
User Defined Feature Modelling:

Representing Extrinsic Form,

Dimensions And Tolerances

A. G. Pedley

Doctor of Philosophy

The University of Edinburgh

1997

To Valentina

A.G. Pedley 	 Ph.D1 Thesis 	 ii

Declaration

This thesis has been composed by myself. The work reported in this thesis was

undertaken whilst I was a member of a research team. I have been responsible for the

work renorted excent where indicted in the feyt

A.G. Pedley 	 Ph.D. Thesis 	 iii

Acknowledgements

The completion of this thesis represents the culmination of a journey from student to

practising engineer. The voyage has been long and winding, continuously moving

from the practical problems faced in industry to the theoretical world of univesities,

of considering potential and developing reality. The road taken has not been typical

of a PhD student and I should like to thank my supervisors, Dr. George Alder and

Mr. Frank Mill, for their motivation, guidance and support. I would also like to

acknowledge the flexible stance taken by the University of Edinburgh in enabling my

studies to continue.

The bulk of the developments reported in the thesis have been made during research

on the following two projects, "SESAME" (BREU 4539) and "IMPRESS" (BREU

7049), both funded by the Commission of the European Communities. Earlier

background work was undertaken on research projects, "Representation, Reasoning

And Decision Making In Process Planning With Complex Components" (GRID

63 10 1) and "Feature Oriented Design" (GRJF 92312), funded by the UK Science and

Engineering Research Council (now EPSRC). This support is gratefully

acknowledged. To colleagues who worked for partner companies in the SESAME

and IMPRESS projects I thank you for sharing your knowledge.

The work reported has been completed in collaboration with Strässle

Informationssysteme AG. I would like to express my thanks to all members of the

3DFeature Modelling and Surface Modelling development teams for the meaningful

discussions, functional support and "zusammenarbeit". In particular I would like to

thank Hansjorg Denzel for his work on the feature modelling kernel and Peter Wyss

for his programming on the user interface.

I would like to thank all colleagues and staff in the Department Of Mechanical

Engineering for their support and encouragement, and especially members of the

Manufacturing Planning Group, Steve Warrington, Jonathan Salmon, and Jane

A.G. Pedley 	 Ph.D Thesis 	 iv

Naish, for the useful discussions. I would also like to thank Professor Tom Childs for

his interest during my short stay in Mechanical Engineering at Leeds University. To

past and present colleagues at IFW (Hannover University), Joachim Taiber (ETH

Zurich), thanks for the encouragement and the motivation.

The last few months have been particularly stressful and I have been something of a

recluse working for Strässle during the day, and on my thesis in the evenings and at

the weekends. I would like to thank my parents and brother for their continuing

moral support. To friends and flatmates who have put up with me, thanks, and I'll try

not to be so manic again. A big thank you to Don Fleming and Andy Clegg for the

pep talks.

I feel that I can now have my life back. For your patience, understanding, friendship,

support and enthusiasm, to you Valentina, I shall be eternally grateful.

Graham Pedley

Edinburgh, September 25, 1997.

A.G. Pedley 	 Ph.D. Thesis 	 v

Abstract

The fundamental concept investigated in this thesis is to integrate in a single computer
software representation the information required by designers to define a component for
analysis and manufacturing, thus enabling software based simultaneous engineering
strategies to be implemented. The investigations will examine and advance the
understanding of a specific modelling technique used in Computer Aided Design (CAD) and
Computer Aided Manufacturing (CAM) software applications known as feature modelling.
Feature modelling has been developed in response to industry needs to improve
competitiveness, particularly in the vital area of reducing product development time. The
concept necessitates combining into a single integrated and fully associative model the
requirements of 2D drafting for the production of detailed engineering drawings,
representing 3D solid geometry containing both analytic and free form surfaces, and,
modelling dimensional and geometric tolerances, and surface conditions.

Though feature modelling techniques have been proposed for over a decade, and are
accepted as an aid to process integration, further investigations are required to establish if
there are deficiencies in the understanding of features, which has resulted in little industrial
impact of the technology to date and the continuing lack of design model and manufacturing
application integration.

