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REGULATION OF GRANULOCYTE APOPTOSIS BY CYCLIC AMP AND GLUCOCORTICOIDS

ABSTRACT

Inflammation is a normally beneficial, complex interplay of events that occur in

response to tissue injury or infection. Granulocytes are rapidly recruited to the

inflammatory site, however, the activity of these cells must be carefully regulated as

uncontrolled release of cytotoxic cell contents into the surrounding milieu may result
in excessive tissue damage. In order to avoid this undesirable and inappropriate

response, granulocytes undergo a regulated process of programmed cell death or

apoptosis, allowing shutdown of secretory capacity and phagocytic removal of intact
effete cells by a mechanism that does not incite an inflammatory response.

Although the apoptotic programme in granulocytes is an intrinsic cell process, the
rate of apoptosis can be altered dramatically by a number of agents. We have shown
that elevation of the second messenger cyclic AMP and glucocorticoids, profoundly

delay constitutive neutrophil apoptosis. Further investigations demonstrated that

cyclic AMP inhibits loss of mitochondrial membrane potential occurring during
constitutive neutrophil apoptosis. Moreover, cyclic AMP was found to delay caspase

activation in these inflammatory cells. Investigations were undertaken to examine the

cyclic AMP signal transduction pathway responsible for delay of neutrophil

apoptosis. Despite increasing protein kinase A (PKA) activity, this kinase is unlikely
to mediate the effects of cyclic AMP in apoptosis since blockade of PKA activation
did not influence the survival effects of cyclic AMP. Furthermore, cyclic AMP
mediated delay of neutrophil apoptosis is independent of PI-3 kinase and MAP

kinase activation. Our results suggest cyclic AMP delays neutrophil apoptosis via a

novel, reversible and transcriptionally-independent mechanism. We show that

proteasome activity in the neutrophil is vitally involved in this process and suggest

that a balance of pro-apoptotic and anti-apoptotic proteins plays a key role in the

powerful ability of cyclic AMP to delay neutrophil death.

Additional studies were aimed at elucidating the underlying mechanisms of

glucocorticoid regulation of granulocyte apoptosis. Glucocorticoids were found to
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exert diametrically opposed effects on eosinophils and neutrophils, causing induction
of apoptosis in eosinophils while delaying neutrophil cell death. Granulocytes were

found to express the glucocorticoid receptor (GR), however the nature of isoforms

expressed remains undefined. Examination of the glucocorticoid signal transduction
cascade suggested the requirement for hsp90 in glucocorticoid regulation of

granulocyte apoptosis. Further studies were undertaken to establish the involvement
of transcriptional transactivation or repression in glucocorticoid signalling pathway

regulating granulocyte cell death.

In summary, there is good evidence implicating glucocorticoids and cyclic AMP in
the regulation of granulocyte apoptosis. A greater understanding of the signalling
mechanisms by which these mediators regulate granulocyte death could potentially
lead to the development of novel strategies to therapeutically induce apoptosis for the
resolution of inflammation.
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1 INTRODUCTION

1.1 INTRODUCTION LAYOUT

The introduction summarises the knowledge to date on the generation, structure and
function of granulocytes and describes the surface phenotype and mediator release
involved in the phagocytic capacity of these cells, following migration into tissues.

The following section describes the role of neutrophils and eosinophils in disease

highlighting the differences in the structure and phenotype of granulocytes, which

may lead to the differential involvement of these cells in many cellular processes.

The process of apoptosis is then described and the mechanisms involved in
molecular and genetic control of apoptosis are discussed.

Finally the introduction ends with a summary of the current knowledge of the
mechanisms involved in granulocyte apoptosis and the potential implications of

manipulation of granulocyte apoptosis for therapeutic treatment of inflammatory
disease.
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1.2 THE ROLE OF NEUTROPHILS IN INFLAMMATION

1.2.1 GENERATION OF NEUTROPHILS

Neutrophils are the most abundant leukocytes in the blood and are derived from

pluripotent stem cells located in the bone marrow. During their development

pluripotent stem cells undergo proliferation and differentiation under the influence of
three major haematopoietic cytokines G-CSF, GM-CSF and IL-3 (Metcalf and

Nicola, 1983; Metcalf et al., 1986; Bot et al., 1988) allowing them to differentiate
and mature into fully functional neutrophils. There appear to be several recognisable

morphological stages including myeloblast, primary myeloblast, myelocyte, and

metamyelocyte stages with subsequent formation of non-segmented (band)

neutrophils before fully functional segmented neutrophils are formed (Zajicek et al.,

1984). During the developmental process neutrophils acquire their characteristic

primary (azurophil), secondary (specific), and tertiary granules. The mature

neutrophil is distinguished also by a lobulated chromatin dense nucleus.

Neutrophils are released from the bone marrow into the circulation in the healthy

adult, at a rate of 10u neutrophils per day (Cannistra and Griffin, 1988). During
acute inflammation, release of neutrophils from the bone marrow is thought to

i j
increase to more than 10 per day (Cannistra and Griffin, 1988). Neutrophils are

short lived cells and in the circulation have an estimated half life of only 4 - 6 h.

Neutrophils may also exist in marginated pools in the liver, spleen and lung, where

they can live for 1 to 2 days (Bicknell et al., 1994; Peters, 1998). A dynamic

equilibrium exists between the circulating pools and marginated pools, allowing

exchange with each other (Berkow and Dodson, 1987).

1.2.2 NEUTROPHIL MORPHOLOGY

Neutrophils have a mean diameter of ~7 pm and are characterised by a multilobed
chromatin-dense nucleus and a large number of intracellular granules. Initially

neutrophil granules were simply divided into two categories namely peroxidase

2
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positive (azurophil or primary) and peroxidase negative (specific or secondary).
However it appears that there are in addition two further granule subgroups namely

tertiary/gelatinase granules and secretory vesicles (Borregaard et al., 1993). Each

category of granule can be distinguished by differences in morphology and
biochemical constituents (For a recent review see Borregaard and Cowland, 1997).
The importance of neutrophil granules is demonstrated in Chediak-Higashi syndrome
in which an apparent inability to mount a proper inflammatory response leads to a

congenital abnormality in neutrophil granule formation (Davis and Douglas, 1972).

The azurophil or primary granules vary in size and have an oval or round

morphology (Bainton, 1975). They contain a wide variety of agents believed to be
involved in bacterial killing and are primarily released into the phagolysosomal

compartment during phagocytosis. Regulated secretion of granule contents is

required to avoid detrimental pathology to host tissue. Among the many

antimicrobial constituents of azurophil granules, one of the most important for
effective bactericidal killing is myeloperoxidase (MPO) (For a recent review see

Klebanoff, 1999). The enzymatic activity of MPO is responsible for the conversion
of hydrogen peroxide to hypochlorous acid, providing the neutrophil with a highly
effective microbicidal capacity. Azurophil granules also contain antimicrobial

peptides called defensins, which form a large proportion of the proteins contained in

azurophil granules (Chertov et al., 2000). These small antimicrobicidal peptides are

highly toxic to a wide variety of bacteria, fungi and some viruses. Other important
constituents include serine proteases such as elastase and cathepsin G which are

involved in hydrolytic degradation of many substrates including bacterial cell walls

(Chertov et al., 2000).

The second category of granules are specific granules which are round, oval or

elongated in shape and are slightly larger than gelatinase granules. In contrast to

azurophil granules, it is thought that specific granules release their contents

extracellularly. They characteristically contain the iron sequestering protein

lactoferrin, important for preventing the growth of ingested bacteria by depriving
them of this vital growth nutrient (Spitznagel et al., 1974). Specific granules are also

3
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a source of cytoplasmic receptors for the small complement fragment iC3b (Berger et

al., 1984), laminin (Yoon et al., 1987) and fMLP (Sengelov et al., 1994). It is not

clear if these receptors are fully functional when translocated to the plasma
membrane. A further important constituent of specific granules is cytochrome b558,
a component of the NADPH oxidase, responsible for the generation of superoxide
anion (Borregaard, 1985).

Gelatinase (or tertiary) granules are smaller than specific granules and are principally

composed of the protease gelatinase, which may be involved in digestion of the
vascular basement membrane, allowing the extravasation of neutrophils (Murphy et

al., 1980; Dewald et al., 1982). Similarly to specific granules, gelatinase granules
contain cytochrome b558 and several acid hydrolases but do not contain lactoferrin.

The fourth category of granules namely secretory vesicles contain alkaline

phosphatase and are characterised by their ability to be rapidly mobilised to the

plasma membrane of neutrophils (Borregaard et al., 1990). The possible importance
of this ability to translocate is suggested by the presence of several receptors, which

may be important for neutrophil adhesion and chemotaxis such as CD lib/CD 18

(Mac-1) (Calafat et al., 1993), and the fMLP receptor (Sengelov et al., 1994).

Furthermore, secretory granules may also contain CD 16 (Fey receptor III) (Tosi and

Zakem, 1992), CD 14 (Detmers et al., 1995) and cytochrome b558 (Calafat et al.,

1993).

1.2.3 NEUTROPHIL RECRUITMENT AT SITES OF INFLAMMATION

The neutrophil is key in first line defence against invading micro-organisms and is
the first type of leukocyte summoned from the blood to sites of infection or injury.
The rapid mobilisation of neutrophils relies on the ability of these cells to respond to

chemotactic agents and adhere to endothelial cells. Initial interactions between

neutrophils and the endothelium involves selectins, which allow the neutrophil to roll

along the endothelium via transient contacts (Picker et al., 1991; Lawrence and

Springer, 1991; Lawrence and Springer, 1993). Involvement of each of the main
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selectins (L-, P-, and E-selectin) has now been described (For a recent review see

Gonzalez-Amaro and Sanchez-Madrid, 1999). Following activation by
chemoattractant agents such as IL-8 or PAF, the neutrophil upregulates adhesion

receptors such as CDllb/CD18. Consequently, firm adhesion to the endothelium is
secured via binding through CD11/CD18 with endothelial cell ligands such as

intercellular adhesion molecule-1 (ICAM-1) (Carlos and Harlan, 1994; Springer,

1994; Ley, 1992; Smith et al., 1989). Transmigration of neutrophils across the
endothelial barrier involves an interaction between leukocyte integrins and
endothelial ICAM, and between glycosylated aminoglycans on the neutrophil plasma
membrane and CD31, localised in the intercellular junctions of endothelial cells

(Muller et al., 1993). Diapedesis of neutrophils through the endothelium is then
followed by migration to the site of infection along a chemotactic gradient (Figure

1.1). The invading microorganism may produce chemoattractants such as fMLP,
involved in recruiting neutrophils to the site of infection. Other chemotactic agents

such as IL-8 may be released from the phagocytes themselves following initial
interactions with infectious agents (Hachicha et al., 1998). This allows an

amplification of the preliminary inflammatory response, initiating a second wave of

neutrophil recruitment.

1.2.4 REGULATION OF NEUTROPHIL FUNCTION

It is well recognised that there are complex regulatory mechanisms in place to allow

neutrophils to respond rapidly to infection when required. The magnitude of

neutrophil responsiveness to infection or tissue injury may be influenced by several

agents which may allow dormant neutrophils to acquire a state of preactivation,

allowing enhanced responsiveness to microbial infection. This regulatory mechanism
ofpriming is vitally important for generating a more rapid and powerful neutrophil

response, following the initial microbial insult (For a recent review see Condliffe et

al., 1998). Priming agents include cytokines such as GM-CSF, G-CSF and TNFa

and bacterial products such as LPS (Guthrie et al., 1984). As a consequence,

neutrophil functions such as agonist (e.g fMLP, C5a) induced degranulation

(Fittschen et al., 1988), the respiratory burst (Guthrie et al., 1984) and production

5
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Figure 1.1 Schematic representation of the mechanisms involved in neutrophil
recruitment. Initial interactions involve reversible binding to the endothelium through
selectins on the endothelium and their carbohydrate ligands on the PMNs, which allows
rolling of the leukocyte along the endothelial cell surface. Stronger binding is mediated
through CD1 la:CD18, CDllb:CD18 and ICAM-1. Tight binding arrests the rolling and
allows the neutrophil to transmigrate across the endothelium and enter the site of
infection. Finally the neutrophil migrates along a concentration gradient of chemokines
secreted by the cells at the site of infection.

6
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of lipid mediators (Doerfler et al., 1989; Doerfler et al., 1994) is greatly enhanced. It
has become increasingly apparent that regulation of neutrophil function is also
determined by the ability of neutrophils to produce a variety of mediators, which can

influence neutrophil activity in an autocrine manner. This is in contrast to previously
held beliefs that neutrophils already possess all mediators necessary to participate in
the inflammatory response and have little synthetic capacity. However neutrophils
are now known to be capable of producing a large variety of inflammatory mediators
such as bioactive lipids and cytokines which can participate and influence the

inflammatory response.

Through metabolism of arachadonic acid, neutrophils produce leukotrienes and

prostaglandins such as LTB4 (McColl et al., 1991) and PGE2 (Tolone et al., 1977).
Furthermore they can secrete a wide variety of cytokines such as IL-8 (Cassatella et

al., 1992; Bazzoni et al., 1991), IL-6 (Cicco et al., 1990), TNFa (Dubravec et al.,

1990; Djeu et al., 1990) and IL-1 (Tiku et al., 1986; Lindemann et al., 1988, for a

recent review see Scapini et al., 2000). Thus the role of the neutrophil is not only
determined by their ability to respond to agents in the extracellular milieu, but also

by their capacity to direct and influence the inflammatory response.

1.2.5 NEUTROPHIL FUNCTIONS AND ROLE IN DISEASE

Once a neutrophil has migrated into the tissue, its primary purpose is to recognise
and destroy pathogens. Phagocytosis is a process utilised by neutrophils to ingest
and clear large particles (> 0.5 (iM), including infectious agents and cellular debris.

Neutrophils may phagocytose microbes through direct binding of lectins (Ofek et al.,

1995). However, in many instances effective phagocytosis and clearance of
infectious agents additionally requires the availability of opsonins, to facilitate the
adherence of the bacteria and other microbes to opsonin receptors on the surface of
the neutrophil. Opsonisation prior to phagocytosis may be mediated for example

through Fc receptor binding to Fc portion of antibodies deposited on the bacterial or

7
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viral cell surface or via complement receptors binding to C3b (Scribner and Fahrney,

1976) (Figure 1.2).

Following recognition and pathogen binding, a phagosome forms containing

engulfed micro-organisms. This then fuses with the intracellular granules, allowing
the neutrophil to release a variety of antimicrobial agents into a contained
microenvironment. It appears that both specific and azurophil granule products are

released into the phagosome, while some specific granule products, together with

products from secretory vesicles, are released extracellularly. During phagocytosis a

substantial increase in oxygen consumption is observed, called the respiratory burst

(For a recent review see Wientjes and Segal, 1995). Activation of respiratory burst

activity occurs upon translocation and assembly of the cytosolic components of the
NADPH oxidase enzyme system (\)A5ph"x, p67phox, p21rac) with membrane-bound

flavocytochrome, cytochrome bssg. This process, through the reduction of oxygen by
NADPH oxidase, allows the generation of toxic reactive oxygen intermediates (ROI)
such as superoxide anions and hydrogen peroxide. Further reduction leads to the

production ofmore toxic oxygen radicals such hydroxyl radical (OH*) from H2O2, in
a reaction catalysed by Fe2+ or the production of hypochlorous acid, through the
action of MPO. These substances have highly powerful antimicrobial activities; the

importance of which is illustrated in chronic granulomatous disease (CGD). In CGD,
absence of a proper respiratory burst due to an abnormality in the NADPH oxidase

system, manifests in children as an inability to fight bacterial infection (Hohn and

Lehrer, 1975; Klebanoff, 1975).

The neutrophil plays an essential role in host defence however there is accumulating
evidence that dysregulation of neutrophil function can result in injury to healthy
tissue and is associated with the pathogenesis of a large number of inflammatory
conditions. In many diseases such as rheumatoid arthritis, vasculitis, and

glomerulonephritis, the neutrophil is thought to contribute to disease progression

(Weissmann and Korchak, 1984; Weissmann, 1989; Heinzelmann et al., 1999). In
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Figure 1.2. Fc and complement receptor mediated neutrophil phagocytosis.
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acute respiratory distress syndrome (ARDS), neutrophils may cause injury through
enhanced production of reactive oxygen species (McGuire et al., 1982). Influx of

neutrophils and subsequent activation is also thought to be involved in ischemia-

reperfusion injury (Jordan et al., 1999).

1.3 ROLE OF EOSINOPHILS IN INFLAMMATION

1.3.1 GENERATION OF EOSINOPHILS

The eosinophil, like the neutrophil, is a terminally differentiated cell derived by
differentiation from pluripotent stem cells in the bone marrow. In contrast to

neutrophils, the development of eosinophils is specifically promoted by GM-CSF,
IL-3 and IL-5 (Bot et al., 1988; Metcalf et al., 1986; Campbell et al., 1987), allowing
the pluripotent stem cells to differentiate and mature into fully functional eosinophils
over a period of 2-6 days. The eosinophil resides predominantly in the tissues and is

mainly found in the epithelium of the respiratory and gastrointestinal tract. The

eosinophil appears to be long-lived compared to the neutrophil. In the presence of

growth factors such as IL-5, GM-CSF and IL-3, the eosinophil can survive in vitro
culture for more than 7 days (Tai et al., 1991). The half life of the eosinophil in the
circulation is 18 h. However, as large numbers can be found in tissues even when the
blood count is low, it is presumed they are able to reside in the tissues for several

days (Weller, 1991).

1.3.2 EOSINOPHIL MORPHOLOGY

Eosinophils have a mean diameter of 8 pm, a bilobed chromatin-dense nucleus and a

large number of distinctive intracellular granules (Sokol et al., 1987). The
characteristic identifying feature of eosinophils is the presence of large specific

ellipsoid granules containing crystalline cores. These contain a wide variety of agents
that are believed to be involved in host defence such as major basic protein (MBP),

eosinophil cationic protein (ECP), eosinophil derived neurotoxin (EDN) and

eosinophil peroxidase (EPO) (Gleich et al., 1976; Egesten et al., 1986; Peters et al.,
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1986). MBP is contained in the crystalline core whereas ECP, EDN and EPO are

found in the surrounding matrix. These distinct cationic proteins contribute to

varying degrees in defence against helminth parasites but have the potential to be
involved in host tissue damage. Large specific granules also contain hydrolytic

lysosomal enzymes and histaminase. In addition, the eosinophil possesses other so-
called small granules which in contrast lack a crystalline core and contain aryl

sulphatase and acid phosphatase. Although both eosinophil and neutrophil granules
contain potent antimicrobial agents and toxins, granule contents may be discharged
in very different ways by each cell. Whereas the neutrophil releases granule contents

primarily into contained phagolysosome, eosinophil granules may be released onto

extracellular parasites.

1.3.3 EOSINOPHIL RECRUITMENT AT SITES OF INFLAMMATION

Similarly to neutrophils, eosinophils will respond to chemotactic stimuli following
tissue injury and will marginate and diapedese into the tissues, travelling towards the

inflammatory focus along a chemotactic gradient (Resnick and Weller, 1993).

Although the process of neutrophil and eosinophil recruitment are broadly similar at
a molecular level, selectivity in recruitment of granulocytes is achieved through
several regulatory mechanisms. For example differential expression of adhesion
molecules may determine the type of granulocyte selectively recruited to the site of

injury. In this regard, expression of (3j integrin VLA-4 and P7 integrin OC4P7 by

eosinophils but not neutrophils may allow the specific accumulation of eosinophils at

an inflammatory site (Weller et al., 1991). The chemotactic agents present during the

inflammatory response may determine further selectivity in recruitment. For example
the presence of IL-8 may favour selective neutrophil accumulation whereas the

presence of eotaxin, MCP-3 and RANTES may result in preferential recruitment of

eosinophils (Leonard et al., 1990; Griffiths-Johnson et al., 1993; Ponath et al., 1996;
Dahinden et al., 1994; Kameyoshi et al., 1992; Rot et al., 1992).
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1.3.4 REGULATION OF EOSINOPHIL FUNCTION

Eosinophil function is also regulated by the ability of eosinophils to respond to local
mediators during the inflammatory response and also by the capacity of eosinophils
to synthesise and secrete mediators, which may in turn, govern and refine the

subsequent immune response.

Eosinophils are capable of producing a number of cytokines that may be involved in

various aspects of the inflammatory response such as IL-la (Weller et al., 1993), IL-
4 (Moqbel et al., 1995; Nonaka et al., 1995), IL-6 (Elamid et al., 1992; Melani et al.,

1993), IL-8 (Braun et al., 1993; Kita et al., 1995), TNFa (Costa et al.,

1993), RANTES (Lim et al., 1995) and TGF(3 (Wong et al., 1991; Ohno et al.,

1992). Furthermore they also produce GM-CSF (Weller, 1992), IL-3 (Kita et al.,

1991a; Fujisawa et al., 1994) and IL-5 (Broide et al., 1992; Dubucquoi et al., 1994)
which may serve as autocrine growth factors. In addition, eosinophils secrete lipid
mediators such as PAF (Lee et al., 1984) and LTC4 (Verhagen et al., 1984) which
alter permeability of the microvasculature and also cause bronchoconstriction and
enhance the secretion ofmucus (Henderson, Jr., 1991).

1.3.5 EOSINOPHIL FUNCTIONS AND ROLE IN DISEASE

The eosinophil is thought to play an important and specialised role in the adaptive
immune response most notably against helminthic parasite worms (Butterworth et

al., 1975; Gleich and Adolphson, 1986). These large multicellular organisms cannot

be phagocytosed and eosinophils instead defend against such parasites through
release of helminthotoxins such as MBP and ECP, by extracellular release of

eosinophil granule contents.

Although the eosinophil may potentially have an important role in host defence

against helminthic parasites, there is a wide consensus that the eosinophil and its
derived products may be important contributors in the pathogenesis ofmany allergic
and asthmatic diseases. Extracellular release of granule products in an uncontrolled
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manner may have detrimental consequences to host tissue. Many eosinophil products
such as MBP are known to be toxic to mammalian cells and may produce

pathological changes through alteration of lipid membranes (Kroegel et al., 1987).

Airway inflammation is a distinctive feature of asthma and is characterised by a large

inflammatory cell infiltrate with a notable abundance of eosinophils (Bousquet et al.,

1990; Djukanovic et al., 1990). There is significant evidence that eosinophils and
their derived mediators play a central role in the pathogenesis of this disease

(Bousquet et al., 1990; Martin et al., 1996; Smith, 1992; Kay, 1991a; Wardlaw et al.,

1995). There appears to be a positive correlation between the severity of airway

hyperreactivity and numbers of eosinophils found in the BAL fluid and peripheral
blood of patients with asthma (Bousquet et al., 1990; Bradley et al., 1991). Persistent
accumulation of eosinophils and the release of cytokines such as IL-4 and IL-5 from
Th2 lymphocytes, may be in part be responsible for tissue accumulation of

eosinophils in this disease (Kay, 1991b). It has been shown that IL-5 administration
to the airways of asthmatic subjects is associated with peripheral blood eosinophilia,

airway eosinophilia, and brochial hyperresponsiveness (Shi et al., 1998; Shi et al.,

1999). It is believed that activation of eosinophils in the bronchial mucosa with

subsequent release of cytokines and eosinophil granule proteins may not only be

cytotoxic to the bronchial epithelium but may also increase bronchial responsiveness
and amplify the asthmatic hyperreactivity.

The role of the eosinophil in the pathogenesis of asthma has however recently come

into question in light of clinical reports that suggest reduction of eosinophil numbers
has limited effects on airway hyperreponsiveness and the late asthmatic reaction.
Leckie and colleagues report that monoclonal anti-IL-5 blocking antibodies, which

substantially decrease allergen induced blood and sputum eosinophilia, fail to

influence the late asthmatic reponse or alleviate airway hyperresponsiveness to

histamine (Leckie et al., 2000). From this particular report, it may be difficult to
refute the idea of an important role for eosinophils, due to the very small sample size
of this study. However, a recent study by van Rensen et al. suggests aerosol
administration of IL-5 to mild asthmatics does not induce eosinophilic inflammation
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or bronchial hyperresponsiveness, although there may be potential systemic effects
of IL-5 on the bone marrow (van Rensen et al., 2001). In a further study, the

cytokine IL-12 was tested for its ability to suppress allergic and eosinophilic
inflammation (Bryan et al., 2000). IL-12 is key in regulating the balance between
Thl and Th2 cells. It is believed that allergic inflammation involves Th2 responses,

which may favour eosinophil accumulation and enhance IgE synthesis. Animal
studies have suggested treatment with IL-12 reduces airway hyperresponsiveness

following antigen challenge (Kips et al., 1996; Schwarze et al., 1998). However,
human studies by Bryan et al demonstrate that while IL-12 administration causes

significant reduction of blood and sputum eosinophils, the late asthmatic response

and airway hyperresponsiveness are unaffected (Bryan et al., 2000). It is conceivable
that approaches to suppress eosinophilic mediated inflammation by blocking a single
mediator of eosinophil accumulation, may be ineffective, as only a small number of
residual eosinophils capable of eliciting cytotoxic mediators, could potentially still
orchestrate a detrimental inflammatory response. Furthermore, numbers of tissue

dwelling eosinophils, which may be fundamentally involved in the asthmatic

response, may not be effectively lowered in these studies. It will be interesting to

observe if future studies demonstrate changes in the numbers of eosinophils in
tissues of the airways following treatment with blocking antibodies to IL-5.
Furthermore as many other mediators, in addition to IL-5, are involved in
accumulation of eosinophils, a combinatorial approach to blocking eosinophil
inflammation may be required for effective reduction in eosinophil accumulation and

responsiveness. Verification or confirmation of the central role of the eosinophil in

allergic inflammation, will therefore await future studies.

The eosinophil may also be involved in the pathogenesis of many other diseases

including the development of fibrosis. In Hodgkin's disease, as in certain other

malignancies, there appears to be elevated numbers of eosinophils in the circulation
and tissues, which may contribute to the development of fibrosis through production
of TGF-p (Kadin et al., 1993).
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It appears that in many chronic inflammatory diseases and distinctive cancers

outlined above, the normal control mechanisms regulating eosinophil function are

perturbed leading to detrimental sequelae for the host. The reasons for eosinophil

dysregulation in these conditions are not fully understood however insight can be

gained by examining divergence from the normal regulatory control mechanisms,
which under normal physiological conditions, limit the potentially deleterious

capacity of these inflammatory cells to damage host tissue. Increased production of

anti-inflammatory mediators, a reduction in the effective concentrations of pro¬

inflammatory mediators and cellular and tissue desensitisation may all be involved.

Perhaps most importantly, controlled death or apoptosis of cells, concomitant with
their safe and effective removal may be essential for successful resolution of
inflammation.

1.4 APOPTOSIS

1.4.1 MORPHOLOGY OF APOPTOSIS

Cell death is known to occur by two distinct mechanisms namely necrosis or

apoptosis (programmed cell death). For many years it was assumed that all cells died

by a process of necrosis, in which disintegration of the cell membrane ultimately
leads to the uncontrolled release of cell contents (Trump et al., 1981a; 1981b). A
distinctive feature of necrosis is dysregulation of osmotic pressure as a consequence

of plasma membrane damage by environmental insults such as physical or chemical
trauma. This induces the swelling and rupturing of the plasma membrane, leading to

dysregulated release of intracellular contents. As a consequence of increased cell
membrane permeability, necrosis can often be measured by the ability of cells to take

up dyes such as trypan blue. One could envisage that disintegration of a cell by

necrosis, with particular regard to the granulocyte, could provoke undesirable
inflammation that may prove deleterious to the host.

Apoptosis, in contrast to necrosis, represents a "physiological" form of cell death in
which the cell dies in a highly regulated manner that importantly does not incite an
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inflammatory response. There is wide consensus that apoptosis is involved in many

physiological and homeostatic processes such as regulating cell numbers during

embryonic development (Granerus et al., 1995). Apoptosis may also allow the
controlled removal of cells that could represent a threat to the integrity of the host i.e.
those with DNA damage (Williams, 1991) or those infected with viruses (Vaux et

al., 1994).

Apoptosis was initially described with respect to a succession of morphological

changes that contrasted to molecular events observed in necrosis (Wyllie et al.,

1980). Although apoptosis may be differentially regulated in different cell types,
there are many common morphological and biochemical changes during apoptosis.

Major cell surface changes such as plasma membrane ruffling, together with loss of
microvilli is often evident. Furthermore, there may be exposure of

phosphatidylserine on the outer leaflet of the plasmalemma, often used as an

indicator of apoptotic onset. Commonly, apoptotic cells display cell shrinkage due to

cytoplasmic condensation through fluid loss. The most striking changes, however,
are observed in the nucleus. Condensation of chromatin forms crescent shaped

aggregates around the nuclear envelope, which may coalesce into one or two dense

'pyknotic' spheres when the nucleus is multilobular. This is accompanied by
activation of endogenous endonucleases resulting in internucleosomal cleavage of
chromatin and the characteristic 'ladder' pattern of fragmented DNA subunits

(Wyllie, 1980). Throughout this process the plasma membrane integrity is preserved
and cells maintain their osmotic gradients. Cells may remain as intact apoptotic cells
or may eventually form small membrane-bound apoptotic bodies that enclose the
intracellular contents of the cells (Arends and Wyllie, 1991; Cohen, 1993). In either

case, the apoptotic cells or bodies are rapidly phagocytosed and degraded by

macrophages preventing the release of cellular contents into the extracellular milieu
and limiting the inflammatory response.
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1.4.2 CASPASES

A common feature in the series of events underlying apoptosis regulation is the
activation of a group of cysteine proteases termed the caspases (cytosolic aspartate-

specific cysteine proteases). These death proteases, which are highly conserved

through evolution, are thought to be responsible for most of the morphological

changes observed in apoptosis and are thus viewed as the central executioners of cell
death (Budihardjo et al., 1999; Cikala et al., 1999; Thornberry, 1997; Cohen, 1997;

Cohen, 1997; Martin and Green, 1995; Kothakota et al., 1997; Rao et al., 1996;

Enari et al., 1998).

Understanding the mechanisms of apoptosis and the involvement of caspase

activation has benefited from insight gained from genetic studies in nematode
Caenorhabditis elegans (C.elegans) (Ellis and Horvitz, 1991; Hengartner and

Horvitz, 1994). The C.elegans gene, ced-3 is required for apoptosis in the nematode
and was found to have similarity to the interleukin-1 [3 (IL-1 [3)-converting enzyme

(ICE)-like protease (Miura et al., 1993; Thornberry et al., 1992; Yuan et al., 1993).
Since this discovery, enormous progress has been made in the identification and
elucidation of the role of caspases in progression of cell death.

Caspases are synthesised as inactive pro-enzymes, which are activated by cleavage
after aspartic acid residues, a process that initiates the subsequent cleavage of the
next caspase in the pathway, thus stimulating a cascade of caspase activation (Harvey
and Kumar, 1998; Thornberry, 1997). It is this caspase cascade which is thought to
be responsible for the cleavage of cellular proteins which bring about the visible

changes characteristic of apoptotic cell death (Martin and Green, 1995). The mature

caspase zymogens are composed of an N-terminal prodomain and the p20 and plO
domains (Cohen, 1997). Although many caspase substrates have been identified, it is

widely believed that caspases recognise and cleave a limited set of target proteins

(Nicholson, 1999). Substrates include enzymes involved in DNA repair such as

DNA-dependent protein kinase (DNA-PK) (Casciola-Rosen et al., 1995) and

poly(ADP-ribose) polymerase (PARP) (Lazebnik et al., 1994), structural proteins of
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the nuclear envelope such as lamins A and B (Lazebnik et al., 1995; Neamati et al.,

1995; Orth et al., 1996; Rao et al., 1996) and cytoskeletal proteins such as gelsolin
and fodrin (Martin and Green, 1995; Kothakota et al., 1997 Buendia et al., 1999).

Caspases can be separated into two distinct groups according to structural and
functional differences (Thornberry and Lazebnik, 1998). The first group such as

caspase 8, -9 and -10 are distinguished by a long prodomain and are involved in the
initiation of the caspase cascade and are appropriately termed 'initiator' caspases. A
further group known as 'effector' caspases which includes caspases 3, -6 and-7, are

distinguished by a relatively short prodomain and are activated upon cleavage by
initiator caspases (Figure 1.3). In general it is assumed that effector caspases become
active when proteolytically cleaved by upstream caspases, usually between the p20
and plO domains. As cleavage occurs after aspartic acid residues, it suggests the

possibility of autocatalysis (Thornberry, 1997). However this mechanism of
activation cannot account for activation of initiator caspases, as being the apical

proteases in the pathway, they are unable to be enzymatically cleaved by upstream

caspases. In view of this, two alternative mechanisms have been proposed to explain
activation of initiator caspases. In the first model, initiator caspases are recruited in

response to death stimuli via adaptor proteins to the ligand-receptor complex,

increasing their local concentration. It is postulated that low intrinsic protease

activity of the zymogen is sufficient to allow transcatalysis and autoproteolytic

processing, thereby fully activating the caspase (Muzio et al., 1998). This simplistic
model of caspase activation by induced proximity has been implicated in the
activation of caspase-8 following ligation of TNFR1 and Fas by their respective

ligands (Muzio et al., 1998). Caspase-2 and -10 may also be activated in this manner

(Salvesen and Dixit, 1999).

A further model of caspase activation has been proposed in which enzymatic

maturity of the caspase is dependent on co-factor association. This mechanism of
activation is used by caspase-9 and is dependent on an essential association with the

cytosolic protein Apaf-1 (Li et al., 1997; Zou et al., 1997). The release of

cytochrome c from mitochondria is believed to induce a conformational change in
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'INITIATOR' CASPASE eg. Pro-caspase-8

. Prodomain

NH2 DED DED LARGE SMALL COOH

'EFFECTOR' CASPASE eg. Pro-caspase-3

NH2 PRO LARGE SMALL COOH

INITIATOR EFFECTOR UNKNOWN

Caspase-8 Caspase-3 Caspase-1

Caspase-9 Caspase-6 Caspase-2

Caspase-10 Caspase-7 Caspase-4

Caspase-5

Figure 1.3 Proenzyme organisation of the caspases. Caspases are synthesised as proenzymes
with an N-terminal prodomain (PRO) and a large and small subunit often separated by a linker
peptide. Caspases are subdivided into two structurally and functionally distinct groups,
'initiator' or 'effector', characterised by long and short prodomains respectively. Caspase-8
and -10 contain N-terminal death effector domains (DED) allowing interaction with adaptor
molecules such as FADD. Other caspase such as caspase-9 contain caspase recruitment
domains (CARD), which permits interaction with other caspases or adaptor proteins such as
IAPs.
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Apaf-1, allowing it to form an active complex with caspase-9, which is believed to

be the enzymatically active form of caspase-9 (Rodriguez and Lazebnik, 1999). The

hierarchy of caspase activation, which ultimately may lead to the disassembly and

dismantling of the cell can be separated into two distinct signalling pathways. Which
of these cascades of caspase activation is induced is dependent on the whether

apoptosis is initiated by cell surface 'death' receptor (extrinsic) signalling or by
intracellular stress (intrinsic) signals (Figure 1.4) (For a recent review see Strasser et

al., 2000).

1.5 INITIATION OF APOPTOSIS

1.5.1 APOPTOSIS INITIATED BY EXTRINSIC SIGNALLING

There are two principal pathways by which apoptosis may be initiated. In the first

mechanism, activation of cell death is initiated through the engagement of cell
surface death receptors belonging to the tumour necrosis factor (TNF)/nerve growth
factor (NGF) receptor superfamily. Members of this family include TNFR1,

Fas/APO-l/CD95, DR-3/Apo-3/TRAMP, DR4/TRAIL-R1 and DR5/TRAIL-
R2/TRICK2 (Schmitz et al., 2000; Ashkenazi and Dixit, 1998). The extracellular
domains of these receptors share characteristic cysteine-rich motifs, however, a

subset of this superfamily, including Fas and TNFR1, contain an important 68 amino
acid region of homology in their cytoplasmic tail called the 'death domain' (DD),
which as the name implies is essential for apoptotic signalling (Itoh and Nagata,

1993; Tartaglia et al., 1993; Boldin et al., 1995). Death receptor signalling involves a

well characterised sequence of events commencing with ligand-induced receptor

trimerisation, followed by the recruitment of receptor-associated proteins and finally
initiation of caspase activation. Upon receptor activation, the death domain of the
cell surface death receptor undergoes homotypic interaction with death domain

containing proteins such as TRADD and FADD, recruiting them to the so-called
death inducing signalling complex (DISC) (Chinnaiyan et al., 1995). Death receptor

signalling through Fas involves direct recruitment of FADD to the DISC whereas
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TNFR1 binds FADD indirectly via TRADD. The adaptor protein FADD is essential
for cell death signalling from both receptors and through an N-terminal 'death
effector domain' (DED), allows recruitment of DED containing procaspase-8 and/or

procaspase-10 to the DISC. As a result, procaspase-8 is proteolytically cleaved into
its active form and in turn initiates cleavage of downstream caspases (Muzio et al.,

1996; Srinivasula et al., 1996; Muzio et al., 1998). Caspase-8 may also cleave the
BH3 only protein Bid, allowing its recruitment to the mitochondria, inducing the
release of cytochrome c (Luo et al., 1998). As will be discussed in the next section,

cytochrome c release forms an essential part of cell death mediated by stress-induced
stimuli. There is controversy regarding the importance of mitochondrial perturbation
and cytochrome c release in death receptor signalling. It is likely that death receptors

may initiate differential signalling pathways and depending on cell type may or may

not require mitochondrial release of cytochrome c (Scaffidi et al., 1998). Receptor
activation through TNFR1 complex may also lead to recruitment of the serine-
threonine kinase RIP (Receptor interacting protein) and TRAF2 (TNFR associated

factor 2) through TRADD. RIP and TRAF2 both seem to be involved in NFkB
activation (Liu et al., 1996; Ting et al., 1996). Additionally TRAF2 allows activation
of JNK (Natoli et al., 1997; Reinhard et al., 1997).

It is perhaps not surprising that there are regulatory mechanisms in place to control
and inhibit death receptor signalling when required. There are multiple levels of

regulation, including inhibitory proteins and decoy receptors. The latter bind ligands
such as TRAIL, and Fas ligand but are unable to transduce normal death signals due
to truncated death domains (Marsters et al., 1997; Pitti et al., 1998). Thus, decoy

receptors may prevent normal death stimuli from binding their appropriate receptor,

preventing apoptosis (Pan et al., 1997; Sheridan et al., 1997; Degli-Esposti et al.,

1997). Apoptosis induced by death receptor activation may also be inhibited by
FLICE-like inhibitory proteins (FLIPs) which possess DED domains allowing
interaction with FADD, procaspase-8 and -10, thereby by preventing normal
recruitment of procaspases to the DISC by competitive inhibition (Cryns and Yuan,

1998; Hu etal., 1997a; Thome et al., 1997; Irmler etal., 1997;Tschopp et al., 1998).
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TiNFRl

growth factor deprivation

APOPTOSIS

Figure 1.4 Death and non death receptor apoptotic signalling pathways Ligation of
death receptors induces processing of caspase-8 and subsequent activation of effector
caspases. Caspase-8 cleavage of Bid induces release of cytochrome c from the mitochondria.
Stress/chemical induced apoptosis also results in release of cytochrome c causing processing
of caspase-9 within the apoptosome complex.
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It is interesting to note that immune evasion strategies may involve manipulation of
death receptor signalling mechanisms. For example viral proteins such as crmA that
can directly inhibit autocatalysis of procaspase-8 and -10 preventing their activation
and consequently preventing death receptor signals from being transduced (Ray et

al., 1992; Komiyama et al., 1994). Prevention of cell death by inhibiting activation
of the caspase cascade may constitute an important viral counter-measure against
host defence during infection.

1.5.2 APOPTOSIS INITIATED BY INTRINSIC SIGNALLING

An alternative mechanism for apoptosis to that triggered by cell surface death

receptors, may result as a consequence of growth factor withdrawal, chemical
treatment (e.g. staurosporine) or DNA damage to the cell. Activation of this death

pathway in response to internal insults or extracellular cues, is thought to converge

on the mitochondria, which may be the central control point of this pathway. The
first suggestion of mitochondrial involvement in apoptosis, resulted from studies
which demonstrated mitochondria to be required for cytosolic extracts to induce

apoptotic changes in isolated nuclei from Xenopus eggs (Newmeyer et al., 1994).
Further fractionation of cytosolic extracts revealed that cytochrome c, a resident

protein of the mitochondrial intermembrane space, was necessary to activate the

apoptotic effector caspases (Kluck et al., 1997). Since these initial findings there
have been many advances in understanding the extent of mitochondrial involvement
in apoptosis and the molecular events which may converge on the mitochondria,

leading to commitment to cell death.

Cytochrome c forms an important part of a high molecular weight complex termed
the 'apoptosome', which is composed of cytochrome c, Apaf-1 and procaspase-9

(Zou et al., 1999; Cain et al., 1999). Once released from mitochondria, cytochrome c

binds to Apaf-1, which recruits and activates procaspase-9 in the presence of ATP or

dATP (Li et al., 1997; Hu et al., 1999; Zou et al., 1999). Activation of procaspase-9
is mediated by means of conformational change, not proteolysis. As a result,
activation of caspase-9 then processes and activates other caspases to orchestrate the
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biochemical execution of cells (Slee et al., 1999). Apaf-1 shares an 85 amino acid

region of homology to the prodomains of several caspases and functions as a caspase

recruitment domain (CARD) (Hofmann et al., 1997). The central region of Apaf-1
contains a nucleotide-binding domain, which is essential for function (Zou et al.,

1997). This region shows structural and functional homology to the C. elegans death

promoting protein Ced-4 (Zou et ah, 1997). The C-terminal region is made up of
WD-40 repeats which mediate protein-protein interactions. As mitochondrial

cytochrome c is located in the intermembrane space, passage of cytochrome c

through the outer mitochondrial membrane is critical for activation of the caspase

cascade.

In addition to cytochrome c, other mediators involved in regulation of caspase
activation and apoptosis are also released from mitochondria. In some cells,
mitochondria contain a pool of procaspase-3 that is liberated into the cytosol during
induction of apoptosis (Mancini et al., 1998). Another caspase activating protein,

namely 'apoptosis inducing factor' (AIF), can also be released from the
intermembrane space ofmitochondria (Susin et al., 1996; Susin et al., 1997).

