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ABSTRACT 

Large bowel cancer, or colorectal cancer (CRC) is the third most common cause of 

cancer worldwide and the fourth biggest cause of cancer mortality. Twin studies have 

shown that the heritable contribution is ~35%, with ~5% of cases due to rare, high-

penetrance mutations. In the last decade, the use of genome-wide association studies 

on large, well-characterised case-control cohorts of CRC has facilitated the 

identification of over 25 common genetic variants that carry with them an increased 

predisposition to colorectal cancer, invoking the common-disease common variant 

paradigm. As almost all of these variants lie within non-coding regions, the 

underlying causal mechanism is to-date poorly understood for the majority of these 

loci, and it is thought that they mediate risk by influencing gene expression levels.  

To test this hypothesis, an agnostic approach that utilises expression quantitative trait 

loci (eQTL) analysis was first carried on 115 normal colorectal mucosa samples and 

59 peripheral blood mononuclear cells (PBMC). As these heritable variation on gene 

expression are likely to be subtle, there is a strong emphasis on the technical 

methodology to minimise experimentally-induced non-biological variations, 

including the extraction of high-quality RNA from primary tissue, the selection and 

validation of reference genes for normalisation of gene expression quantification, as 

well as internal validation of the samples and data processing. Thereafter, the 

association between the 25 CRC risk variants and the expression of their cis-genes 

were examined systematically, demonstrating that ten of these variants are also 

tissue-specific eQTLs. This intermediate phenotype strongly suggests that they 

confer risk, at least in part, by modifying regulatory mechanisms. One of the best 

eQTL associations (Xp22.2) is investigated in further detail to reveal a novel indel 

polymorphism (Indel24) at the distal promoter region of target gene SHROOM2 that 

influenced both transcript abundance and CRC risk more than the original tagging 

SNP. Functional verification with gene reporter assays indicated that Indel24 

displays differential allelic control over transcriptional activity. Further in silico 

analysis and mutations to the reporter gene constructs provided evidence that Indel24 

modulates transcription by modifying the spacing between CCAAT motifs and the 
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consequent binding affinity of NF-Y transcription factor. siRNA depletion of  NF-Y 

was associated with a reduction in transcriptional activity of the Indel24 gene 

construct as well as endogenous SHROOM2, which is strongly supportive of the 

interaction between Indel24 and NF-Y in the transcriptional activation of 

SHROOM2. Preliminary evidence is suggestive of SHROOM2 being expressed at the 

top of the intestinal epithelial crypt and playing a role in cell cycle regulation. 

Hypothesis-driven approaches can also be of utility in demonstrating functionality of 

CRC risk variants, complementing the hypothesis-free approach of eQTL analysis. 

Guided by a recently discovered gene-environment interaction between the 16q22.1 

risk variant and circulating vitamin D levels, the influence of the rs9929218 SNP on 

CDH1 gene expression was examined, in relation to the expression of putative 

regulatory genes derived from in silico analysis and studies of other target genes. 

Although there was no direct association between rs9929218 and CDH1 expression, 

there were multiple two-way interactions that were together suggestive of rs9929218 

influencing the VDR/FOXO4 regulation of CDH1. This provides functional support 

for the mechanism underlying the epidemiological observation of the gene-

environment interaction between 16q22.1 and vitamin D, and demonstrates a 

candidate-based approach in deciphering the link between genetic locus and CRC 

susceptibility. 

In summary, the research presented in this thesis has validated the experimental 

rationale of utilising expression studies of normal colorectal mucosa to hone in on 

the molecular mechanisms and susceptibility genes underlying the association 

between common genetic variation and CRC risk.  
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LAY ABSTRACT 

Large bowel cancer is the third most common cause of cancer worldwide and the 

fourth biggest cause of cancer deaths. Large-scale comparative studies of people with 

and without colorectal cancer have shown that there are inherited genetic factors that 

predispose one to the disease. These genetic factors are present at varying 

frequencies in the general population with varying effects on disease risk; rare 

genetic mutations have a big impact on the lifetime chances of developing the 

disease, whereas common normal DNA sequence differences have a smaller 

influence on disease susceptibility.  

Although the risk conferred by these common DNA differences are individually 

modest, collectively they have a significant influence on the risk of developing the 

disease. How these variants lead to the development of large bowel cancer is poorly 

understood, and this study seeks to shed light on the underlying mechanisms. 

Understanding how these heritable factors lead to disease is important as not only 

will it improve our understanding of how cancer develops, it will also inform the 

design of preventative and therapeutic strategies.  

By analysing the cells of the human large bowel and blood, this study demonstrates 

that some of these common genetic differences linked to large bowel cancer do not 

alter the function of genes, but instead influence the levels of gene products that are 

expressed. Further investigation of one of the genetic variants with the strongest 

influence on gene expression identifies the underlying molecular mechanism and the 

gene it influences (known as SHROOM2). The research presented in this thesis also 

presents a framework of investigation into the function of this gene in the large 

bowel, and how differences in its expression could lead to large bowel cancer. 

Finally, this thesis describes the investigation of the molecular mechanism 

underlying the synergistic effect of DNA variation and vitamin D levels on the risk 

of developing large bowel cancer. This is an important aspect to address as it is 

known that large bowel cancer arises from a combination of genetic and 

environmental factors, and a clearer understanding of this complex relationship will 

ultimately be of public health benefit.  
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Chapter 1 

Introduction 

1.1 Introduction 

     The understanding of the genetic predisposition to colorectal cancer (CRC) has 

progressed in the last decade with the advent of genome-wide association studies 

(GWAS). At least twenty-five common genetic variants have been established to be 

associated with CRC risk, invoking the common disease-common variant paradigm 

(Reich et al, 2001). However, the functional mechanisms by which they influence 

risk are not well-understood. Therefore, the investigation into these mechanisms has 

considerable relevance to understanding the aetiopathogenesis of this complex 

disease, which may ultimately lead to the discovery of novel therapeutic and 

preventative targets. The research presented in this thesis has systematically 

investigated whether these risk loci are associated with the baseline expression of 

nearby genes in tissue types relevant to colorectal cancer.  Significant associations 

are prioritised and followed-up with functional assays to elucidate the causal 

molecular mechanisms. 

     The importance of delineating the molecular mechanisms that underlie CRC is 

underscored by the fact that colorectal cancer is a major health problem globally. In 

this introductory chapter, the incidence and burden of CRC is firstly discussed. The 

molecular events giving rise to CRC and its cell of origin are considered as these are 

pertinent issues that will influence the study design and the interpretation of various 

aspects of the gene expression analysis. A review of the risk factors associated with 

CRC is presented, including dietary/lifestyle factors, inflammation, the microbiome 

and genetic predisposition. This ranges from rare familial cancer syndromes to low-

penetrance common susceptibility alleles, which form the impetus for this research. 

Though limited, the current understanding of the causal variants and mechanisms is 

described. As all of these risk loci reside within non-coding regions, it is thought that 

they confer risk by subtly influencing the regulation of gene expression and may also 

act as expression quantitative trait loci (eQTL). The use of eQTL analysis in complex 
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disease traits and the functional annotation of CRC risk loci is therefore discussed. 

Finally, the aims of the project are presented and the experimental approaches are 

described.  

1.2 Colorectal cancer: epidemiology and pathogenesi s 

1.2.1 Incidence and burden  

     Large bowel cancer, or colorectal cancer (CRC) is the third most common cause 

of cancer worldwide and the fourth biggest cause of cancer mortality, with nearly 1.4 

million new cases diagnosed in 2012 (World Cancer Research Fund International; 

URL1.1). It is more common in the developed world, where the incidence is over 

two and a half times higher in developed countries compared to less developed ones. 

In the United Kingdom, there were on average 22,517 newly diagnosed cases of 

CRC per year in men, and 17,846 new cases in women during 2008-2010 (Office for 

National Statistics; URL1.2). It is estimated that 1 in 14 men and 1 in 19 women will 

develop CRC at some point in their lives (Cancer Research UK; URL1.3). In the 

United States, there has been a steady decline in the incidence of CRC in patients age 

50 years or older during 1975-2010, but the opposite has been observed for young 

adults aged 20 to 49 years (Bailey et al, 2015).  

Age-standardised rates suggest that bowel cancer is more common in 

industrialised countries with westernised societies. Global data from 2008 indicates 

that the WHO European region had the highest incidence of colorectal cancer 

followed by the WHO Americas region, whereas WHO African region had the 

lowest incidence. According to the World Bank income groups for countries, high 

income countries had considerably higher CRC incidence rates than any other 

income group, with nearly five times higher than the rate in low income countries 

(World Health Organisation; URL1.4). However, it should be noted that this 

manifestation of colorectal cancer burden may partly reflect longer life expectancy in 

developed populations, as well as better diagnostic and recording tools. 

     With earlier detection and improvements in treatment strategies, CRC mortality 

rates have decreased overall in the UK since the early 1970s. However, although it is 



3 
 

a treatable disease with bowel surgery and adjuvant chemo-radiotherapy, the 

prognosis of CRC is still relatively poor. In 2012, there were 16,187 deaths from 

bowel cancer in the UK, of which 54% were men and 46% were women. (Cancer 

Research UK; URL1.5). Several factors are associated with higher risk of death, such 

as age, socio-economic deprivation, and most importantly, the stage of the cancer at 

diagnosis. In men, the five-year survival rate of 95% in stage I CRC falls 

dramatically to 7% in stage IV CRC. In women, five-year survival ranges from 100% 

at stage I to 8% at stage IV. There is compelling evidence that early detection and 

prevention by removal of premalignant polyps can reduce mortality, as indicated by 

randomised trials of population screening (Towler et al, 2007) and intensive 

surveillance of genetically defined high-risk groups (Jarvinen et al, 2000). An 

understanding of the disease aetiology and risk factors will not only allow risk 

modifications and preventative therapies, but also have an impact on targeted 

screening and treatment strategies. 

 

1.2.2 Molecular genetics of colorectal cancer 

     Historically, CRC classification has been based only on clinical and pathological 

features. There is growing evidence that over the past decade that CRC is a 

heterogenous complex of diseases, where the molecular and genetic features of the 

tumour can determine prognosis and the response to therapeutic agents, in particular 

targeted therapy.  

     The sequence from the pre-malignant adenoma to carcinoma is well understood 

on a clinical level, and Vogelstein first described in his multistep genetic model that 

the accumulation of multiple mutations leads to the selective growth advantage that 

underlies tumourigenesis (Fearon and Vogelstein, 1990). In this model, the early loss 

or mutation of APC serve as the initiating event in adenoma formation, with at least 

seven distinct mutations required for carcinogenesis. Since then, genome-wide 

sequencing of CRC have calculated about 80 mutated genes per tumour, with less 

than 15 mutations considered to be true drivers (Wood et al, 2007). More recently, 

the alternative route of colon cancer carcinogenesis via serrated polyps have been 

described to account for 30% of CRC, where activating mutations of the mitogen-
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activated protein kinase pathway components BRAF or KRAS play a prominent role 

in this pathway (as reviewed in Bettington et al, 2013). Although the precise 

molecular events that lead to the development of CRC and its phenotypic changes are 

still not fully understood, there is now clear evidence for the presence of different 

subtypes of CRC.  

     There are at least three distinct molecular pathways that have been recognised to 

give rise to CRC. The chromosomal instability (CIN) pathway is defined by the 

accumulation of numerical (aneuploidy) or structural chromosomal abnormalities 

that result in karyotypic variability. It is the most common manifestation of genomic 

instability in CRC, occurring in approximately 70% of colorectal tumours (Lengauer 

et al, 1997), and is characterised by chromosomal rearrangements and loss-of-

heterozygosity (LOH) at tumour suppressor gene loci. CIN tumours can also be 

discerned by the accumulation of mutations in specific oncogenes such as APC, 

KRAS, PIK3CA, BRAF, etc and tumour suppressor genes, but whether CIN creates 

the appropriate environment for the accumulation of these mutations or vice versa 

remains unclear (Pino et al, 2010).  

     The microsatellite instability (MSI) pathway is the other important pathway 

leading to genomic instability in CRC. It is characterised by genetic hypermutability 

caused by the dysfunction of DNA mismatch repair (MMR) genes. Deficiency in 

DNA repair gives rise to the accumulation of abnormalities in microsatellites, which 

are nucleotide repeat sequences of 1-6 base pairs that are prone to mutations due to 

the inability of DNA polymerases to bind these sequence motifs efficiently. As a 

result of insertions or deletions in coding regions, frameshift mutations occur with 

subsequent deleterious protein truncations. The DNA MMR system is inactivated 

either by germline mutations in MMR genes (as seen in the familial syndrome Lynch 

Syndrome), or epigenetically by gene promoter hypermethylation and silencing of 

MLH1 in sporadic CRC (Herman et al, 1998; Veigel et al, 1998). More recently, the 

Cancer Genome Atlas Project (TCGA) demonstrated by whole-genome sequencing 

that a quarter of hypermutated tumours had somatic mismatch-repair gene and 

polymerase ε (POLE) mutations (Muzny et al, 2012). 
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     Microsatellite instability in sporadic CRC that is related to hypermethylation and 

MLH1 silencing is dependent on the third molecular pathway which is characterised 

by epigenetic instability as evident by the presence of widespread CpG island 

methylation (Toyota et al, 1999). The CpG Island Methylation Phenotype (CIMP) is 

associated with distinct genetic profiles, where CIMP1 is characterised by higher 

rates of MSI and BRAF mutations (Weisenberger et al, 2006; Shen et al, 2007), 

CIMP2 is associated with KRAS mutations, and CIMP-negative cases are enriched 

with TP53 mutations (Shen et al, 2007; Hinoue et al, 2012).  

     CRC subtyping has also been addressed using gene-expression profiling in large 

patient cohorts, where molecular expression subtypes have not only been associated 

with different molecular pathways and cellular phenotypes, but also with prognosis 

and treatment responses (Salazar et al, 2011; De Sousa et al, 2013; Sadanandam et 

al, 2013).  

 

1.2.3 Cell of origin of colorectal cancer 

     The epithelial layer of the human large intestine consists of a single sheet of 

columnar epithelial cells, which form crypt-like invaginations into the lamina propria 

connective tissue to form the functional units of the colon. The four major terminally 

differentiated epithelial cell types in the colonic crypt are known as the enterocytes 

(absorptive cells), the goblet cells (mucus-secreting), the enteroendocrine cells 

(peptide hormone-secreting), and the recently characterised tuft cells (opioid and 

prostaglandin-secreting) (Gerbe et al, 2013) (Figure 1.1). The organisation, 

architecture, differentiation and homeostasis of the crypt component cells are pivotal 

to the normal functioning of the colonic epithelium, and are thought to be maintained 

by the gene expression gradients of key signalling molecules along the vertical crypt 

axis, mediated by autocrine and paracrine pathways that arise from epithelial-

mesenchymal interactions (Figure 1.2). The key signalling pathways implicated are 

those of Wnt (Korinek et al, 1998; Pinto et al, 2003; Sansom et al, 2004), 

EphB/Ephrin B (Batlle et al, 2002), Notch (Jensen et al, 2000; van Es et al, 2005),  

BMP (He et al, 2004; Kosinski et al, 2007) and Hedgehog (Madison et al, 2005).  
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Figure 1.1 In the colon (scanning electron micrograph in top panel), LGR5+ stem cells at the 
crypt base generate rapidly proliferating TA (transit-amplifying) cells in the lower half of the 
crypt (bottom left panel). TA cells subsequently differentiate into the mature lineages of the 
surface epithelium (enterocytes, goblet cells, enteroendocrine cells and tuft cells), as shown 
in the lineage tree (bottom right panel). Epithelial turnover occurs every 5–7 days. Adapted 
from Barker, 2014.  
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Figure 1.2 Signalling pathways that are involved in the regulation of homeostasis and 
determination of cell fate that are coupled to position along the vertical crypt axis of the 
epithelium. ISEMF, intestinal subepithelial myofibroblast; SMC, smooth muscle cell. 
(Kosinski et al, 2007) 
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     There is a high rate of cell death and rapid turnover due to persistent abrasion 

from the luminal contents, which imposes a requirement for daily self-renewal driven 

by small populations of adult stem cells. The evidence points towards a stem-cell 

population that resides at the base of the crypt within the stem-cell niche, formed by 

the stem cells themselves and surrounding mesenchymal cells, the intestinal 

subepithelial myofibroblasts. Crucially, lineage-tracing experiments in mice using 

inducible stem-cell markers have confirmed monoclonal conversion and 

multipotentiality in the intestinal crypts, where the stem cell marker LGR5+ crypt 

base columnar cells was shown to generate all epithelial lineages over a 60-day 

period (Barker et al, 2007). CD24+ and KIT+ goblet cells that are in close proximity 

to LGR5+ stem cells at the crypt base have been identified as probable niche 

components (Rothernberg et al, 2012), but the major source of Wnt in the colon has 

yet to be identified.  

     Although genetic/epigenetic lesions are widely accepted to have a major role in 

determining tumour phenotype, it is also thought that cancers of distinct subtypes 

may derive from different ‘cells of origin’ leading to inter- and intra-tumoural 

heterogeneity (Visvader, 2011). In studies of colorectal cancer, there is accumulating 

evidence that supports a bottom-up theory of cancer origin, as the ability of stem 

cells to indefinitely self-renew while generating new functional epithelia makes them 

prime candidates for accumulating sequential genetic or epigenetic mutations that 

promote oncogenesis. Two distinct crypt stem cells have been identified as the cells 

of origin of intestinal cancers using an in-vivo targeting approach in mouse models 

that involves lineage tracing of cells as they undergo transformation. APC deletion in 

long-lived LGR5+ stem cells but not in short-lived transit-amplifying cells revealed 

that intestinal cancer in mice originates from crypt stem cells (Barker et al, 2009). 

This target cell is also marked by PROM1 (Zhu et al, 2009). A BMI1+ stem cell 

located in the +4 or +5 position from the base of the crypt and therefore distinct from 

the LGR5+ stem cell was also shown to be susceptible to tumourigenesis by 

deregulated Wnt signalling.  

     In contrast, the top-down hypothesis of intestinal cancer postulates that any cell in 

the normal cellular hierarchy with proliferative capacity could also serve as a cell of 

origin of cancer, if it acquires mutations that re-instigate self-renewal capacity and 
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prevent differentiation to a post-mitotic state. Supporting this paradigm are several 

recent transgenic mouse model studies that implicate distinct mechanisms involving 

non-stem cells. Schwitalla et al demonstrated that the combination of β-catenin 

activation and NF-κB signaling can convert LGR5– cells into LGR5+ stem cells that 

give rise to intestinal neoplasms, exemplifying the concept of cell-type plasticity and 

bidirectional conversion that results in the dedifferentiation of non-stem cells, 

allowing them to act as tumour progenitors (Schwitalla et al, 2013). Consistent with 

this study, a lineage-tracing study of tuft cells demonstrated relative quiescence and 

longevity of a small number of DCLK1+ cells, which converted into potent cancer-

initiating cells when subjected to a combination of APC loss and an inflammatory 

stimulus (Westphalen et al; 2014). Non-inflammatory processes have also been 

implicated; a recent mouse model of hereditary mixed polyposis syndrome (HMPS) 

showed that the aberrant epithelial expression of GREM1 can promote the 

persistence and/or reacquisition of stem cell and tumour-initiating properties in 

LGR5– progenitor cells that have exited the stem cell niche by disrupting homeostatic 

intestinal morphogen gradients (Davis et al, 2015). In all likelihood, the cellular and 

molecular mechanisms underlying both hypotheses are not mutually exclusive and 

most probably act together as well as interact with extrinsic mechanisms such as the 

stromal micro-environment to determine tumour histopathology and behaviour. 

1.3 Colorectal cancer: risk factors 

     Colorectal cancer typically develops over many years, with a multifactorial 

aetiology that involves environmental factors, genetic susceptibility and their 

interactions. It occurs more frequently in the distal large bowel (descending colon 

and rectum) compared to the more proximal regions of the large intestine (Rabaneck 

et al, 2003), which might reflect differences in the luminal environment and inherent 

cellular variation between these gut compartments. The risk factors that increases 

ones susceptibility to the disease have been extensively reviewed elsewhere (Raskov 

et al, 2014; Tenesa et al, 2009; Terzić et al, 2010; Louis et al, 2014) but the main 

themes will be presented here.  
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1.3.1 Dietary and lifestyle risk factors  

     The higher incidence of CRC in developed countries is suggestive of a 

contribution from environmental factors, broadly defined to include a wide range of 

cultural, lifestyle and dietary practices. This is evident from early studies of migrants 

from low to high incidence countries, who attain cancer incidence rates similar to 

those of their adopted country within a single generation (as reviewed by Boyle et al, 

2000). Supporting this further are the rapidly increasing incidence rates in developed 

and westernised Asian countries with previously low rates, possibly reflecting 

lifestyle changes as well as gene-environment interactions (as reviewed in Sung et al, 

2005). 

     Although there is little doubt that diet contributes to the development of CRC, 

studies that accurately examine the relationship between a specific food item and 

cancer are difficult to design, not least because the dietary assessment methods are 

inherently subjected to recall bias. Nevertheless, there are several dietary elements 

that have been shown to be linked to CRC.  

     A high intake of dietary fibre, in particular cereal fibre and whole grains, has been 

associated with a reduced risk of colorectal cancer (Aune et al, 2011). The partial or 

total fermentation of fibre in the colon leads to the production of short chain fatty 

acids such as butyrate, and it is thought that these play a pivotal role in maintaining 

normal colonic function and preventing disease by reducing the intraluminal pH, 

decreasing the conversion of bile acids to secondary bile acids (Birkett et al, 1996), 

and more importantly, exerting anti-proliferative properties and tumour-suppressive 

effects (Leonel et al, 2012; Fung et al, 2013). Dietary fibres also have the effect of 

diluting stool contents, bulking and increasing the frequency of bowel movements, 

reducing the concentration and contact time of carcinogens (Anderson et al, 2009).   

     Numerous prospective studies have linked meat consumption, in particular red 

meat and processed meat, to a higher risk of CRC (Larsson et al, 2006; Chan et al, 

2011). A dose-response meta-analysis of epidemiological studies suggest that there 

was a 24% increase in CRC risk for an increase of 120g/day of red meat and a 36% 

increase in risk for 30g/day of processed meat (Norat et al, 2002). It is postulated that 

the haem iron in red meat has a catalytic effect on the endogenous formation of 
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carcinogenic N-nitroso compounds and the formation of cytotoxic and genotoxic 

aldehydes (Bastide et al, 2011). The nitrites found in processed meat are also 

converted to N-nitroso compounds in the bowel.  

     Early epidemiological observations showed that the incidence and death rates of 

CRC were lower among individuals living in southern latitudes with relatively higher 

sunlight exposure, than among those living at northern latitudes (Garland et al, 

1980). Because exposure to ultraviolet-B sunlight leads to the production of vitamin 

D, it was hypothesised that the variation in vitamin D levels might account for this 

association. This hypothesis have since been tested in various ways, including 

association studies with annual solar radiation levels (Mizoue et al, 2004), 

seasonality (Robsahm et al, 2004), dietary vitamin D intake (Grant et al, 2004; 

Giovannucci et al, 2005; Touvier et al, 2011), pre-diagnostic circulating vitamin D 

levels (Garland et al, 1989; Tangrea et al, 1997; Feskanich et al, 2004), genetic 

polymorphisms in the vitamin D receptor (Wong et al, 2003; Park et al, 2005, 

Touvier et al, 2011), and a composite score of multiple vitamin D predictors 

including skin pigmentation, region of residence, dietary intake, body mass index 

and physical activity (Giovannucci et al, 2005). Although establishing a causal 

relationship between CRC incidence and vitamin D is challenging because 

environmental risk factors associated with CRC may also be associated with vitamin 

D deficiency (e.g. co-causality with physical activity), all the epidemiological 

findings point towards hypovitaminosis D as a risk factor for developing CRC, with 

biological data to suggest that the vitamin D pathway activation induces cellular 

differentiation and inhibits proliferation, invasiveness, angiogenesis and metastatic 

potential (as reviewed by Peterlik et al, 2004).  

     There is also some evidence of an association between total energy intake and the 

risk of developing CRC. However, this is relationship is likely to be indirect and may 

be dependent on other factors, such as physical activity (as reviewed by Wiseman, 

2008). Exercise appears to have a dose-response reduction in the rate of CRC, and it 

is postulated that the increase in insulin-like growth factor-binding protein and the 

reduction of prostaglandins may be the mechanism by which exercise provides this 

protective effect. Other non-dietary factors have also been associated with increasing 

the risk of CRC. Tobacco smoking doubles the risk of colorectal adenomas (Botteri 
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et al, 2008), and other cohort studies have found that alcohol intake increases the risk 

of CRC (Moskal et al, 2007).  

1.3.2 Inflammation 

     Inflammatory bowel disease is a major risk factor for developing colorectal 

cancer. Over 20% of patients with inflammatory bowel disease develop colitis-

associated cancer (CAC) within 30 years of disease onset, a subtype of CRC that is 

associated with a high mortality of >50% (Lakatos et al, 2008). Although CAC is 

thought of as a distinct subtype of colorectal cancer, there are similarities between 

CAC and other types of CRC that develop without any signs of overt inflammatory 

disease. The essential stages of cancer development such as aberrant crypt foci, 

polyps, adenomas and carcinomas, as well as common genetic and signalling 

pathways such as those involving Wnt, β-catenin, KRAS, p53, TGF-β, and DNA 

mismatch repair, are similar between CAC and sporadic CRC (as reviewed by Terzić 

et al, 2010). Furthermore, sporadic CRC display inflammatory infiltration and 

increased pro-inflammatory cytokine expression (Clevers, 2004; Atreya et al, 2008). 

There is evidence from numerous observational studies that non-steroidal anti-

inflammatory drugs such as sulindac, celecoxib and aspirin may have 

chemopreventative effects, and it is thought that these compounds mediate risk 

reduction by modulating cyclooxygenase (COX) enzymatic activity and the nuclear 

factor-κB (NK-κB) pathway (Yamamoto et al, 1999; Larsson et al, 2006, Flossmann 

et al, 2007; Chan et al, 2007; Arber et al, 2006, Meyskens et al, 2008; Half et al, 

2009). Of these agents, the evidence for aspirin is most convincing, with a large 

randomised controlled trial showing a risk reduction in high-risk individuals taking 

low-dose aspirin (Burn et al, 2011).  

1.3.3 The microbiome 

     There is emerging interest in the role of the microbiota in the initiation and 

progression of CRC. Microbiome changes that have been reported to be observed in 

CRC patients include S. bovis (as reviewed in Burnett-Hartman et al, 2008), 

Streptococcus spp. (Wang et al, 2012), Escherichia coli (Bonnet et al, 2014), 
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Fusobacterium nucleatum (Castellarin et al, 2012; Kostic et al, 2012), Clostridium 

(Scanlan et al, 2008), Bacteroides (Wang et al, 2012) and various butyrate- 

producing bacteria (Balamurugan et al, 2008; Wang et al, 2012). Apart from these 

observed associations, experimental animal studies support a direct influence of the 

gut microbiota on tumour formation (Dove et al, 1997; Arthur et al, 2012) that is 

inter-dependent with the host inflammatory response (Arthur et al, 2014; Boleji et al, 

2010).  

     Bacterial metabolism in the colon is fermentative and also utilises anaerobic 

respiration. As alluded to in the previous section, undigested dietary components and 

endogenous products are fermented by the anaerobic microbial community to 

produce an extraordinarily wide range of metabolites. The major fermentation 

products are organic acids, in particular the short-chain fatty acids (SCFA) acetate, 

propionate and butyrates. Aside from providing an energy source to gut epithelial 

cells, SCFA have been shown to regulate colonic regulatory T-cells (Smith et al, 

2013), downregulate pro-inflammatory cytokines in colonic macrophages by 

inhibiting the activity of histone deacetylases (Chang et al, 2014), selectively induce 

apoptosis of CRC cells (Buda et al, 2003; Clarke et al, 2008), and maintain intestinal 

homeostasis. Prominent butyrate-producing species indicates healthy, diverse 

microbiota, and maintains favourable conditions for a stable and healthy gut 

community. By contrast, dysbiosis is characterized by a reduction in microbial 

diversity and an increase in pro-inflammatory, pathogenic species, which can be 

caused by a poor diet, antimicrobial therapy or genetic predisposition.  

     The microbial communities that inhabit our gastrointestinal tract are tractable 

environmental factors that we are exposed to continuously, and it has become 

increasingly clear that the collective activities of the resident gut microbiota and their 

metabolic products plays a role in the development of CRC (as reviewed by Schwabe 

et al, 2013; Louis et al, 2014). Hence, it is likely that there is a multifaceted 

relationship between diet and microbial metabolism that promotes CRC via pro-

inflammatory interactions with host intestinal cells.  
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1.3.4 Genetic heritability  

     It has long been known that inherited susceptibility plays an important role in the 

predisposition to CRC. The earliest evidence for this came from epidemiological 

studies in the fifties that showed a 2-3 fold increase in risk in first degree relatives of 

CRC patients (Johns et al, 2001). Analysis of phenotype concordance in twins 

estimates the heritability of colorectal cancer on the liability scale to be around 0.35 

(Lichtenstein et al, 2000). Until recently, our understanding of the hereditary 

component was based on rare, high-penetrance mutations in a few genes, such as 

APC, mismatch repair (MMR) genes, SMAD4, and MUTYH. Despite the large effects 

of these rare variants, their low allele frequency means their overall contribution to 

disease burden is small (Foulkes et al, 2008). Statistical modelling of the pattern of 

familial occurrence of colorectal cancer after exclusion of known high-risk genes 

suggest that the remaining genetic heritability is likely to be polygenic with the co-

inheritance of multiple genetic variants, each with a modest individual effect, causing 

a wide range of risk in the population (Figure 1.3). Rare, moderately-penetrant risk 

alleles (MAF<2%; relative risks>2.0) and common, low-penetrance alleles 

(MAF>10%; OR<1.5) are likely to occur as a continuum, and extensive efforts are 

underway to comprehensively identify these susceptibility variants. 

 

Figure 1.3. Polygenic model of disease susceptibility. Cases have a shift towards a higher 
number of high risk alleles. Adapted from Whiffin et al, 2014.  
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1.3.4.1 Very rare, high-penetrance familial colorec tal cancer 

syndromes 

     Hereditary CRC, where a clear genetic basis for the disease has been defined, 

accounts for 4-6% of colon cancer incidence (Rustgi, 2007). Family-based genetic 

linkage and positional cloning studies have led to the identification of numerous 

CRC susceptibility genes (Table 1.1). The two major Mendelian cancer syndromes 

that account for the vast majority of hereditary CRC cases include Familial 

Adenomatous Polyposis (FAP) and Lynch Syndrome.   

 

 

GENE(S) SYNDROME RISK IN 
MUTATION 
CARRIERS 

MODE OF 
INHERITANCE 

APC FAP 90% by age 45 Dominant 

Mismatch repair 
genes 

Lynch Syndrome 40%–80% by age 
75 

Dominant 

MUTYH MYH-associated 
polyposis 

35%–53% Recessive 

SMAD4/BMPR1A Juvenile Polyposis 
syndrome 

17%–68% by age 
60 

Dominant 

STK11 Peutz-Jeghers syndrome 39% by age 70 Dominant 

PTEN Cowden syndrome 15% lifetime risk Dominant 

POLD1/POLE Oligopolyposis  Dominant 

Table 1.1 Familial CRC syndromes and the associated high-penetrance gene mutations. 
Adapted from Whiffin et al, 2014.  

 

 

     Familial adenomatous polyposis (FAP) is characterized by the development of 

hundreds to thousands of benign adenomatous polyps that carpet the colon and 

rectum of affected individuals. These polyps usually appear during the second or 

third decade of life. If the colon is not removed, cancer will inevitably develop in all 

FAP patients, with an average age of colon cancer development of 39 years (Wills et 

al, 2002). It is inherited as an autosomal dominant disease, with a population 
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incidence of approximately 1 in 8000 (Bisgaard et al, 1994). Germline mutations of 

the APC gene on chromosome 5q21 is responsible for over 95% of affected families. 

APC mutations achieve near 100% penetrance, although there is marked variation in 

phenotypic expression of the disease. Extracolonic tumours also occur and include 

small bowel, gastric and periampullary tumours, adrenal adenomas and carcinomas, 

and thyroid carcinomas. Other associated lesions include desmoid tumours and 

congenital hypertrophy of the retinal pigment epithelium (CHRPE) (Lynch et al, 

1998). 

     The gene product of the intact APC gene functions as a tumour suppressor. It is a 

negative regulator in the Wnt signalling pathway (Goss et al, 2000), where it binds to 

and phosphorylates soluble beta-catenin leading to its cytosolic degradation. In FAP, 

the loss of functioning APC protein leads to the unregulated translocation and 

accumulation of beta-catenin in the cell nucleus, where it interacts with TCF/LEF 

transcription factors to constitutively activate the transcription of many gene targets 

including MYC, CCND1, CD44 and BMP4 (Tetsu et al, 1999; He et al, 1998; van de 

Wetering et al, 2002). The loss of wild-type APC may also affect tumourigenesis via 

other mechanisms such as the regulation of cell migration (Kawasaki et al, 2003; 

Sansom et al, 2004) and the organisation of the actin cytoskeletal network (Watanabe 

et al, 2004).  

     Lynch Syndrome is an autosomal dominant disorder and is the most common 

familial CRC syndrome, accounting for 2% - 3% of all CRC cases (Lynch et al, 

2000). Without a distinct polyposis phenotype, a detailed family history becomes 

critical in the detection of Lynch Syndrome families. Lynch Syndrome tumours tend 

to display an earlier onset than sporadic colon cancers and are more likely to occur in 

the proximal colon (Lynch et al, 2009). Apart from CRC, Lynch Syndrome families 

also see a predisposition for extra-colonic cancers, most notably endometrial cancers, 

as well as cancers of the ovary, small intestine, stomach, hepatobiliary tract, urinary 

tract and brain. Germline mutations in one of the MMR genes are responsible for this 

susceptibility disorder, and confers a lifetime risk of CRC and endometrial cancer of 

60-80% and 40-60% respectively (Meyer et al, 2009). The penetrance has been 

observed to be significantly greater in males than females (74% vs 30%) but the risk 
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of endometrial cancer exceeded that for CRC in females (42%) (Dunlop et al, 1997), 

suggesting that there are gender-specific modifiers of risk. 

     There has been a total of seven genes identified as members of the MMR family, 

with the majority of Lynch Syndrome families having mutations in either MSH2 or 

MLH1 (Liu et al, 1996; Mitchell et al, 2002). Mutations of MSH6 have been 

identified in a small minority of cases (Kolodner et al, 1999), while rare mutations in 

PMS1 and PMS2 have been reported (Nicolaides et al, 1994; Worthley et al, 2005). 

Lynch Syndrome is usually caused by the inheritance of one mutant MMR allele and 

loss of heterozygosity at the remaining wild-type allele. This leads to a mutator 

phenotype where cells accumulate further mutations at an amplified rate, increasing 

the probability of mutations in other proto-oncogenes and tumour suppressors. The 

mutator phenotype manifests as a specific genomic instability event at small repeated 

sequences in DNA called microsatellite instability (Liu et al, 1996), as the MMR 

system is less effective in correcting the slippage error of DNA polymerase at highly 

repetitive regions of DNA. There are also other non-repair functions of the MMR 

pathway that may contribute to tumourigenesis, such as the activation of cell cycle 

checkpoints and apoptosis in response to DNA-damaging agents and the 

maintenance of homologous recombination fidelity (as reviewed by Heinen, 2011). 

Evidence from studies of mouse models suggest that although the development of a 

mutator phenotype is sufficient to drive tumourigenesis, the ability of MMR-

defective cells to survive under conditions of increased damage may accelerate the 

process (Lin et al, 2004; Yang et al; 2004).  

     In the last decade, families with an attenuated FAP-like phenotype that do not 

appear to carry any germline mutation in APC have been described. Over 25% of 

these patients carried germline biallelic mutations in the base-excision repair gene 

MUTYH (Al-Tassan et al, 2002; Jones et al, 2002; Sieber et al, 2003; Farrington et 

al; 2005), and this form of recessive hereditary cancer has been termed MUTYH-

associated polyposis (MAP). More recently, specific germline exonuclease domain 

mutations in polymerase proofreading genes POLD1 and POLE have also been 

identified to be causative for the development of multiple colorectal adenomas and 

CRC (Palles et al, 2013). Collectively, the MMR defects of Lynch Syndrome, base 

excision repair defects that cause MAP, and the mutations in proofreading genes 
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emphasise the critical role of replication errors and coupled repair of base pair-level 

mutations in the predisposition to CRC.  

     Rarer mutations in other genes associated with hereditary CRC include those in 

STK11 (Peutz-Jeghers syndrome), PTEN (Cowden’s disease) and BMPR1A/SMAD4 

(Juvenile Polyposis) (Ngeow et al, 2013), where CRC risk is mediated through the 

development of hamartomas or mixed polyps. In comparison to the gatekeeper 

function of the APC gene and the caretaker roles of the mismatch repair and MUTYH 

genes, these genes are believed to create an epithelial milieu at risk for neoplastic 

development and have been dubbed ‘landscaper’ genes (Kinzler et al, 1998), 

highlighting the various signalling pathways that contributes to the formation of 

cancer.  

1.3.4.2 Rare, moderately-penetrant risk variants 

     Candidate gene resequencing studies in affected families have been the mainstay 

of the methodologies used to identify this subgroup of risk variants. As these 

approaches relied on a priori knowledge, their success has been hampered by our 

limited knowledge of tumour biology. Rare successes of this approach include the 

discovery of the missense variant (APC I1307K) that is present in ~6% of Ashkenazi 

Jews (Laken et al, 1997). The APC I1307K T>A variant creates a small 

hypermutable region that appears to increase replication errors in APC, increasing 

the risk of CRC by approximately two-fold.  

     With the advent of large-scale exome sequencing studies in recent years, exome 

arrays have been specifically designed to allow exome-wide systematic interrogation 

of coding variants with putative detrimental functional consequences. In a large 

unrelated case-control study, four novel coding variants were identified to be 

associated with CRC risk (Timofeeva et al, submitted). However, the minor alleles of 

these variants are common (MAF 0.09-0.50) with modest effect sizes (OR 1.08-

1.15). No rare alleles (MAF<0.05) of moderate effect were identified, despite 

adequate power to detect such effect sizes. This is contrary to the expectation that 

coding sequence variants with putative deleterious effects might have a more 

profound impact on risk. This suggests that rare genetic variation of moderate 
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penetrance are likely to segregate in families, and that exome and genome 

sequencing of trios and families may be a better strategy to identify these variants. 

1.3.4.3 Common genetic risk variants 

     A substantial proportion of the remaining heritable risk is likely to be accounted 

for by numerous low-penetrance genetic variants, each with a relatively high 

frequency in the population, as described in the “common disease-common variant” 

hypothesis. This model posits that if a heritable disease is common in the population, 

then the genetic contributors will also be common in the population. However, even 

though the contribution of an individual variant to the overall inherited susceptibility 

of a disease may be relatively large, the penetrance of these variants will be very 

small, which would explain why these variants rarely cause multiple cases in families 

and hence are not detectable through genetic linkage studies. 

Until mid-2007, no common variants contributing to the heritability of colorectal 

cancer risk had been successfully identified and consistently replicated. In the last 

decade, genome-wide association studies (GWAS) have provided a new conceptual 

framework in the search for the genetic basis of CRC. By exploiting the non-random 

coinheritance of genetic variants (linkage disequilibrium [LD]), these studies utilise 

single nucleotide polymorphism (SNP) “tags” for haplotypes to representatively 

assay the entire genome. As the genome is screened without any prior hypothesis for 

specific regions, genes, or variants thereof, GWAS are regarded as “agnostic” or 

hypothesis-generating, rather than hypothesis-driven. The last decade has seen the 

assembly of large well-characterised case-control series with sufficient power to 

account for the large number of statistical tests performed and detect small effect 

sizes. Facilitated by technological advances and cost-reduction in high-density 

reproducible genotyping platforms, over twenty common low-penetrance variants 

have since been identified to be associated with CRC, all of which have been 

validated in multiple case-control cohorts from various populations (Table 1.2). 
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tagSNP Locus SNP position MAF 
Effect size: 

OR (95% CI) 
Reference 

rs10911251 1q25.3 chr1:183081194 0.39 1.09 (1.06-1.13) Peters et al, 2013 

rs6687758 1q41 chr1:222164948 0.22 1.09 (1.06–1.12) Houlston et al, 2010 

rs6691170 1q41 chr1:222045446 0.26 1.06 (1.03-1.09) Houlston et al, 2010 

rs10936599 3q26.2 chr3:169492101 0.30 0.93 (0.91–0.96) Houlston et al, 2010 

rs1321311 6p21.2 chr6:36622900 0.25 1.10 (1.07-1.13) Dunlop et al, 2012 

rs16892766 8q23.3 chr8:117630683 0.07 1.27 (1.20-1.34)* Tomlinson et al, 2008 

rs6983267 8q24.21 chr8:128413305 0.49 1.17 (1.12-1.23)* 
Zanke et al, 2007; 

Tomlinson et al, 2007 

rs1035209 10q24.2 chr10:101345366 0.14 1.12 (1.08-1.16) Whiffin et al, 2014 

rs10795668 10p14 chr10:8701219 0.33 0.87 (0.83-0.91)* Tomlinson et al, 2008 

rs3802842 11q23.1 chr11:111171709 0.29 1.11 (1.08-1.15) Tenesa et al, 2008 

rs3824999 11q13.4 chr11:74345550 0.38 1.08 (1.05-1.10) Dunlop et al, 2012 

rs3217810 12p13.32 chr12:4388271 0.06 1.20 (1.12-1.28) Peters et al, 2013 

rs11169552 12q13.13 chr12:51155663 0.24 0.92 (0.90–0.95) Houlston et al, 2010 

rs7136702 12q13.13 chr12:50880216 0.46 1.06 (1.04–1.08) Houlston et al, 2010 

rs1957636 14q22.2 chr14:54560018 0.43 1.08 (1.06-1.11) Tomlinson et al, 2011 

rs4444235 14q22.2 chr14:54410919 0.46 1.11 (1.08-1.15) Houlston et al, 2008 

rs11632715 15q13.3 chr15:33004247 0.47 1.12 (1.08-1.16) Tomlinson et al, 2011 

rs16969681 15q13.3 chr15:32993111 0.18 1.18 (1.11-1.25) Tomlinson et al, 2011 

rs9929218 16q22.1 chr16:68820946 0.29 0.90 (0.87-0.94) Houlston et al, 2008 

rs4939827 18q21.1 chr18:46453463 0.48 0.86 (0.79–0.92) Broderick et al, 2007 

rs10411210 19q13.11 chr19:33532300 0.10 0.83 (0.78-0.88) Houlston et al, 2008 

rs4813802 20p12.3 chr20:6699595 0.25 1.09 (1.06-1.12) Tomlinson et al, 2011 

rs4925386 20q13.33 chr20:60921044 0.41 0.93 (0.91–0.95) Houlston et al, 2010 

rs961253 20p12.3 chr20:6404281 0.35 1.12 (1.08-1.16) Houlston et al, 2008 

rs5934683 Xp22.2 chrX:9751474 0.37 1.07 (1.04-1.10) Dunlop et al, 2012 

Table 1.2 Twenty-five single-nucleotide polymorphisms that are associated with CRC as 
identified from GWAS. * denotes OR for heterozygotes are presented when the OR per allele 
is not calculated.  
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     The first GWAS for CRC were carried out in Scotland (Zanke et al, 2007; Tenesa 

et al, 2008), England (Tomlinson et al, 2007; Broderick et al, 2008), and Canada 

(Zanke et al, 2007). These studies utilised a primary phase that involved modest 

sample sizes (~1000 cases and 1000 controls genotyped for ~0.5 million tagging 

SNPs), followed by larger validation phases of those SNPs with the strongest signals 

of association. Although the six initial genetic variant associations with CRC were 

highly significant and passed the stringent threshold of multiple-testing, the effect 

size of these variants were modest at best (odds ratio ≈ 1.2). Consequently, the power 

to detect the effects of such loci was modest, with the likelihood of discovery being 

highly sensitive to small chance differences in genotype frequencies. Hence, it is 

thought that many more CRC loci of similar or smaller effect size may exist, 

prompting further large-scale collaborative efforts to discover new risk variants that 

may not be easily discoverable owing to small effect sizes and/or low risk allele 

frequencies. Meta-analyses of all initial UK GWAS data (Houlston et al, 2008) and 

further case-control sets (Houlston et al, 2010, Dunlop et al, 2012; Whiffin et al, 

2014) revealed fourteen further risk loci with even smaller effect sizes (odds ratio ≤ 

1.1) than those that had been detected previously. Of note, an X-linked locus at 

Xp22.2 was associated with CRC, and represents the first evidence for the role of X-

chromosome variation in the predisposition to a non-sex specific cancer (Dunlop et 

al, 2012).  

     Other new variants have also been discovered by modifying the traditional 

GWAS approaches. A candidate-gene based fine-mapping study was able to identify 

new predisposition tagging SNPs, as well as deconvolute the tagSNP association at 

the GREM1 locus, demonstrating that the original rs4779584 SNP was a synthetic 

association tagging two independent functional SNPs (Tomlinson et al, 2011).  To 

increase sample size and statistical power, a meta-analysis included colorectal 

adenoma cases based on the knowledge that adenomas are well-defined CRC 

precursors and hence share a similar aetiology with the malignant phenotype (Peters 

et al, 2013). However, two out of their four putative associations failed to be 

replicated in another meta-analysis that shared an overlapping sample set (Whiffin et 

al, 2014). As these studies relied on different imputation references (HapMap 30 

trios in Peters et al, 2013 versus 1000 Genomes Project in Whiffin et al, 2014) to 
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recover the genotypes of this two SNPs, the failure of replication is likely to reflect 

discrepancies in imputation, a key issue pertinent to the later GWAS studies. 

Although imputation with publicly available, well-catalogued deep-sequencing data 

is a highly useful and cost-effective measure to complement genotyping arrays, 

technical validation of imputation fidelity by sequencing is paramount to avoid 

spurious results. 

     GWAS have proved to be a powerful approach in identifying common, low 

penetrance susceptibility loci for CRC without prior knowledge of disease pathways. 

Although each individual risk allele confers only a small relative risk, the SNPs are 

common and hence contribute significantly to the overall incidence of CRC. 

Furthermore, the accrual of risk variants in an individual also impacts significantly 

on an individual’s risk of developing CRC (Figure 1.4), and may allow the 

identification of higher-risk individuals in the general population who might benefit 

from earlier screening (Dunlop et al, 2012; Lubbe et al, 2012). Although the 

collective risk conferred by currently identified common variation explains only ~2% 

of colorectal cancer, this estimate is likely to be conservative for several reasons. 

Firstly, the effect of the causal variant(s) at each locus is expected to be larger than 

the association detected by the tagging variant. As evidenced by the 14q22 

association, multiple risk variants may exist at each locus, including low-frequency 

variants with significantly larger effects (Tomlinson et al, 2011). Secondly, the 

interactions of these variants with epigenetic regulation or environmental factors may 

lead to a greater increase in disease risk. Epistatic interactions between these low-

penetrance variants could in theory result in a larger impact on CRC risk (Zuk et al, 

2012), however, the evidence to date suggests that the effects of most risk loci appear 

to be independent. Aside from effect underestimation of established risk loci, the 

remaining heritable susceptibility may also be embodied in a multitude of common 

risk alleles with even smaller effect sizes that are yet to be identified. This is 

evidenced by larger and more highly-powered GWAS in breast (Michailidou et al, 

2013) and prostate (Eeles et al, 2013) cancer, identifying 41 and 23 novel risk loci 

respectively. Furthermore, structural variation such as indels and copy number 

variation that are likely to play a role in disease predisposition are not optimally 

captured by commerical GWAS arrays, and may account for some of the missing 
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heritability that have eluded GWAS efforts thus far. A new generation of studies 

involving exome and whole-genome sequencing, as well as gene-environment 

interactions are hence underway to improve our understanding in the inherited 

predisposition to CRC.   

 

 

 

Figure 1.4 Plots showing the increasing odds ratios for colorectal cancer with the increasing 
number of risk alleles, London, United Kingdom, 1999–2007. The vertical bars represent 

95% confidence intervals. The horizontal line denotes the null value (odds ratio = 1.0. 
Adapted from Lubbe et al, 2012.  
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1.4 Functional effects of low-penetrance CRC risk v ariants  

     As alluded to in the previous section, GWAS in general have detected risk 

variants with only modest effect sizes that are deemed too small to be meaningful. 

However, individually small effect sizes represent the reality of common genetic 

variation and do not necessarily preclude clinical utility. For instance, a GWAS hit 

for circulating lipid levels maps to the HMG-CoA reductase (HMGCR) gene 

(Kathiresan et al, 2008), the rate-limiting enzyme in cholesterol biosynthesis and the 

target of the extremely successful cholesterol-lowering statin drug. This discrepancy 

occurs because a drug’s efficacy bears little relation to the degree of genetic variation 

in its target gene. Similarly, the size of the biological effect cannot be predicted by 

the epidemiological risk, or vice versa, not least due to pathway redundancies. 

Unravelling the mechanisms underlying GWAS associations will ultimately bring us 

closer to elucidating the genetic basis of complex disease, which in turn could 

identify novel causative biological pathways that may be suitable targets for 

chemopreventative drug development or repositioning of known therapeutics, as well 

as offer opportunities for personalised medicine. 

