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SUMNARY 

The Walsh Functiorare binary orthogonal functions whose 

values are restricted to (+ 1,-1) and a generalised frequency can 

be associated with each function. 	These functions are ideal for 

digital rocessing techniques. An experimental Walsh Function 

digital spectrum analyser was constructed whose bandwidth covers 

the range 1 - 2048 zero crossings per second. 	This processor 

was connected to a P.D.P.-8 computer which acts as a back up store 

and also provided further processing capability. 	The results 

obtained from the experimental system confirmed the predictions 

derived from a theoretical survey of the use of Walsh functions 

applied to signal analysis. 	Due to the nature of the Walsh Functions 

the spectra of periodic functions in the Walsh Transform domain will 

be phase dependant. 	In the case of sinusoidal waveforms it is 

shown that this phase dependance can be minimised if successive 

Walsh power spectra are averaged. 	Based on the results obtained 

from the experimental analyser a simple Walsh power spectrum processor 

is proposed for the detection of low frequency signals. 
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CHAPTER I 

INTRODUCTION TO SPECTRUM ANALYSIS 

1.1 Introduction 

Spectrum Analysis is a fundamental signal processing operation 

-' of great utility in many branches of science. 	This operation may be 

- 	performed numerically by special or general-purpose digital computers 

as well as continuously by analog computers or R.L.C. networks. 

Of special interest in many cases is the frequency domain description 

of signals and linear systems. Such descriptions are valid for 

both continuous and discrete processing. 	In areas such as speech 

communications, seismology, sonar, radar and medical technology, 

workers often make use of this signal processing technique. 	In spite 

of the usefulness of this technique its use was concentrated in the 

higher frequency range due to the limitations imposed by the instruments 

used. 

1.2 Analog Spectrum Analysis 

The simplest analog method of resolving a signal into its 

spectral components is to use a narrow band-pass filter and a signal 

averager to measure the portion of the signal passed by the filter. 

By this means an estimate of the magnitude of the sinosoidal 

component at the filter centre frequency is obtained. 	If the filter 

is tunable, spectrum analysis can be carried out over a range of 

frequencies. Thisis the principle of the wave analyser. 

A basic limitation of the above analog technique which applies 

to all analogue spectrum analysers is the band-width of the filter. 
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A period of time, equal to approximately the reciprocal of the filter 

pass band must be spent at each frequency to obtain an accurate 

estimate of the spectral content at that frequency. This limitation 

is not serious at high frequencies in the mega cycle range but at 

lower frequencies a single frequency measurement may take an 

Thunacceptably long time. 	If the signal to be analysed is random 

each reading must be averaged over a longer period of time to get a 

statistically smooth result. Measurements made in this way may 

correctly measure the spectrum at a certain frequency while missing 

a short term event at another. The measurement time-band width 

problem can be alleviated by using a bank of parallel filters. Such 

a method is effective when constant percentage bandwidth filters are 

used. 	In the case when higher resolution' is 'needed necessitating 

the use of constant bandwidth filters the above method of using a 

parallel bank of filters proves impractical. 

An alternative approach to using a parallel bank of filters 

with narrow constant bandwidths is a hybrid technique using a mixture 

of digital and analog circuitry. 	In this method the signal is 

lowpass filtered to prevent aliasing, then the output of the filter 

is sampled and digitised by an analog to digital converter at a rate 

f. which is at least twice the cut-off frequency of the low-pass 

filter. The digitised samples are loaded into a memory and after 

N samples have been taken over a period T = N/f the data is read 

out of memory non-distructively at a much higher rate and applied 

to a digital to analog converter. The output of the D/A converter 

is hetrodyned with an accurate voltage controlled oscillator and 

applied to a fixed narrow band-pass filter which feeds a signal 

averager. The output of the signal averager at the end of the N 
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sample scan constitutes one spectral estimate. 	If the frequency 

of the controlled oscillator is stepped at the end of each complete 

scan then a number of spectral points can be. formed. 	The time to 

compute all the spectral points might be greater than the period 

between samples which leads to an effective dead band between T- 

-.second records and t1 loss of signal information. 	The problem of 

differing response times in the case of the percentage bandwidth 

analyser is eliminated since only one fixed bandwidth filter is 

used and the spectral estimation is performed at higher frequencies. 

1-3 Digital Spectrum Analysis 

The introduction Of the Fast Fourier Transform Algorithm 

has made possible the computation of an N-length Discrete Fourier 

Transform proportional to N 1092  (when N is a power of 2) 
mathematical operations instead of N 2  operations. 	With the 

development of faster computers and hardware this has lead to real 

time digital spectrum analysers covering the low frequency end of 

the spectrum. Like the hybrid analyser described previously the 

all-digital analyser samples the input signal at a rate f 5  for T 

seconds and stores N = Tf 5  samples in its memory. 	The highest 

frequency that can be resolved without ambiguity is - f 5 , this is 

the Nyquist folding frequency. The frequendy resolution is 

determined by the record length T where f =. 	This resolution 

is a result of the fact that for a record length of T seconds no 

discrete Fourier transform can be defined with a resolution smaller 

than . The digital analyser transforms the N samples in memory 

to a set of J- Fourier coefficients spaced cycles per seconds apart 
which may be processed to obtain the magnitude and phase of the 

spectrum or the power spectrum. 	In the case of random signals the 
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results of several sample records can be summed to form a smoothed 

spectral estimate, this is an advantage of digital computation of 

the spectrum which eliminates the use of analog integrators with 

their attendant limited dynamic range and linearity. 

1 .4 Digital Spectrum Analysis Based on Walsh Functions 

With the increasing use of digital techniques in signal 

processing an interest has developed.in  representing signals by 

means of orthogonal functions other than the traditional sine—

cosine functions. However for ease of implementation some useful 

property is required before a system of functions merits use. 

Two such properties are the existence of a fast transform algorithm 

and the restriction of the function values to [0, 1]. 	One of the 

best known examples of orthogonal functions having these properties 

are the Walsh functions. As will be shown in Chapter 2 the 

Discrete Walsh Transform performs additions and subtractions of the 

input signal samples to generate the Walsh coefficients this feature 

of the transform results in considerable computational savings in 

the Fast Walsh Transform compared to the Fast Fourier Transform 

and leads to a simpler hardware structure since there is no need 

for a complex multiplier. An interesting feature of the Walsh 
* 

transform is that the description of a time and sequency limited 

signal in the Walsh transform domain is sequency limited, this is in 

marked contrast to the description of the same type of signal 

(time and frequency limited) in the Fourier transform domain. 

* 
Sequency is a generalised frequency associated with Walsh functions, 

see Chapter 2 for further details. 



Due to to the binary nature of Walsh functions they will be 

ideal for use in circuits based on binary digital components, as 

the sine-cosine functions are for circuits based on R.L.C. 

components. Simple filters based on Walsh functions have been 

realised and signals filtered by Walsh filters are indistinguishable 

from those that are filtered by ordinary filters. 	Experimental 
(cz) 

speech vocoders have been built which give useful bandwidth 

reduction. The description of visual information in the Walsh 

(is) 
transform domain leads to similar bandwidth reduction. 

1.5 Program of Work 

The aim of the work undertaken was to investigate the 

advantages of a digital Walsh spectrum analyser for simplicity of 

construction and usefulness of the displayed spectrum. 

Specifically this analyser could be used to detect the dominant 
* 

periodic component in an E.E.G. signal. 	The major objectives 

of this were:- 

Study of the theory of Walsh functions. 

Study of the practical application of Walsh functions 

with particular reference to low cost hardware 

for spectrum analysis. 

(e) Design and construction of an experimental system to 

enable spectrum analysis based on Walsh functions to 

be evaluated. 

(d) Presentation of experimental evidence of the performance 

of the system. 

* 	 (27) 
H.R.A. Townsend has shown that knowledge of this frequency can be 

used to assess the progress of a deteriorating liver condition. A 

low cast dominant rhythm analyser for ward use would be a useful 
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are not not integer to the analyser time base phase dependant, this 

problem was overcome by means of multiple averaging of consecutive 

spectra to minimise the phase dependnce. Walsh. amplitude and 

power spectra of a range of signals were obtained from the experimental 

system. Finally an E.E.G. wave-form was simulated and its Walsh 

power spectrum recorded. The Walsh power spectrum of the 

simulated E.E.G. wave-form shows a peak at the sequency corresponding 

to the dominant frequency in the wave-form. 
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CHAPTER 2 

WALSH FUNCTION THEORY 

2,1 Introduction 

Walsh functions were first introduced in .a paper by J.L. 

(28) 
Walsh and the mathematical background of these functions is well 

(io) 
documented. With the introduction of economical digital components 

interest has increased in applying Walsh functions to communications 
(3,4) 

and other electronics fields. 	Gibbs has shown that Walsh functions 

can be obtained as solutions to a. logical differential equation this 

leads to a useful tool for describing systems in the Walsh transform 

(13) 
domain. 	The theory of Walsh functions shows similarities to and 

divergences from the Fourier analysis. A brief outline of the 

theory of discrete Walsh functions is presented in this Chapter. 

2.2 Discrete Walsh Functions and the Discrete Walsh Transform 

The discrete Walsh functions Wal(k,t) may be defined in 

terms of the binary representation of the arguments (k,t) where the 

N length discrete Walsh function may be defined for N= 2 by 

n-i 

Wal(k,t) = expjit[k 1 t 0 	(k i' 9k 	)t ] n- 	n-r-1 r 
r=1 

for K, t = 0,1,2 ...... N-i, 

where 	denotes modulo 2 addition 
n-i 

and 	. denotes modulO 2 summation over n terms. 
r=O 

n-i 
The symbols Kr and tr are the binary bits of K,t i.e. t= 	2r 

n-i 	 . 	 . r=o 
K = 	K.2r. 



The above above definition generates the Walsh functions in 

increasing number of sign changes. This is illustrated by the 8-

length discrete Walsh functions which are represented as an 8 x 8 

matrix in Figure 2-1. 

Using equation (i) and from the matrix in Figure 2-1 the 

following properties can be deduced 

(i) Walsh functions are symmetric 

Wal(k,t) = Waln (t,k) 

The product of two Walsh functions is another Walsh 

function of the same set given by:- 

Waln (,t).Waln (k , t) = Waln(tk,t) 

where tk is the modulo.s-2 addition of the corresponding bits in 

the binary representation of t and k respectively. 

A generalised frequency can be associated with the rows 

of the matrix in Figure 2-1, this is termed se quencc and 

is equal to -- (average number of sign changes of the 

periodic function). 	In the case of equation 1 k is 

directly related to the number of sign changes of the 

corresponding Walsh function hence the corresponding 

sequency is - k for even k and k+i --- for odd k. For odd k 

, 

the corresponding Walsh function is termed sal 
k+1--- , t 

and for even k it is termed cal - , t). 	It is seen from 

Figure 2-1 that there are three pairs of Walsh functions 

having the same sequency. For a set of N=2"  Walsh functions 

the number of pairs will be - N - 1. 

