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In the present thesis consideration has been given to some of 
the problems concerning human aneuploidy. Its frequency and origins 
are discussed and the hypotheses to account for it are presented.

Three different experimental approaches have been adopted 
to examine the aetiology of human aneuploidy. Two of these examine 
factors responsible for the maternal-age effect, i.e. the phenomenon 
of increasing aneuploidy with increasing age in the human female. 
In the first of these the XO mouse has been tested for suitability 
as a model for the human female; in the second, unilateral ovariectomy 
has been used as an experimental means of separating the effects of 
physiological and chronological ageing. This model proved more 
successful than the first and the implications for maternal-age-related 
aneuploidy are discussed.

In the third experimental Chapter the potential contribution 
to aneuploidy induction of germ cell exposure to chemicals is assessed. 
Three chemicals, one of which was known to be a strong aneuploidy inducer 
in lower organisms, were tested. The role of chemicals in mammalian 
aneuploidy induction, and the feasibility of routine testing for 
aneuploidy by chemical substances is discussed.

In the final chapter, consideration is given to the possible 
means of reducing the incidence of aneuploid conceptions in man, and 
to the development of future aneuploidy research.
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PREFACE 

TOWARDS AN UNDERSTANDING OF THE AETIOLOGY OF HUMAN ANEUPLOIDY

The term aneuploidy appears to have been introduced into the 

literature by Tackholm (1922) and describes a condition in which 

cells, or individuals, have one or more chromosomes, absent from, or 

in addition to, a euploid complement. The most common mechanism to 

give rise to aneuploidy is thought to be non-disjunction. Bridges 

(1913) first used the term non-disjunction to account for the process 

during Drosophila oogenesis in which the two X chromosomes failed to 

disjoin from each other resulting in the production of 'exceptional 1 

flies with XXY and XO genotypes.

In a strict sense, non-disjunction can be defined as:

"The failure of chromosomes contained in pairing 
configurations to separate regularly at anaphase I 
of meiosis or the failure of sister chromatids to 
be distributed to opposite cell poles at anaphase 
II of meiosis or at mitotic anaphase".

In all cases, aneuploid products are the result. Often, however, 

non-disjunction is a term which is used loosely to describe any defect 

in the cell process which gives rise to aneuploidy. For example, 

aneuploidy may also arise by "non-conjunction" associated with 

pairing failure at meiotic prophase (Belling, 1925) or by "defective 

centromere division" a phenomenon also known by such names as "pre- 

division" (Polani and Jagiello, 1976), "pre-segregation" (Hansmann 

and El-Nahass, 1979), and "precocious centromere division" 

(Threlkeld and Stolz, 1970). As in the case of 'true 1 non-disjunction, 

all these latter mechanisms produce aneuploidy by an error of segre­ 

gation so that complementary (n+1) and (n-1) products result.



Some aneuploidy may arise through lagging of a chromosome 

on the metaphase spindle, such that the chromosome is lost from one 

of the products of the division. Chromosome loss leads solely to 

the production of (n-1) gametes.

Gametes arising from such errors of division are termed 

nullisomic (n-1) and disomic (n+1): the offspring resulting from 

these are monosomic (2n-l) and trisomic (2n+l) respectively.

The defects giving rise to aneuploidy are, for the purposes 

of the present thesis, of less interest than the factors which 

operate to bring them about. It is the aetiology of aneuploidy 

to which the present thesis will address itself.

Of all investigated species, man appears to show a peculiarly 

high level of aneuploidy among its conceptuses. Indeed it appears to 

show a spontaneous frequency of momosomy and trisomy of an order of 

magnitude greater than most other species (Ford, 1975). The contri­ 

bution of aneuploidy to human foetal loss by spontaneous abortion, 

to perinatal death, and to the abnormalities among liveborns has 

been well documented (Carr, 1971; Jacobs et al> 1974; Warburton 

et aly 1980). Furthermore it is widely believed that numerical 

chromosomal abnormalities are responsible for foetal wastage even 

before pregnancy is recognised (Boue and Boue, 1973; Ford, 1975; 

and Kajii et dl, 1978).

In man, there is a very marked increase in aneuploidy 

associated with maternal ageing, not only for such liveborn 

conditions as trisomy 2.1 (Down's Syndrome) but also for many of 

the other small chromosome trisomies which result in spontaneous 

abortion (Hassold et al, 1980). The cause of this age-related



rise in aneuploidy remains one of the major unsolved problems in 

human cytogenetics.

According to Penrose and Smith (1966) and Hook (1981) the 

maternal age dependent increase in aneuploidy accounts for approxi­ 

mately 4Q%-60% of all cases, consequently the remaining proportion 

must be associated with factors independent of maternal age. 

Suggestions to account for this maternal-age-independent aneuploidy 

include genetic predisposition, use of the contraceptive pill 

(Read, 1982), and exposure to X-irradiation and environmental 

chemicals. This latter category has been the subject of increasing 

interest in recent years. Industries involved in the production 

and marketing of drugs and other chemical substances, and government 

bodies have become increasingly concerned with the protection of 

both individual workers and entire populations from potential 

exposure.

The work described in the present thesis relates principally 

to two questions. Firstly; what factors are responsible for or 

associated with maternal age dependent aneuploidy? Secondly, could 

chemical substances induce aneuploidy in higher organisms?

In the first part of the thesis the problems of aneuploidy, 

its frequency, origins, the age-effect and hypotheses to account for 

it will be outlined. In the second part three different experimental 

approaches will be reported in which the mouse is used as a model to 

examine the aforementioned questions on aneuploidy induction.

The first of these three experimental chapters will address 

itself to the segregation of chromosomes in the XO mouse, an animal 

which has been suggested by some (Lyon and Hawker, 1973) as a good



model for the ageing human female in terms of aneuploidy production. 

The second experimental chapter again concerns the role of ageing 

in aneuploidy production. The use of unilateral ovariectomy on the 

CBA mouse, to shorten the reproductive lifespan, will be described. 

By this means physiological ageing of the ovary can be advanced in 

relation to the chronological age of the mouse. The aim has been 

to separate the influences of these two types of ageing in order 

to determine which is more important in influencing age related 

aneuploidy production. The third and final experiment involves 

the testing of four chemical compounds on mouse germ cells. All 

the chemicals were selected either on the basis of their known 

ability for inducing non-disjunction in lower organisms, or for 

some indication that they might have a potential for non-disjunction 

induction in the mouse. Furthermore, the potential of mouse germ 

cells in the routine testing of chemical substances for aneuploidy 

induction will be discussed.
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PART 1 — HUMAN ANEUPLOIDY - THE STORY SO FAR



CHAPTER 1 

A GENERAL INTRODUCTION

1.1 THE FREQUENCY OF HUMAN ANEUPLOIDY 

1.1.1 Evidence from Liveborns

From the data of ten independent chromosome surveys on the 

newborn human population, compiled by Bond and Chandley (1983), the 

overall level of aneuploidy at birth is put at 0.31% (see Table 1.1). 

The three principal autosomal trisomies found in the liveborn studies 
are those for chromosomes 13, 18 and 21. Other autosomal trisomies 

which occasionally also survive to term in man are No. 8 (Riccardi, 

1977), No. 9 (Feingold and Atkins, 1973), and No. 22 (Bass et al, 
1973), but these are rare and have never been found in any newborn 

survey.

Trisomy 13, or Patau's syndrome (Patau et al, 1960), has an 

incidence of approximately 1 in 20,000 births, with the majority of 

affected infants dying within the first few months of life. 

Infants with trisomy 18, or Edwards' syndrome (Edwards et al, 1960), 

with an incidence of about 1 in 10,000, also rarely survive for more 

than a few months. Both trisomic conditions have been found to be 

maternal age related (Magensis et al, 1968; Taylor, 1968).

The most common viable autosomal aneuploid condition, however, 

is trisomy 21 which constitutes nearly 90% of all the liveborn aneuploid 

individuals, occurring in about 1 in 600 newborns. This condition 

known as Down's syndrome, was named after John Langdon Down, a London 

physician credited with the first extensive clinical description of 

the syndrome (Down, 1866).
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8,

The association of Downs syndrome with an extra G-group chromo­ 

some, i.e. No. 21, was first demonstrated by Lejeune et al (1959) and 

subsequently confirmed by Jacobs et al (1959). Trisomy 21, like 

trisomy 13 and trisomy 18, arises principally by an error of segre­ 

gation at meiosis in one or other parent, the aneuploid offspring 

thus being a simple "primary" trisomic carrying an extra whole 

chromosome 21. For Downs syndrome, about 95% of all cases arise

in this way. The remaining few arise from parents carrying a
(21) (21) D/G V or G/G V ' Robertsonian translocation, and are thus

"tertiary" or "translocation 11 trisomics. Such cases are also 

described as "translocation Down's" individuals (Polani et al 9 

1960). There is also a minority of cases which arise by ferti­ 

lization of a trisomy 21 germ cell produced by a trisomy 21 

mosaic individual (Clarke et al, 1961). The discussion in this 

thesis will be confined to Down's syndrome individuals arising 

as primary trisomics.

A greater contribution to human liveborn aneuploidy is made 

by the sex-chromosome aneuploids, many of which are viable, 

although the phenotypic effects of these are much less severe 

than those of the autosomes. About 1 in every 500 males and 1 

in 800 females show non-mosaic sex-chromosome aneuploidy (Table 

1.1). This represents 1.7 per 1000 births which are aneuploid 

for a sex-chromosome compared with 1.4 per 1000 with an autosomal 

aneuploidy. Of the sex chromosome aneuploids which come to term 

in man, the four most common are XO and XXX in the female and XXY 

and XYY in the male.

The XO condition, first diagnosed cytologically by Ford 

et al (1959) for females afflicted with Turner's syndrome



(Turner, 1938) is the least common of the four, arising in the 

newborn surveys with a frequency of about 1 in every 6000 females 

(Table 1.1). The XO condition, however, is found frequently in

spontaneous abortions (see next section), unlike the other sex- 

chromosome aneuploidies which are rarely found.

In the same year that the XO condition was linked to Turner's 

syndrome, Jacobs et al (1959)demonstrated the association and 

Klinefelter's syndrome (Klinefelter et al 9 1942). This syndrome 

is characterised by aspermotogenesis and increased follicle 

stimulating hormone. The XXY karyotype is found with a frequency 

of about 1 in every 1000 liveborn males.

The XYY condition, associated with tall, stature, was first 

described cytogenetically by Sandberg et al (1961). It is found 

at a frequency of about 1 in 1000 amongst newborn males, and occurs 

more frequently amongst inmates of reformatories and other penal 

institutions (Jacobs et al, 1965).

The most frequent sex-chromosome aneuploidy amongst liveborn 

females is trisomy-X, found in about 1 in every 1000 females 

(Table 1.1). Human XXX females show variable phenotypic features, 

with no clear-cut syndrome. Most are sexually normal and fertile, 

but in many there is a moderate lowering of intelligence (Ratcliffe 

et al, 1979).

1.1.2 Evidence from Perinatal Deaths and Spontaneous Abortions

In 1974, Machin and Crolla published the first systematic 

study of the incidence and type of chromosomal abnormalities found 

amongst stillbirths and early neo-natal deaths. Subsequent studies



10.

by Bauld et al (1974), Kuleshov (1976), Alberman and Creasy (1977) 

and Sutherland et al (1978) have established that the level of 

chromosome abnormality found amongst perinatal deaths is about 

5%, i.e. about ten times higher than the level in the liveborn 

population. The most frequent autosomal trisomies found amongst 

the perinatal deaths are those for chromosomes 13, 18 and 21. Over 

90% of trisomy 13's and 18's die perinatally compared with only 10% 

of trisomy 21 cases (Machin and Crolla, 1974; Alberman and Creasy, 

1977).

Estimates of the spontaneous abortion frequency from all 

recognised pregnancies vary from 15% (Warburton and Fraser, 1964) 

to 24% (French and Bierman, 1962). Furthermore, spontaneous 

abortion surveys have shown that about 50% of all cases are due to 

chromosomal abnormality (Jacobs and Hassold, 1980). Figure 1.1, 

however, shows that there is both qualitative, as well as quanti­ 

tative, variation in foetal loss at different stages of gestation, 

with the earliest losses including a large proportion which are 

chromosomally abnormal and the later abortions far less (Alberman, 

1981).

Table 1.2, adapted from Bond and Chandley (1983), shows the 

frequencies of different types of chromosome abnormality found in 

seven spontaneous abortion surveys in which banding techniques 

were used. From this it can be seen that over 93% of the 

abnormalities are numerical, with 70% being aneuploid. The 

single most common chromosome anomaly is monosomy-X which 

represents about 20% of the total. Assuming that the minimum 

estimate, as suggested by Warburton and Fraser (1964), of 15% 

of all recognised pregnancies result in spontaneous abortion,



Fig.H
Percentage of chromosomal abnormalities in abortuses lost after 
different periods of gestation in three studies (Creasey, Crolla and 
Alberman, 1976; Kajii, personal communication; Leridon and
Boue, 1971) (Taken from Alberman, 1981)
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Table 1.2 Frequency of different types of chromosome abnormalities
found in six spontaneous abortion surveys employing the 
use of banding techniques (Taken from Bond and Chandley,

Survey

Lauritsen 
et ai 
(1972)

Therkelsen
et ai 
(1973)

Kajii 
et ai 
(1973)

Boue 
et ai 
(1975)

Creasy 
et ai 
(1976)

Hassold 
et ai 
(1980a)

Totals

% of all
• ^ * . •

45, X 3n 4n Autosomal Mosaicism 
trisomy

12 3 4 14 0

39 14 10 66 4

12 10 5 51 0

140 183 57 495 10

68 38 12 143 12

112 70 33 212 12

383 318 121 981 38

19.9 16.5 6.3 50.9 2.0

Structural Others 
abnormal­ 
ities

1 0

6 0

3 1

35 1

10 4

20 4

75 10

3.9 0.5

1983)

Total

34

139

82

921

287

463

1926

abnormalities
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half of which are chromosomally abnormal, and 20% of these are

XO, then it would appear that 1.5% of all recognised pregnancies

are XO. Ford (1981) suggests 1.26 in 1000 (0.13%) as a reasonable

frequency for XO zygotes arising through non-disjunction. It would

appear, therefore, that the majority of XO zygotes arise by means

other than non-disjunction (see later under 'origins' also). In contrast

to the frequency of monosomy-X among the abortions, autosomal

monosomics are rarely found. This is thought to be because there

is very early selection against them in utero. In the mouse it is

known that virtually all autosomal monosomics die at or around

the time of implantation (Gropp et al 9 1975).

Apart from the peculiar case of monosomy-X however, the 

contribution of the sex-chromosome aneuploids to spontaneous 

abortions appears to be negligible. From collective data obtained 

in several independent chromosome surveys on spontaneous abortions, 

it would appear that trisomics for the small chromosome (13-22) 

comprise 77% of the total, with trisomy 16 alone accounting for 

nearly one-third of the cases (Bond and Chandley, 1983). Trisomies 

for chromosomes 3, 5, 17 and 19 are rare and trisomy 1 has never 

been found in a spontaneous abortion (Jacobs and Hassold, 1980). 

Trisomy 21, despite being the most frequent liveborn trisomy, is 

also one of the most common trisomics among spontaneous abortions 

being found in approximately 2% of all cases. Creasy and Crolla 

(1974) suggest that about 70% of all cases of trisomy 21 are 

lethal before 28 weeks gestation. It must be remembered, however, 

that the rate of recovery of a particular trisomic condition 

amongst the spontaneous abortion sample will depend, not only on 

the extent to which that chromosome pair undergoes non-disjunction,
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but also the extent to which the trisomy is selected against in 

early gestation.

1.2 THE ORIGINS OF HUMAN ANEUPLOIDY 

1.2.1 Data from Liveborn Trisomics

Licznerski and Lindsten (1972) were the first to utilize 

fluorescent chromosome polymorphisms to trace the origin of the 

extra chromosome in a trisomy 21 infant to its mother. Such 

polymorphisms include alterations in size and/or staining properties 

of heterochromatic regions and chromosomal satellites. They are 

very stable features of a given chromosomal lineage (Schnedl, 

1973) and appear to be without phenotypic effect in the individuals 

carrying them. As the great majority of such heteromorphic regions 

are situated at or near centromeres, they are virtually unaffected 

by crossing-over and are, therefore, ideal markers for tracing the 

origin of chromosomal anomalies (Caspersson et al* 1970). The method 

has now been used extensively, not only to trace the origins of many 

autosomal aneuploids among liveborns and spontaneous abortions, but 

also to trace the origins of polyploidy and some de novo structural 

re-arrangements. See Jacobs and Hassold (1980) for review. These 

authors have summarized the data on 368 cases of liveborn trisomy 21 

for which the parental origin could be established in 158 (43%). 

Mikkelsen et al (1980) have also made extensive studies on liveborn 

trisomy 21 individuals, using a combination of several different 

staining techniques. From 110 families the non-disjunctional 

event was traced successfully by them in 76% of cases. The results 

from both studies, which include both fully and partially reported 

cases, are summarised in Table 1.3. Of the 237 cases in which
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Table 1.3 The origin of liveborn trisomy 21 as detected by 
the use of polymorphic markers

Study

Origin

MAT I

MAT II

MAT ?

PAT I

PAT II

PAT ?

Jacobs and Hassold (1980)

92

20

10

16

18

2

158

Mikkelsen et al (1980)

49

12

5

10

2

1

79

141

32

15

26

20

3

Total

(64.4)

(14.6)

(11.9)

( 9.1)

Figures in parenthesis represent the percentages of cases in which the 
origin of the error could be assigned to a specific parental division.
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the parental origin could be determined, 188 resulted from maternal 

meiotic errors whilst only 49 arose from paternal errors (79.3% and 

20.7% respectively). Of the 219 cases in which the error could be 

attributed to a particular division, 141 (64.4%) resulted from a 

maternal first division error, 32 (14.6%) from a maternal second 

division error, with 26 (11.9%) and 20 (9.1%) resulting from 

errors at paternal first and second divisions respectively. 

The data in these studies, however, may be biased in two ways. 

Jacobs and Morton (1977) for example, have pointed out that 

trisomy due to postzygotic non-disjunction, with loss or non- 

detection of the monosomic line, would be indistinguishable 

from second division non-disjunction occurring randomly for 

maternal or paternal chromosomes. Although this would serve to 

inflate the relative contribution of second division errors to 

the aneuploidy level, this figure still remains below 25%. 

Jacobs and Hassold (1980) have also suggested that the reporting 

of only selected cases may lead to serious biases which favour 

paternal non-disjunction, although they are unable to explain 

why this should be so. In spite of these possible biases, the 

data in Table 1.3 show quite clearly that the majority of errors 

(64.4%) resulting in cases of liveborn trisomy 21, occur at the 

maternal first meiotic division. Roughly equal contributions are 

made by errors at the maternal second and paternal first and 

second divisions. First meiotic division errors predominate 

at all maternal ages for trisomy 21 (Mikkelsen et al, 1980) and, 

where data are available, for all other autosomal trisomic 

conditions found among liveborns and spontaneous abortions 

(Jacobs and Hassold, 1980).
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The origins of the common sex chromosome aneuploids are shown 

in Table 1.4. The establishment of Xg blood group phenotypes in 

patients with sex chromosome abnormalities by Sanger et al (1971) 

and Race and Sanger (1975), has permitted the estimation of the 

relative contribution of the various maternal and paternal divisions 

to sex chromosome non-disjunction. Using this method, Cote (1973) 

has estimated that for XXY males, the relative contributions made 

by non-disjunction at the maternal first and second, and paternal 

first division are 38%, 21% and 41% respectively (Table 1.4). The 

X-chromosome in XO females is maternal in 77% of cases and paternal 

in 23%, according to Sanger et al (1977). Studies of Xg phenotypes 

in families with XXX children, however, give no information regarding 

the source of the extra chromosome (Ford, 1981).

1.2.2- Data from Trisomic Spontaneous Abortions

When considering the contribution of 1st and 2nd maternal 

and paternal divisions to non-disjunction it is somewhat surprising 

to realise that, in view of the identification of the chromosome 

involved in specific trisomics in over 1000 spontaneous abortions, 

the most comprehensive review to date (Jacobs and Hassold, 1980) 

determines the precise mechanism of origin for only 39 cases, and 

the parental origin only in a further 10 cases. The results of 

this survey are given in Table 1.5, which shows that irrespective 

of the autosome involved in the trisomy, it is almost always 

maternal in origin (92% of cases). Of the 39 cases in which the 

precise mechanism of origin was pinpointed, 33 (85%) were due to 

an error in the first maternal meiotic division. The contribution 

from errors at second maternal and first and second paternal 

divisions each made up 5% of the total.
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Table 1.4 The origin of the common liveborn sex-chromosome 
aneuploids

Liveborn
Genotype Incidence Sub-Group Source of Error 

(per 1000)

% Occurrence of 
Sub-Group Relative 
to the Whole Type

XXY 1.07 XmXPY
XmXmY
XmXmY

Paternal 1 Division
Maternal 1 s Division
Maternal 2nd Division

41%
38%
21%

XYY 1.03 Paternal 2nd Division

XXX 1.04 xmxmxp 
xmxmxp 
xmxpxp

Maternal 1 s Division
Maternal 2nd Division
Paternal 2nd Division

XO 0.17 XmO *Paternal 1 st or 2nd 
Division

*Maternal 1 st or 2 r 
Division

77% 

23%

^

See previous section (1.1.2) on aneuploidy in spontaneous abortions, as 
many XO's would appear to arise by mechanisms other than non- 
disjunction, although most are lost through spontaneous abortion.
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Table 1.5 Origin of trisomy - spontaneous abortions
(124 cases examined - origin determined 40%)

Origin Chromosome

?I ?II 13 14. .15.. 16 21 22 Total

+ - - - 2

- + - - 1 1

+ + - -

- - + - 3 1 2 12 4 11

- - - + 1 1

- - + + 1 2133

5 1 4 17 8 14

2

2 8%

0

33

2 92%

10

49

From: Jacobs, P.A. and Hassold, T.J. (1980). In "Human embryonic 
and fetal death" Ed. I. H. Porter and E. B. Hook. Acad. 
Press Inc. New York, San Francisco and London.
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1.3 THE AGE EFFECT AND HUMAN ANEUPLOIDY 

1.3.1 Evidence from the Studies Of Liveborns

Despite the observation of Fraser and Mitchell (1876), over 

one hundred years ago, that a Downs baby was often the last child 

in a large family, it was not until the 1930's that the relation­ 

ship between maternal age and Down's syndrome was clearly 

demonstrated (Jenkins, 1933 and Penrose, 1933, 1934). A mother 

aged 20 thus has a 1 in 2300 chance of producing a Down's baby 

compared with a 1 in 880 risk when 30-35 and a 1 in 54 risk over 

the age of 45 (Penrose and Smith, 1966). This proportion of cases 

which increase in frequency with maternal age is referred to as 

"maternal-age related" or "maternal-age dependent". Penrose (1961) 

has suggested from a proportional analysis that there are two types 

of Down's syndrome. Apart from the maternal age dependent group 

there is also a maternal-age independent category and this could 

well be the same for all other autosomal trisomics resulting from 

non-disjunctional events. Figure 1.2 shows the distribution of 

the two categories of Down's syndrome as suggested by Penrose 

(1961). Class 'A' events are maternal-age independent, show a 

peak frequency in women aged 28.5 years, corresponding to the 

peak for all births in the population, and represent 40% of all 

cases. These include all 'hereditary' cases (translocation 

trisomics). Class 'B' events, the maternal-age dependent group, 

represent 60% of all cases and show a peak around 43 years 

(Smith and Berg, 1976).

The "maternal-age effect" for trisomy 21 is now very well- 

documented and has been detected across national and racial
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categories with remarkable uniformity in age-dependent incidence 

rates. According to Hook (1981) the proportions of maternal age 

independent cases from Swedish, New York and Massachussetts data 

sources are 62.7%, 57.5% and 49.3% respectively. The differences 

between them are due to differences in the proportion of older 

mothers in each of the three populations, nevertheless all are 

higher than the 40% of class 'A' events suggested by Smith and 

Berg (1976), perhaps reflecting a changing trend in the ages of 

women producing children. The proportion of Down's babies born 

to older mothers will be reduced as the proportion of livebirths 

to older women declines. Recently it has been suggested that 

non-disjunction may occur with equal frequencies at all maternal 

ages with decreased embryonic selection in older women being

responsible for the apparent increase in Down's syndrome
* 

(Ayme and Lippman-Hand, 1982). This hypothesis, however, has

been previously considered by Smith and Berg (1976), and more 

recently by Carothers (1983) and criticised on a number of 

grounds. It receives, therefore, little or no support at this 

time. If the maternal age effect represents an increased risk 

of non-disjunction in older mothers, rather than an increased 

chance of carrying a trisomic foetus to term, the 'class B' 

maternal age dependent group must, by implication, arise through 

maternal non-disjunction. Moreoever, this may well be due 

entirely to non-disjunction at the first meiotic division. 

The 50%, or so, of cases shown to be maternal-age independent 

could well arise through non-disjunction at first or second, 

maternal or paternal division occurring at approximately the same 

frequency. This would produce figures for trisomy 21 arising
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through errors at maternal first division of 62.5% (50+12.5) with 

errors at maternal second and paternal first and second division 

each constituting 12.5%. These figures do not differ markedly 

from the levels observed for liveborn trisomy 21 cases in which 

the origin of the extra chromosome has been traced (see Table 1.3).

The existence of a paternal age effect for Down's syndrome 

has also been postulated but the subject is still somewhat conten­ 

tious. Penrose (1933) and more recently Hook and Cross (1982) 

consider there to be no paternal age effect. Stene et at (1977) 

and Matsunaga et al (1978) on the other hand, have reported a 

significant increase in the incidence of Down's syndrome amongst 

offspring of very old (> 55 years) fathers. Erickson (1978, 1979) 

in 3 different samples, also found no evidence for a paternal age 

effect but the data have been criticised by Stene and Stene (1978) 

on the grounds that an ascertainment bias may have existed. As 

Mantel and Stark (1967) pointed out, the reason for the difficulty 

in demonstrating a paternal age effect is the close correlation 

between maternal and paternal ages. Although the available data 

do not rule out age effects in very old fathers, they do rule out 

age effects comparable in magnitude to those seen in the female 

(Sved and Sandier, 1981). The relative contribution made by 

paternal ageing is put into sharper perspective when the origin of 

the extra No. 21 chromosome in Down's syndrome, largely maternal, 

is considered (see Table 1.3).

Carothers et al (1978) have looked recently at the relation­ 

ship between parental age and the aetiology of some sex chromosome 

aneuploids. In their view previous studies which had been made 

into this question had been complicated by sampling bias of one
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kind or another (e.g. Ferguson-Smith et al, 1964, and Court-Brown 

et al, 1969). Carothers et al (1978) found that the incidence of 

XXY's and XXX's increased at high parental ages and for XXY's 

which only arise through paternal non-disjunction, there was a 

small but significant relationship between incidence and parental 

age. The close correlation between maternal and paternal age 

makes it difficult to establish the contributions of each 

independently. The XXY results could not, however, be explained 

without a maternal age effect, and could be explained with a 

maternal age effect alone. The XXX and XYY results could not 

be explained without either a maternal or a paternal age effect 

(Carothers et al, 1978). With regard to the XXY group of 

individuals, the maternal age effect may well be stronger than 

it would appear. As stated previously, about 40% of liveborn XXY 

males arise through paternal non-disjunction and only 60% are due 

to maternal errors. Assuming similar survival of XXY's of different 

parental origin at all gestational ages, it might be predicted that 

an even stronger maternal age effect would be found were it not for 

the relatively high proportion of paternally derived cases which 

tend to mask the effect. Unfortunately, data dealing with parenta-1 

age and the specific meiotic origin of XXY cases are rare in the 

literature. Ferguson-Smith et al (1964) have reported 5 XXY cases 

in which the origin of the error and the maternal ages were given. 

