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ABSTRACT

Attempts were made to solubilize the enzyme

cholesterol 7o4-hydroxylase from native rat liver microsomes and from

,rat liver microsomal acetone and butanol powders. Mechanical

techniques such as freezing and thawing, repeated homogenisation and
i

;sonication, and also the use of hydrolytic enzymes such as Phospholipase A

and those contained in pancreatin and Naja naja venom, all failed to

solubilize the enzyme. Solubilizing agents such as urea, n-butanol,

sodium deoxycholate and cholate, cetyltrimethylammonium bromide, and all

the non-ionic detergents tested, with the exception of Nonidet P40 and

P42, failed to release into solution cholesterol 7oC -hydroxylase activity

or greatly inhibited this enzyme.

Nonidet P42 solubilized microsomes were applied to a

column of DEAE-cellulose, and chromatography separated cytochrome P-450,

cytochrome b^ and NADPH-cytochrome c oxidoreductase from each other.
Fractions eluted from DEAE-cellulose contained very little

or no cholesterol 7o(-hydroxylase activity, but on recombination of the

cytochrome P-450 fraction with a fraction containing NADPH-cytochrome c

oxidoreductase, cholesterol 7oC-hydroxylase activity was reconstituted.

The interdependence of cytochrome P-450 and NADPH-cytochrome c oxido¬

reductase and the effect of cytochrome b was investigated in the

reconstituted cholesterol 7-hydroxylase system.

Further attempts have been made to increase the purity of

cytochrome P-450 and NADPH-cytochrome c oxidoreductase, and these partially

purified fractions were recombined and tested for their ability to support

the 7<*--hydroxylation of cholesterol.

Some chemical and biochemical properties of Nonidet P42

solubilized rat liver microsomes and rat liver microsomal acetone and^
cont'd...



butanol pov/ders have also been investigated to characterise the

system.

The effect of modifications to the cholesterol side

chain on cholesterol 7o<>-hydroxylase activity has been observed.
t

Studies on the substrate specificity of cholesterol —hydroxylase

have revealed that this enzyme is very sensitive to small changes in

the side chain of the sterol.

«
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SECTION 1

INTRODUCTION

The tissue and body fluid cholesterol content appears to

stay fairly constant over long periods. Maintenance of a constant

level of cholesterol in the body requires that cle novo synthesis and

ingestion of dietary cholesterol should balance cholesterol metabolism

and excretion. Quantitatively, the most important catabolic route of

cholesterol is the transformation of this sterol to bile acids,

approximately 50% of excreted cholesterol is in the form of these

surface active agents, the other 507> consists of neutral faecal steroids

such as cholestanol and coprostanol (1). Metabolism to steroid

hormones and their catabolites is of minor quantitative importance.

That bile acids are synthesized from cholesterol was first demonstrated

by Bloch (2) who showed that deuterated cholesterol was transformed to

deuterated bile acids.

Transformation of cholesterol to bile acids requires many

chemical modifications involving two hydroxylations of the sterol

nucleus at the 7<=<and 12<x.positions, oxidation of the 3^?hydroxyl, a
reduction of the ^5 double bond to a bfi hydrogen and reduction of the
3 oxo group to a 3«hydroxyl. The side chain is reduced in length by

a three carbon fragment by a series of hydroxylations and oxidations.

A generally accepted pathway to the two primary bile acids is shown in

Figure 1,1. These bile acids, conjugated with either taurine or

glycine, are secreted from the bile duct into the duodenum in response

to the gastric contents, in contact with the duodenal mucosa, exciting

the release of cholecystokinin. The function of these bile salts is

emulsification of fats prior to digestion by pancreatic lipase, the

activation of this enzyme, and the efficient absorption of fat soluble

vitaminss
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Bile salts may also be further metabolised by bacteria

in the intestinal tract. The processes catalysed are basically a

dehydration followed by a reduction to form deoxycholate from cholate

and lithocholate from chenodeoxycholate, hydrolysis of the peptide bond

and oxidation of some secondary alcohols to ketones. The result of

these bacterial transformations is the production of secondary bile

acids in contrast to those synthesized by the liver which are termed

primary bile acids.

It has been estimated that 907, of the bile acids are

reabsorbed, particularly in the region of the lower ileum, and

returned to the liver via the portal vein, and any secondary bile acids

may be rehydroxylated to form the equivalent primary bile acid.

Shefer et al (3) have demonstrated that the enterohepatic circulation

of bile acids occurs about 10 times per diem.

Linstedt (4) deduced that perhaps the first step in the

transformation of cholesterol to bile acids was the 7e<-hydroxylation

of cholesterol. By feeding rats the bile acid sequestering resin,

cholestyramine, or by cannulation of the bile duct, the activity of

cholesterol 7o<-hydroxylase may be increased ten-fold. Not only is

this activity increased but the output of both cholic and cheno-

deoxycholic acids from the liver-are increased. As the pathways of

these two primary bile acids diverge after the 7c<-hydroxy1ation, and

no other enzyme in the pathway is stimulated by cholestyramine

treatment, nor is there any noticeable build up of intermediates in the

pathway, cholesterol 7c>C -hydroxylase is considered the first and rate

limiting step in the conversion of cholesterol to bile acids. The

factors responsible for the regulation of activity of this enzyme are

still far from being understood, and much of the problem resides in
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the fact that cholesterol 7®C-hydroxylase activity cannot be resolved

from another regulatory enzyme involved in the transformation of

acetate to bile acids, the ^-hydroxy -^methyl glutaryl-Coenzyme A
reductase (HMG-CoA reductase). The activity of HMG-CoA reductase and

cholesterol 7o4-hydroxylase often rise and fall in parallel. Both

enzymes undergo a diurnal variation in activity (5,6,7) which is

abolished by hypophysectomy (8.9. Furthermore, in the case of

HMG-CoA reductase, the increase in activity has been shown to be the

result of increased synthesis rather than a decrease in degradation

rate (10). The half-lives of both enzymes are relatively short,

being about 3 hours.

As a result of the parallel activities, it has been

suggested that the product of HMG-CoA reductase, namely, the amount of

microsomal cholesterol, regulates the apparent activity of the
frftjxilrv.eA.V

cholesterol 7o<.-hydroxylase. Thus cholestyramine^could (a) activate
HMG-CoA reductase synthesis, increasing cholesterol concentration and

therefore affecting cholesterol 7e>< -hydroxylase activityj Bjorkhem

states that the enzyme is already saturated with cholesterol (11) and

Brown et al (12) have shown that cholesterol concentration is unchanged

by cholestyramine feeding, and under the conditions of cholesterol

7©C-hydroxylase assay, no cholesterol synthesis takes place; (b)

activate cholesterol 7« -hydroxylase reducing the cholesterol concen¬

tration and, as a result, increase HMG-CoA reductase, or (c) cholesty¬

ramine could co-ordinately induce both enzymes. Literature concerning

the role of cholesterol in the regulation of cholesterol 7ct -hydroxylase

activity is confused. Siperstein and Wilson et al (13,14) have noted

that feeding rats a diet rich in cholesterol increased the activity of

cholesterol 7<X.-hydroxylase, but HMG-CoA reductase activity was

reduced, and Myant and Eder (15) showed that the induction of
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cholesterol 7®*-hydroxylase by biliary drainage was preceded by an

increase in the rate of cholesterol synthesis. Cayen (16) has

observed that tomatine, a steroid glycoside which complexes with

cholesterol and prevents its absorption from the gut, activates

cholesterologenesis but the rate of bile acid synthesis was unaltered.

However, as the decrease in bile acid concentration in the entero-

hepatic circulation precedes the rise in cholesterol 7®c-hydroxylase
o-S

activity, and fcha-fc puromycin, actinomycin D and cycloheximide all

inhibit the rise in activity (12,18), most workers are agreed that the

increase in cholesterol 7<X. -hydroxylase activity is not due to relief

of inhibition of this enzyme by reduction in concentration of portal

bile salts (17,19,20,21,22).

The only organ in which the synthesis of bile acids from

cholesterol has been demonstrated is the liver, and the rate

determining enzyme in this transformation, cholesterol 7<=* -hydroxylase,

occurs only in the microsomal fraction of liver. This fraction,

capable of catalysing various reactions, contains many hydrolytic

enzymes and is noticeably rich in haem. Two of the major haemo-

proteins are cytochrome b<_ and cytochrome P-450, which was first

identified by Garfinkel (23) and Klingenberg (24) though its catalytic

significance at that time was not known. It is now known that

cytochrome P-450 is a component of most mixed function oxidases (25),

capable of catalysing in the presence of NADPH and oxygen the

hydroxylation of many endogenous and foreign compounds. This drug

hydroxylating system is characterised by its inhibition by carbon

monoxide, an inhibition optimally relieved by irradiation by light of

450 nm. Cholesterol 7ex. -hydroxylase is inhibited by carbon monoxide,

and irradiation by light of 450 nm. optimally relieves the inhibition

(26,27). Furthermore, antibody towards NADPH-cytochrome P-450
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reductase inhibits the 7oC -hydroxylation of cholesterol (28). It is

therefore considered that the reaction shown in Figure 1,2 is

catalysed by a mixed function oxidase, having cytochrome P-450 as the

terminal oxidase. It has been found that if cholesterol is incubated

with microsomes and NADPH, in the presence of oxygen, many products

are formed, the major product being 7-oxo-cholesterol. It has been

shown by Mitton et al (29) that the formation of these products may be

greatly reduced by adding to the incubation glutathione and manganous

ions,^-mercaptoethylamine or a heat stable thiol present in the
microsomal supernatant.

The mixed function oxidase of rat liver microsomes can be

induced by a variety of compounds such as phenobarbital, 3-methyl-

cholanthrene, pregnenolone 16<X.-carbonitrile. All these agents

increase the specific content of cytochrome P-450, but there also

appears to be a preferential stimulation of, for example, polycyclic

hydrocarbon hydroxylation by prior treatment with 3-methylcholanthrene,

which also induces the formation of a cytochrome P-448 (30,31,32) and

pregnenolone 16 X.-carbonitrile appears to induce ethylmorphine

demethylase activity (33). Phenobarbital, in the strain of rats used

in this laboratory, does not stimulate cholesterol 7<X -hydroxylase

activity although the cytochrome P-450 content is increased.

Furthermore, cholestyramine feeding, which can induce cholesterol

lot -hydroxylase activity ten-fold, has no effect on the specific content

of cytochrome P-450. It is, therefore, of interest to determine the

essential components of the cholesterol 7X -hydroxylase multi-enzyme

complex.

The aims of this study were four-fold;-

(i) To obtain a soluble active preparation of cholesterol 7o<.-hydroxy¬

lase to which purification techniques could be applied in an



attempt to move some way towards the isolation of the protein

catalysing the rate determining step in the 7«<.-hydroxy 1at ion

of cholesterol;

(ii) To investigate the chemistry and bio-chemistry of some of the

characteristics of such a solubilized preparation;

(iii) To compare and contrast properties of cholesterol 7«< -hydroxy¬

lase with those of the drug hydroxylating mixed function oxidase

system;

(iv) To gain some knowledge concerning the active site of the enzyme

with respect to its substrate specificity.
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SECTION 2

MATERIALS AND METHODS

A Animals and their diets

Male rats of the Wistar strain were used and weighed

approximately 200g. They were bred in the animal house of this

department. Control diets consisted of 70% wholemeal flour, 25%>

skimmed milk powder and 5% dried yeast. Except where statements to the

contrary are made, the rats were also fed the bile acid sequestering

resin, cholestyramine or "Cuemid" at a level of 4% w/w in the soft diet.

Phenobarbital was also administered to rats for certain experiments to

increase the concentration of 'marker' cytochrome P-450; the pheno-

barbitai was added to the drinking water for five days at a concentration

of lmg/ml.

B Perfusion of livers

In order to reduce the concentration of haemoglobin in the

microsomal fraction, the rats were anaesthetized with ether, a needle

was inserted into the portal vein and the liver perfused with 0.154M

potassium chloride.

C Preparation of microsomes

The perfused haemoglobin-free liver was excised and chopped

with scissors and homogenised by three passes of a 'Teflon' pestle to

form a 25% w/v homogenate. This homogenate was centrifuged for 20

minutes at 18,000 x g to remove cell debris, nuclei and mitochondria.

The supernatant from this centrifugation was centrifuged at 105,000 x g

for 1 hour. The pellet resultant from this centrifugation contained the

endoplasmic reticulum of rat liver. Microsomes were resuspended in

distilled water, lyop'nilised, and stored at -20°C.



Incubation medium

Supernatant <3"

10ml methanol

Centrifuge

Centrifuge
Discard

upper layer

-> Pellet
1 0ml

Supernatant <^-

V
Chloroform

extract

Chloroform

Centrifuge

V
Pellet

Wash with

10ml water

Supernatant

V
Lipid extract

5ml

Ethyl
acetate

Boil

Centrifuge

Pellet discarded

Figure 2,1

Scheme for the extraction of steroids from the

cholesterol 7ct-hydroxylase incubation medium.



t - "c]
The cholesterol 7&(,-hydroxylase assay

+cj cholesterol was purified by t.l.c. using a
solvent system of petroleum ether : diisopropyl ether, 30:70, prior

to use. About 1jxg (0.VCi) radioactive cholesterol, dissolved in
50JX.I acetone, was added to the incubation medium of 7ml, containing
0.1M potassium phosphate buffer pH 7.4, 10mM-mercaptoethylamine,

5yu.moles NADP, 50yiA.moles glucose-6-phosphate and 1 unit of glucose-
6-phosphate dehydrogenase, and approximately lOmg microsomal protein

which is equivalent to lg wet weight of original liver sample.

It has been shown by Mitton et al (29) that these are

optimal conditions for the enzyme assay, and Brown has demonstrated
raxuJrio<\

that the velocity of the ennymo is proportional to the protein

concentration, at least to 8mg protein per ml (34). The reaction

rate is also linear up to 40 minutes incubation. Brown (34),

Bjorkhem et al (11) and Van Cant fort (35) have also shown by g.l.c.

and g.l.c. mass spectrometry that results expressed as percentage

r 141 r i4~i
conversions of I 4 - Cj cholesterol to 14 - Cj 7o<-hydroxycholesterol
are good approximations to those results obtained from the determination

of the mass of loi. -hydroxycholesterol.

After incubation for 40 minutes at 37°C with constant

agitation, the reaction was terminated by addition of 10ml methanol.

Neutral lipid was then extracted according to the scheme presented in

Figure 2,1. The volume of the extract was reduced by evaporation and

the residual volume applied to thin layer plates of silica gel. The

products of reaction were separated from the substrate by developing in

a solvent system of benzene and ethyl acetate, 7;13. Peaks of

radioactivity were located on the chromatoplates by scanning with a Panax

thin layer radioactive scanner. In the presence of lOmM -mercapto-



Microsomes Acetone
powder

Total protein,(mg) 187 185

Cytochrome P-2+50
(nmoles) 176 69

Cytochrome bs
(nmoles) 58 56

NADPH-cytochrome c
oxidoreductase (nmoles/min/mg protein) 82 66

Cholesterolyug 2860 11+0
Percentage cholesterol
converted to 7a—hydroxy-
cholesterol in 1hr. 10.2 1+.1+

1+.5 ml of the microsomal suspension (1+2.5 mg protein/ml)

was added to 500ml acetone to prepare an acetone

powder (i+20mg),as described in the text.

Table 2,1.

Some properties of a rat liver microsomal

acetone powder.



ethylamine, 7o<. -hydroxycholesterol is the only major product formed.

Other products which may be formed in the absence of ^ -mercaptoethyl-
amine, 7-oxo-cholesterol, 7oC- and -hydroxycholesterol and

cholestan-3^,504,6^ -triol, have been characterized by Mitton et al
(29). The silica gel was scraped from the plates into scintillation

vials and 5ml of scintillant added. The scintillation fluid was

prepared by adding 20g PPO and 150mg POPOP dissolved in 250ml methanol

to 4,750ml of toluene. Radioactivity was then quantitatively

determined in a Packard Tri-Carb liquid scintillation spectrophotometer.

Addition of silica gel to the scintillant does not cause significant
14

quenching, and the efficiency of counting C disintegrations is about

[* - u°]
807o.

When the percentage conversion of I ^ " "c| cholesterol to

[.. -3 7o4-hydroxycholesterol was very low, 1cm sections of the plate
were scraped into vials and these were counted to observe peaks of

radioactivity. The activity of cholesterol 7®< -hydroxylase was

r 14 ~iexpressed as the percentage 1 4 - CI cholesterol converted to

7o<-hydroxycholesterol.

expies see

[«- "<]
Preparation of rat liver microsomal acetone powder

Microsomes prepared in the usual way were resuspended in

0.154M KCl to give a protein concentration of about 30mg/ml. The

suspension was added dropwise to 100 volumes of stirred acetone at -20°C.

After filtering the solvent, the powder was washed with diethyl ether,

then acetone, both at -20°C. The resultant powder was transferred to

a vacuum desiccator and left in vacuo for about 1 hour at room

temperature to remove traces of solvent. The material was then stored

at -20°C in the deep freeze. Some of the properties of this powder are

shown in Table 2,1.



Microsomes Butanol

powder

Total protein,(mg) 260 21+3

Cytochrome P-i+50, (nmoles) 125 117

Cytochrome P-i+20, (nmole s ) 16 11+

Cholesterol, (^ig/mg protein) " 18 0.1

Phospholipid,(mg/mg protein) 0.6 0.3

Percentage conversion of
cholesterol to 7<i-hydroxy-
cholesterol 9*1+ 10.0

Table 2,2.

Some properties of a rat liver microsomal

butanol powder, prepared as described in the text.
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Preparation of a butanol powder from rat liver microsomes

Microsomes were resuspended in distilled water and freeze

dried. About 3g of the lyophilised powder were then homogenised in

500ml of n-butanol, cooled to -30°C. Butanol at this temperature is

rather viscous and filtration is very slow, therefore the homogenate

was centrifuged in an MSE 1800, pre-cooling the rotor to -20°C.,at
14,000 r.p.m. for approximately 5 minutes. The supernatant was

discarded and the pellet resuspended in acetone at ca.-20°C,

homogenised in about 300ml acetone, then filtered through a Buchner

funnel. The powder was washed with acetone until all butanol was

removed. After being kept in vacuo for 1 hour at room temperature

the powder was kept at -20°C in the deep freeze. The powder was very

stable and could be kept for two months at -20°C with no apparent loss

of cholesterol 7«. -hydroxylase activity. Some properties of the

powder are shown in Table 2,2 and it is clear that loss of cytochrome

P-450 to cytochrome P-420 in this preparation was reduced compared

with the acetone powder preparation.

Determination of cholesterol

Cholesterol was measured either by gas liquid chromatography

or by a modification of the Liebermann-Burchard reaction (36). In both

r i4~i
cases, [4 - Cj cholesterol was added to the microsomal suspension to

serve as a recovery marker. Lipid was extracted by chloroform/

methanol, 1;1, and the extract applied to a thin layer plate which was

developed in diisopropylether, petroleum ether, 70:30. The

cholesterol was located using a Panax thin layer radioactive scanner.

The sterol was elutea from the silica gel and scraped from the plate

eluting with either acetone or diethyl ether. A proportion of this

extract was removed and the radioactivity counted in the liquid

- W11ILU WCtta

[. -".]
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scintillation spectrometer to determine the recovery of cholesterol.

The Liebermann-Burchard Test

The cholesterol sample was evaporated to dryness and

redissolved in chloroform. 1ml of sample was added to 2ml of the

reagent consisting of 957, acetic anhydride and 57, concentrated

sulphuric acid. After leaving for exactly 0.5hr. at room temperature,

the absorbance at 625nm was determined. In this colour reaction the

chromophore obeys Beer's law up to 500yUg cholesterol in 3ml of the
final reaction mixture.

Gas liquid chromatography

The cholesterol sample in acetone was applied to a

column of 100-120 mesh Gas-Chrome Q on which was adsorbed 1% SE 30

in a Pye 104 gas chromatogram. The temperatures of the injection

port, column oven and detector oven were 300°C, 235°C and 240°C

respectively. The flow rates of both nitrogen carrier gas and

hydrogen were 30ml/minute. Detection of the sample was by flame

ionisation. As an internal standard, pregnenolone acetate was

added to the sample and the ratio of peak heights of pregnenolone

acetate to cholesterol was compared to a standard curve of actual

ratio to observed ratio of pregnenolone acetate to cholesterol.

Determination of phospholipid

Phospholipid was measured by a modification of the

method of Zilversmit et al (37). Phospholipid was precipitated from

the sample by 57, trichloroacetic acid, and after centrifugation the

pellet was washed with 57 trichloroacetic acid. The pellet after

centrifugation was suspended in 1ml water and 1ml 607, perchloric acid

was added. The mixture was boiled until the brown colour which

developed finally disappeared. Phosphate was then assayed by adding



water to 3.5ml followed by 0.5ml 8.37, ammonium molybdate, and 1ml of

17, amidol in 207, sodium metabisulphite. After exactly 15 minutes the

absorbance at 720nm was determined. The mass of phosphorus so

determined was multiplied by 25 to convert it into the mass of phospho¬

lipid. This colour reaction was useful in the range 1 to 25ymg
phosphorus.

Glucose-6-phosphatase assay

Glucose-6-phosphatase was assayed by adding the test sample

to 4ml 0.05M maleate buffer pH 6.5 containing 28mg glucose-6-phosphate,
o

and incubating for 0.5hr. at 37 C. The reaction was stopped by

addition of 0.5ml, 0.87o zinc sulphate and 0.5ml, 0.7 27, barium

hydroxide. 1 drop of phenolphthalein solution was added and alkali

added until the indicator turned red. The glucose liberated was

assayed essentially as described by Gardner (38) by oxidation with

glucose oxidase and reduction of the hydrogen peroxide formed with

peroxidase with the concomitant oxidation of gum guaiacum. Absorbance

of this chromagen at 625nm was measured. The determination of

glucose was performed using the Technicon autoanalyser.

Alkaline phosphatase
$

This enzyme was measured as described by Kachmar (39).

Aryl esterase

This was determined according to the method of Rommerts

(40).

Aryl sulphatase was assayed by adding 0.2ml of the enzyme fraction to

lml 0.1M acetate buffer pH 6.2 containing 0.4mg p-nitrophenyl sulphate.
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After incubation for 25 minutes at 37°C, the reaction was stopped

and the colour developed by addition of 2ml 0.5M NaOH. The

absorbance at 405nm was determined.

M RNA and DNA were measured by the method of Schneider (41). No DNA

was detectable in the microsomal fraction.

N Protein was assayed either according to the method of Lowry (42) or

by the biuret method (43). When the protein sample contained either

KCl or Nonidet P42 a precipitate formed in the presence of the Folin-

Ciocalteu reagent, but Figure 2,2 shows that when the sample was

centrifuged, no difference in the absorbance between the sample and the

control was detected.

() Assay for benzphetamine demethylase activity

Benzphetamine is N-demethylated by liver microsomes in

the presence of NADPH with the concomitant release of formaldehyde

(32). To a final volume of 8ml of 0.1M potassium phosphate buffer

pH 7.4 was added about 18mg microsomal protein or 7 nmoles cytochrome

P-450, 2.74mg benzphetamine hydrochloride dissolved in 100yu.l ethanol
to give a final concentration of 1.25mM, 5yumoles NADP, 50yU.moles
glucose-6-phosphate and 1 unit of glucose-6-phosphate dehydrogenase.

After 0, 5, 10 and 15 minutes, 1.5ml were removed and added to 1.5ml

15% trichloroacetic acid. After centrifugation, 2ml of the supernatant

were removed and 2ml Nash reagent (2M ammonium acetate, 50mM acetic

acid and 20mM acetyl acetone) were added (44). The colour was

developed for 8 minutes at 60°C and the absorbance at 412nm measured

using a Unicam SP 600. An absorbance of 8mM ^cm ^ was used to

determine the concentration of formaldehyde. It was shown that

Nonidet p^2 did not ffrrt tVsp havp 1 r.r.Tn^rif f colour•



Figure 2,3»

The reduced-oxidized spectrum of cytochrome c(l.5mg/ml)



Figure 2,iw

The(reduced + CO) - (reduced) difference spectrum

of rat liver microsomal cytochrome P-U50.
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Assay of NADPH-cytochrome c oxidoreductase

To 2.8 ml of 0.1 M potassium phosphate buffer pH 7.7

were added 5(yt*|, i.e. 1 mg cytochrome c, 100^*^of NADPH generator
(0.5yXmoles NADP, 5yAmoles glucose-6-phosphate and 0.5 I.U. of
glucose-6-phosphate dehydrogenase). The reaction, performed at 25°C,
was started by addition of the flavoprotein containing sample. The

velocity of reaction was measured in an Aminco-Chance, dual wavelength/

split beam recording spectrophotometer in the dual wavelength mode.

The difference in absorbance between 551 nm and 540 nm was recorded as

a function of time. An extinction coefficient of 19 mM ''"cm ^ was

used as the difference between reduced and oxidised cytochrome c.

A reduced-oxidised difference spectrum of cytochrome c is shown in

Figure 2,3. 1 unit is defined as being the amount of flavoprotein

which will produce a change in absorbance^^^ 54o) ^ ^er minute-

Assay of cytochrome P-450

Cytochrome P-450 concentration was determined essentially as

described by Omura and Sato (45) in an Aminco-Chance spectrophotometer

in the split beam mode. Thus, to approximately 6 ml of sample were

added a few grains of sodium dithionite. After recording a base line

spectrum, carbon monoxide was gently bubbled through the sample cuvette

for about 30 seconds. A recording was then made of the CO-reduced

minus reduced difference spectrum and the concentration of cytochrome

P-450 determined by measuring the absorbance at 450 nm relative to
'

-1 -1
490 nm, and using an extinction coefficient of 91 mM cm A reduced

CO-reduced spectrum of rat liver microsomes is shown in Figure 2,4.

Measurement of cytochrome b^

In the presence of cytochrome P-450 and NADH-cytochrome c



Figure 2,5.

A reduced-oxidized difference spectrum of

cytochrome 125.
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reductase, cytochrome concentration was determined by observing the

difference in absorbance between 424 and 409 nm. observed when a few

grains of NADH are added to the sample cuvette during difference

spectroscopy. In the absence of both NADH-cytochrome c reductase and

cytochrome P-450, cytochrome b was reduced by sodium dithionite. An
oA

extinction coefficient of 185 mM cm was used for the difference in

absorbance between 424 nm and 409 nm. A reduced-oxidised difference

spectrum of cytochrome b^ is shown in Figure 2,5.

Measurement of difference spectra

Microsomal suspensions containing about 6 mg protein per ml

were added to both sample and reference cuvettes in the Aminco-Chance

spectrophotometer, set in the split beam mode. A scan of the spectrum

was made before any addition of mixed function oxidase substrates,

amines or ethanol. After addition of a solution of a compound to the

sample cuvette and the same volume of solvent to the reference cuvette,

a scan of the spectrum between 350 nm and 500 nm was made.

Absolute spectra of partially purified cytochrome P-450

recorded using a Pye-Unicam SP 1800.

Electron paramagnetic resonance spectra were obtained using

a Varian E4 machine, operating at -172°C.

DEAE-cellulose was prepared as described by Peterson et al

(46). K Cl concentrations were determined using an E.E.L. chloride

meter, and phosphate concentrations during chromatography were

determined conductimetrically. Linear gradients of KCl were

generated as described by Peterson and Sober (46).
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Affinity chromatography

Cyanogen bromide activated Sepharose 4B was either

purchased from Pharmacia, Uppsala, Sweden, or prepared by the method

described by March et al (47).

Cytochrome c was covalently bound to the CNBr activated

Sepharose 4B essentially as described by Golf et al (481. 30g CNBr

activated Sepharose 4B (Pharmacia) was prepared by washing with

5 litres ImM HC1 pH 3. The beads were then equilibrated with 0.1M

phosphate/borate buffer pH 9.0, and the suspension at 4°C was poured

into a solution containing 2g cytochrome c to give a final volume of

200ml. The reaction was allowed to proceed for 20 hours at 4°C.
At the end of this period, 1M ethanolamine was added and left for

3 hours at 25°C to allow reaction with unreacted CNBr. The beads

were then washed with O.lM sodium acetate buffer pH 4 and 1M sodium

chloride, followed by O.lM borate/phosphate buffer pH 9 and 1M sodium

chloride. The process of washing was repeated twice.

Octylamine was bound to cyanogen bromide activated

Sepharose 4B as described by Cuatrecasas (49).

Phospholipase A was prepared from the venom of Crotalus

adamanteus as described by Tzagaloff et al (50). The activity was

tested by adding an aliquot of enzyme solution to a final volume of

3ml of lOmM glycylglycine buffer pH 8.95, containing 6.7mg lecithin/ml,

20j\l Tween 80/ml, 0.0l4mg cresol red/ml, 0.5mg CaC^/ml and
0.05mg MgC 1 ^• 6H^0/ml. 1 unit corresponds to a ^A^^/min. of 0.110
at 25°C.

Materials

All common reagents were purchased from B.D.H. or Sigma
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and were of Analar grade.

Cytochrome c, glucose-6-phosphate, NADP, NADH,

glucose-6-phosphate dehydrogenase were obtained from Boehringer

Mannheim GmbH, Mannheim.