The following original contributions to the knowledge and understanding of feature
modelling technology have been made as a result of the investigations:

• Certain features cannot be completely described by their make methods, therefore an
important new class of features called extrinsic form features has been defined.

• The scope and architectural complexity of feature model data structures has been
advanced by creating multi-dimensional or hyper feature models enabling a wider group
of feature classes to be represented including form, dimension, and tolerance features.

• A novel combination of procedural and declarative approaches has been combined into
a new, more sophisticated feature definition language, which describes both the
dimensions and tolerances of a feature in a 3D manner in the template definition and
enables a more intelligent graphical user interface.

• Exchange of feature models with increased information content can be achieved by
reducing the flexibility of systems to subsequently change a non-native feature model.

Extrinsic form features have been developed that allow the integration of objects from many
different sources within the feature model that can be swept to create free form geometry.
Any solid or feature model may have associative dimensions and tolerances applied which
are visualised as part of the 3D model. The template definition of a feature has been
extended to enable dimensions representing a features size parameters to be described; these
dimensions can be used to control the model. Parallel geometric tolerances have been found
to behave as 3D constraints.

The work has clearly demonstrated the feasibility of providing homogeneous form feature,
dimension and tolerance models. Working completely in a 3D environment eliminates the
need for a separate 2D model to produce engineering drawings. Integration of the design
model with down stream manufacturing applications has been improved. Providing
persistent object identity is a problem. Only partial solutions to the exchange of feature
models have been investigated. Further work is required to improve the persistency of
object identity, extend the functionality to cover all geometric tolerancing and associated
constraint problems, and to develop variational modelling and analysis capabilities.