Two of the cases, shown to be maternal in origin, were conceived 

by women of 39 and 41 years, compared with three XXY's shown to 

be paternal in origin which were conceived by women aged 17, 27 

and 35. The paternal ages were not given, and it was not established 

at which meiotic division the two XXY cases, shown to be maternally
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derived, originated. More data of this kind are required to 

establish a connection between age and source of error. When 

considering the effect of parental age on the aetiology of the XXX 

condition, Carothers et at (1978) did not distinguish between 

maternal and paternal origin of the extra X-chromosome (estimated 

at 62% and 38% respectively by Ford (1981)). Without further 

information on parental ages and the origin of the extra X-chromosome, 

it is not possible here either to establish the contribution made 

to X-chromosome non-disjunction by increased maternal age.

1.3.2 Evidence from Spontaneous Abortions

From a study of the origin of trisomics in human spontaneous 

abortions, Hassold and Matsuyama (1979) suggest that there are at 

least two mechanisms affecting non-disjunction at maternal meiosis I - 

one acting primarily on older women and certain chromosomes, the 

other being maternal-age-independent. More recently, Hassold et al 

(1980) have reported on the maternal age effect for autosomal trisomy 

from a series of over 1500 spontaneous abortions, of which 360 were 

trisomic. They found that trisomics, as a group, were associated 

with a substantial increase in maternal age, although considerable- 

differences existed in the magnitude of the effect for different 

chromosomes. Increasing maternal age had a pronounced effect 

on trisomics involving the small chromosomes, although for trisomy 

16 the mean maternal age was lower than for most other small 

chromosomes. In fact, Hassold &t al (1980) found it to be signifi­ 

cantly different from the mean maternal ages of chromosomes 13-22 

combined. It still displayed, however, a significant, if reduced, 

relationship with maternal age. Trisomy for chromosomes in groups
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A, B and C was associated with a moderate increase in maternal age, 

although the relationship was less clear than for the small chromo­ 

somes. The maternal age effect for autosomal trisomies found by 

Hassold et al (1980) amongst spontaneous abortions, may prove to be 

more pronounced when only trisomies of maternal first division 

origin are considered. To date, such an analysis has not been made 

owing to the limited amounts of data available.

1.4 ANEUPLOIDY AT CONCEPTION - The Projected Figure

In the previous sections it has been stated that aneuploidy 

levels among newborns, perinatal deaths and early spontaneous 

abortions are about 0.3%, 5.0% and 70% respectively. These figures 

have been derived directly, by cytogenetic study on the appropriate 

individuals or material. Figures for the level of aneuploidy at 

conception, however, can only be estimated indirectly at present. 

Current best estimates are derived, by extrapolation, from the 

levels of aneuploidy recorded in early abortions. Such figures will 

represent the levels of aneuploidy at the time of the clinical 

recognition of pregnancy. What is not known, however, is the level 

of zygotic loss, due to aneuploidy, between fertilization and the" 

earliest detection of pregnancy. In the mouse there are good data 

showing that most monosomics and some trisomies die at or around 

the time of implantation or even before (Groppet at , 1975) and the 

same is likely to be the case also in man. Cytogenetic studies 

have never been performed on such early products of human concep­ 

tion, although recent developments \r\-in vitro fertilization may 

provide the means by which these can be performed if, that is, the 

ethical problems can be overcome.
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The only available direct information on the early errors of 

human reproduction is that of Hertig et al (1956) who examined 34 

fertilized ova, all under 17 days gestation, from women undergoing 

hysterectomy operations. Of these 34 conceptuses, about one-third 

were stated to be morphologically abnormal. The authors were unable 

to evaluate how many of these pregnancies would have ended in 

abortion, although they predicted that at least some would have 

done so. These studies were carried out before the development 

of cytogenetic techniques, but, as suggested by Ford (1981), were 

they to be repeated now they could produce results of the greatest 

interest.

One method which gives a useful estimate of the frequency 

of aneuploidy in recognised pregnancies is that of Kajii et al 

(1978), who looked at very early -induced abortions. They found 

that 3.2% of such abortuses with gestational ages ranging from 

33 to 109 days post-ovulation, had a chromosome abnormality, 

although they indicated that 5% was the best estimate for a 

number of such studies combined. Discrepancies can arise, however, 

if only complete specimens are examined. Such studies produce 

much lower estimates, as in the case of 1.1% chromosome abnormality 

for the combined group of 'complete 1 induced abortuses quoted by Kajii 

et al (1978). Yamamoto and Watanabe (1978) have examined a group 

of very young abortuses with ages of 21-34 days post-ovulation, 

and found chromosome abnormalities in 10 out of 108 specimens 

(9.3%). Several other authors have estimated by extrapolation from 

the spontaneous abortion figures, that at the time of the clinical 

recognition of pregnancy 7-8% of all foetuses are chromosomally
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abnormal (Jacobs, 1972; Alberman and Creasy, 1977; and Ford, 1981). 

Of these approximately half are expected to be trisomic.

Estimating the levels of chromosomal abnormality in general, 

and of aneuploidy in particular, at the time of clinical recognition 

of pregnancy, is a good deal easier than trying to estimate them at 

the time of conception. In order to estimate the aneuploidy level 

at conception from the abortion data, it is necessary to know what 

the levels of pre-implantational and early post-implantational 

losses are likely to be. There is considerable variation.in estima­ 

tion of these. The spontaneous abortion rate, based on personal 

interviews with women, is put at 15% by Roth (1963) and Warburton 

and Fraser (1964). Other estimates, based on* life tables, which 

allow for early unrecognised losses, are higher with values of 

14-29% (Erhardt, 1963; French and Bierman, 1962). Based on the 

results of Hertig et al (1956), Carr (1.971) considers that a figure 

of 30% should be added to the estimate for the clinical abortion 

rate giving a figure of around 45% for the overall incidence of 

human conceptual losses. Based on actual birth figures and estimates 

of unprotected coitus within 48 hours of ovulation (assuming 50% 

fertilization), Roberts and Lowe (1975) have speculated that foetal 

loss could be as high as 78%.

One recent study into early conceptual loss carried out by 

Miller et al (1980) has attempted to use the rise in urinary levels 

of HCG tor recognise very early post-implantation pregnancies 

before they can be recognised clinically. In a group of 197 

normal women who were trying to conceive, a total of 623 menstrual
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cycles were monitored and 152 women found to be pregnant. From these 

there were 102 clinically recognised pregnancies, with 50 women only 

showing biochemical evidence of pregnancy. This represents 33% of 

all pregnancies which never resulted in clinical recognition, the 

zygotes presumably being lost before implantation. Of the 102 

clinically recognised pregnancies, 87 progressed beyond 20 weeks, 

1 was terminated for therapeutic reasons, and 14 resulted in 

spontaneous abortion. The data are summarised in Table 1.6. This 

gives an apparent clinical abortion rate of 13.7%, remarkably close 

to the 15% suggested previously by Warburton and Fraser (1964). 

Furthermore, the total conceptual loss is put at 43%, virtually the 

same figure as that estimated by Carr (1971). The proportion of 

pregnancies progressing beyond 20 weeks, therefore, is only 57% of 

all those detected biochemically. Even this may be an over-estimate 

of total conceptual survival since any zygote dying before implan­ 

tation would not be detected by this assay.

In view of the difficulties in estimating the total level of 

pregnancy loss, outlined above, it would seem that estimates of 

aneuploidy levels at conception, based on these figures, would be 

even more uncertain. Nevertheless, Boue and Boue (1973) have 

suggested that the level of aneuploidy at conception in man may 

be as high as 45%, and 50% for all types of chromosome abnormality. 

This is based on the assumption that for every 1000 clinically 

recognised pregnancies, 150 will abort and, of these, about 100 

will be chromasomally abnormal. Amongst these chromosomally abnormal 

there are 15 with monosomy X and 15 with trisomy 16 on average. 

Assuming other chromosomes undergo non-disjunction at the same rate
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Table 1.6 The outcome of biochemically detected pregnancies 
(Data of Miller et al (1980))

Category Number of 
Women

% of all 
pregnancies 
detected 
biochemically

% of all 
clinically 
recognised 
pregnancies

Women detected 
biochemically 
as being 
pregnant

152

Pregnancies
clinically
recognised

102 67.1

Losses prior 
to clinical 
recognition

50 33.0

Spontaneous 
abortions

14 9.2 13.7

Therapeutic 
abortions

Pregnancies 
progressing 
beyond 20 
weeks

87 57.2 85.3
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they estimate that there should be 15 x 23 = 345 monosomics and 

similarly 345 trisomics, or a total of 690 anomalies resulting 

from non-disjunction alone. When the other chromosomal anomalies 

are added to the monosomics and trisomics it gives a figure for 

losses very close to the 850 births which go to term.

Some of the assumptions made in the above calculation are, 

however, somewhat uncertain and a more modest figure of 20% has 

been suggested by Ford (1975) for the frequency of all chromosome 

abnormalities at conception. This figure is based on the assump­ 

tion that the rate of spontaneous abortion from clinically recognised 

pregnancies is about 15% (Warburton and Fraser, 1964) with the 

chromosome abnormality frequency among them being about 60% (Boue and 

Boue, 1973). This suggests that 12% of them are chromosomally 

abnormal since some trisomics and effectively all monosomics, 

which should be at least as frequent as trisomics, are likely to 

be eliminated without detection. Ford (1975) has concluded therefore 

that the proportion of human zygotes that are chromosomally abnormal 

at conception could be as high as 20%.

One alternative method of estimating aneuploidy levels at 

conception is to analyse the genomic complements in gametes. In 

man this has been attempted by several authors using two different 

approaches, in both cases on spermatozoa. Human oocytes in the 

required stage for analysis cannot be readily obtained.

Early work in this area stemmed from the chromosome banding 

techniques developed by Caspersson et a£(1968). Zech (1969) 

observed that when metaphase spreads from human blood lymphocytes
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were treated with quinacrine mustard, the distal portion of the Y 

chromosome fluoresced brightly. Barlow and Vosa (1970) then 

proposed that the fluorescent body, observed when human sperma­ 

tozoa were similarly stained, also represented the Y chromosome. 

Pawlowitzki and Pearson (1972) attempted to estimate the frequency 

of meiotic errors involving the Y chromosome in a population of 

fertile men by estimating the numbers of spermatozoa showing two 

fluorescent Y-bodies. Subsequently staining methods were developed 

to identify other chromosome pairs such as No. 1 (Geraedts and 

Pearson, 1973) and No. 9 (Bobrow et al, 1972). Pearson et al (1975) 

estimated that the values for non-disjunction of the Y chromosome 

and chromosomes No. 1 and No. 9 were 2%, 3.5/£ and 5% respectively, 

although standard errors were high in each case.

The reliability of the fluorescent-body technique, however, 

has been criticised by Beatty (1977 and 1978) who pointed out that 

the estimated non-disjunction rates of the Y chromosome at the 

second meiotic division ranged from 4-22%, the magnitude of which 

he described as "intuitively unacceptable". He suggested that the 

rates were in fact much lower and that not all Y or 'F 1 bodies, as 

he called them, represented Y chromosomes. This was supported by 

Sumner and Robinson (1976) who found, on the basis of DNA measure­ 

ments, that many 2F sperm were not in fact YY-bearing. Similar 

criticism may also apply to estimates of the rate of non-disjunction 

for other chromosome pairs calculated by these means. Moreover, 

these methods only allow the non-disjunction levels of individual 

pairs of chromosomes to be estimated. For an overall estimate it 

is necessary to assume similar rates of non-disjunction for all
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chromosomes in the set. This may not in fact be justified. Different 

frequencies of trisomy for different chromosome pairs are seen among 

the human spontaneous abortions and this may reflect different levels 

of non-disjunction in the gametes giving rise to them. On the other 

hand, such differences may arise because certain trisomics are subject 

to early selective loss -in utero. Warburton et al (1980) have argued 

that the former possibility seems the more likely. Ford (1981) also 

believes that a similar rate of non-disjunction for all chromosome 

pairs does not seem plausible, although he suggests that it cannot 

at present be excluded. One factor which might influence different 

chromosomes to undergo non-disjunction at different rates is their 

position in the ordered arrangement of the genome in the cell. 

Bennett (1982) has shown that in plants the frequency of a particular 

trisomy is related to the spatial order of the chromosomes. The 

same could well apply in man.

As the reliability of the Y-body, and other specific chromosome 

staining techniques has been justifiably criticised, the value of the 

results has been diminished, and more accurate and reliable techniques 

have been sought in order to establish the paternal contribution to 

human aneuploidy. Yanagiraachi et al (1976) first described the 

technique of using hamster eggs as "reactivating-vehicles" for human 

spermatozoa, in an experiment to evaluate capacitation. The first 

systematic study to analyse directly the chromosome constitution of 

human spermatozoa was then performed by Rudak et al (1978). In this 

first report, 6Q. sperm were analysed and 3 were found to be abnormal, 

2 of which were hypoplpid and 1 hyperploid. More recently, however, 

Martin et al (1982 and pers. comm.) have analysed 948 spermatozoa
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from 31 normal men and found 82 (8.6%) to be chromosomally abnormal. 

Of these 49 (5.2%) were aneuploid and a further 3.4% carried 

structural abnormalities, or a chromosome break gap or deletion. 

For the 49 described as aneuploid, 26 were hypoploid, 9 of which 

also carried an additional abnormality, and 23 were hyperploid, of 

which 6 also carried an additional abnormality.

Sufficient numbers to assess individual variation were not 

available, but it seemed that there was a range of 0-14% abnormalities 

among individual males. Of interest among the aneuploid complements 

was one 24, Y, +1 (no trisomy 1 abortus has yet been found), and only 

one complement 22, -C or Y that could have given rise to a 45, X 

embyro. All chromosome groups were represented among the aneuploid 

complements.

For an aneuploidy level of 5% in spermatozoa, and given at 

least an equal contribution from the female, an overall level of 

aneuploidy at conception in man would thus be estimated as 10%. 

However, the observations of Jacobs and Hassold (1980) and Mikkelsen 

et al (1980) suggest that the extra chromosome in patients with 

Down's syndrome appears to be of maternal origin in 75 to 80% of 

cases for both young and advanced age groups, with the vast majority 

occurring at the first meiotic division (see Table 1.3). Similarly 

for trisomics amongst spontaneous abortions (see Table 1.5) the 

additional chromosome is almost always of maternal origin (about 

90% of cases) (Jacobs and Hassold, 1980). Assuming no differential 

loss of trisomics with respect to the parental origin of the extra 

chromosome prior to the' clinical recognition of pregnancy, an 

approximately 4 times greater number of aneuploid eggs, than
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aneuploid sperm might then be expected. The level of aneuploidy 

amongst oocytes, therefore, could be as high as 20% giving an 

overall level of aneuploidy at conception of about 25%. This is 

speculation however, and remains to be confirmed by direct cyto- 

genetic observation.

1.5 HYPOTHESES TO ACCOUNT FOR ANEUPLOIDY IN MAN

Numerous hypotheses to account for the origin of aneuploidy 

arising by non-disjunction, and in particular that related to 

maternal age, have been proposed. Many, however, remain untested.

Probably the first idea was put forward by Bridges (1913) 

at the time he introduced the term non-disjunction. He suggested 

that the XXY and XO exceptions, found during his Drosophila experi­ 

ments, arose as a result of "microtubular malorientation" or 

"chromosomal entanglement". Since that time, others have postulated 

a role for the incomplete or damaged spindle in aneuploidy produc­ 

tion. Penrose (1965), for example, suggested that some meiotic 

errors might arise because of the decay of spindle fibres over 

the long period which elapses in women between prophase of meiosis 

in the foetal ovary, and ovulation of the egg in the adult, perhaps 

even decades later. Alberman et al (1972) questioned this on the 

grounds that spindle fibres were not formed during the long arrested 

diplotene stage of the egg, but suggested, as an alternative, that 

the components required to assemble a spindle may be subject to 

wear and tear over the years. Spindle failure has also been
i

implicated by Mikamo(1968) to account for maternal age dependent 

aneuploidy, or, more specifically, aneuploidy occurring at the
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first maternal meiotic division. In this case, however, rather than 

incomplete spindle assembly, it is suggested that non-disjunction 

might be caused by the degeneration of spindles in association with 

intrafollicular over-ripeness of the egg. Disintegration of spindle 

fibres especially at polar ends and hypertrophy of spindles was 

noted from sectioned Xenopus eggs which had been kept without under­ 

going ovulation for over one year (Mikamo, 1968). Mikamo and 

Hamiguchi (1975) have since made similar observations in the rat. 

Butcher and Fugo (1967) induced a delay of 48 hours in ovulation 

in the rat by administering phenobarbitol sodium and found a 

significant effect on fertilization rate, chromosomal anomalies 

(including aneuploidy) and embryonic death. Pre-ovulatory over- 

ripeness, arising as a consequence of spontaneously occurring 

irregular cycles in the aged female rat, has also been shown to 

have a detrimental effect on embryonic development, although 

chromosomal analyses were not performed in this case (Fugo and 

Butcher, 1971). Two studies in man which, although from limited 

data, further support intrafollicular over-ripeness as a cause 

of fetal wastage were both published over 15 years ago. Iffy 

(1963) presented data showing that of 19 cases of abortion in 

which the conception date was known, 14 of the women had 

conceived after day 17 of the menstrual cycle. Also Hertig 

(1967) reported that the human female who ovulates and 

menstruates regularly has a 92% chance of producing a normal 

offspring if she ovulates and conceives on or before day 14. 

If ovulation occurs on day 15 or later in the cycle however, 

the possibility of a 'normal conception drops to 43%. These 

two studies on humans, like many of those on the rat (e.g. 

Fugo and Butcher, 1966, 1971; Butcher et al 9 1969) do not
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provide cytological data to back up the idea that the increased 

levels of embryonic anomaly are due, at least in part, to increased 

levels of aneuploidy. This is inferred, however, in most cases, 

and is supported by the study of Butcher and Fugo (1967) in which 

an increased level of numerical chromosome abnormality was reported 

following delayed ovulation. Recently, however, Laing (1983) has 

looked at the effect of delayed ovulation in aged mice using two 

different means to produce the delay, and found no significant 

increase in the aneuploid complements at Mil. Some pre-segregation 

errors were recorded but these did not reach significant levels. 

Substances which act directly on the spindle, e.g. Colchicine, 

have been demonstrated as marked aneuploidy /inducers (Sugawara 

and Mikamo, 1980). Recently Kaufman (1983) has reported that the 

products of non-disjunctional errors arising at the second meiotic 

division can be seen in the female derived chromosomes of one-cell 

embryos of mice exposed to dilute solutions of ethanol. An 

incidence of aneuploidy, varying with dose, of up to 20% was 

found. He suggested that alcohol may act as a spindle disrupting 

agent and that it and other spindle-acting agents may be the cause 

of certain types of chromosomal defects (such as trisomy and 

monosomy) commonly observed in human spontaneous abortions. 

Kaufman (1983) argued that alcohol was equally likely to induce 

maternal first meiotic division errors, those predominantly found 

amongst spontaneous abortions and human liveborns (Jacobs and 

Hassold, 1980). The results, however, do not account for the
•

increase in aneuploid offspring found with increasing maternal 

age unless one speculates that alcohol consumption increases in 

older women.
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That hormones may be implicated in the induction of non- 

disjunction due to intrafollicular over-ripeness has been suggested 

by Fugo and Butcher (1971). They postulate that with ageing of the 

female there develop alterations in the secretion rate of the various 

gonadotrophic factors which control ovulation. This could result in 

irregularities in the length of reproductive cycles which could, 

according to Mikamo (1968), in turn lead to non-disjunction. There 

are numerous other reports suggesting hormonal involvement in non- 

disjunction induction. Rundle et oil (1961) have reported increased 

androgenic hormone levels in mothers of Down's babies, and attempts 

have since been made to relate fetal chromosome abnormalities to 

maternal urinary oestradiol excretion (J0rgensen and Trolle, 1972; 

and Blumenthal and Variend, 1972). The observation of Carr (1967) 

that chromosome anomalies were found in 6 of 8 abortuses collected 

from women who become pregnant after taking oral contraceptives, 

led to numerous studies on the effects of hormones on chromosome 

abnormality induction, the results of which have proved equivocal. 

Bracken et a£(1978) found, from a study involving 1,370 offspring 

with congenital malformations and almost 3,000 controls, that 

maternal oral contraceptive use in the year before conception, 

or even during pregnancy, was unrelated to malformations as a 

whole. They did report, however, a twofold excess of Down's 

syndrome amongst the offspring of women who had been taking 

oral conctraceptives at, or shortly after, the time of conception, 

although the numbers upon which this conclusion was based were 

very small. Evidence in support of the hormonal induction of 

non-disjunction in man comes from Harlap et al (1979) who have 

shown that in 814 babies resulting from breakthrough pregnancies, 

i.e. pregnancies resulting in women still using the contraceptive
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pill, 3 had autosomal trisomics (3.69/1000) compared with 42 amongst 

32737 controls (1.28/1000). They also show that in data collected 

from a number of studies on breakthrough prenancies the incidence of 

Down's Syndrome is four times that normally found at birth. Read 

(1982) has also argued in favour of an association between the 

taking of the contraceptive pill and an increase in Down's Syndrome 

among young mothers in recent years.

There have been a number of animal studies presenting evidence 

both for and against the hormonal induction of aneuploidy. McGauhey 

(1977) for example demonstrated increased levels of diploidy 

and hyperhaploidy at metaphase II in oocytes cultured in either 

progesterone or oestradiol 17 , although no'effect was observed for 

oocytes cultured in both steroids. Jagiello'and Lin (1972), 

Fechheimer and Beatty (1974), Maudlin and Fraser (1977), and 

Tease (1982b)have all failed to induce aneuploidy by hormone 

treatments in a variety of animals. Hansmann (pers. comm.) however, 

using the Djungarian hamster has shown a substantial increase in 

hyperploids (0-10%) amongst eggs ovulated using higher levels of 

PMS and HCG than those normally used for routine superovulation. 

(The effect of hormonal imbalance on aneuploidy induction is 

considered more fully in Chapter 3.)

Crowley et al (1979) have proposed a "Chiasma-hormonal 

hypothesis" relating to maternal age which suggests interaction 

between the hormonally-governed rate of meiosis (chromosomal 

alignment on the spindle) and the timing of chiasma terminalization. 

They suggest that as,hormone levels and lengths of cycles change
«

with advancing maternal age, so delays will occur in the attachment 

of bivalents to the spindle. Thus there will be an increasing chance
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of losing chiasma (particularly from the smaller bivalents like the 

No.21 in man) by terminalization before proper alignment occurs. 

Consequently an increasing risk of non-disjunction will arise.

The latter part of the "Chiasma-hormonal hypothesis", implica­ 

ting premature chiasma terminalization, incorporates ideas suggested 

earlier by Henderson and Edwards (1968) in their "Production-line 

hypothesis". This latter model, based on observations of decreased 

chiasma counts and increased numbers of univalents in oocytes of 

ageing female mice, envisages gradients (nutritional or develop­ 

mental) in the foetal ovary, leading to differences in chiasma 

frequency along a production line of oocyte formation. Oocytes 

formed early in the foetal ovary, it is postulated, would be 

ovulated early in.life; those formed later would be ovulated at 

advanced age. Furthermore, the univalents in aged oocytes with 

reduced chiasma frequency, would segregate randomly at first 

meiotic division producing aneuploid gametes. Subsequent work 

by Luthardt et al (1973), Polani and Jagiello (1976) and Speed 

(1977) has confirmed the decreasing chiasma frequency and/or 

increase in the number of univalents with age in the mouse. 

Whether the presence of such univalents would necessarily result 

in the subsequent production of aneuploid gametes has however 

been questioned. Polani and Jagiello (1976) and Speed (1977) 

failed to show any significant correlation between univalent 

presence at MI and aneuploidy at Mil. More recently, Sugawara 

and Mikamo (1983) have looked at the correlation between changed 

chiasma configuration and meiotic non-disjunction in the aged 

Chinese hamster. As it is possible to classify the eleven 

meiotic chromosomes into four morphologically distinct groups,
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these authors were able to determine whether the univalents seen at MI

underwent normal segregation at anaphase I. Their results clearly 

showed that there was no correlation between the univalents seen at 

Metaphase I, which were all small in size, and the aneuploid comple­ 

ments at Metaphase II which involved chromosomes of all sizes. The 

production line hypothesis, therefore, remains the subject of discussion 

(Speed and Chandley, 1983). Similar uncertainties surround the Chiasma- 

hormonal hypothesis.

Another hypothesis to explain the age-related aneup loidy in 

women has implicated nucleolar persistence at meiotic prophase in the 

oocyte. Polani et al (1960) first suggested that nucleoli in aged 

oocytes might be more resistant to the normal nucleolar breakdown 

process at the end of meiotic prophase and this might be an important 

factor in the aetiology of trisomy involving acrocentric chromosomes 

such as chromosome 21 in Down's syndrome. Furthermore, following the 

findings of Collman and Stoller (1962), that a correlation might 

exist between Down's syndrome and infective hepatitis, Evans (1967) 

argued that any such increases in trisomy 21 might be due to an 

effect of the virus on the nucleoli of the ova, resulting in a reduced 

capacity for the dissolution of this organelle during meiosis and 

hence a failure of separation (non-disjunction) of half-bivalents 

sharing a common nucleolus. Even without viral infection, Evans 

(1967) has argued that this abnormal persistence of nucleoli during 

meiosis in older women may be a major aetiological factor in Down's 

syndrome. The accumulation of cytogenetic data on spontaneous
*

abortions has shown, however, that this hypothesis cannot account 

for those frequent trisomies which involve chromosomes lacking 

nucleolus organiser regions, and yet are strongly age related, e.g.
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trisomies 17 and 18. There are also other very common trisomies

among the spontaneous abortions involving non-acrocentric pairs, 

such as trisomy 16, which are only weakly age related. Hassold 

and Matsuyama (1979) have pointed out that because of these 

inconsistencies, the general applicability of this hypothesis is 

limited.

To account for the maternal age effect for Down's syndrome in 

man, German (1968) has suggested that post-ovulatory over-ripeness 

of the egg resulting from delayed fertilization may arise with 

advancing maternal age as the frequency of coitus declines. It 

has long been known that the longer the time interval between 

ovulation and fertilization, the greater the chance of a develop­ 

mental anomaly. Blandau and Young (1939) showed that in the guinea- 

pig, delayed insemination of up to 20 hours caused a reduction of 

50% in subsequent litter size and a seven-fold increase in abnormal 

pregnancies. Furthermore they suggested that delayed fertilization 

might be a cause of early abortion in the human female. Delayed 

fertilization in the rabbit was shown by Austin (1967) to increase 

the numbers of hypoploid blastocysts over control levels, but 

number looked at were small in both groups. Vickers (1969) demon­ 

strated a 50% increase in the incidence of chromosome anomalies 

amongst mouse embryos for which fertilization had been delayed 7 

to 13 hours with a 9-fold increase in the incidence of triploidy. 

There was, however, little increase in aneuploidy, particularly 

hyperploidy, apart from the occasional case. Delayed fertilization 

is no longer considered to be the cause of the maternal age effect 

in man for a number of reasons. Firstly there is the failure of 

several of the previously mentioned experimental studies to
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demonstrate an increase in aneuploidy with delayed fertilization.