Crotalus adamanteus venom, Naja naja venom, pancreatin,

sodium cholate, sodium deoxycholate, Lubrol WX and DEAE-cellulose

(0.8meq/g) were obtained from Sigma, London.

Triton X-100, digitonin, saponin, Nonidet P40 and Nonidet

P42, ammonium sulphate, polyethylene glycol 6000, calcium phosphate gel,

egg lecithin and phenobarbital, were supplied by B.D.H. Chemicals Ltd.,

Poole, England.

Benzphetamine hydrochloride was obtained from Upjohn Co.

Kalamazoo, Michigan.

DCC-Trypsin was supplied by Serva, London.

Tween 80 and cyanogen bromide, PPO and POPOP, were

purchased from Koch-Light, England.

Bio-gel A 0.5M and hydroxylapatite were obtained from

Bio-Rsd, England.

Sephadex and Sepharose were supplied by Pharmacia, Uppsala,

Sweden, and CM-cellulose and cellulose phosphate by Whatman, England.

Diamino-octane was purchased from Ralph N. Emanuel Ltd.,

London, and L-o^.-lecithin ^ dipalmitoyl) from Calbiochem, London.

Cholestyramine resin (Cuemid) and Kieselgel H were

products of Merck, Sharp & Dohme.

4 - cholesterol, J^22-23-3■] sitosterol,|^26 - UcJ
desmosterol, were obtained from N.E.N. Chemicals GmbH. Other steroids

radioactive and radioinactive were synthesized in this laboratory by

Dr. K.E. Suckling.

Superoxide dismutase was a gift from Dr. R.C. Bray, Sussex.



SECTION 3

ATTEMPTS AT THE SOLUBILIZATION OF CHOLESTEROL 7<*--HYDROXYLASE

Cholesterol 7&--hydroxylase activity resides in the

microsomal fraction of rat liver, a fraction of which has been defined

operationally as the high speed pellet resulting from the

centrifugation of the post-mitochondrial supernatant (the 10,000 x g

supernatant) at 100,000 to 250,000 x g for 1 to 2 hours (51).

Microsomes are a heterogeneous mixture of the membranes of the endo¬

plasmic reticulum and contain nucleic acids, and lipids which create a

hydrophobic environment for the large number of enzymes contained in

this cell fraction. It is still unclear how enzymes are organised

in the microsomal membranes and how the phospholipid molecules are

arranged around the microsomal protein. Schulze and Staudinger

(52,53) have proposed a model in which the lipid is interspersed in

bilayers as islands between the protein molecules. Archakov, on the

other hand, suggests on different experimental evidence that there is

sufficient lipid to form a continuous bilayer over which is bound, by

hydrophobic interactions, a third layer of protein (54). The structure

of membranes, however, does seem to be dependent on the lipid

composition rather than the protein composition (55). Whatever the

actual structure of endoplasmic reticulum or microsomes may be, the

practical result of this protein-protein, protein-lipid interaction is

that microsomal enzymes are insoluble. This insolubility could be the

result of several factors. With cholesterol 7«*c-hydroxylase,

insolubility could be the result of strong ionic interactions with other

proteins, phospholipid or RNA. If this were the case, solubilization

might be expected upon treatment of microsomes with salts at high ionic

strength. Such an apparent solubilization has been reported by Scholan

and Boyd (26) in which a desiccated preparation of microsomes was
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suspended in 1M potassium phosphate buffer and subjected to

centrifugation at 105,000 x g for 50 min. Treatment with 1M

potassium phosphate buffer resulted neither in inhibition of cholesterol

70C-hydroxylase activity nor in degradation of cytochrome P-450 to

cytochrome P-420.

The criterion of solubilization, that of the enzyme

remaining in the supernatant fraction after centrifugation at 105,000 x g

for 50 min., is questionable here since the density of 1M phosphate is

relatively high and the "solubilization" may merely have been a buoyancy

effect. This criterion in more general cases is also unsatisfactory as

phospholipids and detergents may alter the partial specific volume of

proteins (56^. A more useful criterion is perhaps the ability to

remove interfering enzymatic activities from the "solubilized"

preparation by fractionation techniques such as chromatography or

differential precipitation. The "solubilized" preparation described

by Scholan (2.6) when applied to Sephadex G-200 partitioned into 2 gross

fractions which when assayed alone for cholesterol 7«<-hydroxylase

activity resulted in a percentage conversion to 7®^-hydroxycholesterol

approximately one-third that when the two fractions were recombined.

It was clear, therefore, that the enzyme complex was not completely

resolved.

A more likely cause of the enzyme's insolubility is that

of hydrophobic interactions between proteins or between protein and

either neutral lipid or more particularly phospholipid, as microsomal

membranes are composed of approximately 50% by weight of phospholipid.

This idea of hydrophobic interaction is strengthened by the finding

that cytochrome b,. has two domains, a hydrophobic and a hydrophilic

region, bridged by a part of the polypeptide chain rich in helical
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structure (57). The hydrophobic domain may be separated from the

hydrophilic domain by incubating microsomes with trypsin. Cytochrome

b may be split by this technique into a peptide which retains some of

its original catalytic activity, and a peptide abnormally high in

hydrophobic residues which is essential for binding to microsomes (58).

Another, perhaps less likely, possibility is that the

enzyme complex is covalently linked to a macromolecular matrix of lipid,

carbohydrate or other protein such as the hydrophobic protein found in

mitochondria and described by Capaldi et al (59). With these

possibilities in mind, methods were used to try to weaken or break the

bonds associated with insolubility, or to make a quasi-aqueous

environment, thermodynamically favourable to proteins which are

essentially hydrophobic.

Physical Methods

Microsomes prepared as described in the Methods section

were resuspended several times and rehomogenised in 0.154M KCl and

centrifuged at 105,000 x g for 1 hour, but this repeated washing of

native microsomes failed to solubilize any significant quantity of

cytochrome P-450 or cholesterol 7o<.-hydroxylase activity.

Ultrasonication has been a technique used for the

solubilization of a number of enzymes such as the NADP dependent

hydroxysteroid dehydrogenase from porcine testicular microsomes

(60), though this method is only of value in releasing inherently water

soluble proteins from an insoluble matrix. It has been reported that

during ultrasonication localised temperatures of 10,000°K may be

momentarily generated, with pressure waves of 10^ atmospheres (61).

These shock waves are clearly disruptive and enzymic activities are

often reduced. However, there is evidence to suggest that with molecules



the size of proteins, damage caused by chemical effects is greater than

that due to mechanical disruption (62), and it is thought that these

chemical effects are largely the result of generation of free radicals

such as the hydroxyl or hydroperoxyl radical. Nevertheless, the use

of this harsh technique failed to release into the supernatant

cholesterol 7©C-hydroxylase activity.

reductase. This technique was applied to rat liver microsomes, lowering
o

the temperature gradually to -70 C. After thawing the microsomes, they

were resuspended in 0.1M potassium phosphate buffer and centrifuged for

1 hour at 105,000 x g. The resultant supernatant contained no

cytochrome P-450 and little cholesterol 7o<.-hydroxylase activity.

is composed of lipid, most of which is phospholipid. Therefore, an

acetone powder was made from a suspension of native microsomes as

described in the methods section, and because of the reported

insolubility of phospholipids in acetone (64), a lipid depleted

preparation of microsomes was made by extraction of a lyophilized powder

of microsomes with n-butanol. Some characteristics of these powders

are shown in Tables 2,1 and 2,2. It is interesting that even after

suspending and homogenizing desiccated microsomes in this organic solvent,

only 507, of the original phospholipid could be removed. Either there is

some phospholipid which is not readily soluble in butanol or the binding

of residual phospholipid to protein is extremely tenacious.

ultrasonic cavitation as before, no cholesterol 7«< -hydroxylase was

released into the 105,000 x g supernatant. Since an acetone powder

Freezing and thawing has recently been used by Heller and

Gould (63) for the solubilization

Approximately 507, of the dry weight of rat liver microsomes

When these powders were subjected to repeated washing or
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preparation of rat liver microsomes retains cholesterol 7oC-hydroxy-

lase activity, is partially lipid depleted, and provides a convenient

stock of enzyme, subsequent investigation of methods to solubilize

cholesterol 7ot-hydroxylase were performed using such preparations.

Effect of hydrolytic enzymes

Considerable success has been achieved in the

solubilization of lipid bound proteins using hydrolytic enzymes.

Trypsin has been used for the purification of NADPH-cytochrome c oxido-

reductase by Roerig et al (65), and cytochrome b^ by Strittmatter
(66,67,68); cathepsin D has been used by Ito (69) to solubilize NADH-

cytochrome b^ reductase, whilst leaving cytochrome b,_, NADPH-
cytochrome c reductase and cytochrome P-450 still membrane bound.

Lipase or steapsin has been useful in the solubilization of the

NADPH-cytochrome c reductase first demonstrated in a whole liver acetone

powder by Horecker (70) which was subject to further purification

(71,72,73). It has been suggested, however, that the active principle

in the lipase/steapsin preparation is a trypsin contaminant (74). As

will be demonstrated in the section on reconstitution, the catalytic

properties of such trypsin solubilized preparations can be

fundamentally changed.

Action of Phospholipase A

It was possible that the binding of cholesterol 7o< -hydroxy¬

lase to the microsomal membranes was dependent on the integrity of the

phospholipid. Phospholipase A (EC 3.1.1.4) has been used with some

degree of success in the solubilization of rat liver microsomal

acetanilide-hydrolysing esterase. This lipase did not solubilize NADPH-

cytochrome c reductase or cytochrome b,_, but did result in an inhibition

of the esterase which was nevertheless solubilized (75).
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Phospholipase A was prepared from the venom of Crotalus

adamanteus as described in the Methods section; this had an activity

of 1 unit/ml. The results of incubating 120^*1 of phospholipase A
with lOOmg of an acetone powder are shown in Figure 3,1. The phospho¬

lipase A was incubated with acetone powder suspension for 0, 10 and 30

minutes at 37°C in lOmM Tris pH 7.7 containing ImM CaCl^ f°r the
stimulation of phospholipase A activity. After cooling the reaction

mixtures in ice, the suspension was centrifuged at 105,000 x g and the

supernatant and resuspended pellet assayed for cholesterol 7«t-hydroxy¬

lase in each case. No detectable cytochrome P-450 or protein was

released into the supernatant, neither was there an increase in

cholesterol 7®C-hydroxylase activity. There was, however, a decline

in activity after 30 minutes in the pellet when compared with control

values. Since NADPH-cytochrome c reductase has been reported as not

being solubilized, the inactivation of the enzyme on incubation with

phospholipase A may be due to the detergency of lysolecithin, the

product of reaction catalysed by this enzyme.

Effect of Naja naja venom

o
An acetone powder was incubated at 37 C for 0.5hr. with

5and lmg venom/40mg acetone powder. Cytochrome P-450 was not

released into the supernatant fraction after centrifugation at 105,000 x g

neither was cholesterol 7oc -hydroxylase activity solubilized. Little

effect on either the resuspended pellet or the treated suspension was

observed after incubation with N.naja venom.

Effect of pancreas acetone powder

Pancreatin is a complex mixture of enzymes such as

•^-amylase, lipase, zymogens, ribonuclease and deoxyribonuclease.
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Incubation for 0.5hr. with 5mg pancreatin/60mg acetone powder suspension

did not result in any solubilization of cholesterol 7®C-hydroxylase

activity.

Action of 3M urea

Treatment of an acetone powder with 3M urea at 0°C led

to total inactivation of cholesterol 7o<.-hydroxylase activity in

the suspension, the supernatant and the resuspended pellet. Furthermore,

disruption of cytochrome P-450 was so complete that neither a

characteristic cytochrome P-450 nor a cytochrome P-420 spectrum could

be observed.

Treatment of the acetone powder with n.butanol

The technique of disrupting protein-lipid interactions by

n-butanol has been extensively reviewed by Morton (76) and many enzymes

have been solubilized using n-butanol (77). The usefulness of this

organic solvent over other solvents such as chloroform, ether and

higher alcohols, appears to be due to its detergent-like properties, and

it is thought that the bonds involved between phospholipid and protein

are in competition with butanol and protein. In the attempt to

solubilize cholesterol 7o<.-hydroxylase, both single phase and 2-phase

systems were used. In the former, an 87, solution of butanol (max.

solubility 10.57o at 0°C) was used, and in the latter a 257, v/v mixture,

in combination with sonication, was employed.

In the first experiment, treatment of an acetone powder

suspension in 0.1M phosphate buffer with butanol added to produce an

87, v/v solution, followed by sonication for 2 minutes, resulted in

cholesterol 704-hydroxylase activity being released into the 105,000 x g

supernatant. The percentage conversion of radioactive cholesterol to



radioactive 7©<.-hydroxycholesterol in this supernatant was 3.1% and in

the pellet 1.87». This compares with the control value of 7.17,.

Because of this initial promising result, attempts were made to improve

the technique, but these subsequent experiments did not result in

solubilization of cholesterol 7<* -hydroxylase, and the activity in the

suspensions and pellets was inhibited or inactivated, this inhibition

being more emphasised when the material was sonicated, or when a

2-phase system was used. Assay of the supernatant for cytochrome P-450

revealed that approximately 20% of cytochrome P-450 from the original

acetone powder suspension was solubilized. One interesting

observation which emerged from these studies was that on treatment with

8%, butanol, formation of cytochrome P-420 was extensive. Upon dilution,

however, the cytochrome P-450 content increased and the cytochrome P-420

content decreased. The formation of this catalytically inactive form

of cytochrome P-450, therefore, seems to be partially reversible in

this system on decreasing the concentration of n-butanol. This

reconversion of cytochrome P-420 to cytochrome P-450 has also been

demonstrated by Ichikawa and Yamano (78).

The effect of bile acids, sodium cholate and sodium deoxycholate
on an acetonepowder and cholesterol 7o<-hydroxylase

Since 1968, the key to the solubilization of rat and

rabbit liver microsomes has been the detergency of both sodium cholate

and sodium deoxycholate. The original method of solubilization of

cytochrome P-450 with retention of some enzymic activity was devised by

Lu and Coon (79), and most other workers in this field of mixed function

oxidase systems in liver microsomes have continued to use this general

method (80,81,82). Sodium cholate has also been used in the

solubilization of cytochrome P-450 from bovine adrenal mitochondria (83).

An acetone powder was suspended in 0.1M phosphate buffer, pH 7.4 and



Figure 3>2.

The effect of sodium deoxycholate on cholesterol

7a-hydroxylase activity in 30mg (l2mg protein)

resuspended acetone powder.
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The effect of sodium choiate on cholesterol
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resuspended acetone powder.
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A Dixon plot of results presented in figure 3>2.

(velocity is equivalent to percentage conversion)



0 10 20 30
iag ciiolate / 7ml incubation

Figure 3»5«

A Dixon plot of results presented in figure 3»3«

(velocity is equivalent to percentage conversion)



26.

increasing quantities of the bile salts, sodium cholate and sodium

deoxycholate were added, and the results of these experiments are shown

in Figures 3,2 and 3,3. Figures 3,4 and 3,5 are Dixon plots of

^ vs (84). It is quite clear that both bile salts are very

inhibitory, but the type of inhibition observed is complex. It is

neither purely competitive nor purely non-competitive inhibition and

might represent denaturation of the enzyme as well as inhibition.

The ratio of sodium cholate to microsomal protein

generally used to solubilize mixed function oxidase systems is lmg.

cholate/mg. protein. This ratio was used by Bernhardsson et al (85)
a-fxl

and Bjorkhem et al (86) in the solubilization a£~reconstitution of the

12o(. -hydroxylase of 7o(. -hydroxycholest-4-ene-3-one, and the 7oi-hydroxy-

lase of cholesterol, but at this concentration the latter enzyme is

inhibited by approximately 80%.

It has been reported by Dean et al (87) that deoxycholate

used in the solubilization of hog liver microsomes suspended in 0.1M

phosphate buffer could be removed by precipitation with CaC^- After
solubilization of an acetone powder with deoxycholate and centrifugation

at 105,000 x g, the resultant supernatant was treated with a mass of

CaC^ equimolar to the deoxycholate and then re-centrifuged.
Cholesterol 7ot-hydroxylase activity in this treated supernatant could

not, however, be demonstrated.

Having observed inhibition of cholesterol 7®<-hydroxylase

with anionic detergents, a cationic detergent, cetyl trimethy1ammonium

bromide, was tested for its ability to solubilize a resuspended acetone

powder. A 0.1%. and 2% final concentration of this detergent was used,

and even at the low concentration cholesterol 7-hydroxylase was

inactive, and it was also observed that the normally fine suspension of
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acetone powder had formed a flocculent precipitate.

The effect of non-ionic detergents on the activity and solubilization
of cholesterol 7c<-hydroxylase

Although most of the reported successes in solubilization

of mixed function oxidases from microsomes have resulted from the use

of the two bile salts, cholate and deoxycholate, there nevertheless

have been achievements using non-ionic detergents particularly from

workers from the University of Osaka. One of the early reports showed

the solubilization of cytochrome P-450, but no enzyme activity was

demonstrated (88). Solubilization of a fatty acid O-hydroxylase

from porcine kidney microsomes (89) and porcine liver microsomes (90)

using Triton X-100 has been reported, and for enzymes not sensitive to

sodium cholate, the inclusion of this bile sale as well as the non-

ionic detergent has been used (81,91,92).

There is now commercially available a very great variety

of non-ionic detergents, and their advantages over ionic detergents are

that they are relatively mild surface active agents. Furthermore, a

solubilized preparation of microsomes can be applied to ion-exchange

columns without the interference of the ionically charged detergents.

Their major drawback, however, is that they are very difficult to

dissociate from protein. Given such a large number of non-ionic

detergents, it was clear that the necessary conditions for solubilization

of cholesterol 7<U.-hydroxylase with all these compounds could not be

examined. As a result, for each detergent tried, a low concentration,

0.1%, was used to determine whether this concentration was inhibitory,

and a high concentration, 27», was used to detect whether the detergent

was capable of solubilization of the microsomal membranes.

Digitonin

When digitonin solution was added to a suspension of
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acetone powder at 0°C, there was a very rapid clarification. Analysis

of the 105,000 x g supernatant revealed that more than 95% of the

cytochrome P-450 was solubilized and there was little or no degradation

to cytochrome P-420. Difference spectroscopy of the supernatant

showed that when aminopyrine was added to the sample cuvette, a type I

difference spectrum was generated. This was further proof that

digitonin solubilized cytochrome P-450 maintained some of its structural

integrity. It was found that NADPH-cytochrome c reductase was

solubilized with complete preservation of activity. When assayed for

cholesterol lot-hydroxylase activity in the digitonin treated suspension,

the supernatant or pellet, no activity could be detected. Since

digitonin forms insoluble aggregates with cholesterol, it was thought

that this detergent might be sequestering the radioactive cholesterol

tracer. For this reason a digitonin soiubilized preparation was passed

slowly down a column of small glass beads, on which were coated

cholesterol. The object of using this technique was to remove excess

digitonin from the solubilized preparation by binding to the cholesterol

which was bound to the glass beads. The eluate from the column was

turbid and required centrifugation at 105,000 x g for clarification.

However, when the sample was tested, no cholesterol lex -hydroxylase

activity was observed.

Lubrol WX

This detergent was used by Gaylor et al to solubilize

methyl sterol demethylase (93). Most of the cytochrome P-450 was

solubilized by this detergent but no cholesterol 7«-hydroxylase activity

was observed when the acetone powder suspension was treated with 0.1%.

Lubrol WX. A similar inactivation was observed by Gaylor (93) with the

demethylase enzyme, but he found that when the concentration of Lubrol WX
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was reduced by applying the 105,000 x g supernatant of solubilized

microsomes to Sephadex LH 20, in the presence of 20°L to 50% ethylene

glycol, activity of the enzyme could be restored. Therefore, the

supernatant of a Lubrol WX solubilized acetone powder was subjected to

chromatography on Sephadex LH 20 and the eluate was tested for

cholesterol 7<*.-hydroxylase activity, but even after this treatment no

activity was detectable.

Lubrol W

The use of this non-ionic detergent led to the

solubilization of cytochrome P-450 with no concomitant transformation

to the inactive form cytochrome P-420, but the activity of cholesterol

7©t-hydroxylase was inhibited by approximately 90% in the Lubrol W

treated suspension.

Triton X-lOO

Again, solubilization of cytochrome P-450 with no

degradation to cytochrome P-420 ensued when an acetone powder was

treated with Triton X-100, but even at the low concentration of 0.1%

detergent, cholesterol 7-hydroxylase activity was abolished.

Saponin

Saponin, like digitonin, is a cardiac glycoside with

detergent properties, and although 0.1% Saponin inactivated cholesterol

7«< -hydroxylase, unlike the other non-ionic detergents tested, no

solubilization of the acetone powder took place.

Tween 80

This detergent has been used as a vehicle in which the

relatively insoluble cholesterol was delivered as a substrate to
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native microsomes (94). 0.1% Tween 80 was capable of solubilizing

cytochrome P-450, but inhibition of cholesterol 7c<-hydroxylase,

although not as severe as other detergents tested, was nevertheless in

the range of 50-75%,.

Nonidet P40 and P42

When an acetone powder, resuspended in 0.1M potassium

phosphate buffer pH 7.7, was subjected to a final concentration of 0.1%

Nonidet P40, clarification of the suspension ensued, and the supernatant

resultant from centrifugation at 105,000 x g contained 90% of the

cytochrome P-450. In contrast to all other non-ionic detergents

used, when the treated suspension or 105,000 x g supernatant was tested

for cholesterol 7o< -hydroxylase activity, not only was the enzyme still

active but the percentage conversion of cholesterol to

r14 - Cj 7o(.-hydroxycholesterol was increased by 50-100% over

cholesterol 7o<-hydroxylase activity in the control, untreated acetone

p owder.

detergent is non-ionic and is an octylphenolethylene oxide condensate

(average 9moles of ethylene oxide).

Nonidet P42 is a 27% solution of Nonidet P40. This

0 - (CH2~ CH20)n - H
n = 9
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SUMMARY

Many procedures have been utilised in an attempt to

solubilize rat liver microsomal cholesterol 7c<-hydroxylase. These

techniques have extended over the whole gamut of solubilization

procedures.

(2)
Mechanical disruption such as repeated washing and

homogenisation, ultrasonication, freezing and thawing, were not

effective in the solubilization of mixed function oxidase components.

(3)
Treatment of acetone powders with traditional

hydrophobic bond disrupting agents such as n-butanol or urea led to

the inactivation of cholesterol 7&C-hydroxylase.

(4)
The use of hydrolytic enzymes was found to be of

little value in the solubilization of cholesterol 7<* -hydroxylase, or

cytochrome P-450, although such treatment was not found to be

particularly deleterious to the activity of the enzyme.
►

The degree of inhibition caused by sodium cholate and

sodium deoxycholate, which figure so prominently in the solubilization

not only of rat liver microsomes and the associated mixed function

oxidase activities, but also in the solubilization and preparation of

mitochondrial cytochromes and sub-particles, was considered too great

and therefore other detergents were utilised.

(6)
With the exception of saponin, all the non-ionic

detergents were efficient in the solubilization of cytochrome P-450,

conversion to the inactive form, cytochrome P-420, being minimal, but

in all of these, with the exception of Nonidet P40, solubilization was

at the expense of cholesterol 7ot -hydroxylase activity.
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This enzyme can, therefore, be efficiently

solubilized by Nonidet P42, with retention, and even increase, of its

activity.

These results are summarised in Tables 3,1 and 3,2.
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SECTION 4

DETERMINATION OF THE OPTIMAL CONDITIONS FOR THE SOLUBILIZATION
OF CHOLESTEROL 7 <=4-HYDROXYLASE

Membrane proteins have been described as being extrinsic

or intrinsic by Capaldi and Green (95), this classification being an

operational one based on the ease with which the proteins are released

from the membrane. Cytochrome c is an example of a peripheral or

extrinsic protein being easily removed from mitochondrial membranes.

Because cytochrome b^, NADPH-cytochrome c reductase and cytochrome P-450
can only be solubilized in a complete form by the use of detergents,

these proteins are considered to be firmly embedded in the lipid matrix

and therefore intrinsic. Because there is this difference between

membrane proteins in their extent of binding to microsomal lipid, this

section deals with solubilization of mixed function oxidase components

and their correlation with cholesterol 7o<-hydroxylase activity with

increasing concentrations of Nonidet P42. A similar study has been

reported by Bleecker et al using sodium deoxycholate to solubilize

murine liver microsomes (80).

When detergent is added to membranes, it is primarily the

monomeric unit which binds to these membranes (96,97,98). Therefore,

if the affinity of the detergent for the membranous material is high,

the concentration of free detergent is maintained at a level below

the critical micellar concentration (CMC), and as a result, micelles

of pure detergent are not formed. The degree of solubilization

depends to a large extent on the amount of detergent which is, at any

one time, bound to the microsomal membranes. However, the equilibrium

which exists between free and bound detergent is apparently rather

difficult to determine, but it has been found that there is a good

correlation between the bound detergent to membrane ratio and the total



Figure i+»1 •

The effect of adding to 30mg acetone powder (l5mg

protein) suspended in 10ml 0.1M potassium phosphate

buffer,increasing quantities of Nonidet Pi+2, on the

solubilization of protein and mixed function oxidase

components.



34.

detergent to membrane ratio, at least when the concentration of

membrane is relatively high. For these reasons, therefore,

detergent concentration is expressed as the ratio^l Nonidet P42/mg
microsomal protein.

The effect of increasing levels of Nonidet P42 on the extent of
solubilization of mixed function oxidase components and
cholesterol 7<*• -hydroxylase from an acetone powder

For the purpose of solubilization, it was found that

before addition of Nonidet P42, the buffer containing the resuspended
o

acetone powder must be cooled to 0-5 C. If Nonidet P42 were added

to a suspension of acetone powder at 25°C, solubilization would not
i

occur.

Figure 4,1 shows the result of increasing the ratio of

Nonidet P42 to protein on the solubilization of protein and mixed

function oxidase components. The extent of solubilization of the

enzyme is expressed as the percentage solubilization or the ratio

supernatant enzyme activity
X 100

supernatant enzyme activity + pellet enzyme activity

after centrifugation at 105,000 x g for 1 hour.

This figure shows that as the detergent concentration was

increased, solubilization of protein, cytochrome P-450, cytochrome b^
and NADPH-cytochrome c reductase proceeded. Despite the difficulties

(described below) involved in assaying these components, it does appear

that cytochrome P-450 was more readily soluble in the presence of

Nonidet P42 than NADPH-cytochrome c reductase, and that the least

soluble component measured was cytochrome b,.. This difference in the

ease with which the components were solubilized could represent either

their affinity for Nonidet P42 or the strength of binding to the lipo¬

protein matrix.
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Figure 4>2.

The effect of Nonidet P42 on the magnitude of

the reduced-oxidised difference spectrum of

cytochrome "bs from rat liver microsomal acetone powder.
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Figure

The effect of Nonidet P2+2 on the solubilization

of cholesterol 7a-hydroxylase from 30mg acetone powder.



The difficulty in measuring protein in the presence of

detergent has been discussed in the Methods section. It was observed

that as solubilization took place the extinction for the reduced-

oxidised form of cytochrome b,_ in the summed pellet assay and super¬

natant assay gradually increased. This is shown in Figure 4,2. It

is not known whether this increase in absorbance is due to more

cytochrome b,. being reduceable or that the same absolute amount is

being reduced but with a change in the extinction coefficient. A

similar effect was observed with NADPH-cytochrome c reductase. As the

concentration of Nonidet P42 was increased, the total activity of this

enzyme assayed in the supernatant and resuspended pellet also increased,

and this increase in activity is shown in Figure 4,3. The reason for

this increase in activity and apparent increase in cytochrome b^ assay
is not known. As a consequence of these observations, it was

decided to express the results in the form shown in Figures 4,1 and

4,5.

The percentage conversion of cholesterol to 7oC-hydroxy-

cholesterol at low concentrations of Nonidet P42 was slightly

increased, but as the ratio of detergent to protein increased, the

cholesterol 7oc-hydroxylase activity in the pellet rapidly decreased.

Concomitant with this decrease was a rise in cholesterol -hydroxylase

activity determined in the 105,000 x g supernatant. These results are

presented in Figure 4,4. Nonidet P42 solubilized an acetone powder

suspension and the range of effectiveness for the solubilization of

cholesterol 7oC-hydroxylase spanned 2-6yud Nonidet P42/mg protein. At
a ratio of 3.5yjll Nonidet P42/mg protein, however, an apparent two-fold
activation of the enzyme occurs. Such an activation may also be

demonstrated in a lyophilised powder extracted with butanol when the

concentration of Nonidet P42 is adjusted to 3.5yW»l/mg protein. The
reason for this activation remains unknown..



