dirichlet prior distributions [85].

An ergodic Markov chain is one that converges to a required invariant distribution

regardless of the choice of initial distribution. If a Markov chain is ergodic, there will

be only one invariant distribution. This distribution is then known as the equilibrium

distribution. Celeux and Diebolt [38] prove the ergodicity of the Markov chain gen-

erated by sEM in a mixture context (this is the context in which sEM is used here for

motif discovery). Briefly, this reduces to showing that the sequence of samples is a

finite-state homogeneous irreducible and aperiodic Markov chain. This guarantees the

(weak) convergence to the unique stationary distribution of the ergodic Markov chain

generated by sEM.5

Although (simple) lower bounds on the time required for convergence of MCMC

methods can be calculated, putting an exact figure on this is a difficult problem in

general, and most theoretical results for upper bounds are of little practical use [115].

However, in practice, MITSU was found to take approximately 5 times longer to con-

verge than deterministic EM, based on tests with the CRP dataset described in Section

3.6.1.

Stopping stochastic EM

Diebolt and Robert [51] note that, although satisfactory convergence results for sEM

have been published [38, 49], designing a stopping rule for sEM is challenging: a sim-

ple deterministic stopping rule as implemented in the EM algorithm may be triggered

by what is a chance fluctuation stemming from the S-step of the algorithm. A num-

ber of different approaches for stopping sEM have been suggested. Early approaches

simply ran sEM for a large number of iterations in place of a stopping rule, which

can be inefficient, especially if sEM converges in a relatively small number of iter-

ations [38]. Recent stopping rules suggest monitoring the gradient of the likelihood

function [74] or differences in the Q function [33]; however, the method used most

often is the implementation of a deterministic stopping rule for a number of successive

iterations to reduce the chances of a premature stop [28, 29]. This method has been

criticised for placing too much emphasis on the parameter estimates with little regard

5In addition to these results, Diebolt and Robert prove convergence of the Data Augmentation al-
gorithm [50, 51], which can be viewed as a Bayesian version of sEM (Celeux et al. note that sEM is
a special case of the Data Augmentation algorithm, where some suitable non-informative prior is used
[37]).
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to the estimation of information [33]. However, in the context of motif discovery, it is

the motif model parameter estimates which are of interest therefore this is the method

implemented in MITSU. After each sEM iteration, the Euclidean distance between

the current and previous motif models is calculated. If this distance is below a given

threshold for three successive iterations, the algorithm is deemed to have converged.

Booth and Hobert suggest reducing the stringency of the threshold for stochastic vari-

ants of EM in comparison with deterministic EM as a result of the added Monte Carlo

error [28]. Following this suggestion, the threshold for MITSU is chosen to be 10−3

(the threshold used in MEME is 10−6). It is noted that a threshold of 10−3 corresponds

to an average change of 0.00014 in each motif model parameter when W = 12; this

change is deemed to be sufficiently small to diagnose convergence.

5.3.5 MITSU pseudocode

Pseudocode describing MITSU is presented in Algorithm 5.1. The sEM algorithm at

the heart of MITSU is run for several initial values of γ for each of n random seeds.

If Wmin 6=Wmax, the algorithm is run for each possible motif width and the most likely

width estimated using the MCOIN heuristic. The complete algorithm may be run

multiple times to discover multiple different motifs (which may be of different width

and have a different distribution of motif occurrences within the dataset); the method

for discovering multiple different motifs will be discussed in Section 6.2.
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procedure MITSU algorithm

create Markov background model

for M motifs do
for W = Wmin to Wmax do

for cut length in {set of cut lengths} do
for n random seeds do
for γ = 1/

√
N to 1 by ×2 do

run sEM on cut dataset using ZOOPS model at width W :

until convergence do
S-step (Equation 5.25)

U-step (Equations 5.31-5.32)

end
end

end
return the best motif model over n random seeds & varying γ

end
return the best motif model over all cut lengths

end
estimate most likely width Ŵ using MCOIN (Algorithm 4.1)

return motif model and list of predicted sites for Ŵ

probabilistically erase motif occurrences from dataset (Equations 6.1-6.3)

end
end MITSU algorithm

Algorithm 5.1: MITSU pseudocode

5.4 Validating MITSU

This section details the experimental validation of the algorithm developed in this the-

sis. The results of this validation show that MITSU can discover unknown motifs

in a dataset consisting of the upstream sequences of coregulated genes. The results

also confirm the hypothesis in that transcription factor binding site discovery using

stochastic EM is shown to improve on deterministic EM in terms of previously estab-

lished metrics. Further results demonstrate that the stochastic EM algorithm allows

MITSU to escape insignificant local maxima of the likelihood function which can trap

deterministic algorithms and that MITSU can successfully discover multiple copies of
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a motif within a single input sequence.

5.4.1 Stochastic EM outperforms deterministic EM

MITSU was evaluated quantitatively using a mixture of realistic synthetic and previ-

ously characterised real data. Datasets were constructed as described in Chapter 3.

Briefly, five large data collections each consisting of 1,000 datasets were constructed

using synthetic motifs of varying conservation and realistic E. coli background se-

quence extracted from the EcoGene database [144]. A sixth data collection consisting

of 20 datasets was constructed using known E. coli TFBS sequences extracted from

RegulonDB [65]. Finally, a data collection consisting of nine datasets was constructed

using known TFBS motif sequences from diverse prokaryotic species. These motif se-

quences were discovered by ChIP methods. Background sequences for these datasets

were constructed using synthetic data, altering the probability of choosing each nu-

cleotide to reflect the species GC-content as required. Tables 5.1, 5.2 and 5.3 sum-

marise the results of the tests on these data collections. MITSU is compared here

against the results of the SEAM algorithm [23] and a deterministic EM-based motif

discovery algorithm. This deterministic EM-based algorithm is a reimplementation of

the original MEME algorithm [10], used here in order to compare deterministic EM

against stochastic EM more fairly, without the improvements gained through the use

of additional heuristics. The deterministic EM results were reported in Section 4.4.3,

Tables 4.3 (page 108), 4.5 (page 110) and 4.7 (page 110) and are repeated here for

convenience. Detailed results for Tables 5.1, 5.2 and 5.3 are provided in Tables B.4,

B.5 and B.6 respectively in Appendix B. AUC results are not available for SEAM due

to the method of prediction used (the final sample in each input sequence is regarded

to be the predicted position for that sequence, rather than scoring each position using

a log-odds matrix constructed from the motif model, as in MEME and MITSU).

Realistic synthetic data

Tests on realistic synthetic data (Table 5.1) show that mean site-level sensitivity (sSn)

and positive predictive value (sPPV) decrease with decreasing motif conservation for

all three tested algorithms. This behaviour was noted in deterministic EM in Section

4.4.3; the decrease in sSn is due to fewer sites being predicted overall. The decrease

in sPPV is due to the background sites better matching the motif sites as conservation

decreases, leading to an increase in the number of false positive results.
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Conservation Deterministic EM SEAM MITSU

(mean bits/col) sSn sPPV AUC sSn sPPV AUC sSn sPPV AUC

2.00 0.84‡ 0.25 0.99‡ 1.00†‡ 1.00†‡ - 0.70 0.74† 0.97

1.49 0.26 0.07 0.98 0.93†‡ 0.93† - 0.90† 0.97†∗ 1.00†

1.08 0.02 0.01 0.96 0.49† 0.49† - 0.68†∗ 0.78†∗ 0.99†

0.76 0.00 0.00 0.94 0.09† 0.09† - 0.17†∗ 0.20†∗ 0.94†

0.51 0.00 0.00 0.93‡ 0.06† 0.06† - 0.07†∗ 0.08†∗ 0.93

Table 5.1: Mean site-level sensitivity (sSn), positive predictive value (sPPV ) and area

under the ROC curve (AUC) for five collections of realistic synthetic data with varying

levels of motif conservation. Best mean results are printed in bold. In these tests,

motif discovery was carried out only at the known motif width. Results marked † are

statistically significant with regard to deterministic EM, results marked ∗ are statistically

significant with regard to SEAM and results marked ‡ are statistically significant with

regard to MITSU, all at p≤ 0.05 (see main text).

In the majority of tests, MITSU outperforms both the deterministic EM algorithm

and SEAM, particularly with regard to sSn and sPPV. The increased performance at

lower levels of motif conservation is particularly notable. The success of MITSU is due

to making fewer, but more accurate, predictions. The predictions made are generally

more cautious; positions which might previously have been false positive predictions

are now more likely to be classified as true negative predictions. This significant re-

duction in the number of false positive predictions explains the large increase in the

sPPV values.

It is also notable that the sSn and sPPV results for the sEM-based algorithms are

better balanced, in that the sSn and sPPV results are more closely matched. The results

for the deterministic EM algorithm, particularly at high levels of motif conservation,

tend towards increasing sSn at the expense of sPPV; that is, fewer false negative pre-

dictions were made at the expense of having a greater number of false positive predic-

tions. While in the case of SEAM the improved balance between sSn and sPPV is a

result of using the OOPS sequence model (sSn and sPPV results will always be equal

using this model), MITSU is genuinely less biased towards sSn, producing fewer false

predictions in general.

As in Section 4.4, statistical significance tests for the results in this section were
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Conservation Deterministic EM SEAM MITSU

(mean bits/col) sSn sPPV AUC sSn sPPV AUC sSn sPPV AUC

‘high’ (1.36) 0.81‡ 0.22 0.96 0.67‡ 0.67† - 0.54 0.75† 0.98

‘low’ (0.78) 0.63 0.41 0.96 0.65 0.65 - 0.57 0.71† 0.97

overall (1.13) 0.74‡ 0.30 0.96 0.66‡ 0.66† - 0.55 0.73† 0.98†

Table 5.2: Mean site-level sensitivity (sSn), positive predictive value (sPPV ) and area

under the ROC curve (AUC) for 20 datasets created using previously characterised E.

coli TFBS sequences. Best mean results are printed in bold. In these tests, motif

discovery was carried out only at the experimentally determined motif width. Results

marked † are statistically significant with regard to deterministic EM and results marked
‡ are statistically significant with regard to MITSU, both at p≤ 0.05 (see main text).

Conservation Deterministic EM SEAM MITSU

(mean bits/col) sSn sPPV AUC sSn sPPV AUC sSn sPPV AUC

0.99 0.75 0.67 0.99 0.86 0.86† - 0.88† 0.92†∗ 1.00

Table 5.3: Mean site-level sensitivity (sSn), positive predictive value (sPPV ) and area

under the ROC curve (AUC) for 9 datasets created using real prokaryotic data deter-

mined through ChIP experiments. Best mean results are printed in bold. In these tests,

motif discovery was carried out only at the experimentally determined motif width. Re-

sults marked † are statistically significant with regard to deterministic EM and results

marked ∗ are statistically significant with regard to SEAM, both at p≤ 0.05. (see main

text).

performed using a paired one-sided Wilcoxon signed rank test6. In general, the sEM-

based algorithms were shown to give significantly better results when compared to

deterministic EM (Table 5.1). All sSn and sPPV results for SEAM were significantly

greater than those for deterministic EM (p < 2.20×10−16 in all cases). sSn and sPPV

results for MITSU were also significantly greater than those for deterministic EM in

all cases (p < 2.20×10−16) except for sSn in the group with mean conservation 2.00

bits/col. MITSU was also significantly better than deterministic EM in terms of AUC

at intermediate levels of conservation (p< 2.20×10−16); deterministic EM was shown

to be significantly better than MITSU for the groups with mean conservations of 2.00

bits/col and 0.51 bits/col (p = 1.67× 10−10 and p = 1.47× 10−3, respectively). For

6Again, p-values smaller than the machine epsilon in R (2.20× 10−16) are presented as ‘< 2.20×
10−16’.
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the results where MITSU outperformed SEAM in terms of mean values, these results

were also significantly better (p < 2.20× 10−16, except sSn for the group with mean

conservation 0.51 bits/col: p = 4.25×10−6).

E. coli and prokaryotic ChIP data

Tables 5.2 and 5.3 present the results of tests on previously characterised E. coli TFBS

sequences and TFBS sequences from diverse prokaryotes determined by ChIP experi-

ments, respectively. The general trend remains the same: both sSn and sPPV decrease

with decreasing motif conservation. As noted in Section 4.4.3, deterministic EM-based

motif discovery is shown to achieve better classification results on previously charac-

terised E. coli data than could be expected given realistic synthetic data of a similar

conservation. Again, this improvement in performance is due to the differences in

motif structure. Whereas the conservation of the synthetic motifs used here is inde-

pendent of position, real TFBS motifs with low mean conservation often have clusters

of well-conserved positions (this phenomenon was shown in E. coli motifs in Section

3.2); based on this observation, it is likely that differences in the distribution of high

and low conservation across true motifs in comparison with synthetic motifs explain

the improvement in performance on real data. A similar trend is seen in the results of

SEAM and MITSU, particularly at lower levels of motif conservation.

As with the realistic synthetic data, MITSU is shown to increase sPPV by making

fewer, more accurate, predictions (Table 5.2). The sSn values are decreased to lower

than the corresponding values from deterministic EM and (to a lesser extent) SEAM.

This is a side-effect of predicting fewer sites overall: ‘borderline’ predictions which

may have been classified as true positive results previously are now classed as false

negative results due to the more cautious predictor. However, as with the realistic syn-

thetic data results, the sSn and sPPV values for MITSU are now less skewed towards

improving sSn at the expense of decreasing sPPV. Although MITSU uses a Bayes-

optimal classifier for site prediction, the results of the E. coli tests here suggest that

a better balance between sSn and sPPV may be achieved with a different predictor.

However, the complexity of the computational problem and the wide structural vari-

ety of TFBS motifs may mean that it is not possible to improve on all performance

measures in all cases.

MITSU is observed to be particularly effective in cases where the deterministic

EM-based algorithm returned poor results, for example, in the E. coli FruR, RcsB and

TorR motifs. Figure 5.6 displays ROC curves for the E. coli TorR motif as discov-
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ered by both deterministic EM and MITSU. This motif was very poorly discovered by

the deterministic EM algorithm (sSn = 0.10, sPPV = 0.03, AUC = 0.83); however,

MITSU increases performance over all measures (sSn = 0.30, sPPV = 0.50, AUC

= 0.98). As noted above, fewer sites are predicted overall, reducing the number of

false positive results and therefore increasing sPPV. The improvement in sSn is a re-

sult of an improved motif model which better fits the known occurrences: sequence

logos representing the motifs discovered by both algorithms are shown in Figure 5.7.

The sequence logos clearly show that the model discovered by MITSU is stronger than

that discovered by deterministic EM. As discussed in Section 5.3.2, the discovery of a

stronger motif model may be partially due to MITSU optimising an entropy-based ob-

jective function rather than a likelihood-based function, as in deterministic EM. Further

analysis reveals that deterministic EM discovers an AT-rich background model. The

motif model discovered by deterministic EM does contain a number of positions which

are significantly different from this background model (for example, probabilities for

both the G and T nucleotides in the final four positions are significantly higher than

those in the background model); however, the information content at these positions

is still relatively low. In contrast, optimisation of the entropy-based function within

MITSU results in the discovery of motif positions where the probability mass is more

concentrated, leading to fewer false positive predictions. In the case of the TorR mo-

tif, the fact that deterministic EM performed so poorly suggests that the dataset may

have a significant number of suboptimal local maxima in the likelihood function; the

stochastic nature of MITSU may therefore play a more important role in its success on

this particular dataset.

The deterministic EM sSn results for the E. coli ‘high conservation’ and ‘overall’

groups (Table 5.2) are shown to be significantly higher than those of MITSU (p =

5.31× 10−3 and p = 6.03× 10−3, respectively). Similarly, the SEAM sSn results

for the ‘high conservation’ and ‘overall’ groups are significantly higher than those of

MITSU (p= 4.49×10−2 and p= 2.95×10−2, respectively). The SEAM sPPV results

for the ‘high conservation’ and ‘overall’ groups are significantly higher than those of

deterministic EM (p = 1.22× 10−3 and p = 1.03× 10−3, respectively). The MITSU

sPPV results for all three groups are significantly higher than those of deterministic EM

(p = 4.88× 10−4, p = 1.17× 10−2 and p = 1.09× 10−4 for the ‘high conservation’,

‘low conservation’ and ‘overall’ groups, respectively). Finally, the MITSU AUC result

for the ‘overall’ group is significantly higher than that for deterministic EM (p= 3.54×
10−2).
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Figure 5.6: ROC curves (plotted for 0≤ sFPR≤ 0.5) for the E. coli TorR motif discov-

ered by the deterministic EM algorithm (left) and MITSU (right). Curve colour illustrates

the threshold of p(Zi, j = 1|Xi, j,θ), from highest (red) to lowest (blue).
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Figure 5.7: Sequence logos representing the E. coli TorR motif as discovered by the

deterministic EM algorithm (top) and MITSU (bottom).

