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of Fire Emergencies

FireGrid: Effective Emergency response

� Paradigm shift in emergency response? 

� Premise ‘Information is essential’

� using the Present and the Past : sensor information

� to predict fire behaviour predictions in super real 
time 

� Integration of Sensor Technology, High Performance 
Computing and The Grid

� Follow Fire dynamicsFire dynamics, structure behaviour, 
evacuation process…
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The FireGrid Architecture

The Process 

from A. Cowlard

Sensors

Command 

and 

Control
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Typical Fire Event
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Earlier Response
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Questions

� Putting for one moment 

aside the availability of 

sensors…

� Is fire modelling state of 

the art good enough?

� Accurate enough?

� Fast enough?

� Simple enough?
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What would be the way forward?

� Brute Force

� Weak Force

� Tuned Force

FireGrid

Modelling Limitations

� Analytical Model: 

�Only valid for simple scenarios

�Large body of assumptions

� Zone Models: Baseline computations

�Accuracy limited by the assumptions

�Large part of physics is lost

� Field Models: High Resolution

� Include most of necessary physics

�Adequate accuracy

�Very time intensive

fm&



7

Round Robin of fire modelling

� How robust is the state of the art? 

� International pool of experts provide blindblind

predictions of a large-scale test (Dalmarnock)

Concepts

� Lead time

� Data Assimilation

� Pre-run scenarios

� Sensors

� Grid
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Flat Layout
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Aftermath

Average Compartment Temperature
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Results: HRR

Results: Hot Layer Temperature
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RR Lessons

� Brute Force forecasting would provide big 

scatter at small spatialsmall spatial--scales scales and diverge at 

long timelong time--scalesscales

� Complex dynamics driven by critical events (items 

ignition, window breakage, flashover…)

� Need strong and continuous interactions with sensor 

data

Rein et al. 2007, 5th Fire and Explosions Hazards

Similar Problems

�� WeatherWeather forecasting

lead time is 4 days, weather scales are 10 km and 10 hr

�� WildfireWildfire forecasting:

lead time is ¿1  hr?, forest scales are 100 m and 1 hr

�� Enclosure fireEnclosure fire forecasting:

¿lead time? enclosure scales 1 m and 1 min
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Data Assimilation (Tuned Force)

� To combine all sensor and model information to 

produce an estimate of future conditions

� The concept has been applied successfully to Weather 

forecast since 1970’s

� Many methodologies currently in used

Data Assimilation is also called Dynamic Data Driven Modelling

Data Assimilation (smart force?)

MODELS OBSERVATIONS

FUSION

ANALYSIS

MODELS
- Understanding

- Completeness vs. speed 

SENSOR DATA
- Real behaviour

- Indirect

ANALYSIS

Forecasts

within lead time
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Data Assimilation Concept in Atmospheric 
Modelling

Time (days since 1 Jan 2000)

�= observation
— = mean analysis

| = SD of the analysis

from M. Williams
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Data Assimilation Concept in Flame Spread

Some Results from FireGrid

� ‘step by step’

� Direct Data Assimilation (~Weak Force)

� Preliminaries of Weather Forecast Methods
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4c[(c1kgρgcpu∞/lp)
1/2 (Tf-Tp) + qs]
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2

Vf =

Direct Data Assimilation

� k, ρ, c, k – Non variant constants

� u∞, lp, qs, Tp, Tf – Parameters measured

� c and c1 - non-dimensional constants 

particular to the experiment to be 

calibrated

lp
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Direct Data Assimilation Results
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� Natural convection between two layers (Van der Pol)

A Simple Weather Forecast Approach 

from W. Jahn

� Very fast and effective tool for linear or near-linear problems 

� Very limited tool for non-linear problems

� Complex method, Large computer resources, Little 
transparency, relatively quality results for near linear 

problem….

A Simple Weather Approach 

from W. Jahn

ParameterICForecast
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Concluding Remarks

� Computations must be steered by sensors (DA)

� Balance between accuracy, complexity and resources

� State of the art is closer to very simple models

� Next level at hand: Zone models (within Firegrid)

� Technology and our understanding of fire dynamics is 
constantly improving

� Thus, Emergency response will only improve

FireGridFireGrid Project

funded by the Technology Programme of 

the Department Trade and Industry, UK

http://http://www.firegrid.orgwww.firegrid.org