Figure U»5«

The effect of Nonidet Plj.2 on the solubilization

of protein and mixed function oxidase components from

native rat liver microsomes.
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Effect of increasing levels of Nonidet P42 on the solubilization
of rat liver microsomal mixed function oxidase components and
cholesterol 7o< -hydroxylase

Microsomes were resuspended in ice-cold 20mM potassium

phosphate buffer pH 7.7 and subdivided into fractions which were then

treated with increasing quantities of Nonidet P42. After leaving for

20 minutes, with occasional stirring, the treated suspensions were

centrifuged at 105,000 x g for 1 hour. The pellets were resuspended

in the same volume as the supernatants and analysed for cytochrome P-450,

cytochrome b^, NADPH-cytochrome c reductase and protein. In contrast
to the cytochrome b,_, both cytochrome P-450 and NADPH-cytochrome c

reductase were gradually solubilized to an extent of about 25% at

1.3/U Nonidet P42/mg protein. Further increase of the detergent to
protein ratio resulted in liberation of more of these two proteins into

solution, and ultimately 90-95% of the total protein could be

solubilized. Cytochrome b^, on the other hand, resisted solubilization
up to a level of 1.3yutl Nonidet P42/mg protein, and then was very
rapidly released from the microsomal membrane. This observation

perhaps reinforces the idea that cytochrome b is more deeply buried in

the lipid matrix than cytochrome P-450 or NADPH-cytochrome c reductase.

During the solubilization process, unlike that when an

acetone powder was used, there was no increase in total cytochrome

absorbance on solubilization from microsomes, nor was any increase in

NADPH-cytochrome c reductase detected. The results of this experiment

are shown in Figure 4,5.

In the assay of cholesterol 7o4-hydroxylase activity in

the supernatant after treatment of an acetone powder with Nonidet P42,

no account was taken of the cholesterol content. This was because at

the low level of cholesterol which, occurs in an acetone powder, the

velocity of cholesterol loi -hydroxylase is directly proportional to the



Figure U,6.

The solubilization by Nonidet PU2 of cholesterol,

protein and cytochrome P-I4.5O from native rat liver

microsomes.



Figure hoi»

The effect of increasing concentrations of Nonidet

Pi+2 on the solubilization of cholesterol 7a-hydroxylase

activity®

O Supernatant activity
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The effect of increasing concentrations of Nonidet

Pl+2 on the solubilization of cholesterol 7a-ky3roxylase
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cholesterol concentration (see Section 8). Therefore, cholesterol

content in the supernatant will not affect the percentage conversion of
r 14 *i r i4~i14 - Cl cholesterol to 14 - CI 7o<-hydroxycholesterol which is an

indirect measure of the velocity of the enzyme. However, native micro¬

somes contain 20-100 times as much cholesterol/mg protein as an acetone

powder contains, i.e. approximately 20JXg cholesterol/mg protein.
Therefore, to obtain a more accurate picture of the solubilization of

cholesterol 7aC -hydroxylase activity from native microsomes, cholesterol

in the supernatants and resuspended pellets was measured by g.l.c. In

the same experiment, the results of which are shown in Figure 4,6,

cytochrome P-450 and protein were measured. Contrary to expectation,

cholesterol was solubilized in a manner quite different from that

exhibited by cytochrome P-450. In previous experiments, cytochrome P-450,

cytochrome b^ and NADPH-cytochrome c reductase were solubilized in a
sigmoidal fashion, but cholesterol was here solubilized in direct

proportion to the quantity of Nonidet P42 added. This, therefore, is

tentative evidence that cytochrome P-450 solubilized by Nonidet P42 is

independent of cholesterol (lipid) interactions.

Cholesterol -hydroxylase activity, measured on a

percentage conversion basis, was stimulated by almost 507o at low ratios

of Nonidet P42/mg protein in the pellet resulting from centrifugation at

105,000 x g. This increase in activity may also be demonstrated in a

microsomal suspension which has not been centrifuged. As the ratio of

detergent to protein is further increased, cholesterol 7c<-hydroxylase

activity in the resuspended pellet rapidly declines in a manner which

mirrors very closely the release of cytochrome P-450 into solution.

Similarly, cholesterol 7o<-hydroxylase is released into solution and

these results are expressed in Figure 4,7 on a percentage conversion

basis, and in Figure 4,8 asytxg 7o£ -hydroxycholesterol formed, assuming
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r 141
equilibration of tracer I 4 - Cj cholesterol with endogenous cholesterol.

The activity of cholesterol 7-hydroxylase solubilized was in this case

about 707° of the control microsomes, but on numerous other occasions

full activity of this enzyme was solubilized.

The criterion of solubility of cholesterol 7ot- -hydroxylase

Solubilization is an ill-defined term which is based

arbitrarily on operational results. In the case of membranes, the

actual process of solubilization may probably be nothing more than a

reduction in size of membranous material. This distinguishes incomplete

solubilization from complete solubilization which one could define as

the liberation of single molecules into solution. The generally

considered opinion that non-ionic detergents are mild leads to the

suggestion by Razin (99) that these detergents may not give rise to

complete solubilization. Centrifugation at 105,000 x g for 1 hour

does not differentiate between complete and incomplete solubilization,

and Kahane and Razin (100) have suggested supplementing this criterion

with the following riders; that the solubilized material should not be

excluded on a column of Sepharose 4B, i.e. the particle should have a

molecular weight less than 3 x 10^, and that no membranous structures

should be visible when the preparation is examined by electron microscopy.

These two criteria were not applied to the Nonidet P42

solubilized acetone powder as they would not differentiate between

complete and incomplete solubilization. Furthermore, more important

than obtaining complete solubilization is the ability to remove proteins

or lipids which may not have a role in the cholesterol 7ot-hydroxylase

reaction.
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The effect of centrifugation of a solubilized preparation of
an acetone powder for 7 hours at 105,000 x g

Figures 4,9 and 4,10 show the results obtained during

the centrifugation of an acetone powder (6.7mg/ml) suspended in 0.1M

potassium phosphate buffer pH 7.7, and solubilized by Nonidet P42.

In Figure 4,9 it may be seen that after an initial increase in

sedimentable material, the percentage of the original cytochrome P-450

and protein remaining in the supernatant fraction plateaus, and after

44 x lO^g.min., approximately 70% of the original cytochrome P-450 and

protein remains in the supernatant. Figure 4,10 demonstrates that even

after 7 hours centrifugation at 105,000 x g, cholesterol 7«<-hydroxylase

activity still resides in the supernatant fraction and that this

r 141activity, expressed as a percentage conversion of | 4 - CI cholesterol
r 141

to I 4 - cl 7°i-hydroxycholesterol is 807, that of the control,

Nonidet P42 treated acetone powder suspension.
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SUMMARY

Both rat liver microsomal acetone powders and native

microsomes may be solubilized by Nonidet P42. Cholesterol 7o£ -hydroxy¬

lase and mixed function oxidase components were released into the super¬

natant fraction resultant from centrifugation for 1 hour at 105,000 x g.

(2)
There appeared to be some sequential solubilization of

the component enzymes involved in drug hydroxylation and in particular

cytochrome b^ seemed more resistant to solubilization than did
cytochrome P-A50 and NADPH-cytochrome c reductase. The solubilization

profile of cholesterol was quite different from that of the proteins

measured, and the amount of cholesterol solubilized was directly

proportional to the amount of Nonidet P42 added to the microsomal

suspension.

(3)
When Nonidet P42 was added to an acetone powder

suspension, cholesterol 7oL -hydroxylase activity in the sedimentable

fraction decreased whilst the activity in the supernatant rose. At a

detergent to protein ratio of 3.5yAl/mg protein virtually all the mixed
function oxidase components were solubilized, and the activity of

cholesterol 7oC-hydroxylase was increased by as much as two-fold over

the control value. Thus this value of 3. 1 Nonidet P42/mg protein

is the optimal value for the solubilization of cholesterol 7°t-hydroxy¬

lase in an acetone and butanol powder.

(4)
Since with native microsomes no activation of cholesterol

7oC-hydroxylase activity in the supernatant fraction was observed, a

concentration of 4Nonidet P42/mg protein was considered optimal for

its solubilization; activation of the enzyme in native microsomes was

observed, however, at low detergent to protein ratio.



SECTION 5

DEAE-CELLULOSE CHROMATOGRAPHY OF THE NONIDET P42 SOLUBILIZED RAT LIVER

MICROSOMES AND MICROSOMAL ACETONE AND BUTANOL POWDERS

Depending on which type of detergent is used for the

solubilization of rat liver microsomes, subsequent behaviour on a

DEAE-cellulose column of the solubilized preparation will be quite

different. Thus, when microsomes are solubilized by an ionic

detergent such as sodium cholate or sodium deoxycholate, cytochrome

P-450 is bound to the column of diethylaminoethyl cellulose at pH 7.4

to 7.7. Lu and Coon (79) originally reported that cytochrome P-450

was quite strongly bound to this ion exchanger and required a molarity

of KCl of approximately 0.2 for its elution. Similarly, Comai and

Gaylor (101) demonstrated three forms of cytochrome P-450, separable

on DEAE-cellulose, which showed spectral differences; two of these

three forms were bound quite strongly to the column.

However, Miyake, Gaylor and Mason (88) also observed that

when rabbit liver microsomes were solubilized with the non-ionic

detergent Lubrol WX, and the resultant supernatant applied to a

column of DEAE-Sephadex, cytochrome P-450 was eluted without adsorption

leaving cytochrome b,_ adsorbed at the top of the column. The reason

for the observed differences in behaviour on DEAE-cellulose depending on

whether the microsomes were solubilized by deoxycholate or Lubrol WX is

unclear but could be the result of incomplete solubilization in one case

or by negative charges being conferred on cytochrome P-450 by adsorption

of deoxycholate anions.

Behaviour of Nonidet P42 solubilized acetone powder on DEAE-cellulose

As in the case of Miyake's Lubrol WX solubilized

preparation of liver microsomes, the bulk of cytochrome P-450 was not

adsorbed to DEAE-cellulose. There was nevertheless a second peak of



Figure 5»1 •

The elution profile of cytochrome P-I4.50, cytochrome bs

and NADPH-cytochrome c oxidoreductase from 500mg acetone

powder solubilized by Nonidet PU2, eluted from a

DEAE-cellulose column by a linear gradient of KC1.
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Figure 5 >2.

500mg acetone powder (li+0mg protein) solubilized

"by Nonidet Pl+2 were applied to a DEAE-cellulose column

and eluted (as in figure 5»1») with a linear KC1 gradient.
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cytochrome P-450 which eluted without any further increase in the

ionic strength of the eluting buffer and a third peak which eluted at

approximately 0.1'M KCl. It is not known whether these three

fractions of cytochrome P-450 are analogous to those found by Comai and

Gaylor. The ionic strength of the eluting buffer was increased

linearly as described in the methods section, and cytochrome b was
O-iK

eluted as a single band at approximately Q-. 2M KCl. No detectable

cytochrome b,_ was found in the first cytochrome P-450 fraction although

the third cytochrome P-450 fraction was grossly contaminated with

cytochrome b,_.

Increasing the ionic strength of the eluting buffer
oasm

further, results in the elution at approximately 0 ,'nr«fei KCl of NADPH-

cytochrome c oxidoreductase, again as a single peak, contamination of

the two major microsomal cytochromes being minimal. The elution

profile of solubilized acetone powder from DEAE-cellulose is shown in

Figure 5,1. Figure 5,2 shows the pattern of elution of protein.

Each eluted fraction was assayed by the Lowry method (42) for protein

as monitoring the absorbance of the eluate at 280nm was not a useful

measure of protein concentration since the aromatic ring of Nonidet P42

absorbs very strongly ultra-violet light in this region. Figure 5,3

shows data presented by Boyd et al (187) and demonstrates clearly that

cytochrome P-450 binds strongly to DEAE-cellulose being eluted at

0.3M KCl and cytochrome b,. even more strongly, 0.5M KCl being the

required concentration for elution. But the interesting feature of

this elution profile is that several peaks of NADPH-cytochrome c

reductase were observed. This is in contrast to the Nonidet P42

solubilized system where a single peak is observed. Lu et al (102)

have also made the statement that the limitation of the use of sodium

cholate or sodium deoxycholate alone is that cytochrome P-450 and its



Figure 5fk»

The elution profile of mixed function oxidase

components of rat liver microsomes solubilized "by

Nonidet Pi+2, from a DEAE—cellulose column*
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Figure 5,5,

230 mg microsomal protein solubilized by Nonidet PI4.2

eluted from DEAE-cellulose using a linear gradient of KC1.

(6ml fractions)
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The conditions necessary for DEAE-cellulose chromatography

The use of Tris-HCl or potassium phosphate buffers,

20mM, pH 7.7 both resulted in similar elution profiles, but to prevent

tailing, and for reproducibility in the elution pattern, it was found

necessary to include in the buffer 0.4°L Nonidet P42. These

conditions were also applicable to chromatography of Nonidet P42

solubilized preparation of native microsomes. Chromatography was

performed at 0-3°C.

DEAE-cellulose chromatography of Nonidet P42 solubilized native
rat liver microsomes

Native microsomes were resuspended from the 105,000 x g

pellet in ice-cold 20mM potassium phosphate buffer pH 7.7 and

solubilized by addition of 4yiVl Nonidet P42/mg protein. Native
microsomes contain more lipid than an acetone powder and substantially

more than a butanol powder whose characteristics when solubilized by

Nonidet P42 upon DEAE-cellulose chromatography were very similar to

those found in the solubilized acetone powder.

A solubilized preparation of native microsomes might,

therefore, be expected to behave differently on a DEAE-cellulose column.

Figure 5,4 shows the elution profile when solubilized native microsomes

were applied to DEAE-cellulose; cytochrome P-450, cytochrome b,. and

NADPH-cytochrome c reductase were measured, and Figure 5,5 shows the

elution profile of protein as determined by the Lowry method (42).

Cytochrome" P-450 was again not bound by DEAE-cellulose,

but there was nevertheless some retardation which gave rise to two

other peaks of cytochrome P-450. Again there was no apparent

contamination of the predominant peak of cytochrome P-450 with cytochrome

b^, which was eluted when the concentration of KCl in the eluting buffer



was raised to 0.15M. There was little contamination by cytochrome b,_

in this cytochrome P-450 up to a protein concentration in the super¬

natant of about lOmg/ml, whereupon some cytochrome b<_ failed to be

adsorbed to the column and eluted with the bulk of cytochrome P-450.

Increasing the molarity of KCl to approximately 0.3 brought about the

elution of NADPH-cytochrome c reductase, again as one peak.

An interesting observation made was that upon solubilization

of native microsomes there was from time to time some conversion of

cytochrome P-450 to cytochrome P-420. This form of cytochrome could

be partially removed from cytochrome P-450 as it appeared to bind more

strongly to DEAE-cellulose. A similar separation of cytochrome P-450

from cytochrome P-420 has been observed by Ramseyer and Harding (103).

The difference in cytochrome P-450 and cytochrome P-420 might here

represent a difference in aggregation or an unfolding of the polypeptide

chain to unmask further anionic residues.

Examination of the elution profiles of protein from

chromatography of both Nonidet P42 solubilized native microsomes and

acetone powder reveals that a great part of the microsomal protein

did not bind to DEAE-cellulose and was eluted in the cytochrome P-450

fraction without adsorption. In order to characterise in more detail

the behaviour of Nonidet P42 solubilized microsomes on DEAE-cellulose, a

sample was applied to a column and eluted with a step-wise KCl gradient.

The step-wise elution of microsomal cytochromes and enzymes from
DEAE-cellulose

3.3g of freeze-dried microsomes suspended in 20mM potassium

phosphate were solubilized by addition of Nonidet P42. The 105,000 x g

supernatant was applied to a DEAE-cellulose column 30cm x 3.5cm internal

diameter and 300ml each of 0, 0.075M, 0.15M and 0.35M KCl in 20mM phosphate
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containing 0.47« Nonidet P42 were used for elution. Cytochrome P-450,

cytochrome b^, NADPH-cytochrome c reductase, glucose-6-phosphatase,
esterase, aryl sulphatase, alkaline phosphatase, protein, cholesterol

rand I 4 - C I cholesterol and RNA were measured.

The first peak which was eluted, unretarded, from the column

contained all the various activities assayed with the exception of,

fortuitously, cytochrome and NADPH-cytochrome c reductase. The

elution profile of cholesterol measured by extraction of the steroid

r 141and measurement of the J 4 - C| cholesterol was very similar to that
obtained when cholesterol was assayed quantitatively using cholesterol

oxidase. No cholesterol was found other than in the first peak eluted

from DEAE-cellulose. Although this first peak contained many enzymes,

RNA and cholesterol, maximal activities did not occur in the same

fraction, within this peak. Thus, cytochrome P-450, cholesterol and

alkaline phosphatase attained maximum activities in tube 14. This was

followed in the next tube by the peak of activity of aryl sulphatase

which was followed by the peak esterase activity. Glucose-6-phosphatase,

although eluted in the fraction which was not adsorbed, was separated

from the cytochrome P-450 peak by 6 tubes, or about 90ml. This peak

of glucose-6-phosphatase activity coincided with a peak of RNA. There

appears, therefore, to be some adsorption to DEAE-cellulose in the

presence of the detergent of certain enzymes and RNA.

In another experiment, phospholipid and NADH-cytochrome c

reductase were assayed in each fraction eluted from the column. As

with cholesterol, phospholipid accompanied cytochrome P-450 and was

eluted without adsorption. NADH-cytochrome c reductase also eluted
t

with cytochrome P-450, but there was sufficient contamination of the

cytochrome b<_ fraction to enable slow reduction of this cytochrome by

NADH. Not all the original NADH-cytochrome c reductase in the
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supernatant could be accounted for in the DEAE-cellulose eluate.

This may have been due to inactivation of the enzyme on DEAE-cellulose

or this could be a result of dilution (104).

The fraction eluting at 0.075M KCl in 20mM phosphate and

0.4% Nonidet P42 contained more RNA, alkaline phosphatase and esterase;

further cytochrome P-450 was also eluted.

Application of 0.15M KCl to the DEAE-cellulose column

brought about the elution of cytochrome b,. and further alkaline phospha¬

tase, but no RNA was associated with this fraction. Increasing the

ionic strength of KCl to 0.35M resulted in the elution of NADPH-cytochrome

c reductase and further alkaline phosphatase and RNA. These results are

shown in Figure 5,6.

Cholesterol 7o<-hydroxylase activity

None of these fractions eluted step-wise and none of the

individual fractions resulting from the use of a linear KCl gradient

had cholesterol 7cA-hydroxylase activity, but evidence presented in

section 7 showed that when the cytochrome P-450 fraction was recombined

with NADPH-cytochrome c reductase then cholesterol 7&—hydroxylase

activity was reconstituted.
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SUMMARY

(1) Nonidet P42 solubilized preparations, whether of

native microsomes, acetone or butanol powders, when applied to a

column of DEAE-cellulose, equilibrated with 20mM potassium phosphate

buffer, pH 7.7 and 0.47o Nonidet P42, produced the same pattern of

elution.

(2)
The bulk of the cytochrome P-450 was not adsorbed to

DEAE-cellulose, though there was perhaps a part which was weakly bound

and therefore retarded. The cytochrome P-450 fraction was not

contaminated by cytochrome b,. and there was little contamination by

NADPH-cytochrome c reductase.

(3)
Cytochrome b^ was bound to the column but eluted at

approximately 0.15M KCl. This cytochrome was contaminated by a small

part of the cytochrome P-450.

(4)
NADPH-cytochrome c reductase was the component of the

mixed function oxidase system bound most strongly to DEAE-cellulose

and this was eluted at 0.3M KCl.

Examination of the fractions eluted by a step-wise

gradient revealed that the first fraction not adsorbed to DEAE-cellulose

contained a mixture of enzymes, phospholipids, cholesterol and RNA.

There was, however, some retardation of glucose-6-phosphatase and esterases

and also of RNA within this first unadsorbed fraction. The third

fraction contained alkaline phosphatase and cytochrome b,_, eluted at

0.15M KCl, and the fourth fraction, eluted at 0.35M KCl, contained

NADPH-cytochrome c reductase.
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SECTION 6

PURIFICATION TECHNIQUES APPLIED TO CYTOCHROME P-450 AND NADPH-
CYTOCHROME c OXIDOREDUCTASE

Evidence will be presented in Section 7 that for the

reconstitution of cholesterol 7oC-hydroxylase activity two fractions

from DEAE-cellulose chromatography are required; one fraction contains

cytochrome P-450 and the other NADPH-cytochrome c oxidoreductase.

Further evidence in Section 7 suggests that the specificity of

cholesterol 7oC-hydroxylase resides in that fraction containing

cytochrome P-450. For this reason, in further attempts at the

purification of cholesterol 7c< -hydroxylase, attention was devoted

more to the cytochrome P-450 fraction than to the NADPH-cytochrome c

reductase fraction.

Apart from the readily soluble cytochrome P-450 from

Pseudomonas putida isolated by Yu and Gunsalus (105), three groups have

reported the purification of rat liver microsomal cytochrome P-450 to

near homogeneity (106,107,108), but without exception sodium cholate,

which has been found inhibitory towards cholesterol 7<* -hydroxylase,

has been used. There has been as yet no report on the purification

of rat liver microsomal cytochrome P-450 using non-ionic detergents.
e.

Furthermore, in those reports of homogenous preparations of cytochrome

P-450, the specific content of cytochrome P-450 in the microsomes was

3-7 nmoles/mg protein. This compares with a value of about 1 nmole

cytochrome P-450/mg protein found in the phenobarbital treated rats

used in these experiments.

Ammonium sulphate fractionation

Before application to a DEAE-cellulose column, Levin et al

(81) partially purified the sodium cholate solubilized cytochrome P-450

from rat liver microsomes by ammonium sulphate fractionation. This
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fractionation appears complex as increasing the cholate to protein

ratio preferentially affects the salting out of cytochrome P-450,

the saturation of ammonium sulphate required for precipitation being

reduced from 42-50% to 37-45%. The other contaminating components

of the mixed function oxidase system, cytochrome b^, NADPH-cytochrome
c oxidoreductase and phospholipid appear to be unaffected in their

precipitation characteristics by the cholate to protein ratio (102).

When a Nonidet P42 solubilized acetone powder was

subjected to ammonium sulphate fractionation, all the components

necessary for the 7c<-hydroxylation of cholesterol precipitated in the

0-30%. saturation fraction, and there was no separation of cytochrome

P-450 from NADPH-cytochrome c reductase. Similarly, when the cyto¬

chrome P-450 fraction pooled from DEAE-cellulose was treated with

ammonium sulphate in 25%, glycerol, 50%, was recovered in the fraction

precipitating between 0 and 15% saturation of ammonium sulphate.

There was no concomitant purification of cytochrome P-450, although

some cytochrome P-450 precipitating between 25 and 35% was slightly

purer (1.0 nmoles/mg protein compared with 0.7 nmoles/mg) but the

yield was only 15%. This low concentration of ammonium sulphate at

which the bulk of the cytochrome P-450 is precipitated is probably due

to the high concentration of Nonidet P42.
%

Polyethyleneglycol

Another of the disadvantages in the use of ammonium

sulphate to fractionate Nonidet P42 solubilized cytochrome P-450 was

that the protein which precipitated from solution by ammonium sulphate

floated to the surface upon centrifugation to form an oily layer. This

fraction proved very difficult to recover. Polyethyleneglycol has been

observed to have an effect on proteins similar to that of ammonium



Nonidet Pi+2 solubilized liver microsomal Cytochrome P-i;50

was eluted from DEAE-cellulose and pooled

Cytochrome
P-i;50(nmoles)

Cyt P-U50
from DEAE-cellulose 9.7

Protein
(mg)

hO

Specific
Content

(nmoies/mg
protein)

0.2h

Precipitate from
10% PEG 6000 0.8 0.13

Precipitate from
13% PEG 6000 2.2 6.i| 0.35

Precipitate from
13-5% PEG 6000 2.3k 6.k 0.37

Precipitate from
17.5% PEG 6000 0.26 k.Q 0.05

Supernatant from
17.5% PEG 6000 1 .70 16.8 0.01

Table 6,1 .

Purification of cytochrome P-U50 using

polyethyleneglycol 6000..
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sulphate, and of the homologous series available, PEG 6000 appears to

be the polymer most useful for fractionation (109), This material

has been found useful in the purification of fatty acid synthetase

from brewers' yeast (110) and has recently been used by van der Hoeven

and Coon (82).

Table 6,1 shows the results of the fractionation of a

Nonidet P42 solubilized preparation of cytochrome P-450 eluted from

DEAE-celluiose in the absence of glycerol and at ca.3°C.

Turbidity did not develop until the PEG 6000 concentration

was 10%. This was in contrast to van der Hoeven's sodium cholate

solubilized rabbit liver microsomes where a precipitate was formed at

4% PEG 6000 (82). Increasing the concentration of polyethyleneglycol

brought about the precipitation of further cytochrome P-450 and

protein. Approximately 45% of the cytochrome P-450 precipitated

between 10 and 15.5%. PEG 6000, and the specific content of these

fractions was increased 50% over the original material. Although with

PEG 6000, precipitates formed pellets on centrifugation^at high

concentrations, the suspension was viscous and required centrifugation

at 16,000 r.p.m. for 0.5hr. (MSE 8 x 50 rotor) for separation of the

supernatant from the pellet.

Gel exclusion chromatography
£

Sephadex G-lOO and G-200

The estimated molecular weight of cytochrome P-450 by SDS

gel electrophoresis is about 46 (111), 53 (82) and 45 (106) kilodaltons.

Application of Nonidet P42 solubilized acetone powder to Sephadex G-lOO

and G-200 did not lead to any separation of the cholesterol 7o<.-hydroxy¬

lase components.

Sepharose 4B

Cytochrome P-450, purified two-fold by DEAE-cellulose



void volume bed ^lume

ml eluate

Figure 6,1 •

Sepharose i+-B chromatography of partially purified

cytochrome P-l+50,



Cytochrome Protein Specific
P-450(nmoles) (mg) Content

(nmoles/mg protein)
Supernatant 852 1120 O.76

Cyt PU50 fraction
from DEAE-cellulose 470 378 1.25

Elution of Cyt P450
from hydroxylapatite
with:-

20 mi! phosphate 0 27 0

50 mM phosphate 56 54 1 «05

80 mM phosphate 99 60 1.65

150 mil phosphate 205 78 2.62

220 mil phosphate 69 50 1 .39

400 mM phosphate 20 34 0.59

The phosphate buffer, pH 7*7 contained 20fo glycerol

and Nonidet Pl+2.

Table 6,2.

Purification of Cytochrome P-450 on hydroxylapatite.
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chromatography, was concentrated by ultrafiltration over a PM 30

Diaflo membrane. In one case 3ml (8.4mg protein, 8.4 nmoles

cytochrome P-450) were applied to a column of Sepharose 4B, total

volume 85ml, blue dextran exclusion volume 42ml. Figure 6,1 shows

that the only peak of cytochrome P-450 observed was spread over a

volume of 36ml. This result and the fact that the elution volume at

the peak is 96ml probably means that the preparation did bind to the

Sepharose 4B. This may explain the poor yiel4 determined as protein

or cytochrome P-450, of 25%. The increase in specific content in

this peak as a result of Sepharose 4B chromatography was barely

detectable.

Hydroxylapatite chromatography

Imai and Sato C106^ have found that cytochrome P-450,

solubilized by sodium cholate, could be purified two-fold by

chromatography on hydroxylapatite in the presence of 20%, glycerol and

0.2% Emalgen 913. Cytochrome P-450 from a DEAE-cellulose column was,

therefore, diluted with glycerol to 20% and applied to a column of

hydroxylapatite, equilibrated with lOmM phosphate buffer pH 7.7, 20%

glycerol and 1% Nonidet P42. Increasing the phosphate concentration

to 80mM eluted a fraction containing cytochrome P-450. This material

was purified by 33% and a further peak of this cytochrome was eluted

at 150mM which was purified 2.1 fold over the DEAE-cellulose eluate.

As great difficulty was encountered in the flow rate, particularly when

the hydroxylapatite had been re-cycled, a batch-wise procedure for the

purification of cytochrome P-450 was attempted. The results of a

typical purification are summarised in Table 6,2. It may be seen that

virtually all of the cytochrome P-450 and 827o of the protein applied to

hydroxylapatite was recovered and that approximately 46% of the initial

haemoprotein was purified about two-fold.



100 nmoles Cytochrome P-ij.50 eluted from DKAE-cellulose

were applied to hydroxylapatite and eluted with either

increasing concentrations of potassium phosphate buffer

or increasing concentrations of potassium chloride in

potassium phosphate "buffer, "both elution "buffers containing

Nonidet Pl+2 and 2052 glycerol.

20 mM phosphate

Cytochrome
P-Zl50(nmoles)

Specific
content

(nmoles/mg
protein)

80 mM phosphate

150 mM phosphate

220 mM phosphate

300 mM phosphate

23

28

9

2

1 .0

1 .15

0.5

i+OO mM phosphate

20 mM phosphate b —

+ 0.1M KC1 7 o.u

+ 0.2M KC1 2b 1.0

+ 0.3M KC1 12 0.8

+ O.UM KC1 b O.U

+ 0.5M KC1 — —

Table 6,3*

Comparison of the elution of cytochrome P-J+50
from hydroxylapatite using either potassium chloride
or phosphate.



1U0 nmoles cytochrome P-i+50 (121+mg protein) were added

to 3g calcium phosphate gel and eluted with increasing

concentrations of potassium phosphate "buffer, pH 7«7

containing Nonidet Pi+2 and 20% glycerol.

Cytochrome
P-h50(nmoles)

20 mM phosphate

Protein
(mg)

22

Specific
content

(nmoles/mg
protein)

50 mM phosphate m o.hU

100 mM phosphate J>6

150 mM phosphate 3U

2U

21

1.53

1.66

200 mM phosphate 17

300 mM phosphate

13

8

1 .32

0.63

500 mM phosphate 15 0.1*0

Table

Purification of cytochrome P-i+50 using calcium

phosphate gel.