N 



Decimal bit 
reversed 

t = 0 1 2 3 4 5 6 7 sequency gray code of k gray code 
k 
0 11111111 0 000 0 

1 1111---- 1 100 4 

2 11 ----11 1 110 6 

3 11--Il-- 2 010 2 

4 1--il--i 2 011 3 

3 111 7 

6 1-1 --1-1 3 101 5 

7 1-1-1-1- 4 001 1 

Figure 2-1 

8 x 8 Sequency Ordered Walsh Matrix 

t= 	01234567 sequency 

p 

0 	11111111 0 

1 	1-1-11- 4 

2 	1 --il-- 2 

3 	1 __i1-1 2 

4 	1111---- 1 

3 

6 	11 ----11 1 

7 	1--1 -1 l- 3 

Figure 2-2 

8 x 8 Hadamard. Matrix 

-1 0- 
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Wal(0,t) = 1 for all t defined for equation i. 

It follows from (2) and (3) that 

(Wal(k,t)) 2  = 1 for all t defined for equation 1. 

From .(2) and (3) the Walsh functions are orthogonal since 

N-i 	 N-i 	 N k= 
'5 	Wal(k,t).Wa1(e,t) = 	wal(k,t) = 
t=o 	 t=o 	 lo k*t 

N-1 N  t=o 
() 	Wal(k,t) =' 	this can  be  generalised to 

k=o 	 -o to 

N-1 N t=t 
Wal(k,tt) = 

k=o 	 ott 

The set of Walsh functions Wal(o,t) .... ,Wal(N-i ,t) 

generated by equation 1 is closed with respect to modulo-2 

addition since for any k and t in the set 0,1 ,2... ,N-i 

the summation (Kt) will generate another member of the 

set, hence from (2) above the Walsh function Wal n(ke,t) 

is another member of the defined set of Walsh functions. 

It can be shown that the following relationships hold 

between Walsh functions defined over a finite normalised 

interval 0 and the Walsh functions defined over an infite 

interval:- 

Wal(i.x,0) = Wal(0,0) 0 _<t <i 

cal(i 3 O) = cal(i 3 O) = Wal(2i 3 O) i <i (1+1 

sal (i,t,0) = sal (i 3 O) = Wal(2i-i) i- I<ji. <1 

where 0 is the interval 
- -- 

<e ~+ 

is a real number, i is an integer. 
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I 	fl
)
\ From the properties stated the N-length N=2  discrete 

Walsh functions form a complete orthogonal set for the N-length 

real sequence f(t) 	discrete Walsh transforms of this 

sequence is defined as 

F(k) = 	'5 f(t) Wal(k,t); k = 0,1 ,2.....,N-1 

where the inverse transform is 

N-i 
f(t) = 	F(k) Wal(t,k) ; t=O,i ,2.. .. ,N-1 

k=o 

since 	F(k) Wai(t,k) = 	( 	f(p) Wal(k,p).Wal(t,k) 
k=o 	 k=o 	P=O.  

=Z f(p) 	Waln(t,k)).Waln(k,p)) 
p=o 	I(=o 

N-i 	N-i 
57  = 	 - 

f(p)I' 	Wal(k,tp)) "N  
p=o 	K=o 

the summation in brackets will equal one only when t=p as stated in 

property (6), therefore 

F(k) 	f(t) Wal(k,t) 	 (2) 

N-i 
f(t) = 	P(k) Wal(t,k) 	 (3) 

k=o 

are transform pairs. 

Referring to Figure 2-1 it is seen that for an even K the 

Walsh function in the corresponding row is symmetrical about the mid- 

point of t = 0,1 ,...7, and for odd k the corresponding Walsh function is 



skew symmetric, symmetric, this applies also to even and odd t. 	Therefore a 

sequence f(t) will have a transform which is composed of the 

coefficients of skew symmetric Walsh functions if it is skew 

symmetric about its mid-point and vice-versa. 

The transform pair in equations(2) and (3) can be represented 

in matrix form as: 

[f(t)] = [w] [F(k)] 	 (4) 

[F(k)J= . [w] [fn (t)] 	 (5) 

where [F(k)] and [f(t)] are column matrices and [w] is a square 

matrix whose rows or columns are the N-length discrete Walsh functions 

ordered in increasing number of sign changes. The rows of the matrix 

[ii] can be rearranged to form the Hadamard matrix [11(n)] which has 

a simple recursion structure given by 

H(n) 11(n) 
[H(n+1)] = [ 	 ] = [H(n)]®[H(1)] 

11(n) -11(n) 

11 
where [H(1)]=[ 	], ®denotes kronecker multiplication and [H(o)]=1. 

1- 
Figure 2-2 shows an 8 x 8 Hadamard matrix [H(3)] and it can be shown 

that the bit reversed grey code of the numbers indicating the rows 

of the matrix [N] indicate the same Walsh functions in the rows of 

the matrix [H(n)] as shown in Figure 2-2. 

By analogy with linear systems theory a convolution type of 

(3) 	 n 
operation can be defined for two N-length (N=2 ) sequences f(t) and 

g(t) as follows:- 
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Z(t) = f(t)g(t) = 	f(y) 	(ty) 	 (4) 

this type of operation has the same property in Walsh transform 

theory as does convolution in Fourier transform theory since taking 

the Walsh transform of both sides of equation 4 we will have 

z(k) =:i z(t)Wai(k,t)  =4 	f(y) g(ty))Wal(k,t) 

=j T f(Y)( g(tey)Wa1(k,t)) (6) 

now for any member x of the set [o,i ,,.N-1] where N=2", the operation 

xy for y a constant in the set will generate another member of the 
N-i 	 N-i 

set here the condition Z  f(x(by) = 	f(x) for an N-length sequence 

f(t) is valid. 	Using the above condition, the bracketed term in 

equation 6 can be rearratiged to give 

Z(k) = T  f(y)( T g(t)Wal(k,ty)) 

= 	f(y).Wal(k,y))(j 	g(t)wal(k,t)) 	 (7) 
N T— 

since Wal(k,t).Wal(k,y) =a1(k,yt) 

hence equation 6 gives 

Z(k) = G(k).F(k) 

where G(K), F(K) and z(K) are the Walsh transforms of g(t), f(t) 

and z(t) respectively. This operation is termed dyadic or logical 

convolution. 
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(1,6,15,21,23) 
2.3 Fast Walsh Transform 

To compute all the Walsh coefficients of an N-length sequence 

' (N=2') it usually takes N ( N-1 ) additions and subtractions, but due 

to the fact that the Walsh or Hadamard matrices can be decomposed 

into a product of sparser matrices, the number of operations needed 

is Nlog2N as will be shown later. 	One of the decompositions which 

can be simply implemented in terms of hardware is due to C.K. 
(21) 

Rushfor.th and is an adaption of a Fast Fourier Transform algorithm 

due to Peace. The method proposed by Rushforth is based on the 

decomposition of the Hadamard matrix [11(n)] and he has shown that 

[11(n)] can be represented as a product 

[11(n)] = ([H(1)][I(1)]Ø[I(1)]...[I(1)])([I(1)]ø[H(1)][I(1)... 

(1 0) 

where H(1)]= [ 	], Ødenotes kronecker multiplication, and[IM] 
1- 	10 

is the identity matrix [ 	]. 	Each bracket in the above expression 
01 

for [11(n)] contains n matrices and there are n brackets. 	The 

expression for [11(n)] can be reduced further by using a perfect 

shuffle matrix P which on premultiplying a matrix with an even number 

of rows will perfectly inter-leave the rows of its two halves, an 

example of this for the case of a four element column matrix is 

lIt 

	

Oi 	 lot 

	

i xi l 	X2I 
[p].l 	I 	= 

	

1x2 1 	xi  

	

113 1 	1x3 1 

where in this instance the matrix [p] will be equal to 

1 000 

0010 

01 00 

0001 
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Using the shuffle matrix [P(n)] and denoting the. first factor of 

equation 10 by the matrix [0(n)] it can be shown that the successive 

factors of equation 9 are:- 

([I(i )]Ø[H(i )]® [i(i)] . ... ®[ i(i )]) = [ P(n)][C(n)][P(n)] 

........®[H(1)]) [P(n)]1[c(n)][P(n)]-1) 

substituting the above factors in equation 9 and noting that [P(n)]"= 

[I(n)] identity matrix, equation 10 will be 

[H(n)] = [c(n)].([P(n)].[Cn][P(n)]T 1 .([P(n)][C(n)][P(n)] 2 ... 

([PO]n1  [C(n )][P(n)]r 1)  

which reduces to [H(n)] = ([C(n)].[P(n)])' 1  on making the substitution 

[P(n)]_n = [1(n)]. 	The factored form of [H(n)] can be substituted 

for the matrix form of the Walsh transform in equation 5 which will 

be 

[F(k)] =t([C(n)][P(n)]Y.[f(t)] t,K = 0,1,...N-1; N=2 

In the case of an 8-length sequence the matrix [C(n)] = [c(3)] = 

11000000 

1-000000 

00110000 

001-0000 

00001 1 00 

00001-00 

00000011 

0000001- 
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The product [C(2)][P(3)] will shuffle the matrix f(t)] and perform 

8 subtract-add operations on the shuffled elements, this operation 

is performed three times hence the total number of operations is 24 

as opposed to 8 x 7 = 56. In the general case of an N-length sequence 

I1\ 	 n N=2 ) the number of operations performed will be N 1092  =,n.2 

2.4 Discrete Walsh 'Power Spectra 

It has been sho'm in section 2 (equations 8 and 9) that the 

Walsh transform of the dyadic auto-correlation function of an N-

length' real sequence f(t) is its power density spectrum. 	Using 

the notation of equation 5 where 

[F (k)] 4 [] [f (t)] 	 ' 	(5) 

the Walsh power density function will beB(k) = (F n (k)) 2 	 (ii) 

K = 0,1 ,...N-1 ; N=2 n . 	Denoting the coefficients of even Walsh 

functions by C(s) and the coefficients of the odd Walsh functions by 
k odd 

8(s) where s denotes sequency and s = 2 
k 

keven 

There will be - N - 1 spectral points Ps) where 

P(s) = C2 
 
(s) + 2() for 0 <S< 

The zero sequency term is 0 2 (o) and the highest sequency term 

2,N 	IN-ij1 
is S 	for S = 	+ 

---- . The average energy of the sequence is 

preserved in the transform domain since by transposing equation 5 and 

multiplying by 5 we will have 



[P (k)]T.[F  (k)] = - [f (t)]T[.j  [w][f(t) 

	

n 	
N 

= . [f(t)]T[f(t)] 

since [N] is its own transpose and  [w].[w] = N[I(n)] 

N-i 	 N-i 
therefore N. 	(F(k).) 2  = 	(f(t)) 2 	 (12) 

The Fourier series describing a continuous functions x(9) 

-T 	, in the interval - . 	can be represented as 

+00 	 j2 71io 
x(e) 

= 

where C= (\[A + B).e 	 (13) 

• 	 -iAi 	 2de - 

	

$0 = tan 	- , Ai = coefficient of sin 	; B = coefficient 

2ni  
of cos T  0 and the frequency power density of x0) will be given 

by C1C (c1  denotes complex conjugate). 	The conditions stated above 

will hold for the discrete Fourier transform hence the frequency 

power spectral density computed by the discrete Fourier transform 

method will be' invariant to cyclic shifts of the input data samples. 