The integrity of the outer mitochondrial membrane, appears to be an important

regulator of the release of apoptotic mediators and consequently the control of
induction of apoptosis. In light of this, it is perhaps not surprising there are several
control mechanisms in place to regulate this process, which involve several members
of the Bcl-2 family of proteins.

1.6 REGULATION OF MITOCHONDRIA BY BCL-2 FAMILY

MEMBERS

Members of the expanding family of Bcl-2 like proteins have emerged as important

regulators of programmed cell death. However, until recently the mechanisms by
which Bcl-2 related proteins regulate apoptosis have remained unknown. There are

currently 15 Bcl-2-like proteins identified in mammals (Gross et al., 1999)
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characterised by the presence of a-helical conserved regions termed Bcl-2 homology
domains (BH1-BH4) which allow homo- and heterotypic protein interactions

(Kelekar and Thompson, 1998; Oltvai et al., 1993; Reed et al., 1996). Bcl-2 like

proteins are either anti-apoptotic (e.g. Bcl-2, Bcl-XL) and contain at least three BH
domains or are pro-apoptotic (e.g. Bax, Bak) and contain two or more BH domains

(Chao and Korsmeyer, 1998; Reed, 1998). Some pro-apoptotic members of this

family are more distantly related to Bcl-2 and possess only the BH3 domain (e.g. Bid
and Bad) which is required for both their ability to transduce apoptotic signals and
for their interactions with other family members (Kelekar and Thompson, 1998;
Chao and Korsmeyer, 1998; Reed, 1998). As Bcl-2 family members have the ability
to localise constitutively or inducibly to the outer mitochondrial membrane, it has
been proposed that they regulate apoptosis through an ability to control
mitochondrial compartmentalisation of cytochrome c (Goping et al., 1998;
Antonsson et al., 2000; Antonsson et al., 2001; Gross et al., 1999). It has been shown

that the anti-apoptotic proteins Bcl-2 and Bcl-XL, prevent release of mitochondrial

cytochrome c in response to death stimuli (Yang et al., 1997; Vander Heiden et al.,

1997). In contrast, the pro-apoptotic Bcl-2 family member Bax has been
demonstrated to accelerate programmed cell death (Oltvai et al., 1993) and can

induce release of cytochrome c when added directly to isolated mitochondria

(Jurgensmeier et al., 1998; Eskes et al., 1998). Although members of the Bcl-2

family have been implicated in regulating mitochondrial release of cytochrome c, the

precise biochemical events by which this occurs has not been fully elucidated.

Currently there are three basic models by which Bcl-2 like proteins have been

proposed to regulate cytochrome c release from mitochondria. These are described
below:

1.6.1 FORMATION OF ION CHANNELS BY BCL-2 FAMILY MEMBERS

The structural similarity of Bcl-XL to diphtherial bacterial toxin, which is known to

allow the transport of ions by forming pores in lipid bilayers, suggested Bcl-2

proteins may have similar properties (Muchmore et al., 1996). Subsequently, it has
been demonstrated that Bc1-Xl, tBid and Bax, can form functional ion channels in
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synthetic lipid vesicles and planar bilayers (Minn et al., 1997; Schendel et al., 1997;

Schlesinger et al., 1997; Antonsson et al., 1997). However, there is no evidence that
Bcl-2 family proteins form channels in vivo. Furthermore, it is uncertain whether the
diameter of such channels would be sufficient for proteins such as cytochrome c to

pass through.

1.6.2 FORMATION OF LARGE PROTEIN CHANNELS BY BCL-2 FAMILY

MEMBERS

Bcl-2 family members may also be able to facilitate release of apoptosis-inducing
factors by interacting with other proteins in the outer mitochondrial membrane to

form a large pore. Pro-apoptotic Bcl-2 family members may co-operate with the

voltage dependent anion channel (VDAC) and form a large cytochrome c conducting
channel (Shimizu et al., 1999). It could be envisaged that pro-apoptotic proteins such
as Bax and Bak, may allow opening of the channel, whereas anti-apoptotic proteins
such as Bc1-Xl, may facilitate its closure (Shimizu et al., 1999). It is predicted that
VDAC on its own would be unable to form channels big enough to allow

cytochrome c to pass through. Instead, it is proposed that a conformational change in
VDAC would be required, together with co-operation Bcl-2 family proteins, to allow
formation of a megapore of the appropritate size (Shimizu et al., 2000).

Other studies have suggested that some BH3-only proteins such as Bid alone can act

through a separate undefined pathway, which is sufficient to cause release of

cytochrome c from mitochondria. It remains elusive how BH3-only proteins can

mediate release of cytochrome c, although it is possible that they may associate with
novel proteins in the outer mitochondrial membrane to allow redistribution of

cytochrome c (Wang et al., 1996a; Luo et al., 1998; Li et al., 1998).
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1.6.3 REGULATION OF OUTER MITOCHONDRIAL MEMBRANE

RUPTURE BY BCL-2 FAMILY MEMBERS

A further proposed mechanism to account for cytochrome c redistribution during

apoptosis, may involve the non-specific disruption of the outer mitochondrial
membrane. This disruption could occur following alterations in mitochondrial

physiology as a consequence of apoptotic signalling, allowing the diffusion of

proteins through the lipid bilayer. Non-specific rupture of the outer mitochondrial
membrane may involve the opening of a large conductance channel called the
mitochondrial permeability transition pore (PTP) (Zamzami et al., 1996a; Qian et al.,

1997; Crompton, 1999). Opening of the PTP results in collapse of the mitochondrial

inner transmembrane potential (ATTn) and matrix swelling (Zamzami et al., 1996b).

As a result of organellar swelling, the outer mitochondrial membrane may rupture,

causing the release of apoptosis inducing factors localised within the intermembrane

space (Kroemer et al., 1997). It is possible that Bcl-2 family members could directly

regulate PTP activity (Marzo et al., 1998; Narita et al., 1998). Evidence to support

this model of mitochondrial disruption is implied from the ability of inhibitors of PT

pore opening such as bongkrekic acid and cyclosporin to block apoptosis in some

(Zamzami et al., 1996a), but not all systems (Eskes et al., 1998). At present it is
controversial whether mitochondrial depolarisation as a result of PT pore opening
initiates the induction of apoptosis or if PTP opening is a late event which occurs as a

consequence of apoptosis.

In summary, Bcl-2 family members are important regulators of apoptosis and this

may depend in part on their ability to control mitochondrial release of cytochrome c.

It could be envisaged that regulation of apoptosis by Bcl-2 like proteins involves a

balance of pro-apoptotic and anti-apoptotic signals possibly at the level of the

mitochondria, which may determine cellular fate in many systems.
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1.7 GRANULOCYTE APOPTOSIS

As described in section 1.2.3, granulocytes are recruited to inflammatory sites in

response to infection or tissue injury. In acute inflammation, neutrophils accumulate
in tissues due to targeted influx from the circulation in response to inflammatory
stimuli. However the recruitment of large numbers of inflammatory cells also
increases the potential for tissue damage through liberation of destructive enzymes or

toxic oxygen metabolites. This is exemplified in asthmatic and allergic inflammation
where accumulation of eosinophils in the bronchial mucosa, and subsequent release
of eosinophil granule products may lead to bronchial epithelial cell damage and
contribute to the pathogenesis of asthma (Walsh, 2001). The beneficial contribution
of inflammatory cell recruitment must be balanced by the safe removal and cessation
of cell accumulation when these cells are no longer required.

The majority of circulating granulocytes are eliminated by the reticuloendothelial

system of the liver and spleen. Extravasated granulocytes are not thought to return to

the blood stream (Haslett and Henson, 1988) and instead meet their fate at the

inflammatory site. It was originally assumed granulocytes would die in situ by
cellular necrosis once their contribution to the inflammatory response was complete

(Hurley, 1983). However, death by necrosis results in the release of toxic granule
contents into the extracellular milieu, thereby inciting an exaggerated and potentially
deleterious inflammatory response. Since host tissue damage does not normally arise

following an acute inflammatory response, it is likely that resolution of inflammation
must involve a clearance mechanism in which the cells are removed in a manner that

limits the release of inflammatory mediators and granule contents. It is believed that
termination of the inflammatory role of granulocytes occurs by death by apoptosis
and subsequent clearance of intact cells by tissue macrophages (Savill et al., 1989;
Savill etal., 1990; Savill, 1992).
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1.7.1 MOLECULAR CHANGES IN GRANULOCYTES UNDERGOING

APOPTOSIS AND CLEARANCE

Granulocytes will undergo constitutive apoptosis during in vitro culture and exhibit
classic changes associated with apoptosis including cytoplasmic condensation and
internucleosomal cleavage of DNA by endogenous endonucleases (Savill et al.,

1989). There are several changes to expression of cell surface molecules during

granulocyte apoptosis, some of which may be unique to these cells, such as loss of
CD16 (FcyRIII) expression in neutrophils (Dransfield et al., 1994). Other cell surface

changes such as exposure of phosphatidylserine on the outer leaflet of the

plasmalemma, may be important for phagocytic recognition of apoptotic

granulocytes (Fadok et al., 1992). There is also downregulation of the functional

capacity of granulocytes during apoptosis, with cells having a reduced ability to

generate a respiratory burst, degranulate or undergo chemotaxis in response to

external stimuli (Whyte et al., 1993). This decreased responsiveness and reduced
adhesive capacity, together with exposure of ligands facilitating apoptotic cell

recognition, may serve to limit tissue injury and promote resolution of inflammation.

A variety of studies, including experimental models of glomerulonephritis (Savill et
al., 1992a) and endotoxin induced lung injury (Cox et al., 1995), have given
evidence to support a role for apoptosis in the clearance of apoptotic neutrophils in

vivo. Furthermore, it has been demonstrated in vitro that apoptotic granulocytes are

rapidly recognised and ingested by macrophages (Haslett et al., 1989; Stem et al.,

1992; Savill et al., 1989; Savill, 1992; Meagher et al., 1992), without elicitation of

proinflammatory mediators but importantly with release of anti-inflammatory
mediators such as IL-10 (Voll et al., 1997) and TGF-(3 (Fadok et al., 1998). Thus
removal of apoptotic granulocytes by this manner could be crucial in resolution of
the inflammatory process and in the disposal of effete granulocytes from the sites of
inflammation. Macrophages are the principal cells involved in clearance of apoptotic

granulocytes although semi-professional phagocytes such as fibroblasts and

glomerular mesangial cells may also recognise and ingest apoptotic neutrophils

(Savill et al., 1992a; Hall et al., 1994; Hughes et al., 1997).

29



regulation of granulocyte apoptosis by glucocorticoids and cyclic amp

Several molecules have been implicated in apoptotic cell recognition including the

phosphatidylserine receptor (Fadok et al., 2000), the vitronectin receptor avp3

integrin (Savill et al., 1990), CD36 (Savill et al., 1992b), the ATP binding cassette

transporter (ABC1) (Luciani and Chimini, 1996), class A scavenger receptor (Piatt et

al., 1996) and the CD 14 receptor (Devitt et al., 1998). Considering the number of

receptors that have been proposed to be involved, there may be functional

redundancy in the molecular pathways that are used for phagocytic cell clearance.
There may be complex subtleties in the involvement of each of these molecules in

apoptotic cell recognition, perhaps with some molecules engaged in initial

recognition of the apoptotic cell, while others may be preferentially used in

engulfment. It is probable that many phagocyte surface receptors implicated in

apoptotic cell recognition, may act in concert. However, research is still required to

resolve apparent differences in receptor usage between different phagocyte and

apoptotic cell populations and to understand the precise regulatory mechanisms

underlying apoptotic cell clearance.

1.7.2 REGULATION OF GRANULOCYTE APOPTOSIS BY BCL-2 FAMILY

MEMBERS

As previously discussed, members of the Bcl-2 family have been well characterised
as important regulators of apoptosis. It is thought that the relative levels of these pro-
and anti-apoptotic proteins and their molecular interactions, are cmcial in

determining whether a cell will survive or become apoptotic. Mature neutrophils do
not express Bcl-2 (Delia et al., 1992; Hannah et al., 1994) but do express the pro-

apoptotic proteins Bax (Moulding et al., 1998), Bik (Moulding et al., 2001) and Bak

(Bazzoni et al., 1999) and the anti-apoptotic proteins Mcl-1 and Al (Moulding et al.,

1998; Moulding et al., 2001). Eosinophils on the other hand are thought to express

Bc1-Xl (Dibbert et al., 1998) Bax (Druilhe et al., 1998; Dibbert et al., 1998; Dewson

et al., 2001) and in some reports, low levels of Bcl-2 (Druilhe et al., 1998). There
have been some discrepancies in the literature, due to different methods of detection
and variability in levels of expression, perhaps reflecting the maturation and
activation status of the cells being examined. Thus, caution must be taken when
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trying to correlate expression of these family members with granulocyte survival.

Expression of Mcl-1, another Bcl-2 family member, is reportedly decreased prior to
onset of apoptosis in neutrophils but is increased in response to the apoptosis

delaying agents, LPS and GM-CSF (Moulding et al., 1998). Neutrophils also express

mRNA for A1, a further anti-apoptotic member of the Bcl-2 family however reliable

expression of Al at the protein level is yet to be obtained (Chuang et al., 1998;

Moulding et al., 2001). Both Mcl-1 and Al are reported to be expressed in

eosinophils, however, convincing evidence of a correlation between expression of
these proteins and eosinophil apoptosis is yet to be produced (Druilhe et al., 1998;
Dibbert et al., 1998).

1.7.2 REGULATION OF GRANULOCYTE APOPTOSIS BY

EXTRACELLULAR STIMULI

Although granulocytes undergo constitutive apoptosis, it is apparent that this process

is not immutable and it is well established that many inflammatory mediators can

prolong or suppress granulocyte survival by altering the rate of apoptosis (Haslett et
al., 1991) (Figure 1.5). Considering extravasated granulocytes die by apoptosis in

situ at inflammatory foci, the ability of exogenous inflammatory mediators and

cytokines to differentially modulate granulocyte survival, has important

consequences for resolution of the inflammatory response. Thus, the longevity and
resolution of an acute inflammatory response may depend on exogenous stimuli

present at an inflammatory focus. Pro-inflammatory mediators including cytokines
such as GM-CSF, G-CSF, IFN-y, bacterial products such as LPS and chemotactic

peptides such as C5a, delay granulocyte apoptosis (Brach et al., 1992; Colotta et al.,

1992; Stern et al., 1992; Lee et al., 1993). It is important to note that granulocytes
show differential responsiveness to apoptotic stimuli compared with other

leukocytes. Indeed, there appears to be differences in the regulatory mechanisms

controlling apoptosis in neutrophils and eosinophils (Figure 1.5). This may be due to

the presence of distinct receptors on the surface of the eosinophil compared to the

neutrophil. For example IL-5 can profoundly enhance eosinophil survival yet does
not modulate neutrophil apoptosis (Tai et al., 1991; Yamaguchi et al., 1991).
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Similarly IL-8 can suppress neutrophil apoptosis but has no effect on eosinophil

longevity (Leuenroth et al., 1998; Kettritz et al., 1998). The situation is further

complicated by the ability of certain cytokines such as TNFa to have bi-phasic

effects; in vitro TNFa will induce neutrophil apoptosis at early time points while at

later time points apoptosis is inhibited by this cytokine (Murray et al., 1997).

Granulocyte apoptosis may also be modulated by stimulation of the Fas signalling

pathway, with reports that both neutrophils and eosinophils are susceptible to

induction of apoptosis by Fas mediated signals (Liles et al., 1996; Renshaw et al.,

2000; Iwai et al., 1994; Brown et al., 1997). Initial findings that neutrophils could

produce and secrete FasL, led to the proposal that Fas/FasL could regulate

spontaneous granulocyte apoptosis (Liles et al., 1996). However this is somewhat
controversial as induction of granulocyte death has been achieved using Fas

activating antibodies but not reproducibly with soluble FasL (Brown et al., 1997;
Renshaw et al., 2000). Moreover, constitutive apoptosis in neutrophils isolated from
FasL (gld)- and Fas (lpr)-deficient mice appears to proceed at a rate comparable to

neutrophils obtained from control mice, arguing against a role for Fas-FasL in the

regulation of constitutive neutrophil death (Fecho and Cohen, 1998; Villunger et al.,

2000).

Other extracellular modulators of granulocyte apoptosis include nitric oxide (NO),
which can promote neutrophil apoptosis (Fortenberry et al., 1998; Fortenberry et al.,

1999; Ward et al., 2000) but delay cell death in eosinophils (Beauvais et al., 1995).
Moreover hypoxia, in contrast to many other cell types, delays neutrophil apoptosis

(Hannah et al., 1995). This may have important implications as neutrophil lifespan

may be increased in the hypoxic environment of the tissues following extravasation
from the circulation during the inflammatory response. As yet, little is known of the

regulatory mechanisms which underlie regulation of apoptosis by these conditions.
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AGENTS WHICH INDUCE GRANULOCYTE APOPTOSIS

Glucocorticoids

activating anti-Fas Ab
NFkB inhibitors

Cyclosporins
IL-4

TGF-p
IL-10

Protein synthesis
inhibitors

activating anti-Fas Ab
NFkB inhibitors
TNF-a
NO donors

EOSINOPHIL NEUTROPHIL

t cyclic AMP
IL-3
11-5
IL-13
GM-CSF

t cyclic AMP
Glucocorticoids

Hypoxia
GM-CSF
II-8
IL-6
LPS

AGENTS WHICH DELAY GRANULOCYTE APOPTOSIS

Figure 1.5 Factors which influence the acceleration or delay of constitutive apoptosis in
granulocytes
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Granulocyte apoptosis in vitro is accelerated by inhibitors of protein synthesis such
as cycloheximide and actinomycin D suggesting that granulocyte survival is

prolonged by the expression of one or more survival proteins (Whyte et al., 1997). It
has also been reported that many agents which delay granulocyte apoptosis require
new protein synthesis for their survival enhancing effects (Brach et al., 1992;

Hachiya et al., 1995; Kato et al., 1995; Cox and Austin, 1997). It is possible that
extracellular modulators of neutrophil survival may achieve their effects through

upregulation of transcription of genes important for survival or alternatively by

postranslational modification of pre-existing proteins, which may alter their cellular

activity.

1.7.3 SIGNALLING PATHWAYS REGULATING GRANULOCYTE

APOPTOSIS

Despite the wide numbers of agents implicated in modulation of granulocyte

apoptosis, surprisingly little has been described of the intracellular signalling

pathways used by these agents to regulate cell death. Dissection of the signalling

pathways leading to granulocyte death have been hindered by the inability of these
cells to be transfected by conventional methods. Elucidation of the signalling

pathways involved has relied principally on pharmacological approaches.

There is evidence that granulocyte apoptosis is regulated by activation of

phosphorylation cascades by extracellular agents through cell surface receptors.

Many studies have implicated a role for the mitogen-activated protein kinase

(MAPK) signal transduction cascade in the regulation of granulocyte apoptosis.
There are three different types of MAP kinases: the p42/p44 extracellular signal-
related protein kinases (ERKs), the c-Jun N-Terminal kinase/stress activated MAPKs

(JNKS/SAPKs) and p38 MAPKs. The role of p38 MAPK in regulation of

granulocyte survival is somewhat controversial. Some reports suggest a role for this

signalling pathway in activation of constitutive neutrophil apoptosis (Aoshiba et al.,
1999) although further studies have not supported these findings (Villunger et al.,

2000; Frasch et al., 1998). Paradoxically, it appears that p38 MAPK is required for
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irradation-induced apoptosis and also in the survival effects of hypoxia (Frasch et al.,

1998; Leuenroth et al., 2000). Thus, at present the exact function of p38 MAPK in
the signalling pathways controlling survival and death of granulocytes is still
uncertain.

Activation of classical p42/p44 ERKs appear important in the regulation of
constitutive granulocyte apoptosis. For example, LPS, IL-8 and GM-CSF stimulate
survival pathways in neutrophils, which are dependent on the activation ofMEK and

presumably therefore ERKs (Nolan et al., 1999; Klein et al., 2000). Additionally,
survival signals stimulated by IL-8 and GM-CSF appear to involve activation of the

phosphoinositide 3-kinase (PI-3K) signalling pathway (Klein et al., 2000). PI-3
kinase has been implicated as an important pathway in apoptotic control through the

ability of PI-3 kinase to activate Akt, which in turn phosphorylates the Bcl-2 family

member, Bad (del Peso et al., 1997; Franke and Cantley, 1997). Phosphorylation of
Bad sequesters Bad from Bc1-Xl resulting in binding to 14-3-3 in the cytosol,

reducing its pro-death properties (Zha et al., 1996). Whether Akt and Bad

phosphorylation are required for the survival pathways stimulated by GM-CSF and
IL-8 has yet to be determined.

The downstream targets of both ERK and PI-3K in neutrophils, are not yet

characterised. However, from other cell systems it is likely that NFkB and other

transcription factors may be involved. Indeed, NFkB has been shown to be an

important survival signal in neutrophils and is involved in the anti-apoptotic effects
of TNFa in these cells (Ward et al., 1999a). Blockade of NFkB activation will

rapidly induce apoptosis in neutrophils (Ward et al., 1999a) which is in contrast to

thymocytes and HL60 cell lines where NFkB activation is required for cell death

(Slater et al., 1995; Hettmann et al., 1999; Boland et al., 2000). However, not all

agents that delay granulocyte apoptosis activate NFkB and it is likely that other

transcriptional regulators may be involved in regulating cell survival (McDonald et

al., 1997).
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Constitutive granulocyte apoptosis may also be regulated through the activity of the
serine/threonine kinase PKC and, in particular, the PKC isoform PKC8 may be

involved in control of neutrophil apoptosis (Pongracz et al., 1999; Khwaja and

Tatton, 1999). Blockade of PKC activity pharmacologically with Ro318220 or using
the non-selective PKC inhibitor staurosporine, induce granulocyte apoptosis although
the downstream substrates of PKC activated by this signalling pathway have not

been fully identified (Cousin et al., 1997).

Second messengers appear to be important regulators of apoptosis in diverse cell

types and it is therefore perhaps unsurprising that these molecules are potent

regulators of apoptosis in granulocytes. In contrast to the induction of apoptosis in

thymocytes (McConkey et al., 1990; Suzuki et al., 1991) and leukaemic cell lines

(Lanotte et al., 1991), elevation of the second messenger cyclic AMP can profoundly

delay cell death in both neutrophils and eosinophils (Rossi et al., 1995; Ottonello et

al., 1998). The intracellular signalling pathway of cyclic AMP is well characterised
but remarkably little is known of the underlying regulatory signal transduction
cascades involved in the ability of cyclic AMP to modulate apoptosis. Manipulation
of cyclic AMP levels, through phosphodiesterase (PDE) inhibition, has been a target

for treatment of chronic airways disease, due to the ability of cyclic AMP to mediate
relaxation of airways smooth muscle and suppress inflammatory cell responsiveness
to secretory agonists (Underwood et al., 1993; Dent and Giembycz, 1996; Lad et al.,

1985; Wada, 1989; Dent et al., 1994). However, the observations that cyclic AMP

may delay granulocyte apoptosis together with reports that cyclic AMP can inhibit

macrophage phagocytosis of apoptotic cells (Rossi et al., 1998) may have important

implication for the potential usefulness of PDE inhibitors in treatment of asthma.

Also applicable to chronic airways disease is the observation that glucocorticoids
exert differential effects on granulocyte apoptosis (Meagher et al., 1996).
Glucocorticoids are known to be potent anti-inflammatory agents and have been
most widely used in the treatment of chronic inflammatory diseases such as

rheumatoid arthritis and asthma (Barnes, 1998). Although glucocorticoids exert

divergent effects on many cell types, the efficacy of steroid treatment in asthma may
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relate in part to their ability to induce eosinophil death. Further, it has been
demonstrated that glucocorticoids in vivo reduce the number of eosinophils in airway
secretions (Woolley et al., 1996). Considering the ability of glucocorticoids to

increase macrophage phagocytosis of apoptotic cells (Liu et al., 1999), the anti¬

inflammatory capacity of glucocorticoids may partially rest in their ability to both
induce apoptosis concomitant with upregulation of normal clearance mechanisms.

Surprisingly very little has been elucidated of the signalling pathways and regulatory
mechanisms involved in the divergent effect on granulocyte apoptosis.

In summary, there is good evidence implicating glucocorticoids and second

messengers such as cyclic AMP in the regulation of apoptosis in granulocytes,
however their mechanisms of action are still obscure. The mechanism by which these

agents may regulate the activation of the members of the caspase family and how this
in turn modulates endonuclease activation and cell death, is not well understood.

Although granulocytes express several members of the Bcl-2 family, it is unclear
how agents which modulate the rate of granulocyte apoptosis, such as cyclic AMP
and glucocorticoids, integrate with the regulatory control mechanisms of Bcl-2

family proteins. Moreover, little progress has been made to understanding why one

signal may induce apoptosis in eosinophils yet inhibit or delay neutrophil cell death.

Understanding these complex interactions in the apoptotic cascades regulating

granulocyte death could lead to development of novel strategies to therapeutically
induce apoptosis for the resolution of inflammation. Furthermore, as there appear to

be significant differences in apoptotic regulation between granulocytes and other
immune cells and additionally between neutrophils and eosinophils, there may be the

opportunity to induce apoptosis in inflammatory cell types selectively, for

therapeutic gain.
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1.8 AIMS OF THESIS

The principal aims of this thesis were to determine the signalling mechanisms
involved in cyclic AMP and glucocorticoid regulation of human granulocyte

apoptosis.

• Preliminary studies established that elevation of cyclic AMP caused a marked
enhancement of neutrophil and eosinophil longevity by inhibiting apoptosis.
Studies were undertaken to investigate the influence of cyclic AMP on key
cellular events such as caspase activation and dissipation of mitochondrial
transmembrane potential, which may regulate constitutive granulocyte apoptosis

• Subsequent experiments, designed to further assess the involvement of this
second messenger in the regulation of granulocyte apoptosis, investigated the

cyclic AMP signalling transduction pathway directly and examined the
involvement of transcriptional regulation in cyclic AMP mediated control of

granulocyte cell death. As cyclic AMP delays apoptosis in both neutrophils and

eosinophils, studies of the signalling pathways involved were performed

primarily in neutrophils.

• It was also established that glucocorticoids differentially regulate granulocyte

apoptosis; promoting eosinophil apoptosis while delaying neutrophil cell death.
Studies were undertaken to elucidate the glucocorticoid signal transduction

pathways involved in regulation of apoptosis in both cell types. The involvement
of transactivation and transrepression of gene transcription in both glucocorticoid
mediated enhancement of neutrophil longevity, and glucocorticoid promotion of

eosinophil cell death, were also examined.
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2 MATERIALS AND METHODS

2.1 MATERIALS AND BUFFERS

All materials were purchased from Sigma (Poole, Dorset) unless otherwise indicated:

Blocking Buffer
TBS with 0.1% Tween-20 and 5% Milk powder (Marvel). Made fresh.

ELISA Blocking Buffer
TBS containing 0.1% bovine serum albumin (BSA). Made fresh.

ELISA Wash Buffer
TBS containing 0.1% Tween-20. Kept at room temperature.

ELISA Substrate Buffer
Sodium acetate-citrate 100 mM pH 4.9 (80 ml 0.1M sodium acetate with 17 ml 0.1M
citric acid, dH20 up to 100 ml). Made fresh.

ELISA Substrate solution

100 pi TMB ((3,3'.5,5'-Tetramethylbenzidine) dissolved at 10 mg/ml in DMSO -

stored in dark for up to 2 weeks) added to 10 ml ELISA substrate buffer with 5 pi

H2O2 (30%) added just prior to use. Made up fresh.

FACS Annexin V binding buffer
500 ml Hanks Balanced Salt Solution (Gibco, Paisley, UK, H9394) with 5 pM CaCl2

(final). Kept at 4°C.

Methanol Based Transfer Buffer
14.6 g Glycine, 2.9 g Tris-HCl, 200 ml methanol, dH20 up to 1000 ml. Made fresh.
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NP-40 Cytoplasmic Lysis Bufferforprotease sensitiveproteins (cLBPSP)
10 mM HEPES pH 7.8, 10 mM KC1, 2 mM MgCl2, 0.1 mM EDTA, 0.5 mM ABSEF,
10 |!g/ml aprotinin, 2 mM levamisole, 10 jig/ml leupeptin, ImM sodium

orthovanadate, 0.5 mM benzamidine, 10 mM (^-glycerophosphate, 10 |ig/ml

pepstatin A, 1 mM phenanthroline, 1 mM PMSF. Made up fresh.

NP-40 Nuclear Lysis Bufferforprotease sensitive proteins (nLBPSP)
50 mM HEPES pH 7.8, 50 mM KC1, 300 mM NaCl, 0.1 mM EDTA, 10 % glycerol,
0.5 mM ABSEF, 10 pg/ml aprotinin, 2 mM levamisole, 10 pg/ml leupeptin, 1 mM

sodium orthovanadate, 0.5 mM benzamidine, 10 mM (^-glycerophosphate, 10 (ig/'ml

pepstatinA, 1 mM phenanthroline, 1 mM PMSF. Made up fresh

PKA Extraction Buffer
25 mM Tris-HCl, pH 7.4, 0.5 mM EDTA, 0.5 mM EGTA, 10 mM beta-

mercaptoethanol, 1 pg/ml leupeptin, 1 pg/ml aprotinin, 1 mM PMSF and 1% Triton
X-100. Made up fresh.

Sample buffer (x3)
1 ml stacking gel buffer, 1 ml 20 % SDS, 500 p.1 (3-mercaptoethanol, 1 ml glycerol,

bromophenol blue. Store at 4°C.

SDS-Tris Glycine Electrophoresis Buffer (xlO)
250 mM Tris-HCl, 1.92 M Glycine, 1% SDS. Kept at room temperature.

Separating Gel Buffer
36.30 g Tris-HCl, 0.8 g SDS, dH20 up to 100 ml pH 8.9

Stacking Gel Buffer
5.1 g Tris-HCl, 0.4 g SDS, dH20 up to 100 ml pH 6.7
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StandardNP40 cytoplasmic lysis buffer
50 mM sodium fluoride, 5 mM tetra sodium pyrophosphate, 1 mM sodium

orthovanadate, 10 mM ^-glycerophosphate, 0.5% NP40, 2 mM EDTA, 20 mM

Na2HP04, 20 mM NaH2P04, 1 protease inhibitor tablet. Stored at -20°C.

StandardNP40 nuclear lysis buffer
50 mM sodium fluoride, 5 mM tetra sodium pyrophosphate, 1 mM sodium

orthovanadate, 10 mM ^-glycerophosphate, 0.5% NP40, 2 mM EDTA, 20 mM

Na2HPC>4, 20 mM NaPEPC^ 300 mM NaCl, 1 protease inhibitor tablet. Stored at -

20°C.

Tris Buffered Saline (TBS)
Tris-HCl (20 mM) pH 7.4, NaCl (15 mM)

Western Wash Buffer
TBS with 0.1% Tween-20. Kept at room temperature.

Triton X-100 Lysis Buffer
10 mM Tris-HCl, 100 mM NaCl, 1 mM EDTA, 0.1% Triton X-100, pH 7.4. and 1

protease inhibitor tablet (1 per 20 ml lysis buffer). Stored at -20°C.
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Further materials were purchased from the following companies:

Affiniti Research Products Ltd, Mamhead, Exeter, UK: z-VAD-ffnk methyl ester,

lactacystin, epoxomicin.

Affinity Bioreagents Inc, Golden, CO, USA: polyclonal rabbit anti-human

glucocorticoid receptor antibody (PA1-511), polyclonal rabbit anti-human

glucocorticoid receptor beta antibody (PA3-514).

Amersham Pharmacia Biotech, UK Ltd, Buckinghamshire, UK: Hybond C
nitrocellulose membrane, horse radish peroxidase-conjugated donkey anti-rabbit

secondary antibody, Phosphorus-33 (370MBq/ml, 10 |ici/ml).

Baxter Healthcare Ltd, Baillieston, Glasgow, Scotland, UK: Diff Quik™ stain.
Solution I (Eosin G in phosphate buffer, pH 6.0), Solution II (Thiazine blue in

phosphate buffer; pH 6.0), saline solution 0.9% (sterile).

Boehringer Mannheim, Germany: Annexin-V-FLUOS

Calbiochem-Novabiochem UK, Nottingham, UK: Rp-8-Br-cAMPS sodium,
trichostatin A Streptomyces sp, dibutyryl-cyclic AMP sodium, H-89 Dihydrochoride,
PD 98059, LY 294002, GGTI-286, geldanamycin

Cell Signalling Technology, Beverly, MA, UK: polyclonal rabbit anti-licBa

antibody

DAKO Ltd Cambridgeshire, UK: Horse radish peroxidase-conjugated, goat anti-

mouse, secondary antibody and rabbit immunoglobulin fraction (normal).
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Dynal UK, Wirral, UK: Dynabeads M-450 sheep anti-mouse IgG. Supplied as 4 x
o

10 beads/ml in PBS pH 7.4 with 0.1% human serum albumin and 0.2% sodium
azide.

Genzyme Diagnostics, Kent, UK: GM-CSF (1000 U/ml in PBS) was stored at -

70°C.

Gibco Life Technologies, Paisley, Scotland, UK: Iscove's Dulbecco's modified

Eagles medium, without supplements with L-glutamine (Iscove's MDM); Hanks
Balanced Salt Solution (HBSS); culture supplements penicillin (50

U/ml)/streptomycin (50 U/ml); L-glutamine (200 mM); 10 % SDS; and 30 % (w/v)

acrylamide/bis solution.

Martindale Pharmaceuticals Ltd, Romford, UK: calcium chloride.

Millipore, Bedford, Mass, USA.: Immobilon-P PVDF

Molecular Probes Inc, Eugene, OR, USA: TO-PRO-3, iodide (642/661), JC-1

[5,5 ',6,6'-tetrachloro-1,1 ',3,3'-tetraethylbenzimidazocarbocyaniniodide].

Organon Laboratories Ltd, Cambridge, UK: Dexamethasone.

Phoenix Pharmaceuticals Ltd, Gloucestershire, UK: Sodium citrate solution

(3.8%).

Promega Corporation, Southampton, UK: SignaTECT™ cAMP-Dependent
Protein Kinase (PKA) Assay System

R&D Systems Europe Ltd, Oxon, UK: TNFa (stock solution 10 pg/ml); mouse

IgGi anti-human IL-8 monoclonal antibody (stock solution 500 (ig/ml), biotinylated
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anti human IL-8 polyclonal antibody (stock solution 50 jj.g/ml), human IL-8 (stock
solution.

Shandon, Pittsburgh, PA, USA: Shandon Filter Cards

Spectrum Companies, Gardena, CA, USA: Spectra/Por Molecular porous

membrane tubing MWCO 3,500

Transduction Laboratories, San Diego, California, USA: Rabbit anti-human

caspase-3 polyclonal antibody, rabbit anti-human Bax polyclonal antibody, mouse

IgG2b PKA Ri antibody, mouse IgG2b PKAc antibody.

TCS Biologicals, Botolph Clayton, Bucks, UK: anti-Fas human clone CH-11

The following reagents were kindly donated as gifts: RU24858 and RU27842 were

obtained from Roussel UCLAF, Romainville, Cedex, France; ZK77945 and

ZK55740 from Schering AG, Berlin, Germany; Clostridium sordelli lethal toxin
from M.R Popoff, Centre National de Reference des Bacteries Anaerobies, Institut

Pasteur, Paris; polyclonal rabbit anti-SLPI antibody from J.M Sallenave, CIR,

University of Edinburgh; NH3 mouse monoclonal antibody from I.Dransfield, CIR,

University of Edinburgh and murine anti-neutrophil antibody 3G8 from Dr J.

Unkeless, Mount Sinai Medical School, New York.
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2.2 CELL ISOLATIONS AND PURIFICATIONS

2.2.1 ISOLATION OF HUMAN GRANULOCYTES FROM PERIPHERAL

BLOOD

Human neutrophils were purified from the peripheral blood of healthy human
volunteers by modification of previously described methods (Haslett et al., 1985;
Dransfield et al., 1994). Neutrophil isolation was performed at room temperature,

under sterile conditions and using endotoxin-free reagents and plasticware (Falcon,

Oxford, UK). Venous blood was collected into 50 ml polypropylene tubes,

anticoagulated (4 ml 3.8% sodium citrate/36 ml blood) and centrifuged (350g, 20

min., room temperature). This gives two layers, an upper layer containing plasma
and platelets, and a lower layer containing a mixture of erthyrocytes and leukocytes.
The platelet-rich plasma (PRP) was aspirated and used to prepare autologous serum

in glass tubes by the addition of CaCL (220 pi of 1 M CaCl2 added to 10 ml PRP) at
37°C. To sediment the erythrocytes, 5 ml of 6% dextran (T500 pre-warmed to 37°C)
was added to the pelleted cells and the volume made up to 50 ml with 0.9 % saline

(pre-warmed to 37°C). The tubes were mixed gently and the cells allowed to

sediment for ~30 min at room temperature resulting in formation of two

distinguishable layers; a bottom layer containing mainly sedimented erythrocytes and
an upper leukocyte-rich layer. The leukocyte-rich layer was aspirated, centrifuged

(350g, 6 min) and the supernatant discarded. The resulting leukocyte pellet was

resuspended in 2.5ml of 55% isotonic Percoll (9:1 v/v Percoll: 10 x PBS) in 1 x PBS
without divalent cations. Discontinous Percoll gradients were prepared by overlaying
2.5ml of 68% Percoll onto 2.5ml of 79% isotonic Percoll in a 15 ml Falcon tube.

Leukocytes were then resuspended in 55% Percoll and overlayed to form the final

layer of the gradient. The gradients were centrifuged (720g, 20 min) and

polymorphonuclear cells harvested from the 68%/79% Percoll interface.
Mononuclear cells sedimented at the 55%/68% Percoll interface. Purified cells were

washed sequentially in PBS twice and cell yield assessed using a haemocytometer.

Although the above density gradient centrifugation method does not separate

neutrophilic from eosinophilic or basophilic granulocytes, however harvested
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polymorphonuclear cells generally consisted of<3% eosinophils, and basophils were

rarely seen. Preparations of granulocytes containing >5% eosinophils were used for

preparation and study of eosinophils as described in section 2.2.2. Cell viability was

assessed by trypan blue exclusion and was routinely >99%. The typical yield for this
isolation method was 100 x 106 polymorphonuclear cells/40 ml whole blood. Cells
were minimally activated by the methods used for cell preparation as outlined above.

2.2.2 PREPARATION OF HUMAN EOSINOPHILS FROM PERIPHERAL

BLOOD

Eosinophils were prepared from polymorphonuclear cells, isolated as described
above (Section 2.2.1). Separation of eosinophils from neutrophils was achieved

through negative selection by immunomagnetic separation using the murine anti-

neutrophil antibody 3G8 (anti-CD 16)-coated sheep anti-mouse IgG-Dynabeads.
CD 16-Dynabeads were prepared under sterile conditions by combining 3G8

supernatants with Dynal M450 sheep anti-mouse dynabeads (10 ml supernatant:

500pl beads), in a 15ml falcon tube. The antibody/bead mixture was rotated at 4°C

for at least 20 mins to allow antibody binding. The coated beads were then

sequentially washed 4 times in PBS without divalent cations (4°C) and the beads
retrieved using a stationary contact (3 min) with a magnet (Dynal Magnetic Particle

concentrator, MPC-1).

Granulocytes, isolated as in Section 2.2.1 were incubated with washed 3G8-

Dynabeads at a bead : granulocyte ratio of 3:2 on a rotary mix at 4°C for 10 min and
the beads with attached neutrophils were magnetically separated by stationary
contact (3 min) with a magnet. This procedure was repeated once. Purity was

assessed by light microscopy of cyto-centrifugated cells, stained with Diff-Quik™.
Purified eosinophils (> 98%) were washed and centrifuged (220g, 5 min) twice in
PBS without divalent cations, before cell yield was assessed by haemacytometer
counts.
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2.2.3 SEPARATION OF APOPTOTIC NEUTROPHILS FROM NON

APOPTOTIC NEUTROPHILS

Purification of apoptotic neutrophils from a mixed population of aged neutrophils
was performed according to the method of Dransfield et al., (1994). Non-apoptotic

neutrophils were removed using immunomagnetic separation with sheep anti mouse

IgG-Dynabeads (Dynabeads M-450, Dynal, Merseyside, United Kingdom) coated
with the murine anti-neutrophil antibody 3G8 (anti-CD 16; a gift from Dr J. Unkeless,
Mount Sinai Medical School, New York). Cells were mixed with washed antibody-
coated magnetic beads on a rotary mixer at 4 °C for 20 minutes, and the beads
removed magnetically by two 3 minute stationary magnetic contacts (Dynal

Magnetic Particle Concentrator, MPC-1) to yield an apoptotic neutrophil preparation

(> 99%).

2.3 CELL CULTURE

2.3.1 GRANULOCYTE CULTURE

Unless otherwise stated, freshly isolated neutrophils and eosinophils were routinely

suspended at a density of 5 x 106/ml or 2.5 x 106/ml respectively in Iscove's DMEM

supplemented with 10% autologous serum, 50 U/ml penicillin, and 50 U/ml

streptomycin. Cells were cultured in a final volume of 150 jal in flat-bottomed 96-
well Falcon flexiwell plates (Becton-Dickinson, UK) at 37°C in a humidified, 5%

CO2 atmosphere for the time periods indicated. Cells showed minimal activation and

remained non-adherant during the culture period, making this in vitro culture system

a good model for examining constitutive granulocyte apoptosis. Reagents to be
examined in this assay system were diluted to 10 x the final concentration required in
Iscove's DMEM before addition of 15 (il of each reagent to be investigated.
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2.4 ASSESSMENT OF APOPTOSIS

2.4.1 ASSESSMENT OF APOPTOSIS BY MORPHOLOGICAL CRITERIA

Neutrophil apoptosis was assessed morphologically according to the method of
Savill et al (Savill et al., 1989). Cells were gently resuspended and 100 pi of cell

suspension (approximately 5 x 103 neutrophils) harvested from each well,

cytocentrifuged (300 rpm, 3 min) and the resulting slide preparations air dried, fixed
in methanol and stained with Diff-Quik™ and cells were counted using oil
immersion light microscopy. Cell recovery was measured in parallel using a

haemocytometer and cell viability assessed by trypan blue exclusion. Apoptotic cells
were defined as those containing one or more darkly stained pyknotic nuclei (see
Sections 3.1 and 4.1). At least 500 cells were counted over five fields of view, with
slides prepared in triplicate per well and the observer blinded to the experimental
conditions.