A.G. Pedley 	 Ph.D. Thesis 	 vi

Table Of Contents

Declaration

Acknowledgements 	 iv

Abstract 	 vi

Table Of Contents 	 vii

List Of Figures 	 xiv

Abbreviations 	 xviii

Glossary Of Terms 	 xix

Chapter 1 Introduction - 	 - 	 - 1-1

1.1 	Introduction 1-I

1.1.1 Chapter Overview 1-1

1. 1.2 Chapter Structure 1-2

1.2 Feature Modelling Concepts 1-2

1.3 Historical Developments 1-5

1.4 Problem Definition 1-13

1.5 Aims And Objectives 1-16

1.6 Baseline 1-19

1.7 Structure Of Thesis 1-20

1.8 Chapter Summary 1-23

Chapter 2 Computer Aided Design And Manufacture 2-1

2.1 	Introduction 2-1

2.1.1 Chapter Overview 2-1

2.1.2 Chapter Structure 2-3

A.G. Pedley 	 Ph.D. Thesis vii

2.2 Design And Manufacture

2.2.1 Background

2.2.2 The Design Process

2.2.2 Concurrent/ Simultaneous Engineering

2.2.3 Agile Manufacturing

2.2.4 Product Models

2.3 Geometric Modelling Techniques

2.3.1 General

2.3.2 Drafting

2.3.3 Wire Frame Modelling

2.3.4 Surface Modelling

2.3.5 Solid Modelling

2.3.5.1 CSG

2.3.5.2 BREP

2.3.5.3 Rigid Body Transformations

2.3.6 Parametric And Variational Modelling

2.4 Feature Modelling Technology

2.4.1 Definition Of A Feature

2.4.2 Feature Recognition

2.4.3 Feature Based Design

2.4.4 Features And CAM

2.5 Dimensions And Tolerances

2.6 Relevant Standards

2.6.1 Product Modelling

2.6.2 Geometric Modelling

2.6.3 Feature Modelling

2.6.4 Dimensioning And Tolerancing

2.7 Chapter Summary

Chapter 3 Feature Modelling System

3.1 Introduction

3.1.1 Chapter Overview

3.1.2 Chapter Structure

3.2 System Architecture

2-3

2-3

2-4

2-5

2-9

2-9

2-10

2-10

2-11

2-13

2-14

2-17

2-18

2-21

2-27

2-28

2-30

2-30 	-

2-32

2-34

2-40

2-42

2-50

2-50

2-51

2-52

2-54

2-57

3-1

3-1

3-1

3-2

3-2

A.G. Pedley 	 P1LD Thesis 	 viii

3.3ACIS

3.4 MCL+

3.5 Graphical User Interface (GUI)

3.5.1 High-Level Design Methodology

3.5.2 GUI Architecture

3.5.3 X Windows/ Motif

3.5.3.1 Overview

3.5.3.2 X

3.5.3.3 OSF Motif

3.5.4 SGUI

3.5.5 HOOPS

3.5.6 Input Controller

3.6 Application Modules

3.7 Feature Modeller

3.7.1 Architecture

3.7.2 Kernel

3.7.2.1 Save / Restore

3.7.2.2 Dependency Administration

3.7.2.2.1 Model Tree Maintenance

3.7.2.2.2 Coordinate System Maintenance

3.7.2.2.3 Attribute Maintenance

3.7.2.2.4 Parameter Maintenance

3.7.2.2.5 Formulae

3.7.2.2.6 Persistent Object Identity

3.7.2.2.7 Error Handling

3.7.2.3 Model Manipulation

3.7.2.4 Model Interrogation

3.7.3 Feature Template Administration

3.7.3.1 Interpreter

3.7.3.2 Template Builder

3.7.3.3 Build and Control Procedures

3.8 Chapter Summary

3-8

3-9

3-9

3-11

3-13

3-13

3-13

3-15

3-16

3-17

3-19

3-20

3-20

3-20

3-25

3-25

3-27

3-27

3-28

3-30

3-31

3-32

3-34

3-34

3-35

3-37

3-38

3-38

3-39

3-39

3-40

A.G. Pedley 	 Ph.DI Thesis 	 ix

Chapter 4 User Defined Feature Definition 	 4-1

4.1 Introduction 	 4-I