Secondly, other studies have shown that the age dependency for the 

frequency of coitus is not closely enough related to the incidence 

of Down's syndrome to support the German hypothesis (Penrose and 

Berg, 1968; Cannings and Cannings, 1968). This argument has 

recently re-surfaced (Mulcahy, 1978; Milstein-Moscati and 

Becak, 1983; James, 1983). Another piece of evidence, and probably 

the most significant, against this hypothesis comes from those studies 

in which the origin of the extra chromosome in trisomy 21 conceptuses 

(both liveborn and amongst spontaneous abortuses) has been traced. 

These have shown the error to occur largely at the first maternal 

meiotic division, i.e. prior to ovulation, so that any subsequent 

delay in fertilization could not influence events. Delayed ferti­ 

lization may, however, still be responsible for some aneuploidy 

induction at the second division. Rodman (1971) has shown that, 

after prolonged sojourn in the oviduct, the disjunction of Mil 

chromatid pairs sometimes occurs before fertilization. This could 

thus account for some aneuploidy arising at the second meiotic 

division.

There are two further hypotheses which have received a 

great deal less attention than those already mentioned. Both 

attempt to show a correlation between physiological factors and 

Down's syndrome, although neither hypothesis attempts to explain 

the 'maternal age effect 1 . One was put forward by Fialkow (1966) 

who suggested that the presence of thyroid auto-immune phenomena 

in women might be associated with a higher risk of Down's syndrome 

in the offspring. It was suggested that the maternal immunologic 

abnormality more directly produced the child's aneuploidy, although
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no mechanism of origin is advanced (Fialkow, 1966). Fabricant and

Schneider (1978) have looked at aneuploidy levels in oocytes from 

two inbred mouse strains - A/J and NZB/J - which both manifest 

autoimmunity, and have, however, found opposite effects. They 

concluded that the failure of thymectomy, to increase level of 

aneuploidy in the A/J strain, together with the lack of a substan­ 

tial increase in aneuploidy in the NZB/J strain, suggests that 

auto-immunity indicated by the presence of anti-nuclear antibodies, 

does not play an important role in aneuploidy induction.

In recent years there have been a number of reports 

suggesting a correlation between a.-antitrypsin type and non- 

disjunction, a.-antitrypsin (a--protease inhibitor (PI)) is a 

major inhibitor of the activity of a variety of proteolytic 

enzymes, and is made up of a number of different variants. 

Compared to the common PI type 'M 1 (representing 80% of the 

population), some of the 'non-M 1 variants, e.g. 'S' and 'Z' show 

lower serum levels. The first report of a correlation between 

chromosome anomalies and PI type was made by Aarskog and 

Fagerhol (1970) who found a higher number of 'non-M' variants 

amongst subjects with sex chromosome mosaicism (4 of 7) compared 

with 10% in the general population. An increased 'non-M' frequency 

in patients with Down's syndrome has been found by Fineman e t al 

(1976) and Jongbloet et al (1981). Contrary findings have been 

produced, however, by Arnaud et al (1976) and Guanti and 

Di Loreto (1980) who found a normal frequency of variant PI 

types amongst Down's syndrome patients.

Of more interest perhaps is the observation that there is 

an increased frequency of 'non-M' variants amongst the mothers of
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Down's children (Aarskog and Fagerhol, 1970; Jongbloet et al 9 1981).

A significantly increased frequency of non-M variants was found by 

Jongbloet et at (1981), for mothers of Down's babies in whom the non- 

disjunctional event had occurred at the first meiotic division. It 

was suggested that proteolytic imbalance due to a lack of natural 

inhibitor in heterozygous mothers may affect the stability of the 

microtubule networks and result, therefore, in non-disjunction. 

However, no increase was found in the frequency of 'non-M 1 variants 

amongst the fathers of Down's children in whom the extra chromosome 

was paternally derived. These findings, although interesting, 

tend to be based on small sample sizes and should therefore be 

viewed with some caution. Further studies could perhaps provide 

greater insight into the relationship between-a-, antitrypsih type 

and non-disjunction.

Finally it should be mentioned that despite a drop in the 

birth rate of older women in Denmark between 1960 and 1971, the 

expected corresponding decrease in the incidence of trisomy 21 

over the same period was not found (Mikkelsen et al, 1976). 

Similar observations had been reported by Uchida (1970) in Canada, 

and indications also come from studies in the U.K., (Read, 1982), 

and Sweden (Nordensen,1979). In all these reports environmental 

factors such as X-irradiation, chemical substances or contra­ 

ceptive hormones (Read, 1982) have been implicated in aneuploidy 

being induced independently of maternal age. Exposure to 

X-irradiation has long been known to induce non-disjunction 

(Mavor, 1924; Uchida and Lee, 1974; Tease, 1982a)although
i

no increase in sensitivity to radiation appears to occur with 

increasing maternal age, at least in the mouse (Tease, 1982a).
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Certain chemicals will also induce non-disjunction (Sugawara and

Mikamo, 1980) although chemical effects have been less well 

investigated than those of X-rays. It is, however, the subject 

for further consideration in Chapter 4. The possible role of 

hormones and hormonal imbalance in non-age related aneuploidy, 

as well as that related to physiological ageing of the ovary, 

will be discussed in Chapter 3.
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PART II 

HUMAN ANEUPLOIDY - AN EXPERIMENTAL APPROACH
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CHAPTER 2

X-CHROMOSOME SEGREGATION, MATERNAL AGE 

AND ANEUPLOIDY IN THE XO MOUSE

2.1 INTRODUCTION

Unlike XO women, XO mice are fertile, albeit subject to 

reproductive impairment (Lyon and Hawker, 1973). They do, however, 

show a similarity to the human female in that fertility ends through 

a depletion of oocytes (Faddy et at, 1983), unlike most other mouse 

strains which still have many oocytes left in the ovaries at the 

cessation of fertility. Lyon and Hawker (1973) suggest that XO 

mice may pass through a period of irregular oestrous cycles 

towards the end of their reproductive life, during which time 

hormonal imbalance may occur leading to aneuploidy.

That the XO mouse should undergo a period of irregular 

cyclicity towards the end of reproductive life is not so remarkable 

in itself. Studies on other strains show that before cycling 

ceases, a period of irregular cyclicity occurs (Thung et al, 

1956; Thung, 1961; Nelson et al, 1982). This irregular cyclicity, 

however, combined with the virtual depletion of oocytes from the 

ovary of the XO mouse, indicate that it could provide a useful 

model for the situation in human pre-menopausal females, where 

non-disjunction occurs with a high frequency leading to the birth 

of aneuploid children.

The segregation of the single X chromosome in the XO 

oocyte has been the subject of controversy ever since Cattanach
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(1962) established the first breeding stock of XO mice. From his own 

breeding data, Cattanach (1962) observed that although litter size was 

near normal for this particular stock, a shortfall of some 30-37% in 

XO compared to XX offspring occurred from XO mothers. He was unable 

to determine the reason for the reduction in XO progeny, but as one 

possibility, suggested that preferential loss of the chromosome sets 

lacking an X chromosome to the polar bodies in the meiotic divisions 

of the ova might have occurred. The alternative was that death of 

the missing classes during embryonic development had taken place. 

To account for the higher than expected litter size in XO mothers, 

he did not, however, discount the possibility of early loss of 

inviable embryos, compensated by the development of all individuals 

of the viable classes, some of which would have been lost in larger 

normal litters as a result of overcrowding in the uterus.

In a subsequent study Morris (1968) examined reproductive 

performance and embryonic mortality in a large series of XO and 

XX females. One series of pregnant females of both genotypes was 

dissected after 15 days gestation and another series after 3i days. 

From his finding, he concluded that there could be both an 

abnormally low segregation of nullo-X gametes in XO females and 

a reduction in viability of XO foetuses during the early stages of 

gestation. This lower viability of XO's in utero contrasted with 

their seemingly normal viability after birth. Strong circumstantial 

evidence was also found for the death of all OY zygotes before 

implantation.

Direct cytological information of the segregation of the 

X chromosome has since been obtained by several groups of authors
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analysing chromosomal complements in the metaphase II oocytes 

ovulated by XO females. The results however, are conflicting (see 

Russell (1976) for review). According to Evans and Ford (unpublished 

data), segregation of the X to egg or polar body is random. The 

data of Kaufman (1972) and Luthardt (1976), however, suggest that 

it is non-random, with the X-bearing chromosome sets being preferen­ 

tially included in the egg nucleus.

A further complicating factor is the claim made by Deckers 

et al (1981), from breeding data on XO mice, that the phenomenon 

of non-random segregation is maternal-age related. These authors 

found a greater recovery of XO progeny relative to XX as the age 

of the mother (or litter number) advanced.

In the present chapter an attempt is made to clarify some 

of these issues by combining breeding data on a large series of XO 

mice at a range of ages, with a cytological analysis of ovulated 

metaphase II oocytes in young and old animals.

2.2 -. METHODS AND MATERIALS 

2.2.1 Animals Used

The colony of XO mice used was set up from mice kindly 

supplied by Dr. Mary Lyon, MRC Radiobiology Unit, Harwell, England. 

The sex-linked gene. Tabby, was used as marker. Normal-coated XO 

females mated to Tabby males produced three types of phenotypically 

distinct offspring; normal-coated males (+/Y), greasy-coated 

females (Ta/0) and striped females (Ta/+). The Ta/0 and +/Y 

offspring were subsequently used as breeders to regenerate +/0 

and Ta/Y animals, with striped females (Ta/+) again being produced.



51

In this way all offspring could be identified from their coat 

colours. Brother-sister matings were avoided. The stock was checked 

occasionally, by blood karyotying, to ensure that all supposed 

phenotypic XO females were in fact of the XO genotype.

Offspring were classified at weaning and female breeders 

used until they reached 36 weeks of age, after which time they were 

killed and used for oocyte chromosome analysis.

2-2.2 Oocyte collection and chromosome preparation

The female mice used for chromosome analysis in metaphase II 

oocytes constituted six groups, divided according to age and pheno-
/

type. There were two XO groups, i.e. +/0 and Ta/0 with Ta/+ sibs 

serving as controls. Analysis was carried out over two different 

ages within each group, i.e. 8-20 weeks (young) and 30-40 weeks 

(old) (Lyon and Hawker, 1973 have shown that in XO mice, both 

age-related ovarian changes and reduced reproductive performance 

are detectable by 28 weeks).

Each female was superovulated using 2.5iu pregnant mares 

serum (PMS) and 2.0iu human chorionic gonadotrophin (HCG) given 

48 hours later. The oocytes were sampled 15 hours after HCG 

injection at a time corresponding to metaphase II. Hansmann and 

El Nahass (1979) have previously shown that these hormone doses 

do not affect the incidence of non-disjunction during the first 

meiotic division in the mouse oocyte. Mice were killed by 

cervical dislocation, the oocytes being removed from the ampullae 

of the fallopian tubes and fixed by the method of Tarkowski (1966). 

The preparations were C-banded according to the method of Sumner 

(1972) and chromosome counts made.
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2.3 RESULTS 

2.3.1 Birth Data

Birth data were obtained from both Ta/0 and +/0 mothers 

(Table 2.1). Analysis showed that there was a significant difference 

between the two breeding groups (X3 = 9.73; p < 0.05), this being 

due to a higher level of deaths among offspring from Ta/0 mothers 

than +/0 mothers between birth and weaning. Ta/0 females are 

generally less robust than +/0 females and appear to be less 

competent as mothers. The data at weaning, showing increased 

death of offspring from Ta/0 mothers compared with +/0 mothers, 

supports the findings of Cattanach (1962), Morris (1968) and 

Deckers et al (1981), although the difference between the two 

types of mother is lower in the present study-than has been found 

by these other authors.

There was no significant difference in the distribution of 

XY; XX; XO offspring at weaning from the two types of XO mother. 

Neither was there any difference in the birth ratio of XX; XO 

offspring between the two maternal genotypes, the proportion being 

1.88:1 for Ta/0 mothers and 1.89:1 for +/0 mothers. Both ratios 

were lower than those found by earlier investigators (Table 2,2) 

indicating that comparatively more XO progeny were born to XO 

mothers in our stocks.

2.3.2 Chromosome Counts

A total of 379 metaphase II (Mil) counts were made from 

82 XO females and 179 counts from 28 XX females. The results have been 

grouped in Tables 2.3-2.5 according to maternal age and genotype. 

Cells giving counts of less than 17 were few in number, tending to
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Table 2.2 Ratios of XO to XX offspring at weaning

+/0 Mothers Ta/0 Mothers
Author

Cattanach (1962)

Morris (1968)

Russell (1976)

Deckers et aZ(l981)

Brook (Present Study)

Leonard & Schroder (1968)

No. of

661

966

118

362

480

_

Ratio 
Ta/0:Ta/+

1

1

1

1

1

:2.74

:2.37

:2.17

:2.45

:1.89

_

No. of

276

926

192

119

325

2,029

Ratio 
+/0:Ta/+

1

1

1

1

1

1

:3.30

:2.67

:3.23

:2.84

:1.88

:1.97
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be from poor quality preparations: They were discounted as 

unreliable.

A breakdown of the chromosome counts from the XX (Ta/+) 

females is given in Table 23. This shows a proportion (22.03%) 

having counts below the expected n = 20 number. It is assumed 

that the vast majority of these hypomodal counts are attributable 

to artefactual loss of chromosomes during slide preparation.

Chromosome counts from the two genotypically different 

groups of XO mice (Ta/0 and +/0) are given in Tables 2.4a and 2.4b
2

respectively. These showed no significant differences (Xi2 = 9.94; 

p > 0.5) and the counts for the two genotypes were thus pooled 

(Table2.5). From Table 2.5 it would appear, at first glance that 

segregation of the X chromosome, to egg or polar body, in XO 

females, is occurring entirely at random; equal numbers of n = 19 

and n = 20 being recorded. From a consideration of the data obtained 

in XX females, showing a 22% level of cell breakage and chromosome 

loss due to preparative technique, it is by no means justifiable, 

however, to reach such a straightforward conclusion. If artefactual 

loss of a single chromosome occurred, it would result in oocytes 

with 20 chromosomes being spuriously classified as having only 19, 

thus helping to inflate the n = 19 total. At the same time, some 

oocytes with 19 chromosomes would be spuriously classified as 

having only 18. The net result would be to deplete the number 

of counts in the 20-chromosome category whilst leaving the number 

in the 19-chromosome category approximately the same. A correc­ 

tion factor is thus clearly necessary in order to arrive at a true 

figure for the ratio of nullo-X to X-bearing ova. This has been 

devised in the following way, taking into account the possibility
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Table 2.4 Chromosome counts from Mil preparations from XO mice

Chromosome number n =

a) Ta/0

Young (8-20 weeks)

Old (30-40 weeks) 

Total

17

1

1

2

18

13

11

24

19

29

46

75

20

39

44

83

21

0

1

1

Total

82

103

185

Chromosome number n =
b) +/0

Young (8-20 weeks)

Old (30-40 weeks) 

Total

Table 2.5 Chromosome
and +/0 mi

17

3

3

6

18

11

11

22

counts from 
ce combined

19

42

44

86

Mil

20

39

39

78

21

0

2

2

preparations from

Total

95

99

194

Ta/0

Chromosome number n =

Young (8-20 weeks)

Old (30-40 weeks) 

Total

17

4

4

8

18

24

22

46

|9 

71

90

161

20

78

83

161

21

0

3

3

Total

177

202

379
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that each chromosome count has arisen by a two-step process 

involving firstly the segregation of chromosomes at anaphase I 

and secondly, possible breakage and loss of a chromosome (or 

chromosomes) by technical artefact. If it is assumed (1) that 

all those cells with less than 20 chromosomes in the control 

group (Ta/+) have arisen through breakage, and (2) that the 

probability of oocyte breakage is the same in both XO and XX 

mice,then, it is possible to estimate the proportion of all 

spreads from XO mice with 19 or less chromosomes which have 

arisen through breakage as follows:

If p represents the proportion of unbroken cells in the 

control group (Table 3), p- the proportion losing 1 chromosome and 

1-p -p- the proportion losing more than 1 chromosome, then the 

following values can be assigned to each group: -

po = 0.7797

P 1 = 0.1356

1-pQ-p l = 0.0847

1-p0 = 0.2203

For the XO oocyte spreads, the number found in the 20- 

chromosome group (n = 20) is made up of the actual number ovulated 

with 20 chromosomes (prior to breakage) multiplied by the propor­ 

tion of unbroken spreads. Similarly the number of counts in the 

19-chromosome (n = 19) group comprises the number of non-broken 

19-chromosome bearing spreads plus the number ovulated with 

20 chromosomes which have subsequently lost 1 chromosome. The 

number with 18 (or less) chromosomes (n = 18) is made up of the 

number ovulated with 20 chromosomes which subsequently lose
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more than one chromosome plus the number ovulated with 19 losing 

one or more chromosome subsequently.

This can be expressed algebraically as shown below: -

n20 = MpQ

n19 = Mp 1 + (N-M)pQ

N18 = M(1-p0-Pl ) + (N-M) (1-pQ )

where N = total number of oocyte preparations scored, and 

M = the number in the n = 20 group prior to breakage.

These equations can be used to estimate M, most conveniently 

by the modified minimum chi-square method (Kendall and Stuart, 1961).

For the XO females the segregation ratio is 205:171 for 

oocytes with counts of 20 and 19 chromosomes respectively (Table2.6). 

This 1.2:1 ratio does not differ significantly from the 1:1 ratio
2

expected if random segregation is occurring (Xx = 3.07: 0.1 > p > 

0.05).

To simplify the calculation, the effect of non-disjunction 

was ignored, as there were only three disomic eggs with counts of 

n = 21. The effect of chromosome gain on the segregation ratio 

would be in the opposite direction to that of chromosome loss, 

thus slightly decreasing the 1.2:1 ratio, taking it even closer to 

a 1:1 ratio.

Table 2.6 also shows a comparison with data obtained by 

Kaufman (1972) and Luthardt (1976). These authors did not introduce 

a correction factor into their results to allow for artefactual 

breakage. Their data have, however, been subjected to the correction
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model allowing for their own levels of control breakage. When this 

is done the data show an even greater bias towards non-random 

segregation than when the uncorrected figures are considered. The 

discrepancy between their data and those obtained in the present 

study will be dealt with in the Discussion. It is not possible to 

adjust the data of Evans and Ford (unpublished) to allow for 

breakage as no control data were given by these authors.

For the stock of mice used in the present study, the ratio 

of X-bearing to nullo-X eggs at ovulation (1.2:1) differs from that 

found at weaning, the ratio to XX to XO offspring at that time 

being 1.88:1. Assuming there to be an equal chance of fertilization 

of X-bearing and nullo-X eggs, it would thus appear, from the altered 

ratios, that 36.2% of XO mice die between fertilization and weaning. 

Cattanach (1962) has shown that XO offspring have as good a chance 

of survival between birth and weaning as do XX offspring, and it 

can thus be assumed that the 36.2% death of XO's occurs during 

gestation.

2.3.3 XO Segregation and Maternal Age

In view of the claim made by Deckers et al (1981), that a 

greater number of XO offspring are born to mothers of advanced age, 

the cytological data were considered, not only in relation to 

genotype, but also to maternal age. The data presented in Tables 2.3 

and 2.4 show no significant differences however, either for Ta/0 

or +/0 mothers, in distribution of chromosome counts in the young 

group compared with the old. Tables 2.7 and 2.8 moreover, show the 

numbers of offspring of each genotype weaned from +/0 and Ta/0
2

mothers respectively, in terms of litter order. X tests for



62

Table 2.7 Genotype of offspring weaned from +/0 mothers
in terms of litter

No. of 
Litter Mothers Total

1 48
2 45
3 39
4 35
5 28
6 23
7 14

186
139
123
110
98
82
42

order 

Ta/0

39
26
25
28
14
21
5

Ta/+

71
50
43
39
44
33
20

+/Y

76
63
55
43
40
28
17

Ta/+ + +/Y x 100Total x 1UU

79.03 ± 2.99
81.29 ± 3.33
79.67 ± 3.61
74.55 ± 3.60
85.71 ± 3.51
74.39 ± 4.84
88.10 ± 5.01

Table 2.8 Genotype of offspring weaned from Ta/0 mothers
in terms of litter

Litter

1
2
3
4
5
6
7

No. of 
Mothers

52
41
34
21
15
9
4

Total

186
110
95
72
45
33
13

order

+/0

32
25
21
17
7
9
2

Ta/+

62
43
39
32
20
13
5

Ta/Y

92
42
35
23
18
11
6

Ta/* + t/Y x 100Total x 1UU

82.80 ± 2.75
77.27 ± 4.01
77.89 ± 4.25
76.39 ± 4.71
84.44 ± 5.47
72.73 ± 7.73
84.62 ± 9.90
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heterogeneity, between the two sets of breeders showed no change in

the relative proportions of offspring with litter order - so the two 

sets of data can be combined. Regression analysis on the combined 

data shows there to be no significant change in the proportion of 

progeny born to older mothers (t = 0.356: p < 0.5). This finding, 

together with the cytological evidence, gives no indication in our 

stock of a changing pattern of X-segregation with age of the mother. 

This contrasts with claims made by Deckers et, al (1981) for an 

increasing recovery of XO progeny with increasing maternal age 

(see Discussion).

2.3.4 Aneuploidy

As can be seen from Table2.5 three disomic eggs (n = 21) 

were found in the old age group of XO females compared with none in 

young XO or in control XX females (Table2.3). These disomic eggs 

are assumed to have arisen by non-disjunction in the X-bearing 

oocytes, and constitute 3/86 (3.5%) of the total eggs assumed to 

be X-bearing. Their frequency was not significantly greater, 

however, than in the other two groups of female (young XO and 

control XX). If the assumption is made that a similar level of 

non-disjunction occurs among nullo-X eggs (the hyperploid (n = 20) 

products however being hidden among the normal X-bearing (n = 20) 

totals), a projected figure of 7 out of 202 hyperploid counts for 

old XO mothers would be obtained. This enlarged figure is again 

not significantly different from the zero level of aneuploidy of 

young XO and control XX females. It is also expected that for 

each non-disjunctional event producing a disomic egg, there 

would be a comparable X-bearing nullisomic (n = 19) egg produced. 

These would be hidden in the naturally occurring nullo-X bearing
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total. Similarly, non-identifiable double nullisomics (n = 18) may 

be produced by non-disjunction in nullo-X oocytes but these could not 

distinguished from oocytes which had lost chromosomes through breakage. 

If the overall level of aneuploidy were thus derived by doubling again, 

there would then be 14/202 or a 7% frequency for the aged females and 

this would be statistically significant (p < 0.05). The assumption 

is made in the above calculation that for every non-disjunctional 

event producing a disomic egg, a corresponding event would produce 

a nullisomic. This, of course, is the conventional view of aneuploidy 

production by non-disjunction. Recent data of Maudlin and Fraser 

(1978) indicate, however, that trisomy might arise in ageing female 

mice without equivalent monosomy. How this could come about is not 

stated, but if it were to be true, our calculations would not, of 

course, be valid.

2.4 DISCUSSION

In view of contradictions in the literature concerning the 

XO mouse, the present study was set up in an attempt to answer three 

basic questions. Firstly, does the segregation of the X-chromosome, 

during first meiotic division of the oocyte, occur entirely at 

random? Secondly, if the X-chromosome is preferentially incorporated 

into either egg or polar body, does this directed segregation 

phenomenon change with maternal age? Thirdly, does the XO mouse 

constitute a good model for the pre-menopausal human female in terms 

of maternally age-related aneuploidy production?

The ratio of XX to XO offspring at weaning (1.88:1) in the 

present study is considerably lower than the ratios observed by
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others (Cattanach, 1962; Morris, 1968; Russell, 1976). Similarly, 

the ratio of ovulated X-bearing to nullo-X eggs (1.18:1) is lower 

than has been found in previous cytological studies. In fact, unlike 

the studies of Kaufman (1972) and Luthardt (1976), the corrected 

figures in the present study are consistent with a 1:1 segregation 

ratio, in agreement with Evans and Ford (pers. comm.). The large 

difference between the results of this study and those of Kaufman 

(1972) and Luthardt (1976) cannot be easily reconciled. When both 

previous sets of data are corrected for breakage however (see Table 

2.6)the proportion of X-bearing gametes becomes so high that, to be 

reconciled with the .birth data from our own and other studies, it 

would be necessary to postulate preferential survival of XO's 

during gestation. This clearly is not the case. The present study 

indicates a 36.2% loss of XO progeny during gestation, and others 

have shown that there is excess death for XO litters during early 

gestation, as compared with XX's (Morris, 1968 and Russell, 1976). 

The early loss of OY embryos accounts for part of this but loss of 

a considerable proportion of XO's prior to day 12 post-conception 

also seems to occur (Russell, 1976; Luthardt, 1976). As pointed 

out by Russell (1976), the further from randomness one postulates 

the segregation of the X chromosome to be, the lower need be the 

prenatal loss of XO embryos. To reconcile his findings, Morris 

(1968) concluded that there was preferential segregation of the 

X-bearing set of chromosomes into the gamete and death of some 

XO's during the early stages of gestation. However, Evans and 

Ford (pers. comm.) on re-analysing Morris' data, subsequently 

suggested that they could be interpreted as showing a 1:1 

segregation ratio, and even an increased production of nullo-X, 

as compared to X-bearing gametes.
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It would appear from these contradictory results that the 

cytological studies are unsatisfactory because of the problem of 

breakage and chromosome loss. Obviously it would be ideal if it 

were possible to identify the X-chromosome in the oocyte and then 

eggs could be simply scored as X-bearing or nullo-X. Nevertheless, 

it seems unlikely that the different results obtained by various 

authors can be explained on the basis of differing amounts of breakage 

encountered in each different study. One possibility is that there 

is a drive mechanism, which is responsible for the excess production 

of X-bearing gametes but which varies in strength from one stock to 

another. Genetic background may be important. Thus, in the present 

study there may be little, if any, preferential loss of the chromo­ 

some set lacking an X to the polar body, whereas in others - such as 

those used by Kaufman (1972) and Luthardt (1976) the drive mechanism 

may be stronger. It would, however, seem unlikely that the amount 

of death of XO progeny during gestation should differ significantly 

in other stocks from the 36.2% found in the present study.

The second point which arises out of this study concerns the 

question of whether preferential segregation of the X to the egg 

changes with maternal age. Since the data in the present study 

give no indication of any such change, they are at variance with 

those of Deckers et al (1981). Both the birth data and the Mil 

counts found in the present study show no reduction in the trans­ 

mission of X-bearing gametes with age in XO mothers. Regression 

analysis on X-segregation data in successive litters of Deckers 

et al (1981) however, showed a significant negative slope, indica­ 

ting change with maternal age. Similar treatment of t^ data 

gave no such significant result, with the slope in fact being
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2
slightly positive. As a x test for heterogeneity proved negative, 

regression analysis of the combined data was performed producing a 

non significant - even though slightly negative, slope. This would 

suggest that the two sets of data are homogeneous but the anomalous 

result of Deckers et al (1981) is due to their small sample size.

Finally, to the question of aneuploidy in ageing XO mice 

and their suitability as a model for the pre-menopausal human 

female as suggested by Lyon and Hawker (1973). Although an increase 

in disomic oocytes was observed with increasing age in the XO mice 

used in the present study, this alone was not found to be statistically 

significant. Only 3 eggs which had chromosome counts of 21, could be 

confidently classified as disomic, but presumably X-bearing nullisomics 

were also produced in similar quantity. Non-disjunction in nullo-X 

eggs would not be noted as nullo-X eggs with 20 chromosomes would be 

scored as normal X-bearing cells. Specific X-staining combined 

with total chromosome counts would provide a means of identifying 

all disomic eggs although it would still be impossible to distinguish 

between 'true ' nullisomics, that is those arising through non- 

disjunction, and those arising through breakage during fixation. 