     The GWAS association signals in CRC have yet to be translated into a full 

understanding of the genetic elements that are mediating the effects of these 

susceptibility loci. Modern GWAS genotyping chips typically target SNPs chosen to 

capture variation across large genomic regions. These SNPs are not selected for 

having likely functional consequences, hence, hits from a successful GWAS merely 

mark a locus that encompasses one or more genetic variants that have biological 

functions driving the observed association with the trait phenotype. Contrary to early 

expectations, none of the GWAS-identified CRC risk variants are in protein-coding 

regions (Table 1.3). Assuming that the same is true for the candidate causal SNPs 

within the tagged haplotype block, the common heritability of CRC risk is thought to 

be mediated through genetic variation that influence gene regulation rather than 

protein sequence. The major challenge post-GWAS is to find the strongest candidate 

causal variants and identifying their target genes.  
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SNP Locus Closest gene Relative position Reference 

rs10911251 1q25.3 LAMC1 Intronic Peters et al, 2013 

rs6687758 1q41 DUSP10 125Kb upstream Houlston et al, 2010 

rs6691170 1q41 DUSP10 250Kb upstream Houlston et al, 2010 

rs10936599 3q26.2 MYNN Intronic Houlston et al, 2010 

rs1321311 6p21.2 CDKN1A 21Kb upstream Dunlop et al, 2012 

rs16892766 8q23.3 EIF3H 24Kb downstream Tomlinson et al, 2008 

rs6983267 8q24.21 POU5F1B 13Kb upstream Zanke et al, 2007; 
Tomlinson et al, 2007 

rs1035209 10q24.2 SLC25A28 25Kb downstream Whiffin et al, 2014 

rs10795668 10p14 BC031880* 400Mb downstream Tomlinson et al, 2008 

rs3802842 11q23.1 COLCA2 Intronic Tenesa et al, 2008 

rs3824999 11q13.4 POLD3 Intronic Dunlop et al, 2012 

rs3217810 12p13.32 CCND2 Intronic Peters et al, 2013 

rs11169552 12q13.13 DIP2B 2.5Kb upstream Houlston et al, 2010 

rs7136702 12q13.13 LARP4 6.5Kb downstream Houlston et al, 2010 

rs1957636 14q22.2 BMP4 135Kb upstream Tomlinson et al, 2011 

rs4444235 14q22.2 BMP4 5.5Kb downstream Houlston et al, 2008 

rs11632715 15q13.3 GREM1 6Kb upstream Tomlinson et al, 2011 

rs16969681 15q13.3 SCG5 59Kb downstream Tomlinson et al, 2011 

rs9929218 16q22.1 CDH1 Intronic Houlston et al, 2008 

rs4939827 18q21.1 SMAD7 Intronic Broderick et al, 2007 

rs10411210 19q13.11 RHPN2 Intronic Houlston et al, 2008 

rs4813802 20p12.3 BMP2 49Kb upstream Tomlinson et al, 2011 

rs961253 20p12.3 BMP2 344Kb upstream Houlston et al, 2008 

rs4925386 20q13.33 LAMA5 Intronic Houlston et al, 2010 

rs5934683 Xp22.2 GPR143 Intronic Dunlop et al, 2012 

Table 1.3 The location of the tagging SNPs associated with CRC risk in relation to the 
closest gene. * denotes a predicted gene when there is no known protein-coding transcript in 
the vicinity 

 

 

 

 

 

 



26 
 

     Identification of the truly causal variant requires a complete catalogue of all 

variants within the locus and the generation of such a catalogue has been the rate-

limiting step. Fine-mapping of CRC risk loci is very much in its infancy, with most 

studies attempting to only narrow down the location of putative functional variants 

by imputation and targeted re-sequencing methods (Pittman et al, 2008; Carvajal-

Carmona et al, 2011; Whiffin et al, 2013). While these studies suggest candidate 

regions, very few functional studies have been carried out to test these postulations.  

The most well-studied CRC locus is the 8q24.21 locus, which despite its location in a 

gene desert, has pleiotropic effects on cancer susceptibility. Apart from its 

association with CRC, this locus also habours risk loci for solid tumours such as 

breast (Easton et al, 2007), prostate (Al Olama et al, 2009), ovarian (Ghoussaini et 

al, 2008) and bladder cancer (Kiemeney et al, 2008), as well as chronic lymphocytic 

leukemia (Crowther-Swanepoel et al, 2010). The rs6983267 SNP which is associated 

with increased risk of both colorectal and prostate cancers lie within an 

evolutionarily conserved region, and has been shown via computational predictions, 

enhancer reporter assays, chromatin-immunoprecipitation (ChIP) and transgenic 

mouse embryos to possess in silico, in vitro and in vivo properties of an enhancer, 

with allele-specific differential binding to the Wnt-regulated transcription factors 

TCF4 (Tuupanen et al, 2009; Sotelo et al, 2010) and TCF7L2 (Pomerantz et al, 

2009). The target gene of this proposed enhancer element is not immediately 

obvious; although the well-known CRC proto-oncogene MYC lies ~335kb telomeric 

to rs6983267, there is a lack of association between the rs6983267 and gene 

expression in normal colorectal tissue or paired tumours. However, chromosome 

conformation capture (3C) techniques demonstrated long-range physical interaction 

between the enhancer element and MYC in a tissue-specific manner (Pomerantz et al, 

2009; Sotelo et al, 2010). Altogether, the evidence from these functional studies 

suggests that the 8q24 risk locus acts as part of a cis-regulatory enhancer element for 

the MYC proto-oncogene, mediating CRC risk through its differential binding with 

TCF transcription factors.  

     Evidence for functionality at the 8q23.3 and 18q21 CRC risk loci have also been 

demonstrated by targeted re-sequencing and functional assays. At the 8q23.3 locus, 

the putative causal variant rs16888589 was validated using reporter gene assays and 
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electrophoretic mobility shift assays (EMSA), with 3C analysis demonstrating a 

physical interaction between the encompassing control element and the promoter 

region of EIF3H located 144kb telomeric to the SNP (Pittman et al, 2010). At the 

18q21 locus, a transgenic Xenopus model system was utilised to demonstrate that the 

putative causal variant intronic to SMAD7 (Novel 1) is associated with a reduced 

expression of SMAD7 in the colorectum (Pittman et al, 2009). There is also evidence 

that the tagging SNP rs4929827 is associated with SMAD7 expression in human 

lymphoblastoid cell lines (Broderick et al, 2007). 

     Apart from these three loci described above, direct evidence implicating 

functionality of the remaining GWAS risk loci was scarce prior to the conception of 

this PhD project. Two cis-expression quantitative trait loci studies have since 

replicated part of my findings (Loo et al, 2012; Closa et al, 2014) and will be 

discussed whenever relevant in result Chapter 6. 

1.5 eQTL 

     Landmark studies have clearly demonstrated that there is extensive natural 

variation in human gene expression within the same cell type and development stage, 

and that the gene expression phenotype is highly influenced by inherited DNA 

sequence variation (Cheung et al 2003; Morley et al, 2004; Stranger et al, 2005; 

Goring et al, 2007; Dixon et al, 2007). These non-coding germline variants are 

termed expression quantitative trait loci (eQTLs); they are referred to as local or cis-

eQTLs when they map to the approximate location of the target gene, whereas those 

that map to considerable distances from the gene they regulate, often on different 

non-homologous chromosomes, are referred to as distant or trans-eQTLs. As the 

terminology cis- and trans- connote mechanism, it has been cautioned that this 

designation is best-reserved for use only when the functional variant has been 

identified (Rockman et al, 2006). The distinction between local and distant is 

arbitrary, and is usually pre-defined by study authors to be within 1-2 Mb of the 

variant under consideration. 
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1.5.1 Utility of eQTL in complex disease traits 

     eQTLs have been implicated in the predisposition to complex diseases in twin 

studies (Grundberg et al, 2012) as well as empirical studies of lymphoblastoid cell 

lines (Nicolae et al, 2010). By mapping the genetic architecture of gene expression in 

human tissues, eQTL studies can be useful in discovering candidate susceptibility 

genes for multifactorial diseases. The value of this has been illustrated by several 

proof-of-principle studies. Genome-wide transcriptional profiles of lymphocytes 

from the San Antonio Family Heart Study demonstrated that cis-eQTLs can be used 

as a discovery tool to identify novel candidate genes (and variants therein) that 

influence complex traits, e.g. VNN1 gene and high-density lipoprotein cholesterol 

concentration (Goring et al, 2007). Another study examining genetic markers of 

childhood asthma incorporated eQTL analysis of EBV-transformed lymphoblastoid 

cell lines (LCL) as a component of the GWAS design, and utilised it to identify a 

novel candidate susceptibility gene ORMDL3 for childhood asthma (Moffat et al, 

2007). This has since spurred functional studies and transgenic mouse models 

demonstrating a role for this gene in asthma pathogenesis, providing valuable 

insights into the molecular mechanisms of proinflammatory diseases (Cantero-

Recasens et al, 2009; Ha et al, 2013; Miller et al, 2014). Such findings have 

encouraged the use of eQTL data as a tool for interpreting results from GWASs, 

bridging the gap between common genetic markers for disease and the underlying 

mechanisms for clinical phenotypes. Importantly, eQTL annotation is carried out in 

an unbiased fashion, where the mapping of associations between alleles and target 

genes require no prior knowledge of functional mechanisms. Analyses of Crohn’s 

disease are an example of this approach, where the biological effects of genetic 

markers were not readily deducible. Examination of LCL eQTL databases showed 

that one or more of these polymorphisms act as cis-acting factors influencing 

expression of genes (Libioulle et al, 2007). Similarly, the causal variant and causal 

gene for an LDL-cholesterol locus was identified by examining cis-gene expression 

levels in the liver and adipose tissue, providing the impetus for functional 

investigations of the implicated gene SORT1 and its role in a novel lipoprotein 

regulatory pathway (Musunuru et al, 2010). More complex analysis of genetic 

variants that perturb networks through eQTL effects has provided important novel 
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insights into the unravelling of complex trait genetics (Emilsson et al, 2008), as the 

genome exerts it functions through complex networks and multiple pathways that 

produce a wide range of responses. Hence, eQTL studies can be a powerful 

interpretive biological tool, and are integral in the systematic identification of 

transcriptional modules and construction of regulatory networks.  

1.5.2 eQTL in the functional annotation of CRC risk  loci 

     For several of the colorectal cancer risk loci, there is indirect evidence of an 

association with gene expression, but the evidence is circumstantial at best as they 

are largely based on SNPs in linkage disequilibrium with that tagging SNP. For 

example, the CDH1 intron variant rs9929218 is in strong linkage disequilibrium with 

a CDH1 promoter variant (Houlston et al, 2008), which has been reported to 

influence CDH1 transcription in prostate cancer cell lines (Li et al, 2000). The 

12q13.13 variant is in linkage disequilibrium with SNPs associated with DIP2B 

expression in lymphoblastoid cell lines, and the LAMA5 intronic variant rs4925386 is 

in linkage disequilibrium with an eQTL for LAMA5 expression in the liver (Houlston 

et al, 2010). However, the lack of an apparent effect on expression may merely 

reflect tissue-specificity of regulatory mechanisms. Most expression quantitative trait 

loci (eQTL) data sets are derived from only a limited number of source cell types, 

including monocytes, lymphoblastoid cells, liver and brain cells, and have not been 

comprehensively catalogued in colorectal tissue. This is a particularly important 

consideration as an estimated 50%-90% of eQTL are tissue dependent (Dimas et al, 

2009; Nica et al, 2011), and trait-associated variants tend to exert more cell-type 

specificity (Fu et al, 2012; Brown et al, 2013). The other crucial aspect of the 

selection of tissue type in the measurement of eQTLs is the normality of the target 

tissue. Given that somatic alterations present in cancer cells can greatly affect 

expression (Figure 1.5), subtle genomic influences on expression can be masked 

(Curtis et al, 2012) and consequently be undetectable. Hence, it has been suggested 

that eQTL studies should be performed on non-aberrant cells representative of the 

cell of origin for the disease under study (Edwards et al, 2013).  

     Finally, it should be noted that the identification of an eQTL provides only an 

associative link between genotype and gene transcription; although it may imply 
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causality, functional molecular approaches will be necessary to elucidate the 

underlying mechanism. Critically, even if a transcript is associated with a risk allele, 

this is not definitive of causation and functional follow up with assays relevant to the 

disease trait will be needed to demonstrate that a gene is directly involved in disease 

development.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5 Somatic variants influence breast tumour expression architecture to a much 
greater extent than germline variants. Venn diagrams depict the relative contribution of 
SNPs, copy number variations (CNVs) and somatic copy number aberrations (CNAs) to 
genome-wide, cis- and trans- tumour expression variation for significant expression 
associations. Adapted from Curtis et al, 2012.  
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1.6 Research Aims 

     The large knowledge gap between the epidemiology and functional biology of 

common genetic variation in colorectal cancer, calls for studies that will translate 

CRC genetic associations into function. The overarching aim of this project is to 

functionally characterise these germline risk variants, with a view to improve the 

understanding of the biological mechanism(s) underlying these risk loci.  

     As all of the established risk loci reside within non-coding regions, it was 

hypothesised that they influence tissue-specific regulatory mechanisms and 

consequently, exert subtle effects on gene expression levels. The starting point for 

this project was to systematically investigate the functionality of common, low-

penetrance risk variants using an unbiased eQTL approach that mirrors the agnostic 

style of GWAS. In view of the overall lack of direct association between these 

germline risk variants and expression in extra-colonic tissue types, it was 

hypothesised that any functional effects will be most prominent in the normal 

colorectal tissue, in particular the mucosal epithelial layer that harbours the cell of 

origin of colorectal cancer. Matched peripheral blood mononuclear cells (PBMC) 

will also be examined, as not only does this offer insight into the tissue-specificity of 

the underlying functional biology, any overlap between the two tissue-types could be 

advantageous in the context of identifying clinical biomarkers that are more easily 

accessible from patients. By integrating data from high-density DNA arrays and 

case-control series, the project also aims to identify the causal variant(s) that is most 

associated with specific gene expression as well as clinical risk.  

     Findings from the initial screening phases of the project will be rationalised and 

prioritised for further functional follow-up studies using molecular approaches. This 

is important, as few genes implicated in GWAS were previously evaluated in 

candidate gene studies. Surprisingly also, none of the currently identified loci are 

known to be involved in DNA repair, the principal pathway underscoring high-

penetrance CRC susceptibility and a large proportion of sporadic CRC. Hence, 

evidence of the functional mechanism underlying these associations will not only 

provide support for the GWAS approach in the discovery of common risk variants, it 
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will also allow the identification of target genes, offering new insights into the 

aetiology and pathogenesis of sporadic colorectal cancer.  

1.7 Experimental approach 

     Several methodological approaches will be utilised in this project to bridge the 

gap between genetic risk and biological function, demonstrating a collaborative 

framework between clinicians, genetic epidemiologists and molecular biologists.  

The principal theme of this project is to examine the association between genetic risk 

variants and gene expression in relevant non-aberrant tissue-types. To achieve this, 

normal mucosa specimens and matching blood from patients undergoing large bowel 

surgery were systematically collected and analysed. To simultaneously examine the 

expression of multiple genes, transcriptome-wide gene expression profiling with 

microarrays was utilised to maximise cost-effectiveness. As degradation of RNA 

compromises the ability to detect differential expression of genes especially those 

expressed at low levels, it is paramount that good quality, intact RNA was used to 

avoid poor data that may lead to erroneous conclusions. The isolation of intact RNA 

from the large bowel mucosa has inherent technical challenges and Chapter 3 focuses 

on the optimisation of this process to minimise RNA degradation that will have 

cascading detrimental effects on downstream experiments and analyses.  

     qRT-PCR technique is also a mainstay in this project due to the recurring themes 

of gene expression changes association with inherited variation. This highly-sensitive 

technique is of immense value in the same-sample validation of subtle differential 

gene expression results derived from microarray data, but its sensitivity is a double-

edged sword and may lead to misleading results if not rigorously performed. The 

appropriate use of reference genes can vastly influence the accuracy of qRT-PCR 

results, and Chapter 4 concentrates on the selection and validation of stably 

expressed reference genes used to normalise the expression of genes of interest. 

Throughout Chapter 5, 6, 7 and 8, qRT-PCR quantification of gene expression will 

feature prominently in the assessment of differential expression and genotype-

dependent functional differences, and the work presented in Chapter 4 allows 

confidence in the robustness of the data.  
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     Prior to the analysis of gene expression in relation to genetic risk variants, 

expression was first evaluated in relation to clinico-pathological features in Chapter 

5. This serves as a form of internal validation, and also highlights the need to adjust 

for such factors in the statistical analyses of the association between risk variants and 

gene expression.  

     Chapter 6 addresses the cis-eQTL analysis of the 25 CRC risk loci in normal large 

bowel mucosa and matching PBMC. This empirical approach is complemented by 

genotyping data from high-density arrays and imputation methods that aim to 

discover the functional variants underlying eQTL associations of risk loci.  

     The best eQTL associations are prioritised for technical validation, and Chapter 7 

addresses the molecular mechanism underlying the Xp22.2 locus. This was 

performed by first using targeted re-sequencing and fine-mapping to identify putative 

causal variants of the cis-eQTL association. Thereafter, candidate causal variants and 

the tagging SNP were compared with interrogation of publically available functional 

data, reporter gene assays, transient siRNA knockdown approaches, and CRC case-

control series.  These observational and experimental approaches culminates in the 

identification of the causal variant at the Xp22.2 locus that best explains the 

association with the target gene SHROOM2 as well as colorectal cancer genetic risk.  

     By inference, the target genes of the eQTL associations are likely to be associated 

with the risk of developing colorectal cancer. Chapter 8 describes functional follow-

up assays to dissect the role and expression pattern of SHROOM2, a gene that has not 

previously been implicated in CRC. Functional phenotypes such as cell population 

doubling, wound closure and transcriptomic profiles were assessed after transient 

siRNA knockdown in cell lines, and less conventional localisation approaches were 

sought as the lack of a specific antibody precluded the utility of immuno-staining 

techniques. 

     As revealed in Chapter 6, genetic variation exerts their effect on CRC risk in part 

by influencing the expression of cis-genes. However, it is also evident that there are 

still a large proportion of risk variants whose functions and target genes cannot be 

accounted for by cis-eQTL effects on baseline expression. Chapter 9 demonstrates an 

alternative approach that mirrors that of epidemiological gene-environment studies to 
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specifically investigate the 16q22.1 risk locus tagged by rs9929218, using the 

expression of the encompassing gene CDH1 as the measure of outcome. Vitamin D 

levels and its pathway activity are postulated to modify the influence of rs9929218 

on CDH1 expression, and this hypothesis is tested in the normal large bowel mucosa, 

cell lines and human colonic epithelial crypt organoids.  

     Although detailed discussion of the results is provided in each result chapter, 

Chapter 10 summaries the main themes and conclusions that have emerged during 

the entire course of this research.  

     Overall, the work presented in this thesis demonstrates a multi-disciplinary 

approach in understanding the mechanisms underlying CRC GWAS-identified risk 

variants. It demonstrates that unbiased empirical approaches can be used to prioritise 

candidate variants/genes for follow-up functional studies, as well as the value of 

candidate gene/pathway approaches towards the ultimate goal of understanding the 

functional basis of CRC genetic predisposition.  
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Chapter 2 

Materials and methods 

     This chapter describes the methods used in this thesis. More detailed methods are 

included in the results chapters where relevant. Where manufacturer’s protocols have 

been used, these have been referred to, and any adjustments made to the cited 

method have been detailed in the text. Standard safety procedures and COSHH 

regulations were adhered to. All cell line culture were performed in a class 1 

biological safety cabinet, whereas all biological material from primary tissue was 

handled in a class 2 safety cabinet. Reagents marked with an asterisk (*) were 

prepared by the technical services department at the MRC Human Genetics Unit, 

IGMM. Where the pH of solutions was adjusted this was done by adding 

concentrated HCl or NaOH as appropriate and monitoring of pH using a 

microprocessor pH meter (Hanna Interments).  

2.1 Biological material 

     This study was set up and performed in collaboration with NHS Lothian/South 

East Scotland SAHSC Bioresource. All patients gave written informed consent. All 

information pertaining to subjects were in compliance with UK legislation and 

conform to the Tissue Act Scotland, 2006.  

     115 patients undergoing bowel resection operations for cancer, adenomas or non-

malignant disease at the Western General Hospital, Edinburgh, were recruited for 

colonic tissue and peripheral blood sampling (detailed in Chapter 5). A further 40 

patients undergoing bowel resection for colorectal cancer only were recruited for 

serial peripheral blood sampling (detailed in Chapter 9). Patients with known familial 

cancer syndromes, inflammatory bowel disease or those who have received pre-

operative adjuvant chemo-radiotherapy were excluded. Recruitment and tissue/blood 

sampling was carried out over the course of this PhD with assistance from the group 

research nurse and technical staff from the Edinburgh Experimental Cancer Medicine 

Centre.  
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2.1.1 Sampling of fresh large intestinal mucosa and  tumour 

     The resected bowel specimens were transported fresh to the pathology laboratory 

at room temperature immediately after each surgical resection. Macroscopic 

examination and assessment of the margins were performed by a pathologist for all 

specimens. Only tissue that is surplus to diagnostic requirement was taken. 

Undiseased colonic mucosa layers were dissected and separated from the muscularis 

at the resection margin furthest away from the tumour. Corresponding tumour were 

sampled by a pathologist whenever available and deemed to not interfere with the 

diagnosis. The fresh tissue samples were then flash-frozen in a cooling bath of 100% 

ethanol and dry ice, or stabilised in RNAlater® (Applied Biosystems) according to 

the manufacturer’s protocol. Samples were then stored at -80°C before further 

processing.  

2.1.2 Sampling of peripheral blood 

     Peripheral venous blood was drawn from patients using standard phlebotomy 

procedures. Blood for genomic DNA was collected in EDTA tubes, whereas blood 

for RNA and plasma extraction was collected in Lithium-Heparin tubes. When serial 

blood samples were required, surplus blood from clinical biochemistry requests were 

collected whenever possible to minimise the number of phlebotomy procedures for 

the patients.  

     Peripheral blood mononuclear cells (PBMCs) and plasma were isolated from 

approximately 9mls of fresh blood with Ficoll-Paque Plus (GE healthcare) according 

to the manufacturer’s protocol. PBMCs were processed immediately for RNA 

extraction, whereas plasma was stored at -80°C until further analysis.  
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2.2 Cell culture 

Media, solutions and additives: 

Freezing medium 

10% Dimethylsulfoxide (DMSO) (Sigma) in foetal calf serum* 

Tissue culture medium 

Cell-line specific basal medium (Table 2.1) (Life Technologies) 

10% v/v foetal calf serum (FCS)* 

1% v/v Penicillin and streptomycin* 

Cell-line specific additional supplements (Table 2.1) 

Phosphate buffered saline (PBS)* 

0.1M NaH2PO4.H2O 

0.1M Na2HPO4.7H2O 

pH7.4 

Trypsin Versene (T/V) 

50% v/v Trypsin* 

50% v/v Versene* 
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     Cell lines stored in the liquid nitrogen facility at the MRC Human Genetics Unit 

were retrieved by rapid thawing in warm water and resuspending in 5mls of the 

appropriate tissue culture medium (Table 2.1) and then fed as required. After 3-4 

days in culture, culture supernatant was sent to technical services for mycoplasma 

testing with the MycoAlert™ Mycoplasma Detection Kit (Lonza) to ensure all cells 

used were mycoplasma-free. To retain the cell lines as renewable sources, at least 

3x106 cells were split from the main culture, centrifuged at 1200rpm and the cell 

pellet resuspended in 1ml freezing medium. The cells were cooled immediately and 

then sequentially frozen at -80°C and -140°C. 

 

Cell line Tissue of origin Nature of 
cells 

Basal 
medium 

Additional 
supplements 

CACO2 Colorectal cancer Adherent DMEM  

COLO320 Colorectal cancer Adherent DMEM  

DLD1 Colorectal cancer Adherent DMEM  

HCT116 Colorectal cancer Adherent DMEM  

HELA Cervical cancer Adherent DMEM  

HEK293 Embryonic kidney Adherent DMEM  

HT29 Colorectal cancer Adherent DMEM  

K562 Erythroleukemia Suspension RPMI  

LOVO Colorectal cancer Adherent DMEM  

MCF7 Breast adenocarcinoma Adherent DMEM  

PNT Prostate epithelium Adherent DMEM  

RKO Colorectal cancer Adherent DMEM  

RPE1 Retinal pigment epithelium Adherent DMEM/F12 1% v/v Glutamine* 

SW48 Colorectal cancer Adherent DMEM  

SW480 Colorectal cancer Adherent DMEM  

VACO425 Colorectal cancer Adherent DMEM  

Table 2.1 List of cell lines used and their characteristics. 
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2.2.1   Maintenance of adherent cell lines 

     For adherent cell lines, media was changed every 3-4 days to maintain cells in the 

logarithm phase of growth. Cell lines were passaged at 80-90% confluence using T/V 

solution after washing the cells with warm PBS. 

2.2.2 Maintenance of suspension cell lines 

     Suspension cell lines were grown in upright T-flasks and periodically shaken to 

break up the cell clumps. Cultures were fed every 2-4 days depending on the 

population doubling time, by removing half of the media from the flask and 

replacing it with a slightly increased volume of fresh media. Cultures were split 

when the cell count is approximately 2 x 106 cells/ml, with a minimum cell 

concentration of 200 x 103 cells/ml for each subculture to ensure optimal growth. 

Cells were counted with a Coulter Counter® (Beckman Coulter). 
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2.3 RNA work 

2.3.1 RNA extraction 

Cell lines 

     Adherent cells of 80-90% confluence were detached from T25 flasks with a cell 

scraper into 2mL of cold PBS. The cells were pelleted by centrifugation at 1600rpm, 

resuspended in 1ml of TRIzol (Life Technologies), and total RNA extracted 

according to the manufacturer’s protocol. Alternatively, RNA from cell lines was 

extracted directly from the culture plates with the RNeasy Mini Kit (Qiagen) 

according to the manufacturer’s instructions. Both techniques produced comparable 

RNA yield and quality.  

Fresh frozen human large intestinal mucosa and tumours 

     The method for extracting total RNA from fresh frozen human large intestinal 

mucosa required optimisation. The method presented here is the final optimised 

method; the optimisation process will be discussed in Chapter 3. Fresh frozen human 

large intestinal samples (no larger than 0.5cm in the smallest dimension) were 

transitioned to RNAlater-ICE® (Applied Biosystems) on dry ice and kept at -20°C 

for 16 hours before storage at -80°C according the manufacturer’s protocol. This was 

not necessary for samples already stabilised in RNAlater (Applied Biosystems) upon 

collection. The TissueLyser LT (Qiagen) and a single 0.2mm stainless steel bead 

were used for the mechanical disruption and homogenisation of samples. Total RNA 

was then isolated using the RiboPure Kit (Applied Biosystems) according to the 

manufacturer’s instructions. 

Fresh PBMC 

     RNA extraction for PBMCs were performed immediately after isolation from 

whole venous blood, using the Ambion® RiboPure™ Kit (Applied Biosystems) 

according to the manufacturer’s instructions.  

     All RNA was stored at -80°C until further analysis. 
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2.3.2 Evaluation of RNA quality and yield 

Gene expression profiling microarrays 

     RNA purity was measured using the Nanodrop® 800 spectrophotometer (Thermo 

Scientific), and all samples used for gene-expression profiling had the ratio of 

absorbance at 260nm and 280nm (A260/A280) of >1.8. RNA yield and integrity was 

measured using the 2100 Bioanalyzer® (Agilent Technologies). The RNA integrity 

numbers were ≥7 for normal mucosa RNA samples, ≥8 for PBMC RNA samples, 

and ≥9 for cell line RNA samples.  

PCR  

     For downstream experiments with RT-PCR and qRT-PCR, RNA yield and purity 

was measured with the Nanodrop® 800 spectrophotometer (Thermo Scientific), with 

all samples giving A260/A280 ratios of >1.8. 

2.3.3 DNase treatment of RNA 

     RNA samples were first treated with DNase in 10µl reactions. Final reaction 

concentrations were 100ng/µl total RNA, 1x RQ1 RNase-free DNase reaction buffer 

(Promega), 0.1 unit/µl RQ1 RNase-free DNase (Promega). The reaction was 

incubated at 37°C for 30 minutes. 1µl of RQ1 DNase Stop Solution (Promega) was 

then added and the reaction incubated at 65°C for 10 minutes to inactivate the 

DNase.  

2.3.4 cDNA synthesis from RNA 

     The DNase treated RNA samples were reversed transcribed to cDNA using 

Moloney Murine Leukemia Virus Reverse Transcriptase (M-MLV RT) (Promega) in 

a 20µl final reaction volume.  The final reaction concentrations were: 

50ng/µl input RNA 

10units/µl M-MLV RT (Promega) 
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1x M-MLV RT reaction buffer (Promega) 

0.4units/µl random primers (Roche) 

1mM dNTP (Promega) 

1 unit/µl RNasin® Ribonuclease Inhibitor (Promega) 

2.3.5 Quantitative real time PCR (qRT-PCR) 

     cDNA from cell lines were diluted to 1:20 working stock whereas cDNA from 

patient samples were diluted to 1:10 working stock. qRT-PCR was carried out in 

10µl final reaction volumes: 

2µl cDNA working stock 

5µl Taqman® Master Mix (Applied Biosystems) 

0.5µl Taqman® Gene Expression Assay (Applied Biosystems) 

2.5µl nuclease-free H2O 

     The linearity and amplification efficiency of each individual gene expression 

assay were first tested using serial dilutions of cDNA from an expressing cell line to 

produce calibration curves. The threshold cycles (Ct) were plotted against the logged 

cDNA quantity, and the coefficient of correlation obtained for the fitted calibration 

curves (R2) were calculated. PCR amplification efficiencies were calculated from the 

slope of the log-linear portion of the calibration curves using the equation  

Efficiency = 10 (–1/slope)  - 1 

All assays used had highly linear calibration curves (R2 of >0.985) and efficiencies 

between 90% - 110%, indicating that the assays are well-optimised and the input 

template is of good quality. 

     All reactions were performed in triplicates. Amplification and detection of the 

amplified product was carried out with ABI PRISM HT 7900 Sequence Detection 
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System thermal cycler (Applied Biosystems) and read using SDS Version 2.3 

software (Applied Biosystems). The PCR reaction conditions were: 50°C – 2min, 

95°C – 10min, 95°C – 15secs, 60°C – 1min. The cycle was repeated 40x.  

     For detection of differential expression in the normal colorectal mucosa, the 

expression of genes of interest was normalised using three validated reference genes. 

The selection and validation of reference genes are described and discussed in more 

detail in Chapter 4. In the PBMCs, the housekeeping gene GAPDH was used as a 

reference gene for the normalisation of expression quantification. 

2.3.6 Whole transcriptome gene expression profiling  

     Expression profiling was accomplished using the HumanHT-12 v4.0 Expression 

BeadChip Arrays (Illumina, USA). Each array contains 50-mer probes representing 

more than 47,000 transcripts derived from the NCBI RefSeq Release 38 (November 

7, 2009),1 as well as legacy UniGene content. RNA was amplified and biotin-labelled 

using Ambion’s Illumina Total Prep RNA Amplification Kit (Ambion), as per 

manufacturer’s protocol. 500ng input total RNA was used, and in vitro transcription 

incubation was carried out for 14 hours. The quality and yield of the amplified RNA 

(aRNA) was assessed with the 2100 Bioanalyzer® (Agilent Technologies) to ensure 

that the aRNA profile is as expected, producing a distribution of sizes from 250 to 

5500 nt with most of the aRNA at 1000 to 1500nt. This was then sent to Genetics 

Core, Wellcome Trust Clinical Research Facility, Edinburgh, for array hybridization 

and scanning.  

 

 

 

 

 

                                                             
1
 ftp://ftp.ncbi.nih.gov/refseq/release/release-notes/archive/RefSeq-release38.txt 
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2.4 DNA work 

2.4.1 DNA extraction from whole blood 

     Isolation of genomic DNA from whole blood was carried out using a Nucleon™ 

BACC Genomic DNA Extraction Kit (GE healthcare) according to the 

manufacturer’s instructions. DNA was suspended in TE and quantified using the 

Nanodrop 800 spectrophotometer (Thermo Scientific).  

2.4.2 PCR 

     PCR reactions were performed in a final volume of 25µl using platinum Taq® 

DNA polymerase (Invitrogen). Final reaction concentrations were 1x PCR buffer, 

0.2mM dNTPs, 1uM oligonucleotide primer (forward and reverse), 5ng DNA, 

2.5mM magnesium chloride, and 1 unit of platinum Taq® DNA polymerase. All 

reagents used were supplied by Invitrogen. Amplification was performed using a 

Peltier PCT225 thermal cycler (MJ Research) under the following standard 

conditions: 95°C for 5 minutes, (95°C for 30 seconds, 62°C for 30 seconds, 72°C for 

30 seconds) x 30 cycles, 72°C for 5 minutes.  

     Primers were supplied by Sigma as precipitates and re-suspended in dH2O to a 

stock concentration of 20uM. These oligonucleotides will be referenced in the 

relevant chapters.   

2.4.3 Gel electrophoresis 

Solutions: 

10 x Tris-Acetate EDTA (TAE)* 

2M Tris 

5.7% w/v Glacial acetic acid 

50mM Na2EDTA (pH8.0) 
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Loading buffer 

100mM Na2EDTA (pH8.0) 

0.25% w/v Bromophenol blue 

30% w/v Sucrose 

     All PCR products were visualised on a gel before sequencing. 2% agarose gels 

were prepared using routine electrophoresis grade agarose (Biogene Ltd) and 1x 

TAE electrophoresis buffer. 5µl of ethidium bromide (BioRad) per 100ml of gel 

mixture was added to the gel for visualisation.  

     5µl of PCR products were loaded onto the gel with 3µl of loading buffer. Size 

markers used were generally a 1kb ladder (Invitrogen). The DNA was 

electrophoresed at 40-60V and visualised by UV trans-illumination using a Herolab 

trans-illuminator (Herolab, Weisloch). Images were visualised on the BioRad 

Chemidoc system using QuantityOne software (Biorad). 

2.4.4 Purification of PCR products 

     PCR products were first purified with the Exo-SAP clean-up protocol. 7.5µl 

reactions were prepared with: 

3µl of PCR product 

3.75µl of dH2O 

0.25µl of Exonuclease I (10units/µl) (USB) 

0.5µl of Shrimp Alkaline Phosphatase (1unit/µl) (USB) 

     Reactions were incubated under the following conditions using a Peltier PCT225 

thermal cycler (MJ Research) at 37°C for 15 minutes, 80°C for 15 minutes, and 4°C 

for 10 minutes.  
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2.4.5 DNA sequencing 

     Sequencing of the purified PCR products were carried out in 10µl reactions using 

either individual Eppendorf tubes or in 96-well plates. The reactions consists of: 

3.5µl of purified PCR product 

5µl of dH2O 

1µl of Big Dye® Terminator V3.1 Kit * 

1µl of 20uM oligonucleotide primer (forward or reverse) 

     Amplification was performed on a Peltier PCT225 thermal cycler (MJ Research) 

at 96°C for 30 seconds, 50°C for 15 seconds, 60°C for 4 minutes, for 25 cycles. 

2.4.6 Precipitation of DNA from sequencing reaction s 

     After amplification, precipitation of sequenced DNA was carried out by adding 

50µl 95% ethanol and 2µl 3M NaOAC (pH 4) to each sequencing reaction mix. The 

mixture was incubated for 30 minutes at room temperature and then centrifuged at 

1200rpm for 30 minutes. The majority of the supernatant was removed from the 

wells by inverting the plates or tubes, and the residual removed by pulse spinning the 

upturned plates/tubes on paper towels at 800rpm. The DNA pellets were washed by 

adding 70% ethanol down the side of the wells and inverting the plate immediately to 

remove the supernatant. The pellets were dried by a further pulse spin and stored at -

20°C. The precipitated reaction products were re-suspended in HiDiTM  (Applied 

Biosystems), heated at 90°C for 2min, and resolved on the ABI PRISM® 3100 or 

3730 genetic analysers by Technical Services, MRC Human Genetics Unit, IGMM.  

2.4.7 Analysis of sequence data 

     Sequence data was analysed using Consed (Gordon et al, 1998) and Mutation 

Surveyor V3.30 (Biogene).  
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2.5 Protein biology 

Solutions: 

Lysis Buffer 

100µl of 10X Whole Cell Lysis Buffer (Cell Signalling Technology) 

40µl of 25X Complete™ Protease inhibitor cocktail (Roche Diagnostics) 

10µl of 100mg/ml Pefabloc SC (Roche Diagnostics) 

1µl of 1mg/ml Pepstatin A (Sigma) 

1µl of 1M NaF (Sigma) 

1µl of 1M Na3VO4 (Sigma) 

5µl of 200mM phenylmethanesulfonylfluoride (PMSF) (Sigma) 

842µl of dH2O 

6x Sample Buffer 

20% w/v Glycerol 

2% w/v Sodium dodecyl sulfate (SDS) 

0.25% w/v Bromophenol blue 

1x Stacking buffer 

5% w/v β-mercaptoethanol 

4x Resolving Buffer 

1.5M Tris 

0.4% w/v SDS 

pH 8.8 
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4x Stacking Buffer 

500mM Tris 

0.4% w/v SDS 

pH 6.8 

10x Running Buffer 

250mM Tris 

2M Glycine 

1% w/v SDS 

10x Wet Transfer Buffer 

250mM Tris 

2M Glycine 

1x Wet Transfer Buffer 

10% v/v 10x Wet Transfer Buffer 

10% v/v 100% methanol 

5% Resolving Gel 

1x Resolving buffer 

5% w/v Acrylamide 

0.15% w/v Ammonium persulphate (APS) 

0.01% w/v N,N,N’,N’,tetramethyl-1-2-diaminomethane (TEMED) 

8% Resolving Gel 

1x Resolving buffer 
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8% w/v Acrylamide 

0.15% w/v APS 

0.01% w/v TEMED 

4% Stacking Gel 

1x Stacking buffer 

4% w/v Acrylamide 

0.15% w/v APS 

0.01% w/v TEMED 

 

2.5.1 Preparation of total protein extracts 

Human normal colorectal mucosa  

     The TissueLyser LT (Qiagen) and a single 0.2mm stainless steel bead were used 

for the mechanical disruption and homogenisation of fresh frozen mucosa samples in 

lysis buffer. The lysis reaction was then incubated for 30 minutes on ice, with vortex 

mixing every 10 minutes. Debris was cleared by centrifugation at 13200rpm for 10 

minutes at 4°C. The supernatant containing total protein extract was collected and 

stored at -40°C. 

Cell lines 

     Adherent cells of 80-90% confluence were detached from T25 flasks with a cell 

scraper into 2mL of cold PBS. The cells were pelleted by centrifugation at 1600rpm 

and resuspended in 100µl of lysis buffer. Incubation, extraction and storage 

conditions were the same as the procedure for colorectal mucosa.  

 



50 
 

2.5.2 Cellular subfractionation of protein extracts  

     In order to quantify protein in the different subcellular compartments, DLD1 cells 

were grown to confluence in T75 flasks. The cells were then extracted using the 

ProteoExtract® Subcellular Proteome Extraction Kit (CalbioChem) as per the 

manufacturer’s instructions, allowing subfractionation of cellular protein in the 

cytoplasmic, membrane/organelle, nuclear and cytoskeleton compartments. Briefly, 

this kit utilises four specialised extraction buffers to sequentially extract the different 

subcellular compartments based on the differential solubility of proteins in each 

compartment. A schematic overview is shown in Figure 2.1.  

 

Figure 2.1 Illustration from the CalbioChem ProteoExtract® Kit protocol demonstrating the 

steps involved in the extraction of subcellular compartments. Four fractions are extracted 
enriched for: cytosolic fraction (F1), membrane/organelle protein fraction (F2), nucleic protein 

fraction (F3), cytoskeletal fraction (F4). A) Adherent SAOS cells were extracted using 

sequential buffers. Images show cells before and after the extraction with the respective 

extraction buffer. B) SDS-PAGE analysis of each subcellular fraction demonstrates distinct 

protein patterns of the respective fractions. C) The selectivity of subcellular extraction was 
demonstrated by immunoblotting against the indicated marker proteins.  
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     All protein extracts were stored at -40°C. The concentrations of the total protein 

extracts were determined by Bradford assays (Biorad) using bovine serum albumin 

(BSA) (Sigma) to generate a standard curve. All samples were measured in triplicate 

and concentrations calculated from the concentration gradient of the BSA standard 

curve. The extracts were then diluted in water to the same concentrations for Western 

blot analysis.  

2.5.3 Western Blot analysis 

     30-50µg of total protein extract was added to a 1:7.5 dilution of sample buffer and 

boiled for 3-5 minutes. Samples were resolved by denaturing SDS-PAGE on a 

5%/8% polyacrylamide gradient gel in 1x running buffer. Alternatively, a precast 4-

12% Bis-Tris Polyacrylamide Gel (NuPAGE® Novex®, Life Technologies) was used 

according to the manufacturer’s protocol. Pre-stained molecular weight markers 

(Biorad) were run in parallel. PVDF membranes (Biorad) were prepared by 

immersion in 100% methanol for 2 minutes. Protein was transferred from gels to 

membranes by wet transfer for 1 hour at 100V, at 4ºC, using 1x wet transfer buffer. 

This is followed by blocking of the blots in 5% w/v dried milk (Marvel) and 0.15% 

v/v Tween (Sigma) in PBS for 2 hours at room temperature. Blots were then probed 

with primary antibodies overnight at 4ºC in PBS/BSA/Azide*. Blots were washed 

afterwards in 0.15% Tween/PBS for 20 minutes x 3 with gentle shaking, then 

incubated in the appropriate species-specific horseradish peroxidase (HRP)-

conjugated secondary antibody in 5% milk/0.15% Tween/PBS for 1 hour at room 

temperature. Blots were again washed as previously before detection of specifically 

bound antibody by chemiluminescence using Luminol reagent (Santa Cruz 

Biotechnology). Luminol reagent was applied to the blots for 1 minute, followed by 

covering the blots with a plastic cover and exposure to Amersham Hyperfilm™ ECL 

(GE Healthcare).    

     Primary antibodies and dilutions are detailed in the relevant chapters. Goat anti-

rabbit IgG-HRP, goat anti-mouse IgG-HRP and donkey anti-goat IgG-HRP 

secondary antibodies (Santa Cruz) were used at 1:3000 dilutions. 
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2.6 Data analysis 

2.6.1 Statistical analysis 

Statistical analyses were performed using GraphPad, Excel and R. The tests used for 

each individual result are reported in the figure legends. Unless stated otherwise, p-

values of <0.05 was the significant threshold for reporting. The single asterisk * 

indicates p<0.05, the double asterisk ** indicates p<0.01, and the triple asterisk *** 

indicates p<0.001.  

2.6.2 Analysis of microarray gene expression data 2 

Microarray data, exported from Beadstudio, was processed and normalized using the 

R, Bioconductor beadarray and limma packages. Prior to normalization probes that 

were not detected (detection p-value > 0.01) on the microarrays were removed. 

Microarrays were quantile normalized to remove technical variation. The average 

signal of the biological replicates (n=3) were used for further analysis. ComBat batch 

correction was performed to control for batch effects. The limma package was used 

to find differential expressed genes, using the functions lmFit, eBayes and topTable. 

Unless stated otherwise, age, gender, presenting pathology (cancer vs non-cancer) 

and the anatomical sampling site were used as co-variates in the analyses as 

appropriate. Multiple testing correction was calculated using FDR q-values 

(Benjamini & Hochberg, 1995) to minimise false negatives.  

2.6.3 Genomic annotations and functional prediction s 

The genome browsers Ensembl and UCSC browser (Kent et al, 2002; URL2.1) were 

used to interrogate publically available databases. All annotations were presented 

according to the human reference sequence build GRCh37.p12 (hg19). SIFT (Kumar 

et al, 2009) and PolyPhen (Adzhubei et al, 2010) were used for predicting the effects 

of coding non-synonymous variants on protein function. The JASPER matrix model 

(Mathelier et al, 2013) was utilised to predict the transcription factor binding 
                                                             
2
 Analysis performed by Graeme Grimes and Victoria Svinti, MRC Human Genetics Unit, IGMM. 
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affinities of oligonucleotide sequences. Functional enrichment analysis of 

differentially expressed genes was performed using the web-accessible tool DAVID 

v6.7 (Huang et al, 2009; URL2.2) and GOrilla (Eran et al, 2009; URL2.3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



54 
 

Chapter 3 

Isolation of high-quality intact RNA from human col orectal 

normal mucosa 

3.1 Introduction 

     The extraction of intact RNA from fresh frozen human colonic normal mucosa 

has been a technically challenging aspect of this study. Various factors can have an 

undesirable impact on the RNA integrity, such as ischaemic time (Huang et al, 2001; 

Spruessel et al, 2004), endogenous RNases, exposure to environmental RNases and 

freeze-thawing during the processing of tissue samples (Botling et al, 2009).      It is 

widely recognised that intact input mRNA is critical for gene expression array 

analysis, as using degraded mRNA may result in misleading variability and 

transcriptional differences. Conventionally, the 28S:18S rRNA ratio has been used as 

a measure of mRNA quality, with a 2:1 ratio considered the benchmark for intact 

RNA.  However, this method is somewhat subjective because the appearance of the 

rRNA bands can be affected by the electrophoresis conditions, the amount of RNA 

loaded and the saturation of ethidium bromide fluorescence (Palmer et al, 2004). 

Moreover, relatively large amounts of RNA are required for the gel electrophoresis, 

which may not be possible when there is limited sample amount from small human 

biopsies. The Agilent 2100 Bioanalyzer is an increasingly used analytical tool for 

total RNA analysis, using a combination of microfluidics, capillary electrophoresis 

and fluorescence to evaluate concentration and integrity. The RIN (RNA integrity 

number) generated by an automated algorithm has been shown to be an effective 

method to assess RNA quality (Strand et al, 2007; Copois et al, 2007, Schroeder et 

al, 2006). A RIN of ≥7.0 is generally accepted as adequate integrity for amplification 

and microarray analysis of human tissues. This chapter will discuss some of the 

challenges I have faced and present the results of several RNA extraction techniques 

in an effort to establish a replicable and robust extraction protocol for microarray 

quality RNA, from fresh frozen human colorectal normal mucosa. 
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3.2 Methodological overview 

3.2.1 Study subjects and biological material 

     To explore the functional effects of common genetic risk variants in the normal 

colonic mucosa, 115 fresh normal mucosa were harvested immediately after surgical 

resection of colorectal adenocarcinoma (n=99), tubulo-villous (n=8) and villous 

(n=2) adenomas or non-neoplastic conditions (n=6), as described in Chapter 2. The 

tissue samples collected were flash-frozen in ethanol/dry ice or allowed to equilibrate 

in the RNA-stabilising solution RNAlater® (Life Technologies) to preserve RNA 

integrity.  

3.2.2 RNA extraction 

     RNA extraction was performed using guanidinium thiocyanate-phenol-

chloroform extraction methods with TRIzol® reagent (Life Technologies) and the 

Ambion® RiboPure™ Kit (Life Technologies), according to the manufacturers’ 

protocols.  To optimise the quality and quantity of RNA extracted, several technical 

aspects to the protocols were modified and will be discussed in more detail in 3.3. 

Specifically, these include the use of RNAse inhibitors (Superase•In™, Life 

Technologies), RNAlater®-ICE Frozen Tissue Transition Solution (Life 

Technologies), and mechanical disruption of the mucosa samples with a bead mill 

homogeniser TissueLyser LT (Qiagen). 

3.2.3 Evaluation of RNA quality and yield 

     RNA purity was evaluated using the Nanodrop® 800 spectrophotometer (Thermo 

Scientific), whereas RNA integrity and yield was measured with the 2100 

Bioanalyzer® (Agilent Technologies). 
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3.3 Results 

3.3.1 RNA-stabilising solutions and RNase inhibitor s  

     The existing in-house protocol for RNA extraction from primary tissue utilises 

TRIzol® reagent (Life Technologies) using an adapted protocol. Flash-frozen tissue 

was cut out from cryovials and then manually disrupted with a scalpel before 

immersing in TRIzol®. This process of disruption was continued by grinding of the 

tissue with a mini-pestle. This was followed by phase separation, RNA precipitation, 

wash and redissolving as per the manufacturer’s protocol. Although this procedure 

was performed on ice quickly, the yield of the extraction ranged from 620-2720ng, 

with RINs ranging from 2.1-4.2 (Figure 3.1), which were suboptimal for gene 

expression assays.  

  

 

Figure 3.1. Quality parameters of the RNA extracted with the in-house RNA extraction 
protocol utilising Trizol® in four representative normal mucosa samples (lanes 1-4). Digital 
gel electrophoresis was performed using the 2100 Bioanalyzer® (Agilent). Normal mucosa 
RNA samples were run concurrently with the RNA 6000 Nano ladder (Agilent) containing six 
RNA fragments ranging in size from 0.2 to 6.0 kb.  

 

Sample A260/A280 Yield (ng) RIN 

11913 1.94 1380 2.1 

11981 1.94 2720 4.2 

11934 1.92 980 2.2 

11588 1.86 620 2.1 
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     To optimise the recovery of intact RNA, a trial of RNA-stabilising solutions and 

RNA inhibitors was carried out on samples collected from the same patient at the 

same time (Table 3.1). RNAlater® is an aqueous solution designed specifically to 

preserve RNA integrity during the storage of fresh tissue and cells, thus 

circumventing the freeze-thawing process that compromises RNA integrity. 

RNAlater®-ICE is designed by the manufacturer for use on samples that are already 

frozen, allowing tissue to be transitioned from a frozen to non-frozen state for 

processing. As I already had a collection of snap-frozen tissue, RNAlater®-ICE was 

trialed alongside RNAlater® to assess the comparability of the two solutions. 

Sample Treatment Details of modification Yield 

(ng) 

A260/ 

A280 

RIN 

A Trizol 

extraction 

None 7840 1.93 2.9 

B RNAlater®-ICE Snap-frozen tissue sample (-80°C) 

immersed in RNAlater-ICE (-80°C) and 

allowed to thaw at -20°C for 16 hours. 

8880 1.98 5.5 

C RNAlater® Tissue sample immersed in RNAlater 

immediately after sampling, equilibrated 

at 4°C for 16 hours before discarding the 

solution and storing tissue at -80°C. 

1520 1.93 2.8 

D RNase 

Inhibitor 

80U of Superase•In™ placed onto tissue 

during mechanical disruption and 40U 

added into the supernatant collected after 

phase separation. 

8000 1.86 2.4 

E RNAlater®-ICE 

+ 

RNase 

Inhibitor 

As per B and D 5560 1.87 5.1 

F RNAlater® + 

RNase 

Inhibitor 

As per C and D 4720 1.71 7.6 

Table 3.1. Modifications to the RNA extraction protocol was performed on samples obtained 
from the same patient at the same time.  

     These initial results suggest that a combination of RNAlater® and an RNase 

inhibitor would provide the most protection against RNA degradation during the 

extraction process. However, the effect of the RNase inihibitor is unclear, as there 
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appears to be no additional protective effect on untreated samples and samples 

treated with RNAlater®-ICE.  

