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Abstract. We propose a novel methodology for learning and synthesishole

classes of high dimensional movements from a limited seéofahstrated exam-
ples that satisfy some underlying 'latent’ low dimensiotadk constraints. We
employ non-linear dimensionality reduction to extract aardacal latent space
that captures some of the essential topology of the unobdemask space. In
this latent space, we identify suitable parametrisatiomo¥ements with control
policies such that they are easily modulated to generatel mevements from
the same class and are robust to perturbations. We evaluataethod on con-
trolled simulation experiments with simple robots (reaghand periodic move-
ment tasks) as well as on a data set of very high-dimensiamabh (punching)
movements. We verify that we can generate a continuum of nevements from
the demonstrated class from only a few examples in both imhot human data.

1 Introduction

As we design robots to become more anthropomorphic withrarf@ithem to co-exist
in human friendly environments, the number of degrees adoen and consequently
the variety of movements that they can execute have grownifisigntly. This raises
many issues concerning the control and planning in thesaetsolVho defines such a
large set of movements for every new robot? How do you maksethaovements look
natural? How do you cope with the large degree of redundancy?

A promising way out of this dilemma is for the robot (studewotjearn the desired
movements from a teacher (e.g., human demonstrator) thiimitation [1]. There are
several approaches to this problem depending on the infammavailable to the stu-
dent. For example, Grimes et al. [2] observe the movement@deher in joint angles
and learn a probabilistic model which entails a common lagpace between teacher
and student to produce a stable movement of the studentsRete Schaal [3], on the
other hand, observe an imprecise, supervised movemerg gtublent’s own joint space
and then, improve on it with reinforcement learning (whigleds additional feedback).
Such approaches might solve the problems of producingalgtiooking movements
and appropriate resolution of redundancy, but being onlg himitate one particular
movementis rather limiting. An interesting possibility wid be to use the demonstrated
examples as a basis for generation of more generalised nemtefinom the same class.

Here, we assume that a set of demonstrated examples belting $ame class of
movements, i.e., follows a consistent optimisation or retiuncy resolution principle
in some lower dimensional (and commamjobserved task space. Additionally, we
assume a rich repertoire of movements that achieve difféask goals.
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The problem of generating similar movements to a set of elesripas been ad-
dressed in the computer graphics and animation communitiesaim there often is to
generate natural looking human motion adapted to a ceiita@ti®n given a database
of recorded human motion. If the database is big enough anthics all the motions
needed, it is often sufficient to use an efficient graph basarth algorithm to generate
desired movement sequences — however, we consider sitsatibere extensive and
exhaustive motion generation or capture is either expersiinfeasible. If two similar
motions are available, linear interpolation between thveses surprisingly well when
they are represented as absolute positions and rotatidiglgfparts in a global coordi-
nate system [4]. Also linear combination of motion sequeres been shown to work
reasonably well with the right representation [5]. Thesgrapches, besides having to
extrapolate movements in (usually) high dimensional mamrspace, have the prob-
lem of scalability and robustness under perturbation ot gmalification because they
generate an explicit, fixed movement plan indexed in time.

Ideally, we would want to represent and scale the movemantse correspond-
ing task space, since such representations are very coanpasiterpretable. However,
typically we only have access to the demonstrated movenmejast space. A poten-
tial solution to this problem is to find a low-dimensional spavith similar properties
as the task space by employing appropriate dimension&iwation [6]. Tatani and
Nakamura [7] apply autoassociative neural networks to fimthact representations
for motions from a humanoid robot, but they are missing a wagpresent motion dy-
namics. While Wang et al. [8] incorporate dynamics in th@mehsionality reduction to
represent movements, this is not suitable for robotic appbns, since it is not robust
against perturbations and expensive to compute.

In this paper, we first investigate the qualitative relasioip between latent spaces
produced by the chosen dimensionality reduction techrégquathe task spaces of sim-
ple robotic setups. Then, we show that the resulting lajestes can be used to encode
and learn control policies which act as robust represemsitof the example move-
ments and allow easy generalisation to new movements frensdme class. Finally,
we apply this methodology to human motion capture data tooshsinate its feasibility
for complex, high-dimensional real world movement data.