In the case of the Walsh transform the above property does not hold 
(6,7) 

since there is no comparable addition formula to that of equation 13 

in Walsh transform theory. Therefore the power density spectral 

points will vary with circular shifts of the input sequence i.e. the 

Walsh power spectrum of periodic signals is phase shift dependent. 

A dyàdic shift of the input sequence f(t) to f(tet) will affect the 

sign of the coefficients but not their magnitude, hence the power 

(14) 
density spectral points will be invariant to dyadic shifts. 	A Walsh 
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power spectrum which is invariant to circular shifts of the input 
(12,1) 

data samples has been developed and is called the odd harmonic 

spectrum since it sums the power density spectral points of fundamental 

sequencies and all their odd harmonics which results in n + 1 

invariant spectral sums. 	It has been shown hat the circular 

shift invariant sums are directly related to the structure of the 

matrix yielding these circulat shifts and the spectral sums are given 

by the equation (using the Hadamard matrix in equation 5) 

q• 
2-1 

P(q) = 	qi (Fn(k)) 2  
k=2 

for an N-length input sequence (N=2 n). 

q=0,1 . ..... n 

Therefore although this 

power spectrum is shift invariant its sequency resolution is not 
(12) 

complete. A further development of the odd harmonic spectrum yields 

invariant power density spectral points but would be too complex 

for a simple hardware realisation due to the increased number of 

cross products as the input sequence length increases. 

For the case of a signal mixed with noise it is necessary to 

average the po-er spectrum over a number of sequence lengths to smooth 

out the effects of the added noise. 	In Chapter 4 and Appendix B 

it is shown that this averaging process leads to a minimisation of the 

effects of phase shift. 
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CHAPTER 

EXPERIMENTAL WALSH FUNCTION SPECTRUM ANALYSER 

3.1 Introduction 

There are various algorithms for computing the Fast Walsh. 

Transform in sequency or binary order. All these algorithms 

assume the simultaneous availability of the input data samples and 

this implies the use of at least double the storage space if the 

system was to be used in real time. Apart from the foregoing 

these algorithms are not economical in terms of the use of 

computing elements which could equal the number of samples used in 

the computation if each iteration was to be carried out in parallel. 

An economical method of implementing a hardware processor 

is one which is based on a decomposition algorithm utilising a 

(11) 
perfect shuffle concepf. 	If this processor is used in real time 

it will need three stores, two of which will take in the input data 

samples alternately with' the third used as a partial sums store. 

To cut down on the number of adder/subtractor units needed a seial 

method of computation is adopted; one A/S unit is used in 

conjunction with shift registers for the storage medium as shown 

in Figure 3.1. 	It should be noted that the detailed control 

logic for connecting the various shift registers to the A/S has not 

been shown. The data is entered in either shift register one or 

two. After N samples have been loaded in say shift register 1, the 

multiplexer starts loading shift register 2. When shift register 

1 has been loaded with N data samples the algorithm is carried out 

between it and the partial sums shift register, the ideal shuffle 

is realised by taking the data samples from the centre of the shift 
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Figure 3-1 

Hardware realisation of F.W.T. algorithm 

I! 
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register and the end. For each pair of data words entering the 

A/S an addition and subtraction is performed in sequence and the 

results entered in the partial sums shift register. At the end 

of N mathematical operations 1 iteration cycle would have been 

completed. During the next iteration cycle the partial sums 

•shift register is connected to the A/S and the stored data will 

be processed in the manner described above; the results of the 

second iteration are stored in shift register 1. After n = 1092  N 

iterations the Walsh coefficients will have been computed. 	From 

the foregoing brief description of a representative system it can 

be seen that it is inefficient in terms of storage space since 

two thirds of it is idle between computation cycles. 

3.2 Alternative Realisation of a Walsh Transform Processor 

The equation describing a Walsh coefficient is a sum of 

the product of the data samples and the value of the relevant Walsh 

function at the instant the sample is taken 

n 

F(K) = 	

:: 

f(t) Wal(K,t) (i ) 

F(K) can be computed as a partial sum of the samples 

multiplied by the value of the Walsh functin at each instant of 

sampling. At the end of the period of definition of the Walsh 

function the final sum is equal to the relevant coefficient as 

selected by the value of K. A hardware realisation of equation 

1 would be optimum in terms of storage space and the speed of 

calculation of each partial sum. 
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A transform processor based on equation 1 was designed 

and built. This includes a Walsh function generator which can 

be scanned through a fixed sequency band with a preselectable 

starting sequency. The sequency band was chosen to cover the 

significant harmonics in the sequency spectrum generated by 

sinosoidal frequencies in the range one to sixteen cycles per 

second. 

To make use of the processing capability of a digital 

computer the system was connected to a P.D.D..8 through the data 

break channel. The choice of the sequency.band and the timing 

requirements of the transfer operation sets an upper limit on the 

sequency that can be processed in the system by limiting the sub—

cycle of the highest sequency Walsh function. 

A block diagram of the complete data processing system is 

shown in Figure 3.2. 	The analogue to digital converter is 

preceeded by a low pass sequency filter that forms a step approximation 

of the input signal thus limiting the highest sequency presented 

to the system. 	The conversion command to the A.D.C. occurs in the 

middle of each output step from the low pass sequency filter. 

At the end of the conversion cycle the data word is presented to 

one set of inputs of the arithmetic unit, the other set of arithmetic 

unit inputs are connected to the shift register stack forming the 

serial word store. By cl&cking the sequency register of the 

Walsh function generator and the shift register stack in synchronism 

a new set of partial sums will be formed. At the end of the period 

of definition of the Walsh functions a data break request signal 

is generated signalling the computer to enter the break state. The shift 
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register stack will be cleared as the coefficients are transferred 

to the computer and the new cycle starts at the end of the 

transfer operation. 

3.3 Low Pass SeguenQy Filter (L.P.S.F.) 

The Walsh series representation of a function defined over 

a specified interval is a step wise approximation of that function. 

The width of the step defines the highest sequency Walsh function 
(6,8) 

present in the series. Harmuth has proposed the simple circuit 

shown in Figure 3.3 using one integrator and a sample and hold 

amplifier to realise a low pass sequency filter. 	In this circuit 

the period of integration is defined by the cut-off secjuency of the 

filter. Sampling occurs at the end of the integration period after 

which the integrator is reset and the cycle repeats. 	Figure 3.4 

shows a similar circuit which was constructed to use two integrators 

since this relaxes the requirement for a short reset period and 

fast slew rate amplifiers for the integrators. 	The cut-off 

sequency of the filter is 2048 CIS which corresponds to a sub- 

cycle of 244 micro-seconds. 	The integration time constants of the 

integrators were chosen to be greater than the sub-cycle period 

with variable gain introduced in the summing amplifier to set the 

gain of the filter to unity. 	Output voltage offsets due to input 

offset currents were adjusted with the offset voltage controls. 

A standard configuration was chosen for the sample and hold circuit, 

the hold capacitor was' chosen to be as large as possible to minimise 

the sample to hold error which is a function of the interelectrode 

capacitance of the switch, the pinch off voltage and the peak to 

peak voltage of the waveform driving the gate of the switch. This 
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error is given by the expression 

sample/hold error e = 	- vp).Cgd. Cqd+C 

Cqd = gate to drain capacitance 

CH = Hold capacitor 

Vp = pinch off voltage 

Vd = peak to peak voltage of drive signal 

which for the components and drive voltage used will be equal 

to 31 milivolts. 	This error was also adjusted for by the offset 

voltage controls on the operational amplifiers since it acts as 

an offset voltage and is independent of the voltage on the hold 

capacitor. 

3.4 Analog-Digital Converter (A.D.c.) 

The A.D ..C. used was a bipolar 12 bits successive approximation 
(24) 

type (Analog Devices A.D.C. 12QM) with a total conversion time of 

twenty five micro-seconds including a settling time of two and 

half micro-seconds. A block diagram of the A.D.C. is shown in 

Figure 3.5. 	The A.D.C. is reset on the positive going edge of the 

convert command pulse and conversion begins on the negative edge. 

A logical signal (STATUS) is generated internally to indicate the 

state of the converter (logic 1 when the A.D.C. is in the conversion 

mode and logic 0 when in the rest mode). 	The STATUS signal can be 

used to synchronise other devices to the converter. 	The input 

voltage (bipolar-unipolar) and the output code type (offset binary 

or two's complement representation) are selectable by connections 

made between specified pins on the converter. Full scale voltage 

input in the unipolar mode is 10 volts and ± 5 volts in the bipolar mode. 
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Figure 3-5 

Analog to Digital converter block diagram 
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The A.D.C. was set up for bipolar input two's complement output 

operation. 	During the data transfer between the processor and 

the computer the A.D.C. is forced into the reset state by holding 

the convert command input in the logical one state, by this means 

an all zero word is presented to one set of inputs of the 

arithmetic unit. 

3.5 Arithmetic Unit 

Due to the normalisation requirements of the Walsh coefficients 

and the.data word length presented by the A.D.C., the arithmetic 

unit word length was chosen to be twenty-four bits. A block 

diagram of the arithmetic unit is shown in Figure 3.6. Six four 
(25) 

bit full adders (signetics 8260) connected as a ripple carry adder 

formed the major part of this unit. 	The worst case settling time 

of the adder based on the propagation delays of the carry input and 

the data inputs to the carry outputs is 133 nano seconds for the 

twenty-four bits. 

The gated output of the Walsh function generator is 

Exclusive-ORed with each bit of the A.D.C. dat a  word and connected 

to the least significant twelve bits of the adder inputs, while the 

twelve most significant inputs are connected to the Exclusive-OR of 

the A.D.C. sign bit and the gated Walsh function generator out-

pit,the latter being connected to the carry input of the adder thus 

forming a twenty-four bit two's complement representation of the 

data word. 

When the control inputs of the Full adder (c. 
in 	in 
h, E h) are 

held in the logical one state each output of the adder will be the 
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AND function of the corresponding pair of inputs. This feature of 

the adder is used during the processor data transfer operation to 

form the AND function of the A.D.C. data word (in the logical "0" 

state) and the data words from the shift register stack so that the 

latter will be cleared at the end of the transfer operation. 

3.6 Shift Register Stack 

The number of coefficients to be computed was chosen to 

cover the highest harmonic generated by a sinosoidal frequency of 

16 cycles which occurs at a sequency of 48 cycles per second 

corresponding to a Walsh function having 95 or 96 zero crossing per 

second. 	Consequently the shift register stack was built from 
(26) 	 . 	. 	. 

