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Seeing the Future
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FireGrid: Effective Emergency response

m Paradigm shift in emergency response?

® Premise ‘Information is essential’ E

m using the Present and the Past : sensor information

m to predict fire behaviour predictions in super real
time

m Integration of Sensor Technology, High Performance
Computing and The Grid

m Follow , structure behaviour,
evacuation process...
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The FireGrid Architecture

FireGrid

T T

Integration of HPC implemented Grid enabled, sensor steered
simulations with sensors & C/C coupled ‘ensemble’ HPC simulations
T T ‘ T
HPC implemented simulations Coupled HPC simulations Grid enabled, sensor steered
integrated with C/C integrated with sensor data computations
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Simulation output filtering & HPC implemented coupled & Sensor computation Grid enabled sensor
C/C as a Grid service stand-alone simulation codes Integration communications
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loosely-coupled simulation codes and Communications
'semi-analytical models for extrapolation & networking
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Typical Fire Event
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Earlier Response
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Questions

m Putting for one moment
aside the availability of
sensors. ..

m Is fire modelling state of
the art good enough?

m Accurate enough?
m Fast enough?

m Simple enough?
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What would be the way forward?

[ | Bmte F orce FireGrid
m Weak Force

m Tuned Force
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Modelling Limitations
m Analytical Model:

Only valid for simple scenarios

Large body of assumptions

m Zone Models: Baseline computations
Accuracy limited by the assumptions
Large part of physics is lost

m Field Models: High Resolution
Include most of necessary physics
Adequate accuracy

Very time intensive
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Round Robin of fire modelling

m How robust is the state of the art?

m International pool of experts provide blind
predictions of a large-scale test (Dalmarnock)
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Concepts

m Lead time

m Data Assimilation ‘%\
m Pre-run scenarios S
m Sensors §

\\l
m Grid
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Flat Layout ‘
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Aftermath
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Results: HRR

Heat Release Rate of the Fire (G—liles)
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RR Lessons ﬁ%’f?;@

m Brute Force forecasting would provide big
scatter at small spatial-scales and diverge at
long time-scales

m Complex dynamics driven by critical events (items
ignition, window breakage, flashover...)

m Need strong and continuous interactions with sensor
data

Rein et al. 2007, 5t Fire and Explosions Hazards
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Similar Problems

m Weather forecasting

lead time is 4 days, weather scales are 10 km and 10 hr

m Wildfire forecasting:

lead time is ;1 hr?, forest scales are 100 m and 1 hr

m Enclosure fire forecasting:

(lead time? enclosure scales 1 m and 1 min
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Data Assimilation (Tuned Force)

m To combine all sensor and model information to
produce an estimate of future conditions

m The concept has been applied successfully to Weather
forecast since 1970’s

®m Many methodologies currently in used
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Data Assimilation is also called Dynamic Data Driven Modelling
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Data Assimilation (smart force?)
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Data Assimilation Conecept in Atmospherie
Modelling

A

Forecast error

Short-range
forecast

State of the Atmos phere

Fit of analysis
to "true” state
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= "True" state of atmosphere for the model, given its resclution and physics
As close to "true” state as observation density and observation error allow
= Model forecast
Small correction to short-term forecast
The COMET Program

Total respiration Photosynthesis
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from M. Williar®s 365 730 1095
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Data Assimilation Concept in Flame Spread

Flame Length
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Some Results from FireGrid

m ‘step by step’

m Direct Data Assimilation (~Weak Force)

m Preliminaries of Weather Forecast Methods
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A Simple Weather Forecast Approach

m Natural convection between two layers (Van der Pol)
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A Simple Weather Approach

errors Forecast IC Parameter
Linear 10% 8% 3%
Non-linear 100% 40% 60%

m Very fast and effective tool for linear or near-linear problems

m Very limited tool for non-linear problems

m Complex method, Large computer resources, Little
transparency, relatively quality results for near linear
problem....

from W. Jahn ‘

16



Concluding Remarks

m Computations must be steered by sensors (DA)
m Balance between accuracy, complexity and resources
m State of the art is closer to very simple models

m Next level at hand: Zone models (within Firegrid)

m Technology and our of fire dynamics is
constantly improving

m Thus, Emergency response will only improve

m Project

funded by the Technology Programme of
the Department Trade and Industry, UK

http:/ /www firegrid.org
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