The usefulness of the XO mouse as a suitable model for human 

aneuploidy and the maternal age effect is therefore questionable, 

in view of the problems arising from the estimation of the true 

aneuploidy frequency.
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CHAPTER 3

THE EFFECT OF UNILATERAL OVARIECTOMY 

AND AGE ON ANEUPLOIDY INDUCTION

IN CBA MICE

3.1 INTRODUCTION

Hypotheses to account for chromosomal non-disjunction and age 

related aneuploidy have been outlined in Chapter 1. Changes in hormone 

levels and the irregularity of the ovarian cycles preceding the meno­ 

pause have frequently been implicated, although the underlying mechanisms 

are highly speculative and lack a firm experimental basis (Fugo and 

Butcher, 1971; Lyon and Hawker, 1973; Crowleyet al, 1979).

During the 6-8 years preceding the menopause in the human female 

there is typically a marked increase in the variability of intermenstrual 

intervals (Treloar et al, 1967). The duration of this transitional 

phase, during which unusually long and short cycles are often inter­ 

spersed, varies considerably amongst women. Levels of circulating 

gonadotrophinsare greatly increased. Adamopoulos et al(1971) found 

a seven-fold increase in LH and a three-fold increase in FSH levels 

in women approaching menopause. Papanicolaouet al (1969) consider 

that in late reproductive life the reciprocal relationship believed 

to exist in younger women between pituitary gonadotrophic function 

and ovarian oestrogen secretion no longer operates. Contradictory 

evidence exists on the level of oestradiol prior to menopause.

Most authors consider that oestrogen excretion is reduced 

during the climacteric (Furuhjelm, 1966; Pincus et al, 1954), 

although England et al (1974) report significantly higher concentra-
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tions of oestradiol 173 from women in the 4th decade of life compared 

with either younger or older women. Sherman et al (1976) however, 

considered that hormonal changes associated with follicular matura­ 

tion and corpus luteum function occurred in the presence of high 

menopausal levels of FSH and LH S but with a diminished secretion of 

oestradiol and progesterone. Treloar et al (1967) observed shorter 

cycle length in women 40-41 years than in women aged 18-30 which 

was attributable to a shorter follicular phase. The lower levels of 

oestradiol found by Sherman et al (1976) in both follicular and 

luteal phases are contrary to the findings of England et al (1974).

Hormonal imbalance at menopause has been documented in a 

number of other species as well as in the human female. Hodgen 

et al(1977} reported that menopause in the rhesus monkey presented 

sustained elevations of serum gonadotrophin and low circulating levels 

of oestradiol and progesterone. In the mouse Nelson et al (1982) 

found that an increase in cycle length with age began at about 7 

months with a decreased frequency of 4 day cycles, although irregular 

cycles were occasionally observed in 3-4 month old animals. Most 

animals entered an acyclic state at 12-16 months in which vaginal 

cornification persisted. The transition to longer cycles was 

associated with a delayed rise of pre-ovulatory oestrogen, although 

the pre-ovulatory levels attained did not differ from young animals 

at pro-oestrus (Nelson et al, 1982). Present evidence suggests that 

the onset of acyclicity in these animals is due to a combination 

of factors; both a decline in number of ovarian oocytes and failure 

of the neuroendocrine system to produce an ovulatory stimulus 

(Gosden et al, 1983; Felicio et al, in press). Ovulation can be 

delayed in animals treated with pentobarbitol, and during this
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extended phase Butcher (1975) has shown that plasma levels of 

oestradiol were elevated but dropped back to base level at the usual 

time in relation to ovulation. An association between irregular 

oestrous cycles, hormonal imbalance and increased aneuploidy with 

increasing maternal age has been suggested by several authors (Fugo 

and Butcher, 1971; Lyon and Hawker, 1973; Crowley et al , 1979). 

Recently it has been suggested that hormonal imbalance in younger 

women might also give rise to aneuploidy. Indeed use of the 

contraceptive pill has been implicated in a number of studies 

(Koulischer and Gillerot, 1980; Read, 1982).

Changes similar to those associated with the menopause can 

be induced at an earlier age by unilateral ovariectomy. Thung (1961) 

originally reported that unilateral ovariectomy (uni-ovx) in the 

mouse aggravated or exaggerated normal ovarian ageing such that 

normal oestrous cycles are replaced by irregular oestrogenic 

activity, effectively reproducing menopause at an earlier age. 

Since that time unilateral ovariectomy has been the subject of 

numerous studies in a variety of species. Mandl and Zuckerman 

(1951), for example, looked at the numbers of normal and atretic 

oocytes in unilaterally spayed rats and confirmed results reported 

earlier by Arai (1920) showing that the ovary doubles in weight 

and produces as many mature Graafian follicles as found in the two 

ovaries of littermate controls. The number of primordial oocytes 

remains at the level normal for one ovary (Mandl and Zuckerman, 

1951). More recently, Hirshfield (1982), looking at follicular 

recruitment in long-term hemicastrate rats, found that at metestrus 

there were half as many small and medium antral foil ices in long- 

term hemicastrates as in controls. The total number of large antral
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follicles, however, was the same in both hemicastrate and intact 

rats.

Following unilateral ovariectomy the overall number of oocytes 

ovulated does not diminish. Moreover, in most cases, compensatory 

ovulation occurs by the first oestrus following operation so that 

the total number of ova shed is the same as in control animals 

(Asdell, 1924). McLaren (1966) using the mouse, found a two-fold 

increase in ovulation rate from the remaining ovary, three days 

after the removal of its partner. She suggested that this was due 

to the single ovary consuming twice as much of the available FSH 

than it otherwise would, rather than to the absolute level of 

hormone in the blood. Bast and Greenwald (1977) examined the effect 

of acute and chronic elevations in serum levels of FSH after 

unilateral ovariectomy in the cycling hamster and found significant 

increases 24 hours post-operatively. However, these elevations 

were not the sole cause of compensatory ovulation as this was also 

found in certain cases where serum levels were not acutely altered.

Although unilaterally ovariectomized animals shed as many 

ova at ovulation as intact controls, the total number of offspring 

produced during reproductive life is, nevertheless, found to be 

halved (Jones and Krohn, 1960). Biggers et al (1962) suggested 

that this reduced breeding potential might be due to uterine ageing 

as a result of repeated overloading. This was substantiated 

experimentally by Gosden (1979) using the mouse.

The means by which compensatory ovulation occurs has pre­ 

occupied a number of authors in recent years. Peppier and Greenwald 

(1970) suggest that it is brought about by a doubling of the number
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of large follicles which ultimately mature during the course of 

the oestrous cycle. This arises out of an increased proliferation 

of small follicles, rather than from a decreased level of follicular 

atresia. According to Peppier (1971) an absence of compensatory 

ovulation in the hemicastrated rat after 6 or 12 months is supported 

by a general decrease in follicular development at these ages 

compared with younger ones. Hirshfield (1982) however, reported 

that the ovaries of long-term hemi-castrate rats contain far fewer 

atretic follicles than ovaries of intact rats, and Welschen et al

(1978), showed that in the rat, atresia could be prevented or even 

reversed by unilateral ovariectomy, and is perhaps comparable with 

the effects of PMSG in rescuing follicles from atresia in rats 

(Braw and Tsafriri, 1980). Thus the effects of the operation 

depend upon the stage of the cycle at which it is performed. 

Neither of the conflicting hypotheses (increased follicular growth 

vs. decrease of atresia)has been resolve.d in studies of other 

species. Greenwald (1974) reported that following unilateral 

ovariectomy in the golden hamster, the number of follicles becoming 

atretic is reduced, whereas in the guinea-pig it is the number of 

small follicles proliferating to larger ones which is increased. 

From a study of vaginal smears and growing follicles in mice, 

Thung (1961) suggested that unilateral ovariectomy increased the 

rate of ageing in the remaining ovary by increasing the rate of 

oocyte depletion. However, this is contrary to the earlier report 

of Jones and Krohn (1960) that the failure of semi-spayed mice to 

produce litters for as long as normal mice, was not related directly 

to a precocious disappearance of oocytes from the ovary. Gosden

(1979) also considered that unilateral ovariectomy in mice did
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not accelerate senescence of the remaining ovary. Baker et al (1980) 

looked at the number of oocytes and rate of atresia in unilaterally 

ovariectomized mice in order to clarify the means by which increased 

output of eggs from the single ovary is controlled in the long term. 

They consider that this may be brought about either by an increase in 

the rate at which follicles leave the pool, or by a reduction in the 

number of oocytes lost by atresia. Their findings, however, were 

equivocal. They observed that during the first four weeks following 

unilateral ovariectomy there was an increased progression of follicles 

from the pool to form growing follicles. After this time, however, 

the rate of depletion from the pool was no different to that in 

controls. If increased recruitment cannot account for the output 

of additional oocytes then reduced atresia at some stage of 

follicular growth must be implicated. However, they were also 

unable to find support for this, as there was no difference in the 

proportion of oocytes undergoing atresia between control and treated 

mice for any follicle class. They did, however, suggest that they 

may have been unable to detect a change in the rate of atresia 

because of their classification of atretic follicles. Alternatively 

Baker et al (1980) suggest that 'rescue 1 from atresia may only be 

detectable at a specific stage in the oestrous cycle. This, however, 

cannot be assessed from their results, and further work is necessary 

to clarify this point.

In the present chapter, the relationship between hormonal 

imbalance, irregular cyclicity and the increase in maternal age- 

related aneuploidy is examined. By means of unilateral ovariectomy, 

the reproductive lifespan in CBA females has been shortened in order
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to create a situation in which an aged ovary (in physiological terms), 

is present in a young (chronologically speaking) animal. Thereby the 

influences of physiological and chronological ageing of the female on 

aneuploidy production can be separately assessed. In addition, the 

postulate, made by Henderson and Edward (1968) in their "production 

line" hypothesis, that the frequency of ovulation of chromosomally 

abnormal oocytes may be higher when the overall number of eggs 

available is reduced by unilateral ovariectomy, will be examined.

3.2 METHODS

3.2.1 Operation

Female mice aged from 6-8 weeks were anaesthetised using 

'Avertin' which was prepared from its constituent ingredients shortly 

before the operation. This consisted of 0.315 g Tribomoethyl alcohol 

and 0.25 ml 3 methyl-1-butanol per 10 mis saline. 0.25 ml was injected 

per mouse (weight approx. 20 g). A small dorsal area was shaved, 

swabbed with alcohol and a short incision made in the flank. The 

ovary was located and pulled out by the ovarian fat pad. In those 

cases of sham operation the ovary was pushed back and the wound 

closed with 'Michel 1 clips. For those mice underoing unilateral 

ovariectomy the ovary was tied-off using Ethicon 'Meresilk 1 suture 

and cut off with scissors. The fallopian tube was replaced and the 

wound closed with 'Michel 1 clips as for the sham operation. Two 

weeks after the operation the clips were removed.

3.2.2 Chromosome Preparation

In order to assess the effect of maternal age and unilateral 

ovariectomy on the incidence of aneuploidy, chromosome counts were
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made on 3£-day old embryos from mothers sub-grouped according to age 

and operation. These sub-groupings were as follows:

Young ( 9-13 weeks) : Sham and Uni-ovx
Mid (22-26 weeks) : Sham and Uni-ovx
Old (35-40 weeks) : Sham and Uni-ovx
Very old (45-50 weeks) : Sham

Swiss male mice, of proven fertility, aged 12-52 weeks were 

placed in cages containing females from the above groups. The females 

were examined for the presence of a vaginal plug in the mornings. 

Around noon on the third day following the appearance of a vaginal 

plug each female was injected with 1 pg Colcemid (Ciba) per gram 

body weight, and killed three hours later. Uni-ovx females were 

examined to ensure that the operation had been complete. Those 

animals showing the partial presence of a supposedly excised 

ovary were discounted. The ovaries and uterine horns were removed, 

placed in a plastic universal tube containing physiological saline 

(0.15 m NaCl) and transferred to the laboratory. The uterine horn 

was dissected away from the ovary and the vagina, and a small 

incision was made at the ovarian end. A blunt needle was inserted 

into the uterine horn from the vaginal end and six or seven drops 

of saline were passed through the horn from a syringe. The contents 

of the horn were flushed out into a small plastic dish. The embryos 

were located under the dissecting microscope, counted and placed 

in hypotonic solution (0.8% sodium citrate) for ten minutes. They 

were then placed on a clean slide and fixed with a few drops (five 

or six) of a mixture of methanol and glacial acetic acid (3:1, v:v)



76.

according to the method of Tarkowski (1966). Optimum fixation and 

spreading was obtained using six drops of fixative, allowing the 

blastocyst almost to dry before the application of the next drop. 

Furthermore, when the blastocyst was placed on the slide any 

hypotonic solution also deposited, was carefully removed in order 

to prevent the blastocyst from shooting off the slide as the 

fixative was added. The position of the fixed preparation was 

indicated by a scratch with a diamond marker below the slide.

The ovaries were examined under the dissecting microscope 

(x10) and the number of corpora lutea counted.

The blastocyst preparations were stained with 5% Giemsa 

for 5 minutes, coded and scored 'blind 1 under the microscope 

(xlOOO, oil immersion). Attempts were made to band the chromosomes 

when an aneuploid embryo was detected, but these failed.

A group of up to 10 stud males were used and their success 

in both mating and fertilizing eggs was monitored. Females not 

producing plugs with different males within 30 days were killed.

Sufficient animals were used to produce about 50 analysable . 

spreads per sub-group.

3.2.3 Smearing

A separate group of 41 mice was set up for smearing in order 

to establish the effect of uni-ovx on the regularity of the oestrous 

cycle. 20 were uni-ovx and 21 were shams. Smearing was started 

four weeks after the operation and performed daily, six days a week. 

A smooth glass pipette containing a drop of distilled water was
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inserted into the vagina, and the water was gently expelled and drawn 

back into the pipette a couple of times. The fluid was spread across 

a glass slide and allowed to dry. For each mouse the smears for one 

week were made on the same slide. The slides were coded and analysed 

by Mrs. S. Laing of the Department of Physiology, University of 

Edinburgh.

When over 50% of the mice in each group no longer showed 

recognisable oestrous cycles, smearing was discontinued. The mice 

were killed and autopsied. Those mice in the uni-ovx group, for which the 

operation had been incompletely performed, i.e. the ovary had not 

been fully removed, were discounted, as were/mice in either group 

showing ovarian tumours.

At all times males were kept in the same room as the females 

to ensure exposure to the influence of pher-omones.

3.2.4 Ovarian Histology and Hormone Levels

Equivalent groups of females to those used in the aneuploidy 

study were set up for ovarian histology and serum hormone assay, 

with approximately 10 animals in each group. They were smeared in 

the mornings, at daily intervals until a regular oestrous cycle 

pattern was established, and then killed at noon on the day of 

pro-oestrus. The mice were first anaesthetised with ether and 

blood was removed by cardiac puncture. Then the ovaries were 

dissected out and placed in aqueous Bouin's fixative for 24 hours 

after which they were transferred to 80% alcohol. They were then 

transferred to the Department of Physiology, University of Edinburgh,
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for further processing and examination by Dr. R. Gosden. The ovaries 

were paraffin embedded and serially sectioned at 7 urn intervals. 

Slides were stained with haematoxylin and eosin and coded to avoid 

observer bias. Every tenth section from each ovary was examined 

in detail at x400 and the number of primordial follicles were counted. 

Only those follicles in which at least 50% of the oocyte nucleus was 

visible were recorded so as to avoid overcounting. The numbers were 

recorded in both ovaries of the sham-operated groups and combined for 

comparison with those in the uni-ovx mice. (Counts were multiplied x10 

and log transformed (see results).)

The blood was allowed to stand at 4°C/for 1 hour and then 

spun down in a microfuge for 2 minutes. The serum was removed and 

stored frozen at -20°C. The levels of oestradiol-17$ are presently 

being assayed by Dr. C. E. Finch (University of Southern California, 

Los Angeles), but the results are, as yet incomplete.

3.3 RESULTS

3.3.1 Chromosomal Anomalies in 3j day Embryos of CBA Mice

The number of corpora lutea, embryos and unfertilized eggs 

obtained from females of each experimental group is shown in Table 

3.1. At all ages the unilaterally ovariectomized females produced 

fewer corpora lutea than did their sham-operated counterparts. 

The lower numbers of corpora lutea and embryos recovered from 

older females implied a considerable loss of fecundity; this 

effect of ageing began earlier in unilaterally ovariectomized 

than intact animals. There was a parallel effect of age and 

treatment on the proportions of embryos and unfertilized eggs
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recovered as a percentage of corpora lutea, which suggests that there 

were additional losses during development between the times of ovula- 

tion and blastulation, possibly involving one or more of the following: 

failure of follicles to rupture, failure of fertilization or failure 

of blastulation. This proportion increased from 5.7% to 37.9% in 

uni-ovx animals compared with an increase from 4.7% to 27.4% in shams. 

About 30% of all blastocyst preparations were analysable, the range 

being from 24.9% in 35-40 week-old shams to 37.1% in the sham 22-26 

week old group. A chi-squared test for heterogeneity of the proportion 

analysable from each group was not significant, indicating a similar 

level of efficiency of preparation in each group, thus discounting 

the possibility of bias due to preparation losses.

Table 3.2 shows chromosome counts from the preparations of 

3J-day old embryos. Only those cells in which the chromosomes were 

clear and well-spread were scored. Cells were not scored if a 

precise count could not be made. As many cells as possible were 

scored for each embryo, although in the majority of cases only one 

was analyzable. This was because only one or two of the cells per 

embryo would be in metaphase at the same time, and often there was 

insufficient spreading of chromosomes to allow analysis of both. 

In approximately 20% of embryos it was however possible to count 

more than one cell, and in some cases up to 5 spreads were analysable. 

Those embryos showing two or more cells with 39 chromosomes were 

recorded in order to distinguish them from those spreads of 39 

chromosomes which may have arisen through breakage and artefactual 

loss. The two-cell 39 scores are marked with an asterisk in Table 3.2. 

Chromosome spreads from embryo preparations are shown in Figures 3.1 

and 3.2.
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The great majority of embryos in mothers aged 9-13 weeks old 

were diploid (2n = 40) and trisomic embryos were not found at this 

age. The incidence of monosomic embryos was 11.9% in the unilaterally 

ovariectomized sub-group at this age range and 6.1% in the age-matched 

controls. In the next oldest group (22-26 weeks), the proportions of 

monosomic embryss were virtually unchanged, but three trisomic 

embryos (4.0%) were found in the uni-ovx group. Thus the overall 

incidence of aneuploid embryos with either 39 or 41 chromosomes had 

increased to 17.3% in the latter sub-group whereas it was only 4.6% 

in the sham-operated controls. The highest incidence of aneuploidy 

was found in uni-ovx animals at 35-40 weeks of age (22.0%). The values 

in the corresponding group of controls had risen to 12.1% at this age 

and increased further at 44-50 weeks of age to 19.6%. Trisomic embryos 

were recovered from both uni-ovx and intact animals at these advanced 

ages. They were always less plentiful than monosomic embryos though 

not open to the criticism of the latter that a chromosome could have 

been lost during slide preparation.

Although there were insufficient data to deduce the mathematical 

relationship between maternal age and the incidence of aneuploidy, 

when linear regression analysis was used as a first approximation, 

the regressions for both uni-ovx and control groups were found to be 

significantly greater than zero (p ~ 0.01). Chi-squared analysis of 

the distribution of aneuploid embryos at particular ages showed no 

significant differences between treatment groups at 9-13 weeks or 

35-40 weeks. There was, however, a higher proportion of monosomics 

and trisomics in uni-ovx mice aged 22-26 weeks than in their controls 

(x 2 = 5.74, d.f. = 1; 0.02 > p > 0.01). The raw data suggested that
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the effects of age and treatment applied to trisomic and monosomic 

embryos alike, although the relatively lower frequency of the former 

type, combined with the difficulties of obtaining sufficient material, 

resulted in the statistics falling just short of conventional levels 

of significance (p < 0.05) when trisomy alone was analysed. The 

overall incidence of polyploidy was much lower than that of trisomy 

and monosomy combined (1.4% cf. 12.7%) and was distributed differently 

and approximately randomly with respect to age and treatment. 

There were no uni-ovx results for the very old (44-50 weeks) group 

because very few of the animals were still ovulating at this age.

3,3.2 The Time Interval between the Introduction of the Male and 
the Appearance of a Vaginal Plug in the Female

The data were examined to assess whether there was any 

relationship between the karyotype of the embryo produced by any 

particular mother and the time interval from the introduction of a 

male into her cage and mating (the 'plugging 1 time). Table 3.3A 

shows the effect of age and operation on the plugging time for 

mothers producing only normal (2n = 40) embryos. For the uni-ovx 

animals the longest plugging time was found for the 22-26 week old 

age group, however, as for sham operated controls, none of the 

plugging times differed significantly.

The data in Table 3.3B are classified without regard to 

maternal age or treatment sub-group and show that the mean plugging 

time was longer for mothers producing aneuploid (2n = 41 and/or 

2n = 39) embryos than ,it was for those mothers producing only 

normal euploid (2n = 40) embryos. Mothers producing two aneuploid 

offspring had a mean plugging time of 4.50 days compared with 2.76



Table 3.3(a) The Effect of Age and Operation on the Time Taken
to Plug* for Mothers Producing only Normal Euploid 
(n=40) Embryos

88.

Age Operation Number of Mothers
Mean Time Taken 

to plug 
in days

± S.E,

9-13 weeks OVX
9-13 weeks SHAM

22-26 weeks OVX
22^26 weeks SHAM

35-40 weeks OVX
35-40 weeks SHAM

44-50 weeks SHAM

18
17

17
18

15
23

14

2.40 ± 0.37 
2.29 ± 0.56

3.94 ± 0.63 
2.56 ± 0.23

2.73 ± 0.23 
2.87 ± 0.34

2.50 ± 0.49

Table 3.3(b) The Time Taken to Plug* for Mothers Classified
According to Embryonic Genotype

Mean Time Taken
Genotype of Embryo Produced

Only those with 40 
chromosomes (see Table 3.3(a))

Two aneuploid offspring
One embryo with 41 chromosomes
One embryo with 39 chromosomes
where 2 cells were examined 

One embryo with 39 chromosomes
where 1 cell only examined 

One embryo with 38 chromosomes 
One embryo with either 80 or 60
chromosomes

Number of Mothers

122

6
6
6

28

6
5

to plug 
in days
2.76 ±

± S.E

0.15

4.50 ± 1.34
3.33 ± 1.02
3.17 ± 0.70

3.04 ± 0.49

2.50 ± 0.34
2.40 ± 0.51

That is the time recorded from introduction of the male to mating 

Embryos produced were either 2 x 39 or 41 and 39
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days for mothers producing only normal euploid offspring. This 

difference, however, was not significant with a Student 't 1 test 

(t = 1.296; p > 0.10), as the groups were small in size with large 

standard errors. The trend to a longer time interval between 

introduction of the male and mating, in those females producing 

aneuploid conceptuses is nevertheless of interest.

3.3.3 Oestrous Cycle Regularity

3.3.3.1 The Frequency of all Oestrous Cycles

From the morphology and distribution of cell-types from any 

smear, it is possible to determine the stage of the oestrous cycle 

for that particular female. Figure 3.3 shows the various cell types 

found on each day of the oestrous cycle. A complete cycle is 

classified as a sequence from epithelial/cornified cells through 

leukocytes back to cornified epithelial cells, e.g. Oestrus (E); - 

Met-oestrus (M); - Di-oestrus (D); - Pro-oestrus (P); - Oestrus (E) 

would be classified as one complete cycle regardless of the number 

of days spent in either 'M 1 , 'D 1 or 'P'. The frequency of all 

complete oestrous cycles per 20 day interval for both ovx and 

sham operated animals is shown in Figure 3.4. The two groups 

followed the same general trend of fewer cycles with increasing 

age, although spurious - not significant increases were observed 

from time to time in both cases.

In the intact animals there was no difference in the frequency 

of oestrous cycles per 20 day interval from 90-249 days. During 

the interval from 250-269 days however, there were significantly 

fewer oestrous cycles than during the 90-109 day interval (t = 2.32,
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0.05 > p > 0.01, using 1 tailed 't 1 test). During the two 20 day 

intervals from 270 to 309 days there was no significant difference in 

the number of oestrous cycles when compared to any preceding 20 day 

interval.. All 20 day intervals after day 310 however, showed 

markedly fewer cycles than earlier intervals (Days 90-109 cf 310-329; 

t = 2.4, 0.05 > p > 0.01).

A similar trend was noted for the ovx group with significantly 

fewer cycles occurring during the 230-249 day period compared with 

days 110-129 (t - 3.6; 0.01 > p > 0.001). Each 20 day interval 

subsequent to day 230 showed significantly fewer cycles than days 

110-129.

For most intervals the mean number of cycles per animal in 

the intact group exceeded the mean number in the ovariectomized group. 

This was always true after day 210. Furthermore, after day 230 with 

the exception of the 350-369 day interval, there were significantly 

more cycles per 20 day interval in the intact animals than in their 

ovariectomized counterparts (e.g. Days 230-249; t = 3.12: 0.01 > p > 

0.001) using two-tailed unpaired 't 1 test.

3.3.3.2 Frequency of 'Normal 1 4 or 5 Day Cycles

Cycles were classified as normal if they showed either a 

4-day pattern of Pro-oestrus(P), Oestrus (E), Met-oestrus (M) and 

Di-oestrus (D) or either of the following 5-day cycles P,E,E,M,D 

or P,E,M,D,D. These 4 or 5-day cycles were the most common types 

found and tend to be intermittent, rather than occurring in long 

strings. Figure 3.5 shows the frequency of 'normal 1 4 or 5-day 

cycles for both ovariectomized and intact animals. In both groups
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the trend was similar to that shown in Figure 3.4 for all types of 

oestrous cycles.

For the intact animals there was no significant difference in 

the number of 'normal' cycles per 20-day interval up to day 289. 

From day 250 onwards, however, there was a gradual decline in the 

number of 'normal 1 cycles with the 290-309 day interval being 

significantly different to the 110-129 day interval (with a 1 tailed 

't' test; t = 4.48; p < 0.001).

The frequency of normal cycles per 20-day interval in 

ovariectomized animals was slightly more erratic than for the intact 

animals, with the 150-169 day interval showing significantly fewer 

'normal' cycles than the previous 20-day interval (t = 2.79; 0.01 > 

p > 0.001). However, during each of the next 3 20rday intervals the 

number of 'normal' cycles was higher than for the 150-169 day 

interval. During the 239-249 day interval there were significantly 

fewer normal cycles than from days 210-229 (t = 2.22; 0.05 > p > 0.01). 

These continued to decrease for each of the following 20-day intervals, 

and by day 330 none of the OVX mice showed 'normal' 4 or 5-day cycles.

There were significantly more normal cycles in intact animals 

than their OVX counterparts for each interval from day 250-329 (e.g. for 

250-269 days using a two-tailed unpaired 't 1 test; t *= 3.59; 0.01 > 

p > 0.001).

3.3.3.3 Proportion of Acyclical Animals

Animals were classified as acyclical if they failed to show 

a complete oestrous cycle during any 20-day interval. Figure 3.6
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shows that up to 310 days of age, few intact or uni-OVX animals were 

acyclical throughout any given 20-day interval, although individual 

animals did occasionally have extended periods of persistent vaginal 

cornification. After day 310 however, the proportion of acyclical 

animals found in each group increased although there were consistently 

more acyclical mice in the uni-OVX group at any given age. At 330 

days of age, approximately half of the uni-OVX group were acyclical, 

but a comparable proportion of the intact group was not found to be 

acyclical until 40 days later.