As cytochrome P-450 did not bind to an ion exchange

column, it was thought possible that this cytochrome had an overall

positive charge at pH 7.7. It has been reported by Bernardi et al

(112) that basic proteins may be eluted from hydroxylapatite by

increasing concentrations of KCl. Therefore, the difference in elution

profile of the same sample of cytochrome P-450 on hydroxylapatite using

KCl or potassium phosphate as the eluting agent, was observed to see if

there was any preferential elution of the cytochrome P-450. Table 6,3

shows the difference in purity of cytochrome P-450 eluted from hydroxyl¬

apatite using either KCl in 20mM phosphate or potassium phosphate alone.

It is clear that although it was possible to elute cytochrome P-450 from

hydroxylapatite with potassium chloride, elution with phosphate appeared

to give a sharper profile concomitant with a slightly purer haemoprotein.

Calcium phosphate gel chromatography

Table 6,4 shows the scheme of purification of cytochrome

P-450 pooled from the combined 80mM and 150mM eluates from hydroxyl¬

apatite on calcium phosphate gel. As the cytochrome P-450 fraction was

eluted with greatest purity at 150mM potassium phosphate, being 62% more

pure than the combined 80 and 150mM phosphate eluates from hydroxyl¬

apatite, it appears that calcium phosphate gel behaves similarly to

hydroxylapatite gel.

Ammonium sulphate fractionation after removel of excess Nonidet P42
by binding cytochrome P-450 to hydroxylapatite

Since hydroxylapatite binds cytochrome P-450 strongly,

advantage of this fact was taken to remove excess Nonidet P42, which

interfered with ammonium sulphate fractionation. Cytochrome P-450

eluted batch-wise by 150mM phosphate buffer from hydroxylapatite was

applied to a column of hydroxylapatite freshly suspended in 20mM



Supernatant

Cyt P-Li.50 from
DEAE-cellulose

Cytochrome
P-Ij.50(nmoles)

500

270

Cyt P-l+50 from
hydroxylapatite
(150 mM phosphate)

Protein

(mg)

620

79

280

6k

Specific
content

(nmoles/mg
protein)
0,81

O.96

1.23

Removal of excess

detergent UO

0-30% AmSOz,

30-k0% AmSOu 14,5

k0-50% AmSOi, 15.3

30-10% AmSOi, 9

10% supernatant 0,8

20.U

0.25

7.35

5.1

U.5

1 .U

1.95

1.98

3.0

2.0

0.6

Table 6,5.

Purification of cytochrome P-U50 "by ammonium sulphate

fractionation.
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cytochrome P-450, eluted with incresing concentrations

of potassium phosphate buffer,pH 7.0.



phosphate buffer pH 7.7. The bound haemoprotein was then washed with

100ml of this buffer and then eluted with 400mM phosphate buffer. By

comparison of the absorbance at 280nm before and after this treatment,

and assuming an absorbance of 1 at this wavelength for a 17 protein

solution, the concentration of detergent in the eluted cytochrome P-450

fraction was undetectable. The penalty for this reduction of Nonidet

P42 concentration was a recovery of only 507, of the cytochrome P-450,

although the specific content was increased by 6o7». On certain

occasions, removal of excess detergent led to the cytochrome P-450

being irretrievably bound to the hydroxylapatite column. However, as

demonstrated in Table 6,5, ammonium sulphate fractionation led to a

2.5 fold purification over the 150mM phosphate hydroxylapatite eluate

and the precipitate developed by this 40-507, saturation formed a pellet

on centrifugation. Thus, although a four-fold purification over the

solubilized microsomes had been achieved, the final yield was only 37.

Cation exchange chromatography

After purification of cytochrome P-450 by DEAE-cellulose

and hydroxylapatite chromatography, the cytochrome was applied to

columns of both CM cellulose and cellulose phosphate, equilibrated

at pH 6.2 in 5mM potassium acetate buffer. Although cytochrome P-450

bound to both columns (more strongly to cellulose phosphate), no

purification of this haemoprotein was observed on elution with

increasing concentrations of KCl. Figure 6,2 shows the elution

profile of DEAE-cellulose and hydroxylapatite treated cytochrome P-450

when applied to CM-Sephadex C-25 equilibrated with lOmM phosphate,

pH 7.0, 207 glycerol, 17 Nonidet P42. The eluted fractions were

assayed for absorbance at 418 nm as this wavelength is an absorption

maximum in preparations which contain no haem other than cytochrome P-450



200mM Pi

Fraction number
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Figure 6,3.

Chromatography of partially purified cytochrome

P-U50 on cellulose phosphate,eluted by increasing

concentrations of potassium phosphate buffer, pH 7.0.



3ml of partially purified cytochrome P-h50 were applied

to 1.5ml columns of Sepharose 1+-B to which were covalently

hound R-NH2 where R = Cq, Cq, or Ci0. The eluate was

diluted to 6ml and cytochrome P-2+50 determined.

Cytochrome P-l+50 Percentage
in eluate Specific cytochrome Pl+50
(nmoles / ml) content hound

(nmoles/mg
protein)

Eluate from

C5 column 0.275 0.35 16

Eluate from

C8 column 0.132 0.22 60

Eluate from

Ci0 column 0.066 0.12 80

3ml cytochrome P-U50 diluted to 6ml gave a final

concentration of 0.33 nmoles / ml. (Specific content O.i^O
nmoles / mg

protein)

Tahle 6,6.

The binding of cytochrome P-h50 to

affinity / hydrophobic columns.
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and cytochrome P-420. Two major peaks were obtained, one at 50mM

phosphate and another at lOOmM phosphate. It is, therefore, apparent

that cytochrome P-450 at pH 7.0 binds quite strongly to a cation

exchanger. However, when the two peaks were individually pooled, the

specific content of both fractions was reduced when compared with the

hydroxylapatite eluate.

Cytochrome P-450 eluted from hydroxylapatite by 0.5M KCl

was applied to a column of cellulose phosphate equilibrated at pH 7.0

with 20mM phosphate, 20% glycerol, 1% Nonidet P42. The concentration

of phosphate buffer was increased and at 200mM phosphate, cytochrome

P-450 was eluted but the specific content of this haemoprotein of

1.1 nmole/mg protein, was exactly the same as the sample before

application to the cellulose phosphate column. Cytochrome P-450 as

shown in Figure 6,3 eluted as a sharp, symmetrical peak.

Affinity/Hydrophobic chromatography

The substrates of cytochrome P-450 are in general rather

insoluble in aqueous media, and it is, therefore, possible that the

catalytic centre of this enzyme is hydrophobic. It is also likely

that a large part of this enzyme presents a predominantly hydrophobic

surface. For this reason, a sample of cytochrome P-450

(0.41 nmoles/mg protein) was applied to three columns of Sepharose 4B

to which were covalently attached a C^, Cg and side chain. The
results are presented in Table 6,6 and show that as the chain length

increased, more cytochrome P-450 was bound. The observation that the

specific content of cytochrome P-450 in the material not bound decreased

suggests that there had been preferential binding of cytochrome P-450.

However, the bound haemoprotein which appeared as a red band at the top

of the columns could not be eluted by molar KCl or aminopyrine (a

substrate for cytochrome P-450) at 240mM in 25% glycerol or 17<> Nonidet P42.



oActivity in native microsomes

mg cholate/mg protein

Figure 6,k»

The effect of sodium cholate on cholesterol 7a-

hydroxylase activity in native and Nonidet Plj.2 solubilized

rat liver microsomes.
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Iso-electric focussing

Cytochrome P-450 partially purified by DEAE-cellulose and

hydroxylapatite chromatography was applied to a glycerol gradient

containing Ampholines. Electrophoresis was continued for 20 hours at

3°C to focus the proteins at their iso-electric points. However, it

was observed that after electrophoresis cytochrome P-450 precipitated.

Effect of sodium cholate on the activity of Nonidet P42 solubilized
cholesterol 7c<-hydroxylase

To the present time no purification of rat liver micro¬

somal cytochrome P-450 to homogeneity has proceeded without the use

of the surface active agent, sodium cholate. It has been reported

by Yonetani (113) that the non-ionic detergent Emasol 4130 protected

cytochrome a from the inhibitory effects of sodium cholate, and for

these two reasons the effect of sodium cholate on cholesterol

7®<»-hydroxylase in native microsomes and the same sample solubilized

by Nonidet P42 was observed. The results are shown in Figure 6,4

and show that Nonidet P42 did not influence the inhibitory properties

of sodium cholate.

Further purification of NADPH-cytochrome c reductase

Gel filtration

Flavoprotein eluted from DEAE-cellulose was concentrated

by ultrafiltration and applied to columns of Sephadex G-200, Sepharose 4B

and Bio-gel A 0.5M. The flavoprotein was retarded by these columns but

the molecular weight of this species was approximately 400,000, estimated

by determination of The eluted peaks were also symmetrical but

SDS-gel electrophoresis revealed that the protein was not homogeneous.

When a similar preparation was subjected to electrophoresis on a 5%

r .polyacrylamide gel using J 4,4 - biphenyldi (2,5-diphenyltetrazolium
chloride);NT I as a substrate, and NADPH as a source of reducing
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equivalents, two bands of activity were observed. On one occasion,

which has not been possible to reproduce, application of flavoprotein

to Sepharose 4B revealed two peaks of NADPH-cytochrome c reductase

activity, one of high molecular weight and one which when applied to

a Sephadex G-200 column, eluted with a equivalent to a molecular

weight of 70,000. When this low molecular weight material was

subjected to gel electrophoresis, one of the bands of activity was lost,

and a single NADPH-neotetrazolium chloride reductase band was observed.

It is, therefore, likely that the preparation contains only one NADPH-

diaphorase activity.

Cytochrome c affinity column

Cytochrome P-450 reductase has a wide substrate specificity

and may transfer electrons from NADPH to cytochrome P-450, neotetrazolium

salts, dichlorophenolindophenol, potassium ferricyanide and cytochrome c.

Golf et al (48) have utilised this observation by preparing a column of

Sepharose 4B on which cytochrome c was immobilised by covalent linkage.

Figure 6,5 shows the elution profile of protein and

NADPH-cytochrome c oxidoreductase following step-wise increase of

potassium chloride in 5mM potassium phosphate buffer pH 7.7 containing

1% Nonidet P42. Cytochrome b^, which sometimes is a contaminant of
NADPH-cytochrome c oxidoreductase eluted from a DEAE-cellulose column,

was eluted at lOOmM KCl in the above buffer, and was therefore quite

strongly adsorbed. It is not clear whether the adsorption is due to

the basicity of cytochrome c or whether cytochrome c is acting as a

substrate for cytochrome b^. The flavoprotein was eluted at 250mM KCl
and the specific activity of NADPH-cytochrome c oxidoreductase was

increased three-fold over that found in the DEAE-cellulose eluate.
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SUMMARY

The use of cation exchange and gel exclusion

chromatography did not lead to any increase in the specific content

of cytochrome P-450, nor of NADPH-cytochrome c oxidoreductase

specific activity, even though the haemoprotein was retarded on the

cation exchange resins and both proteins retarded by Sepharose 4B.

( 2)
Polyethyleneglycol 6000 fractionation of cytochrome

P-450 led to a small increase in specific content, but ammonium

sulphate fractionation, after removal of Nonidet P42, led to a 2.5

fold purification.

(3) Both hydroxylapatite and calcium phosphate gel

chromatography resulted in approximately two-fold purification of

cytochrome P-450.

(4)
Hydrophobic chromatography and iso-electric focussing

were not found useful in the attempt to further purify cytochrome

P-450.

Nonidet P42 was found not to affect the degree of

inhibition of cholesterol 7e^-hydroxylase by sodium cholate and,

therefore, this bile acid detergent could not be used as an aid to

purification.
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SECTION 7

THE RECONSTITUTION OF RAT LIVER MICROSOMAL CHOLESTEROL
7e<-HYDROXYLASE

Although solubilization is generally assumed to have

occurred when the enzyme in question remains in the supernatant

fraction after centrifugation for 1 hour at 105,000 x g, a more

useful criterion in the case of a multi-enzyme complex is separation

of the components by standard biochemical techniques of purification,

and reconstitution of enzymic activity upon recombination of

partially purified components. Demonstration of absolute

requirements necessitates the purification of a protein to

homogeneity and recombining with a fraction which by itself has no

activity. As important and informatior.ally useful is the elimination

of contaminating enzymes which might interfere with, or be components

of, a multi-enzyme complex. In the case of cholesterol 7c*.-hydroxy¬

lase, these could be such enzymes as cytochrome b,_ and NADH-cytochrome

c reductase. By such elimination it should be possible to show

whether the microsomal components are absolute requirements or play

just a facilitating role.

As a result of these reconstitution experiments it has

been possible to demonstrate that in the recombined fractions

solubilized by the method of Lu and Coon (79), phosphatidylcholine was

required for maximal drug hydroxylation activity (114). Bjorkhem

et al (86) have reported that NADPH-cytochrome c reductase from pheno-

barbital fed rats was twice as efficient in supporting the 7°*- -hydroxy¬

lation of cholesterol in a reconstituted system solubilized by sodium

cholate as reductase from control or cholestyramine fed rats.

Reconstitution experiments have also shown that the four types of



1 .3 nmoles cytochrome P-l+50

3.0 nmoles cytochrome "05

2.0 units NADPH-cytochrome c

1 .3 nmoles cytochrome P-J+50
+ 3»0 nmoles cytochrome bs

3.0 nmoles cytochrome 05

+2.0 units NADPH-cytochrome

1.3 nmoies cytochrome P-ij.50
4-2.0 units NADPH-eytochrome

1.3 nmoles cytochrome P-lj-50

4-3.0 nmoles cytochrome bs
4-2.0 units KADPH-cytochrome

Percentage conversion
of [U-^C] cholesterol
to 7d-hydroxy-
cholesterol

reductase

c reductase -

c reductase 6.1

c reductase 3*0

Table 7?i «

A rat liver microsomal acetone powder solubilized

"by Nonidet PI4.2 was subjected to DEAE-cellulose chromatography

and fractions containing cytochrome P-ij.50, cytochrome bs

and NADPH-cytochrome c reductase were poolede These

fractions were tested alone and recombined with each

other for their ability to support the 7a-hydroxylation

of cholesterol.
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cytochrome P-450 recently partially purified may have different

specificities towards the hydroxylation of drugs and steroids (107).

This section, therefore, deals with the requirements for

activity of the reconstituted cholesterol 7°<- -hydroxylase complex and

the interdependence of these components.

The determination of the components of rat liver microsomal
mixed function oxidase necessary for reconstitution of
cholesterol 7o<-hydroxylase

400mg of an acetone powder having been solubilized with

0.6ml Nonidet P42 was applied to a DEAE-cellulose column, and

cytochrome P-450, cytochrome b,. and NADPH-cytochrome c reductase

separated from each other. When each tube was assayed individually

low to negligible cholesterol 1°< -hydroxylase activity could be

observed. Previous evidence has suggested that cytochrome P-450

and NADPH-cytochrome c reductase were involved in the 1°<- -hydroxylation

of cholesterol and therefore these two fractions, and also a fraction

containing cytochrome b^, eluted from DEAE-cellulose, were separately
pooled. Table 7,1 shows the results when these three fractions were

assayed for cholesterol 7<x- -hydroxylase activity either alone or

recombined. The fraction containing cytochrome P-450 contained no

cytochrome b^ or NADPH-cytochrome c reductase and had no cholesterol
7 oc -hydroxylase activity. The cytochrome b,_ fraction which was

pooled contained no detectable cytochrome P-450 or its reductase and

was inactive in the hydroxylation of cholesterol. The reductase

fraction contained no detectable cytochromes P-450 or b,., and was also

inactive in the 7«X.-hydroxylation of cholesterol. When cytochrome

P-450 was recombined with cytochrome b^ , or when cytochrome b^ was
recombined with NADPH-cytochrome c reductase in the presence of NADPH

r 14-1and radioactive { 4 - Cj cholesterol, no cholesterol 1<< -hydroxylase



Preparation of Cytochrome P450 and

NAPPH-cytochrome c Reductase Fractions

Rats fed 1% Na cholate in Rats fed 4% cholestyramine
soft diet for 4 days in soft diet for 4 days

1 I
osomes Micrc

I I
Acetone Powder Acetone Powder

vt- ^
Solubilization with Nonidet P42

I i
Chromatography of supernatants on DEAE-cellulose

I 1
Cytochrome P4 50 (cholate) Cytochrome P4 50 (cholestyramine)
NADPH-cyt c reductase NADPH-cyt c reductase (cholest-
(cholate) yramine)

Table 7,2.

The preparation of cytochrome P-J4.5O and

NADPH-cytochrome c reductase from rats fed either

sodium cholate or cholestyramine in the diet.
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activity could be detected. However, when a fraction containing

cytochrome P-450 was recombined with the NADPH-cytochrome c reductase

fraction and a NADPH generating system, 6.17, of the radioactive

[• - "3cholesterol was converted to [4 - Cj loL -hydroxycholesterol after

incubation at 37°C for 1 hour. This same recombination when

incubated with the fraction containing cytochrome b,_ converted only 3%
r i4"iof the radioactive cholesterol to 4 - Cl 7©4-hydroxycholesterol.

Thus, at first sight, only the cytochrome P-450 and NADPH-cytochrome

c reductase fractions appear to be necessary for the enzymic

7o< -hydroxylation of cholesterol, and the cytochrome b^ fraction
appears inhibitory.

Attempts to establish in which fraction cholesterol 7<x -hydroxylase
specificity resides

Two groups of rats were fed in one case a diet containing

47, w/w cholestyramine resin, which increases the hepatic cholesterol

lot. -hydroxylase activity, and in another, the same diet containing

0.75Z sodium chelate which lowers the hepatic cholesterol 7©c -hydroxy¬

lase activity (115). Liver microsomes were made in the usual way

and acetone powders were prepared from both groups of rats. In both

cases 300mg of the powders were solubilized with 0.45ml Nonidet P42,

and after centrifugation at 105,000 x g for 1 hour, the supernatants

were applied to two DEAE-cellulose columns similarly constructed.

A linear gradient of KCl was applied to each column and fractions

containing cytochrome P-450, cytochrome b^ and NADPH-cytochrome c
reductase eluted from the column were collected and pooled. This is

summarised in Table 7,2. The specific content of cytochrome P-450 in

both the fractions pooled from the two columns were fortuitously

identical. The pooled NADPH-cytochrome c reductase fraction from the

column to which solubilized liver microsomal acetone powder from the



Percentage Conversion
of cholesterol to

7a hydroxycholesterol

n. d.

n. d.

2.6 nmoles cyt P450 (cholate) 0.1

2.6 nmoles cyt P450 (cholestyramine) n.d.

7.2 units NADPH-cyt c reductase
(cholate)

7.2 units NADPH-cyt c reductase
(cholestyramine)

2.6 nmoles cyt P450 (cholestyramine)
+ 7.2 units NADPH-cyt c reduct¬
ase (cholestyramine) 4.7

2.6 nmoles cyt P450 (cholestyramine)
+ 7.2 units NADPH-cyt c 4.9
reductase (cholate)

2.6 nmoles cyt P450 (cholate) +
7.2 units NADPH-cyt c reduct- 1.0
ase (cholestyramine)

2.6 nmoles cyt P450 (cholate) +
7.2 units NADPH-cyt c reductase 1.0
(cholate)

Supernatant activity (cholestyramine) 4.6

Supernatant activity (cholate) 0.7

n.d. - not detectable

Table 7,3.

The reconstitution of cholesterol 7o.-hydroxylase

activity using the fractions prepared as in Table 7,2.
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cholate fed rats was applied, had 337. more activity per ml (expressed

as nmoles cytochrome c reductase reduced per minute) than the other

pooled fraction. Thus, in the reconstitutions, 3ml of the flavoprotein

from the cholate fed rats, were used. In Table 7,3 the results of

recombining the same quantity of liver microsomal cytochrome P-450

from cholate or cholestyramine fed rats with NADPH-cytochrome c

reductase from either cholate or cholestyramine fed rats, are shown.

When 2.56 nmoles of liver microsomal cytochrome P-450 from cholesty¬

ramine fed rats were incubated with 7.2 units of reductase from both

r 141
preparations, the percentage conversion of 14 - Cf cholesterol to
r i4*i14 - Cj lot —hydroxycholesterol were 4.77. and 4.97o. Thus, there is
no substantial difference in the ability of the two preparations of

reductase to support the lot -hydroxylation of cholesterol. When

2.56 nmoles of cytochrome P-450 from the cholate fed rats was

recombined with 7.2 units of both preparations of reductase, only 1.0%

r 141conversion of radioactive cholesterol to I 4 - Cl 7°4 -hydroxycholesterol

occurred in both cases. Again there was no difference in the

efficiency of the reductases in supporting the lot -hydroxylation of

cholesterol, although the activity of the reconstituted system was

only 20% that of the reconstituted system in which the cytochrome P-450

was obtained from rats fed the bile acid sequestering resin,

cholestyramine. When an aliquot of the supernatants from the

solubilized liver microsomal acetone powders of both groups of rats

were assayed for cholesterol lot -hydroxylase activity, the percentage

r i4~iconversion of radioactive cholesterol to I 4 - CI 7<3^-hydroxy¬

cholesterol in the supernatant from the cholestyramine fed rats was 4.6,

and in the case of the cholate fed rats was 0.7. Although the results

of this experiment do not constitute absolute proof that the

specificity of cholesterol 7c<-hydroxylase resides in the cytochrome
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Figure 7>1•

The elution profile of Nonidet PU2 solubilized

microsomal cytochrome P-Li-50, cytochrome t>5, and

NADPH-cytochrome c oxidoreductase from a DEAE-cellulose

column, eluted with a linear gradient of KC1»
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Figure 7»2.

1 il
[1+- C]-cholesterol was added to the supernatant

of Nonidet Pl;2 solubilized microsomes, and applied

to a DEAE-cellulose column. Cholesterol and protein

were eluted using a linear gradient of KC1.
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After pooling the NADPH-eytochrome c oxidoreduetase,

this fraction (which itself contained no cholesterol

7a-hydroxylase activity) was recombined with other

fractions eluted from the DEAE-cellulose column,and

tested for their ability to catalyse the 7&-hydroxyiation

of cholesterol# Control incubations contained no

NABPH-cytochrome c oxidoreductase#
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P-450 fraction, there is reasonable indication that this is the case.

Cholesterol 7<*t-hydroxylase activity in DEAE-cellulose eluate

It had been previously observed that when rat liver

microsomes were solubilized by Nonidet P42 and applied to a column

of DEAE-cellulose, on elution at least two, and probably three, peaks

of cytochrome P-450 were detected. Therefore, to determine whether

any minor peak was solely responsible for the catalysis of the

laC-hydroxylation of cholesterol, Nonidet P42 solubilized microsomes

were applied to a DEAE-cellulose column and eluted with a linear

gradient of KCl. Elution of cytochrome P-450, cytochrome b<_ and

wttjurn-cy LUI

r.. ■•<]
NADPH-cytochrome c oxidoreductase is shown in Figure 7,1. Elution of

, i
CI cholesterol added to the supernatant fraction before

application to the column, and protein, is shown in Figure 7,2. The

NADPH-cytochrome c oxidoreductase fractions were pooled and recombined

with fractions 10 to 38 eluted from the column. The reconstituted

activities, together with those fractions incubated in the absence of

reductase, were measured as percentage conversion of

cholesterol to radioactive 7©<-hydroxycholesterol. The results are

shown in Figure 7,3. It is apparent that cholesterol 7©t -hydroxylase

activity is located wherever cytochrome P-450 is found and is not

restricted to any one of the three peaks of cytochrome P-450 eluted.

J. 11 L Lie: ClU&t

[* - l4<0

The interaction of partially purified cytochrome P-450 with
DCC-trypsin solubilized NADPH-cytochrome c oxidoreductase

A number of extrinsic microsomal proteins may be

solubilized by hydrolytic enzymes. Velick, Strittmatter and Omura

et al (66,67,68,117) have published extensively on cytochrome b^ and
its reductase which was initially solubilized by cobra venom (117).



Percentage conversion

of cholesterol

to [U-'^C] 7a-hydroxy

cholesterol.

Supernatant activity 16.0

2.0 nmoles cytochrome P-i;50 0.12

2.0 nmoles cytochrome P-I4.5O
+ 5<>0 units trypsin solubilized 0»kb
NADPH-cytochrome c reductase

2.0 nmoles cytochrome P-l±50
+10 units trypsin solubilized
NADPH-cytochrome c reductase

2.0 nmoles cytochrome P-U50

+15 units trypsin solubilized
NADPH-cytochrome c reductase

Table 7

The effect of adding to a partially purified

preparation of cytochrome P-450jNADPH-cytochrome c

oxidoreductase solubilized "by treatment of rat liver

microsomes with trypsin, on its ability to 70-hydroxylate

cholesterol.

0.26

0.32
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NADPH-cytochrome c reductase has also been solubilized by a number

of agents, notably by pancreatin or steapsin (70), but also by

bromelain (118) and subtilisin (119).

Only recently has the purification of NADPH-cytochrome c

oxidoreductase been reported using detergents (120) although this

flavoprotein had been solubilized by detergent and its molecular

weight determined some years before (118). In an effort to obtain a

large stock of pure NADPH-cytochrome c oxidoreductase with which to

reconstitute cholesterol 7o^-hydroxylase activity, microsomes were

prepared from 50 rat livers. The 1.5g of microsomal protein

obtained was suspended in 130ml of 0.1M potassium phosphate buffer

pH 7.7 containing ImM EDTA. 6mg DCC-trypsin (a chymotrypsin/trypsin

mixture in which the chymotrypsin had been inactivated with

diphenylcarbamoyl chloride) was added to the above suspension at 0°C
o

and left for approximately 14 hours at 0-3 C with stirring and under

a positive nitrogen pressure. After centrifugation at 105,000 x g

for 1 hour, the supernatant was subjected to ammonium sulphate

treatment. The 45-75% cut was applied to Sephadex G-100 and the

reductase fractions applied to DEAE-cellulose. A linear gradient of

KCl was used to elute the flavoprotein and the reductase fractions

pooled, desalted on Sephadex G-25, and lyophilised.

234 units of NADPH-cytochrome c oxidoreductase activity

were present in the microsomal fraction, and after solubilization

380 units were observed. The reason for this activation is not known.

The final lyophilised preparation had a total activity of 230 units

and the Aa,.,.^ ^^/min/mg was 38 compared with the microsomal specific
activity of 0.17. Thus, the enzyme had been purified approximately

220-fold. Table 7,4 shows the effect of increasing the amount of

NADPH-cytochrome c oxidoreductase activity to 2 nmoles cytochrome P-450,



Percentage conversion
of cholesterol

1 i-i-
to [2+- Cj 7u-hydroxy-
cholesterol.

Supernatant activity 7-28

2.5 nmoles cytochrome P-I4.5O O.Oh

6 units Nonidet PU2 solubilized

NADPH-cytochrome c reductase —

7»h units trypsin solubilized
NADPH-cytochrome c reductase -

2.5 nmoles cytochrome P-h50
-i- 6 units Nonidet Ptr2 solubilized 7*72

NADPH-cytochrome c reductase

2.5 nmoles cytochrome P-li50
+ ~Joh units trypsin solubilized 0®53
NADPH- cytochrome c reductase

2.5 nmoles cytochrome P-l+50
+ 7.14. units trypsin soluhilized
NADPH-cytochrome c reductase
-}• 1mg lecithin

O.58

Table 7,5.

The ability of trypsin and Nonidet Ph2 solubilized

NADPH-cytochrome c oxidoreductase to support the

7a-hydroxylation of cholesterol when recombined with

partially purified cytochrome P-h50.
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purified from cytochrome and NADPH-cytochrome c oxidoreductase.

r 14"]
The control activity showed a 16% conversion of I 4 - Ci cholesterol

r 14 *1 L J
to 14 - C1 loi. -hydroxycholesterol, though very little, if any,

reconstitutional activity could be demonstrated with the trypsin

solubilized reductase. In a subsequent experiment an acetone powder

was solubilized and fractionated in the usual way, and 2.5 nmoles of

cytochrome. P-450 were recombined with 6 units of Nonidet P42

solubilized reductase or 7 units of trypsin solubilized reductase.

These studies were made with and without lmg egg lecithin. The

results are presented in Table 7,5. Cytochrome P-450 and both

preparations of reductase, when assayed for cholesterol 7e<-hydroxy¬

lase activity in the standard incubation medium, showed no activity.

However, when the haemoprotein was recombined with Nonidet P42

partially purified NADPH-cytochrome c oxidoreductase, the

reconstituted enzyme was active, 7.7% of the radioactive cholesterol

being converted to 7<*-hydroxycholesterol. The trypsin solubilized

reductase supported only 0.5% conversion of tracer cholesterol to

7oc-hydroxycholesterol, and this activity was not increased when img

egg lecithin was added. It is, therefore, clear that (a) during the

purification of the trypsin solubilized reductase some other essential

factor is lost, or (b> because part of the reductase is lost upon

trypsin solubilization (118) it is unable to interact with cytochrome

P-450. This inability of trypsin solubilized reductase to support the

7et-hydroxylation of cholesterol correlates with the recent comment in

the review by Lu and Levin (102) that reductase prepared by trypsin

digestion fails to transfer electrons from NADPH to cytochrome P-450,

even in the presence of phospholipid. It therefore appears from these

results and those of Okuda et al (121) that the 'hydrophobic' part of

membrane bound proteins is important, if not essential, for the proper



Percentage conversion
of [U-^C] cholesterol
to [h- C] 7a-hydroxy-
cholesterol.