Table 5.3 shows that for the diverse prokaryotic motifs, MITSU outperforms de-

terministic EM and SEAM in terms of all three performance measures. As with the

realistic synthetic data, the increase in sPPV is most dramatic. This result may be

of particular interest to biologists, as it means that fewer false positive results are

predicted: sites which are predicted by MITSU are therefore more likely to be true

transcription factor binding site occurrences. As with the E. coli motifs above, perfor-

mance is significantly increased for motifs which were relatively poorly discovered by

deterministic EM, for example, the E. coli CRP and RutR motifs and the B. subtilis

Spo0A motif.

The SEAM sPPV result on the diverse prokaryotic data (Table 5.3) is shown to be

significantly higher than that of deterministic EM (p = 7.53×10−3). The MITSU sSn

result is also shown to be significantly higher than that of deterministic EM (p= 3.98×
10−2). The MITSU sPPV result is significantly higher than those of both deterministic

EM and SEAM (p = 9.09×10−3 and p = 2.95×10−2, respectively).

In order to validate the MCOIN heuristic developed in Section 4.4 in the context of
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sEM (particularly MITSU), further tests were carried out in which the MCOIN heuris-

tic was used to determine the most likely motif width from a range of plausible widths.

Consistent with the previous MCOIN tests, all widths±4nt of the experimentally deter-

mined motif width were tested. When the true motif width is unknown the performance

of MITSU is decreased slightly; the overall results on the E. coli datasets and the di-

verse prokaryotic dataset when using the MCOIN heuristic (sSn = 0.43, sPPV = 0.68,

AUC = 0.97 and sSn = 0.85, sPPV = 0.88, AUC = 1.00, respectively) show that

MITSU continues to outperform both deterministic EM and SEAM in terms of sPPV

and AUC, but decreases in sensitivity compared to the previous results (Tables 5.2 and

5.3). The E-value of the resulting multiple alignment was also tested in the context

of sEM. As in Section 4.4.3, MCOIN is shown to outperform the E-values estimator

in terms of mean absolute error (MAE) for the E. coli dataset (2.90 vs. 3.45). How-

ever, the mean average error on the diverse prokaryotic dataset was slightly higher for

MCOIN, compared to the E-values estimator (2.11 vs. 2.00).

5.4.2 Stochastic EM escapes local maxima

One major motivation for the stochastic EM algorithm is the fact that the deterministic

EM algorithm cannot be guaranteed to converge to the global maximum of the like-

lihood function and may instead converge to a saddle point or local maximum of the

likelihood function. While sEM also cannot be guaranteed to converge to the global

maximum of the likelihood function, it can be demonstrated that the stochastic per-

turbations of sEM allow sEM-based algorithms to escape local maxima which trap

deterministic EM-based algorithms, in a motif discovery context.

A small dataset was constructed, comprising 10 sequences of 200nt in length, each

sequence containing a single occurrence of a perfectly conserved motif of width 8nt

(CTAAATGC). As before, E. coli intergenic sequences extracted from EcoGene were

used as background positions. Despite the relative simplicity of the dataset, it is ex-

pected that there will be a large number of local maxima in the likelihood function,

corresponding to patterns which are better conserved than the background but less

well conserved than the motif of interest.

Traces of the values of G(φ) for two runs of both the deterministic EM algorithm

and MITSU are shown in Figure 5.8. Both algorithms are initialised with the same pa-

rameter values and allowed to run to convergence. Both traces illustrate one of the ma-

jor differences between deterministic and stochastic EM: while each iteration of deter-
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Figure 5.8: G(φ) traces for two runs of both the deterministic EM algorithm (blue) and

MITSU (red) on a synthetic dataset containing a perfectly conserved motif of width 8nt.

Algorithm convergence is marked with ‘×’ in both cases. The sampling step of the sEM

algorithm allows MITSU to escape local maxima of the likelihood function, which can

trap deterministic EM (top).
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ministic EM is guaranteed not to decrease the likelihood, at each iteration of stochastic

EM, there is a non-zero probability of accepting new model parameters which decrease

the likelihood. It is this behaviour which allows stochastic EM to escape local max-

ima of the likelihood function. The top trace illustrates a case where deterministic

EM converges to a local maximum at around G(φ) = −0.52. In contrast, although

stochastic EM spends around 40 iterations around G(φ) =−0.70, a small jump which

decreases the value of G(φ) at iteration 53 is followed by several iterations which dra-

matically increase the value of G(φ). Using MITSU’s stopping rule, sEM converges at

G(φ) =−0.14, corresponding to perfect discovery of the known motif.

The lower trace in Figure 5.8 shows a case where both algorithms converge to

G(φ) = −0.14. This trace illustrates that deterministic EM generally converges faster

than stochastic EM, which can spend a relatively large number of iterations exploring

models with lower values of G(φ) before converging. However, this slower conver-

gence is a small trade-off in exchange for more accurate motif models and binding site

predictions, as shown in the top trace.

5.4.3 MITSU successfully discovers multiple occurrences

of a motif in a single sequence

As noted in Section 5.3.1, the cut heuristic in combination with the ZOOPS model

allows discovery of multiple motif occurrences within a single input sequence. The

CRP dataset described in Section 3.6.1 is used to present a proof of principle. Figure

5.9 (top) shows the CRP motif sequence logo constructed from the 24 binding sites in

the dataset; it is noted that the low conservation and gapped nature of the CRP motif

increases the challenge of computational discovery.

MITSU is compared against MEME and it is assumed that the true motif width

is known; both algorithms are run at this width. MITSU was run with the cut length

U equal to half the length of each input sequence. The results of this test show that

MITSU predicted 28 binding sites (sSn = 0.71, sPPV = 0.61, AUC = 0.99) and suc-

cessfully predicted both binding sites in the CE1CG, ARA and LAC sequences. The

middle logo in Figure 5.9 represents the motif discovered by MITSU. Based on this

result, MITSU compares well with MEME, which predicted 18 binding sites and failed

to discover more than one site in a sequence using the TCM model when the total num-

ber of sites was not provided (sSn = 0.71, sPPV = 0.94). 14 of the sites predicted by

MEME were also predicted by MITSU. The bottom logo in Figure 5.9 represents the
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Figure 5.9: CRP motif sequence logos. From top: logo constructed from the 24 binding

sites contained in the CRP dataset; logo representing the motif discovered by MITSU;

logo representing the motif discovered by MEME when the number of known sites was

not provided.

motif discovered by MEME when the number of known sites was not provided. This

motif is shifted by 3nt compared to the motif constructed from the known binding sites.

When the total number of sites was used as additional information, MEME predicted

24 binding sites and successfully predicted both binding sites in the CE1CG, DEOP2

and MALK sequences (sSn = sPPV = 0.83). 16 of the sites predicted by MEME were

also predicted by MITSU.

Comparing the sequence logos representing the motifs discovered by MITSU and

MEME shown in Figure 5.9, it is noted that the positions in the motif discovered by

MITSU are generally underweighted compared to the known motif and that the po-

sitions in the motif discovered by MEME are generally overweighted. This would

appear to contradict the properties of the entropy-based function optimised by MITSU

as discussed previously; that is, for the CRP dataset, MITSU appears to discover a

motif model where the probability mass at each position is more diffuse than in the

known motif model and the model discovered by MEME. In this case, the difference

in weighting appears to be due to the number of sites predicted by each algorithm.

Both algorithms return the same number of true positive predictions; the number of

false negative predictions is also equal, leading to identical sSn results. MITSU pre-

dicts more false positive sites than MEME, which leads to an increase in the ‘noise’

at each position and therefore an underweighting of the positions in the model discov-

ered by MITSU compared to that discovered by MEME. The difference in the number

of predicted sites also provides an explanation for the decreased sPPV result (0.61
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vs 0.94, respectively). While there is room for improvement, the cutting heuristic is

shown to allow the successful prediction of multiple motif occurrences within a sin-

gle input sequence in principle without additional heuristic optimisations to improve

performance.





Chapter 6

Further validation and extension of

MITSU

This chapter begins by applying the MITSU algorithm developed in Chapter 5 to motif

discovery in Alphaproteobacteria. MITSU is validated on previously characterised Al-

phaproteobacterial motifs before being applied to motif discovery in uncharacterised

data. The results of these tests are discussed in detail and suggest several extensions

of MITSU. While motif discovery generally aims to discover a single motif from a

given dataset, there are many examples of multiple different motifs situated in the

same upstream sequence. Section 6.2 presents a method for the discovery of multiple

motifs based on a sequential discovery strategy and implements it within MITSU. A

higher order Markov model which provides an improved approximation to the back-

ground data is described in Section 6.3. The effects of incorporating this higher order

model in a deterministic EM-based algorithm are evaluated using E. coli and diverse

prokaryotic data. For the first time, the effects of incorporating a higher order Markov

background model in the context of a stochastic EM-based algorithm (MITSU) are

also evaluated. The evaluation of the extensions to MITSU presented in this chapter

are used to evaluate the supporting hypothesis, that incorporation of relevant prior bi-

ological knowledge through the sEM framework improves motif discovery in terms of

previously established metrics.

Finally, a novel information-theoretic measure of motif palindromicity is presented.

This measure offers a number of theoretical advantages over current constraint-based

approaches; these are discussed in Section 6.4.

155
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6.1 Application to Alphaproteobacteria

In this section, the application of MITSU to discover motifs in the selected Alphapro-

teobacterial species is described and the results presented. MITSU is first used to

discover the previously characterised CtrA motif in C. crescentus CB15. MITSU is

then used to discover the characterised FnrL motif in R. sphaeroides 2.4.1. Following

this, MITSU is used to predict a novel motif and consensus sequence for the previ-

ously uncharacterised NtrX binding site in the selected Alphaproteobacterial species.

Although consensus sequences and lists of regulated genes are available for the charac-

terised motifs, quantitative evaluation is more difficult than in the previous tests (Sec-

tion 5.4), as the precise location of motif occurrences remains unknown. This difficulty

is increased in the case of NtrX, as no consensus sequence has been determined and

(as noted in Section 3.5.2) although the regulons controlled by NtrX are known, a list

of NtrX-controlled genes has also not been determined.

6.1.1 Characterised Alphaproteobacterial motifs

CtrA

MITSU was applied to the CtrA datasets described in Section 3.5.2, testing 100 ran-

dom seeds and testing at the experimentally determined motif width (16nt) in all cases.

Testing the CtrA-cD dataset, motif occurrences were predicted in all 15 sequences.

The predicted motif model is shown in Figure 6.1. The predicted motif is a shifted (by

3nt) version of the canonical gapped consensus sequence (TTAA-n7-TTAAC). It is

noted that positions 4-11 also match with the ungapped consensus sequence proposed

by Laub, et al. [96]. The motif discovered by applying MITSU to the CtrA-cE dataset

is shown in Figure 6.2. The discovered motif does not match either previously pro-

posed consensus sequence. Although relatively well conserved AA dinucleotides are

observed at both ends of the motif, the surrounding positions do not suggest that these

match the AA dinucleotides in either canonical consensus sequence. Testing further

random seeds did not produce a model matching the consensus sequence. Testing the

CtrA-cDE dataset, MITSU predicted motif occurrences in 29 sequences; the predicted

motif model is shown in Figure 6.3. This model matches an unshifted version of the

canonical gapped consensus sequence, although the conservation of the 3’ half-site is

relatively low.

Laub, et al. note that in their study, not all intergenic regions bound by CtrA
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Figure 6.1: Sequence logo representing the motif model predicted by MITSU, using the

C. crescentus CtrA-cD dataset.
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Figure 6.2: Sequence logo representing the motif model predicted by MITSU, using the

C. crescentus CtrA-cE dataset.

were found to contain a close match to either of the proposed consensus sequences;

conversely, not all regions containing a consensus sequence were found to bind to

CtrA in an in vivo study [96]. It has also been noted that some intergenic regions

(such as the promoter for the fliX gene) only match one half-site (TTAA) but still bind

to CtrA [122]. Laub, et al. conclude that the factors involved in DNA binding of

CtrA are still poorly understood [96]. Although the current tests discover one half

of the gapped consensus sequence with relatively high conservation in the CtrA-cD

and CtrA-cDE datasets, the second half is significantly less well-conserved. The first

possible reason for this lack of conservation may be that some sequences only contain

one TTAA half-site, as noted above. The structure of the gapped consensus sequence

provides a second possible reason. The consensus sequence consists of a direct repeat

of TTAA, separated by a gap of 7nt. It is possible that if, for a given sequence, the

5’ half-site is poorly conserved but the 3’ half-site is well conserved, the 3’ half-site

may be picked up by the algorithm as matching the 5’ half-sites in other sequences,

introducing error to the 3’ half-site of the motif model. Either one, or a combination, of

these possibilities may reduce the conservation of the 3’ half-site of the motif model.

To test the feasibility of this second explanation, the motif sites predicted by MITSU
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Figure 6.3: Sequence logo representing the motif model predicted by MITSU, using the

C. crescentus CtrA-cDE dataset.
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and their surrounding sequences were examined. The aligned sequences are shown in

Figure 6.4. If the relatively low conservation of the 3’ half-site is due to the 3’ half-site

of some sequences being predicted as the 5’ half-site, the true 5’ half-site should be

visible 7nt upstream of the predicted motif start site. Examining the predicted motif

sites shows that there are eight sequences with a potential 5’ half site 7nt upstream of

the predicted motif start site (sequences with at least two positions matching TTAA are

counted as potential half-sites). Modifying the alignment such that these sequences

are aligned with the rest of the predicted motif sites (that is, shifting the sequences by

11nt) yields the alignment shown in Figure 6.5. The sequence logo constructed from

the resulting alignment is shown in Figure 6.6. Comparing with the previous sequence

logo (Figure 6.3), it is observed that the 5’ half-site of the modified alignment is less

well-conserved than that of the original alignment; however, the final two positions in

the alignment are now better conserved and match the gapped consensus sequence. It

is also noted that the positions in the ‘gap’ are now less well-conserved, as may be ex-

pected. While it is possible that the modified alignment is also suboptimal, it suggests

that this explanation of the relatively low conservation of the 3’ half-site is feasible. As

noted above, the gapped CtrA consensus sequence contains a direct repeat; this result

suggests that the computational discovery of direct repeats may be more difficult than

that of inverted repeats (or palindromes).
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ttaa TTAA---n7--TTAAC

>CC_0233 cgccttgtagcgcgacgtggttgacgtcctctttacgtgtggtggcgcatcaaggg

>CC_0378 aagcgcctgaaaggccgtggttaacggcccgctaaccacgtctctcaacaccggat

>CC_0430 cgggattatcacccttcatgttggcgatccgtgggcacggagcgctggttggaggg

>CC_0953 tgaggcttcttaatgccggattaaccctgtttcttcacgacatccctcttttcggc

>CC_1035 ggcgtggcgcgcggttatgcttaaccacgcgttaagtttggagccccaaaccggac

>CC_1457 gcaagctaggcgaacacgtgttaacgccaccttgccaccccgaacgaccgcgcttg

>CC_1458 ggaggccttagactttgctgttaaccatgttttgaggcgctatgcttaactgagtc

>CC_2062 ttgcccggcaaaacacatcgttaaccatgcttcgcgcatgagtacgggtatagatt

>CC_2063 tactcatgcgcgaagcatggttaacgatgtgttttgccgggcaattggtcgcaggc

>CC_2552 accagcccggcaaggtttgattaaccctccgacccgactctccgccc

>CC_2628 ttcgaaccccgtcgcggggcttaaccattttttcgagaccttggggctatccctca

>CC_2868 ttccctagattgtatttcggttgacgtctcgtctacgatttcgaggttaatgttct

>CC_2949 tggccgcaagcctgtggattttagtcttttgttgaccaaagaaa

>CC_3286 gcgtcgccgcgctaatgaacttcatcgtttgttaagtatgagcgcgggaccctagg

>CC_3599 cggcccgattattgcaggcgttcgcgacccgttaaccagaaccgctcttcaatggc

>CC_0232 ggcgcggccacgattcgtggttaacgccccttgatgcgccaccacacgtaaagagg

>CC_0350 tcgcacttttgaacgcttgcttaaggctgtcgtgggaccgtgcgcgctgttctcgc

>CC_0792 gtcgagagcatctctattcattgatgttcgtttcacgattaacaaaatagcttcaa

>CC_0793 aactcgtgagtttaagcgcgcctgcagggtaaacatatattatcgtt

>CC_1101 gctcgtgcaattaaccagaattcaccacgcgtgagtacaccgccttaaccatcgcg

>CC_1307 tggtaaccaacattcagaaattgacgttccgattcacagattaaaaacgcatcgct

>CC_1850 caagtgaacgtcgttcgttcttaacgcctcgtaagaactctacagcttaggctgca

>CC_1963 gagggccgcgcctttttcgtttcaggccgcgtcgcgcgctccttgcaacctgttaa

>CC_2324 cgcatcctcgacggttaggcttaatgattgtttgagccaggaagctgtggattaac

>CC_2640 tcacgttgacgccgggaatattgacgttgtgaccgcccccgcagcagcccgtcggc

>CC_2948 attaagtgcagtcggcgaaattgatcgtgttttcgggggtgagcaagtcgaacggc

>CC_3219 cttccgtcgcaaacagcttgttcgccacgcgcttcgcaacaaagaccttttccacg

>CC_3295 cgcctggactaacggttcctttaaggtttcggtgaggttactggcggcttaaggcg

>CC_3317 ctgccgttccgcgaactgcgttagggtcttgttaaccgcgcgccgcgaaaatgtga

Figure 6.4: Alignment of predicted CtrA motif occurrences. Predicted occurrences are

printed in bold. Potential true 5’ half-sites are observed in eight sequences (bold).
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ttaa TTAA---n7--TTAAC