3.3.4 The Distribution of Primordial Follicles within the 
Ovaries of Sham and Uni-QVX Animals at Various Ages

The data obtained for the primordial follicle counts, based 

on 21 animals from 3 ages is not complete. However, it does 

represent progress so far. Figure 3.7 shows the relationship 

between age and log total number of oocytes for uni-OVX and sham 

operated mice. The data were transformed semi-logarithmically 

since there is widespread evidence that the decline in number of 

oocytes is exponential with respect to age. The fit to a straight 

line was satisfactory for both experimental groups (uni-OVX, 

r « 0.97; sham, r - 0.84). The slopes are not significantly 

different for the two groups of mice, indicating,that although 

the uni-OVX mice had fewer primordial follicles than intact 

animals, the rate of oocyte loss was the same in both groups.

3.4 DISCUSSION

In the previous chapter an attempt was made to use the 

XO mouse as a model for the menopausal human female. The 

characteristics of the XO mouse which made it particularly useful
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in such studies - i.e. shortened reproductive life (Lyon and 

Hawker, 1973) which is perhaps a consequence of reduced numbers of 

oocytes at birth, and early depletion of the stock of oocytes in 

middle age with virtual exhaustion at the cessation of fertility 

(Burgoyne and Baker, 1981) are also common to the CBA mouse strain 

(Faddy et at, 1983). Unlike the XO mouse, however, the CBA strain 

under normal circumstances produces only haploid oocytes (n = 20), 

so that aneuploid and euploid gametes or embryos can easily be 

distinguished.

The CBA mouse has been used in the present study, to test whether 

as claimed for other strains (Thung, 1961), that uni-OVX accelerates 

the normal progression of age changes of the ovarian cycle, and also 

to determine whether there is an associated change in the age-specific 

incidence of embryonic aneuploidy as a result of the removal of an 

ovary in early life. It was hoped that the results might also provide 

a means by which the validity of the production-line hypothesis 

(Henderson arid Edwards, 1968) and hormonal hypothesis (see Chapter 1) 

could be examined.

An increase in aneuploidy with maternal age was found for 

both uni-OVX and sham operated animals in the present study. 

Similar increases in aneuploidy with increasing maternal age for 

the CBA mouse strain have been reported by other authors. Gosden 

(1973) for example, reported a significant increase in the number of 

trisomic embryos from 8-12 month old CBA/H-T6 mothers compared with 

mothers aged 2-7 months. Martin et al (1976) using in vitro matura-
i

tion of oocytes found 5.2% disomy amongst oocytes from 5-8 month old 

animals compared with zero disomy in both 2-5 and 8-11 month old
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animals. Chebotar (1978), however, has claimed a fourfold increase 

in hyperploidy amongst superovulated oocytes from older (8-11 month 

old) CBA's when compared with younger groups. Fabricant and 

Schneider (1978), looking at 10-14 day old embryos from CBA mothers, 

have demonstrated an increase in aneuploidy from 7.2% to 15.3% with 

increasing maternal age from 4.7 to 8.0 months. A similar increase 

in aneuploidy with increasing maternal age was also reported by Max 

(1977).

In all work designed to assess the level of non-disjunction 

by chromosome counting lies the problem of distinguishing between 

true aneuploidy and that which is due to artefacts of preparation. 

How best to express the aneuploidy figure is always a problem. 

In the present study the aneuploid counts for all groups, regardless 

of age and operation, are inflated by and the distributions skewed 

towards the hypoploids. These can arise not only by non-disjunction 

or chromosome lagging, but also as artefacts through chromosome 

loss during preparation. Such artefactual aneuploids should occur 

in all groups to a more or less equal extent (assuming a symmetrical 

distribution of probabilities for segregation of chromatids) and 

therefore diminish any age effect for aneuploidy which may exist. 

(Furthermore, some trisomic embryos might also be lost in the 

classification if one chromosome was lost by artefact. They would 

be then included in the diploid (2n = 40) group). In order to 

overcome the problem of artefactual hypoploids in this study, those 

spreads with two or more cells showing 39 chromosomes were recorded 

as 'true -39 s' as the probability of loss, through breakage, of 

1 chromosome from each of 2 cells in an embryo is very small.
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The usefulness of this however, has been reduced as the number of 

analysable cells per preparation was not recorded for other chromosome 

scores. Hence it is not possible to determine what proportion of 

the 1-cell 39's are also 'true-hypoploids'. Probably the best 

assessment of non-disjunction can be obtained from the 'hyperploidy 1 

figure, indeed a doubling of the hyperploid total has been used by 

several authors as the best means whereby the frequency of non- 

disjunctional events can be estimated (e.g. Ford, 1975). In the 

present study the hyperploidy count in the sham animals increased 

from zero in both the 9-13 week and 22-26 week old animals to 

1.7% and 2.2% in the 35-40 and 44-50 week old animals giving 

aneuploidy frequencies (by doubling) of 3.4%''and 4.4% respectively. 

In the uni-OVX animals this aneuploidy figure'increased from zero 

to 8.0% and to 9.8% for the 9-13, 22-26 and 35-40 week old groups 

respectively. These increases however, are not statistically 

significant, reflecting the problems of obtaining suffdcient data 

in studies of this kind. For the statistical comparisons therefore, 

all 41, 39, 38 and 37 chromosome embryos have had to be included 

in the aneuploidy total regardless of the fact that a proportion 

of the latter category undoubtedly arose by artefactual loss.

The results show that with increasing maternal age these 

total aneuploidy levels increase three-fold amongst sham controls 

and become almost doubled in the uni-OVX group. This increase is 

apparently progressive (continuous) rather than stepwise. At all 

ages the level of total aneuploidy was greater amongst uni-OVX 

than sham animals, and it increased consistently with increasing 

maternal age in the former group. In the sham-operated animals,
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however, there was no increase in aneuploidy between 9 and 26 weeks 

of age although an increase did occur in subsequent age-groups. 

These results show agreement with the findings of Gosden (1973) 

and Fabricant and Schneider (1978), rather than those of Martin 

et al (1976) who found a peak aneuploidy level in Mil oocytes from 

middle-aged CBA females (i.e. 5-8 month old). Sopelak and Butcher 

(1982) have looked at the effect of decreased ovarian tissue, on 

embryonic development in rats and found an increase in abnormal 

and retarded embryos following uni-OVX, which supports the present 

findings. No cytogenetic data was collected by Sopelak and Butcher 

(1982).

With increasing maternal age there was also an increase in 

the proportion of ova lost due to a failure of ovulation or early 

development. Unfortunately, present results cannot precisely assess 

the contributions of each. It would seem likely, however, that 

most of this loss of ova is due to the failure of ovulation as 

Jones and Krohn (1961) have documented "Corpora Lutea accessoria 

(or atretica)" in old ovaries in which ova are retained. Furthermore, 

dead embryos should still have been detectable 3J days after copulation, 

as unfertilized eggs were still obvious after this time. In the case 

of the human female too, the frequency of anovular cycles is known 

to increase with maternal age (Sharman, 1962; Doring, 1969).

From the present results it appears that the frequency of 

oestrous cycles, whether classified as 'normal' 4 or 5-day cycles, 

or as all types of cycle, decreases in both uni-OVX and intact 

animals with age. This is not a continuous decrease, however, 

as there is a period from 90 to about 300 days when the cycle
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frequency in both groups remained at consistently high levels. This 

is similar to the pattern observed by Nelson et al (1982) for 

ageing intact C57BL/CJ mice, although in that strain the period 

preceding irregular cyclicity was longer. Cycle frequency declined 

earlier in the uni-OVX animals, with a significant difference in 

cycle length obvious after 230 days. For sham controls the frequency 

of normal cycles started to decline from day 250, with all types 

of cycle, regardless of the method of classification, being 

significantly longer than preceding intervals from about day 300. 

Thung (1961) demonstrated that the frequency of normal cycles 

declined more rapidly in ageing uni-OVX animals than in their sham- 

operated counterparts. In the present study the decline in regular 

cyclicity did not occur until at least 150 days after operation. 

This delayed effect of uni-OVX may be explained by the flexibility 

of the ovarian system in young animals which continue to cycle 

regularly with the remaining ovary shedding an increased number 

of ova at oestrus. As the ovarian follicle population becomes 

reduced during ageing the compensatory response wanes and cycles 

become irregular and cease before those of intact animals (Thung, 

1961). This might explain why the fertility of long-term uni-OVX 

mice is lost earlier in life than intact control animals (Biggers 

et al, 1962; Gosden, 1979).

The finding that there was little difference in the time 

taken to plug for mothers of normal offspring with increasing age, 

regardless of operation sub-group, was of some interest. With the 

exception of the 22-26 week old uni-OVX group all plugging times 

were remarkably consistent. This time interval could be expected 

to show some similarity to the changing pattern of cycle frequency
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with advancing age as the mean time taken to plug for any group 

should reflect the regularity of oestrus. The data, however, are 

presented differently in each case. The fact that the mothers were 

classified on the basis of the offspring they produced may account 

for the lack of increase in plugging time with age, particularly as 

the cycle frequency judged from the smear data, did change with 

advancing age. Another factor may be that generally those animals 

with the more regular cycles are the ones which plug at any age. 

From the raw data there appeared to be a trend towards longer 

plugging times for mothers producing aneuploid offspring. None 

of these, however, were significantly longer than for mothers 

producing euploid offspring, although this conclusion is based on 

small samples and more information needs to be collected before 

a firm conclusion can be reached. It may be that populations with 

a greater risk of producing aneuploid offspring are actually 

comprised of an increased number of specifically 'at-risk' 

individuals, i.e. those with a relatively high frequency of 

irregular cycles. Those individuals cycling regularly may continue 

to produce normal offspring regardless of age. In this respect 

Mikamo and Hamiguchi (1975) have looked at young rats mated 

during a naturally-occurring six-day cycle. They found that such 

prolonged cycles often resulted in a lowering of implantation rates 

and in an increase in tfte numbers of degenerated embryos. This 

deleterious effect of a spontaneous delay of ovulation in the rat 

is not necessarily associated with advanced maternal age. The 

fact that older females tend to have longer oestrous cycles, 

however, suggests that irregularities associated with prolonged 

cycles are, as a consequence, more likely to occur in older females
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(Mikamo and Hamiguchi, 1975). These authors have also induced 

delayed ovulation with pentobarbitol using a method similar to that 

described by Butcher and Fugo (1967). When the results of these 

two studies were pooled, they showed 11 aneuploids from 627 in the 

delayed ovulation group compared with 0 from 640 controls (p < 0.005). 

Mikamo and Hamiguchi (1975) concluded that the increased incidence 

of aneuploidy in the 6-day cycle group was very likely due to the 

delay of ovulation causing over-ripeness of the ovum. Butcher (1975) 

considers that major factors of abnormal embryonic development are 

probably associated with intra-follicular hormone levels and the 

sequence of events during a few days immediately prior to ovulation. 

Furthermore, Butcher (1975) suggests that, as found by Mikamo and 

Hamiguchi (1975) for the rat, intra-follicular ageing of the oocyte 

as a result of prolonged menstrual cycles in the human female could 

also, result in birth defects at any time during reproductive life 

when a delay in ovulation occurs.

Studies have been made to determine the plasma concentration 

of LH, FSH, prolactin, progesterone and oestradiol-17$ throughout 

the 4-day oestrous cycle of the rat (Butcher et al 9 1974). Butcher 

(1975) also reported on the changes which occur in the oocyte and 

in circulating levels of hormones as a result of pentobarbitol 

delayed ovulation. Pro-oestrus peaks of LH, FSH and progesterone 

were supressed on both days of treatment but occurred at the expected 

time on the afternoon prior to ovulation. Plasma levels of oestradiol 

were elevated on all 3 days but dropped back to base level at the 

usual time in relation to ovulation. None of the hormone concentra­ 

tions differed significantly from those found in controls during this
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period. Since oestradiol was elevated throughout the period of 

experimentally delayed ovulation, Butcher (1975) suggests that it 

is this hormone which should be studied for its possible role in 

alterations in the oocyte during intrafollicular ageing. Further­ 

more, it should be determined whether a prolonged secretion of 

oestrogen occurs during the lengthened oestrous cycles found in 

naturally aged animals. More recently Butcher and Pope (1979) 

have used an antiserum against oestradiol for oestrogen absorption, 

and replacement with diethylstilbestrol to study the role of 

oestrogen during prolonged oestrous cycles of the rat on subsequent 

embryonic death or development. Their results suggest that the 

early rise, or prolonged elevation of pre-ovulatory levels of 

oestrogen in relation to the time of ovulation is responsible for 

alterations in the oocyte and intrauterine environment which result 

in subsequent abnormal development and embryonic death following 

delayed ovulation. It would appear that extended elevation of 

oestradiol might be more important than hormone concentration 

per se 9 and certainly for the human female there appears to be 

a natural overall lowering of oestrogen levels during the peri- 

menopausal period (Barlow et al 9 1981). The hormone assays from 

serum taken on the day of pro-oestrous in the present study will 

indicate such lowering in CBA females, if it occurs, but will only 

reflect changes on this one specific day with increasing age.

The relationship between the rate of meiosis and the timing 

of ovulation, both of which are hormonally controlled, would appear 

to be critical. Resumption of meiosis and ovulation is normally 

synchronised (Donahue, 1972). In the intact fully developed
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follicle the ovary remains in the dictyate stage until ovulation 

is imminent. If the oocyte is removed from the follicle meiosis 

is resumed. It would appear that the resumption of meiosis without 

ovulation leads to atresia, and certainly oocytes in many follicles 

undergoing atresia show evidence thac meiosis is resumed (Foote, 

1975). A breakdown in the relationship between the rate of meiosis 

and ovulation, might result in the production of aneuploid 

oocytes. Indeed Crowley et al (1979) have considered a breakdown 

in this relationship due to changing hormone levels to be responsible 

for the increase in Down's syndrome with increasing maternal age in 

man. In their "Chiasma-hormonal" hypothesis they propose that 

hormone levels, which both trigger the resumption of meiosis, 

control its timing in the ovum, and control cycle length, change 

with advancing maternal age. They suggest that meiosis may slow 

down, making premature chiasma terminalisatibn in meiotic bivalents 

(and especially the small acrocentric pairs) more likely to occur 

so that aneuploidy may result from random segregation of univalents.

The latter part of this hypothesis incorporates ideas of 

Henderson and Edwards (1968) from the 'production-line' hypothesis 

which the present study may also test. There are two basic 

suppositions on which this hypothesis rests: Firstly, that those 

eggs laid down first in the fetal ovary are those ovulated first, 

while those laid down last are ovulated last. Secondly, that those 

laid down last are subject to inferior conditions {developmental 

or nutritional) leading to a reduction in numbers of chiasmata and 

thus an increase in the numbers of univalents found at metaphase I 

of meiosis. This they postulate could lead to increased aneuploidy
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with increasing maternal age. Recent data from the mouse (Polani and 

Jagiello, 1976; Speed, 1977) and Chinese hamster (Sugawara and 

Mikamo, 1983) indicate a lack of correlation between univalent 

occurrence at MI and aneuploidy incidence in Mil oocytes, thus calling 

into question the 'production line 1 hypothesis as well as the latter 

part of the 'chiasma-hormonal' hypothesis which invokes the random 

segregation of univalents. On the basis of their hypothesis, 

Henderson and Edwards (1968) suggest also that the frequency of 

ovulation of chromosomally abnormal oocytes may be higher when the 

overall number of eggs available is reduced by unilateral ovariectomy. 

By this they imply that the store of ovarian oocytes is utilized 

more rapidly after removing the centralateral ovary, and the 

defective oocytes are therefore ovulated earlier. Quite clearly 

the present data show an increase in aneuploidy levels with increasing 

maternal age for uni-OVX animals which precedes the similar rise in 

sham-operated controls. From the counts of primordial follicles, 

however, it would appear that the rate of loss of oocytes from the 

ovary is the same for both groups. Baker et al (1980) reported that 

after an initial 4-week period following operation the rate of 

depletion of follicles from the pool was no different in uni-OVX 

animals compared with intact controls. This is^supported by the 

present findings and also those of Jones and Krohn (1961) who also 

obtained some limited evidence of this. Contrary to the assumption 

made in the 'production-line 1 hypothesis therefore, the earlier 

increase in aneuploidy following uni-OVX would not appear to be due 

to a more rapid utilization of oocytes.

As well as testing the production-line hypothesis, the 

present chapter has examined the relationship between hormonal
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imbalance, irregular cyclicity and the increase in aneuploidy with 

increasing maternal age. The potentiation of the maternal age effect 

by uni-OVX implies that abnormal segregation of meiotic chromosomes 

in ageing oocytes is an epiphenomenon of physiological ageing of 

the ovary rather than dependent upon the chronological age of the 

oocyte or mother per se. The earlier increase in irregularities of 

the cycle and the increase in aneuploidy might signify a causal 

relationship since embryopathies are more common in rats which 

cycle irregularly (Fugo and Butcher, 1971). The results imply that 

uni-OVX may be an additional risk factor for Down's syndrome in 

older women. Indeed, any factor which induces an early menopause 

may present additional risks of increased aneuploidy (Emanuel 

et at, 1972). For example the correlation of auto-immune disease 

and increased aneuploidy (Fialkow, 1966) may be due to an indirect 

effect of this condition as Irvine et at (1968) and Vallotton and 

Forbes (1969) have reported premature menopause in some females with 

auto-immune disease. As suggested by Butcher (1975) prolonged 

menstrual cycles with delayed ovulation could result in birth defects 

at any time during reproductive life. Irregular cycles will 

obviously become more frequent in older females, due to hormonal 

imbalance, and hence aneuploidy levels will also be expected to be 

higher from such mothers. Even in young women, however, there could 

exist a risk of a Down's conception at any irregular cycle. Current 

interest in Down's syndrome research is focussing on the apparently 

increased incidence over recent years of Down's births to younger 

women (Mikkelsen et at, 1976; 1980; Lowry et aZ, 1976). The 

suggestion that the contraceptive pill may be implicated as a causal 

factor has been made by Read (1982).
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It is also tempting to speculate that the probability of 

conceiving a Down's fetus will be determined primarily by the time 

of approaching menopause. This question was investigated several 

years ago (Oster, 1953; Sigler et at, 1967), although it has not 

yet received an unequivocal answer. A logical extension of this 

hypothesis is that any factor, environmental or ideopathic, which 

depletes the oocyte population, and results in premature menopause, 

could advance the maternal-age-effect for aneuploidy.
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CHAPTER 4

THE INDUCTION OF ANEUPLOIDY BY CHEMICAL TREATMENT

4.1 INTRODUCTION

The first discovery that aneuploidy could be induced 

experimentally appears to have been made by Mavor (1921, 1922) 

using X-irradiation. Since that time numerous studies into 

aneuploidy induction have been made and a range of organisms 

has been tested both with radiation and chemical compounds. 

Chemical induction studies in mammalian germ -line systems are, 

however, not numerous.

Some authors consider that exogenous agents may be 

responsible for the induction of nondisjunction in humans. 

Mikkelsen et al (1980) have suggested, for example, that the 

increasing incidence of Down's offspring born to younger mothers 

in the heavily urbanized districts around Copenhagen might be 

due to increased exposure of the population to environmental 

pollutants. There are also epidemiological data indicating that 

extra human aneuploidy, superimposed on that attributable to 

maternal ageing, could arise from exposure to radiation 

(therapeutic or diagnostic) (Uchida, 1979; Alberman et al, 1972). 

These data are, however, somewhat equivocal (Uchida, 1979) and 

certainly in the mouse there would appear to be no increase in 

sensitivity to radiation induced aneuploidy with maternal age 

(Tease, 1982a).



112,

The heightened concern over human exposure to hazards of 

this kind has led, in recent years, to a surge of mutagenicity 

testing to detect substances of potential danger to man. Aneuploidy 

has been used as an end-point in some of the tests, although to a 

much lesser degree than structural abberation or point mutation. 

When aneuploidy induction has been used as an end-point, however, 

fungal or Drosophila test systems have been utilized most often, 

since these are generally quicker and less tedious than those 

employing mammalian germ cell systems. Extrapolations of such 

studies in lower eukaryotes, to man, would seem questionable; 

testing mammalian germ cells would certainly seem more appropriate. 

In view of this lack of information from mammalian systems the 

present studies were undertaken. Four different chemical 

compounds have been tested on male and female germ cells of the 

mouse, at various stages of meiosis, in order to ascertain their 

aneuploidy inducing potential.

4.1.1 The Choice of a Test System

There are a number of different systems described in the 

literature which can be used as non-disjunction indicators in mammals 

and all of which have been employed at one time or another to study 

both spontaneous and induced levels of aneuploidy. None, however, 

is without limitation. Choice of a particular system will be 

governed by whether direct estimates of non-disjunction in germ 

cells at the first or second meiotic divisions (or both) are 

required, or whether the levels of aneuploidy in zygotes, foetuses 

or liveborns is to be determined. In the mouse, cytological or
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genetic techniques are available for the detection of aneuploidy at 

all these stages, and have been employed by a number of workers. 

Russell (1979), for example, has developed a system for the detection 

among liveborns, of numerical sex-chromosome anomalies (N.S.A's) 

utilizing X-linked genetic markers which render all viable types, 

except XYY, recognisable on external examination. One advantage 

of this method is that spontaneously occurring sex-chromosome 

aneuploids are extremely rare, so that there is little background 

'noise' for the end-point. Methods are also available for the 

detection of certain autosomal aneuploids among liveborns by 

complementation testing (Lyon et at, 1976). Such systems use 

marker genes in the detection of the non-disjunctional event, 

two gametes with complementary aneusomies giving rise to chromosomally 

balanced viable offspring. Other authors have estimated levels 

among liveborns by karyotyping newborn mice (Good!in, 1965).

Systematic karyotyping of mid-term foetuses has also been 

performed (Ford and Evans, 1973; Yamamoto et al 9 1973: Speed and 

Chandley, 1981). This technique yields several metaphases per 

conceptus, which gives a reliable finding if all have the same 

number of chromosomes, and it permits identification of the 

particular chromosome involved in non-disjunction. Mosaicism, 

which can sometimes be observed, does however present a problem 

since the origin of the error, be it meiotic or mitotic may not 

be discernible. A further disadvantage is that there is a reduced 

chance of recovering autosomal trisomics and virtually no chance 

of finding monosomics. According to Gropp (1982) most autosomal 

trisomics in the mouse die from about day 10 of gestation onwards, 

ics are eliminated before, or shortly after implantation.
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Some of these problems can be overcome by scoring 1-cell 

embryos or early cleavage divisions in morulae or blastocyts. 

Maudlin and Fraser (1978) have used the former and Gosden (1973) 

the latter to look at the relationship of aneuploidy with maternal 

age in the mouse. Others (e.g. Rohrborn et al t 1971; Watanabe 

and Endo, 1982) have used early cleavage divisions to score 

structural and numerical abnormalities induced by various chemicals 

given to the parents. This technique tends to be more difficult 

than other methods which employ the use of older embryos since 

fewer analysable cells are present on the slides. The great 

advantage is, however, that few if any early losses should be 

missed, depending of course on the gestational stage examined.

Non-disjunction at the first meiotic division in either 

males or females can be assessed by dyad counting at metaphase II. 

Metaphase II oocyte analysis has been used for aneuploidy assess­ 

ment by Hansmann (1974) and Sugawara and Mikamo (1980). It is the 

protocol used by Hansmann (1974) upon which the present study of 

induced non-disjunction in female mice is largely based. The 

scoring of aneuploidy levels in Mil oocytes is particularly 

relevant in view of the high levels of non-disjunction found to 

occur at the first maternal meiotic division in humans compared 

with at all other times (Jacobs and Hassold, 1980). It does 

however, have the disadvantage that it cannot provide a measure 

of non-disjunction occurring at the second meiotic division.

In males too, Mil analyses have been carried out both in 

untreated (Ohno et at, 1959; Beatty et at, 1975) and treated 

animals (Szemere and Chandley, 1975; Szemere and Marczinovits,
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1977). Good testicular preparations from male mice normally contain 

relatively large numbers of metaphase II cells and so the system 

provides a quick and simple method for aneuploidy analysis. It has 

been adopted for use in the present study. Tates (1979) has 

developed an alternative system for measuring sex-chromosome non- 

disjunction using the germ cells of the male field vole Microtus 

oeconomus. In that species it is possible to identify the X and 

Y chromosomes in round spermatids because of the heterochromatic 

nature of the Y and a large block of centromeric heterochromatin 

on the X, both of which stain darkly and can be separately identified 

by C-banding. This technique, like the NSA technique of Russell 

(1979), only detects sex-chromosome non-disjunction with the further 

disadvantage that it may also detect anomalies additional to whole 

chromosome aneuploidy.

4.1.2 Previous Findings for Aneuploidy Induction in Mammalian 
Germ Cells using Chemical Compounds

The data concerning the chemical induction of aneuploidy in 

mammalian meiotic systems are not extensive, and where studies have 

been carried out, the effects have not been great. The one exception 

to this is the effect of spindle inhibitors.

Sugawara and Mikamo (1980) scored Mil oocytes in the Chinese 

hamster to assess the aneuploidy inducing potential of colchicine, 

administered during spindle formation at concentrations which are 

not completely inhibitory. In a total of 2124 oocytes analysed, 

an increase in aneuploidy was reported from 2% (35/1742) at control 

levels to over 25% (99/382) in treated animals. Both anaphase 

lagging and non-disjunction were observed. Other chemicals have
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been selected for aneuploidy testing because of their known effects 

on chromosomes or DNA, for example in terms of chromosome breakage. 

(In Drosophila melanogaster (Parker and Busby, 1973) and the mouse 

(Tease, 1982a) there are data which implicate chromosome breakage 

phenomena in aneuploidy induction.) In this respect the alkylating 

agents EMS (ethylmethanesulphbnate) and MMS (methylmethanesulphonate) 

were chosen for testing by Szemere and Marczinovits (1977). They 

compared the results obtained with these two compounds with those 

previously obtained for X-irradiation.(Szemere and Chandley, 1975). 

MMS (50 mg/Kg body wt.) gave 3.3% (13/295) cells with more than 

20 dyads at Mil following treatment at the pre-leptotene stage of 

meiosis, this being two-thirds the effect produced by 100 rad 

X-rays. EMS (240 mg/Kg) produced half the effect found with X-rays 

i.e. 7/414 (1.7%) of cells with more than 20 dyads.

Hansmann (1974) looked at the stage sensitivity of mouse 

oogenesis to amethopterin and cyclophosphamide and found that the 

induction of aneuploidy was related to treatment at highly sensitive 

stages where chromosome segregation takes place, such as in oogonia 

and during the immediately pre-ovulatory (diakinesis/MI) phase. 

This stage was also found by Tease (1982ai)to be sensitive to X-ray 

induced non-disjunction in the mouse. The dictyate stage treated 

1 week prior to superovulation, was insensitive.

Jagiello and Lin (1973) examined metaphase II oocyte 

spreads to assess the effect of mercury treatment of dictyate 

oocytes. The results were negative, in spite of previous demonstra­ 

tions of an in vitro effect. Another heavy metal which has been 

tested for aneuploidy induction is cadmium. For the golden hamster
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female, Watanabe et al (1979) reported 8.4% aneuploidy following 

treatment at diakinesis/MI, with cadmium chloride (4 mg/Kg). This 

was a significant increase over control levels. In the mouse an 

earlier study (Watanabe et al 9 1977) had, however, produced no 

significant increases in Mil aneuploidy when treatment was applied 

at this stage. Subsequent studies (Watanabe and Endo, 1982) however, 

showed an increase in aneuploid and triploid blastocysts in the 

mouse following treatment at diakinesis/MI in the female parent 

using a dose of 6 mg/Kg. The increase in triploidy however was 

the most prominent effect.