2.4.2 ASSESSMENT OF APOPTOSIS BY ANNEXIN V BINDING

In addition, apoptosis was assessed by flow cytometry using FITC-labelled
recombinant human Annexin V that binds to phosphatidylserine exposed on the
surface of apoptotic cells. A working solution of Annexin V was made from stock
Annexin V (Annexin-V-FLUOS, Boeringer), diluted 1:3000 with Annexin V binding
buffer (see buffers). Neutrophils (20 pi of 5 x 106/ml) were added to 200 pi of the

working solution of Annexin V-FLUOS before being assessed by flow cytometry on

a FACSCalibur (Becton Dickinson, Oxford, UK) and analysed on associated

CellQuest (Becton Dickinson) software. All experiments were performed at least
three times unless otherwise indicated.
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2.5 MEASUREMENT OF MITOCHONDRIAL DISSIPATION

Changes in mitochondrial potential were measured in neutrophils following
stimulation using JC-1 [5,5',6,6'-tetrachloro-l,r,3,3'-tetra-ethyl-benzimidazocarbo-

cyaniniodide] (Molecular Probes), a cationic dye which exhibits potential dependent
accumulation in mitochondria indicated by a fluorescence emission shift from green

(525 nm) to red (590 nm). Mitochondrial depolarisation is indicated therefore by a

decrease in the red/green fluorescence intensity ratio. JC-1 (10 |Llg/ml) was diluted in
PBS from stock JC1 (5 mg/ml in DMSO) and added to neutrophils (1 x 106/ml) for
10 min at 37°C. Neutrophil mitochondria labelled with JC-1, were examined by
confocal fluorescent microscopy together with TO-PRO-3 (1 pM) (Molecular

Probes) to assess neutrophils with necrotic morphology. Alternatively neutrophils
labelled with JC-1 were assessed by flow cytometric analysis using FACSCalibur

(Becton Dickinson, Oxford, UK) and analysed on associated CellQuest (Becton

Dickinson) software.

2.6 ENZYME LINKED IMMUNOSORBANT ASSAY (ELISA)

Interleukin-8 (IL-8) secretion was analysed by detecting soluble protein in aliquots of

supematants collected from granulocyte cultures at 24 h. Reagents for IL-8 detection
and standards were purchased from R&D systems (Oxon, UK). Briefly, anti-

cytokine capture antibodies were diluted to 4 pg/ml in PBS. 100 pi of diluted

capture antibody was added to the wells of enhanced protein binding ELISA plates

(Coming, NY, USA). The plates were sealed and incubated overnight at 37°C.

Capture antibody was removed, and wells were washed 3 times with ELISA wash

buffer, 200 pl/well. 100 pi of ELISA blocking buffer was added to each well and the

plates incubated at 37°C for 1 h. Wells were washed 3 times with ELISA wash

buffer (200 pl/well) and 100 pi of standards and samples were added to the wells

(appropriately diluted in ELISA wash buffer). Plates were sealed and incubated for 1

h at 37°C. Wells were washed 3 times with 200 pi ELISA wash buffer and 100 pi of
20 ng/ml biotinylated detection antibody diluted in ELISA blocking buffer was
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added to each well. Plates were incubated for 1 h at room temperature after which
wells were washed 3 times with 200|ll1 ELISA wash buffer and lOOpl of 1 in 2000
diluted Streptavidin-HRP (Amersham Life Sciences, Amersham, U.K.) was added to

the wells and incubated for 20 mins at room temperature. Wells were washed 3

times with ELISA wash buffer and 100 pi of substrate solution was then added.
Plates were placed in the dark for development before the reaction was stopped by

the addition of 50 pi H2SO4 to each well and read on a Microplate Reader 450

(BioRad Laboratories, Hemel Hempstead, U.K.) and associated software.

2.7 SIGNALLING

2.7.1 MEASUREMENT OF PKA ACTIVITY

PKA activity was measured using Promega's SignaTECT™ cAMP-Dependent
Protein Kinase (PKA) Assay System which utilises biotinylated Kemptide

(LRRASLG), a peptide substrate derived from the in vivo substrate pyruvate kinase.
Unless otherwise stated, neutrophils (5 x 106 cells) were pre-incubated with control
buffer or 10 pM H89 (Calbiochem, Nottingham, UK) for 1 h in PBS with Ca2+/Mg2+
at 37 °C before being stimulated with 0.2 mM dbcAMP or 1 pM PGE2, for 30 min at

37 °C. Following one wash in ice cold PBS, neutrophils were resuspended in 0.5 ml
of cold PKA extraction buffer. The lysates were centrifuged (5 min; 4 °C; 14,000 g)
and the supematants retained. The PKA reaction mix consisting of 5 pi of 5 x PKA

Assay Buffer, 5 pi of cyclic AMP (0.025 mM), 5 pi of PKA Biotinylated Peptide

Substrate (0.5 mM), 5 pi [gamma-33P]ATP mix (5 pi 0.5 mM ATP and 0.05 pi

[gamma- PJATP (3,000Ci/mmol) lOpCi/pl) was mixed gently and pre-incubated at

30 °C for 5 min. A control reaction without substrate was performed to determine

background counts. The PKA activity reaction was initiated by adding 5 pi of the

lysates to the reactants and incubated at 30°C for 5 min. The reaction was terminated

by adding 12.5 pi of Termination buffer to each sample (Promega, Southampton,

UK). Aliquots (10 pi) from each terminated reaction sample were spotted onto

prenumbered SAM2™
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Membrane squares (Promega, Southampton, UK). The SAM2™ Membrane squares

containing the spotted samples were then washed 1 x 30 seconds with 200 ml 2 M

NaCl (Sigma, Poole, Dorset, UK) followed by 3 x washes for 2 min of 200 ml 2 M

NaCl then 4 x washes for 2 min of 200 ml 2 M NaCl in 1% H3PO4. Finally the

Membrane squares were quickly washed in deionized water before being allowed to

dry. PKA activity was measured by scintillation counting.

2.7.2 WESTERN BLOTTING

A number of lysis methods were employed to extract neutrophil proteins as

inconsistent results and glucocorticoid receptor (GR) proteolysis were found when
standard lysis methods were utilised (Figures 2.1 and 2.2). These problems occurred

despite inclusion of a broad spectrum of protease inhibitors and may reflect the major

protease content of neutrophils.

2.7.2.1 Extraction of proteins from neutrophils using Triton X-100 lysis buffer

200 pi of Triton X-100 lysis buffer (see buffers) was added to the PBS washed,

pelleted (10 x 106) neutrophils and the cells thoroughly resuspended by repeat

pipetting. The samples were then incubated on ice for 10 min before being

centrifuged (20000g, 4°C, 10 min). The resulting supernatants were stored at -80°C

prior to analysis. Prior to electrophoresis, 15 pi of 3 x sample buffer was added to 30

pi of lysate and samples boiled for 2 min, 95°C.

2.7.2.2 Extraction of proteins from neutrophils using boiling sample buffer

Washed cell pellets were resuspended in 40 pi of lx sample buffer, preheated to

95°C. Samples were then vortexed and sonicated before being stored at 4°C.
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2.7.2.3 Extraction of proteins from neutrophils using NP40 lysis buffer

100 pi of cytoplasmic NP40 lysis buffer (see buffers) was added to the washed,

pelleted neutrophils and the cells thoroughly resuspended by repeat pipetting. The

samples were then incubated on ice for 10 min before being centrifuged (4300g, 4°C,

10 min). Supematants were harvested and stored at -80°C prior to analysis. To the

remaining pellet, 50 pi of nuclear NP40 lysis buffer was added and the samples
incubated on ice for 10 min before being centrifuged (23100g, 4°C 10 min).

Supematants were saved and stored at -80°C prior to analysis

2.7.2.4 Extraction of proteins from neutrophils using NP40 lysis buffer for

proteins sensitive to proteases (PSP)

100 pi of cytoplasmic NP-40 lysis buffer (cLBPSP) (see buffers) was added to the

washed, pelleted neutrophils and the cells thoroughly resuspended by repeat

pipetting. The samples were incubated on ice for 10 min to help aid neutralisation of
surfaces proteases. Following the 10 min incubation time, 10 pi ofNP-40 was added,
the sample flick-mixed, before being centrifuged (4300g, 10 min). Supematants were

harvested and immediately added to 50pl of 3 x sample buffer, before being boiled
for 2 min, 95°C. The remaining cell pellet was resuspended in 50 pi of nuclear NP-
40 lysis buffer (nLBPSP) (see buffers) and the samples placed at 4°C with constant

shaking, to solubilise nuclear proteins. After 20 min incubation the samples were

centrifuged (23100g, 10 min) and the supematants added to 25pl of 3 x sample
buffer before being boiled for 2 min, 95°C.

2.7.3 ASSESSMENT OF PROTEIN CONCENTRATIONS

Protein concentrations were quantified using a BCA protein assay (Pierce, IL, USA).
This assay is based on the ability of protein present in the test samples to cause a

reduction of Cu2+ to Cu+ and bicinchoninic acid (BCA) to chelate Cu+ forming a

purple compound which can be measured using spectrophotometry (562 nm) (Smith
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et al., 1985). Samples were diluted 1 in 10 in dH20 and 10 |il incubated with 200 fil
of test solution (30 min, 37°C) in 96 well plates prior to analysis using an automated

plate reader (MR5000, Dynatech, UK). Samples were assayed in triplicate and
standard curves formed using pre-made BSA standards.

2.7.4 SEPARATION OF PROTEIN EXTRACTS BY POLYACRYLAMIDE

GEL ELECROPHORESIS (PAGE)

Protein extracts (50 pg protein) were subject to SDS-PAGE on polyacrylamide gels.

Samples were electrophoresed at 150 Volts using SDS-Tris-Glycine electrophoresis
buffer (Mini Protean II apparatus, Biorad, CA) for one hour beside pre-stained
molecular weight markers (Gibco BRL, Paisley, U.K.). Unless otherwise stated,

proteins were transferred to nitrocellulose (Hybond C, Amersham Pharmacia

Biotech, Amersham, U.K.) using methanol based transfer buffer at 60 Volts for 1 hr.

Non-specific protein binding sites on the nitrocellulose membrane were blocked by
incubation of the membranes in 50 ml of blocking buffer for one hour at 37°C.
Membranes were then incubated at 4°C overnight in 3 ml blocking buffer containing
the appropriate primary antibodies with constant shaking. This was followed by 3

sequential washes (5 min, 25°C) in Western wash buffer. Membranes were then

incubated with the appropriate horse-radish peroxidase (HRP)-conjugated secondary
antibodies either (a) HRP-Goat anti mouse Ig (Dako Corporation, Cambridege, UK)
or (b) HRP-donkey anti rabbit Ig (Amersham) diluted 1 in 2000 in blocking buffer
for one hour at room temperature with gentle shaking. Membranes were washed a

further 3 times with 50 ml wash buffer before 1 min incubation with ECL reagent

(Amersham). Excess ECL reagent was removed and the membrane placed under
BioMax MS-1 X-ray sensitive film. Films were processed through an X-ray

developer (X-Ograph Imaging Systems, Wilts, U.K.) at various exposure time points

(lmin, 3min, 5 min and 10 mins).
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2.7.5 WESTERN BLOTTING FOR THE GLUCOCORTICOID RECEPTOR

(GR)

When neutrophil lysates, prepared using a standard Triton X-100 based lysis buffer

(section 2.7.2.1), were separated with SDS-PAGE and the Western blots developed

using an anti-GR antibody, several bands were observed (Figure 2.1A), suggesting

non-specific binding of the rabbit polyclonal antibody or severe protein degradation

during the neutrophil lysis. A similar result was observed when neutrophil lysates
were prepared by direct lysis of neutrophils using boiling Laemelli buffer (Section
2.7.2.2, Figure 2.IB). Furthermore neutrophil lysates prepared using a standard NP-
40 lysis buffer, failed to produce a band of the appropriate molecular weight for GR

(Section 2.7.2.3, Figure 2.2A). To investigate if problems in western blotting for GR
were due to poor antibody binding, anti-GR antibody was tested against pre-prepared
human epidermal A431 cell line lysates from Santa Cruz and A431 and neutrophil

cytoplasmic extracts prepared by a standard NP40 lysis buffer (Section 2.7.2.3,

Figure 2.2Aand 2.2B). Figure 2.2A shows a Western blot of neutrophil proteins

prepared using by a standard NP-40 lysis buffer in which neutrophils do not appear

to express GR. Expression of GR was found in A431 cytoplasmic lysates prepared

by the same lysis method or in pre-prepared A431 lysates from Santa Cruz (Figure

2.3). Neutrophil cytoplasmic extracts could be successfully immunoblotted for actin

(NH3) indicating that extraction method was sufficient for detecting high abundance

proteins in neutrophils (Figure 2.2B). From this result it would appear that anti-GR

antibody does recognise GR in A431 cells yet cannot detect GR expression in

neutrophils. This suggests that difficulty in detection of GR in neutrophils is not due
to poor antibody binding but may instead reflect either a low expression level of GR
in neutrophils or degradation of GR in these cells, despite inclusion of a broad range

of protease inhibitors in the lysis buffer. To investigate if difficulty in detection of
GR in granulocytes was due to proteolytic degradation of GR in these cells, we

further optimised a standard NP40 lysis protocol (Section 2.7.2.4) to include a high

protease inhibitor content lysis buffer and incubation of granulocytes with protease

inhibitors before lysis to neutralise surface proteolytic activity. Using this lysis

method, a band of the appropriate molecular weight to GR could be consistently
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detected in neutrophils (See Figures 4.4.1A and 4.4.1B). This suggests that protease

activity of granulocytes is a major problem for successful immunoblotting and

consequently, this optimised NP40 lysis protocol was used for all other

immunoblotting.
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97kDa —►

Figure 2.1 Immunoblotting for GR in neutrophil lysates. Neutrophil lysates were
prepared using a standard Triton X-100 lysis buffer (A) or by direct addition of boiling
Laemelli buffer (B). Cell lysates were prepared and immunoblotted as described under
"Materials and Methods". Lysates were prepared from equivalent numbers of cells and
subjected to SDS-PAGE/immunoblot analysis using a 8.5 % polyacrylamide gel and
membranes probed with a rabbit anti-human GR antibody (PA 1-511). The gels are
representative of 3 experiments.
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GRa (PA1-511)

I NEUTROPHILS 1 A431 A431
CYT CYT NUC NUC CYT WC

97kDa h.

A

ACTIN (NH3)
NEUTROPHILS 1 A431 A431

CYT CYT NUC NUC CYT WC

Figure 2.2. Western blot analysis for GRa in neutrophils. Neutrophil and A431
cytoplasmic (CYT) and nuclear (NUC) lysates were prepared using standard NP40 lysis
buffer and immunoblotted as described under "Materials and Methods". Lysates were
prepared from equivalent numbers of cells and subjected to SDS-PAGE/immunoblot
analysis using antibodies against either GRa (PA 1-511) (A) or actin (NH3) (B). As a
positive control the last lane contains a whole cell lysate (WC) supplied by Santa Cruz
made from A431 cell lines.
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2.7.6 WESTERN BLOTTING FOR SECRETORY LEUKOCYTE

PROTEINASE INHIBITOR (SLPI)

Neutrophils and eosinophils were cultured at 5 x 106/ml or 2.5 x 106/ml respectively
in Iscove's DMEM supplemented with 10% autologous serum, 50 U/ml penicillin,
and 50 U/ml streptomycin. Cells were cultured for 20 h in the presence or absence of

appropriate concentrations of dexamethasone. The supernatants were then harvested
and dialysed overnight using dialysis tubing (MWCO 3,500) to remove excess salts
from the medium. Supematants were run on a 15 % polyacrylaminde gel and
Western blotting was performed as in Section 2.7.4 using a rabbit anti-human SLPI

antibody (gift from J.Sallenave).

2.8 STATISTICAL ANALYSIS

Results are reported either as pooled data from a series of n separate experiments

(mean ± S.E.) or as individual representative experiments (mean ± SD, 3

replicates/condition). Statistical significance was assessed by the students t-test or,

by one way analysis of variance with comparisons between groups made using the
Newman-Keuls procedure.
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3 CYCLIC AMP REGULATION OF GRANULOCYTE

APOPTOSIS

Cyclic AMP is a key second messenger that plays a central role in regulating a

multitude of cellular processes. It is widely recognised that cyclic AMP is involved
in the control of many cellular events occurring in the immune system such as

proliferation, differentiation and chemotaxis. For example, cyclic AMP induces

eosinophilic differentiation of human leukaemia cell line Eol-1 (Jung et al., 1994)
and potentiates granulocytic differentiation of retinoid induced maturation of human

myeloid leukaemia cells (Olsson and Breitman, 1982). Cyclic AMP is also able to

influence development of the immune system through its ability to affect T cell
effector function. Elevation of cyclic AMP has been shown to both inhibit

lymphocyte proliferation (Estes et al., 1971; Skalhegg et al., 1992; Bauman et al.,

1994; Bryce et al., 1999) and regulate mononuclear cell production of cytokines

influencing T cell polarisation. For example, elevation of cyclic AMP has been

shown to inhibit secretion of IFN y and IL-2 (Betz and Fox, 1991; Snijdewint et al.,

1993) but enhance production of IL-5 (Lacour et al., 1994), IL-10 (Platzer et al.,

1995) and IL-l-(3 (Lorenz et al., 1995). The ability of cyclic AMP to inhibit Thl

type cytokine production lead to the proposal that cyclic AMP favoured development
of a Th2 phenotype (Gajewski et al., 1990; Betz and Fox, 1991) however the finding
that cyclic AMP also inhibited IL-4 secretion (Borger et al., 1996; Sottile et al.,

1996) has put this into question.

In addition to influencing adaptive immune responses, cyclic AMP plays an

important role in regulating innate immune cell function. (32-adrenoceptor agonists
have been found to be very effective in the treatment of inflammatory diseases such

as asthma (Barnes, 1999). It is postulated that this relates partly to the ability of (32-

adrenoceptor agonists to stimulate increases in cyclic AMP, leading to suppression of

inflammatory cell function (Hallsworth et al., 2001). For example, elevation of cyclic
AMP is known to inhibit directly many granulocyte functions such as superoxide
anion release (Schudt et al., 1991; Lad et al., 1985), degranulation (Kita et al.,
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1991b), enzyme secretion (Wada, 1989) and the induction of the respiratory burst

(Dent et al., 1994). Cyclic AMP will also inhibit indirectly inflammatory cell

activity by suppressing release of many proinflammatory mediators such as

eicosanoids (Ham et al., 1983), LTC4 (Tenor et al., 1996), thromboxane A2 (Zheng et

al., 1991) and eosinophil activating cytokines such as GM-CSF, RANTES and
eotaxin (Hallsworth et al., 2001). The effect of cyclic AMP on neutrophil chemotaxis
however is somewhat more controversial with reports that [^-adrenoceptor agonist

suppression of LTB4 induced chemotaxis does not relate to its ability to elevate

cyclic AMP (Harvath et al., 1991). Forskolin, a more effective elevator of cAMP,
also was found to be ineffectual at inhibiting LTB4 induced chemotaxis in this cell

type (Harvath et al., 1991) suggesting that intracellular concentration of cyclic AMP
is not the key determinant in suppression of neutrophil chemotaxis. In light of these

findings it appears cyclic AMP suppresses certain responses in neutrophils such as

release of PAF and superoxide anions yet fails to affect other neutrophil responses
such as priming, chemotaxis and transmigration (Daniels et al., 1993; Armstrong,

1995)

The mechanism by which cyclic AMP regulates control of various cellular processes
involves a well-characterised signalling pathway initiated by the specific ligation of

appropriate G protein coupled receptors (Figure 3). Following conformational

changes induced by ligand binding, Gs composed of 0Cs and (3y subunits, becomes
activated causing the 0Cs subunit to dissociate from the Gs complex, exposing a

binding site for adenylate cyclase. Binding of the Os subunit to adenylate cyclase, of
which there are at least nine membrane isoforms, leads to the formation of cyclic
AMP from ATP (Hanoune and Defer, 2001). Cyclic AMP signalling is typically

transient, with formation of cyclic AMP in the cell being balanced by progressive

degradation by cyclic nucleotide phosphodiesterases (PDEs). There have been at

least 10 different isoenzyme classes of PDEs described in mammalian cells (PDE1-

PDE10) with this superfamily being further subdivided due to the presence of

multiple splice variants (Houslay and Milligan, 1997). In inflammatory cells, the

predominant PDEs expressed are type III and IV, with granulocytes reported to
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contain only PDE IV (Dent et al., 1991). The formation of cyclic AMP by adenylate

cyclase initiates cyclic AMP binding to cytoplasmic protein kinase A; a tetrameric
structure composed of two regulatory (R) and two catalytic (C) subunits which exists
as an inactive holoenzyme complex in the absence of cyclic AMP (Daniel et al.,

1998). There are two isoforms of PKA identified, namely PKA-I and PKA-II, which
are differentiated on the basis of their regulatory subunits (RI and RII) (Rubin, 1994;

Beebe, 1994) Expression of a particular isoform of PKA regulatory subunits has

important consequences for the subcellular localisation of PKA. For example, it has
been found that a family of proteins called A-kinase anchoring proteins (AKAPs)
will interact with RII subunits of PKA when inactive, sequestering PKA at specific
locations within the cell (Rubin, 1994). AKAPs do not appear to bind RI subunits of

PKA, thus cyclic AMP dependent signalling may vary as a consequence of which
PKA isoforms are present in a particular cell (Rubin, 1994; Scott and McCartney,

1994). There is also some evidence that cyclic AMP signalling may be further

compartmentalised. Caveolae membrane microdomains have been found to contain

many components involved in cyclic AMP signalling. Furthermore, caveolinl has
been shown to be capable of abrogating cyclic AMP signalling (Razani et al., 1999).
The consequences of compartmentalisation on downstream signalling events of

cyclic AMP have still to be elucidated.

Activation of PKA by cyclic AMP results in the translocation of the catalytic
subunits to the nucleus, allowing phosphorylation of specific cellular substrates such
as transcription factors. These include cyclic AMP responsive element binding

protein (CREB), cyclic AMP responsive element modulator (CREM) and activating

transcription factor 1 (ATF1) (Sassone-Corsi, 1995). These transcription factors bind
as dimers to the cyclic AMP consensus sequence TGACGTXA, known as the cyclic
AMP responsive element (CRE) (Sassone-Corsi, 1995). Binding of transcription
factors to CRE is thought to allow cyclic AMP stimulated signals to subsequently
affect gene transcription (Sassone-Corsi, 1995). Transcription of CRE regulated

genes may be augmented by interaction with CBP (CREB binding protein) which

bridges CREB with the basal transcriptional machinery (Goldman et al., 1997). CBP
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CYCLIC AMP SIGNAL TRANSDUCTION CASCADE

Figure 3 Cyclic AMP signalling cascade. Ligand binding to G-coupled receptors activates
a stimulatory G-protein (Gs). This activates adenylate cyclase (AC) leading to formation of
cyclic AMP from ATP. Active PKA catalytic subunits are released following cyclic AMP
binding to PKA regulatory subunits. The C subunits phosphorylate targets in the cytoplasm
(e.g. Bad, Rapl) and in the nucleus (e.g. cyclic AMP response element binding protein
(CREB)).
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is believed to have a more universal role and may also allow integration of signals
from other transcription factors such as AP-1 (Kamei et al., 1996). Other

transcription factors regulated by and responsive to the activation of the cyclic AMP

signalling pathway include NFkB (Chen and Rothenberg, 1994; Satriano and

Schlondorff, 1994) and nuclear receptors (Darwish et al., 1993).

It is important to note that PKA has been reported to act independently of cyclic
AMP in some circumstances. It has been demonstrated that PKA is capable of

regulating NFkB transcription by phosphorylating p65 and initiating the degradation

of IkB (Zhong et al., 1997), in a ligand independent manner. Furthermore it has been

reported that PKA can form part of an inactive complex with NFkB/IkB (Zhong et

al., 1997) and is thought to be responsible for regulating glucocorticoid-mediated

suppression ofNFkB independently of cyclic AMP (Doucas et al., 2000).

Until recently it was assumed that cyclic AMP exerted its physiological functions
almost solely through activation of PKA. However this appears to not be the case

with the discovery of a new family of cyclic AMP binding proteins which have close

sequence similarity to PKA (Kawasaki et al., 1998; de Rooij et al., 2000). These

cyclic AMP binding proteins termed cyclic AMP specific guanine nucleotide

exchange factors (cAMP-GEFs) contain a guanine nucleotide exchange factor (GEF)
domain and a cyclic AMP binding domain which closely resemble the cyclic AMP

binding sites of PKA (de Rooij et al., 2000; Kawasaki et al., 1998). There have been
two cAMP-GEFs identified, namely cAMP-GEFI (or Epac) and cAMP-GEFII (de

Rooij et al., 2000; Kawasaki et al., 1998). Binding of cyclic AMP to cAMP-GEFs
results in the activation of the small Ras like GTPase, Rap-1 (de Rooij et al., 2000).
The functional consequences of activation of Rap 1 have not been fully established,
however Rap-1 is postulated to have a role in platelet aggregation (Bos, 1998), cell
differentiation (York et al., 1998), cell proliferation (Altschuler and Ribeiro-Neto,

1998) and T cell anergy (Boussiotis et al., 1997). The downstream signalling cascade
of Rapl is poorly defined, however there have been suggestions that Rapl may

antagonise Ras signalling (Cook et al., 1993; Hu et al., 1997b). This has recently
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been disputed with the finding that ERK activation ofRap 1 fails to interfere with Ras

effector signalling (Zwartkruis et al., 1998). The localisation of Rapl may however

give clues as to its function as it has been shown to be present in the mid Golgi, early
and late endocytic vesicles and lysosomes whereas Ras is mainly localised in the

plasma membrane (Pizon et al., 1994).

Many of the molecular mechanisms underlying cyclic AMP regulation of cellular
events are well characterised. However, the ability of this ubiquitous second

messenger to regulate one aspect of cellular function remains poorly defined. Cyclic
AMP can powerfully and differentially modulate apoptosis in a wide variety of cell

types yet little is known of the molecular mechanisms controlling this process. It has

recently come to light that cyclic AMP is involved in the regulation of the pro-

apoptotic Bcl-2 family member Bad (Harada et al., 1999). Bad is found to be
associated with Bc1-Xl at the mitochondrial outer membrane (Zha et al., 1997). It has

been proposed that following cyclic AMP mediated activation of PKA there is

phosphorylation of key serine residues on Bad, allows the dissociation of Bad from

Bcl-XL(Harada et al., 1999). Bad is then thought to be sequestered in the cytoplasm

by 14-3-3 resulting in abrogation of its pro-apoptotic properties, allowing cell
survival (Zha et al., 1996). The physiological importance of this pathway has yet to

be determined however it is unlikely that this is the universal mechanism controlling

cyclic AMP regulated apoptosis, considering the divergent effects cyclic AMP has
on cell death in different cell types.

The importance of understanding the signalling pathways mediated by cyclic AMP,
in the control of apoptosis, is exemplified by the wide variety of cells in which cyclic
AMP determines cell fate. For example, elevation of cyclic AMP induces apoptosis
in thymocytes (McConkey et al., 1990; Suzuki et al., 1991), primary granulosa cells

(Aharoni et al., 1995), myeloid cell lines (Lanotte et al., 1991) and WEHI7.2 murine

lymphocytes (Dowd et al., 1992). The signalling mechanisms used by cyclic AMP to

control these events are likely to be complex and cell type specific. For example, in
contrast to the profound induction of apoptosis in the cell types above, evidence has

emerged demonstrating that cyclic AMP can provide protection from cell death in
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many cell types. Cyclic AMP inhibits apoptosis in pancreatic cancer cells (Boucher
et al., 2001), protects human osteoblasts from NO induced apoptosis (Chae et al.,

2001) and promotes neuronal survival (Deckwerth and Johnson, Jr., 1993; D'Mello et

al., 1993; De et al., 1994; Li et al., 2000a). There has been recent interest in the

finding that cyclic AMP can also regulate granulocyte apoptosis. Elevation of cyclic
AMP using either analogues of cyclic AMP (Rossi et al., 1995) or receptor directed

prostaglandins (Rossi et al., 1995; Ottonello et al., 1998) has been reported to

profoundly delay neutrophil apoptosis. Various studies have described similar

findings in eosinophils yet little is known of the signalling mechanism by which

cyclic AMP appears to regulate this cell function (Chang et al., 2000; Peacock et al.,

1999; Hallsworth et al., 1996). We have previously highlighted the importance of

regulated granulocyte apoptosis, as a vital process for ensuring the successful
resolution of an inflammatory response (Savill, 1992; Stem et al., 1992). The
obvious consequence of the knowledge that cyclic AMP can protect against

granulocyte apoptosis, is the chance to promote apoptosis indirectly by blocking the
influence of this survival factor and augment phagocytic removal of these cells.
Since the mechanisms by which cyclic AMP influences granulocyte apoptosis and
the signalling pathways involved in regulating granulocyte cell death remain ill

defined, our aim was to investigate the underlying molecular mechanism and
establish a greater understanding of the control of neutrophil cell death.
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3.1 ELEVATION OF CYCLIC AMP DELAYS CONSTITUTIVE

NEUTROPHIL APOPTOSIS

To examine the effects of cyclic AMP on constitutive neutrophil apoptosis,

neutrophils (5 x 106/ml) cultured in serum supplemented Iscove's DMEM, were

exposed to dibutyryl cyclic AMP (dbcAMP), a membrane-permeant cyclic AMP

analogue and the receptor directed stimulus prostaglandin E2 (PGE2), for 20 h. Both
dbcAMP and PGE2 delay morphological changes characteristic of constitutive

neutrophil apoptosis, such as cytoplasmic shrinkage and nuclear condensation

(Figure 3.1.1). DbcAMP and PGE2 also delay cell membrane changes associated
with apoptosis such as the exposure of phosphatidylserine measured by Annexin V

binding (Figures 3.1.2 and 3.1.3). Figure 3.1.2 illustrates the percentage of cells
within the Annexin V "high" gate was reduced by dbcAMP treatment from 63% (B;

control) to 34% (C). It is interesting to note that maximal concentrations of dbcAMP,
established previously as 0.2 mM (Rossi et al., 1995), are more effective at delaying

neutrophil apoptosis compared to maximal concentrations of PGE2 (10 jiM) (Figure

3.1.3). Assessment of cell viability by trypan blue exclusion demonstrated that
dbcAMP or PGE2 did not alter this parameter (data not shown).

Cyclic AMP mediated delay of neutrophil apoptosis was also measured by loss of
cell surface CD16 (FcyRIII), a process that has been characterised as a further marker
of spontaneous neutrophil death (Dransfield et al., 1994). The marked inhibition of

apoptosis induced by dbcAMP (as determined by CD 16 shedding) is exemplified by
the representative flow cytometric analysis depicted in Figure 3.1.4. The CD16 " low

peak" in the control 24 h cells represents apoptotic cells that have shed their cell
surface CD 16; the percentage cells with "low" CD 16 was markedly reduced when

compared to cells that have been treated with dbcAMP whereas the corresponding
CD 16 "high" peak was increased. Together these results demonstrate morphological
and surface alterations that accompany apoptosis are inhibited by elevators of cyclic
AMP.
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SUMMARY

• Elevation of cyclic AMP by dbcAMP and PGE2 delays morphological changes
that occur during neutrophil apoptosis.

• Elevation of cyclic AMP delays expression of phosphatidylserine and inhibits
cell surface loss ofCD16 (FCRylll) that occur during neutrophil apoptosis.
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Figure 3.1.1 Neutrophil apoptosis is delayed by elevation of cyclic AMP. Human
neutrophils (5 x 106/ml) were cultured in Iscove's DMEM containing 10% autologous
serum at 37 °C, with or without dbcAMP (0.2mM). After 20 h, cells were harvested and
assessed morphologically for apoptosis. The upper panel indicates control neutrophils
after 20 h in culture. The bottom panel indicates neutrophils treated with dbcAMP for 20
h.
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Figure 3.1.2 Cyclic AMP elevation delays neutrophil apoptosis. (A) represents a
typical flow cytometric scatter plot for neutrophils. (B) represents control neutrophils
after 20h in culture incubated with FITC-labelled recombinant human Annexin-V to

determine phosphatidylserine expression. Similarly (C) represents neutrophils
stimulated with dbcAMP for 20 h before incubation with FITC-labelled recombinant
human Annexin-V to determine phosphatidylserine exposure.
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control PGE2 dbcAMP

Figure 3.1.3 Cyclic AMP elevation delays neutrophil apoptosis as assessed by
Annexin V binding. Human neutrophils (5 x 106/ml) were cultured at 37 °C in Iscove's
DMEM containing 10% autologous serum and treated with dbcAMP (0.2 mM) or PGE2
(10 |iM). After 20 h, the cells were incubated with FITC-labelled recombinant human
Annexin-V to determine phosphatidylserine exposure. All values represent mean ± S. E.
of n = 5 - 8 experiments, each performed in duplicate where significant difference from
control is represented by * PO.OOl and #P<0.05. Similar results were found by
morphological assessment of apoptosis (data not shown).
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Figure 3.1.4 Cyclic AMP elevation delays neutrophil apoptosis as assessed by CD16
shedding. Human neutrophils (5 x 106/ml) were cultured at 37 °C in Iscove's DMEM
containing 10% autologous serum and treated with or without dbcAMP (0.2 mM). After
24 h, the cells were measured for CD 16 expression as outlined in the "Methods" section
before being analysed on FACS Calibur and the CellQuest associated software. Data
presented is of one representative experiment.
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3.2 CYCLIC AMP ELEVATION INHIBITS CASPASE-3

EXPRESSION DURING CONSTITUTIVE NEUTROPHIL

APOPTOSIS

In light of the findings that cyclic AMP elevating agents delay neutrophil apoptosis,
we were interested in investigating the point at which cyclic AMP influenced the

apoptotic signalling cascade. It is widely believed that caspases act as the main
executioners of apoptosis, with their activation resulting in chromatin condensation
and DNA fragmentation. Whether cyclic AMP delays constitutive neutrophil

apoptosis by directly suppressing caspase activation in these cells has not been
examined. We therefore investigated the effect of cyclic AMP on activation of

caspase-3 during constitutive neutrophil apoptosis. Cytoplasmic extracts were

obtained from neutrophils which had been treated with control buffer or dbcAMP

(0.2 mM) over a time course of 20 h. Lysates were prepared from equivalent
numbers of cells and were subject to SDS-PAGE/immunoblot analysis using a rabbit

polyclonal antibody specific for caspase-3. The caspase-3 antibody recognizes both
the 32 kD pro-caspase-3 and the 17 kD subunit of active caspase-3. Neutrophils

began to express active caspase-3 (17kD) at 8 h and by 20 h there was significant

caspase-3 activity (17kD) which could be inhibited by dbcAMP (Figure 3.2.1.). We
also found that expression of caspase-3 correlated with the phosphatidylserine

exposure that occurs during constitutive neutrophil apoptosis (Figure 3.2.2). The

appearance of some caspase-3 activity in the presence of dbcAMP at 20 h probably
reflects the presence of some apoptotic cells in the population (Figure 3.2.2). The

intriguing nature of the results illustrated above raised the possibility that cyclic
AMP mediated delay of neutrophil apoptosis is due to suppression of caspase

activation. We therefore studied the effect of co-culturing dbcAMP and the pan

caspase inhibitor z-Val-Ala-Asp-fluoromethylketone (zVAD-fmk) on the rate of

neutrophil apoptosis. Figure 3.2.3 shows that when neutrophils are co-cultured in the

presence of both dbcAMP and zVAD-fmk their individual effects are less than
additive suggesting that these reagents delay neutrophil apoptosis by a common
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Figure 3.2.1 Time course for the effect of dbcAMP on caspase-3 expression during
human neutrophil apoptosis Western blot of cytoplasmic extracts from neutrophils
treated with control buffer or dbcAMP (0.2 mM) for the time points indicated. Cell
lysates were prepared and immunoblotted as described under "Materials and Methods".
Lysates were prepared from equivalent numbers of cells and subjected to SDS-
PAGE/immunoblot analysis. A 12.5% gel was used. The rabbit polyclonal antibody to
caspase-3 antibody recognizes both the 32 kDa pro-caspase-3 and the 17 kDa subunit of
active caspase-3. The 17 kD caspase-3 cleavage product is faintly visible in control
lysates at 8 h becoming more apparent by 20 h. The gel is representative of 3
experiments.
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Figure 3.2.2 Time course for phosphatidylserine exposure during overnight
neutrophil culture. Human neutrophils were treated with or without dbeAMP (0.2 mM)
for the time points indicated under equivalent culture conditions as the cells used for
caspase-3 expression assessment above. Cells were assessed for apoptosis by
measurement of phosphatidylserine expression using Annexin-V FITC. All values
represent mean ± S.E. of n = 3 experiments, each performed in duplicate where
significant difference from control is represented by * P<0.001.
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inhibitory mechanism. However further experiments involving much wider
concentration ranges of both reagents are necessary to make any firm conclusions

regarding this data. It is intriguing that elevation of cyclic AMP delayed neutrophil

apoptosis more effectively than blockade of caspase activation by zVAD-fmk. This

suggests either that cyclic AMP elevation more effectively inhibits caspase activation
than zVAD-fmk or alternatively cyclic AMP may act partially through a mechanism
not involving inhibition of caspase activation, in order to suppress neutrophil

apoptosis.

It is interesting that blockade of caspase activation by zVAD-fmk does not fully

suppress neutrophil apoptosis. This is unlikely to be due to poor cell permeability, as
zVAD-fmk will effectively block TNFoc induced apoptosis in neutrophils (Ward et

al., 1999a). It is however possible that zVAD-fmk may be degraded during overnight
culture and therefore caspase activity may not be effectively blocked during the 20 h
culture period. Although this may be possible, a further and more interesting

interpretation of the data would be that constitutive neutrophil apoptosis occurs

partially independently of caspase activation.

SUMMARY

• Constitutive neutrophil apoptosis is accompanied by expression of active

caspase-3.
• Elevation of cyclic AMP delays expression of caspase-3 during constitutive

neutrophil apoptosis.
• Studies with zVAD-fmk suggest constitutive neutrophil apoptosis may occur

partially through a caspase-independent mechanism.
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Figure 3.2.3 Comparison of the effects of dbcAMP and zVAD-fmk on neutrophil
apoptosis. Human neutrophils (5 x 10 6/ml) were cultured at 37 °C in Iscove's DMEM
containing 10% autologous serum and treated with dbcAMP (0.2 mM) or zVAD-fmk (100
pM). After 20 h, the cells were incubated with FITC-labelled recombinant human
Annexin-V to determine phosphatidylserine expression. All values represent mean ± S. E.
of n = 3 experiments, each performed in duplicate where significance from control is
represented by *P<0.001 or #P<0.01 and significance from dbcAMP alone is represented
by ±P<0.05.
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3.3 CYCLIC AMP INHIBITS LOSS OF MITOCHONDRIAL

POTENTIAL OCCURRING DURING CONSTITUTIVE

NEUTROPHIL APOPTOSIS

3.3.1 DETERMINATION OF WHETHER NEUTROPHILS CONTAIN

MITOCHONDRIA

In many cell models, apoptosis is accompanied by an early dissipation of the
mitochondrial transmembrane potential (AThn) (Zamzami et al., 1995). Previous data

have indicated that neutrophils do not respire and it was thought unlikely that they
contained many, if any mitochondria (Simon, 2001). To investigate whether cyclic
AMP mediated delay of neutrophil apoptosis involves regulating changes in
mitochondrial membrane potential we firstly examined if changes in mitochondrial
membrane potential occur during constitutive neutrophil apoptosis. Using confocal

microscopy and flow cytometry we have been able to demonstrate that neutrophils
do contain mitochondria (orange), which during overnight culture exhibit loss of
mitochondrial potential, as indicated by an increase in green fluorescence using the
mitochondrial specific dye JC-1 (Reers et al., 1991) (Figure 3.3.1). Cells displaying
necrotic morphology were distinguished from the rest of the cell population by using
the impermeant nucleic acid dead-cell stain TOPRO-3 (van Hooijdonk et al., 1994).
We found that >99% of neutrophils were viable as assessed by exclusion of TOPRO-
3.

3.3.2 EFFECT OF CYCLIC AMP ON DISSIPATION OF MITOCHONDRIAL

TRANSMEMBRANE POTENTIAL DURING NEUTROPHIL APOPTOSIS

To investigate if cyclic AMP delays neutrophil apoptosis by affecting mitochondrial
membrane potential, cells were cultured in the presence or absence of dbcAMP for
20 h, before measurement ofmitochondrial membrane potential by JC-1. Our studies
reveal that dbcAMP inhibits changes in mitochondrial potential associated with
constitutive neutrophil apoptosis (Figure 3.3.2 A & B). As the number of cells
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Figure 3.3.1 Demonstration of mitochondria within neutrophils. Human neutrophils (1
x 106/ml) were cultured at 37 °C in Iscove's DMEM containing 10% autologous serum.
Neutrophils were labelled with JC-1, a mitochondrial specific dye, and examined by
confocal fluorescent microscopy as described under "Materials and Methods". Bottom
panels show TO-PRO-3 staining for neutrophils with necrotic morphology (blue).
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showing loss of mitochondrial potential appeared to correlate with the number of

apoptotic cells measured by Annexin-V positivity (Figure 3.3.2 C), we wanted to

examine directly if loss in mitochondrial potential occurs in those neutrophils

undergoing apoptosis. By using conjugated anti-CD 16 magnetic beads we were able
to perform immunodepletion of non-apoptotic neutrophils. We confirmed that the

remaining cells following immunodepletion were apoptotic by Annexin-V binding

(Figure 3.3.2 E). Furthermore, we found that the remaining apoptotic neutrophils
were indeed positive for loss of mitochondrial potential, indicating that dissipation of
mitochondrial membrane potential occurs in neutrophils undergoing programmed
cell death (Figure 3.3.2 D). It has been previously shown that inhibitors of the
mitochondrial respiratory chain do not affect constitutive neutrophil apoptosis,

raising the question of the source of their AHhn (Mecklenburgh, 1999). It may be the
case that the neutrophil maintains a transmembrane gradient by a functional F1 Fo

ATPase, however this has to be investigated in more detail. We have demonstrated
that cyclic AMP mediated delay of neutrophil apoptosis appears to suppress both

caspase activation and changes in mitochondrial potential. We next investigated the

cyclic AMP signal transduction pathway responsible for this suppression of

neutrophil apoptosis and attempted to establish how it is coupled to controlling

components of the molecular machinery for cell death as described above.