>CC_0233 cgccttgtagcgcgacgtggttgacgtcctctttacgtgtggtggcgcatcaaggg

>CC_0378 aagcgcctgaaaggccgtggttaacggcccgctaaccacgtctctcaacaccggat

>CC_0430 cgggattatcacccttcatgttggcgatccgtgggcacggagcgctggttggaggg

>CC_0953 tgaggcttcttaatgccggattaaccctgtttcttcacgacatccctcttttcggc

>CC_1035 ggcgtggcgcgcggttatgcttaaccacgcgttaagtttggagccccaaaccggac

>CC_1457 gcaagctaggcgaacacgtgttaacgccaccttgccaccccgaacgaccgcgcttg

>CC_1458 ggaggccttagactttgctgttaaccatgttttgaggcgctatgcttaactgagtc

>CC_2062 ttgcccggcaaaacacatcgttaaccatgcttcgcgcatgagtacgggtatagatt

>CC_2063 tactcatgcgcgaagcatggttaacgatgtgttttgccgggcaattggtcgcaggc

>CC_2552 accagcccggcaaggtttgattaaccctccgacccgactctccgccc

>CC_2628 ttcgaaccccgtcgcggggcttaaccattttttcgagaccttggggctatccctca

>CC_2868 ttccctagattgtatttcggttgacgtctcgtctacgatttcgaggttaatgttct

>CC_2949 tggccgcaagcctgtggattttagtcttttgttgaccaaagaaa

>CC_3286 gcgtcgccgcgctaatgaacttcatcgtttgttaagtatgagcgcgggaccctagg

>CC_3599 cggcccgattattgcaggcgttcgcgacccgttaaccagaaccgctcttcaatggc

>CC_0232 ggcgcggccacgattcgtggttaacgccccttgatgcgccaccacacgtaaagagg

>CC_0350 tcgcacttttgaacgcttgcttaaggctgtcgtgggaccgtgcgcgctgttctcgc

>CC_0792 gtcgagagcatctctattcattgatgttcgtttcacgattaacaaaatagcttcaa

>CC_0793 aactcgtgagtttaagcgcgcctgcagggtaaacatatattatcgtt

>CC_1101 gctcgtgcaattaaccagaattcaccacgcgtgagtacaccgccttaaccatcgcg

>CC_1307 tggtaaccaacattcagaaattgacgttccgattcacagattaaaaacgcatcgct

>CC_1850 caagtgaacgtcgttcgttcttaacgcctcgtaagaactctacagcttaggctgca

>CC_1963 gagggccgcgcctttttcgtttcaggccgcgtcgcgcgctccttgcaacctgttaa

>CC_2324 cgcatcctcgacggttaggcttaatgattgtttgagccaggaagctgtggattaac

>CC_2640 tcacgttgacgccgggaatattgacgttgtgaccgcccccgcagcagcccgtcggc

>CC_2948 attaagtgcagtcggcgaaattgatcgtgttttcgggggtgagcaagtcgaacggc

>CC_3219 cttccgtcgcaaacagcttgttcgccacgcgcttcgcaacaaagaccttttccacg

>CC_3295 cgcctggactaacggttcctttaaggtttcggtgaggttactggcggcttaaggcg

>CC_3317 ctgccgttccgcgaactgcgttagggtcttgttaaccgcgcgccgcgaaaatgtga

Figure 6.5: Modified alignment of predicted CtrA motif occurrences. The new alignment

includes eight shifted sequences corresponding to identified potential 5’ half-sites.

0.0

1.0

2.0

b
it

s 

5′
C
G
A
T

C
G
A
T

C
G
A

CTG
A

G
T
C

A
C
G

A
C
T

C
G
T

G
T
C

T
G

C
A
T

C
G
T

AC
G
A

A
G
C

3′

Figure 6.6: Sequence logo constructed using the 29 C. crescentus CtrA motif occur-

rences predicted by MITSU, with 8 sequences shifted by 11nt (see main text)
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Figure 6.7: Sequence logo representing the motif model predicted by MITSU, using the

R. sphaeroides FnrL-63 dataset.

FnrL

MITSU was applied to the FnrL-63 dataset described in Section 3.5.2, testing 100

random seeds and testing at the experimentally determined motif width (14nt). Motif

occurrences were predicted in 60 sequences; three sequences were predicted not to

contain an occurrence of the motif. The predicted motif model is shown in Figure

6.7. The resulting model matches well as a shifted (by 2nt) version of the canonical

consensus sequence (TTGAT-n4-ATCAA). It is noted that the GAT trinucleotide at

the 5’ end of the motif is very well conserved. If the TT positions at the 5’ end of the

canonical consensus sequence represented positions which were less well conserved

than the GAT trinucleotide, this may provide an explanation for MITSU returning a

shifted version of the motif (testing further random seeds did not improve the model):

the well conserved GAT trinucleotide may present the algorithm with a local maximum

in the likelihood function from which escape is unlikely. As noted above, at each

iteration of the algorithm there is a non-zero probability of decreasing G(φ). Escaping

this local maximum should therefore be possible in theory; however, in practice, this

may require several successive iterations in which samples decreasing the value of

G(φ) are drawn.

The promoter regions of genes with locus IDs RSP 0105, RSP 3641 and RSP 3643

(with gene product annotations of ‘NADH dehydrogenase subunit G’, ‘putative PfkB

family carbohydrate kinase’ and ‘hypothetical protein’, respectively) were predicted

by MITSU not to contain a motif occurrence. None of these genes are part of the

predicted core FNR regulon well conserved in Alphaproteobacterial species; however,

these genes have been determined to correspond to the experimentally determined FnrL

regulon in R. sphaeroides and therefore would be expected to contain a motif occur-

rence. In particular, the absence of a motif occurrence upstream of the RSP 0105 gene

is unexpected, as motif occurrences were predicted in the sequences upstream of other

NADH dehydrogenase subunits (subunits A, B, D, E, H and N). While it remains un-

clear why motif occurrences should not be predicted in these sequences, it may be
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Figure 6.8: Sequence logo representing the motif model predicted by MITSU, using the

R. sphaeroides FnrL-20 dataset.

reasonable to suggest that potential motif occurrences in these sequences matched the

predicted model less well and therefore did not score highly enough in order to pass

the classification threshold (Equation 5.35, page 138).

MITSU was then applied to the FnrL-20 dataset described in Section 3.5.2, again

testing 100 random seeds and testing at the experimentally determined motif width

(14nt). Motif occurrences were predicted in 18 sequences; two sequences were pre-

dicted not to contain an occurrence of the motif. The predicted motif model is shown

in Figure 6.8. The resulting model matches very well with the canonical consensus

sequence.

The upstream sequences of genes with locus IDs RSP 0465 and RSP 0690 (with

gene product annotations of ‘putative heavy metal translocating P-type ATPase’ and

‘peptidase U32 family’, respectively) were predicted by MITSU not to contain a mo-

tif occurrence. Unlike the sequences predicted not to contain a motif occurrence in

the FnrL-63 dataset, these genes are part of the predicted core FNR regulon well con-

served in Alphaproteobacterial species and therefore would be expected to contain a

motif occurrence. Further, the sequences predicted not to contain a motif occurrence in

the FnrL-20 dataset were predicted to contain a motif occurrence as part of the FnrL-63

dataset. Together, this lends weight to the above suggestion that these sequences do

indeed contain motif occurrences, but the occurrences did not score highly enough to

be classified as predicted sites. It is noted that, in general, the scores of motif occur-

rences in the FnrL-20 dataset are higher than those in the FnrL-63 dataset; however,

this should not be surprising, since the number of positions which are better conserved

has also increased (that is, the two poorly conserved positions at the 3’ end of the FnrL-

63 motif are replaced with two highly conserved positions at the 5’ end of the FnrL-20

motif).

MITSU performs well on both FnrL datasets in comparison to deterministic EM,

which predicts large numbers of false positive results as a result of poorly discover-

ing the FnrL motif. As in the evaluation of MITSU in Section 5.4, the deterministic

EM-based algorithm is a reimplementation of the original MEME algorithm [10]. De-
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Figure 6.9: Sequence logos representing the motif models predicted by deterministic

EM, using the R. sphaeroides FnrL-63 (top) and FnrL-20 (bottom) datasets.

terministic EM predicts 245 motif occurrences in the FnrL-63 dataset and 88 motif

occurrences in the FnrL-20 dataset. Sequence logos representing the motifs discov-

ered by deterministic EM in both datasets are shown in Figure 6.9. Although the motif

discovered in the FnrL-20 dataset can be matched with the canonical consensus se-

quence (in particular, the TG dinucleotide in positions 2 and 3 and the TC dinucleotide

in positions 11 and 12), the low conservation means that it matches a large number of

subsequences within the dataset. As noted in the discussion of the E. coli TorR motif

in Section 5.4, MITSU’s discovery of a stronger motif model may be partially due to

the optimisation of an entropy-based function rather than a likelihood-based function

as in the deterministic EM-based algorithm. Again, a number of positions in the motif

models discovered by deterministic EM are significantly different to those in the back-

ground model; however, the information content at these positions (and throughout the

models as a whole) is generally very low. In contrast, the positions of the FnrL motif

discovered by MITSU have a significantly more concentrated probability mass, which

suggests that the entropy function optimised by MITSU has played a role in the dis-

covery of the motifs represented in Figures 6.7 and 6.8. However, as with the E. coli

TorR motif, the very poor results of the deterministic EM algorithm on these datasets

also suggests that there are a large number of local maxima which may trap determin-

istic EM and therefore that the stochastic nature of MITSU plays an important role

in the motif discovery. The size of the FnrL-63 dataset in particular may introduce a

significant number of local maxima; datasets such as these demonstrate the power of

using a stochastic EM approach which can escape the majority of these local maxima.

A BLAST protein search (performed as described in Section 3.5.2) showed that

genes homologous to the R. sphaeroides 2.4.1 fnrL gene (RSP 0698) were not found

in the species in the Orientia or Zymomonas genera. As noted in Section 3.5.1, the

Ehrlichia, Rickettsia and Wolbachia genera (all in the order Rickettsiales) are known
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not to possess proteins in the CRP/FNR protein superfamily. Based on the lack of ho-

mologous genes in Orientia species and the phylogenetic tree created in Section 3.5.1

(Figure 3.5), it may be concluded that the Orientia genus is similarly not regulated

by FnrL. It is noted that Orientia is also in Rickettsiales; further testing may indicate

whether or not this conclusion may be extended to the entire Rickettsiales order.

6.1.2 NtrX

MITSU was applied to the NtrX datasets described in Section 3.5.2, again testing 100

random seeds each time. The data was tested at all widths between 12nt and 20nt and

the MCOIN heuristic (described in Section 4.4) used to determine the most likely motif

width in each case. The results of the tests are summarised in Table 6.1.

Dataset Consensus sequence Predicted sites/sequences

Nar-n6 TTGATC-N3-ATCAA 6/6

Cco-n10 TTGAT-N4-ATCAA 9/10

Nif-n8 CCANNCNATATC 8/8

Cyd-n12 SCKSCRNSRSGY 11/12

nitrogen TGATC-N4-TCAA 22/24

cytochrome oxidase TTGAT-N4-ATCAA 14/22

NtrX TGAT-N4-ATCAA 36/46

Table 6.1: Summary of NtrX dataset tests. The determined consensus sequence is

given for each tested dataset, along with the number of predicted motif occurrences.
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Figure 6.10: Sequence logos representing the motif models predicted by MITSU, using

the Nar-n6 (top) and Cco-n10 (bottom) datasets.

Tests were initially performed on the datasets for individual regulons. Tests on

the Nar-n6 dataset returned a 14nt motif; the sequence logo for this motif is shown in
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Figure 6.11: Sequence logo representing the motif model predicted by MITSU, using

the Nif-n8 dataset.

Figure 6.10 (top). The motif is predicted to occur in all six sequences in the dataset.

The consensus sequence is deemed to be TTGATC-N3-ATCAA. Tests on the Cco-

n10 dataset return a similar 14nt motif, shown in Figure 6.10 (bottom). The motif is

predicted to occur in nine of the ten sequences and the consensus sequence is deemed

to be TTGAT-N4-ATCAA. The sequence without a predicted occurrence is that of

the R. etli str. CFN 42 fixN gene, which is shown to have high sequence similarity

to the other ccoN genes (including the cco gene in the same species). However, it is

possible that, despite the high sequence similarity, the fixN gene (which is found in

R. etli plasmid F) has a different functionality from the ccoN gene (which is found

in plasmid D). It is noted that in both cases, the discovered motifs are very similar

to the canonical FnrL motif TTGAT-N4-ATCAA. The sixth position in the Nar-n6

motif is the main difference, as this is not conserved in the FnrL motif but is perfectly

conserved in this case.

Tests on the Nif-n8 dataset returned the 12nt motif shown in Figure 6.11. The motif

is predicted to occur in all input sequences. The consensus sequence is deemed to be

CCANNCNATATC. While the motif discovered in this dataset is weaker than those for

the Nar-n6 and Cco-n10 datasets, the fact that predicted sites are present in all input

sequences suggests that this motif may be worth investigating further.

Tests on the Cyd-n12 dataset returned the 12nt motif shown in Figure 6.12. The

motif is predicted to occur in 11 out of 12 sequences. As with the motif discovered

in the Nif-n8 dataset, the predicted motif is weaker in this case, although there are

two perfectly conserved positions. The consensus sequence SCKSCRNSRSGY gives

a weak indication of a possible gCggCg inverted repeat. The sequence without a

predicted motif occurrence is that of the C. crescentus str. CB15 cydD gene. The gene

product annotation for this gene (provided in Table A.10) does not suggest why no

motif should be predicted in this sequence, although it is possible that a subsequence

within this sequence partially matched the motif but did not score highly enough to

be predicted. Again, the fact that the motif is predicted in almost all input sequences
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Figure 6.12: Sequence logo representing the motif model predicted by MITSU, using

the Cyd-n12 dataset.

suggests further investigation is required.

Tests on the other datasets (Nir-n4, Nor-n3 and Nos-n3) did not provide any con-

clusive results. This is largely attributable to the small size of the datasets and is par-

tially attributable to the sequences themselves. For example, in the case of the Nir-n4

dataset, the 200nt upstream sequences for both Brucella species are exactly the same.

This results in MITSU converging to a portion of these sequences corresponding to the

tested width and ignoring the other two sequences in the dataset. A perfectly conserved

motif is therefore predicted, but the algorithm cannot be said to have discovered a mo-

tif of significance. Similarly, in the Nos-n3 dataset, there is a 25nt sequence which is

perfectly conserved between the two R. palustris sequences. MITSU again predicts a

perfectly conserved model which corresponds to a portion of this sequence but is not

found in the remaining sequence. In both cases, the small size of the dataset means

that it is not possible to draw any conclusions from these results.

Following tests on the individual datasets, two combination datasets were created

as described in Section 3.5.2. In tests on the ‘nitrogen’ dataset (the union of the Nar-n6,

Nir-n4, Nor-n3, Nos-n3 and Nif-n8 datasets), MCOIN predicts the motif with width

13nt to be most likely (Figure 6.13). The motif is predicted to appear in 22 out of

24 sequences. As with the test on the Nar-n6 dataset (Figure 6.10, top), the motif

partially matches the known FnrL motif. Notably, the motif matches sequences where

no motif was discovered previously (for example, in the Nir-n4, Nor-n3 and Nos-n3

datasets). There are two possible reasons for this. Firstly, the motif is weaker overall

and so has an increased likelihood of matching subsequences within the dataset. The

second possible reason lies in the iterative method used by the algorithm to update the

motif model. Lawrence, et al. have noted (in relation to their Gibbs sampling-based

algorithm) that the more accurate the samples in the first step of the algorithm, the more

accurately the locations of motif occurrences can be determined in the second step and

vice versa [98]. That is, once some correct motif locations have been sampled in the

first step, this has the effect of ‘gathering’ additional motif occurrences, improving the
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Figure 6.13: Sequence logo representing the motif model predicted by MITSU, using

the nitrogen dataset.
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Figure 6.14: Sequence logo representing the motif model predicted by MITSU, using

the cytochrome oxidase dataset.

discriminative power of the algorithm. As MITSU also samples motif positions in the

S-step of the sEM algorithm, it is likely that a similar process occurs. In this case,

the strong motif occurrences in the Nar-n6 dataset may help to gather additional motif

occurrences from the other datasets.

Similarly, in tests on the cytochrome oxidase dataset (the union of the Cco-n10 and

Cyd-n12 datasets), MITSU predicts the 14nt motif shown in Figure 6.14. The motif

is predicted to appear in 14 of the 22 sequences; again, the influence of the Cco-n10

dataset appears to be useful in gathering additional motif occurrences within the Cyd-

n12 sequences. As with the Cco-n10 dataset, the consensus sequence is deemed to be

TTGAT-N4-ATCAA, identical to the FnrL motif.