4.1.3 The Choice of Chemicals for Testing

(a) p-fluorophenylalanine (pFPA) and phenylalanine

pFPA was chosen for testing because of its known potency 

as an aneuploidy-inducer both at mitosis and meiosis in a wide range 

of fungal systems. Lloas (1961) for example showed that pFPA could 

induce mitotic haploidization in diploid Aspergillus niger while 

Griffiths (1979) using Neurospora crassa and Bond and McMillan 

(1979) using Sordaria brevicolHs, showed that pFPA was very 

effective at inducing meiotic aneuploidy even though it had not 

been shown to induce gene mutation (Griffiths, 1979). Tates (1979) 

using the germ cells of Microtus oeoonomus demonstrated that pFPA 

(300 mg/Kg over 24 hrs) was capable of inducing sex-chromosome 

non-disjunction in a mammalian system. As pFPA is an analogue 

of the amino-acid phenylalanine, both being structurally very 

similar, it was considered worthwhile to use phenylalanine as a 

control.
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(b) 6-Mercaptopurine (6MCP)

6MCP, the non-alkylating anti-leukaemic purine analog, was 

also selected for use on the test system. Hoi den et al (1973) and 

Generoso et al (1975) have shown that 6MCP can induce chromosome 

breakage in late-differentiating spermatogonia and very early 

spermatocytes of the mouse. There is also some evidence to 

suggest that it may induce non-disjunction; Cacheiro and 

Generoso (1975) found three XYY males amongst 615 F- progeny of 

males treated with 6MCP at late spermatogonial or early spermatocyte 

stages.

FPA and phenylalanine were dissolved in physiological saline 

whereas 6MCP was dissolved in sodium hydroxide in physiological saline, 

therefore it was necessary to use this as a control.

(c) 4-Chloromethy1biphenyl (4CMB)

The selection of the other chemical for testing on the system 

was somewhat fortuitous. 4CMB was tested as part of a United Kingdom 

Environmental Mutagen Society national toxicology trial. The chemical 

was provided by I.C.I, and was tested by numerous groups on the 

widest possible range of mutagen testing systems. 4CMB is known 

to be a carcinogen although there was no evidence to suggest it had 

aneuploidy incuding properties. Because of problems dissolving 

4CMB it was applied in suspension in a mild solution (0.05%) of 

-he detergent Tween 80, consequently it was necessary to use this 

as a control also.
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4.1.4 Choice of Spermatogenic and Oogenic Stage for 
Chemical Testing

It was decided to test the sensitivities of three different 

meiotic stages in males and two different stages in females. Choice 

of stage was based on the following considerations.

Pre-leptotene in the male was chosen because of previous 

demonstrations of its apparent sensitivity to non-disjunction induc­ 

tion following treatment with X-rays (Szemere and Chandley, 1975) 

EMS and MMS (Szemere and Mawzinovits, 1977). Zygotene was also 

chosen in the male because it is the stage in meiotic prophase at 

which pairing of homologous chromosomes occur's. In Drosoph-Lla 

Savontaus (1975) showed that aneuploidies arising from the irra­ 

diation of oocytes were often non-crossovers, and suggested that 

this effect was due to a failure of pairing. This stage was not 

examined in the female because it occurs pre-natally thus presenting 

problems from possible teratogenic effects with maternal exposure.

Diakinesis/Metaphase In in both males and females was chosen 

because this is the stage immediately preceding the meiotic division 

where possible effects on the spindle might be produced. It was 

also chosen because in female mice, an increased sensitivity to 

aneuploidy induction by X-rays has been demonstrated following 

treatment at the diakinesis/metaphase I (pre-ovulatory stage) 

(Tease, 1982a)compared with treatment at the dictyate stage (Tease, 

1981). Also it was a stage found sensitive to aneuploidy induction 

by Amethopterin and cyc,lophasphamide in the mouse (Hansmann, 1974) 

and by cadmium chloride in the hamster (Watanabe et at, 1979).



120

Dictyate was also treated in the present study in both young and old 

females in order to test for any further enhancement in aneuploidy 

levels over and above those attributable to ageing.

4.2 METHODS

4.2.1 Males

4.2.1.1 Chemical Treatments

The chemicals tested for aneuploidy induction, 6MCP, pFPA, 

phenylalanine, and 4CMB with sodium hydroxide (NaOH) and Tween 80 

as controls, were all injected intraperitoneally.

6MCP was dissolved in a solution of 0/01 m NaOH and was 

tested at a dose of 150 mg/Kg body weight. It was necessary to 

heat the 6MCP solution prior to administration in order to achieve 

the necessary dose in a single 0.4 ml injection. Both pFPA and 

phenylalanine were dissolved in physiological saline and given as 

0.3 ml injections at a dose of 100 mg/Kg body weight, the 4CMB 

was solubilized in a solution of 0.05% Tween 80 in distilled water. 

Prior to the injection of 4CMB sonication was necessary, to achieve 

an even distribution of undissolved chemical, for an approximate 

dose of 100 mg/Kg body weight. The vehicle for this last test, 

Tween 80, was used as a control, as was a 0.01 m solution of 

sodium hydroxide.

4.2.1.2 Chromosome Preparations

Metaphase II (Mil) chromosome spreads from air-dried 

testis preparations vary between mouse strains in both quality and
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quantity (R.M. Speed, personal communication). As Mil was chosen 

as the end-point for the male study, it was desirable to use the 

strain of mouse giving maximum numbers of analysable Mil counts per 

slide. Two random-bred strains of mice, Swiss and Q, which were 

available, were compared. A random-bred colony of Swiss-albino 

mice (Schofields. Delph, Odlham) was set up at the Animal Unit of 

the Western General Hospital, Edinburgh. A random-bred colony of 

Q-strain mice had previously been established from mice supplied 

by Professor D. S. Falconer (Institute of Animal Genetics, University 

of Edinburgh. For further information on Q-strain see Falconer, 

1973).

Air-dried spreads of testicular cells'were obtained using 

a slight modification of the technique of Evans et al (1964). Males 

of the two strains were killed at 8-12 weeks of age, by cervical 

dislocation. The testes were dissected from the tunica, and placed 

in 2.2% isotonic sodium citrate. The seminiferous tubules were 

teased apart in fresh 2.2% sodium citrate, and the cell suspension 

drawn off using a pasteur pipette. The cells were centrifuged 

at 400 r.p.m. for 8 minutes, the supernatant being discarded. The 

pellet of cells was then resuspended in 1.0% hypotonic sodium 

citrate solution for 8 minutes before being centrifuged again at 

400 r.p.m. for 8 minutes. The supernatant was again discarded aAd 

fixative (3:1, methanol: glacial acetic acid) was slowly added down 

the side of the tube with constant agitation of the pellet. This 

was done by gently flicking a finger against the side of the test 

tube. After the addition of 20 drops of fixative, the cells were 

gently pipetted up and down, and more fixative was added up to a
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volume of 5 mis. The cells were pelleted and resuspended in fresh 

fixative twice more. The final volume of fixative used varied between 

2 and 3 mis depending upon the size of the pellet. The cell suspension 

was then left for a few minutes to allow clumps of cells to settle 

to the bottom of the tube.

Micro-slides were cleaned in alcohol and wiped with a 

clean dry cloth. Breathing on the slides produced a surface layer 

of condensation which aided cell spreading as the cell suspension 

was dropped from a height of about 10 cm. One drop was placed at 

each end of the slide and:the slide shaken vigorously to give drying 

with optimum spreading.

The spreads were stained with carbol fuchsin (Carr and 

Walker, 1961) for 5-10 minutes, and after rinsing off with distilled 

water were differentiated briefly with 100:1; ethanol: glacial 

acetic acid and dried on a hot plate. The choice of this stain 

was made for several reasons. Firstly it was found by experience 

to give excellent criteria by which meiotic cell stage identification 

could be carried out in air-dried mouse testis preparations. 

Secondly it allows clear identification of the X and Y chromosomes 

at metapahse II. Thirdly it can be used as a prior stain for 

autoradiography as, unlike Giemsa, it does not wash out in 

developer and does not interfere with autoradiographic emulsion.

4.2.1.3 Identification and Timing of the Spermatogenic Sequence

Swiss males were chosen for the experiment as they were 

found to yield a higher number of analysable metaphase II spreads 

than the Q-strain (see later). The various spermatogenic stages
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were classified on the basis of nuclear size and morphology. Micro­ 

scopic examination and cell staging were carried out using a x100 

objective and a x12.5 eyepiece lens. Nuclear diameter was measured 

by means of a calibrated eyepiece scale. Nuclear morphology is 

the more reliable of the two methods as nuclear size is dependent 

upon the hypotonic time used during cell preparation. Nuclear 

size alone, however, had to be used to identify cells in which 

the morphology of the nucleus was obscured by heavy tritium 

labelling when meiotic sequence analysis was performed (see below). 

A hypotonic treatment of 1% sodium citrate followed by an 8 minute 

spin was used throughout, although slight variation is inevitable. 

Size measurements can only be considered accurate ± 15%.

To establish the temporal sequence of spermatogenesis 

for the Swiss (Schofield) strain, the following schedule was used. 

Twenty-eight male mice aged 8-12 weeks, each weighing approximately 

30 g, were injected with 100 uCi of tritiated thymidine (Amersham, 

s.a. 44 c/m mol) in 0.2 mis of distilled water. Two males were 

killed by cervical dislocation at 2 hrs and 24 hrs and subsequently 

at daily intervals for a further 12 days. Air-dried testis 

preparations were made from each male and stained with carbol 

fuchsin as described previously.

Autoradiographs were made using Kodak NTB2 liquid emulsion, 

diluted to half strength in distilled water. The slides were 

dipped in the emulsion for approx. 3 sees, dried in a current of 

air, and left to expose in light-tight boxes containing a small 

amount of silica-gel. The boxes were stored at 4°C for 14 days 

after which time they were developed using Kodak D19 developer at 20°C
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At each of the killing times the fate of the labelled 

cells was determined and the meiotic progression followed. Not 

only was the most advanced labelled cell type in the sequence 

recorded, but also, and more importantly, the progression of the 

"majority" cell types. In order to establish the precise time at 

which the majority of Mil spreads showed label it was necessary to 

include some extra and more precise injection-to-killing intervals. 

Labelled Mil cells were first seen on day 11: males were therefore 

killed at two-hourly intervals from day 11 to day 11 plus 16 hours 

post injection with tritiated thymidine.

4.2.1.4 The Effect of Chemical Treatment on Spermatogenic Timing

To ensure that cells sampled at Mil had actually been 

treated at the desired stages earlier in the spermatogenic cycle, 

i.e. that delays in spermatogenesis had not been caused, the 

autoradiographic study was repeated on males which had been 

injected with the chemicals under test.

Twenty eight males were injected with tritiated thymidine 

as described earlier. Pairs of males were then treated with the 

appropriate doses of pFPA, 6MCP, phenylalanine and NaOH, chemical 

injection being given at appropriate times, based on timings in 

untreated males, to hit labelled cells in pre^leptotene, zygotene 

and metaphase I. For 4CMB and Tween 80, tests were confined to 

cells in metaphase I. All mice were killed at the time when 

treated cells should have been expected to reach Mil. Air-dried 

preparations were made, and after development of the autoradiographs, 

mil spreads were examined for the presence of label. Comparisons
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were made between control and treated animals. The pFPA treatment 

at MI was repeated with a further six males, pairs of males being 

killed at hourly intervals from 11 days 10 hours to 11 days 13 

hours after the initial injection of tritiated thymidine.

4.2.1.5 Testing for Aneuploidy

Once the effect of chemical treatment on the timing of 

spermatogenesis had been established experiments to assess the 

aneuploidy incuding potential of the chemicals were performed.

Male mice were injected with either 6MCP, pFPA, 

phenylalanine, NaOH, 4CMB or Tween 80 at the desired doses 

(see Section 4.2.1.1) and subsequently killed at appropriate 

intervals in order to sample cells at Mil which had received 

treatment at pre-leptotene, zygotene or MI. Air-dried preparations 

were made and the slides stained with carbol fuchsin. Mil spreads 

were examined for numerical abnormalities by counting of dyads. 

Loss or gain of chromosomes was noted, if it occurred, as were 

structural aberrations, breaks and fragments.

4.2.2 Females

4.2.2.1 Chemical Treatments

Female mice of the Swiss strain were divided into four 

experimental groups, with treatments being made, in each case at 

either the dictyate or metaphase I (MI) stage of oogenesis in 

young (8-12 week old) and aged (36-40 week old) animals. The 

various treatment regimes employed are summarised in Figure 4.1.
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Fig.4-1

THE CHEMICAL TREATMENT OF FEMALE MICE

a) GROUP A Young animals treated at diakinesis/MI
Age 8-12 weeks

PMS HCG 

J48hrs |3hrs,,

CHEMICAL 

12hrs

KILL

b) GROUP B Aged animals treated at diakinesis/MI

Age 36 - 40 weeks
CHEMICAL 

PMS HCG

48hrs J3hrs,, 12hrs

KILL

c) GROUP C Aged animals treated at the dictyate stage whilst young

Age 8-12 weeks
CHEMICAL

Age 36 - 40 weeks 

PMS HCG 

48hrs 15hrs

KILL

d) GROUP D Aged animals treated at the dictyate stage when aged

CHEMICAL
Age 36 - 40 weeks

PMS HCG 

uHDays 48hrs 15hrs

KILL
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In all cases the mice were superovulated using 3.0 iu pregnant 

mares serum (PMS) and 3.0 iu human chorionic gonadotrophin (HCG) 

48 hours later. These doses of hormone have been shown to have 

no effect on the incidence of non-disjunction during the first 

meiotic division (Hansmann and EI-Nahass, 1979). All oocytes were 

sampled at metaphase II (Mil) - 15 hours after HCG injection. 

Females were killed by cervical dislocation, the oocytes removed 

from the ampullae of the fallopian tubes and fixed according to 

the technique of Tarkowski (1966). Chromosome spreads were C-banded 

using the method of Sumner (1972) and analysed at Mil with regard 

to numerical abnormalities.

4.2.2.2 Treatment Groups

Group A; Young Animals Treated at MI

8-12 week old females were superovulated as described above, 

and 3 hours after HCG injection they were injected with 4CMB, at 

either 50 or 100 mg/Kg, suspended in 0.05% Tween 80. Eggs to be 

sampled at Mil would thus be at a stage of oogenesis corresponding 

to diakinesis/MI (the preovulatory stage) at the time of treatment 

(Hansmann, 1974). Tween 80 alone was used as a control. 12 hours 

after 4CMB treatment the mice were killed, the number of eggs 

ovulated was counted, and chromosome spreads prepared.

Group B; Aged Females Treated at MI

Females aged 36-40 weeks were superovulated as before, and 

oocytes treated 3 hours'later at diakinesis/MI with either 100 mg/Kg 

pFPA, 100 mg/Kg phenylalanine, or 150 mg/Kg 6MCP dissolved in
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0.01 m NaOH which was also given as a control. In order to dissolve 

the 6MCP completely it was necessary to heat the NaOH solution 

slightly. All injections were given intra-peritoneally (i.p) in 

volumes of 0.3 ml or 0.4 ml. The mice were killed and chromosome 

spreads made 12 hours after injection of 4CMB.

Group C; Aged Females Treated at the Dictyate Stage 
whilst Young

Females aged 8-12 weeks were injected i.p. with pFPA, 

6MCP, NaOH and phenylalanine at previously stated doses. They were 

then left to age. At 36-40 weeks superovulation with PMS and HCG 

was carried out, and Mil chromosome spreads prepared. In this 

experiment oocytes sampled at Mil, would have been at the dictyate 

stage when treated in the young females.

Group D: Aged Females Treated at the Dictyate Stage 

Females aged 36-40 weeks were treated with pFPA, phenylala­ 

nine, 6MCP and NaOH. They were then left for 14 days before super­ 

ovulation and chromosome preparation. In this case oocytes sampled 

at Mil would have been in the dictyate stage in the aged animals whe.n 

treated.

4.3 RESULTS

4.3.1 Males

4.3.1.1 Identification and Timing of Spermatogenic Stages

The number of 'dividing cells found on air-dried preparations 

from both Swiss and Q strain mice is shown in Table 4.1. As stated 

earlier, a higher number of dividing cells (spermatogonial metaphases
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and 1st and 2nd meiotic metaphases) was found in mice of the Swiss 

strain than in Q males. The stage of most importance from the point 

of view of aneuploidy analysis, i.e. meiotic metaphase II, was seen 

more than twice as frequently on slides prepared from Swiss males. 

The total number of dividing cells per slide will be dependent on 

the technique used for preparation, and particularly on the volume 

of fixative in which the cells are finally suspended. These two 

factors were kept constant for both strains, the observed differences 

thus indicating an inherent difference between strains. In view of 

this finding the Swiss strain was selected for the aneuploidy testing 

experiment.

Figures 4.2, 4.3 and 4.4 illustrate the characteristics of 

the various spermatogenic stages. The identification of-the pre- 

leptotene, zygotene and MI stages was particularly important for 

the aneuploidy induction test. The distribution of grains, and 

hence radioactive label, amongst the various cell stages at 

daily intervals is shown in Table 4.2. None of the mice killed 

2 hours after the tritiated thymidine injection showed labelled 

leptotenes, whereas after 24 hours 33.5% of labelled cells were 

in this stage. For pre-leptotene treatment, therefore, the best 

time was considered to be greater than 2 hours but less than 24 

hours following the injection of radioactive precursor. Six 

hours was chosen, somewhat arbitrarily as a suitable time to 

consider most labelled prophase cells still to be in pre-leptotene. 

On day 2 only 18.6% of cells were in zygotene, but by day 4 nearly 

half the labelled cells had passed through zygotene. On day 3, 

however, 48.9% of cells showing grains were still in the zygotene
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stage making this the best treatment time. From days 5 to 11 the 

vast majority of labelled cells were in the pachytene and diplotene 

stages. The first labelled Mi's were observed on day 11, although 

this represented less than 1% of all labelled cells. On the 

following day (day 12) however, over 50% of labelled cells had 

passed through MI and Mil, and reached the round-spermatid (R-tid) 

stage. The daily sampling time used was not precise enough to 

pinpoint the exact lengths of MI and Mil, hence further mice were 

set up and killed at two-hourly intervals between day 11 and day 

11 plus 16 hours. Tables 4.3(a) and 4.3(b) show the times taken 

for grains to appear over MI and Mil preparations respectively. 

It was not until 11 days 6 hours after the injection of tritiated 

thymidine that label appeared in the majority (94%) of MI spreads. 

Mil spreads first showed grains after 11 days 6 hours, although 

the majority did not show label until 11 days 10 hours. Estimation 

of the intervals between introduction of label at S-phase (pre- 

leptotene) and the subsequent appearance of specific labelled cell 

types provides a means of establishing time intervals between 

specific stages in the spermatogenic sequence. The time taken for 

pre-leptotene, zygotene and MI cells to reach Mil was, however, 

the primary consideration in this experiment. From the labelling 

studies (Tables 4.2, 4.3(a) and 4.3(b) these were established as:

Preleptotene -»• Mil 11 days 4 hours

Zygotene + Mil 8 days 10 hours

MI -^ Mil 4 hours
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Table 4.3(a) Time Taken for Labelled Cells to Reach Metaphase I

Time After
Injection
of Label 
Day - Hr

11-2
11-4
11 - 6 *
11-8

No. of Cells
Analysed

50
50
50
50

% Labelled

12
36
94
93

*Time selected for treatment

Table 4.3(b) Time Taken for Labelled Cells to Reach Metaphase II

Time After 
Injection 
of Label 
Day - Hr

11
11
11
11
11
11
11
11

- 2
- 4
- 6
- 8
- 10 *
- 12
- 14
- 16

No. of Cells 
Analysed

34
33
50
50
50
50
37
50

% Labelled

0
0

26
48
66
64
52
58

*Time selected for sampling
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4.3.1.2 The Effect of Chemicals on Spermatogenic Timing

The above time intervals were established for untreated 

animals. Table 4.4 shows the effect on these intervals following 

treatment with the various chemicals under test. 6MC1P, 4CMB 

and Tween 80 treatments produced no delay in spermatogenesis. 

Similarly no delay was observed when the pre-leptotene and 

zygotene stages were treated with pFPA or phenylalanine. Treatment 

with pFPA at MI (killing 4 hours later) produced, however, only 36% 

of all Mil's showing label, compared with approximately double this 

number for most other treatments and for controls. It would appear, 

therefore, that this treatment is producing a delay to spermatogenesis 

between MI and Mil. A reduced number of labelled Mil's was also 

found following treatment with phenylalanine at MI. Several of these 

cells (c.20%) showed a late-labelling pattern (Kofman-Alfaro and 

Chandley, 1970). There was, however, no significant difference in 

the number of labelled cells found after treatment at this time 

(MI) compared with the previous treatment time (zygotene).

Further mice in the pFPA group were set up to establish 

the length of time taken for the majority of spermatocytes treated 

in MI to reach Mil. Table 4.5 shows that the majority of Mil's 

were labelled 6 hours after treatment at MI with pFPA, thus 

indicating a delay of about 2 hours compared with controls. This 

was therefore chosen as the best time interval to sample Mil's 

following pFPA treatment at MI. The overall treatment regime for 

all four chemicals under test is shown in Figure 4.5. For the 

aneuploidy studies therefore, injection-to-killing intervals for 

all chemicals and controls were as stated earlier (Section 4.3.1.1)
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except for pFPA treatment at MI. when 2 hours was added before 

killing.

4.3.1.3 The Chemical Induction of Aneuploidy

Typical male Mil chromosome spreads are shown in Figure 4.6. 

The total scores obtained from such Mil spreads following treatment 

with 6MCP, pFPA, phenylalanine and NaOH are given in Table 4.6. 

It is seen in all groups, including controls, that hyperploidy is 

far less frequent than hypoploidy. Many of the hypoploids are 

believed, however, to have arisen through chromosome loss due to 

cell breakage during slide preparation. The/level of true aneuploidy, 

i.e. that due to non-disjunction alone, is better expressed therefore 

by doubling the number of disomic counts (n = 21). Chi-squared 

analyses of the numbers of 21's in the treated group totals of 

Table 4.6, compared with controls, are not significant at the 5%- 

level. This is even the case following pFPA treatment where the 

percentage number of hyperploids is six times greater than in the 

control group.

Comparison of the hyperploid levels following stage-specific 

treatments with 6MCP, phenylalanine, and 4CMB with controls showed 

no significant differences (Table 4.7). pFPA treatment at MI 

however, did produce significantly greater levels of hyperploidy 

than with NaOH (control) treatment (x2 '•= 5.14, d.f. =1, .'. 0.05 > 

p > 0.01). When compared with the Tween 80 MI control however, 

this difference was not significant. Comparison of MI treatment
i

with pFPA and the NaOH control treatments at zygotene and pre- 

leptotene both proved non-significant, in fact one hyperploid
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Table 4.6 The Effect of Chemical Treatment on Aneuploidy
Induction in Spermatocytes

Treatment Total 
and Mil's 
Dose Scored

Control 1158 
(NaOH)

6MCP 1663 
(150 mg/Kg)

pFPA 1384 
(100 mg/Kg)

Phenylalanine 1839 
(100 mg/Kg)

Chromosome number n = * 
— —————————————— fcall (% True
17 18 19 20 21 Aneuploids Aneuploids)

17 56 131 953 1 17.4 (0.2)

28 74 202 1351 8* 18.8 (1.0)

26 64 173 1114 7 19.5 (1.0)

21 88 220 1506 4 18.1 (0.4)

'True* aneuploidy frequency estimated by doubling 
the hyperploid (n=21) counts
includes one n = 23
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spermatocyte was observed in this latter control group. Neither of 

the other pFPA treatment times gave levels of hyperploidy significantly 

different from controls.

4.3.1.4 Chemical Induction of Chromosome Damage

The effect of stage specific treatment with various chemicals 

on chromosome anomalies other than aneuploidy in spermatocytes is 

shown in Table 4.8. The number of cells with broken chromatids was 

very low. Only 9 spermatocytes of 6900 scored showed breaks, of 

these 3 occurred following pFPA treatment at the pre-leptbtene 

stage.

Twenty-five cells (0.36%) showed unpaired chromatids, i.e. 

cells with 19 dyads plus 2 univalents. Seven of these occurred 

following 4CMB treatment at MI, although four were found in the 

control group (NaOH) following treatment at pre-leptotene and 

three occurred in the Tween 80 group following MI treatment.

4.3.2 Aneuploidy Induction in Females

The effect of 4CMB on the number of oocytes recovered 

following superovulation is shown in Table 4.9. For treatment with 

50 mg/Kg the mean number of eggs ovulated was reduced by 21.1% 

compared with controls, whilst treatment at a dose of 100 mg/Kg 

caused a reduction of 32.26% in the mean ovulation rate. The 

effect of the other chemicals on ovulation was not considered.

Figure 4.7 shows Mil spreads from oocytes and Table 4.10 

shows the effect of chemical treatment on dictyate and diakinesis/MI
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oocytes in young and aged females when scored for numerical chromosome 

abnormalities at Mil. In all cases, hypoploid oocytes were observed, 

their occurrence ranging from 34.9% in the Tween 80 treatment A group 

to 15.7% of the total in the pFPA treatment D group. Chi-squared 

analysis of the distributions of these two extremes proved non­ 

significant (x* = 7.3 p > O.t). No disomic complements were observed 

from the total of 1202 oocytes analysed. A minority of oocytes showed 

separated chromatids, i.e. 19 dyads plus 2 univalents. These were 

included in the n=20 chromosome counts. In some of the groups, eggs 

were ovulated which showed an MI rather than an Mil chromosome 

configuration. It would appear that in these cases the first polar 

body had not been expelled. This was found for 6MCP treatment during 

the dictyate stage in young animals (C) and pFPA and NaOH (control) 

treatments at MI in aged animals (treatment B), the frequencies 

being 9.0%, 3.1% and 2.1% respectively.. In all cases the oocytes 

analysed were ovulated by aged females, irrespective of the age 

at the time of treatment. This phenomenon was not observed in any 

of the other treatment groups.

4.4 DISCUSSION

4.4.1 Spermatogenic Stage Classification

The duration of spermatogenesisfrom pre-leptotene to the 

round spermatid stage, and more particularly the timing of the 

various intermediate stages, found in the present study agrees 

closely with those established by other authors for the male 

mouse (Oakberg, 1956; Kofman-Alfaro and Chandley, 1970). One 

report, however, has recently questioned the widely accepted
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spermatogenic classification and timing of Oakberg (1956). Oud 

et al (1979), using hydroxyurea/triaziquane treatment to produce 

a restricted spermatocyte population which could be followed on a 

daily basis in order to make a sequential analysis of meiosis in 

the male mouse, have suggested that the pachytene stage is in fact 

shorter than was formerly believed. They suggest that there is a 

long diplotene stage, following pachytene, which lasts for about 

3 days and which can be divided into three distinct periods - 

the "pre-diffuse", "diffuse" and "post-diffuse" diplotene stages 

respectively. According to Oakberg (1956) the diplotene stage 

lasted only 21 hours. The time taken for cel^s to reach MI from 

pre-meiotic interphase, according to Oud et a£.(1979), is the same 

as for previous estimates, i.e. about 10J-11 days, but the lengths 

of the intermediate stages different with pachytene being shorter 

and diplotene longer. Work by Goetz, P. (personal communication), 

using surface-spreading and air-drying techniques on prophase 

spermatocytes of peri-pubertal male mice, to study the sequential 

development of germ cells in the first wave of meiosis, suggests 

that the very large cells seen in late prophase, and which Kofmann- 

Alfaro and Chandley (1970) had interpreted to be late pachytenes, 

are indeed diplotenes as stated by Oud et al (1979). According to 

Goetz, P. (personal communication) however, the diplotene stage 

lasts about 24 hours, more in line with Oakberg's (1956) timing. 