SUMMARY

• Neutrophils contain a small number ofmitochondria.
• There is dissipation of mitochondria transmembrane potential in neutrophils

undergoing apoptosis.
• Elevation of cyclic AMP inhibits loss of mitochondrial membrane potential,

during constitutive neutrophil apoptosis.
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Figure 3.3.2 Effect of cyclic AMP on dissipation of mitochondrial transmembrane
potential during human neutrophil apoptosis. Human neutrophils (5 x 106/ml) were
cultured for 20 h at 37°C in Iscoves's DMEM containing 10% autologous serum with or
without dbcAMP (0.2 mM). Cells were then labelled with the mitochondrial specific dye
JC-1 as described under 'Materials and Methods' before flow cytometric analysis of
mitochondrial membrane potential (A, B & D). Apoptosis was assessed by incubation of
cells with FITC labelled recombinant human Annexin-V to determine the

phosphatidylserine exposure (C & E). Non-apoptotic neutrophils were removed by anti-
CD 16 immunodepletion before the remaining cells were labelled with either Annexin-V
FITC or JC-1. Shown as one representative experiment.
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3.4 CYCLIC AMP REGULATION OF NEUTROPHIL

APOPTOSIS OCCURS INDEPENDENTLY OF PKA

3.4.1 CYCLIC AMP ELEVATION STIMULATES PKA ACTIVATION IN

NEUTROPHILS, AN EFFECT THAT IS BLOCKED BY

PHARMACOLOGICAL INHIBITORS

The major intracellular receptor for cyclic AMP is the regulatory (R) subunits of

protein kinase A (PKA) (Daniel et al., 1998). Binding of cyclic AMP to the R
subunits releases catalytic C subunits, which consequently phosphorylate target

proteins such as cyclic AMP response element binding protein (CREB) (Daniel et

al., 1998). It has been proposed that the increase of intracellular cyclic AMP

resulting in PKA activation is essential for neutrophil survival (Rossi et al., 1995;
Parvathenani et al., 1998; Tortorella et al., 1998a). To further investigate this we

examined the effects of cyclic AMP elevation on endogenous PKA activation (Figure

3.4.1). PKA activity was assessed in neutrophils by measuring the phosphorylation
of a biotinylated peptide substrate kemptide, which is highly specific for PKA (See
Materials & Methods). The transfer of a labelled phosphate to kemptide in neutrophil

lysates containing PKA activity, was measured by capture of the labelled substrate
on a streptavadin matrix, followed by scintillation counting. We found rapid
activation of PKA when cells were stimulated with both dbcAMP and PGE2 (Figure

3.4.1). Furthermore preincubating for 30 minutes with the pharmacological PKA
inhibitor H-89 (Chijiwa et al., 1990) blocked activation of PKA upon stimulation of

neutrophils with cyclic AMP elevators (Figure 3.4.1).
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Figure 3.4.1. Measurement of PKA activation by elevators of cyclic AMP in human
neutrophils. Human neutrophils (5 x 106/ml) were pre-incubated with 10 pM H-89 for 1
h before being stimulated with dbcAMP (0.2 mM) or PGE2 (1 pM) for 30 minutes at 37
°C. PKA activity was measured as described under "Materials and Methods". All values
represent mean ± S. E. of n = 3 experiments where significant difference from control
values is represented by *P<0.05. Significant difference from dbcAMP alone is
represented by P<0.01 and significant difference from PGE2 alone is represented by
*P<0.01.
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3.4.2 ACTIVATION OF THE PKA PATHWAY DOES NOT ACCOUNT FOR

CYCLIC AMP MEDIATED PROTECTION AGAINST APOPTOSIS.

To investigate if PKA activation by cyclic AMP was necessary for cyclic AMP
mediated delay of apoptosis, neutrophils were incubated with the PKA inhibitor H-
89 before being stimulated with dbcAMP and assessed for apoptosis. To our surprise

although pre-treatment with H-89 prevented activation of PKA, it did not prevent

inhibition of apoptosis by dbcAMP (Figure 3.4.2). Additionally other

pharmacological inhibitors of PKA such as the highly specific inhibitor Rp-8-
BrcAMPS (Gjertsen et al., 1995) also failed to block dbcAMP inhibition of

neutrophil apoptosis (Figure 3.4.3). This demonstrates that cyclic AMP elevation
stimulates PKA activity but PKA does not play a major role in the anti-apoptotic
effect of cyclic AMP elevation in neutrophils.

Moreover it is interesting that inhibition of PKA activity by H-89 suppresses basal
activation of PKA compared to control yet H-89 does not alter the rate of apoptosis
in neutrophils (Figure 3.4.1 and Figure 3.4.2). This suggests that basal turnover of

cyclic AMP and subsequent activation of PKA may not be an important factor in

regulating constitutive neutrophil apoptosis. The ability of H-89 to block PKA

activity, as shown by direct measurement of kinase activity, suggests a lack of
involvement ofPKA in the anti-apoptotic effect of cyclic AMP in neutrophils. It was
therefore important to determine whether H-89 could block PKA activity for the full

overnight culture period and under identical culture conditions that we use for our

apoptosis assay. Neutrophils were cultured in serum supplemented Iscove's DMEM
for 19 h in the presence or absence of H-89 before stimulation with PGE2 for 1 h.
PKA activity was then measured as described in the Materials and Methods. We

found that H-89 could still block PGE2 stimulated PKA activity at 20 h (Figure

3.4.4). This is very important as it demonstrates that the inability of H-89 to reverse

cyclic AMP mediated delay of neutrophil apoptosis is not due to degradation ofH-89

during the overnight culture period. Furthermore it also demonstrates that H-89 is not
inactivated by autologous serum which is used in our apoptosis assay.

83



REGULATION OF GRANULOCYTE APOPTOSIS BY GLUCOCORTICOIDS AND CYCLIC AMP

SUMMARY

• Elevation of cyclic AMP by dbcAMP and PGE2 stimulate PKA activity in

neutrophils.
• PKA stimulated activity is blocked by the pharmacological inhibitor H-89.
• Cyclic AMP mediated delay of neutrophil apoptosis is not reversed by the PKA

inhibitors H-89 and Rp-8-Br-cAMPS.
• Failure of H-89 and Rp-8-Br-cAMPS to reverse cyclic AMP mediated delay of

neutrophil apoptosis is not due to inactivation by autologous serum or

degradation of the inhibitors during overnight culture.
• Cyclic AMP mediated delay of neutrophil apoptosis likely occurs via a PKA

independent mechanism.
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Figure 3.4.2. The effect of pharmacological blockade of PKA activity on dbcAMP
mediated delay of neutrophil apoptosis. Human neutrophils (5 xl06/ml) cultured in
Iscove's DMEM containing 10% autologous serum at 37 °C, were pre-incubated for 30
min with H-89 (1 or 10 pM) before stimulation with dbcAMP (0.2 mM). After a further
20 h in culture, the cells were incubated with FITC-labelled recombinant human Annexin-
V to determine phosphatidylserine expression. All values represent mean ± S.E. of n = 3
experiments, each performed in duplicate where significant difference from control is
represented by *P<0.001. Similar results were found when cells were assessed for
apoptosis by morphological examination (data not shown).
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Figure 3.4.3 The effect of pharmacological blockade of PKA activity on dbcAMP
mediated delay of neutrophil apoptosis. Human neutrophils (5 xl06/ml) cultured in
Iscove's DMEM containing 10% autologous serum at 37 °C, were pre-incubated for 30
min with Rp-8-Br-cAMPS (100 pM) before stimulation with dbcAMP (0.2 mM). After a
further 20 h in culture, the cells were incubated with FITC-labelled recombinant human
Annexin-V to determine phosphatidylserine expression. All values represent mean ± S. E.
of n = 3 experiments, each performed in duplicate where significant difference from
control is represented by *P<0.001. Similar results were found when cells were assessed
for apoptosis by morphological examination (data not shown).
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Figure 3.4.4. Measurement of PKA activation by elevators of cyclic AMP in human
neutrophils. Human neutrophils (5 x 106 /ml) were cultured in serum supplemented
Iscove's DMEM and were pre-incubated with 10 pM H-89 for 19 h before being
stimulated with PGE2 (1 pM) for 1 h at 37 °C. PKA activity was measured as described
under "Materials and Methods". Significant difference from PGE2 alone is represented by
><0.01.
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3.5 ACTIVATION OF AKT/PI-3 KINASE PATHWAY DOES NOT

ACCOUNT FOR CYCLIC AMP MEDIATED DELAY OF

NEUTROPHIL APOPTOSIS

In light of the surprising finding that cyclic AMP mediated delay of neutrophil

apoptosis was independent of PKA, we sought to investigate the involvement of
other signalling molecules which may act downstream of cyclic AMP to suppress

neutrophil apoptosis. The phosphoinositide-3 kinase/Akt pathway plays an essential
role in cell survival in various cell types (Datta et al., 1997). Activation of PI 3-
kinase leads to activation of downstream signalling molecules such as Akt/PKB

(Franke et al., 1995; Burgering and Coffer, 1995). It has been proposed that PI-3
kinase may regulate apoptosis through the serine phosphorylation of Bad, a pro-

apoptotic protein of Bcl-2 family (Datta et al., 1997). Furthermore, PI-3 kinase may

be involved in cyclic AMP signalling cascade in a variety of cells. For example, it
has been reported that cyclic AMP requires PI-3 kinase activation for DNA synthesis
induced by IGF-I in FRTL-5 cells (Nedachi et al., 2000), and is involved in the

ability of cyclic AMP to attenuate chemoattractant induced respiratory burst in

neutrophils (Ahmed et al., 1995). Therefore we examined if PI-3 kinase was

involved in the signalling pathway mediating the protective effect of cyclic AMP on

neutrophil survival. Cells were pre-incubated with the specific PI-3 kinase inhibitor
LY294002 (Vlahos et al., 1994) prior to exposing them to dbcAMP or GM-CSF. We
found that the PI-3 kinase inhibitor suppressed GM-CSF mediated delay of

neutrophil apoptosis, which has been previously reported (Klein et al., 2000), yet had
no effect on suppression of apoptosis by dbcAMP (Figure 3.5.1). This suggests

cyclic AMP mediated delay of neutrophil apoptosis does not require PI-3 kinase
activation.

SUMMARY

• The PI-3 kinase inhibitor LY294002 suppresses GM-CSF but not dbcAMP
mediated delay of neutrophil apoptosis

• Cyclic AMP mediated delay of neutrophil apoptosis occurs independently of PI-3
kinase activity.
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Figure 3.5.1. Effect of PI-3 kinase inhibition on cyclic AMP and GM-CSF mediated
delay of neutrophil apoptosis. Human neutrophils (5 xl06/ml) cultured in Iscove's
DMEM containing 10% autologous serum at 37 °C were treated with LY294002 (10 |iM)
for 30 minutes prior to stimulation by dbcAMP (0.2 mM) or GM-CSF (50 U/ml). After a
further 20 h in culture, cells were incubated with FITC-labelled recombinant human
Annexin-V to determine phosphatidylserine expression. All values represent mean ± S. E.
of n = 3 experiments, each performed in duplicate where significant difference from
control is represented by *P<0.001 and significant difference from GM-CSF alone is
represented by #P<0.01.
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3.6 CYCLIC AMP MEDIATED DELAY OF NEUTROPHIL

APOPTOSIS DOES NOT INVOLVE ACTIVATION OF

EXTRACELLULAR SIGNAL REGULATED KINASES

We also investigated if cyclic AMP could act through the extracellular signal

regulated kinases (ERK) signalling pathway to inhibit neutrophil apoptosis.
Activation of ERK has been implicated in a number of systems to contribute as a

negative regulator of apoptosis (Tran et al., 2001; Xia et al., 1995). Increasing cyclic
AMP levels are also known to either inhibit or activate ERK in a cell type- and

stimulus-specific manner. The mechanism by which cyclic AMP activates ERK is
unclear at present, however it has been proposed that cyclic AMP may activate ERK

through small GTPases such as Ras and Rap-1 (Busca et al., 2000; Altschuler et al.,

1995). The physiological role of Rap-1 has yet to be elucidated but has been

postulated to antagonise Ras dependent signalling (Kitayama et al., 1989; Cook et

al., 1993; Boussiotis et al., 1997) although this has recently been disputed

(Zwartkruis et al., 1998). We decided to investigate if activation of Rap-1 or Ras and

subsequently ERK signalling by cyclic AMP, was important for cyclic AMP
mediated suppression of apoptosis.

As an approach to investigating the role of small GTP-binding proteins of the Ras

family, we used Clostridium sordellii lethal toxin (LT), which has been reported to

specifically inhibit the small GTPases Ras, Rap-1 and Rac (Popoff et al., 1996). We
found that blockade of the activity of these small GTPases by LT did not reverse

cyclic AMP mediated delay of neutrophil apoptosis (Figure 3.6.1 A). Replacing

autologous serum with 0.1% BSA in our culture system resulted in the induction of

neutrophil apoptosis by LT (Figure 3.6.LB). This induction of apoptosis was

partially inhibited by cyclic AMP. Thus it appears that a component of autologous
serum suppresses or inactivates the activity of LT. From this data it is difficult to
establish whether blockade of Rap-1 and Ras by Clostridium sordellii lethal toxin
can reverse cyclic AMP mediated delay of apoptosis. At concentrations of LT which
do not cause induction of apoptosis, which have been reported to cause effective
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blockade of small GTPases (Busca et al., 2000), there was no reversal of cyclic AMP
mediated delay of neutrophil apoptosis. However at higher concentrations of LT
which cause induction of neutrophil apoptosis, cyclic AMP mediated suppression of

apoptosis was lost. From this data, it is unlikely that Rap-1 and other small GTPases
such as Ras play a vital role in cyclic AMP mediated delay of apoptosis. However,

activity of small GTPases may be important in regulating constitutive neutrophil

apoptosis.

Further evidence that Rap-1 is not involved in the anti-apoptotic effect of cyclic
AMP was suggested by studies in which Rap-1 processing was inhibited by the

geranylgeranyltransferase inhibitor GGTI-286. Activation of Rap-1 requires post-

translational modifications that facilitate its attachment to the inner surface of the

plasma membrane. Geranylgeranylation is thought to be required for Rap-1 to mature

into its biologically active form (Lerner et al., 1995). Neutrophils were cultured

overnight in serum supplemented Iscove's DMEM in the presence or absence of
GGTI-286. We found that blockade of Rap-1 processing by GGTI-286 did not

reverse cyclic AMP mediated suppression of neutrophil apoptosis (Figure 3.6.2).
Similar results were found when autologous serum was replaced by 0.1% BSA in the
culture system (data not shown). This result further suggests that activation of Rap-1
is not important for cyclic AMP suppression of apoptosis.

Lastly we investigated whether ERK activation was required for cyclic AMP
mediated delay of neutrophil apoptosis. The protective effect of cAMP-elevating

agents does not appear to act through the ERK pathway in our system. This is

suggested by the finding that the p42/p44 MAPK kinase inhibitor PD98059 (Dudley
et al., 1995) had no effect on the anti-apoptotic functions of cyclic AMP in

neutrophils yet can reverse the anti-apoptotic functions of GM-CSF treatment in

neutrophils which has been also shown recently by Klein et al (Figure 3.6.3).

Similarly the p38 MAPK inhibitor SB203580 could not reverse dbcAMP mediated

delay ofneutrophil apoptosis (data not shown).
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SUMMARY

• Cyclic AMP mediated delay of neutrophil apoptosis is not reversed by :

Clostridium sordellii lethal toxin

Geranylgeranyltransferase inhibitor GGTI286

p42/p44 MAP kinase inhibitor PD 98059.

p38 MAP kinase inhibitor SB 203580
• It is unlikely that cyclic AMP mediated delay of neutrophil apoptosis involves

Rapl signalling or MAP kinase activation.
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Figure 3.6.1. Effect of Clostridium sordellii lethal toxin on dbcAMP mediated delay
of neutrophil apoptosis. Human neutrophils (5 xl06/ml) cultured in Iscove's DMEM
containing 10% autologous serum (A) or 0.1% BSA (B) at 37 °C were treated with the
indicated concentrations of Clostridium sordellii lethal toxin (LT) alone (pg/ml) and LT
plus dbcAMP (0.2 mM). After 20 h in culture, the cells were incubated with FITC-
labelled recombinant human Annexin-V to determine phosphatidylserine expression. All
values represent mean ± S.E. of n = 3 experiments, each performed in duplicate where
significant difference control is represented by *P<0.01
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Figure 3.6.2. Blockade of geranylgeranyltransferase activity does not affect cyclic
AMP mediated delay of neutrophil apoptosis Human neutrophils (5 xl06/ml) cultured
in Iscove's DMEM containing 10% autologous serum at 37 °C were treated with GGTI-
286 for 10 minutes prior to stimulation by dbcAMP (0.2 mM). After a further 20 h in
culture, the cells were incubated with FITC-labelled recombinant human Annexin-V to
determine phosphatidylserine expression. All values represent mean ± S.E. of n = 4 - 6
experiments, each performed in duplicate where significant difference from control is
represented by *P<0.001.
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Figure 3.6.3. Effect of MAP kinase inhibition on dbcAMP and GM-CSF mediated
delay of neutrophil apoptosis. Human neutrophils (5 x 106/ml) cultured in Iscove's
DMEM containing 10% autologous serum at 37 °C were treated with PD98059 (10 |lM)
for 30 minutes prior to stimulation by dbcAMP (0.2 mM) or GM-CSF (50 U/ml). After a
further 20 h in culture, the cells were incubated with FITC-labelled recombinant human
Annexin-V to determine phosphatidylserine expression. All values represent mean ± S. E.
of n = 3 experiments, each performed in duplicate where significant difference from
control is represented by *P<0.001 and significant difference from GM-CSF alone is
represented by #P<0.01.
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3.7 CYCLIC AMP MEDIATED DELAY OF NEUTROPHIL

APOPTOSIS OCCURS VIA A TRANSCRIPTIONALLY

INDEPENDENT AND REVERSIBLE SIGNALLING PATHWAY

3.7.1 CYCLIC AMP MEDIATED SUPPRESSION OF NEUTROPHIL

APOPTOSIS DOES NOT REQUIRE NEW PROTEIN SYNTHESIS

Our results suggest cyclic AMP elevation suppresses neutrophil apoptosis via a

previously uncharacterised signalling mechanism. In order to investigate the
fundamental nature of this signalling mechanism, it was important to establish if

cyclic AMP stimulated a novel signalling pathway which would require

transcriptional activation to suppress neutrophil apoptosis.

Cycloheximide, used to block protein synthesis, was titrated to low concentrations to
minimise the induction of neutrophil apoptosis by this compound on its own (Whyte
et al., 1997). Following overnight culture of neutrophils with dbcAMP and

cycloheximide, apoptosis was assessed by standard morphological criteria and

exposure of phosphatidylserine by Annexin-V binding. It was found that

cycloheximide was unable to reverse the suppression of apoptosis by dbcAMP

(Figure 3.7.1). Cycloheximide however blocked glucocorticoid-mediated suppression
of neutrophil apoptosis at these concentrations (see Figure 4.3.1). These data suggest

that gene transcription is not necessary for suppression of neutrophil apoptosis by

cyclic AMP.
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Figure 3.7.1 Effect of protein synthesis inhibition by cycloheximide on cyclic AMP
mediated delay of neutrophil apoptosis. Human neutrophils (5 x 106/ml) cultured in
Iscove's DMEM containing 10% autologous serum at 37 °C, and treated with the
indicated concentrations of cycloheximide (pg /ml) with or without dbcAMP (0.2mM).
After 20 h, cells were harvested and assessed morphologically for apoptosis. All values
represent mean ± S.E. of n = 10 experiments, each performed in triplicate. Similar results
were found when cells were assessed for apoptosis by Annexin-V binding (data not
shown). Significance from control is represented by *P<0.001 or #P<0.01
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3.7.2 CYCLIC AMP MEDIATED DELAY OF NEUTROPHIL APOPTOSIS IS

DEPENDENT ON CONTINUOUS STIMULATION

As we had eliminated the requirement for gene transcription for the ability of cyclic
AMP to delay neutrophil apoptosis, we examined if cyclic AMP could activate a

rapid and direct signalling pathway instead of stimulating new protein synthesis,
which would occur over several hours. Evidence that this was indeed the case was

implied from experiments in which neutrophils were cultured in the presence of
dbcAMP for the time points indicated (i.e. 0.5, 1, 2, 4 h) before dbcAMP was

removed from culture by gently washing in PBS and the cells returned to normal
culture conditions (Figure 3.7.2). DbcAMP was required to be continually present in
the culture medium in order to suppress neutrophil apoptosis suggesting again that

cyclic AMP does not stimulate production of a survival protein in order to enhance

neutrophil survival (Figure 3.7.2).

3.7.3 CYCLIC AMP ELEVATION CAN RESCUE NEUTROPHILS FROM

APOPTOSIS WHEN ADDED AFTER ONSET OF CULTURE

The results above suggest cyclic AMP activates a rapid signalling pathway in

neutrophils to delay neutrophil apoptosis. We wished to examine if cyclic AMP was

capable of rescuing neutrophils from constitutive cell death by adding cyclic AMP
late after onset of culture. We found that dbcAMP could rescue neutrophils from

apoptosis when added at time points after onset of culture (Figure 3.7.3). It was

striking that cyclic AMP was still able to suppress neutrophil apoptosis even after 8
hours in culture to levels comparable with a full 24 h incubation with cyclic AMP. It
has previously been demonstrated that early measurable signs of neutrophil apoptosis
can occur by 8 hours (Ward et al., 1999a) and so one could assume that the apoptotic

signalling machinery would presumably already be activated in these cells at this
time point. Together these results suggest that cyclic AMP is capable of a powerful
direct signalling mechanism independent of new protein synthesis in order
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Figure 3.7.2. Loss of cyclic AMP mediated delay of neutrophil apoptosis by washing.
Human neutrophils (5 x 106/ml) cultured in Iscove's DMEM containing 10 % autologous
serum at 37 °C were treated with or without dbcAMP (0.2 mM) for the time points
indicated before the cells were washed x 2 in PBS to remove dbcAMP and returned to

culture. Cells were cultured in Iscove's DMEM containing 10 % autologous serum until
20 h when the cells were resuspended and incubated with FITC-labelled recombinant
human Annexin-V to determine phosphatidylserine expression. All values represent mean
± S.E. of n = 3 experiments, each performed in duplicate where significant difference
from control is renresented bv *P<0.001.
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Figure 3.7.3 Rescue of cultured neutrophils from apoptosis by delayed addition of
dbcAMP. Human neutrophils (5 x 106/ml) cultured in Iscove's DMEM containing 10%
autologous serum at 37°C for the time points indicated before addition of dbcAMP (0.2
mM). At 20 h, cells were resuspended and incubated with FITC-labelled recombinant
human Annexin V to determine phosphatidylserine expression. All values represent mean
± S. E. of n = 3 experiments, each performed in duplicate and were significantly different
from control *P<0.01
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to suppress neutrophil apoptosis and that this suppression is rapidly lost when cyclic
AMP is removed from culture. It is likely therefore that cyclic AMP is exerting its
effects via post-translational modifications within the neutrophil.

SUMMARY

• Cyclic AMP mediated delay of neutrophil apoptosis is not reversed by

cycloheximide.
• Suppression of neutrophil apoptosis by cyclic AMP is rapidly lost in "wash-out"

experiments.
• Cyclic AMP will rescue neutrophils from apoptosis up to at least 8 hours after

onset of culture.

• Cyclic AMP may be acting independently of protein synthesis, via a direct and

rapid signalling pathway to delay neutrophil apoptosis.

101



regulation of granulocyte apoptosis by glucocorticoids and cyclic amp

3.8 PROTEASOME INHIBITORS ARE ABLE TO REVERSE

SUPPRESSION OF NEUTROPHIL APOPTOSIS BY CYCLIC

AMP

It has been postulated that cell fate may depend on the balance in the cell between

pro-apoptotic and anti-apoptotic proteins (Ward et al., 1999b; Akgul et al., 2001). It
has been shown that neutrophils contain death regulator proteins such as Bax and
Bad and also express some anti-apoptotic Bcl-2 family proteins such as Mcl-1 and

Bc1-Xl but not Bcl-2 (Ward et al., 1999b; Akgul et al., 2001). It has been proposed
that neutrophils may prolong their longevity by a mechanism whereby they

synthesise anti-apoptotic proteins such as Mcl-1 (Ward et al., 1999b; Akgul et al.,

2001). It is unlikely however that cyclic AMP mediated delay of neutrophil apoptosis
involves such a mechanism as we have demonstrated that cyclic AMP mediated
survival does not require gene transcription. We decided to examine if cyclic AMP
could be accelerating the degradation or modification of pro-death proteins within
the neutrophil to promote survival. Proteasomes are thought to have a major role in
the degradation and disposal of intracellular proteins (Rock et al., 1994) however it is

becoming apparent that these organelles play a vital role in the regulation of many
other cellular processes. Proteasomes are now known to selectively degrade many

proteins involved in cell regulation and thus are directly or indirectly involved in

many cell functions including apoptosis (Orlowski, 1999). Recent findings suggest

that proteasomes can modulate the balance between Bcl-2 family members and thus

activity of the proteasome may determine cellular fate (Breitschopf et al., 2000;

Marshansky et al., 2001). For example, it has been shown that blockade of

proteasome activity in Jurkat T cells allows accumulation of Bax and subsequently
induced cytochome c dependent apoptosis (Li and Dou, 2000). To investigate if

cyclic AMP causes targeted degradation of apoptotic proteins in the neutrophil to

promote survival, we blocked proteasome activity with the irreversible proteasome

inhibitors lactacystin and epoxomicin for 20 h. Lactacystin, a Streptomyces

metabolite, is a specific inhibitor of the proteasome, which modifies irreversibly the
amino terminal threonine residue of the mammalian 20S proteasome subunit X,
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which is required for proteolysis (Fenteany et al., 1995). Epoxomicin covalently
modifies 4 catalytic subunits of the 20S proteasome and is thought to have greater

specificity than all other available proteasome inhibitors (Meng et al., 1999). We
found that both lactacystin and epoxomicin could eliminate suppression of neutrophil

apoptosis by dbcAMP thus suggesting cyclic AMP mediated suppression of

neutrophil apoptosis requires the degradation of unknown protein(s) to confer a pro-
survival signal on the cell (Figure 3.8.1 & 3.8.2).

SUMMARY

• Proteasome inhibitors lactacystin and epoxomicin reverse cyclic AMP mediated

delay of neutrophil apoptosis.
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Figure 3.8.1 Effects of lactacystin on dbcAMP mediated delay of neutrophil
apoptosis. Human neutrophils (5 xl06/ml) cultured in Iscove's DMEM containing 10 %
autologous serum at 37 °C, and treated with lactacystin (10 liM) with or without dbcAMP
(0.2 mM). After 20 h in culture, the cells were incubated with FITC-labelled recombinant
human Annexin V to determine phosphatidylserine expression. All values represent mean
± S.E. of n = 3 experiments, each performed in duplicate where significant difference
from control is represented by *P<0.001. Significant difference from dbcAMP alone
represented by f<0.001.
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Figure 3.8.2 Effects of epoxomicin on dbcAMP mediated delay of neutrophil
apoptosis. Human neutrophils (5 xl06/ml) cultured in Iscove's DMEM containing 10 %
autologous serum at 37 °C, and treated with epoxomicin (10 pM) with or without
dbcAMP (0.2 mM). After 20 h in culture, the cells were incubated with FITC-labelled
recombinant human Annexin V to determine phosphatidylserine expression. All values
represent mean ± S.E. of n=3 experiments, each performed in duplicate where significant
difference from control is represented by *P<0.001. Significant difference from dbcAMP
alone represented by P<0.01.
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3.9 EFFECT OF CYCLIC AMP ON "DEATH PROTEIN"

EFFECTOR EXPRESSION IN NEUTROPHILS

In light of the previous findings, we decided to examine the effect of cyclic AMP on

expression of possible "death" proteins in neutrophils by Western blotting.

Neutrophils were incubated with dbcAMP for various time points over a 20 hour

period from which whole cell lysates were prepared. Neutrophils have been
demonstrated to contain the pro-apoptotic protein Bax. As shown in Figure 3.9.1, we
found that levels of Bax remain unchanged over the 20 hour time course and are not

altered by dbcAMP treatment. Moreover, neutrophils have also been reported to

contain the pro-apoptotic protein Bad, however difficulty in achieving reproducible
blots for Bad in neutrophils has meant that a role for Bad in cyclic AMP-mediated

delay of neutrophil apoptosis has yet to be fully elucidated (data not shown).

It has been demonstrated in neuronal cell lines that exposure to forskolin, a direct
activator of adenylyl cyclase, results in a decrease in the levels of the catalytic and

regulatory subunits ofPKA (Boundy et al., 1998). Further, this process was shown to

be independent of gene transcription and involves proteasome mediated degradation

(Boundy et al., 1998). We therefore investigated the possibility that cyclic AMP
could be targeting the degradation ofPKA, in order to suppress neutrophil apoptosis.

Immunoblotting revealed that in neutrophils, expression of both PKA regulatory and

catalytic subunits remain unchanged during neutrophil apoptosis (Figure 3.9.2).

Furthermore, treatment of neutrophils with dbcAMP does not alter protein levels of
the PKA subunits tested. We also investigated if cyclic AMP could alter the

expression of iKBa, an inhibitor of NFkB in order to delay neutrophil apoptosis.

NFkB has been shown to be an important survival factor in neutrophils (Ward et al.,

1999a) and activation ofNFkB is dependent on the degradation of IkBoc, which as a

consequence allows NFkB translocation to the nucleus (Chen et al., 1995). As

degradation of IKBa is mediated by proteasomes (Chen et al., 1995) it was pertinent
to examine the possibility that cyclic AMP may cause
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Figure 3.9.1 Time course for the effect of dbcAMP on Bax expression during human
neutrophil apoptosis Western blot of cytoplasmic extracts from neutrophils treated with
control buffer or dbcAMP (0.2 mM) for the time points indicated. Cell lysates were
prepared and immunoblotted as described under "Materials and Methods". Lysates were
prepared from equivalent numbers of cells and subjected to SDS-PAGE/immunoblot
analysis using a rabbit polyclonal antibody specific for Bax. The gel is representative of 3
experiments.
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Figure 3.9.2 Time course for the effect of dbcAMP on PKA catalytic (C) and
regulatory (RI) subunit expression during human neutrophil apoptosis Western blot
of cytoplasmic extracts from neutrophils treated with control buffer or dbcAMP (0.2 mM)
for the time points indicated. Cell lysates were prepared and immunoblotted as described
under "Materials and Methods". Lysates were prepared from equivalent numbers of cells
and subjected to SDS-PAGE/immunoblot analysis using mouse IgG2b monoclonal
antibodies specific for PKA catalytic (C) and PKA regulatory (RI) subunit. The gels are
representative of 3 experiments.
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degradation of IkBoc, allowing activation of NFkB which has been demonstrated to

favour neutrophil survival. This appeared unlikely to be the case, as cyclic AMP does
not alter IicBa expression (Figure 3.9.3). As a positive control we were able to

demonstrate that unlike cyclic AMP, TNFa does cause degradation of IkBoc.

Furthermore cyclic AMP stimulation did not alter TNFa mediated degradation of
iKBa.

SUMMARY

• Cyclic AMP does not appear to alter protein expression of Bax, PKA regulatory
and catalytic subunits and IicB-a
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Figure 3.9.3 Time course for the effect of dbcAMP on iKB-a expression during
human neutrophil culture. Western blot of cytoplasmic extracts from neutrophils treated
with control buffer, dbcAMP (0.2 mM) or TNFa (12.5 ng/ml) for the time points
indicated. Cell lysates were prepared and immunoblotted as described under "Materials
and Methods". Lysates were prepared from equivalent numbers of cells and subjected to
SDS-PAGE/immunoblot analysis using a rabbit polyclonal antibody to IKB-a. The gels
are representative of 3 experiments.
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3.10 REGULATION OF DEATH RECEPTOR SIGNALLING IN

GRANULOCYTES BY CYCLIC AMP

We have demonstrated that cyclic AMP plays an important role in the regulation of
constitutive neutrophil apoptosis. We wished to further our studies to investigate the
role of cyclic AMP in regulating death receptor signalling pathways in the

neutrophil. The pathways regulating constitutive neutrophil apoptosis may be very

different from the death receptor signalling mechanisms mediated by the tumour

necrosis factor receptor (TNFR)/nerve growth factor family. Curiously TNFa has
been found to exert both pro-and antiapoptotic effects on the neutrophil (Murray et

al., 1997). A second member of the TNF receptor family, Fas can also transduce
death signals in the granulocyte (Liles et al., 1996). The precise role of Fas and the
natural ligand for Fas, FasL in controlling neutrophil apoptosis is however not yet
clear (Liles et al., 1996; Fecho and Cohen, 1998; Tortorella et al., 1998b). We

decided to establish whether elevation of cyclic AMP could inhibit death receptor

mediated apoptosis and the mechanisms by which this may occur.

3.10.1 SUPPRESSION OF TNFa INDUCED DEATH IN NEUTROPHILS BY

CYCLIC AMP

To examine the effects of cyclic AMP on death receptor mediated apoptosis, we

firstly assessed the ability of cyclic AMP to modulate TNFa induced apoptosis in

neutrophils. TNFa has been shown to induce apoptosis at early time points during

neutrophil culture but inhibits neutrophil apoptosis at later time points (Murray et al.,

1997). To assess if cyclic AMP can modulate TNFa induced apoptosis in

neutrophils, cells were pre-incubated for 10 minutes with dbcAMP prior to

stimulation with TNFa for 6 hours. As previously described, we found that TNFa,

will cause a modest induction of apoptosis at 6 hours (Figure 3.10.1). Furthermore it

appears that elevation of cyclic AMP will block the pro-apoptotic effect of
TNFa (Figure 3.10.1).
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control dbcAMP TNFa dbcAMP+
TNF a

Figure 3.10.1 Suppression of TNFa induced apoptosis by cyclic AMP elevation.
Human neutrophils (5 xl06/ml) were cultured in phosphate buffered saline and pre-
incubated at 37 °C, with dbcAMP (0.2 mM) for 10 min before addition of TNFa (12.5
ng/ml). After 6 h in culture, the cells were incubated with FITC-labelled recombinant
human Annexin V to determine phosphatidylserine expression. All values represent mean
± S.E. of n - 3 experiments, each performed in duplicate where significant difference
from control is represented by *P<0.05. Significant difference from TNFa alone
represented by "P<0.05.
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3.10.2 SUPPRESSION OF FAS INDUCED DEATH IN NEUTROPHILS BY

CYCLIC AMP

As cyclic AMP has the ability to inhibit TNFa induced apoptosis in neutrophils it
was important to ascertain if cyclic AMP could also inhibit other death receptor

signalling pathways. Thus we examined the ability of cyclic AMP to modulate Fas
induced apoptosis in neutrophils. As mentioned previously there is some controversy

as regards the role of the Fas signalling pathway in the regulation of neutrophil

apoptosis. Nevertheless it was important to establish if cyclic AMP could modulate
Fas induction of apoptosis using the current tools available for investigating this

signalling pathway.

Neutrophils were incubated with CH-11, an anti Fas activating antibody (Alderson et

al., 1994), in the presence or absence of dbcAMP for the time points indicated. At 4

hours, CH-11 significantly induced apoptosis compared to control (Figure 3.10.2.A).
Furthermore it appeared that CH-11 induced apoptosis was inhibited by elevation of

cyclic AMP (Figure 3.10.2.A). Additionally, an even greater induction of apoptosis

by CH-11 at 6 hours (Figure 3.10.2.B) which was also inhibited by elevation of

cyclic AMP. It is interesting to note however that dbcAMP does not completely
block CH-11 induced killing in neutrophils observed at 6 hours whereas at 4 hours it

appeared that dbcAMP inhibited CH-11 induced apoptosis to levels comparable with
the control rate of apoptosis. One possibility is that cyclic AMP is not be able to

prevent death receptor induced apoptosis when a greater number of cells are induced
to die. Unfortunately we were unable to test whether the same is true of cyclic AMP
mediated inhibition of TNFa induced apoptosis due to the biphasic effect of TNFa
on neutrophil apoptosis.
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SUMMARY

• Cyclic AMP inhibits TNFa induction ofneutrophil apoptosis
• Cyclic AMP partially inhibits CH-11 induction of neutrophil apoptosis
• Cyclic AMP may inhibit death receptor mediated neutrophil apoptosis however

induction of cell death by a powerful death stimulus may overwhelm the capacity
of cyclic AMP to offer protection against apoptosis.
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Figure 3.10.2 Suppression of CH-11 induced apoptosis by cyclic AMP elevation.
Human neutrophils (5 xl06/ml) were cultured in phosphate buffered saline with divalent
cations and pre-incubated at 37 °C, with dbcAMP (0.2 mM) for 10 min before addition
of CH-11 (500ng/ml). After the indicated time points (4 h A and 6 h B), the cells were
incubated with FITC-labelled recombinant human Annexin V to determine

phosphatidylserine expression. All values represent mean ± S.E. of n = 4 experiments,
each performed in duplicate where significant difference from control is represented by
*P<0.001. Significant difference from CH-11 alone is represented by "P<0.01 or
^<0.05.
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3 DISCUSSION

Human neutrophils undergo apoptosis, a process that is centrally important in the
resolution of inflammation. It has been shown previously that cyclic AMP is an

important regulator of neutrophil apoptosis (Rossi et al., 1995; Parvathenani et al.,

1998; Ottonello et al., 1998; Tortorella et al., 1998a; Tortorella et al., 1998a) yet
little is known of the signalling mechanism by which by cyclic AMP controls

neutrophil cell death. The studies herein have established that cyclic AMP acts

upstream of caspase-3 activation to inhibit the apoptotic pathway in neutrophils. This

finding suggests that cyclic AMP delays neutrophil apoptosis before the main phase
of apoptotic execution. In mammalian cells, execution of apoptosis is thought to
involve either direct activation of procaspase-3 by caspase-8 (Stennicke et al., 1998)
or indirect activation of procaspase-3 through release of apoptosis inducing agents

such as cytochrome c and apoptosis inducing factor (AIF) from the mitochondria

(Kuwana et al., 1998). As cyclic AMP is able to delay the appearance of active

caspase-3 in neutrophils, it suggests that cyclic AMP is acting upstream of at least
the execution step of caspase activation. We have not been able to establish if cyclic
AMP is able to prevent the activation of procaspase-9, regarded as the initial caspase
in the intrinsic (stress and genomic) pathway (Li et al., 1997; Slee et al., 1999).

Immunoblotting for caspase-9 was technically difficult, perhaps due to low levels of
this protein in neutrophils. It would be interesting to establish if cyclic AMP delayed

neutrophil apoptosis by a mechanism which prevented the activity of this apical

caspase perhaps through use of specific caspase inhibitors.

It is unclear at present if cyclic AMP is also able to prevent expression of caspase-8,
considered to be the apical caspase of the extrinsic (death receptor) pathway (Muzio
et al., 1996; Peter and Krammer, 1998). This would be of particular relevance in

understanding the nature of cyclic AMP mediated regulation of death receptor

pathways. We have found that cyclic AMP can inhibit but not prevent death receptor
induction of apoptosis in neutrophils. It would be pertinent therefore to establish
whether cyclic AMP is able to delay expression of active caspase-8 or indeed assess
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the ability of cyclic AMP to delay death receptor induction of apoptosis if caspase-8
has already been activated. This would help ascertain the "point of no return" at

which cyclic AMP is no longer able to delay apoptosis and establish a better picture
of the hierarchy of signalling involving cyclic AMP which determines cellular fate.

Novel interactions between caspases and the cyclic AMP signalling pathway have
been demonstrated in studies by Huston et al who report that cyclic AMP specific

phosphodiesterase PDE4A5 is cleaved by caspase-3 during apoptosis in Rat-1 cells

(Huston et al., 2000). PDE4A5 was found to be cleaved downstream of its SH3
interaction domain, causing a decrease in its catalytic activity. It is suggested
therefore that cleavage by caspase-3 may influence the intracellular targeting of
PDE45 and thus affect its activity and ability to regulate levels of cyclic AMP within
cells. As elevation of cyclic AMP in Rat-1 cells by forskolin and the PDE4 inhibitor

rolipram induces apoptosis, cleavage of PDE4A5 which decreases its ability to

breakdown cyclic AMP may consequently contribute to the regulation of apoptosis in
Rat-1 cells. It would be interesting to investigate if PDE4 is cleaved during

neutrophil apoptosis. Potentially such a mechanism could either upregulate or

downregulate the activity of PDE4A5, changing the levels of cyclic AMP, and

possibly act as a feedback mechanism influencing the rate of neutrophil apoptosis.

For the first time, we have demonstrated that neutrophils contain a small but

significant number ofmitochondria, which exhibit loss of membrane potential during
constitutive apoptosis. We are currently investigating if this process occurs before
other indices of apoptosis in neutrophils, such as phosphatidylserine exposure and
nuclear condensation. This would help ascertain whether loss of mitochondrial

potential, shown to trigger apoptosis in other cell types, has a similar function in

neutrophils. We have also demonstrated that dissipation of mitochondrial membrane

potential can be inhibited by elevation of cyclic AMP. It will be important to

establish if cyclic AMP can directly affect changes in mitochondrial membrane

potential and if this is key to cyclic AMP mediated delay of neutrophil apoptosis.
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A very recent report has highlighted the involvement of mitochondria in eosinophil

apoptosis (Peachman et al., 2001). Similarly to neutrophils, it appears that

eosinophils contain a small number of mitochondria which appear to provide

insignificant respiration yet play a vital role in initiation of apoptosis. There is
evidence to suggest that in neutrophils mitochondria respiratory chain inhibitors do
not cause induction of apoptosis (Mecklenburgh, 1999) indicating that progression of

neutrophil apoptosis does not requires an intact respiratory chain. It will be important
to examine if neutrophils generate changes in mitochondrial membrane potential
from hydrolysis of ATP rather than from respiration and whether blockade of this

activity will cause induction of neutrophil apoptosis. This will help determine
whether mitochondria directly play a functional role in the regulation and initiation
of apoptosis in neutrophils. This also holds importance for the elucidation of the role
of Bcl-2 family members in regulating neutrophil apoptosis. Many of these proteins
are known to associate with the mitochondria and some such as Bax, undergo
conformational changes when associated with these organelles, leading to release of

apoptosis inducing factors such as cytochrome c (Wolter et al., 1997; Zamzami et al.,

1998; Jurgensmeier et al., 1998). Although there is indirect evidence that Bcl-2

family members play a role in neutrophil apoptosis (Chuang et al., 1998; Moulding
et al., 1998) it is unclear whether they require association with mitochondria to

mediate their effects. Indeed it has not yet been established if release of cytochrome c

from mitochondria is an absolute requirement for induction of apoptosis in

neutrophils due to difficulties in detection of this molecule in this cell type.