0.7 nmoles cytochrome P-li-50
eluted from DEAE-cellulose

+10 units NADPH-cytocbrome c reductase 3*3

0.6 ninoles cytochrome P-h50 eluted

"by 80mM phosphate "buffer from
hydroxylapatite
+10 units NADPH-cytochrome c reductase

0.6 nmoles cytochrome P-U50 eluted

"by 150mM phosphate "buffer from

hydroxylapatite
+10 units NADPH-cytochrome c reductase 3*7

Neither the cytochrome P-i+50 fractions alone nor the

NADPH-cytochrome c oxidoreductase alone contained

cholesterol 7o—hydroxylase activity.

Table 7? 6.

Cytochrome P-i+50 was eluted from hydroxylapatite

"by increasing concentrations of potassium phosphate "buffer?

pH 7-7 containing A% Nonidet Pl|2 and 20% glycerol, and

recombined with partially purified NADPH-cytochrome c

oxidoreductase.
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The reconstitution of cholesterol 7oi -hydroxylase after DEAE-cellulose
and hydroxylapatite chromatography of liver microsomal cytochrome P-450

Cytochrome P-450 eluted from DEAE-cellulose was pooled

and subjected to hydroxylapatite chromatography in the presence of 20%

glycerol and 17, Nonidet P42. Two fractions of cytochrome P-450,

further purified by approximately two-fold, were eluted at 80mM and

150mM phosphate and tested for their ability to support the

70(-hydroxylation of cholesterol in the presence of NADPH-cytochrome c

oxidoreductase. It may be seen from Table 7,6 that with 0.6 nmoles

r 141of cytochrome P-450 the percentage conversion of I 4 - C cholesterol

r 141to]4 - C loi -hydroxycholesterol was 4.87, in the fraction eluted at

80mM phosphate and 3.77, in the 150mM phosphate fraction. This compares

with the 3.37, conversion observed in the pooled cytochrome P-450 from

DEAE-cellulose.

Reconstitution of cholesterol Id -hydroxylase activity after
calcium phosphate gel chromatography

The 80mM and 150mM phosphate eluates from hydroxylapatite

were pooled, aialysed overnight against lOmM phosphate and 207, glycerol.

Calcium phosphate gel was added and eluted with increasing

concentrations of phosphate buffer. Three fractions were eluted which

yielded cytochrome P-450 with a higher specific content than the

hydroxylapatite eluate. Table 7,7 shows the results when these

r i4"ifractions were incubated with reductase and! 4 - Cj cholesterol, and
demonstrate that cholesterol loL -hydroxylase activity is not lost when

cytochrome P-450 is further purified by calcium phosphate gel.

Reconstitution of cholesterol 7o< -hydroxylase activity after
removal of excess detergent

A lyophilised powder of rat liver microsomes was

solubilized and applied to a DEAE-cellulose column. Cytochrome P-450



Percentage conversion
of [i|-"^C] cholesterol
to [i+-1^C] 7a-hydroxy-
cholesterol.

Supernatant activity 6.0

2.0nmoles cytochrome P-h50 eluted
from DEAE-cellulose

+11 units NADPH-cytochrome c reductase h»5

1.0 nmole cytochrome P-h50 from the

pooled 150mM and 80niM phosphate eluates
+11 units NADPH-cytochrome c reductase 6.6

1 .0 nmole cytochrome P-U50 from which

excess Nonidet Pi+2 had "been removed

+11 units NADPH-cytochrome c reductase 12.1

Table 7»8.

The effect of removing excess Nonidet P2+2 from the

cytochrome P-h50 fraction on cholesterol 7a-hydroxylase

activity in a reconstituted system.



Percentage conversion
of [i+-'4Cj cholesterol
to [i+-1i;C] 7a-hydroxy-
cholesterol.

0-30% AmSO^, 0.0 nmoles cytochrome P-i+50 0.0

30-1+0% AmS04,2.i+ nmoles cytochrome P-l+50 10.3

hO-50/o AmS04,2.6 nmoles cytochrome P-i+50 10.3

30-70%> AmS04, 1.6 nmoles cytochrome P-i+50 i+.6

7C% supernatant,0.05 nmoles cytochrome P-i+50 0.0

All cytochrome P-2+50 fractions were recombined with

8.2+ units NADPH-cytochrome c reductase.

Tahle 7*9*

Cholesterol 7a.-hydroxylase activity in cytochrome P-i+50

fractionated "by ammonium sulphate precipitation, when

recombined with KADPH-cytochrome c oxidoreductase.
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fractions , and also NADPH-cytochrome c oxidoreductase, were

separately pooled. On hydroxylapatite, again it was observed that

those fractions eluted at 80mM and 150mM contained cytochrome P-450

of the highest specific content and also the greatest cholesterol

7 oc-hydroxylase activity. When these two fractions were pooled,

applied to a column of hydroxylapatite and the excess Nonidet P42

removed, on elution with 300mM phosphate a cytochrome P-450 fraction

was obtained with a specific content increased by 50% and which, on

recombination with reductase, was able to convert 12.1%, of the

cholesterol 7<X -hydroxylase activity was represented by a percentage

r "iconversion of radioactive cholesterol to 14 - Cj 7o4-hydroxy-
cholesterol of approximately 10%, was purified 2.5 fold by DEAE-cellulose

and batch-wise hydroxylapatite chromatography followed by chromatography

on a column of hydroxylapatite to remove excess Nonidet P42. This

final preparation was treated with ammonium sulphate to give five

fractions, the properties of which are given in Table 6,5. These

fractions were dialysed and 1ml of each recombined with 8.4 units of

reductase. The reconstituted cholesterol lot -hydroxylase activities

are shown in Table 7,9 and demonstrate that the activity remains with

the cytochrome P-450 containing fractions.

The interdependence of cytochrome P-450, cytochrome b
and NADPH-cytochrome c oxidoreductase in the
cholesterol 7«-hydroxylase complex

7o* -hydroxycholesterol. These

results are summarised in Table 7,8.

Reconstitution of cholesterol 7<* -hydroxylase activity after
ammonium sulphate fractionation

Cytochrome P-450 from a lyophilised powder whose

Because of the poor yields obtained during attempted
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purification of the mixed function oxidase components, the following

experiments were performed on the components which were, as far as

could be detected, free from each other.

The cytochrome P-450 fraction was prepared by DEAE-

cellulose chromatography followed by chromatography on hydroxylapatite.

This resulted in a 3.5 fold purification, the final specific content

being 2.62 nmoles/mg protein. It had been observed previously that

the peak of NADH-cytochrome c reductase activity resided in the

cytochrome P-450 fraction. It is, therefore, apparent that some

cytochrome b^ must have been contained in this fraction since the
reduction of cytochrome c by NADH is dependent on cytochrome b,_

(121,122). However, the total NADH-cytochrome c reductase activity

eluted from DEAE-cellulose represented less than 2% of the original

activity. This was presumably because the bulk of the cytochrome b^_
activity was separated from cytochrome P-450, or that this reductase

was inactivated by DEAE-cellulose. There is also the possibility

that NADH-cytochrome c reductase was inactivated due to dilution (104)

but this is unlikely as the activity in the DEAE-cellulose eluate was

compared with the supernatant fraction diluted 12-fold.

Cytochrome b^ was assayed in the cytochrome P-450
fraction by the addition of NADH. This haemoprotein could not be

detected even with the addition of NADH-cytochrome c reductase.

Endogenous cytochrome b^ reductase was known to be present as 5A1
of the cytochrome P-450 fraction supported the rapid reduction of

cytochrome b^ by NADH. It was also known from previous experiments
that in similar preparations, if 2% of the original cytochrome b^
contaminated the cytochrome P-450 fraction, this could be very clearly

demonstrated. Cytochrome b cannot, of course, be assayed by the



Specific content of cytochrome P-450

(nmoles / mg protein)
2.7

Specific content of cytochrome bs
2.3

(nmoles / mg protein)

Specific activity of NADPH- cytochrome c

oxidoreducta se

( a551/ min / mg protein) 13.4

Tahle 7»10.

The purity of rat liver microsomal mixed

function oxidase components used in the experiments

described in figures 7»4» to 7*9.



2 4 6 8 10 12 14 16 18 20
Units of reductase

Figure

The effect of increasing concentrations of

I^ADPH-cytochrome c oxidoreductase on the velocity

of cholesterol 7&-hydroxylase,when added to 2.7naoles

of cytochrome P-i+50.
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addition of sodium dithionite in the presence of cytochrome P-450

because of the negative absorption of cytochrome P-450 at

approximately 420nm in the reduced-oxidised difference spectrum.

After hydroxylapatite chromatography, cytochrome b^, NADH-cytochrome
c reductase and NADPH-cytochrome c reductase could not be detected.

The removal of cytochrome P-450 from cytochrome b^ was
more difficult than the removal of cytochrome b,_ from cytochrome P-450,

but after repeated chromatography on DEAE-cellulose, a preparation

of cytochrome b^ was obtained which did not contain cytochrome P-450
or P-420. No NADPH-cytochrome c oxidoreductase activity was observed

but NADH could reduce cytochrome b^_ very slowly; in effect, the
complete reduction would have taken approximately 45 minutes, but

addition of 2of supernatant to the 3ml cuvette enabled rapid

reduction by NADH to completion as assayed by the addition of sodium

dithionite.

NADPH-cytochrome c reductase was purified 10-fold by

DEAE-cellulose chromatography, cytochrome c affinity chromatography

and further chromatography on DEAE-cellulose. Cytochrome P-450

could not be detected, neither could cytochrome b^ by the addition of
sodium dithionite or by NADH in the presence of NADH-cytochrome c

reductase. Table 7,10 shows the final activities of the prepared

components of the mixed function oxidase.

Dependence of cholesterol 7oC-hydroxylase activity on
NADPH-cytochrome c oxidoreductase

Figure 7,4 shows the results of incubating 2.7 nmoles of

cytochrome P-450 with increasing quantities of NADPH-cytochrome c

oxidoreductase, which itself contained negligible amounts of

cholesterol. It is quite clear that increasing the concentration of
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Figure 7,5.

A double reciprocal plot of results presented in

figure 7,2+.
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Figure 7,6. J

The effect of adding to incubations containing a

constant concentration of NADPH-cytochrome c oxido-

reductase and cholesterol, increasing masses of cytochrome

P-U50.
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reductase increases the velocity of cholesterol 7ot-hydroxylase and a

double reciprocal plot of ^/v vs Vjsjin Figure 7,5 shows that the

flavoprotein behaves as. though it were saturating the cytochrome P-450

fraction, and at infinite concentration of reductase the maximum

r 141
velocity is represented as a percentage conversion of 4 - CI

r 141cholesterol to 14 - CJ 7<s£ -hydroxycholesterol of approximately 12%.
This is equivalent to the formation of 4.5 nmoles/min. of

7c>(-hydroxycholesterol, assuming complete equilibration of tracer

cholesterol with endogenous cholesterol, but of course does not

represent the real V
y of the reconstituted enzyme as the velocity

was determined at only one, low, concentration of cholesterol.

JjJsing a K for cholesterol of 50yu.M (determined on a soluble
preparation of an acetone powder) the ^mayi at infinite reductase

■]and cholesterol concentrations would be approximately 1125 nmoles/min

This rate is equivalent to the formation of 0.42 nmoles 7ex.-hydroxy-

cholesterol/nmole cytochrome P-450/min. This is in good agreement

with that rate found in native microsomes and is two orders of

magnitude less than the rate of benzphetamine demethylase.

The effect of increasing the concentration of cytochrome P-450
on the activity of cholesterol 7oC-hydroxylase

Using an amount of NADPH-cytochrome c oxidoreductase which

from the last experiment was known not to saturate the cholesterol

7©t-hydroxylase system, incubations were carried out with increasing

masses of cytochrome P-450. The results are presented in Figure 7,6.

Evidence such as difference spectra and related electron paramagnetic

resonance spectroscopy indicate that substrates of the liver microsomal

mixed function oxidase system bind and interact directly with

cytochrome P-450. Thus, although the dependence of cholesterol

7cx -hydroxylase activity on NADPH-cytochrome c oxidoreductase may show
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Figure 7,7.

The effect of adding cytochrome bs to incubations

containing partially purified cytochrome P-h50 and

NADPH-cytochrome c oxidoreductase,on cholesterol

7a-hydroxylase activity.
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Figure 7*8.

A Dixon plot of results presented in figure 7>7.

(velocity is equivalent to percentage conversion)



70.

saturation kinetics, that is, it behaves as a substrate, it would be

expected that increasing cytochrome P-450 with saturating NADPH-

cytochrome c oxidoreductase would lead to an initial directly

proportional dependence of cholesterol 7o4 -hydroxylase activity on

cytochrome P-450 concentration. The results indicate that this was

the case but that as the concentration of cytochrome P-450 increased,

NADPH-cytochrome c oxidoreductase became rate-limiting. Since the

preparation of cytochrome P-450 contained significant amounts of

cholesterol, this substrate was added to ensure the same

concentration in each incubation.

The effect of adding a preparation containing cytochrome b^
to a reconstituted cholesterol 7<x> -hydroxylase preparation

It has been suggested by Estabrook, Cohen and Hildebrandt

(123,124,125,126) on the basis that NADH increases the velocity of

drug hydroxylation when the NADPH concentration is suboptimal, and

from spectral studies, that the first of the two electrons necessary

for hydroxylation is donated by NADPH and the second from NADH or

NADPH, cytochrome b,_ acting as the carrier. Correia and Mannering

(127,128) also concluded that cytochrome b^ was an essential cofactor
in the cytochrome P-450 dependent hydroxylation of the substrates

tested. Figure 7,7 shows the effect of adding to a reconstituted

cholesterol 7oC -hydroxylase system, a fraction containing cytochrome b^
but no detectable cytochrome P-450 or NADPH-cytochrome c oxido¬

reductase. It may be seen that addition of this fraction caused a

marked decrease in cholesterol 7<X -hydroxylase activity and at a

ratio of cytochrome b,_ to cytochrome P-450 observed in the original

supernatant fraction, the inhibition was approximtely 27%. A Dixon

plot of these results, Figure 7,8, perhaps indicates that the
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Figure 7*9.

The percentage conversion of cholesterol to

7a-hy<3roxycholesterol with timey in a reconstituted system
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inhibition was not simply a single competitive phenomenon as

sequestration of electrons by cytochrome would suggest, but appears

to be biphasic. It would, therefore, seem that the results of this

experiment and the previous reconstitution experiment indicate not

only that cytochrome b__ is not an obligatory component of cholesterol

7©C-hydroxylase but perhaps is also inhibitory. However, this does

not exclude the possibility that cytochrome b^_ is involved in the
synergistic action of NADH during hydroxylation under sub-optimal

NADPH concentrations.

Figure 7,9 shows that the reaction rate in a

reconstituted system is linear for 40 min.

ft
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SUMMARY

^
It has been shown in this section that two fractions

are essential for the reconstitution of cholesterol 7c* -hydroxylase

activity, one containing cytochrome P-450 and the other containing

NADPH-cytochrome c oxidoreductase. It also appears that all three

fractions of cytochrome P-450 which are eluted from DEAE-cellulose

contain cholesterol 7«-hydroxylase.

(2)
The specificity of this enzyme was also shown to reside

in the cytochrome P-450 fraction as reductase from rat liver microsomes

both low and high in cholesterol 7c* -hydroxylase activity were equally

capable of supporting this enzymic activity when recombined with the

cytochrome P-450 from both preparations.

(3)
Trypsin solubilized NADPH-cytochrome c oxidoreductase

was incapable of supporting cholesterol 7ot -hydroxylase activity.

(4)
When the cytochrome P-450 was subjected to various

techniques to increase the specific content, cholesterol 7o<-hydroxy¬

lase was still present.

The reconstitution of cholesterol 7«<-hydroxylase

activity using a fixed mass of cytochrome P-450 has been shown to be

dependent on the concentration of reductase and this dependency was

manifested as saturation kinetics. Using a fixed mass of NADFH-

cytochrome c oxidoreductase, cholesterol 7<* -hydroxylase activity was

shown to be dependent on cytochrome P-450 concentration to the point

where the reductase became rate-limiting. Cholesterol IcK -hydroxylase

appeared not only to be independent of cytochrome b,. but also to be

inhibited by this haemoprotein.



Substrate
SH

Cytochrome P-Aj.50 (Fe+++)
(low spin)

SOH

Cytochrome P-i4.50(Pe, )SH
02T

Cytochrome P-U50(Pe+++)SH
(high spin)

Cytochrome P-2i50(Pe++)SH
O2

Cytochrome P-i4.50(Pe"!"+)SH
O2

Figure 8,1«

The cyclical transformation of the spin state

of cytochrome P-l|.50 during the oxidation of substrate.



SECTION 8

PROPERTIES OF NONIDET P42 SOLUBILIZED MICROSOMES AND CHOLESTEROL
7o<. -HYDROXYLASE

Some spectral properties of cytochrome P-450 solubilized with
Noriidet P42

It has been deduced by Estabrook et al (129) that

cytochrome P-450 undergoes cyclical transformations during the

hydroxylation of foreign compounds and steroids, as depicted in

Figure 8,1. Cytochrome P-450 prepared by the usual techniques exists

as the oxidised form, and the ferric ion may be in the high spin

(5 unpaired electrons) or low spin (1 unpaired electron) state.

Transformation from the low spin state to the high spin state is at

least partially dependent on the strength of the ligand field. When

foreign compounds are added to liver microsomes, changes in the spectral

properties occur which are readily detectable using difference

spectroscopy. These changes in absorbance have been shown to reflect

the direct interaction of these compounds with cytochrome P-450

(130,131). Furthermore, these changes have also been observed in

purified cytochrome P-450 from Pseudomonas putida. Correlation of the

optical spectra with electron paramagnetic resonance spectra reveals

that two of the three fundamental types of spectral change are associated

with the alteration of the cytochrome P-450 high spin/low spin ratio.

These three types of spectral change have been described by Schenkman

(130). A type I spectral change is characterised by the appearance of

a peak at about 390nm and a trough at about 420nm, and represents a change

of the ferric ion from a low spin to a high spin state. The magnitude of

the spectral change is dependent on the concentration of the xenobiotic,

ligand or steroid, and the spectral dissociation constant, Kg, has been
found in many cases to be very similar to the Michaelis constant, K ,

for the enzyme-substrate complex (130). It has also been the general
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observation that compounds exhibiting the type I binding spectrum are

also substrates for the microsomal mixed function oxidase. The

converse, however, is not true. The mirror image of this optical

spectrum may also be formed by the addition of ethanol, agroclavine,

testosterone or even tryptophan, and is characterised by a trough at

390nm and a peak at 420nm. These spectra have been termed modified

type II (130), inverse type I (133) or a reverse type I (132).

Addition of primary aliphatic or aromatic amines results in a peak at

change is competitively inhibited by carbon monoxide and therefore

probably by oxygen, it is considered that binding of, say, octylamine

or aniline, which has been shown to involve direct interaction of the

basic nitrogen with haem (130), is at a site different from the

substrate binding site, otherwise each substrate in the hydroxylation

reaction would compete for the same binding site. However, aniline may

also bind at the substrate binding site to give a type I binding

spectrum at low concentrations, which is swamped on increasing the

aniline concentration by the appearance of the type II spectrum. It is,

therefore, apparent that these spectra must be interpreted with caution,

as the magnitude of the spectral change bears no simple relationship

between the K or the maximal velocity of the hydroxylation, and for many

compounds the spectral changes are probably composites of all three types,

thus a single compound could generate type I, inverse type I and also

type II spectra.

Amine binding spectra

As previously referred to in the Introduction, both

octylamine and aniline bind to cytochrome P-450 and cause spectral changes

characteristic of type II binding. Jefcoate et al (134,135) observed

about 430nm and a trough around

m



Figure 8,2.
i

The difference spectrum induced by the addition of

octylamine to rat liver microsomes.



Figure 8,3*

The difference spectrum induced "by the addition of

aniline to rat liver microsomes.



Figure 8,14. •

The difference spectrum induced "by

octylamine to Nonidet P2+2 solubilized

the addition of

rat liver microsomes.



I :

Figure 8,5.

The difference spectrum induced "by the addition of

aniline to Nonidet P2+2 solubilized rat liver microsomes.
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that this spectral change was a composite of two spectra, and that the

relative changes in absorbance of the two species, type a and type b,

could be markedly changed by pre-treatment of the rabbits with pheno-

barbital and 3-methylcholanthrene. Type a, A 427nm, A . 392nm,
max min

and type b ^ 432nm, A . 4l0nm, were also shown to correspond to
max min

the high and low spin states respectively of cytochrome P-450 and thus

pre-treatment of rabbits with 3-methylcholanthrene favours the synthesis

of a high spin cytochrome P-450 or cytochrome P-448 (32).

In the mouse, the difference in substrate specificity

between liver microsomal cytochrome P-448 and P-450 appears to be

independent of the spin state of these haemoproteins, and induction of

cytochrome P-448 does not result in an increase of the high spin species

(136). Phenobarbital pre-treatment, however, increased both forms but

favoured type b (134).

Figures 8,2 and 8,3 show the difference spectra obtained

when native microsomes were treated with octylamine (2mM) and aniline

(3mM). The spectra are qualitatively very similar, both having

at 396nm and A at about 433nm. TheAA,in both cases was
max 433-396

0.335. Using the empirical equation of Jefcoate et al (134) and using

the data from the octylamine difference spectrum, 33% of the total P-450

was determined to be high spin (type a). Figures 8,4 and 8,5 show the

difference spectra obtained when the same compounds are added to Nonidet

P42 solubilized rat liver microsomes. The concentration of cytochrome

P-450 in this preparation was about 50% that of the native rat liver

microsomes, i.e.i^A^^ ^ was 0.32. The preparation also contained
cytochrome P-420. However, it is known that n-octylamine does not

combine with cytochrome P-420 (134,135). It is clear from the difference

spectra that a change in spin state of cytochrome P-450 has occurred on

solubilization of microsomes by Nonidet P42 as the greatest negative



Figure 8,6.

The difference spectrum induced "by the addition of

Nonidet PI4.2 to rat liver microsomes.
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absorbance peak is at approximately 4l0nm in both the n-octylamine and

aniline induced type II spectrum change. The absorption maximum was

unchanged, being again at 433nm. Using the empirical formula of

Jefcoate et al (134), the percentage high spin cytochrome P-450 in the

solubilized microsomes was reduced from 33% to 8%. As 85-90% of the

cytochrome P-450 was solubilized, even if the remainder of the cytochrome

P-450 in the pellet were 1007, high spin, which is unlikely as the

solubilization process seems non-specific, this would still not account

for the loss of high spin cytochrome P-450. It would, therefore, appear

that in common with the results of Jefcoate (134) where microsomes were

treated with Lubrol WX, high spin to low spin ratios of cytochrome P-450

were reduced on treatment of microsomes with Nonidet P42. However,

there is also the possibility that the cytochrome P-420 present in the

preparation to a large extent (ca. 287, of the initial cytochrome P-450)

was specifically generated from the original high spin species of

cytochrome P-450, this would mean that high spin cytochrome P-450 was

more susceptible than the low spin species to degradation to cytochrome

P-420.

Effect of Nonidet P42 at low concentrations on the spin state of
cytochrome P-450

The effect of Nonidet P42 on the difference spectrum of

native liver microsomes was observed only at low concentration as,

clearly, at high concentrations one cuvette would be optically clear and

the other turbid. Under such conditions the new base line would be

grossly different from the original. Figure 8,6 shows the difference

spectrum induced by adding the equivalent of 1yml Nonidet P42 to the
sample cuvette containing 18mg protein. Thus, the ratio Nonidet P42/mg

protein (0.05yul/mg protein) is well below that required for solubilization.
The absorption maximum occurred at 392nm and the minimum at 432nm, which



Figure 8,7•

The difference spectrum induced "by the addition of

ethanol to rat liver microsomes.



is indicative of a transformation of part of the cytochrome P-450 to

the high spin form. It is, therefore, likely that Nonidet P42

interacts with and is susceptible to oxidative attack by the microsomal

mixed function oxidase. It is interesting to note, however, that the

cytochrome appears mainly in the low spin state upon solubilization.

Perhaps Nonidet P42, like phenacetin and agroclavine (137) at low

concentrations binds to cytochrome P-450 to induce a type I spectral

change, but that as the concentration is increased, substrate already

bound to cytochrome P-450 (high spin) is displaced by the Nonidet P42,

causing the high spin species to revert to low spin, this process

manifesting itself as an inverse type I spectral change.

The effect of ethanol on the difference spectrum of rat liver
microsomes

Figure 8,7 shows the difference spectrum obtained when

100^1 ethanol were added to the sample cuvette. With a minimum
absorbance at 388nm and a maximum at 420nm, this spectrum is a mirror

image of the type I binding spectrum. The explanation offered for the

induction of such a spectrum is that substrates are displaced from the

binding sites in such a way that the strength of the ligand field is

decreased and low spin cytochrome P-450 is formed. When ethanol was

added to the solubilized preparation, no difference spectrum was

detectable. However, most of the cytochrome P-450 was already in the

low spin state, and as mentioned earlier, this may be the result of

Nonidet P42 displacement of substrate. This explanation, however, does

not seem entirely satisfactory as Nonidet P42 itself gives a type I

difference spectrum and might be expected to displace endogenous substrate

with maintenance of the high spin state of cytochrome P-450.

The effect on the, difference spectra of binding mixed function
oxidase substrates

Benzphetamine hydrochloride added to the sample cuvette



Figure 8,8,

The difference spectrum induced "by the addition of

"benzphetamine hydrochloride to rat liver microsomes.
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Figure 8,9.

The absolute spectrum of partially purified

cytochrome P-450.
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containing native liver microsomes to a final concentration of

approximately 0.5mM, gave a type I difference spectrum as shown in

Figure 8,8. TheAA3g7_426 was 0.262. TheAA^5o_49o was 0.64
and 33% of this cytochrome P-450 was already high spin. However,

when this drug was added to solubilized liver microsomes, the

AA 39o_424 was only °-04* The^A450-490 W3S °'32' bUt °nly 87° °f
this was already in the high spin state. It therefore appears that

Nonidet P42 inhibits the binding of benzphetamine hydrochloride.

Iso-octane and cyclohexane were also added to native liver

microsomes and both gave rise to type I spectra withAA^gg 424

0.174 and 0.275 respectively. When these hydrocarbons were added to

Nonidec P42 solubilized liver microsomes, although type I spectra were

discernible, the A "X - X . was again greatly reduced to 0.016' '* max mm 00 j

and 0.058 respectively. It would, therefore, seem probable that on

solubilization substrates binding to cytochrome P-450 to give type I

difference spectra have a reduced affinity for this haemoprotein.

The absolute spectrum of partially purified cytochrome P-450

Cytochrome P-450 was prepared essentially free of

cytochrome b^ and containing little cytochrome P-420 by DEAE-cellulose
chromatography of Nonidet P42 solubilized liver microsomes. Figure 8,9

shows the absolute spectrum of this preparation which contained

1.6 nmoles/ml cytochrome P-450. The Soret maximum is exhibited at

417nm which is indicative of a low spin cytochrome P-450, but there are

small peaks at approximately 530 and 570nm, which is also suggestive of

the cytochrome P-450 being in a low spin state. There is also a peak

at 360nm which has been observed by Miyake et al (88^ in his Lubrol WX

solubilized preparation.
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g = 2.1+2 g = 2.25 g = 1 .92

Figure 8,10.

The e.p.r. spectrum of native rat liver microsomes.

Scan range 1 x 10"* Gauss

Field set 2965 Gauss
-1

Modulation amplitude 1 .25 x 10 Gauss

Modulation frequency 100 KHz
5

Receiver gain 1.25 x 10

Temperature -172°C
Microwave power 50mW

Microwave frequency 9.11+5 GHz

Time constant 1.0 second

Scan time 1+min
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s = 2.U5 S = 2.25 g = 1.92

Figure 8,11.

The e.p.r. spectrum of Nonidet Pi+2 solubilized

rat liver microsomes, recorded under the same conditions

as in figure 8,10, except that the receiver gain was

1.60 x 103.



Values of g

®y
Cytochrome P-U50 from

native microsomes 2,14.2 2,25 1 ,92

Cytochrome P-I4.5O from

Nonidet PI4.2 solubilized

microsomes 2,14-2 2,25 1,92

Table 8,1 .