This point, although not directly relevant to the present 

aneuploidy induction work, since overall timings from preleptotene 

and zygotene to Mil are not affected by it, does affect any precise 

classification of the pachytene and diplotene stages. Table 4.2 

thus shows a classification in which the pachytene and diplotene 

stages are combined.
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4 - 4 - 2 The Effect of Chemicals on Spermatogenic Timing

When the effects of the chemicals on spermatogenic timing 

were assessed, it was obvious that pFPA, when applied to spermato- 

cytes at MI, caused a delay such that the majority of Mil spreads 

did not appear labelled until 6 hours after MI compared with 4 hours 

in the case of controls and with other chemicals tested. Some of 

these spreads (10%), 4 hours after treatment, showed a late-labelling 

pattern. It does not seem likely, however, that pFPA treatment 

at this stage was killing cells as the overall proportion of Mil's 

on the preparations remained the same as for other treatments. 

6MCP had no effect on spermatogenic timing, a finding in agreement 

with Oakberg (1979). Fewer labelled Mil's were seen at 4 hours 

after phenylalanine treatment, and a number were late-labelled 

indicating that these belonged to the vanguard of labelled cells 

coming through, although this shortfall .was not significantly 

different from controls.

pFPA treatment has previously been shown to cause delays 

in mitosis in cultured cells. Sisken and Wilkes (1967) using 

time-lapse photography, found an increase in the duration of 

metaphase when cultured human amnion cells were given continuous 

treatment with 1.0 mM pFPA. This effect became obvious 1-2 hours 

after treatment, although all cells entering mitosis within the 

first 5 hours were capable of completing mitosis. That pFPA can 

be incorporated into proteins in place of phenylalanine, was first 

demonstrated over 20 years ago (Vaughan and Steinberg, 1960; 

Westhead and Boyer, 1961). It is not incorporated in place of 

tryosine, however, which it also resembles (Westhead and Boyer, 1961).
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Sisken and Wilkes (1967) suggested that the delay caused by pFPA 

treatment was because of its incorporation into a cell-specific 

protein in place of phenylalanine. pFPA treatment was also shown 

to induce some instability and structural abnormalities in the 

mitotic spindle (Sisken et al % 1972). More than twenty years ago, 

Kerridge (1960) showed that the presence of pFPA did not seriously 

inhibit the regeneration of bacterial flagellae, but such flagellae 

were non-functional.

There is evidence in the literature to suggest that 

phenylalanine, when in excess, can also affect the constitution 

of tubulin, which may affect its function. For example, Barra 

et al (1973) demonstrated that phenylalanine will compete with 

tyrosine for a binding site at the carboxyl terminal end of 

the % chain of the tubulin dimer during the post-translational 

modification of this molecule. In the brain of new-born rats 

about half the molecules are modified post-translationally. 

Rodriguez. and Borisy (1979) demonstrated that 96% of the added 

residues are tyrosine and only 4% are phenylalanine. After the 

induction of hyperphenylalaninemia, however, the proportion of 

tubulin molecules containing phenylalanine at the carboxy-terminal 

end increases up to eight-fold. They suggested that although the 

in vitro assembly of microtubules is unaffected by the substi­ 

tution of phenylalanine for tyrosine, the configuration of that 

region of the polypeptide may be affected. Moreoever, the 

chemical difference between tyrosine and phenylalanine could 

affect the capacity of the protein or the resultant microtubles 

to interact with other cellular elements (Rodriguez and Borisy

(1979).
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In view of the incorporation of pFPA into proteins in place 

of phenylalanine (Vaughan and Steinberg.,1960) and the competition 

between phenylalanine and tyrosine for the carboxyl terminal binding 

site on tubulin, it could be argued that the delay observed during 

MI in the present study, and in mitotic metaphase by others, may 

be due to the same phenomenon. High levels of pFPA act like 

increased phenylalanine, and compete with tyrosine for the 

carboxyl-terminal binding site, thus affecting the function of any 

resulting microtubules. Phenylalanine, however, unlike pFPA, 

did not cause any appreciable delay between MI and Mil in the 

present study. There was only a hint of a delay as seen from 

the higher number of late-labelled cells compared with the other 

chemical treatments. The fact that pFPA will incorporate into 

proteins in place of phenylalanine, but not tyrosine (Westhead 

and Boyer, 1961) suggests that pFPA is having a more specific 

effect than phenylalanine. Indeed, Sisken et al (1972) found 

metaphase spindles of pFPA-treated cells to be smaller than those 

from controls, indicating that this chemical is having a 

morphological effect. Whether this could be demonstrated for 

phenylalanine-treated cells with higher doses howeVer, is not 

known.

4.4.3 The Effect of Chemicals on Aneuploidy Induction

A high frequency of hypohaploids (n=19), many of which 

may have arisen through chromosome loss because of cell breakage 

during preparation, was found in all treatment groups and controls. 

Disomic gametes (n=21) which are indicative of true non-disjunction
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were, however, rare. Of those observed, all were in spermatocytes. 

No disomic oocytes were found, although this could be due, at least 

in part, to the lower numbers analysed. In fact with these small 

groups of about 80 scores, 5% hyperploidy would be necessary in 

treated groups to show a significant difference from the zero level 

in controls, using x2 analysis. This test was obviously insensitive.

In most cases the number of spermatocytes scored was five 

times the number of oocytes. From spermatocyte scores the level 

of hyperploidy following treatment at diakinesis/MI with pFPA, 

reached 1.35% compared with none found in the NaOH control. This 

difference was significant (x2 = 6.5, d.f. = 1: 0.05 > p > 0.01). 

It was not, however, significantly greater than the Tween 80 control 

level (which had a smaller sample size) nor was it significantly 

greater than the NaOH treatments given at pre-leptotene or zygotene.

Tates (1979) found that pFPA could induce a 10 x increase 

in XY non-disjunction in the Northern vole (Microtus oeconomus) 

when late spermatogonial stages and early spermatocytes (i.e. 

leptotenes, zygotenes and early pachytenes) were treated. Diploid 

spermatids occurred with raised frequency following treatment of 

zygotene and pachytene spermatocytes, the most advanced stages tested 

by Tates (1979). No significant increase in aneuploidy was found 

following pFPA treatment of pre-leptotene and zygotene in the 

present study, although the dose used by Tates (1979) (2 x 150 mg/Kg 

given over 24 hrs) was three times higher than that employed in the 

present experiments.

Again, as for the oocyte scores, the problem of test 

sensitivity must be considered. If sufficiently large numbers of
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spermatocytes are scored in the control groups, for example 549 at 

MI in the present study, a \% hyperploidy level in a treated group 

of 200 will be significantly higher than a zero level in controls. 

Where fewer controls are scored, however, the test sensitivity 

decreases. With only 150 scores in the control group for example, 

2% hyperploidy in a similar size treated group would not prove 

significantly greater than a zero level in controls.

A further comparison of the pFPA-MI treatment group data 

was made with control data obtained some years ago by Beatty 

et al (1975) for male mice. These authors found 10 spermatocytes 

with 21 chromosomes from 5,200 Mil cells analysed, giving a 

hyperploidy frequency of 0.19%. The findings for the MI treatment 

with pFPA in the present study, did differ significantly from this 

level of hyperploidy (x2 s 4.7, d.f. = 1: 0.05 > p > 0.01), although 

the comparison cannot be considered strictly valid as the two sets 

of data were gathered in different laboratories at different times. 

Nevertheless, it is interesting that the induction of non-disjunction 

at MI by pFPA correlates with the delay to spermatogenesis found at 

the same time. Approximately 50% fewer labelled Mil spreads were 

seen 4 hours after pFPA treatment compared with controls* suggesting 

that more than one-third of all cells at MI were delayed by, the 

chemical.

Aneuploidy induction by pFPA has been reported for lower 

organisms. Griffiths and Delange (1977) for example, found a 

six-fold increase in non-disjunction over control values when pFPA 

was tested on a Neurospora system. Bond and McMillan (1979) also
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reported a strong positive effect for pFPA in Sordaria brevicollis. 

In this case a dose-response relationship was also demonstrated.

It is possible that differences could exist in the way 

pFPA acts on the spindle in the two types of organism (Bond and 

Chandley, 1983). Other substances which act on the spindle have 

also been shown to produce different results for aneuploidy 

induction in lower and higher eukaryotes. Colchicine, for 

example, although producing significantly increased levels of 

aneuploidy in the Chinese hamster (Sugawara and Mikamo, 1980) 

has been found to be ineffective at inducing metaphase arrest, 

polyplbidy or aneuploidy in lower eukaryotes (Richards, 1938; 

Sansome and Bannon, 1946; Haber et at, 1972). Colchicine inhibits 

spindle polymerization by binding to tubulin (Margolis and Wilson, 

1981), although not all microtubules in the cell are equally 

sensitive to its effects (Stebbings and Hyams, 1979). According 

to Bryan (1972), microtubules have three classes of binding site, 

one of which is occupied by colchicine and Colcemid. This site 

is different in lower eukaryote microtubles. Indeed Heath (1975) 

found that the assembly of microtubules in some fungi was not 

affected at all by Colcemid or colchicine. Although the magnitude 

of the effect may be different, the action of pFPA on lower and 

higher organisms may well be the same since an effect on spermato- 

genic timing and some increase in aneuploidy induction has been 

demonstrated in the present study and aneuploidy has also been 

induced by others (Bond and McMillan, 1979; Tates, 1979).

Indications that 6MCP may increase non-disjunction at 

the second meiotic division in the male mou^have been given.
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Cacheiro and Generoso (1975) found 3 XYY males amongst 615 sterile 

F t sons of 6MCP-treated males. Tates (1979) however, did not find 

any 6MCP-induced aneuploidy in M-iorotus oeoonomus for any of the 

prophase stages he tested. The most interesting observation with 

6MCP in the present study was the increased number of oocytes 

blocked at MI.in the aged females which had been treated at the 

dictyate stage when young. Two other treatments: pFPA and NaOH 

(control) treatment of aged females at diakinesis/MI, also produced 

oocytes blocked at MI, but only in the 6MCP treatment group did the 

difference reach significant levels (x2 - 5.5; d.f. = U 0.05 > p > 

0.01). Watanabe et al (1977) observed similar MI blockage of 

oocytes following treatment at MI with cadmium. They suggested that 

such oocytes might produce triploidy were they to proceed to Mil 

and form gametes. 6MCP is an analogue of adenine and hypoxanthine, 

and the basis for its biological activity is considered to be its 

interference with normal DNA synthesis (Hoiden et al t 1973}. Since 

no DNA synthesis occurs during the dictyate stage, the S-phase of 

meiosis in females occurring at pre-meiotic interphase in the fetal 

oocyte (Peters et at, 1962), it would appear that the chemical is 

not acting in this way to block oocyte development. 6MCP was 

effective, nevertheless, at blocking oocytes at MI when females 

were treated.at the dictyate stage. pFPA, on the other hand, 

did cause a delay between MI and Mil in the male, These observations 

indicate a different mode of action for the two chemicals. The 

significance of these oocytes, blocked at MI, however, is somewhat 

obscure in view of the -occurrence of similarly blocked oocytes in 

controls.
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Reimers et al (1978) found that pregnant mice treated with 

6MCP had second arid third generation offspring that were sterile or 

had smaller litters with higher numbers of dead fetuses. Furthermore, 

patients treated with 6MCP acquire genetic damage, such as chromosome 

aberrations, in both somatic and germ cells (Elion«£ alJ961; Leb et al,1971) 

In view of the use of 6MCP to treat Crohn's disease, an inflammatory 

bowel disorder affecting young people still in their reproductive 

years, Steckman (1980) has pointed out that the long-term effects of 

6MCP on human reproduction should be evaluated. From the present study 

it would appear that the treatment of mice with 6MCP, at the dose 

employed, does not produce increased levels of non-disjunction at 

anaphase I, although it may cause blockage of oocytes in MI. The 

observation of XYY progeny following 6MCP treatment, indicates 

non-disjunction at anaphase II (Cacheiro and Generoso, 1975). Such 

non-disjunction would however go undetected in the present test 

system. Further studies on earlycembryos would be needed to 

evaluate non-disjunction at anaphase II.

There was no previous evidence to suggest that 4CMB, a 

suspected carcinogen, could increase non-disjunction, and certainly 

none was found in the present study. It did, however, produce a 

reduction in the mean number of eggs ovulated, the effect increasing 

with dose. This could possibly be due to an effect of the chemical 

on the ovary causing fewer eggs to be ovulated, or alternatively 

degeneration of some oocytes may have occurred soon after ovulation. 

Counts of corpora lutea were not carried out and it was thus not 

possible to decide between the two alternatives. The former would 

seem the more likely, however, as degenerating eggs would almost 

certainly still be present, and be recoverable such a short time 

after ovulation.



165.

The usefulness of mouse germ cells in the routine testing 

of chemical substances for aneuploidy induction will be considered 

in Chapter 5.
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PART III

HUMAN ANEUPLOIDY - CONSIDERATIONS 

FOR THE FUTURE
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CHAPTER 5 

GENERAL CONCLUSIONS

In Part I of the thesis the problem of human aneuploidy, its 

frequency, its origins and the various hypotheses to account for it 

were outlined. In the second part, factors which may play a part in 

its induction were examined experimentally. In this, the third and 

final part of the thesis, the relevance of the experimental work to 

the problem of human aneuploidy will be considered and future 

prospects assessed.

From a review of the literature it would appear that two main 

problems concerning estimates of aneuploidy levels in man still exist. 

Firstly, the true level of aneuploidy at conception remains unknown. 

The karyotypmg of embryos after in vitro fertilization will almost 

certainly provide the answer to this question in the near future, 

in fact three relevant studies have already been performed. Edwards 

(1977) examined chromosomes from 15 embryos and found them all to be 

"approximately diploid". Wramsby et al (1982). found that of three oocytes 

examined one had a haploid set of 23 or 24 chromosomes and Angel 1 

et al (1983) have recently reported that of 11 embryos examined for 

their ploidy, 2 appeared to be haploid, and of the 3 examined 

chromosomally, 2 showed evidence of non-disjunction of an autosome. 

In one, in addition to its haploid state, there was trisomy D, and 

in the other, which was of maternal origin, there was also monosomy 15. 

These findings are scant and further work is clearly necessary to 

establish levels of chromosome abnormality at conception. When more 

complete studies are performed, data should also emerge on the
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parental origins and also the division of origin of the errors. In 

this respect more data are needed to trace the origin of aneuploidies 

in spontaneous abortions. Expansion of these data will undoubtedly 

help in understanding the aetiology of human aneuploidy. These data 

should show that, not only is it necessary to explain maternal age 

dependent aneuploidy (the focus of most attention), but also aneuploidy 

which is maternal-age independent and that which is paternally derived.

In the Preface to the thesis two main questions were posed. 

Firstly, what factors are responsible for, or associated with, 

maternal age-dependent aneuploidy? Secondly, can chemical substances 

induce aneuploidy in higher organisms?

In order to answer the first question two independent approaches 

were adopted. In the first of these reported in Chapter 2, the rela­ 

tionship between X-chromosome segregation, maternal age and aneuploidy 

were examined in the XO female mouse. This animal had previously been 

suggested as a good model for the pre-menopausal human female (Lyon 

and Hawker, 1973). Unfortunately, because of the complicating factor 

of X-chromosome segregation during meiosis in this mouse, problems 

were encountered in assessing the true aneuploidy level at all maternal 

ages. In view of this difficulty the suitability of the XO mouse as 

a model for the peri-menopausal human female in aneuploidy studies 

was questioned.

The second approach to understanding the factors responsible 

for, or associated with maternal age dependent aneuploidy was reported 

in Chapter 3. Use was made of the CBA mouse as a model for the 

ageing human female and here the results proved more successful. 

Not only was an increase in the aneuploidy observed with increasing
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maternal age, as others have also found (Gosden, 1973; Martin et al, 

1976; Max, 1977; Fabricant and Schneider, 1978), but, more signi­ 

ficantly this occurred prematurely following unilateral ovariectomy. 

The results from this experiment suggest that abnormal segregation 

of meiotic chromosomes in ageing oocytes, is an epiphenomenon of 

physiological ageing, rather than dependent upon the chronological 

age of the oocyte or mother. Factors, including hormonal imbalance 

and irregular oestrous cycles, both of which are themselves inter­ 

related, are associated with physiological ageing in the female and 

are thus implicated in aneuploidy induction. Whether hormonal 

imbalance per se contributes to aneuploidy induction, or whether 

oestrous cycle irregularities resulting from hormonal imbalance is 

more important, remains to be resolved. The hormone assays of 

serum from animals killed on the day of pro-oestrous as part of 

the experiment reported in Chapter 3 may provide data which will 

help to answer this question. Furthermore, the in vitro culture 

of oocytes in different hormone concentrations, as already performed 

by McGauhey (1977) to a limited extent, may also prove informative 

in this respect. Recent data obtained from cytological studies in 

the foetal mouse ovary (Speed and Chandley, in press 1983) and 

from studies of meiosis in the adult Chinese hamster (Sugawara 

and Mikamo, 1983) seem to indicate that the production-line hypothesis 

of oocyte development in the foetal ovary cannot fully explain the 

age-related aneuploidy increases found in these two species. Similarly 

the data from the unilateral ovariectomy experiment in this thesis 

cannot be explained on the basis of this model and so it would appear 

that some factor in the adult maternal environment must be sought.
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In Chapter 4 the aneuploidy inducing potential of chemicals 

known to induce aneuploidy in lower organisms was assessed on both 

the male and female mouse. That the findings were largely negative 

in these aneuploidy induction tests is important and raises several 

questions. Firstly, are the chemicals getting into the gonads and 

actually affecting the vulnerable germ cell stages selected for 

exposure? Secondly, how valid is the test system? Finally, does 

the environmental exposure to chemicals play a significant part in 

human aneuploidy induction?

In answering the first question consideration must be given 

to the blood-testis barrier. This barrier provides a means by which 

harmful substances can be prevented from reaching the male germ cells.

In rodents the primary barrier to substances penetrating from the
o 

interstitium is the itiyoid layer, junctions in which measure 200 A.

Penetration of this barrier will allow the exposure of spermatogonia 

and preleptotene spermatocytes. Further penetration to cells in the 

adluminal compartment is prevented by the Sertoli cells (Setchell 

and Waites, 1975). The delay to spermatogenesis observed when 

spermatocytes were treated with pFPA, indicates that this chemical 

is able to penetrate the barrier. Furthermore, it would appear 

that 6MCP is reaching all spermatogenic stages in view of the obser­ 

vation that 6MCP causes cell killing in spermatogonia (Oakberg, 1979) 

and dominant lethality in spermatogonia and early spermatocytes 

(Generoso et al 9 1975). Whether 4CMB reached all spermatogenic 

stages is unclear, although it did reach the ovary as ovulation 

rates were affected (Brook, 1982). There was no evidence to suggest 

that the other chemicals used were not also reaching the female germ

cells.
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The second question raised by the findings in Chapter 4 concerns 

the validity of the test system. This has two aspects, (a) the stages 

exposed to the chemical, and (b) the mouse strain selected. From 

previous evidence it was thought that the stages selected for exposure 

in this study might be vulnerable to non-disjunction induction. 

Zygotene was selected as suitable in view of the pairing of homologous 

chromosomes which takes place at this stage, the rationale being that 

any substance affecting pairing might lead to the production of uni- 

valents which, if they underwent random segregation, could lead to 

aneuploidy. Similarly, the time of spindle formation might also turn 

out to be sensitive, if treated. Hansmann (1974) has suggested that 

different stages of meiosis may be sensitive to different chemicals. 

This being so, the requirement would be to expose all spermatogenic 

and oogenic stages to the chemicals, and in differently aged animals 

(for female tests), to detect those sensitive stages not otherwise 

considered. Quite clearly this is impractical. Hence the need for 

selection of certain specific stages on an a priori basis, where 

sensitivity might be expected. In terms of long-term effects of 

exposure to hazardous environmental compounds in man, the vulnerable 

stages would be the stem cell spermatogonia in males and the dictyate 

oocytes in females. These stages appear, however, from the mouse data 

on radiation induction in males (Ford et al, 1969; Russell and 

Montgomery, 1974), and in females (Tease, 1981, 1982a) to be 

insensitive to non-disjunction induction. Selection against 

aneuploid products among treated spermatogonia may occur (Searle, 

1975; Russell, 1976). Treatment of the short pre-diakinesis stage 

was found to be sensitive to X-ray exposure by Tease (1982a) and 

this may perhaps be the stage to select for future testing.
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Choice of strain could also be important in testing. Previous 

experiments have shown that the spontaneous level of non-disjunction 

in male mice is very low indeed (Beatty et al, 1975; Ohno et al, 1959). 

The Swiss mice used in the present study also showed no base-line 

aneuploidy, and certainly no age-effect in the females at all ages 

tested up to 40 weeks. Golbus (1981) also failed to find maternal- 

age effect in Swiss females tested up to 60 weeks. An age-effect for 

CBA females has been found (Gosden, 1973; Fabricant and Schneider, 

1978), as already mentioned, and certainly the CBA strain appears to 

give a higher frequency of aneuploidy overall than many other strains. 

However, it does not necessarily follow that a higher baseline of 

spontaneous non-disjunction would pre-dispose towards increased 

induction by chemicals. Current data in the mouse show that X- 

irradiation does not enhance levels of aneuploidy over and above those 

due to maternal ageing (Tease, 1982a). It would seem, therefore, that 

little can be done, by way of stage or strain alteration, to amplify 

the aneuploidy inducing effect of the chemicals.

The final question concerning the relevance of exposure to 

chemicals or environmental pollutants for aneuploidy induction in 

man, appears to be the most crucial. Apart from colchicine, no 

chemical has yet been shown to produce significant levels of 

aneuploidy in mammals, although in this case negative results were 

found for fungal test systems (see Bond and Chandley, 1983). pFPA 

treatment in the present study, only induced significant levels of 

aneuploidy when administered during MI in males. Little aneuploidy 

was produced at other stages tested in males and females were 

negative at all stages tested. On the other hand marked effects 

have been observed in fungi treated with pFPA (Griffiths and Delange,
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1977; Bond and McMillan, 1979). Such results make it obvious that 

caution should be exercised when attempts are made to extrapolate 

from results obtained in fungi to their potential effects in man. 

The great need is for much more testing to be carried out in mamma­ 

lian systems using compounds which have been found to be strongly- 

positive aneuploidy inducers in lower organisms. It would appear 

from both the present study and other mammalian tests that despite 

incidental reports, environmental chemicals play little role in 

aneuploidy induction in man. Compared to the overwhelming effect 

of maternal ageing on human aneuploidy induction the effects of 

environmental hazards remain to be clearly demonstrated.

The present thesis has been concerned with identifying factors 

responsible for the induction of non-disjunction. Despite the fact 

that the level of aneuploidy at conception could be as high as 20% 

(see Chapter 1-4) the actual level of aneuploidy amongst the newborn 

population is reduced to 0.31$. The majority are lost through 

spontaneous abortion and therefore do not present a social or 

financial burden, unlike Down's patients who are often institutionalized. 

Nevertheless, the emotional distress to any mother suffering a lost 

pregnancy, whether it be spontaneous or induced, has to be considered", 

even though it may be impossible to assess. If every pregnant female 

could be offered 'safe 1 amniocentesis - that is one producing no 

risk of a spontaneous abortion - with the offer of an induced abortion 

to those mothers carrying a chromosomally abnormal fetus, the incidence 

of liveborn aneuploidy would obviously be reduced. The costs incurred, 

however, mean that at present this is not a practical proposition. 

Earlier detection of an aneuploid conception may be possible, in future, 

jsing cytogenetic analysis or molecular biology techniques on chorion
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biopsies (Old et al, 1982; Gosden ** al. 1982) taken during the 

first timester. This would reduce the period of worry for any 

particular female, but there would still be no reduction in the 

overall number of aneuploid embryos conceived.

The most sensible approach would be to try and identify 

females who are 'at risk 1 of conceiving trisomic embryos. Even 

then, those females conceiving paternally derived trisomic embryos 

would go unidentified. Nevertheless, the identification of any 'at 

risk' females would prove beneficial. This would include those with 

premature ovarian ageing (e.g. those having undergone unilateral 

ovariectomy and possibly those with auto-immune disorders) or even 

those with particular a, antitrypsin sub-types. Women suffering 

repeated abortion or those coming from families with a history of 

Down's syndrome would also be included. General 'at risk' groups 

may also be identified, for example all women approaching the 

menopause, and particularly those women with irregular menstrual 

cycles whether young or old, or even those women who have recently 

stopped using the contraceptive pill (Read, 1982). By increased 

public awareness, those females 'at risk' of producing an aneuploid 

fetus could be advised to take greater contraceptive care, and 

those 'at risk' who wish to become pregnant could receive better 

3re-natal counselling.

"The elusive cause of Down's syndrome" (Editorial, Lancet, 

?lst May 1983) which could perhaps be better expressed as the 

elusive cause of non-disjunction, remains a subject for discussion 

Polani, 1983). It is undoubtedly a subject which would benefit
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from more hard experimental data and fewer hypotheses! Nevertheless 

aneuploidy still presents a challenging, if often frustrating problem, 

worthy of further investigation.
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SUMMARY

The effect of 4CMB on meiosis in the mouse was studied using both male and 
female test systems.

Females were superovulated and treated with 4CMB at metaphase I and oocytes 
sampled at metaphase II. Similarly with males, chromosome analysis was made at 
metaphase II for spermatocytes treated at metaphase I.

No increase in the frequency of structural or numerical chromosome ab­ 
normalities was noted for treated mice as compared to controls.

Previous studies have shown that germ cells of both the male and female mouse 
provide suitable material for mutagenicity testing (Szemere and Chandley, 1975; 
Hansmann, 1974). Both chromosomal structural damage and aneuploidy can be 
used as end points.

In the present study the effect of 4CMB on germ cells of the mouse has been 
studied. For both males and females the stage treated was metaphase I and the 
spermatocytes and oocytes respectively were sampled at metaphase II.

METHODS

For both oocyte and spermatocyte preparations, mice of the strain Swiss 
(Schofield) were used.

Female mice, aged 8-12 weeks, were superovulated using 1.5 IU pregnant rriares 
serum (PMS) and 1.0 IU human chorionic gonadotrophin (HCG) 48 h later. 3 h 
after HCG treatment the mice were injected i.p. with 4CMB at concentrations of 50 
and 100 mg/kg dissolved in 0.05% 'Tween 80'. 0.05% Tween 80 alone was used for 
injection of controls. The stage treated corresponded to metaphase I and the 
sampling time to metaphase II - 15 h after injection of HCG. Mice were killed by

0165-1218/82/0000-0000/S02.75 © Elsevier Biomedical Press
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cervical dislocation, the oocytes removed from the ampullae of the fallopian tubes 
and counted. (It has been shown previously that these doses of hormones do not 
affect the incidence of non-disjunction during the first meiotic division [Hansmann 
and El-Nahass, 1979].)

Oocytes obtained by superovulation, as described above, were fixed using the 
technique of Tarkowski (1966). They were C-banded and analysed at metaphase II 
with regard to structural and numerical abnormalities.