Finally, MITSU is tested on all NtrX input sequences (the union of the nitrogen and

cytochrome oxidase datasets). MITSU predicts the 13nt motif shown in Figure 6.15.

Again, this motif is a partial match to the canonical FnrL motif. Motif occurrences

are predicted in 36 out of 46 sequences, matching the occurrences predicted when the

nitrogen and cytochrome oxidase datasets were tested separately; in this case, there

appears to be no ‘gathering’ of additional motif occurrences as described above. It is

notable that the widths predicted by MCOIN for the motifs discovered in the nitrogen

dataset and the dataset consisting of all NtrX input sequences are 13nt rather than the

14nt of the canonical FnrL motif. There are two possible explanations for this. Firstly,

it is noted that without further experimental testing, it is not clear whether the motifs

discovered in the nitrogen and cytochrome oxidase datasets are both instances of the

FnrL motif, or an FnrL-like motif. It is possible that the motifs are subtly different

(in terms of both the number of positions and their conservations) which may account



168 Chapter 6. Further validation and extension of MITSU

0.0

1.0

2.0

b
it

s 

5′
C
T

T
G

C
T
A

A
C
T

G
T
C

G
T
C

G
A

T
A
G

C
G
A

A
G
T

G
C

G
A

G
A

3′

Figure 6.15: Sequence logo representing the motif model predicted by MITSU, using

all NtrX input sequences.

for the widths chosen by MCOIN. Secondly, assuming that the motif is indeed the

FnrL motif, in the case of the nitrogen dataset, the missing 5’ T nucleotide is poorly

conserved relative to the rest of the motif; the 13nt motif is predicted as being more

significant. This lack of conservation may also explain the 13nt model prediction made

when the nitrogen dataset is combined with the cytochrome oxidase dataset as the NtrX

dataset.

The most striking result from tests on NtrX-regulated genes is the discovery of

motifs very similar to the canonical FnrL motif (Figures 6.10, 6.13, 6.14 and 6.15); in

some cases these motifs match the FnrL motif exactly. The role of FnrL in the control

of cytochrome cbb3 oxidase under low-oxygen conditions has previously been noted

in R. sphaeroides and R. capsulatus by Mouncey and Kaplan [126] and Swem and

Bauer [163], respectively. However, the role of FnrL in the regulation of denitrifica-

tion genes remains unclear. The results of tests on the Nar-n6 and nitrogen datasets

show a very strong consensus sequence which strongly suggests that FnrL plays a

role in controlling the expression of denitrification genes. In the case of the Nar-n6

dataset, the discovered consensus sequence does not exactly match the FnrL consen-

sus sequence as the sixth position in the discovered motif (Figure 6.10, top) is perfectly

conserved. However, the strength of this discovered motif strongly suggests that FnrL,

or an FnrL-like regulator, also plays a role in the regulation of nitrate reductase genes;

given the role of FNR as a transcriptional regulator for many genes involved in anaer-

obic metabolism, this is a logical conclusion.

Although the FnrL motif was often predicted, the other motifs predicted by MITSU

may be good candidates for further investigation. The motif discovered in the Nif-n8

dataset (Figure 6.11), with consensus sequence CCANNCNATATC was slightly weaker

in terms of conservation than the FnrL motifs and was not discovered in tests on the

nitrogen dataset. However, the fact that motif occurrences were predicted in all se-

quences in the Nif-n8 dataset suggests that this motif may be worth investigating fur-

ther. Similarly, the motif discovered in the Cyd-n12 dataset (Figure 6.12) is predicted
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in almost all input sequences and may be a good candidate for further investigation.

As noted above, FnrL has previously been shown to play a role in the regulation

of cytochrome oxidase; the motifs discovered in the tests in this section confirm that

an FnrL (or FnrL-like) motif is present in the promoter regions of cytochrome oxi-

dase genes. However, as noted in Section 3.5.2, Dahouk, et al. have determined two

cytochrome oxidase regulons (cyd and cco) to be regulated by NtrX. Together, these

suggest that cytochrome oxidase genes are regulated by more than one transcription

factor; these transcription factors may be working cooperatively. It follows that the

promoter regions of cytochrome oxidase genes contain more than one motif and should

contain motifs for (at least) FnrL and NtrX. The situation for the denitrification genes

is less clear; however, the discovery of FnrL motifs in the promoter regions of these

genes suggests that the situation is similar to that of the cytochrome oxidase genes.

It is generally assumed that motif discovery algorithms tend to discover the most

statistically significant motif within a dataset. It follows that if more than one motif is

present in a given dataset, motifs which are better conserved (and therefore statistically

more significant) will be discovered over other motifs which are less well-conserved.

In the tests carried out in this section, the FnrL motif discovered by MITSU is generally

very well conserved (for instance, in the motifs shown in Figures 6.10 and 6.14). A

less well-conserved NtrX motif would therefore not be discovered. This motivates a

strategy for discovering multiple motifs within a single dataset. Section 6.2 discusses

strategies for multiple motif discovery and implements a method for multiple motif

discovery within MITSU. The results of multiple motif discovery in the context of

NtrX are reported in Section 6.2.3.

6.2 Discovering multiple motifs

This section focuses on the discovery of multiple motifs within a dataset and compares

a simultaneous discovery strategy (as used in many purely stochastic approaches) to

a sequential discovery strategy (as used by the majority of deterministic approaches).

The advantages of each strategy are discussed.

6.2.1 Motivation and strategies for multiple motif discovery

The majority of research in motif discovery is focused on discovering the most statisti-

cally significant motif within a dataset. However, it is known that multiple transcription



170 Chapter 6. Further validation and extension of MITSU

factors often bind in a combinatorial fashion in order to regulate transcription. There-

fore gene promoter regions may contain transcription factor binding sites for multiple

transcription factors; in some cases there are multiple binding sites for one or more

transcription factors [167]. Generally, motif discovery algorithms only discover one

motif for a given dataset; it is assumed that this motif is the most statistically sig-

nificant. However, since promoter regions may contain binding sites for more than

one transcription factor, this raises the possibility of datasets containing additional,

possibly less statistically significant, motifs. This motivates a strategy for recovering

multiple motifs from a single dataset. As noted in Chapter 2, there are two commonly

used strategies: simultaneous and sequential discovery.

Lawrence, et al. [98] implement a strategy for simultaneous discovery of multiple

motifs in their Gibbs sampling-based algorithm, by initialising multiple PWMs at the

start of the algorithm, drawing a full set of samples for each PWM in the sampling step

of the algorithm, then updating each PWM separately in the update of the algorithm.

Care has to be taken to ensure that the samples drawn from each sequence do not

overlap each other. It is argued that this provides additional information to the motif

discovery process: information regarding the positions of one motif can be used to

aid the discovery of further motifs, as motif occurrences must be non-overlapping.

However, this also places a limit on the number of motifs which can be discovered,

depending on the length of the shortest input sequence.

A strategy for sequential motif discovery was introduced in the context of EM

by Bailey and Elkan [11]. In this strategy, the EM algorithm is run to convergence,

discovering a motif model; motif occurrences are then predicted based on the discov-

ered model. These motif occurrences are then probabilistically ‘erased’ by weighting

down positions which correspond to previously discovered motif occurrences. The

EM algorithm can then be run again to find a different motif; by effectively erasing

the occurrences of the first motif from the dataset, the algorithm can discover second

and subsequent motifs without interference from the occurrences of the first. Although

sequential motif discovery is slower than simultaneous motif discovery, it is more flex-

ible, as there are no limits to the number of motifs which can be discovered in terms of

input sequence length.

Since the publication of both strategies, sequential discovery of multiple motifs

has become more common than simultaneous discovery. Although simultaneous dis-

covery of multiple motifs lends itself to a sampling-based approach such as the sEM-

based approach used in this project, sequential discovery has increased flexibility and
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is much more straightforward to implement, particularly when considering other as-

pects of the motif discovery algorithm (for instance, determining the most likely motif

width). Taking these issues into account, a sequential motif discovery strategy is im-

plemented in MITSU in the following section. It is noted that later sampling-based

algorithms also take a sequential approach to multiple motif discovery. For example,

the AlignACE algorithm [143], which can be viewed as an extension of Lawrence, et

al.’s Gibbs sampling-based algorithm, implements a ‘masking’ approach similar to the

probabilistic erasing approach described by Bailey and Elkan.

6.2.2 Method

Here, Bailey and Elkan’s method for sequential motif discovery in deterministic EM

[11] is implemented in the context of sEM.

An ‘erasing’ factor Vi, j is associated with each width-W subsequence within the

input sequences, that is, for i ∈ {1 . . .N} and j ∈ {1 . . .Li−W +1}. Equivalently, each

latent variable Zi, j has an associated erasing factor. Each erasing factor is initially set

to 1, that is, no erasing has occurred. After sEM has converged, the Z(t)
i, j variables

represent the expected probability that a motif occurrence starts at Xi, j. The erasing

factors for each position are then decreased based on the converged value of Z(t)
i, j , so

that positions with high values of Z(t)
i, j are effectively ‘erased’ by Vi, j and not chosen in

future passes of the algorithm.

In order to calculate the Vi, j values, another variable Ui, j is defined. Ui, j is the

expected probability that Xi, j is not part of a previously discovered motif occurrence

and is calculated using:

U (p)
i, j =U (p−1)

i, j · (1− max
l= j−W+1,..., j

Z(c)
i,l ), (6.1)

for i ∈ {1 . . .N} and j ∈ {1 . . .Li−W +1}, where Z(c)
i,l are the converged values of the

latent data (the expected probability of a motif occurrence starting at Xi, j) after the pth

pass of the algorithm, and U (0) = 1 for all positions. Some care needs to be taken

to ensure that positions at the start of the sequence are handled appropriately (since j

cannot be less than 1). Vi, j is then calculated as:

V (p)
i, j = min

l= j,..., j+W−1
U (p)

i,l , (6.2)

again for i ∈ {1 . . .N} and j ∈ {1 . . .Li−W +1}. As above, care needs to be taken to

ensure that positions at the end of each input sequence are handled appropriately (since

j cannot exceed Li−W +1).



172 Chapter 6. Further validation and extension of MITSU

Following the calculation of the erasing factor Vi, j, it may be used to implement

multiple motif discovery in the context of sEM as follows. Z(t)
i, j is calculated as normal

in the S-step of the algorithm (Equation 5.25 in the ZOOPS sequence model). The

latent data is then multiplied by the erasing factor to give:

Ẑi, j =Vi, j ·Zi, j. (6.3)

The sEM algorithm then proceeds as before, but replacing Zi, j with Ẑi, j. That is, Ẑi, j

is normalised for each input sequence Xi, before samples are drawn using Equation

5.26. The U-step of the algorithm remains the same, updating the model based on the

samples drawn in the S-step. (Equations 5.31-5.32 in the ZOOPS model).

The implementation of this is reasonably straightforward in the ZOOPS case but

becomes slightly more complex when the cut heuristic (Section 5.3.1) is used in MITSU.

In particular, care needs to be taken at positions within the overlap between two cuts

of an input sequence. In MITSU, this is managed by subjecting the erasing variables

Ui, j and Vi, j to the same cutting procedure as the input data Xi, j (so that each width-W

subsequence still has associated Z, U and V values) and updating the erasing variables

based on the values of Z mapped back to their positions in the original (uncut) dataset.

The probabilistic erasing method is implemented as the outer loops of the motif dis-

covery algorithm (Section 5.3.5).

6.2.3 Results

The MalI/SoxR dataset described in Section 3.6.2 is used as a proof of principle to

demonstrate the ability of MITSU to discover multiple motifs within a single dataset.

MITSU was run for two passes (that is, M = 2); it is assumed that the true motif widths

(12nt and 19nt for the MalI and SoxR motifs, respectively) are known. The results of

this test show that MITSU discovers the SoxR motif on the first pass of the algorithm,

shifted by 1nt. On the second pass of the algorithm, MITSU discovers the MalI motif,

shifted by 2nt. In both cases, two motif sites are predicted, matching the known motif

sites; that is, sSn and sPPV are 1.00 for both motifs. It is noted that MITSU discovers

the longer SoxR motif first. As both motifs are perfectly conserved, it is expected that

SoxR will be more statistically significant than MalI due to its longer width.

Application to NtrX motif discovery

Analysis of the motif discovered in the NtrX datasets showed that the FnrL motif was

often found; this motivated the implementation of a strategy for the discovery of mul-
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Figure 6.16: Sequence logos representing the motif models predicted by MITSU on the

second passes of the Cco-n10 (top) and cytochrome oxidase (bottom) datasets.

tiple motifs. The strategy for multiple motif discovery implemented in MITSU as

described above is applied to the NtrX datasets. Where the FnrL (or FnrL-like) motif

was discovered on the first pass of MITSU, second or, where appropriate, third passes

of MITSU were carried out, erasing previously discovered motif occurrences. The

results of these subsequent passes are summarised in Table 6.2.

Dataset Pass Consensus sequence Predicted sites/sequences

Cco-n10 2 KYCGCGCGGCGRTCSGC 5/10

cytochrome oxidase 2 GNKCNGCGRNCN 19/22

Cco-n10 3 NNSTTCGTGMNN 10/10

Nar-n6 2 TTTMRGWTGCCWYYAW 4/6

NtrX 2 SNNNNNKNCGGN 37/46

Table 6.2: Summary of subsequent passes of MITSU on NtrX datasets. The pass num-

ber and consensus sequence is given for each tested dataset, along with the number

of predicted motif occurrences.

The second pass of MITSU on the Cco-n10 and cytochrome oxidase datasets re-

turned the 17nt motif and the 12nt motif shown in Figure 6.16 (top and bottom, re-

spectively). Motif occurrences are predicted in 5 out of 10 sequences and 19 out of

22 sequences, respectively. As may be expected, MITSU converges to motifs which

are slightly weaker in terms of conservation than the motifs discovered on the first

pass (Figures 6.10 (bottom) and 6.14, respectively). Although there is no clear con-

sensus sequence, there are some similarities between the motifs. The 9nt sequence

GCGGCGANC is observed in both motifs, in positions 6-14 of the Cco-n10 motif and

positions 3-11 of the cytochrome oxidase motif. It is noted that this sequence par-

tially matches the motif found in the first pass on the Cyd-n12 dataset (Figure 6.12).
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Figure 6.17: Sequence logos representing the motif models predicted by MITSU on

the third pass of the Cco-n10 dataset (top) and the second pass of the Nar-n6 dataset

(bottom).

This motif had been identified as being a possible weak inverted repeat and the first

6 positions (GCGGCG) of this motif match the first 6 positions of the 9nt sequence

above. Inspection of the motif discovered on the second pass of the Cco-n10 dataset

(Figure 6.16, top) suggests that positions 6-17 may also be a weak inverted repeat.

Evidence for this inverted repeat is not so strong in the motif discovered in the second

pass of the cytochrome oxidase dataset (Figure 6.16, bottom). However, the 9nt se-

quence GCGGCGANC and the possible inverted repeat sequence GCGGCGCGCCGC are

candidates for further investigation; experimental testing using site-directed mutagen-

esis (SDM) and measuring gene expression levels may indicate whether or not these

sequences have a role in the regulation of cytochrome oxidase.

Figure 6.17 shows sequence logos representing the motifs discovered by MITSU

on the third pass of the Cco-n10 dataset (top) and the second pass of the Nar-n6 dataset

(bottom). Motif occurrences are predicted in all 10 sequences in the Cco-n10 dataset

and 4 out of 6 sequences in the Nar-n6 dataset. Again, these motifs are generally

less well-conserved than the motifs discovered on the first pass. The motif discov-

ered in the Cco-n10 dataset has an 8nt sequence which is reasonably well-conserved

(CTTCGTGC); the fact that it is predicted in all input sequences makes this a good

candidate for further investigation. The motif discovered in the second pass on the

Nar-n6 dataset does not correspond perfectly with the Cco-n10 motif. However, some

subsequences of the two motifs match; for example, the TTCG subsequence appears in

positions 4-7 of the Cco-n10 motif and positions 2-5 of the Nar-n6 motif and the TGC

subsequence appears in positions 8-10 of both motifs. If these two motifs are con-

nected, this may suggest that some conformational change is made to the transcription

factor protein, extending the binding site upstream of the nar operon.

The motif discovered by MITSU on the second pass of all NtrX input sequences is
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Figure 6.18: Sequence logo representing the motif model discovered by MITSU on the

second pass of all NtrX input sequences.

shown in Figure 6.18. A clear motif sequence is difficult to determine; however, the

motif is predicted to occur in 37 out of the 46 input sequences. It is noted that the

final 4 positions (CGGC) provide a partial match with the motifs shown in Figure 6.16.

However, despite the partial match and the large number of predicted occurrences, the

generally low conservation of the discovered motif means that it is difficult to draw a

conclusion for this dataset.