4.1.1 Chapter Overview 	 4-I

4.1.2 Chapter Structure 	 4-2

4.2 The Need To Model Features With Extrinsically Defined Form 	 4-3

4.3 General Template Definition 	 4-6

4.3.1 General 	 4-6

4.3.2 Generic Feature Template Definition 	 4-8

4.3.3 Specific Feature Parameter Definition 	 4-10

4.4 Feature Template Definition With Implicitly Defined Form 	 4-14

4.5 Feature Template Definition With Extrinsically Defined Non-Parametric Form 	4-16

4.6 Feature Template Definition With Extrinsically Defined Swept Form 	 4-19

4.6.1 Requirements 	 4-19

4.6.2 Implementation 	 4-23

4.6.3 Template Definition 	 4-27

4.6.4 Methods 	 4-29

4.6.4.1 Sweep Sheet Or Wire Along Path Defined By Wire Body 	 4-29

4.6.4.2 Sweep Face In Existing Body Along A Path Defined By A Wire Body 	4-33

4.6.4.3 Sweep Path Defined By Wire Body 	 4-34

4.7 Feature Origins 	 4-35

4.7.1 Requirements 	 4-35

4.7.2 Features With Implicitly Defined Form 	 4-37

4.7.3 Features With Extrinsically Defined Form 	 4-43

4.8 Template Definition Extension 4-45

4.8.1 Requirements 4-45

4.8.2 Implementation 4-46

4.9 Chapter Summary 449

Chapter 5 Feature Based Dimension And Tolerance Modelling 	 5-1

5.1 Introduction 	 5-I

5. 1.1 Chapter Overview 	 5-1

5.1.2 Chapter Structure 	 5-2

5.2 Requirements For The Dimension And Tolerance Model 	 5-2

A.G. Pedley 	 Ph.D. Thesis 	 x

5-2

5-5

5-6

5-7

5-8

5-11

5.2.1 Background

5.2.2 Kind

5.2.3 Usage

5.2.4 Graphical Display

5.2.5 Associativity

5.2.6 Functionality

5.3 Classification

5.4 Architecture

5.5 Implementation

5.5.1 Class Structure

5.5.2 Workpiece Structure

5.5.3 Technical Views

5.5.4 Description Of Dimension Templates

5.5.4.1 Linear

5.5.4.2 Angular

5.5.4.3 Diameter

5.5.4.4 Radius

5.5.4.5 Dimensional Tolerances

5.5.4.6 Graphic Parameters

5.5.5 Object Decoding

5.5.5.1 General Decoding

5.5.5. 1.1 Vertices

5.5.5.1.2 Edges

5.5.5.1.3 Faces

5.5.5.2 Functional Decoding

5.5.6 Dimension Types

5.5.6.1 Type 1: Non-Associative Dimensions

5.5.6.2 Type 2: Uni-Directionally Associative Dimensions

5.5.6.3 Type 3: 2D Drafting Contour Dimensions

5.5.6.4 Type 4: Feature Parameter Dimensions

5.5.6.4.1 Method

5.5.6.4.2 Thread Values

5.5.6.4.3 Template Definition Extension

5.5.6.4.4 Examples

5.5.6.5 Type 5: Sketcher Constraint Dimensions

5.5.7 Geometric Tolerances

- 5-12

5-14

5-22

5-22

5-23

5-26

5-27

5-27

5-28

5-30

5-33

5-35

5-35

5-36

5-36

5-37

5-37

5-38

5-39

5-39

5-40

5-42

5-49

5-50

5-50

5-52

5-53

5-54

5-57

5-61

A.G. Pedley 	 Ph.D. Thesis 	 xi

5.6 User Interface

5.6.1 Creation

5.6.2 Editing

5.6.3 Auxiliary Dimension Features

5.6.4 Example

5.7 Summary

Chapter 6 Analysis

6.1 Introduction

6.1.1 Chapter Overview

6.1.2 Chapter Structure

6.2 Fundamental Concept

6.3 Industrial Collaboration

6.3.1 Collaboration With Users

6.3.2 Collaboration With Software Engineers