Establishing the subcellular location and possible association of various Bcl-2 family
members proteins with these organelles in neutrophils, will give a clearer indication
ifmitochondria play a key role in regulating neutrophil apoptosis, as has been shown
in other cell types.

It has been suggested that PKA plays an important role in cyclic AMP-mediated

delay of neutrophil apoptosis (Rossi et al., 1995; Parvathenani et al., 1998; Ottonello
et al., 1998). It has been demonstrated that cyclic AMP analogues, which selectively
activate type I PKA, attenuate neutrophil apoptosis, compared to analogues that

preferentially activate type II PKA suggesting that type I PKA is necessary and
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sufficient to mediate the cyclic AMP induced delay of neutrophil apoptosis

(Parvathenani et al., 1998). We suggest, alternatively, that PKA activation by cyclic
AMP is not responsible for the major apoptosis-retarding influences of cyclic AMP
in neutrophils. Indeed, we have demonstrated directly that cyclic AMP elevation in

neutrophils stimulates an increase in PKA activity, which is blocked by

pharmacological inhibitors. Importantly however, blockade of PKA was not

sufficient to reverse the anti-apoptotic effect of cyclic AMP, implying that this
molecule has little or no role in the cyclic AMP signalling pathway responsible for
the delay of neutrophil apoptosis.

Previous publications have implicated a role for PKA in cyclic AMP regulation of

neutrophil apoptosis using concentrations of H-89 greater than 10 pM (Rossi et al.,

1995; Parvathenani et al., 1998). The specificity of H-89 at these concentrations is

questionable and it has been published that H-89 may inhibit several other kinases,
some with potency similar to, or greater than that for PKA (Davies et al., 2000). We

propose that failure to directly measure PKA activity together with the use of high
and possibly non-specific concentrations ofH-89, could have led to misinterpretation
of previous data. We have demonstrated that 10 pM H-89 is sufficient to block PKA

activity for extended culture periods and is active in the presence of autologous
serum. The failure therefore of both H-89 and Rp-8-Br-cAMPS, a highly specific
inhibitor of PKA, to reverse cyclic AMP mediated delay of neutrophil apoptosis,

point to a novel signaling pathway used by cyclic AMP to inhibit neutrophil

apoptosis, which is independent ofPKA activation.

There have been a few studies reporting PKA independent effects of cyclic AMP.
For example in contradiction to previous findings (Skalhegg et al., 1992; Bauman et

al., 1994), it has been reported recently that cyclic AMP suppression of T cell

proliferation and inhibition of release of T cell cytokines proceeds in a PKA

independent manner (Bryce et al., 1999). Furthermore cyclic AMP mediated

suppression of TNFa mediated apoptosis in primary hepatocytes has been found to

be only partially reversed by the PKA inhibitor KT5720 (Li et al., 2000b). Other
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PKA independent effects include cyclic AMP stimulated Akt phosphorylation and
membrane ruffling in thyroid cells (Cass et al., 1999).

Although these recent studies have suggested cyclic AMP is capable of mediating
effects independently of PKA, there has been little elucidated of the alternative

signalling pathways involved. Pharmacological blockade of the MAP kinase and PI-3
kinase signalling cascades in this study suggest that neither of these signalling

pathways are likely to be important in the cyclic AMP mediated delay of neutrophil

apoptosis. There has been interest in the discovery that cyclic AMP can bind

specifically to and activate small guanine nucleotide exchange factors (GEFs) which
will activate the small Ras like GTPase, Rapl (de Rooij et al., 1998; Kawasaki et al.,

1998). The biological function of Rapl is still unclear but it has been proposed that
activation of this small GTPase may feed into MAPK signaling pathways (Bos,

1998). It was important to investigate if Rapl was involved in cyclic AMP mediated

protection of neutrophil cell death, as Rapl has been found to be highly expressed in

neutrophils (Quilliam et al., 1991; M'Rabet et al., 1998). Furthermore, activation of

Rapl has been shown to occur in neutrophils in response to fMLP, PAF, GM-CSF
and IgG coated particles (M'Rabet et al., 1998). As an approach to establishing if

Rapl has a role in cyclic AMP mediated delay of neutrophil apoptosis, we blocked

Rapl activity using the Clostridium sordellii lethal toxin (LT), which has been

reported to specifically inhibit the small GTPases Rapl, Ras and Rac (Popoff et al.,

1996). Furthermore we tested GGTI-286, a geranylgeranyltransferase inhibitor,
which blocks geranylgeranylation required by Rapl to achieve its mature,

biologically active form (Lerner et al., 1995). Our preliminary experiments have

suggested that Rapl is not involved in cyclic AMP mediated delay of neutrophil

apoptosis. However due to the lack of specificity of both Clostridium sordellii lethal
toxin and GGTI-286 as inhibitors ofRapl, it is difficult to rule out completely a role
for this small GTPase in cyclic AMP mediated neutrophil survival. It would be

interesting to measure Rapl activity directly to ascertain if treatment of neutrophils
with elevators of cyclic AMP results in activation of Rapl. Without the ability to

"knock-out" the activity of Rapl in neutrophils either with a specific
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pharmacological inhibitor or by other means, it is difficult to directly prove the
involvement ofRap 1 in cyclic AMP mediated effects on apoptosis at this time.

Our studies are in accord with very recent publications, which demonstrate that

cyclic AMP can mediate effects independently of all currently known downstream
substrates. For example, cyclic AMP-dependent inhibition of IL-5 from human T

lymphocytes was found not to be mediated by PKA or by the Rapl signalling

pathways (Staples et al., 2001) and in melanocytes, cyclic AMP was found to

activate Ras and B-Raf independently of PKA, the Ras exchange factor, Son of
sevenless (SOS) and Epac (Busca et al., 2000). This reveals the possibility that there

may be an as yet undiscovered downstream substrate(s) for cyclic AMP, which may

mediate the effects of this second messenger in not only neutrophil apoptosis but also
a whole host of other cellular responses. The challenge will be to ascertain the

identity of novel signalling molecules involved in cyclic AMP regulation and contest

the current dogma that cyclic AMP exerts is physiological functions almost entirely

through activation ofPKA.

Regulation of neutrophil apoptosis is thought to depend on the balance between pro-

apoptotic and anti-apoptotic death factors expressed in the cell (Ward et al., 1999b;

Akgul et al., 2001). Neutrophils contain death regulator proteins, including Bax and

Bad, and also express some anti-apoptotic Bcl-2 family proteins such as Mcl-1 and
Bcl-xL but not Bcl-2 (Ward et al., 1999b; Akgul et al., 2001). It has been proposed
that neutrophil longevity may be prolonged by the synthesis of anti-apoptotic

proteins such as Mcl-1 (Moulding et al., 1998). However, it is unlikely that cyclic
AMP effects are mediated by such a mechanism since we have demonstrated that

cyclic AMP-mediated delay of neutrophil apoptosis does not require gene

transcription. Furthermore, "wash out" experiments have revealed that retardation of

neutrophil apoptosis is rapidly lost when dbcAMP is removed from culture, even

after incubation periods that should permit new protein synthesis.

Together, these data suggest a mechanism whereby cyclic AMP does not stimulate

production of a survival protein but may alternatively induce post-translational
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modifications in the neutrophil to promote survival. One potential mechanism for

cyclic AMP-mediated retardation of neutrophil apoptosis may involve cyclic AMP

specifically targeting a death protein(s) to the proteasome for degradation. We have
demonstrated that blockade of proteasome activity results in a dramatic loss of the

pro-survival effect of cyclic AMP. We speculate that cyclic AMP may be involved in
the post-translational modification of a death protein, which it may specifically target
to the proteasome. If cyclic AMP stimulation is removed or proteasome activity is
blocked then the accumulation of a death protein(s) would be predicted to permit the

rapid onset of cell death.

There is evidence that in at least other cell types, cyclic AMP is capable of

stimulating proteasomal activity. For example in human embryonic kidney cells

(HK293) elevation of cyclic AMP results in increased proteasomal activity allowing
secretion of a C terminally truncated fragment of the (3 amyloid precursor protein

(Marambaud et al., 1996). Furthermore, inducible cAMP early repressor (ICER), a
member of the CREB/ATF family of transcription factors, has been shown to be

degraded by the ubiquitin-proteasome pathway (Folco and Koren, 1997), allowing

regulation of its transcriptional activity. There is also evidence that treatment of cells
with proteasomal inhibitors can result in the accumulation of apoptotic regulatory

proteins such as the accumulation of Bax and Bik in Jurkat T cells (Li and Dou,

2000; Marshansky et al., 2001).

To investigate whether cyclic AMP elevation targets the specific degradation of
death protein(s) in neutrophils, we have tried to examine individually possible
"death" proteins that may be degraded by cyclic AMP. We were not able to detect

any changes in the levels of protein expression of Bax, PKA regulatory and catalytic
subunits and IicBa. We did however observe alterations in proteins levels of caspase-
3 with cyclic AMP treatment (Figure 3.2.1). This, we assumed, reflected the ability
of cyclic AMP to delay neutrophil apoptosis and thus decreased expression of active

caspase-3 was likely to be due to a decreased number of apoptotic cells in the

population compared to control. However, it has recently been published that X-
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linked inhibitor of apoptosis (XIAP) promotes degradation of caspase-3 due to its

ubiquitin-ligase activity (Suzuki et al., 2001). The anti-apoptotic activity of XIAP is

thought to be due to the ability of XIAP to promote degradation of caspase-3. It is

possible that a more exciting inference for the ability of cyclic AMP to inhibit

caspase-3 expression is that cyclic AMP is actively causing the specific degradation
of active caspase-3 thus decreasing its expression, delaying apoptosis. In future

experiments it would be interesting to establish if XIAP is present in human

neutrophils and if it has any role to play in cyclic AMP mediated delay of neutrophil

apoptosis.

There is of course the possibility that cyclic AMP is targeting the degradation of a

protein which, is as yet, unidentified. We have also tried to examine the effects of

cyclic AMP in neutrophils by investigating global changes in protein expression by
two-dimensional electrophoresis. However, due to time constraints and difficulty in

identifying new proteins, particularly those expressed at low levels, has meant that
identification of novel targets of cyclic AMP by this method, will await future
studies. It would also be interesting to measure proteasome activity directly and so

further characterise the interplay between the activity of the proteasome and

signalling stimulated by cyclic AMP, in the regulation of neutrophil apoptosis.

We have demonstrated that cyclic AMP can dramatically modulate the rate of
constitutive neutrophil apoptosis via a novel signalling pathway involving

proteasomal regulation. We have also shown in preliminary experiments that cyclic
AMP may regulate apoptosis induced in neutrophils by a variety of death receptor

stimuli. We have found that cyclic AMP inhibits the pro-apoptotic effect of TNFa in

neutrophils. Cyclic AMP is also able to inhibit apoptosis induced by the Fas

activating antibody CH-11, at time points of 4 and 6 hours. It is important to note

however that cyclic AMP does not appear to be as proficient at inhibiting CH-11
induced apoptosis at 6 hours compared to 4 hours when the percentage of cells
induced to die is more modest. It is possible that cyclic AMP is more effective at

inhibiting death receptor mediated apoptosis when induction of cell death is
moderate. Cyclic AMP may not be able confer pro-survival effects in the presence of
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a more powerful death stimulus. Our results are similar to findings made by
Parvathenani et al. in which elevation of cyclic AMP inhibited CH-11 induced

apoptosis better at the early time point of 2 h compared to 8 h where inhibition was

minimal (Parvathenani et al., 1998). Consistent with this suggestion, Tortorella et al.
have reported that dbcAMP could not inhibit CH-11 induced death in neutrophils at

12 h, when the death stimulus is more potent (Tortorella et al., 1998b).

Further support for this hypothesis, is our observation that cyclic AMP is not able to

inhibit induction of cell death in neutrophils by the NFkB inhibitor, gliotoxin or in

the synchronous death during temperature re-warming of neutrophils from 15°C to

37°C (data not shown). In both gliotoxin and temperature shift mediated neutrophil

death, 80-90% of cells are apoptotic after 2 h (Ward et al., 1999a; Pryde et al., 2000).
In both systems, there is a rapid onset of neutrophil apoptosis yet pre-incubation with
elevators of cyclic AMP fails to inhibit induction of neutrophil apoptosis.

We have demonstrated that during constitutive neutrophil apoptosis, cyclic AMP is
able to rescue neutrophils from cell death up to 8 h after the onset of culture.
However we have yet to establish if cyclic AMP is able to rescue cells at time points
after 8 h when we know there is an exponential increase in the rate of cell death. It
would be very interesting to investigate if cyclic AMP continues to delay neutrophil

apoptosis at these later time points or if during this phase of culture, there is a point
at which cyclic AMP is no longer effective. Interpretation of data from these types of

experiments is difficult, as the neutrophils are not dying in a synchronous fashion.
However in experimental systems such as death receptor mediated death or

temperature re-warming, apoptosis is more synchronous and it is in these instances
that we have found cyclic AMP to be unable to effectively mediate protection.

Collectively it appears possible that cyclic AMP powerfully delays neutrophil

apoptosis in circumstances when the cells are constantly stimulated by cyclic AMP
before onset of apoptosis. If cyclic AMP is removed, normal onset of apoptosis is
resumed. Furthermore, if neutrophils are induced to die by a very powerful death
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stimulus, cyclic AMP may no longer be effective at mediating its pro-survival
effects.

Our hypothesis is supported by finding of Niwa et al who show that elevation of

cyclic AMP inhibits neutrophil apoptosis induced by a combination of TNFa and

cycloheximide (Niwa et al., 1999). In this paper it is suggested that cyclic AMP is

only able to suppress apoptosis if elevators of cyclic AMP were added to the

neutrophils before treatment with TNFa. It appears that once the apoptotic signalling

cascade is activated by TNFa, cyclic AMP can no longer inhibit cell death. It is

possible that cyclic AMP may no longer prevent apoptosis once a particular

component of the death pathway becomes engaged and it is tempting to speculate the

identity of such a protein. During neutrophil temperature rewarming, there is an

exponential increase in cell death associated with Bax insertion into the
mitochondrial membrane (Pryde et al., 2000). Failure of cyclic AMP to prevent

apoptosis induced by temperature rewarming may therefore be due to the inability of
this second messenger to inhibit cell death once this death protein is inserted into the
mitochondrial membrane. However, as we have not directly measured the effect of

cyclic AMP on insertion of Bax during temperature rewarming, we can only

hypothesise that this may be the point at which cyclic AMP may no longer be able to

inhibit apoptosis. Furthermore, due to the difficulty at present to 'knock-out' the
effects of Bax and other proteins in neutrophils, one cannot conclude whether
involvement of Bax or other Bcl-2 family proteins in induction of granulocyte death
is associative or causative.

Further research into the mechansims behind the ability of cyclic AMP to influence

neutrophil apoptosis is vital as these findings have potentially important implications
for the role of cyclic AMP in controlling inflammatory cell function in vivo. In

particular, in situations where cyclic AMP may be artificially elevated, such as the
treatment of inflammatory diseases by (32 agonists or selective phosphodiesterase

(PDE) inhibitors. There have been widespread interest in the potential usefulness of
PDE inhibitors for the treatment of inflammatory diseases (Torphy et al., 1992;
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Giembycz and Dent, 1992; Nicholson and Shahid, 1994). Studies have shown that
selective PDE inhibitors through elevation of cyclic AMP, suppress a variety of

inflammatory cell functions such as degranulation and secretion of granule proteins

(Nourshargh and Hoult, 1986; Dent et al., 1991). Rolipram, a PDEIV inhibitor, has
been shown to inhibit allergen induced eosinophil and neutrophil accumulation into
the lungs of ovalbumin sensitised Brown-Norway rats (Elwood et al., 1995).
Furthermore (32 agonists are used as first line therapy in the treatment of asthma and
this is may reflect in part their ability to suppress inflammatory cell functions such as

superoxide anion release through elevation of cyclic AMP. However, our results

point to enhanced neutrophil longevity in the presence of elevated cyclic AMP which

may be deleterious in chronic inflammatory conditions. Given that elevated cyclic
AMP has also been shown to inhibit macrophage phagocytosis of apoptotic cells

(Rossi et al., 1998) it could be predicted that prolonged elevation of cyclic AMP may

lead to both enhanced granulocyte survival and ineffective clearance, exacerbating
rather than alleviating chronic inflammatory conditions. It is possible that PDE
inhibitors although possessing the ability to suppress the inflammatory potential of

granulocytes (Nourshargh and Hoult, 1986; Dent et al., 1991), may also antagonise
the successful clearance and resolution of inflammation by enhancing granulocyte
survival.

There have been intriguing results regarding the influence of cyclic AMP in the

presence of pro-inflammatory cytokines on granulocyte survival. It has been reported
that elevation of cyclic AMP will favour survival of neutrophils but will reduce the

anti-apoptotic effects ofGMCSF (Tortorella et al., 1998a). Similarly in eosinophils it
has been demonstrated that elevation of cyclic AMP enhances survival but reduces
the anti-apoptotic effects ofGMCSF (Hallsworth et al., 1996) and IL-5 (Chang et al.,

2000). Thus there is the possibility that during inflammation, when cytokines such as

GM-CSF may be in abundance, cyclic AMP suppresses inflammation by both

dampening down inflammatory cell function and reducing the survival influencing
effects of GM-CSF. One could envisage a scenario in which once the inflammation
had subsided and activation of various cytokines had decreased, elevation of cyclic
AMP by PDE inhibition for example could be deleterious, as elevation of cyclic
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AMP alone would likely prevent apoptosis and decrease phagocytic clearance by

macrophages.

In summary, our findings have suggested that elevation of cyclic AMP delays
constitutive neutrophil apoptosis via a novel, rapid and transcriptionally independent

signalling pathway. We believe that protection from apoptosis afforded by cyclic
AMP appears to be upstream of changes in mitochondrial potential and executioner

caspases. Although elevation of cyclic AMP is very powerful at delaying constitutive

neutrophil apoptosis, preliminary experiments indicate that the pro-survival effects of
this second messenger may not be as effective when neutrophils are induced to die

by powerful death stimuli. It is yet to be established in vivo, the relative importance
of the ability of cyclic AMP to influence granulocyte apoptosis in the multitude of
cellular processes influenced by this powerful second messenger.
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4 GLUCOCORTICOID REGULATION OF

GRANULOCYTE APOPTOSIS

Glucocorticoids are highly effective in the control of many inflammatory and
immune diseases. Glucocorticoids have been employed therapeutically to treat

diseases such as asthma and rheumatoid arthritis, however, their use is often limited

by systemic side effects. Considering glucocorticoids are widely used in controlling

many inflammatory conditions, it is perhaps surprising how little is known of their
mechanism of action. Elucidating the underlying signalling pathways of

glucocorticoids could be key in the development ofmore selective anti-inflammatory
steroids with fewer side effects.

Glucocorticoids exert their action by diffusing passively through the cell membrane
where they bind to glucocorticoid receptors (GRs) located in the cytoplasm of target
cells (Levinson et al., 1972; Giannopoulos, 1975). The glucocorticoid receptor

belongs to the steroid hormone receptor superfamily whose members include

cytosolic receptors for other steroid hormones such as progesterone and oestrogen

(Carson-Jurica et al., 1990). Unoccupied glucocorticoid receptors form part of a

large heteromeric complex in the cytoplasm that includes proteins such as heat shock

protein 90 (hsp90). These act as molecular chaperones, preventing the nuclear
translocation of glucocorticoid receptors in the absence of steroid (Bresnick et al.,

1989; Bresnick et al., 1988; Pratt et al., 1989). Hsp90, hsp70 and hsp40 together with

co-chaperones Hop and p23 are believed to be involved in the assembly of

glucocorticoid receptors in a conformation receptive for binding (Rajapandi et al.,
2000; Morishima et al., 2000a; Morishima et al., 2000b). It is believed that a

conformational change ensues following glucocorticoid binding to GR, allowing GR
to dissociate from hsp90 and translocate to the nucleus (Pratt et al., 1989; Stancato et

al., 1996).

As the glucocorticoid receptor was one of the first transcription factors to be isolated,
there have been many studies elucidating the structure and function of this protein in
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glucocorticoid mediated effects. Mutagenesis studies have revealed that the steroid

binding domain ofGR is located at the carboxy terminus of the molecule (Giguere et

al., 1986; Danielsen et al., 1987). Additional functions of the C-terminal domain are

thought to include interaction with hsp90, nuclear translocation and transcriptional
transactivation (Picard and Yamamoto, 1987; Dalman et al., 1991; Hollenberg and

Evans, 1988; Webster et al., 1988; Danielian et al., 1992; Webster et al., 1988)

Following glucocorticoid binding to GR, the subsequent step in the glucocorticoid

signal transduction pathway is the rapid translocation of the activated receptor to the

nucleus, where GR binds DNA. The DNA binding domain is situated in a central

region of the receptor comprising of two zinc motifs and two a helical regions that
contact DNA (Luisi et al., 1991; Giguere et al., 1986; Dahlman-Wright et al., 1994;
Danielsen et al., 1986; Green et al., 1988). Formation of each zinc finger is thought
to require four cysteine residues bound to one zinc molecule (Freedman et al., 1988;
Zilliacus et al., 1992). GR is thought to bind to DNA at consensus sites known at

glucocorticoid response elements (GREs) in the 5' upstream promoter region of

glucocorticoid responsive genes (Tsai et al., 1988; Hard et al., 1990; Truss and

Beato, 1993). Transactivation is believed to involve the N-terminal region, which is
the largest of the three major GR protein domains. Situated in this N-terminal region
is a domain called taul (ii) which contains a 41 amino acid core sequence which is

critical for transactivation. Ti may also be involved in binding other transcription
factors (Giguere et al., 1986; Dahlman-Wright et al., 1995). A further transactivation
domain (T2) is also found in human GR and may be important for localisation of GR
to the nucleus (Hollenberg and Evans, 1988). GR is highly phosphorylated

predominantly on serine residues at the N-terminal domain however the definitive
role and consequences of phosphorylation on steroid action remains largely
undetermined (Muller et al., 1991).

Glucocorticoids mediate their effects by activating a signalling pathway in which GR

directly or indirectly regulates transcription of target genes (Beato et al., 1989;

Gronemeyer, 1992) (Figure 4.1).
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Figure 4.1 Schematic representation of the glucocorticoid signal transduction pathway.
Glucocorticoids (GCs) penetrate the cell membrane and bind directly to cytosolic
glucocorticoid receptors (GRs). GRs are held in a large multiprotein complex including
hsp90. Binding of ligand allows GR to dissociate from this complex and translocate to the
nucleus where GR may bind a glucocorticoid recognition sequence (GRE) on the 5'
upstream promoter of glucocorticoid responsive genes, allowing modulation of transcription.
Alternatively activated GR may indirectly modulate transcription by associating with other
transcription factors e.g. AP-1 which may result in mutual repression.
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This is thought to involve transcriptional transactivation by direct DNA binding of
GR followed by transactivation through ti domain (McEwan et al., 1995).

Alternatively GR is thought to control gene expression indirectly through protein-

protein interactions in the nucleus with other transcription factors. The first
mechanism involves the binding of GR to GRE consensus sites on responsive genes,

altering the rate of transcription, resulting in induction or repression of the gene (Tsai
and O'Malley, 1994). The rate of transcription may be influenced by a number of
factors including the number ofGRE consensus sites present and the binding of other

transcription factors in the vicinity ofGRE, which may alter steroid inducibility (Tsai
and O'Malley, 1994; Bastian and Nordeen, 1991; McEwan et al., 1994). There are

several examples of DNA-dependent GR mediated repression such as GR mediated

repression of prolactin and c-fos genes (Sakai et al., 1988; Mittal et al., 1994). GR

has also been proposed to regulate activity of NFkB via GR-GRE induction of

transcription of the gene encoding IkB-oc (Auphan et al., 1995; Scheinman et al.,

1995a). However later studies have shown this mechanism of NFkB regulation by

glucocorticoids to be cell type restricted and is not universally applicable to all cell

types (Brostjan et al., 1996). It has therefore been suggested that GR mediated
transactivation may not represent the principal mechanism of GR mediated

transcriptional regulation. There is now abundant evidence that GR can also function
in a DNA-independent manner, through a transrepression mechanism involving

protein-protein interactions (Karin et al., 1993; Heck et al., 1994; Helmberg et al.,

1995). For example GR mediated repression of collagenase gene induction is thought
to occur independently of GR-DNA binding and instead involves GR forming a

protein-protein complex with AP-1, preventing this transcription factor from

stimulating collagenase activity. GR may also interact directly with other important

transcription factors involved in signal transduction such as NFkB, signal transducers

and activators of transcription (STATs) and cyclic AMP responsive element binding

protein (CREB) (Ray and Prefontaine, 1994; Caldenhoven et al., 1995; Scheinman et

al., 1995b; Stocklin et al., 1996). It has been proposed that GR transcriptional

transrepression mechanisms are important for the anti-inflammatory action of

glucocorticoids. Many of the transcription factors demonstrated to be subject to GR
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transrepression mechanisms such as NFkB and AP-1, are involved in the regulation
of genes centrally involved in inflammation (Barnes and Adcock, 1993).

Glucocorticoids are thought to also regulate gene transcription through effects on

chromatin structure (Figure 4.2). DNA is normally tightly coiled around histone

proteins, which form a repeating array of DNA-protein particles called nucleosomes.

During transcription, histone residues become acetylated, resulting in uncoiling of

DNA, which is wrapped around the histone proteins. This allows increased access of

transcription factors, resulting in enhanced transcriptional activity. Several

transcription factors such as AP-1, STATs and NFkB are thought to bind to co-

activator molecules such as CREB binding protein (CBP) and the related p300

protein (Arias et al., 1994; Kamei et al., 1996; Zhang et al., 1996; Gerritsen et al.,

1997). CBP is thought to regulate transcription through its ability to both associate
with transcription factors and through is possession of intrinsic histone

acetyltransferase (HAT) activity, allowing it to acetylate histone residues and

regulate transcription (Ogryzko et al., 1996). CBP has been shown to associate with
GR via various co-activator proteins such as glucocorticoid receptor interacting

protein-1 (GRIP-1) (Hong et al., 1997) and glucocorticoid receptor coactivator-1

(SRC-1) (Smith et al., 1996) thus linking GR to the basal transcriptional machinery.
It has therefore been suggested that glucocorticoid repression of transcription factors
such as NFkB may be due to competition between GR and NFkB for limiting
amounts of CBP or p300 (Kamei et al., 1996; Sheppard et al., 1998). However, other
studies have suggested that glucocorticoids are capable for repressing NFkB and
other transcription factors independently of the amount of co-activator present in the
cell (De Bosscher et al., 2000; De Bosscher et al., 2001).

During transcriptional repression, deacetylation of histones is thought to occur

resulting in tighter coiling and reduced access of transcription factors to their binding
sites. It has been recently proposed that glucocorticoids in association with co¬

mpressors and proteins with intrinsic histone deacetylation activity may cause

deacetylation of histones, leading to gene repression (Wolffe, 1997).
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Glucocorticoids are known to be potent anti-inflammatory agents and have been

widely used in the treatment of chronic airways diseases such as asthma (Barnes and

Adcock, 1993; Barnes, 1997). The anti-inflammatory effects of glucocorticoids may

relate, in part, to their ability to downregulate adhesion molecules that may be

required in the recruitment of inflammatory cells to the sites of inflammation.
Glucocorticoids are known to downregulate ICAM-1 and E-selectin via a direct

signalling mechanism (Cronstein et al., 1992; van de et al., 1993). Glucocorticoids
have also been shown to suppress PAF induced upregulation of CD11/CD18 and

downregulation of L selectin, which may have important implications for leukocyte
accumulation (Filep et al., 1997). Glucocorticoids may also suppress inflammation

through enhanced synthesis of anti-inflammatory mediators such as IL-1 receptor

antagonist (IL-lra) (Levine et al., 1996), secretory leukocyte protease inhibitor

(SLPI) (Abbinante-Nissen et al., 1995) and lipocortin-1 (Browning et al., 1990;
Errasfa et al., 1985). Production of lipocortin-1 would presumably decrease the

activity of lipid mediators such as prostaglandins (Fradin et al., 1988) and SLPI may
be involved in anti-inflammatory activity in the airways, through neutralisation of
destructive proteases such as neutrophil elastase (Hochstrasser et al., 1981). The
mechanism by which glucocorticoids upregulate these anti-inflammatory proteins is

thought to be through transcriptional transactivation. Glucocorticoids also suppress

the synthesis of many proinflammatory cytokines from a variety of cells including

macrophages (Martinet et al., 1992; Linden and Brattsand, 1994), T lymphocytes

(Kelso and Munck, 1984), epithelial (Kwon et al., 1994; Kwon et al., 1995; Wang et

al., 1996b) and endothelial cells (Waage et al., 1990; Kemer et al., 1992). Further,

glucocorticoids also suppress the synthesis and effects of many chemokines such as

IL-8 (Kwon et al., 1994), RANTES (Kwon et al., 1995), and eotaxin (Lilly et al.,

1997) potentially abrogating the ability of inflammatory cells to be recruited to the
site of inflammation. As several of these genes do not contain the appropriate GRE
consensus sites in the 5'end region of their promoter region, it is believed

glucocorticoids suppress their production by indirect transrepression of the

transcription factors that regulate their expression.
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Figure 4.2 Effects of glucocorticoids on chromatin structure. Several transcription factors
such as NFkB and CREB bind to the cointegrator molecule CBP/p300 which possesses
intrinsic histone acetyltransferase (HAT) activity. During transcription, acetylation of histone
proteins by CBP, allows DNA that is wrapped around histone proteins to uncoil. This allows
increased accessibility of transcription factors resulting in enhanced transcription.
Glucocorticoids through GR may modulate transcription through association with CBP via
glucocorticoid receptor coactivator-1 (SRC-1). GR may cause gene repression by competing
with other transcription factors for binding to limited amounts ofCBP or instead may disturb
other transcription factors from binding to the basal transcriptional machinery. Alternatively
GR may indirectly deacetylate histones resulting in increased coiling ofDNA around histone
thereby preventing transcription factor binding. BTM, basal transcription machinery, Ac,
acetylated nucleosome.
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The beneficial anti-inflammatory properties of glucocorticoids may also occur

through direct effects on cell function and may relate to the ability of glucocorticoids
to modulate granulocyte function. Glucocorticoids may suppress eosinophilic
inflammation by downregulating the release of eosinophil cytotoxic cell contents.

However, this may not be the universal mechanism by which glucocorticoids

suppress eosinophil activity, as glucocorticoids have been shown to only weakly

suppress eosinophil degranulation and secretion of eosinophil basic proteins (Kita et

al., 1991c). One of the best-described actions attributed to steroids in asthma is a

reduction in the number of circulating eosinophils following glucocorticoid therapy

(Schleimer, 1990). Diminished numbers of eosinophils may be the result of

suppression of eosinophil recruitment through glucocorticoid inhibition of eosinophil
adherence and chemotaxis (Clark et al., 1979; Altman et al., 1981). Furthermore,

glucocorticoids may suppress production of inflammatory mediators and cytokines
involved in recruiting these cells to inflammatory sites. In addition to suppressing

eosinophil influx, a reduction in eosinophil numbers in the airways may be caused by
redistribution of eosinophils to other compartments. However studies by Kawabori et
al have demonstrated that glucocorticoid induced depletion of intestinal eosinophils
does not result in redistribution of eosinophils to the spleen, lymph nodes or

peripheral blood, suggesting that this may not be a major mechanism for

glucocorticoid reduction of eosinophil numbers (Kawabori et al., 1991). There is

accumulating evidence however that glucocorticoid depletion of eosinophils may

instead occur by an important regulatory mechanism, in which glucocorticoids
accelerate eosinophil cell death, allowing engulfment and clearance by macrophages.
To this end, Woolley et al. have reported increased eosinophil apoptosis in the

airways of asthmatics following glucocorticoid treatment. Furthermore, increased

apoptosis has been correlated with clinical improvement and resolution of

eosinophilic inflammation. As it has been demonstrated that activation of

inflammatory cells is reduced when they undergo apoptosis (Whyte et al., 1993),

apoptosis could contribute to the resolution of inflammation by reducing eosinophil

activity and facilitating their safe removal. Furthermore, apoptosis may allow the
shutdown of secretory capacity while maintaining an intact cell membrane thus

preventing leakage of cytotoxic cell contents thereby suppressing any further
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incitement of inflammation. Furthermore, as glucocorticoids have also been
demonstrated to increase the clearance of apoptotic granulocytes (Liu et al., 1999),
the effectiveness of glucocorticoids in treatment of inflammatory diseases such as

asthma may relate in part to their ability to promote apoptosis and clearance of

inflitrating eosinophils.

In contrast to eosinophils, where it has been demonstrated that glucocorticoids
induce apoptosis (Meagher et al., 1996), glucocorticoids have been shown in vitro to

increase the lifespan of the closely related neutrophil (Cox, 1995; Kato et al., 1995),

(Liles et al., 1995; Meagher et al., 1996). Indeed, in comparison to the reduction in

eosinophil numbers observed following systemic treatment with glucocorticoids,

neutrophil numbers in fact show an increase (Schleimer, 1990). Although neutrophil

lifespan appears to be influenced by glucocorticoids, it has generally been assumed
that neutrophils are less sensitive to the influence of glucocorticoids compared to

other white blood cells. Early reports suggested that high concentrations of

glucocorticoids could modulate a variety of neutrophil responses (Levine et al.,

1981; Umeki and Soejima, 1990; Shea and Morse, 1978) however later studies have

reported that physiological concentrations of steroids are unable to suppress a wide

variety of neutrophil functions such as chemotaxis, adhesion, degranulation and
secretion (Schleimer et al., 1989). The inability of glucocorticoids to suppress

neutrophil activity has been proposed to explain the lower efficacy of these drugs in

neutrophilic inflammatory disease. For example the beneficial effect of

glucocorticoids on 'eosinophilic' inflammatory diseases such as asthma and allergy
has not been observed in neutrophil-associated inflammatory diseases such as

chronic obstructive airways disease (Zainudin, 1997). Although ineffectiveness of

glucocorticoids may be partly due to the inability of these drugs to influence

neutrophil responses such as degranulation, it is reasonable to predict that

glucocorticoid enhancement ofneutrophil longevity may also play a part.

The mechanisms by which eosinophil and neutrophil apoptotic responses to

glucocorticoids differ are unknown. It has been proposed that glucocorticoids are

likely to exert their effects on granulocyte apoptosis by regulating the cytokine
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environment that influences the longevity of these cells. Several groups have

reported that glucocorticoids inhibit the effect of cytokines such as GM-CSF in

prolonging eosinophil survival (Her et al., 1991; Lamas et al., 1991; Wallen et al.,

1991; Hallsworth et al., 1992). Furthermore it has also been reported that

glucocorticoids enhance the neutrophil survival properties of GM-CSF (Cox, 1995;

Meagher et al., 1996). As eosinophils and neutrophils when appropriately activated,
are capable of producing GM-CSF (Kita et al., 1991a), it has been proposed that

glucocorticoids exert their influence on granulocyte apoptosis through differential

regulation of the elaboration of GM-CSF. However GM-CSF is undetectable in

ageing granulocyte cultures and excess of blocking anti-GM-CSF Ab fails to affect
modulation of apoptosis caused by glucocorticoids (Meagher et al., 1996). Thus the
direct influence of glucocorticoids on granulocyte apoptosis does not appear to be
mediated by GM-CSF. It is important to note that in vivo, glucocorticoids may

influence secretion of cytokines such as GM-CSF from a variety of cell types, which

may in turn influence granulocyte apoptosis. For example, glucocorticoids have been

reported to suppress GM-CSF production from human bronchial epithelial cells,
which consequently abrogates the survival influence of GM-CSF on eosinophils

(Cox et al., 1991). These findings may have importance for the use of

glucocorticoids in inflammatory conditions, at times where GM-CSF may also be

present. However of equal importance is the direct influence of glucocorticoids on

granulocytes, which we propose may be a major influence in the long observed

divergent response among granulocyte types following glucocorticoid administration
in vivo. Our aim was to try to elucidate the mechanisms by which glucocorticoids can

exert their effects on granulocytes, examining the intracellular signalling pathways
initiated by the binding of glucocorticoids to these cells and investigating the
differential responsiveness of granulocytes that suggest distinct apoptotic control
mechanisms are present in each cell type. Elucidation of the signalling pathways by
which glucocorticoids directly influence granulocyte apoptosis, may contribute to a

greater understanding of the anti-inflammatory action of glucocorticoids in
inflammation.
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4.1 DIFFERENTIAL EFFECT OF GLUCOCORTICOIDS ON

NEUTROPHIL AND EOSINOPHIL APOPTOSIS

Glucocorticoids have been previously reported to exert diametrically opposed effects

upon the rate of granulocyte apoptosis in vitro; promoting eosinophil apoptosis while

inhibiting neutrophil apoptosis (Cox, 1995; Kato et al., 1995; Liles et al., 1995;

Meagher et al., 1996). To confirm this is indeed the case, neutrophils (5 x 106/ml)
and eosinophils (2.5 x 106/ml) were cultured in serum supplemented Iscove's
DMEM and exposed to dexamethasone (1 pM) for 20 h and 40 h respectively. We

found that dexamethasone delayed morphological changes characteristic of
constitutive neutrophil apoptosis, such as cytoplasmic shrinkage and nuclear
condensation (Figure 4.1.1). Dexamethasone also delayed cell membrane changes
associated with apoptosis such as the exposure of phosphatidylserine measured by
Annexin V binding (Figures 4.1.2 and 4.1.3). Figure 4.1.2 illustrates the percentage

of cells within the Annexin V "high" gate was reduced by dexamethasone treatment

of neutrophils from 57% (B; control) to 23% (C; dexamethasone).

In contrast to the effects observed on neutrophils, eosinophils (2.5 x 106/ml) cultured
in serum supplemented Iscove's DMEM showed increased apoptosis in the presence

of 1 pM dexamethasone at 40 h as measured by standard morphological assessment

(Figure 4.1.4). The morphological changes in apoptosis associated with
dexamethasone treatment of eosinophils include nuclear pyknosis and chromatin
condensation together with decreased cell size and cytoplasmic vacuolation (Bottom

panel Figure 4.1.4). Numerous anucleate eosinophils or "ghosts" habitually appeared
on the cytocentrifuge preparations, indicative of nuclear extrusion. The effect of
dexamethasone on eosinophil apoptosis was also examined by Annexin V binding

(Figure 4.1.5 and 4.1.6). Measurement of Annexin-V binding during eosinophil

apoptosis revealed an increase in the percentage of cells showing Annexin V "high

positivity in dexamethasone treated eosinophils (83%) compared to untreated
controls (45%) (Figure 4.1.6).
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Assessment of cell viability demonstrated that dexamethasone did not significantly
alter this parameter (data not shown). Thus we have confirmed the previous
observation that glucocortiocoids exert differential effects on neutrophils and

eosinophils.

SUMMARY

• Dexamethasone delays neutrophil apoptosis as assessed by morphological and
cell membrane changes.

• Dexamethasone induces eosinophil apoptosis as assessed by morphological and
cell membrane changes.
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Figure 4.1.1 Neutrophil apoptosis is delayed by dexamethasone. Human neutrophils (5
xl06/ml) were cultured in Iscove's DMEM containing 10% autologous serum at 37 °C,
with or without dexamethasone (lpM). After 20 h, cells were harvested and assessed
morphologically for apoptosis. The upper panel indicates control neutrophils after 20 h in
culture. The bottom panel indicates neutrophils treated with dexamethasone for 20 h.
Note that the number of cells exhibiting classical apoptotic morphology (i.e. condensed
nuclei) is much less in the dexamethasone treated cells.
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Figure 4.1.2 Dexamethasone mediated delay of neutrophil apoptosis. (A) represents a
typical flow cytometric plot for neutrophils. (B) represents control neutrophils after 20 h
in culture incubated with FITC labelled recombinant human Annexin-V to measure

phosphatidylserine expression. (C) represents neutrophils stimulates with dexamethasone
(1 pM) for 20 h before being incubated with FITC labelled recombinant human Annexin-
V to measure phosphatidylserine expression. The data is of one representative experiment.
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Figure 4.1.3 Dexamethasone delays neutrophil apoptosis. Human neutrophils (5
xl06/ml) were cultured in Iscove's DMEM containing 10 % autologous serum at 37 °C,
and treated with dexamethasone (1 pM). After 20 h in culture, the cells were incubated
with FITC-labelled recombinant human Annexin V to determine phosphatidylserine
expression. All values represent mean ± S.E. of n = 6 experiments, each performed in
duplicate where significance from control is represented by */3<0.001.
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Figure 4.1.4 Dexamethasone induces eosinophil apoptosis. Human eosinophils (2.5
xl06/ml) were cultured in Iscove's DMEM containing 10% autologous serum at 37 °C,
with or without dexamethasone (lpM). After 40 h, cells were harvested and assessed
morphologically for apoptosis. The upper panel indicates control eosinophils after 40 h in
culture. The bottom panel indicates eosinophils treated with dexamethasone for 40 h. Note
that the number of cells exhibiting classical apoptotic morphology (i.e. condensed nuclei)
is much higher in the dexamethasone treated cells.
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Figure 4.1.5 Dexamethasone induction of eosinophil apoptosis. (A) represents a
typical flow cytometric scatter plot for eosinophils. (B) represents control eosinophils
after 40 h in culture incubated with FITC-labelled recombinant human Annexin-V to

determine phosphatidylserine expression. Similarly (C) represents eosinophils stimulated
with dexamethasone (1 pM) for 40 h before incubation with FITC-labelled recombinant
human Annexin-V to determine phosphatidylserine expression. The data above is one
representative experiment.
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Figure 4.1.6 Dexamethasone induces eosinophil apoptosis. Human eosinophils (2.5
xl06/ml) cultured in Iscove's DMEM containing 10 % autologous serum at 37 °C, and
treated with dexamethasone (1 pM). After 40 h in culture, the cells were incubated with
FITC-labelled recombinant human Annexin V to determine phosphatidylserine
expression. All values represent mean ± S.E. of n = 3 experiments, each performed in
duplicate where significance from control is represented by *P<0.001
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4.2 CONCENTRATION DEPENDENCY OF THE EFFECT OF

DEXAMETHASONE ON NEUTROPHIL AND EOSINOPHIL

APOPTOSIS

To determine whether the differential effect of dexamethasone on neutrophil and

eosinophil apoptosis is concentration dependent, we performed the following

experiments. Neutrophils (5 x 106/ml) cultured in serum supplemented Iscove's
DMEM showed decreasing levels of neutrophil apoptosis in the presence of

increasing concentrations of dexamethasone (0.001 - 10 jiM). Furthermore,

eosinophils (2.5 x 106/ml) cultured in serum supplemented Iscove's DMEM showed

increasing levels of apoptosis in the presence of increasing concentrations of
dexamethasone (0.01-10 (iM). It is important to note that neutrophils appear sensitive
to the survival effects of dexamethasone at low concentrations of this glucocorticoid

(10 nM). In comparison, it appears that higher concentrations of dexamethasone are

needed to induce eosinophil apoptosis (0.1-10 pM).