12"Signetics 2500" dual hundred bit shift registers to make up a 

24 bit x 100 word serial store. 	A block diagram of this part of 

the system is shown in Figure 3.7. 

The inputs of the stack were driven by open collector Hex 

buffers (sN7404) with pull-up resistors to minimise the logical 

110" state voltage level input, and the outputs were buffered by 

hex inverters due to the limited drive capability of the shift 

registers. This arrangement increases the clock to data output 

delay and raises it from 250 nsec. to a minimum of 280 nsec. 	The 

recirculate and output enable controls of the shift registers were 

inhibited to allow the data to circulate through the arithmetic 

unit. The. twelve most significant bits of the S/R stack output 

are connected through voltage level translators to the computer 

data word inputs thus performing a division by 4096. 
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Figure 3-7 
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3,7 Walsh Function Generator (W.r.G.) 

The requirements for a Walsh Function Generator that can be 

scanned in sequency for every time increment is met in a generator 
(22) 

proposed by Stafford and Durrani. This generator is the hardware 

reálisation of the equation 

n-t 

Wal(K,t) = exp.jit[K 	t 	( 	(K 	K 	)t )] 	(2) 
n-i 0 	 n-r n-r-1 r 

r=1 

this equation generates Walsh functions in increasing number of zero 

crossings in the interval of definition (sequency order) as ttKI 

takes the values 0,1 ,2.. . 2 ".-l. 	For the case of n=2 substituted in 

equation 2 	 - 	- 	-- 

Wal(K,t) = exp. jrc(K1 t 0 (K1 K0 )t1 ) 	 (3) 

this will generate the Walsh function's for. the indicated values of 

K as shown below 

t 0 1 2 3 

K 

0 0 •  0 0 0 

1 0. 0 1 1 

2 01 1 0 

3 01 01 

where 1 is equivalent to (-i) and 0 to +1. 	Figure 3. 8 shows a 

hardware realisation of equation 3. 	If the 'tK" register is initially 

reset and for every C 1  pulse the register is clocked four times then 

the output of the generator will scan all the Walsh functions in the 

set defined by equation 3 as outlined in the timing diagram. 
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A twelve bit Walsh function generator based on equation 2 

was built, Figure 3e9 shows a block diagram of this generator. 

The "K" register was constructed from synchronous presetable binary 

counters (sN741 61) with switches on the data inputs so that the 

generator can start the sequency scan from a preselected sequency 

after which the register is reloaded with the initial number through 

the clock mono-stable and the reload control of the register. 

Due to the presence of a dummy time pulse when the processor is first 

started, a flip-flop "L" was used to load the time register with 

all ones as well as to inhibit the all ones decoder. 	The worst 

case settling time for the generator output from the application 

of a clock pulse to the sequency register is approximately 200 nsec. 

3.8 Processor Control Logic 

All the control levels and timing pulses in the processor 

are synchronised by a master clock which defines the integration 

times of the low-pass filter integrators thereby defining the basic 

processor computation sub-cycle. 	The processor control logic can 

be divided into three main control blocks:- 
r 

master clock and low-pass filter control 

clear and convert command pulse control 

shift register stack clock control 

(1) Master Clock and Low-pass Filter Control 

The master clock illustrated by Figure 3.10 and 3.11 is a 

gated oscillator constructed from two cross coupled mono-stables 

(8N741 21), the clock frequency (81 92 CIS) was set to be four times 

the cut-off sequency of the low-pass filter (204 8  CIS). Prior to 
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Figure 3-11 

Timing diagram for Figure 3-10 
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starting the master clock the integrators are held reset by forcing the 

outputs of the integrator control flip-flop to the logical 11 1" 

state. 	The sampling mono-stable triggers off the positive edge 

(output A) of the master clock, clocks the integrator control 

flip-flop and therefore allows the sample and hold unit to be up-

dated prior to the  reset of either integrator. V The convert command 

mono-stable triggers off the positive edge (output A) of the master 

clock. Due to this arrangement a dummy pulse is generated which 

is used in loading the Walsh function generator time register with 

all ones so that the time register is clocked to the zero state 

by the next pulse. 

V 	(2) Clear and Conet Command Pulse Control 

When the processor is in the stop mode and the manual reset 

button is depressed the load, clear and break request B, flip-

flowill be set. 	In this state the analog to digital converter 

will be held in the reset state and the arithmetic unit is modified 

to perform the AND function of the data word and the shift register 

stack output. V  The processor will rim through one dummy sub-cycle 

thus clearing the shift register stack. 	If the clear button is 

held depressed the same previous conditions will hold until the 

button is released. 

In the last computation sub-cycle the all ones condition of 

the Walsh function generator time register is decoded and conditions 

the K input of the clear flip-flop as shown in Figure 3.12. 	At the 

end of the computation the 100 counts overflow pulse (generated in 

the S/R stack clock circuit) will set the break request flip-flop B, 

and clock the clear flip-flop to logic state 0. 	The clear flip-flop 
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output will hold the A.D.C. in the reset state by forcing gate C 

output to logic state 1 and at the same time modifies the arithmetic 

unit to simulate a set of AND gates. The break request B 1  signal 

inhibits the next convert command pulse from fale]y clocking the 

clear flip-flop to the one state thus allowing the computer data 

transfer operation to be completed. 	The convert command pulse will 

clock the Walsh function generator time register to the "0" state 

thus lifting the all ones condition from the K input of the clear 

flip-flop. At the end of the computer data transfer operation the 

hundred counts overflow pulse will clock the clear flip-flop to the 

11 1" state to initiate the next A.D.C. conversion cycle. 

(3) Shift Register Stack and Seguency Register Clock Control 

(Figures 3-13) 

At the termination of the A.D.C. conversion cycle the status 

output clocks flip-flop S.R.C. to the '1 state thereby removing the 

stop condition from the clock generator. 	Clock pulses are routed 

to the shift register stack, the 100 counts register and the sequency 

register of the Walsh function generator thus synchronising the 

W.F.C. output and the shift register stack. 

The clock pulse width of the oscillator was set to 200 nano 

seconds which is the minimum for reliable clocking of the series 

2500 shift registers. 	The time between clock pulses was set 

according to the worst case delays of the arithmetic unit, the shift 

register stack and the Walsh function generator output plus a safety 

margin, this comes to a total of 650 nano seconds and results in a 

total computation time of 85 micro seconds for the 100 partial sums. 
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In the clear mode of the processor clock pulses are routed 

to the shift register stack and the hundred counts reigster only. 

At the end of the clear operation the S.R.C. flip-flop will be 

reset by the 100 counts overflow pulse. 	In the computer data 

transfer mode the computer B-break signal gates the (Data Memory 

buffer) pulses to the hundred counts register, in this case the 99th 

state of the 100 counts register is decoded and used to gate the 

hundredth computer address accept pulse for clearing the break 

request condition. 

3.9 Computer Interface Control Circuit 

Due to the timing requirements of the analyser and the amount 

of data to be transferred to the computer, the single cycle data 

break facility was chosen since it needs the least amount of time for 

the transfer operation (1 -5 micro second per word transfer). 	To 

initiate a data break transfer of information, the interface control 

must provide the following signals. 

the absolute address in core memory 

the data word 

direction of transfer indication 

data break request signal 

single cycle request signal 

Signals in (3) and (5) above are D.C. levels which can be fixed in 

this instance since information is transferred into the computer. 

Referring to the computer interface control circuit shown in Figure 

3-14 and the timing diagram shown in Figure 3-15 it will be seen that 

at the beginning of the last sub-cycle of a computation cycle the all 

ones decoder output conditions the J input of the break request flip-flop 
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B 1  and at the end of the computation this flip-flop is clocked to 

the one state by the 100 counts overflow pulse signalling the computer 

to enter the break state after the completion of the current 

instruction. 

In the break state the computer generates command pulses and 

control levels. Three are used inthe interface circuitry 

these are the address accept pulse, the B-Break signal and the Data 

to Memory Buffer pulse. 	The address accept pulse is used in 

incrementing the interface address register while the B-Break 

signal is used to gate the data to M.B. pulse (these pulses are 

continuously generated when the computer is in the run mode) for 

shifting the data out of the shift register stack and incrementing 

the 100 counts register. 	The Data to M.B. pulse is generated. after 

the address accept pulse, therefore the 99th state of the 100 counts 

register is decoded and is used to gate the 100th address accept pulse 

to reset flip-flop B 2  which signals the end of the break request 

condition. 

At the end of the data transfer the 100 counts overflow 

pulse is gated by B1  flip-flop to reload the interface address 

register with the starting address and to trigger the interrupt 

request mono stable (for the computer program recognition of a data 

transfer completed condition). 	The ungated 100 counts overflow 

pulse clocks B 1  flip-flop to the logical "0" state and in the next 

sub-cycle clocks the B 2  flip-flop to the logical 1 state thus 

setting the conditions for the next data transfer operation. 	The 

data from the S/R stack and the absolute address from the interface 

address register are inverted and level translated to present the 

correct logic levels to the computer (logical 1 0V; logical 0 s -3). 
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3.10 Detailed Block Diagram 

Figure 3-16 shows a detailed block diagram of the processor 

with the data flow and control signals included. 	Figure 3-17 

shows the major control signals of the last computation sub-cycle 

and the first computation sub-cycle of the next period. All the 

circuits apart from the computer level.-translators were built on 

single sided vero-boards. The computer level translators were 

built from modified D.E.C. inverters and connected to the computer 

through single screened leads to minimise noise pickup and cross 

talk. The processor was tested by modifying it to run through 

one sub-cycle with a D.C. voltage connected to the A.D.C. and then 

checking the contents of the SIR stack by manually shifting the 

data out. The same procedure was used to check the processor-

computer interface to make sure that no loss of data was incurred 

by the transfer operation. 
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CHAPTER 4 

PERFOR1ANCE OF EXPERIMENTAL SYSTEM 

4.1 Introduction 

The performance of the analyser system was tested by using 

two known signals. 	The first of these signals were the set of 

Walsh functions, to generate these functions a generator was built 

which is synchronised to the analyser system. 	The second known 

signals used were sinusoidal functions of various frequencies. 	A 

trigger generator was built which starts the analyser system at 

various phase angles relative to the sinusoids.. 	A method of 

predicting the coefficients of sinusoides in the Walsh transform 

domain was developed and is outlined in Appendix B. 	In Appendix C 

is a listing of the coefficients of various sinusoids..; in the range 

1 to 16 cycles and 1 volt amplitude. 

4.2 Trigger Circuit and Test Generator 

The test generator shown in Figure 4-1 was built of three 

four-bit binary counts (5N7493) and is clocked by the convert 

command pulse. 	The reset of the generator is connected to the 

manual reset of the analyser system, by this means the outputs of 

the generator are synchronised to the Walsh function generator. 

The highest sequency Walsh function generated (sequency 2048) 

corresponds to the lowest bit of the generator and the lowest 

sequency Walsh function (sequencyl)corresponds to the highest bit. 

A total of twelve Walsh functions are obtained from the generator 

without Exclusive-OR gates. 