2 Methodology

We adopt a 2-step approach, the schematic for which is laidnobig. 1. First, we
explore a suitable latent space representation of the whddigh dimensional move-
ment data (e.g., in joint space) using appropriate dimeadity reduction techniques.
Then, we formulate a representation of trajectories agabmolicies such that they are
spatiotemporally scalable and robust against pertunhsitio order to test the scalabil-
ity of the methods, modulated control policies are then neddpack into the original
movement space to generate novel target motion. While fzetesdata (or constraints)
are generally not accessible in real world demonstratethphes, we will exploit this
formalism in artificial setups to test the viability of our theds against ground truth.
Next, we explore the two essential components of our metaatimensionality re-
duction algorithm which possesses an inverse mapping aotuwst 'control policy’
representation that can be easily modulated.
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Fig. 1. Experimental methodology. The steps are: (1) inverse katies) (2) GPLVM learning,
(3) control policy (CP) learning, (4) change of CP paran®tés) generation of new trajectory
with CP, (6) GPLVM mapping, (7) forward kinematics

2.1 Dimensionality Reduction

In general, joint and task spaces are nonlinearly relatbéréfore, joint and latent
spaces should be, too. Furthermore, we need a mapping ftent ta joint spaces to
generate new movements from modified trajectories in ttentatpace. Consequently,
we have identified the Gaussian process latent variable IfG&&VM) as a promising
candidate for our purposes, details of which are describémhb An alternative method
with similar properties is the Laplacian eigenmap latemialde model [9] — an exten-
sion of the spectral technique of Laplacian eigenmaps tihdd aontinuous mappings
between data and latent spaces. However, we do not follownughie in this paper
since our explorative experiments suggest that latentespacovered did not maintain
a topology that was conducive to control policy modulatiseg next subsection).
Gaussian Process Latent Variable ModelsThe Gaussian process latent variable
model [10] is a nonlinear generalisation of probabilist@® Itis based on a generative
model which uses Gaussian processes to map low-dimensioeal variablez € R¢
to high-dimensional observed variabtgs R”. The corresponding likelihood for a set

of N latent variable& = [z;,...,zy]" can be written as
Q|Z,B) ~ Hexp [——ql q}
(D independent Gaussian processes) Wjth= [¢},...,¢~]" the collection of all

observed points in dimensionand K a covariance matrix dependent @n Here we
use the standard squared exponential covariance mattiximdependent, identically
distributed noise on the observed variahies

Kmn - ﬁl exp (_%”(Zm - Zn)/ﬁ2”2> + 6mn63

whered,,,, = 1 for m = n and 0 otherwise.

Given the set of observed variabl@stheir latent representations and values for pa-
rameters are then computed by minimising the negativeikagifiood (— log p(Q|Z, 3)).
This optimisation is highly susceptible to the initialigat of Z. Usually, we use a PCA
initialisation as suggested in [10], but where indicated,also use initialisation with
Laplacian eigenmaps or other results.



4 Sebastian Bitzer, loannis Havoutis, and Sethu Vijayakuma

Table 1. Definitions of discrete and periodic control policies. Fodete CPs the dynamic vari-
able governing the nonlinearity converges to 0 while it ntoneally increases for periodic CPs.

discrete periodic
%@ = ay(Bu(g—2) —v) + ﬁf@) %i} — o (Bo(2m — 2) — v) + AF(0)
%z:v %fz—agf %zfv %q'ﬁfw
_ i Ti(§wi _ i Yi(d)wi
TO=27 0 IO =75 w0y
Wi(€) = exp (—hi(€ — ¢)?) W;(4) = exp (—hi(1 — cos(¢ — ¢i)))

A series of extensions to the GPLVM has been proposed in theature. All of
them lead to some kind of regularisation on the latent véggi his is mostly achieved
by introducing a prior over the latenigZ). For example, the prior suggested in [8]
defines dynamics on the latents.