The g values of cytochrome P-14-50 in native microsomes

and in Nonidet PI4.2 solubilized microsomes observed during
/ -

electron paramagnetic resonance spectroscopy at 100 K,



>s

•H
O
O
H
0
>

0
>
■rt

aJ
rH
0
«

i 1 1 1 r
1 2 3 4 5

yul Nonidet P2+2 / mg protein

Figure 8, 12,

The effect of Nonidet Ph-2 on "benzphetamine demethylase

activity.
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Electron paramagnetic resonance spectroscopy of Nonidet P42
solubilized cytochrome P-450

Figures 8,10 and 8,11 show the e.p.r. spectra of native

and Nonidet P42 solubilized liver microsomes containing 42 and 21 nmoles

cytochrome P-45Qfril respectively. At the temperature that these spectra

were recorded, -172°C, only the low spin form of cytochrome P-450 is

detectable. The g values for the three main absorbing species in both

native and Nonidet P42 solubilized liver microsomes are given in

Table 8,1. These values are very close to those recognised by

Hashimoto et al (138^ as being a low spin haemoprotein (termed at that

time Fe^) which was later equated with cytochrome P-450 by Mason, North
and Vanneste (139). Since e.p.r. spectroscopy is a sensitive test of

perturbation of the immediate environment of the free radical, in this

case the ferric ion, it appears that upon solubilization of rat liver

microsomes with Nonidet P42, the conformation of cytochrome P-450

(low spin) is not grossly altered.

The effect of Nonidet P42 on benzphetamine demethylase

Because rat liver microsomes may be solubilized by

Nonidet P42 without loss of activity of cholesterol 7oC. -hydroxylase,

it was of interest to observe whether the drug hydroxylating system was

also solubilized. Benzphetamine is very readily hydroxylated by rat

liver microsomes in the presence of cofactors, and therefore this

substrate, final concentration ImM, was incubated with 20mg microsomal

protein in 8ml with increasing concentrations of Nonidet ?42. The

velocity of the reaction was determined by plotting the formation of

formaldehyde after 0, 4, 8 and 12 minutes of incubation. In the absence

of Nonidet P42, the velocity is expressed as 100%, and Figure 8,12 shows

the effect on the relative velocity of increasing Nonidet P42 concentration.



0,10

0.09 -

l

1 2 3 h 5

jxl Nonidet PU2 / mg protein
Figure 8,13.

A Dixon plot of results presented in figure 8,12.
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It is clear that treatment with this detergent results in very

substantial inhibition, the concentration required for 507> inhibition is

only 0.6yu.l/mg protein and therefore the inhibition was not related to
solubilization of the microsomal membranes. A Dixon plot is presented

in Figure 8,13 and shows a simple relationship between the velocity and

Nonidet P42 concentration. Nonidet P42 affects the binding of benz-

phetamine to cytochrome P-450 and could, therefore, inhibit the

demethylation by reducing the affinity of the enzyme for benzphetamine.

However, the reaction mechanism is complex and the inhibition could also

be due to reduced affinity for 02? this is unlikely as CO and octylamine
binding appear unaffected by Nonidet P42. Miyake et al (88^ have

observed that their Lubrol WX solubilized preparation of cytochrome P-450

could not be reduced by NADPH in the presence of NADPH-cytochrome c

reductase, therefore the rate of reduction of this haemoprotein was

observed in the presence of increasing concentrations of Nonidet P42.

The effect of Nonidet P42 on reduction of cytochrome P-450 by NADPH

Using the same preparation of rat liver microsomes as was

used in the experiment in which the effect of Nonidet P42 on benzphetamine

demethylase was studied, the effect of this surface active agent on the

reduction of cytochrome P-450 by NADPH was observed. Using the Aminco-

Chance spectrophotometer in the dual wavelength mode, the rate of

reduction was measured by adding NADPH generated by the oxidation of

glucose-6-phosphate by NADP and glucose-6-phosphate dehydrogenase to the

microsomal suspension, saturated with CO, and recording the difference

in absorbance between 450nm and 490nm with time. Because the velocity

of reduction was so great at 25°C, the sample was cooled to 0°C and

measured in the spectrophotometer at 0°C. Figure 8,14 shows the effect

of Nonidet P42 on the velocity of reduction. The effect was similar to



yal Nonidet Pi+2 / mg protein

Figure 8,15.

A Dixon plot of* results presented in figure 8,12+.
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that observed in the benzphetamine demethylase reaction, Nonidet P42

strongly inhibiting the reduction of cytochrome P-450. However, the

degree of inhibition was much more marked at higher concentrations of

Nonidet P42, and a Dixon plot, Figure 8,15, shows that the inhibition

is more complex than that observed in the benzphetamine demethylase

reaction.

Reduction of cytochrome P-450 by NADPH in a solubilized

acetone powder could not be observed, either, even after addition of

cholesterol or lauric acid. A preparation of partially purified

cytochrome P-450 in which excess detergent was removed by binding the

haemoprotein to hydroxylapatite was also tested, but again no reduction

could be detected on addition of NADPH and NADPH-cytochrome c oxido-

reductase. In both solubilized liver microsomes and in an acetone

powder, NADPH-cytochrome c oxidoreductase was fully active or even

activated.

This result is surprising in view of the fact that

cholesterol lc< -hydroxylase may be solubilized by Nonidet P42 without

loss of activity. Explanation for these apparently contradictory

results would be that (a) reduction of cytochrome P-450 is not a rate-

limiting step in the hydroxylation of cholesterol, (b) that cholesterol

7OC-hydroxylase cytochrome P-450 represents only a small part of the

bulk of this cytochrome in microsomes, and thus its reduction would not

be easily observed, or (c) that cytochrome P-450 is not involved in the

hydroxylation of cholesterol. However, cholesterol 7°< -hydroxylase is

inhibited by CO and the inhibition is relieved optimally by light of

wavelength 450nm. Reconstitution experiments also show that two

fractions are necessary for activity, one containing cytochrome P-450 and

the other its reductase. The reaction is also inhibited by those

reagents leading to conversion to cytochrome P-420 and by antibody towards



NADPH-cytochrome c oxidoreductase. From these observations it appears

that there is good evidence for the participation of cytochrome P-450

and its reductase in the 7oc-hydroxylation of cholesterol.

The Michaelis constant of cholesterol 7o*-hydroxylase for cholesterol
and the effect of Nonidet P42

The determination of K when the substrate is relatively
m

insoluble presents many problems in interpretation as the value of K
m

assumes that the substrate exists in solution as single molecular

species. In the following experiments, acetone powder preparations of

rat liver microsomes were used as the endogenous cholesterol

concentration was reduced from 20yU-g/mg protein to lyu.g/mg protein in
the acetone powder. It is clear that when cholesterol is added to

microsomes and acetone powder suspensions, the substrate is adsorbed

on to the membranes, as when radioactive cholesterol is added to a

microsomal suspension, all the radioactivity is found in the pellet

after centrifugation at 105,000 x g for 1 hour (140). It is also

apparent that when the concentration of a relatively insoluble

substrate increases above the critical micellar concentration, micelles

or emulsions are formed. This difference in physical state of the

substrate again raises difficulties as the enzyme may use only molecular

species of the substrate. In this case, V would be reached at the
max

critical micellar concentration. If, however, the enzyme operated on

micelles, the velocity would depend to a large extent on the surface

area of the micelles. Mitropoulos (141) and Bjorkhem (111 have observed

that the specific activity of cholesterol in microsomes to which radio¬

active cholesterol had been added was different from the specific radio¬

activity of 7oC-hydroxycholesterol formed by these microsomes. This is

suggestive of compartmentation and makes even less meaningful the value

of K^. It is hoped that in a soluble system such compartmentation will



Percentage conversion
Exogenous of [U-^C] cholesterol /Ag 7a-hydroxy-
cholesterol to [i+-1^C] 7a-hydroxy- cholesterol

jxg/7ml cholesterol. formed in 1+0 min

75 1.65 1.21+

150 1.77 2.66

200 1.26 2.52

250 1.1+5 3.63

300 1.71+ 5.22

350 1 .91 6.69

1+00 1.81 7.21+

Table 8,2.

The effect of adding exogenous cholesterol to a

resuspended acetone powder (9mg protein) on the percentage

conversion of [h-^C] cholesterol to [i+-1^C] 7a.-hydroxy-

cholesterol.
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Figure 8,16.

The effect of adding to a Nonidet Pi|2 treated acetone

powder (l.2yul / mg protein) increasing concentrations
of cholesterol on cholesterol 7a-hydroxylase activity.
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Figure 8,17*

The effect of adding to a Nonidet Pij.2 treated acetone

powder (1 .8^ul / mg protein) increasing concentrations

of cholesterol on cholesterol 7a-hydroxylase activity.
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The effect of adding to a Nonidet PI4.2 treated acetone

powder (2.1^ml / mg protein)^ increasing concentrations
of cholesterol on cholesterol 7a.-hydroxylase activity.
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The effect of adding to a Nonidet Pl+2 treated acetone

pov/der / mg protein) increasing concentrations

of cholesterol on cholesterol 7a.-hydroxylase activity.
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The effect of adding to a Nonidet Pi+2 treated acetone
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Figure 8,21.
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vs [S] plots of data presented in figures
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8,16 to 8,20.



jji1 Nonidet P42 / mg protein
1.2 1.8 2.4 3.0 3.6

K 1053 128 107 54 52
m

(/aM)

V 264 23 13 11 16
max

(yAg 7a-hydroxy-
cholesterol

formed in 40min)

Table 8,3.

The effect of Nonidet P42 on the apparent K and
m

V for cholesterol and cholesterol 7a-hydroxylase in
max

a rat liver microsomal acetone powder.
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be destroyed, and also that the Michaelis-Menten constant more

accurately represents the concentration of cholesterol necessary for

half the maximal velocity.

K for cholesterol in an acetone powder
m

Table 8,2 shows the effect of increasing the mass of

cholesterol to incubations containing approximately 9mg protein on

percentage conversion to radioactive 7oi-hydroxycholesterol, and on

r
jj-g product formed, assuming equilibration of J^4 - CJ cholesterol.
A plot of cholesterol 7o{. -hydroxylase activity against substrate

concentration is linear, and an ^/v vs jjsJ plot has a gradient of
zero. Therefore, in an acetone powder it appears that the enzyme

cannot be saturated with cholesterol. The most favourable value of

K determined was 3500 ixM, but as the maximum concentration of
m /
cholesterol added was approximately 150yU-M, such a figure is of little
value.

The effect of Nonidet P42 on the K for cholesterol
m

Thirty further incubations containing about 8mg protein

were prepared consisting of five groups of six. Each group contained

a fixed ratio of Nonidet P42/mg protein, and within the group the

concentration of cholesterol was increased, but the concentration of

acetone (the vehicle of added cholesterol) was constant. The amount of

endogenous cholesterol, approximately 8yu.g, was negligible in relation
to exogenous substrate. After incubation for 40 minutes, the

r 141 r
percentage conversion of ! 4 - Cj cholesterol to I 4 - Cl 7« -hydroxy-
cnolesterol was determined. Figures 8,16 to 8,20 show v vs ^S~J plots
and Figure 8,21 shows all these results linearised by plotting^v vs [sj.
Table 8,3 presents the values of K and V obtained for each ratio of

m max



Figure 8,22^

A scheme showing how the superoxide anion could

"be formed during the hydroxylation of substrate by

cytochrome P-U50.
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Nonidet P42/mg protein. These values were calculated by computer,

programmed for the Wilkinson method for determination of Michaelis-

Menten parameters (142). Again at low ratios, K could not be
m

realistically measured, and the best value obtainable, 1050ymM, was
six-fold greater than the highest concentration of cholesterol used.

On increasing the ratio of Nonidet P42/mg protein and therefore an

increased solubilization, the K decreased, and at the highest
m

concentrations of detergent Km seemed to reach a limiting value of
approximately 50yuM. This value is of the same order of magnitude as
that determined recently by Van Cantfort and Gielen (94). It is also

interesting to note that the value of the apparent V fell in much° max

the same way as the value of K . This relationship is also mentioned

in a different context in Section 9.

The effect of superoxide dismutase on cholesterol 7o£ -hydroxylase
solubilized by Nonidet P42

During the process of hydroxylation, it is likely that the

substrate or molecular oxygen, or both, become activated. The substrate

may be activated by formation of a free radical SH* from SI^, but if the
abstraction of hydrogen from the substrate were a rate-limiting step,

then if the hydrogen were exchanged for deuterium or tritium, the rate

of reaction would be slower. Such an isotope effect is not observed in

the case of cholesterol -hydroxylase and thus the breaking of the

C-H bond is not likely to be the rate determining step (143). An active

species of oxygen is superoxide. This univalently reduced form of

oxygen could theoretically be formed during the hydroxylation process

as depicted in Figure 8,22. The superoxide anion has already been

detected during the oxidation of xanthine by xanthine oxidase (144).

Other possible intermediates have been discussed by Ullrich and

Staudinger (145). "Fridovich and Handler (146) demonstrated that the



H20 + SOH

02

Figure 8,23.

A possible mechanism by which superoxide anion

generated by the oxidation of xanthine by xanthine

oxidase could support the demethylation of

benzphetamine hydrochloride.

{



30r

10 100 1000

pg superoxide dismutase

Figure 8,2U.

The effect of adding increasing masses of superoxide

dismutase to a 7ml incubation containing Nonidet Pit2

solubilized cholesterol 7a-—hydroxylase.
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reduction of cytochrome c by xanthine and xanthine oxidase could be

stimulated by oxygen. The reaction involved the formation of free

radicals and they proposed that the active species was the superoxide

anion 0^. Knowles (144) suggested that superoxide existed in
equilibrium with the dimer 0^ and that this species underwent a

disproportionation reaction, i.e. 20* ^=^0^ + 2H+—>11^02 + C^.
McCord and Fridovich (147) later purified a protein capable of

catalysing the disproportionation and of inhibiting the reduction of

cytochrome c by xanthine and xanthine oxidase. This copper

containing protein, superoxide dismutase, was shown to be identical

to erythrocuprein. Coon et al (148) demonstrated that superoxide

dismutase inhibited the demethylation of benzphetamine at low

concentrations (ca. lOOyiAg) and could be completely inhibited by
further addition of 0.6M NaCl. Furthermore, it was demonstrated that

a system generating superoxide could support the hydroxylation of

benzphetamine in the absence of NADPH. A scheme proposing how the

mechanism may occur is given in Figure 8,23.

An acetone powder preparation of rat liver microsomes was

solubilized in the usual way and incubated for 30 minutes with

increasing masses of purified superoxide dismutase. Cholesterol

7o(.-hydroxylase activity was measured and the results are shown in

Figure 8,24. It may be seen that the preparation was very active, 23%

r 141 r 141of J 4 - Cj cholesterol being converted I 4 - CJ 7®4-hydroxycholesterol
in 30 minutes. No effect on this activity could be demonstrated even

when 2mg purified superoxide dismutase were added to the 7ml incubation.

Two interpretations of these results can be made (i) that superoxide

anion was not formed during the transformation of cholesterol to

7o(-hydroxycholesterol, or (ii^ that superoxide radicals were produced

but that superoxide dismutase was unable to disproportionate this species

at a rate which inululted cholesterol /o£ -hydroxylase.
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The effect of phospholipid on cholesterol -hydroxylase activity

Since the initial solubilization and partial purification

of rat liver microsomal mixed function oxidase (79), it has been

apparent that an essential component of reconstituted drug hydroxylating

systems was a heat stable lipid fraction, the active component of which

was later identified as being phospholipid, in particular phosphatidyl¬

choline (114). However, the question of cytochrome P-450 dependent

reactions having an absolute requirement for phospholipid is

controversial and much of the experimental evidence is contradictory.

Thus, treatment of microsomes with phospholipase C removed about 70% of

the phospholipid and decreased the metabolism, as well as abolishing

the binding, of type I compounds (149). Coon, however, suggests that

phosphatidylcholine does not serve as a substrate or induce a spectral

change when added to cytochrome P-450, nor does it affect the

dissociation constant of haemoprotein and laurate or benzphetamine

complex (150). Cater et al (151) demonstrated that sodium deoxycholate

inhibited the metabolism of compounds inducing a type I difference

spectrum and found that this inhibition could be relieved by addition of

phospholipid. He also showed that the loss of aminopyrine demethylase

activity resulting from incubation of microsomes with phospholipase C

could not be reversed by addition of lecithin. Recently, Vore et al

have prepared microsomes in which up to 70% of the phospholipid had been

removed by extraction of lyophilized microsomes with n-butanol (152).

In this preparation 3,4- benzpyrene hydroxylase activity was reduced to

40-60% of the original activity, but when phospholipid was added, full

activity could be restored. Phosphatidylcholine does not cause

aggregation of cytochrome P-450 or NADPH-cytochrome P-450 reductase, or

of these two components with each other, as evidenced by the ultra-

centrifugal studies of Autor et al (153), but Strobel has demonstrated



Figure 8,25»

The effect of adding phosphatidyl choline to a rat

liver microsomal butanol powder on cholesterol

7a-hydroxylase and henzphetamine demethylase activities



that the rate of reduction of cytochrome P-450 by NADPH is greatly

increased in the presence of phosphatidylcholine (114) though it is

difficult to envisage this compound as an electron carrier. Imai and

Sato (106) and Bjorkhem et al (86) in the reconstitution of aniline

hydroxylase and cholesterol 7oC-hydroxylase respectively, have shown

that in the absence of added phosphatidylcholine the activities were

reduced by only 20% from the activities when phospholipid was added.

Rat liver microsomes containing 0.6mg phospholipid/mg

protein were desiccated and then extracted with butanol and acetone.

50% of the phospholipid was removed by this treatment. Figure 8,25

shows the effect of adding phospholipid (dipalmitoyl glyceryl-3-

phosphorylcholine) to the resuspended butanol powder. The addition

was as follows:- To 3ml of the suspension was added 2ml of the

phospholipid, suspended in 0.1M phosphate buffer by sonication. The

mixture was sonicated for 10 sees, at 0°C, then incubated at 37°C for

r 125 minutes. Cofactors were then added and finally 14 - C Icholesterol

in acetone. After incubation for 40 minutes at 37°C, the cholesterol

7ot-hydroxylase activity was measured. Taking into consideration the

fact that the butanol powder already contained 0.3mg phospholipid/mg

protein, the addition of a further 0.3mg/mg protein would only bring the

ratio up to that observed in the original native microsomes. It is

clearly seen, however, that at the ratio of 0.6mg phospholipid/mg

protein, the apparent cholesterol loC -hydroxylase activity was abolished.

Using the same preparation and procedure, the effect of adding back

phospholipid on the demethylation of benzphetamine was also observed.

Using a final concentration of 1.25mM benzphetamine hydrochloride, the

velocity was determined at each phospholipid/protein ratio by observing

the formation of formaldehyde after 0, 5, 10 and 15 minutes of

incubation at 37°C. These results are also shown in Figure 8,25 and
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Figure 8,26.

The effect of increasing ionic strength on

cholesterol 7a—hydroxylase activity.



88.

demonstrate that added phospholipid did not affect the rate of

hydroxylation of benzphetamine. Phosphatidylcholine readily forms

mixed micelles with cholesterol, and it is possible that the loss of

cholesterol 7&<. -hydroxylase activity was a reflection of the

sequestration of tracer substrate by lecithin, making the cholesterol

unavailable to the enzyme. However, the results of the experiment mean

that demonstration of an absolute requirement for phospholipid will be

difficult.

The effect of ionic strength on the activity of Nonidet P42
solubilized cholesterol 7^< -hydroxylase

It has been previously observed by Bjorkhem and

Danielsson (154) that cholesterol 7®<-hydroxylase is more sensitive to

increasing concentrations of kc1 than other cytochrome p-450 dependent

reactions. A butanol powder was solubilized in 20mM phosphate buffer

pH 7.4 and incubated for 40 minutes with increasing concentrations of

KCl. The results are shown in Figure 8,26 and demonstrate that up to

0.1M KCl the activity of the enzyme was not greatly affected, but at

higher concentrations the enzyme was inhibited and at 1m KCl the

activity was only 10% that of the control. The ionic strength of the

20mm potassium phosphate buffer, pH 7.4, was 0.04m.

%

The effect of pH on Nonidet P42 solubilized cholesterol
7 oC-hydroxylase

The pH optimum of cholesterol 7o4-hydroxylase in native

rat liver microsomes has been determined by Boyd et al and was found to

have a value of approximately 7.4. This value is close to that found

in human liver (155) and pigeon liver (156).

A butanol powder was solubilized with Nonidet P42 and 8mg

protein was incubated in 7ml containing the necessary cofactors and



Percentageconversion
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50inM Tris-phosphate buffer. The pH of the incubations were measured

at the beginning, in the middle and at the end of the 40 minute

incubation, but no change was observable. Figure 8,27 shows the

velocity of cholesterol 7©4 -hydroxylase, measured on a percentage
r 141 r 141

conversion basis of I 4 - C I cholesterol to J 4 - C I 7<K -hydroxy-
cholesterol related to pH.

In contrast with other observed pH optima, the pH optimum

here was approximately 7.0, and the fall off in activity either side of

neutrality was steep. It is possible that the enzyme solubilized from

a butanol powder by Nonidet P42 has a conformation different from that

in native microsomes, and as a result a slightly lower pH is required

to maximise cholesterol 7<X.-hydroxylase activity.
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SUMMARY

Both native and Nonidet P42 solubilized microsomes

exhibit amine binding spectra, and using the empirical formula of

Jefcoate (134) some high spin cytochrome P-450 appears to be transformed

to low spin cytochrome P-450 upon solubilization with Nonidet P42.

( 2)
Type I binding spectra were generated on addition to

native microsomes of various substrates. The magnitude of the

absorbance change was decreased upon solubilization.

(3)
Electron paramagnetic resonance spectroscopy of the

low spin species of cytochrome P-450 in native microsomes and Nonidet

P42 solubilized showed the g values to be the same. This, therefore,

is evidence that the environment of the ferric ion of cytochrome P-450

is not greatly altered on solubilization.

(4) The absolute spectrum of cytochrome P-450 solubilized

by Nonidet P42 and partially purified, further demonstrated that the

haemoprotein contained low spin ferric ion.

Nonidet P42 was shown to inhibit both the demethylation

of benzphetamine and also the reduction of cytochrome P-450 by NADPH.

The K for cholesterol of cholesterol 7oC-hydroxylase
m

depended on the concentration of Nonidet P42, and the values of both

and V fell to a limiting value at high concentrations of the
max

detergent.

^^
The role of superoxide in the 7©4-hydroxylation of

cholesterol could not be determined as the addition of superoxide

dismutase to a Nonidet P42 solubilized rat liver microsomal acetone

powder did not lead to any inhibition.
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(8)
Addition of phospholipid to a preparation partially

depleted of phospholipid led to apparent inactivation of cholesterol

7ct-hydroxylase, but the rate of deraethylation of benzphetamine was

unaffected.
r

(9)
The solubilized preparation of cholesterol 7<a4 -hydroxy¬

lase was shown to be sensitive to the concentration of potassium

chloride and was inhibited in a manner similar to that demonstrated

in native microsomes by Bjorkhem et al (154).

^^The pH optimum of cholesterol 7=* -hydroxylase from

a Nonidet P42 solubilized butanol powder was found to be approximately

7.0. This is in contrast to that determined in native microsomes

where a value of 7.4 was observed.
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The structure of sterols used in the study of

the specificity of cholesterol 7o—hydroxylase.
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Figure 9>2.

Thin layer chromatography of the oxidation products

formed on incubation of cholesterol and pregn-5-ene-30-ol

with rat liver microsomes.
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SECTION 9

THE SUBSTRATE SPECIFICITY OF CHOLESTEROL 7<X -HYDROXYLASE

The drug hydroxylation system of rat liver microsomes has

a remarkable range of substrate specificity. Thus compounds as

diverse as ethylmorphine, aminopyrine, cyclohexane, aniline, paraffins,

may be hydroxylated. The specific activity of many of these

hydroxylases may be increased by phenobarbital treatment of the rats,

but the hydroxylation of cholesterol is unaffected by this treatment

in the strain used in this laboratory (12). It was, therefore, of

interest to determine whether the range of specificity displayed by

cholesterol lo/L -hydroxylase was as great as that shown by the drug

hydroxylating system. Studies on this aspect have previously been

made by Johansson (157) and Brown et al (12), but the structural

changes in the side chain in these experiments were extensive. In

order to probe the structural requirements for the side chain for

cholesterol lot -hydroxylase activity more closely, ^ -sitosterol
(24, ethyl-cholesterol), cholesterol and desmosterol (^24 c^°lester°l)
were purchased, and pregn-5-ene-3y^-ol, bisnorcholenol, cholenol,
26 norcholesterol and 26 dimethyl norcholesterol were synthesized in

radioactive and non-radioactive form. The cholesterol 7oC -hydroxy¬

lase preparation used was a butanol powder solubilized by Nonidet P42.

This removed the endogenous, perhaps competing, sterols. Protein

(llmg) was added to each incubation and 4.3 nmoles of each steroid

(approximately 2jXg) in 50yjtl acetone, in a final volume of 7ml.
After 40 minutes incubation at 37°C in the presence of lOmM£-mercapto-
ethylamine the sterols were extracted in the usual way and oxidised

products separated from the substrate by t.l.c. Figures 9,1 and 9,2

show the structures of the sterols and two scans for radioactivity

after t.l.c. showing the difference in the pattern of oxidation between



Percentage
conversion

% oxidation of steroid

% oxidation of
cholesterol

Pregnenol 14.U 1.13
(many products)

Bis-norcholenol 5.1
(many products) O.l+O

Cholenol 2.6 0.20

Norcholesterol 8.6 0.68

Desmosterol 11.9 0.9U-

Cholesterol 12.7 1.00

Dimethylnorcholesterol 1.2 0.09

^-sitosterol - -

Table 9,1 •

The percentage conversion of radioactive sterols

to oxidized products on incubation with Nonidet Pi+2

solubilized butanol powder (Hmg protein) for i+O minutes.
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long and short side chain sterols. Table 9,1 shows the percentage

conversion of these sterols into oxidised products.

Of the sterols which are hydroxylated to give a single

product, cholesterol is the preferred substrate, but desmosterol, in

which the two terminal methyl groups are in a configuration quite

different from that of cholesterol, was demonstrated to be hydroxy¬

lated to an extent of 95% that of cholesterol; although this product

has not been identified as being 7o£ -hydroxydesmosterol, since

desmosterol may be efficiently converted into bile acids (159)

when the conversion of desmosterol to cholesterol is inhibited by

triparanol, it is probable that cholesterol ic-hydroxylase was

responsible for the oxidation.

26 norcholesterol, a sterol which differs from

cholesterol only by the loss of a single methyl group at was

hydroxylated to 7oC -hydroxynorcholesterol only at 657> the extent of

the cholesterol hydroxylation. The product has been positively

identified as 7<* -hydroxynorcholesterol by repeated crystallization

to constant specific activity with authentic radioinactive 7o<-hydroxy¬

norcholesterol .

When the sterol side chain was lengthened by one carbon

atom to form 26 dimethylnorcholesterol, and this substrate incubated

with the solubilized butanol powder, a single product was formed.

This is consistent with a 7&C-hydroxylation but the product was not

identified. The extent of conversion to this product was only 1.2%,

that is, only 10% that of the cholesterol oxidation.

^ -sitosterol was not oxidised to any detectable products.
This result is in agreement with that of Aringer and Eneroth (158).

Approximately 2.67> of the sterol, cholenol, was



Percentage
conversion

% oxidation of sterol

% oxidation of
cholesterol

Pregnenol 50 5U
(many products)

Bis-norcholenol 21.2 1 .h8
(many products)

Cholenol 0.85 0.07

Norcholesterol O.96 O.56

Cholesterol - 1.0

Dime thylnorcholesterol 0.50 0.01+

Table 9,2.

The percentage conversion of radioactive sterols

to oxidised products on incubation with native rat liver

microsomes for 1+0 minutes.
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oxidised to a single product, which is again consistent with a

70<,-hydroxylation, but the product was not identified. This degree

of oxidation was about 20% that of cholesterol.

Shortening the side chain further appears to introduce a

completely different mechanism of oxidation. Both the C^2
(bisnorcholenol) and C^ (pregn-5-ene-3 ^ -ol) compounds were oxidised
to many products, as is shown in Figure 9,2 of the t.l.c. scan. The

formation of a range of products is not consistent with a specific

7o<, -hydroxylation, and it is postulated that other enzyme systems

were responsible for this oxidation.

The oxidation of cholesterol analogues by native rat liver microsomes

Table 9,2 shows the extent of oxidation of the sterols

expressed as a percentage of the control - cholesterol. As in the

case of the butanol powder, C0/, C„,, C„-,, compounds all gave one2."t zo LI Lo

product on incubation with rat liver microsomes (lOmg protein), which

suggests that the oxidation was a 7©4-hydroxylation. 26 dimethyl-

norcholesterol and cholenol were hydroxylated only 5% as efficiently

as cholesterol and, as was observed in the solubilized liver microsomal

butanol powder, 26 norcholesterol 7oC -hydroxylase activity was greatly

reduced in comparison with cholesterol 7-hydroxylase activity.

With the two shortest side chains tested, the C^ compound bisnorcholenol
was extensively oxidised to give many products, and in the case of

pregnenol, over 507o of the substrate was multiply oxidised. All

these incubations were performed in the presence of lOmM^ -mercapto-
ethylamine.

These results indicate that the structure of the side chain

is important in determining the efficiency of 7o( -hydroxylation of the



sterol analogue. From these experiments it appears that lengthening

the side chain has a greater effect than shortening, asj^-sitosterol
was not hydroxylated at all, and the addition of 1 carbon atom to the

side chain to form 26 dimethylnorcholesterol reduced the activity of

the enzyme towards this substrate to 5-10% of the control value.