KjI  7 
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Figure 4-1 

Trigger Circuit. 

Figure 4-2 

Square wave generator 



Trigger pulses at various points on a sinewave were generated 

by means of the circuit shown in Figure 4-2. 	This circuit consists 

of an analogue comparator (PATIO) and a gating system made up of 

a mono-stable and a bistable arranged so that when in the reset 

condition it allows only one pulse to trigger the analyser system. 

Various starting-points on the sinüsoide were obtained by varying 

a D.C. reference input to the comparator. 	To aleviate the 

problem of false triggering (due to the high gain of the comparator), 

the comparator was modified to act as a Schmit trigger with a 

hysteresis of .194 volts. 

4.3 Response of the System to Various Test Generator Inputs 

According to the multiplication equation of Walsh functions 

11 	 n 
2-1 	 2-1 	 O,m*k 

AWa1(k,t).Wal(m,t) = 	AWal(km,t)  

t=O 	 t=b 	 1 2'A,m=k 

it can easily be arranged for the analyser system to be tested by 

feeding a D.C. voltage equivalent to a binary number A to the lowpass 

sequency filter and connecting any output of the test generator to 

the multiplying input of the Walsh function generator. An inherent 

division by 212_  in the analyser will eliminate the 2 factor' in 

equation 1. 

In this instance the computer was instructed to loop through 

the display program, continuously displaying the analyser data break 

transfer locations in the computer memory. 	The system successfully 

picked out the input sequency due to the test generator, the error 

at other sequencies was plus or minus one bit. 	This was due to an 
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unavoidable 3 to 4 niilivolt noise at the input of the A.D.C. 

(coupling through from the computer) which randomly effected the 

least significant bit. 	An error in the computed coefficient of 

1-3% was observed which was due to the difficulty of setting the 

gain of the summing amplifier of the lowpass filter and the gain 

and zero offset Qf the A.D.C. 

4.4 Computer Programs 

Two simple programs (as listed in Appendix A) were developed 

for the computer analyser system using the P.D.P.-8 PAL-Ill 

(18) 
assembler language. 	The first of these programs, as shown in 

flow chart form in Figure 4-3, is a display loop which can display 

any preselectable number of locations in memory with a selectable 

display time for each memory location. The behaviour of the sequency 
* 

spectrum between integer sequencys eliminates the need to display 

the spectra as intensified points; the method adopted was to display 

each memory content as a horizontal line whose width is determined 

by the program dwell time and the sweep time setting of the 

oscilloscope. 	A division by four of the displayed information is 

inherent in the display hardware because the D.A.C. is a 10 bits 

offset binary converter, this latter fact necessitates conversion 

from 2's complement. to offset binary code. 	It should be noted 

that the tally and delay locations in memory hold the complements of 

the number of locations to be displayed and the program dwell time 

for each locationto be displayed respectively, the auto index 

register is a location in memory which is automatically incremented 

if addressed by an indirect memory reference instruction. 

* 
See Chapter 2 
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Figure 4-3 

Display loop flow chart 
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Due to the large numbers anticipated when averaging over 

long periods of time and the dynamic range of these numbers, a 

program based on the P.D.P.-8 extended floating point package was 
(17) 

developed. Essentially this program activates the computer interrupt 

circuitry and puts the computer in a waiting mode. On the arrival 

of an interrupt signal the program transforms the new set of 

coefficients to floating point 'format squares them and acids them to 

a running sum location and then reverts to the waiting mode. At 

the end of a preselectable number of interrupts the program 

deactivates the interrupt circuitry then forms the sum of the spectral 

pairs in the running sum location and their scaled logarithms. 	At 

the end of the preceeding operations the program reverts to the 

'display loop routine. 	. . 	- 	... 	0 

The above program is made, up of three routines; the first of 

these as shown in flow chart form in Figure 4-4 is a house keeping 

routine which clears the running sum locations, loads the number 

of interrupts location and holds the computer in the waiting mode. 

On receiving an interrupt request signal control is passed to the 

second routine through memory page zero by a jump to subroutine 

instruction. 	The second routine, as shown in flow chart form in 

Figure 4-5, converts the new set of coefficients to floating point 

format, squares each coefficient and adds it to a specified running 

sum location. At the end of the foregoing set of computations the 

routine checks whether the preselected' number of interrupts has been 

reached and accordingly returns control to the first routine or 

deactivates the interrupt circuitry by modifying the interrupt 

instructions in meniory page zero and hands over control to the third 

routine. 
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After the modification of the interrupt instructions the 

third. routine as shown in Figure 4-6 is entered through a sub-

routine which sums the sequency pairs in the running sum. location. 

The natural logarithm of the sequency pairs is formed and the 

logarithm of the number of interrupts is subtracted thus forming a 

smoothedspectral.point. 	The foregoing result is multiplied by a 

scaling factor (ioo log10e) and converted to fixed point format then 

deposited in the location to be displayed. 	The results are 

multiplied by a scaling factor to make use of the dynamic range of 

the display D.A.C. At the end of these computations control is 

passed over to the display loop program. 

45 Seguency Amplitude Spectra of Sinusoids.. 

The response of the analyser to various sinusoidal frequencies 

in the range of 1-16 cycles/sec was investigated. 	This necessitated 

the calculation of individual coefficients of the relevant Walsh 

functions. 	Bobwette2las shown that the coefficients of the Walsh 

functions in the Walsh series representing a sinusoidal waveform can 

be easily calculated from a recursive digital pattern. Another 

method for calculating the Walsh coefficients is due to G.S. Robinson 

and R. Grangrhere the coefficients are derived from the Z-

transform representation of the Walsh functions, but this fails at 

sin  
higher frequencies due to the absence of a 	multiplier. A 

simpler method for calculating the relevant coefficients is outlined 

in Appendix B where it is shown that only the number of zero 

crossings of a Walsh function need be known to calculate the 

corresponding coefficient. 
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Figures 4-7, 4-8, 4-9 and 4-10 show the amplitude sequency 

spectra of 5, 6, 11 and 15 cycle/sec. sinusoids of 2.82 volts r.m.s. 

amplitude and zero phase shift (sine-wave) and one second computation 

time. The spectrum was arranged as alternating pairs of odd and 

even Walsh coefficients of sequencies 1 - 50. Due to the difficulty 

of setting the gain of the low pass filter and A.D.C. all the 

computed coefficients of the sine-waves shown were within 5% of the 

predicted values as given in Table 4-1. 	The ratios of the computed 

coefficients of each frequency were calculated and they are in good 

agreement with the values calculated (within 1.2%o) by the method 

outlined in Appendix B. 

To show the effect of phase shift on the. amplitude sequency 

spectrum of a sine wave, a frequency of 16 cycles/sec was chosen 

since this has only two coefficients in the sequency band 1 - 50. 

Figure 4-11 shows the amplitude spectrum for various phase shifts. 

Table 4-2 lists the various phase shifts as set on the trigger cIrcuit 

versus the phase shifts as calculated from the ratios of the computed 

coefficients. 	For these measurements great care was taken in setting 

the gain of the low pass filter and A.D.C. which resulted in an error 

of a maximum of 1.4% in the amplitudes as calculated from the coefficients 

of the sequency of 16 at various phase shifts. 

4.6 Sequency Power Spectra of Integer and Fractional Sinusoidal 

Frequencies 

As outlined in Appendix B, equation. 11 is an expression for 

the averaged power density at each sequency due to a fractional 

frequency input 

[52 (m) + C2  (,m)1 + 	[C2 (w,m) 	S2(w,m)]cos(2+ (p_i)e) ® 	( 2) 
2 

sinO 



-62- 

V 

3 

0 

-( 

-3 

$ 	020 30 '10 5o 	e 7o 	 '?a :oo 

Z 

Fig. 4-7 

f=5 C/s 

V 

a 

-S 

— 2 

-3 

to Ao 30 4'0 50 do 70 	 jo 500 

Fig. 4-8 

f=6 c Is 

Walsh coefficients of 5c/s and 6c/s sine waves 



-63- 

V 

3 

I 

0 

-I 

-IL 

-3 

10 	p 3o 'Ia 50 to 70 Se q0 SOD 

Fig. 4-9 

f=i 1 cIa 

V 
3 

.2 

0 

-3 

i 	to .ao 30 40 So g0 	10 5o go Ie 

Fig. 	4-10 
	 z.. c. ./sc.. 

f=l5cfs 

Walsh coefficients of lie/s and 15c/s sine waves 

(in 'the sequency range 1-50) 



-64—.. 

!1 

f = 5 c/s 
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f = 15 c/s 

sal(n) coefi 
* 

ratio 
of 

coeff 

ratio 
caic. 

70 
error 

7 

q '33 
.375 7. .L1,q 

Lf// 5'-°28 - 
13 Q 7 

24o Q .qiij  —.3 
IS 

I.! 1.103 - 17 —Cfl 

sal (15) coeff sal (1.5)coeff error 

704' 67.2- 

c - see Figure 4-9 	 d - see Figure 4-10 

Table 4-1 

Measured and calculated Walsh coefficients 

*multiply by 2.44 x 10 volts 
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Table 4-2 

Sequency coefficients of sinusoidal frequency 16 c/s 

for various phase shifts 

(i) multiply by 2.44 ' x 10 3V 

2.82 volts R.M.S. = 3.987 volts = decimal 1634 

absolute value of coeff. at sequency 16 = 1041 



where S and C are the sal and cal coefficients of Walsh functions 

of sequency m, O' is an arbitrary starting phase angle, 0 and p are 

the incremental phase shift and the number of power densities at a 

sequency of m that have been averaged. For integer frequencies 

the phase dependnt part of equation 2 will be zero since S = C 

Table 4-3 lists the peak power densities of various integer frequencies 

and the second largest power densities at the sequency harmonics of 

these frequencies for an averaging time of sixty seconds and input 

amplitude of two volts. The error in terms of amplitude and coefficient 

ratios for the listed frequencies were within 2.7% and 3.4% 

respectively thus showing good agreement with the calculated values. 

Sixty second runs of two volt amplitude fractional frequencies 

in the range 2 cycles/sec to 3 cycles/sec at -- cycle/sec intervals 

and 13 cycles/sec to 14 cycles/sec., with the same frequency intervals 

were recorded. 	The choice of the latter range of frequencies was 

madesince the peaks of the sequency power spectra for the 13 cycles/ 

sec and 14 cycles/sec input frequencies differed by less than 3db 

from the second largest peaks in the respective spectra. The 

sequency power spectra for frequencies of 2.25, 2.5 and 2.75 are 

shown in Figure 4-12. Table 4-4a lists the power densities of 

sequencies 2and. 3 for two sets of runs. 	The corresponding errors 

were computed relative to the phase independant term of equation 2. 