6.2.4 Conclusion

In this section, a case is made for using a sequential strategy based on probabilistic

erasing for the discovery of multiple motifs within a single dataset. The MalI/SoxR

dataset is used to demonstrate the use of this strategy in principle, in the context of sEM

(and MITSU in particular). The strategy is then applied to the discovery of multiple

motifs within the NtrX datasets. As noted in Section 2.2.2, the discovery of second and

subsequent motifs in a dataset may be affected if the discovery (and therefore erasing)

of previous motifs is poor. However, the improved results achieved by MITSU make

this issue less important. The ability to discover multiple motifs is important in cases

where there genes are thought to be regulated by a combination of transcription factors.

6.3 A higher order Markov background model

approximation

Relatively recent motif discovery algorithms such as BioProspector [107] and Mo-

tifSampler [166] have replaced the simplistic background models used by older motif

discovery algorithms such as MEME and AlignACE with more complex Markov back-

ground models. This section introduces a higher order Markov background model as

an improved approximation to data which is not part of a motif occurrence. The im-

provements over a basic multinomial (or ‘frequency’) background model are evaluated,
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both as part of deterministic and stochastic motif discovery algorithms. The influence

of both the order of the background model and the data used to construct the model is

also evaluated and discussed.

6.3.1 Motivation and previous studies

As noted in Section 2.2, motif discovery algorithms such as MEME and AlignACE use

a multinomial (or ‘frequency’) background model, which simply records how many

times each nucleotide (A, C, G, or T) appears in the dataset and assumes that every

background position is chosen independently and at random with these weightings.

This is unlikely to be biologically realistic; for example, CpG islands are regions of

DNA well known to have a higher GC-content than could be statistically expected.

However, there is currently little biological knowledge on the structure of ‘background’

sequences which could be used to accurately model these sequences [86]. In the ab-

sence of this knowledge and given the linear nature of the data, motif discovery algo-

rithms now often use a Markov model (formally a Markov process with a discrete state

space) in order to model the background positions.

A higher order Markov background model takes previous positions into account

when assigning probabilities to a particular nucleotide in order to better capture the

characteristics of the local DNA environment. That is, while the background prob-

ability of a particular nucleotide is constant regardless of position when using the

frequency background model, this is not the case when using a Markov background

model: the same nucleotide could have different probabilities, given the preceding nu-

cleotide. While it is unlikely that the true biological model is a higher order Markov

model, this is generally thought to be an improved approximation to the sequence of

nucleotides in background positions, which is likely to be more complex than a Markov

model [21]. In the context of probabilistic algorithms for motif discovery (which are

generally based on a two-step iterative process, for example, the EM algorithm), algo-

rithmic efficiency is also improved as the background model need only be calculated

once. This model is then deemed to be the true background model; the background

model parameters are then fixed and reused at each iteration of the algorithm, rather

than being initially estimated and then updated at each iteration of the algorithm, as

in MEME and AlignACE. Using Liu, et al.’s θβ notation for the background model

[107], Algorithm 6.1 demonstrates how a higher order background model may be in-

corporated within a MEME-type deterministic algorithm, as compared to the original
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procedure MEME-type algorithm with Markov background model

Create Markov background model θβ

for N do (where N is the number of motifs to be found)

for each motif width do
for each TCM prior parameter value do
Estimate initial motif model parameters θm, based on width and TCM prior values

until EM algorithm converges, do
E-step: reestimate motif position using current θm and θβ

M-step: reestimate θm using current motif position

end
end

end
Print discovered motif which maximises motif score

‘Erase’ motif from dataset by updating prior

end
end MEME-type algorithm with Markov background model

Algorithm 6.1: Pseudocode demonstrating how a higher order background model may

be incorporated within a MEME-type algorithm.

MEME algorithm (Algorithm 2.2, page 23).

As noted in Section 2.2, the MotifSampler algorithm [166] was the first motif dis-

covery algorithm to implement a higher order Markov background model, taking in-

spiration from gene detection algorithms such as GLIMMER [44], HMMgene [93]

and GeneMark.hmm [110]. The motivation for implementing a higher order Markov

background model as part of a motif discovery algorithm stems from a need to better

model the ‘noisy’ background sequences upstream of the genes of interest. Consider-

ing the large size of the background sequences to the relatively small motif sequences,

this seems reasonable. Thijs, et al. note in a separate technical paper that the size of

the upstream regions is related to the compactness of the genome [165]. This observa-

tion suggests that better modelling of upstream sequences may have a more significant

impact when searching for motifs in higher eukaryotic species, than in prokaryotic or

even lower eukaryotic species (for example, yeast). Thijs, et al. also suggest that con-

structing the background model using intergenic sequences is most appropriate. The

effect of using a higher order Markov background model is evaluated on a combination

of simulated data and characterised data from the model plant organism Arabidopsis
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thaliana [166], in particular the G-box regulatory element, which is involved in light-

sensitive gene regulation in plants. Thijs, et al. show that using a 3rd order Markov

background model constructed using intergenic sequence data improves on a 0th order

model constructed using the intergenic sequences and a 3rd order model constructed

using only the input sequences [166]. However, it is unclear on which statistic this per-

formance increase is measured; it is only noted that over several runs of the algorithm

(that is, with different random seeds), using higher order Markov background models

increased the number of times the correct motif was discovered. It is concluded that

a higher order model can considerably enhance performance in the presence of noisy

data; however, as noted above, this increase may be less significant on tests using

prokaryotic data.

BioProspector also implements a higher order Markov background model; Liu, et

al. note that their implementation is motivated by the fact that, in DNA, the pres-

ence of a particular nucleotide at a given position usually exerts some influence on

the nucleotides at surrounding positions [107]. That is, the frequency model assump-

tion of independence between nucleotides is incorrect. The effect of using a higher

order Markov background model is only evaluated on the RAP1 binding site in yeast.

However, as with the tests on MotifSampler, it is unclear exactly which statistics are

improved by the use of a higher order model. Liu, et al. note that the higher order

Markov background model reduces the number of false positive motifs, but more de-

tailed results are not provided. It is noted here, however, that this result matches the

recent findings of Hartmann, et al., who conclude that using a higher order Markov

background model can help to rank down false positive motifs, which are often repeti-

tive, or have a biased nucleotide composition [78]. While the deterministic algorithms

MEME, COMODE and cosmo have adopted higher order Markov background models

for motif discovery, their authors have provided little further testing in order to evalu-

ate the power of these models. In their evaluation of motif discovery algorithms using

prokaryotic (E. coli) data, Hu, et al. perform tests to evaluate the effect of Markov

background models using BioProspector, MEME and MotifSampler [81]. Most no-

tably (and unexpectedly), it was discovered in a test of 70 E. coli TFBS motifs that the

order of the Markov background model was not found to have a significant effect on

the nucleotide-level performance coefficient (nPC)1. For example, Hu, et al. demon-

strate that MEME achieves similar levels of performance when using 1st, 2nd and 3rd

order background models constructed using the full E. coli genome sequence. Similar

1Recall that nPC is calculated as nTP/(nTP + nFN + nFP).
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results were also noted in tests on BioProspector and MotifSampler. It is perhaps less

surprising that using different data sources to construct the background model led to

different prediction accuracy. BioProspector and MEME are shown to achieve higher

nPC values when using the full E. coli genome (by around 8%), while MotifSampler

is shown to achieve higher nPC values when using a background model constructed

using intergenic sequences (by around 4%). However, it is noted here that nPC values

are shown to be very low in general, typically around 0.15.

As noted in Section 3.4, there are noticeable differences between the nucleotide

(and also dinucleotide and trinucleotide) compositions of the full E. coli genome and

the set of E. coli intergenic sequences. It follows that the higher order Markov back-

ground models constructed using E. coli intergenic sequences and the full E. coli

genome sequence are very different; even in the 0th order portion of the model, differ-

ences are clear. For example, GC-content is around 51% for the full genome, but only

around 40% in intergenic sequences. Similar differences are also noticeable in higher

order models. If it may be assumed that the background data to be separated from the

motif instances is from intergenic regions, it seems intuitive that background models

constructed using intergenic data will model this data better than background models

constructed using the full genome sequence.

6.3.2 Methods

Constructing background models

Traditional multinomial (or ‘frequency’) background models (in the context of Markov

background models, these are known as 0th order models) are constructed by scanning

the dataset, counting the number of occurrences of each nucleotide k ∈ L and nor-

malising such that the parameters of the multinomial model sum to 1 and therefore

represent the prior probability of observing each nucleotide within the dataset. That is,

∑
k∈L

θ0,k = 1. (6.4)

Higher order Markov background models are constructed in a similar way. A 1st order

Markov model is constructed by scanning the data and counting the number of occur-

rences for each dinucleotide {AA,AC,AG, . . . ,TT}. These counts are then normalised

such that the probabilities of seeing any nucleotide given a particular preceding nu-

cleotide sum to 1. That is,

∑
k∈L

p(k|n) = 1, (6.5)
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for any preceding nucleotide n ∈ L . Models of higher orders are constructed similarly,

counting trinucleotide and quadnucleotide (4-mer) occurrences for 2nd and 3rd order

Markov models respectively. That is, for a Markov model of order m, the number of

occurrences of each W -mer (where W = m+1) are counted. The number of different

W -mers is equal to 4m+1 and increases exponentially with m.

The size of the available data must be taken into account when choosing the order of

the Markov background model (m). This is particularly important when using only the

input sequences to construct the background model; as m increases, the background

model will become increasingly sparse. In cosmo, Bembom, et al use likelihood-

based cross-validation to choose m data-adaptively as one of the input parameters to

the algorithm [21]. Liu, et al. also suggest choosing m data-adaptively to avoid this

problem. A simple heuristic in BioProspector chooses m such that:

4m ≈ n
1,024

, (6.6)

where n is the number of nucleotides in the dataset used to construct the model [107].

This heuristic is used in the tests for evaluating Markov background models in this

section. In practice, the size of the datasets used in this thesis restricts m to be 1 at

most in the case of background models constructed using the input data and 3 at most

in the case of models constructed using E. coli intergenic sequences; this fits well with

the MEME Suite documentation, which recommends that Markov background models

be limited to order 3 for motif discovery in DNA sequences. Although the restriction

of m in the case of background models constructed using the full E. coli genome is less

severe, it is also limited to 3 here so as to match the intergenic case.

Using background models to calculate probabilities

Substituting the traditional background model with a higher order Markov background

model is relatively straightforward for both deterministic and stochastic EM. The prod-

uct of probabilities (for instance, in calculating the conditional probability of sequence

Xi given the latent variables, as in Equation 4.16, page 86) remains a product of proba-

bilities, but drawing the relevant values from the Markov background model depending

on the preceding nucleotide(s). Example 6.1 demonstrates how the background prob-

ability for a given subsequence may be calculated using a Markov background model.

The start of an input sequence presents a special case as there is no preceding data

available. Care must therefore be taken to ensure that such positions are handled cor-

rectly. It follows that Markov background models must be created for all orders up
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Suppose the probability of interest is the background probability of the subsequence

GAGAT in the input sequence CACGAGAT using a 3rd order Markov background

model. In order to calculate this, the probabilities of each nucleotide are multiplied

as with a 0th order model; however, probabilities for each nucleotide are taken from

the 3rd order Markov model, so that:

p(GAGAT ) = p(G|C,A,C)p(A|G,C,A)p(G|A,G,C)p(A|G,A,G)p(T |A,G,A) (6.7)

Note that in this case, the notation p(G|C,A,C) is shorthand for p(Xi, j = G|Xi, j−1 =

C,Xi, j−2 = A,Xi, j−3 = C), rather than the traditional definition denoting conditional

probability.

Example 6.1: Calculating probabilities using a Markov background model.

Suppose the probability of interest is the background probability of the subsequence

CACGA in the input sequence CACGAGAT using a 3rd order Markov background

model. In order to calculate this, the probabilities of each nucleotide are multiplied

as before, but care must be taken in that the subsequence of interest is at the start of the

sequence. Probabilities for each nucleotide are taken from the highest order Markov

model possible, given the available data, so that:

p(CACGA) = p(C)p(A|C)p(C|A,C)p(G|C,A,C)p(A|G,C,A) (6.8)

Example 6.2: Calculating probabilities using the highest order Markov model, given the

available data.

to and including the chosen order m, in order to ensure the correct handling of posi-

tions near the start of an input sequence. Example 6.2 demonstrates how all orders of

Markov model are employed in order to calculate background probabilities at the start

of a sequence.

The higher order Markov background model is implemented as part of the MITSU

algorithm developed in Chapter 5. As in the other algorithms implementing a Markov

background model, the parameters of the background model are estimated at the start

of the algorithm, then fixed. It is then assumed for the purposes of motif discovery

that this is the true background model. As noted by Bembom, et al., this is unlikely to

exactly model the biological process by which the ‘background’ upstream sequences

are created; however, the approximation of this process should be improved. Also, as

noted previously, it is expected that the computational efficiency of the motif discovery
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algorithm is improved, as the background model is not reestimated at each iteration.

It is noted that the background model is also involved in predicting motif occur-

rences after the discovery phase of the algorithm is complete. In the classification

phase of the algorithm outlined in Section 5.3.3, the background model is used as part

of the Bayes-optimal classifier used to determine whether or not a given subsequence

is a motif occurrence (Equation 5.35, page 138). For simplicity, and following the

method used in MEME, only the 0th order portion of the Markov background model

is used in this calculation; however, it would be possible to implement the full Markov

background model in this step.

6.3.3 Results and Discussion

The effect of using higher order Markov background models was assessed on both a

deterministic EM-based algorithm and the stochastic EM-based algorithm (MITSU)

developed in Chapter 5. As in the MCOIN evaluations presented in Section 4.4, per-

formance was evaluated using previously characterised E. coli and diverse prokaryotic

data. Details of these datasets are provided in Sections 3.2 and 3.3, respectively. Three

different data sources were used to construct the background models: the input se-

quences alone, the full set of intergenic sequences (IGS) from the E. coli genome and

the full E. coli genome sequence. As discussed above, 0th and 1st order background

models were constructed using the input sequences and models of order 0, 1, 2 and 3

were constructed using the intergenic sequences and the full E. coli genome, following

Liu, et al.’s heuristic (Equation 6.6).

Higher order models improve likelihood

To confirm that higher order Markov background models do indeed improve modelling

of the intergenic sequences, background models of varying orders were constructed

using both the intergenic sequence (IGS) data and the full E. coli genome. The likeli-

hoods for each model were calculated using the intergenic sequence data (434,011nt).

To account for increasing model complexity (as the background model order increases,

the number of free parameters increases drastically), scores for the three essential in-

formation criteria (BIC, AIC and AICc) were computed. These scores are presented in

Table 6.3.

It is apparent that increasing the order of the background model does improve

modelling of intergenic sequences, even when accounting for the increased number
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IGS data Full genome

m k BIC AIC AICc BIC AIC AICc

0 3 1,187,128 1,187,096 1,187,096 1,206,124 1,206,092 1,206,092

1 12 1,179,547 1,179,416 1,179,416 1,198,109 1,197,978 1,197,978

2 48 1,174,297 1,173,770 1,173,770 1,198,921 1,198,394 1,198,394

3 192 1,170,410 1,168,302 1,168,302 1,196,680 1,194,502 1,194,502

Table 6.3: Scores for the three essential information criteria computed using log like-

lihoods of varying orders of background model trained on intergenic sequence (IGS)

data. Increasing the order of the background model (m) generally improves (decreases)

the information criteria scores, even when accounting for the increasing numbers of free

parameters (k).

of model parameters, based on the scores for the three essential information criteria.

However, the improvement is relatively small (it is noted that the log likelihood for the

3rd order model trained on the IGS data corresponds with a probability of 0.2604 for

each nucleotide, only slightly better than an equiprobable model).

As may be expected, the background models trained on intergenic sequence (IGS)

data consistently outperform those trained using the full E. coli genome, across all in-

formation criteria. It is noted that the calculated log likelihood for the 0th order model

trained on the IGS data (−593,545) is higher than that for a 0th order equiprobable

model (−601,667). However, the calculated log likelihood for the 0th order model

trained on the full E. coli genome (−603,043) is lower than that for a 0th order

equiprobable model. This result illustrates the importance of carefully choosing the

data used to construct the background model: even at the 0th order level, the dif-

ferences in nucleotide distribution between the IGS data and the full E. coli genome

(noted in Section 3.4) are great enough to lead to a noticeable difference in log likeli-

hood.

To test the significance of the increase in log likelihood between the varying back-

ground model orders, a log likelihood ratio test was performed, testing the computed

log likelihoods against the null hypothesis of equal performance; the asymptotic p-

value was calculated to be < 2.2×10−16 in all cases.
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Markov background model in deterministic EM

Subsequent tests used higher order Markov background models as part of a motif dis-

covery algorithm. Tables 6.4-6.6 summarise the results of the tests carried out using

a deterministic EM-based algorithm. Detailed results are provided in Tables B.7-B.9

in Appendix B. The results on the E. coli data collection (Table 6.4) go some way

to confirming the conclusions reached by Thijs, et al. [166, 165]. Thijs, et al. noted

an improvement in results when implementing a 3rd order Markov background model

constructed from the set of intergenic sequences (IGS), compared to a 0th order model

constructed from the same data. However, it is unclear along which dimension this

improvement is observed. Table 6.4 demonstrates an improvement in terms of positive

predictive value at both the nucleotide (nPPV) and site (sPPV) levels and also in terms

of the nucleotide-level performance coefficient (nPC). A slight improvement is also

noted in terms of overall motif correctness, based on AUC. Thijs, et al. also noted

that a 3rd order model constructed using IGS data improved on a 3rd order model con-

structed using only the input data. While such a model is not tested here, it is noted

that the 3rd order model constructed using IGS data also improves on both 0th and 1st

order models constructed using only the input data in terms of sPPV, nPPV, nPC and

AUC.