6.4 Research Techniques

6.4.1 Acquiring Information

6.4.1.1 Literature and Standards

6.4.1.2 Research Meetings

6.4.1.3 Collaborating companies

6.4.1.4 Software engineers

6.4.2 Analysis Of Information

6.4.2.1 Areas Of Investigation

6.4.2.2 Selection Of Feature Modelling Test Bed

6.4.2.3 Prototyping

6.4.2.3.1 Extrinsically Defined Features

6.4.2.3.2 Handles

6.4.2.3.3 Dimensions

6.4.2.3.4 Feature Model Exchange

6.5 Software Testing

6.5.1 Informal Testing

6.5.2 Formal Testing

6.5.2.1 Product Comparison

6.5.2.2 Collaborator Testing

6.5.2.2.1 Mandelli Evaluation Report

5-62

5-63

5-66

5-68

5-69

5-70

6-I

6-1

6-1

6-2

6-3

6-4

6-4

6-6

6-7

6-7

6-7

6-8

6-8

6-9

6-10

6-10

6-14

6-15

6-16

6-16

6-18

6-19

6-20

6-20

6-21

6-21

6-22

6-22

A.G. Pedley 	 Ph.D.. Thesis 	 xii

6.5.2.2.2 SESAME Final Assessment 	 6-23

6.5.2.2.3 IMPRESS Midterm Assessment 	 6-24

6.5.2.3 Product Assessment 	 6-24

6.6 Contribution To Knowledge 	 6-25

6.7 Chapter Summary 	 6-28

Chapter 7 Discussion 	 7-1

7.1 Introduction 7-I

7. 1.1 Chapter Overview 7-I

7.1.2 Chapter Structure 7-2

7.2 Contribution 7-3

7.3 Classification 7-6

7.4 Model Architecture 7-16

7.5 Representation 7-19

7.6 Exchange Of Feature Models 7-32

7.7 Feature Technology As A Process Integrator 7-36

7.8 Applicability To Other Feature Modelling Systems 7-41

7.9 Chapter Summary 7-42

Chapter 8 Conclusions 	 8-1

8.1 Introduction 8-1

8.2 Conclusions 8-2

8.3 Future Work 8-8

Chapter 9 References 	 9-I

Appendix 1 Published Papers 	 A-i

A.G. Pedley 	 Ph.D Thesis 	 xiii

List Of Figures

Figure 1.1 Feature Model Structure 1-3

Figure 1.2 Functionally Specific Features 1-3

Figure 1.3 (a) Car Wing (b) Connecting Plate 1-4

Figure 1.4 The "Over the Wall" Approach - 	1-6

Figure 1.5 Traditional 2D Engineering Drawing 1-7

Figure 1.6 Interpretation Problems Of Wire Frame Models 1-8

Figure 1.7 Surface Model Of Car Body Panel 1-9

Figure 1.8 Cross-Section Through Solid Model i-b

Figure 1.9 CAD-CAPP-CAM Process Chain i-u
Figure 1.10 Bearing Seat Feature 1-12

Figure 1.11 Areas Of Investigation 1-17

Figure 2.1 Pahl & Beitz Model Of The Design Process 2-5

Figure 2.2 Comparison Of Traditional And Concurrent Engineering Approaches 2-7

Figure 2.3 SESAME View Of Simultaneous Engineering 2-8

Figure 2.4 Traditional 2D Engineering Drawing 2-12

Figure 2.5 Engineering Drawings Are Insufficient For Process Integration 2-13

Figure 2.6 (a) Wire Frame View (b) Wire Frame View With Additional Silhouette Lines 2-14

Figure 2.7 Surface Model Of Car Body Panel 2-15

Figure 2.8 Coons Surface Patch Definition 2-16

Figure 2.9 Bezier Surface Patch Definition 2-16

Figure 2.10 Cross-Section Through Solid Model 2-18

Figure 2.11 Half-Spaces Combined To Define A Cylinder 2-19

Figure 2.12 Boolean Operators (a) Bodies (b) Union(c) Difference (d) Intersection 2-20