2.2 Control policies

We use discrete and periodic control policies (CPs) to spregoal-directed and peri-
odic movements as attractors of nonlinear dynamical sysféd]. The advantages of
this approach are robust representation of movements aydeadifiability of move-
ment parameters such as amplitude, goal point and basélaseitiations while shape
of the CPs is maintained. Alternative ways of representintadhics, for example with
HMMs or linear Gaussian models, do not provide the same leflvedbustness, suffer
from being either restricted to a fixed set of discrete staialy allowing linear dy-
namics, or expensive computations. In the following, wesprg our adaptation of the
formulation in [11] such that we can explicitly incorporateodifiable start and end
positions. Note that only motion in one dimension (e.g.tjois represented. Conse-
quently, for motion ind dimensions! control policies must be learnt.

Discrete.Discrete movements (e.g., reaching) are characterisedstarting state,
29, SOMe state trajectory and a goal statd;he formalisation of such a system is shown
in Table 1(left). Ignoring the details of the modulating &tion f, this is a linear, two-
dimensional dynamical system with a single, attractinglst@oint at[g, 0]. f is used
to shape the trajectory of the dynamical system betwgemdg. It can be represented
as a weighted sum of RBF basis functions which depend on dlte, &t of a canonical
system that converges to 0. The number of basis functioasd their width and cen-
tres, h;, ¢;, are chosen a priori. Given a complete movenient, z], the weightsgw;,
of the nonlinear component are learnt. Once the movemeanaisit (or encoded as a
CP with start state; and goalg*), we can change the start state and goal to produce
a qualitatively equivalent dynamics of motion in differgrarts of the state space of
(which can either be a joint angle, or a dimension in our laspace).

Periodic. Periodic control policies work similarly, as shown in Talilgight). In-
stead of a goal state, we have a baseline of oscillatign.The nonlinearityf, is now
governed by a periodic, canonical system with phase vglaciOnce the weights are
learnt to fit a given periodic movement, we can adapt the dogdi A, of that move-
ment and move it around in state space by changing the baselin without losing
the shape of the CP. In our implementations, we choose the ofea data set as an
approximation for the initial baseline of the oscillation.
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3 Experiments

We use the robotics toolbox for Matldbto implement simulations of two different
robots. Our first simulation features a 3 Degree of Freedoatjplanar robot arm
that has a shoulder joint and 2 elbow joints, with the endoédfieconstraint to move in
a 2D plane. We resolve the redundancy in the inverse kinemhbyi choosing the joint
space configuratiom, closest to a default posg?, for which the task space constraints
are fulfilled. In other words, we minimisgg — q*||? subject tok(q) — x = 0 with
k(q) being the forward kinematics. The second platform that veeisithePUMA-560
robot arm with 6 DoFs joints (3 translational plus 3 rotational). Haee we fix the
rotation of the end-effector to a default value in our siniola For the PUMA-560
robot, there are always 8 alternative joint angle configonatwhich all correspond to
the same translation and rotation of the end-effector. @$ehalternatives, we choose
the solution which is right handed, has elbow up and non-lipprist.

3.1 Task Space vs. Latent Space

In our first experiment, we explore the relationship betwt#entask space used to
produce the example movements and the latent space rgsiutim nonlinear dimen-
sionality reduction on such data. To begin with, we use aounifgrid data in task space
to verify that the important properties of the task spacaecevered. In particular, we
sample 256 data points regularly spaced from a 2D task spacé¢he planar arm, the
data points are spaced at 0.1m (see Fig. 2, left, blue +) Vvitiilehe Puma armthe
points are separated by 0.027m (see Fig. 2, left, green #edah of the 256 points in
task space, we obtain a corresponding robot configuratigminh space using inverse
kinematics and run the GPLVM on them to find a latent space gorgtion.

If for the same robot, a different inverse kinematic solnti® chosen, i.e. existing
redundancies are resolved in a different way, the data it gpace corresponding to
the original task space points will change. Ideally, we wdike the dimensionality
reduction technique to show some sort of invariance to thisce of variability. We
investigate resulting latent spaces for 3 different sirioites: we use the planar arm
with the inverse kinematics as described above as well asbaee the deviation from
default for the first joint is weighted four times higher. hretthird simulation, we use
the Puma arm as described above.