It has been widely suggested that neutrophils are less sensitive to the effects of

glucocorticoids compared to other cell types (Schleimer et al., 1989). The inability of

glucocorticoids to modulate key neutrophil functions such as chemotaxis and

degranulation led to the prevailing notion that these cells are unresponsive to the
effects of glucocorticoids. The data above clearly demonstrates that this is not the
case with regards to the ability of nanomolar concentrations of dexamethasone to

inhibit neutrophil apoptosis. Furthermore, it is interesting that glucocorticoid
induction of eosinophil apoptosis requires higher concentrations of dexamethasone

compared with that required to modulate neutrophil apoptosis.
SUMMARY

• Dexamethasone delays neutrophil apoptosis in a concentration dependent manner
• Dexamethasone induces eosinophil apoptosis in a concentration dependent

manner

• Neutrophils appear more sensitive to the apoptotic regulatory effects of

glucocorticoids compared to eosinophils
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Figure 4.2.1 Dexamethasone delays neutrophil apoptosis in a concentration
dependent manner. Human neutrophils (5 xl06/ml) were cultured in Iscove's DMEM
containing 10 % autologous serum at 37 °C with the indicated concentrations of
dexamethasone (pM). After 20 h in culture, the cells were incubated with FITC-labelled
recombinant human Annexin V to determine phosphatidylserine expression. All values
represent mean + S.E. of n = 3-7 experiments, each performed in duplicate where
significance from control is represented by *P<0.01
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Figure 4.2.2 Dexamethasone induces eosinophil apoptosis in a concentration
dependent manner. Human eosinophils (2.5 xl06/ml) were cultured in Iscove's DMEM
containing 10 % autologous serum at 37 °C with the indicated concentrations of
dexamethasone (pM). After 40 h in culture, the cells were incubated with FITC-labelled
recombinant human Annexin V to determine phosphatidylserine expression. All values
represent mean ± S.E. of n = 3 experiments, each performed in duplicate where
significance from control is represented by TO.01
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4.3 GLUCOCORTICOID REGULATION OF GRANULOCYTE

APOPTOSIS REQUIRES HSP90

Glucocorticoids exert their effects by diffusing passively through the cell membrane
where they bind to glucocorticoid receptors (GRs) located in the cytoplasm of target
cells. Glucocorticoid receptors form part of a large heterocomplex in the cytoplasm
with specific molecular chaperones and other proteins, which prevent unoccupied

glucocorticoid receptors from translocating to the nucleus, in the absence of ligand.
The large protein complex which binds the carboxy terminal of the glucocorticoid

receptor includes two subunits of the heat shock protein hsp90, hsp70 and several
other co-chaperones (Bresnick et al., 1989; Pratt et al., 1989; Morishima et al.,

2000b; Rajapandi et al., 2000). The role of the hsp 90 as a molecular chaperone of
the glucocorticoid receptor is well characterised in many cell systems however
involvement of hsp90 and other molecular chaperones in glucocorticoid regulated

processes in granulocytes has not been described.

To establish if hsp90 in involved in the glucocorticoid signalling mechanisms

controlling cell death in granulocytes we have made use of the hsp90 binding

benzoquinoid ansamycin, geldanamycin (GA). Geldanamycin occupies the

nucleotide-binding site on hsp90 and prevents the switch to its ATP-bound

conformation, which is required for assembly of GR-hsp90 heterocomplexes

receptive to ligand binding (Prodromou et al., 1997; Roe et al., 1999). Neutrophils
were incubated in serum supplemented Iscove's DMEM in the presence of
dexamethasone (1 pM) with or without geldanamycin (10 pM) for 20 h, before
assessment of apoptosis (Figure 4.3.1). We found that dexamethasone mediated

delay ofneutrophil apoptosis is abrogated in the presence of geldanamycin indicating
that hsp90 is required for glucocorticoid inhibition of neutrophil apoptosis.

In parallel studies, eosinophils were incubated for 40 h in the presence of
dexamethasone (1 pM) with or without geldanamycin (10 pM) before assessment of

apoptosis. Dexamethasone treatment of eosinophils induces apoptosis, which we
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found could be significantly inhibited by geldanamycin (Figure 4.3.2), suggesting a

role for hsp90 in glucocorticoid regulation of eosinophil cell death. It is interesting
that geldanamycin causes a small induction of apoptosis on its own in eosinophils

suggesting that hsp90 may be involved in regulation of constitutive eosinophil

apoptosis.

Our results suggest that both glucocorticoid inhibition of neutrophil apoptosis and

glucocorticoid induction of eosinophil cell death require the involvement of hsp90.
As geldanamycin is known to block the formation of steroid binding competent

aporeceptor complexes, our results may suggest that correctly assembled GR-hsp90

complexes are vital for glucocorticoid regulation of granulocyte apoptosis. However
there are as yet no studies demonstrating that GR heterocomplexes form in

granulocytes or are required for glucocorticoid signalling in these cells. Thus

abrogation of glucocorticoid mediated effects in granulocyte apoptosis by

geldanamycin only gives indirect evidence of hsp90 involvement in generating

glucocorticoid receptors of the correct conformation for ligand binding. To further
elucidate the signalling mechanism by which glucocorticoids differentially regulate

granulocyte apoptosis we decided to try to examine the role of GR and its
downstream effector mechanisms which may be participating in this process.
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Figure 4.3.1 Blockade of hsp90 with geldanamycin abrogates dexamethasone
mediated delay of neutrophil apoptosis. Human neutrophils (5 x 106/ml) cultured in
Iscove's DMEM containing 10% autologous serum at 37 °C, and treated with
geldanamycin (10 pM) with or without dexamethasone (1 pM). After 20 h, cells were
incubated with FITC-labelled recombinant human Annexin V to determine

phosphatidylserine expression. All values represent mean ± S.E. of n = 3 experiments,
each performed in duplicate where significant difference from control is represented by
*P<0.001 and difference from dexamethasone alone is represented by #P<0.001.
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Figure 4.3.2 Blockade of hsp90 with geidanamycin abrogates dexamethasone
mediated induction of eosinophil apoptosis. Human eosinophils (2.5 x 106/ml) cultured
in Iscove's DMEM containing 10% autologous serum at 37 °C, and treated with 10 pM
geidanamycin with or without dexamethasone. After 40 h, cells were incubated with
FITC-labelled recombinant human Annexin V to determine phosphatidylserine
expression. All values represent mean ± S.E. of n = 3 experiments, each performed in
duplicate where significant difference from control is represented by *P<0.001 and
significant difference from dexamethasone alone is represented by #P<0.05.
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SUMMARY

• Inhibition of hsp90 by geldanamycin abrogates glucocorticoid mediated delay of

neutrophil apoptosis
• Inhibition of hsp90 by geldanamycin abrogates glucocorticoid mediated

induction of eosinophil apoptosis
• Inhibition of hsp90 by geldanamycin causes a small induction of constitutive

eosinophil apoptosis
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4.4 ROLE OF THE GLUCOCORTICOID RECEPTOR IN

GLUCOCORTICOID REGULATION OF GRANULOCYTE

APOPTOSIS

4.4.1 EXPRESSION OF GLUCOCORTICOID RECEPTOR ISOFORMS IN

GRANULOCYTES

In light of the fact that neutrophils, compared to eosinophils, appear to have both a

differential response and enhanced sensitivity to the apoptotic regulatory influence of

glucocorticoids, we investigated if this was due to differences in the glucocorticoid

signalling pathway at the level of the GR. The human glucocorticoid receptor exists
as two different isoforms, GRa and GR[), which arise from the same gene by
alternative splicing (Hollenberg et al., 1985; Encio and Detera-Wadleigh, 1991). The
two isoforms differ only at their carboxy terminus with the last 50 amino acids of
GRa being replaced by a 15 AA sequence in GR|3, which is thought to lack a steroid

binding domain. As a result, it is believed that GRp is incapable of binding

glucocorticoids and is unable to stimulate gene transcription. Moreover it has been

suggested that GR[) can antagonise the effects ofGRa possibly through formation of

antagonistic GRa/GR(3 heterodimers (Bamberger et al., 1995; de Castro et al., 1996;

Oakley et al., 1996; Oakley et al., 1999).

It has previously been shown that neutrophils and eosinophils exhibit similar
numbers of glucocorticoid receptors (Peterson et al., 1981). The saturable

glucocorticoid binding in human neutrophils is similar to that observed in eosinophils

(Kd = 17.7 ± 0.8 nM in the neutrophil and Kd = 15.3 ± 0.6 nM in the eosinophil)

(Peterson et al., 1981). This would appear to suggest that differences in receptor

number and affinity are not responsible for the differential effect of glucocorticoids
on granulocyte apoptosis. It is currently unknown which isoforms of GR are

expressed in neutrophils and eosinophils and indeed if there are any differences in
the nature of the isoforms expressed in these cell types. Although binding studies

-7

using H-labelled agonists have indicated neutrophils and eosinophils contain similar
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numbers of glucocorticoid receptors, this technique would not be able to take into

account effects mediated by the presence of GR[f, which cannot bind ligand and
whose effects may be independent of this activity. Therefore we decided to examine
if the differential responsiveness and effect of glucocorticoids in granulocytes is due
to differential expression and signalling ofGR isoforms.

Numerous studies have shown that GRa resides mainly in the cytoplasm of cells in
the absence of hormone and translocates to the nucleus in a hormone dependent
manner (Cidlowski et al., 1990; Antakly et al., 1989). In contrast, it has been shown

that GR(3 resides mainly in the nucleus although it is unclear if GR(3 is able to change
its subcellular localisation upon hormone treatment (Oakley et al., 1996). As an

initial approach to attempt to dissect the signalling mechanisms involved in

glucocorticoid regulation of granulocyte apoptosis, we examined GR protein

expression in neutrophils and eosinophils by Western blotting. Protein extracts were

obtained from granulocytes which had been treated with control buffer or

dexamethasone (1 jiM) over a time course of 20 h. Lysates were prepared from

equivalent numbers of cells and subject to SDS-PAGE/immunblot analysis.
Numerous lysis methods and antibodies were tested as we found extreme difficulty
in obtaining successful Western blots for GR using standard techniques. These

problems occurred despite inclusion of a broad spectrum of protease inhibitors and

may reflect the major protease content of these cells. The various lysis methods and
antibodies that were tested are outlined in Chapter 2. Following lengthy optimisation,
GR was detectable as a 97 kDa species upon Western blotting of neutrophil

cytoplasmic extracts (Figure 4.4.1A). Levels of expression ofGR did not alter during
the 4 h time course. Furthermore there was surprisingly no detectable loss of GR
from the cytoplasm upon dexamethasone treatment at all time points tested (Figure
4.4.1A). Moreover, we could not detect expression of GR in neutrophil nuclear
extracts. Similarly to neutrophils, we found that expression of GR in eosinophils
remains unchanged over a time course of 4 h (Figure 4.4.IB). Furthermore there is
no detectable loss of GR from the cytoplasm of eosinophils upon dexamethasone
treatment (Figure 4.4.IB) or expression of GR in nuclear extracts at all time points
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tested (data not shown). An affinity purified rabbit IgG verified that the band

appearing at 97kDa was not as a result of non-specific binding of the rabbit

polyclonal antibody (data not shown).

Western blotting analysis of expression of GRp specifically was performed using a

commercially available rabbit anti-human polyclonal antibody which recognises

specifically the carboxy terminus of GR(3 (PA3-514). In granulocytes,

immunoblotting using this antibody, resulted in the appearance of a ~60 kDa protein
band in lysates from both neutrophils and eosinophils (Figure 4.4.1C & Figure
4.4. ID). There was no evidence of higher molecular weights proteins present in these

immunoblots, even after a long exposure time. The disparity in the molecular weight
of the protein observed and GRp, which is ~94kDa, suggested the antibody was not

recognising GRp specifically. It was found that immunoblotting with an affinity

purified rabbit IgG used at equivalent concentrations, produced a band of the same

molecular weight, suggesting the protein detected is not GRP and is due to non¬

specific binding of rabbit IgG.

SUMMARY

• Neutrophils and eosinophils express GR by Western blotting however the nature

of GR isoforms present in these cells remains undefined.

• Translocation of GR upon dexamethasone treatment could not be detected in

neutrophils and eosinophils
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Figure 4.4.1A Time course for the effect of dexamethasone on GR expression during
human neutrophil apoptosis Western blot of cytoplasmic (CYT) and nuclear extracts
(NUC) from neutrophils treated with control buffer or dexamethasone (1 pM) for the time
points indicated. Cell lysates were prepared and immunoblotted as described under
"Materials and Methods". Lysates were prepared from equivalent numbers of cells and
subjected to SDS-PAGE/immunoblot analysis using a rabbit anti-human polyclonal
antibody (PA 1-511) which recognises all forms of GR. The antibody recognises a 97 kDa
GR protein. The gel is representative of 3 experiments.

157



REGULATION OF GRANULOCYTE APOPTOSIS BY GLUCOCORTICOIDS AND CYCLIC AMP
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Figure 4.4.1B Time course for the effect of dexamethasone on GR expression in
human eosinophils. Western blot of cytoplasmic extracts from eosinophils treated with
control buffer or dexamethasone (1 pM) for the time points indicated. Cell lysates were
prepared and immunoblotted as described under "Materials and Methods". Lysates were
prepared from equivalent numbers of cells and subjected to SDS-PAGE/immunoblot
analysis using a rabbit anti-human polyclonal antibody (PA 1-511) which recognises all
forms of GR. The antibody recognises a 97 kDa GR protein. The gel is representative of
3 experiments.
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Figure 4.4.1C Time course for the effect of dexamethasone on GRp expression in
human neutrophils. Western blot of cytoplasmic extracts from neutrophils treated with
control buffer or dexamethasone (1 jjM) for the time points indicated. Cell lysates were
prepared and immunoblotted as described under "Materials and Methods". Lysates were
prepared from equivalent numbers of cells and subjected to SDS-PAGE/immunoblot
analysis using a rabbit anti-human polyclonal antibody (PA3-514) which specifically
recognises GRP or as a negative control an affinity purified rabbit IgG. The gel is
representative of 3 experiments
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Figure 4.4.1D Time course for the effect of dexamethasone on GRp expression in
human eosinophils. Western blot of cytoplasmic extracts from eosinophils treated with
control buffer or dexamethasone (1 pM) for the time points indicated. Cell lysates were
prepared and immunoblotted as described under "Materials and Methods". Lysates were
prepared from equivalent numbers of cells and subjected to SDS-PAGE/immunoblot
analysis using a rabbit anti-human polyclonal antibody (PA3-514) which recognises s
GRP specifically or as a negative control an affinity purified rabbit IgG. The gel is
representative of 3 experiments
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4.4.2 EFFECT OF GLUCOCORTICOID ANTAGONIST RU486 ON

DEXAMETHASONE MEDIATED DELAY OF NEUTROPHIL APOPTOSIS

In the previous experiments we could not detect glucocorticoid mediated activation
of the glucocorticoid receptor and did not observe dexamethasone-induced
translocation of GR to the nucleus in either cell type. Although this may be due to

limitations in the techniques used, it was necessary to try to elucidate whether

glucocorticoid regulation of granulocyte apoptosis requires classical glucocorticoid

signalling through GR. As an alternative approach, we therefore examined the effects
of the glucocorticoid and progesterone receptor antagonist RU 486 on glucocorticoid

regulation of granulocyte apoptosis. RU 486 is believed to act as a competitive

antagonist, capable of binding to cytosolic glucocorticoid receptors but unable to

stimulate GR dependent transcription (Moguilewsky and Philibert, 1984; Bourgeois
et al., 1984). Neutrophils were co-cultured with the indicated concentrations of
dexamethasone and RU 486 for 20 h before assessment of apoptosis (Figure 4.4.2A).
10 pM RU 486 was found to fully reverse the delay of neutrophil apoptosis mediated

by 0.01-0.1 pM dexamethasone however only a partial reversal was found in cells

co-cultured in 1 pM dexamethasone and 10 pM RU 486.

It has been suggested that RU 486 has to be in at least 10 fold excess in order to fully

abrogate dexamethasone binding to GR which would explain why only a partial
reversal is found with 10 pM RU486 in the presence of 1 pM dexamethasone. It is

striking however that there appears to be no reversal of dexamethasone inhibition of

neutrophil apoptosis using 1 pM RU 486 when dexamethasone is titrated to

concentrations as low at 0.01 pM.

To establish if glucocorticoid induction of eosinophil apoptosis required the
involvement of the glucocorticoid receptor, eosinophils were co-cultured with the
indicated concentrations of dexamethasone and RU 486 for 40 h, before assessment

of apoptosis (Figure 4.4.2B). As previously shown in Figure 4.1.4, dexamethasone
induces eosinophil apoptosis at concentrations of 0.1 pM and above. It appears that
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RU 486 may act as a partial agonist with regards to the induction of eosinophil

apoptosis. RU 486 at 10 pM will cause a small induction of apoptosis in eosinophils

yet appears to also act as a competitive antagonist and will compete with
dexamethasone for binding to GR resulting in partial abrogation of dexamethasone
mediated eosinophil death. RU 486 was effective at reversing dexamethasone
induction of eosinophil apoptosis when used at a concentration of 10 pM but again
was ineffective at concentrations below this.

It is perhaps surprising that such high concentrations of RU 486 are needed to

abrogate the apoptosis influencing effects of glucocorticoids in granulocytes. In

particular it is remarkable that glucocorticoids can influence neutrophil apoptosis at

nanomolar concentrations yet, 10 pM RU486 is required to abrogate this effect.
These findings may suggest that glucocorticoids regulate neutrophil apoptosis via a

mechanism other than classical signalling through GR. Although we have not been
able to demonstrate the presence of GR(3 in granulocytes due to poor antibody

specificity it is possible that some of the effects of glucocorticoids could be mediated

by GR(3 which may not be antagonised be RU 486 (Oakley et al., 1996).

SUMMARY

• Dexamethasone inhibition of neutrophil apoptosis is partially abrogated by RU

486 (>10pM) but not at lower concentrations.
• Dexamethasone induction of eosinophil apoptosis is partially abrogated by

RU486 (>10pM) but not at lower concentrations.
• RU486 may also act as a partial agonist and induce apoptosis in eosinophils.

162



REGULATION OF GRANULOCYTE APOPTOSIS BY GLUCOCORTICOIDS AND CYCLIC AMP

control dex lfiM dex O.ljiM dex O.OlpM
- 1 10 - 1 10 - 1 10 - 1 10

RU486 I

Figure 4.4.2A Effect of glucocorticoid antagonist RXJ486 on dexamethasone mediated
delay of neutrophil apoptosis. Human neutrophils (5 x 106/ml) cultured in Iscove's
DMEM containing 10 % autologous serum at 37 °C, and treated with the indicated
concentrations of RU486 (|iM) with or without dexamethasone. After 20 h, cells were
incubated with FITC-labelled recombinant human Annexin V to determine

phosphatidylserine expression. All values represent mean ± S.E. of n = 3 experiments,
each performed in duplicate where significant difference from control is represented by
*P<0.01 and significant difference from dexamethasone alone is represented by # P<0.01.
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Figure 4.4.2B Effect of glucocorticoid antagonist RU486 on dexamethasone mediated
induction of eosinophil apoptosis. Human eosinophils (5 x 106/ml) cultured in Iscove's
DMEM containing 10 % autologous serum at 37 °C, and treated with the indicated
concentrations of RU486 (pM) with or without dexamethasone. After 40 h, cells were
incubated with FITC-labelled recombinant human Annexin V to determine

phosphatidylserine expression. All values represent mean ± S.E. of n = 3 - 4 experiments,
each performed in duplicate where significant difference from control is represented by
*P<0.05 and significant difference from dexamethasone alone (0.1 pM) by **P<0.01.
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4.5 REQUIREMENT FOR PROTEIN SYNTHESIS IN

GLUCOCORTICOID MEDIATED INHIBITION OF

NEUTROPHIL APOPTOSIS

In light of the difficulties in establishing direct GR involvement in glucocorticoid

regulation of granulocyte apoptosis, an alternative approach was sought to dissect the
mechanism behind the differential effect of glucocorticoids on granulocytes.
Glucocorticoids produce their effects on responsive cells by activating GR to directly
or indirectly regulate the transcription of target genes. It has been highly
controversial whether glucocorticoid regulation of apoptosis is a consequence of

DNA-binding dependent transcriptional activation or transrepression. It has been

previously shown that DNA binding of GR is a prerequisite for glucocorticoid
mediated thymocyte apoptosis (Reichardt et al., 1998). Similarly, Chapman et al
have reported that transcription transactivation by GR is required for glucocorticoid
induction of apoptosis in murine thymoma cells (Chapman et al., 1996). In contrast,

Helmberg et al have demonstrated that transrepression by GR is involved in

glucocorticoid induction of apoptosis in human leukemic cells (Helmberg et al.,

1995). A key question we wished to address therefore was whether glucocorticoid

regulation of granulocyte apoptosis required the direct effects of glucocorticoids

through GR-DNA binding or instead involved transcriptional repression via GR
association with other transcription factors. We also wished to ascertain if divergence
in the mechanisms regulating glucocorticoid stimulated transcriptional activity, was

responsible for the differential responsiveness of eosinophils and neutrophils to

apoptotic regulation by glucocorticoids.

As an initial approach to verify the necessity of gene transcription for glucocorticoid
modulation of apoptosis in granulocytes, cells were co-cultured with the protein

synthesis inhibitor, cycloheximide. This compound was titrated to low concentrations
to minimise the induction of apoptosis that has been reported to occur by this

compound on its own. We first tested if glucocorticoid inhibition of neutrophil

apoptosis required gene transcription. Neutrophils were cultured in serum-
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supplemented Iscove's DMEM in the presence of dexamethasone (1 |iM) together
with the indictaed concentrations of cycloheximide. After 20 h, apoptosis was

assessed by standard morphological criteria and exposure of phosphatidylserine by
Annexin V binding. We found that cycloheximide blocked glucocorticoid-mediated

suppression of neutrophil apoptosis at these concentrations (Figure 4.5.1) suggesting

glucocorticoids are required to stimulate gene transcription in order to delay

neutrophil apoptosis.

Similar experiments were performed to establish if glucocorticoid induction of

eosinophil cell death required gene transcription. However interpretation was

difficult as eosinophils are particularly sensitive to induction of apoptosis by

cycloheximide thus masking any changes that may occur to glucocorticoid mediated
induction of eosinophil apoptosis when gene transcription is blocked (data not

shown). However this data does suggest that transcriptional events may be involved
in prolonging eosinophil survival as cycloheximide will rapidly induce eosinophil

apoptosis.

SUMMARY

• Cycloheximide reverses glucocorticoid mediated delay ofneutrophil apoptosis
• Cycloheximide induces apoptosis in both neutrophils and eosinophils
• The requirement of gene transcription in glucocorticoid mediated induction of

eosinophil apoptosis could not be determined due to the sensitivity of eosinophils
to the apoptosis inducing properties of cycloheximide
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Figure 4.5.1 Effect of protein synthesis inhibition by cycloheximide on
dexamethasone mediated delay of neutrophil apoptosis. Human neutrophils (5
xl06/ml) cultured in Iscove's DMEM containing 10% autologous serum at 37 °C, and
treated with the indicated concentrations of cycloheximide (pg/ml) with or without
dexamethasone (lpM). After 20 h, cells were harvested and assessed morphologically for
apoptosis. All values represent mean ± S.E. of n = 5 experiments, each performed in
triplicate. Similar results were found when cells were assessed for apoptosis by Annexin-
V binding (data not shown). Significant difference from control is represented by #P<0.01
and significant difference from dexamethasone alone is represented by **P<0.01 or
***P<0.001
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4.6 INVOLVEMENT OF GENE TRANSACTIVATION AND

TRANSREPRESSION IN GLUCOCORTICOID REGULATION

OF GRANULOCYTE APOPTOSIS.

As transcriptional regulation by glucocorticoids likely plays a role in glucocorticoid
mediated modulation of granulocyte apoptosis, we sought to determine the
mechanism by which glucocorticoids affect transcriptional activity in order to

influence apoptosis and in particular, if different mechanisms of transcriptional
control are involved in the ability of glucocorticoids to differentially affect apoptosis
in these cells. Firstly, we investigated whether glucocorticoids stimulate

transcriptional induction through GRE mediated stimulation of steroid responsive

genes. As a measurement of GR-mediated transactivation we examined

glucocorticoid stimulation of secretory leukocyte protease inhibitor (SLPI)

production by Western blotting. Glucocorticoids have been shown to increase the

transcription of SLPI through direct DNA binding of GR the promoter region of the
SLPI gene (Abbinante-Nissen et al., 1995). SLPI is an important antiprotease found
in the upper airways during pulmonary inflammation and may serve to counteract the
effects of inflammatory enzymes. Further SLPI is a major leukocyte elastase
inhibitor and has been shown to be present in human neutrophils (Sallenave et al.,

1997).

Neutrophils (5 x 106/ml) and eosinophils (2.5 x 106 /ml) were cultured in serum

supplemented Iscove's DMEM in the presence of dexamethasone (0.01-1 pM) for 20
h before supematants were harvested. The supematants were then dialysed to remove

excess salts contained in culture medium before SDS-PAGE/immunblot analysis

using a rabbit polyclonal antibody specific for human SLPI. Surprisingly we found
that dexamethasone did not increase SLPI production in either neutrophils or

eosinophils (Figure 4.6.1 & Figure 4.6.2). Moreover, in neutrophils, dexamethasone

may even downregulate SLPI production compared to unstimulated cells (Figure

4.6.1) although this was not always reproducible. Phorbol myristate acetate (PMA)
was used as our positive control and was found to upregulate SLPI production.
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Figure 4.6.1 Effect of dexamethasone on SLPI expression in neutrophils. Western
blot of supernatants from neutrophils treated with the indicated concentrations of
dexamethasone (pM) or PMA (lOOnM) for 20 h. Supernatants were prepared and
immunoblotted as described under "Materials and Methods" and subjected to SDS-
PAGE/immunoblot analysis using a rabbit polyclonal antibody specific for SLPI. The
SLPI antibody recognizes a 14kDa protein. The gel is of a representative experiment.
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Figure 4.6.2 Effect of dexamethasone on SLPI expression in eosinophils. Western
blot of supernatants from eosinophils treated with the indicated concentrations of
dexamethasone (pM) or PMA (lOOnM) for 20 h. Supematants were prepared and
immunoblotted as described under "Materials and Methods" and subjected to SDS-
PAGE/immunoblot analysis using a rabbit polyclonal antibody specific for SLPI. The
SLPI antibody recognizes a 14kDa protein. The gel is of a representative experiment.
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We also examined if glucocorticoids could also transrepress gene transcription in

granulocytes. Many studies examining the anti-inflammatory action of

glucocorticoids have focussed on glucocorticoid transrepression of NFkB, as NFkB

binding sites are found in the promoter regions of many cytokines known to be

downregulated by glucocorticoids. As NFkB has been demonstrated to be an

important regulator of neutrophil apoptosis (Ward et al., 1999a) we decided to study
if glucocorticoids transrepress NFkB activation in neutrophils and eosinophils as a

measurement of glucocorticoid transrepression in these cells. NFKB-mediated

transcription was assessed by measuring the influence of glucocorticoids on LPS
stimulated IL-8 production by ELISA. NFkB is believed to be essential for

transcription of IL-8 although other transcription factors may also be important for
the regulation of this gene such as AP-1 (Mukaida et al., 1994a). Furthermore NFkB
has been shown to be the target in glucocorticoid regulation of IL-8 secretion

(Mukaida et al., 1994b).

Neutrophils (5 x 106 cells/ml) and eosinophils (1 x 106 cells/ml) were cultured in
serum supplemented Iscove's DMEM together with LPS (100 ng/ml) in the presence

or absence of the indicated concentrations of dexamethasone. After 20 h the

supematants were saved and IL-8 was measured by IL-8 sandwich ELISA.
Dexamethasone concentration dependently suppresses basal and LPS stimulated IL-8

production in neutrophils (Figure 4.6.3). As there is donor variation in basal and
stimulated IL-8 production between experiments the data are represented as two

typical experiments together with the averaged data of several experiments to show
the similarity in individual trends, although there is variation in baseline IL-8

production. This data confirms that concentrations of dexamethasone which

transrepress NFkB regulated IL-8 production in neutrophils are capable of delaying

neutrophil apoptosis. In eosinophils there was greater donor variation however
dexamethasone tended to suppress basal IL-8 production (Figure 4.6.4). Although

dexamethasone (0.1 pM) could suppress LPS stimulated IL-8 production, high

concentrations of dexamethasone (1 pM) did not significantly inhibit LPS stimulated
IL-8 secretion.
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SUMMARY

• Dexamethasone does not upregulate GRE-mediated SLPI production in

neutrophils and eosinophils measured by Western blotting.
• Dexamethasone concentration dependently suppresses NFkB regulated IL-8

production in neutrophils
• Dexamethasone (0.1 pM) suppresses NFkB regulated IL-8 production in

eosinophils but not at higher concentrations (1 pM).
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Figure 4.6.3 Effect of dexamethasone on LPS stimulated IL-8 production in
neutrophils. Human neutrophils (5 x 106/ml) were cultured in Iscove's DMEM
containing 10 % autologous serum at 37 °C, and treated with indicated concentrations of
dexamethasone with or without LPS (100 ng/ml). After 20 h, supernatants were saved and
IL-8 production was measured by ELISA. Graphs A and B represent results from two
different individual donors. Graph C represents mean ± S.E. of n = 13 experiments, each
performed in duplicate where significant difference from control is represented by
*"P<0.001, "P<0.01 or *P<0.05 and significant difference from LPS alone is represented
by ***P<0.001 or" PO.01.

173



REGULATION OF GRANULOCYTE APOPTOSIS BY GLUCOCORTICOIDS AND CYCLIC AMP

2.5

I 2

5 1-5o

T3
O

1

a
oo 0.5

0 ML
Control 1

I
0.1
-dex

0.01 LPS LPS
1

LPS LPS
0.1 0.01

_ dex I

1.4

1.2

"So
S 1

0.8

0.6

0.4

0.2

0

Control 1 0.1
dex

0.01 LPS LPS
. 1

LPS LPS
0.1 0.01
dex

Control 1 0.1
-dex

0.01 LPS
I

LPS
1

LPS LPS
0.1 0.01
dex I

Figure 4.6.4 Effect of dexamethasone on LPS stimulated IL-8 production in
eosinophils. Human eosinophils (1 x 106/ml) were cultured in Iscove's DMEM containing
10 % autologous serum at 37 °C, and treated with indicated concentrations of
dexamethasone with or without LPS (100 ng/ml). After 20 h, supernatants were saved and
IL-8 production was measured by ELISA. Graphs A and B represent results from two
different individual donors. Graph C represents mean ± S.E. of n = 4-6 experiments, each
performed in duplicate where significant difference from control is represented by
*P<0.05.
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4.7 EFFECT OF DISSOCIATED GLUCOCORTICOIDS ON

GRANULOCYTE APOPTOSIS

In neutrophils it appears that glucocorticoids are capable of regulating gene

expression by a mechanism of transrepression. On the other hand glucocorticoids

appear incapable of transactivation through direct DNA binding to GRE consensus

sites in these cells as measured by glucocorticoid effects on production of SLPI. We
have also found that concentrations of dexamethasone, capable of transrepressing
NFkB regulated IL-8 production, are also able to delay neutrophil apoptosis. This
does not directly prove however that transrepression is required for the anti-apoptotic
effect of glucocorticoids in neutrophils. In eosinophils, glucocorticoids may not act

through transcriptional transactivation, as measured by SLPI production.
Glucocorticoids were found to transrepress IL-8 secretion but not at the
concentrations which most effectively induce eosinophil apoptosis.

In order to elucidate directly if glucocorticoid transactivation or transrepression are

directly required for glucocorticoid regulation of granulocyte apoptosis, we took

advantage of the availability of dissociated glucocorticoids which have been

published to distinguish between transactivation and repression. We tested these

compounds for their ability to affect apoptosis in neutrophils and eosinophils, in

comparison to the classical glucocorticoid dexamethasone. The dissociated

glucocorticoids used in these experiments differ from classic glucocorticoids, as they
have been designed to be either defective in transactivation but retain the ability to

transrepress or vice-versa, unlike classical glucocorticoids which are thought capable
of acting via both mechanisms to a greater or lesser extent. The first set of

compounds from Hoechst Marion Roussel Pharmaceutical Corp, RU24782 and

RU24858, have been demonstrated to be only weakly capable of transactivation as

measured by a GR reporter gene (Vayssiere et al., 1997). These compounds have
been shown to be capable of transrepressing AP-1 by measurement of the activation
of c-Jun activated collagenase promoter-Cat reporter gene (Vayssiere et al., 1997). A
further set of steroids were obtained from Schering AG, namely ZK55740 and
ZK77945. These compounds have been reported to transactivate transcription of
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metallothionein Iia in HeLa cells, though they were not as efficient as

dexamethasone (Heck et al., 1997). Importantly, ZK55740 and ZK77945 were only

weakly capable of transrepressing AP-1 regulated collagenase 1 activity unlike
dexamethasone which efficiently suppressed collagenase 1 (Heck et al., 1997).

4.7.1 EFFECT OF DISSOCIATED GLUCOCORTICOIDS ON NEUTROPHIL

APOPTOSIS

To investigate if transactivation is required for glucocorticoid mediated delay of

neutrophil apoptosis neutrophils were cultured in serum supplemented Iscove's
DMEM in the presence of the indicated concentrations of dexamethasone, ZK55740
or ZK77945. After 20 h cells were assessed for apoptosis by measurement of
Annexin V binding. We found that ZK77945 significantly inhibited neutrophil

apoptosis (0.1 - 10 |iM) as did ZK55740 albeit only at high concentrations (1-10

(iM) (Figure 4.7.1A). In comparison to dexamethasone however, ZK77945 and
ZK55740 did not inhibit neutrophil apoptosis as efficiently (Figure 4.7.1A).

To test whether glucocorticoids require the ability to transrepress gene expression in
order to delay neutrophil apoptosis, neutrophils were incubated in serum

supplemented Iscove's DMEM in the presence of the indicated concentrations of

dexamethasone, RU24858 or RU24782. After 20 h apoptosis was assessed by
measurement of Annexin V binding. We found that RU24858 and RU24782 both

significantly inhibit neutrophil apoptosis (0.01-10 |iM) with RU24858 being more

effective at lower concentrations than RU24782 (Figure 4.7.IB). Moreover,
dexamethasone appears to be more efficient at delaying neutrophil apoptosis

compared to either compound (Figure 4.7.IB). It is important to note however that at
low concentrations (0.01 pM), both RU24858 and RU24782 significantly delay
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Figure 4.7.1A Effect of ZK transactivating compounds compared to dexamethasone
on neutrophil apoptosis. Human neutrophils (5 x 106/ml) cultured in Iscove's DMEM
containing 10% autologous serum at 37 °C, and treated with the indicated concentrations
of ZK55740, ZK77945 or dexamethasone. After 20 h, cells were incubated with FITC-
labelled recombinant human Annexin V to determine phosphatidylserine expression. All
values represent mean ± S.E. of n = 3-6 experiments, each performed in duplicate where
significant difference from control is represented by ***P<0.001, **P<0.01 and *P<0.05.
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Figure 4.7.IB Effect of RU transrepressing compounds compared to
dexamethasone on neutrophil apoptosis. Human neutrophils (5 x 106/ml) cultured
in Iscove's DMEM containing 10% autologous serum at 37 °C, and treated with the
indicated concentrations of RU24782, RU24858 or dexamethasone. After 20 h, cells
were incubated with FITC-labelled recombinant human Annexin V to determine

phosphatidylserine expression. All values represent mean ± S.E. of n = 4-5
experiments, each performed in duplicate where significant difference from control
is represented by ***P<0.001, **P<0.01 and *P<0.05.
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neutrophil apoptosis whereas the transrepressing compounds ZK77945 and ZK55740
are ineffective (Figure 4.7.IB & Figure 4.7.IB). The ability of high concentrations of
ZK transactivating compounds to delay neutrophil apoptosis, could be argued to be
due to a residual albeit impaired ability to transrepress, which is more noticeable at

these concentrations. However as dexamethasone is more efficient at delaying

neutrophil apoptosis compared to either set of dissociated glucocorticoids and is
known to retain the ability to both transactivate and transrepress, it is possible that
both transactivation and transrepression to some degree are involved in

glucocorticoid regulation of neutrophil apoptosis.

SUMMARY

• ZK55740 and ZK77945 significantly delay neutrophil apoptosis.
• ZK55740 will delay neutrophil apoptosis only at high concentrations (1-10 pM)

whereas ZK77945 is slightly more effective delaying neutrophil apoptosis
between (0.1-10 pM).

• ZK55740 and ZK77945 are less efficient at inhibiting neutrophil apoptosis

compared to dexamethasone
• RU24858 and RU24782 significantly delay neutrophil apoptosis (0.01-10 pM)
• RU24858 and RU24782 are less efficient at inhibiting neutrophil apoptosis

compared to dexamethasone
• RU transrepressing compounds appear more efficient at delaying neutrophil

apoptosis compared to transactivating ZK compounds
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4.7.2 EFFECT OF DISSOCIATED GLUCOCORTICOIDS ON EOSINOPHIL

APOPTOSIS

To assess the involvement of transactivation by glucocorticoids in the induction of

eosinophil apoptosis, eosinophils were cultured in serum supplemented Iscove's
DMEM in the presence of dexamethasone (1 pM), ZK77945 (1 pM) or ZK55740 (1

pM). After 40 h apoptosis was assessed by Annexin V binding. We found that
ZK77945 could significantly induce eosinophil apoptosis albeit less effectively than
dexamethasone. ZK57740 was unable to induce eosinophil apoptosis.

To assess the requirement of transrepression in glucocorticoid induction of

eosinophil apoptosis, cells were cultured for 40 h in the presence of RU24858 (1

pM), RU24782 (1 pM) or dexamethasone (1 pM) before assessment of apoptosis.
We found that RU24858 could significantly induce eosinophil apoptosis unlike

RU24782, which had little effect. Again dexamethasone was more efficient at

inducing eosinophil cell death than either RU compounds.

Our results suggest that dissociated glucocorticoids, defective in either their ability to
transactivate or transrepress transcriptional activity, are less efficient at inducing

eosinophil apoptosis compared to dexamethasone, which is capable of performing
both these functions. As we have used reasonably high concentrations of dissociated
steroids in these experiments (1 pM) and a full concentration response curve has not

yet been performed, it is difficult to conclude if either transactivation or

transrepression are absolutely necessary for glucocorticoid mediated induction of

apoptosis. At these concentrations, any residual ability to either transrepress in the
case of the ZK transactivating compounds or the ability to transactivate in the RU

transrepressing compounds, may have important effects. It would be useful to

perform a full concentration response curve to further elucidate the mechanisms of

glucocorticoid mediated transcriptional regulation during induction of eosinophil

apoptosis.
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Figure 4.7.2A Effect of ZK transactivating compounds compared to dexamethasone
on eosinophil apoptosis. Human neutrophils (2.5 x 106/ml) cultured in Iscove's DMEM
containing 10% autologous serum at 37°C, and treated with ZK57740, ZK77945 or
dexamethasone (lpM). After 40 h, cells were incubated with FITC-labelled recombinant
human Annexin V to determine phosphatidylserine expression. All values represent mean
± S.E. of n = 4 experiments, each performed in duplicate where significant difference
from control values is represented by ***P<0.001 and * P<0.05
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Figure 4.7.2B Effect of RU transrepressing compounds compared to dexamethasone
on eosinophil apoptosis. Human neutrophils (2.5 x 106/ml) cultured in Iscove's DMEM
containing 10% autologous serum at 37 °C, and treated with RU 24858, RU24782 or
dexamethasone (lp.M). After 40 h, cells were incubated with FITC-labelled recombinant
human Annexin V to determine phosphatidylserine expression. All values represent mean
± S.E. of n = 4 experiments, each performed in duplicate where significant difference
from control values is represented by ***P<0.001 and *P<0.05.
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SUMMARY

• ZK77945 significantly induces eosinophil apoptosis however ZK55740 was

found to be ineffective.

• Dexamethasone was more efficient at inducing eosinophil apoptosis compared to
ZK77945

• RU24858 significantly induces eosinophil apoptosis however RU24782 was

found to be ineffective

• Dexamethasone was more efficient at inducing eosinophil apoptosis compared to

RU24858.
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4.8 ROLE OF HISTONE DEACETYLATION IN

GLUCOCORTICOID REGULATION OF GRANULOCYTE

APOPTOSIS

We have attempted to explore the potential mechanisms used by glucocorticoids to

govern transcriptional regulation in granulocytes and ascertain the importance of
these mechanisms in glucocorticoid mediated control of granulocyte apoptosis. A
further aspect of glucocorticoid transcriptional control is related to the recently

suggested ability of glucocorticoids to affect chromatin structure.

During activation of transcription, access of transcription factors to DNA is thought
to be increased by the unwinding ofDNA wrapped around histone proteins following
the acetylation of histone residues. During transcriptional repression, deacetylation of
histones is thought to occur resulting in tighter coiling and reduced access of

transcription factors to their binding sites. It has been recently proposed that

glucocorticoids in association with co-repressors and proteins with intrinsic histone

deacetylation activity may cause deacetylation of histone leading to gene repression

(Wolffe, 1997). There is no evidence as yet that glucocorticoid-mediated regulation
of apoptosis involves changes in chromatin structure.