As noted above, Liu, et al. and Hartmann, et al. have suggested that higher order

Markov background models have the effect of the reducing the number of false posi-

tive predictions [107, 78]. It is noted here that reducing the number of false positive

predictions would result in an increase in positive predictive value. This result can be

observed in Table 6.4. However, this increase in positive predictive value is coupled

with a decrease in sensitivity. The reason for this is that fewer sites are being predicted

overall, leading to fewer true positive motif occurrences being predicted.

The results presented in Table 6.4 also broadly agree with the conclusions of Hu,

et al., in that the order of the Markov background does not significantly affect results

in terms of nPC. Although more variation is shown in the nPC results for models con-

structed using IGS data, the difference in nPC for the 0th and 3rd order models (0.19

vs. 0.23) is found not to be statistically significant at p < 0.05, based on a one-sided

Wilcoxon signed rank test. A greater effect is observed based on the data used to

construct the background model. In general, the models constructed using IGS data

slightly outperformed those using only the input sequences and significantly outper-

formed those using the full E. coli genome. The increase in performance when using
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IGS data agrees with Hu et al.’s tests on MotifSampler and confirms that a background

model constructed using IGS data better models the background positions within the

input sequences, compared to a background model constructed using the full E. coli

genome.

Data source m sSn sPPV AUC nSn nPPV nPC

Input data 0 0.76 0.33 0.97 0.53 0.25 0.21

1 0.64 0.31 0.96 0.42 0.22 0.19

IGS data 0 0.77 0.30 0.97 0.53 0.22 0.19

1 0.78 0.38 0.98 0.52 0.27 0.22

2 0.68 0.32 0.96 0.45 0.23 0.20

3 0.74 0.39 0.98 0.49 0.28 0.23

Full genome 0 0.80 0.18 0.94 0.60 0.13 0.12

1 0.79 0.19 0.97 0.59 0.14 0.13

2 0.76 0.18 0.96 0.57 0.14 0.12

3 0.83 0.20 0.96 0.59 0.15 0.13

Table 6.4: Mean site-level sensitivity (sSn), mean site-level positive predictive value

(sPPV ), area under the ROC curve (AUC), mean nucleotide-level sensitivity (nSn) and

mean nucleotide-level positive predictive value (nPPV ) for a deterministic EM-based

algorithm tested on 20 datasets created using previously characterised E. coli TFBS

sequences. Best mean results are printed in bold. In these tests, motif discovery was

only carried out at the experimentally determined motif width.

The results of the four E. coli ChIP datasets (Table 6.5) broadly confirm those of

the E. coli data collection above. Again, the 3rd order Markov background model con-

structed using IGS data outperforms the 0th order constructed from the same data and

both the 0th and 1st order models constructed using only the input sequences. How-

ever, the 3rd order model outperforms the other models in all performance measures,

including site- and nucleotide-level sensitivity. In general, the models constructed us-

ing IGS data outperform those constructed using only the input sequences and those

constructed using the full E. coli genome. There is more variation between models

constructed using the same data in terms of nPC (for example, the nPC values for the

IGS models vary between 0.35 and 0.59). However, this is likely due to the small sam-

ple size; again, the difference in nPC for the 0th and 3rd order IGS models is found not

to be statistically significant at p < 0.05, based on a one-sided Wilcoxon signed rank



186 Chapter 6. Further validation and extension of MITSU

Data source m sSn sPPV AUC nSn nPPV nPC

Input data 0 0.64 0.50 0.99 0.55 0.44 0.41

1 0.51 0.51 0.98 0.42 0.42 0.33

IGS data 0 0.67 0.39 0.97 0.61 0.36 0.35

1 0.70 0.68 0.98 0.66 0.64 0.57

2 0.73 0.58 0.99 0.66 0.53 0.49

3 0.74 0.71 0.99 0.69 0.66 0.59

Full genome 0 0.49 0.18 0.96 0.39 0.15 0.12

1 0.65 0.23 0.98 0.52 0.18 0.16

2 0.51 0.19 0.97 0.38 0.14 0.12

3 0.39 0.15 0.95 0.28 0.11 0.09

Table 6.5: Mean site-level sensitivity (sSn), mean site-level positive predictive value

(sPPV ), area under the ROC curve (AUC), mean nucleotide-level sensitivity (nSn) and

mean nucleotide-level positive predictive value (nPPV ) for a deterministic EM-based

algorithm tested on 4 datasets created using previously characterised E. coli TFBS se-

quences determined through ChIP experiments. Best mean results are printed in bold.

In these tests, motif discovery was only carried out at the experimentally determined

motif width.

Data source m sSn sPPV AUC nSn nPPV nPC

Input data 0 0.89 0.85 1.00 0.79 0.75 0.64
1 0.75 0.77 1.00 0.61 0.62 0.49

Table 6.6: Mean site-level sensitivity (sSn), mean site-level positive predictive value

(sPPV ), area under the ROC curve (AUC), mean nucleotide-level sensitivity (nSn) and

mean nucleotide-level positive predictive value (nPPV ) for a deterministic EM-based

algorithm tested on 5 datasets created using previously characterised diverse prokary-

otic TFBS sequences determined through ChIP experiments. Background models con-

structed using intergenic sequence and full genome data were not tested. Best mean

results are printed in bold. In these tests, motif discovery was only carried out at the

experimentally determined motif width.
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test. As with the tests on the E. coli data collection (Table 6.4), background models

constructed using the full E. coli genome perform relatively poorly, in terms of nPC.

Table 6.6 presents the results of the five non-E. coli datasets from the diverse

prokaryotic data collection. In testing background models of orders 0 and 1 con-

structed using only the input sequences, the background model of order 0 is shown

to outperform that of order 1 in all performance measures. However, the differences

in performance are found not to be statistically significant for any performance mea-

sure at p < 0.05, based on one-sided Wilcoxon signed rank tests. Again, the variation

in results is likely due to the small sample size. The 0th order background model

constructed using the input data is also observed to outperform the 1st order model

constructed using the same data in the other deterministic EM tests (Tables 6.4 and

6.5). These results suggest that if the only available data for background model con-

struction is the input data, there is no significant advantage to increasing the order of

the background model.

Markov background in MITSU (stochastic EM)

Tables 6.7-6.9 summarise the results of the tests carried out using the MITSU algorithm

developed in Chapter 5. Detailed results are provided in Tables B.10-B.12 in Appendix

B. In contrast to the deterministic EM results, the results of testing MITSU on the E.

coli data collection (Table 6.7) show only a slight improvement in sPPV from the

0th order IGS background model to the 3rd order IGS background model. All other

performance measures show a decrease in performance, in contrasts to the conclusions

made by Thijs, et al. [166]. Similarly, the 3rd order IGS background model is not

shown to improve on the 0th order model constructed using the input data (although it

matches in terms of AUC).

The results in Table 6.7 agree with Liu, et al.’s conclusion that increasing the or-

der of the Markov background model reduces the number of false positive predictions

(hence increasing sPPV) [107]. However, while the 3rd order IGS model does in-

deed slightly increase sPPV over the 0th order IGS model, both the 1st and 2nd order

IGS models show higher sPPV values. No increase in sPPV is noted for background

models constructed using the input sequences or the full E. coli genome.

As with the corresponding deterministic EM results, it is observed that nPC is not

significantly affected by the order of the Markov model, agreeing with the conclusions

of Hu, et al. [81]. However, in contrast, there is no clear advantage (in terms of nPC)

to using different data sources for constructing the background model.
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Data source m sSn sPPV AUC nSn nPPV nPC

Input data 0 0.68 0.86 0.99 0.50 0.61 0.42
1 0.58 0.80 0.98 0.39 0.52 0.32

IGS data 0 0.67 0.79 0.98 0.48 0.56 0.39

1 0.63 0.83 0.99 0.45 0.57 0.37

2 0.61 0.84 0.98 0.43 0.57 0.35

3 0.61 0.82 0.99 0.42 0.54 0.33

Full genome 0 0.64 0.77 0.99 0.46 0.53 0.37

1 0.62 0.75 0.99 0.47 0.55 0.39

2 0.64 0.77 0.99 0.48 0.56 0.39

3 0.67 0.77 0.99 0.49 0.56 0.40

Table 6.7: Mean site-level sensitivity (sSn), mean site-level positive predictive value

(sPPV ), area under the ROC curve (AUC), mean nucleotide-level sensitivity (nSn) and

mean nucleotide-level positive predictive value (nPPV ) for a stochastic EM-based al-

gorithm (MITSU) tested on 20 datasets created using previously characterised E. coli

TFBS sequences. Best mean results are printed in bold. In these tests, motif discovery

was only carried out at the experimentally determined motif width.
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The results of the four E. coli ChIP datasets (Table 6.8) align well with the conclu-

sions of Thijs, et al. [166]. The 3rd order IGS background model does improve on the

0th order IGS background model, based on all performance measures. However, the

3rd order IGS background model only shows a slight improvement over the 0th order

background model constructed using the input data. Further, the 1st order background

model constructed using the input data outperforms the 3rd order IGS model (and all

other tested models) in terms of all performance measures.

An increase in sPPV is observed from the 0th order IGS model to the 3rd order

IGS model. However, as with the results on the E. coli data collection (Table 6.7),

there is not a consistent increase as the complexity of the background model is in-

creased. Notably, sPPV decreases with increasing background model order for the

models constructed using the full E. coli genome.

Again, nPC is shown to be not significantly affected by the order of the Markov

model, agreeing with the conclusions of Hu, et al. [81]. Although nPC is increased

from 0.71 to 0.79 between the 0th and 1st order models created using the input data,

this difference is found not to be statistically significant at p < 0.05, based on a one-

sided Wilcoxon signed rank test. As with the results on the E. coli data collection,

there is no clear advantage to using different data sources, in terms of nPC.

Table 6.9 presents the results of the five non-E. coli datasets from the diverse

prokaryotic data collection. As before, the 0th order model is shown to slightly out-

perform the 1st order model; however, the difference in results is not found to be

statistically significant.

6.3.4 Conclusions

Higher order Markov background models have been used effectively in algorithms

such as MEME [10], MotifSampler [166] and BioProspector [107]. In these algo-

rithms, the use of a Markov background model allows the algorithm to better model

the background positions within the input sequences and hence better discriminate be-

tween motif and background positions. Evaluations for single algorithms are generally

unclear regarding which performance measures are improved by the use of Markov

background models and to the extent of the performance increase. However, Hu et

al.’s evaluation of several motif discovery algorithms suggests that using a higher order

Markov background gives a noticeable increase in the nucleotide-level performance

coefficient nPC [81]. Here, a rigorous study of higher order Markov background mod-
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Data source m sSn sPPV AUC nSn nPPV nPC

Input data 0 0.75 0.76 0.99 0.74 0.74 0.71

1 0.88 0.89 1.00 0.86 0.87 0.79

IGS data 0 0.74 0.75 0.99 0.71 0.72 0.67

1 0.75 0.75 0.99 0.73 0.73 0.69

2 0.72 0.73 0.99 0.72 0.73 0.68

3 0.80 0.81 0.99 0.76 0.77 0.73

Full genome 0 0.79 0.83 0.99 0.75 0.79 0.72

1 0.77 0.79 0.99 0.73 0.76 0.69

2 0.76 0.79 0.99 0.72 0.75 0.67

3 0.75 0.76 0.99 0.73 0.74 0.68

Table 6.8: Mean site-level sensitivity (sSn), mean site-level positive predictive value

(sPPV ), area under the ROC curve (AUC), mean nucleotide-level sensitivity (nSn) and

mean nucleotide-level positive predictive value (nPPV ) for a stochastic EM-based al-

gorithm (MITSU) tested on 4 datasets created using previously characterised E. coli

TFBS sequences determined through ChIP experiments. Best mean results are printed

in bold. In these tests, motif discovery was only carried out at the experimentally deter-

mined motif width.

Data source m sSn sPPV AUC nSn nPPV nPC

Input data 0 0.94 0.99 1.00 0.93 0.97 0.91
1 0.93 0.97 1.00 0.92 0.96 0.90

Table 6.9: Mean site-level sensitivity (sSn), mean site-level positive predictive value

(sPPV ), area under the ROC curve (AUC), mean nucleotide-level sensitivity (nSn) and

mean nucleotide-level positive predictive value (nPPV ) for a stochastic EM-based al-

gorithm (MITSU) tested on 5 datasets created using previously characterised diverse

prokaryotic TFBS sequences determined through ChIP experiments. Background mod-

els constructed using intergenic sequence and full genome data were not tested. Best

mean results are printed in bold. In these tests, motif discovery was only carried out at

the experimentally determined motif width.
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els is undertaken in order to clarify which performance measures are improved by

using these models, in the context of deterministic EM. Further, the effects of using

higher order Markov models are evaluated for the first time in the context of a stochas-

tic EM-based algorithm for motif discovery (namely the MITSU algorithm developed

in Chapter 5).

It is noted that the tests carried out on a deterministic EM-based algorithm generally

agree with the conclusions reached by Thijs, et al. [166], Liu, et al. [107] and Hu, et al.

[81]. Firstly, a 3rd order Markov background model constructed using the intergenic

sequences (IGS) is shown to outperform a 0th order model constructed using the same

data. The same model is also shown to outperform a 0th order model constructed using

the input data sequences alone. In both cases, performance is increased over a number

of measures, most notably in terms of site- and nucleotide-level positive predictive

value and nPC. Secondly, the 3rd order IGS background model is shown to reduce the

number of false positive motif predictions, leading to an increase in site-level positive

predictive value sPPV (however, it is noted that there is not a consistent increase in

sPPV with increasing model order). Finally, it is noted that although the order of the

Markov background model does not significantly affect nPC, the source of data used

to construct the model is important. Generally, background models constructed from

IGS data perform better in terms of nPC when compared to models constructed using

only the input data sequences, or the full E. coli genome.

In contrast, tests carried out on a stochastic EM-based algorithm (MITSU) gener-

ally led to different conclusions. The 3rd order IGS background model did not consis-

tently improve on the 0th order IGS model, but was consistently outperformed across

all performance measures by lower order models constructed using only the input data.

Similarly, although a slight increase in sPPV is noticeable between 0th and 3rd or-

der IGS background models, this is not consistent as model order is increased, nor is

the increase in sPPV noticeable when using models constructed using the full E. coli

genome. Finally, while the order of the background model does not significantly af-

fect nPC, there is no significant improvement in choosing different data sources for

constructing the background model.

Based on the results of the above tests, it is not possible to state that implement-

ing a higher order Markov background model improves motif discovery in the context

of sEM. Although higher order background models provided increases in some per-

formance measures for individual datasets, these increases were not part of an overall

trend.
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The most likely reason for the lack of improvement in the context of sEM is the fact

that, as noted above, implementing a higher order Markov background increases the

likelihood of the background sequences, with a corresponding increase in discrimina-

tive power. However, this increase is only very slight. This increase is shown to make a

noticeable improvement in the case of deterministic EM. However, comparing Tables

6.4-6.6 to Tables 6.7-6.9, MITSU is shown to generally outperform deterministic EM

across all performance measures, consistent with the results presented in Section 5.4. It

is likely that the overall improvement in basic performance displayed by MITSU over

deterministic EM outweighs the improvements that may be gained by using a higher

order Markov background model.

The datasets in the E. coli data collection with nPC results in the bottom quartile

when using the 0th order IGS background model all displayed no change, or a slight

increase, in nPC when using the 3rd order IGS background model (the mean nPC

for these datasets was increased from 0.13 to 0.17). This result suggests that in cases

where the motif is discovered relatively poorly by sEM, using a higher order Markov

background model may provide a slight increase in performance in terms of nPC.

As noted above, Thijs, et al. have suggested that higher order Markov background

models may be more effective when searching for motifs in higher eukaryotic species

[165]. While the motifs used in this study were prokaryotic, it is unlikely that this

alone explains the lack of improvement gained by applying Markov background mod-

els to sEM, since a clear performance advantage is demonstrated in deterministic EM.

However, it cannot be ruled out that the advantages of Markov background models

for sEM would become more apparent when searching for motifs in higher eukaryotic

species.