3.3.2 Bead mill homogenisation and glass-fibre filt er RNA purification  

     As there were a significant number of tissue samples already snap-frozen on 

collection, I focused on using RNAlater®-ICE and RNase inhibitors to stabilise 

these samples. Although there was an improvement in the RIN values of some of 

these samples, it was not consistently reproducible across all samples (Table 3.2). As 

RNA degradation can occur quickly within the first few minutes of the tissue 

thawing, it is likely that RNA degradation has already occurred within some of these 

tissue samples, when they were removed from -80ºC storage and handled for 

previous extractions. It is also possible that degradation occurred as a result of 

inefficient lysis and homogenisation.  

 

 In-house protocol RNAlater ®-ICE and Superase•In™ 

Sample A260/280 Yield (ng/µl) RIN A260/280 Yield (ng/µl) RIN 

11913 1.94 1380 2.1 1.87 2180 6.2 

11981 1.94 2720 4.2 1.87 4600 2.5 

11934 1.92 980 2.2 1.88 6840 5.6 

11588 1.86 620 2.1 1.81 1920 2.5 

Table 3.2. Quality parameters of RNA when samples were re-extracted with modifications 
using RNAlater-ICE and RNase inhibitors.  

 

     To seek further improvement in the quality of isolated RNA, replicate samples 

that have not previously been removed from -80ºC storage were used, and several 

additional modifications to the protocol were made. A bead mill tissue homogeniser 

(TissueLyser LT, Qiagen) was used for more thorough mechanical disruption and 

homogenisation of the tissue, using a single 0.2mm stainless steel bead for a tissue 

biopsy of approximately half the size of the bead. The process of mechanical 

disruption was performed on dry ice instead of ice to prevent any thawing of the 

tissue samples. Additionally, a commercial RNA extraction kit Ambion® 
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RiboPure™ Kit (Life Technologies) that combines lysis with TRI Reagent® lysis 

and glass-fibre filter RNA purification was also used. The glass-fibre filter removes 

residual proteins and lipids as well as smaller degraded RNA fragments. The 

procedure is compatible with tissues that have been treated with either RNAlater® or 

RNAlater®-ICE. There was a marked improvement in the isolated RNA (Table 3.3), 

which was consistently replicated in subsequent extractions of more samples. This 

optimised protocol also produced similarly intact RNA from RNAlater® stablised 

samples (RIN>7). The RNAse-inhibitor was eventually removed from the protocol as 

it was not observed to further improve the quality of the extracted RNA.  

 

 RNAlater ®-ICE and Superase•In™ TissueLyser LT and RiboPure TM kit 

Sample A260/280 Yield (ng/µl) RIN A260/280 Yield (ng/µl) RIN 

11913 1.87 2180 6.2 2.12 3620 9 

11981 1.87 4600 2.5 2.17 2420 7.5 

11934 1.88 6840 5.6 2.30 2050 8.8 

11588 1.81 1920 2.5 2.28 3900 8.4 

Table 3.3. Quality parameters of RNA when samples were re-extracted with modifications 
using to the protocol, using a bead mill homogeniser and glass-filter RNA purification.  
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3.4 Discussion  

     The extraction of RNA can be greatly complicated by the presence of ubiquitous 

and hardy ribonucleases that degrade RNA; these can be cellular RNases that are 

released from the cells, or those present in the environment. The isolation of RNA 

from normal colonic mucosa is particularly challenging as not only it is rich in 

RNAses, it is also much tougher compared to friable tumour tissue.  The optimisation 

of the RNA extraction process has demonstrated to me the technical challenges of 

preserving the quality of RNA to ensure accuracy of downstream experiments and 

observations. This learning process highlights the importance of robust and 

replicable techniques, as well as principles of optimisation, experimental planning 

and the use of controls. Ultimately, it facilitated and enabled the reliable analysis of 

genome-wide expression for the 115 colorectal mucosa samples collected from 

surgical resections.  
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Chapter 4 

Selection of reference genes for qRT-PCR quantifica tion of 

gene expression 

4.1 Introduction 

     Quantitative real time PCR (qRT-PCR) is an accurate, fast and sensitive 

measurement of gene expression. It is the method of choice to validate the results of 

microarray analysis, as well as to perform independent analysis on a defined number 

of genes on validation sets and cell lines. The sensitivity of this technique also means 

it is prone to confounding variation resulting from factors such as the quantity and 

quality of the template input, as well as the yields and efficiency of the extraction 

and the enzymatic reactions. A robust normalisation technique is therefore required 

to remove experimentally-induced non-biological variations and minimise 

quantification error.  

     The use of reference genes as internal controls is currently the preferred 

normalisation method (Huggett et al, 2005),  but there is increasing evidence that the 

expression of commonly used reference genes are context dependent and can vary 

significantly between tissue types (Barber et al, 2005) and experimental conditions 

(Dheda et al, 2005). If unrecognised, expression changes in reference genes can lead 

to erroneous conclusions about real biological effects. This is a particularly important 

point to address in my study, as the differential expression of target genes associated 

with common genetic variation is likely to be subtle and may be easily masked by 

any changes in the reference genes. 

     It is now recommended that normalisation against three or more validated 

reference genes is the most appropriate and universally applicable method (as 

reviewed by Derveaux et al, 2010). To select reference genes for a sample set, a pilot 

study should be performed to measure 10 candidate genes in 10 representative 

samples. Using the raw non-normalised expression values, the expression stability 

can then be analysed using various mathematical algorithms and software e.g. 
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geNorm, BestKeeper and NormFinder (as reviewed by Vandesompele et al, 2009). 

The underlying principle of these algorithms is that the expression ratio of two 

proper reference genes should be constant across samples. 

     This chapter describes the results of the optimisation and selection of reference 

genes which would enable validation of genes implicated as eQTL candidates. 
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4.2 Methodology overview 

4.2.1 Selection of candidate reference genes from m icroarray data 

     A subset of normal mucosa samples (n=44) collected in the early part of this 

project was analysed on the Illumina HT12 gene expression microarray as described 

in 2.3. Quantile-normalised and log-transformed data from this sample set was 

examined with reference to the genes conventionally used as endogenous controls in 

human gene expression studies. The maximum fold change (MFC) and the 

coefficient of variation (CV) for each of these genes were then calculated as 

measures of expression stability.  

4.2.2 qRT-PCR validation on representative samples 

     Based on the microarray gene expression data, the ten most stable candidate 

reference genes were shortlisted for a pilot study on representative samples. For each 

candidate reference gene, gene expression TaqMan® probe and primers were 

purchased from Life Technologies (Table 4.1). qRT-PCR was performed as 

described in 2.3.5. Linearity and amplification efficiency of each of these assays 

were first tested using serial dilutions of HCT116 cell line cDNA. 

Gene symbol Assay ID Context sequence  

PUM1 Hs00472881_m1 TGGGGAACATCAGATCATTCAGTTT 

ACTB Hs99999903_m1 CCTTTGCCGATCCGCCGCCCGTCCA 

RPL37A Hs01102345_m1 GGTGCCTGGACGTACAATACCACTT 

PGK1 Hs00943178_g1 AGCCCACAGCTCCATGGTAGGAGTC 

UBC Hs00824723_m1 GTGATCGTCACTTGACAATGCAGAT 

ABL1 Hs01104728_m1 GCGAGCATGTTGGCAGTGGAATCCC 

EIF2B1 Hs00426752_m1 ATCAAAGATGGAGCGACAATATTGA 

RPS17 Hs00734303_g1 GCTGAAGCTTTTGGACTTCGGCAGT 

TBP Hs00427620_m1 GCAGCTGCAAAATATTGTATCCACA 

RPL30 Hs00265497_m1 TATCATTGATCCAGGTGACTCTGAC 

Table 4.1. TaqMan® assay IDs of candidate reference genes.  
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     Next, the transcript abundance of the 10 candidate genes were measured in 

representative samples that comprised of cDNA from normal mucosa (n=11), tumour 

(n=9), ex-vivo normal mucosa (n=8), and colorectal cancer cell lines (n=20). Normal 

mucosa and tumour tissue were paired whenever possible, and samples were 

balanced by gender and anatomical site. Ex-vivo normal mucosa samples consisted 

of untreated samples and samples treated with BMP4 or TGF-β in culture. CRC cell 

lines consisted of 7 commonly used cell lines (SW480, HCT116, DLD1, HT29, 

VACO425, COLO320, CACO2) that were untreated or treated with BMP4, TGF-β, 

aspirin, lithium chloride or retinoic acid. These treatments were performed as I had 

initially proposed to study the collective effect of CRC risk variants on the TGF-β 

signalling pathway, however, the study evolved to focus on individual variants as the 

preliminary results did not demonstrate a collective effect on TGF-β target genes. 

4.2.3 Stability ranking of candidate reference gene s 

     The raw CT values from the qRT-PCR were analysed using RefFinder (URL4.1), 

an online software tool that integrates four major computational programs 

(BestKeeper [Pffafl et al, 2004], GeNorm [Vandesompele et al, 2002], Normfinder 

[Anderson et al, 2004], and the comparative delta-Ct method [Silver et al, 2006]) to 

compare and rank the stability of candidate reference genes. Based on the rankings 

from each program, an appropriate weight is assigned to each individual gene and the 

geometric mean of their weights is calculated for the overall final ranking.  
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4.3 Results 

4.3.1 Candidate reference genes for pilot qRT-PCR s tudy 

     There are 32 genes conventionally used as reference genes for human gene 

expression studies, with commercially available assays (ABI) for each of them 

(URL4.2 and URL4.3). Of these, 30 genes had matched annotated probes on the 

Illumina HT12 microarray platform (Table 4.2). A candidate reference gene was 

defined as a gene with an MFC of less than 2 and a small CV (de Jonge et al, 2007). 

10 genes had a maximum fold change of >2 (Figure 4.1), hence were considered 

unsuitable and excluded from further ranking. The remaining 20 genes were then 

ranked according to their CV, with the 10 most stable genes selected for the pilot 

study (Table 4.3). 
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Gene Description Annotated 
probes on 
HT12 

18S 18S ribosomal RNA No 

ABL1 c-abl oncogene 1, non-receptor tyrosine kinase  Yes 

ACTB actin, beta  Yes 

B2M beta-2-microglobulin  Yes 

CASC3 cancer susceptibility candidate 3  Yes 

CDKN1A cyclin-dependent kinase inhibitor 1A (p21, Cip1)  Yes 

CDKN1B cyclin-dependent kinase inhibitor 1B (p27, Kip1)  Yes 

EIF2B1 eukaryotic translation initiation factor 2B, subunit 1 alpha, 
26kDa  

Yes 

ELF1 E74-like factor 1 (ets domain transcription factor)  Yes 

GADD45A growth arrest and DNA-damage-inducible, alpha  Yes 

GAPDH glyceraldehyde-3-phosphate dehydrogenase  Yes 

GUSB glucuronidase, beta  Yes 

HMBS hydroxymethylbilane synthase  Yes 

HPRT1 hypoxanthine phosphoribosyltransferase 1  Yes 

IPO8 importin 8  Yes 

MRPL19 mitochondrial ribosomal protein L19  Yes 

MT-ATP6 mitochondrially encoded ATP synthase 6  No 

PES1 pescadillo homolog 1, containing BRCT domain (zebrafish)  Yes 

PGK1 phosphoglycerate kinase 1  Yes 

POLR2A polymerase (RNA) II (DNA directed) Yes 

POP4 processing of precursor 4, ribonuclease P/MRP subunit (S. 
cerevisiae)  

Yes 

PPIA peptidylprolyl isomerase A (cyclophilin A)  Yes 

PSMC4 proteasome (prosome, macropain) 26S subunit, ATPase, 4  Yes 

PUM1 pumilio homolog 1 (Drosophila)  Yes 

RPL30 ribosomal protein L30  Yes 

RPL37A ribosomal protein L37a  Yes 

RPLP0 ribosomal protein, large, P0  Yes 

RPS17 ribosomal protein S17  Yes 

TBP TATA box binding protein  Yes 

TFRC transferrin receptor (p90, CD71)  Yes 

UBC ubiquitin C  Yes 

YWHAZ tyrosine 3-monooxygenase/tryptophan 5-monooxygenase 
activation protein, zeta polypeptide  

Yes 

Table 4.2. 32 conventional human reference genes with commercial assays available.  
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Figure 4.1. Maximum fold change (MFC) and coefficient of variation (CV) of the expression 

of 30 conventional reference genes in normal mucosa samples. Genes with an MFC>2 (red 

line represents MFC cut-off) are considered unsuitable as reference genes. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Normal mucosa samples (n=44) 
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Rank Gene symbol MeanExp SD CV MFC 

1 PUM1 9.589 0.102 1.06% 1.36 

2 RPL37A 10.128 0.108 1.07% 1.38 

3 UBC 13.522 0.149 1.10% 1.55 

4 ABL1 7.320 0.084 1.15% 1.26 

5 EIF2B1 8.195 0.108 1.32% 1.32 

6 RPS17 12.334 0.174 1.41% 1.79 

Excluded B2M 13.413 0.209 1.56% 2.07 

7 TBP 7.865 0.126 1.60% 1.53 

8 RPL30 12.699 0.211 1.66% 1.97 

9 ACTB 12.884 0.226 1.75% 1.97 

10 PGK1 9.793 0.173 1.76% 1.88 

11 ELF1 9.506 0.175 1.84% 1.63 

12 GUSB 8.970 0.175 1.95% 1.96 

13 YWHAZ 9.519 0.189 1.98% 1.64 

Excluded GAPDH 11.404 0.226 1.98% 2.18 

14 RPLP0 10.852 0.217 2.00% 1.84 

15 PES1 7.194 0.145 2.01% 1.53 

16 POP4 7.758 0.159 2.04% 1.81 

17 PPIA 7.440 0.153 2.06% 1.68 

18 POLR2A 9.423 0.215 2.28% 1.79 

19 CASC3 7.990 0.195 2.44% 1.85 

20 CDKN1B 8.611 0.222 2.58% 1.88 

Excluded  HPRT1 8.843 0.261 2.95% 2.20 

Excluded  HMBS 7.787 0.230 2.95% 2.37 

Excluded  MRPL19 8.620 0.262 3.03% 2.43 

Excluded  CDKN1A 11.021 0.367 3.33% 3.05 

Excluded  PSMC4 7.564 0.266 3.52% 2.18 

Excluded  IPO8 7.856 0.312 3.98% 2.75 

Excluded  GADD45A 8.119 0.338 4.16% 2.76 

Excluded  TFRC 11.222 0.523 4.66% 5.64 

Table 4.3. Conventional reference genes ranked according to their CV of expression in 44 
normal mucosa samples. Genes with an MFC >2 were considered unsuitable and excluded 
from stability ranking. (MeanExp=mean of expression, SD=standard deviation, 
CV=coefficient of variation, MFC=maximum fold change) 
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4.3.2 qRT-PCR pilot study of candidate reference ge nes 

     The mean raw Ct values of the 10 candidate reference genes for each of the 

sample subgroup are quantified and calculated (Table 4.4). There is a large range of 

expression levels across these 10 genes, with RPS17 being most highly expressed 

and TBP being the least expressed.   

 ABL1 ACTB EIF2B1 RPL30 PGK1 PUM1 RPS17 TBP RPL37A UBC 

NM 27.15 23.73 29.44 26.17 25.42 28.25 22.51 30.70 24.18 24.56 

T 26.68 22.80 28.56 25.43 24.12 27.54 21.81 29.80 23.08 24.07 

ENM 26.95 24.26 30.10 25.47 24.77 28.33 23.34 31.32 24.42 23.12 

CL 26.87 23.34 28.26 25.93 23.83 27.46 21.57 29.57 22.61 23.75 

Table 4.4. Comparison of mean cycle threshold (Ct) value across different sample groups. 
NM = normal mucosa tissue (n=11); T = colon tumour (n=9); ENM = ex-vivo normal mucosa, 
untreated or treated with BMP4 or TGFβ in culture (n=8); CL = colorectal cancer cell lines, 
untreated or treated with BMP4, TGFβ, aspirin, lithium chloride or retinoic acid (n=20). 

 

     The stability of these candidate reference genes are then analysed and ranked for 

each tissue subgroup individually, as well as all together (Table 4.5). 

 

STABILITY 
RANKING 

NM 

(N=11) 

TUMOUR 

(N=9) 

EX-VIVO NM 

(N=8) 

CRC CELL 
LINES(N=20) 

ALL 

(N=48) 

1 EIF2B1 TBP PUM1 EIF2B1 ABL1 

2 TBP RPL37A TBP RPL30 EIF2B1 

3 UBC EIF2B1 ABL1 ABL1 ACTB 

4 RPL30 UBC EIF2B1 ACTB RPL30 

5 PGK1 PUM1 RPL30 RPL37A RPL37A 

6 ABL1 ACTB RPS17 PUM1 PUM1 

7 PUM1 RPL30 RPL37A PGK1 PGK1 

8 RPS17 ABL1 PGK1 TBP TBP 

9 ACTB PGK1 UBC RPS17 RPS17 

10 RPL37A RPS17 ACTB UBC UBC 

Table 4.5. Stability ranking of the candidate endogenous genes in a representative sample 
set. NM=normal mucosa. 
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     Guided by these results, EIF2B1, TBP and RPL30 were selected as reference 

genes for future qRT-PCR experiments on normal mucosa samples. Although UBC 

was ranked 3rd in the normal mucosa samples, it was ranked 9th in the ex-vivo normal 

mucosa samples, and was the least stably expressed gene in CRC cell lines. As many 

of the samples in these 2 groups have been treated with variable courses of 

BMP4/TGFβ, it is possible that perturbations of the SMAD signalling pathway have 

an effect on UBC transcript levels. Consequently, UBC was not selected as a control 

to avoid any bias during the normalisation of target genes in normal mucosa, many of 

which may be involved in, or targeted by, SMAD signalling. 

     EIF2B1, TBP and RPL30 are also well-ranked in the other subgroups and when 

all samples were analysed altogether; at least two of the three genes were 

consistently in the top 5 most stable genes across all subgroups. This makes them 

good reference genes for experiments requiring intra- and inter- subgroup 

comparison of differential expression.   
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4.4 Discussion 

     Due to the speed, sensitivity and specificity it offers, qRT-PCR is widely used in 

molecular diagnostics, life sciences, agriculture and medicine to quantify gene 

expression (Bustin et al, 2000; Kubista et al, 2006). It is one of the key experimental 

methods used in my investigation of gene expression in the context of common 

genetic variation associated with colorectal cancer. As these common variants have 

small effect sizes on cancer risk, it is thought that the associated differential 

expression, if any, is likely to also be small. Hence, rigorous selection of stably 

expressed reference genes for normalisation is essential to remove experimentally-

induced errors and optimise the detection of subtle variation.  

     Examining expression microarray data from the tissue type of interest to identify 

putative reference genes has become a popular approach in our era of high-

throughput cell biology (Popovici et al, 2009; de Jonge et al, 2007). By using this 

approach, I selected the ten most stable candidates from thirty-two commonly used 

reference genes for further qRT-PCR validation. These ten putative reference genes 

represent different cellular processes; the ribosomal proteins RPL30, RPL37A and 

RPS17, and EIF2B1 are involved in protein synthesis, TBP is a general transcription 

factor, ACTB is a structural cytoskeletal protein, PGK1 is a glycolytic enzyme, 

PUM1 is an RNA-binding protein, UBC is involved in ubiquitination and ABL1 is a 

tyrosine kinase with a role in many key processes linked to cellular growth and 

survival. Using a set of genes representing a variety of cellular functions is ideal for a 

pilot experiment, as this means any perturbations resulting from experimental 

conditions are less likely to affect all the putative reference genes. It is interesting to 

point out that GAPDH, a commonly used reference gene, is relatively unstable within 

this data set with a MFC of 2.18. This is consistent with previously published reports 

where variations in GAPDH expression have been observed in qRT-PCR 

experiments (Barber et al, 2005; Harper et al, 2003). This reinforces the notion that 

the expression of control genes can vary depending on tissue-type and experimental 

conditions, hence careful consideration is required before using them for 

normalisation.  
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     Once putative reference genes have been identified and qRT-PCR validation 

performed, the circular problem of evaluating the stability of these genes can be 

resolved using the aforementioned mathematical algorithms. As there is considerable 

variation in the correlation among the various algorithms (Jacob et al, 2013), I 

utilised a web-based tool that integrates the four most commonly used approaches to 

assess the stability of these genes. It quickly becomes apparent that the expression 

variability of these genes differs between the tissue subgroups. Though unsurprising, 

as heterogeneity is more likely in the tumour and cell line subgroups as compared to 

normal mucosa, this again demonstrates that expression variation of reference genes 

is present and dependent, at least in part, on the tissue type. More importantly, the 

difference in the normal mucosa and ex-vivo normal mucosa subgroup suggests that 

perturbations of the SMAD signalling pathway could systematically affect 

expression of these ‘housekeeping’ genes. Given that the SMAD signalling pathway 

is frequently altered in cancer, it is all the more crucial that reference genes are 

validated when the experimental setup involves comparison between normal and 

tumour tissue. A good post-hoc experiment would be to compare the expression of a 

gene of interest normalised with the most stable reference gene, and the same gene 

normalised with the least stable reference gene. Any demonstrable difference would 

consolidate the importance of rationalising reference genes prior to their use for 

normalisation.     

     It is strongly recommended that three or more reference genes are used to reduce 

the effect of any variation in a single reference gene. However, it is recognised that 

this may not always be cost-effective, especially in experiments where the expected 

fold change in the expression of the gene of interest is substantially larger than any 

potential variation in the reference gene expression. In these instances, the need for 

normalisation accuracy may have to be weighed up against the practical constraints 

of time and resources. Such is the case with my siRNA knockdown studies in cell 

lines, where there is 75-90% knockdown of the target genes (Figure 8.13). The use of 

a single reference gene may not be ideal but on this occasion we have accepted it as a 

caveat, given that the differential expression of the genes of interest is appreciably 

larger than the fluctuation of the reference gene expression. Other biological factors 

may also influence the choice of the reference genes, and should be carefully 
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considered when the information is available. For example, one of my experiments 

involved quantifying the knockdown of NF-Y subunits, which is a ubiquitous 

transcription-factor that is known to bind to variety of genes (7.3.4).  In this instance, 

TBP would be a good reference gene as it is known to lack the CCAAT consensus 

sequence for NF-Y binding (Nardini et al, 2013), and will be more likely than other 

reference genes to be unaffected by the depletion of NF-Y. Hence, a combination of 

biological justification and validation with a pilot experiment provides the ideal 

platform for the informed selection of qRT-PCR reference genes.   

     In conclusion, the reference genes EIF2B1, TBP and RPL30 were chosen to 

validate any differential expression as identified by microarray analysis of the 

colorectal normal mucosa samples.  
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Chapter 5 

Gender- and site-specific differential gene express ion in the 

human colorectal normal mucosa 

5.1 Introduction 

     To systematically characterise the functional effect of low-penetrance common 

genetic variation that are associated with susceptibility to colorectal cancer, whole-

genome gene expression microarray analysis was undertaken to look for evidence of 

association with gene expression. Before analysing the gene expression data in 

relation to genetic risk variants, several clinical variables were first examined in 

relation to global gene expression, namely age, gender, cancer status and anatomical 

sampling-site. Although the relevance of this to the functional characterisation of risk 

variants may not be immediately apparent, it would provide insight into the 

regulation and heterogeneity of gene expression in the normal colorectal mucosa. 

Positive findings would inform the design of the risk variant analyses to minimise 

confounding effects of these variables, hence optimising the detection of subtle 

effects that are associated with inherited variation. Examining these variables that are 

known to affect gene expression levels will also provide a form of internal validation 

of the microarray platform used in this study. 

     Age- and gender- related differences in gene expression in the colon is relevant 

for two reasons. Firstly, colorectal cancer incidence is higher in men than women and 

strongly increases with age (as reviewed by Brenner et al, 2014). Secondly, previous 

studies have indicated that there are age-related changes in gene expression levels 

occurring in various human tissue types (Somel et al, 2006; Glass et al, 2013), as 

well as sexual dimorphism in non-reproductive tissues (reviewed by Rinn et al, 

2006). Although this has not been specifically demonstrated in the human large 

intestine, there is evidence that expression of some genes are gender-biased in the 

oesophageal (Menon et al, 2011) and small intestinal mucosa (Sankaran-Walters et 

al, 2013).  



75 
 

     The concept of field cancerisation has been proposed to explain the development 

of multiple primary tumours in the same organ and locally recurrent cancer in 

patients who have multifocal cancer without apparent familial predisposition. 

Providing evidence for this is a study describing methylation of the MGMT gene 

promoter in normal-appearing colorectal mucosa adjacent to colorectal cancer with 

MGMT promoter methylation (Shen et al, 2005). The proximity to the tumour 

appeared to influence the likelihood of hypermethylation in the normal mucosa. In 

view of this, the normal mucosa samples in my study were collected from the 

resection margin furthest from the tumour to minimise any field effect that may be 

present, and the presenting pathology of the donor patients were categorised as 

cancer or non-cancer for gene expression analysis.  

     There are known epidemiological, clinical and molecular differences between 

proximal and distal colon tumours, suggesting that the risk factors and 

transformation pathways of sporadic colorectal cancer differ according to the 

anatomical location within the colon (as reviewed by Iacopetta et al, 2002).  This 

may reflect the different biological characteristics of the normal colorectal mucosa 

within the different segments, or a segmental heterogeneity in the gut environment 

i.e. the microbiome and metabolites, or most likely, the interaction between a distinct 

environment and distinct target cells. The known site-specific differences in normal 

and cancerous conditions of the colon is summarised in Table 5.1. In view of this, the 

sampling site for each of the normal mucosa samples collected for this study were 

classified as proximal or distal to the splenic flexure (Figure 5.1) and examined for 

differential expression. 

 

 

 

 

Figure 5.1 Schematic drawing of the 
human colon illustrating the splenic 
flexure cut-off point, which determines 
the proximal/distal classification used in 
this study. (Figure adapted from 
Iacopetta, 2002) 
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A) 

NORMAL Proximal colon Distal colon 

Development Embryonic midgut Embryonic hindgut 

Vascular supply Superior mesenteric 
artery 

Inferior mesenteric 
artery 

Average crypt length Shorter Longer 

Short-chain fatty acid production by 
fermentation 

8-fold higher  

Mutagenic metabolites  Higher exposure 

Metabolism of bile acids Higher  

Activity of ornithin decarboxylase  Higher 

Methylation of ER gene Higher  

 

B)  

CANCER Proximal colon Distal colon 

Mismatch repair defective   (MSI-H) 30% 2% 

Mucinous tumours Frequent Infrequent 

Familial cancer syndromes Lynch Syndrome FAP 

Karyotype Pseudo-diploid Aneuploid with LOH 

Gene mutations  (TP53 and K-RAS) 
and C-MYC expression 

Lower frequency Higher frequency 

5-FU chemotherapy response Good Marginal or none 

Gender Proportion of cancer in the distal colon is lower 
among women than among men 

Table 5.1 Summary of the differences between the proximal and distal colon, in both normal 
conditions and neoplastic disease. (Adapted from Iacopetta et al, 2002; Glebov et al, 2003) 

 

 

 

 



77 
 

5.2 Methodological overview 

5.2.1 Study subjects and biological material 

     115 normal colorectal mucosa samples were collected from patients undergoing 

large bowel resections as described in 2.1. The characteristics of the study subjects 

are summarised in Table 5.2 and detailed in Table 5.3. Study subjects were 

categorised by age (≤60 or >60), gender, presenting pathology (cancer vs without 

cancer), and the anatomical sampling site (proximal vs distal).  

 

≤60 >60 
Age 

28 87 

Males Females 
Gender 

64 51 

Cancer Without cancer 
Presenting pathology 

99 16 

Proximal colon Distal colon 
Anatomical sampling site 

39 76 

Table 5.2 Summary of the characteristics of patients who donated tissue samples for this 
study. 
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Study ID Gender Age Site Condition Matched 
PBMC 

2335 M 61 Proximal Adenocarcinoma Yes 

11481 M 82 Distal Adenocarcinoma Yes 

11559 F 71 Distal Adenocarcinoma Yes 

11588 F 88 Distal Adenocarcinoma No 

11868 F 77 Proximal Adenocarcinmoa No 

11913 M 51 Distal Adenocarcinoma Yes 

11915 F 86 Proximal Adenocarcinoma No 

11981 F 77 Distal Diverticular disease No 

11986 F 73 Distal Tubulo-villous adenoma  No 

11990 M 63 Distal Diverticulitis  No 

12002 M 77 Proximal Adenocarcinoma No 

12003 F 65 Distal Adenocarcinoma Yes 

12032 F 75 Proximal Adenocarcinoma No 

12033 M 73 Proximal Adenocarcinoma Yes 

12037 M 80 Distal Adenocarcinoma Yes 

12039 F 57 Distal Adenocarcinoma No 

12040 M 56 Proximal Adenocarcinoma Yes 

12041 F 67 Proximal Adenocarcinoma Yes 

12042 F 75 Proximal Adenocarcinoma Yes 

12046 F 57 Distal Adenocarcinoma No 

12047 F 79 Proximal Adenocarcinoma No 

12048 F 64 Distal Adenocarcinoma Yes 

12049 M 69 Distal Adenocarcinoma Yes 

12050 F 74 Distal Adenocarcinoma No 

12051 M 71 Proximal Tubulo-villous adenoma No 

12052 M 61 Distal Tubulo-villous adenoma No 

12053 F 79 Proximal Adenocarcinoma No 

12054 M 66 Distal Villous adenoma No 

12056 F 71 Proximal Adenocarcinoma No 

12057 M 68 Distal Adenocarcinoma No 

12059 M 70 Distal Adenocarcinoma Yes 

12061 M 62 Distal Adenocarcinoma No 

12063 M 58 Distal Adenocarcinoma No 

12064 F 67 Distal Adenocarcinoma Yes 

12065 F 79 Distal Adenocarcinoma Yes 

12067 M 62 Distal Adenocarcinoma Yes 

12068 F 75 Proximal Tubulo-villous adenoma No 

12069 F 80 Proximal Adenocarcinoma No 

12070 F 71 Proximal Adenocarcinoma No 

12071 M 67 Distal Adenocarcinoma Yes 
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12100 M 58 Distal Adenocarcinoma  No 

12114 M 64 Proximal Adenocarcinoma No 

12147 F 47 Distal Adenocarcinoma Yes 

12202 M 42 Distal Adenocarcinoma Yes 

12208 F 87 Proximal Adenocarcinoma Yes 

12234 M 47 Distal Adenocarcinoma Yes 

12236 M 76 Distal Adenocarcinoma Yes 

12253 M 65 Proximal Adenocarcinoma Yes 

12254 M 67 Proximal Adenocarcinoma No 

12255 F 74 Proximal Adenocarcinoma Yes 

12256 F 57 Distal Adenocarcinoma Yes 

12259 M 75 Proximal Adenocarcinoma Yes 

12260 F 57 Distal Adenocarcinoma No 

12272 M 65 Distal Adenocarcinoma No 

12304 M 59 Proximal Adenocarcinoma Yes 

12305 M 63 Distal Adenocarcinoma Yes 

12307 F 67 Distal Adenocarcinoma No 

12312 F 42 Distal Intestinal dysmobility  No 

12316 M 77 Proximal Villous adenoma No 

12369 M 80 Distal Adenocarcinoma Yes 

12370 M 41 Distal Diverticular disease No 

12407 F 64 Distal Adenocarcinoma Yes 

12408 M 67 Distal Adenocarcinoma Yes 

12409 M 50 Distal Adenocarcinoma No 

12412 F 75 Proximal Adenocarcinoma Yes 

12415 M 80 Distal Adenocarcinoma No 

12419 M 65 Proximal Adenocarcinoma Yes 

12421 F 59 Distal Adenocarcinoma No 

12433 M 59 Distal Adenocarcinoma Yes 

12435 M 83 Distal Adenocarcinoma Yes 

12451 M 79 Distal Tubulo-villous adenoma No 

12454 F 64 Distal Diverticular disease No 

12464 F 72 Proximal Adenocarcinoma No 

12468 M 55 Distal Adenocarcinoma Yes 

12473 M 86 Distal Adenocarcinoma Yes 

12475 M 80 Distal Adenocarcinoma Yes 

12477 F 65 Distal Adenocarcinoma Yes 

12481 F 39 Distal Adenocarcinoma Yes 

12483 F 54 Distal Adenocarcinoma Yes 

12519 M 47 Distal Adenocarcinoma Yes 

12520 F 60 Proximal Adenocarcinoma Yes 

12529 M 62 Distal Adenocarcinoma Yes 
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12555 M 69 Distal Tubulo-villus adenoma No 

12562 F 52 Distal Diverticular disease No 

12568 M 69 Proximal Tubulo-villous adenoma No 

12584 M 48 Distal Adenocarcinoma No 

12586 M 62 Distal Adenocarcinoma Yes 

12587 M 63 Proximal Adenocarcinoma No 

12597 M 84 Proximal Adenocarcinoma Yes 

12602 M 73 Distal Adenocarcinoma Yes 

12609 M 71 Proximal Adenocarcinoma Yes 

12619 F 80 Distal Adenocarcinoma Yes 

12624 F 33 Distal Adenocarcinoma Yes 

12630 M 69 Proximal Adenocarcinoma Yes 

12631 M 69 Distal Adenocarcinoma Yes 

12633 M 75 Distal Adenocarcinoma No 

12634 F 66 Proximal Adenocarcinoma Yes 

12645 F 27 Distal Adenocarcinoma  No 

12646 F 69 Distal Adenocarcinoma Yes 

12647 M 82 Proximal Adenocarcinoma Yes 

12650 M 65 Proximal Adenocarcinoma Yes 

12659 M 71 Distal Adenocarcinoma Yes 

12660 M 68 Distal Adenocarcinoma Yes 

12668 M 79 Distal Adenocarcinoma No 

12669 F 75 Distal Adenocarcinoma Yes 

12726 F 60 Distal Adenocarcinoma No 

12741 F 71 Proximal Adenocarcinoma No 

12751 F 79 Distal Adenocarcinoma No 

12775 F 61 Distal Adenocarcinoma No 

12779 M 73 Distal Adenocarcinoma No 

12810 M 63 Distal Adenocarcinoma No 

12812 M 52 Distal Adenocarcinoma No 

12813 M 78 Distal Adenocarcinoma No 

12854 F 67 Proximal Adenocarcinoma No 

12856 F 74 Proximal Tubulo-villous adenoma No 

Table 5.3 Characteristics of the 115 study subjects – age, gender, sampling site (proximal or 
distal colon), the indication for bowel resection surgery and whether matched PBMC were 
collected. 
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5.2.2 Gene expression profiling and analysis  

     RNA was extracted, amplified and hybridised on Illumina HT12 gene expression 

microarrays as described in 2.3. The expression profiles of the 115 normal mucosa 

samples were analysed using the R limma package as described in 2.6.2, using the 

co-variates age, gender, presenting pathology and anatomical sampling site as 

categorised in Table 5.2.3 

5.2.3 qRT-PCR validation 

     Technical validation was performed with qRT-PCR as described in 2.3. EIF2B1, 

RPL30 and TBP were selected as reference genes for normalisation as described in 

Chapter 4. The Taqman® Gene Expression assays for the genes of interest are listed 

in Table 5.4.  

Gene symbol Assay ID Context sequence  

PRAC Hs00741541_g1 AGAGTGCTTTTCTCTCTAATAAGAA 

PITX2 Hs04234069_mH GAGTCCGGGTTTGGTTCAAGAATCG 

CKB Hs01058288_g1 CCTCACCCAGATTGAAACTCTCTTC 

OLFM4 Hs00197437_m1 TCCCACTCCAGGGAGCTGTGGTCAT  

L1TD1 Hs00219458_m1 TTTTTCGCCAGGCACCAAGGCACAG 

Table 5.4 TaqMan® assay IDs of the genes of interest in this chapter.   

 

 

 

 

 

 

 

                                                             
3
 Analysis performed by Graeme Grimes, MRC Human Genetics Unit, IGMM. 
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5.3    Results 

5.3.1 No detectable differential expression in the normal mucosa 

between age groups and presenting pathology 

Approximately 29,000 probes were detected in the normal mucosa (p-value<0.01), 

mapping to approximately 20,000 unique annotated genes. The expression profiles of 

the 115 normal mucosa samples were analysed using the R limma package and 

showed no detectable differential expression by age (≤60, n=28 ; >60, n=87) or 

presenting pathology (with cancer, n=99 ; without cancer, n=16). However, it should 

be noted that these variables are not well-balanced, reducing the power to detect 

associated differences. 

5.3.2 Gender-specific differential expression of th e human colorectal 

mucosa 

23 genes were more highly expressed in males (n=64) whereas 22 genes were more 

highly expressed in females (n=51). All the genes that were significantly 

differentially expressed between genders are shown in Tables 5.5 and 5.6.  
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Gene FC AvgExp FDR q-Val Chr Description 

RPS4Y1 17.55 9.09 8.68E-122 Y ribosomal protein S4, Y-linked 1  

EIF1AY 5.76 8.03 9.70E-100 Y eukaryotic translation initiation 
factor 1A, Y-linked  

CYORF15A 2.64 7.42 1.85E-77 Y taxilin gamma 2, pseudogene on 
chrY 

EIF1AY 1.92 7.09 1.34E-68 Y eukaryotic translation initiation 
factor 1A, Y-linked  

JARID1D 2.12 7.16 1.38E-64 Y lysine (K)-specific demethylase 
5D on chrY 

LOC643123 1.45 6.79 1.28E-47 Y arylsulfatase F pseudogene 1 

ZFY 1.33 6.65 1.50E-41 Y zinc finger protein, Y-linked  

TMSB4Y 1.51 6.81 7.04E-41 Y thymosin beta 4, Y-linked  

PRKY 1.40 6.83 1.18E-38 Y protein kinase, Y-linked, 
pseudogene  

RPS4Y2 2.91 7.46 2.39E-37 Y ribosomal protein S4, Y-linked 2  

UTY 1.28 6.74 8.53E-30 Y ubiquitously transcribed 
tetratricopeptide repeat 
containing, Y-linked  

USP9Y 1.14 6.54 7.16E-22 Y ubiquitin specific peptidase 9, Y-
linked  

TTTY2 1.12 6.58 8.39E-18 Y testis-specific transcript, Y-linked 
2 (non-protein coding)  

TTTY14 1.12 6.62 2.40E-13 Y testis-specific transcript, Y-linked 
14 (non-protein coding)  

CD99 1.30 8.82 3.53E-10 X CD99 molecule 

DDX3Y 1.09 6.58 3.13E-06 Y DEAD (Asp-Glu-Ala-Asp) box 
helicase 3, Y-linked  

NLGN4Y 1.05 6.51 1.23E-05 Y neuroligin 4, Y-linked  

OSCP1 1.06 6.68 0.006 1 organic solute carrier partner 1  

DPM3 1.11 8.43 0.037 1 dolichyl-phosphate 
mannosyltransferase polypeptide 
3  

MGC72104 1.19 8.30 0.039 Y FSHD region gene 1 family, 
member B 

CSTF3 1.12 7.93 0.043 11 cleavage stimulation factor, 3’ 
pre-RNA, subunit 3, 77kDa  

ZMYND12 1.06 6.81 0.046 1 zinc finger, MYND-type 
containing 12  

LOC729137 1.08 6.67 0.047 Y zinc finger protein 839-like 

Table 5.5 23 unique genes are more highly expressed in males than females, listed in the 
order of adjusted p-value. Where more than one probe is present for a single gene, the 
probe with the highest p-value is presented. FC=fold change as calculated by male/female 
mean expression, AvgExp=Average expression of gene.  
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Gene Fc AvgExp FDR q-Val Chr Description 

XIST 4.05 7.74 1.36E-71 X X inactive specific transcript (non-
protein coding)  

HDHD1A 1.40 7.99 7.44E-22 X Haloacid Dehalogenase-Like 
Hydrolase Domain Containing 1 

UTX 1.21 7.38 1.38E-17 X Ubiquitously transcribed 
tetratricopeptide repeat, X 
chromosome 

ARSD 1.54 9.03 8.04E-15 X arylsulfatase D  

ZFX 1.11 6.90 1.49E-09 X zinc finger protein, X-linked  

U2AF1L2 1.21 7.81 2.30E-09 X CCCH Type Zinc Finger, RNA-
Binding Motif And Serine/Arginine 
Rich Protein 

TRAPPC2 1.23 8.30 9.70E-09 X trafficking protein particle complex 
2  

PNPLA4 1.11 6.74 3.38E-08 X patatin-like phospholipase domain 
containing 4  

PRKX 1.09 6.94 4.36E-07 X protein kinase, X-linked  

RPS4X 1.30 11.22 7.15E-07 X ribosomal protein S4, X-linked  

ARSE 1.17 7.11 1.64E-06 X arylsulfatase E (chondrodysplasia 
84unctate 1)  

ZRSR2 1.07 6.71 1.67E-05 X zinc finger (CCCH type), RNA-
binding motif and serine/arginine 
rich 2  

HEPH 1.23 9.29 3.63E-05 X hephaestin  

DDX3X 1.21 9.80 0.001 X DEAD (Asp-Glu-Ala-Asp) box 
helicase 3, X-linked  

EIF1AX 1.33 8.32 0.003 X eukaryotic translation initiation 
factor 1A, X-linked  

OFD1 1.16 7.87 0.003 X oral-facial-digital syndrome 1  

GYG2 1.12 7.05 0.007 X glycogenin 2  

POF1B 1.11 6.96 0.008 X premature ovarian failure, 1B  

NLRP2 1.17 6.91 0.015 19 NLR family, pyrin domain 
containing 2  

NLGN4X 1.14 7.19 0.019 X neuroligin 4, X-linked  

UBE1 1.17 9.53 0.035 X ubiquitin-activating enzyme E1 

COPS8 1.08 7.26 0.047 2 COP9 signalosome subunit 8  

Table 5.6 22 unique genes are more highly expressed in females than males, listed in the 
order of adjusted p-value. Where more than one probe is present for a single gene, the 
probe with the highest p-value is presented. FC=fold change as calculated by female/male 
mean expression, AvgExp=Average expression of gene.  
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5.3.3 Gene expression differences between the human  proximal and 

distal colorectal mucosa 

There was differential expression in 1303 probes (1007 unique genes) between the 

proximal (n=39) and the distal colon (n=76) (p-value<0.05, FDR adjusted), with 55 

unique genes showing >1.5 fold difference. 29 of these genes were expressed at a 

higher level in the proximal colon and 26 in the distal colon, as listed in Table 5.7 

and Table 5.8.  

qRT-PCR validation of these expression differences was performed for five out of 

twelve genes with a differential fold change of >2, confirming the site-related 

differential expression observed for PITX2 (p<2.2E-16), L1TD1 (p=5.3E-13), 

OLFM4 (p=2.7E-07), PRAC (p<2.2E-16) and CKB (p=3.6E-07).4 Highly significant 

correlations with Spearman Rho values of >0.75 were observed between the two 

different expression quantification techniques (Figures 5.2-5.6).   

 

 

 

 

 

 

 

 

 

 

                                                             
4
 qRT-PCR performed under close supervision by undergraduate student Fanny Roth.  
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Gene FC AvgExp FDR q-Val Description 

PITX2 2.83 7.17 7.03E-39 paired-like homeodomain 2 

L1TD1 2.01 7.35 4.64E-19 LINE-1 type transposase domain 
containing 1 

ETNK1 2.35 8.46 8.67E-15 ethanolamine kinase 1 

SLC23A3 1.66 7.48 1.02E-14 solute carrier family 23, member 3 

IGFBP2 1.65 7.91 1.36E-12 insulin-like growth factor binding protein 
2, 36kDa 

MB 1.55 7.61 3.75E-11 myoglobin 

MEP1B 1.56 7.02 1.43E-09 meprin A, beta 

SLC20A1 1.82 10.07 3.23E-09 solute carrier family 20 (phosphate 
transporter), member 1 

NQO1 1.57 10.08 3.48E-08 NAD(P)H dehydrogenase, quinone 1 

ANPEP 2.17 9.31 6.71E-08 alanyl (membrane) aminopeptidase 

ADH1C 1.62 11.13 1.54E-07 alcohol dehydrogenase 1C (class I), 
gamma polypeptide 

OLFM4 3.18 11.15 3.82E-07 olfactomedin 4 

OASL 1.62 7.67 1.07E-06 2’-5’-oligoadenylate synthetase-like 

FAM3B 1.69 6.73 2.93E-06 family with sequence similarity 3, 
member B 

PROM1 1.62 9.77 1.39E-05 prominin 1 

NR1H4 1.56 7.85 3.73E-05 nuclear receptor subfamily 1, group H, 
member 4 

DEFB1 1.57 8.6 8.54E-05 defensin, beta 1 

C6ORF105 1.55 9.28 0.000233 androgen-dependent TFPI-regulating 
protein 

OSTALPHA 1.97 8.32 0.000235 Solute carrier family 51, alpha subunit 

CCL13 1.74 8.86 0.000345 chemokine (C-C motif) ligand 13 

CCL8 1.69 9.23 0.000442 chemokine (C-C motif) ligand 8 

UGT2B15 1.75 8.36 0.002264 UDP glucuronosyltransferase 2 family, 
polypeptide B15 

DEFA5 1.84 7.28 0.006333 defensin, alpha 5, Paneth cell-specific 

UGT2B11 1.85 10.08 0.007722 UDP glucuronosyltransferase 2 family, 
polypeptide B11 

NBPF20 1.52 8.55 0.008969 Neuroblastoma Breakpoint Family 
Member 20 

REG3A 1.56 6.91 0.009994 regenerating islet-derived 3 alpha 

UGT2B17 1.84 9.55 0.012681 UDP glucuronosyltransferase 2 family, 
polypeptide B17 

UGT2B7 1.79 11.7 0.017934 UDP glucuronosyltransferase 2 family, 
polypeptide B7 

VIP 1.68 
 

9.58 0.021505 vasoactive intestinal peptide 

Table 5.7 Genes that are more highly expressed in the proximal colon compared to the distal 
colon, listed in order of adjusted p-value. Where more than one probe is present for a single 
gene, the probe with the highest p-value is presented. FC=fold change as calculated by 
proximal/distal mean expression, AvgExp=Average expression of gene.  
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Gene FC AvgExp FDR q-Val Description 

PRAC 17.39 9.26 7.76E-46 prostate cancer susceptibility gene 1 

ST6GALNAC6 2.19 8.78 6.53E-17 ST6 (alpha-N-acetyl-neuraminyl-2,3-
beta-galactosyl-1,3)-N-
acetylgalactosaminide alpha-2,6-
sialyltransferase 6 

CLDN8 3.29 9.54 1.68E-15 claudin 8 

ST3GAL4 1.66 7.36 2.99E-15 ST3 beta-galactoside alpha-2,3-
sialyltransferase 4 

HOXB13 1.85 7.13 5.78E-15 homeobox B13 

SPON1 1.61 9.38 7.52E-13 spondin 1, extracellular matrix protein 

LGALS2 1.85 8.56 1.77E-11 lectin, galactoside-binding, soluble, 2 

CAPN13 1.71 8.69 7.30E-11 calpain 13 

LOC387882 1.54 8.64 3.92E-09 uncharacterised 

CKB 2.06 10.79 5.19E-09 creatine kinase, brain 

MUC17 2.10 8.36 1.13E-08 mucin 17, cell surface associated 

TFF1 2.51 8.51 4.44E-08 trefoil factor 1 

LOC401321 1.65 8.35 6.80E-08 uncharacterised 

CRIP1 1.73 10.87 1.58E-07 cysteine-rich protein 1 (intestinal) 

WFDC2 1.84 8.58 1.97E-07 WAP four-disulfide core domain 2 

KRTAP13-2 1.77 7.12 6.40E-07 keratin associated protein 13-2 

SPINK5 1.64 7.50 1.07E-06 serine peptidase inhibitor, Kazal type 5 

MUC12 1.93 10.18 1.19E-06 mucin 12, cell surface associated 

PYY 1.75 8.63 5.02E-06 peptide YY 

TMEM200A 1.52 7.72 2.52E-05 transmembrane protein 200A 

PI3 2.14 8.65 7.83E-05 peptidase inhibitor 3, skin-derived 

GLDN 1.53 6.92 8.54E-05 gliomedin 

GCG 1.73 9.07 0.000255 glucagon 

SLC28A2 1.57 7.45 0.001927 solute carrier family 28 (concentrative 
nucleoside transporter), member 2 

S100P 1.66 9.40 0.004687 S100 calcium binding protein P 

INSL5 1.58 7.12 0.006683 insulin-like 5 

Table 5.8 Genes that are more highly expressed in the distal colon compared to the proximal 
colon, listed in order of adjusted p-value.  Where more than one probe is present for a single 
gene, the probe with the highest p-value is presented. FC=fold change as calculated by 
proximal/distal mean expression, AvgExp=Average expression of gene.  
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Figure 5.2. A) Boxplots of PITX2 expression as quantified by the Illumina HT12 microarray 
or qRT-PCR (unpaired t-test, p<2.2E-16). B) Scatterplot demonstrating the relationship 
between the expression of PITX2 as measured by the two different techniques (Spearman 
rho=0.843, p-value=< 2.2e-16). 
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Figure 5.3. A) Boxplots of L1TD1 expression as quantified by the Illumina HT12 microarray 
or qRT-PCR (unpaired t-test, p=5.3E-13). B) Scatterplot demonstrating the relationship 
between the expression of L1TD1 as measured by the two different techniques (Spearman 
rho=0.828, p-value=< 2.2e-16). 
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Figure 5.4. A) Boxplots of OLFM4 expression as quantified by the Illumina HT12 microarray 
or qRT-PCR (unpaired t-test, p=2.7E-07). B) Scatterplot demonstrating the relationship 
between the expression of OLFM4 as measured by the two different techniques (Spearman 
rho=0.895, p-value=< 2.2e-16). 
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Figure 5.5. A) Boxplots of PRAC expression as quantified by the Illumina HT12 microarray 
or qRT-PCR (unpaired t-test, p<2.2E-16). B) Scatterplot demonstrating the relationship 
between the expression of PRAC as measured by the two different techniques (Spearman 
rho=0.791, p-value=< 2.2e-16). 
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Figure 5.6. A) Boxplots of CKB expression as quantified by the Illumina HT12 microarray or 
qRT-PCR (unpaired t-test, p=3.6E-07). B) Scatterplot demonstrating the relationship 
between the expression of CKB as measured by the two different techniques (Spearman 
rho=0.759, p-value=< 2.2e-16). 
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     A functional enrichment analysis indicated that genes that were more highly 

expressed in the proximal colon were enriched in genes involved in substrate 

metabolism processes, whereas genes that were more highly expressed in the distal 

colon were enriched for secreted proteins (Table 5.9). 