To investigate if glucocorticoid regulation of granulocyte apoptosis involves
chromatin remodelling, we made use of a pharmacological inhibitor called
trichostatin A, a potent histone deacetylation inhibitor (Yoshida et ai, 1990).

Neutrophils (5 x 106/ml) and eosinophils (2.5 x 106/ml) were cultured in serum

supplemented Iscove's DMEM in the presence of dexamethasone (1 pM) with or

without the indicated concentrations of trichostatin A (TSA) for 20h and 40h

respectively. Apoptosis was then assessed by measurement of phosphatidylserine

exposure by Annexin V binding and morphological examination. We found that
blockade of histone deacetylation did not significantly reverse dexamethasone
mediated delay of neutrophil apoptosis. Trichostatin A has been reported to block
histone deacetylation at low concentrations (Ki 3.4 nM) (Yoshida et al., 1990)
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however we found that equivalent concentrations and above did not appear to

modulate dexamethasone inhibition ofneutrophil apoptosis.

In further studies we observed that concentrations of TSA greater than or equal to 0.1

pM, cause induction of constitutive eosinophil apoptosis. Although this was not

statistically significant due to donor variation, it is possible that acetylation of
histones may be important in regulating the progress of constitutive eosinophil cell
death. Importantly, it appears that dexamethasone mediated induction of eosinophil

apoptosis does not require histone deacetylation activity. At concentrations of TSA
which do not modulate basal eosinophil apoptosis, there was no reversal of
dexamethasone mediated acceleration of eosinophil apoptosis. Furthermore, at higher
concentrations ofTSA which do cause induction of constitutive eosinophil apoptosis,
there was no amplification of dexamethasone mediated modulation of apoptosis. It
would be interesting to measure histone acetylation directly to investigate if
dexamethasone induced hyperacetylation is involved in the ability of glucocorticoids
to induce eosinophil apoptosis. From these experiments it is difficult to draw
conclusions and it would be necessary to perform a titration of dexamethasone

against TSA to establish if they are acting through a similar mechanism.

SUMMARY

• TSA does not reverse dexamethasone mediated delay ofneutrophil apoptosis
• Constitutive eosinophil apoptosis appears to be accelerated by TSA > 0.1 (iM

while constitutive neutrophil apoptosis is unaffected.
• TSA does not modulate dexamethasone mediated induction of eosinophil

apoptosis
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Figure 4.8.1 Effect of trichostatin A on dexamethasone mediated delay of
neutrophil apoptosis. Human neutrophils (5 x 106/ml) cultured in Iscove's
DMEM containing 10% autologous serum at 37 °C, and treated with the indicated
concentrations of trichostatin A (TSA) (pM) or without dexamethasone (1 pM).
After 20 h, cells were harvested and assessed for apoptosis by Annexin V binding.
All values represent mean ± S.E. of n = 4-6 experiments, each performed in
duplicate where significant difference from control is represented by *P<0.001.
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Figure 4.8.2 Effect of trichostatin A on dexamethasone mediated induction of
eosinophil apoptosis. Human eosinophils (2.5 x 106/ml) cultured in Iscove's DMEM
containing 10% autologous serum at 37 °C, and treated with the indicated concentrations
of trichostatin A (TSA) (|xM) or without dexamethasone (1 (xM). After 40 h, cells were
harvested and assessed for apoptosis by Annexin V binding. All values represent mean ±
S.E. of n = 3-4 experiments, each performed in duplicate where significant difference
from control is represented by *P<0.01.
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4 DISCUSSION

The studies herein have sought to elucidate the mechanisms by which

glucocorticoids regulate granulocyte apoptosis. Neutrophils and eosinophils are

closely related myeloid cells, which arise from a common precursor in the bone
marrow. Granulocyte apoptosis can be modulated by a variety of inflammatory
mediators and cytokines, which commonly elicit similar effects in both eosinophils
and neutrophils. However, it has long been observed that glucocorticoids cause a

rapid and dramatic reduction in eosinophil numbers in vivo yet neutrophil numbers in

contrast, are often elevated following glucocorticoid treatment (Schleimer, 1990).
We propose that the direct influence of glucocorticoids to differentially modulate

granulocyte apoptosis, may be a major factor in the production of this effect.

We have confirmed previous reports that glucocorticoids exert diametrically opposed
effects upon the rate of apoptosis in neutrophilic and eosinophilic granulocytes in

vitro; promoting eosinophil apoptosis while inhibiting neutrophil cell death (Kato et

al., 1995; Cox, 1995; Liles et al., 1995; Meagher et al., 1996). It has been widely
assumed that neutrophils are unresponsive to the effects of glucocorticoids

(Schleimer et al., 1989). Indeed many groups have ignored any possible influence of

glucocorticoids on neutrophil behaviour due to reports that functions such as

secretion, degranulation and chemotaxis, fail to be suppressed by glucocorticoid
treatment (Schleimer et al., 1989). Our results demonstrate that neutrophil longevity
is remarkably sensitive to the survival influence of glucocorticoids, with neutrophil

apoptosis capable of being delayed by low concentrations of glucocorticoids.

Importantly, it appears neutrophils are more sensitive to apoptotic influence of

glucocorticoids than eosinophils, with induction of cell death in eosinophils requiring

higher concentrations of glucocorticoids compared to those needed to delay

neutrophil death. These findings suggest that glucocorticoid regulation of neutrophil
behaviour should not be overlooked. The relative inability of glucocorticoids to

resolve neutrophilic inflammation has been proposed to relate to the

'unresponsiveness' of neutrophils to glucocorticoid treatment. However, we would

suggest that the influence of glucocorticoids in enhancing neutrophil survival plays

188



REGULATION OF GRANULOCYTE APOPTOSIS BY GLUCOCORTICOIDS AND CYCLIC AMP

an important part in prolonging neutrophilic inflammation. Moreover, differences in
the concentrations of glucocorticoid required to modulate apoptosis in neutrophils

compared to eosinophils further emphasise the distinct regulatory mechanisms by
which these cells respond to apoptotic modulating stimuli.

The glucocorticoid signal transduction cascade and the molecular mechanisms by
which glucocorticoids regulate transcriptional activity have been well characterised.

However, divergent responses of various cell types to glucocorticoid treatment, not

only in terms of their ability to differentially modulate apoptosis, but through their
differential actions on secretion and adhesion, make it highly unlikely that a

universal mechanism of glucocorticoid action exists. Little is known of the

underlying signalling mechanisms that allow glucocorticoids to exert divergent
actions on various cell types. Indeed many of the molecules characterised in

glucocorticoid signal transduction studies have yet to be implicated in various

glucocorticoid effector functions and pertinent to this study, in glucocorticoid

regulation of granulocyte cell death.

Glucocorticoids exert their effects by diffusing passively through the cell membrane
where they bind to cytoplasmic glucocorticoid receptors (GRs). Glucocorticoid

receptors are associated with specific molecular chaperones and other proteins,
which prevent them from translocating to the nucleus in the absence of ligand (Pratt
et al., 1989; Morishima et al., 2000b). Of the number of molecular chaperones and

proteins involved in preventing nuclear localisation of unoccupied GR, hsp90

appears to play a major role. By making use of the hsp90 binding benzoquinoid

ansamycin, geldanamycin (GA), we have been able to demonstrate that functional

hsp90 is required for both glucocorticoid-mediated delay of neutrophil apoptosis and

glucocorticoid induction of eosinophil death. Interestingly, geldanamycin appears to

induce constitutive eosinophil apoptosis. Although this was not statistically

significant, the data perhaps imply a role for hsp90 in regulating basal eosinophil

apoptosis.
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Insight into the processes involved in heat shock protein assembly of stable

cytoplasmic GR heterocomplexes receptive to ligand binding, has recently been

gained through elegant studies by Rajapandi et al and Morishima et al. It appears

hsp70 and hsp90 are required sequentially to activate hormone binding to

glucocorticoid receptor with co-chaperones Hop hsp40 and p23 enhancing

heterocomplex formation and assembly (Rajapandi et al., 2000; Morishima et al.,

2000b). Hsps may also perform a similar role in the nucleus, assembling recycled

receptors into hormone binding competent heterotrimeric complexes (Liu and

DeFranco, 1999). It would be interesting to investigate if similar molecules, in
addition to hsp90, are involved in formation of conformationally mature

glucocorticoid receptors in granulocytes.

The requirement of hsp90 activity in both glucocorticoid induction of eosinophil

apoptosis and delay of neutrophil death is presumably to allow formation of

competent steroid binding glucocorticoid receptors, allowing glucocorticoid signal
transduction to follow. However, it has recently come to light that in addition to

binding GR, Hsp90 forms complexes with various kinases and transcription factors,

assisting their transport within the cell and/or stabilising their conformation required
for functional maturity (Pratt, 1998; Mayer and Bukau, 1999). Thus chaperones such
as hsp90 may be key regulators of signal transduction cascades through selective

transport or segregation of signalling components. Indeed a recent study has reported
the direct association of hsp90 with components of the apoptotic signalling pathway.

Hsp90 has been shown to bind Apaf-1, preventing the participation of Apaf-1 in

forming an active complex with caspase-9, thus inhibiting downstream caspase

activation, delaying apoptosis (Pandey et al., 2000). It would be interesting to

investigate if glucocorticoid delay of neutrophil apoptosis involves targeted binding
of hsp90 to Apaf-1, preventing apoptosome formation and thus inhibiting apoptosis.

However, if such a mechanism were also to be implicated in glucocorticoid induction
of eosinophil apoptosis, dexamethasone mediated abrogation of hsp90 binding to

Apaf-1 would be required to induce cell death.
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To elucidate further the mechanisms controlling glucocorticoid modulation of

granulocyte apoptosis, we sought to determine GR expression in granulocytes and
the glucocorticoid signal transduction cascade activated following ligand binding.

Although it has been presumed that glucocorticoid modulation of granulocyte

apoptosis requires competent ligand binding receptors, this has not been shown
•3

directly. Binding studies using H-labelled agonists have indicated that neutrophils
and eosinophils exhibit similar numbers of glucocorticoid receptors, with similar

affinity for glucocorticoid binding (Peterson et al., 1981). This suggests that
differences in receptor number and affinity cannot be responsible for the differential
effect of glucocorticoids on granulocyte apoptosis. We wished to investigate if

divergence in responsiveness to glucocorticoids among granulocyte types was

instead due to differential expression of glucocorticoid receptor isoforms. From

binding studies, granulocytes appear to express a single class of glucocorticoid

receptor however as GR(3 is not thought capable of binding glucocorticoid, the
influence of this isoform would not have been taken into account, in these studies

(Peterson et al., 1981; Bamberger et al., 1995). GR(3 is thought to influence

glucocorticoid signalling and transcription through formation of heterodimers with
steroid binding GRa (Oakley et al., 1999), which may reduce the transcriptional

activity of GRa by denying access to GREs (Oakley et al., 1996). By Western

blotting, we have shown GR is expressed in the cytoplasm of both neutrophils and

eosinophils. Successful immunoblotting required extensive optimisation of standard

protein extraction protocols suggesting GR may be particularly sensitive to

proteolytic degradation by granulocyte proteases such as elastase (Distelhorst et al.,

1987). Attempts to establish the isoforms of GR expressed in each cell type were

hampered due to non-specific binding of available GR(3 specific antibodies.

Curiously, we did not observe any translocation of GR to the nucleus following
treatment of granulocytes with dexamethasone.

A recent report has suggested that neutrophils contain high constitutive expression of

GRf3, which it is postulated, allows neutrophils to escape glucocorticoid induced cell
death (Strickland et al., 2001). Immunofluorescence studies by Strickland et al
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propose neutrophils contain higher levels of GRa and GRP in comparison to

PBMCs. Furthermore, IL-8 is demonstrated to synergise with dexamethasone to

decrease neutrophil apoptosis in vitro, a response associated with an increase in the

ratio ofGRP to GRa. The argument is further strengthened by transfection ofmouse

neutrophils with GR(3, resulting in a small reduction in the rate of apoptosis in

response to dexamethasone. In contrast to previous reports, it is suggested that GRP
is located mainly in the cytoplasm of cells. Curiously, there is no demonstration of

ligand dependent accumulation of GR in the nucleus upon dexamethasone treatment,

particularly regarding GRa isoform.

The hypothesis that in neutrophils an alternative mode of action of GR exists, which
allows neutrophils to reduce their rate of spontaneous apoptosis in response to

glucocorticoid, is an attractive one. Strickland et al., argue that glucocorticoid
induction of apoptosis proceeds through GRa homodimer transcription via GRE

mediated transactivation. In neutrophils, an increase in the ratio of GR(3 to GRa in

neutrophils, favours the formation of responsive heterodimers, preventing normal
GRa homodimer GRE mediated transcription, thereby delaying apoptosis. In

contrast PBMCs, shown to have a higher ratio of GRa to GR(3, favouring GRa

homodimer formation, are sensitive to apoptosis induction by dexamethasone. It
would be extremely useful to examine the ratio of GR isoform expression in

neutrophils compared to eosinophils, to test if acceleration of apoptosis by

glucocorticoids in this cell type is due to a higher ratio of GRa to GR(3. It is further

proposed by Strickland et al that IL-8 enhances neutrophil survival by increasing

GRP expression, however it is not revealed whether GR isoform expression in
PBMC is also affected by IL-8 treatment. This control would be useful to rule out the

possibility that IL-8 non-specifically upregulates GRP expression in many cell types

and would help establish if increased GRP in neutrophils by IL-8, is specifically

responsible for mediating enhanced neutrophil survival in the presence of

glucocorticoids.
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Our own studies of GR expression in granulocytes and those by Strickland et al do
not directly demonstrate the necessity for GR activation as an essential requirement
for glucocorticoid modulation of apoptosis. Although there may be limitations in the

techniques we have used, we could not detect translocation of the glucocorticoid

receptor from the cytoplasm to the nucleus following glucocorticoid treatment.

Further, Strickland et al., do not reveal in their immunofluorescence studies if GR

activation occurs in response to dexamethasone in neutrophils. To address this issue,
we elected for an alternative approach, making use of the glucocorticoid receptor

antagonist RU 486. While we found that 10 (iM RU 486 partially abrogated
dexamethasone mediated modulation of both neutrophil and eosinophil apoptosis,
lower concentrations of this compound had no effect, even when in significant
excess. This may suggest that the antagonist binds to granulocytes with low affinity

compared to the agonist or that glucocorticoid modulation of granulocyte apoptosis

may not occur through the classical glucocorticoid signal transduction pathway.

However, as RU 486 is unable to bind and therefore antagonise GRfl, glucocorticoid
modulation of granulocyte apoptosis may still proceed through GR(3. It will be

interesting if future studies ascertain if indeed differential GR isoform expression
relates to diverging responses to the apoptotic influences of glucocorticoids in these
cells.

Glucocorticoid signal transduction, regardless of being mediated via classical GRa

homodimers or formation of antagonistic GRa/GRp heterodimers, is thought to

ultimately lead to regulation of transcription of target genes in responsive cells. We

found that dexamethasone induced suppression of neutrophil cell death was

abrogated upon co-treatment with cycloheximide, confirming gene transcription to

be essential for glucocorticoid inhibition of neutrophil apoptosis. One could

hypothesise that glucocorticoids therefore delay neutrophil apoptosis through
enhanced production of a survival protein(s) or by switching off production of a

putative death factor(s) in these cells. If the latter were true, one would expect that
treatment of neutrophils with protein synthesis inhibitors would delay constitutive

neutrophil apoptosis. However this has been shown not to be the case and in contrast,
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protein synthesis inhibitors rapidly accelerate apoptosis in granulocytes (Whyte et

al., 1997; Cox and Austin, 1997). This suggests granulocyte cell death may normally
held in check by the constant production of inhibitor protein(s). It is possible that

glucocorticoids could influence granulocyte apoptosis through differential regulation
of possible inhibitor protein(s) however dissection of the mechanisms involved using
inhibitors of transcription and translation are inherently problematic due to fact that

synthesis of as yet unidentified proteins, appear intrinsically important in regulating
constitutive apoptosis. Thus it is difficult to separate the influence of these

compounds on glucocorticoid regulation from their additional effects on constitutive
cell death. This is particularly pertinent to examination of transcriptional mechanisms
involved in glucocorticoid induction of eosinophil apoptosis, as inhibitors of protein

synthesis even when titrated to low levels, rapidly accelerate apoptosis in these cells

(data not shown).

To examine more specifically the molecular basis of glucocorticoid modulation of

granulocyte apoptosis, we investigated whether glucocorticoids regulate transcription
via direct GRE mediated transactivation or indirect transrepression in these cells.
Further we sought to determine if either of these mechanisms was involved in

glucocorticoid regulation of apoptosis. Commonly, GRE mediated transcriptional
transactivation is measured by the ability of glucocorticoids to enhance the activity
of a glucocorticoid responsive luciferase reporter construct, transfected into cells of
interest e.g. the GR responsive mouse mammary tumour virus (MMTV) reporter

gene. However experimental transfection protocols of this nature cannot be

performed in granulocytes due to the limited lifespan of these cells. For this reason,

measurement of glucocorticoid transactivation was investigated by examining the
effects of glucocorticoids on endogenous proteins whose expression and synthesis
can be modulated through GRE mediated transactivation. One such protein appears

to be the antiprotease, secretory leukocyte proteinase inhibitor (SLPI), a potent

inhibitor of elastase, shown to be present in a variety of cells including human

neutrophils (Abbinante-Nissen et al., 1995; Sallenave et al., 1997).
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We found that treatment of both neutrophils and eosinophils with dexamethasone
does not result in any detectable upregulation of SLPI. Moreover, in neutrophils,
SLPI expression may in fact be downregulated in response to glucocorticoids in

neutrophils, although this was not always reproducible. These preliminary results

question whether glucocorticoids exert their influence on granulocyte apoptosis

through GRE-mediated transactivation of steroid responsive genes. It must be noted
however that measurement of SLPI production by Western blotting may not be

optimal for detection of quantitative changes in expression of this protein.

Development of an ELISA based detection procedure may help more accurately
determine and quantitate changes in expression of SLPI. In addition it may have been
more pertinent to examine glucocorticoid transcriptional transactivation by looking at

glucocorticoid induced changes in levels of gene expression rather than changes in

protein expression. Analysis of glucocorticoid induced alterations in a variety of

genes using techniques such as real-time PCR or microarray technology may have
been more useful in determining whether glucocorticoids modulate granulocyte

apoptosis via transcriptional transactivation or repression.

The discovery that many genes down-regulated by glucocorticoids do not contain

appropriate GRE sequences or any other GR binding sites, suggested that

glucocorticoids may mediate effects on transcription, independent of direct GR DNA

binding. Indeed, it has been proposed that many of the anti-inflammatory effects of

glucocorticoids involve indirect modulation of gene expression by transcriptional

transrepression instead of transactivation of steroid responsive genes. One of the
main transcription factors thought to be targeted by GR is NFkB (Scheinman et al.,

1995b; Scheinman et al., 1995a). It has been proposed that the anti-inflammatory

potential of glucocorticoids resides in their ability to interfere with the activity of this

important transcription factor (Caldenhoven et al., 1995). Our studies have shown
that glucocorticoids suppressed LPS induced IL-8 secretion in neutrophils in a

concentration dependent manner. In contrast, not all concentrations of

dexamethasone, shown to modulate eosinophil apoptosis, could down-regulate LPS
stimulated IL-8 production in eosinophils. Together these results suggest
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glucocorticoid suppression of NFkB activation may be involved in glucocorticoid
inhibition of neutrophil apoptosis but may not be essential to glucocorticoid
modulation of eosinophil cell death. However, these results should be interpreted
with caution due to donor variability in these experiments. Although we have
demonstrated glucocorticoids down-regulate the synthesis of an NFkB regulated

protein in granulocytes, it does not necessarily follow that glucocorticoids exert their

apoptotic influence via this mechanism. Indeed, if glucocorticoids do regulate

granulocyte apoptosis via transcriptional transrepression, many other transcription
factors in addition to NFkB could potentially be involved.

To directly assess the necessity of glucocorticoid transactivation or transrepression of

gene transcription for glucocorticoid regulation of granulocyte apoptosis, we made
use of a novel set of synthetic glucocorticoids, which have been published to

discriminate between transactivation and transrepression (Vayssiere et al., 1997;
Heck et al., 1997). Compared to dexamethasone, transactivating compounds
ZK77945 and ZK55740 and transrepressing compounds RU24858 and RU24782
were less effective at modulating granulocyte apoptosis. In neutrophils,

transrepressing compounds delayed apoptosis at concentrations similar to

dexamethasone whereas higher concentrations of the transactivating compounds,
were required to delay neutrophil cell death. In eosinophils, transactivating ZK77945
and transrepressing RU24858 could induce eosinophil death, but again neither

compound was effective at accelerating eosinophil apoptosis as dexamethasone.

Thus, dissociated glucocorticoids, in which either transrepressing or transactivating

ability is deficient, are able to modulate granulocyte apoptosis, though not to as an

extent as the classical glucocorticoid, dexamethasone. It has previously been shown
that both transactivating and transrepressing capabilities are fully intact in responses

mediated by dexamethasone. It would be interesting to test whether combinations of
the two types of dissociated steroids could restore the ability of these glucocorticoids
to modulate granulocyte apoptosis to levels comparable with dexamethasone.
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Interpretation of the results from these experiments must be viewed with a degree of
caution. Firstly, it is likely that dissociated glucocorticoids such as the

transrepressing compounds RU24858 and RU24782, retain some ability to

transactivate. The converse may be true of the transactivating compounds ZK7745
and ZK55740. This may confuse and obscure the responses elicited by

transrepression or transactivation alone and must be taken into consideration when

viewing these results. Secondly, although these compounds have been demonstrated
to discriminate between transactivation and transrepression, we have yet to

demonstrate separation of these activities in our system. The necessity of such

experiments is illustrated in recent findings by Vanden Berghe et al who report

RU24782 displays similar transactivating ability as dexamethasone, measured by
GRE dependent reporter gene expression, in mouse fibroblast cells (Vanden Berghe
et al., 1999). This is in contrast to the original studies in which RU24782 exerted

strong AP-1 inhibition, but only weakly activated the GRE based reporter gene

(Heck et al., 1997). This illustrates that there may be divergent potencies of
dissociated steroids in stimulating GRE dependent transactivation in different cell

types. Using these reagents to draw conclusions regarding the mechanism of

glucocorticoid transcriptional regulation, requires experiments to test their ability to

stimulate GRE mediated transcription in granulocytes and further investigate their

capacity to interfere with gene activation driven by a variety of transcription factors
such as NFkB and AP-1. Experiments of this kind would elucidate ifmechanisms of

glucocorticoid transcriptional regulation, examined mainly through overexpression
studies in other cell types, were applicable to the mechanisms of glucocorticoid

regulation in primary cells such as granulocytes.

In summary, limitations of the prototypic dissociated glucocorticoids as tools to

dissect glucocorticoid regulation of transcription must be taken into consideration
when elucidating the mechanism of glucocorticoid regulation of granulocyte

apoptosis. The development of these compounds as novel glucocorticoids with

improved therapeutic benefit is perhaps questionable. Recent findings by Belvisi et
al have suggested transrepressing glucocorticoids exhibit comparable anti¬

inflammatory activity to classical glucocorticoids such as budesonide, however they
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were also found to have equally potent systemic effects (Belvisi et al., 2001). This

suggests that in vitro separation of transrepression from transactivation may not be
reflected in whole animal physiological studies or that side effects of glucocorticoids,

previously attributed to transactivation only, may also be a consequence of

transrepression.

Finally, we have examined whether glucocorticoid regulation of granulocyte

apoptosis involves changes in gene transcription, through chromatin remodelling. It
is thought that actively transcribed genes are associated with acetylation of specific

lysine residues on histone proteins, resulting in unwinding of DNA, allowing
increased accessibility of transcription factors to nearby promoter sequences. Thus
histone acetylation is thought to be correlate with increased transcription (Beato et

al., 1996; Wolffe, 1997) in contrast to histone deacetylation, which has been
correlated with transcriptional repression and gene silencing (Wolffe, 1997; Ura et

al., 1997). GR has been shown to form part of the basal transcriptional machinery

through interaction with large co-activator molecules such as CBP (Sheppard et al.,

1998). Hormone activated GR may bind to CBP and/or associated molecules,

enhancing local histone acetyltransferase activity and increasing gene transcription.

Alternatively, GR may reduce gene transcription via deacetylation of histones,

causing a tightening of the chromatin structure, reducing the access of transcription
factors such as NFkB to their DNA binding sites, thereby transrepressing

proinflammatory gene expression. It is possible that firstly, competition between GR
and other transcription factors for binding to CBP, could reduce the availability of
the CBP associated HAT activity required for transcriptional activation by these

transcription factors (Kamei et al., 1996). Alternatively, GR may recruit proteins
with histone deacetyltransferase activity to repress histone acetylation, again

resulting in transcriptional repression (Ito et al., 2000). Indeed recruitment of
HDAC2 by GR has been reported to be essential for maximal transrepression of
NFkB stimulated HAT activity by glucocorticoids and may be vitally important for

glucocorticoid exertion of their anti-inflammatory effects (Ito et al., 2000; Ito et al.,

2001).
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Our studies suggest changes in acetylation of histone proteins may be important for

regulation of constitutive granulocyte apoptosis. TSA, a potent histone deacetylation

inhibitor, at high concentrations could induce eosinophil apoptosis yet could not

reverse or enhance glucocorticoid acceleration of apoptosis in these cells. It is

possible that histone hyperacetylation and therefore activation of transcription, may
be important for induction of eosinophil apoptosis. Indeed, it has been shown in
A549 cells, that dexamethasone alone can induce histone acetylation in a

concentration dependent manner (Ito et al., 2001). Curiously, in these same studies,
low concentrations of dexamethasone repress IL-lp p65-associated histone

acetylation which, it is proposed, is due to recruitment of HDAC2 to the p65-HAT

complex. Indeed, in the presence of IL-lp, dexamethasone is shown to induce

HDAC expression (Ito et al., 2001). It was argued that glucocorticoid transrepression
of proinflammatory transcription factors, involves recruitment of proteins with
histone deacetyltransferase activity. In eosinophils, we found that low concentrations

of dexamethasone could effectively transrepress NFkB regulated IL-8 expression,

yet high concentrations, which modulate eosinophil apoptosis, had no effect. It is

possible that in eosinophils, dexamethasone may repress NFkB at low concentrations

through HDAC expression but more importantly, at high concentrations which are

required to modulate eosinophil apoptosis, dexamethasone may itself induces histone

acetylation and therefore can no longer inhibit NFkB stimulated histone acetylation.
Measurement of histone acetylation directly would help ascertain the extent of the

involvement, if any, of chromatin remodelling in glucocorticoid control of eosinophil
death.

In neutrophils, dexamethasone delays neutrophil apoptosis over a wide concentration

range, which are also able to repress NFkB stimulated IL-8 secretion. However, as

TSA does not reverse dexamethasone-mediated delay of neutrophil apoptosis,
histone deacetylation and therefore transrepression may not be essential for

glucocorticoid modulation of neutrophil cell death. It is important to note however,
that high concentrations of dexamethasone (l|iM) were used in these experiments
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and a full titration of dexamethasone against TSA would be required to rule out the

possibility of glucocorticoid associated HDAC activity in the mechanism by which

glucocorticoids delay neutrophil apoptosis.

In summary, it is unclear at present if glucocorticoid regulation of granulocyte

apoptosis requires glucocorticoid stimulated changes in histone

acetylation/deacetylation. Experiments measuring histone acetylation and

deacetylation in granulocytes in response to glucocorticoid treatment, will be

necessary to provide direct evidence of the existence of such mechanism of

glucocorticoid action in these cells. Furthermore, additional investigations would be

required to elucidate if changes in histone acetylation correlate with transactivation
and histone deacetylation with repression, before implicating either mechanism in

glucocorticoid regulation of granulocyte apoptosis. There is some evidence to

suggest that hyperacetylation of histones may suppress or be ineffectual in

stimulating gene transcription at some promoters (Van Lint et al., 1996; Mizuguchi
et al., 2001). Moreover, recent findings by Sheldon et al, investigating glucocorticoid

regulation of the mouse mammary tumor virus (MMTV) promoter, demonstrate high
levels of acetylation when the promoter is inactive, which decreases during hormone
activation through histone deacetylation (Sheldon et al., 2001). Therefore it is likely
that regulation of gene transcription through changes in histone acetylation may vary

between different genes.

Finally, there may be novel mechansims of transcriptional regulation by

glucocorticoids, which may be important for the ability of these compounds to

modulate granulocyte apoptosis. For example Wallace et al., have recently suggested
that transcriptional activation by glucocorticoids may be regulated by proteasome

mediated degradation of GR, which may provide a mechanism to terminate

glucocorticoid responses (Wallace and Cidlowski., 2001). Whether the ubquitin-

proteasome pathway or other novel regulatory mechanisms are involved in

glucocorticoid regulation of granulocyte apoptosis is yet to be assessed.
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In conclusion, there may be several mechanisms by which glucocorticoids regulate

transcriptional activation and future studies should help unravel which of these

processes are key in eliciting the potent anti-inflammatory effects of these

compounds. At present, little is known of the mechanisms of transcriptional

regulation involved in glucocorticoid-mediated control of apoptosis and how

glucocorticoids differentially regulate transcriptional activation to exert diverging

responses on apoptosis in different cell types. A greater understanding of the

signalling mechanisms, by which glucocorticoids differentially regulate granulocyte

apoptosis, could potentially lead to the development of novel glucocorticoids with a

greater selectivity of action. This could only be achieved through further
characterisation of glucocorticoid transcriptional regulation in granulocytes and

investigations into how glucocorticoids control of components of the apoptotic signal
transduction cascade, to differentially modulate the rate of cell death in these cells.
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5 CONCLUSIONS

Apoptosis, concomitant with efficient recognition and clearance by phagocytes, has
been proposed as a major mechanism involved in the removal of excess or effete

granulocytes from an inflammatory focus. Although granulocytes appear to be 'pre¬

programmed' or committed to death via apoptosis, it is clear that the life span and
functional longevity of these cells can be modulated significantly by a number of

inflammatory mediators and cytokines. As a consequence, there is the potential to

regulate granulocyte longevity by altering the balance between pro- and anti-

apoptotic stimuli at the inflammatory site. The therapeutic induction of apoptosis as

an anti-inflammatory strategy may be successful if developed in parallel with

upregulation of mechanisms that drive efficient clearance of apoptotic cells.

Although closely related in ontogeny, there are major differences in the apoptotic
control mechanisms of neutrophils and eosinophils, which may additionally provide
the opportunity to induce apoptosis selectively in these inflammatory cells.

The work presented in this thesis has sought to further define the signalling
mechanisms by which glucocorticoids and cyclic AMP regulate granulocyte

apoptosis. We have observed that elevation of cyclic AMP profoundly delays
constitutive neutrophil apoptosis and are the first to demonstrate that cyclic AMP

delays apoptosis through initiation of a novel signal transduction mechanism, which

contrary to expectations is independent of PKA activation. Further, we have shown
that cyclic AMP exerts control of signalling components which may be key to

initiation and execution of apoptosis in these cells. We are the first to report that

dissipation of mitochondrial transmembrane potential occurs during constitutive

neutrophil apoptosis. Furthermore, protection from apoptosis, afforded by cyclic

AMP, appears to be upstream of the changes in mitochondrial transmembrane

potential. Mitochondria play an integral role in apoptotic signal transduction and
activation of apoptosis in response to internal insults or extracellular cues is thought
to converge on the mitochondria, leading to commitment to death. It has yet to be
demonstrated whether mitochondria perform a similar regulatory role to control

granulocyte apoptosis and furthermore whether early dissipation of mitochondrial
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transmembrane potential is indicative of granulocyte irreversible commitment to cell
death. We have also demonstrated that cyclic AMP delays neutrophil apoptosis

upstream of activation of executioner caspases. The mechanisms by which this
second messenger exerts influence over the apoptotic signal transduction machinery,
to delay granulocyte apoptosis, have still to be fully defined.

To our surprise, cyclic AMP acts independently of PKA activation to delay
constitutive neutrophil apoptosis. Furthermore, PI-3 kinase and MAP kinase
activation do not appear to be required for the survival effects of cyclic AMP. Our
work suggests that cyclic AMP delays neutrophil cell death via initiation of a rapid,
reversible and transcriptionally independent signalling pathway. We have
demonstrated that proteasome activity in the neutrophil is vitally involved in the

powerful ability of cyclic AMP to delay constitutive neutrophil apoptosis and

together our data suggests cyclic AMP may induce post-translational modifications
of a previously uncharacterised protein(s), to promote survival. Alteration of the
balance between pro- and anti-apoptotic proteins may be a key mechanism by which

cyclic AMP modulates neutrophil death. We have also shown that cyclic AMP

inhibits acceleration of neutrophil apoptosis induced by a variety of death receptor

stimuli. Intriguingly however, powerful death stimuli may eventually overwhelm the

capacity of cyclic AMP to inhibit neutrophil apoptosis. Future identification of novel

targets of cyclic AMP regulation and elucidation of the point at which cyclic AMP
can no longer rescue cells from irreversible commitment to death, may lead to a

better understanding of the signalling mechanism by which this second messenger

modulates granulocyte cell death.

The work in this thesis has also given novel insight into the signal transduction

pathways by which glucocorticoids modulate granulocyte apoptosis. Glucocorticoids
exert differential effects on granulocyte apoptosis; causing induction of apoptosis in

eosinophils while delaying neutrophil cell death. In contrast to previous reports, we

have demonstrated that neutrophils are not unresponsive to the effects of

glucocorticoids. Indeed, we have shown that neutrophil longevity is remarkably
sensitive to the inhibitory influence of glucocorticoids which may have important

203



REGULATION OF GRANULOCYTE APOPTOSIS BY GLUCOCORTICOIDS AND CYCLIC AMP

implications for the use of glucocorticoids in treatment of chronic inflammatory
conditions associated with neutrophilic infiltration. Interestingly, it appears that

eosinophils are less responsive to the apoptotic influence of glucocorticoids and this
further emphasises the distinct signalling mechanisms by which glucocorticoids
modulate apoptotic regulation in these closely related cells. We are the first to report

the requirement for hsp90 in both glucocorticoid induction of eosinophil apoptosis
and delay of neutrophil death. The requirement of hsp90 as a molecular chaperone
for GR, to allow the formation of competent steroid binding receptors in

granulocytes, awaits future confirmation. We have attempted to further characterise
the glucocorticoid signal transduction pathway controlling apoptosis in granulocytes

by examining GR isoform expression and activation following glucocorticoid
treatment. Although we have shown GR to be present in both neutrophils and

eosinophils, problems in immunoblotting with isoform specific antibodies meant we

were not able to characterise if differential expression of GR isoforms in

granulocytes, relates to the divergent effect of glucocorticoids in modulating

apoptosis in these cells. It has been suggested that glucocorticoid delay of neutrophil

apoptosis may be as a result of preferential expression of GRP, allowing neutrophils
to escape from glucocorticoid induction of apoptosis. However, it has not yet been
demonstrated whether eosinophils, sensitive to induction of apoptosis by

glucocorticoids, exhibit, lower expression of GRP compared to neutrophils or indeed
whether acceleration of apoptosis by glucocorticoids in this cell type, requires
GRa homodimer transactivation. Future studies, using specific antibodies or

quantitative PCR, involving a direct comparison of GR isoform expression in

neutrophils compared to eosinophils, would help ascertain whether the outcome of

glucocorticoid treatment on granulocyte apoptosis specifically correlates to

differential expression of GR isoforms in these cells.

Studies were undertaken to dissect the complex transcriptional regulatory
mechanisms that may be involved in glucocorticoid modulation of granulocyte

apoptosis. We have demonstrated that glucocorticoids transrepress NFkB regulated
IL-8 production in granulocytes. Furthermore, glucocorticoids appear not to be
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capable of transcriptional transactivation, however due to the limitations in our

ability to measure GRE-mediated transactivation in granulocytes, these results
should be viewed with caution. Considering the implication ofNFkB as an important
survival factor in granulocytes, it is possible that in eosinophils, glucocorticoids
block the synthesis of a NFkB regulated survival protein by transrepression to induce

apoptosis. Obviously the same mechanism could not apply to neutrophils as

dexamethasone, although transrepressing NFkB regulated IL-8 production in

neutrophils, enhances cell survival. Through the use of dissociated glucocorticoids,
we have shown that transactivating and transrepressing glucocorticoids can both
induce eosinophil apoptosis and delay neutrophil cell death. Importantly however,
neither set of compounds appear as efficient as dexamethasone in modulating

granulocyte apoptosis. This suggests both transactivation and repression by

glucocorticoids to some extent, may be implicated in glucocorticoid regulation of

granulocyte apoptosis. Further research investigating the complex mechanisms of

transcriptional regulation by glucocorticoids, including the involvement of chromatin

remodelling, is required to fully elucidate the aspects of transcriptional regulation

important for glucocorticoid modulation of apoptosis. The development of more
selective reagents leading to a greater understanding of the glucocorticoid signal
transduction cascade in granulocytes, may help ascertain if differential

responsiveness to glucocorticoids in neutrophils and eosinophils, results from

divergence in transcriptional regulation by glucocorticoids, in each cell type.

There is accumulating evidence of the importance of apoptosis as a major means of

eliminating extravasated granulocytes from inflamed sites. It has been proposed that

persistent inflammatory responses may arise from failure or inefficiency in the

phagocytic clearance mechanisms to remove apoptotic cells, which as a consequence

undergo secondary necrosis, releasing toxic cell contents thus amplifying
inflammation. The majority of evidence supporting the hypothesis that granulocyte

apoptosis provides a mechansim for resolution of inflammation, has mainly come

from in vitro experimentation. In a recent report, Erjefalt et al. have questioned the in

vivo relevance of apoptosis as a tissue-injury limiting mechanism during
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phagocytic clearance mechanisms to remove apoptotic cells, which as a consequence

undergo secondary necrosis, releasing toxic cell contents thus amplifying
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vivo relevance of apoptosis as a tissue-injury limiting mechanism during
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inflammation, particularly with regard to the role of eosinophil apoptosis in

regulation and resolution of lung inflammation (Erjefalt and Persson, 2000; Uller et

al., 2001). Ejefalt et al suggest eosinophil apoptosis may occur as a secondary event

following eosinophil extrusion into the airway lumen from the lung tissue.

Furthermore, they argue that lack of evidence of apoptosis of airway tissue-residing

eosinophils, suggests that an alternative pathway of luminal extrusion may be
involved in clearance of eosinophils during lung inflammation. The difficulty in

obtaining biopsy and tissue samples, with particular regard to human studies, has
meant that it has been difficult to directly demonstrate apoptosis and subsequent
clearance of tissue dwelling granulocytes during the inflammatory response.

Furthermore, in vitro data suggests engulfment of apoptotic cells usually occurs

within minutes of contact, thus it may be difficult to visualise the extent of this

process occuring in tissue samples, due to the rapid kinetics of phagocytosis. Many
of the in vivo studies of apoptotic cell clearance during inflammation have numbers
of apoptotic cells obtained from BAL fluid or sputum samples. In a model of acute

lung injury, Cox et al. report the appearance of apoptotic neutrophils and

macrophage engulfment in BAL fluid to be temporally correlated with the resolution
of pulmonary inflammation (Cox et al., 1995). Wedi et al report that eosinophils
derived from patients with inhalent allergy and atopic dermatitis have a reduced rate

of apoptosis compared to nonatopic subjects (Wedi et al., 1997). As mentioned

previously, Woolley et al have demonstrated that glucocorticoid treatment of
asthmatic patients is associated with an increase in the number of apoptotic

eosinophils in the airways and eosinophil products inside macrophages (Woolley et

al., 1996). In addition, it has been demonstrated that administration of an anti-Fas

antibody to the lungs following allergen induced eosinophilia, caused a marked
reduction in the number of eosinophils in the airways (Tsuyuki et al., 1995).
Furthermore human airways inflammation has been shown to be associated with

ingestion of apoptotic neutrophils by macrophages through measurement of apoptotic
cells and macrophages in BAL fluid from neonates (Grigg et al., 1991). There are

also a small number of studies which present in vivo evidence that apoptosis in tissue

granulocytes may provide an important mechanism for limitation of the

inflammatory response. For example, Ying et al. report association of granulocyte
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apoptosis and clearance by macrophages with resolution of allergen induced
cutaneous late phase response (Ying et al., 1997). In addition, Kawabori et al have
demonstrated increased eosinophil apoptosis and phagocytosis in corticosteroid
treated intestine (Kawabori et al., 1991) and Davidsson et al report apoptosis of
tissue dwelling eosinophils and their engulfment by macrophages, in sinonasal

polyps (Davidsson et al., 2000). Furthermore, Vignola et al. have demonstrated an

inverse correlation between the number of apoptotic eosinophils and clinical severity
of asthma in mucosal biopsy specimins (Vignola et al., 1999). In a murine model,
adminstration of anti-Fas antibody induced apoptosis of infiltrated eosinophils and
abolished the augmentation of airway hyperresponsiveness in response to ovalbumin
sensitisation (Ohta et al., 2001). Furthermore, Kodama et al report increased

apoptosis in the lung, following ovalbumin challenge in a murine model of allergic

airway inflammation (Kodama et al., 1998) It is not unlikely that apoptosis and
removal by macrophages and other phagocytes is an injury limiting disposal
mechanism for the extravasated neutrophil. With the development of sophisticated

imaging techniques, it may in the future be possible to track the migration of

granulocytes into the tissues and therefore ultimately determine the fate of these cells
and their removal, during the resolution of inflammation.