Fig. 2 shows the resulting GPLVM latent spaces. Comparduktotiginal grids, we
see that the grids in latent space are nonlinearly distoredever, the spatial topology
of the original task space grids are maintained in the lapate. This suggests that in-
terpolation between neighbouring points in latent spacesh@direct correspondence to
modulation in the underlying task space. As expected, theM&Pis sensitive to the
exact choice of redundancy resolution (e.g., inverse kat&®) — the nonlinear distor-
tions are subtly different in all three examples. Howeuee, properties of all resulting
latent spaces allow that a continuous trajectory in taskesgan be represented as a
continuous trajectory in latent space, i.e., recoveringuecture topologically similar to
the unobserved task space is possible from joint data only.

! http://www.petercorke.com/Robotics%20Toolbox.html
2 The Puma’s workspace is 3D, here the data points lie in thepfavie with Z=0.
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Fig. 2. GPLVM results on simulated robot poses with end-effect@itpmns spanning a 2D grid.
(a) The grid in task space (end-effector positions). GPL\ésUlt on: 3DOF planar arm data with
(b) standard inverse kinematics (c) weighted inverse katas; (d) 6 DOF PUMA arm

3.2 Reaching and Periodic Movements with Control Policies

Next, we investigate reaching movements which are com&dan specific ways in the
task space. The aim of this investigation is three fold.thirsve would like to verify
that topology is maintained in the extracted latent spaeeo&dly, we would like to
investigate whether modulations of the CPs in the latentespacovers the same class
of task (and joint) space movements that was used to trailG#eVM. Thirdly, we
want to assess the level of generalisation to novel, unsessments.

The following experiments are done with the simulated Pushatwhich has more
degrees of freedom than the planar arm. We start with a fashdtraight line, minimum
jerk, reaching movement data in task space. To test whetheaw reliably reconstruct
a movement in latent (and task) space that was not used togedhe latent space, we
leave one movement out when training the GPLVM (Step 2, Big. 1

After we obtain the latent space, we fit discrete controlges (Step 3, Fig. 1) to a
single representative trajectory in latent space. We tle@eigate new latent space move-
ments through modulating the CPs (Step 4, Fig. 1) by reparésimg the start state and
goal to match those of the remaining desired movementsantiapace. Importantly, to
test the generalisation ability, we generate a movemetmihsinot used in the GPLVM
training by interpolating the start and goal state of twagh&oburing movements. We
then evaluate movements generated by the CPs against ¢fiabone in latent, joint
and task space.

Parallel Trajectories: We begin by considering parallel task space trajectories de
picted by grey dots in Fig. 3(right) with the resulting trathlatent space shown on the
left. The shading visualises the probability that the GPLyMs on a corresponding
point in joint space. In both panels, the grey dots are tha daints available in that
space. The bold lines in latent space represent the fittetlatqolicy while the thin
lines are the result of CP modulation. The trajectoriessk space result from mapping
the latent space trajectories through joint space to taakes(Steps 6-7, Fig. 1).

The deviation of the trajectories from the data points ik &sace has two possible
sources: (i) discrepancy between the latent space data Rndd@iulated trajectories
(thin lines); (ii) reconstruction errors of the GPLVM( i8teps 2 & 6, Fig. 1). Statistics
of the trajectory errors in various spaces are summarisddlie 2. We find that the
GPLVM reconstruction error is negligible (see first coluriiable 2). Consequently
most of the deviation in task space is due to deviation of then@dulation from latent
space data exemplars. Overall, however, the generatedmnenks fit the original task
space and joint space movements exceptionally well.
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Fig. 3. Fitted (bold), modulated (thin) and interpolated (dashdidgrete CPs for the parallel
trajectories of the PUMA arm in latent and task space.

Table 2. Reconstruction and Trajectory Errors (nMSE)~* and standard deviation).

Parallel Trajectory
space reconstruction fitted modulated interpolated
latent — 0.14+0.16 4.12+4.70 —
joint  0.006=+ 0.009 0.13+0.17 4.144+5.19 0.36+ 0.41
task  0.009+ 0.013 0.16+ 0.21 3.85+ 4.95 0.31+0.42

Figure-8 Trajectory
space reconstruction fitted modulated interpolated
latent — 2.14+5.44 2.524+2.58 —
joint 0.000+ 0.000 1.814+3.76 2.83+3.37 7.96+ 15.71
task 0.000-+ 0.000 0.61+ 1.36 3.17+ 3.18 4.98+ 7.66

One can note that, as expected, the fitted control policyia#ier trajectory errors
than the result of modulation of the CPs to other movemeriis dan be attributed
to the slightly varying shapes that the representatione@fhtovements have in latent
space. Also, the topological relationship is preservedaash®e seen by the fact that
movements close by in latent space have similar ‘shapesiding itself to better CP
modulation. Indeed, that explains the very low error of titelipolated CP (being near
the original fitted CP).