A) 

Category Term FDR adjusted q-

value 

KEGG_PATHWAY Pentose and glucuronate interconversions 1.30E-05 

KEGG_PATHWAY Ascorbate and aldarate metabolism 1.40E-05 

PIR_SUPERFAMILY Glucuronosyltransferase 1.40E-05 

KEGG_PATHWAY Drug metabolism 1.70E-05 

KEGG_PATHWAY Metabolism of xenobiotics by cytochrome P450 2.20E-05 

KEGG_PATHWAY Retinol metabolism 2.90E-05 

INTERPRO UDP-glucuronosyl/UDP-glucosyltransferase 6.00E-05 

KEGG_PATHWAY Porphyrin and chlorophyll metabolism 7.10E-05 

KEGG_PATHWAY Androgen and estrogen metabolism 8.70E-05 

KEGG_PATHWAY Drug metabolism 1.10E-04 

KEGG_PATHWAY Starch and sucrose metabolism 1.10E-04 

KEGG_PATHWAY Steroid hormone biosynthesis 1.20E-04 

GOTERM_MF_FAT glucuronosyltransferase activity 3.60E-04 

GOTERM_CC_FAT extracellular space 4.60E-04 

GOTERM_CC_FAT extracellular region part 2.60E-03 

UP_SEQ_FEATURE signal peptide 2.80E-03 

SP_PIR_KEYWORDS signal 3.20E-03 

GOTERM_CC_FAT extracellular region 1.30E-02 

SP_PIR_KEYWORDS microsome 2.10E-02 

B) 

Category Term FDR adjusted q-

value 

SP_PIR_KEYWORDS Secreted 5.2E-03 

Table 5.9 Functional annotation of pathways, processes and GO terms that are over-
represented in genes that were more highly expressed by >1.5 fold in A) proximal colon; B) 
distal colon. This enrichment analysis was performed using DAVID (as described in 2.6.3) 
using the tool’s default Homo sapiens whole-genome background list. 
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5.4 Discussion 

     The examination of whole-genome gene expression profiles in relation to clinical 

variables thought to influence gene expression in the colon has detected gender- and 

anatomical site-specific expression differences. There were no detectable age- or 

cancer-related effects, but the power of these analyses are likely to be limited by the 

small numbers and skewed demographics of patients presenting for non IBD 

(inflammatory bowel disease) -related large bowel resections.  

     The large majority of genes that are more highly expressed in the colorectal 

mucosa of my male subjects are Y-linked. Rather unexpectedly, there is an X 

chromosome gene CD99 that appears to be more highly expressed in males. It is a 

pseudoautosomal gene with a role in innate immunity, and its expression has been 

reported to be higher in the monocytes of males at baseline levels and after in vitro 

lipopolysaccharide stimulation (Lefevre et al, 2012), albeit in a different tissue type. 

The directionality of this reported difference is reassuring and may be of general 

interest, as gender is known to influence the severity and evolution of various 

inflammatory conditions. However, gender-bias is not a general feature of 

inflammatory bowel disease, except in the Asian population where male 

predominance in IBD is typically observed.  

     On the other hand, the majority of the female-biased genes in the colon are X-

linked and are recognised to escape, at least partially, X-inactivation. XIST is the 

obvious exception, as it is a non-coding RNA gene that is the major effector of the 

X-inactivation process and hence only expressed on the inactive X in females. A 

number of these X-linked genes have functionally equivalent Y homologues, and the 

higher expression in females is likely to reflect the mechanism by which dosage 

compensation between males and females are achieved. For instance, RPS4X 

(ribosomal protein S4, X-linked) is more expressed in females, whereas RPS4Y1 

(ribosomal protein S4, Y-linked) is more expressed in males. Other genes similarly 

implicated are EIF1AX, DDX3X, UTX, ZFX, NLGN4X, and PRKX. The other X-

linked genes such as ARSD (Carrel et al, 2005), HDHD1A (Yen et al, 1993), 

TRAPPC2 (Mumm et al, 2001), UBE1 (Carrel et al, 1996), OFD1 (Carrel et al, 
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2005) have previously been reported as escaping X-inactivation in other tissue types. 

The chromosome 19 gene NLRP2 is not known to have gender differences in 

expression. However, it has been reported to be reduced in axial spondyloarthropathy 

(Sharma et al, 2009), which has a marked male predominance, and the authors could 

not exclude a possible effect of gender on the level of transcript expression.  This is 

interesting as firstly, this is in line with the differential expression of NLRP2 

favouring females in the colorectal mucosa, and secondly, NLRP2 is a component of 

some inflammasomes (Church et al, 2008) with inhibitory effects on NF-kB and 

activating effects on caspase 1. This may reflect common aetiological pathways as 

colorectal cancer also sees a male predisposition and the connection between 

inflammation and colorectal tumorigenesis is well-recognised (as reviewed by Terzić 

et al, 2010). Overall, the gender-specific differential expression detected in the 

colorectal mucosa is largely consistent with known biological processes and 

published literature, providing confidence in the integrity of the samples, the 

microarray platform used and the processing of the data.  It also demonstrates the 

importance of adjusting for gender in any differential gene expression analysis.  

Over half of the site-specific differentially expressed genes detected in my samples 

have been previously identified to be differentially expressed, including PITX2, MB, 

ETNK1, SLC23A3, IGFBP2, SLC20A1, MEP1B, ANPEP, OASL, FAM3B, NRIH4, 

OSTalpha, CCL13, CCL8, DEFA5, PRAC, CLDN8, HOXB13, SPON1, CAPN13, 

CKB, MUC17, TFF1, CRIP1, WFDC2, SPINK5, MUC12, PYY, PI3, GCG and 

S100P. Although the fold differences for these genes are not always consistent with 

other published studies, the directionality of the differential expression are in 

accordance with the findings of other similar investigations (Birkenkamp-Demtroder 

et al, 2005; Glebov et al, 2003; LaPointe, 2008).  

Five genes were selected for qRT-PCR validation, of which PRAC, PITX2 and CKB 

have previously been described to have site-specific differences in transcript 

abundance. PRAC is known to be expressed only in human prostate, prostate cancer, 

rectum and the distal colon. Possible co-transcription with HOXB13 and sequence 

analysis suggests a regulatory role in the nucleus (Liu et al, 2001). PITX2 is 

responsible for the establishment of the left-right axis (Logan et al, 1998), 



96 
 

asymmetrical development of visceral organs (Shiratori et al, 2006) and gut looping 

(Campione et al, 1999). It is overexpressed in colorectal cancer (Hirose et al, 2011) 

and has been shown to be induced by the Wnt/beta-catenin pathway and required for 

cell-type-specific proliferation (Kioussi et al, 2002). CKB is a cytosolic isoform of 

creatine kinase that is central in cellular energy homeostasis, and has been previously 

shown to promote EMT (Mooney et al, 2011). L1TD1 and OLFM4 are novel genes 

with detectable site-specific expression. Apart from providing technical validation, 

these two novel genes are interesting findings due to their known function in normal 

and diseased tissue. L1TD1 codes for a stem-cell specific RNA-binding protein that 

has a role in the regulation of stemness. It has been shown to be abundantly 

expressed in undifferentiated human embryonic stem cells (Wong et al, 2011) and 

influences their self-renewal, acting downstream of pluripotent cell-specific 

transcription factors OCT4, SOX2 and NANOG (Narva et al, 2012). OLFM4 is a 

marker for stem cells in the human intestine with restricted expression at the crypt 

base columnar cells (van der Flier et al, 2009). It is a glycoprotein that is selectively 

expressed in inflamed colorectal epithelium and secreted into the mucus in active 

IBD (Gersemann et al, 2012), as well as a candidate biomarker for adenomas and 

non-metastatic colorectal cancer (Besson et al, 2011). There is also evidence that 

OLFM4 exerts an influence on the host defense against H. pylori infection by acting 

through NOD1/NOD2 mediated NF-kB activation (Liu et al, 2010). The site-specific 

expression of these two genes is suggestive of differences in stem cell dynamics and 

self-renewal regulatory properties between the proximal and distal colon, as well as 

the cellular response to inflammatory processes. This may in turn have an influence 

on transformation and the initiation of cancer, particularly as the cancer cell of origin 

is thought to originate from adult intestinal stem cells. Protein quantification and 

localisation within the large intestinal crypt of these site-specific expression 

differences would provide an additional degree of validation, and offer further 

insight into how these site-specific differences are relevant to the aetiology of 

tumourigenic pathways.  

Apart from lending support to the notion that left and right-sided CRC tumours have 

distinctive aetiologies, these findings also suggest that regulatory mechanisms are 

distinctively different between the two segments. Hence, it is important to account 



97 
 

for these potentially confounding differences when performing genotype-gene 

expression association analysis in the normal mucosa. Linear regression modelling 

conditional on the sampling site will serve to remove any confounding effects of site-

specific expression, if by chance more of one allele is found in samples taken from a 

certain side of the colon. However, this may be an over-simplistic view as the 

majority of these normal mucosa samples are harvested from surgical specimens 

resected from patients with colorectal cancer/adenomas, and the site of the normal 

mucosa almost always represents the site of the cancer. There is a possibility that co-

segregation of genotype and sampling site (representing the tumour site) are not 

arising by chance, i.e. left- and right-sided tumours have different genetic 

predispositions. GWAS to date have examined genetic predisposition to CRC cancer 

in relation to their location, but this categorisation was limited to the colon versus the 

rectum, with no further subdivision into the proximal or distal colon. For instance, 

the 11q23.1 locus confers risk that was greater for rectal than for colon cancer 

(Tenesa et al, 2008), and one might speculate that there could also be differential 

genetic risk within the colon. Also, there may be site-specific eQTL that may not be 

detected even when the modelling is conditioned for site, as any effect in one site 

could be masked by the lack of/opposing effect in the other site. Analysing the 

samples as two distinct tissue types (proximal colon vs distal colon) would be more 

ideal in this regard; however, this will significantly reduce the sample size and 

subsequently the power to detect eQTL. Due to the relatively small sample size 

(n=115) and the targeted nature of my analysis to the 25 colorectal risk variants only, 

it was decided not to analyse the different sites separately to maintain power. This 

will be of more importance in the longer term, when more samples are collected and 

added to this dataset, especially for future whole-genome eQTL studies that are 

already ongoing using this data.  

Overall, the identification of factors that affect global expression in the tissue 

substrate demonstrates the importance of examining and adjusting for them in any 

genotype-gene expression analysis, as this will reduce the noise within the 

expression phenotype and improve detection. In addition, this analysis has identified 

some novel differentially expressed genes that could potentially inform other studies 

of colorectal cancer aetiology. 
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 Chapter 6 

Cis-eQTL analysis of low-penetrance common genetic 

variants associated with colorectal cancer predisposition 

6.1 Introduction 

     At the point of the conception of this study, there was no strong evidence that 

colorectal cancer associated genetic loci exhibits eQTL effects, although two of them 

are in linkage disequilibrium with cis-eQTLs – rs7136702 was in moderate to strong 

LD with four SNPs previously associated with DIP2B expression in lymphoblastoid 

cell lines, and rs492536 was in moderate to strong LD with an eQTL for LAMA5 

expression in the liver tissue (Houlston et al, 2010). This provides some functional 

evidence for these risk variants, as studies have shown that a substantial number of 

eQTLs are shared across diverse tissue types (Bullaughey et al, 2009; Zeller et al, 

2010). Other studies, however, have indicated that eQTLs are likely to be cell- or 

tissue-specific (Cowley et al; 2009, Dimas et al; 2009) – this may explain the lack of 

eQTL associations seen so far with CRC susceptibility loci. Furthermore, it is yet 

unclear how risk alleles exert their causative effect, either directly within the target 

tissue or by modifying the cellular phenotypes of other cell types that in turn act 

upon the target tissue. Careful deliberation should therefore be given when defining 

the tissue/cell substrate for eQTL studies.  

     Considering that colorectal carcinomas are epithelial in origin, examination of 

eQTLs within the normal non-aberrant colonic mucosa and matched peripheral blood 

mononuclear cells would serve as a useful empirical starting point for the functional 

characterisation of CRC-associated loci in a systematic manner, with the hypothesis 

that they exert their effect on risk by influencing baseline gene expression. As the 

sample size of my study is relatively small (n=115), I will focus on the possibility of 

their role as cis determinants of gene expression, as polymorphic cis-acting variants 

often have a large effect on the expression level of the target gene and are easier to 

detect than trans-acting variants (as reviewed by Cheung et al, 2003). Initially, the 
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expression of genes within 2Mb upstream or downstream of the tagging SNPs will be 

analysed in relation to the genotype of the tagging SNPs. Any eQTL association will 

be followed-up with fine association mapping, firstly, to identify candidate 

functional variants, and secondly, to identify with better precision where the 

regulatory variants are relative to the target genes. Case-control comparisons of these 

putative eQTL functional variants will then be performed, with the rationale that a 

variant that better explains both target gene expression and CRC risk will be more 

likely to represent the functional variant within a risk locus.  
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6.2 Methodological overview 

6.2.1 Study subjects and biological material 

     To explore the effect of risk variants on gene expression in the normal colonic 

mucosa, 115 fresh normal colorectal mucosa were harvested immediately as 

described in 2.1 after surgical resection of colorectal adenocarcinomas (n=99), 

tubulo-villous (n=8) and villous (n=2) adenomas or non-neoplastic conditions (n=6). 

Matched PBMC were collected from 60 of the 115 subjects, of which 59 were used 

for gene expression analysis. The characteristics of the study subjects are detailed in 

Table 5.3 in Chapter 5. 

6.2.2 RNA extraction and gene expression quantification of cis-genes  

     RNA was isolated from the tissue samples as described in 2.3.1. The expression 

of the cis-genes within a 2Mb radius of each individual risk locus was derived from 

whole-transcriptome gene expression profiling of the normal mucosa and PBMC as 

described in 2.3.6. 

6.2.3 Genotyping of CRC risk loci 

     Genotypes were obtained by hybridising genomic DNA extracted from EDTA-

venous blood on the HumanOmni5M-4v1_B BeadChip Arrays (Illumina, USA), 

which includes ~5 million SNP markers. Genotypes for 3 SNPs (rs4813802, 

rs10911251 and rs3824999) were not available on the array platform and were 

imputed using IMPUTE2 after phasing with SHAPEIT.1 The 1000 genomes panel 

(Pilot1 Version3 release) was used as a reference. Post-imputation SNPs with an info 

value of <0.3 were excluded. All variants were annotated and presented according to 

the human reference sequence build GRCh37.p12 (hg19). 

 

                                                             
1
 Imputation performed by Maria Timofeeva, MRC Human Genetics Unit 
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6.2.4 Local eQTL analysis and regional fine-mapping 

     eQTL analysis between genetic variants and level of gene expression was 

performed using linear regression as implemented in the R package “MatrixEQTL” 

using an additive genetic model.2 The analysis of normal mucosa was adjusted for 

age, gender and anatomical sampling site, whereas the analysis of PBMC was 

adjusted for age and gender only. For X-linked SNPs, male hemizygotes were treated 

as homozygotes. For each GWAS SNP, a distance of 2Mb upstream and downstream 

was used as a cut-off for cis-genes. A minimum significance level of nominal p=0.01 

was considered relevant for reporting. To account for multiple comparisons, a 

Bonferroni correction was applied, taking into account the number of genes tested 

within each 4Mb region. The Bonferroni correction method was used based on the 

assumption that each individual test was independent of each other, and was selected 

over the Benjamini-Hochberg FDR procedure as there were relatively small numbers 

of cis-genes tested for each locus.  

     For each eQTL identified, fine-mapping of the region in linkage disequilibrium 

with the tagging SNP was performed in relation to the expression of the target gene. 

Regional visualisation of the fine-association mapping was performed using the web 

tool LocusZoom (Pruim et al, 2010; URL6.1) to produce Manhattan plots that 

display the strength of genetic association (-log10 p-value) with target gene 

expression versus chromosomal position. Each dot represents a genotyped or 

imputed SNP, and dot colours signify the degree of pairwise correlation (r2) with the 

tagging SNP, as presented in the colour key. Grey dots depict SNPs for which r2 

values are unknown.  

6.2.5 Case-control study of candidate functional SNPs 

     Candidate functional SNPs identified from eQTL fine-association mapping were 

evaluated for their association with CRC in a case-control study (Scotland Phase 1; 

cases=939, controls=945; males=965, females=919).3 Genotypes were obtained by 

                                                             
2
 Analysis performed in collaboration with Maria Timofeeva, MRC Human Genetics Unit 

3
 Case-control population samples were previously collected and genotyped by the Colon Cancer 

Genetics Group 
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hybridising genomic DNA extracted from EDTA-venous blood on the Illumina 300K 

or Illumina 240K BeadChip Arrays (Illumina, USA), and SNPs not available on 

these arrays were similarly imputed as described in 6.2.3.  Similar to the cis-eQTL 

analysis, male hemizygotes were treated as homozygotes for X-linked SNPs. 

6.2.6 Technical and biological validation of the Xp22.2 eQTL locus 

     Technical validation of the association between rs5934683 genotype and 

SHROOM2 expression was performed with qRT-PCR using the Taqman® Gene 

Expression assay (ABI) (Table 6.1). The correlation between HT12 microarray 

expression and qRT-PCR was tested statistically with the Spearman correlation test. 

The association between rs5934683 genotype and SHROOM2 expression as 

quantified by qRT-PCR was analysed in R, using linear regression modelling 

corrected for age, gender and anatomical sampling site.  

Table 6.1 A technical comparison between the two methods used for detection of 
SHROOM2 expression.   

     A further level of biological replication was introduced at the level of normal 

mucosa sampling and RNA extraction. In a subset of 37 patients (males=15, 

females=22), 2 further RNA extracts were prepared from the normal mucosa 

harvested at the same time as the first extract but with spatial variation within the 

same colonic site. SHROOM2 was quantified with qRT-PCR, and a nested one-way 

ANOVA was used to statistically account for the multiple levels of replication. 

 ILLUMINA HT12 MICROARRAY  TAQMAN® GENE EXPRESSION 

ASSAY  

Assay/Probe ID ILMN_1681777 Hs01113636_m1 

Context 

Sequence 

CCTGTCAGTTCCCCTGTTTGCCTCTG

AAACGTCTGGTTAGTGGGGACCCAA 

CTCCCGGTGATCGGCAATCACTGCT 

Transcripts 

Detected 

SHROOM2-001 (Exon 10) 

 

SHROOM2-001 (exon 10) 

SHROOM2-201 (exon 6) 

SHROOM2-002 (exon 6) 

Normalisation Quantile normalisation Reference genes TBP, EIF2B1 and 

RPL30 
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6.3 RESULTS 

6.3.1 Local eQTL associations of CRC risk loci in normal colorectal 

mucosa and PBMC 

     In the normal colorectal mucosa, 15 SNP-gene expression associations in ten risk 

loci were identified (nominal p-value <0.01) for genes within 2Mb radius of the CRC 

risk variants (Table 6.2). The more stringent Bonferroni correction was performed to 

reduce the number of false positives as any associations will require follow-up with 

validation studies. Five of these associations were significant (adj. p <0.05) after 

Bonferroni correction. In PBMCs, 13 SNP-gene expression associations in seven risk 

loci were identified, of which five were significant (p <0.05) after Bonferroni 

correction (Table 6.3). One eQTL was present in both tissue types (rs7136702-

CERS5), but the association in the normal mucosa did not survive multiple 

correction testing. Several other SNPs had local eQTL effects in both tissue types, 

but the genes that were associated did not overlap and the majority of them were only 

nominally significant in at least one of the tissue types. Two variants, rs11169552 

(12q13.12) and rs16892766 (8q23.3) had local eQTL associations in both tissue 

types that survived multiple testing. rs11169552 is associated with the expression of 

SPATS2 in the normal mucosa (adj. p=0.033) and expression of LIMA1 in PBMC 

(adj. p=0.046), whereas rs16892766 is associated with the expression of UTP23 in 

the normal mucosa (adj. p=0.008) and expression of MED30 in PBMC (adj. 

p=0.033). 
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SNP Locus Gene Description p-val Adj. p Beta 

rs3802842 11q23.1 COLCA2 colorectal cancer 
associated 2  

6.85e-14 1.92e-12 -0.16 

rs3802842 11q23.1 COLCA1 colorectal cancer 
associated 1  

2.16e-11 6.05e-10 -0.11 

rs5934683 Xp22.2 SHROOM2 shroom family member 2  4.17e-10 5.00e-09 -0.14 

rs11169552 12q13.12 SPATS2 spermatogenesis 
associated, serine-rich 2  

4.11e-04 3.25e-02 -0.06 

rs16892766 8q23.3 UTP23 small subunit (SSU) 
processome component, 
homolog (yeast) 

8.75e-04 7.88e-03 -0.06 

rs4925386 20q13.33 OSBPL2 oxysterol binding protein-
like 2 

1.73e-03 1.21e-01 0.09 

rs6687758 1q41 HLX H2.0-like homeobox  2.13e-03 6.17e-02 0.04 

rs7136702 12q13.12 CERS5 ceramide synthase 5 2.23e-03 1.85e-01 -0.06 

rs3217810 12p13.32 TEAD4 TEA domain family 
member 4 

2.79e-03 1.12e-01 -0.03 

rs11169552 12q13.12 SMARCD1 SWI/SNF related, matrix 
associated, actin 
dependent regulator of 
chromatin, subfamily d, 
member 1 

2.98e-03 2.35e-01 -0.08 

rs16969681 15q13.3 NOP10 NOP10 ribonucleoprotein 5.31e-03 1.59e-01 0.13 

rs4925386 20q13.33 KCNQ2 potassium channel, 
voltage gated KQT-like 
subfamily Q, member 2 

7.16e-03 5.01e-01 -0.03 

rs16969681 15q13.3 FAN1 FANCD2/FANCI-
associated nuclease 1 

8.22e-03 2.47e-01 -0.12 

rs1321311 6p21.2 FGD2 FYVE, RhoGEF and PH 
domain containing 2 

9.23e-03 4.25e-01 0.15 

rs7136702 12q13.12 PRPH peripherin 9.70e-03 8.05e-01 -0.15 

Table 6.2 CRC risk SNPs that show an association (nominal p-value<0.01) with the 
expression of cis-genes in normal colorectal mucosa (n=115). Associations that are 
significant (adj. p<0.05) after Bonferroni correction are highlighted in grey.  
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SNP Locus Gene Description p-val Adj. p Beta 

rs7136702 12q13.12 CERS5 ceramide synthase 5 1.0e-05 7.66e-04 -0.12 

rs11169552 12q13.12 LIMA1 LIM domain and actin 
binding 1 

6.5e-04 4.63e-02 -0.08 

rs961253 20p12.3 RP11-
19D2.2 

lincRNA 6.7e-04 1.47e-02 -0.05 

rs1321311 6p21.2 MDGA1 MAM domain containing 
glycosylphosphatidylinosito
l anchor 1 

1.1e-03 4.86e-02 0.06 

rs1321311 6p21.2 CMTR1 cap methyltransferase 1 2.8e-03 1.28e-01 0.12 

rs16892766 8q23.3 MED30 mediator complex subunit 
30 

4.2e-03 3.32e-02 0.12 

rs1321311 6p21.2 MAPK14 mitogen-activated protein 
kinase 14 

6.7e-03 3.07e-01 -0.10 

rs11169552 12q13.12 ATF1 activating transcription 
factor 1 

6.8e-03 4.79e-01 -0.04 

rs7136702 12q13.12 SPATS2 spermatogenesis 
associated, serine-rich 2  

9.5e-03 7.10e-01 0.05 

rs11169552 12q13.12 DIP2B DIP2 disco-interacting 
protein 2 homolog B 
(Drosophila) 

9.7e-03 6.92e-01 0.06 

rs3824999 11q13.4 GDPD5 glycerophosphodiester 
phosphodiesterase domain 
containing 5 

5.2e-03 2.36e-01 -0.14 

rs6691170 1q41 DUSP10 dual specificity 
phosphatase 10 

7.8e-03 2.03e-01 -0.03 

rs6691170 1q41 MARC1 mitochondrial amidoxime 
reducing component 1  

9.1e-03 2.35e-01 0.28 

Table 6.3 CRC risk SNPs that show an association (nominal P value<0.01) with the 
expression of cis-genes in PBMC (n=59). Associations that are significant (adj. p<0.05) after 
Bonferroni correction are highlighted in grey.  
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6.3.2 Identification of putative functional variants underlying individual 

eQTL associations in the normal mucosa 

     In the normal mucosa, the strongest association was seen with rs3802842 which 

tags the locus 11q23.1. This SNP was found to be highly associated with the two 

genes that it is intronic to: COLCA2 (adj. p-val=1.92e-12) and COLCA1 (adj. p-

val=6.05e-10), two uncharacterised genes that appear to be co-regulated and 

transcribed from opposite strands. These 11q23 eQTL associations have recently 

been published by two separate groups (Closa et al, 2014; Peltekova et al, 2014), 

providing independent replication and validation to our findings. The 11q23.1 locus 

corresponds to a 150kb region of LD, and fine association mapping of the region 

showed that five SNPs that are in high LD with rs3802842 were more significantly 

associated with the expression of COLCA2 (Figure 6.1), four of which were also 

more significantly associated with the expression of COLCA1 (Figure 6.2). This 

suggests that they may be better functional candidates than the tagging SNP.  In a 

CRC case-control study of 939 cases and 945 controls, only one of these SNPs 

rs11213801 showed a marginally better association with CRC risk (Table 6.4). 

Further genotyping and analysis of the variation within this locus was taken forward 

by fellow PhD student Claire Smillie. 

     The second locus that exhibited eQTL properties was rs59364683 at Xp22.2. This 

SNP is intronic to a putative GPR143 transcript but an association with this gene was 

not observed (nominal p=0.083). Instead, a strong association was observed with the 

expression of neighbouring gene SHROOM2 (adj. p=5.0e-09), which lies 

approximately 3kb downstream from the locus tagging SNP.  Indeed, this cis-eQTL 

association was detectable even in a preliminary analysis of SHROOM2 expression 

in an early subset of these normal mucosa samples (n=42, nominal p=1.3e-07), 

accounting for 55% of the variation in SHROOM2 expression (as reported in Dunlop 

et al, 2012). The SHROOM2 association was also replicated in another study recently 

(Closa et al, 2014), but the authors also predicted an association with GPR143 which 

was not observed in my samples. Fine-mapping of this eQTL locus revealed four 

SNPs within the first intron of SHROOM2 that are more highly associated with 

SHROOM2 expression (Figure 6.3). All four SNPs were also more significantly 
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associated with CRC risk with higher odds ratio than the tagging SNP (Table 6.5), 

which is suggestive of a functional role.  

     The two other CRC risk SNPs that exhibited local eQTL effects, albeit much 

weaker, were rs11169552 (12q13.12) and rs16892766 (8q23.3). rs11169552 is an 

intergenic SNP that has been recently shown to be an eQTL for neighbouring gene 

DIP2B (Closa et al, 2014) but this was not seen in my dataset (nominal p= 0.14 and 

0.86, two expression probes present). Fine-mapping of this region for both DIP2B 

probes did not reveal any eQTL associations in the 500kb region in LD with the 

tagging SNP (Figure 6.4). rs11169552 is, however, associated with expression of 

SPATS2 which is approximately 1.2Mb upstream (adj. p=0.033). It is the best eQTL 

in this region for SPATS2, and is in high LD with four other intronic SNPs within 

neighbouring gene ATF1 (Figure 6.5). These four SNPs appear to be in perfect LD 

with one another, and likely represent a single genetic signal.  

     rs16892766 (8q23.3) is an intergenic variant that appears to be an eQTL locus for 

nearby gene UTP23 (adj. p=0.008). Fine-mapping of the region revealed 11 other 

SNPs in LD that are more significantly associated with expression of UTP23 (Figure 

6.6); the majority of them are intronic variants within EIF3H and UTP23, with one 

missense variant (rs16888728) that is predicted by SIFT and PolyPhen to be a 

tolerated/benign variant. However, none of these SNPs showed an association with 

CRC risk in the case-control comparison (Table 6.6). 
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Figure 6.1 A) Boxplot showing the rs3802842 genotype association with COLCA2 (also 
known as C11orf93) expression in normal colorectal mucosa. B) Fine association mapping 
for COLCA2 expression detailing a 150kb region in LD with rs3802842 (purple). 
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Figure 6.2 A) Boxplot showing the rs3802842 genotype association with COLCA1(also 
known as C11orf92) expression in normal colorectal mucosa. B) Fine association mapping 
for COLCA1 expression detailing a 150kb in LD with rs3802842 SNP (purple). 
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Case-control 

 

 

 

 

 

Table 6.4 Variants that are more significantly associated with normal mucosa A) COLCA2, 
and B) COLCA1 expression than the tagging SNP rs3802842, listed in order of their eQTL 
significance values. The tagging SNP is included and highlighted for reference. p-values and 
effect sizes for their eQTL association and CRC risk (case-control comparison) are 
presented.  

SNP SNP position Predicted function p-value beta p-value OR 

rs3087967 chr11:111156836 C11orf53 3’ UTR 
variant 

8.53e-15 -0.165 9.22e-03 1.20 

rs7130173 chr11:111154072 C11orf53 intron 
variant 

8.53e-15 -0.165 1.36e-02 1.20 

rs7103178 chr11:111165009 COLCA1 3’ UTR 
variant 

2.58e-14 -0.159 8.35e-03 1.20 

rs11213801 chr11:111119694 Intergenic 3.86e-14 -0.156 4.50e-03 1.24 

rs3802840 chr11:111171646 COLCA1 and 
COLCA2 intron 
variant 

6.85e-14 -0.161 6.02e-03 1.21 

rs3802842 chr11:111171709 

 

COLCA1 and 
COLCA2 intron 
variant 

6.85e-14 -0.161 6.02e-03 1.21 

SNP SNP position Predicted function P-value beta p-value OR 

rs3087967 chr11:111156836 C11orf53 3’ UTR 
variant 

2.35e-12 -0.116 9.22e-03 1.12 

rs7130173 chr11:111154072 C11orf53 intron 2.35e-12 -0.116 1.36e-02 1.19 

rs7103178 chr11:111165009 COLCA1 3’ UTR 
variant 

6.67e-12 -0.112 8.35e-03 1.20 

rs3802840 chr11:111171646 COLCA1 and 
COLCA2 intron 
variant 

2.16e-11 -0.112 6.02e-03 1.21 

rs3802842 chr11:111171709 

 

COLCA1 and 
COLCA2 intron 
variant 

2.16e-11 

 

-0.112 6.02e-03 1.21 

B) 

eQTL 

eQTL Case-control 

A) 
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Figure 6.3 A) Boxplot showing the rs5934683 genotype association with SHROOM2 
expression in normal colorectal mucosa. B) Fine association mapping for SHROOM2 
expression detailing a 50kb region in LD with rs5934683 (purple). 

 

B) 

A) 



 
 

112 

 

 

 

Table 6.5. Variants that are more significantly associated with normal mucosa SHROOM2 
expression than the tagging SNP rs5934683, listed in order of their eQTL significance 
values. The tagging SNP is included and highlighted for reference. p-values and effect sizes 
for their eQTL association and CRC risk (case-control comparison) are presented.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SNP SNP position Predicted function p-value beta p-value OR 

rs5934685 chrX:9766019 SHROOM2 intron 1 
variant 

1.04e-19 -0.206 1.65e-02 1.296 

rs2521664 chrX:9763429 SHROOM2 intron 1 
variant 

1.62e-13 -0.159 3.52e-02 1.201 

rs2521663 chrX:9761062 SHROOM2 intron 1 
variant 

2.51e-13 -0.158 8.14e-02 1.158 

rs4830657 chrX:9766725 SHROOM2 intron 1 
variant 

5.28e-11 -0.147 6.21e-02 1.185 

rs5934683 chrX:9751474 GPR143 intron variant 4.17e-10 -0.138 5.50e-01 1.048 

eQTL Case-control 

A) 
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Figure 6.4. Fine association mapping for normal colorectal mucosa DIP2B expression 
detailing a 500kb region in LD with rs11169552 (purple). DIP2B expression was detected by 
two individual probes A) ILMN_1755589 and B) ILMN_2180352.  
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Figure 6.5 A) Boxplot showing the rs11169552 genotype association with SPATS2 
expression in the normal colorectal mucosa. B) Manhattan plot demonstrating SPATS2 
location in relation to the peak of the eQTL association. The 4 omitted genes are PRPF40B, 
SMARCD1, GPD1, COX14. 
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Figure 6.5 C) Fine association mapping for SPATS2 expression detailing a 500kb region 
surrounding the rs11169552 SNP (purple). 
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Figure 6.6 A) Boxplot showing the rs11169552 genotype association with UTP23 expression 
in normal colorectal mucosa.  B) Fine association mapping for UTP23 expression detailing a 
200kb region in LD with rs16892766 (purple). 
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SNP SNP position Predicted function p-val beta p-val OR 

rs16892766 chr8:117630683 Intergenic 8.75e-04 -0.060 0.074 1.22 

rs28668628 chr8:117679601 EIF2H intron variant 2.36e-05 -0.086 0.249 1.13 

rs7823271 chr8:117703509 EIF2H intron variant 1.09e-05 -0.087 0.288 1.12 

rs16888695 chr8:117735099 EIF2H intron variant 1.09e-05 -0.087 0.286 1.12 

rs16888699 chr8:117735209 EIF2H intron variant 1.09e-05 -0.087 0.296 1.12 

rs16888728 chr8:117783975 UTP23 missense 
variant 

1.09e-05 -0.087 0.292 1.12 

rs979867 chr8:117791502 UTP23 intron variant 7.30e-05 -0.081 0.269 1.12 

rs1867840 chr8:117799012 UTP23 3' UTR variant 1.09e-05 -0.087 0.257 1.13 

rs7014328 chr8:117799487 UTP23 intron variant 7.30e-05 -0.081 0.265 1.12 

rs200798730 chr8:117799586 UTP23 intron variant 7.30e-05 -0.081 0.263 1.13 

rs7014359 chr8:117799587 UTP23 intron variant 7.30e-05 -0.081 0.280 1.12 

rs6983626 chr8:117802148 UTP23 intron variant 7.30e-05 -0.081 0.288 1.12 

Table 6.6 Variants that are more significantly associated with normal mucosa UTP23 
expression than the tagging SNP rs16892766 are shown in the table, listed in order of their 
chromosomal positions. The tagging SNP is included and highlighted for reference. p-values 
and effect sizes for their eQTL association and CRC risk (case-control comparison) are 
presented.  
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6.3.3 Identification of putative functional variants underlying individual 

eQTL associations in PBMC 

     In PBMC, the strongest association was observed with rs7136702 (12q13.12) and 

expression of CERS5 (adj. p=7.66e-04) that lies 350kb away (Figure 6.7). As alluded 

to before, this association was also observed in the normal mucosa but it was weaker 

and did not survive multiple testing correction (nominal p =2.23e-03, adj. p=0.185). 

Fine-mapping of the region revealed a 700kb region that is in LD with rs7136702, 

with 73 variants showing better association to CERS5 expression. The peak of this 

association is striking, with the best eQTL rs10747573 (chr12:50633839) showing an 

association p-value = 4.80e-13. It is approximately 300kb closer to CERS5 than the 

tagging SNP, and resides within a cluster of highly associated SNPs intronic to the 

upstream neighbouring gene LIMA1. However, none of the SNPs within this cluster 

were associated with CRC risk (Table 6.7). Examination of the wider LD block 

tagged by rs7136702 shows that the majority of these SNPs are intronic variants of 

the genes within this LD block, with a few synonymous variants and missense 

variants that are mostly predicted to be benign/tolerated. Of note, two missense 

variants within FAM186A, rs12303082 (chr12:50754563) and rs6580741 

(chr12:50727706) are predicted by Polyphen to be probably damaging and possibly 

damaging, respectively. However, none of these are better candidates in predicting 

CRC risk. On the other hand, there are 5 other variants within this region that appear 

to be more significantly associated with CRC risk, the best candidate being CERS5 

intron variant rs7398567 (p=0.010). Taken altogether, this evidence is suggestive of 

CERS5 being a candidate gene in CRC common predisposition.  

     For the genotype-gene expression associations rs11169552-LIMA1, rs961253-

RP11-19D2.2 and rs1321311-MDGA1, fine-association mapping did not show any 

other putative functional candidates that are better associated with the target gene 

expression (Figures 6.8 - 6.10). For rs16892766, there was one variant within EIF3H 

intron (rs7825662) that showed a better association with MED30 expression (Figure 

6.11), but it was not a significant predictor of CRC risk (Table 6.8). rs11169552 and 

rs16892766 are also eQTLs in the normal mucosa influencing different genes 

(SPATS2 and UTP23 respectively) as described previously. 
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     Of these eight eQTL loci in the normal mucosa and PBMC, the two associations 

that stood out (11q23.3 and Xp22.2) were selected to be validated technically and 

functionally. Due to the collaborative nature of this project, the 11q23.3 locus and 

COLCA1/COLCA2 expression was investigated by Claire Smillie and further data on 

this locus will not be presented in this thesis. 
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Figure 6.7 A) Boxplot showing the rs7136702 genotype association with CERS5 expression 
in PBMC. B) Fine association mapping for CERS5 expression detailing a 1Mb region in LD 
with rs7136702 (purple). 
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Case-control eQTL 

 

 

SNP SNP position Predicted function p-val beta p-val OR 

rs7398567 chr12:50551158 CERS5 intron variant 2.56e-06 -0.146 0.010 1.19 

rs3184122 chr12:50570127 LIMA1 3'UTR variant 1.27e-07 -0.160 0.026 1.16 

rs9364 chr12:50570519 LIMA1 3'UTR variant 1.27e-07 -0.160 0.025 1.16 

rs7315690 chr12:50581490 RP3-405J10.3-001 
non coding transcript 
exon variant 

2.41e-07 -0.157 0.058 1.14 

rs7138420 chr12:50583150 RP3-405J10.3-001 
non coding transcript 
exon variant 

2.41e-07 -0.157 0.065 1.13 

rs2302900 chr12:50599709 LIMA1 intron variant 4.01e-07 -0.152 0.073 1.13 

rs12367872 chr12:50607834 LIMA1 intron variant 4.01e-07 -0.152 N/A N/A 

rs12425705 chr12:50610321 LIMA1 intron variant 4.01e-07 -0.152 0.085 1.12 

rs11169322 chr12:50610976 LIMA1 intron variant 4.01e-07 -0.152 0.085 1.12 

rs8181679 chr12:50611020 LIMA1 intron variant 1.95e-12 0.200 0.890 0.99 

rs12424691 chr12:50611477 LIMA1 intron variant 4.01e-07 -0.152 0.085 1.12 

rs1362983 chr12:50614707 LIMA1 intron variant 4.01e-07 -0.152 0.085 1.12 

rs3812825 chr12:50616346 LIMA1 intron variant 4.01e-07 -0.152 0.085 1.12 

rs7314465 chr12:50623658 RP3-405J10.3-001 
non coding transcript 
exon variant 

4.01e-07 -0.152 0.085 1.12 

rs7136648 chr12:50624822 LIMA1 intron variant 2.13e-11 0.196 0.772 0.98 

rs10783342 chr12:50628466 LIMA1 intron variant 1.95e-12 0.200 0.815 0.98 

rs11169332 chr12:50629612 LIMA1 intron variant 4.01e-07 -0.152 0.085 1.12 

rs10747573 chr12:50633839 LIMA1 intron variant 4.80e-13 0.188 N/A N/A 

rs11169335 chr12:50636364 LIMA1 intron variant 4.01e-07 -0.152 0.091 1.12 

rs12828340 chr12:50637295 LIMA1 intron variant 4.01e-07 -0.152 0.085 1.12 

rs7957659 chr12:50638810 LIMA1 intron variant 1.95e-12 0.200 0.862 0.99 

rs7953953 chr12:50647224 LIMA1 intron variant 4.01e-07 -0.152 0.079 1.13 

rs7486747 chr12:50650564 LIMA1 intron variant 4.01e-07 -0.152 0.079 1.13 

rs6580735 chr12:50665227 LIMA1 intron variant 4.01e-07 -0.152 0.068 1.13 

rs11169348 chr12:50665946 LIMA1 intron variant 4.01e-07 -0.152 0.068 1.13 

rs2111988 chr12:50668538 LIMA1 intron variant 4.01e-07 -0.152 0.068 1.13 

rs11169351 chr12:50672214 LIMA1 intron variant 4.01e-07 -0.152 0.068 1.13 

rs7967954 chr12:50673484 LIMA1 intron variant 1.95e-12 0.200 0.768 0.98 

rs10876014 chr12:50674753 LIMA1 intron variant 4.01e-07 -0.152 0.068 1.13 

rs10876015 chr12:50677506 Intergenic 4.01e-07 -0.152 0.074 1.13 
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rs200533278 chr12:50678972 Intergenic 4.01e-07 -0.152 N/A N/A 

rs6580736 chr12:50679418 Intergenic 3.66e-06 -0.140 0.121 1.11 

rs10876017 chr12:50681539 Intergenic 4.01e-07 -0.152 0.068 1.13 

rs11838347 chr12:50687160 Intergenic 4.01e-07 -0.152 0.068 1.13 

rs11169370 chr12:50705872 Intergenic 9.03e-07 -0.147 0.068 1.13 

rs35663729 chr12:50708870 Intergenic 4.01e-07 -0.152 0.068 1.13 

rs7310541 chr12:50725965 FAM186A intron 
variant 

4.01e-07 -0.152 0.074 1.13 

rs6580741 chr12:50727706 FAM186A missense 
variant 

4.01e-07 -0.152 0.080 1.13 

rs7134595 chr12:50730458 FAM186A intron 
variant 

4.01e-07 -0.152 0.073 1.13 

rs4768900 chr12:50734199 FAM186A intron 
variant 

4.01e-07 -0.152 0.068 1.13 

rs4768951 chr12:50739008 FAM186A intron 
variant 

3.66e-06 -0.140 0.112 1.11 

rs7295847 chr12:50743913 FAM186A intron 
variant 

4.01e-07 -0.152 0.068 1.13 

rs7296291 chr12:50744119 FAM186A missense 
variant 

4.01e-07 -0.152 0.068 1.13 

rs7312252 chr12:50744171 FAM186A 
synonymous variant 

4.01e-07 -0.152 0.068 1.13 

rs10506292 chr12:50744753 FAM186A 
synonymous variant 

4.01e-07 -0.152 0.068 1.13 

rs4421818 chr12:50749294 FAM186A 
synonymous variant 

4.01e-07 -0.152 0.068 1.13 

rs12303082 chr12:50754563 FAM186A missense 
variant 

4.01e-07 -0.152 0.068 1.13 

rs11833608 chr12:50757628 FAM186A intron 
variant 

4.01e-07 -0.152 0.068 1.13 

rs10876027 chr12:50763484 FAM186A intron 
variant 

3.66e-06 -0.140 0.124 1.11 

rs12582180 chr12:50767285 FAM186A intron 
variant 

3.66e-06 -0.140 0.114 1.11 

rs7136702 chr12:50880216 Intergenic 1.02e-05 -0.129 0.053 1.14 

rs9788075 chr12:51019171 DIP2B intron variant 3.79e-07 -0.146 0.111 1.11 

rs10876074 chr12:51031817 DIP2B intron variant 3.79e-07 -0.146 0.111 1.11 

rs1316607 chr12:51042890 DIP2B intron variant 3.79e-07 -0.146 0.106 1.11 

rs4768903 chr12:51045449 DIP2B intron variant 2.81e-06 -0.136 0.126 0.90 

rs7309964 chr12:51064064 DIP2B intron variant 4.02e-06 -0.142 0.031 1.16 

rs11169520 chr12:51073523 DIP2B non-coding 
transcript exon variant 

4.02e-06 -0.142 0.029 1.17 

rs12427378 chr12:51074199 DIP2B intron variant 3.79e-07 -0.146 0.121 1.11 

rs2090852 chr12:51086931 DIP2B intron variant 3.79e-07 -0.146 0.104 1.12 
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rs2139930 chr12:51089287 DIP2B intron variant 3.79e-07 -0.146 0.113 1.11 

rs11169524 chr12:51089734 DIP2B synonymous 
variant 

3.79e-07 -0.146 0.082 1.12 

rs3742062 chr12:51128832 DIP2B intron variant 7.72e-06 -0.134 0.080 1.13 

rs2280503 chr12:51138687 DIP2B 3' UTR variant 7.72e-06 -0.134 0.074 1.13 

rs61926301 chr12:51157863 ATF1 5' UTR variant 4.05e-06 -0.135 0.100 1.11 

rs12372718 chr12:51171090 ATF1 intron variant 4.05e-06 -0.135 0.112 1.11 

rs10783387 chr12:51180143 ATF1 intron variant 4.05e-06 -0.135 0.112 1.11 

rs7133974 chr12:51184577 ATF1 intron variant 4.05e-06 -0.135 0.112 1.11 

rs1129406 chr12:51203371 ATF1 intron variant 4.05e-06 -0.135 0.116 1.11 

rs4986838 chr12:51203376 ATF1 synonymous 
variant 

4.05e-06 -0.135 0.116 1.11 

rs11169567 chr12:51204938 ATF1 intron variant 4.05e-06 -0.135 0.116 1.11 

rs7306677 chr12:51205763 ATF1 intron variant 4.05e-06 -0.135 0.116 1.11 

rs11169571 chr12:51213765 ATF1 3' UTR variant 4.05e-06 -0.135 0.116 1.11 

rs10876098 chr12:51220373 Intergenic 4.05e-06 -0.135 0.074 1.13 

Table 6.7 Variants that are more significantly associated with PBMC CERS5 expression 
than the tagging SNP rs7136702 are shown in the table, listed in order of their chromosomal 
positions. The tagging SNP is included and highlighted in brown for reference; SNPs within 
the eQTL peak are in blue, whereas SNPs better associated with CRC risk are in yellow. 
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Figure 6.8 A) Boxplot showing the rs11169552 genotype association with LIMA1 expression 
in PBMC.  B) Fine association mapping for LIMA1 expression detailing a 800kb region in LD 
with rs11169552 (purple). 
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Figure 6.9 A) Boxplot showing the rs961253 genotype association with RP11-19D2.2 
expression in PBMC. B) Manhattan plot demonstrating RP11-19D2.2 location in relation to 
the eQTL locus.  
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Figure 6.9 C) Fine association mapping for RP11-19D2.2 expression detailing a 100Kb 
region in LD with rs961253 SNP (purple). 
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Figure 6.10 A) Boxplot showing the rs1321311 genotype association with MDGA1 
expression in PBMC. B) Manhattan plot demonstrating MDGA1 location in relation to the 
eQTL locus.  
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Figure 6.10 C) Fine association mapping for MDGA1 expression detailing a 50Kb region in 
LD with rs1321311 SNP (purple). 
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Figure 6.11 A) Boxplot showing the rs16892766 genotype association with MED30 
expression in PBMC. B) Manhattan plot demonstrating MED30 location in relation to the 
eQTL locus. 
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Case-control eQTL 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.11. C) Fine association mapping for MED30 expression detailing a 200Kb region 
that is in LD with rs16892766 (purple). 

 

 

 

 

SNP SNP position Predicted function p-value beta p-value OR 

rs16892766 chr8:117630683 Intergenic 4.15E-03 0.122 0.074 1.22 

rs7825662 chr8:117725175 EIF3H intron variant 1.68E-03 0.127 0.755 1.03 

Table 6.8 Variant that is more significantly associated with PBMC MED30 expression than 
the tagging SNP rs16892766 are shown in the table. The tagging SNP is highlighted for 
reference. p-values and effect sizes for their eQTL association and CRC risk (case-control 
comparison) are presented.  
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6.3.4 Validation of the rs5934683-SHROOM2 expression association 

     Same-sample technical validation of the rs5934683 eQTL was performed with 

qRT-PCR, measuring the same mRNA samples (n=115) used for whole-genome 

expression profiling. There was a strong correlation between SHROOM2 expression 

on the Illumina HT12 microarray and expression measured by qRT-PCR (p-

val<2.2e-16, spearman rho=0.66) (Figure 6.12). There was also a highly significant 

association (p-value=2.59e-07) between rs5934683 and SHROOM2 expression 

measured by qRT-PCR (Figure 6.13A), validating the eQTL association seen with 

the Illumina HT12 microarray. The SNP accounted for 22% of the variability in 

SHROOM2 expression, which is indicated by the coefficient of determination R2  in 

the linear model. The risk allele T is associated with lower expression of SHROOM2, 

with a fold difference between the homozygotes/hemizygotes for the risk allele and 

the protective allele of 2.75 (95% CI, 1.96 – 4.36). Interestingly, in this linear 

regression model, gender appeared to have a significant influence on SHROOM2 

expression (p=0.003).  This was independent of rs5934683 genotype, as there was no 

significant statistical interaction between the SNP genotype and gender (p=0.55). 

This gender-specific difference in SHROOM2 expression will be discussed further in 

the next section.  

     On the other hand, qRT-PCR of the same PBMC samples (n=59) confirmed that 

SHROOM2 was very lowly expressed and there was no detectable association 

(p=0.37) between rs5934683 genotype and SHROOM2 expression (Figure 6.13B). 

There was also no differential expression between genders in PBMC SHROOM2 

expression (p=0.48). 
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Figure 6.12 Significant correlation was observed between the expression of SHROOM2 as 
quantified by Illumina HT12 microarray and qRT-PCR (p<2.2e-16, spearman rho=0.66).  
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Figure 6.13 A) The association between rs5934683 and SHROOM2 expression in the 
normal mucosa, as quantified by qRT-PCR. Linear regression adjusted for age, gender and 
anatomical site (p=2.59e-07; R2 for rs5934683 = 0.215). B) SHROOM2 relative expression in 
PBMC as quantified by qRT-PCR (normalised to GAPDH). Linear regression adjusted for 
age and gender (p=0.37).  
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     To seek further confidence in the rs5934683-SHROOM2 eQTL association, 

further replication was introduced at the level of normal mucosa sampling and RNA 

extraction.  In a subset of 37 patients, 2 further RNA extracts were prepared from the 

normal mucosa harvested at the same time as the first extract but with spatial 

variation within the same colonic site. This spatial replication is thought to be of 

particular importance in the females, as heterozygous X-linked polymorphisms are 

functionally mosaic and the progeny of a single X-inactivation pattern are arranged 

together as large patches in the colon.  The association between rs5934683 and 

SHROOM2 was significant (p=3.77e-04) (Figure 6.14), and this remained true when 

the genders were analysed separately (males, p=1.10e-03; females, p=2.99e-03) 

(Figure 6.15).   