The possible variation that might be introduced by the phase dependant 

term of equation 2 is listed as a percentage of the phase independQnt 

term. 	Figure 4-13 shows the sequency power spectra for frequencies 

13.25, 13.5 and 13.75 and a corresponding listing of the power 

densities at sequencies of 13 and 14 is shown in Table 4-4b. 	The 

phase dependant term of equation 2 is multiplied by the expression 
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Table 4-3 

Sequency power densities for frequencies 1 <f ,< 20 

and 60 second computation times 

*add 10 log 10 (2 	
_3  2  

.44 X lo) 
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Table 4-4 

Sequency power densities for frequencies 

2(f'(3 

13<f<14 

*add 10 log 10 (2.44 x 10_3)2 
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(cos(2o+ (P-1 )e).10) which has an envelope as shown in Figure 
sine 

4-1.4. When the sum of the power spectral densities is divided by p 

the maximum of the envelope will be 1. 	In the region of 0 = 900 ,  

2700 corresponding to a frequency which is an integer plus a + cycle 

or -- cycle the possible variation introduced by the phase dependant 

term is very small as listed in Tables 4-7a and b 	For the case of 

o = 1800 corresponding to a frequency which is integer plus a + cycle 

the phase dependant term is modified by cos2O( only and is large 

compared with the other terms in the expression as shown in Tables 

4-4a and b. 	At the extreme of 0 1  that is -in the region of Oce<iO 

and 350< 0<360°  corresponding to a frequency which is integer ±.027 

cycle it can be shown that the absolute value of the phase d.ependcrnt 

term is very small since the terms S and C of equation 2 are nearly 

equal. 	In the case of frequencies 2.25 cycles/sec and 2.75 cycles/sec 

the calculated errors of 4.4%  and 8.11"'lo represent an amplitude 

error of approximately 2.2% and 4% which is expected due to the gain 

adjustment difficulties. 	The error for the 13.25 cycles/sec 

frequency is approximately 200, corresponding to an amplitude error of 

approximately 1 0%; the error in the case of a frequency of 13.75 

cycles/sec cannot be satisfactorily explained. 

4.7 Sequency Power Spectra of Sinusoids with Additive Noise 

Sequency power spectra (in the sequency range 1 - so) of 

Gaussian noise averaged over sixty seconds were recorded. The 

spectra for noise of 3db cut-off frequencies 5 cycles/see, 15 cycles/ 

sec and 150 cycles/sec are shown in Figure 4-14, and Table 4-5 shows 

a list of the 3db point and the power spectral density of the secondary 

peaks. 	The shape of the noise sequency power spectrum can be 
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Cut off approxiiiatesequency power sequency power 
frequency 3db of first density of seca33 density 
c/s sequency peak db* peak db* 

5 5 . 

"5 - - - - 

Table 4-5 
Sequency power densities of Gaussian noise of 

various cut off frequencies 

(see Figure 4-1 5) 

*add 10 log 1 0(2.44 X 
103)2 
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predicted by transforming the arithmetical auto-correlation function 
(20) 

of the input noise to the logical auto-correlation function and then 

Walsh transforming the latter to obtain the sequency power spectrum. 

In the case of white noise the arithmetical auto correlation 

function is an impulse at the origin and zero elsewhere, thus the 

logical auto-correlation function is an impulse at the origin as 

well and Walsh transforming the latter will result in a constant 

sequency power spectral density. 	Calculation of the noise power 

spectra was not attempted due to the large number of samples of the 

auto-correlation function needed. 

Power spectra of 150 cycles/sec noise mixed with a 13.5 cycle/ 

sec sin wave for increasing r.m.s. noise amplitude were recorded 

for averaging times of 4 minutes. 	Figure 4-16a shows the power 

spectrum of the signal without noise, Figures 4-16b, c, d are the 

power spectra of the signal mixed with successively increasing noise 

r.m.s. amplitude. 	The effects of noise on the power spectra of 

Figures 4-15c and d are clearly visible, Figure 4-17 shows the input 

signal corresponding to Figure 4-1d. 

4.8 Seguency Power Spectra of Simulated E.E.G. Signal 

An E.L. signal was simulated by randomly exciting a band-

pass filter centred at 13.88 cycles/sec. 	Sequency power spectra 

of this signal for averaging times of 4  minutes and 1 minute are 

shown in Figures 4-1a and b, Table 4-6 is a listing of the power 

densities of sequency 13, 14 and 18, 19. 	The peaks of the power 

spectrum corresponds to those for a frequency in the range of 13 to 

14 cycles/sec. 
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prthsit por density rower density power density 
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• • 39.5 
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Sequency power densities of simulated E.E.G. 

signal (see Figure 4-1) 

*add 10 log 10 (2.44 x 10_3)2 



-83— 

CHAPTER 5 

CONCLUSIONS AND FURTHER WORK 

5.1 Discussion and Conclusions 

The starting phase dependance of Walsh coefficient spectra 

has been shown to be a major difficulty with this method of signal 

analysis. However, it has been found that the effect of starting 

phase can be reduced sufficiently to allow the dominant sequency 

term to be detected. 	To achieve this result a Walsh power spectrum 

is formed and successively averaged. A digital computer was 

interfaced with a Walsh coefficient spectrum analyser and used to 

mechanise the formation of the power spectrum. 	Section 5.2 will 

describe a proposal for a special purpOse sequehc,rpower spectrum 

analyser for low frequency signals. 

It has been shown in Chapter 4 that the coefficient spectra 

of waveforms having constant amplitude and integer frequencies have 

maxima at sequencies corresponding to the input frequencies and all 

odd harmonics of those sequencies. Values of these maxima are 

frequency dependant. For the system constructed the maximum value 

of all the maxima occurs for frequencies which are power of two 

multiples of ic/s corresponding to Walsh functions that are hard 

limited sinusoids • 	In general it can be shown from the coefficient 

generation law
* 
 that frequencies which are power of two multiples of 

an odd frequency will have the same value for their coefficients 

but these will occur at sequencies which are the power of two multiples 

of those for the odd frequency. 	For example frequencies 2c/s, 4c/s, 

8c/s, 16c/s or 6c/s, 12c/s, 24c/s can be considered to be power of 

two multiples of lc/s, 3c/s and 5c/s respectively. 

* See Appendix B 



Although the coefficient spectra of integer sinusoids.. in 

the sequency domain are diffuse it is possible to extract the input 

amplitude and phase information for a noise free sine wave from 

one computation cycle since the Walsh coefficients can be calculated. 

For frequencies that areinteger plus a fraction, multiple averaging 

of consecutive computations of the power densities will reduce the 

phase dependence. Although, as has been shown, this averaging 

scheme breaks down when the input frequency is integer plus half 

• cycle; it should be noted that the power spectrum will still have 

• maximum which occur either at the lower or upper sequency bounding 

the input frequency as the starting phase angle varies. This is 

shown in Table 5-1 which lists the calculated ower densities at 

sequencies 12,13, 14, 15, 18 and 19 Z.P.S. for an input frequency 

of 13.5 c/s and various starting phase angles. Equation.11. of Appendix 

B was used to produce this table. 

The indeterminacy of frequencies which are fractional can be 

restricted to a smaller sequency increment by increasing the 

resolution of the system. 	This implies a larger shift register 

stack to cater for the same frequency band of interest as well as 

increasing the total computation time for each spectrum. 

The above difficulties associated with the phase angle will 

not occur in the case - of a sinusoide of the form Acos(+t + e(t)) 

where e(t) is a random phase angle. 	This follows 'because the phase 

angle which occurs in the power density expression will be the mean 

of e(t). 	This is the case for the simulated E.E.G. signal which 

is a sum of exponentially decaying sinusoids, generated by a 

randomly excited band pass filter. 
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Table 5-1 

Calculated sequency power densities for a 

frequency of 13.5 c/s at various starting 
phase angles. 
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5.2 A Seguency Power Spectrum Analyser for Low Frequency Signals 

It has been shown that the phase dependance of Walsh function 

spectrum analysis can be minimised by forming the running average of 

the sequency power spectrum. Hence a low cost all digital signal 

analyser for low frequency signals can be constructed. Tests on 

a simulated E.E.G. signal indicates that such a system could be 

used to detect the mean.dominant frequency of E.E.G. signals. 

Townsend has shown that this frequency can be used to monitor the 

condition of patients having diseased livers. 

The frequency range of interest in an E.E.G. signal (lc/s-

16c/s) has most of its major coefficients occurring in the sequency 

band 1-16 Z.P.S. 	Therefore the storage and speed requirements of 

a spectral analyser covering the sequency band mentioned can be 

relaxed. A possible system based on the experimental sequency 

analyser constructed is shown in block diagram form in Figure 5-1. 

The eight bit A.D.C. (seven bits plus sign) was chosen since Townsend (27) 

has shown that this is adequate for the amplitude resolution of the 

analogue signal. 	For the computation of sixteen pairs of coefficients 

the first thirty-two Walsh functions (excluding the zero sequency W. F. 

of the set of sixty four are used since the set of thirty-two does 

not include the cal(16,t) function to make up the highest sequency 

pair in the band of interest. 	To reduce the component count the 

Walsh functions can be stored in a read only memory as (i ,o) patterns 

of thirty-two rows by sixty four columns as shown in Figure 5-2. 

Each row will be one Walsh function and any column will represent a 

sequency scan of thirty-two Walsh functions for the appropriate time 

increment. The read only memory shown has a capacity of 512, eight 

bit, words and the columns of the sixty-four by thirty-two Walsh 

matrix are assigned four words each. 	The least significant three bits 
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of the address register serialise the word presented to the 

multiplexer. After the eighth clock pulse a new word is presented 

so that in effect every thirty-two clock pulses will scan one 

column of the sixty-four stored words. 	An alternative to the R.O.M. 

shown would be two programable R.0.M.S. with a capacity of 256, four 

bit words connected in parallel to the address lines. 

The shift register stack word length of fourteen bits was chosen to 

accommodate a full scale input of eight bits occurring in sixty-four 

consecutive sub-intervals of the sequency low pass filter. 	This 

store can be built of the signetics N2518 M.0.S.I.C. which is made 

up of six, thirty-two bit shift registers and is T.T.L. compatible. 

Taking the top most eight significant bits of the, shift register 

stack output will perform the required normalisation of the Walsh 

coefficients. 	Choice of the Walsh function sequence length leads 

to a low pass sequency filter sub-interval of 15.625 miliseconds. 

This sub-interval is long enough for calculation of the partial stuns 

and the squaring and adding of the computed coefficients to the 

running sum store. The sum of the squared coefficients of Walsh 

functions of the same sequency requires a maximum of seventeen bits 

therefore the word length of the running sum store was chosen to be 

twenty-four bits long to give a maximum averaging time of 128 seconds. 

The eight by eight bit multiplier and twenty-four bit adder 

squares and adds two consecutive coefficients from the shift register 

stack to a single location in the running sum store thus forming the 

averaged spectral estimate at the end of the chosen averaging time. 

The controller provides the control signals for the low pass filter' 

integrators and synchronises the clocking of the Walsh function 

generator and the shift register stack in each computation sub-cycle. 