Figure 2.13 Ordering Of Bodies 2-20

Figure 2.14 Topological Graph Structure 2-21

Figure 2.15 Winged Edge Data Structure 2-22

Figure 2.16 Vector Sweep Operations (a) Rigid, (b) Orthogonal, (c) Draft,

(d) Draft With Rounded Edges 2-24

Figure 2.17 Rotational Sweep 2-25

Figure 2.18 Sweep Along A Path 2-25

Figure 2.19 Tweaking A BREP Model 2-26

Figure 2.20 STEP Form Feature Classification 2-36

Figure 2.21 Hybrid Feature Model Architecture 2-37

Figure 2.22 Feature "Handles" 2-40

A.G. Pedley 	 Ph.D. Thesis 	 xiv

Figure 2.23 ISO Geometric Tolerance Classification 2-44

Figure 3.1 FeatureM Screen 3-3

Figure 3.2 Featu reM System Architecture 3-4

Figure 3.3 ACIS Class Structure (Source: (STIJ) 3-6

Figure 3.4 Schematic Of GUI Window Layout 3-10

Figure 3.5 GUI Main Software Components 3-12

Figure 3.6 Schematic Of X/Motif Interface (Source[BER9I1) 3-15

Figure 3.7 HOOPS Implementation In FeatureM 3-18

Figure 3.8 Feature Modeller - ACIS Communication 3-21

Figure 3.9 Feature Modeller Software Components 3-22

Figure 3.10 Feature Modeller Internal Class Structure 3-23

Figure 3.11 Feature Model Data Structure 3-24

Figure 3.12 Workpiece Feature Tree Structure 3-25

Figure 3.13 Combined Model Structure 3-26

Figure 3.14 Different Types Of Coordinate Systems 3-30

Figure 3.15 Dependent Parameters 3-33

Figure 3.16 Feature Property Sheet 3-36

Figure 4.1 Block Feature With Form Defined Implicitly In Template 4-14

Figure 4.2 User Template Definition For A Block Feature 4-14

Figure 4.3 Parameters Automatically Added To The Template Definition 4-15

Figure 4.4 Block Feature make Function 4-16

Figure 4.5 User Template Definition For A Non Parametric Form Feature 4-17

Figure 4.6 Non-Parametric Form Feature if set Function 4-18

Figure 4.7 Non-Parametric Form Feature make Function 4-18

Figure 4.8 Combining Swept Semi-Bounded Sheet Bodies In A Model 4-23

Figure 4.9 Template Definition For Sweep Of Sheet Or Wire Body Along A Path

Defined By A Wire Body 4-27

Figure 4.10 Template Definition For Sweep Of Existing Face Along A Path Defined

By A Wire Body 4-28

Figure 4.11 Template Definition For Feature Defining A Sweep Path 4-28

Figure 4.12 Simple Block Feature With Origins 4_35

Figure 4.13 Origins Located At The Centre Of Radius 4-36

Figure 4.14 Template Definition Of Block Feature With Origins 4-38

Figure 4.15 make Function For Block Feature With Origins 4-39

Figure 4.16 Generation Of Position Of Feature Origins 4-40

Figure 4.17 Parameter Validation Definition 4-49

Figure 5.1 3D Projection Lines 5-7

A.G. Pedley 	 Ph.D. Thesis 	 xv

Figure 5.2 Dimension Classification 5-13

Figure 5.3 Extended Class Structure 5-22

Figure 5.4 Non And Uni-Directional Workpiece Class Structure 5-24

Figure 5.5 Workpiece Class Structure Supporting Parameter Dimensions 5-24

Figure 5.6 Workpiece Class Structure Supporting Sketcher Constraint Dimensions 5-25