Although removal of 1 carbon atom led to the loss of 7o4 -hydroxylase

activity by approximately 40%, even after removal of three carbon

atoms 10-20% of an apparent 7o4-hydroxylase activity remained. Such

a degree of specificity is unusual as it is applied to part of the

substrate which is remote from the position and even further away

from the hydroxyl group at position 3, known to be a requirement for

cholesterol 7-hydroxylase activity. How this degree of specificity

is accomplished is difficult to envisage. With polar substrates,

the molecule under attack may be oriented by hydrogen bonds and

electrostatic bonds. In the side chain of cholesterol, no such

bonds could be formed and the hydrophobic bonding which may occur can

probably not fulfil the requirements for the determination of

specificity.

For this reason it would seem more likely that the lack of

reactivity of both sitosterol and 26 dimethylnorchoiesterol was due

to steric hindrance by the 24 ethyl group of sitosterol or by the extra

carbon in the C2g compound. It is interesting to conjecture at this
point what are the factors determining the apparent specificity of

hydroxylation of many of the foreign compounds which are substrates for

the liver microsomal mixed function oxidase. In the case of

xenobiotics, where there is an observed specificity of hydroxylation,

one either has to postulate a specific cytochrome P-450 for each

substrate, or a specifier protein, which donates or carries the

substrate to the haemoprotein, or thirdly, it is possible that the



Pregnenolone formed Pregnenolone

(nmoles/min/mg protein) xrom sterol
Pregnenolone

from cholesterol

Bis-norcholenol 0.21 O.96

Cholenol 0.16 0.73

Norcholesterol 0.29 1*32

Cholesterol 0.22 1.00

Table 9?3«

The conversion of cholesterol analogues to

pregnenolone "by the side-chain cleavage enzyme system

of a "bovine adrenal mitochondrial acetone powder.



substrates bind to a single species of cytochrome P-450 whose active

site could accommodate all the substrates, but the specificity is not

determined by steric forces but by the thermodynamically most

favourable configuration within a large hydrophobic cleft.

Because the effect of side chain structure on cholesterol

joi -hydroxylase proved so interesting, these same analogues were

tested for their ability to be cleaved to pregnenolone by a bovine

adrenal mitochondrial acetone powder. The unpublished results of

these studies by J. Arthur, G.S. Boyd, J.I. Mason and K.E. Suckling

are given in Table 9,3. The product pregnenolone was measured by a

radioimmunoassay method (160).

In comparison with cholesterol, norcholesterol was more

rapidly cleaved to pregnenolone, and bisnorcholenol was as

effectively converted to pregnenolone as was cholesterol. Cholenol

itself was metabolized by the side chain cleavage system at about

75% the rate of cholesterol. It is interesting that an enzyme which

metabolizes the cholesterol side chain shows much less specificity

towards the side chain structure than cholesterol 7c>4-hydroxylase.

The binding sites of the adrenal side chain cleavage

system and the hepatic cholesterol lc>L -hydroxylase enzyme are

different inasmuch as in the side chain cleavage enzyme the steroid

nucleus and only three carbon atoms in the side chain are necessary

for activity, and lengthening of the side chain does not affect this

activity. However, in the case of cholesterol 7o4 -hydroxylase,

small changes in the length of the side chain greatly affect the

activity.

The K and V of cholesterol and norcholesterol in a
m max

Nonidet P42 solubilized rat liver microsomal acetone powder

Because norcholesterol added to native microsomes or an



(^ig cholesterol / 7ml incubation)

Figure 9,3.

The effect of increasing concentrations of cholesterol

on cholesterol 7a—hydroxylase activity.
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The effect of increasing concentrations of nor-cholesterol
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Figure 9,5.

A double reciprocal plot of results presented in

figure 9,3.



Figure 9,6.

A double reciprocal plot of results presented in

figure 9,U.



K V
m max

Cholesterol 85 M t 11 M 10.5 gAOmin ± 0.8

Norcholesterol 26 M ± 7 M 2.8 g/hOmln i 0.2

Table 9,U*

The Michaelis-Menten parameters of cholesterol

7a-hydroxylase in a rat liver microsomal acetone powder,

solubilized by Nonidet PU2. Each incubation contained

12mg microsomal protein.
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acetone powder was not as actively hydroxylated in the 7o< position

as was cholesterol, an attempt was made to determine whether the

maximal velocity of the hydroxylation was altered, or whether the

affinity of the enzyme for the new substrate was reduced.

Figures 9,3 and 9,4 are v vs plots of cholesterol

and norcholesterol 7©C -hydroxylase activity in the Nonidet P42

solubilized acetone powder. In each incubation of 7ml there was

approximately 8mg protein (20mg acetone powder). The concentration

of cholesterol or norcholesterol was increased, but the volume of

added acetone was constant

[» " 3"J
. [< - "c] cholesterol, (2^Ug)^and

norcholesterol y( 50^iA.g^ was added to the respective
incubations, and the mass of product formed was measured by

assuming equilibration of the radioactive tracer with the substrate.

Figures 9,5 and 9,6 are double reciprocal plots of the velocity vs

substrate concentration. The results, computed by the Wilkinson

method (142), gave values for K and V , given in Table 9,4.
m max a '

V for norcholesterol can be seen to be only 277, of the V of
max max

cholesterol. However, the K for norcholesterol was also reduced
m

to 307, of the K for cholesterol, that is K norcholesterol
= 0.30

K cholesterol
m

and V norcholesterol
-JHH = 0 27
V cholesterol
max

A reduction in the value of K could mean that the
m

enzyme had a greater affinity for norcholesterol. However, as

observed previously, Nonidet P42 affected the apparent Km and there
was a parallel change in V . In the case of the observed values

max

of K and V for norcholesterol, both were reduced by approximately
m max J J

the same extent from the cholesterol values.

It is possible that since the K and V values appear
m max
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to change in parallel, then K , which in the generalised scheme,

kl S
E + ^ ES >E + P is equal to might approximate

—

to k^ if k is small in relation to k^, that is, if the rate

constant of dissociation of the enzyme-substrate complex is small in

relation to the catalytic rate constant. In such a case, if the

rate constant of binding of substrate to the enzyme did not vary,

then K would parallel V
m max

The induction of type I binding spectra by cholesterol analogues

Pregn-5-ene-3yS>-ol, bisnorcholenol, cholenol,
norcholesterol, cholesterol, desmosterol and sitosterol were added

to native microsomes and Nonidet P42 solubilized microsomes

containing about 6mg protein/ml. Difference spectra generated by

the addition of 0.2mg sterol were measured as described in the

Materials and Methods section.

Sitosterol, cholesterol, desmosterol, norcholesterol and

cholenol did not induce any changes in absorption in either native or

solubilized microsomes. That the cytochrome P-450 was already

saturated with cholesterol is unlikely to be the sole reason for the

lack of formation of difference spectra, as a butanol powder containing

only approximately O.lyixg cholesterol/mg protein was also incapable of
generating a type I difference spectrum on addition of cholesterol.

A more plausible explanation would be that the amount of cytochrome

P-450 involved in the 7o( -hydroxylation of cholesterol is small in

contrast to that associated with drug hydroxylation and that this

quantity of cytochrome P-450 cannot be spectroscopically observed.

Using the Aminco-Chance spectrophotometer, the limit of detection of

substrate binding would be approximately that absorbance which would be

27o of the absorbance of the total cytochrome P-450.



spectrum induced by the addition of

to rat liver microsomes.



Figure 9,8.

The difference spectrum induced by the addition of

bis-norcholenol to rat liver microsomes.
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The sterols with the shortest side chain, pregnenol,

bisnorcholenol, both produced type I binding spectra, \ max being

at 389nm and Amin at 426nm. Spectra for these compounds are shown

in Figures 9,7 and 9,8. No such spectra could be observed in the

Nonidet P42 solubilized microsomes.

The most interesting feature of the results of this

experiment is that difference spectra were only observed when the side

chain was shorter than cholenol. It has previously been demonstrated

that these compounds when incubated with native microsomes produce

several oxidation products in contrast with those compounds which do

not induce type I difference spectra, which are either not hydroxylated

or are hydroxylated to form only one product.

This is perhaps further evidence that sterols with side

chains shorter than cholenol bind to a general pool of cytochrome P-450

which is capable of hydroxylation at many sites. In this respect,

such a lack of specificity in the hydroxylation process is similar to

that shown by drug hydroxylating cytochrome P-450.
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SUMMARY

Cholesterol 7ol-hydroxylase has been shown to

exhibit a high degree of specificity towards the side chain of

cholesterol. This is in contrast with the side chain cleavage

enzyme of bovine adrenal cortical mitochondria.

( 2)
The kinetics of hydroxylation of 26 norcholesterol

and cholesterol have been compared, and it has been shown that both

the K and V for the hydroxylation of norcholesterol were
m max

similarly reduced.

(3) Sterols which were hydroxylated at several sites

produced difference spectra on addition to native microsomes in

contrast to those sterols which were either not metabolised or

hydroxylated to a single product; these did not produce any

difference spectra.



SECTION 10

DISCUSSION

The regulation of bile acid synthesis was shown by

Bergstrom et al (161) to be dependent at least in part on the

concentration of bile acids returning to the liver in the portal

blood. The exact mechanism by which bile acids regulate their own

synthesis is still obscure since the conditions which affect the rate

of bile acid synthesis also affect the rate of synthesis of

cholesterol, from which the bile acids are derived. Thus an increase

in bile acid synthesis is often associated with an increase in

cholesterol synthesis, and it is still not clear whether the increase

in cholesterol synthesis precedes,is concomitant with, or follows,

the increase in the rate of bile acid synthesis. This relationship

is discussed more fully in the Introduction. It is now clear,

however, that the rate of synthesis of both cholic and chenodeoxy-

cholic acids is dependent primarily on the activity of the enzyme

catalysing the first step in the transformation of cholesterol to bile

acids, namely, the cholesterol 7o<-hydroxylase. Purification of this

enzyme will provide some answers relating to the hydroxylation of

cholesterol to 7c< -hydroxycholesterol, but would not reveal the

mechanism of regulation of bile acid synthesis or cholesterol

7o<.-hydroxylase activity in the endoplasmic reticulum. However,

purification will show the essential components of the cholesterol

7 ^-hydroxylase complex and whether the concentration of any of these

components is increased upon induction of the hydroxylase by breaking

the enterohepatic circulation through cannulation of the bile duct or

by feeding cholestyramine resin. Also possible would be observation

of the effects of modifiers on cholesterol 7ck -hydroxylase in the
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Figure 10,1 .

Schemes showing how the concentration of "bile salts

could regulate the activity of cholesterol 7a-liy3roxylase.
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absence of complications due to impurities. The mechanism of

catalysis and the stoichiometry of the 7«- -hydroxylase reaction could

be studied unhindered by the multiplicity of reactions in which NADPH

and oxygen are involved in native microsomes. Purification of the

protein synthesized in response to cholestyramine feeding, and which

is responsible for the increase in activity of cholesterol 7°<- -hydroxy¬

lase, would allow the study of the mechanism of induction of this

enzyme. This would be of interest not only to students of

cholesterol 7°<—hydroxylase but also to those interested in hepatic

protein synthesis, as cholestyramine feeding is known to induce few

proteins other than cholesterol lot—hydroxylase. It is interesting

at this point to speculate how bile acids could regulate the activity

of cholesterol lot -hydroxylase since a direct effect, as discussed in

the Introduction, can be ruled out. At least three possibilities

exist and these are presented in Figure 10,1.

The first mechanism involves bile acids entering the

hepatocyte and combining with a regulator protein in the nucleus to

form a complex which binds to the operator of a gene preventing

transcription. Reducing the concentration of bile salts would cause

dissociation of the regulator from the gene allowing transcription of

a messenger RNA specific for a protein necessary for the 7 <=C-hydroxy-

lation of cholesterol.

The second and third possibilities are similar inasmuch as

a messenger RNA would be synthesized in response to bile salts

combining with a regulator protein; this message would code for

either a specific ribonuclease or a protease which would decrease the

half-life of either the cholesterol 7<X-hydroxylase message or its

product. It has not yet been established whether the increase in

cholesterol 7ot -hydroxylase activity is due to an increased rate of
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its synthesis or a decrease in the rate of its degradation, although

Gielen et al (18) have concluded that since the half-life of

cholesterol 7*4 -hydroxylase measured from the rate of decay during

the diurnal rhythm is less than that in the absence of protein

synthesis, (i.e. cycloheximide treated), that an active degradation

mechanism, requiring the synthesis of protein, is involved in the

regulation of cholesterol 7**.-hydroxylase activity.

There is substantial evidence that both RNA synthesis and

protein synthesis are necessary for the rise in cholesterol 7°< -hydroxy¬

lase activity (12,17,18). Proof of any mechanism requires the isolation

of the protein necessary for the 7 °<--hydroxylation of cholesterol.

One of the major problems associated with the study of

cholesterol 7<* -hydroxylase in native microsomes is the large amount

of endogenous substrate. In control rats the amount of cytochrome

P-450/mg protein is about 0.3 nmoles, and cholesterol 7®C>-hydroxylase

represents perhaps 17o of this, i.e. 0.003 nmoles/mg protein. The

mass of cholesterol/mg protein is approximately 20J*-° which is about
50 nmoles/mg protein. Thus in control native microsomes, endogenous

cholesterol could be present in a 17,000 fold molar excess over

cytochrome P-450 involved in its hydroxylation if all the sterol could

act as substrate. The method used in this laboratory for the assay

r 14of cholesterol 7e4-hydroxylase is to add I 4 - C jcholesterol to the
microsomes. Balasubramaniam et al (182) have demonstrated that there

is compartmentation of cholesterol and that only 70% of the total is

available to the enzyme during the course of the assay.

In another paper, Mitropoulos suggested that newly

synthesized cholesterol was the preferred substrate for the enzyme

(163). This idea of different cholesterol pools is shown in



[U-1]chole sterol

Dietary and

synthesized
cholesterol

Figure 10,2.

A model to show the compartmentation of cholesterol

in rat liver microsomes.
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Figure 10,2. It has been stressed by Bjorkhem et al (11) that this

compartmentation is of minor consequence when considering the results

cholesterol to 7o(-hydroxycholesterol and those obtained by

the laborious (and not entirely quantitative) technique of Mitropoulos

though not always possible, to have available a quantitative assay for

the determination of specific activity which may be carried out in

minutes. In the case of cholesterol 7©(-hydroxylase, the time

required for assay is at least 4 hours and this, as Gaylor (93) has

pointed out, is a serious handicap. It is clear that a purified

system would allow measurement of NADPH oxidation and also oxygen

consumption.

release it from the microsomal membrane by mechanical methods, and also

by enzymatic techniques, and therefore the technique devised by Lu et al

(79) was used. As described earlier, many hydroxylating systems

involving cytochrome P-450 have been solubilized by sodium cholate and

deoxycholate, and the singular sensitivity of cholesterol 7oc-hydroxy-

lase to these bile acids is further evidence that this mixed function

oxidase is different from the drug hydroxylating mixed function oxidase.

A reconstituted cholesterol 7«<-hydroxylase system, solubilized by

sodium cholate, has been reported by Bjorkhem et al (86) but this

preparation has an activity which is stimulated only four-fold by

addition of reductase to the cytochrome P-450 fraction, and the

percentage conversion of cholesterol to 7<X -hydroxycholesterol was

maximally 0.4%. No mention was made of the activity in microsomes

obtained by measuring the percentage conversion of

(141).

During the purification of an enzyme it is desirable,

Cholesterol 7o£-hydroxylase resisted all attempts to
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before solubilization. The sensitivity of this enzyme to bile salts,

particularly deoxycholate, might only be a property of the enzyme

found in rat liver. In man, deoxycholate represents a substantial

proportion of the circulating bile acids. This bile acid also

appears in the bile duct and gall bladder. This is in contrast to

the rat where it has been demonstrated that any deoxycholate returning

to the liver is very rapidly converted to cholate by a specific tauro-

deoxycholate 7oC -hydroxylase. This has led to the suggestion that the

rat is particularly sensitive to this powerful detergent (164). In

the same way, chenodeoxycholate, which is a strong detergent, is rapidly

converted by a 6^ - hydroxylation toy^ muricholic acid, a weak
detergent (165,166). Of the other detergents used, only Nonidet P40

solubilized cholesterol 7o4-hydroxylase with retention of activity.

The trial and error nature of finding a detergent which solubilizes

without inhibition is demonstrated by the fact that Triton X-100,

p-t-octylphenol polyethyleneglycol condensate (9-10 moles PEG) and to

a lesser degree Tween 80, polyethyleneglycol sorbitol mono-oleate

(20 moles PEG), both having very similar empirical formulae to

Nonidet P40 (polyethyleneglycol, p-t-octylphenol, 9 moles PEG) inhibit

strongly the activity of cholesterol 7<=<-hydroxylase. The use of

Nonidet P40 in the solubilization of proteins has not been extensive

but has been used in the preparation of polyribosomes (167) and of

H2 alloantigens (168) and also in the isolation of protein bodies from

developing wheat endosperm (169,171).

In relation to the observed compartmentation of cholesterol

in native microsomes by Balasubramaniam et al (162), it is possible that

one of the results of solubilization of microsomes by Nonidet P42 is

that the pools of sterol which obtain in native microsomes are

destroyed, so that radioactive cholesterol equilibrates with a
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homogeneous endogenous cholesterol pool, all of which may be equally

accessible to cholesterol -hydroxylase.

It was observed that when very low concentrations of

detergent were added to native microsomes, activation of cholesterol

7oC-hydroxylase occurred, and therefore the rate determining step in

the hydroxylation was increased. But at this concentration cytochrome

P-450 reductase was inhibited, and it therefore seems unlikely that

reduction of cytochrome P-450 is rate limiting in the 7«><-hydroxylation

of cholesterol. Nonidet P42 does, however, give a type I binding

spectrum at this concentration, and the activation may be associated

with this observation. It has been shown that aminopyrine which also

binds to cytochrome P-450 to generate a type I difference spectrum

activates cholesterol 7®<-hydroxylase by an unknown mechanism (34).

Another possibility is that the detergent makes the membrane more fluid,

allowing more rapid access of the enzyme to subtrate, and allowing the

constituent proteins of the enzyme complex to move more rapidly.

Both acetone and butanol powders were activated when

solubilized by the addition of 3.5^x1 Nonidet P42/mg protein. Figure
10,3 demonstrates that the increase in activity is a result of an

increased initial velocity, linear to 40 min, but because the shape of

the percentage conversion vs time plot for both insoluble and soluble

butanol powders are the same, there is a relationship between the

velocity of cholesterol 7°<.-hydroxylase and the extent of conversion

after 1 hour.

It is possible that during the preparation of an acetone or

butanol powder, phospholipid is removed and Nonidet P42 mimics the lipid

environment. Schulze et al (170) have observed that if microsomes are

treated with phospholipase C or acetone:water, 9:1, loss of phospholipid
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parallels loss of NADH-semidehydroascorbic acid oxidoreductase. This

loss of activity could not be reversed by addition of phosphatidyl

choline but could be reversed by a variety of detergents, the most active

being Triton X-114, an octyl phenol polyethylene oxide (av. 7.5 moles

ethylene oxide). It is interesting that knowledge concerning the

effects of detergents on biological systems is scant, and no

predictions can be made as to how a detergent may react on different

enzymes. The activation of cholesterol 7®<-hydroxylase by Nonidet P42

while diminishing other associated reactions is not without precedent

as it has been observed that Tween 80 stimulates aniline 4-hydroxylation

but inhibits biphenyl hydroxylation (172).

A preparation of microsomes treated with Nonidet P42 is

soluble as judged by the criterion of prolonged ultracentrifugation.

It has been suggested that this criterion does not differentiate

between complete (molecular species) and incomplete solubilization.

Nevertheless, centrifugation is an extremely useful test of

solubilization, and particle size resultant from solubilization is

certainly no criterion of the ability to purify a constituent protein

to homogeneity. It has been shown by Holtzman (173) that the initial

solubilization of microsomes by deoxycholate, a bile salt which has

been found by Lu et al (79) to be very useful in the purification of

cytochrome P-450, leads to particles, measured by inelastic laser beam

scattering, of sizes ranging from 76 nm to 265 nm in diameter,

suggesting that the mixed function oxidase components are present as

aggregates. Much more important than the size of the particle is the

observed behaviour of Nonidet P42 solubilized microsomes on DEAE-

cellulose. It is clear that three of the known components of the

microsomal mixed function oxidase system are separable from each other,

and that none of these fractions has cholesterol 7oC-hydroxylase activity.
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However, on recombination of the cytochrome P-450 fraction with the

NADPH-cytochrome c oxidoreductase fraction, cholesterol 7c(.-hydroxylase

activity was restored. This reinforces the idea that cholesterol

7o(,-hydroxylase is a mixed function oxidase having as the terminal

oxidase cytochrome P-450. Of these two fractions necessary for

reconstitution of activity, it was demonstrated that the factor

governing specificity resided in the cytochrome P-450 fraction. For

this reason, several techniques were employed in an effort to obtain

homogeneous cytochrome P-450 so that its capacity to transform

cholesterol to 7o(.-hydroxycholesterol could be tested. The cytochrome

P-450 containing fraction, however, proved difficult to purify, but

when cytochrome P-450 was purified further, on recombination with

NADPH-cytochrome c oxidoreductase, cholesterol 7«4-hydroxylase

activity could be reconstituted.

Another interesting point arising from this experiment of

recombining cytochrome P-450 from liver microsomes of cholate fed and

cholestyramine fed rats with flavoprotein was that under the conditions

of assay, because the rate of reaction was proportional to cholesterol

concentration, the percentage conversions would not be affected by

relatively large changes in sterol concentration. That there was a

large difference in percentage conversion is further evidence that in

cholestyramine fed rats the increase in 7c>< -hydroxylation rate is

dependent on enzyme concentration rather than, as has been suggested,

by cholesterol concentration.

Cholesterol 7®<-hydroxylase was active under conditions

where cytochrome b^ was undetectable. Furthermore, addition of this
haemoprotein inhibited the activity. The role of cytochrome b<. in

hydroxylation reactions is still unresolved, and although it may be

involved in the synergistic effect of adding NADH to incubations
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containing sub-optimal concentrations of NADPH, it appears not to be

an obligatory component of cytochrome P-450 dependent reactions.

Cytochrome b,_ has been found to be a necessary component of a

reconstituted desaturase system (174) for which there is also

immunochemical evidence (177), and is thought to play a part in the

NADH and NADPH dependent hydroxylation of lauric acid (175). An

interesting observation by West et al (176) was that in the NADPH

dependent hydroxylation of chlorobenzene by cytochrome P-450, cytochrome

b^ was required for maximal activity; such an involvement was not
necessary for maximal activity when cytochrome P-448 was the terminal

oxidase. However, it is still not clear whether cytochrome P-450 is

a different haemoprotein from cytochrome P-448, the different spectral

and catalytic properties may be a reflection of different environments

of the haemoprotein. Thus cytochrome b^ may alter the environment of
cytochrome P-450 in the above case without being involved in electron

transfer. In the case of cholesterol 7oi. -hydroxylase, activity could

be reconstituted when cytochrome P-450 and NADPH-cytochrome c oxido-

reductase, neither of which contained detectable cytochrome b,_, were

recombined. Cytochrome b^, therefore, does not appear to play an
obligatory role in this reaction.

One of the unusual features of the liver microsomal mixed

function oxidase is the apparent absence of non-haem iron. In the

bacterial system of Pseudomonas putida, NADPH transfers electrons to a

flavoprotein putidaredoxin reductase. This reductase in turn reduces

a non-haem iron putidaredoxin which donates electrons to cytochrome P-450.

Mitochondria of the adrenal cortex contain a similar electron transport

chain containing the non-haem iron adrenodoxin. These systems are

presented in Figure 10,4.

Analysis of total iron in microsomes revealed that if there
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was non-haem iron present it would contribute less than 10% of the

total iron (ITS'). Non-haem iron is not necessarily a sine qua non, and

an intermediate carrier is postulated becase of the large difference

in redox potential of about 500 mvolts between flavoprotein and

cytochrome P-450. Very recently, Salerno et al (179^ have reported

the presence of an e.p.r. signal at g = 1.93 and g = 1.88, which they

suggest could be manifested by an iron sulphur protein. However, this

species has a mid-point potential of -0.27 volts and would not,

therefore, seem to satisfy the requirements of an intermediate carrier,

Factor X. Factor X was postulated by Siekevitz (180) as he observed

in the livers of rats from 18-day foetus to 8 days of age, that NADPH-

cytochrome c oxidoreductase and cytochrome P-450 rose to 100% and 80%

respectively of the adult level after +7 days, but that neotetrazolium-

NADPH oxidoreductase and demethylation rose only to about 30% of the

adult level. Thus Factor X would be a rate limiting factor in the

electron transport chain to neotetrazolium and cytochrome P-450, as

depicted in Figure 10,5. NADPH-cytochrome c oxidoreductase solubilized

by trypsin was found not to support the hyaroxylation of cholesterol,

and Lu et al have observed that this preparation will not reduce

cytochrome P-450 (181). In this respect it is interesting that trypsin

solubilized NADPH-cytochrome c oxidoreductase will not reduce neotetra¬

zolium salts except in the presence of lecithin (65). Ichihara et al

(90) have reported that NADPH-cytochrome c oxidoreductase solubilized by

Triton X-100 could support the CO -hydroxylation of lauric acid when

recombined with cytochrome P-450. Treatment of this fraction by

Sephadex G-100 or with trypsin yielded preparations which were

indistinguishable from steapsin or trypsin solubilized NADPH-cytochrome

c oxidoreductase. This preparation would not support fatty acid

CO-hydroxylation except in the presence of NADPH-ferredoxin reductase.
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It is possible that the detergent solubilized flavoprotein contains

two electron carrier components necessary for the transfer of

electrons to cytochrome P-450. Such a scheme is demonstrated in

Figure 10,6.

The effect of Nonidet P42 on NADPH-cytochrome P-450

reductase is interesting as it could mean that the rate of reduction

of the cytochrome is not the rate determining step in the hydroxy-

lation of cholesterol. The other possibilities are that the

reduction of cholesterol specific cytochrome P-450 is so small as to

be unobservable, or that another, as yet unidentified, terminal

oxidase is involved in the hydroxylation. If the reduction of this

haemoprotein is not the rate limiting step, it is interesting to

speculate on which step is, in fact, rate determining. Evidence

presented by Brown et al (12) was used to support the idea that the

formation of the enzyme-cholesterol complex is the slow step in the

overall reaction of the 7o<.-hydroxylation of cholesterol. However,

it was observed that the Michaelis-Menten parameters, K and V , for
m max

cholesterol and cholesterol 7ek -hydroxylase varied in parallel on

addition of Nonidet P42 to an acetone powder. The K and V for
m max

norcholesterol were also reduced by the same factor when compared with

the K and V for cholesterol. This could be interpreted as the
m max

Michaelis constant approximating to in the scheme:-

kl k3
E + S ~ N E S ^E + P

k2

Since V in such a scheme only involves k„, such a
max J 3

suggestion would mean that k, was unaltered even though K changed.1 m

When a butanol powder was incubated with equimolar masses of cholesterol
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and norcholesterol, the latter was hydroxylated to an extent 60% that

of the cholesterol hydroxylation. If the mechanism postulated were

applicable, such a decrease in velocity would not be accounted for by

a decrease in the rate of formation of the enzyme-substrate complex,

that is, by a change in k^. Another consequence of such a mechanism
would be that the rate determining step in the hydroxylation of

cholesterol and norcholesterol would occur after the formation of the

enzyme-substrate complex; such a change in would also have to account

for the remarkable specificity of cholesterol 7o<.-hydroxylase.

Another mechanism which would also lead to parallel changes of K and
m

V is described below,
max k

E + S

* 3
e s > e + P

oductive complex

k5 ^<^4 e s
non-productive complex

Assuming

D d [e S*} ± Q = kl [e].[s] - (k2 + k3) [e s*]
d "

f *12) velocity, v = [^E Sj '
3) max velocity, V = k. ( El ,

max 3 tJ total

4) [iot.i - M - [E §+ [e s*]
5) d [e s] = 0 = k4 [E](s] - k5 [e s]

d t

[E s] - \MB - K„"P 'Et|s|
k5

then
f n

(+ JS21
v = V

max

k (1 + Cs] ) +TsT
K L J
np

M - ,tT
K,

J<-
( ■+■

K,

+ C*]
r



Thus as K —£ oO , v V
np max
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H
K„ + mm

but as the degree of non-productive binding increases, i.e. as K
np

decreases, both V and K are decreased by the factor (L^fslSfA L'
max m ^ 1

k ^ (+ *5^
np K

The suggestion here is that a reduction in V represents an increase°
max

in binding of substrate to the "enzyme" in a position which is not

favourable for hydroxylation. Such a decrease would result in a

decrease in K .

m

In relation to the rate determining step in hydroxylation

reactions, it has been observed by Strobel et al (114) that phospholipid

(lecithin) was required for maximal reconstitution activity. It was

not found necessary to supplement the reconstituted cholesterol

7o<-hydroxylase, solubilized by either cholate (143) or Nonidet P42,

and this could be taken as further evidence that the mechanism of the

7o<-hydroxylation of cholesterol is different from drug hydroxylation.