     In summary, the eQTL association between rs5934683 and SHROOM2 expression 

in the normal mucosa was technically validated with qRT-PCR, and successfully 

replicated by multiple sampling in a subset of 37 patients. This association was 

tissue-specific and was not seen in the qRT-PCR validation of PBMC SHROOM2 

expression.  
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Figure 6.14 Biological replication of the association between SHROOM2 and rs5934683 
genotype. SHROOM2 expression was measured with qRT-PCR in 3 different extracts of 
normal mucosa tissue taken at the same time (nested one-way ANOVA, p=3.77e-04). 
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Figure 6.15 Biological replication of the association between SHROOM2 expression and 
rs5934683 genotype, genders analysed separately with nested one-way ANOVA (males, 
p=1.10e-03; females, p=2.99e-03). 
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6.3.5 Gender-specific differences in SHROOM2 expression 

     In the linear regression modelling for SHROOM2 expression as quantified by 

qRT-PCR, it was observed that gender was significantly associated with SHROOM2 

expression (Figure 6.16). Overall, expression appears to be higher in females 

(p=0.003), with a mean fold increase of 1.46 compared to males (95% CI, 1.15-1.89). 

This differential expression was not observed in the Illumina microarray expression 

data. This discrepancy could be a result of the detection of differing transcript 

isoforms, or that of the limitations known to accompany microarray experiments. It 

has been recognised that microarrays tend to have lower sensitivities for certain 

genes (Chuaqui et al, 2002), with a significant decrease in overall accuracy of 

differential expression detection at low expression level and relatively poor 

sensitivity in detecting fold changes of less than 2 (Wang et al, 2006). It is plausible 

that the lack of association on the microarray is a false negative, as the fold change is 

small and SHROOM2 is relatively lowly expressed. 

     In view of the gender difference in SHROOM2 expression, I analysed the 

rs5934683 eQTL association separately in males and females (Figure 6.17). 

Although this association was still significant in both genders, it was considerably 

weaker in the females (males, p=3.23e-06; females, p=0.027). Not only was the 

association less significant in females, the variability in expression that was 

accounted for by the SNP was only 9% in females compared to 31% in males.  
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qRT-PCR       HT12 microarray 

Figure 6.16 Comparison of SHROOM2 expression between genders. There was significant 
differential expression in SHROOM2 quantified by qRT-PCR. Linear regression adjusted for 
age, anatomical site and rs5934683 genotype (p=0.003, R2 for gender=0.080). SHROOM2 
expression was higher in females with mean fold change=1.46, 95% CI [1.15-1.89]). This 
relationship was not seen in the SHROOM2 expression data from the Illumina HT12 
microarray (p=0.515). 

Figure 6.17 qRT-PCR validation of the association between rs5934683 and SHROOM2 
microarray expression, analysed separately by gender. Linear regression, adjusted for age 
and anatomical site (males, p=3.23e-06, R2 for rs5934683=0.313; females, p=0.027, R2 for 
rs5934683=0.086) 
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6.4 Discussion 

     By using whole-genome expression profiling and eQTL analysis of fresh normal 

mucosa samples and PBMC, I have demonstrated that a number of CRC risk variants 

are eQTLs that are associated with the expression levels of local cis-genes. For each 

of these loci, fine association mapping to the target gene expression levels and 

colorectal cancer risk was performed. This approach has revealed nearby SNPs in LD 

with the tagging SNP that are more highly associated with expression and risk, which 

makes them more likely to be the causal SNPs. By association, the target genes of 

these risk loci with eQTL activity are candidate susceptibility genes that may 

relevant to the predisposition and development of CRC.  

     The 11q23.1 locus demonstrated the strongest eQTL association, influencing the 

expression of two neighbouring genes, COLCA2 and COLCA1, in the normal 

mucosa. The tagging SNP rs3802842 was one of the early GWAS discoveries 

(Tenesa et al, 2008) with an OR of 1.11, and has been replicated in subsequent 

studies and meta-analyses (Pittman et al, 2008; von Holst et al, 2010; Zou et al, 

2012). The eQTL effects of this locus has recently been reported (Biancolella et al, 

2014; Peltekova et al, 2014, Closa et al, 2014), providing independent validation of 

the data presented here. The rs7130173 SNP has been proposed by these studies to be 

the causal variant, as it explained the highest proportion of variance of the gene 

expression. In agreement with these reports, my findings showed rs7130173 as the 

best eQTL variant, together with a perfect proxy rs3087967. However, they did not 

perform better than the tagging SNP in the case-control analysis; another candidate 

variant rs112138001 was more associated with risk. Further functional studies will 

be required to elucidate the causal variant(s), as well as the allele-specific regulatory 

mechanism that is influenced by the polymorphic variants in this region. The eQTL 

target genes, COLCA1 and COLCA2 have not been characterised in depth, and have 

only recently studied in relation to its association with this CRC risk locus (Peltekova 

et al, 2014). The authors of this study showed via immunohistochemistry that 

COLCA1 is largely expressed in the lamina propria, but not in normal epithelial cells 

or epithelium-derived neoplastic cells, whereas COLCA2 is expressed in both the 
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epithelium and the lamina propria. Based on the localisation of these genes in various 

mucosal immune cells of the colon, they proposed an immuno-regulatory role of 

these genes in the predisposition to CRC. However, when tested in our hands, the 

antibody used in this study did not appear to exhibit the level of specificity required 

for localisation via immunostaining, and that there is evidence to suggest that these 

genes are more likely to be long non-coding RNAs instead of protein-coding 

(Smillie, pers. comm.) 

     The Xp22.2 risk locus is the first X-linked locus to be associated with colorectal 

cancer (Dunlop et al, 2012). Here we suggested that it was a very strong colonic 

mucosa-specific eQTL with association to neighbouring gene SHROOM2, and this 

has been validated with qRT-PCR and replicated by repeated sampling in a subset of 

patients. This eQTL association was recently reported in an independent study (Closa 

et al, 2014), in which the authors also found an association with GPR143 which was 

not observed in my data. This discrepancy could be due to the different microarray 

platform used, where a different probe sequence may have detected alternative 

transcripts. Fine-mapping of this region revealed putative functional variants within 

intron1 of SHROOM2, and will require more in-depth functional characterisation.  

     SHROOM2 belongs to the SHROOM family of proteins, which are regulators of 

epithelial morphogenesis, characterized by their ability to bind F-actin and organise 

actomyosin networks (Dietz et al, 2006), which makes it an interesting candidate for 

further study given the contribution of the actin and microtubule cytoskeleton to the 

cell biology of cancer (as reviewed by Hall, 2009). The technical validation of the 

Xp22.2 eQTL effect highlighted a gender-specific differential expression of 

SHROOM2 in the normal mucosa, where expression was overall higher in females. 

Although the eQTL association was significant in both genders, there was 

attenuation of this effect in females, suggesting involvement of gender-specific 

factors in the regulation of SHROOM2. This is of interest as it is known that gender 

significantly influences the clinical and pathological characteristics of CRC; not only 

does it impact on the age-standardised incidence and mortality rate (Regula et al, 

2006; Brenner et al; 2007), it also influences where tumours arise within the colon 

(reviewed by Koo et al, 2010), with risk and outcomes more favourable for females 
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than males. The Xp22 locus is rich in genes that normally escape X-inactivation 

(Carrel et al, 2005), hence it is possible incomplete X-activation of SHROOM2 

accounts for the higher expression in females and consequently contribute a 

protective effect against CRC. Escape mechanisms in X-inactivation leading to 

disease protection is not unprecedented; X-linked tumour suppressor genes (Zuo et 

al, 2007) and immunomodulatory genes (Anderson et al, 1999) have been identified, 

with skewing and leaky X-inactivation being hypothesised as mechanisms conferring 

a protective effect in females (Libert et al, 2010;  Chaligné et al, 2014). 

Nevertheless, this is unlikely to be the sole mechanism of gender-specific expression, 

as other factors such as hormonally-driven regulatory elements are almost certainly 

involved too. Without further speculation at this juncture, it is suffice to say that the 

independent association of lower SHROOM2 expression levels with two known CRC 

risk factors (gender = male; rs5934683 = T) makes it a compelling susceptibility 

gene. These observations suggest that SHROOM2 may have a protective or tumour 

suppressive role, with lower expression levels increasing the risk of developing 

colorectal cancer. 

     The other gene that stands out from the local-eQTL analysis is CERS5. Not only 

is it the target gene of the strongest eQTL association in PBMC, its expression also 

appears to be weakly influenced by the rs7136702 risk variant in the normal mucosa, 

albeit not surviving the correction for multiple-testing. This variant appears to tag a 

very strong eQTL locus for CERS5, and fine-mapping of the wider LD block has also 

revealed several candidate variants that are more highly associated with both CERS5 

expression and CRC risk. CERS5 (Ceramide synthase 5) is involved in the de novo 

synthesis of ceramide, a sphingolipid involved in cell death and proliferation. 

Ceramide synthases have been implicated in cancer and apoptosis, although the 

precise roles of distinct family members have not been fully understood. 

Interestingly, it has recently been demonstrated to be highly expressed in colorectal 

cancer tissue and is associated with poorer clinical outcomes (Fitzgerald et al, 2015).  

     The other candidate genes derived from the cis-eQTL analysis (SPATS2 and 

UTP23 in the normal mucosa, LIMA1, RP11-19D2.2, MDGA1 and MED30 in 

PBMC) are perhaps less convincing candidates due to a weaker eQTL association 
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with the respective risk loci, but may still be interesting candidates due to the known 

functions of their protein products. Of these, LIMA1 (LIM domain and actin-binding 

protein 1) is the most interesting candidate. It was previously known as EPLIN 

(epithelial protein lost in neoplasm) when it was first identified to be a human 

epithelial cell protein that is down-regulated or lost in the majority of cancer cell 

lines and xenografts examined (Maul et al, 1999). It was later characterised as a 

cytoskeletal protein with actin-binding properties which links the cadherin-catenin 

complex to F-actin, stabilising the adherens junction in epithelial cells (Abe et al, 

2008). However, the relevance of this gene to colorectal cancer is questionable, as 

the eQTL effect was only observed in PBMC and not in the normal mucosa. 

Although its role in non-epithelial cells is generally not well-studied, there is a recent 

report that LIMA1 is targeted by AP12-MALT1 (juxtaposition of apoptosis inhibitor 2 

to MALT lymphoma translocation gene 1) (Nie et al, 2015), the most frequent 

recurrent chromosomal translocation present in lymphomas involving the mucosa-

associated lymphoid tissue (MALT). The authors also showed that depletion of 

LIMA1 in a B-cell derived cell line affected various cancer phenotypes such as 

growth and invasiveness, indicating a possible role of LIMA1 dysregulation in B-cell 

lymphomagenesis. Although this suggestion of a possible role for LIMA1 in 

intestinal immunity is intriguing, it is remains speculative to suggest a link with 

colorectal susceptibility, especially as it is unclear whether peripheral blood 

mononuclear cells are appropriate surrogates for mucosal immune cells. 

     MDGA1 (MAM Domain containing Glycosylphosphatidylinositol Anchor-1) is 

another interesting candidate with potential relevance to cancer biology, as there is 

evidence of its role in cell adhesion. It is a glycoprotein that is localised specifically 

into membrane lipid rafts, and contains structural features found in cell adhesion 

molecules. Cell line over-expression and knock-out studies suggests that MDGA1 

mediates cell-cell adhesion in a heterophilic manner by affecting adhesion to 

extracellular matrix proteins (Díaz-López et al, 2010). As with LIMA1, the MDGA1 

eQTL was detected in PBMCs and the function of the gene product is not well-

studied in this tissue type.  
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     Potentially more interesting in principle, is the risk variant association with RP11-

19D2.2, an uncharacterised long intervening non-coding RNA. Non-coding RNAs 

exhibit cell-specific and developmental dynamic expression patterns capable of 

facilitating a wide repertoire of regulatory functions (Mercer et al, 2009); long non-

coding RNAs (lncRNA) in particular can operate through a variety of mechanisms 

such as chromatin remodelling, transcriptional control, protein inhibition, post-

transcriptional modifiers or decoy elements (reviewed by Cheetham et al, 2013), 

leading to alterations in expression profiles of various target genes involved in cell 

homeostasis and cancer progression. There is accumulating evidence linking the mis-

expression of lncRNA to diverse cancers and implicating a role for them in cancer 

signalling pathways. Interestingly, there is already a report of a papillary thyroid 

cancer risk locus 14q13.3 influencing the transcription of a functional thyroid-

specific lncRNA (PTCSC3) that has tumour suppressor properties (Jendrzejewski et 

al, 2012). The apparent gene desert region that includes the prostate cancer 8q24 

locus have also been shown to produce a lncRNA that may be involved in prostate 

tumourigenesis (Chung et al, 2011). Using a genome-wide approach, another study 

has demonstrated tissue-dependent lncRNA cis-eQTLs, of which a proportion are 

also associated with complex traits and diseases (Kumar et al, 2013). It is likely that 

many more lncRNAs are transcribed from cancer risk loci, but it may require 

targeted interrogation as these low-abundance RNAs may not have been detected or 

annotated.  

     Invariably, there are caveats to consider at various stages of this study, in 

particular with regards to the study design and analytical methods. The small sample 

size may not be adequately powered to detection subtle cis-regulatory effects, 

particularly in the PBMC where only 59 samples were analysed. Indeed, this may be 

one of the reasons why the eQTL association between rs1321311 (6p21.2) and 

CDKN1A in lymphoblastoid cell lines and T-cells (Dunlop et al, 2012) was not 

replicated in my PBMC samples. PBMC are a heterogenous group of cells that 

consists of lymphocytes, monocytes and macrophages; this cellular heterogeneity 

could have also contributed to the variation ‘noise’, making the detection of eQTLs 

harder.  



 
 

144 

     The concept that the quality of the study results is only as good as the quality of 

the samples resonated strongly, especially during the early stages of patient 

recruitment and tissue collection. Factors associated with the sampling procedure of 

the colonic tissue and blood can significantly affect downstream observations, and it 

is important to be aware of these at the start to reduce artefactual or confounding 

variability. For example, knowing that cancer field effects may potentially distort 

differential expression (Hawthorn et al, 2014), mucosa samples were harvested from 

the macroscopically normal resection margin furthest away from the tumour to 

reduce any field effects. The variability in tissue post-mortem and ischaemic time is 

another caveat, as this is dependent on several factors including the surgical 

procedure, the timing of the ligation of the vascular supply, and practical issues such 

as the availability of a pathologist. One may also argue whether these samples are 

truly baseline samples, given the inflammatory response that accompanies the trauma 

of abdominal surgery. This might be particularly relevant to the PBMC samples as a 

significant proportion of them were collected in the days following the operation, 

when reactive inflammatory responses are likely to peak. Future studies may benefit 

from pre-operative PBMC sampling. Other patient-dependent factors such as 

anaesthetic drugs, medications, diet and even stress levels can potentially affect gene 

expression, and are difficult to control for.  

     From the technical point of view, the use of gene expression microarrays for gene 

expression studies also comes with its own limitations. They are an excellent tool for 

initial target discovery, but the partial coverage, technical variability and the 

relatively limited dynamic range, places restraints on the technology with respect to 

sensitivity and specificity. Similarly, although the DNA arrays used in this study 

allows detailed coverage of common SNPs, they do not provide information on 

structural variation such as indel polymorphisms and copy number variants. With 

whole-genome and transcriptome sequencing technology becoming more accessible, 

there is huge potential and scope for these samples to be analysed with much more 

depth using an integrative approach, moving beyond eQTL cataloguing to high-

resolution assessment of the transcriptome as a functional phenotype readout of 

genetic variation in the normal colonic mucosa. Recent RNA-seq studies in other 

tissue types have already shown that alternative isoform production (Lalonde et al, 
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2011) and variation in mRNA stability (Pai et al, 2012) are influenced by heritable 

genetic variation, and will be of definite interest in future studies. 

     In conclusion, the data presented here has provided evidence that a proportion of 

CRC genetic non-coding variants influence cancer predisposition, at least in part, by 

affecting the expression levels of candidate genes in two different tissue types – the 

colonic mucosa and peripheral blood mononuclear cells. Although there is evidence 

that there is some overlap of eQTL effects between the colonic mucosa and blood 

(i.e. rs7136702), this evidence is weak and most of the eQTLs observed in this data 

appears to be tissue-specific. Considering the caveats discussed, the relatively small 

sample size, and the cellular heterogeneity of the tissue substrate, the ability to detect 

eQTL effects is quite remarkable, but may not be entirely surprising, as other 

published studies suggest that eQTLs tend to explain a greater proportion of target 

gene expression variance than is typically seen for risk alleles and clinical traits. It 

should be noted that identification of an eQTL provides only indirect evidence of a 

link between genotype and gene transcription, experimental and molecular 

approaches are necessary for confirming its mechanistic relevance. Methods to 

elucidate the molecular mechanism of polymorphic cis regulation are not easily 

amenable to such high-throughput analyses, and will be the next key challenge in 

validating these eQTL findings. The two best risk loci showing local eQTL effects 

(11q23.3 and Xp22.2) were taken forward for functional studies. Collaboratively, the 

11q23.3 locus was validated and interrogated by another PhD student in the group 

(Claire Smillie) whereas I focused on the characterisation of the Xp22.2 locus and 

SHROOM2, which will be described in the next two chapters.  
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Chapter 7 

Identification of a novel indel polymorphism as the  causal 

variant of the Xp22.2 colorectal cancer risk locus 

7.1 Introduction 

     By using whole genome expression profiling of normal colorectal mucosa tissue 

from 115 patients, the X-linked CRC risk SNP rs5934683 has been shown to be a 

strong eQTL governing expression of the neighbouring gene SHROOM2. This was 

initially observed in 42 patients (Dunlop et al, 2012), and subsequently replicated 

when more samples were collected and added into the analysis. To verify this eQTL 

association, the next challenge would be to define the regulatory mechanism 

underlying this relationship and identify the causal variant. Delineating the functional 

impact of this common, low-penetrance variant will provide tangible understanding 

of the mechanism by which common genetic variation imparts disease risk, which 

can in turn inform rational development of preventative strategies. 
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 7.2 Methodological overview 

7.2.1 Targeted resequencing 

     Targeted re-sequencing was performed on blood genomic DNA extracted from a 

subset (n=50) of the 115 patients in the eQTL analysis (Chapter 6). Sanger 

sequencing was performed as described in 2.4.2 for total of 5kb upstream of the 

SHROOM2 TSS. †  

7.2.2 Indel24 genotyping 

     The Indel24 site was amplified with PCR as described in 2.4.2 using the 

following primers‡. The product of the insertion allele is 185bp whereas the product 

of the deletion allele is 161bp. 

Forward primer CACCCACATCCCGCTGATTG 

Reverse primer CCTTACCAAGAGGCGAAGC 

 

     A FAM fluorescent tag was attached to the 5’ end of the reverse primer to allow 

sizing and quantification of the amplified DNA fragments. The products were 

scanned with the ABI PRISM HT7900 (Life Technologies) and analysed with the 

GeneScan® Analysis Software.  

7.2.3 Construction of Manhattan plot and LD plot 

     Manhattan plots of the eQTL fine-association mapping at Xp22.2 was generated 

with the web tool LocusZoom as described in 6.2.4. Linkage disequilibrium plot of 

the Xp22.2 locus was constructed using the Haploview programme from the Broad 

Institute website (Barrett et al, 2005).  

 

                                                             
†
 Sanger sequencing performed by Stuart Reid, technician, MRC Human Genetics Unit, IGMM. 

‡
 PCR and genotyping performed by Stuart Reid, technician, MRC Human Genetics Unit, IGMM. 
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7.2.4 Luciferase reporter assays 

     To study the effects of the Xp22.2 polymorphic variants on transcriptional 

activity, gene elements containing the different alleles of the 3 candidate variants 

were purified and subcloned into firefly luciferase reporter expression vectors (See 

Figure 7.14). Cloning and generation of test plasmids were performed by Stuart Reid, 

CCGG technician and will not be described in detail here. In brief, genomic blood 

DNA from patients heterozygous for these variants were amplified using proof-

reading Taq Polymerase (Promega) and cloned into the pGEMT Easy vector 

(Promega). After identification and verification by Sanger sequencing, these were 

cloned into the luciferase reporter vectors pGL2 or pGL4 (Promega). The test 

plasmids containing the different alelles were transfected using Lipofectamine™ 

2000 (Life Technologies) in Opti-MEM® I Reduced Serum Medium (Life 

Technologies) into colorectal cancer and retinal epithelial cell lines§ when they are at 

80-90% confluence, according to the manufacturer’s protocol. Briefly, for each 

transfection sample, the test plasmid DNA (500ng for each well in a 6-well plate) 

and Lipofectamine™ 2000 was diluted separately in Opti-MEM® and allowed to 

stand at room temperature for 5 minutes. The two solutions were then mixed and 

incubated for 30 minutes at room temperature to allow complexes to form, prior to 

addition to wells containing cells in antibiotic-free medium. pCMV-β (generated by 

Laura Boyes and Susan Farrington, CCGG) was co-transfected as a control for 

transfection efficiency. Cells were incubated in antibiotic-free media at 37ºC in a 

humidified incubator (95% O2, 5% CO2), and harvested after 24-48 hours. Cell 

extracts were prepared using Cell Culture Lysis Reagent (Promega), followed by the 

Luciferase Assay (Promega) and β-galactosidase Enzyme Assay (Promega). 

Fluorescence from luciferase activity was measured with the DLRead Lumat 

LB9507 luminometer (EG&G Berthold), whereas β-galactosidase expression was 

quantified by the Multiskan MS microplate reader (Labsystems). The luciferase 

activity in each sample was normalised with β -galactosidase expression. 

 

 

                                                             
§
 Transfections in the retinal pigment cell lines were performed by Andrew McBride, PhD student 
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7.2.5 siRNA gene knockdown in cell lines 

     Cells were plated the day before and grown until 40-60% confluent prior to 

siRNA transfection. SiRNAs used are detailed in Table. Transfections were carried 

out with Lipofectamine™ 2000 (Life Technologies) in Opti-MEM® I Reduced 

Serum Medium (Life Technologies), according to the manufacturer’s protocol. In 

brief, siRNA and Lipofectamine™ 2000 are diluted in the appropriate amount of 

Opti-MEM® I separately and allowed to equilibrate for 5 minutes at room 

temperature. The two solutions were then mixed and incubated for 30 minutes at 

room temperature to allow complexes to form, prior to addition to wells containing 

cells in antibiotic-free medium. Cells were harvested for protein/RNA extraction or 

assayed after 48 hours of incubation at 37ºC in a humidified incubator (95% O2, 5% 

CO2). A dose-response is first performed to determine the lowest effective 

concentration of siRNA for each individual gene and cell line used (usually between 

5-15 nM) before phenotype assays.  

Gene siRNA Oligo ID Sequence (5’ - 3’) 

NF-YA siRNA3 SASI_Hs01_00020331 CGAUGAAGAAGCAAUGACA 

NF-YA siRNA4 SASI_Hs01_00183592 CCAAUGGGACAUUGAUGAU 

NF-YB siRNA1 SASI_Hs02_00341025 GCAUGAAUGAUCAUGAAGA 

NF-YB siRNA2 SASI_Hs02_00341024 GAAGGAAAGACUGGUGAAA 

Negative 
control Scrambled SIC001  

Table 7.1 The IDs and sequence of siRNAs (Sigma) used in this chapter. 

7.2.6 Co-transfection with luciferase reporter plas mid and siRNA  

     For luciferase reporter plasmid and NFY siRNA co-transfections in MCF7 cell 

line, cells were plated the day before to achieve 40-60% confluence. siRNA 

transfections were performed as described in 7.2.5 for 24 hours prior to luciferase 

reporter plasmid DNA transfections as described in 7.2.4. Cells were harvested after 

incubation for a further 24 hours.  
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7.2.7 qRT-PCR 

qRT-PCR was performed on cDNA synthesised from cell line or primary tissue RNA 

as described in Chapter 2. The Taqman® Gene Expression Assays used are listed in 

Table 7.2. 

Gene Assay ID Probe sequence                                                         

NF-YA Hs00953589_m1 TCCCCATATGCAGGATCCAAACCAA 

NF-YB Hs01105350_m1 CAACATCATATCAACAGATTTCTGG 

SHROOM2 Hs01113636_m1 CTCCCGGTGATCGGCAATCACTGCT 

CCNB1 Hs01030099_m1 CTGAGCCTATTTTGGTTGATACTGC 

TBP Hs00427620_m1 GCAGCTGCAAAATATTGTATCCACA 

RPL30 Hs00265497_m1 TATCATTGATCCAGGTGACTCTGAC 

Table 7.2 TaqMan® assay IDs of the genes of interest and reference genes quantified in this 
chapter. 

7.2.8 Site-directed mutagenesis of the CCAAT box mo tifs 

     Site directed mutagenesis of the CCAAT box motifs within the insertion allele of 

the 83+Indel24 luciferase reporter vector was performed using QuikChange II Site-

Directed Mutagenesis Kit (Agilent Technologies) as per manufacturer’s 

instructions.** These vectors were then transfected as described in 7.2.4 into SW480 

and MCF7 cell lines for luciferase reporter assays.  

7.2.9 Case-control analysis 

     Case-control analysis of the rs5934683 tagging SNP and the two putative 

causative variants Indel24 and rs5934685 was performed in 687 cases and 873 

controls from the SOCCS (Scottish Colorectal Cancer Susceptibility) study. The 

putative causal variant Indel24 was genotyped as described in 7.2.2,†† whereas 

                                                             
**

 Site-directed mutagenesis performed by Stuart Reid, technician, MRC Human Genetics Unit, IGMM 
††

 Indel genotyping performed by Stuart Reid, technician, MRC Human Genetics Unit, IGMM. 
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rs5934685 was imputed as described in 6.2.2.‡‡ Subsequently, Indel24 was 

genotyped in a larger dataset derived from samples from across Scotland, England 

and Croatia (cases=8368, controls=6327; males=7846, females=6849).§§ Similar to 

the analysis in 6.2.4, male hemizygotes were treated as homozygotes in this case-

control analysis.***    

7.2.10 Western blotting  

Total protein and subcellular fractions were extracted as described in 2.5. Primary 

antibodies used are listed in Table 7.3. 

Protein Company Catalogue no. Type 
Antibody 

dilution used 

NF-YA (G-2) Santa Cruz #sc-17753 Mouse monoclonal 1:1000 

NF-YB (FL-207) Santa Cruz #sc-13045 Rabbit polyclonal 1:1000 

β-actin Sigma #A1978 Mouse monoclonal 1:5000 

Table 7.3 Details of the antibodies and dilutions used in this chapter.  

 

 

 

 

 

 

 

 

 

                                                             
‡‡

 rs5934685 imputation and statistical analysis performed by Maria Timofeeva, Statistical Geneticist, 

MRC Human Genetics Unit, IGMM 
§§

 Indel24 genotyping performed by Stuart Reid, technician, MRC Human Genetics Unit, IGMM. 
***

 Statistical analysis performed by Maria Timofeeva, Statistical Geneticist, MRC Human Genetics 

Unit, IGMM 
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7.3 Results 

7.3.1 The genomic, epigenomic and regulatory landsc ape of rs5934683 

from publicly available databases 

     The tagging SNP rs5934683 (chrX:9751474) resides within an intergenic region 

between the GPR143 and SHROOM2 genes at Xp22.2, which are divergently 

transcribed on opposite strands (Figure 7.1). The SNP is 3022bp from the 5’ end of 

the SHROOM2 canonical RefSeq gene structure, and is 17,469bp from the 5’ end of 

the GPR143 RefSeq gene structure. There is evidence of longer GPR143 transcripts 

extending into the SHROOM2 promoter, and rs5934683 SNP is within the first intron 

of this transcript (Ensemble transcript model ENST000000447366). The evidence for 

this transcript is weak though, with only a single EST supporting it from the 

HAVANA project (URL7.1). 
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Figure 7.1 The genomic context of rs5934683 from Ensembl (Genome assembly GRCh37). 
rs5934683 is highlighted in black in the variant track.  

 

 

 

 

 

rs5934683 
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     The eQTL activity associated with rs5934683 suggests that it may lie within or 

close to tissue specific regulatory elements. To look for evidence of this, regulatory 

data from the ENCODE project was first examined using the UCSC genome 

browser. Tracks examined include chemical modifications to histone proteins 

(H3K4Me1, H3K4Me3, H3K27Ac), DNase hypersensitivity, methylation and 

transcription factor binding. Bearing in mind that many regulatory elements appear 

to be tissue or cell type specific, it should be noted that the majority of the cell 

lines/cell types used to generate data for the ENCODE project are not of colonic 

origin. However, this information can still be inferential, as cis-eQTL datasets have 

been shown to overlap by more than 50% between cells as diverse as lymphoblastoid 

cells, hepatic cells and monocytes (Zeller et al, 2010).  

     The rs5934683 SNP appears to be encompassed within a DNase hypersensitive 

area of 350bp (chrX:9751266-9751615, Figure 2). Regulatory regions in general and 

promoters in particular, tend to be DNase-sensitive. However, the extent of the 

hypersensitivity is modest with a cluster score of 189/1000, and is only present in 5 

cell types (H9ES, MCF-7, hepatocytes, myometrial cells, osteoblasts) out of the 125 

tested. There are no relevant histone marks in the region; modifications to H3K4me1 

only begin to become apparent ~1kb downstream and nearer to the SHROOM2 

promoter.  

     The closest transcription factor binding site (TFBS) is 972bp downstream and 

closer to the SHROOM2 promoter (Figure 7.2). It is present in all three tested cell 

lines (GM12878, HeLa-S3 and K562), and binds to the transcription factor NFY-B. 

There is a moderately strong cluster score of 492 (out of 1000), with 3 common 

SNPs within the TFBS. The canonical DNA-binding motif for NFY-B has also been 

identified within the binding site by the Factorbook repository in-silico 

computational analysis (Wang et al, 2012; Wang et al; 2013). The ChIP-seq data 

from the previous ENCODE version (version 2) also shows a TFBS for NFY-A that 

overlaps with the NFY-B TFBS, which is not surprising given that the NFY 

transcription factor is a trimeric complex formed by the three subunits, NFY-A, 

NFY-B and NFY-C. 
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Figure 7.2 SHROOM2 promoter region (UCSC browser, Hg19). Tracks displayed include 
transcription levels by RNA-seq, histone marks (H3K4Me1, H3K4Me3 and H3K27Ac), 
DNaseI hypersensitivity clusters and ChIP-seq transcription factor binding data. 
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     A small, nucleosome depleted region (chrX:9751290-9751339) 135bp upstream 

of rs5934683 is covered by a probe from the Illumina Infinium Human Methylation 

450 Bead Array platform (Figure 7.3). This probe appears to demonstrate differential 

DNA methylation, with data from GM12878, Hi-hESC, HeLa-S3, HepG2 and 

HUVEC  indicating this region is fully methylated, and data from K562 indicating a 

lack of methylation. The same region shows evidence of methylation, apparently 

nucleated upon methylated CpG sites, in an independent sequencing based study of 

human frontal cortex (Maunakea et al, 2010). This region also shows evidence for 

association with the nuclear lamina: a chromatin state that is known to include 

regions with methylated CpG sites (Guelen et al, 2008).  

     The presence of rs5934683 within a DNase hypersensitive region suggests it lies 

within the distal promoter of SHROOM2; its presence near a TFBS and a 

differentially methylated promoter site is consistent with the eQTL activity of this 

SNP and suggests possible mechanisms underlying this activity. This allele-specific 

regulation may be driven by rs5934683 itself, or any polymorphism that it tags. As 

the linkage disequilibrium of this region is poorly defined (Figure 7.4), this chapter 

will focus on characterising the variation in the region and identifying the causal 

variant by using a combination of expression association analysis and functional in-

vitro assays.  
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Figure 7.3 The SHROOM2 promoter region (UCSC genome browser, Hg19). Tracks 
displayed include predicted CpG islands, methylation data from array and sequencing based 
assays, nucleosome occupancy, and lamin B1 association scores. 
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Figure 7.4. LD plot of the region surrounding rs5934683 derived from 1000GENOMES:phase_1_EUR (Ensembl, Genome assembly GRCh37). LD values 
(r2) between any two variants are graphically displayed using inverted coloured triangles varying from white (low LD) to red (high LD). 

rs5934683 
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7.3.2 Identification of putative causal variants by  targeted 

resequencing and fine-mapping of the Xp22.2 locus 

     Targeted local-resequencing revealed a novel 24bp indel polymorphism 

(henceforth referred to as Indel24) just under 2kb from the start of SHROOM2. This 

was subsequently genotyped in all 115 subjects in the eQTL analysis, with a minor 

allele frequency of 0.24. Due to its location within an ERV1 multiple repeat region, 

the exact origin of the indel polymorphism is ambiguous and may be arising at either 

chrX:9752561 or  chrX:9752545 in hg19 (Figure 7.5). 

     Examination of publicly available sequencing data shows evidence for indel 

polymorphisms close to this site in two independent datasets – Phase 1 data from the 

1000 genomes project and Complete Genomics (Drmanac et al, 2010). ††† In the low 

coverage data (around 3x) from 1000 genomes (URL7.2), a 1bp indel was apparently 

detected at chrX:9752558. Complete Genomics provides higher coverage (around 

80x) sequence for 69 individuals from a variety of human populations (URL7.3), and 

reports detection of a 24bp indel polymorphism at chrX:9752559. No other indels 

were detected in the Complete Genomics data within the ERV1 element or indeed 

anywhere in the extended SHROOM2 promoter region. 

     Alignment of the alleles of the three indel polymorphisms is not straightforward 

as the structure of the repetitive sequence within and flanking the indels makes 

alignments in the region ambiguous. However it appears that all three indel events 

are consistent with a single site of origin (chrX:9752558-9752561) and that the two 

24bp insertion alleles are almost identical except for a single nucleotide (Figure 7.6).  

 

 

 

 

                                                             
†††

Examination of public datasets performed by Colin Semple, MRC Human Genetics Unit, IGMM.  
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          X:9752536                     X:9752584                                                                                       
 
RefSeq    CCACATCCCGCTGATTGGTCCATTT------------------------ACAGAGTGCTAATTGGTCCATTTT 
Indel24   CCACATCCCGCTGATTGGTCCATTTTACAGAGTGCTGATTGGTCCATTTACAGAGTGCTAATTGGTCCATTTT 
 
       
OR 
          
RefSeq    CCACATCCC------------------------GCTGATTGGTCCATTTACAGAGTGCTAATTGGTCCATTTT 
Indel24   CCACATCCCGCTGATTGGTCCATTTTACAGAGTGCTGATTGGTCCATTTACAGAGTGCTAATTGGTCCATTTT 
           
 
 
Figure 7.5 Alignments demonstrating a novel polymorphic variant identified on targeted re-
sequencing - a 24bp insertion at either X:9752561 or X:9752545, where the reference 
sequence lacks the insertion. 
 

 

 

 

          X:9752536           X:9752584 
 
RefSeq    CCACATCCCGCTGATTGGTCCATTT------------------------ACAGAGTGCTAATTGGTCCATTTT 
Indel24   CCACATCCCGCTGATTGGTCCATTTTACAGAGTGCTGATTGGTCCATTTACAGAGTGCTAATTGGTCCATTTT 
 
RefSeq    CCACATCCCGCTGATTGGTCCA------------------------TTTACAGAGTGCTAATTGGTCCATTTT 
CG_Ins    CCACATCCCGCTGATTGGTCCATTTTACAGAGTGCTAATTGGTCCATTTACAGAGTGCTAATTGGTCCATTTT 
 
RefSeq    CCACATCCCGCTGATTGGTCCA-TTTACAGAGTGCTAATTGGTCCATTTT 
1KG_Ins   CCACATCCCGCTGATTGGTCCATTTTACAGAGTGCTAATTGGTCCATTTT 

 
 
Figure 7.6 Alignments of the three indel polymorphisms (Indel24: 24 bp insertion allele 
identified by our local-resequencing; CG_Ins: 24 bp insertion allele from Complete 
Genomics; 1KG_Ins: 1bp insertion allele from 1000 Genomes Phase 1 data). The sequence 
of Indel24 and CG_Ins is almost identical bar a single bp as highlighted in blue.  
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     To investigate whether Indel24 is associated with SHROOM2 expression, Indel24 

genotypes were added to the genotypes for the 115 normal mucosa samples used for 

eQTL analysis and fine association mapping as described in Chapter 6. SHROOM2 

expression as quantified by qRT-PCR was used as the trait phenotype as it is thought 

to be a more accurate and sensitive measurement of transcript abundance than 

microarray signals.  

     A peak of association with SHROOM2 expression was seen at X: 9,740,900 – 

9,766,725 which encompass the tagging SNP rs5934683 (Figure 7.7). Distinctively, 

two variants were more significantly associated with SHROOM2 expression than the 

tagging SNP, with p-values in the order of 1e-10. Closer examination reveals that the 

peak starts from the intergenic region between GPR143/SHROOM2 and extends into 

the first intron of SHROOM2. The variants that were more significantly associated 

with SHROOM2 than the tagging SNP were Indel24 and an intronic SNP rs5934685 

(Figure 7.8) that had previously already been implicated in the fine-association 

mapping to SHROOM2 as quantified on the microarrays (Table 6.5). In a similar 

fashion to the tagging SNP, the minor alleles for both these variants were associated 

with lower SHROOM2 expression (Figure 7.9).  
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Figure 7.7 Manhattan plot displaying the strength of genetic association (-log10 p-value) to 
SHROOM2 expression versus chromosomal position, representing fine-mapping of a 600kb 
region surrounding the rs5934683 risk locus in 115 patients. The p-values were obtained by 
linear regression analysis with adjustment for age and gender. SHROOM2 expression in the 
normal mucosa was measured by qRT-PCR, normalised to reference genes EIF2B1, TBP 
and RPL30. The peak of association maps to the tagging SNP and a 26kb surrounding 
region X: 9,740,900 – 9,766,725.  
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Figure 7.8 The peak of association with SHROOM2 expression starts at the intergenic 
region between GPR143/SHROOM2 and extends into the first intron of SHROOM2. There is 
no available linkage and recombination data in LocusZoom/HapMap CEU population 
(release 22) for Indel24.  
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Figure 7.9 Boxplots for the three variants most highly associated with SHROOM2 
expression. Estimated effect size and p-values are calculated from linear regression analysis 
with adjustment for age, gender and anatomical site. Fold reduction is the ratio of the 
expression means between the homozygotes of the major and the minor alleles. 

 

Variant Alleles MAF Estimate p-value Fold reduction 

rs5934683 C/T 0.36 (T) -1.056 2.59e-07 2.75 (95% CI, 1.96 – 4.36) 

Indel24 Ins/Del 0.24 (Del) -1.410 1.65e-10 6.72 (95% CI, 4.35 – 14.02) 

rs5934685 C/T 0.23 (T) -1.426 2.53e-10 10.5 (95% CI, 8.33 – 13.74) 
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      The linkage disequilibrium structure of the peak region constructed from my 

sample set (n=115) shows that the two variants are in strong LD with each other and 

with the tagging SNP, suggesting that the top signals within the association peak are 

likely to be from a single association rather than two or three independent ones 

(Figure 7.10). To further understand which of these the functional variant is, linear 

regression modelling conditional on all three variants was performed on SHROOM2 

expression, as quantified by qRT-PCR and the Illumina HT12 microarray for 

comparison. The analysis performed on expression data derived from both methods 

indicates that the tagging SNP rs5934683 is not the causative variant, as the effect 

estimate and the test significance were markedly decreased when the two other 

variants were included in the model (Table 7.4). The interpretation of the test 

statistics for Indel24 and rs5934685 is not as straightforward; where expression was 

quantified by qRT-PCR, both Indel24 and rs5934685 bordered on significance, with 

Indel24 being the stronger signal both in terms of effect size and significance. Where 

expression was quantified by the HT12 microarray, rs5934685 appears to be the 

driver signal, attenuating the effect size and significance of Indel24. Although one 

may argue that the analysis based on qRT-PCR is more reliable as it has better 

detection sensitivity and larger dynamic range, it remains speculative at best to 

favour one variant over the other as the functional variant. The possibility of 

independent effects also cannot be excluded. Hence, follow-up with functional 

assays is critical to determine the functionality of these eQTL variants. 
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Figure 7.10 Linkage disequilibrium structure (r2) surrounding the tagging SNP (rs5934683) 
and the 2 candidate functional variants (Indel24 and rs5934685) in my sample set (n=115). 
The D’ reflects the frequency of co-inheritance of alleles, whereas the r2 takes into further 
account the difference in the allele frequency. 

 

 

 

 

 

Table 7.4 Linear regression for SHROOM2 expression (as measured by qRTPCR or Illumina 
HT12 microarray), adjusted for age, gender, anatomical sampling site, the tagging SNP and 
the two putative causal variants. The estimate indicates the effect size.  

 

 

 

Variant Estimate p-value Estimate p-value 

rs5934683 -0.0943 0.7454 -0.00297 0.908 

Indel24 -0.8381 0.0592 -0.07217 0.066 

rs5934685 -0.6831 0.0679 -0.14280 2.92e-05 

HT12 qRTPCR 
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7.3.3 Evidence of functionality for Indel24 and rs5 934685 in ENCODE 

data 

     Indel24 is encompassed by an ERV repeat element (LTR12B; Family; ERV1; 

Class: LTR; Position: chrX:9752293-9752685) (Figure 7.11). Repeat elements are 

generally associated with increased indel rates (McDonald et al, 2011) and exapted 

ERV repeats have been reported to act as regulatory elements in human promoters 

(Cohen et al, 2009). More compellingly, Indel24 appears to lie within NF-YA and 

NF-YB transcription factor binding sites according to ENCODE ChIPseq data 

(Figure 7.11). As discussed previously (see 7.3.1), these two transcription factors 

bind cooperatively as two subunits of the trimeric NF-Y transcription factor 

complex, and often activate the transcription of cell cycle genes (Müller and 

Engeland, 2010). There is substantial published literature on NF-Y and it is known to 

have high affinity for the CCAAT box motif. Within known NF-Y binding sites, 

multiple CCAAT binding motifs are often found and the optimal spacing between 

them appears to be 24-53bp (Dolfini et al, 2009), which is similar to the spacing 

between the 3 CCAAT motifs found in this region (Figure 7.12). Remarkably, the 

24bp insert contains a perfect match on the minus strand to the CCAAT box motif. 

This could, in theory, modulate NF-Y binding affinity either by creating/abolishing 

binding sites or by altering the spacing between them. 
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Figure 7.11 Genomic and regulatory landscape around Indel24, UCSC genome browser 
(1KG_Indel: 1bp indel from 1000 Genomes Phase 1 data; CG_Indel: 24 bp indel from 
Complete Genomics; Indel24: 24 bp indel as identified by our local-resequencing). The 
ERV1 repeat element is represented as LTR (long terminal repeat) in RepeatMasker track.  
 

 

 
          X:9752536                X:9752594 
                
RefSeq    CCACATCCCGCTGATTGGTCCATTT------------------------ACAGAGTGCTAATTGGTCCATTTT 

Indel24   CCACATCCCGCTGATTGGTCCATTTTACAGAGTGCTGATTGGTCCATTTACAGAGTGCTAATTGGTCCATTTT 
 
 
 
          X:9752595                   X:9752657 
 
RefSeq    ACAAACCTCTAGCTAGCCACAGAGCGCTGATTGGTGCATTTTACAATCCTCTTGTAAGACAGAAAAATTCTCG  
Indel24   ACAAACCTCTAGCTAGCCACAGAGCGCTGATTGGTGCATTTTACAATCCTCTTGTAAGACAGAAAAATTCTCG 
 
 
Figure 7.12 Three CCAAT box motifs on the minus strand (appearing as ATTGG on the plus 
strand; pink highlight) are found within the reference sequence of the NFY-B binding site at 
Xp22.2, with 23bp and 42bp spacing between them. The 24bp insert alters the spacing to 
47bp and 42bp, or donates a fourth CCAAT box motif (green highlight), with spacing 
between the motifs of 24bp, 23bp and 42bp.  
 

rs5934683 

Indel24 
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     The other SNP that is a putative causal variant, rs5934685, is a SHROOM2 

intronic variant at chrX:9766019. There is no evidence in the literature to support 

eQTL activity for it, and according to ENCODE it is not associated with DNase 

hypersensitivity, transcription factor binding, histone modifications or methylation. 

The closest transcription factor binding site is situated 324bp upstream from the 

SNP, which binds to YY1(Ying Yang 1) with a cluster score of 180/1000 in H1-

hESC and NT2-D1 cell lines (Figure 7.13). YY1 a multifunctional zinc-finger 

transcription factor that has been associated with cellular proliferation and resistance 

to apoptotic stimuli, and is known to be over-expressed in colorectal cancer 

(Chinnapan et al, 2009). There is also a conserved transcription factor binding site 

196bp upstream of the SNP, which is predicted to bind to VSX2 (visual system 

homeobox 2). This is of possible relevance as VSX2 was originally described as a 

retina-specific transcription factor, with mutations associated with microphthalmia, 

cataracts and iris abnormalities (NCBI gene; URL7.4). It was mutated to create the 

first mouse model of retinoblastoma (Zhang et al, 2004) and has been reported as a 

novel biomarker for CRC (Mori et al, 2011). 

     In summary, local targeted resequencing and fine-mapping strategies have 

identified 2 putative causative variants for the eQTL activity observed at the 

rs5934683 locus. One of these variants, Indel24, is a novel indel polymorphism with 

in-silico evidence of NF-Y transcription factor binding properties. Statistical 

modelling of SHROOM2 expression accounting for rs5934683 and the 2 candidate 

variants indicates that rs5934683 is a tagging proxy, but is inconclusive in 

determining which of the 2 candidates is the functional variant driving the eQTL 

association. Further evaluation with in-vitro regulatory assays will be necessary to 

validate these observations and provide insight into the mechanisms underlying 

causation.  
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Figure 7.13 The genomic and regulatory landscape around r5934685 (UCSC browser). 
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7.3.4 Transcriptional activity assays on putative c ausal variants 

implicates Indel24 as the functional variant 

     To investigate whether the candidate variants possess allele-specific regulatory 

effects, gene elements containing the different alleles of the 3 candidate variants 

were cloned from human genomic DNA into luciferase reporter vectors (Figure 

7.14). 

     Given the proximity of Indel24 to rs5934683, a 1449bp gene construct (referred 

to as 83+Indel24) containing both variants was tested, with each of the four possible 

haplotypes cloned into a basic transcriptional reporter vector (pGL2). All four test 

constructs were transfected into two CRC cell lines (SW480 and DLD1) and two 

retinal pigment epithelial cell lines (RPE1 and ARPE1).‡‡‡ Indel24 shows a highly 

significant allele-specific differential effect on luciferase activity in all four cell lines, 

with the deletion allele showing a stark reduction in transcriptional activity (Figure 

7.15). This is in contrast to the lack of effect between the different alleles of 

rs5934683. There was also no statistical interaction between rs5934683 and Indel24 

in all cell lines, which indicates that the regulatory differences seen with the Indel24 

alleles are independent of the rs5934683 variant.  

 

 

 

 

 

 

 

 

 

 

                                                             
‡‡‡

 The extra-colonic function of SHROOM2 was investigated by PhD student Andrew McBride and 

the reporter assays in non-CRC cell lines were performed by him. This data has been included here 

for completeness as it formed part of a figure that has been submitted for publication. 
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Gene constructs Location Size 
(bp) 

Features Alleles/ 
Haplotypes 

Vector 

83+Indel24 chrX:  

9751297 - 
9752746 

1449 Encompasses 
rs5934683 and Indel24 

C; Insertion 

C; Deletion 

T; Insertion 

T; Deletion 

pGL2 

83+Indel24-TSS chrX: 

9751297 - 
9754496 

3199 Encompasses 
rs5934683 and Indel24, 
extends to the start of 
SHROOM2 

C; Insertion 

C; Deletion 

T; Insertion 

T; Deletion 

pGL2 

85 chrX: 
9765761 - 
9766181 

421 Encompasses 
rs5934685 

C 

T 

pGL2 

pGL4 

 

Figure 7.14 3 gene constructs containing the 3 eQTL candidate variants (in combination or 
individually, see table) were generated from human genomic DNA. The 83+Indel24 and 
83+Indel24-TSS elements were cloned into pGL2 basic transcriptional vectors, whereas the 
85 gene element was cloned into pGL2 and pGL4 as well to maximise detection of enhancer 
activity. 

 

 

 

 

 



 173 

                   

Variant Cell line p-value Fold change 

rs5934683 SW480 0.97 - 

rs5934683 DLD1 0.31 - 

rs5934683 RPE1 0.81 - 

rs5934683 ARPE19 0.67 - 

Indel24 SW480 2.14e-05*** 0.35 (95% CI, 0.26 - 0.47) 

Indel24 DLD1 1.46e-08*** 0.33 (95% CI, 0.26 - 0.42) 

Indel24 RPE1 1.65e-04*** 0.51 (95% CI, 0.38 - 0.68) 

Indel24 ARPE19 6.42e-07*** 0.26 (95% CI, 0.21 - 0.32) 

rs5934683*Indel24 SW480 0.24 - 

rs5934683*Indel24 DLD1 0.12 - 

rs5934683*Indel24 RPE1 0.86 - 

rs5934683*Indel24 ARPE19 0.91 - 

Figure 7.15 Luciferase reporter assays indicating transcriptional activity of the 83+Indel24 
(pGL2) gene construct. The constructs for each allele were transfected into 4 cell lines 
(SW480 and DLD1 are CRC cell lines, RPE1 and ARPE19 are retinal pigment epithelial cell 
lines), and the experiment was replicated at least 4 times in each cell line. Error bars=SEM. 
The allele-specific reporter activity of the rs5934683 SNP and the Indel24 variant was 
analysed separately and together to assess possible interactions. Table shows ANOVA p-
values; where significant, effect sizes were calculated.  
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     To increase the evidence that the transcriptional activity seen with 83+Indel24 is 

reflective of the in-vivo regulation of SHROOM2, the gene element was extended to 

include the core promoter region/transcription start site (TSS) of SHROOM2. The 

experiment was repeated in SW480 with the larger 83+Indel24-TSS gene construct, 

with the shorter 83+Indel24 as a positive control. Although overall activity was 

attenuated and the differential effect was reduced in the larger construct (effect size 

of 0.78 (95% CI, 0.63 - 0.95)), there was still a significant allele-specific effect seen 

with Indel24 that mirrors that seen in the shorter construct (Figure 7.16). Again, this 

effect was not observed between the different alleles of rs5934683. 