At the the end of each computation the controller generates the control 

signals that initiate the shifting of the coefficients out of the 

shift register stack and the squaring and adding of each sequency 

pair to a single location in the running sum store. At the end 

of the averaging time the controller detects the largest number 

present in the running sum store, notes its sequency and stores it 

so that it might be displayed. 	The detection scheme could utilise 
(9) 

the first to overload principle. 	S 
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APPENDIX.- A 

PROCESSOR DISPLAY AND COMPUTATION PROGRAMS 

(1) Display Loop Program 

*- 
200 

- 

SET, CLA CLL 

TAD X /set starting address in auto 

DCA 10 /index register. 

TAD N /set number of locations to 

DCA N 	. /be displayed. 

BEGN, CLA CLL  

TAD Z /set duration of display. 

DCA Q 

TAD 110 /get coefficient. 

SNA /skip on negative A.C. 

JMP PLS 

RAL /form offset binary of negative number 

CLL /in A.C. 

RTR 

RAR 

DYS /load display register and display. 

ISZ Q 

imp -1 

ISZ N /test if all coefficients have been 

JMP BEGN /displayed. 

JMP SET 

PLS, CLL /form offset binary of positive 

RAL /number in A.C. 

GTL 

RAR 
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RTR 

DYS 	/load display register and display. 

ISZ Q 

JMP -1 

ISZ N 	/test if all coefficients have been 

JNP BEGN /displayed. 	- 

JNP SET 

	

X, 	 /starting address of coefficients. 

/number of locations to be displayed. 

	

N, 	0000 

/duration of display of each location. 

	

Q, 	0000 	 V  

(2) Computation Program 

Initialisation Routine 

* 
2200 

CIA CLL 

TAD TkLY /set number of locations to be 

DCA INC 	/cleared. 

TAD kDRS /set starting address of running sum 

DCA 11 	/locations. 

	

STRT, 	CIA CLL 	/clear location whose address is 

	

• 	DCA •1 11 	un auto index register 11. 
ISZ INC 

JMP STRT 

TAD ION 	/set up interupt instructions 

DCA 2 	/in page zero. 

	

• 	TAD GOTTO 	 V 

	

V 	
DCA 1 



TAT) 	I PASS /set number of interupts to 

CIA /be processed. 

DCA 	INUMB 

ION /activate interupt circuit 

JMP 	+ 1 /hold computer in waiting 

JMP 	1 /mode. 

TALY, 7324 

INC 0000 

ADRS, 0715 

ION, 6001 

GOTO, 4404 

PASS, 2062 

NuMB,' 2057 

Floating Point Routine 

* 
2000 

COMP, 	0000 

CIA CLL 

TAD COEF /set starting address break request 

DCA 11 /locations. 

TAD TAJJY /set number of computations 

DCA INC /to be performed. 

TAD ADRS /set starting address of running sum 

DCA 12 /locations. 

TAD PNTR /set starting address of running sun' 

DCA LOG /locations for floating point package. 

STRT, 	TAD EXP1 /form floating point equivalent 

DCA EXP /of coefficient specified by address 

TADI 11 /in location 11 

DCA HORD 

DCA LORD 
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TAD LOC /set address of location to which 

TAD 3 /squared coefficient will be 

DCA LOC /added. 

JMS. 17 /call floating point package. 

MOR /normalise coefficient. 

PSQR /square coefficient. 

FADDI LOC /add result to address in LOC. 

EXIT /éxit from floating point package. 

TAD EXP /put result in address 

DCA I 12 /specified in location 12. 

TAD HORD 

DCAI 12 

TA]) LORD 

DCAI 12 

ISZ INC /check if all coefficients have 

JMP STRT /been squared and added. 

ISZ NUMB /check if preset number of interupts 

JMP I COMP /has been reached. 

JMP I LOGI /go to sum of squares sub-routine. 

COEF, 0377 /starting address of coefficients-1. 

TALY, 7634 

INC, 0000 

.ADRS, 0715 /starting address of running sum locations-1. 

PNTR, 0713 

3, 0003 

LOC, 0000 

EXPI, 0013 

NUMB, 0000 

PASS, nnnn /preset numbers of interupts. 

LOGI, 3400 /address of sum squares sub-routine. 
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Logarithm Routine 

* 
2063 

LOG, 

STRT, 

CLA CLL 

TAD ADRSI 

DCA 12 

TAD TLLY 1 

DCA INC 

TAD EXP1 

DCA EXT 

TA]) PASS 

DCA HORD 

DCA LORD, 

TAD DISP 

DCA 11 

J1VIS 17 

FTOR 

FLOG 

F PUT B 

EXIT 

CLA CLL 

TAD I 12 

DCA EXP 

TAD I 12 

DCA HORD 

TA]) I 12 

DCA LORD 

JMS I 7 

FLOG 

PSUB B 

FNPY A  

/set starting address of sum of 

/squares locations. 

/set number of computations. 

/form logarithm of number 

/of interupts. 

/set starting address of locations 

/to be displayed. 

/call floating point package. 

/normalise 

/form natural logarithm 

/exit from floating point package. 

/get spectral sum and put 

/in floating A.C. 

/call floating package. 

/form natural logarithm. 

/smooth spectral point. 

/change to log.to  base 10 and scale. 



FIX, 

GO, 

DONE, 
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EXIT 

CLA CLL 

TAD EXP 

SZA 

JMP. 	+3 

CIACLL 

JNP 	DONE+1 

TAD 	-EXP1 

SNA 

JMP 	DONE 

SNA 

imp 	ERROR 

DCAEXP 

CLL 

TA]) 	HORD 

SPA 

CML 

RAR 

DCA 	fiORD 

ISZ 	EXP 

JMP 	GO 

TAD 	fiORD /get fixed point number and deposit 

DCA I 11 	/in location to be displayed. 

ISZ 	INC /finished? 

imp 	STRT 

JYTP I DSPLY /go to display routine. 

CIA 	CLL /if number is too big to be fixed put 

TAD 	MAX /maximum number in location to 

DCA I 11 	/be displayed. 

ININC 

JMP 	STRT 

JMP I DSPLY 

/exit from floating point package. 

SNA 

/form fixed point formate of num

/floating A.0 

ber in 



-EXP1, 

A, 

LE 

MAX, 

DSPLY, 

DISP, 

ADRS1, 

TALY1, 

7765 

0006 

2557 

0120 

0000 

0000 

0000 

3777 

0200 

0554 

1371 

7716 

-A7-- 

/-13 

/scaling factor equivalent to 

/100 log 10e. 

/location to store natural 

/logarithm of number of interupts. 

/starting address of display loop. 

/starting address of locations to be displayed. 

/starting address of spectral sums. 

/-50  

Sum of Squares Routine 

* 
3400 

CIA OLL 

TAD ADRS /set starting address of running sum 

DCA 12 /locations. 

TAD TALY /set number of computations. 

DCA INC 

TAD PNTR /set starting address of spectral sums. 

DCA 11 

BGN, 	CIA CLL 

TAD I 12 /get floating point number from 

DGA EXP /address in location 12. 

TAD   12 

DCA HORD 

TAD I 12 

DOA LORD 

TAD I 12 /get next floating point number from 

DCA B1 /address in location 12. 



TAD I 12 
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DCA 	B2 

TAD I 12 

DCA 	B3 

J1ffS 	17 

FADD B 

EXIT 

TAD 	EXP 

DCA I 11 

TAD 	I-lORD 

DCA I 11 

TAD 	LORD 

DCA I •1i 

ISZ 	INC 

JNP 	BGN 

JI4P I GO 

TALY, 7716 

INC, 0000 

ADRS, 0715 

PNTR, 1371 

GO, 2063 

BB1 , 0000 

 0000 

 0000 

/call floating point package. 

/add. 

/exit from floating point package. 

/put result in location for 

/spectral sums. 

/have all computations finished. 

/go to beginning. 

/go to address in GO. 

I- 50. 

/starting address of running sum locations. 

/starting address of spectral sums. 

/starting address of log, routine. 

The locations designated by EXP, HORD and LORD are the locations 

of the floating accumulator in the floating point package. 
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APPENDIX - B 

Amplitude Spectrum of Sinusoides and Walsh mctions 

The integral equation 

	

I(to,K) = 	Wal(k,t) cos(t-o)dt = Re2 	Wal(k,t)etdt 

.... (i) 

T = interval of definition of the Walsh functions 

= relative phase shift 

defines the sequency coefficients of the Walsh series 

expansion of a sinusoidal or the fourier series expansion of a Walsh 

funôtion. 	. 	. . 	. 

Due to the nature of the Walsh functions the integral 

equation can be represented as a sum of sub-integrals whose number 

is defined by the order of the highest sequency Walsh function 

present in the set. 	Therefore equation (i) becomes: 

jo( 
It 	 _j Wt 2t 	-jit 

fWal (k,t ) e  3t 0() 	= 	1, Wa1(k,t)edt + fWal(k,t)edt +.... 

LC 
+ 	I 	Wal(k,t)edt ] 	 .... (2) 

(2fl_1 )t 

defined by 2'. n = order of the set of Walsh functions 

letting T = 1 then '= 

Within the time interval 't the Walsh functions assume either of two 

values +1 or -1 and therefore can be taken out of the integral signs, 

hence equation (2) becomes:- 



Elm 

jO( 

ef1 Wal(k,t)e tdt = -- [Wal(k,0)(1-e ° 	k,t)e 	(1-e
;J  ) + Wal( 	

'r 	-(AJ )  

.0 	 jLi) 

+ Wal(k,(2-1 )) e_3 2  _1 )t(i_e_ WIC)  1 

= e(l_e_3W 	
[Wal(k,O) + Wal(k,t)e 	+.. .+Wal(k,(2fl_l)t)e32_1 )t1 

jW 

let a = e—j wt  then equation (3) becomes 

jo( 	 fl
-1 )a 

 2 fl-1 
e ( 1-a) [Wal(k,O) + Wal(k,-)a + .....+Wal(k, 2 

j(s.) 