To obtain more information regarding the absolute requirement of

phospholipid, a butanol powder was prepared from rat liver microsomes

in which the phospholipid content was reduced to ca.507«. In contrast

to the results of Vore (152) no activation of benzphetamine

demethylase occurred on addition of phospholipid, neither was there

inhibition. Cholesterol ^-hydroxylase, on the other hand, was

apparently inactivated by the addition of phospholipid. Phospholipid

has been suggested as being the Factor X between reductase and

cytochrome P-450, but this seems unlikely as no readily oxidised or

reduced moiety is present in lecithin. It is more likely that

phospholipid creates a membrane-like environment for cytochrome P-450

which alters the conformation of this haemoprotein, as Narasimhulu (182)

found that on butanol extraction of bovine adrenal microsomes 80% of the
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phospholipid was removed, and 907» of the steroid 21 hydroxylation was

lost. Addition of phospholipid only partially restored activity,

but Triton X-114 fully restored the activity.

Studies on the specificity of cholesterol 1*< -hydroxylase

demonstrated that this enzyme was very sensitive to changes in the side

chain of sterols. The fact that nor-cholesterol, which differs from

cholesterol by only a loss of a single methyl group at C25, is

7*X-hydroxylated very much less efficiently than cholesterol, and 26

dimethyl norcholesterol even less efficiently suggests that the binding

site governing specificity must span a distance of over 2 nm. It is

not understood why the liver microsomal cholesterol 7ot-hydroxylase

should have such stringent requirements for the structure of the side

chain, particularly when contrasted with the rat adrenal cortical

mitochondrial enzyme which is associated with the hydroxylation of the

side chain, the cholesterol side chain cleavage enzyme. Apart from

differences in the rate of 7o*.-hydroxylation, or the rate of formation

of a single product, consistent with a -hydroxylation, of the

analogues tested it was also observed that when the side chain was short,

i.e. bis-norcholenol and smaller, the sterol was multiply oxidised.

This increase in the number of products formed could be correlated with

the appearance of a type I binding spectrum of these sterols with

cytochrome P-450. This perhaps suggests that (a) the mechanism of

hydroxylation of the short chain sterol, e.g. pregn-5-ene-3^-ol is
different from the hydroxylation of longer chain sterols, e.g.

cholesterol, and (b) that a different cytochrome P-450 species is

responsible for the 7®4-hydroxylation of cholesterol from that species

required for the hydroxylation of the short chain sterols.

In the case of pregn-5-ene-3^-ol, it has been shown by
Brown (34) thatp -mercaptoethylamine inhibits the formation of all
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Figure 10,7.

The probable stabilization of a free radical,, at

Carbon atom 7 "by the 5 double bond.
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products resultant from incubation of this sterol with microsomes.

In connection with this observation, it has recently been found that

^ -mercaptoethylamine abolishes ethylmorphine demethylase activity (183).
This amine has been used for several years in this laboratory as it

prevents the formation of autoxidation products of cholesterol, as also

does addition of the post-microsomal supernatant (184). It has been

suggested by Mitton (185) that because the 7 position in cholesterol

is allylic, free radical formation at the 7 position could be

stabilised as in Figure 1.0,7. Certainly such autoxidation problems

are not observed when cholestanol is used as a substrate for 7®C-

hydroxylation. It is, therefore, possible that oxidation of the short

chain sterols proceeds by a free radical mechanism perhaps different

from the 7o<.-hydroxylation of cholesterol. This might also explain

why superoxide dismutase, which inhibits the demethylation of

benzphetamine, has no effect on the 7c>l -hydroxylation of cholesterol.

It would be interesting to observe whether superoxide dismutase

inhibited the formation of products when pregn-5-ene-3^-ol was
incubated with solubilized microsomes.

The distinction between two possible mechanisms by which

the specificity of cholesterol 7oC-hydroxylase is governed is not yet

clear from the combined results of partial purification and substrate

specificity. That the enzyme is different from the drug hydroxylation

system seems clear, but specificity could be the result of a

cholesterol specific cytochrome P-450 or the result of some other

specifier protein conferring on a general pool of drug hydroxylating

cytochrome P450, characteristics of cholesterol 7o«L~hydroxylase. It

seems likely that the substrate is held in a hydrophobic pocket of the

cytochrome P-450, probably by interaction of the 26 and 27 methyl groups

of cholesterol to form a productive complex. Such a complex would, in
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all probability, require that the 7 position of cholesterol was

juxtaposed to an oxygen molecule, activated in some as yet unspecified

way by binding to the iron ion, held in the tetrapyrole ring system.

The observation that 26 dimethylnorcholesterol and ^-sitosterol are
very poor substrates for cholesterol 7©< -hydroxylase, probably means

that the side chains of these sterols are too large to bind to the

enzyme to form a productive complex. In the case of norcholesterol

and cholenol, it is possible that these sterols are not constrained in

a complex which is productive and may be tumbling in the hydrophobic

cleft but nevertheless can bind to form non-productive complexes.

Desmosterol, on the other hand, by virtue of its two terminal methyl

groups, 26 and 27, can be held in a configuration where 7°^ -hydroxylation

can take place and is hydroxylated as readily as cholesterol.

Although no evidence can be produced for the existence of

a cholesterol specific cytochrome P-450, a recent paper by Haugen et al

(107) demonstrated the existence of four cytochromes P-450 which were

induced by phenobarbital or^-naphthoflavone, and which showed
different reactivities to substrates such as benzphetamine, p-nitroanisole,

testosterone and biphenyl. These proteins have different electro-

phoretic mobilities and slightly different absorption maxima of the

reduced CO - reduced complex. Apart from the possibility that there

may be a specific cytochrome P-450 for the 7oC-hydroxylation of

cholesterol, Alvares and Siekevitz (186) have suggested that cytochrome

P-450 exists as a tetramer, only some of these sub-units containing haem,

the others binding substrates differentially. It was suggested that

upon induction with phenobarbital or methylcholanthrene, the different

catalytic activities were a reflection of a different composition of the

tetramer by the different sub-units.
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The number of compounds which may act as substrates for

the rat liver microsomal mixed function oxidase system is vast. Apart

from the large number of foreign compounds which may be hydroxylated,

naturally occurring compounds such as sterols are extenisvely oxidised.

Probably only the quaternary carbon atoms C 10 and C 13 of the sterol

nucleus may not be hydroxylated by cytochrome P-450. To postulate a

specific cytochrome P-450 for each substrate seems unattractive in

terms of both the energy required for their synthesis and also the

number of cistrons required for their coding. For this reason it is

more attractive to envisage a general pool of a few species of cyto¬

chromes P-450 which have the capacity to support the hydroxylation of

the great number of substrates which differ markedly in their structure.

In this sense, the enzyme is envisaged as being non-specific. Any

apparent specificity observed would not be due to the enzyme binding

preferentially a particular substrate with the exclusion of other

substrates of different structure, but due to the substrate in a large

hydrophobic cleft assuming a conformation which is most thermodynamically

favourable for hydroxylation. Thus aniline would perhaps be

hydroxylated in the para position because the amine activates this

position by donating electrons to the aromatic ring.

There seems little doubt that the -hydroxylation of

cholesterol is catalysed by a cytochrome P-450 since the reaction is

inhibited by carbon monoxide, an inhibition optimally relieved by

light of wavelength 450 nm, but many observations lead to the

conclusion that this cytochrome P-450 is different from the bulk of

this haemoprotein. Cholesterol 7<X-hydroxylase, in contrast to the

drug hydroxylases, is not induced by phenobarbital or 3-methyl-

cholanthrene, but is stimulated by biliary drainage or treatment with

cholestyramine resin. The enzyme is also more sensitive to detergents



and ionic strength than other drug hydroxylating enzymes.

The half-life of cholesterol 7«*. -hydroxylase of about

3 hours is probably necessary as the enzyme is immersed in a membrane

containing its substrate cholesterol, and possibly 707» of this sterol

is available to the enzyme as substrate. It is likely, therefore,

that a rapidly turning over enzyme is required to control quickly the

formation of bile acids and maintain the integrity of the microsomal

membrane.

The rate of formation of 7o4-hydroxycholesterol from

cholesterol is about two orders of magnitude lower than the rate

observed for the demethylation of aminopyrine (12), but the energy of

activation for both hydroxylations is comparable. This, perhaps, is

evidence that there is present in microsomes a cytochrome P-450,

specific for cholesterol whose concentration is only 17. that of the

bulk cytochrome P-450. The other possibility is that another protein

is necessary to donate cholesterol to a general pool of cytochrome

P-450 for specific 7o<.-hydroxylation. Whether such a specifier protein

or a specific cytochrome P-450 is postulated, it is now known that the

structural requirements for the smooth 7ot—hydroxylation of substrate

are stringent, in contrast to the drug hydroxylations. The idea of a

specifier protein is not as appealing as a specific cytochrome P-450,

as one might expect cholesterol in the absence of a specifier protein to

be extensively oxidised. That this is not the case might suggest that

the binding site of the drug hydroxylating cytochrome P-450 is not large

enough to accommodate cholesterol, which has a bulky side chain, an

important feature in the determination of substrate specificity.

Certainly as the length of the side chain is reduced, hydroxylation more

typical of the drug hydroxylation system takes place. However, these

two possibilities by which specificity can be governed can only be

distinguished by purification of cytochrome P-450 to homogeneity.
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1. Introduction

The 7 a-hydroxylation of cholesterol is considered
to be the first and rate limiting step in the transfor¬
mation of cholesterol to bile acids [1,2]. Cholesterol
7 a-hydroxylase (EC 1.14) is located in the micro¬
somal fraction of rat liver and requires NADPH, mole¬
cular oxygen, and an electron transport system invol¬
ving cytochrome P-450 and NADPH-cytochrome c
oxido-reductase [3—7]. When the concentration of
bile acids in the enterohepatic circulation is lowered,
either by cannulation of the bile duct or by feeding
rats a bile acid sequestrant, the specific content of
cytochrome P-450 remains constant, but the specific
activity of cholesterol 7a-hydroxylase is increased
3-fold [1,3]. Cholesterol 7a-hydroxylase appears
to be more sensitive to detergents and salts than
other cytochrome P-450 dependent reactions [8].
It is therefore likely that the bulk of the liver micro¬
somal cytochrome P-450 is not associated with
cholesterol 7a-hydroxylase activity. To study this
enzyme in greater detail, it is first necessary to release
it from the microsomal membrane. The mixed
function oxidase system from rat liver microsomes
has previously been solubilized and fractionated [9],
but these methods rely on the detergency of sodium
cholate or sodium deoxycholate. Since these detergents
are both strong inhibitors of cholesterol 7a-hydroxy-
lase it was necessary to explore other methods for the
solubilization of this mixed function oxidase.

2. Materials and methods

Liver microsomes from rats fed a diet containing
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4% w/w cholestyramine (a bile acid sequestering agent)
were prepared in the usual way [10]. Microsomes
from four livers (total 32 g wet weight) were resusp-
ended in 0.154 M KC1 to give a final volume of 7 ml.
An aliguot of this suspension was added dropwise to
100 vol of stirred acetone cooled to approx. —30°C.
The acetone was immediately filtered through a
Buchner funnel, and the powder washed with diethyl
ether then acetone, both cooled to —30°C. The
powder was kept in vacuo at room temperature for
one hour, then stored at —20°C. Cholesterol 7a-
hydroxylase activity was retained for several weeks.

Cholesterol 7a-hydroxylase activity was assayed
as described previously [10].

Cytochrome P-450 and cytochrome b5 were
measured according to the method of Omura and
Sato [11].

NADPH-cytochrome c oxidoreductase activity
was assayed by adding an aliquot of the sample to
2.8 ml 0.1 M potassium phosphate buffer pH 7.55,
1 mg cytochrome c, 100jul NADPH generator (0.5
/umol NADP+, 5 jumol glucose 6-phosphate and 0.5
IU glucose 6-phosphate dehydrogenase). The difference
in absorbance between 551 nm and 540 nm was

measured.
Protein was determined by the biuret method [12].

Cholesterol was measured by gas-liquid chromato¬
graphy on a 1% SE30 column using pregnenolone
acetate as the internal standard.

Nonidet P40 was obtained from BDH Chemicals

Ltd., Poole, England. This surface active agent is an
octyl-phenol-ethylene-oxide condensate, (average
nine mol ethylene oxide). Other reagents used were

North-Holland Publishing Company - Amsterdam
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the highest grade commerically avaible.
For solubilization, the acetone powder or micro¬

somal suspension in 0.1 M phosphate buffer pH 7.6
was cooled to 0—4°C. After addition of Nonidet P42
detergent, the suspension was kept on ice for 20 min,
stirring occasionally.

3. Results

An acetone powder was used to test the ability
of enzymes and surface active agents to solubilize
cholesterol 7ct-hydroxylase. The results of these tests
are summarized in table 1. Although most detergents

Table 1
Effect of solubilizing agents on the activity of cholesterol 7a-hydroxylase

in rat liver microsomal acetone powder

Conditions Suspension Supernatant Pellet

Sodium cholate
1.5 mg/mg
protein

Sodium deoxy-
cholate 1.5 mg/mg
protein

Phospholipase A
(from Crotalus
adamanteus venom,
4 pU/mg acetone
powder)

3 M Urea

8% Butanol

Pancreatin 5 mg/60
mg acetone
powder

Naja naja venom;
5 pg and 1 mg/40 mg
acetone powder

0.1% and 1% Lubrol
WX

0.1% Lubrol W

0.1% Triton X-100

1% Digitonin

0.1% and 2% cetyl
trimethylammonium
bromide

0.1% and 2% Saponin

0.1% Tween 80

0.1% Nonidet P40

0.1% Nonidet P42

70% inhibition 70% inhibition 80% inhibition

inactive inactive inactive

inactive

inactive

active

inactive

inactive

inactive

inactive

inactive

90% inhibition inactive

90% inhibition inactive

inactive

inactive inactive

inactive

inactive

inhibition

active

active

inhibition

active

active

some loss of

activity

inactive

inactive

active

inactive

inactive

inactive

inactive

loss of activity

loss of activity

Acetone powder (approx. 50 mg.) was suspended in 12 ml 0.1 M potassium
phoshate buffer pH 7.7 and treated with the solubilizing agents shown in
the table. Cholesterol 7(^hydroxylase activity was measured as described
previously 110].
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solubilized cytochrome P-450, all but Nonidet P42
led to substantial inhibition of cholesterol 7a-hydr-
oxylase. The surfactant Nonidet P42 (a 27% solution
of Nonidet P40 in water) solubilized the components
of the microsomal mixed function oxidase, and the
resultant supernatant after centrifugation at 100 000 g
for 1 hr still retained cholesterol 7«-hydroxylase
activity.

3.1. Effect of concentration ofNonidet P42 on the
solubilization ofacetone powder

To determine the optimal conditions for solubili¬
zation of cholesterol 7a-hydroxylase, an acetone
powder was suspended in 0.1 M phosphate buffer
pH 7.6 at 0°C and increasing amounts of Nonidet P42
added. The percentage solubilization of protein,
cytochrome P-450, cytochrome b5, NADPH-cyto-
chrome c reductase, and the activity of cholesterol
7a-hydroxylase is plotted against Nonidet P42
concentration in figs.l and 2. From these graphs it

Fig.2. Experimental details were as in fig.l. Cholesterol
7a-hydroxylase activity was determined in the supernatants
and resuspended pellets and expressed as the percentage
conversion of [4-MC] cholesterol to [4-14C] 7a-hydroxy-
cholesterol.

Fig. 1. 30 mg liver microsomal acetone powder (15 mg

protein) were suspended in 10 ml of 0.1 M phosphate
buffer, 1 mM EDTA pH 7.55, and solubilized, as
described in the text, with increasing quantities of
Nonidet P42. After centrifugation at 105 000 g for 1 hr,
the pellets were resuspended in 10 ml of buffer and the
suspensions and supernatants assayed for protein, cytochrome
R-450, cytochrome b$, and NADPH cytochrome c oxido-
reductase. Percentage solubilization is the ratio

supernatant assay
^ j

supernatant assay + pellet assay

may be seen that the gradual release of cholesterol
7a-hydroxylase into solution follows the progress
curve of solubilization of the mixed function oxidase

components. Nonidet P42 solubilizes effectively
over the concentration range 2—6 pi Nonidet P42/mg
protein, but there is a narrow concentration range
where substantial activation of cholesterol 7a-

hydroxylase occurs.

3.2. Criterion of solubility
A solubilized rat liver microsomal acetone powder

was centrifuged at 100 000 g for 7 hr, and after this
period, results showed that approximately 75% of
the enzyme activity still remained in the supernatant
fraction. Since the enzyme may have lipoprotein
characteristics, the specific gravity of the superna¬
tant was determined and found to be 1.014.

3.3. Effect ofNonidet P42 on native microsomes
The applicability of the method used on a micro¬

somal acetone powder to solubilization of native
microsomes was studied using rat liver microsomes. A
gradual release of mono-oxygenase components into
solution on increasing the concentration of Nonidet
P42 was again observed, and at a concentration of
4 pi Nonidet P42 X (mg protein)-1 over 90% of

1 2 3 4 5
|ll NONIDET P42/mg PROTEIN

70-

60-

40-

30-

♦ Protein

• Cytochrome P-450
▲ Cytochrome 65
■ NADPH -cytochrome c

oxidoreductase
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these components were solubilized. Cholesterol 7a-
hydroxylase was measured as a function of Nonidet
P42 concentration and results showed an activation
of the enzyme at low concentration 0.3 /d Nonidet
P42 X (nig protein) "1.

Increasing detergent concentration caused a loss
of activity in the pellet and a concomitant increase
in cholesterol 7a-hydroxylase activity in the super¬
natant after centrifugation. Maximum cholesterol 7a-
hydroxylase activity was observed in the supernatant
fraction when 4 /A Nonidet P42 X (mg protein)"'
was used for solubilization.

4. Discussion

Microsomes are a heterogeneous and complex
mixture and study of the components necessitates
solubilization. Cytochrome P-450 has proved to be
difficult to resolve and where enzymic activity is to
be studied, gentle solubilization procedures with
minimal loss of activity are usually necessary prere¬

quisites. Sodium deoxycholate holds the most
prominent position in solubilization of microsomes
as evidenced by the successful solubilization and
reconstitution of several cytochrome P-450 dependent
reactions, based on the method originally devised by
Lu et al. [13J. Non-ionic detergents have been used
by Miyake, [14] and more recently by Sato [15],
Imai and Sato [16] and Ichihara et al. [17]. Because
of the considerable inhibition of cholesterol 7a-hydr-
oxylase by sodium deoxycholate, trial and error use
of other surface active agents was employed, and it
was found that although many detergents were

capable of solubilizing microsomes, most inhibited or
inactivated cholesterol 7a-hydroxylase even when the
cytochrome R-450 content was not altered. Nonidet
P42 solubilized both microsomal acetone powder and
native microsomes with retention of cholesterol 7a-

hydroxylase activity. The apparent activity of
:holesterol 7a-hydroxylase solubilized from a liver
microsomal acetone powder is at least as great as the
control microsomal acetone powder with no added
detergent and in most cases, at a concentration of
approx. 3.5 jr 1 Nonidet P42/mg protein, there is a
very substantial activation. The reason for this acti¬
vation is not understood.

April 1975

With this preparation, resolution of the soluble
cholesterol 7a-hydroxylase is now in progress in this
laboratory.
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SUMMARY

The hydroxylation of several cholesterol analogues by rat liver microsomal
cholesterol 7a-hydroxylase has been studied. ^5-Pregnen-3/?-ol is hydroxylated to
several major products none of which is consistent with 7«-hydroxylation. /?-Sito-
sterol (24a-ethyl-/d5-cholesten-3/?-ol) is not hydroxylated to any significant degree.
26-Norcholesterol (26-nor-d5-cholesten-3/?-ol) is hydroxylated specifically in the 7a-

position but at a lower rate than cholesterol. These results suggest that the sterol .

7a-hydroxylation enzyme has a specific apolar binding site for the side-chain of
cholesterol.

INTRODUCTION

Recent work in this [ 1 ] and other laboratories [2, 3] has suggested on the
basis of several criteria that the cholesterol 7a-hydroxylase system of rat liver is distinct
from the drug hydroxylation system which is also located in the microsomal fraction
of rat liver. These studies have shown that the cholesterol 7a-hydroxylase has a much
more specific substrate requirement compared to the drug hydroxylation system which
will hydroxylate a wide range of substrates of very different chemical structure. Here
we report further studies which suggest that the substrate requirement of cholesterol
7a-hydroxylase is very much more precise than had previously been expected.

MATERIALS AND METHODS

[4-l4C]Cholesterol (d5-cholesten-3/?-ol) was obtained from the Radiochemical
Centre (Amersham) and was diluted to the required specific activity. /?-[22,23-3H2]-
Sitosterol (24a-ethyl-d5-cholesten-3/Tol) was a product of NEN Chemicals GmbH
(Frankfurt/Main). 26-[25-3H]Norcholesterol (26-nor-d5-cholesten-3/?-ol) and A5-

Abbreviations: Cholesterol, z(5-cholesten-3/?-ol. Norcholesterol, 26-nor-,45-cholesten-3/?-ol.
epiandrosterol, 24a-ethyI-2l5-cholesten-3/?-ol. Pregnenolone, 20-oxo-2t5-pregnen-3/?-ol. Dehydro-
/J-Sito-stenone, !9-oxo-2l5-androsten-3/?-oI.
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[2o-3H]pregnen-3/?-ol were synthesised from the corresponding 25- and 20-0x0
compounds, respectively, by methods which will be described elsewhere. The appro¬
priate oxo-steroid was reduced with NaB3H4 and the resulting alcohol converted to
the corresponding tosylate which was reduced with LiAlH4 to afford the required
steroid. Cholestyramine (Cuemid) was a product of Merck, Sharpe and Dohme.
NADP, glucose 6-phosphate and glucose-6-phosphate dehydrogenase were obtained
from Boehringer Mannheim GmbH (Mannheim). /TMercaptoethylamine was ob¬
tained from British Drug Houses Ltd (Poole). 7a-Hydroxycholesterol and 7a-hydroxy-
26-norcholesterol were synthesised from cholesterol and norcholesterol, respectively,
by a photo-oxygenation procedure [4]. Steroids obtained in sufficient quantity were
characterised by infrared and NMR spectroscopy, by mass spectrometry and by prep¬
aration of their benzoate derivatives. The purity of all compounds was monitored
by thin-layer chromatography, and radiochemical purity was established by thin-
layer chromatography coupled with a thin-layer chromatographic scanner and
crystallisation to constant specific activity.

Rats were treated as described previously [1] and the liver microsomal prep¬
aration obtained as previously described [5].

Incubations contained the substrate under examination added in solution in

50 n\ acetone [5] and /1-mercaptoethylamine (10 mM) was included in all incubations.
In the dilution experiment (Table II) 15 mg each of cholesterol and 7a-

hydroxycholesterol, norcholesterol and 7a-hydroxy-norcholesterol were added to the
appropriate incubation mixtures after the ending of the incubation in solution in
methanol. The steroids were extracted as before [5] and were separated by thin-layer
chromatography on plates t-mm thick (Kieselgel H, Merck, developing with benzene-
ethyl acetate, 7:13, v/v). After elution of the compounds from the appropriate bands
with ethyl acetate and evaporation of the solvent the steroids were recrystallised to
constant specific activity from methanol. The benzoates of the steroids were also pre¬

pared (benzoyl chloride-pyridine) and the derivatives recrystallised to constant
specific activity from methanol-ether.

RESULTS

Previous studies [1-3] have investigated the action of rat liver microsomes on

25-hydroxycholesterol, 26-hydroxycholesterol, pregnenolone (20-oxo-d5-pregnen-
3/T0I) and d5-pregnen-3/?-oI. We have further examined the oxidation of zl5-pregnen-
3/T0I and in addition that of //-sitosterol and 26-norcholesterol. The results are given
in Table I.

The table shows a clear difference in the treatment of the test substrates.

Experiment 1 shows that, as observed before [1], d5-pregnen-3//-ol is substantially
oxidised to give several products, none of which has characteristics which suggest
that it might be the product of 7a-hydroxylation. In Experiment 2 very little oxi¬
dation took place and it was not possible to detect any significant product by thin-
layer chromatography. The product of Experiment 3 was unambiguously identified
as 7a-hydroxy-26-norcholesterol by addition of the appropriate steroids to the incu¬
bation mixtures after incubation followed by isolation and recrystallisation to con-

-< stant specific activity of both the steroids and of their benzoate derivatives. The specific
activities obtained are given in Table II.
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TABLE I

Incubations contained a microsomal preparation from I g of liver, o.i M potassium phosphate, pH
7.4, NADP (5 //moles), glucose 6-phosphate (50 //moles), glucose-6-phosphate dehydrogenase (1 unit),
and /Lmercaptoethylamine (10 mM) in a total volume of 7 ml. The substrate was added in solution in
acetone (50 //l). Incubations were carried out in air for 1 h at 37 °C in a shaking water bath.

Expt Steroid Activity
(dpm/mg)

Weight Percentage hydroxyl-*
ation with respect to control

Products

1 d5-Pregnen-3-/tol 5- io7 50//g 54 Several products
2 ^-Sitosterol 1.7- io8 6 ng <0.005 Not detectable

3 26-NorchoIesterol** 3.8- io7 50 MS 0.56 7a-Hydroxy-26-
nor-cholesterol

* (Percentage total products of oxidation/percentage 7a-hydroxycholesterol in control) X 100.
In Expts 1 and 3 the specific activity of the [4-14C]cholesterol in the control incubation was adjusted
to the same level as that of the test substrates, and each incubation contained 50 //g of substrate.

** m.p. 127-129 °C. Mass spectrum m/e 372 (molecular ion).

TABLE II

SPECIFIC ACTIVITIES OF STEROIDS AND THEIR BENZOATE DERIVATIVES

Spec. act. (dpm/mmolex io6)
Steroid Derivative

Cholesterol 15.9 ± 0.4 16.3 ±0.4
7a-Hydroxycholesterol 0.28 ± o.or 0.30 ± 0.02
Norcholesterol 64.0 ± 3.6 62.5 ± 1.9

7a-Hydroxynorcholesterol 0.62 ± 0.05 0.67 ± 0.02

DISCUSSION

The present work together with the work cited above [1-3] surveys the mode
of oxidation by rat liver microsomes on compounds which retain the 4I5, 3/?-hydroxy
steroid nucleus and in which the side-chain is varied in length and polarity. It is clear
from the previous work that steroids with polar side chains are not good substrates
for cholesterol 7a-hydroxylase. Thus pregnenolone, dehydroepiandrostenone (19-oxo-
d5-androsten-3/?-ol), 25-hydroxychoIesterol and 26-hydroxycholesterol were not
hydroxylated by rat liver microsomes to give uniquely a 7a-hydroxylated product.
This is consistent with the cholesterol 7«-hydroxylase system having a side-chain
binding site which has apolar character and which cannot interact strongly with a
polar side-chain.

The results in Table I suggest that this apparent specificity is extended to
apolar side-chains. Steroids with short side-chains (Expt 1, [1, 2]), d5-pregnen-3/?-ol
and d5-androsten-3/J-ol, are not hydroxylated to products which are consistent with
attack by cholesterol 7a-hydroxylase.

With steroids which have bulky side-chains the rate of oxidation is too slow to
be detectable under our standard assay conditions (Expt 2). Our findings with [}-
sitosterol in agreement with those of Aringer and Eneroth [6] who have carried out
similar experiments, and are consistent with those of Subbiah and Kuksis [7, 8] who
showed that the rate of metabolism of //-sitosterol in whole animals is very much lower
than that of cholesterol. It may be that the slow rate of metabolism of //-sitosterol in
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intact rats is due to the great stability that /^-sitosterol shows to oxidation by rat liver
microsomal cholesterol 7oc-hydroxylase. /^-Sitosterol can be photo-oxygenated as
readily as cholesterol showing that chemically the bulky side-chain has no effect,
steric or otherwise, on the reactivity at C7.

From Experiments i and 2 we may predict that for optimum binding to this
enzyme a side-chain which is approximately of the same length as that of cholesterol
and not containing any bulky branching groups is required. The removal of one
carbon from the C8 side-chain of cholesterol might be expected to be not too great
an alteration and we might expect 26-norcholesterol to be smoothly hydroxylated in
the 7a-position by the microsomal preparation.

Table II shows that this is indeed the case, but, as can be seen from Table I,
26-norcholesterol is hydroxylated with only about half the efficiency of cholesterol.
A substrate with a side-chain shorter than the natural substrate by only one carbon
is hydroxylated with reduced efficiency and this was the only substrate tested which
was oxidised to give solely the 7a-hydroxy product.

These results suggest that the cholesterol 7a-hydroxylase of rat liver micro¬
somes has a specific apolar binding site for the side-chain of cholesterol. This binding
may be required for the orientation of the substrate on the enzyme to allow the
hydroxylation to occur stereospecifically at the 7a-position [9]. It is interesting to note
that the mitochondrial cholesterol side-chain cleavage system is not similarly sen¬
sitive to the side-chain of cholesterol [10, 11] (Arthur, J., Boyd, G. S. and Suckling,
K. E., unpublished).

We are further investigating the cholesterol 7a-hydroxylase system and related
enzymes in order to establish in more detail the nature and significance of the sub¬
strate binding sites.
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