Variant Gene element p-value Effect size (ratio) 

rs5934683 83+Indel24 0.92 - 

rs5934683 83+Indel24-TSS 0.49 - 

Indel24 83+Indel24 4.72e-06*** 0.54 (95% CI, 0.43 - 0.67) 

Indel24 83+Indel24-TSS 0.016* 0.78 (95% CI, 0.63 - 0.95) 

Figure 7.16 Luciferase reporter activity for the 83+Indel24 (pGL2) and the longer 
83+Indel24-TSS (pGL2) gene construct. The constructs for each allele was transfected into 
CRC cell line SW480 and the experiment replicated 4 times. Error bars=SEM. Table 
presents unpaired Student t-test p-values; where significant, effect sizes were calculated. 
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     To test if the intronic variant rs5934685 has a regulatory effect, a 421bp gene 

construct (referred to as 85; Figure 7.14) encompassing the rs5934685 SNP was 

cloned into pGL2 as well as pGL4 to maximise detection of enhancer activity. The 

test constructs were transfected into SW480 and DLD1, and appeared to exhibit a 

small degree of allele-specific differential effects on reporter activity (Figure 7.17). 

When the 85 gene element was cloned into pGL2, there appeared to be a reduction in 

reporter activity with the T allele (effect size of 0.86 (CI 95%, 0.82 – 0.90)), but this 

effect was only observed in one of the two cell lines, DLD1. The same gene element 

in the enhancer reporter pGL4 also showed a reduction in reporter activity with the T 

allele (effect size of 0.86 (CI 95%, 0.84 – 0.88)). Again this was only seen in one of 

the two tested cell lines, SW480. Although these effects were significant, they were 

relatively small, with a 14% average reduction in transcriptional activity from the C 

allele.    

     In conclusion, this demonstrates that Indel24 has allele-specific regulatory 

function, whereas this is not readily apparent of rs5934683. These results concur 

with ENCODE data where Indel24 is located in known regulatory elements. On the 

other hand, there is some evidence that rs5934685 may have regulatory properties. 

Although the allele-specific transcriptional effect of the 85 gene construct is modest 

in comparison to that seen with the 83+Indel24 construct, the effect sizes and 

confidence intervals of the 85 construct are comparable to that of the longer 

83+Indel24-TSS construct. Overall, these results suggest that Indel24 is most likely 

to be the causative variant driving the SHROOM2 eQTL association, with rs5934683 

tagging the locus signal. However, rs5934685 cannot be ruled out as an independent 

causative variant contributing an independent regulatory effect.  
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                                    pGL2                                                                 pGL4 

 

Vector Cell line p-value Effect size (ratio) 

pGL2 SW480 0.31 - 

pGL2 DLD1 9.18e-05 0.86 (95% CI, 0.82 – 0.90) 

pGL4 SW480 7.48e-06 0.86 (95% CI, 0.84 – 0.88) 

pGL4 DLD1 0.29 - 

Figure 7.17 Luciferase reporter activity for the 85(pGL2) construct and 85(pGL4) construct. 
The constructs for each allele was transfected into two CRC cell lines (SW480 and DLD1) 
and each experiment replicated 4 times. Error bars=SEM. Table presents unpaired Student 
t-test p-values; where significant, effect sizes were calculated. 
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7.3.5 Indel24 polymorphism alters transcriptional a ctivity of 

SHROOM2 by influencing NF-Y binding affinities  

     The Indel24 polymorphism, defined by the presence or absence of a 24bp gene 

element at chrX: 9752561, appears to have allele-specific transcriptional properties 

that may explain the SHROOM2 eQTL association in colonic normal mucosa. As 

discussed above, this region has been found to bind NFY transcription factor 

subunits A and B in the ENCODE project ChIP-seq data. This suggests that Indel24 

may be modulating transcription of SHROOM2 by altering the DNA-binding affinity 

of NF-Y.  

     To confirm the role of NF-Y in Indel24-mediated transcriptional activity, siRNA 

knockdown of NFY-A and NFY-B was carried out in MCF7 cell line, which was co-

transfected with the 83-Indel24 (pGL2) construct containing the insertion allele. Two 

siRNAs were always used for each gene to enable detection of non-specific or off-

target effects. NF-YA and NF-YB mRNA and protein levels were assessed to ensure 

effective knockdown (Figure 7.18). There was a significant decrease of 30-40% in 

the associated reporter activity upon NF-YA or NF-YB depletion (Figure 7.19). This 

finding is similar between the two NF-Y subunits, which fits in with the knowledge 

that all three subunits of the heterotrimeric complex are required for DNA binding. 

This effect is recapitulated with endogenous SHROOM2, whereby siRNA 

knockdown of NF-YA or NF-YB in DLD1, SW480 and RPE1 cell lines are associated 

with a significant decrease in SHROOM2 mRNA levels (Figure 7.20 and 7.21). 

CCNB1 (Cyclin B1) is measured as a positive control as it has a well-characterised 

NF-Y promoter (Mani et al, 2001) in various cell types including colorectal cancer 

cell lines (Jürchott et al, 2010).  
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Figure 7.18. siRNA knock-down of NF-YA and NF-YB in MCF7 as assessed by qRT-PCR 
(top panel) and Western Blotting (bottom panel). Graphs and blots shown are representative 
of 3 replicates. mRNA expression levels of NF-YA and NF-YB were normalised to reference 
gene TBP, whereas β-actin was used as the loading control for Western Blots. (NT=non-
treated, SC=scrambled control, si=siRNA) 
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Gene siRNA p-val Fold change 

NF-YA 3 0.0017** 0.71 (95% CI, 0.60 - 0.81) 

NF-YA 4 0.0231* 0.72 (95% CI, 0.50 - 0.94) 

NF-YB 1 0.0293* 0.66 (95% CI, 0.37 - 0.94) 

NF-YB 2 0.0043** 0.63 (95% CI, 0.46 - 0.81) 

 

 

Figure 7.19 Luciferase reporter activity of the 83-Indel24 (pGL2) insertion allele, when NF-
YA or NF-YB expression was knocked down with siRNA. MCF-7 cell line was used for the 
co-transfection. p-values reported are of unpaired Student t-tests comparing each siRNA 
was to the scrambled control (SC). Error bars=SEM. Experiments replicated 3 times. 
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  DLD1 (Ins/Ins)        SW480 (Ins/Del)                            RPE1 (Del/Del) 

 

 

 

 

 

 

 

 

Figure 7.20 Reduction in SHROOM2 expression observed when NF-YA expression was 
knocked down with two different targeting siRNAs (si3 and si4) in three different cell lines 
(DLD1, SW480 and RPE1). The Indel24 genotypes of the cell lines are represented as 
Ins/Ins (homozygote for insertion), Ins/Del (heterozygote) and Del/Del (homozygote for 
deletion). Expression quantified by qRT-PCR, normalised to reference genes TBP or RPL30. 
Error bars=SEM. Experiment replicated 3 times. p-values reported are of unpaired Student t-
tests comparing SHROOM2 expression between each of the siRNAs and the scrambled 
control (SC). 

 

 

 

 

 

Cell line siRNA p-val Fold change 

DLD1 3 0.0389* 0.67 (95% CI, 0.36 - 0.97) 

DLD1 4 0.0079** 0.68 (95% CI, 0.50 - 0.86) 

SW480 3 0.0059** 0.65 (95% CI, 0.47 - 0.83) 

SW480 4 0.1170 - 

RPE1 3 0.0018** 0.62 (95% CI, 0.48 - 0.76) 

RPE1 4 0.0016** 0.71 (95% CI, 0.61 - 0.82) 

* ** ** NS ** ** 
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Figure 7.21 Reduction in SHROOM2 expression observed when NF-YB expression was 
knocked down with two different targeting siRNAs (si1 and si2) in three different cell lines 
(DLD1, SW480 and RPE1). The Indel24 genotypes of the cell lines are represented as 
Ins/Ins (homozygote for insertion), Ins/Del (heterozygote) and Del/Del (homozygote for 
deletion). Expression quantified by qRT-PCR, normalised to reference genes TBP or RPL30. 
Error bars=SEM. Experiment replicated 3 times. p-values reported are of unpaired Student t-
tests comparing SHROOM2 expression between each of the siRNAs and the scrambled 
control (SC). 

 

 

 

Cell line siRNA p-val Fold change 

DLD1 1 0.0152* 0.71 (95% CI, 0.51 - 0.91) 

DLD1 2 0.0115* 0.56 (95% CI, 0.29 - 0.84) 

SW480 1 0.0066** 0.47 (95% CI, 0.18 - 0.75) 

SW480 2 0.0018** 0.39 (95% CI, 0.16 - 0.62) 

RPE1 1 0.0007*** 0.53 (95% CI, 0.39 - 0.67) 

RPE1 2 <0.0001*** 0.33 (95% CI, 0.31 - 0.35) 

** ** * * *** *** 
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     The reduction in 83-Indel24 luciferase reporter activity and endogenous 

SHROOM2 with NF-YA or NF-YB knockdown strongly suggests that NF-Y plays a 

regulatory role in SHROOM2 transcription by binding to the DNA region 

encompassing the Indel24 eQTL. This is entirely plausible, as NF-Y is the major 

CCAAT-binding factor (Testa et al, 2005; Ceribelli et al, 2008), and there is an 

ATTGG motif (CCAAT on the minus strand) within the 24bp insertion element with 

three other ATTGG motifs in very close proximity (Figure 7.16). Indeed, CCAAT 

box motifs can be found in promoter regions in either the CCAAT or ATTGG 

orientation, and multiple CCAAT box motifs have been observed for NF-Y 

promoters (Dolfini et al, 2009). However, one potentially confounding caveat to this 

is that there are two other CCAAT box motifs within the reporter gene construct 83-

Indel24 at chrX:9751516 (1kb upstream of Indel24) and chrX:9752716 (150kb 

downstream of Indel24) that could be contributing to NF-Y driven reporter activity. 

To clarify whether the ATTGG motifs at the Indel24 site are the functional motifs, 

these motifs within the 83-Indel24 gene construct were mutated to ATTTC (Figure 

7.22A), which is predicted by JASPAR to have very low NF-Y binding properties. 

The reporter assays performed on the S1,2,3,4 mutant construct demonstrates that 

transcriptional activity was dramatically reduced by ~90% (Figure 7.22B), strongly 

suggesting that the ATTGG motifs at the Indel24 locus are the functional motifs, 

with NF-Y binding at the other two farther sites much less likely.  

     As alluded to previously, it is known that the spacing between motifs in multiple 

CCAAT binding sites is important. To distinguish whether the insertion element of 

Indel24 improves transcriptional activity by increasing the spacing between S1-S3, 

or by donating an extra binding site in the form of S2, S2 was mutated in the reporter 

construct 83-Indel24 (Figure 7.22A). S2Mut did not reproduce the impact of the 

Deletion allele; its reporter activity was only minimally reduced from the Insertion 

allele (Figure 7.22B). This strongly indicates that Indel24 modifies NF-Y binding by 

altering the spacing between S1-S3 and not by increasing the number of binding 

sites.  
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Gene construct Cell line p-value Fold change 

Deletion MCF7 3.20e-05*** 0.54 (95% CI, 0.48 - 0.60) 

Deletion SW480 1.72e-05*** 0.50 (95% CI, 0.44 - 0.56) 

S1,2,3,4Mut MCF7 1.90e-08*** 0.09 (95% CI, 0.07 - 0.11) 

S1,2,3,4Mut SW480 6.30e-07*** 0.10 (95% CI, 0.06 - 0.15) 

S2Mut MCF7 8.92e-04*** 0.83 (95% CI, 0.77 - 0.88) 

S2Mut SW480 0.30 - 

Figure 7.22 A) Mutations to the CCAAT box motif (ATTGG on the plus strand) were 
introduced to the insertion allele of the 83-Indel24 gene construct. B) Luciferase reporter 
activity for both alleles of the 83-Indel24 gene construct and the mutant constructs. Error 
bars=SEM, experiment was replicated three times. Table shows p-values for Student 
unpaired t-tests comparing the means of each construct to the Insertion allele.   

B) 

A) 

*** *** 

*** *** 

*** NS 
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7.3.6 Case-control studies demonstrates Indel24 as the functional 

variant for CRC risk 

     A CRC case-control logistic regression analysis was performed for all variants 

across the rs5934683 risk locus in 687 cases and 873 controls from the SOCCS 

(Scottish Colorectal Cancer Susceptibility) study. Of the three candidate variants, 

Indel24 appears to be most significantly associated with risk (p =0.05), with the 

Insertion allele conferring an OR of 0.86 (95% CI, 0.75 - 1.00). The tagging SNP 

rs5934683 and the other candidate variant rs5934685 did not reach significance 

(Table 7.5). When the model was conditioned on all three variants, Indel24 again 

stood out as the only significant variant (p=0.02) with an OR of 0.66 (95% CI, 0.46 - 

0.94). 

     Subsequently, the effect of Indel24 on risk was validated in the larger dataset 

derived from samples from across Scotland, England and Croatia (8368 cases and 

6327 controls). Indel24 is more significantly associated with the disease phenotype 

(p=0.03, OR=0.92) compared to rs5934683 (p =0.47, OR=0.98) (Table 7.6). 

     Overall, these results strongly suggest that Indel24 is indeed the causative variant 

for CRC risk within this eQTL locus. 
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 Variant p-value Odds Ratio 

rs5934683 0.66 0.97 (95% CI, 0.86 - 1.10) 

Indel24 0.05 0.86 (95% CI, 0.75 - 1.00) 

Individual analysis 

rs5934685 0.11 0.88 (95% CI, 0.76 - 1.03) 

rs5934683 0.16 1.14 (95% CI, 0.95 - 1.37) 

Indel24 0.02 0.66 (95% CI, 0.46 - 0.94) 

Conditional on all 
three putative 
variants 

rs5934685 0.27 1.22 (95% CI, 0.86 - 1.73) 

Table 7.5 Association between putative causal variants and the risk of CRC in SOCCS study 
(687 cases and 873 controls from the Scottish population). p-values and odds ratios were 
derived from the logistic regression model adjusted for age and gender. The top panel shows 
the results for the individual analysis of each of the variants, whereas the bottom panel 
shows the results for the conditional modelling when all three variants were included as co-
variates. 

 

 

 

 

 Variant p-value Odds Ratio 

rs5934683 0.47 0.98 (95% CI, 0.93 - 1.04) Individual analysis 

Indel24 0.03 0.92 (95% CI, 0.86 – 0.99) 

Table 7.6 The CRC association of Indel24 compared to the tagging SNP rs5934683 in 8368 
cases and 6327 controls from Scottish, English and Croatian populations. Each variant was 
analysed separately, with p-values and odds ratios derived from conditional logistic 
regression adjusted for gender, age and country. 
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7.4 Discussion 

     Whole-genome gene expression profiling has identified the colorectal cancer 

(CRC) risk locus at Xp22.2 to be associated with the colonic mucosa expression 

levels of a neighbouring gene SHROOM2, providing a functional mechanism for this 

low-risk genetic locus. Interrogation of the locus with targeted re-sequencing and 

fine-mapping has identified two putative causal variants that appear to drive the 

association with SHROOM2 expression - a novel genetic control element (Indel24) at 

-2203 and rs5934685 within intron 1. Both are significantly more associated with 

expression and colorectal cancer risk than the tagging SNP rs5934683. Conditional 

analysis is suggestive that Indel24 is the driver signal in a case-control study, but this 

was not conclusive in the eQTL analysis. Hence, it is crucial that these empirical 

observations are analysed in context with functional studies, as this will help to 

demonstrate the mechanism underlying the eQTL association, and offer insight into 

the aetiology of inherited colorectal susceptibility.  

     The expression of a gene can be influenced in several ways by a genetic variant, 

be it by influencing epigenetic mechanisms such as methylation, altering 

transcriptional activity, or modifying the stability of transcripts to degradation. The 

location of the candidate causal variants at the 5’ end of SHROOM2 is suggestive of 

an influence on transcriptional activity or possibly promoter methylation. Indeed, 

luciferase reporter assays provided evidence that Indel24 exhibits strong allele-

specific differences in transcriptional activity, whereas the other putative causal 

candidate rs5934685 had only a weak effect, if any. These assays also confirm the 

lack of effect of rs5934683, confirming its role as a tagging SNP. Conversely, whole 

genome and localised methylation analysis performed collaboratively with other 

members of the group did not reveal any evidence of differential methylation in 

region of the tagging SNP and Indel24. 

     The finding that Indel24 has allele-specific regulatory control of transcription is 

consistent with cell line ChIP-seq data from ENCODE which indicates that Indel24 

resides in an NF-Y transcription factor binding site within an ERV1 repeat element. 

Repeat elements are generally associated with increased indel rates (McDonald et al, 
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2011) and exapted ERV repeats have been reported to act as regulatory elements in 

human promoters (Cohen et al, 2009). This repeat may therefore be the source of 

indel polymorphisms in this region, as well as provide a mechanism for the observed 

eQTL effects. Examination of FANTOM5 data, which provides deeply sequenced 

CAGE data over ~2000 human cell types suggests that the ERV1 element is not 

transcribed and is not an alternative SHROOM2 promoter (Semple C, pers. comm.).  

Given the distance of this ERV1 repeat from the SHROOM2 TSS (~1.5 Kb) it would 

seem more reasonable to think of this region as a distal promoter element rather than 

an enhancer. This is consistent with ENCODE data which does not show the 

characteristic chromatin signature of an enhancer.  

     Further support for Indel24 as the functional variant was provided by in-silico 

analysis which shows that Indel24 harbours an NF-Y binding motif (CCAAT box), 

with multiple other CCAAT motifs flanking the Indel24 sequence. Depletion of the 

NF-Y subunits as well as mutation of the CCAAT binding motifs was associated 

with a reduction in Indel24 reporter activity, implicating NF-Y as the transcription 

factor that is interacting with Indel24 within the ERV1 repeat element to modify 

SHROOM2 levels. This makes biological sense, as there have been reports of 

intergenic ERV repeats recruiting NF-Y in adult erythroid cells to assemble a 

complex including RNA polymerase II and thereby affect downstream transcription 

of genes (Pi et al, 2010). Furthermore, the SHROOM2 promoter has two binding 

sites for the E2F1 transcription factor near the SHROOM2 TSS and studies have 

indicated that E2F1 and NF-YA can bind to promoters cooperatively to activate 

transcription (Ru et al, 2006). Biochemical approaches can be adopted to consolidate 

these findings, for example ChIP (chromatin immunoprecipitation) and EMSAs 

(Electrophoretic mobility shift assays) with NF-Y and E2F1 antibodies would be 

useful follow-up studies that can demonstrate endogenous and in-vitro DNA-protein 

binding at the Indel24 site, and can also reveal allele-dependent NF-Y binding 

affinities.  

     Mutation of the CCAAT sites within the region suggests that Indel24 modulates 

NF-Y binding by altering the spacing between the flanking NF-Y binding sites, 

instead of donating an extra CCAAT binding site. The implication that the spacing 

between the CCAAT sites in this region is more critical for NF-Y binding is not 
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unprecedented, as it is known from studies of the triple CCAAT CyclinB2 promoter 

that their precise alignments are required for their function in vivo (Bolognese 1999; 

Manni et al, 2001; Salsi et al, 2003). There is also ChIP-on-chip evidence to suggest 

that no CCAAT sites are closer than 24bp (Dolfini et al, 2009), and in vitro 

biochemical data of dual NF-Y binding to CCAAT boxes indicates that a distance of 

at least 24bp is required for them not to become mutually exclusive (Salsi et al, 

2003; Liberati et al; 1999). This could explain why the extra CCAAT site on the 

Indel24 insertion element does not confer an incremental effect on transcriptional 

activity, as the spacing between S1-S2 and S2-S3 are 24bp and 23bp respectively 

(Figure 22A), and may not be conducive for an extra binding interaction. On the 

other hand, the 24bp insertion element increases the spacing between S1-S3 from 

23bp to 47bp, which bears a closer resemblance to the 42bp spacing of S3-S4. This 

may be functionally more optimal, as it is known that distances between CCAAT 

motifs at NF-Y promoters are enriched at 32bp, 42bp and 53bp, corresponding to 3, 4 

and 5 turns of the double helix, respectively (Dolfini et al, 2009).  

     The involvement of NF-Y is intriguing, as it is well-known to regulate the 

expression of genes involved in cell cycle control and progression (Muller et al, 

2010). Both NF-Y and E2F1 have been linked to the development of multiple 

cancers including CRC (Dolfini et al, 2013; Morris et al, 2008), making SHROOM2 

a compelling candidate as a susceptibility gene. The functional role of SHROOM2 is 

further investigated in Chapter 8.  

     In summary, the data presented here provides functional mechanistic evidence to 

support the eQTL effect of the Xp22.2 CRC risk locus, whereby a novel indel 

polymorphism can modulate NF-Y binding at the SHROOM2 distal promoter region 

and appears to be the causal variant. The evidence reported here supports a growing 

number of studies, which highlights the value of functionally characterising disease-

associated common genetic variation in the discovery of novel candidate 

susceptibility genes for complex traits (Moffat et al, 2007; Meyer et al, 2008; 

Musunuru et al, 2010; Harismendy et al, 2011; Nguyen et al, 2012). 
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Chapter 8 

SHROOM2 as a candidate susceptibility gene for colorectal 

cancer 

8.1 Introduction 

     The association between a colorectal cancer risk locus and SHROOM2 expression 

suggests that SHROOM2 may play a role in the predisposition to colorectal cancer. 

According to published literature, the SHROOM family of proteins are regulators of 

epithelial morphogenesis, characterized by their ability to bind F-actin and organise 

actomyosin networks (Dietz et al, 2006). SHROOM2, previously known as APXL, 

has a PDZ domain, a common structural domain of 80-90 amino acids found in 

signalling proteins. PDZ domain-containing proteins regulate diverse cellular 

processes and many signal transduction pathways (as reviewed by Subbaiah et al, 

2011). More specifically, SHROOM2 has been shown to play a role in cell 

morphogenesis during endothelial and epithelial tissue development (Lee et al, 2009; 

Farber et al, 2011), cytoskeletal organisation (Dietz et al, 2006), tight-junction 

stabilisation (Etournay et al, 2007) and cell contractility and migration (Farber et al, 

2011).  

     SHROOM2 was initially studied as a candidate gene in ocular albinism 

(Schiaffino et al., 1995), and has been shown to regulate melanosome biogenesis and 

localisation in the retinal pigment epithelium (Fairbank et al, 2006; Lee et al, 2009). 

This is intriguing, as abnormal retinal pigmentation, similar to the CHRPE lesions 

that are a component of the familial adenomatous polyposis syndrome, has 

previously been shown to be an extra-colonic feature of non-FAP CRC (Houlston et 

al, 1992; Dunlop et al, 1996) 

     Further suggesting a role in cancer, large-scale screens for mutations in somatic 

cancer have detected missense substitutions in the SHROOM2 coding sequence in 

various tumours including colorectal cancers (Forbes et al, 2010; URL8.1). There is 

also evidence that SHROOM2 is differentially expressed in medulloblastoma (Shou 

et al, 2015), and an intronic SNP within SHROOM2 has been associated with genetic 
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predisposition to prostate cancer (Eeles et al, 2013). SHROOM2 has also recently 

been implicated in non-cancer disease traits; the SHROOM2 gene was found to be 

associated with inherited predisposition to late-onset Alzheimer’s disease (Meda et 

al, 2012), and the authors posited that it may be implicated in the formation of 

pathological tau proteins by mediating actin cytoskeletal changes. 

     SHROOM2’s diverse cellular roles make it an interesting candidate gene for 

colorectal cancer development, although it has not been previously characterised in 

this respect. This chapter presents preliminary functional data that offers insight into 

role of SHROOM2 in colonic epithelial cells, by using a transient siRNA knockdown 

approach as well as tissue and subcellular localisation studies.  
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8.2 Methodological overview 

8.2.1 Transcript-specific reverse-transcription PCR 

     PCR was performed on cDNA synthesised from human primary tissue and cell 

line RNA, as described in Chapter 2. Primers specific for the four different reported 

transcripts of SHROOM2 were used (Table 8.1) 

SHROOM2 
transcripts 

Forward primer Reverse primer 

T-001 GCCTCTTGGAAGGAACAG GACACTGGGCATCTGCTTG 

T-002 GCAGCCCTTGGTATGTG GACACTGGGCATCTGCTTG 

T-201 TGCGTGAGCTTGCCCATC GACACTGGGCATCTGCTTG 

T-003 CTGATCCAGCAAATGTGTGTAG CAAAATAAATAGTGTCTCTTC 

Table 8.1 Primer sequences used to specifically target and amplify the different transcripts of 
SHROOM2.  

8.2.2 SHROOM2 siRNA knockdown 

     siRNA knockdown of SHROOM2 was performed as described in 7.2.5 using 

10nM of siRNAs (Sigma) as detailed in Table 8.2. Transfected cells were incubated 

for 48 hours prior to seeding for phenotypic assays or RNA extraction for gene 

expression analysis. 

Gene siRNA Oligo ID Sequence (5’ - 3’) 

SHROOM2  siRNA1 SASI_Hs01_00205221 GGUAUGUUCCCGAUAAGAA 

SHROOM2  siRNA2 SASI_Hs02_00332240 CAAAGAGAAGACUGUGGAA 

SHROOM2  siRNA3 SASI_Hs01_00205222 GAGACUUCUCCCAUAGCAA 

Negative 
control 

Scrambled SIC001  

Table 8.2 The IDs and sequence of siRNAs (Sigma) used in this chapter.  
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8.2.3 Growth assays 

     Growth curves for colorectal cancer epithelial cell lines were performed after 

siRNA knockdown of SHROOM2 for 48 hours. Cells were trypsinised, counted with 

a Coulter Counter (Beckman) and seeded at 2 x 106 in a T25 flasks for each time 

point. At each time point, cells were trypsinised and counted prior to RNA 

extraction. Doubling time was calculated from the cell counts using an online tool 

(Roth V, 2006) (URL8.2).  

8.2.4 Scratch-wound assay 

     Scratch assays for colorectal cancer epithelial cell lines were performed after 

siRNA knockdown of SHROOM2 for 48 hours, when the cell monolayer has 

achieved uniform confluence. For each well, a 200µL pipette tip was used to scratch 

a wound through the centre of the wells. The cells were washed with warm PBS 

gently to remove loose cells, and fresh low-serum media (1% FCS) was added to the 

wells. This is to reduce the effect of proliferation so that the effect of migration can 

be better observed. Cells were then placed in an Axiovert 200 live cell imaging 

system (Zeiss) and three fields of view were selected for each well. Time-lapse 

imaging was carried out every 15 minutes for 24 hours. The area of the wound was 

manually quantified and analysed using ImageJ.  

8.2.5 SHROOM2 siRNA knockdown in cell lines: whole-genome gene 

expression profiling and gene ontology analysis 

     SHROOM2 expression was knocked down with the three different siRNAs in five 

human cell lines from a variety of tissue types - DLD1 (CRC), SW480 (CRC), PNT 

(Prostate epithelium), HEK293 (embryonic kidney) and RPE1 (retinal epithelium). 

Knockdown experiments were replicated twice. After 48 hours, cell line RNA was 

extracted and knockdown confirmed with qRT-PCR. The RNA was then amplified 

and hybridised on the Illumina HumanHT-12 v4.0 Expression BeadChip Arrays 

(Illumina, USA), and gene expression data processed as described in 2.6.2. 

Differentially expressed genes that overlapped between all three siRNAs for each 
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individual cell line were subjected to GO (gene ontology) terms enrichment analysis 

using the web-based tool GOrilla (Eran et al, 2009) (URL2.3). The analyses were 

performed using the running mode that compared the target list of genes to the 

background list of genes (n=14174) that were expressed and detected in the cell lines 

used for the knockdown experiment. Ontologies containing only a single gene were 

omitted.  

8.2.6 Western blotting  

     Total protein and subcellular fractions were extracted as described in 2.5. Primary 

antibodies used are listed in Table 8.3. 

Protein Company Catalogue no. Type 
Antibody 
dilution used 

SHROOM2 Epitomics #S0151 Rabbit polyclonal 1:500 

β-actin Sigma #A1978 Mouse monoclonal 1:5000 

HSP60 Sigma #H3524 Mouse monoclonal 1:500 

E-cadherin Cell signalling #3195 Rabbit monoclonal 1:1000 

Lamin B1 Santa Cruz #SC-6216 Goat polyclonal 1:500 

Vimentin Cell signalling #5741 Rabbit monoclonal 1:500 

Table 8.3 Details of the antibodies and dilutions used in this chapter.  

 

SHROOM2 sera were produced by Dundee Cell Products using peptides1 as listed in 

Table 8.4. Antibodies were affinity purified using cognate peptide bead columns.  

Serum Rabbit Peptide sequence 

CSA 71 71 CSAGAQEPPRASRAEKASQR 

CSA 51 51 CSAGAQEPPRASRAEKASQR 

AQA 71 71 AQAQPRGDRRPELTDRPWRSAH 

AQA 51 51 AQAQPRGDRRPELTDRPWRSAH 

Table 8.4 Details of the customised serum raised against sequences specific to SHROOM2.  

                                                           
1 Peptides were designed by Dr Susan Farrington, CCGG Human Genetics Unit  
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8.3 Results 

8.3.1 Transcript-specific expression of SHROOM2 in cell lines and 

colonic primary tissue 

     To begin studying the function of SHROOM2 in colorectal epithelial cells, the 

SHROOM2 gene and its four transcripts were first examined in a panel of cell lines 

and colonic tissue. This is important as the Illumina HT12 microarray probe detects 

only the largest transcript, whereas the Taqman Gene expression probe for qRT-PCR 

maps to all 3 protein-coding transcripts (Figure 8.1). To investigate which transcripts 

are expressed and relevant in colonic epithelial cells, RT-PCR using transcript-

specific primers was performed on a panel of human CRC cell lines, normal 

colorectal mucosa (NM) and colorectal tumour samples. It appears that colorectal 

cancer cell lines and primary colorectal tissue (normal and tumour) predominantly 

express the canonical transcript T-001 (Table 8.5 and 8.6), which is detected by both 

the Illumina HT-12 gene expression microarray and the qRT-PCR Taqman assay.  

     The transcript-specific primers were also tested against a panel of non-colorectal 

human cell lines (Table 8.7). This served as a positive control experiment showing 

that the primer sets were indeed working, and also demonstrated that there is tissue-

specific expression of SHROOM2 transcript isoforms. SHROOM2 appears to be 

weakly expressed, if at all, in the lymphoblastoid and erythroleukemia cell lines, 

which is similar to what was previously observed in primary PBMCs. The retinal 

pigment epithelial cell line RPE1 appears to lack the canonical transcript and only 

expresses the short T-201 transcript, whereas the prostate epithelial cell line PNT and 

the breast epithelial cell line MCF7 appears to express the shorter transcripts as well 

as the longer canonical transcript. 
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Figure 8.1 Summary of the SHROOM2 gene (ENSG00000146950) on chromosome X: 
9,754,496-9,917,483 and its 4 transcripts as detailed on Ensembl (GRCh37). Regions 
targeted by gene expression assays and siRNAs are also indicated.  

 

 

 

 

 

 

Name Transcript ID Length 
(bp) 

Protein ID Length 
(aa) 

Biotype 

T-001 ENST00000380913 7447 ENSP00000370299 1616 Protein coding 

T-002 ENST00000452575 2276 ENSP00000406724 375 Protein coding 

T-201 ENST00000418909 3597 ENSP00000415229 451 Protein coding 

T-003 ENST00000493668 855 No protein product - Processed 
transcript 

http://www.ensembl.org/Homo_sapiens/Transcript/Summary?db=core;g=ENSG00000146950;r=X:9754496-9917483;t=ENST00000380913
http://www.ensembl.org/Homo_sapiens/Transcript/ProteinSummary?db=core;g=ENSG00000146950;r=X:9754496-9917483;t=ENST00000380913
http://www.ensembl.org/Homo_sapiens/Transcript/Summary?db=core;g=ENSG00000146950;r=X:9754496-9917483;t=ENST00000452575
http://www.ensembl.org/Homo_sapiens/Transcript/ProteinSummary?db=core;g=ENSG00000146950;r=X:9754496-9917483;t=ENST00000452575
http://www.ensembl.org/Homo_sapiens/Transcript/Summary?db=core;g=ENSG00000146950;r=X:9754496-9917483;t=ENST00000418909
http://www.ensembl.org/Homo_sapiens/Transcript/ProteinSummary?db=core;g=ENSG00000146950;r=X:9754496-9917483;t=ENST00000418909
http://www.ensembl.org/Homo_sapiens/Transcript/Summary?db=core;g=ENSG00000146950;r=X:9754496-9917483;t=ENST00000493668
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Cell line 
Tissue of 
origin 

rs5934683 T-001 T-002 T-201 T-003 

CACO2 CRC TT Present Absent Absent Absent 

COLO320 CRC CC Absent Absent Absent Absent 

DLD1 CRC CC Present Absent Absent Absent 

HCT116 CRC TT Present Absent Faint Absent 

HT29 CRC CT Absent Absent Absent Absent 

LOVO CRC TT Present Absent Absent Absent 

RKO CRC CC Present Absent Absent Absent 

SW48 CRC CC Absent Absent Absent Absent 

SW480 CRC TT Present Absent Absent Absent 

VACO425 CRC CC Present Absent Absent Absent 

Table 8.5 SHROOM2 transcript-specific RT-PCR using RNA from CRC cell lines.  

Patient Gender rs5934683 Tissue T-001 T-002 T-201 T-003 

CR77 F CT NM Present Absent Absent Absent 

CR90 F CT 
NM Present Absent Absent Absent 

Tumour Present Absent Absent Absent 

CR94 M CC 
NM Present Absent Absent Absent 

Tumour Present Absent Absent Absent 

CR97 F TT NM Present Absent Absent Absent 

CR102 M CC 
NM Present Absent Absent Absent 

Tumour Present Absent Absent Absent 

CR104 M CC 
NM Present Absent Absent Absent 

Tumour Present Absent Absent Absent 

CR142 M TT 
NM Present Absent Absent Absent 

Tumour Present Absent Absent Absent 

CR152 M TT 
NM Present Absent Absent Absent 

Tumour Present Absent Absent Absent 

Table 8.6 SHROOM2 transcript-specific RT-PCR on normal colorectal mucosa and paired 
tumour tissue whenever available. 

Cell line Tissue of origin T-001 T-002 T-201 T-003 

HeLa Cervical cancer Present Absent Absent Absent 

MCF7 Breast cancer Present Faint Absent Absent 

DU145 Prostate cancer Present Absent Absent Absent 

PC3 Prostate cancer Present Absent Absent Absent 

PNT Prostate Present Present Faint Absent 

K562 Erythroleukemia Faint Absent Absent Absent 

CON A Lymphoblastoid  Absent Absent Absent Absent 

CON C Lymphoblastoid Absent Absent Absent Absent 

RPE1 Retinal pigment epithelium Absent Absent Present Absent 

Table 8.7 SHROOM2 transcript-specific RT-PCR on non-CRC cell lines. 
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     Next, the relative expression of SHROOM2 in CRC and non-CRC cell lines was 

assessed by qRT-PCR (Figure 8.2). SHROOM2 gene products were very lowly 

expressed in CRC cell lines COLO320, HT29, SW48 and the blood cell lines K562, 

ConA and ConC, which was consistent with the non-quantitative RT-PCR. The 

colorectal cancer cell lines CACO2, DLD1, HCT116 and SW480 were high 

expressors, and hence selected for siRNA knockdown and phenotypic functional 

studies. The genotypes of these cell lines did not appear to affect SHROOM2 

expression in a consistent manner, which is not surprising given the chromosomal 

and genomic instability that are inherent to these tumour cell lines.   

 

 

 

Figure 8.2 Relative expression of SHROOM2 in a panel of colorectal cancer cell lines and 
non-colorectal cancer cell lines as quantified by qRT-PCR. SHROOM2 was normalised to 
three reference genes TBP, RPL30 and EIF2B1.   
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8.3.2 siRNA knockdown of SHROOM2 

     Having established that the SHROOM2 canonical transcript (T-001) is the relevant 

transcript in colorectal epithelial tissue, transient knockdown of this transcript was 

performed in CRC cell lines using siRNA transfections. Two siRNAs were initially 

used; siRNA1 was chosen to target only the canonical transcript, whereas siRNA2 

targets all four transcripts (Figure 8.1). HCT116 and DLD1 cell lines were initially 

chosen for knockdowns as they are adherent cell lines that transfect well and are 

good expressors of SHROOM2.  

     A transfection with a 48 hour incubation effectively knocked down SHROOM2 at 

the mRNA and protein level, and the level of knockdown was similar when used 

individually or in combination (Figure 8.3 and 8.4). This suggests that the large 

transcript SHROOM2-001 is the main, if not only, transcript expressed in these cell 

lines. It is also indicative that pooling of siRNAs did not appear to function 

synergistically to facilitate further degradation of SHROOM2 mRNA.  

     The SHROOM2 antibody used for Western Blotting appears to detect multiple 

other protein bands of different sizes. However, they are unlikely to be SHROOM2 

isoforms or SHROOM2 degradation products as their intensity does not change with 

knockdown using siRNA2, which targets all three protein-coding transcripts. 

Nevertheless, the non-specificity of this antibody renders it unsuitable for imaging 

and localisation studies. Efforts to obtain an antibody that is specific to SHROOM2 

will be discussed in a separate section.  
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Figure 8.3 qRT-PCR showing SHROOM2 expression normalised to EIF2B1, RPL30 and 
TBP. SHROOM2 was knocked down with the siRNAs individually and in combination for two 

CRC cell lines HCT116 and DLD1. 

 

Figure 8.4 Western blots with a commercial SHROOM2 antibody. The band that was 
reduced with SHROOM2 siRNA knockdown in both cell lines corresponds to the size of 

endogenous SHROOM2. β-actin was used as a loading control.  
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8.3.3 Transient knockdown of SHROOM2 and growth assays in CRC 

cell lines 

     Growth, or increase in total cell number over time, is a good measure of a 

biological response because it is broadly defined and influenced by many different 

factors including mitogens, nutrient levels, changes in transport, membrane integrity, 

attachment factors and so forth. Cell numbers can be affected by death rate, mitotic 

rate, progression through the cell cycle, or even by changing the plateau density. 

Although not specific, growth curves can be used as a general screening tool to 

detect phenotypic changes when a gene product is suppressed.  

     To analyse the growth characteristics of colorectal epithelial cells when 

SHROOM2 is knocked down, growth curves were established for 3 CRC cell lines 

with varying baseline levels of SHROOM2 - SW480 is a high expressor, whereas 

DLD1 and HCT116 have moderate expression of the SHROOM2 transcript. The cells 

were first transfected with siRNA for 48 hours and then trypsinised, counted and 

seeded in fresh media for the growth curves. The population doubling time for the 

cells were then calculated as a measure of cell proliferation. siRNA1 and siRNA2 are 

initially pooled to reduce the number of experiments performed. SHROOM2 mRNA 

level was measured at each time point to ensure that the reduction in expression was 

maintained throughout the experiment, and Western Blotting performed at time point 

0 to confirm depletion of SHROOM2 protein (Figure 8.5). Knock down of 

SHROOM2 appeared effective with a reduction in mRNA expression of >85% at 0 

hours. This effect diminished over time with a residual reduction of >50% at 72 

hours, which is expected of transient siRNA knockdowns.  It is interesting to note 

that SHROOM2 mRNA expression for both the control and knocked down cells 

appeared to increase with the time in culture, which may reflect the confluence or 

density of cells. The high levels at 0 hours (matching that of 72 hours) make this 

more likely - although the number of cells at 0 hours was low, they would have been 

almost confluent prior to trypsin digest and seeding. As RNA was extracted 

immediately after trypsin digest, the levels of cellular mRNA at this time point 

would be representative of that of a confluent phase. This was consistently observed 

in all the cell lines. This apparent relationship between SHROOM2 expression and 
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cell confluence may relate to, and provide support to its reported role in tight 

junction stabilisation. (Etournay et al, 2007). This does not, however, exclude 

confounders such as growth factors and nutrient composition in the growth media, 

which can also change as a function of time.  

     When the growth curves were plotted for the replicates of each cell line 

experiment, the rate of growth for DLD1 appeared to be slower when SHROOM2 

was transiently knocked down. (Figure 8.6). This was not seen with the other cell 

lines. Mann-Whitney U test on the population doubling time confirmed that there 

was a significant difference in doubling time (p-value=0.01) between DLD1 cells 

treated with scrambled siRNA and those treated with the SHROOM2 siRNAs. The 

knockdown cells had a 6.6 hour increase in average doubling time. To rule out off-

target effects, the experiment was repeated with the siRNAs singularly to ensure that 

this effect is specific to SHROOM2. A third siRNA that targets the 3’ end of 

SHROOM2-001 was used (Figure 8.1) for further confidence. All three siRNAs 

appeared to knockdown SHROOM2 mRNA levels to similar degrees (~80%), with 

siRNA1 maintaining the knockdown most effectively (Figure 8.7). The DLD1 

growth curves for the individual siRNAs revealed that the slowing of growth rates 

was only present with siRNA2 and not replicated with siRNA1 and siRNA3 (Figure 

8.8), indicating that this is more likely to be an off-target effect of siRNA2 rather that 

an effect attributable to SHROOM2 specific RNA degradation. 

     In summary, transient depletion of SHROOM2 did not appear to affect the 

population doubling time of CRC cell lines DLD1, HCT116 and SW480. The 

slowing of growth observed in DLD1 when SHROOM2 was knocked down is likely 

to be due to siRNA off targeting, as this effect was not replicable using siRNAs with 

comparable gene silencing efficiencies.  
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Scrambled siRNA 

SHROOM2 siRNA 1+2 

  

Figure 8.5 qRT-PCR of CRC cell lines when SHROOM2 was knocked down with siRNA1+2. 
SHROOM2 normalised to ACTB. Western blots of total protein extracted at time point = 0. 
Graphs and blots shown are representative of replicates. SC=scrambled control, 
Si=SHROOM2 siRNA 1+2.  
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Scrambled siRNA 

SHROOM2 siRNA 1+2 

 

 

Figure 8.6 Growth curves of colorectal cancer cell lines when SHROOM2 was knocked 
down with siRNA1+2. Experiments replicated at least 4 times, error bars=SEM. p-values are 

reported for the Mann-Whitney U test.  

Cell line        Average doubling time (hours) 

  Scrambled          SHROOM2 siRNA 1+2 

p-value 

DLD1 20.9 27.5 0.01 
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Figure 8.7 qRT PCR of DLD1 with SHROOM2 knocked down with three different siRNAs 
singularly. SHROOM2 normalised to ACTB.  

 

 

Figure 8.8 Growth curves of DLD-1 when SHROOM2 was knocked down with three different 
siRNAs singularly. Experiments replicated 2 times, error bars=SEM. 
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8.3.4 Transient knockdown of SHROOM2 and scratch-wound assays in 

CRC cell lines 

     The in vitro scratch-wound assay is a straightforward, reproducible assay 

commonly used to measure basic cell migration parameters. Creation of a “scratch” 

gap in the confluent cell monolayer induces cells on the edge of the gap to polarise 

and migrate toward the opening to close the “scratch” until new cell-cell contacts are 

re-established. It mimics to some extent migration of cells in vivo, and can be useful 

to study the regulation of cell migration by cell-cell interactions.  

     As SHROOM2 appears to regulate endothelial sprouting, migration and 

angiogenesis (Farber 2011), it was hypothesised that SHROOM2 may also play a role 

in colonic epithelial cell migration. To test this hypothesis, in vitro scratch assays 

using time-lapse imaging were performed after siRNA knockdown of SHROOM2 in 

DLD1 cell lines. The closure of wound gap was quantified by measuring the 

remaining area of the gap at multiple time points. The depletion of SHROOM2 did 

not appear to affect the rate of wound closure in DLD1 (Figure 8.9A). This 

experiment was repeated in SW480 and CACO2 cell lines and showed inconsistent 

results. In SW480, SHROOM2 knockdown slowed wound closure, whereas this had 

the opposite effect in CACO2 (Figure 8.9B). SHROOM2 expression levels were 

quantified with qRT-PCR after the final time-point and the knockdown of 

SHROOM2 was >80% for DLD1 and SW480 but was less so at 50% for CACO2 

(Figure 8.10). This experiment has been performed only once in the SW480 and 

CACO2 cell lines, and will require technical replication. 

     In summary, within the remit and limitations of this simple scratch-wound assay, 

SHROOM2 did not appear to have a consistent effect on the rate of wound closure in 

a monolayer of CRC cells.  
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Figure 8.9 A) Scratch wound assay - the remaining gap area over a 24 hour time course 
was quantified as a measure of wound closure in DLD1 cell line monolayer. Transient 
knockdown of SHROOM2 with siRNA was performed prior to introducing the scratch wound. 
Experiments replicated 4 times, error bars=SEM. B) Scratch wound assay similarly 
performed on two other CRC cell lines (SW480 and CACO2). 
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Figure 8.10 qRTPCR showing depletion of SHROOM2 at the end of the scratch wound time 
course (24hours) for the three cell lines used. SHROOM2 normalised to ACTB. Results 

representative of the replicates are shown for DLD1. 
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8.3.5 Microarray gene expression analysis of normal mucosa and cell 

lines in relation to SHROOM2 expression 

     To gain further insight into the function of SHROOM2, microarray data from 

whole-genome gene expression profiling of normal mucosa were first examined.  

     Of the 21937 genes detected in the normal mucosa, the expression levels of 4570 

genes were correlated with SHROOM2 expression (pers. comm. Grimes). 2390 of 

these were positively correlated, whereas 2180 were negatively correlated. Under the 

working assumption that functionally related genes are more likely to be co-

expressed (Eisen et al, 1998; Hughes et al, 2000; Kim et al, 2001), these genes were 

subjected to gene ontology analysis using GOrilla. The top twenty most significant 

GO terms for all correlated genes, positively correlated genes and negatively 

correlated genes are presented in Table 8.8 – 8.10. There is a striking presence of GO 

terms implicating the cell cycle when all correlated genes are analysed together. The 

positively correlated genes appear to be enriched for metabolic/catabolic processes, 

whereas the negatively correlated genes were predominantly enriched for cell cycle 

processes followed by metabolic processes.  
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Description p-value FDR q-
value 

Enrichment 
factor 

No. of 
genes 

cell cycle process 3.80E-13 4.84E-09 1.82 176 

mitotic cell cycle process 3.01E-12 1.92E-08 1.88 132 

cell cycle 9.51E-10 4.04E-06 1.81 117 

mitotic cell cycle 6.19E-09 1.97E-05 1.96 86 

cell cycle G1/S phase transition 4.72E-08 1.20E-04 2.6 40 

G1/S transition of mitotic cell cycle 4.72E-08 1.00E-04 2.6 40 

cell cycle phase transition 1.83E-07 3.33E-04 2.08 60 

mitotic cell cycle phase transition 2.52E-07 4.02E-04 2.07 59 

regulation of mitotic cell cycle 3.25E-07 4.60E-04 2.05 62 

regulation of cell cycle process 8.06E-07 1.03E-03 1.93 68 

DNA strand elongation involved in DNA 
replication 

8.61E-07 9.97E-04 4.43 16 

regulation of cell cycle 1.02E-06 1.09E-03 1.67 106 

DNA strand elongation 1.46E-06 1.43E-03 4.3 16 

rRNA metabolic process 2.02E-06 1.84E-03 2.39 36 

chromosome organization 4.40E-06 3.73E-03 2 52 

regulation of catalytic activity 5.24E-06 4.17E-03 1.84 69 

regulation of transferase activity 5.49E-06 4.11E-03 2.28 42 

cell division 5.70E-06 4.03E-03 1.86 63 

rRNA processing 5.76E-06 3.86E-03 2.44 35 

DNA metabolic process 8.41E-06 5.36E-03 1.56 113 

Table 8.8 Gene ontology analysis of the genes that are correlated in expression to 
SHROOM2 in the normal mucosa.  
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Description p-value FDR q-
value 

Enrichment 
factor 

No. of 
genes 

lipid metabolic process 1.94E-10 2.47E-06 1.54 189 

fatty acid oxidation 8.72E-09 5.56E-05 3.37 25 

cellular lipid metabolic process 1.09E-08 4.62E-05 1.56 149 

lipid oxidation 1.36E-08 4.33E-05 3.31 25 

enzyme linked receptor protein 
signaling pathway 

2.79E-07 7.11E-04 1.49 147 

cellular lipid catabolic process 6.45E-07 1.37E-03 2.29 37 

fatty acid beta-oxidation 6.49E-07 1.18E-03 3.33 19 

lipid modification 1.87E-06 2.98E-03 2.23 36 

phosphate-containing compound 
metabolic process 

4.49E-06 6.36E-03 1.29 259 

fatty acid catabolic process 5.42E-06 6.90E-03 2.72 22 

lipid catabolic process 6.15E-06 7.12E-03 1.89 49 

phosphorus metabolic process 6.76E-06 7.18E-03 1.28 263 

monocarboxylic acid catabolic process 8.48E-06 8.31E-03 2.48 25 

carnitine transport 1.07E-05 9.74E-03 5.49 8 

amino-acid betaine transport 1.07E-05 9.09E-03 5.49 8 

fatty acid metabolic process 1.36E-05 1.08E-02 1.75 57 

regulation of plasma membrane 
organization 

2.01E-05 1.51E-02 2.6 21 

ammonium ion metabolic process 2.31E-05 1.63E-02 2.01 36 

organic hydroxy compound metabolic 
process 

3.22E-05 2.16E-02 1.54 83 

vacuolar transport 4.19E-05 2.67E-02 2.38 23 

Table 8.9 Gene ontology analysis of the genes that are positively correlated in expression to 
SHROOM2 in the normal mucosa.  
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Description p-value FDR q-
value 

Enrichment 
factor 

No. of 
genes 

cell cycle process 5.09E-35 6.49E-31 2.22 236 

mitotic cell cycle process 1.50E-32 9.56E-29 2.41 186 

mitotic cell cycle 1.53E-31 6.50E-28 2.82 137 

cell cycle 4.92E-26 1.57E-22 2.3 164 

heterocycle metabolic process 7.92E-23 2.02E-19 1.38 629 

nucleobase-containing compound 
metabolic process 

1.36E-22 2.89E-19 1.39 607 

cellular aromatic compound metabolic 
process 

3.10E-22 5.64E-19 1.38 627 

cellular macromolecule metabolic 
process 

1.77E-21 2.82E-18 1.28 835 

cellular nitrogen compound metabolic 
process 

2.76E-21 3.91E-18 1.35 656 

ncRNA metabolic process 2.99E-21 3.81E-18 2.51 112 

gene expression 8.57E-21 9.92E-18 1.98 182 

DNA metabolic process 1.96E-20 2.08E-17 2.05 164 

organic cyclic compound metabolic 
process 

4.95E-20 4.85E-17 1.34 643 

nucleic acid metabolic process 1.03E-19 9.38E-17 1.39 548 

nitrogen compound metabolic process 4.13E-19 3.50E-16 1.31 692 

macromolecule metabolic process 1.11E-18 8.80E-16 1.24 895 

primary metabolic process 3.20E-18 2.39E-15 1.2 1020 

chromosome organization 5.16E-18 3.65E-15 2.76 79 

cellular component organization or 
biogenesis 

4.05E-17 2.71E-14 1.31 627 

cell division 5.39E-16 3.43E-13 2.4 90 

Table 8.10 Gene ontology analysis of the genes that are negatively correlated in expression 
to SHROOM2 in the normal mucosa.  
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     To evaluate further the role of SHROOM2 in cancer and non-cancer cells, siRNA 

knockdown of SHROOM2 was performed in two CRC cell lines (DLD1 and SW480) 

and three non-cancer cell lines (HEK293, RPE1 and PNT), using three different 

siRNAs (Figure 8.13A). siRNA1 was not effective in RPE1; this was expected given 

that RPE1 expresses only the shorter transcript SHROOM2-201 which lacks the 

target exon of siRNA1, as shown in Table 8.8 and Figure 8.1. 