Star Trajectories: Next, we test whether these findings transfer to reachingemov
ments where the task constraints are slightly more com@eix.data consists of 10
minimum jerk trajectories in task space where the start antblpmints are distributed
along a quarter circle with radius 0.5 and 2, respectived (Sig. 4(top right)).

We find comparable results to the earlier discussion — bottitgtively (see Fig.
4(top)) and quantitatively (the statistics of the errorjabhis very similar to Table 2, is
left out in the interest of space). Consequently, we expechwethod to be applicable
to a wide range of reaching movements with diverse task caings and orientation.

Periodic Movements: Having explored discrete, point-to-point movements, the
natural question is whether the method extends to periodicements? Again we
utilise the Puma platform and simulate figure-8 movements 2D task space. We
now fit, modulate and interpolate periodic control polici€ke task space trajectories:
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Fig. 4. Fitted (bold), modulated (thin) and interpolated (dash@dhtrol Policies for the (TOP
row) star; (BOTTOM row) figure-8 trajectories of the PUMA aimlatent and task space.

x(t) = Asin(nt),y(t) = Asin(27t) are generated and then, translated and rotated to
fit the Puma workspace. In the latent space, we fit CPs on theefjwith A = 0.3,
modulate withA = 0.1 and interpolate ford = 0.2.

Results are shown in Fig. 4(bottom) and Table 2. Again, threegeged movements
follow the figure 8s in task space. However, movement shapes farger variation
in latent space, resulting in slightly higher error ratesask space. It is remarkable,
though, that we can generate a continuum of complicatedsfga&e movements from
just two examples.

3.3 Human Motion Capture

The simulation experiments are useful to compare our ®solknown ground truth,
but compared to what we want to achieve the problem settinlgese experiments is
still easy with very regular movements in only a few degrefeseedom. A realistic
setting is provided by real human data recorded with motapture.

Here, we apply our method to 3 different punching motiongftbe same person.
The 3 movements all have the same style of punch, but diffilveifneight that the punch
hand (right) is travelling. In particular there is a highpsvland a very low punch (see
Fig. 5, top right). The recorded data has 63 dimensions (§Gamlus the root offset).

First, we note that linear dimensionality reduction likeAdoes not work for this
data set. For a 2D PCA latent space the reconstruction ertbe @ata in joint space is
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Latent Space

space reconstruction fitted modulated interpolated

latent — 0.44+0.81 72.75+ 65.56 —
joint  0.001+ 0.002 2.78+5.00 351.55+ 510.42 —
task  0.000+ 0.000 0.67+1.07 399.42+ 657.52 —

Fig. 5. Fitted (bold), modulated (thin) and interpolated (dashdidtrete Control Policies for
the human punching motion in latent and end effector spadBDVME: Very low punch with
path of right hand for original punch (red triangles) andufeom CP modulation (solid line).
BOTTOM: Errors for human movements (nMSEO~* together with its standard deviation).

very high (hnMSE: 4780.6e-3). Even for a 10D latent spacedar is still significantly
higher than for the GPLVM with a 2D latent space (86.8e-3wex001e-3).

Although a standard GPLVM with 2D latent space has virtuathyproblem recon-
structing the data used to train it, the resulting latentega not useful for learning
control policies, because spatiotemporal topologicaiti@h is not well maintained,
e.g. data points belonging to single punch sequences akerbup and spread discon-
tinuously. Adding a dynamics prior on the data sequencesggested in [8] improves
results a little bit, but not sufficiently.