The in vitro data presented in this thesis suggests that the rate of granulocyte

apoptosis may be powerfully modulated by glucocorticoids and cyclic AMP. These

findings may have potentially important implications for the effectiveness of existing

anti-inflammatory treatments or the development of new intervention strategies
which favour the resolution of inflammation. Given that selective phosphodiesterase

(PDE) inhibitors and (32 adrenoceptor agonists may exert their anti-inflammatory
effects through elevation of cyclic AMP, there is the potential that in some instances
inflammation may not resolve due to enhanced granulocyte longevity and inhibited

macrophage clearance mechanisms in such treatments. Furthermore, given the ability

cyclic AMP to interfere with the signal transduction pathways of inflammatory

cytokines such as GM-CSF, cyclic AMP may have opposing effects depending on

the influence of other mediators at an inflammatory focus. Further exploration of

possible cross-talk between the cyclic AMP signal transduction cascade and other
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signalling pathways, may give a greater comprehension of the potential outcomes of
elevation of this second messenger in vivo. In addition, a better understanding of the
mechanisms which underlie differential steroid responsivenss in granulocytes, could

potentially be exploited for the development of novel approaches for treatment of

allergic inflammation. Currently, there is little known of the mechansims by which

glucocorticoids integrate with the apoptotic signal transduction machinery to

differentially modulate granulocyte apoptosis. Further definition of the signalling
mechanims involved in glucocorticoid responsivenss may be useful not only for the

development of novel glucocorticoids which have the ability induce apoptosis in
selective cell populations, but may aid production of glucocorticoids with fewer

systemic side effects, that currently limits their use.
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The second messenger molecule cyclic AMP dramati¬
cally modulates the apoptotic program in a wide variety
of cells, accelerating apoptosis in some and delaying the
rate ofapoptosis in others. Human neutrophil apoptosis,
a process that regulates the fate and numbers of these
potentially histotoxic cells in inflammatory sites, is pro¬
foundly delayed by the cell-permeable analog of cyclic
AMP, dibutyryl-cAMP. We have investigated the mecha¬
nisms underlying cyclic AMP-mediated delay of neutro¬
phil apoptosis, and we show that cyclic AMP inhibits
loss ofmitochondrial potential occurring during consti¬
tutive neutrophil apoptosis. Furthermore, we demon¬
strate that cyclic AMP also suppresses caspase activa¬
tion in these inflammatory cells. Despite increasing
protein kinase A activity, this kinase is unlikely to me¬
diate the effect of cyclic AMP on apoptosis because
blockade of protein kinase A activation did not influ¬
ence the survival effects of cyclic AMP. Further investi¬
gation of the signaling mechanism demonstrated that
the delay of apoptosis is independent of phosphoinosi-
tide 3-kinase and MAPK activation. Our results suggest
cyclic AMP delays neutrophil apoptosis via a novel, re¬
versible, and transcriptionally independent mechanism.
We show that proteasome activity in the neutrophil is
vitally involved in this process, and we suggest that a
balance of pro-apoptotic and anti-apoptotic proteins
plays a key role in the powerful ability of cyclic AMP to
delay neutrophil death.

The neutrophil is a terminally differentiated phagocytic cell
that plays a key role in first line defense against invading
bacteria. Neutrophils are rapidly recruited to inflamed sites in
response to infection and, following phagocytosis of the invad¬
ing organism, release a variety of toxic granule contents into
the phagolysosome containing the engulfed microorganisms (1,
2). The neutrophil normally has a short life span, and senescent
neutrophils must be prevented from releasing their cytotoxic
cell contents into the surrounding milieu because such libera¬
tion will lead to local tissue damage. To avoid this undesirable
and inappropriate response, the neutrophil undergoes a regu¬
lated process of programmed cell death or apoptosis (3-5),
allowing shutdown of secretory capacity (6) and phagocytic
removal of the intact effete cell by a mechanism that does not
incite an inflammatory response (7-9).
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The execution of the apoptotic program generally involves
the activation of a family of cysteine proteases, collectively
referred to as the caspases, that are ultimately responsible for
the structural dismantling of the cell (10, 11). In addition, the
mitochondria play a central role through their ability to inte¬
grate anti-apoptotic or pro-apoptotic signals from Bcl-2 family
members with coordinated activation of downstream caspases
and nucleases (12, 13). In many cell types it has been docu¬
mented that apoptosis is accompanied by an early dissipation
of the mitochondrial transmembrane potential (AI'm) with in¬
creased permeability of the outer mitochondrial membrane
allowing release of apoptosis-inducing factors such as cyto¬
chrome c (12-14). Neutrophils are thought to contain very few
mitochondria, and it has not yet been fully established whether
they have the capacity to play a functional role in regulation of
neutrophil apoptosis (15, 16).
Neutrophils undergo constitutive apoptosis during in vitro

culture and exhibit the classic changes associated with apo¬

ptosis including cytoplasmic condensation, internucleosomal
cleavage of DNA by endogenous endonucleases, and exposure
of phosphatidylserine on the outer leaflet of the plasmalemma
(3). Although the apoptotic program in neutrophils is an intrin¬
sic cell process, the rate of apoptosis can be altered dramati¬
cally by a number of agents (17). In particular, we and others
(18-20) have shown that elevated levels of the second messen¬

ger cyclic AMP can prolong neutrophil longevity by delaying
apoptosis.
The cyclic AMP-dependent signaling transduction pathway

is a multienzyme cascade that regulates a diverse array of
biological processes. Specific ligation of appropriate G-protein-
coupled receptors followed by adenylate cyclase activation
leads to the production of cyclic AMP. Cyclic AMP then binds to
cytoplasmic protein kinase A, a tetrameric structure composed
of two regulatory (R) and two catalytic (C) subunits, resulting
in dissociation of the C subunits and subsequent phosphoryla¬
tion of target proteins (21). Although most components of this
signaling cascade are well characterized, the molecular mech¬
anisms underlying cyclic AMP-mediated modulation of apopto¬
sis remain to be elucidated. The signaling mechanism(s) used
by cyclic AMP to control these events is (are) likely to be
complex and cell type-specific. For example, in contrast to the
profound delay in the engagement of the apoptotic process in
neutrophils (18-20), cyclic AMP elevation induces apoptosis in
thymocytes (22) and leukemic cell lines (23, 24). The signaling
mechanism determining this ability to differentially influence
apoptosis in diverse cell types remains to be elucidated.
In the present study we show that elevated cyclic AMP

inhibits activation of caspase-3 and loss in mitochondrial po¬
tential (ATOn) when neutrophils are aged in vitro, i.e. effects
that appear to be associative rather that causative. Although
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Fig. 1. Effect of cyclic AMP elevation on human neutrophil apoptosis. Human neutrophils (5 x 106/ml) were cultured at 37 °C in Iscove's
DMEM containing 10% autologous serum and treated with Bt2cAMP (dbcAMP) (0.2 mm) or PGE2 (10 /xm). After 20 h, the cells were incubated with
FITC-labeled recombinant human annexin V to determine phosphatidylserine expression. The cells were then assessed by flow cytometry on a
FACSCalibur and analyzed on associated CellQuest software. Data from a minimum of 5000 cells were analyzed for each condition. All values
represent mean ± S.E. ofn = 5-8 experiments, each performed in duplicate where significant difference from control is represented by *,p < 0.001,
and #, p < 0.05. Similar results were found by morphological assessment of apoptosis (data not shown).

we could demonstrate that cyclic AMP rapidly elevates endog¬
enous PKA1 activity in cultured neutrophils, blockade of PKA
activation did not influence the observed delay in neutrophil
apoptosis induced by cyclic AMP elevation. We also show that
cyclic AMP elevation delays neutrophil apoptosis via a tran¬
scriptionally independent and reversible pathway, which does
not require PI 3-kinase and MAPK activity. Together these
data point to a novel mode ofaction for the major retardation of
neutrophil apoptosis induced by cyclic AMP elevation.

1 The abbreviations used are: PKA, protein kinase A; B^cAMP, dibu-
tyryl cyclic AMP; DMEM, Dulbecco's modified Eagle's medium; GM-CSF,
granulocyte macrophage-colony-stimulating factor; JC-1 [5,5',6,6'-tetra-
chloro-l,l',3,3'-tetraethylbenzimidazocarbocyaniniodide; MAPK, mito-
gen-activated protein kinase; PI 3-kinase, phosphoinositide 3-kinase;
PBS, phosphate-buffered saline; PGE2, prostaglandin E2; FITC, fluores¬
cein isothiocyanate.

EXPERIMENTAL PROCEDURES

Granulocyte Isolation and Culture
Neutrophils were purified from the peripheral blood ofnormal donors

by dextran sedimentation (Sigma) followed by centrifugation on discon¬
tinuous Percoll™ (Amersham Pharmacia Biotech) gradients as de¬
scribed previously (25, 26). Only neutrophil preparations with a purity
of >98% were used. Cells were cultured in flat-bottomed Falcon flexible
wells (Becton Dickinson, Oxford, UK) at 37 °C in a 5% C02 atmosphere
at a concentration of 5 x 106/ml in Iscove's modified Dulbecco's medium
(Life Technologies, Inc.) supplemented with 100 units/ml penicillin/
streptomycin (Life Technologies, Inc.) and 10% (v/v) autologous serum.
As an index of necrosis, cell membrane integrity was assessed by the
ability of cells to exclude the vital dye trypan blue (Sigma). Under all
experimental conditions, greater than 99% of the cells consistently
excluded trypan blue.

Assessment ofGranulocyte Apoptosis
Morphology—Cells were cyto-centrifuged, fixed in methanol, stained

with Diff-Quik™ Gamidor Ltd. (Abingdon, Oxon, UK), and counted
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Fig. 2. Time course for the effect of
Bt2cAMP (dbcAMP) on caspase-3 ex¬
pression during human neutrophil
apoptosis. A, Western blot of cytoplas¬
mic extracts from neutrophils treated
with control buffer or Bt2cAMP (0.2 mM)
for the time points indicated. Cell lysates
were prepared and immunoblotted as de¬
scribed under "Experimental Proce¬
dures." Lysates were prepared from
equivalent numbers of cells and subjected
to SDS-polyacrylamide gel electrophore-
sis/immunoblot analysis using a rabbit
polyclonal antibody specific for caspase-3.
The caspase-3 antibody recognizes both
the 32-kDa pro-caspase-3 and the 17-kDa
subunit of active caspase-3. The 17-kDa
caspase-3 cleavage product is faintly vis¬
ible in control (con) lysates at 8 h becom¬
ing more apparent by 20 h. There appears
to be less active caspase-3 in Bt2cAMP
(dbcAMP)-treated cell lysates compared
with control cell lysates. The gel is repre¬
sentative of three experiments. B, human
neutrophils were treated with or without
Bt2cAMP (0.2 mM) for the time points in¬
dicated under equivalent culture condi¬
tions as the cells used for caspase-3 ex¬
pression assessment above. Cells were
assessed for apoptosis by measurement of
phosphatidylserine expression using an-
nexin V FITC. Data from a minimum of
5000 eels were analyzed for each condi¬
tion. All values represent mean ± S.E. of
n = 3 experiments, each performed in
duplicate.
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using oil immersion microscopy to determine the proportion of cells
with distinctive apoptotic morphology (3, 26). At least 500 cells were
counted per slide with the observer blinded to the experimental condi¬
tions. The results were expressed as the mean percent apoptosis ± S.E.
Annexin VBinding—A separate and independent assessment of apo¬

ptosis was performed by flow cytometry using annexin V binding (an¬
nexin V-FLUOS, Roche Molecular Biochemicals) to measure phosphati¬
dylserine exposure on the surface of apoptotic cells. A working solution
of annexin V-FLUOS was made from stock annexin V-FLUOS (0.1
/xg//x1) diluted 1:3000 in Hanks' balanced salt solution (Sigma) supple¬
mented with 2.5 mM CaCl2. Neutrophils (20 p,l of 5 X 106/ml) were
added to 200 /x1 of the working solution of annexin V-FLUOS before
being assessed by flow cytometry on a FACSCalibur (Becton Dickinson,
Oxford, UK) and analyzed on associated CellQuest (Becton Dickinson)
software. All experiments were performed at least three times unless
otherwise indicated.

Measurement of PKA Activity
PKA activity was measured using Promega's SignaTECT™ cAMP-

dependent Protein Kinase (PKA) Assay System, which utilizes biotiny-
lated Kemptide (LRRASLG), a peptide substrate derived from the in
vivo substrate pyruvate kinase. Neutrophils (5 X 106 cells) were prein-
cubated with control buffer or 10 pM H89 (Calbiochem) for 1 h in PBS
with Ca2+/Mg2+ (or for 19 h in DMEM Iscove's with 10% autologous
serum) at 37 °C before being stimulated with 0.2 mM Bt2cAMP or 1 pM
PGE2 (both from Sigma) for 30 min at 37 °C. Following one wash in
ice-cold PBS, neutrophils were resuspended in 0.5 ml of cold extraction
buffer (25 mM Tris-HCl, pH 7.4, 0.5 mM EDTA, 0.5 mM EGTA, 10 mM
/3-mercaptoethanol, 1 pg/ml leupeptin, 1 pg/ml aprotinin, 1 mM phen-
ylmethylsulfonyl fluoride, and 1% Triton X-100 (Sigma)). The lysates
were centrifuged (5 min at 4 °C; 14,000 x g) and the supernatants
retained. The PKA reaction mixture consisting of 5 pi of 5X PKA Assay
Buffer, 5 pi of cyclic AMP (0.025 mM), 5 pi of PKA-biotinylated peptide
substrate (0.5 mM), 5 pi of [y-33P]ATP mixture (5 pi of 0.5 mM ATP and
0.05 pi of [y-33P]ATP (3,000 Ci/mmol) 10 pCi/pl) was mixed gently and
preincubated at 30 °C for 5 min (Promega, Southampton, UK). A control
reaction without substrate was performed to determine background
counts. The PKA activity reaction was initiated by adding 5 pi of the
lysates to the reactants and incubated at 30 °C for 5 min. The reaction
was terminated by adding 12.5 pi of Termination Buffer to each sample
(Promega, Southampton, UK). Aliquots (10 pi) from each terminated
reaction sample were spotted onto prenumbered SAM2™ membrane

squares (Promega, Southampton, UK). The SAM2™ membrane squares
containing the spotted samples were then washed 1 time for 30 s with
200 ml of 2 M NaCl (Sigma) followed by 3 washes for 2 min with 200 ml
of 2 M NaCl and then 4 washes for 2 min with 200 ml of 2 m NaCl in 1%

H3P04. Finally the Membrane squares were quickly washed in deion-
ized water before being allowed to dry. PKA activity was measured by
scintillation counting.

Measurement ofMitochondrial Dissipation
Changes in mitochondrial potential were measured in neutrophils

following stimulation using JC-1 (5,5',6,6'-tetrachloro-l,l',3,3'-tetra-
ethylbenzimidazocarbocyaniniodide (Molecular Probes), a cationic dye
that exhibits potential dependent accumulation in mitochondria indi¬
cated by a fluorescence emission shift from green (525 nm) to red (590
nm) (27). Mitochondrial depolarization is therefore indicated by a de¬
crease in the red/green fluorescence intensity ratio. JC-1 (10 pg/ml) was
diluted in PBS from stock JC1 (5 mg/ml in Me2SO) and added to
neutrophils (1 X 106/ml) for 10 min at 37 °C. Neutrophil mitochondria
labeled with JC-1 were examined by confocal fluorescent microscopy
together with TO-PRO-3 (1 pM) (Molecular Probes) (28) to assess neu¬
trophils with necrotic morphology. Alternatively, neutrophils labeled
with JC-1 were assessed by flow cytometric analysis using FACSCali¬
bur (Becton Dickinson, Oxford, UK) and analyzed on associated
CellQuest (Becton Dickinson) software. Non-apoptotic neutrophils were
removed using immunomagnetic separation with sheep anti-mouse
IgG-Dynabeads (Dynabeads M-450, Dynal, Mersyside, UK) coated with
the murine anti-neutrophil antibody 3G8 (anti-CD16; a gift from Dr. J.
Unkeless, Mount Sinai Medical School, New York). Cells were mixed
with washed antibody-coated magnetic beads on a rotary mixer at 4 °C
for 20 min, and the beads removed magnetically by two 3-min station¬
ary magnetic contacts (Dynal Magnetic Particle Concentrator, MPC-1)
to yield an apoptotic neutrophil preparation. After purification, the
apoptotic neutrophils were labeled with JC-1 as described previously.

Western Blotting
Human neutrophils (5 X 106/ml) were cultured with or without

Bt2cAMP (0.2 mM) at 37 °C for various time points as detailed under
"Results." Cytoplasmic extracts were then prepared from equivalent
numbers of cells (10 X 106 cells). To minimize problems with proteoly¬
sis, lysates were prepared using methods normally used for electro-
phoretic mobility shift assay preparations (26, 29) with the addition of
1 mM phenylmethylsulfonyl fluoride. Samples were loaded onto a 12.5%
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Fig. 3. A, determination if neutrophils contain mitochondria. Human neutrophils (1 x 106/ml) were cultured at 37 °C in Iscove's DMEM
containing 10% autologous serum. Neutrophils were labeled with JC-1, a mitochondrial specific dye, and examined by confocal fluorescent
microscopy as described under "Experimental Procedures." Bottom panels show TO-PRO-3 staining for neutrophils with necrotic morphology
{blue). B, effect of Bt^cAMP (dbcAMP) on dissipation of mitochondrial transmembrane potential during human neutrophil apoptosis. Human
neutrophils (5 x 106/ml) were cultured for 20 h at 37 °C in Iscove's DMEM containing 10% autologous serum with or without Bt2cAMP (dbcAMP)
(0.2 mM). Cells were then labeled with the mitochondrial specific dye JC-1 as described under "Experimental Procedures" before flow cytometric
analysis of mitochondrial membrane potential using a FACSCalibur and associated CellQuest software. Non-apoptotic neutrophils (bottom right
panel) were removed by anti-CD16 immunodepletion before the remaining cells were labeled with JC-1. Shown is one representative experiment.

Tris-HCl polyacrylamide mini-gel under reducing conditions and trans¬
ferred to nitrocellulose membrane (Amersham Pharmacia Biotech) at
60 V for 1 h before overnight incubation at 4 °C with an antibody
specific to caspase-3 (catalog number 65906E, PharMingen). After
washing, blots were incubated with donkey anti-rabbit horseradish
peroxidase conjugate (Amersham Pharmacia Biotech) diluted 1:2000
and developed using a commercial chemiluminescence detection system
(ECL, Amersham Pharmacia Biotech).

Further Materials

Further specific materials were obtained as follows: (iy-S-Br-
cAMPS, PD98059, SB203580, and cycloheximide (Calbiochem); lacta-
cystin and epoxomicin (Affiniti, Mamhead, UK); and LY294002 (New
England Biolabs, Hertfordshire, UK).

Statistical Analysis
Statistical analysis was performed using the Student's t test or by

analysis of variance with comparisons between groups made using the
Newman-Keuls procedure. Differences were considered significant
when p < 0.05.

RESULTS

Elevation of Cyclic AMP Delays Neutrophil Apoptosis—To
examine the effects of cyclic AMP on apoptosis induction, neu¬
trophils were exposed to Bt2cAMP, a membrane-permeant cy¬
clic AMP analog and the receptor-directed stimulus PGE2, for
20 h. Both Bt2cAMP and PGE2 delay neutrophil apoptosis,
determined by standard morphological criteria (data not
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Fig. 4. Measurement of PKA activation by elevators of cyclic
AMP in human neutrophils. Human neutrophils (5 X 106/ml) were
preincubated with 10 /xm H89 for 1 h before being stimulated with
Bt2cAMP (dbcAMP) (0.2 mm) or PGE2 (1 /am) for 30 min at 37 °C. PKA
activity was measured as described under "Experimental Procedures."
All values represent mean ± S.E. of n = 3 experiments where signifi¬
cant difference from control values is represented by *, p < 0.05.
Significant difference from Bt2cAMP alone is represented by #, p <
0.001, and significant difference from PGE2 alone is represented by ±,
p < 0.001.

shown) and annexin V binding (Fig. 1). It is interesting to note
that maximal concentrations of Bt^cAMP (0.2 mM) were more
effective at delaying neutrophil apoptosis compared with max¬
imal concentrations of PGE2 (10 pM) (Fig. 1).
Bt.jcAMP Inhibits Caspase Activation but Is Unlikely to Act

Directly as an Inhibitor of Caspases—It is widely believed that
caspases act as the main executioners of apoptosis, with their
activation resulting in chromatin condensation and DNA frag¬
mentation. Whether cyclic AMP delays constitutive neutrophil
apoptosis by directly suppressing caspase activation in neutro¬
phils has not been examined. Therefore, we investigated the
effect of cyclic AMP on activation of caspase-3 during constitu¬
tive apoptosis by immunoblotting. Neutrophils were found to
express active caspase-3 (17 kDa) which closely correlates with
the exposure of phosphatidylserine during constitutive neutro¬
phil apoptosis (Fig. 2, A and B). By 20 h there is significant
caspase-3 activity (17 kDa) which can be inhibited by Bt2cAMP.
The appearance of some caspase-3 activity in the presence of
Bt2cAMP at 20 h probably reflects the presence of some apop-
totic cells in the population (Fig. 2B).
Apoptosis in Neutrophils Is Accompanied by Dissipation of

Mitochondrial Transmembrane Potential That Can Be Inhib¬
ited by Bt2cAMP—In many cell models, apoptosis is accompa¬
nied by an early dissipation of the mitochondrial transmem¬
brane potential (ATfti). Previous data (16) have indicated that
neutrophils do not respire, and it was thought unlikely that
they contained mitochondria. By using confocal microscopy and
flow cytometry, we have been able to demonstrate that neutro¬
phils do contain mitochondria (orange), which during overnight
culture exhibit loss of mitochondrial potential as indicated by
an increase in green fluorescence (Fig. 3A). Our studies also
reveal that Bt2cAMP inhibits changes in mitochondrial poten¬
tial occurring during constitutive neutrophil apoptosis (Fig.
3B). As the number of cells showing loss of mitochondrial
potential appeared to correlate with the number of apoptotic
cells measured by annexin V positivity in previous experiments
(Fig. 1), we examined directly if loss in mitochondrial potential
occurred in those neutrophils undergoing apoptosis. It is well
established that neutrophils lose cell surface expression of
CD 16 during the process of apoptosis (30). Immunodepletion of
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Fig. 5. The effect of pharmacological blockade of PKA activity
on Bt2cAMP-mediated delay of neutrophil apoptosis. A and B,
human neutrophils (5 X 10e/ml) cultured in Iscove's DMEM containing
10% autologous serum at 37 °C were preincubated for 30 min with H89
(10 pM) (A) or (l?p)-8-Br-cAMPS (100 pM) (B) before stimulation with
Bt2cAMP (dbcAMP) (0.2 mM). After a further 20 h in culture, the cells
were incubated with FITC-labeled recombinant human annexin V to
determine phosphatidylserine expression. The cells were then analyzed
by flow cytometry using a FACSCalibur and associated CellQuest soft¬
ware. Data from a minimum of 5000 cells were analyzed for each
condition. All values represent mean ± S.E. of n — 3 experiments, each
performed in duplicate. Similar results were found when cells were
assessed for apoptosis by morphological examination (data not shown).
C, human neutrophils (5 X 106/ml) cultured in Iscove's DMEM contain¬
ing 10% autologous serum at 37 °C were preincubated with 10 pM H89
for 19 h before being stimulated with PGE2 (1 pM) for 1 h at 37 °C. PKA
activity was measured as described under "Experimental Procedures."
All values represent mean ± S.E. of n = 5 experiments where signifi¬
cant difference from PGE2 alone is represented by **, p < 0.01.

non-apoptotic neutrophils using anti-CD 16 magnetic beads
demonstrated apoptotic neutrophils were indeed positive for
loss of mitochondrial potential (Fig. 3B) indicating that dissi¬
pation of mitochondrial membrane potential occurs in neutro¬
phils undergoing programmed cell death.
It has been shown previously (31) that inhibitors of the
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Fig. 6. Effect of PI 3-kinase and
MAPK inhibition on Bt2cAMP (db-
cAMP)-mediated delay of neutrophil
apoptosis. Human neutrophils (5 X 106/
ml) cultured in Iscove's DMEM contain¬
ing 10% autologous serum at 37 °C were
treated with LY294002 (LY, 10 /am) or
PD98059 (PD, 10 /am) for 30 min prior to
stimulation by Bt2cAMP (0.2 mm). After a
further 20 h in culture, the cells were
incubated with FITC-labeled recombi¬
nant human annexin V to determine
phosphatidylserine expression. The cells
were then analyzed by flow cytometry us¬
ing a FACSCalibur and associated
CellQuest software. Data from a mini¬
mum of 5000 cells were analyzed for each
condition. All values represent mean ±
S.E. ofn = 3 experiments, each performed
in duplicate where significant difference
from GM-CSF alone is represented by *,
p < 0.01. con, control.

con PD LY PD LY

dbcAMP

PD LY

GM-CSF J

con 0.1 0.3 0.5

cycloheximide
0.1 0.3 0.5 1

cycloheximide +
dbcAMP

Fig. 7. Effect of protein synthesis
inhibition by cycloheximide on
Bt2cAMP idbeAMP) mediated delay
of neutrophil apoptosis. Human neu¬
trophils (5 X 106/ml) were cultured in
Iscove's DMEM containing 10% autolo¬
gous serum at 37 °C and treated with the
indicated concentrations of cycloheximide
(p-g/ml) with or without Bt2cAMP (0.2
mm). After 20 h, cells were harvested and
assessed morphologically for apoptosis.
All values represent mean ± S.E. of n =
10 experiments, each performed in tripli¬
cate. Similar results were found when
cells were assessed for apoptosis by an¬
nexin V binding (data not shown), con,
control.

mitochondrial respiratory chain do not affect constitutive neu¬

trophil apoptosis, raising the question of the source of their
ATm. It may be the case that the neutrophil maintains a
transmembrane gradient by a functional F^Fo-ATPase; how¬
ever, this needs to be investigated in more detail.
Cyclic AMP Elevation Stimulates PKA Activation in Neutro¬

phils, an Effect That Is Blocked by Pharmacological Inhibi¬
tors—To elucidate further the mechanism by which cyclic AMP
regulates neutrophil apoptosis, we examined its downstream
signaling pathway. The effects of cyclic AMP are thought to be
mediated through binding of cyclic AMP to the intracellular
kinase, PKA. This leads to the dissociation of PKA into regu¬
latory and catalytic subunits, which can consequently lead to
phosphorylation events of proteins such as the cyclic AMP-
response element-binding protein (21). To explore whether cy¬
clic AMP suppresses apoptosis and apoptotic signaling via ac¬
tivating the PKA pathway in neutrophils, we examined the
effects of Bt2cAMP on endogenous PKA activation (Fig. 4). We
found rapid activation of PKA when cells were treated with
both Bt2cAMP and PGE2 Furthermore, the activation of PKA
upon stimulation of neutrophils with cyclic AMP elevators
could be blocked by the pharmacological PKA inhibitor H89
(32) (Fig. 4).
Activation of the PKA Pathway Does Not Account for Cyclic

AMP-mediated Retardation of Apoptosis—To investigate
whether PKA activation by cyclic AMP was necessary for cyclic
AMP-mediated delay of apoptosis, neutrophils were incubated
with the PKA inhibitor H89 before being stimulated with
Bt2cAMP and assessed for apoptosis. Surprisingly, whereas
pre-treatment with H89 prevented activation of PKA, it did not
prevent the inhibition of apoptosis by Bt2cAMP (Fig. 5A). Ad¬
ditionally, the highly specific inhibitor of PKA, CRp)-8-Br-
cAMPS (100 p,m), also failed to block Bt2cAMP inhibition of
neutrophil apoptosis (Fig. 5B). This suggests that cyclic AMP
elevation stimulates PKA activity but PKA does not play a
major role in the anti-apoptotic effect of cyclic AMP elevation in
neutrophils.
The ability of H89 to block PKA activity, as shown by direct

measurement of kinase activity, suggests a lack of involvement
of PKA in the anti-apoptotic effect of cyclic AMP in neutrophils.
Most importantly, we investigated whether H89 could block
PKA activity for the full overnight culture period and under
identical culture conditions that we use for our apoptosis assay.

Neutrophils were therefore cultured in serum-supplemented
Iscove's DMEM for 19 h in the presence or absence of H89
before stimulation with PGE2 for 1 h. PKA activity was then
measured as described under "Experimental Procedures." We
found that H89 could still block PGE2-stimulated PKA activity
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Fig. 8. Loss of Bt2cAMP (dbcAMP)-
mediated delay of neutrophil apopto¬
sis by washing and rescue ofcultured
neutrophils from apoptosis by de¬
layed addition of Bt2cAMP. A, human
neutrophils (5 x 106/ml) cultured in
Iscove's DMEM containing 10% autolo¬
gous serum at 37 °C were treated with or
without Bt2cAMP (dbcAMP) (0.2 mm) for
the time points indicated before the cells
were washed 2 times in PBS to remove

Bt2cAMP and returned to culture. Cells
were cultured in Iscove's DMEM contain¬

ing 10% autologous serum until 20 h
when the cells were resuspended and in¬
cubated with FITC-labeled recombinant
human annexin V to determine phos-
phatidylserine expression. The cells were
then assessed by flow cytometry on a
FACSCalibur and analyzed on associated
CellQuest software. Data from a mini¬
mum of 5000 cells were analyzed for each
condition. All values represent mean ±
S.E. ofn = 3 experiments, each performed
in duplicate. B, human neutrophils (5 x
106/ml) cultured in Iscove's DMEM con¬

taining 10% autologous serum at 37 °C
for the time points indicated before addi¬
tion of Bt2cAMP (0.2 mm). At 20 h, cells
were resuspended and incubated with
FITC-labeled recombinant human an¬

nexin V to determine phosphatidylserine
expression. The cells were then assessed
by flow cytometry on a FACSCalibur and
analyzed on associated CellQuest soft¬
ware. Data from a minimum of 5000 cells
were analyzed for each condition. All val¬
ues represent mean ± S.E. of n = 3 ex¬
periments, each performed in duplicate.
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at 20 h (Fig. 5C). This is very important because it demon¬
strates that the inability of H89 to reverse cyclic AMP-medi-
ated delay of neutrophil apoptosis is not due to degradation of
H89 during the overnight culture period. Furthermore, it also
demonstrates that H89 is not inactivated by autologous serum
that is used in our apoptosis assay.
Activation ofAkt!PI 3-Kinase or Mitogen-activated Kinase

Pathways Does Not Account for the Bt^cAMP-mediated Delay of
Neutrophil Apoptosis—The phosphoinositide 3-kinase/Akt
pathway plays an essential role in cell survival in various cell
types (33) and may be involved in the cyclic AMP-signaling
cascade. For example, it has been reported that cyclic AMP
requires PI 3-kinase activation for DNA synthesis induced by
insulin-like growth factor I in FRTL-5 cells (34) and is involved
in the ability of cyclic AMP to attenuate chemoattractant-
induced respiratory burst in neutrophils (35). Therefore, we
examined whether PI 3-kinase is involved in the signaling
pathway mediating the protective effect of cyclic AMP on neu¬
trophil survival. Cells were preincubated with the specific PI

3-kinase inhibitor LY294002 (36) prior to exposing them to
Bt2cAMP or GM-CSF (Fig. 6). We found that the PI 3-kinase
inhibitor suppressed GM-CSF-mediated delay of neutrophil
apoptosis, which has been reported previously (37), yet had no
effect on suppression of apoptosis by Bt2cAMP.
We also investigated whether cyclic AMP could be acting

through the MAPK signaling pathway to delay neutrophil
apoptosis. Activation ofextracellular signal-regulated kinase has
been implicated in a number of systems to contribute as a nega¬
tive regulator ofapoptosis (38, 39). Elevation of cyclic AMP levels
is also known to either inhibit or activate MAPK in a cell type-
and stimulus-specific manner (40, 41). The protective effect of
cAMP-elevating agents does not appear to act through the MAPK
pathway in our system because the p42/p44 MAPK kinase inhib¬
itor PD98059 had no effect on the anti-apoptotic functions of
cyclic AMP in neutrophils, yet reversed the anti-apoptotic func¬
tions ofGM-CSF treatment in neutrophils (Fig. 6). Similarly the
p38 MAPK inhibitor SB203580 (42) did not reverse Bt2cAMP-
mediated delay of neutrophil apoptosis (data not shown).
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Retardation of Neutrophil Apoptosis by Bt.jcAMP Does Not

Require New Protein Synthesis—Our results suggest Bt2cAMP
suppresses neutrophil apoptosis via a previously uncharacter-
ized signaling mechanism. We therefore determined whether
Bt2cAMP stimulated a novel signaling pathway that would
require transcriptional activation to suppress neutrophil
apoptosis.
To block protein synthesis cycloheximide was titrated to low

concentrations to minimize the induction of neutrophil apopto¬
sis that has been reported by this compound (43). Apoptosis
was assessed by morphology and annexin V binding following
overnight culture of neutrophils with Bt2cAMP and cyclohexi¬
mide (Fig. 7). Cycloheximide failed to reverse the suppression
of apoptosis by cyclic AMP. It did however block glucocorticoid-
mediated suppression of neutrophil apoptosis at these concen¬
trations (Ref. 44 and data not shown), suggesting that gene
transcription is not necessary for the suppression of neutrophil
apoptosis by Bt2cAMP.
We next examined the possibility that Bt2cAMP might acti¬

vate a rapid and reversible signaling pathway rather than
stimulate new protein synthesis, which would occur over sev¬
eral hours. Cells were cultured in the presence ofBt2cAMP for
the time points indicated before Bt2cAMP was removed from
culture by gently washing in PBS and then returned to normal
culture conditions. Bt2cAMP was required to be continually
present in culture to suppress neutrophil apoptosis (Fig. 8A).
However, Bt2cAMP rescued neutrophils from apoptosis when
added at later time points (Fig. 8B). We are investigating
whether the effects of cyclic AMP occur when the rate of apo¬
ptosis is high (between 8 and 20 h). However, during constitu¬
tive apoptosis, cells at different stages of the apoptotic program
are present in the population at any one time point. We are
currently investigating whether synchronous apoptosis trig¬
gered by Fas ligation, tumor necrosis factor-a (26), or temper¬
ature shift (15) can be modulated by cyclic AMP. Taken to¬
gether, our results suggest that Bt2cAMP exerts a powerful
direct signaling mechanism, independent of new protein syn¬
thesis, to suppress neutrophil apoptosis, and this suppression
is rapidly lost when Bt2cAMP is removed from culture.
Proteasome Inhibitors Are Able to Reverse Retardation of

Neutrophil Apoptosis by RtwAMP—The ubiquitin/proteasome
system plays an important role in the degradation of cellular
proteins that regulate various cellular processes, including
apoptosis. The observations above reveal Bt2cAMP delays neu¬
trophil apoptosis independently of new protein synthesis, sug¬
gesting that Bt2cAMP is unlikely to stimulate the production of
a survival protein. Thus we examined whether alternatively
Bt2cAMP was accelerating the degradation or modification of
pro-death proteins within the neutrophil to increase survival.
Neutrophils were co-incubated with Bt2cAMP and the irrevers¬
ible proteasome inhibitors lactacystin (10 /xm) (45) and ep-
oxomicin (10 p.M) (46) for 20 h (Fig. 9, A and B). Both protea¬
some inhibitors eliminated the delay of neutrophil apoptosis
induced by Bt2cAMP.

DISCUSSION

Human neutrophils undergo apoptosis, a process that is cen¬
trally important in the resolution of inflammation. It has been
shown previously that cyclic AMP is an important regulator of
neutrophil apoptosis (18-20), yet little is known of the signal¬
ing mechanism by which by cyclic AMP controls neutrophil cell
death. The studies herein have established that cyclic AMP
acts upstream of caspase-3 activation to inhibit the apoptotic
pathway in neutrophils. For the first time, it was also demon¬
strated that neutrophils contain a small but significant number
of mitochondria, which exhibit a loss of membrane potential
during constitutive apoptosis, which can be delayed by cyclic

901
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control dbcAMP

lactacystin dhcAMPAaclacystin

B

epoxomicin dbcAMP +epoxomicin

Fig. 9. Effects of proteasome inhibitors on Bt2cAMP (db-
cAMP)-mediated delay of neutrophil apoptosis. Human neutro¬
phils (5 X 106/mi) were cultured in Iscove's DMEM containing 10%
autologous serum at 37 °C and treated with lactacystin (10 pM, A) or
epoxomicin (10 pM, B) with or without Bt2cAMP (0.2 mM). After 20 h in
culture, the cells were incubated with FITC-labeled recombinant hu¬
man annexin V to determine phosphatidylserine expression. The cells
were then analyzed by flow cytometry using a FACSCalibur and asso¬
ciated CellQuest software. Data from a minimum of 5000 cells were

analyzed for each condition. All values represent mean ± S.E. of n = 3
experiments, each performed in duplicate where significant difference
from control is represented by *p < 0.001. Significant difference from
Bt2cAMP alone represented by #p < 0.001 or ±p < 0.01.

AMP elevation. We are currently investigating whether loss of
mitochondrial membrane potential occurs before other indices
of apoptosis in neutrophils, such as phosphatidylserine expo¬
sure and nuclear condensation. This would help ascertain
whether loss ofmitochondrial potential during neutrophil apo¬
ptosis, shown to trigger apoptosis in other cell types, has a
similar function in neutrophils and whether Bt2cAMP can di¬
rectly affect loss of mitochondrial potential to delay neutrophil
apoptosis.
It has been suggested that PKA plays an important role in

cyclic AMP-mediated delay of neutrophil apoptosis (18-20). It
is known that cyclic AMP analogs, which selectively activate
type I PKA, attenuate neutrophil apoptosis, compared with
analogs that preferentially activate type II PKA suggesting
that that type I PKA is necessary and sufficient to mediate the
cyclic AMP-induced delay in human neutrophil apoptosis (19).
We suggest, alternatively, that PKA activation by cyclic AMP is
not responsible for the major apoptosis-retarding influences of
cyclic AMP in neutrophils. Indeed, we have demonstrated di¬
rectly that cyclic AMP elevation in neutrophils stimulates an
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increase in PKA activity, which is blocked by pharmacological
inhibitors. Importantly, however, blockade of PKA was not
sufficient to reverse the anti-apoptotic effect of cyclic AMP,
implying that this molecule has little or no role in the cyclic
AMP signaling pathway responsible for delay of neutrophil
apoptosis.
Previous publications (18, 19) have implicated a role for PKA

in cyclic AMP regulation of neutrophil apoptosis using concen¬
trations of H89 greater than 10 pM. The specificity of H89 at
these concentrations is questionable, and it has been published
(47) that H89 may inhibit several other kinases, some with
potency similar to or greater than that for PKA. We propose
that failure to directly measure PKA activity together with the
use of high and possibly nonspecific concentrations of H89
could have led to misinterpretation of previous data. We have
demonstrated that 10 /j.m H89 is sufficient to block PKA activ¬
ity for extended culture periods and is active in the presence of
autologous serum. The failure therefore of both H89 and (Rp)-
8-Br-cAMPS, a highly specific inhibitor of PKA, to reverse

cyclic AMP-mediated delay of neutrophil apoptosis points to a
novel signaling pathway used by cyclic AMP to inhibit neutro¬
phil apoptosis, which is independent of PKA activation.
There have been a few studies reporting PKA-independent

effects of cyclic AMP; however, little has been elucidated of the
alternative signaling pathways downstream of cyclic AMP.
Pharmacological blockade of the MAPK and PI 3-kinase signal¬
ing cascades in this study suggest that neither of these signal¬
ing pathways are likely to be important in the cyclic AMP-
mediated delay of neutrophil apoptosis. There has been
interest in the discovery that cyclic AMP can bind specifically
to and activate small guanine nucleotide exchange factors
which, when bound by cyclic AMP, activate the small Ras-like
GTPase, Rapl (48, 49). The biological function of Rapl is still
unclear, but it has been proposed that activation of this small
GTPase may feed into MAPK signaling pathways (50). As an
approach to establishing if Rapl has a role in cyclic AMP-
mediated delay of neutrophil apoptosis, we have blocked Rapl
activity using the Clostridium sordellii lethal toxin, which has
been reported to inhibit specifically the small GTPases Rapl,
Ras, and Rac (51). Furthermore, we have tested GGTI-286, a
geranylgeranyltransferase inhibitor, which blocks gera-
nylgeranylation required by Rapl to achieve its mature, bio¬
logically active form (52). Thus our preliminary experiments
suggest that Rapl is not involved in cyclic AMP-mediated delay
of neutrophil apoptosis (data not shown): however, this area of
research is still under investigation. Our studies are in accord
with a very recent publication that demonstrates that cyclic
AMP-dependent inhibition of interleukin-5 from human T lym¬
phocytes is not mediated by PKA or by the Rapl signaling
pathway (53).
Regulation of neutrophil apoptosis is thought to depend on

the balance between pro-apoptotic and anti-apoptotic death
factors expressed in the cell (17, 54). Neutrophils contain death
regulator proteins, including Bax and Bad, and also express
some members of the anti-apoptotic family such as Mcl-1 and
Bcl-xL but not Bcl-2 (17, 54). It has been proposed that neutro¬
phil longevity may be prolonged by the synthesis of anti-apo¬
ptotic proteins such as Mcl-1 (55). However, it is unlikely that
cyclic AMP effects are mediated by such a mechanism in the
retardation of neutrophil apoptosis since we have demon¬
strated that cyclic AMP-mediated delay ofneutrophil apoptosis
does not require gene transcription. Furthermore, "wash out"
experiments have revealed that retardation of neutrophil apo¬
ptosis is rapidly lost when Bt2cAMP is removed from culture,
even after incubation periods that should permit new protein
synthesis.

Together, these data suggest a mechanism whereby cyclic
AMP does not stimulate production of a survival protein but
may alternatively induce post-transitional modifications in the
neutrophil to promote survival. One potential mechanism for
cyclic AMP-mediated retardation of neutrophil apoptosis may
involve cyclic AMP specifically targeting a death protein(s) to
the proteasome for degradation. We have demonstrated that
blockade ofproteasome activity results in a dramatic loss of the
pro-survival effect of cyclic AMP. We speculate that cyclic AMP
may be involved in the post-translational modification of a
death protein, which targets the neutrophil proteasome. If cy¬
clic AMP stimulation is removed or proteasome activity is
blocked, then the accumulation of a death protein(s) would be
predicted to permit the constitutive death pathway of neutro¬
phils to be reconstituted. Further characterization of protea¬
some activity in this signaling pathway and possible death
protein targets ofcyclic AMP are currently under investigation.
In conclusion, cyclic AMP delays neutrophil apoptosis via a

novel, reversible, and transcriptionally independent mecha¬
nism. Our results contest the dogma that cyclic AMP exerts is
physiological functions almost entirely through activation of
PKA, and we are currently investigating the involvement of
novel downstream signaling pathways in cyclic AMP regula¬
tion of neutrophil cell death.

Acknowledgment—We thank Dr. M. Popoff for supplying the C. sor¬
dellii lethal toxin.
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