6.4 An information-theoretic measure of TFBS motif

palindromicity

This section introduces a novel and flexible measure of motif palindromicity, based on

information theory. The theoretical advantages of this measure over current constraint-

based approaches are discussed.
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6.4.1 Background and motivation

It has been noted (for example, in Section 2.1) that while position weight matrices

(PWMs) assume independence between motif positions, this is often not the case for

real motif examples. As discussed in Section 3.2, well-conserved positions in E. coli

motifs are frequently flanked by other well-conserved positions, and vice versa (this

phenomenon had previously been observed in eukaryotic TFBS motifs [56]). In ad-

dition to these small-scale dependencies, larger motif structures are also known. For

instance, experimental work has shown that motifs often occur as palindromes (or

‘inverted repeats’). That is, the inverse complement of the motif is the same as the

original motif. Palindromic motifs often indicate that the transcription factor protein

has a dimeric structure, binding to the DNA at two separate contact points2. Clearly, if

a motif to be discovered is thought to be palindromic, it would be useful to incorporate

this information into the algorithm in order to guide the motif search.

In their EM algorithm for motif discovery, Lawrence and Reilly [99] use a simple

constraint on the parameters of the motif model to consider motifs which are (at least

partially) palindromic. This is illustrated using the CRP dataset as described in Section

3.6.1: the motif model is constrained by requiring that the parameters in motif posi-

tions 4-8 are the same as the complementary parameters in positions 19-15. A similar

approach is used by Bailey and Elkan [11], although this is generalised to all columns

of the PWM, such that:

θ =


θ1,A θ2,A · · · θ2,T θ1,T

θ1,C θ2,C · · · θ2,G θ1,G

θ1,G θ2,G · · · θ2,C θ1,C

θ1,T θ2,T · · · θ2,A θ1,A

 . (6.9)

That is, the last column in the PWM is the inverse of the first column, the second last

column is the inverse of the second, and so on. A heuristic based on the likelihood

ratio test (LRT) is used to determine whether to use the palindrome constraint or not

(the constraint is used in cases where it would improve the value of the LRT objective

function) [11]. In the BioProspector algorithm, Liu, et al. [107] make some minor

alterations to the method, modelling only one half of a palindromic motif; again, it is

assumed that the second half of the motif is the inverse of the first half.

One disadvantage of Lawrence and Reilly’s method is that the palindrome con-

2However, a dimeric transcription factor structure does not imply that the motif will be palindromic;
the two contact points may have the same structure, this is known as a ‘direct repeat’.
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straints are required to be calculated separately for each tested motif. In their CRP

example, a decision is made to enforce palindromicity between positions 4-8 and 19-

15 [99]. However, these constraints would not work well in cases where the motif is of

a different length, or cases where the motif is palindromic at different positions or at

every position. Although Bailey and Elkan [11] extend the constraints to every column

in the PWM, both approaches are relatively inflexible in the assumptions they make.

The major assumption behind this approach is that the motif to be discovered is sym-

metrical in terms of the conservation at motif positions, which need not be the case.

For example, the known motif in the CRP dataset (Figure 3.6, page 80) is not symmet-

rical: it can be observed that the conservation of the T nucleotide at position 4 is not

the same as that of the A nucleotide in position 19. It is also assumed that the motif is

perfectly palindromic throughout and, further, that the motif is palindromic around the

centre, which again need not be the case. For example, the C. crescentus CtrA motif

discussed in Section 3.5.2 (with consensus sequence TTAA-N7-TTAAC) contains the

palindromic subsequence TTAA-N7-TTAA, but the addition of the C nucleotide at the

3’ end means it is not palindromic around the centre.

Keles, et al. [90] note that, besides the methods used by Bailey and Elkan and

Liu, et al. to enforce palindromicity (which are regarded as being ‘ad hoc’), there has

been little exploration of general methods to supervise the motif search, particularly

regarding palindromic motifs. Keles, et al. [90] propose ‘constrained mixture models’

which could be used to allow some general constraints on PWMs, such as constraining

the information content profile. It is noted that it is straightforward to similarly add

constraints to the symmetry and palindromicity of a PWM, but this is not expanded.

Bembom, et al. [21] later build upon the work of Keles, et al. [90]. The PWM in

Bembom, et al.’s algorithm, cosmo, is allowed to be split into intervals which can

be specified by the user, either in terms of particular positions, or fractions of the

motif length. This latter option allows for greater flexibility in cases where the motif

width and/or structure is unknown. Palindromicity between two PWM intervals may

be enforced, by requiring the parameters of one interval are the reverse complement

of the other interval. Unlike MEME and BioProspector, the parameter constraint in

cosmo may be relaxed by specifying a tolerance which can allow small deviations

between the palindromic positions.

While the general constraint system proposed by Keles, et al. [90] and extended

by Bembom, et al. [21] has advantages over the parameter constraints used in MEME

and BioProspector, this system still has some inflexibility, given that motifs may not
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be exactly palindromic and are unlikely to be exactly symmetrical in terms of their

conservation, even if their consensus sequence is exactly palindromic. This motivates

a flexible measure of palindromicity which can score motif models (PWMs). This

palindromicity score may be used as a form of model-level prior knowledge and in-

corporated using the sEM framework in MITSU (as part of the Metropolis mechanism

that either accepts or rejects proposed models).

6.4.2 Methods

Measuring motif palindromicity

Given a DNA sequence (for example, ACATATATG), it is straightforward to find the

reverse complement of the sequence; with a simple scoring method (for instance, 1 for

a match, 0 otherwise) the palindromicity of a sequence can be measured (normalising

for the length of the sequence). However, measuring the palindromicity of a PWM is

more challenging, as each position is not a certain nucleotide (A, C, G or T), but a set

of probabilities that each nucleotide will appear at that position. For example, a typical

PWM corresponding to the consensus sequence above may look like this:

θ =


0.9 0.1 0.8 0.0 1.0 0.0 0.9 0.2 0.1

0.0 0.7 0.0 0.1 0.0 0.0 0.0 0.0 0.1

0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.7

0.1 0.1 0.2 0.9 0.0 1.0 0.0 0.8 0.1

 . (6.10)

Using a similar method to that used in Section 4.4.2, a measure of motif palin-

dromicity can be calculated, given a PWM, by computing the Jensen-Shannon dis-

tance (the square root of the Jensen-Shannon divergence, see Equation 4.56) for each

column in the PWM to its corresponding column in the reverse complement PWM,

summing and normalising by the number of columns in the PWM. Using such a mea-

sure, a score of 0 represents a perfect palindrome (that is, each column in the model

is exactly the same as its corresponding column in the reverse complement model)

and a score of 1 represents a completely non-palindromic sequence. Subtracting this

score from 1 gives a measure where 1 represents a perfect palindrome and 0 a perfect

non-palindrome. The palindromicity of a PWM θ is therefore defined as:

MP(θ) = 1−

(
1

W

W

∑
j=1

√
DJS(θ j||θ

(c)
j )

)
, (6.11)
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where j represents the columns in the PWM and θ(c) represents the reverse comple-

ment of the PWM θ.

6.4.3 Conclusions

The main advantage, in terms of algorithm design, of the measure of motif palin-

dromicity presented in this section is the improved flexibility over previous approaches

which constrained PWM parameter values. As noted above, these parameter constraint-

based approaches are too inflexible to accurately model palindromic motifs; known

palindromic motifs are unlikely to be exactly symmetrical in terms of their conserva-

tion at corresponding positions.

The measure of motif palindromicity presented here also offers an advantage in

terms of model comparison. Using this measure means that the number of parame-

ters in the motif model will remain constant (assuming the width remains constant),

making it easier to compare non-palindromic motif models with those assumed to be

palindromic. This is in contrast to the parameter constraint-based approach adopted by

MEME and BioProspector, where the number of free parameters is reduced when the

palindromicity heuristic is used. In MEME, the changing number of model parameters

has an effect on other heuristics used to compare models, under the assumption that

simpler models (with fewer parameters) are better. This is not an issue with the mea-

sure of motif palindromicity presented here. As noted above, BioProspector models

only one half of a palindromic motif, assuming that the second half of the motif is

the inverse of the first half. This requires changing the expressions which update the

model at each iteration of the algorithm. In contrast, it would be expected that imple-

menting the palindrome measure presented here would only require a minor change to

the update expressions of a motif discovery algorithm in order to bias the algorithm

towards motif models with higher palindromicity.



Chapter 7

Conclusions and further work

This chapter briefly summarises the results of the project and provides conclusions

with regard to the aims of the study (7.1). Some areas for future work which could

further develop the work in this thesis are also suggested (7.2).

7.1 Conclusions and project contributions

The thesis began by presenting the motivation for the transcription factor binding site

motif discovery problem. The primary hypothesis, that TFBS motif discovery using

stochastic EM improves on deterministic EM-based approaches in terms of previously

established metrics, was stated. A literature review of motif discovery algorithms sur-

veyed a number of current approaches, focusing on probabilistic algorithms which

take the promoter regions of coregulated genes as input. A comparison of existing al-

gorithms was made, concluding that a strong case could be made for a motif discovery

algorithm based on stochastic EM.

7.1.1 Algorithmic contributions

A novel heuristic for automatically determining the most likely width (MCOIN) was

presented and evaluated. MCOIN is based on the concepts of motif containment and

information content. A measure of motif similarity based on the Jensen-Shannon dis-

tance was defined and used to measure motif similarity; the definition of information

content at a given motif position introduced by Schneider and Stephens [145] was ex-

tended to measure mean information content per position for a given motif.

A set of generalised expressions were derived, defining the ZOOPS sequence model

197
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in the context of stochastic EM for the first time. These expressions were imple-

mented in a novel sEM-based algorithm for motif discovery (MITSU). A previously

described cutting heuristic was used in order to implement a model which is constraint

free with regard to the distribution of motif occurrences. An entropy-based function

previously used in stochastic EM for motif discovery was modified in order to work

with the ZOOPS sequence model and the cutting heuristic. A previously described

Bayes-optimal classifier for predicting motif occurrences was also extended for use

with stochastic EM.

MITSU was evaluated quantitatively on realistic synthetic and previously charac-

terised prokaryotic data; this evaluation confirmed the primary hypothesis, showing

that MITSU generally outperformed deterministic EM, particularly in terms of site-

level positive predictive value. Further tests demonstrated the ability of stochastic EM

to escape insignificant local maxima of the likelihood function which can trap deter-

ministic EM; it is this ability that allows MITSU to achieve increased performance

over deterministic EM.

Two extensions of MITSU were presented. A probabilistic erasing function was

implemented within MITSU, allowing for sequential discovery of multiple different

motifs. A higher order Markov background model was also implemented; for the

first time, the effects of incorporating a higher order Markov background model in the

context of stochastic EM were evaluated.

7.1.2 Results of Alphaproteobacterial tests

Further validation of MITSU was carried out using the previously characterised Al-

phaproteobacterial CtrA and FnrL motifs (in C. crescentus CB15 and R. sphaeroides

2.4.1, respectively); MITSU was shown to correctly discover these motifs.

MITSU was then applied to data from selected Alphaproteobacterial species in or-

der to predict a novel motif and consensus sequence for the previously uncharacterised

NtrX binding site. These tests provided a number of novel results. Strong evidence

was found to suggest that the FnrL transcription factor plays a role in the regulation

of denitrification genes; the FnrL transcription factor was also confirmed to play a role

in the regulation of genes coding for cytochrome oxidase. These results also suggest

that the regulation of denitrification genes and genes coding for cytochrome oxidase

is controlled by more than one transcription factor (at least FnrL and NtrX); these

transcription factors may work cooperatively to regulate these genes. Two NtrX candi-
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date sequences were identified; further experimental investigation (for example, using

site-directed mutagenesis) may confirm the role of these sequences.

The widespread discovery of the FnrL motif within the NtrX datasets motivated the

use of the probabilistic erasing function within MITSU. Further passes of MITSU on

these datasets identified additional candidate sequences. Again, experimental testing

may confirm the role of these sequences.

7.2 Possible future work

The work in this thesis offers a number of opportunities for possible future research. In

this section, four possible areas for further research are presented and briefly discussed.

7.2.1 Alternative motif model representations

In line with the majority of probabilistic motif discovery algorithms, MITSU uses

position weight matrices (PWMs) to represent motifs. As noted in Section 2.1, PWMs

make the assumption that each position within the motif is independent. Further, it is

assumed that the width of the motif is fixed. However, there are a number of known

motifs with varying (or ‘flexible’) length. This arises as the relevant transcription factor

may bind to the DNA with different structural configurations, leading to the protein

interacting varying lengths of the DNA [117]. This change in structural configuration

may occur as a result of a second protein binding to the transcription factor, changing

its conformation.

Recent research has investigated methods of modelling variable-width motifs us-

ing an approach based on Hidden Markov Models (HMMs). One method proposed

by Mathelier and Wasserman [118], is known as transcription factor flexible mod-

els (TFFMs). TFFMs can model positional dependencies within motifs and also al-

low motifs to have variable width. In tests on ChIP-seq data from the ENCODE

project, TFFMs have been shown to provide improved discrimination of motif se-

quences from background sequences, in comparison to PWMs and dinucleotide-based

methods [118].

In their study, Mathelier and Wasserman use the Baum-Welch algorithm [19] to

train the TFFMs on the ChIP-seq data. However, since the Baum-Welch algorithm is

a modification of the EM algorithm, it suffers similar drawbacks to the EM algorithm,

including convergence to a local maximum. One line of future research would be to
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investigate the extent to which TFFMs could be integrated as the motif model within

sEM-based motif discovery algorithms (and MITSU in particular). This may involve

defining a stochastic version of the Baum-Welch algorithm or modifying the updating

procedure within MITSU to accommodate for HMMs. However, this is thought to be

feasible and would allow MITSU to discover a much broader range of motifs.

7.2.2 Other sources of biological knowledge

The incorporation of relevant biological knowledge within MITSU was demonstrated

in Chapter 6. However, it is possible that other sources of biological knowledge could

be incorporated as a result of implementing the stochastic EM algorithm, either at

the sequence or model level; here, two possible sources of additional information are

briefly described.

Recent research has shown that the 3-dimensional shape of a DNA sequence plays

an important role in how transcription factors and other proteins bind to the DNA [186].

Zhou, et al. demonstrate that variations in DNA structural features such as the minor

groove width, roll, propeller twist and helix twist are correlated with DNA sequence

function, using the Fis transcription factor binding site as an example [186]. The pre-

diction of these structural features based on the nucleotide sequence is demonstrated

and validated against the results of X-ray crystallography and NMR spectroscopy. The

DNAshape web server1 uses a Monte Carlo approach to predict the DNA structural

features above, given a nucleotide sequence as input. It may therefore be possible to

use the output of DNAshape as a form of prior information within MITSU, coupling

DNA structural information with the sequence-based motif discovery in order to fur-

ther improve results.

In eukaryotic cells, chromatin is a complex of DNA and proteins that forms chro-

mosomes within the cell nucleus. Chromatin structure has been shown to be important

in transcription factor binding [104]. Lim, et al. present an approach based on mul-

tiple logistic regression which combines DNA sequence information with chromatin

modification data in order to model the binding of the human p53 transcription factor

on a genome-wide scale [104]. The results of Lim, et al.’s study show that the inclu-

sion of chromatin modification data improves the prediction of functionally important

p53 binding sites. Again, it may be possible to incorporate a measure of chromatin

modification within MITSU to improve the discovery of eukaryotic TFBS motifs.

1http://rohslab.cmb.usc.edu/DNAshape/
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7.2.3 Alternative background models

With regard to the work presented in Section 6.3, there remain a number of open ques-

tions regarding alternative background models.

Firstly, the higher order Markov background model implemented in this thesis was

shown to be effective in the context of deterministic EM, but despite improvements

in specific cases (particularly in cases where the motif was discovered poorly when

using a 0th order model) was shown to be of minimal benefit in general when used in

a stochastic EM-based algorithm. Further testing on characterised prokaryotic and eu-

karyotic motifs may indicate whether the results in this thesis hold for motif discovery

in general.

Secondly, alternative complex background models may be considered for imple-

mentation and evaluation in the context of sEM. For example, background models

based on Markov switching models have been introduced by Down and Hubbard [53].

These models, known as ‘mosaic background models’ allow switching between several

types of background model, all with their own particular nucleotide distribution (which

may be 0th order, or higher order). The motivation for such models is that evolutionary

constraints may act non-uniformly, even in background sequences [53]; it may there-

fore be helpful to learn a number of background models and switch between them as

required (for example, it is reported that as well as a relatively neutral background

model, learned models appear to include a GC-rich background model corresponding

to CpG islands and purine- and pyrimidine-rich models). Mosaic background models

have previously been disregarded due to their complexity (for instance, Jackson and

Fitzgerald note that such models are outwith the scope of their study [86]); however,

an evaluation of the effect of these background models in the context of sEM is one

possible area for future study.

7.2.4 Extension of work on Alphaproteobacterial regulators

A number of results from the application of MITSU to the discovery of a motif for

the uncharacterised Alphaproteobacterial NtrX regulator (described above) require ex-

perimental investigation or confirmation. Strong evidence for the role of FnrL in the

regulation of denitrification genes was discovered; this may be relatively easy to con-

firm experimentally. Further testing on additional Alphaproteobacterial species may

also strengthen the other candidate sequences discovered in this work.