     Gene expression microarray analysis showed that there were 14174 unique genes 

detected, and the number of genes with differential expression varied between cell 

lines (Figure 8.13B). Gene ontology analysis was performed for genes that are 

downregulated and upregulated upon depletion of SHROOM2, for each cell line 

individually (Table 8. - 8.). Overall, cell-cycle and cell-division related genes appear 

to be overrepresented, most notably within the downregulated genes in DLD1, 

HEK293 and PNT cell lines. This association with cell-cycle genes is consistent with 

the normal mucosa GO analysis, strongly suggesting SHROOM2 has a regulatory 

function of the cell cycle. Interestingly, SHROOM2 has been reported to be a 

centrosome-associated protein in a mouse endothelial cell line, and plays a role in the 

regulation of centrosome duplication (Farber, 2012). Moreover, Xenopus SHROOM2 

has been shown to regulate gamma tubulin (Fairbank et al, 2006), which is found 

primarily in centrosomes and spindle pole bodies. Though speculative, the inference 

that SHROOM2 has a similar role in human colorectal epithelial cells is an attractive 

one, as centrosome defects are known to promote chromosomal instability (Ganem et 

al, 2009), a common and important pathway in the aetiology of colorectal cancer. 

     In the RPE1 cell line, the genes upregulated with knockdown of SHROOM2 are 

enriched with protein localisation and transport genes, which would fit it with 

SHROOM2’s known regulatory function in melanosome biogenesis and localisation 

in the retinal pigment epithelium (Fairbank 2006). In the non-cancer HEK293, RPE1 

and PNT cell lines, the GO analysis also points towards genes with a function in cell 

polarity, morphogenesis and organelle organisation, which could relate to 

SHROOM2’s interaction with the actin-cytoskeleton and cell-junction proteins 

(Etournay et al, 2007). In the DLD1 cell line only, there is enrichment of TGF-

β/SMAD signalling genes in the upregulated genes, which is intriguing given the 
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involvement of this pathway in the pathogenesis of highly penetrable colorectal 

cancer mutational syndromes and colonic crypt homeostasis (Hardwick et al, 2008; 

Bellam et al, 2010; Reynolds et al, 2014). However, this should be interpreted with 

caution as a number of these enriched processes do not survive multiple testing 

correction.  

     The microarray gene expression analysis of these siRNA knockdown experiments 

has also highlighted the well-recognised caveat of the immunostimulatory “side 

effects” of siRNA treatments. There is a component of immune response, viral 

response and cell death genes observed in varying degrees across all cell lines, 

consistent with the knowledge that these effects are cell-type specific. In line with a 

stimulatory effect, these tend to be enriched for within the upregulated genes, 

although in RPE1 there was markedly strong enrichment within the downregulated 

genes. This idiosyncrasy could reflect a stronger immunostimulatory effect of the 

scrambled control siRNA in RPE1 cells. Hence, caution should be exercised when 

interpreting the results of these experiments, and a reduction in the concentration of 

siRNA used should be considered for future experiments, in particular with RPE1 

cell line.    
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Figure 8.11 A) qRTPCR of cell lines selected for transcriptomic analysis showing siRNA 
knockdown of SHROOM2. SHROOM2 normalised to RPL30. Graphs are representative of 
both replicates. B) Number of genes changed with siRNA knockdown of SHROOM2. 
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genes 
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genes 

DLD1 Colorectal cancer  792 1015 

SW480 Colorectal cancer 1353 660 

HEK293 Human embryonic kidney 593 759 
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DOWNREGULATED GENES IN DLD1 UPON DEPLETION OF SHROOM2 

Description p-value FDR q-
value 

Enrichment 
factor 

No. of 
genes 

cell cycle 3.79E-08 4.79E-04 2.15 57 

mitotic cell cycle 3.52E-07 2.23E-03 2.31 42 

modification-dependent protein 
catabolic process 

4.33E-06 1.82E-02 2.32 34 

cellular macromolecule catabolic 
process 

5.78E-06 1.83E-02 1.88 54 

ubiquitin-dependent protein catabolic 
process 

6.27E-06 1.59E-02 2.32 33 

modification-dependent macromolecule 
catabolic process 

6.42E-06 1.35E-02 2.28 34 

proteasome-mediated ubiquitin-
dependent protein catabolic process 

1.34E-05 2.43E-02 2.47 27 

proteasomal protein catabolic process 2.23E-05 3.53E-02 2.41 27 

proteolysis involved in cellular protein 
catabolic process 

2.32E-05 3.26E-02 2.15 34 

 

UPREGULATED GENES IN DLD1 UPON DEPLETION OF SHROOM2 

Description p-value FDR q-
value 

Enrichment 
factor 

No. of 
genes 

negative regulation of response to 
stimulus 

1.58E-04 >0.05 1.48 85 

enzyme linked receptor protein 
signaling pathway 

2.26E-04 >0.05 1.56 65 

transmembrane receptor protein 
serine/threonine kinase signaling 
pathway 

2.27E-04 >0.05 2.3 22 

SMAD protein complex assembly 3.13E-04 >0.05 10.07 4 

transforming growth factor beta 
receptor signaling pathway 

3.14E-04 >0.05 2.56 17 

Table 8.11 Gene ontology analysis of genes that are differentially expressed with depletion 
of SHROOM2 in DLD1 cells. Where FDR q-values are non-significant, the top 5 highest 

ranked enriched processes are presented.  
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DOWNREGULATED GENES IN SW480 UPON DEPLETION OF SHROOM2 

Description p-value FDR q-
value 

Enrichment 
factor 

No. of 
genes 

liver development 3.11E-04 >0.05 2.72 15 

mature ribosome assembly 4.08E-04 >0.05 8.94 4 

cardiac septum morphogenesis 6.77E-04 >0.05 3.27 10 

ER-associated ubiquitin-dependent 
protein catabolic process 

8.30E-04 >0.05 3.19 10 

protein folding in endoplasmic 
reticulum 

8.96E-04 >0.05 7.66 4 

 

UPREGULATED GENES IN SW480 UPON DEPLETION OF SHROOM2 

Description p-value FDR q-
value 

Enrichment 
factor 

No. of 
genes 

mitochondrial ATP synthesis coupled 
proton transport 

2.80E-04 >0.05 8.02 5 

hydrogen ion transmembrane transport 3.28E-04 >0.05 3.45 11 

positive regulation of molecular 
function 

4.83E-04 >0.05 1.51 66 

transmembrane receptor protein 
tyrosine kinase signaling pathway 

5.94E-04 >0.05 1.76 37 

ribose phosphate metabolic process 6.00E-04 >0.05 2.45 17 

 

Table 8.12 Gene ontology analysis of genes that are differentially expressed with depletion 
of SHROOM2 in SW480 cells. Where FDR q-values are non-significant (>0.05), the top 5 
highest ranked enriched processes are presented.  
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DOWNREGULATED GENES IN HEK293 UPON DEPLETION OF SHROOM2 

Description p-value FDR q-
value 

Enrichment 
factor 

No. of 
genes 

mitotic cell cycle 1.05E-06 1.33E-02 2.57 32 

cell division 2.28E-06 1.44E-02 2.73 27 

chromosome organization involved in 
meiosis 

5.14E-06 2.16E-02 9.57 7 

mitotic nuclear division 1.34E-05 4.24E-02 2.98 20 

cell cycle process 1.37E-05 3.47E-02 1.86 51 

cell cycle 1.51E-05 3.19E-02 2.08 38 

nuclear division 1.88E-05 3.39E-02 2.74 22 

 

UPREGULATED GENES IN HEK293 UPON DEPLETION OF SHROOM2 

Description p-value FDR q-
value 

Enrichment 
factor 

No. of 
genes 

protein modification by small protein 
conjugation or removal 

1.47E-04 >0.05 1.73 48 

Golgi vesicle transport 1.80E-04 >0.05 2.34 22 

negative regulation of cell 
communication 

1.86E-04 >0.05 1.56 66 

regulation of cellular respiration 1.92E-04 >0.05 8.36 5 

establishment of cell polarity 2.08E-04 >0.05 4.25 9 

 

Table 8.13 Gene ontology analysis of genes that are differentially expressed with depletion 
of SHROOM2 in HEK293 cells. Where FDR q-values are non-significant (>0.05), the top 5 
highest ranked enriched processes are presented.  
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DOWNREGULATED GENES IN RPE1 UPON DEPLETION OF SHROOM2 

Description p-value FDR q-
value 

Enrichment 
factor 

No. of 
genes 

type I interferon signaling pathway 8.91E-14 1.13E-09 5.11 27 

response to virus 2.27E-10 1.43E-06 2.64 48 

defense response to virus 2.20E-09 9.29E-06 3.03 34 

negative regulation of viral process 6.46E-08 2.04E-04 3.45 23 

negative regulation of viral life cycle 2.28E-07 5.76E-04 3.34 22 

cytokine-mediated signaling pathway 5.03E-07 1.06E-03 1.95 58 

negative regulation of viral genome 
replication 1.27E-06 2.29E-03 4.05 15 

regulation of viral genome replication 1.82E-06 2.87E-03 3.31 19 

response to other organism 2.07E-06 2.90E-03 1.88 57 

response to biotic stimulus 3.60E-06 4.55E-03 1.68 77 

negative regulation of multi-organism 
process 3.87E-06 4.45E-03 2.56 27 

regulation of viral process 4.27E-06 4.50E-03 2.3 33 

response to external biotic stimulus 4.52E-06 4.39E-03 1.69 74 

cellular macromolecule metabolic 
process 7.44E-06 6.71E-03 1.15 576 

regulation of viral life cycle 7.60E-06 6.41E-03 2.27 32 

defense response to other organism 1.07E-05 8.47E-03 2.01 41 

interferon-gamma-mediated signaling 
pathway 2.05E-05 1.53E-02 2.94 18 

regulation of symbiosis, encompassing 
mutualism through parasitism 2.52E-05 1.77E-02 2.12 33 

response to interferon-alpha 3.46E-05 2.30E-02 5.4 8 

regulation of multi-organism process 3.57E-05 2.25E-02 1.83 47 
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UPREGULATED GENES IN RPE1 UPON DEPLETION OF SHROOM2 

Description p-value FDR q-
value 

Enrichment 
factor 

No. of 
genes 

multi-organism cellular process 1.45E-09 1.83E-05 1.87 94 

viral process 2.16E-09 1.36E-05 1.86 93 

symbiosis, encompassing mutualism 
through parasitism 2.16E-09 9.09E-06 1.86 93 

interspecies interaction between 
organisms 4.40E-09 1.39E-05 1.78 102 

establishment of protein localization 1.44E-08 3.64E-05 1.55 154 

establishment of protein localization to 
membrane 1.77E-08 3.72E-05 2.37 47 

translation 8.03E-08 1.45E-04 2.14 53 

establishment of localization in cell 1.23E-07 1.94E-04 1.43 187 

single-organism intracellular transport 1.36E-07 1.91E-04 1.57 128 

intracellular transport 1.41E-07 1.78E-04 1.5 152 

protein transport 1.44E-07 1.66E-04 1.52 143 

translational elongation 1.97E-07 2.08E-04 2.4 39 

Golgi vesicle transport 3.76E-07 3.66E-04 2.29 41 

nuclear-transcribed mRNA catabolic 
process 4.34E-07 3.91E-04 2.39 37 

nuclear-transcribed mRNA catabolic 
process, nonsense-mediated decay 4.93E-07 4.15E-04 2.77 28 

organic substance transport 6.03E-07 4.77E-04 1.39 192 

protein targeting to ER 6.60E-07 4.91E-04 2.79 27 

protein localization to endoplasmic 
reticulum 7.18E-07 5.04E-04 2.72 28 

cellular component organization or 
biogenesis 7.48E-07 4.97E-04 1.22 420 

intracellular protein transport 8.72E-07 5.51E-04 1.65 92 

Table 8.14 Gene ontology analysis of genes that are differentially expressed with depletion 
of SHROOM2 in RPE1 cells. The top 20 highest ranked enriched processes are presented.  
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DOWNREGULATED GENES IN PNT UPON DEPLETION OF SHROOM2 

Description p-value FDR q-
value 

Enrichment 
factor 

No. of 
genes 

organelle assembly 6.20E-09 7.83E-05 2.83 38 

microtubule-based process 3.35E-08 2.12E-04 2.37 47 

cilium organization 3.62E-08 1.52E-04 3.88 22 

cell division 1.25E-07 3.95E-04 2.46 40 

cilium assembly 2.58E-07 6.52E-04 3.76 20 

organelle organization 6.70E-07 1.41E-03 1.45 151 

single-organism organelle organization 8.16E-07 1.47E-03 1.55 115 

mitotic cell cycle process 8.29E-07 1.31E-03 1.9 62 

cellular component assembly involved 
in morphogenesis 1.98E-06 2.79E-03 2.94 24 

cell cycle process 3.05E-05 3.86E-02 1.61 73 

intraciliary transport 3.65E-05 4.20E-02 5.91 8 

 

UPREGULATED GENES IN PNT UPON DEPLETION OF SHROOM2 

Description p-value FDR q-
value 

Enrichment 
factor 

No. of 
genes 

regulation of biological quality 4.43E-06 5.60E-02 1.4 154 

cellular component organization or 
biogenesis 3.78E-05 >0.05 1.24 247 

interspecies interaction between 
organisms 3.80E-05 

>0.05 
1.73 57 

enzyme linked receptor protein 
signaling pathway 5.02E-05 

>0.05 
1.67 62 

cellular component organization 6.05E-05 >0.05 1.23 244 

 

Table 8.15 Gene ontology analysis of genes that are differentially expressed with depletion 
of SHROOM2 in PNT cells. Where FDR q-values are non-significant (>0.05), the top 5 

highest ranked enriched processes are presented.  
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8.3.6 SHROOM2 protein localisation and function 

     The appropriate localisation of a protein is fundamental as it provides the 

physiological context for their function. SHROOM2 has been showed from the gene 

expression studies in Chapter 6 to be expressed in the colonic normal mucosa. 

However, this is a highly heterogeneous tissue that consists of epithelium, connective 

tissue (lamina propria) and a thin muscle layer (muscularis mucosae) (Figure 8.19). 

They are morphologically distinct yet functionally interdependent, for example, the 

mesenchymal cells of the lamina propria orchestrate the microenvironment of the 

epithelial cells and regulate the stem cell niche within the crypts. The epithelium is 

further divided into more subtypes (e.g. enterocytes and goblet cells), and it is well-

recognised that there is a differential distribution of gene expression along the 

colonic crypt-lumen axis as well as a proliferative and differentiation hierarchy.  In 

the context of cancer, the spatial distribution of this gene product is highly relevant, 

as disruptions in the crypt dynamics and homeostasis is one of the early steps in 

malignant transformation of the colonic epithelium. On a cellular level, the 

eukaryotic cell is organised into membrane-covered compartments that are 

characterised by specific sets of proteins and biochemically distinct cellular 

processes. Hence, the appropriate tissue distribution as well as subcellular 

localisation of endogenous SHROOM2 would provide key insights into its functional 

role. 

Figure 8.12 A cross-section drawing of the colon demonstrating the mucosa layer in the 
luminal surface of the colon.  
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     Immunostaining is a key technique widely used to identify the absence or 

presence of a protein, its tissue distribution, subcellular localisation and changes in 

the expression, and is heavily dependent on a sensitive and specific antibody. As 

demonstrated in previous sections, the commercial antibody to human SHROOM2 

detects a ~170kDa band on Western Blotting that is reduced with siRNA 

knockdown, but also detects multiple other non-specific bands of varying molecular 

weights. Antibodies from other commercial companies were even less effective (data 

not shown),  hence we sought to generate specific antibodies in rabbits with two 

separate antigens consisting of amino acids sequences from distinct regions of 

SHROOM2 (Figure 8.20). Only the AQA sera detects SHROOM2 along with several 

non-specific bands (Figure 8.21A). Dilutions of the AQA sera from rabbit 51 were 

performed but this did not  improve the specificity of the sera (Figure 8.21B).   

 

 

Figure 8.13 A schematic diagram of the human SHROOM2 protein and the protein region 
targeted by the commercial antibody from Epitomics and custom antibodies AQA and CSA. 
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SHROOM2 

                     

Figure 8.14 A) Western blots of total cell extracts from DLD1 cells with SHROOM2 
knockdown using siRNA1.  Commercial (Epitomics) and custom antibodies to SHROOM2 
were used for detection of SHROOM2. B) Dilutions of the AQA sera (rabbit 51) with the 
Epitomics commercial antibody as a positive control. 
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     Without a specific antibody to perform immunostaining, I attempted to 

characterise the subcellular localisation of SHROOM2 by subcellular fractionation 

and Western Blotting. In DLD1 cells, it appears that SHROOM2 is largely expressed 

in the cytosolic compartment and the cytoskeletal compartment (Figure 8.22). 

LS174T is a non-expressing cell line and was used as a negative control. This fits in 

well with published studies of SHROOM2, where it has been reported to associate 

with F-actin and is involved in regulating the cytoskeletal organisation and 

architecture of endothelial cells (Dietz et al, 2006). The markers of various 

subcellular fractions are shown to demonstrate that there is minimal cross-over of the 

compartments, but this is not without caveats and should be interpreted in 

combination. For instance, the nuclear marker Lamin-B stains both nuclear and 

cytoskeletal compartments, as being a nuclear intermediate filament protein it also 

precipitates into the insoluble cytoskeletal fraction. However, staining with the 

cytoskeletal marker Vimentin demonstrates that there is unlikely to be contamination 

of the nuclear fraction with cytoskeletal proteins.  

Figure 8.15 Western blots of subcellular fractions extracted from LS174T cells and DLD1 
cells with SHROOM2 knockdown using siRNA1. The commercial antibody (Epitomics) was 
used for detection of SHROOM2.   
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     To characterise the spatial distribution of SHROOM2 within the colonic normal 

mucosa, I sought circumferential evidence by examining its expression correlation 

with various tissue and cell type markers within the expression microarray data of the 

normal mucosa samples (n=115). Firstly the markers for the three tissue layers of the 

mucosa were examined in relation to SHROOM2 expression (Table 8.8), using 

conventional markers or novel markers recently identified (Pinchuk et al, 2010; 

Powell et al, 2011; Roberts et al, 2014). Endothelial markers were also included to 

account for possible inclusion of the submucosa during the tissue harvesting process. 

Values for each individual probe are shown when there are multiple probes for a 

given gene. Although the different probes for an individual gene are not always 

consistent in expression levels and degree of correlation, it is reassuring that in 

general, they exhibit similar directionality (Figure 8.23). The average gene 

expression (Table 8.8 and Figure 8.23A) suggests that the tissue sampled consisted 

of epithelial cells, mesenchymal stromal cells, smooth muscle cells and endothelial 

cells in decreasing order, which broadly reflects the expected composition of the 

normal mucosa with minimal submucosal contamination. Several marker genes for 

all the different cell types were significantly correlated with the expression of 

SHROOM2, but only CDH1 (E-cadherin), an epithelial cell marker, was positively 

correlated with SHROOM2 (Table 8.8 and Figure 8.23B and C), suggesting that 

SHROOM2 is more likely to be expressed in epithelial cells than other tissue-types. 

Interestingly, SHROOM2 is significantly negatively correlated with the epithelial cell 

marker CD44, which would argue against SHROOM2 being expressed in the 

epithelium. However, this negative correlation may reflect the differential expression 

of SHROOM2 along the colonic crypt vertical axis as CD44 is known to be 

expressed in the crypt base of the murine (Rothenberg et al, 2012) and human colon 

(Dalerba et al, 2011). 
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Tissue/cell type Gene 
symbol 

Log2 average 
expression 

Nominal         
p-val 

Spearman 
rho 

Epithelial CDH1 10.97 0.0006*** 0.311 

 EPCAM 12.63 0.0661 0.171 

 CD44 9.98 0.0145* -0.226 

 CD44 7.40 0.0887 -0.158 

 CD44 7.10 0.1183 -0.145 

Mesenchymal stromal ACTA2 11.69 0.9300 -0.008 

 THY1 7.58 0.2100 -0.116 

 DES 7.07 0.7500 0.030 

 VIM 10.22 0.0400* -0.187 

 VIM 10.98 0.1400 -0.136 

Smooth muscle CALD1 8.08 0.2067 -0.118 

 CALD1 7.82 0.5392 -0.057 

 CALD1 9.21 0.9277 -0.008 

 SMTN 6.59 0.0340* -0.196 

 SMTN 7.64 0.1810 -0.124 

 SMTN 6.71 0.0354* -0.195 

Endothelial PECAM1 7.91 0.0860 -0.159 

 CD34 7.43 0.0031** -0.272 

 CD34 6.58 0.6000 0.049 

 CD34 8.08 0.7300 0.032 

 CD34 6.51 0.7500 0.030 

 MCAM 6.54 0.9800 0.002 

 ENG 7.50 0.0480* -0.184 

Table 8.16 Cell-type specific markers and their correlation with SHROOM2 in the normal 
colorectal mucosa. Values are shown for each probe when there are multiple probes for a 
gene. 
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Figure 8.16 A) The average expression of tissue/cell type specific markers. B) the -log10(p-
value) of the correlation between SHROOM2 expression and marker genes. Dotted line 
represents a p-value of 0.05. C) Spearman rho of the correlation between SHROOM2 and 
marker genes. Values are shown for each probe when there are multiple probes for each 
gene. 
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     There is increasing evidence of heterogeneity of cells within the human colonic 

epithelium, with different protein markers and transcriptional signatures reflecting 

their lineage, differentiation stage and functional status (Dalerba et al, 2011). By 

inference, SHROOM2’s association with these markers may provide insight into its 

role within the colonic epithelial crypt. Useful markers that are frequently expressed 

in a mutually exclusive way include genes encoding lineage-specific markers such as 

CA1 for enterocytes, MUC2 for goblet cells, and LGR5 for the immature 

compartment. From a differentiation point of view, there are also transcriptional 

programs that characterises “top-of-the-crypt” mature, differentiated enterocytes and 

“bottom-of-the-crypt” cell populations which include compartments characterised by 

genes linked to goblet cells and genes that are expressed in the progenitor cell 

compartment of the mouse small intestine. (Dalerba et al, 2011; Merlos-Suarez et al, 

2011). Functionally, the expression of proliferation markers can also be examined; 

these are generally restricted to the bottom of the crypts.  

     SHROOM2’s appears to be positively correlated with CA1 and not MUC2 or 

LGR5 (Table 8.9 and Figure 8.24), suggesting that it is expressed mainly in 

enterocytes. Overall, there are more significantly positive correlations between 

SHROOM2 and genes that are highly expressed by “top-of-the-crypt” differentiated 

enterocytes, as compared to genes that are expressed by “bottom-of-the-crypt” cells. 

Although there is significant correlation with some of the proliferative markers, these 

correlations are negative and hence consistent with expression in non-proliferative or 

mature differentiated enterocytes. There are also positive correlations with two of the 

genes expressed in the progenitor cell compartment (RGMB and PTPRO), which 

may relate to SHROOM2’s subcellular localisation and function rather than crypt 

distribution, as there was no correlation with the other markers of stem-ness (LGR5 

and ASCL2).  This is rather intriguing as they are both plasma membrane associated 

proteins that have a regulatory role in cellular growth, differentiation and cell cycle 

progression - RGMB is a glycosylphosphatidylinositol (GPI)-anchored protein that 

potentiates BMP signalling (Halbrooks et al, 2007), whereas PTPRO is a protein 

tyrosine phosphatase localised to the apical surface of polarised cells that interferes 

with cell cycle progression (Motiwala et al, 2004). Alternatively, these could be false 

positive results given the number of genes tested for a correlation with SHROOM2.  
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Distribution Lineage/Function/ 

Differentiation 

Gene 
symbol 

Log2 
Average 
expression 

Nominal 
p-val 

Spearman 
rho 

Crypt-top Mature enterocytes SLC26A3 13.19 0.0001*** 0.351 

  CA1 12.32 0.0248* 0.208 

  CA2 12.96 0.0331* 0.197 

  CA2 12.35 0.1256 0.142 

  MS4A12 10.82 0.0047** 0.260 

  AQP8 11.20 0.0008*** 0.307 

  CD177 7.12 0.0067** 0.250 

  CD177 7.53 0.0069** 0.249 

  KRT20 9.05 0.0171* 0.220 

  KRT20 11.94 0.0501 0.182 

Crypt-
bottom 

Goblet MUC2 11.52 0.7838 0.026 

  TFF3 13.23 0.2982 -0.097 

  SPDEF 8.04 0.0703 -0.168 

  SPINK4 10.38 0.1295 -0.141 

 Stem/Progenitor LGR5 6.56 0.9477 0.006 

  OLFM4 11.16 0.0605 -0.174 

  OLFM4 7.52 0.0552 -0.178 

  ASCL2 7.80 0.6126 -0.047 

  RGMB 6.64 0.1243 -0.143 

  RGMB 7.87 0.0242* 0.209 

  RGMB 6.58 0.0181* 0.219 

  PTPRO 7.41 0.0365* 0.194 

  PTPRO 7.39 0.0330* 0.197 

 Proliferative MKI67 6.76 0.0115* -0.233 

  TOP2A 8.65 0.0227* -0.211 

  BIRC5 6.49 0.1166 -0.146 

  BIRC5 7.20 0.5412 -0.057 

Table 8.17 Genes characteristically expressed by subpopulations of epithelial cells and their 
correlation with SHROOM2 in the normal colorectal mucosa. Values are shown for each 

probe when there are multiple probes for a gene. 
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Figure 8.17 A) The average expression of genes characteristic of colonic epithelial 
subpopulations. B) the -log10(p-value) of the correlation between SHROOM2 expression and 
marker genes. Dotted line represents a p-value of 0.05. C) Spearman rho of the correlation 
between SHROOM2 and marker genes. Values are shown for each probe when there are 
multiple probes for a gene. 
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     In summary, by Western Blotting of subcellular fractions, SHROOM2 appears to 

be a cytosolic protein that associates with the cytoskeleton in DLD1 colorectal 

cancer cell line. By examining the correlation of SHROOM2 with gene-expression 

markers of the different cell populations within the colonic mucosa, it was deduced 

that SHROOM2 is mainly expressed in mature enterocytes of the epithelial layer at 

the top of the colonic crypts. An effective antibody to SHROOM2 would provide the 

validation required to substantiate these inferential findings.  
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8.4 Discussion 

     The data presented in Chapter 6 and 7 has shown that the Xp22.2 CRC risk locus 

demonstrates eQTL activity targeting the cis-gene SHROOM2, with evidence to 

suggest that the causal indel variant at the distal promoter region influences 

SHROOM2 transcription by modulating NF-Y transcription factor binding. By 

association, SHROOM2 is implicated as a candidate susceptibility gene and this 

chapter presents preliminary data on the function of SHROOM2 in human colonic 

epithelial cells.  

     Prior to any functional assays of SHROOM2, it is important that the presence of 

transcript isoforms are first identified in the tissue type of interest, as it has been 

reported that non-coding genetic variation may influence disease risk by altering 

levels of expression and splicing architecture of mRNA transcripts (Graham et al, 

2006; Zhang et al, 2009). Furthermore, characterisation of the relevant transcript 

isoforms will ensure that any observed phenotype is accurately attributed to a 

specific transcript isoform. This is particularly important for SHROOM2 as there are 

four reported transcripts and the HT12 microarray probe used for the eQTL analysis 

only detects the large canonical transcript T-001. Hence, it is reassuring that it is the 

only transcript that is expressed in the primary normal mucosa and tumour tissue and 

most of the cell lines used for functional assays (8.3.2). There is some evidence of 

tissue-specific alternative splicing as the other protein coding transcript isoforms are 

present in cell lines derived from other tissue types such as the retinal pigment 

epithelium, breast cancer and prostate tissue, suggesting different or additional 

functional roles for SHROOM2 in extra-colonic tissue. 

     The data presented in the next part of the chapter focuses on the transient 

knockdown of SHROOM2 in tumour cell lines with RNA interference, and the effect 

on tumourigenicity assays such as growth curves and scratch-wound assays. 

Traditional cancer cell lines have the advantage of being accessible, easily 

manipulated and replicable, hence ideal for in-vitro cell biology experiments where 

near-complete control of the environment and the existence of a single cell type are 

desirable. However, not only do these cell lines harbour genetic aberrations, they 
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have been subjected to gross manipulation during the process of creating cell lines 

and are kept under artificial conditions, therefore are not necessarily an accurate 

representation of the natural cellular state in vivo. The preliminary work presented 

here did not show a detectable change in the growth curves and scratch-wound 

assays with transient RNAi of SHROOM2, however, these negative results may 

reflect the major caveat that accompanies tumour cell lines, where overbearing 

mutator phenotypes in proliferative signalling and cell-cycle check points would 

displace or override any subtle effect of a lower-risk gene. Alternatively, it may 

represent a requirement for further experimental optimisation. For example, cell 

counting is a rough-and-ready technique and more specific readouts such as viability 

assays, proliferative and apoptotic markers, cell cycle phase markers may be more 

informative. With regards to the scratch wound assay, the cell line controls used only 

closed the scratch-wound gap minimally, with a closure of only ~25% after 24 hours. 

This suggests there may be factors impeding the migration of the cells in general, and 

any effect of gene depletion may have been masked. Further optimisation of this 

system will be required to robustly demonstrate the role of SHROOM2 in cell 

migration, for instance, knockdown of a positive control such as FAK, titration of 

serum in the growth medium and/or cell confluence, a longer time-course, or use of 

chemoattractants and gradient chambers. An experimental design utilising repeated 

measures analyses could also be used in future experiments to allow longitudinal 

monitoring and analysis. This will improve the power of detecting changes and order 

effects, and may reveal more subtle changes in cellular phenotypes associated with 

SHROOM2 depletion. 

     A further consideration for future functional work is stable knockdown/knockout 

of SHROOM2 or overexpression vectors, as certain cellular phenotypes may not be 

easily observed and quantified within the short time frame of transient siRNA 

depletion. Alternative models such as mouse models, ex-vivo three-dimensional 

organoid culture or normal colonic epithelial cell lines would offer a relatively 

normal physiological platform investigate gene functions, albeit more challenging 

and costly/labour-intensive. Stable genome editing using CRISPR-Cas9 technology 

has recently been successfully performed for driver pathway mutations in human 

colonic organoids as a model of colorectal cancer (Matano et al, 2015), and may 
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ultimately allow more definitive phenotype characterisation for candidate 

susceptibility genes such as SHROOM2 before progressing to dissect the subtle 

phenotypes associated with gene dosage. 

     Co-expression analysis implicates that SHROOM2 is expressed in the mature 

differentiated enterocytes at the top of the colonic epithelial crypts, and gene 

ontology analysis of cell line RNAi and correlated genes in the normal mucosa is 

suggestive of a role in cell cycle regulation. It is known that the transcription factor 

implicated in its transcriptional control, NF-Y, also regulates transcription of various 

genes related to the cell cycle (Elkon et al, 2003; Caretti et al, 2003) and that co-

regulated genes often share biological functions.  This indirectly lends further 

support to the suggestion that SHROOM2 may exert its tumour suppressive effects 

by influencing the cell cycle progression, which can in turn, influence proliferation, 

differentiation and apoptosis. It would therefore be of considerable interest to design 

and perform experiments that would directly implicate SHROOM2 in the regulation 

of cell cycle, such as flow cytometry cell cycle analysis or FUCCI (Fluorescence 

Ubiquitin Cell Cycle Indicator) cell cycle reporter vectors.  

     The expression of many genes as well as eQTLs effects appear to be tissue- or 

cell-type specific. As demonstrated in 6.3.2, not only is SHROOM2 lowly expressed 

in PBMCs compared to normal mucosa, the rs5934683-SHROOM2 eQTL is also not 

detectable. Given the heterogeneity of cell-types within the normal mucosa as well as 

the expression gradient along the epithelial crypt axis, it is conceivable that 

SHROOM2 expression and/or the eQTL effect are selectively present in a similar 

fashion. Risk alleles and their target genes may act in a non-cell autonomous fashion 

and therefore may exert their effect through other cell types that act upon the target 

cells, it is therefore crucial to further understand the spatial distribution of 

SHROOM2 within the colonic mucosa. This is particularly so as it is well-recognised 

that the mesenchymal stroma plays a key paracrine signalling role in maintaining the 

epithelial crypt architecture, and that cancers are thought to arise from the 

dysregulation of the crypt-base stem cell niche which harbours the cell of origin of 

colorectal cancer - the ‘bottom-up’ hypothesis. The co-expression analysis of 

SHROOM2 and cell-specific marker genes in the normal mucosa indicates that 
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SHROOM2 expression is correlated with markers of crypt-top mature enterocytes, 

suggesting that SHROOM2 is mainly expressed in this cell sub-type. This may or 

may not be representative of the eQTL effect. As there is rapid cell turnover and the 

majority of differentiated cells are shed into the lumen within 5days, perturbations in 

this crypt compartment are in theory less likely to initiate neoplasia. Interestingly, a 

recent mouse model study of hereditary mixed polyposis syndrome (HMPS) 

demonstrated evidence for the alternative ‘top-down’ hypothesis of tumour 

formation, where aberrant epithelial expression of GREM1 promoted the persistence 

and/or reacquisition of stem cell properties in LGR5-negative cells that have exited 

the stem cell niche, allowing cells outside the crypt-base stem cell niche to form 

ectopic crypts and act as tumour progenitors (Davis et al, 2014). Sporadic traditional 

serrated adenomas, which are characterised by ectopic crypt foci, were also shown 

by the authors to express epithelial GREM1, suggesting a similar underlying 

mechanism. In another study, activated NF-κB induced mucosal inflammation in 

combination with constitutive epithelial Wnt signalling was shown to promote the 

initiation of neoplasia from cells situated outside the crypt base stem cell niche 

(Schwitalla et al, 2013). Given that these studies demonstrate that the top-down 

model of tumourigenesis may indeed fit some subtypes of inherited and sporadic 

colorectal cancers, it would be of great interest to refine the tissue localisation of 

SHROOM2 and the eQTL effect. Apart from immunostaining techniques, RNA-

FISH could be used to demonstrate the spatial distribution of SHROOM2 transcripts. 

Alternatively, disaggregation of the intestinal epithelial crypts from the underlying 

stromal tissue using enzymatic or non-enzymatic methods can be performed on 

freshly sampled colonic mucosa prior to extraction of RNA/protein. During the 

process of normal mucosa sampling, tumour tissue has also been collected and fresh 

frozen, and may shed light on the role of SHROOM2 in tumourigeneis. SHROOM2 

expression and the eQTL effect could be examined, as well as any associations with 

driver pathway mutations, chromosomal abberations, microsatellite instability and 

epigenetic changes (e.g. CIMP phenotype). 

     In the context of human case-control studies, the study that would cement 

SHROOM2’s role in CRC risk is to quantify SHROOM2 expression in the normal 

mucosa of cases versus controls, ideally in a prospective manner. This is challenging 
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to say the least, but is possible in the longer term with the increasing realisation that 

normal tissue repositories are a vital resource in understanding disease mechanisms. 

In the larger scheme, this would also be an invaluable resource in facilitating the 

amalgamation of genetics, transcriptomics and proteomics of normal tissue states that 

would complement the ongoing work in disease states, and to discover and study 

biomarkers of disease predisposition and clinical outcomes.  

     In summary, this chapter presents preliminary data on the functional role of 

SHROOM2, the target gene of a GWAS-associated common variant that is 

implicated as a colorectal cancer susceptibility gene. Subcellular localisation studies 

and co-expression analysis of the normal mucosa suggests that it is a cytoplasmic 

protein that associates with the cytoskeleton, and is likely to be mainly expressed in 

the crypt-top mature enterocytes. RNA interference studies suggests a role in the 

regulation of cell cycle progression, and further understanding of role of SHROOM2 

would prove invaluable in understanding the contributory pathways to CRC 

carcinogenesis, and ultimately inform the rational development of 

preventative/therapeutic strategies for colorectal cancer.  
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Chapter 9 

Functional characterisation of the gene-environment (plasma 

25-hydroxyvitamin D) interaction at the 16q22.1 risk locus 

9.1 Introduction 

     The eQTL analysis of colorectal mucosa and PBL has provided evidence of 

regulatory function for approximately half of the CRC risk SNPs (Chapter 6). Further 

functional studies of the Xp22.2 locus validates this eQTL association (Chapter 7), 

providing proof of principle on a molecular level. However, there is still a large 

proportion of risk variants whose functions and target genes are unaccounted for.  

There is emerging evidence of gene-environment interactions on cancer risk in the 

context of low-penetrance genetic susceptibility polymorphisms, for instance, parity 

and alcohol consumption influencing breast cancer genetic risk conferred by 

common alleles (Nickels et al, 2013), and common genetic variation modifying the 

protective effect of NSAID/aspirin use in colorectal cancer (Nan et al, 2015). 

Although the underlying molecular mechanisms have yet to be identified, these 

studies are suggestive that the function of common variants may also be modified by 

non-genetic factors. Hence, it is conceivable that the eQTL effects of CRC risk 

variants may not be fully appreciable under steady-state conditions, in other words, 

their association with the expression of target genes may be modifiable by 

perturbations of cellular pathways that are influenced by lifestyle/environmental 

factors.  

     A recent study by the Colon Cancer Genetics Group (Zgaga et al, unpublished) 

investigated whether vitamin D levels modified the risk conferred by the 25 common 

variants associated with CRC. This investigation stemmed from the implication of 

vitamin D deficiency as a possible risk factor in the aetiology of colorectal cancer, 

where higher vitamin D intake, higher serum 25-hydroxyvitamin D (25-OHD) and 

residence in regions with strong UVB radiation were associated with lower CRC risk 

(Gorham et al, 2005; Giovannucci 2009; Gandini et al, 2011) and cancer mortality 
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(Robsahm et al, 2004, Tretli et al, 2012). Interestingly, this study demonstrated a 

statistically significant 2-way interaction between plasma 25-OHD and rs9929218 at 

the 16q22.1 locus (p=0.004) (Figure 9.1). In other words, the effect of rs9929218 on 

CRC risk was modified by the levels of plasma 25-OHD (Table 9.1).  This is the first 

study to implicate an interaction between a known CRC risk variant and an 

environmental factor; if true, this could have a significant impact on public health 

strategies in CRC risk stratification, screening and prevention. Hence, there is much 

value in pursuing an understanding of the functional mechanism that mediates this 

gene-environment interaction observed in population studies. 

     The rs9929218 SNP (chr16:68820946) resides within intron 2 of CDH1 that 

codes for E-cadherin, a protein that plays a crucial role in epithelial cell-cell adhesion 

and tissue architecture maintenance. It has been previously implicated in colorectal 

cancer (as reviewed by Tsanou et al, 2008), and its reduced expression is known to 

be associated with invasive potential and poor prognosis in various cancers. 

Although intron 2 of CDH1 is known to contain cis-regulatory elements for its 

transcription (Stemmler et al; 2005), the expression analysis of CRC risk variants in 

normal mucosa and PBMC (Chapter 6) did not reveal any evidence to suggest a 

relationship between rs9929218 genotype and CDH1 expression. Similarly, ChIP-seq 

studies of the vitamin D receptor (VDR) does not show vitamin D response elements 

at this locus (Ramagopalan et al, 2010;) and independent bioinformatics analysis 

does not support VDR binding at this locus (Zgaga et al, unpublished). Instead, the 

in-silico analysis strongly suggests a putative FoxO binding site at rs9929218, with a 

10-fold increase in FoxO binding affinity associated with the A allele. This is 

intriguingly as there is evidence in the literature to indicate that VDR associates 

directly with FoxO proteins and their regulators, and that vitamin D treatment 

induces post-translational modification of FoxO proteins, enhancing their binding to 

the promoters of target genes (An et al, 2010). There is also evidence suggesting that 

FoxO3a is involved in the regulation of E-cadherin expression in urothelial cancer 

cells (Shiota et al, 2010).  

     From this, it can be postulated that the observed interaction between 25-OHD and 

rs9929218 on CRC risk is mediated by VDR’s ligand-dependent non-genomic 
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actions, whereby it modulates the activity of FoxO proteins on cis-regulatory 

elements of CDH1. This chapter aims to investigate this hypothesis by utilising the 

expression data derived from the human colonic mucosa and PBMC, as well as 

measurements of matched serum 25-OHD. To investigate further whether the 

rs9929218 genotype influences the induction of CDH1 expression, the in-vivo 

expression analysis will be complemented by the in-vitro vitamin D treatment of 

CRC cell lines and human colonic organoids. 

     One of the biggest limitations of studies utilising single 25-OHD measurements in 

observational studies of cancer incidence and mortality is that 25-OHD is frequently 

measured after the diagnosis. Determining the direction of causality is challenging as 

25-OHD levels may have decreased as a result of illness or treatment. Indeed, 

decreased circulating 25OHD concentration has been reported after elective knee 

surgery (Reid et al, 2011) and cardiopulmonary bypass (Krishnan et al, 2010). As the 

majority of vitamin D measurements used in this chapter were taken post-operatively 

at varying intervals (ranging from 1to 468 days), they may not accurately reflect the 

vitamin D status at the point of mucosa sampling given the reported changes that 

accompany major surgery. Therefore, it is of importance to characterise these 

changes after abdominal surgery for large bowel resections. Understanding how 

circulating 25-OHD fluctuates peri- and post-operatively will not only contribute 

towards robust statistical analysis of its association with disease and expression 

phenotypes, it will also offer insight into the regulation and homeostasis of vitamin D 

and inform the design of future studies investigating its role in the development of 

complex disease traits.  
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25-OHD 
TERTILE 

  GA vs. AA   GG vs. AA 

N OR 95% CI p   OR 95% CI P 

1 1357 0.92 0.61-1.41 0.71 

 

0.97 0.64-1.46 0.87 

2 1449 1.27 0.85-1.9 0.24 

 

1.49 1.01-2.21 0.044 

3 1410 1.83 1.15-2.91 0.01   2.35 1.49-3.7 0.0002 

Table 9.1 Association between rs9929218 and colorectal cancer for different tertiles of May-

standardised 25-OHD. The cut-offs for the 25-OHD tertiles (T1, T2 and T3) were: 0-8.3, 8.4-

14.5 and >14.6 ng/ml (Zgaga et al, unpublished).  

 

 

 

Figure 9.1 The proportion of colorectal cases in subgroups based on rs9929218 genotype 

and 25-OHD tertiles (Zgaga et al, unpublished).  
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9.2 Methodological overview 

9.2.1 Study subjects and biological material 

     To investigate the factors influencing CDH1 expression in-vivo, normal colonic 

mucosa (n=115) and matched PBMC (n=59) were collected from patients 

undergoing large bowel surgery as described in 6.2.1. In a subset of these patients 

(n=83), blood was also collected post-operatively for the quantification of circulating 

25-OHD. Plasma was isolated from peripheral blood as described in 2.1.2.  

     A different cohort of patients undergoing large bowel surgery for CRC were 

recruited for the serial sampling study of serum 25-OHD (n=40) (Table 9.2). Six 

serum samples were obtained from these patients at the following time points – pre-

operatively (3-19 days before surgery), 1-2 days post-op, 3-5 days post-op, 6-8 days 

post-op, first outpatient follow-up (30-120 days post-op), and second outpatient 

follow-up (>162 days post-op).  
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MD AGE GENDER AJCC STAGE OPERATION 

11015 74 M 2 Laparoscopic 

11028 82 M 1 Open 

12692 63 M 1 Laparoscopic 

12755 76 F 2 Open 

12777 73 F 3 Open 

12781 81 F 3 Laparoscopic 

12785 57 F 1 Open 

12788 73 F 1 Laparoscopic 

12789 88 M 3 Open 

12794 86 F 3 Laparoscopic 

12796 76 F 2 Laparoscopic 

12797 75 M 2 Laparoscopic 

12798 61 M 1 Laparoscopic 

12800 65 F 2 Laparoscopic 

12802 71 F 1 Laparoscopic 

12804 46 M 1 Laparoscopic 

12805 49 F 2 Laparoscopic 

12807 68 M 2 Open 

12808 69 M 1 Open 

12811 78 F 3 Laparoscopic 

12812 52 M 1 Open 

12813 78 M 1 Open 

12815 65 M 2 Laparoscopic 

12822 73 F 3 Open 

12824 65 F 1 Laparoscopic 

12826 83 F 2 Open 

12857 71 F 1 Laparoscopic 

12873 64 M 2 Laparoscopic 

12874 65 M 2 Laparoscopic 

12876 76 M 2 Laparoscopic 

12882 81 M 2 Open 

12887 65 M 1 Open 

12890 85 M 2 Open 

12893 81 M 2 Laparoscopic 

12897 52 M 1 Laparoscopic 

12898 85 M 3 Laparoscopic 

12903 78 M 2 Open 

12904 60 F 1 Laparoscopic 

12906 49 M 1 Open 

12919 76 M 2 Laparoscopic 

Table 9.2 Characteristics of the 40 study subjects – age, gender, AJCC stage of CRC and 

the type of large bowel surgery (open or laparoscopic).  
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9.2.2 Gene expression levels and variant genotypes  

     The expression of the genes of interest was extracted from the microarray data 

after normalisation, batch correction and log transformation as described in 2.3.6. 

Genotypes of the SNPs of interest were obtained from the HumanOmni5M-4v1_B 

BeadChip Arrays (Illumina, USA) as described in 6.2.3.  

9.2.3 Calcitriol treatment of cell lines 

     Cell lines were cultured as described in 2.2 until 50% confluence prior to 

calcitriol treatment. Calcitriol (Sigma-Aldrich) was reconstituted in 100% ethanol 

and a final concentration of 100nM were used. The equivalent volume of 100% 

ethanol was used as the negative control, which equates to 1% v/v ethanol. 10% 

charcoal-stripped fetal bovine serum (Life Technologies) was used during calcitriol 

treatment to eliminate lipophilic material that contain vitamin D metabolites that may 

mask or falsely elevate the effect of calcitriol treatment.  

9.2.4 Calcitriol treatment of human organoids 

     Human colonic organoid culture was carried out as described in Sato et al, 2011 

using epithelial crypts dissociated from the colonic tissue harvested from fresh 

surgical specimens.  In brief, epithelial crypts are dissociated from the stroma using 

25mM EDTA and mechanical pipetting. After washing, the crypts were resuspended 

in Matrigel (BD Bioscience) at 200 crypts per 50µL of Matrigel in each well (24-

well plate). 500µL of culture medium was placed in each well after the Matrigel has 

solidified, and culture medium was replaced every 2 days. The organoids were 

incubated at 37ºC in a humidified incubator (95% O2, 5% CO2). At day 5 in culture 

when crypt budding started to occur, the organoids were treated with 100nm 

calcitriol (Sigma-Aldrich) or the 1% v/v ethanol negative control for 16 hours.  

     The following constitutes the organoid culture medium: 
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REAGENT SOURCE 
FINAL 

CONCENTRATION 

Advanced DMEM/F12 Invitrogen™, Life Technologies 1x 

Glutamax Invitrogen™, Life Technologies 2mM 

Hepes Invitrogen™, Life Technologies 10mM 

Bsa Sigma-Aldrich 0.1% 

Penicillin/Streptomycin In-house technical services 100U/130µg per ml 

N-acetylcysteine Sigma-Aldrich 1mM 

N2 Invitrogen™, Life Technologies 1x 

B27 Invitrogen™, Life Technologies 1x 

Gastrin I Sigma-Aldrich 10nM 

Nicotinamide Sigma-Aldrich 10mM 

A83-01 Tocris 500nM 

SB202190 Sigma-Aldrich 10µM 

Noggin 
(mouse recombinant) 

Peprotech 100 ng/ml 

Epidermal Growth Factor 
(mouse recombinant) 

Invitrogen™, Life Technologies 50ng/ml 

R-Spondin 
(mouse recombinant) 

R&D 1 µg/ml 

Wnt-3a 
(mouse recombinant) 

R&D 100ng/ml 

Table 9.3 Details of the reagents used for the human organoid culture medium.  

 

9.2.5 qRT-PCR 

     RNA from cell lines and human organoids was extracted using the Ambion® 

RiboPure™ RNA extraction kit (Life Technologies) as per the manufacturer’s 

protocol. DNAse treatment, cDNA synthesis and qRT-PCR of the genes of interest 

were performed as described in 2.3, using the Taqman® Gene Expression assays 

listed in Table 9.4. Genes of interest were normalised to the reference gene ACTB.   
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Gene Assay ID Probe sequence 

CDH1 Hs01023895_m1 AAGGTGCTCTTCCAGGAACCTCTGT 

VDR Hs01045844_m1 TGAAGGAGTTCATTCTGACAGATGA 

CYP24A1 Hs00167999_m1 GCGGTGGAAACGACAGCAAACAGTC 

CYP3A4 Hs00604506_m1 ATTTTGTCCTACCATAAGGGCTTTT 

ACTB Hs99999903_m1 CCTTTGCCGATCCGCCGCCCGTCCA 

Table 9.4 Taqman gene expression assays used in the quantification of gene expression in 
the calcitriol-treated cell lines and human organoids. 