Male mice, aged 8-12 weeks, were treated with 4CMB dissolved in 0.05% Tween 
80 at a dose of 100 mg/kg and 0.05% Tween 80 alone was again injected into 
controls. 4 h later the mice were killed by cervical dislocation and the testes 
removed. At this time interval, cells treated in metaphase I had progressed to 
metaphase II, a fact established earlier by us for mice of this strain using tritium 
autoradiography. Meiotic preparations were made using the technique of Evans et 
al. (1964), staining and chromosome analysis being carried out as described above 
for oocytes.

RESULTS AND DISCUSSION

Table 1 shows that at the highest dose of 4CMB there was a significant decrease in 
the number of eggs recovered. This could possibly be due to an effect of the 
chemical on the ovary causing fewer eggs to be ovulated or alternatively degener­ 
ation of some oocytes may have occurred soon after ovulation. Counts of corpora 
lutea were, however, not carried out and it was thus not possible to decide between 
these two alternatives.

In Table 2 the results of the chromosome analyses carried out on metaphase II 
oocytes are given. No disomic eggs (n = 21) were found in any group indicating the 
4CMB had no effect on disjunction at anaphase I in the oocyte. Eggs with less than 
20 chromosomes were equally frequent in both control and treated groups and it is 
concluded therefore that these were due to chromosome loss during preparation.

Results of the chromosome analysis carried out on spermatocytes are given in 
Table 3. No increase in the frequency of aneuploidy was found in 4CMB-treated 
mice as compared to controls. As in females, preparations with less than 20 chromo-

TABLE 1

THE EFFECT OF 4CMB ON OVULATION

Treatment

Tween 80
4CMB, 50 mg/kg
4CMB, 100 mg/kg

Number of animals

24
15
22

Total eggs recovered

1058
522
657

Mean

44.08
34.80
29.86

Range

10-69
18-57
10-57

Using / test 50 mg/kg 4CMB gave /> >0.05; 100 mg/kg 4CMB gave /> <0.001.
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TABLE 2

RESULTS OF CHROMOSOME ANALYSIS CARRIED OUT AT METAPHASE II ON OOCYTES 
OF TREATED AND CONTROL MICE

Treatment Number of Total eggs Normal Chromosome count 
animals analyzed (%)

20 19 18 <18

Tween 80
4CMB, 50 mg/kg
4CMB, 100 mg/kg

11
15
15

109
111
99

65.1
72.1
60.6

71
80
60

23
19
18

10
6

12

5
6
9

TABLE 3

RESULTS OF CHROMOSOME ANALYSIS CARRIED OUT AT METAPHASE II ON 
SPERMATOCYTES OF TREATED AND CONTROL MICE

Treatment Number of Total
animals

Tween 80 4
4CMB 100 mg/kg 4

Normal Chromosome count
spermatocytes (Vo)
analyzed

358
478

20

84.1 301
84.9 406

19

43
58

18

12
14

<18

1
—

somes were equally frequent in both control and treated groups, again suggesting 
that they were due to chromosome loss during the making of the preparations.

In this study no difference in aneuploidy induction between control and treated 
germ cells has been observed for either male or female germ cells at the doses tested 
and at the stages treated.

Higher doses were originally tried but these proved lethal to the mice. The highest 
dose used (100 mg/kg) was therefore selected to produce optimum effects on 
disjunction without causing death of the animals. Initially an attempt was also made 
to look at the effects of 4CMB on disjunction at anaphase I in oocytes following 
treatment of embryonic oogonia. The pregnant mothers, however, proved 
particularly sensitive to the compound with death resulting from doses as low as 
20 mg/kg. This test therefore had to be abandoned.

The analysis carried out in this study was confined to the treatment of metaphase 
I in both oocytes and spermatocytes. Had other germ-cell stages been treated, 
sensitivity to the compound may perhaps have been revealed. Szemere and 
Chandley (1975), for example, found pre-leptotene to be the most sensitive stage to 
aneuploidy induction following X-irradiation of mouse spermatocytes. Hansmann 
(1974) has pointed out that the most sensitive and least sensitive stages for one agent 
may not necessarily be the same for all other agents. A wide variety of tests would 
therefore be required to reveal all possible effects, a task which was beyond the 
scope of this present enquiry.
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SUMMARY

Cytogenetic studies have ascertained that the segregation of the 
-X-chromosome, during the first meiotic division of the oocyte in XO mice, 
occurs at random, contrary to the finding of some earlier authors. The 
ratio of nullo-X to JC-bearing oocytes at ovulation does not change with 
maternal age. The usefulness of the XO mouse as a model for aneuploidy 
production in women (Lyon & Hawker, 1973) is discussed.

INTRODUCTION

Unlike XO women, XO mice are fertile, albeit subject to reproductive impairment 
(Lyon & Hawker, 1973).

Ever since a breeding stock of XO mice was established by Cattanach 
(1962), using the sex-linked gene tabby, as marker, controversy has existed in the 
literature concerning the question of segregation of the single ^-chromosome at 
meiosis in the XO oocyte. From his own breeding data, Cattanaeh (1962) observed 
that although litter size was near normal for this particular stock, a shortfall of 
some 30-37% in XO compared to XX offspring occurred from XO mothers. He 
was unable to determine the reason for the reduction in XO progeny, but as one 
possibility, suggested that preferential loss of the chromosome sets lacking an X 
chromosome to the polar bodies in the meiotic divisions of the ova might have 
occurred. The alternative was that death of the missing classes during embryonic 
development had taken place. To account for the higher than expected litter size 
in XO mothers, he did not, however, discount the possibility of early loss of inviable 
embryos, compensated by the development of all individuals of the viable classes, 
some of which would have been lost in larger normal litters as a result of 
overcrowding in the uterus.

In a subsequent study, Morris (1968) examined reproductive performance and 
embryonic mortality in a large series of XO and XX females. One series of pregnant 
females of both genotypes was dissected after 15 days gestation and another series 
after 3^ days. From his/findings, he concluded that there could be both an 
abnormally low segregation of nullo-JC gametes in XO females and a reduction in
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viability of XO foetuses during the early stages of gestation. This lower viability 
ofXO's in utero contrasted with their seemingly normal viability after birth. Strong 
circumstantial evidence was also found for the death of all 0 Y zygotes before 
implantation.

Direct cytological information on the segregation of the X chromosome has since 
been obtained by several groups of authors analysing chromosomal complements 
in the metaphase II oocytes ovulated by XO females. The results however, are 
conflicting (see Russell, 1976 for review). According to Evans and Ford (unpublished 
data), segregation of the X to egg or polar body is random. The data of Kaufman 
(1972) and Luthardt (1976), however, suggest that it is non-random, with the 
.X-bearing chromosome sets being preferentially included in the egg nucleus.

A further complicating factor is the claim made by Deckers et al. (1981), from 
breeding data on XO mice, that the phenomenon of non-random segregation is 
maternal-age related. These authors found a greater recovery of XO progeny 
relative to XX as the age of the mother (or litter number) advanced.

The present study was initiated in a further attempt to clarify some of these 
issues. Breeding data on a large series of XO mice at a range of ages have been 
coupled with a cytological analysis of ovulated metaphase II oocytes. The question 
of whether or not segregation of the single X-chromosome is random has been 
re-investigated. Also, evidence for changing relationship between JC-segregation 
and age has been sought. The question of whether the XO mouse constitutes a good 
model for the human pre-menopausal female, in terms of chromosomal 
nondisjunction as suggested by Lyon & Hawker (1973), is also considered.

METHODS AND MATERIALS
(i) Animals used

The colony of XO mice used was set up from mice kindly supplied by Dr Mary 
Lyon, MRC Radiobiology Unit, Harwell, England. The sex-linked gene, Tabby, 
was used as marker. Normal-coated XO females mated to Tabby males produced 
three types of phenotypically distinct offspring; normal-coated males ( + /Y), 
greasy-coated females (Ta/0) and striped females (Ta/ + ). The Ta/O and +/F 
offspring were subsequently used as breeders to regenerate 4- /O and Ta/ Y 
animals, with striped females (Ta/ + ) again being produced. In this way all 
offspring could be identified from their coat colours. Brother-sister matings were 
avoided. The stock was cheeked occasionally, by blood karyotyping, to ensure that 
all supposed phenotypic XO females were in fact of the XO genotype.

Offspring were classified at weaning and female breeders used until they reached 
36 weeks of age, after which time they were killed and used for oocyte chromosome 
analysis.

(ii) Oocyte collection and chromosome preparation
The female mice used for chromosome analysis in metaphase II oocytes 

constituted six groups, divided according to age and phenotype. There were two
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XO groups i.e. + /0 and Ta/0 with Ta/+ sibs serving as controls. Analysis was 
carried out over two different ages within each group i.e. 8-20 weeks (young) and 
30-40 weeks (old) (Lyon & Hawker. 1973 have shown that in XO mice, both 
age-related ovarian changes and reduced reproductive performance are detectable 
by 28 weeks).

Table 1. Birth data from XO mice 

Total animals Animals at weaning

Mating type Pairs
50

48

Litters
177

248

At birth
624

940

XY
188

(30-1 ° 0 )
339

(36-l° 0 )

XO
113

(18-1 ° 0 )
166

(17-7° 0 )

XX
212

(34-0° 0 )
314

(33-4 ° 0 )

Dead
111

(17-8° 0
121

(12-9° 0

Figures in parentheses represent percentages of total births.

Each female was superovulated using 2-5 i.u. pregnant mares serum (PMS) and 
2-0 i.u. human chorionic gonadotrophin (HCG) given 48 h later. The oocytes were 
sampled 15 h after HCG injection at a time corresponding to metaphase II. 
Hansmann and El Nahass (1979) have previously shown that these hormone doses 
do not affect the incidence of non-disjunction during the first meiotic division in 
the mouse oocyte. Mice were killed by cervical dislocation, the oocytes being 
removed from the ampullae of the fallopian tubes and fixed by the method of 
Tarkowski (1966). The preparations were C-banded according to the method of 
Sumner (1972) and chromosome counts made.

RESULTS 
(i) Birth data

Birth data were obtained from both Ta/0 and + /O mothers (Table 1). Analysis 
showed that there was a significant difference between the two breeding groups 
(^2 _ 9.73. p < 0-05), this being due to a higher level of death among offspring from 
Ta/O mothers than + /O mothers between birth and weaning. Ta/() females are 
generally less robust than + /O females and appear to be less competent as mothers. 
The data at weaning, showing increased death of offspring from Ta/0 mothers 
compared with + /O mothers, support the findings of Cattanach (1962), Morris 
(1968) and Deckers et al. (1981), although the difference between the two types 
of mother is lower in the present study than has been found by these other authors.

There was no significant difference in the distribution of X Y: XX: XO offspring 
at weaning from the two types of XO mother. Neither was there any difference 
in the birth ratio of XX: XO offspring between the two maternal genotypes, the 
proportion being 1-88:1 for Ta/O mothers and 1-89:1 for + /O mothers. Both ratios 
were lower than those found by earlier investigators (Table 2) indicating that 
comparatively more XO progeny were born to XO mothers in our stocks.

'S
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(ii) Chromosome counts
A total of 379 metaphase II (Mil) counts were made from 82 XO females and 

179 counts from 28 XX females. The results have been grouped in Tables 3-5 
according to maternal age and genotype. Cells giving counts of less than 17 were 
few in number, tending to be from poor quality preparations: They were 
discounted as unreliable.

Table 2. Ratios of XO to XX offspring at weaning
+ /O Mothers Ta/O Mothers

No. of Ratio No. of Ratio
Author 99 Ta/0:Ta/+ 99 +/O:Ta/

Cattanach (1962) 661 1:2-74 276 1:3-30
Morris (1968) 966 1:2-37 926 1:2-67
Russell (1976) 118 1:2-17 192 1:3-23
Deckers et al. (1981) 362 1:2-45 119 1:2-84
Brook (Present Study) 480 1:1-89 325 1:1-88
Leonard & Schrode/( 1968) — — 2029 1:1-97

Table 3. Chromosome counts from Mil preparations from Ta/+ mice.
Chromosome number n =

17 18 19 20 21 Total
Young (8-20 weeks) 1 4 13 87 0 105
Old (30-40 weeks) 1 9 11 51 0 72

Total 2 13 24 138 0 177

A break-down of the chromosome counts from the XX (Ta/ +) females is given 
in Table 3. This shows a proportion (22-03%) having counts below the expected 
n = 20 number. It is assumed that the vast majority of these hypomodal counts 
are attributable to artefactual loss of chromosomes during slide preparation.

Chromosome counts from the two genotypically different groups of XO mice 
(Ta/O and -f/O) are given in Tables 4a and 6 respectively. These showed no 
significant differences (x\ z — 9-94; P > 0-5) and the counts for the two genotypes 
were thus pooled (Table 5). From Table 5 it would appear, at first glance that 
segregation of the X chromosome, to egg or polar body, in XO females, is occurring 
entirely at random; equal numbers of n = 19 and n = 20 being recorded. From a 
consideration of the data obtained in XX females, showing a 22 % level of cell 
breakage and chromosome loss due to preparative technique, it is by no means 
justifiable, however, to reach such a straightforward conclusion. If artefactual loss 
of a single chromosome occurred, it would result in ooeytes with 20 chromosomes 
being spuriously classified as having only 19 thus helping to inflate the n = 19 total. 
At the same time some ooeytes with 19 chromosomes would be spuriously classified 
as having only 18. The net result would be to deplete the number of counts in the
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20-chromosome category whilst leaving the number in the 19-chromosome category 
approximately the same. A correction factor is thus clearly necessary in order to 
arrive at a true figure for the ratio of nullo-A to A-bearing ova at ovulation. This 
has been devised in the following way. taking into account the possibility that each 
chromosome count has arisen by a two-step process involving firstly, the segregation

Table 4. Chromosome counts from Mil preparations from XO mice
Chromosome number » =

(a) Ta/0
Young (8-20 weeks) 
Old (30-40 weeks)

Total

(b) + /0
Young (8-20 weeks) 
Old (30-40 weeks)

Total

17

1 
1

2

18

13 
11

24

19

29 
46

75

20

39 
44

83

21

0 
1

1
Chromosome number n =

17

3 
3

6

18

11 
11

22

19

42 
44

86

20

39 
39

78

21

0 
2

2

Total
82

103
185

Total
95
99

194

Table 5. Chromosome counts from Mil preparations from Ta/0
and + /O mice combined

Chromosome number n —

Young (8-20 weeks) 
Old (30-40 weeks)

Total

17

4
4

8

18

24
22

46

19

71
90

161

20

78
83

161

21

0
3

3

Total
177
202

379

of chromosomes at anaphase I and secondly, possible breakage and loss of a 
chromosome (or chromosomes) by technical artefact, If it is assumed (1) that all 
those cells with less than 20 chromosomes in the control group (Ta/ +) have arisen 
through breakage, and (2) that the probability of oocyte breakage is the same in 
both XO and AA mice, then, it is possible to estimate the proportion of all spreads 
from XO mice with 19 or less chromosomes which have arisen through breakage
as follows:

If p0 represents the proportion of unbroken cells in the control group (Table 3), 
Pi the proportion losing 1 chromsome and l-pfl -pi the proportion losing more 
than 1 chromosome, then the following values can be assigned to each group:

Po 

Pi
1-po-Pi 

1-Po

0-7797, 

0-1356,

0-0847, 

0-2203.
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For the XO oocyte spreads, the number found in the 20-chromosome group 

(n = 20) is made up of the actual number ovulated with 20 chromosomes (prior 
to breakage) multiplied by the proportion of unbroken spreads. Similarly the 
number of counts in the 19-chromosome (n = 19) group comprises the number of 
non-broken 19-chromosome-bearing spreads plus the number ovulated with 20

Table 6. Segregation ratios found by various authors, before and after correction
Original findings Corrected findings

Author 20 ^19 % X-bearing 20 ^ 19 % X-bearing
Evans and Ford (unpublished) 61 59 50-8 — — —
Kaufman (1972) 65 40 61-9 76 29 72-4
Luthardt (1976) 52 37 58-4 61 28 68-3
Brook (present study) 164 215 43-3 205 171 54-6

chromosomes which have subsequently lost 1 chromosome. The number with 18 
(or less) chromosomes (n = 18) is made up of the number ovulated with 20 
chromosomes which subsequently lose more than one chromosome plus the 
number ovulated with 19 losing one or more chromosome subsequently. 

This can be expressed algebraically as shown below :

n20 = Mp0

n!8 = M(l-p0 - Pl ) + (N-M)(l-p0 )

Where N = total number of oocyte preparations scored, and M = the number in 
the n = 20 group prior to breakage.

These equations can be used to estimate M, most conveniently by the modified 
minimum chi-square method (Kendall and Stuart, 1961).

For the XO females the segregation ratio is 205: 171 for oocytes with counts of 
20 and 19 chromosomes respectively (Table 6). This 1-2:1 ratio does not differ 
significantly from the 1 : 1 ratio expected if random segregation is occurring 
(Xl = 3-07: 0-1 > P>0-05).

To simplify the calculation, the effect of non-disjunction was ignored, as there 
were only three disomic eggs with counts of n = 21. The effect of chromosome gain 
on the segregation ratio would be in the opposite direction to that of chromosome 
loss, thus slightly decreasing the 1-2: 1 ratio, taking it even closer to a 1:1 ratio.

Table 6 also shows a comparison with data obtained by Kaufman (1972) and 
Luthardt (1976). These authors did not introduce a correction factor into their 
results to allow for artefactual breakage. Their data have, however, been subjected 
to our correction model allowing for their own levels of control breakage. When 
this is done the data show an even greater bias towards non-random segregation 
than when the uncorrected figures are considered. The discrepancy between their 
data and those obtained in the present study will be dealt with in the Discussion.



X-chromosome segregation in the XO mouse 91
It is not possible to adjust the data of Evans and Ford (unpublished) to allow for 
breakage as no control data were given by these authors.

For the stock of mice use in the present study, the ratio of A-bearing to nullo-A 
eggs at ovulation (1-2:1) differs from that found at weaning, the ratio of AA to 
XO offspring at that time being 1-88:1. Assuming there to be an equal chance of

Table 7. Genotype of offspring weaned from +/0 mothers in terms of Utter order
No. of Ta/+ + +/Y 

Litter mothers Total Ta/O Ta/+ +/Y Total
1 48 186 39 71 76 79-03 ±2-99
2 45 139 26 50 63 81-29 ±3-33
3 39 123 25 43 55 79-67 + 3-61
4 35 110 28 39 43 74-55 ±3-60
5 28 98 14 44 40 85-71 ±3-51
6 23 82 21 33 28 74-39 ±4-84
7 14 42 5 20 17 88-10 + 5-01

fertilization of A-bearing and nullo-A eggs, it would thus appear, from the altered 
ratios, that 36-2% of XO mice die between fertilization and weaning. Cattanach 
(1962) has shown that XO offspring have as good a chance of survival between 
birth and weaning as do AA offspring, and it can thus be assumed that the 36-2 
death of AO's occurs during gestation.

o 
o

(iii) XO segregation and maternal age
In view of the claim made by Deckers et al. (1981), that a greater number of 

XO offspring are born to mothers of advanced age, the cytological data were 
considered, not only in relation to genotype, but also to maternal age. The data 
presented in Tables 3 and 4 show no significant differences however, either for Ta/O 
or + /O mothers, in distribution of chromosome counts in the young group 
compared with the old. Tables 7 and 8 moreover, show the numbers of offspring 
of each genotype weaned from +/O and Ta/O mothers respectively, in terms of 
litter order. % 2 tests for heterogeneity, between the two sets of breeders showed 
no change in the relative proportions of offspring with litter order - so the two sets 
of data can be combined. Regression analysis on the combined data shows there 
to be no significant change in the proportion of progeny born to older 
mothers (t — 0-356: P > 0-1). This finding, together with the cytological evidence, 
gives no indication in our stock of a changing pattern of A-segregation with age 
of the mother. This constrasts with claims made by Deckers et al. (1981) for an 
increasing recovery of XO progeny with increasing maternal age. (see Discussion).

(iv) Aneuploidy
As can be seen from Table 5, three disomic eggs (n = 21) were found in the old 

age group of XO females compared with none in young XO or in control AA 
females (Table 3). These disomic eggs are assumed to have arisen by non-disjunction
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in the A -bearing oocytes. and constitute 3/86 (3-5%) of the total eggs assumed 
to be A-bearing. Their frequency was not significantly greater, however, than in 
the other two groups of female (young XO and control AA). If the assumption 
is made that a similar level of non-disjunction occurs among nullo-A eggs, (the 
hyperploid (n = 20) products however being hidden among the normal A-bearing

Table 8. Genotype of offspring weaned from Ta/0 mothers in terms of litter order
No. of Ta/+ + +/Y ^ 

Litter mothers Total +/O Ta/ + Ta/Y Total
1 52 186 32 62 92 82-80 ±2-75
2 41 110 25 43 42 77-27 ±4-01
3 34 95 21 39 35 77-89 ±4-25
4 21 72 17 32 23 76'39±4-71
5 15 45 7 20 18 84-44 ±5-47
6 9 33 9 13 11 72-73 + 7-73
7 4 13 2 56 84-62±9-90

(n = 20) totals), a projected figure of 7 out of 202 hyperploid counts for old XO 
mothers would be obtained. This enlarged figure is again not significantly different 
from the zero level of aneuploidy of young XO and control AA females. It is also 
expected that for each non-disjunctional event producing a disomic egg, there 
would be a comparable A-bearing nullisomic (n = 19) egg produced. These would 
be hidden in the naturally occurring nullo-A bearing total. Similarly, non- 
identifiable double nullisomics (n = 18) may be produced by non-disjunction in 
nullo-A oocytes but these could not be distinguished from oocytes which had lost 
chromosomes through breakage. If the overall level of aneuploidy were thus 
derived by doubling again, there would then be 14/202 or a 7 % frequency for the 
aged females and this would be statistically significant (P < 0*05). The assumption 
is made in the above calculation that for every non-disjunctional event, producing 
a disomic egg, a corresponding event would produce a nullisomic. This, of course, 
is the conventional view of aneuploidy production by non-disjunction. Recent data 
of Maudlin & Fraser (1978) indicate, however, that the trisomy might arise in 
ageing female mice without equivalent monosomy. How this could come about is 
not stated, but if it were to be true, these calculations would not, of course, be valid.

DISCUSSION
In view of contradictions in the literature concerning the XO mouse, the present 

sudy was set up in an attempt to answer three basic questions. Firstly, does the 
segregation of the A-chromosome, during the first meiotic division of the oocyte, 
occur entirely at random ? Secondly, if the A-chromosome is preferentially 
incorporated into either egg or polar body, does this change with maternal age? 
Thirdly, does the XO mouse constitute a good model for the pre-menopausal 
human female in terms of maternally age-related aneuploidy ?
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The ratio of XX to XO offspring at weaning (1-88:1) in the present study is

considerably lower than the ratios observed by others (Cattanaoh 1962 Morris
1968; Russell, 1976). Similarly, the ratio of ovulated A'-bearing to nullo-A' e™«
(1-18:1) is lower than has been found in previous eytological studies. In fact unlike
the studies of Kaufman (1972) and Luthardt (1976). the corrected figures in the
present study are consistent with a 1:1 segregation ratio, in agreement with Evans
and Ford (pers. comm). The large difference between the results of this study, and
those of Kaufman (1972) and Luthardt (1976). cannot be easily reconciled. When
both previous sets of data are corrected for breakage however, (see Table 6) the
proportion of ^-bearing gametes becomes so high that, to be reconciled with the
birth data from our own and other studies, it would be necessary to postulate
preferential survival of XO's during gestation. This clearly is not'the case. The
present study indicates a 36-2 % loss of XO progeny during gestation, and others
have shown that there is excess death for XO litters during early gestation, as
compared with XX's (Morris, 1968 and Russell, 1976). The early loss of OY
embryos accounts for part of this but loss of a considerable proportion of XO's
prior to day 12 post-conception also seems to occur (Russell, 1976; Luthardt,
1976). As pointed out by Russell (1976), the further from randomness one
postulates the segregation of the X chromosome to be, the lower need be the
prenatal loss of XO embryos. To reconcile his findings, Morris (1968) concluded
that there was preferential segregation of the A'-bearing set of chromosomes into
the gamete and death of some XO's during the early stages of gestation. However,
Evans and Ford (pers. comm) on re-analysing Morris's data, subsequently
suggested that they could be interpretated as showing a 1:1 segregation ratio, and
even an increased production of nullo-A, as compared to A-bearing gametes.

It would appear from these contradictory results that the eytological studies are 
unsatisfactory because of the problem of breakage and chromosome loss. Obviously 
it would be ideal if it were possible to identify the Jf-chromosome in the oocyte and 
then eggs could be simply scored as A-bearing or nullo-A. Nevertheless, it seems 
unlikely that the different results obtained by various authors can be explained 
on the basis of differing amounts of breakage encountered in each different study. 
One possibility is that there is a drive mechanism, which is responsible for the excess 
production of A-bearing gametes but which varies in strength from one stock to 
another. Genetic background may be important. Thus, in the present study, there 
may be little, if any, preferential loss of the chromosome set lacking an X to the 
polar body, whereas in others-such as those used by Kaufman (1972) and 
Luthardt (1976) the drive mechanism may be stronger. It would, however, seem 
unlikely that the amount of death of XO progeny during gestation should differ 
significantly in other stocks from the 36-2% found in the present study.

The second point which arises out of this study concerns the question of whether 
preferential segregation of the X to the egg changes with maternal age. Since the 
data in the present study give no indication of any such change, they are at 
variance with those of Deckers et al. (1981). Both the birth data and the Mil counts 
found in the present study show no reduction in the transmission of A'-bearing
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gametes with age in XO mothers. Regression analysis on JC-segregation data in 
successive litters of Deckers et al. (1981), however, showed a significant negative 
slope, indicating change with maternal age. Similar treatment of our data gave 
no such significant result, with the slope in fact being slightly positive. As a x2 test 
for heterogeneity proved negative, regression analysis of the combined data was 
performed producing a non-significant - even though slightly negative, slope. This 
would suggest that the two sets of data are homogenous but the anomalous result 
of Deckers et al. (1981) is due to their small sample size.

Finally, on the question of aneuploidy in ageing XO mice, and because of the 
similarity to the human female, in that fertility ends through depletion of oocytes, 
Lyon & Hawker (1973) suggested that XO mice may pass through a period of 
irregular oestrous cycles towards the end of their reproductive life, during which 
time hormonal imbalance may occur thus leading to aneuploidy. Consequently, 
XO mice could provide a useful model for the situation in human premenopausal 
females, where non-disjunction occurs with a high frequency leading to the birth 
of abnormal children. It is not known whether XO mice pass through a period of 
irregular cyclicity towards the end of their reproductive life although work now 
in progress, in this laboratory, will, hopefully, show this to be the case. Studies 
in other strains of mice that, before cycling ceases, a period of irregular cyclicity 
occurs (Thung et al. 1956; Thung, 1961; Brook and Gosden, unpublished data). 
Although an increase in disomic oocytes was observed with increasing age in the 
XO mice used in the present study, this alone was not found to be statistically 
significant. When ^-bearing nullisomics and non-disjunction in nullo-X eggs were 
considered, this figure did, however, become significant: The usefulness of the XO 
mouse as an appropriate model for human aneuploidy and the maternal age effect 
is, however, questionable in view of these complications arising out of the 
estimation of the true aneuploidy frequency.

I wish to thank Dr A. C. Chandley for reading the manuscript and much helpful criticism; 
Dr A. D. Carothers for statistical advice and Mrs C. Manson for help with the mouse colony.
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