For the set of two Walsh functions equation (4) has the 

values:- 

k binary k gray code k Walsh function 

0 	0 	 0 

1 	1 	 1 

1 	1 

1 	- 

eauation - 4 

1-as , 	' jo 
--;). 1 +a) e 

(1 a)eJX 

for the set of four Walsh functions:- 

k binary k gray code k . Walsh function 	equation - 4 

0 	o 0 	0 0 	1 1 1 1 	
jW 

= e(i—a)(i+a)(1+a2 ) 
j  

1 	01 	01 

2 oe, 1 - = eja) (1+a)(1-a ) 
j() 

e ° (a-1 )(i +a-a2-a3 ) 
3W 

2/ 



k binary k gray code k Walsh function 	equation - 4 

2 	10 	11. 	1 --1 
	 )(i -a-a2  +a3\  

e J0C( l _a)(i_a )( l _a  2 )  
3W 

3 	1 	1 	•1 	0 

- eJ(l_a)(l_a)(l+a2) 

3W 

1 - 1 	e3° (a-1 ) 0 -a+a2-a3 ) 

and for the set of eight Walsh functions:- 

2i binary k gray code k Walsh function 	 equation - 4 

2 3 4 5 6 7 1+a+a +a +a +a +a +a ) 0 000 	000 	1.11 111 11 
3W 

- (1-a)(1+a)(1+a?( 1*ia ).e 
- jW 

 
0 0 1 	0 0 1 	1 1 1 1 - - - - e(i-a)(i+a+a 2+a3-a -a -a 6_a  7 )  

3W 

(1_a )(1 +a )(1 +a2 )(1 -a ).e 
jw 

2 0 1 0 	0 1 1 	1 1 - - - - 1 	
e((1_(1+a_a2_a3_a4_aS+a6+a7) 
3W 

= (1-a)(i+a)(1-a2 )(1-a4 ).e 
3W 	 : 

3 01 1 	0 i 	1 i - - 1 1 - - e ° (1-a)(1+a-a2-a+a4+a5-a6-a7 ) 

= (1-a)(i+a)(1-a2)(1+a4)e 
3W 

_______ 	a +a +a -a - -a +a7
) 4 1 0 0 	1 1 0 	1 - - 1 1 - - i e3 (1-a) (1 -a- 2 3 4 5 6 7 

3W 

= (1-a)(1-a)(1-a 2 )(1+a4 ).e 
3W 



k binary k gray code k Walsh function 

5 1 0 1 	1 1 1 	1 - - 1 - 1 1 - e(1-a)(1-a-a
2+a3-a4+a5+a6-a7 ) 

1w 

- 

jw 

6 1 1 0 	1 0 1 	1 - 1 - - 1 - 1 e(l -a)(1 -a+a
2-a3-a4+a5-a6+a) 

= (1-a)(1-a)(1+a2)(1-0).e °  
jW 

7111 	100 	
1111e(1-a)(1-a+a 234567) 

jW 	

a +a a +a -a 
- 

- (1_a )(1 a)(1 +a2 )(1 +a4 ) .e 3 

jw 

From the above expansions it can be seen that if the factors 

(1-a) and (i+') were equated to fljIt  and "0" respectively, then 

each factored expression bears a simple relationship (gray code) to 

the binary number representation of the relevant Walsh function 

ordered in increasing number of zero crossings. 	Therefore equation 

(4) can be simply evaluated by converting the number k to gray code 

and multiplying the respective factors corresponding to the 11 1" 

and 110" in the gray code of k. 	In general each factor (1-a ) 

or (1+a ) has the value: 

= 1_ 
	= 2je 

	

Jx 	3  sinq = 2 	 - 2 

= l+eX = 2e 3 	cosq = 2 cosq.e 12 

where 

X = wt=n ; q = 0,1 2,4,8,16 .....,2 h1.; n = 0,1,2,3,4.... 

in the case of the set of eight Walsh functions theexpression for 

1 
the integral equation takes on the following values (t= -9):- 
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•irf 
Sifl 	 j 	j(o + ) 

4 	 ..sin --.sin.--.cos --.e 2.e 
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• 	7rf 
Sifl
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5 	 -.sin --.sin --.sin --.e 	e 	2
71f 

8 

TCf 

	

Sill 
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Trf
8  

In the above set of expressions the term e -07 occurs because 

the integration is taken over the interval (o,i) instead of (-4-,+), 
to 

therefore neglecting the term e 2 and taking the real part of the 

above set of expressions we will have:- 



Ifim 

itf 	irf 
k = o 	c(w,o) = QM Coscoscos 	.coSO 

irf 
k = 1 	s(,i) = —Q() cos --.cos - -.sin --.sin 

nf 	7cr 	7tf 
k = 2 	C(w,i) = -Q(w).cos 8--.sin --.sin --.cos 

, 	' 	 irf 	.' 	7S,tf 
k = 3 	Sw,2) = -Q(üi).cos -.S1n 74  cos 2-- .S1flb< 

/ 	' 	 . 	 icf•. 	tf 	irf 
k = 4 	Cu,2) = —Q(w) 	--.s1fl -- .COS -- .COS 

wf . Uf 
k = 5 	S,3) = Qo).sin 8-.S1n 

-- .S1fl 

c'(w,3) =Q(,).sin 	.cos 1.sin 2 - 	 ..coscx 

itf 	irf 	TEf 
k = 7 	S(ti,4) = -Q(w).sin 8-.cos —4  cos --.sin 

Sjfl  TEf 
where Q(w) = 	8 ; C(w,m) and s(w,m) are the coefficients of 

8 

the even and odd Walsh functions Cal(m,t), Sal(m,t) respectively and 

in is the sequency which is given by 

• 
 ~ 7 ,even

iiodd k 

 k 

Vhen cX = 0 in the above set of expressions corresponding to a cosine 

in equation (1) only the even coefficients are presented vice-versa 

TE 
for o = 7  corresponding to a sine in equation (i). 	. 



mom 

For the set of eight Walsh functions the power density at 

each seqency is a sum of the squares of the coefficients of Walsh 

functions having that sequency. 	For the case of a sequency of (1) 

the power density is: 

+ S(o1) 2  = 	
2 irf . 2 itf 	2 	

cos2
o + . 2itf . 2 

cos 	sin 2—(cos T 	sin - S1nc) 

this expressiOn will be invariant to the phase shift 0< when: 

cos - = sin - 

that is for £ = 2r+1; r = 0,1,2,3; f = odd integer frequency. In 

the case of a sequency of-2-the power density is invariant to the 

phase shift angle when: 

cos 	= sin 

that is for f = 2+4r, r = 0,1,2,3; f = even integer frequency. 

In general the sequency power spectrum of sinusoides is 

invariant to phase shift angle for integer frequencies (integer 

relative to the period of definition of the Walsh functions). 	For 

fractional frequencies the coefficients of the Walsh functions of the 

same sequency will not be equal and the power density at a sequency 

of m and an arbitrary phase angle 0 will be 

S2 (o,m) sin  0 + c2 (ui,m) Cos 2Ø 

= HS 	+ C2 (,m)] + +[C2(t&,,m) - S 2 (w,m)] cos 2 0 



Referring to Figure B-i (where T is the period of the 1Ta1sh 

functions and 0 is the angle due to the fractional part of the 

sinusoidal frequency) it can be seen that for an arbitrary starting 

angle cc. the pth power density will be equal to 

+[s2(,m) ±C2 (w,xn).] + +[C2(,,m) -s2 (w,m)]cos2(o + (p-i )e) 

.... (6) 

and the sum of the p power densities will be 

[S2 (w,m) ± C 2 (w,m)] + 	c2 (w,m) - s2 (,m)]. 	cos 2(0< + (v-i )e) 

(7) 

9 

now 	cos(20<+ 2(r-1)e) = Re.ej2(<+ (r-1 )E)) ()  
r=1 	 r=i 

R.e320<(1+e32O + e 49  + e60 +....ej(22)0 

Re. e3( 20< 	(p-1)0) sinpO 
sine 

therefore ' 	cos (20(+ 2(r-1)e) =Re ej(2CK 	sinpO 
sine 

r=i  

= COS (2 0<-i- (p-i )e) sinpO 
sinO 



ffm 

Substituting the above into equation (7) will give:- 

(average power density) 	= -(S2 (,m) + C2 (,,m).+ +(C2 (w,m) at sequency m 

S2(,m)).cos(2o(+(p-1)0) sinpO 
sine 

for frequencies where f = integer + 71 ,11 - or ~ cycles e will be 

it or 	respectively. 	For an even number p the phase dependent 

term in equation (ii) will equal zero in the case of 0 - 2' 2 
s since npe i 	= o/i, while for the case 0 = it the phase dependent sine 

sinpO part of equation (ii) will be multiplied by p cos2b(, since 	= 
sinO 

0 
•5. 
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APPENDIX C 

Absolute Value of Walsh Coefficients 

for Various Sinusoidal Frequencies of One 

Volt Amplitude 

Walsh 
Ccffident 

for  

frequency 	cycles/second 

f=l f=2 f=5 f=6 f=11 f=12 f=1 5 f=1 6 

sal 1 .I.-15 o . 0 '35 0 

cal. 1'  637 0 •IcL75 Q 0 °4'35 0 

sal 2 • 0 2/22. 0 0 0 0 

cal 2 0 637 0 •212 0 0 () 0 

sal 3 0 30 0 14j C 

cal 3 07_4' 0 1'ii 0 0 

sal4 0 o 0 0 0 I 0 0 

cal  0 0 0 0 0 0 0 

sal 5 •0546 0 0 ai0q 0 .0036 0 

cal 5 •05L C •q59 o -.21 	It 0 0036 0 

sal 6 0 0 5115 0 0 0 0 

cal 6 0 0 .5116 0 0 o o 

sal 7 
-1,269 o 0 .0946 o .0084 o 

cal 7 
0 0 0 0 

sal8 0 0 0 0 0 0 0 0 

cal  0 0 0 0 0 Q 



Sal 9 •otz 0 1O. 16.3 0 09 57 Q 

cal 9 0 102. •162..3 0 •O57 0 

sal 10 o 05&6 o. o 0 0 0 

cal 10 o •05t6 0 -3415 0 o o 0 

sal 11 .O5 0 0 •31. o •035 0 

cal 11 -005 0 0 391Z 0 •05 0 

sal 12 1 	0 0 0 o •5115 0 

cal 12 0 0 0 0 0 •51(5 0 0 

sal 13 • oz o •.i .  . z' .0 .(7f 11 0 

cal 1 3 
0 .163 0 .I'/ 0 . 178 11 0 

sal 14 0 bZ 0 •/4'/'f 0 0 0 0 

cal 14 0 	. (.z6 0 .Iqtq 0 0 0 a 

sal 15 .o63 0 .07 0 •!o 0 '41307 0 

cal 15 o(3 0 •o1 0 . 	a •11307 0 

sal 16 0 0 0 

cal 16 0 0 0 0 0 o 0 37 

sal 17 003 0 -017 0 -oj 0 •3776 0 

cal 17 	. .003 0 .017 0 .°, 0 1 .3q7s 0 
sal 18 o •i..t o oZ4' 0 0 0 0 

cal 18 0 •o/,. 0 •o 4'.z4' 0 0. 0 0 

sal 19 °° 0 O//5 0 '1571 0 1 1621 0 

cal 19 -0013 0 •01115 . C 157/ 0 0 



—C3-- 

sal 20 0 0 0 0 0 3/S 0 0 

cal 20 0 0 0 0 31i5 0 0 

sal 21 •000,2.. 0 -o Q 2306 0 •032Z 0 

cal 21 -0002. 0 

sal 22 0 005 0 1035 0 0 0 0 

cal 22 0 oo5 0 •1035 0 0 0 0 

sal 23 0 •0125 Q 0972 0 •077 0 

cal 23 .0(06 0 0 0 0778 0 

sal 24 0 0 0 0 0  . 

cal 24 0 0 0 0 0 0 Q 0 

sal 25 OO 0 .Oq35 0 0522 0 0 1f 0 

cal 25 'oo&. 0 'q5 0 	. •0S22 0 •O( 0 
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