 

9.2.6 Measurement of circulating 25-OHD  

     Circulating 25-OHD was quantified as a measure of vitamin D status. Total 

plasma or serum 25-OHD (25-OHD2 and 25-OHD3) was measured by the liquid 

chromatography-tandem mass spectrometry (LC-MS/MS) method by the Clinical 

Biochemistry department, Glasgow Royal Infirmary, following standard protocols 

and quality control procedures (Knox  et al. 2009). More details about this method 

can be found elsewhere (Knox et al. 2009; Wallace et al. 2010). Levels <8nmol/L 

were undetectable and randomisation was performed based on the distribution of the 

other samples in the cohort (Figure 9.2). May-adjusted 25-OHD concentrations were 

used as described in Zgaga et al, 2011. To minimise the confounding effects of the 

season and subsequently daylight length, 25-OHD levels were standardised to the 

month of May, to remove the effect of the month when blood was sampled on 25-

OHD levels (adjusted values of <0nmol/L were re-coded as 0nmol/L). As the 

majority of samples were considered clinically deficient in 25-OHD (<30nmol/L), 

the levels were categorised in tertiles for the gene-environment analysis. The cut-offs 

for the 25-OHD tertiles were: 0-12.5nmol/L, 12.6-23nmol/L and >23nmol/L. 
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9.2.7 Statistical analysis 

     All models were adjusted for age, gender and site of sampling. To test for two-

way interactions, linear regression analysis was performed, modelling both the main 

effects and the interaction for the selected SNPs, genes or serum 25-OHD. Where 

more than one probe was present for a gene, the expression of each probe was 

analysed individually. Correlation between individual gene expression in the normal 

mucosa was performed using Spearman correlation as a non-parametric measure of 

statistical dependence between two variables.  
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Figure 9.2 Distribution of serum/plasma 25-OHD used in this study (top panel). Samples 
<8nmol/L (highlighted in purple, n=71) were undetectable by LC-MS/MS and imputation was 
performed. The distributions of imputed and subsequent May-adjusted values for these 
samples are shown in the bottom panel.  
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9.3 Results 

9.3.1 Expression of CDH1 is independently associated with VDR, 

CYP3A4 and FOXO transcription factors 

     Vitamin D exerts its biological effects primarily by activating the vitamin D 

receptor (VDR). Upon ligand activation, this nuclear hormone receptor forms a 

heterodimer with the retinoid-X receptor and binds to vitamin D response elements 

(VDRE) on DNA, facilitating the recruitment of protein complexes that are essential 

for transcriptional modulation. There is also evidence of transcriptional 

autoregulation of VDR by the active vitamin D metabolite calcitriol (1,25-

dihyroxyvitamin D3) using ChIP anlaysis (Zella et al, 2006). Hence, its expression is 

useful as a marker of vitamin D transcriptional activity and by extension, a proxy of 

cellular vitamin D status. CYP3A4 is used as an alternative marker of vitamin D 

transcriptional activity, as it is a ligand-induced VDR-mediated target gene in 

intestinal cells (Pavek et al, 2009). 

     In primary human normal colonic mucosa (n=115), expression of CDH1 was 

found to be associated with both VDR and CYP3A4 (Table 9.5). As a total of 11 

probes were tested in this analysis, the significance threshold was set at 0.0045 to 

correct for multiple testing. Although one of the two probes for VDR did not survive 

multiple testing, the probe that did (ILMN_2319952) was very highly significant 

p=5.44E-15) and explained a remarkable 51% of the variance in CHD1 expression. 

As there are 7 reported protein-coding transcripts for VDR, of which 5 are poorly-

supported transcript models according to the Ensembl genome database (URL9.1), it 

is reassuring that the ILMN_2319952 probe captures the two well supported protein-

coding transcript models VDR-002 and VDR-004. On the other hand, expression of 

FOXO1, FOXO3 (two out of three probes) and FOXO4 are also very significantly 

associated with the expression of CDH1 (Table 9.5), of which FOXO4 appears to be 

the most significantly associated gene (p=1.62E-13).  

     Taken altogether, these results lend support to the hypothesis that the expression 

of CDH1 is regulated by VDR and FOXO proteins. However, these associations are 
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only suggestive of a mechanistic link, and do not shed light on the nature of this 

relationship and the direction of regulation, if any. 

Illumina probe 

ID 

Gene Spearman correlation 

with CDH1 

Linear model adjusted for 

age, gender and sampling 

site 

  rho p-value Estimate p-value 

ILMN_2319952 VDR 0.714 < 2.2e-16*** 1.025 5.44E-15*** 

ILMN_1666203 VDR 0.235 0.011 1.282 0.015 

ILMN_1772206 CYP3A4 0.375 3.73E-05*** 1.023 3.96E-05*** 

ILMN_1738816 FOXO1 0.381 2.67E-05*** 0.648 1.29E-05*** 

ILMN_1681703 FOXO3 0.528 1.34E-09*** 0.578 1.23E-11*** 

ILMN_1712515 FOXO3 0.213 0.023 0.947 0.063 

ILMN_1844692 FOXO3 0.429 1.67E-06*** 0.558 3.30E-09*** 

ILMN_1712095 FOXO4 0.578 1.38E-11*** 0.734 1.62E-13*** 

ILMN_3307977 FOXO6 -0.074 0.432 -0.516 0.255 

ILMN_3311135 FOXO6 -0.098 0.299 0.054 0.907 

ILMN_3311155 FOXO6 -0.008 0.936 -0.139 0.804 

Table 9.5 The association between expression of CDH1 and the expression of implicated 

genes in the human normal colorectal mucosa.   
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9.3.2 CRC risk variant rs9929218 modifies the association between 

FOXO4 and CDH1 

     To gain insight into the direction of regulation, a two-way interaction analysis 

was performed with the CDH1 variant, rs9929218. A statistically significant two-

way interaction (p=0.0057) was observed between rs9929218 and FOXO4 

expression on the expression of CDH1 (Table 9.6), suggesting that FOXO4 

influences the expression of CDH1 and not vice-versa. Interaction analysis with 

rs9929218 was also carried out for VDR and the other FOXO family members, but no 

other further interactions were observed to be present.  

     The negative estimate of the interaction term between the main variables FOXO4 

and rs9929218 implies that there is negative synergy between them, i.e. their 

presence at the same time dampens their effect on CDH1. To illustrate this, the 

association between FOXO4 and CDH1 expression was analysed separately for each 

rs9929218 genotype (GG, GA and AA) (Figure 9.3). The relationship between 

FOXO4 and CDH1 appears to be modified by the rs9929218 genotype, where the 

gradient of the positive linear relationship between FOXO4 and CDH1 expression 

decreased with the number of A alleles. Although there is the possibility of a false 

positive result due to the small numbers of the AA genotype, this statistical 

interaction makes biological sense given that rs9929218 has been predicted to 

modify FOXO binding affinity, and offers a plausible mechanism for the plasma 

25OHD-rs9929218 gene-environment interaction on CRC risk. 
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 Estimate p-value 

Age 0.003 0.15 

Gender -0.085 0.11 

Sampling site -0.079 0.19 

FOXO4 0.878 1.77E-14*** 

rs9929218 3.383 0.0053** 

FOXO4*rs9929218 -0.404 0.0057** 

 

Table 9.6 The multivariate linear regression modelling for expression of CDH1 in the normal 
mucosa demonstrating a significant two-way interaction between FOXO4 and rs9929218. 
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Figure 9.3 The association between expression of CDH1 and FOXO4 in the normal mucosa, 
analysed separately for each rs9929218 genotype (the major allele G is associated with a 
higher risk of colorectal cancer whereas the minor allele A has a protective effect). 
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9.3.3 VDR expression and a VDR polymorphism independently 

modifies the association between FOXO4 and CDH1 

     A further analysis was carried out to examine the possibility of VDR influencing 

the relationship between FOXO and CDH1 expression. A statistically significant 

two-way interaction (p=0.00617) was observed between VDR and FOXO4 

expression as determinants of CDH1 expression (Table 9.7). The association 

between FOXO4 and CDH1 expression was analysed separately for each tertile of 

VDR expression (Figure 9.4). The relationship between FOXO4 and CDH1 appears 

to be modified by levels of VDR, where the influence of FOXO4 on CDH1 appears 

to decrease as VDR levels increased. 

     To find further supporting evidence for the interaction between VDR and FOXO4, 

two-way interaction analyses was carried out between FOXO4 and VDR 

polymorphisms that have been reported to have a bearing on VDR function (as 

reviewed by Uitterlinden et al, 2004) and the risk of colorectal adenomas and cancer 

(Touvier et al, 2011; Bai et al, 2012) (Table 9.8). Interestingly, the FokI 

polymorphism that is located in the start codon showed a significant two-way 

interaction with FOXO4 (p=0.0076), where the influence of FOXO4 expression on 

CDH1 expression increased with the number of the major allele G (Figure 9.5). The 

major allele produces a protein that is shorter by three amino acids (Whitfield et al, 

2001), and could conceivably influence the modulatory effect of VDR on FoxO4.   

     The independent effect of VDR expression and a VDR polymorphism on the 

FOXO4-CDH1 association is strongly supportive of a direct association between 

VDR and FoxO4 that enhances FoxO4 binding to regulatory elements and the 

consequent transcription of CDH1.  

     In view of these significant two-way interactions implicating a functional 

relationship between VDR, FOXO4 and rs9929218 on CDH1 expression, a three-way 

interaction analysis was performed for these three variables. No significant three-way 

interaction was found (p=0.644) but the power of detection may be limited by the 

relatively small number of samples.  
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 Estimate p-value 

Age 0.003 0.11 

Gender -0.070 0.11 

Sampling site -0.024 0.63 

FOXO4 6.912 3.29E-03** 

VDR 7.800 2.60E-03** 

FOXO4*VDR -0.848 6.17E-03** 

 

Table 9.7 The multivariate linear regression modelling for expression of CDH1 in the normal 
mucosa demonstrating a significant two-way interaction between FOXO4 and VDR. 
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Figure 9.4 The association between expression of CDH1 and FOXO4 in the normal mucosa, 
analysed separately for each VDR expression tertile.  
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Table 9.8 Two-way interaction analyses between VDR polymorphisms and FOXO4 
expression in the linear regression modelling of CDH1 expression. Model adjusted for age, 

gender and site of sampling. 

 

 

 

 

 

 

VDR polymorphisms MAF Estimate p-value 

FOXO4*ApaI (rs7975232) 0.46 -0.218 0.11 

FOXO4*FokI (rs10735810) 0.40 0.393 7.60E-03** 

FOXO4*BSMI (rs1544410) 0.33 0.108 0.39 
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Figure 9.5 The association between expression of CDH1 and FOXO4 in the normal mucosa, 

analysed separately for each rs9929218 genotype.  
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9.3.4 Tissue-specific effects of VDR, FOXO4 and rs9929218 on CDH1 

expression 

     In a subset of matched PBMC (n=59), CDH1 is not detected on the HT12 

microarray and is only detectable at low levels by qRT-PCR. This is not surprisingly 

as it is well-established that E-cadherin is an adherens junction protein 

predominantly expressed in epithelial cells. However, recent studies have uncovered 

a role for this adhesion molecule in mononuclear phagocyte functions, where it 

regulates the maturation and migration of Langerhans cells, as well as the interaction 

between various immune cells and dendritic cells (as reviewed by Van den Bossche 

et al, 2013). Hence, it was thought to be of interest to investigate whether the genes 

and two-way interactions associated with CDH1 expression are also present in 

PBMCs.  

     Similar to that in the normal mucosa, rs9929218 is not significantly associated 

with the expression of CDH1 (p=0.67). The expression of CDH1 is also not 

associated with the FOXO family members (p>0.43) or VDR (p=0.066). The two-

way interactions between FOXO4 and rs9929218, VDR and FokI individually were 

not present in PBMC. This suggests that the postulated effect of VDR modulating the 

activity of FOXO4 on cis-regulatory elements of CDH1 is specific to the normal 

colorectal mucosa.    
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9.3.5 Analysis of the effect of serum 25OHD on normal mucosa CDH1 

expression  

     In view of the gene-environment interaction of plasma 25-OHD and rs9929218 on 

colorectal cancer risk, matched serum 25-OHD was retrospectively collected for a 

subset (n=83) of the normal mucosa used for the above analysis. Serum 25-OHD was 

not significantly associated with CDH1 expression, and neither was there a 

statistically significant interaction between serum 25-OHD and rs9929218, VDR, 

FokI or FOXO4 on the expression of CDH1 in the normal mucosa or PBMC. This is 

not surprising, as serum 25-OHD was collected at variable time points post-

operatively, and may not accurately represent the intracellular vitamin D status of the 

normal mucosa tissue collected during the surgical procedure. It has been reported 

that that circulating 25-OHD is affected in patients undergoing cardiopulmonary 

bypass (Krishnan et al, 2010) and elective knee arthroplasty (Reid et al, 2011). 

Krishnan et al reported that plasma 25-OHD returned to baseline pre-operative levels 

by post-operative day 5, whereas Reid et al observed that 25-OHD remained 

significantly lower at 3 months post-operatively. Hence, it is possible that any 

association between vitamin D and CDH1 expression may have eluded detection due 

to the changes in circulating 25-OHD that accompanies major surgery.    
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9.3.6 Serial sampling of circulating 25-OHD in patients undergoing 

large bowel surgery 

     To address the fluctuations of circulating 25-OHD that may result from large 

bowel surgery, serial samples of serum were prospectively collected from patients 

undergoing elective large bowel resections for colorectal cancer (n=40) that 

consisted of one pre-operative sample and five post-operative samples. There was a 

significant reduction in circulating 25-OHD levels at the first four post-operative 

time points (Figure 9.6). The reduction was observed to be largest at 1-2 days post-

op, with a diminishing effect as the number of days from surgery elapsed. At the 

final time-point (>162 days from surgery), the reduction was no longer significant, 

suggesting that circulating 25-OHD returned to baseline levels after approximately 

5.5 months.  

     Interestingly, for each individual person, the levels of 25-OHD at every post-

operative time point was very significantly associated with their pre-operative 

baseline levels (Figure 9.7). This indicates that although an operation impacted on 

patients’ absolute 25-OHD levels, it does not influence their relative or ranked 25-

OHD levels. 
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Figure 9.6 Boxplots demonstrating serial circulating 25-OHD levels in patients undergoing 
large bowel resections for colorectal cancer. Each post-operative time point was compared 
to the pre-operative time point individually using the Wilcoxon signed-rank test.  
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Figure 9.7 Scatterplots demonstrating the association between pre-op and post-op 25-OHD 
levels. Each post-op time point was analysed separately using a linear regression model 
adjusted for age, gender, AJCC stage and type of surgery (open or laparoscopic).  
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9.3.7 Vitamin D treatment of human cell lines and colonic organoids 

     The two-way interactions influencing CDH1 expression in the normal mucosa 

implicates the vitamin D signalling pathway in the regulation of CDH1, and suggests 

that the rs9929218 SNP modifies this regulation by altering the binding of VDR-

interacting transcription factor FOXO4. To experimentally investigate these 

observations, six colorectal cancer cell lines that are homozygotes for the rs9929218 

polymorphism (AA=3, GG=3) were selected for treatment with calcitriol (1α,25-

dihydroxyvitamin D), which is the active metabolite of vitamin D. It was 

hypothesised that firstly, CDH1 expression would be induced by calcitriol, and 

secondly, this response will vary according to the rs9929218 genotype.  

     Baseline VDR, CDH1 and CYP24A1 expression were first checked for each of 

these cell lines (Figure 9.8). Triplicate time courses were carried out for each cell 

line, and the CDH1 response was calculated by the fold change from controls treated 

with the ethanol carrier at each time point (Figure 9.9). CYP24A1, a well-known 

target gene of VDR, was measured as a positive control for calcitriol-dependent 

transcriptional response (Figure 9.9). Overall, the induction of CYP24A1 appears to 

peak at 16-24 hours, with the exception of COLO205 that had a relatively small fold 

change. Baseline levels appeared to influence the magnitude of the calcitriol-induced 

fold change i.e. cell lines with higher baseline levels of CYP24A1 demonstrated 

smaller fold changes. 

     Of the six cell lines, SW480 showed the most convincing response in CDH1- a 

six-fold change was observed after 16 hours of calcitriol treatment and this persisted 

up to 48 hours (Figure 9.10). The response after 24 and 48 hours was variable 

between the replicates and hence not statistically significant, but a minimum of a 

four-fold change was still present. This large differential response may be partly due 

to the fact that baseline CDH1 levels are very low in SW480 (Figure 9.8) and the any 

absolute increase in CDH1 levels will be reflected as a large fold change. Two other 

cell lines, LS174T and SW48 also showed a significant induction of CDH1 at 16 

hours of treatment, albeit of a lesser magnitude (>two-fold change). There was no 

obvious influence of the rs9929218 genotype on the CDH1 response. However, there 

were large differences in baseline levels of CDH1 and VDR, both of which could in 
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theory influence the effect of calcitriol stimulation on CDH1 expression fold change, 

hence displacing any effect of rs9929218. Nevertheless, the induction of CDH1 

expression in three out of six colorectal epithelial cell lines supports a link between 

vitamin D and the regulation of CDH1 expression in the normal mucosa. 

     As discussed in previous chapters, the use of cell lines for assessing SNP function 

is challenging and suboptimal at best due to the cellular genomic and karyotypic 

abnormalities that they have accumulated. To address this limitation, the culture of 

colonic organoids derived from primary human large bowel epithelium was 

instigated as a non-aberrant in-vitro model system (Figure 9.11). It has to be noted 

that the organotypic culture used in this thesis is at its preliminary stages, and the 

methods are still in need of optimisation for the organoids to proliferate in a robust 

and reproducible manner. Presently, these organoids do not survive for more than 10 

days, hence, they were treated at day 5 for a comparison of CDH1 expression in 

response to calcitriol treatment. Based on the time course studies in cell lines, the 

organoids were treated for 16 hours to elicit a maximal response. A baseline level of 

gene expression was also quantified at day 0 for comparison.  

     Unfortunately, there were recurring issues with fungal infections of the organoid 

culture, and only three of the five organoid cultures survived until calcitriol treatment 

at day 5. Hence, no meaningful statistical analyses were able to be performed. Two 

of these organoid cultures were of the rs9929218 (GG) genotype, whereas one was of 

the rs9929218 (AA) genotype (Figure 9.12). Firstly, it can be observed that the two 

positive control genes, CYP24A1 and CYP3A4, have very low baseline levels. In fact, 

CYP24A1 was undetectable in two out of the three samples, which concurs with the 

expression data of the normal mucosa. Treatment with calcitriol induced a response 

in all three organoid cultures, which is reassuring of calcitriol penetration through the 

Matrigel scaffold and a vitamin D-dependent transcriptional response. Baseline 

levels of CDH1 and VDR appears to be closely matched, which again is in 

concordance with the normal mucosa expression where these two genes are very 

significantly correlated. Calcitriol treatment appears to induce a 1.5 fold increase in 

VDR expression in one of the organoid cultures, but this was not observable in the 

other two. Rather interestingly, calcitriol treatment appears to induce a small increase 
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in CDH1 in the organoids with the rs9929218-AA genotype (n=1), which was not 

seen in organoids with the rs9929218-GG genotype (n=2). However, this sample had 

higher baseline CDH1 levels at day 0, which had reduced by almost half at the point 

of calcitriol treatment at day 5  

     These preliminary results suggest that normal mucosa derived-organoids could 

serve as an effective model system to demonstrate common allele-specific effects 

that are only apparent under cellular perturbations such as a ligand-dependent 

regulation, but will require replication before a suggestion of an allele-specific 

differential effect can be convincingly made. 
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Figure 9.8 Baseline expression of VDR, CDH1 and CYP24A1 in cell lines selected for 

calcitriol treatment. Triplicate measurements were taken. Error bars=SEM.  
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Figure 9.9 CYP24A1 induction by calcitriol treatment for a series of time points in six 
colorectal cancer cell lines. A) Relative expression of CYP24A1 in LS174T is presented 
individually for the ethanol control and calcitriol treatment as fold changes cannot be 
calculated from an undetectable baseline. B) Log fold change of CYP24A1 expression 
between calcitriol treatment and ethanol control in the other five tested cell lines. Error bars 
are not presented when fold changes are calculable for only one replicate due to 
undetectable baseline levels.  

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ET
O

H

ca
lc

it
ri

o
l

ET
O

H

ca
lc

it
ri

o
l

ET
O

H

ca
lc

it
ri

o
l

ET
O

H

ca
lc

it
ri

o
l

ET
O

H

ca
lc

it
ri

o
l

4 hours 8 hours 16 hours 24 hours 48 hours

C
Y

P
2

4
A

1
 r

e
la

ti
ve

 e
xp

re
ss

io
n

 

LS174T

0

1

2

3

4

5

6

4 hours 8 hours 16 hours 24 hours 48 hours

Lo
gF

C
 C

Y
P

2
4

A
1

 e
xp

re
ss

io
n

 

CACO2

SW48

COLO205

SW480

VACO425



268 
 

 

Figure 9.10  CDH1 expression fold change with calcitriol treatment for a series of time points 
in six colorectal cancer cell lines, performed in triplicates. Error bars=SEM. Student unpaired 
t-tests were performed on the fold change compared to the ethanol-treated controls, * 
indicates p<0.05.  
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Figure 9.11 Human normal colon organoids. A) Colon crypts disaggregated from 

surrounding stroma. B) Crypts disrupted and seeded. C) Crypt like structures budding at day 

5. D) Organoids at day 7 with multiple crypt buds. Scale bar: A, C and D - 50 μm; B - 250 

μm. 
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Figure 9.12 Relative expression of CYP24A1, CYP3A4, VDR and CDH1 in human colonic 
organoids derived from the normal mucosa of three patients. Each MD number represents 
crypts derived from an individual patient, with their rs9929218 genotype indicated. A baseline 
measurement was taken at day 0 after the colonic crypts were dissociated from the stroma. 
Organoids were treated at day 5 in culture with 1% ETOH (negative control) or 100nM 
calcitriol for 16 hours. Relative expression was measured by qRT-PCR, using ACTB as a 

reference gene.   
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9.4 Discussion 

     The chemopreventative role of vitamin D in colorectal cancer has been the focus 

of many recent studies. Various approaches have been used to estimate vitamin D 

status, including direct measures of circulating 25-OHD, surrogates or determinants 

of vitamin D such as dietary intake and sun exposure estimates (as reviewed by 

Giovannucci, 2010). Although confounding factors cannot be entirely excluded, the 

consistency of these associations with CRC are highly suggestive of a causal 

association. There have been two randomised controlled trials investigating the effect 

of vitamin D supplementation on colorectal cancer risk, both of which failed to 

demonstrate an effect on CRC incidence (Trivedi et al, 2003; Ding et al, 2008). 

However, these studies are limited by the small number of participants, low doses of 

vitamin D and inadequate trial duration to demonstrate an effect. Hence, the gene-

environment interaction between 25-OHD and a known CRC susceptibility variant at 

the CDH1 gene (rs9929218) (Zgaga et al, unpublished) is of significant interest, as 

not only does it lend weight to the suggestion of causality, it may also explain a 

proportion of the missing heritability of colorectal cancer. It is critical to identify the 

molecular mechanism underlying this relationship, as it will provide validation to the 

epidemiological findings and consequently inform the rational development of 

targeted preventative and therapeutic strategies. Given that the role of CDH1 (E-

cadherin) in cancer is well-established, it was hypothesised that this gene-

environment interaction manifests its effects on the regulation of its transcription, 

particularly as its expression has previously been shown to correlate with VDR 

expression in colorectal tumours (Pena et al, 2005).  

     The correlation of CDH1 expression in the normal colonic mucosa with VDR and 

CYP3A4, an intestinal VDR target gene, is suggestive of CDH1 regulation by vitamin 

D activity in the large bowel epithelium. The strong correlation of CDH1 expression 

with the FOXO transcription factors also implicates a role for them in the regulation 

of CDH1. The regulatory relationship suggested by these correlations have been 

previously demonstrated in-vitro using various cell line models – calcitriol-

dependent VDR regulation of CDH1 in the colorectal cancer cell line SW480 (Palmer 

et al, 2003), and FOXO-mediated regulation of CDH1 in urothelial cells (Shiota et 



272 
 

al, 2010) and kidney epithelial cells (Carew et a, 2011). A recent study demonstrated 

that ligand-bound VDR induce the dephosphorylation and activation of FoxO 

proteins to regulate common VDR/FoxO target genes in a squamous cell carcinoma 

cell line (An et al, 2010). Hence, the finding of multiple two-way interactions 

between FOXO4 levels-rs9929218, FOXO4 levels-VDR levels and FOXO4 levels-

FokI is exciting, as it alludes to a biologically plausible in-vivo co-regulatory 

relationship between VDR and FOXO4 on the expression of CDH1 that is modified 

by an established risk SNP, and provides support to the hypothesis driven by the 

epidemiological and bioinformatics analysis. However, the number of samples in this 

study is very small and must be validated independently in larger studies.    

     Circulating 25-OHD is the most frequently used biomarker of vitamin D status in 

clinical settings and epidemiological studies, as it accounts for both endogenous 

synthesis in the skin and vitamin D intake, and has been shown to vary widely in 

human populations (as reviewed by Jacobs et al, 2011). Although there is a lack of 

association between CDH1 expression and circulating 25-OHD (singularly or as a 

factor in two-way interaction analysis), it should be recognised that there are 

limitations inherent to the use of 25-OHD in associative studies, which is especially 

pertinent to the study presented in this chapter. Firstly, circulating 25-OHD may not 

effectively capture intracellular vitamin D status due to the dynamics and variability 

in local tissue-level conversion of 25-OHD to the active metabolite 1,25(OH)2D, and 

secondly, the sampling of serum 25-OHD was carried out post-operatively at varying 

time points from the treatment for cancer. As shown in the serial samples of 25-OHD 

of patients undergoing large bowel surgery, the procedure impacts on circulating 25-

OHD levels with effects lasting well beyond the hospital stay (approximately a 

week). This could be due to a combination of various factors such as re-distribution 

of vitamin D metabolites induced by a general anaesthetic, IV fluids, inflammatory 

responses, and the lack of sun exposure during the rehabilitation period. For the 

normal mucosa gene expression study, patients undergoing adjuvant chemotherapy 

were not excluded and it is also possible that this may also have an influence on 25-

OHD levels. Hence, it is very likely that 25-OHD levels used in the gene expression 

correlation study do not accurately reflect the vitamin D status of the tissue harvested 

from the surgically resected large bowel specimens. Interestingly, the results from 
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the serial samples of 25-OHD indicate that the impact of surgery on absolute 25-

OHD levels did not affect the relative levels of 25-OHD at all the time points 

examined, suggesting that sampling at a consistent time from the operation could be 

an acceptable substitute for pre-operative sampling. In other words, the time from the 

operation to sampling could be included as a variable in the regression model to 

account for the effects of surgery, which is potentially important in association 

studies of cancers where surgery is the mainstay of treatment and patients are 

recruited at varying time periods after surgical treatment. Future work should include 

further assessment of the serum 25-OHD serial sampling data using repeated 

measures analysis, as this would remove between-subjects variability and could 

improve the power of the test in detecting significant differences between means.   

     The calcitriol treatment of CRC cell lines and human colorectal organoids provide 

preliminary evidence that CDH1 is up-regulated by vitamin D activity. Going 

forward, more detailed functional studies are now required to robustly elucidate the 

mechanism of this regulation, as well as any allele-specific effect of rs9929218. 

Using cell lines that have shown a CDH1 transcriptional response to calcitriol 

treatment, immunoprecipitation and western blotting will be able to demonstrate any 

post-translational modifications of the FoxO proteins that are mediated by VDR, 

ChIP will reveal DNA-protein binding at the rs9929218 locus, and gene depletion of 

VDR and FOXO will establish the role of these transcription factors on CDH1 

transcription. EMSAs and luciferase reporter plasmids are also useful in-vitro assays 

that can show an allele-specific effect of rs9929218. Replication with the human 

organoid culture will consolidate the functional relevance in the non-transformed 

tissue state, but this may not always be technically feasible due to the limited amount 

of tissue available for the set-up of culture and the large amounts of cellular extract 

required for some of these assays. Hence, it is of interest to optimise the viability of 

the colonic crypts and the growth conditions for allow adequate expansion of the 

culture for parallel functional experiments. 

     In summary, the data presented in this chapter has demonstrated an approach 

using gene expression data derived from colorectal primary tissue, cell lines and 

human organoids to gain insight into the molecular mechanisms underlying a gene-
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environment interaction involving a common CRC susceptibility variant and vitamin 

D status. Although the evidence is largely observational and preliminary, it suggests 

that there is scope for further discovery and sets the groundwork on which further 

functional studies can be built. There is enormous potential and value in pursuing the 

molecular mechanism underlying this gene-environment interaction as the level of 

vitamin D is modifiable with supplementation, which has a relatively safe side-effect 

profile. Informed, appropriate selection of those that would benefit most from an 

improvement in vitamin D levels can potentially lead to a large impact on the 

prevention of colorectal cancer.  
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Chapter 10 

Summary and Discussion 

10.1 Summary 

     In the last decade, the use of GWAS on large, well-characterised case-control 

cohorts of colorectal cancer has facilitated the identification of greater than 25 

common genetic variants that carry with them an increased predisposition to 

colorectal cancer. As the majority lie within non-coding regions, the underlying 

causal mechanism is to-date poorly understood for the majority of these loci. The 

work presented in this thesis has demonstrated that a number of these genetic 

variants also influence gene expression levels, strongly suggesting that they confer 

risk, at least in part, by modifying regulatory mechanisms.  

     The hypothesis that CRC-associated genetic variants influence gene expression 

was tested by two approaches - an agnostic approach that utilised eQTL analysis, and 

a hypothesis-driven approach that specifically examined the expression of target 

genes and regulatory pathways of an established risk locus. It was thought that these 

heritable influences on gene expression are likely to be subtle, hence there was a 

strong emphasis on the methodology and production of robust data to minimise 

experimentally-induced non-biological variations and consequent erroneous 

conclusions. Chapter 3 described the development of a reproducible protocol that 

ensures the extraction of high-quality RNA from primary colorectal mucosal tissue 

for reliable gene expression profiling, whereas Chapter 4 focused the selection and 

validation of context-specific reference genes for qRT-PCR. The detection of 

differential expression profiles in relation to clinicopathological features (Chapter 5) 

allowed internal validation of the sample and data processing, and also highlighted 

the importance of accounting for these potential confounders in the subsequent 

expression analysis.  

     The systematic analysis of the association between 25 established risk loci and 

expression of cis-genes (Chapter 6) provides evidence to support the hypothesis that 

these risk loci exert their effects on CRC risk by having tissue-specific eQTL effects 
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on gene expression. Expression fine-mapping of these eQTL associations identifies 

putative functional variants, some of which are also better at predicting CRC risk, 

thus making them likely to be the causative variants. Chapter 7 follows up the 

Xp22.2 eQTL/risk locus with functional assays, validating the experimental rationale 

of cis-eQTL analysis and expression fine-mapping. By association, the target gene of 

this locus, SHROOM2, is a candidate in the predisposition to CRC. Little is known of 

SHROOM2 in the context of CRC, and Chapter 8 outlines an investigative approach 

with preliminary functional data suggesting that SHROOM2 has a possible role in 

cell cycle regulation and is likely to be expressed at the top of colonic epithelial 

crypts. 

     Although the eQTL analysis has produced risk loci-expression associations, the 

functional effects of many of the loci remain unexplained. Chapter 9 takes an 

alternative hypothesis-driven approach to understand the mechanism underlying the 

16q22.1 locus, which has recently been shown in a gene-environment interaction 

analysis to modify the protective association of vitamin D levels on CRC risk. 

Variant-expression and expression-expression interaction analyses support a role for 

the vitamin D signalling pathway in the modulation of the heritable variation in 

CDH1 expression, demonstrating a candidate-based approach in deciphering the link 

between genetic locus and CRC susceptibility.   

10.2 A hypothesis-free discovery of candidate causal 

variants and genes: utility of tissue-specific eQTL 

analysis 

     It has been established that common genetic variants contribute to the risk of 

colorectal cancer, and the post-GWAS challenge is to elucidate how these risk 

variants specifically influence the development of colorectal cancer. By examining 

the expression of cis-genes neighbouring these CRC risk variants in normal 

colorectal mucosa and matching peripheral blood, I have demonstrated at least five 

local eQTL associations for these risk variants in each of the tissue types (Chapter 6), 

agreeing with the published observation that trait-associated SNPs are more likely to 

be eQTLs (Nicolae et al, 2010). The majority of these associations were tissue-
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specific; even when the risk variants were eQTLs in both tissue types, their target 

genes did not overlap, consistent with reports in the literature that disease-associated 

variants tend to exert more cell-type specificity (Fu et al, 2012; Brown et al, 2013). 

The presence of CRC-associated eQTL in colonic and extra-colonic tissue, as well as 

the tissue-specificity they exhibit, is interesting. Assuming that the cell-type that 

harbours the intermediate phenotype of transcript abundance contributes to the 

transformation of the cell of cancer origin, the extra-colonic eQTLs suggest that 

alterations in extra-colonic cells may indirectly modify CRC susceptibility in a non-

cell autonomous fashion. This tissue-specificity also emphasizes the importance of 

selecting the relevant target tissue for the examination of eQTLs, particularly as 

previous examination of publically available LCL eQTL databases did not reveal 

convincing eQTL effects, with the exception of the 6p21.2 (Dunlop et al, 2012) and 

18q21.1 (Broderick et al, 2007), where there was some evidence of association to the 

expression of neighbouring genes. In view of the heterogeneity of cell-types and 

transcriptional signatures within the intestinal epithelial crypts, risk eQTLs could in 

fact be specific to a particular crypt compartment or a particular epithelial cell-type, 

and it would be of interest to test this hypothesis with single-cell gene expression 

analysis.     

     The two best associations were seen in the colorectal mucosa, at 11q23.1 and 

Xp22.2, with adjusted association p-values in the order of 10e-09, which fits in with 

the expectation that eQTL associations observed in the originating tissue giving rise 

to the tumour are likely to be more informative (Freedman et al, 2011). The target 

genes COLCA1, COLCA2 and SHROOM2 lie adjacent to the risk loci, and have not 

been previously known to be associated with cancer, possibly representing novel 

pathways/molecular networks that are involved in cancer initiation and progression. 

eQTL analysis of susceptibility loci in other tissue types such as the liver and 

prostate have been shown to be of value in identifying target genes that influence 

disease susceptibility (Musunuru et al, 2010; Pomerantz et al, 2010). The other three 

risk/eQTL loci identified in the colorectal mucosa were 12q13.12 (SPATS2), 8q23.3 

(UTP23) and 1q41 (HLX), but their effects were much weaker and validation studies 

will be required.  
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     In the PBMC, the eQTL effects of risk variants were also weak, but it should be 

noted that not only were the sample size considerably smaller, peripheral blood was 

obtained at inconsistent time points after the operation, increasing the variation 

‘noise’ and reducing the power to detect eQTLs. Despite this, there were significant 

cis-associations even after multiple-testing correction, targeting genes that have been 

previously implicated in cancer biology such as CERS5 (Ceramide synthase 5) and 

LIMA1 (LIM domain and actin-binding protein 1). Although eQTLs in PBMCs 

may not be as directly relevant to those detected in colorectal mucosa, they could be 

of interest as they may reflect indirect effects in immune cells that induce changes in 

the colorectal epithelium by modulating the stromal microenvironment, particularly 

as inflammatory processes are known to contribute to the development of CRC. 

Nevertheless, further study is required as it is unclear whether peripheral blood 

mononuclear cells are appropriate surrogates for mucosal immune cells. The 

association of the risk locus 20p12.3 with RP11-19D2.2, an uncharacterised long 

intervening non-coding RNA transcript is interesting in principle. Together with the 

evidence suggesting that COLCA1 and COLCA2 are also long non-coding RNAs 

(Smillie, pers. comm.), this lends support to the notion that low-abundance 

unannotated lncRNAs are transcribed from cancer risk loci and mediate risk by 

facilitating a wide repertoire of regulatory functions. Deep sequencing of transcripts 

derived from targeted regions with techniques such as RNA- CaptureSeq (Mercer et 

al, 2011) will allow targeted interrogation of different populations of RNA in relation 

to risk loci genotypes. More generally, RNA-Seq techniques have increased coverage 

over microarrays, providing the ability to look at alternative gene spliced transcripts, 

post-transcriptional modifications, gene fusion and allele specific expression. This 

would allow better definition of the transcriptome and ultimately be of greater value 

in detecting changes associated with risk alleles. 

     After the initial identification of eQTL associations, expression fine-mapping of 

these individual risk loci was performed using data from high-density genotyping 

arrays. For each eQTL loci, candidate functional variants for expression were 

compared for their effects on CRC risk, with the rationale that variants that better 

explain both target gene expression and CRC risk are more likely to be causal. Using 

this approach, candidate variants for the 11q23.1 (COLCA1 and COLCA2), Xp22.2 
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(SHROOM2) and 12q13.12 (CERS5) loci were identified. Functional assays are 

required to hone in on the causal variant – this was demonstrated for the Xp22.2 

locus in Chapter 7, where gene reporter assays showed marked differential 

transcriptional activity with Indel24 which was not seen with the tagging SNP, nor 

matched by the alternative candidate SNP rs5934685.   

     During the progress of this research, two reports of CRC risk variants exhibiting 

eQTL effects on cis-genes in colorectal tissue were published independently (Loo et 

al, 2012; Closa et al, 2014), however, not all the results were in agreement with my 

findings. Loo et al identified four genes (ATP5C1, DLGAP5, NOL3 and DDX28) at 

three risk loci with differential expression levels as a function of genotype, none of 

which were nominally significant in my samples. Closa et al’s findings matched 

more closely to those of mine, implicating the 11q23.1, Xp22.2 and 12q13.12 loci as 

local eQTLs that similarly affected COLCA1, COLCA2 and SHROOM2 expression, 

as well as additional target genes GPR143 and DIP2B. Although the independent 

replication of part of my findings is reassuring validation, the discrepancies in the 

others suggest that the eQTL analysis are subjected to errors induced by non-

biological factors such as sample sizes and study power, genotyping and imputation 

methods, microarray platforms utilised and the sampling procedure (surgery or 

colonoscopy biopsies). Both studies also examined tumour tissue as well as normal 

tissue, which could have harboured large regulatory aberrations masking the subtle 

eQTL effects associated with germline variation. Closa et al also examined trans-

eQTL effects of CRC risk loci on genome-wide gene expression, and found that two 

of the loci with cis-eQTL activity (11q23.1 and 12q13.12) also exhibited trans- 

associations with the expression of multiple genes, albeit weaker than the cis- 

associations.  Although this is suggestive that the trans- associations are related to 

common transcriptional networks, this does not exclude the possibility that trans-

eQTL activity could account for the yet unexplained function of other risk loci, as 

trans- associations tend to be indirect and hence weaker. Hence, it would still be of 

interest to examine for trans- associations in the normal colorectal mucosa, but a 

larger sample size may be required to increase the power of detection.  
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10.3 Identification of a novel causal variant and candidate 

cancer susceptibility gene at the Xp22.2 locus 

     To verify the eQTL associations identified at CRC risk loci, it is important that 

the causal variant is defined and the underlying regulatory mechanism delineated. 

The identification of the molecular mechanisms underlying the Xp22.2 eQTL locus 

is validation of the experimental rationale of examining expression as an 

intermediate phenotype. By using a combinatory approach of targeted resequencing 

and fine-mapping of the Xp22.2 risk locus with SHROOM2 expression, two 

candidate functional variants (rs5934685 and the novel Indel24) were identified to be 

more strongly associated with both expression and risk than the tagging SNP 

rs5934683 (Chapter 7). Although conditional modelling of SHROOM2 expression 

cannot exclude the possibility of independent association signals, conditional 

analysis of a case-control study supports Indel24 as the driver signal. Indeed, in vitro 

luciferase gene reporter assays indicates that the novel Indel24 is the most likely 

functional variant modulating regulatory control of transcription. In silico data from 

ENCODE ChIP-seq studies indicates that Indel24 resides within the binding sites of 

NF-YA and NF-YB, two transcription factors that bind cooperatively as two subunits 

of the trimeric NF-Y transcription factor complex. siRNA depletion of NF-YA and 

NF-YB singularly was associated with a reduction in transcription as observed by 

gene reporter activity, as well as endogenous SHROOM2 levels in CRC and RPE cell 

lines, indicating that Indel24 may be modulating transcription of SHROOM2 by 

altering the DNA-binding affinity of NF-Y. Indeed, on the minus strand, the NF-Y 

consensus binding motif CCAAT is present within the insertion allele of Indel24 

with three other CCAAT motifs flanking Indel24. The introduction of mutations to 

the CCAAT motifs in a series of reporter constructs s provided further evidence that 

NF-Y is involved in the Indel24 modulation of differential transcriptional control, 

and that Indel24 modifies NF-Y binding affinities by altering the spacing between its 

functional binding motifs and not by donating an extra binding site. Aside from 

demonstrating the function of the causative eQTL variant at the Xp22.2 risk locus, 

this work also exemplifies how structural variation at non-coding regions can 

influence the activity of control elements.  
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     The target gene of Xp22.2 eQTL, SHROOM2, is an interesting candidate for 

colorectal tumourigenesis, as it has previously been shown to have a role in cell 

morphogenesis during endothelial and epithelial tissue development (Lee et al, 2009; 

Farber et al, 2011), cytoskeletal organisation (Dietz et al, 2006), tight-junction 

stabilisation (Etournay et al, 2007) and cell contractility and migration (Farber et al, 

2011), all of which are aspects often implicated in cancer biology. SHROOM2 co-

expression analysis in the normal colorectal mucosa is suggestive of a role in cell 

cycle regulation, which is also corroborated by the transcriptomic analysis of cell 

lines with siRNA depletion of SHROOM2 (Chapter 8). Furthermore, the transcription 

factor implicated in SHROOM2’s transcriptional control, NF-Y, is known to activate 

the transcription of various cell cycle genes (Muller and Engeland, 2010), indirectly 

adding support to the postulation that SHROOM2 exerts its tumour suppressive 

effects by influencing cell cycle progression. It would therefore be of considerable 

interest for future work to include experiments that would directly implicate 

SHROOM2 in the regulation of cell cycle. The availability of compelling new tools 

recently reengineered within the unit, such as the bicistronic Fucci2a system and the 

R26Fucci2aR mouse model (Mort et al, 2014), provides an attractive collaborative 

opportunity with local expertise for the investigation of SHROOM2’s role in cell 

cycle dynamics, both in cell culture and during mouse embryonic development. In 

the planning and design of such functional assays, consideration should be given to 

the fact that aberrant gene activity of the inactive X-chromosome are often seen in 

neoplastic processes leading to perturbed dosage of X-linked factors. This is 

particularly relevant as some of these genes are known to be involved in cancer 

promotion and could confound functional phenotypes thought to be related to 

SHROOM2.      

     In the same vein as the considerations about the cell-type specificity of eQTLs, 

the localisation of SHROOM2 expression within the colorectal epithelial crypt is of 

interest as it sheds light on protein function and its role in the development of cancer. 

As a specific antibody to SHROOM2 was lacking, indirect evidence from SHROOM2 

co-expression analysis with cell-specific marker genes in the normal colorectal 

mucosa pointed towards expression in the crypt-top mature enterocytes, suggesting 

that SHROOM2 may contribute to their tumour-initiating capacity via a ‘top-down’ 
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mechanism where dysregulated cells outside the crypt-base stem cell niche 

dedifferentiate and act as tumour progenitors (Schwitalla et al, 2013; Davis et al, 

2014). RNA-FISH could be used to demonstrate the spatial distribution and tissue 

localisation of SHROOM2 transcripts, but may not be of similar utility for subcellular 

localisation. Future work should continue to focus on the generation of suitable 

antibodies, as it will be crucial in the investigation of SHROOM2 function. In 

conjunction with this, further stable loss-of-function studies in cell lines or animal 

models (e.g. mice) will be beneficial, allowing more definitive phenotype 

characterisation before ultimately progressing to dissect the more subtle phenotypes 

associated with gene dosage and eQTL effects. 

10.4 A hypothesis-driven approach: the genetic and non-

genetic modulation of target gene (CDH1) expression 

may underlie gene-environment interactions in the 

predisposition to CRC 

     Although the eQTL analysis of colorectal mucosa and PBL has provided evidence 

of regulatory function for approximately half of the CRC risk loci (Chapter 6), there 

is still a significant proportion of risk variants whose functions and target genes are 

unexplained. The reasons for this could be many; in view of the gene-environment 

interaction (Zgaga et al, unpublished) between circulating vitamin D levels and the 

16q22.1 risk locus, Chapter 9 outlines a hypothesis-driven approach which 

demonstrates that the tagging SNP rs9929218  modifies the influence of the VDR-

interacting factor FOXO4 on the target gene CDH1. By using expression levels 

derived from gene expression microarrays of the normal colorectal mucosa, multiple 

two-way statistical interactions were observed between rs9929218-FOXO4 

expression, FOXO4 expression-VDR expression, and FOXO4 expression-VDR 

polymorphism (FokI), which is in agreement with the in silico prediction that 

rs9929218 alleles possess differential FOXO-binding affinity.  It implicates a 

biologically plausible in-vivo co-regulatory relationship between VDR and FOXO4 

that is modified by an established risk SNP within intron 2 of CDH1, providing 

functional support to an epidemiological gene-environment interaction. 
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     The vitamin D active metabolite (calcitriol) treatment of CRC cell lines and 

human colonic organoids provided preliminary evidence that CDH1 expression is 

can be induced by vitamin D activity (Chapter 9). Going forward, more detailed 

functional studies are required to directly demonstrate the biological interactions 

postulated from the observations derived from static gene expression profiles. 

Having now identified cell lines with a CDH1 transcriptional response to calcitriol 

treatment, ligand-dependent immunoprecipitation, co-localisation, western blotting 

can be performed at optimal time-points to reveal post-translational modifications of 

FOXO4 that are mediated by VDR, as well as ligand-dependent ChIP to study DNA-

protein binding at the rs9929218 locus. Additionally, gene depletion of VDR and 

FOXO4 will establish the role of these transcription factors on CDH1 expression, and 

gene reporter assays will be useful to show a ligand-dependent allele-specific 

differential effect of rs9929218 that mirrors the epidemiological gene-environment 

interaction.  

     To further substantiate the link between vitamin D activity, rs9929218 and CDH1 

expression, serum 25-OHD was retrospectively collected from a subset of patients 

who had donated colorectal tissue for gene expression profiling. There was no 

association with CDH1 expression, nor were there any statistical interaction between 

circulating 25-OHD and rs9929218 or markers of vitamin D activity. Given that 

serum 25-OHD was collected at variable time points post-operatively, it may not 

have accurately represented the intracellular vitamin D status of the normal mucosa 

tissue collected during surgery. Indeed, a peri-operative time series of circulating 25-

OHD examined in a prospective cohort of patients undergoing large bowel resection 

for CRC demonstrated a post-operative reduction of 25-OHD which did not return to 

pre-operative levels for at least ~5.5 months (Chapter 9). Interestingly, the time 

series also showed that although absolute levels of 25-OHD decreased with the 

surgery, relative levels were maintained at all time-points, suggesting that the 

inclusion of the time interval, from treatment to sampling, as a co-variate may 

improve statistical modelling. This finding is of importance in the wider scheme of 

scientific study into the effects of circulating 25-OHD and CRC outcomes, as one of 

the limitations of such observational studies is that the time period between surgery 
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for the treatment of cancer and 25-OHD sampling was not constant (Zgaga et al, 

2014).  

10.5 Gender- and site-specific differential gene expression in 

the normal colorectal mucosa 

     Gene expression profiling of the normal mucosa samples used in this research 

revealed differences in gene expression that are influenced by gender and the 

anatomical site of the large bowel (Chapter 5). The gender-specific and site-specific 

differential expression detected in the colorectal mucosa is largely consistent with 

known biological processes and published literature, providing internal validation of 

the integrity of the samples, the microarray platform used and the processing of the 

data.  It also demonstrates the importance of including gender and anatomical site as 

co-variates in the eQTL analysis to optimise the detection of subtle effects that are 

associated with inherited variation of gene expression.  

     There are known epidemiological, clinical and molecular differences between 

proximal and distal colon tumours, suggesting that the risk factors and 

transformation pathways of sporadic colorectal cancer may differ according to the 

anatomical location within the colon. The analysis in Chapter 5 confirms the findings 

of previous studies that there are widespread expression differences between the 

normal mucosa of the proximal and distal colorectum. Hence, it would be of interest 

to design future studies to analyse the proximal and distal large bowel separately (as 

different target tissue), in relation to heritable variation in expression (eQTL), as well 

as the heritable risk of CRC (GWAS). Although this will compromise the sample 

size, the power of the study may not necessarily suffer if there are site-specific 

effects that are opposing in directionality. A pilot analysis utilising the microarray 

data available from the samples used in this research here may inform the utility and 

appropriate design of such studies. 
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10.6 Concluding remarks 

In conclusion, the work presented in this thesis has demonstrated a functional 

approach to discover and validate the molecular mechanisms underlying the common 

predisposition to colorectal cancer, and offers promise for new levels of 

understanding on how CRC risk variants mediates risk. The revelation that some of 

these common genetic variants impart risk by influencing the intermediate phenotype 

of transcript abundance in a tissue-specific manner adds further complexity to the 

study of CRC susceptibility genes and pathways. Further identification of the 

intermediate phenotypes for all of the risk loci will be critical in order to fully 

appreciate the contribution that common genetic variation makes to the development 

of cancer. Some of this may be achieved by examining eQTLs in specific segments 

of the large bowel, specific compartments/cell-types within the colonic epithelial 

crypt, or other tissue types altogether. Alternative intermediate phenotypes such as 

trans-eQTLs, long non-coding RNA, alternative transcripts and influences on the 

epigenome are also potential areas for future investigation. The knowledge that some 

of these effects may only be unveiled when analysed in relation to environmental 

factors highlights the need for more research into gene-environment interactions, 

particularly on a molecular level. Detailed understanding of the molecular 

consequences of inherited predisposition to this common complex disease can only 

have a positive impact on understanding how CRC develop and ultimately be of 

clinical and public health benefit. 
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