The experiments on the NtrX regulator carried out in Section 6.1 also pave the way



202 Chapter 7. Conclusions and further work

for motif discovery in other uncharacterised regulators. The PrrA transcription factor

binding site motif has been identified as a possible regulator for future study. As noted

in Section 3.5.2, the photosynthetic response regulator (PrrBA) two-component system

plays an important role in the expression of photosynthesis genes in R. sphaeroides.

In this system, the PrrA transcription factor serves as a response regulator, binding

to the DNA promoter regions. The PrrB transcription factor is a membrane-localised

histidine kinase. The PrrBA two component system is essential in activating many

of the photosynthesis genes in response to low oxygen tension. Besides regulation of

these genes, PrrA has been shown to regulate a number of additional cellular functions

such as carbon dioxide fixation, nitrogen fixation, hydrogen uptake and oxidation [58,

60]. The PrrBA two-component system has been shown to play a role as a redox

sensor in the regulation of NtrYX in B. abortus [36]. Transcriptomic studies have

shown that around 25% of the R. sphaeroides genome is controlled either directly or

indirectly by PrrA, which can act as both an activator or repressor of gene expression

[60]. The PrrBA system has a known homologue (known as RegBA) in Rhodobacter

capsulatus [58] and Brucella suis [1]. Consensus sites have been difficult to determine

[116]; however, a suggested (weak) consensus for the PrrA (RegA) binding sites in R.

sphaeroides and R. capsulatus is GYGSSRNNWWNNCRC.

The difficulty in determining a consensus for PrrA binding sites stems from the

fact that there is a great deal of flexibility in the binding of the transcription factor to

the DNA. PrrA is thought to bind with two conserved blocks separated by a gap of

variable length [116]. PrrA has been shown to bind to two different binding sites in

the expression of hemA in R. sphaeroides; Ranson-Olson, et al. have suggested that it

is likely that the phosphorylation state of PrrA plays a role in which site is bound by

PrrA [139]. While current computational approaches to motif discovery would likely

predict at least part of the PrrA motif, the variability in the length of the PrrA motif

suggests that further study of methods for modelling motifs with flexible lengths as

described in Section 7.2.1 is required.
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Dataset listings

A.1 Caulobacter crescentus CB15 datasets

Locus ID Gene product annotation

CC 0233 flagellin modification protein FlmA

CC 0378 modification methylase CcrMI

CC 0430 methyl-accepting chemotaxis protein McpA

CC 0953 flagellar basal-body rod protein FlgB, putative

CC 1035 hypothetical protein

CC 1457 flagellin modification protein FlmG

CC 1458 flbT protein

CC 2062 flagellar protein FliL

CC 2063 flagellar basal-body rod protein FlgF

CC 2552 cell division protein DivB

CC 2628 hfaA protein

CC 2868 neuB protein, putative

CC 2949 hypothetical protein

CC 3286 response regulator

CC 3599 RNA polymerase sigma-54 factor

Table A.1: 15 genes corresponding to cluster D of the genes experimentally determined

to be regulated by CtrA in Caulobacter crescentus CB15, as reported by Laub, et al.

[96].
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Locus ID Gene product annotation

CC 0232 hypothetical protein

CC 0350 pentapeptide repeat family protein

CC 0429 hypothetical protein

CC 0792 flagellin FljM

CC 0793 flagellin FljN

CC 1101 conserved hypothetical protein

CC 1307 conserved hypothetical protein

CC 1850 GGDEF family protein

CC 1963 ATP-dependent Clp protease, proteolytic subunit

CC 2324 sensor histidine kinase/response regulator

CC 2640 hypothetical protein

CC 2948 pilus subunit protein PilA

CC 3219 sensor histidine kinase/response regulator

CC 3295 hypothetical protein

CC 3317 hypothetical protein

Table A.2: 15 genes corresponding to cluster E of the genes experimentally determined

to be regulated by CtrA in Caulobacter crescentus CB15, as reported by Laub, et al.

[96].



A.2. Rhodobacter sphaeroides 2.4.1 datasets 205

A.2 Rhodobacter sphaeroides 2.4.1 datasets

Table A.3 lists the 63 genes in R. sphaeroides 2.4.1 which have been shown by ex-

periment to be regulated by FnrL [54]. Following Dufour, et al., the 300nt upstream

sequences for each of these genes were extracted in order to create the dataset.

Locus ID Name Gene product annotation Predicted

RSP 3044 dorS sensor histidine kinase/response regulator

RSP 0690 rdxI putative heavy metal translocating P-type ATPase Y

RSP 2984 hemA glutamul-tRNA reductase Y

RSP 1877 coxI cytochrome C oxidase subunit I Y

RSP 0697 uspA putative universal stress protein, UspA Y

RSP 1256 enoyl (acyl carrier protein) reductase

RSP 0104 nuoF NADH quinone oxidoreductase F subunit

RSP 0110 nuoL NADH dehydrogenase subunit l

RSP 1826 coxII cytochrome C oxidase subunit II Y

RSP 2247 fusA elongation factor G

RSP 0102 nuoCD NADH dehydrogenase subunit D

RSP 0101 nuoB NADH dehydrogenase subunit B

RSP 0698 fnrL transcriptional regulator, FnrL Y

RSP 0106 nuoH NADH dehydrogenase subunit H

RSP 0112 nuoN NADH dehydrogenase subunit N

RSP 0105 nuoG NADH dehydrogenase subunit G

RSP 0100 nuoA NADH dehydrogenase subunit A

RSP 1257 phbC poly(R) hydroxyalkanoic acid synthase class I

RSP 0107 nuoI NADH dehydrogenase subunit I

RSP 1829 coxIII cytochrome C oxidase subunit III

RSP 1827 coxX cytochrome C oxidase assembly factor

RSP 1828 coxXI cytochrome C oxidase assembly protein

RSP 3341 transcriptional regulator BadM/Rrf2 family

RSP 1254 acetate kinase

(continues over)

Table A.3: 63 genes corresponding to the experimentally determined FnrL regulon in

Rhodobacter sphaeroides 2.4.1, as determined by Dufour, et al. [54]. The predicted

FNR regulated genes (Y) in the ‘Predicted’ column agree extremely well with the exper-

imentally derived genes.
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Locus ID Name Gene product annotation Predicted

RSP 0317 hemN oxygen-independent coproporphyrinogen III oxidase

RSP 0699 hemZ oxygen-independent coproporphyrinogen III oxidase Y

RSP 0692 rdxB iron-sulfur binding protein RdxA/RdxB/FixG family Y

RSP 0693 ccoP cytochrome C oxidase cbb3 type subunit III Y

RSP 0696 ccoN cytochrome C oxidase cbb3 type subunit I Y

RSP 0695 ccoO cytochrome C oxidase cbb3 type subunit II Y

RSP 0468 3-octaprenyl-4-hydroxybenzoate-carboxy-lyase

RSP 0467 ubiD decarboxylase, UbiD family

RSP 0691 rdxH trans-membrane cation transporter, FixH family Y

RSP 2507 ompW putative outer membrane protein, OmpW Y

RSP 2395 ccpA2 cytochrome C peroxidase

RSP 0689 rdxS cytochrome C oxidase maturation protein cbb3 type Y

RSP 3642 exsB Putative transcription factor, ExsB family

RSP 1255 phosphate acetyltransferase

RSP 0281 bchE putative protoporphyrin monomethyl-ester oxidative cyclase Y

RSP 0103 nuoE NADH dehydrogenase subunit E

RSP 0694 ccoQ cytochrome C oxidase cbb3 type subunit IV Y

RSP 0775 cytochrome C family protein

RSP 0465 peptidase U32 family

RSP 1818 feoB ferrous iron transport protein B

RSP 0466 putative lipid carrier protein

RSP 0464 peptidase U32 family

RSP 0277 bchP geranylgeranyl reductase

RSP 0279 bchG bacteriochlorophyll/chlorophyll A synthase

RSP 0278 pucC putative light harvesting 1 (b870) complex assembly protein, PucC

RSP 1876 hypothetical protein

RSP 0166 dksA putative DnaK suppressor protein Y

RSP 0276 isopentenyl diphosphate delta isomerase

RSP 0280 bchJ bacteriochlorophyll synthase, BchJ

RSP 0820 cytochrome b561

RSP 0108 nuoJ NADH ubiquinone/plastoquinone oxidoreductase

RSP 0109 nuoK NADH ubiquinone oxidoreductase

RSP 1819 feoA ferrous iron transport protein A

RSP 1817 feoC hypothetical protein

RSP 2337 ccpA1 hypothetical protein

RSP 2573 hypothetical protein

RSP 3641 putative PfkB family carbohydrate kinase

RSP 3643 hypothetical protein

RSP 3640 hypothetical protein

Table A.3 (continued)
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Table A.4 lists 20 genes (a subset of the 63 genes listed in Table A.3) in R. sphaeroides

which have been shown by experiment to be regulated by FnrL and part of the pre-

dicted core FNR regulon conserved across the 87 Alphaproteobacterial species studied

by Dufour, et al [54]. As with the larger FnrL dataset, the 300nt upstream sequences

for each of these genes were extracted in order to create the dataset.

Locus ID Name Gene product annotation Predicted

RSP 0690 rdxI putative heavy metal translocating P-type ATPase Y

RSP 2984 hemA glutamul-tRNA reductase Y

RSP 1877 coxI cytochrome C oxidase subunit I Y

RSP 0697 uspA putative universal stress protein, UspA Y

RSP 1826 coxII cytochrome C oxidase subunit II Y

RSP 0698 fnrL transcriptional regulator, FnrL Y

RSP 0317 hemN oxygen-independent coproporphyrinogen III oxidase

RSP 0699 hemZ oxygen-independent coproporphyrinogen III oxidase Y

RSP 0692 rdxB iron-sulfur binding protein RdxA/RdxB/FixG family Y

RSP 0693 ccoP cytochrome C oxidase cbb3 type subunit III Y

RSP 0696 ccoN cytochrome C oxidase cbb3 type subunit I Y

RSP 0695 ccoO cytochrome C oxidase cbb3 type subunit II Y

RSP 0691 rdxH trans-membrane cation transporter, FixH family Y

RSP 2507 ompW putative outer membrane protein, OmpW Y

RSP 0689 rdxS cytochrome C oxidase maturation protein cbb3 type Y

RSP 0281 bchE putative protoporphyrin monomethyl-ester oxidative cyclase Y

RSP 0694 ccoQ cytochrome C oxidase cbb3 type subunit IV Y

RSP 0465 peptidase U32 family

RSP 0466 putative lipid carrier protein

RSP 0166 dksA putative DnaK suppressor protein Y

Table A.4: 20 genes corresponding to the experimentally determined FnrL regulon in

Rhodobacter sphaeroides 2.4.1, as determined by Dufour, et al. [54]; these genes are

part of the predicted core FNR regulon that is conserved across a large number of

Alphaproteobacteria. The predicted FNR regulated genes (Y) in the ‘Predicted’ column

agree extremely well with the experimentally derived genes. (Gene names taken from

Dufour, et al. [54]).
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A.3 NtrX datasets

Species 1st gene Locus ID Gene product annotation

in operon

B. abortus str. S19 narK BAbS19 II08320 Nitrite extrusion protein

B. melitensis str. M28 narK BM28 B0295 nitrite transporter

M. nodulans str. ORS 2060 narG Mnod 2128 nitrate reductase, alpha subunit

Caulobacter sp. K31 narK Caul 3862 major facilitator superfamily

MFS 1

A. cryptum str. JF-5 narG Acry 1581 respiratory nitrate reductase al-

pha subunit apoprotein

A. multivorum str. AIU301 narG ACMV 16270 respiratory nitrate reductase al-

pha subunit

Table A.5: Nar-n6 dataset listing. Gene details correspond to the first gene in the nar

operon determined in Section 3.5.2.

Species 1st gene Locus ID Gene product annotation

in operon

B. abortus str. S19 nirK BAbS19 II08720 Copper-containing nitrite reduc-

tase precursor

B. melitensis str. M28 nirK BM28 B0251 Copper-containing nitrite reduc-

tase precursor

R. palustris str. BisA53 nirK RPE 4071 nitrite reductase, copper-

containing

R. etli str. CFN 42 nirK RHE PF00525 hypothetical protein

Table A.6: Nir-n4 dataset listing. Gene details correspond to the first gene in the nir

operon determined in Section 3.5.2.
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Species 1st gene Locus ID Gene product annotation

in operon

B. abortus str. S19 ? BAbS19 II08840 Cytochrome c heme-binding site

R. palustris str. BisA53 ? RPE 0622 Nitric-oxide reductase

R. etli str. CFN 42 norC RHE PF00516 nitrate reductase protein

Table A.7: Nor-n3 dataset listing. Gene details correspond to the first gene in the nor

operon determined in Section 3.5.2. Unnamed genes are denoted ‘?’.

Species 1st gene Locus ID Gene product annotation

in operon

B. abortus str. S19 hp BAbS19 II08590 hypothetical protein

R. palustris str. BisA53 nosR RPC 0427 FMN-binding

R. palustris str. BisB18 nosR RPE 3094 FMN-binding domain protein

Table A.8: Nos-n3 dataset listing. Gene details correspond to the first gene in the nos

operon determined in Section 3.5.2. Genes coding for hypothetical proteins are denoted

‘hp’.

Species 1st gene Locus ID Gene product annotation

in operon

G. diazotrophicus str. PAI 5 nifA GDI0429 Protein nifX

M. extorquens str. CM4 nifA Mchl 1311 transcriptional regulator, NifA

subfamily, Fis Family

M. nodulans str. ORS 2060 nifA Mnod 4004 transcriptional regulator, NifA,

Fis Family

R. etli str. CFN 42 nifA RHE PD00228 transcriptional regulator NifA

protein

R. leguminosarum bv. trifolii

str. WSM2304

nifA Rleg2 5044 Fis family transcriptional regula-

tor

R. palustris str. BisA53 nifA RPE 4543 transcriptional regulator, NifA,

Fis family

R. palustris str. BisB18 nifA RPC 4475 transcriptional regulator, NifA,

Fis family

Z. mobilis str. ZM4 ATCC

31821

nifA ZMO1816 4Fe-4S ferredoxin iron-sulfur

binding domain protein

Table A.9: Nif-n8 dataset listing. Gene details correspond to the first gene in the nif

operon determined in Section 3.5.2.
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Species 1st gene Locus ID Gene product annotation

in operon

B. abortus str. S19 ? BAbS19 II06810 Transcriptional regulator, ARSR

family

R. palustris str. BisB18 caiC RPC 1016 benzoate-CoA ligase

M. extorquens str. CM4 cydD Mchl 1559 ABC transporter related

R. palustris str. BisA53 acs RPE 0595 ABC transporter related

G. oxydans str. 621H cydD GOX2409 Transport ATP-binding protein

CydD

G. diazotrophicus str. PAI 5 rpoE GDI3522 putative phage integrase

R. leguminosarum bv. trifolii

str. WSM2304

? Rleg2 6537 putative transcriptional regulator

protein

R. etli str. CFN 42 cydC RHE PF00035 probable ribose ABC transporter,

ATP-binding protein

C. crescentus str. CB15 cydD CC 0761 ABC transporter, ATP-binding

protein CydD

Caulobacter sp. K31 cydD Caul 0633 ABC transporter, CydDC cys-

teine exporter (CydDC-E) fam-

ily, permease/ATP-binding pro-

tein CydD

A. cryptum str. JF-5 cydD Acry 0554 ABC transporter, transmembrane

region, type 1

A. cryptum str. JF-5 cydD Acry 1637 ABC transporter, transmembrane

region, type 1

Table A.10: Cyd-n12 dataset listing. Gene details correspond to the first gene in the

cyd operon determined in Section 3.5.2. Unnamed genes are denoted ‘?’.
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Species 1st gene Locus ID Gene product annotation

in operon

B. abortus str. S19 ccoN BAbS19 I03630 Cytochrome c oxidase cbb3-type

R. palustris str. BisB18 ccoN RPC 0015 cytochrome c oxidase, cbb3-

type, subunit I

M. nodulans str. ORS 2060 ccoN Mnod 2111 cytochrome c oxidase, cbb3-

type, subunit I

M. nodulans str. ORS 2060 ccoN Mnod 5230 cytochrome c oxidase, cbb3-

type, subunit I

R. palustris str. BisA53 ccoN RPE 0018 cytochrome c oxidase, cbb3-

type, subunit I

R. leguminosarum bv. trifolii

str. WSM2304

ccoN Rleg2 5015 cbb3-type cytochrome c oxidase

subunit I

R. etli str. CFN 42 fixN RHE PF00507 nitric-oxide reductase protein

R. etli str. CFN 42 ccoN RHE PD00296 cytochrome C oxidase, fixN

chain protein

C. crescentus str. CB15 ccoN CC 1401 cytochrome c oxidase, CcoN

subunit

Caulobacter sp. K31 ccoN Caul 2437 cytochrome c oxidase, cbb3-

type, subunit I

Table A.11: Cco-n10 dataset listing. Gene details correspond to the first gene in the

cco operon determined in Section 3.5.2.
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Rascado, H. Solano-Lira, V. Jimenez-Jacinto, V. Weiss, J. S. Garcı́a-Sotelo,
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