We find that a suitable initialisation of the latent space isay importance. We car-
ried out Laplacian Eigenmaps (LE) on a subset of the movedwatthat only contains
motion of the punch arm and then trained a GPLVM on the sane ghtialising with
the LE result. This gives a good latent space in which topoldgnvariance is main-
tained, but in this form, it did not provide a mapping to thé fwdy; and furthermore,
low and very low punches were switched in order in latent epsi¢e overcome these
problems by recomputing a GPLVM on the full data while usingratialisation based
on the previous result which we bias towards correct ordén@movements.

The resulting latent space is shown in Fig. 5(top left). Wartediscrete CPs on
the low punch and adapt their start state and goal to fit thbdeedigh and very low
punches. We also interpolate a new punch by taking the aserfstart state and goal
between low and high punches. Using the position of the tghtd (also compare Fig.
5, top right) to define the task space of these movements,peetneMSESs as presented
in Fig. 5(bottom), which produce satisfying results. Tharte punch closely resembles
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the original, although it was not possible to modulate tlerecontrol policies such
that they match the other punches very precisely — espgcitf the high punch sce-
nario. However, playing a sequence of the generated movssreates natural looking
punches that have slight offsets in the joint space. Thiscgrsequence of the differ-
ent intrinsic shape of the latent representation of the pighch compared to the low
punch, which also influences the interpolation.

4 Conclusion

We have proposed a new method of generating a family of morefiem examples
which is suited for robotic applications with a large numbéidegrees of freedom.
The method uses nonlinear dimensionality reduction taeka low-dimensional space
which captures the essence of the task space constrairttseamdearns control policies
on the resulting compact representations. New movemeatgenerated by adapting
parameters of the learnt control policies in the low-dimenal space and mapping the
result back to the original joint space. We have demongtthis approach in simulated
experiments with simple robots and have shown its feasilfitir more complicated
movements with human motion capture data. In future workwilleinvestigate how
to iteratively use feedback from the mapping to bias the dsmmnality reduction such
that representations of movements in the resulting lateates share stronger shape
similarity and hence, allow better interpolation of new raments.
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References

1. Schaal, S., ljspeert, A., Billard, A.: Computational eggrhes to motor learning by imita-
tion. Phil. Trans. Royal Soc. London B Biol S8581431) (2003) 537-547

2. Grimes, D.B., Chalodhorn, R., Rao, R.P.N.: Dynamic itiotain a humanoid robot through
nonparametric probabilistic inference. In: Proc. RolmtiBcience & Systems. (2006)

3. Peters, J., Schaal, S.: Reinforcement learning for peteximed motor primitives. In: 2006
International Joint Conference on Neural Networks, IJCKB006) 73-80

4. Wiley, D.J., Hahn, J.K.: Interpolation synthesis of@utated figure motion. IEEE Computer
Graphics and Applications7(6) (1997) 39-45

5. Giese, M.A., Poggio, T.: Morphable models for the analgsid synthesis of complex motion
patterns. International Journal of Computer Visg8(1) (June 2000) 59-73

6. Grochow, K., Martin, S.L., Hertzmann, A., Popovic, Z.yl8tbased inverse kinematics. In:
ACM Transactions on Graphics (Proceedings of SIGGRAPH)042

7. Tatani, K., Nakamura, Y.: Dimensionality reduction amgbnoduction with hierarchical
NLPCA neural networks - extracting common space of multiplenanoid motion patterns.
In: Proc. IEEE Intl. Conf. on Robotics and Automation, ICR2003) 1927-1932

8. Wang, J.M., Fleet, D.J., Hertzmann, A.: Gaussian prodgaamical models for human
motion. IEEE Trans. on Pattern Analysis and Machine Irgelice30(2) (2008) 283—298

9. Carreira-Perpinan, M.A,, Lu, Z.: The laplacian eigenmkgtent variable model. In: Proc.
of the 11th Intl. Conference on Atrtificial Intelligence anthfsstics, AISTATS. (2007)

10. Lawrence, N.: Probabilistic non-linear principal campnt analysis with gaussian process
latent variable models. Journal of Machine Learning Re$e(2005) 1783-1816
11. ljspeert, A.J., Nakanishi, J., Schaal, S.: Learningpetior landscapes for learning motor

primitives. In: Advances in Neural Information ProcessBygtems 15. (2003) 1523-1530