Figure 5.7 Linear Dimension Parameters 5-28

Figure 5.8 Angular Dimension Parameters
- 	 5-30

Figure 5.9 Diameter Dimension Parameters 5-32

Figure 5.10 Radius Dimension Parameters 5-34

Figure 5.11 Type I Dimension Parent Template 5-40

Figure 5.12 Type 1 Dimension Template Definitions 5-41

Figure 5.13 Type 2 Dimension Parent Template 543

Figure 5.14 Type 2 Linear Dimension Template 543

Figure 5.15 Type 2 Angular Dimension Template 545

Figure 5.16 Type 2 Diameter Dimension Template 5-46

Figure 5.17 Type 2 Radius Dimension Template 547

Figure 5.18 Radius Dimension Applied To Cylindrical Face 5-48

Figure 5.19 Radius Dimension Applied To Toroidal Face 5-49

Figure 5.20 Type 3 Dimension Templates 5-50

Figure 5.21 Template Definition For Block With Parameter Dimensions 5-55

Figure 5.22 Instance Of Block Feature With Parameter Dimensions 5-55

Figure 5.23 Template Definition For Cylinder With Parameter Dimensions 5-56

Figure 5.24 Hole And Block Features Combined In Workpiece Model 5-57

Figure 5.25 Type 5 Sketcher Dimension Parent Template Definition 5-58

Figure 5.26 Type 5 Linear Dimension Template Definition 5-59

Figure 5.27 Type 5 Radius Dimension Template Definition 5-60

Figure 5.28 Type 5 Constraint Dimensions 5-60

Figure 5.29 Geometric Parallel Tolerance Template Definition 5-61

Figure 5.30 Parallel Geometric Tolerance Representation 5-62

Figure 5.31 Dimension And Tolerance Module Main Menu 5-63

Figure 5.32 Feature Model Using Dimensions And Tolerances 5-69

Figure 6.1 Fundamental Concept 6-3

Figure 6.2 Areas Of Investigation 6-11

Figure 6.3 Sources Of Information Used And Impact On Analysis 6-14

Figure 6.4 Handle Techniques Investigated 6-17

Figure 7.1 SESAME Design Feature Classification 7-7

Figure 7.2 SESAME Base Geometry Feature Classification 7-8

A.G. Pedley 	 Ph.D..Thesis 	 xvi

Figure 7.3 SESAME Form Feature Classification 	 7-8

Figure 7.4 Model Of Machined Part Of Casting 	 7-9

Figure 7.5 IMPRESS Free Form Feature Classification 	 7-12

Figure 7.6 IMPRESS Flat Bottom Channel Feature 	 7-13

Figure 7.7 General Design Form Feature Classification 	 7-15

Figure 7.8 Levels of Accuracy Feature Classification 	 7-16

Figure 7.9 IMPRESS Flat Bottom Channel Feature With Parameter Dimensions 	7-21

Figure 7.10 IMPRESS Flat Bottom Channel Feature Forming Female Tool 	 7-21

Figure 7.11 Soap Box 	 7-23

Figure 7.12 Obelisk With Help Lines 	 7-25

Figure 7.13 3D Model Displayed As 2D Drawing 	 7-27

Figure 7.14 Cross-Section With Dimensions 	 7-28

Figure 7.15 Parallel Tolerance 	 7-30

A.G. Pedley 	 Ph.D.Thesis 	 xvii

Abbreviations

CAE Computer Aided Engineering

CAD Computer Aided Design

CAM Computer Aided Manufacture

CIM Computer Integrated Manufacturing

CAPP Computer Aided Process Planning

NC Numerical Control

APT Automatically Programmed Tools

FE Finite Element

BREP Boundary Representation

CSG Constructive Solid Geometry

Transform Transformation Matrix In Homogeneous Coordinates

API Application Procedural Interface

GUI Graphical User Interface

SGUI Strässle Graphical User Interface

SME Small To Medium Size Enterprise

MCL+ Macro Command Language (with Object Oriented Characteristics)

NLS National Language Support

A.G. Pedley 	 Ph.D.. Thesis 	 xviii

Glossary Of Terms

Feature 	 A feature is an information unit, geometric or

otherwise, that is used to define, or help the

understanding of, a component model.

Feature Model 	 A data structure and computer representation of a

component constructed from a pre-defined set of

features.

Product model 	 A computer representation of the shape, technology,

processes and operations required to realise a product.

A feature model defines a partial product model.

Form Feature 	 A feature that describes a geometric shape such as a

hole or slot.

Feature Library 	 The set of features descriptions that are known by the

feature modeller from which the user selects examples

to create the desired model.

User Defined Feature 	A feature specified, defined, implemented and added to

the system library by the user of the feature modeller

rather than the developer.

Implicit Representation 	The description of the feature stored in the library,

usually incorporating default values. Sometimes

referred to as the feature prototype.

Explicit Representation 	The description of the feature in the model after being

instanced from the library and having had its

parameters explicitly instantiated (set) by the user.

A.G. Pedley 	 Ph.D.. Thesis 	 xix

Template 	 The programming term used to describe the implicit

representation of the feature, i.e. the feature prototype.

New (user defined) features are described by

completing a form or template. The attributes and

parameters of the feature are described within the

template but not how the feature behaves. -

Procedural definition 	The rules that define how the feature behaves are

described by a set of high level procedures formed in a

programming language. The procedure names are

defined in the feature template. Each feature requires its

own unique procedures to be written.

Declarative definition 	The rules that define how the feature behaves are

described by a set of low level constraints. The feature

modeller incorporates a constraint solver. Only

applicable to form features which generate geometry.

The set of constraints is defined in the feature template.

Each feature requires its own unique set of constraints

to be constructed.

Build / control procedures The procedures declared in the template definition are

used to describe procedurally to the feature modeller

Intrinsic definition

how the feature behaves or what it does. For instance,

the build procedure of a form feature will use the values

of the parameters to generate the solid body of the

feature.

The geometric shape of a form feature is completely

defined within the build procedures.

A.G. Pedley 	 Ph.D.Thesis 	 xx

Extrinsic Definition 	The geometric shape of a form feature is not, or can

only be partially defined by the build procedures. The

exact resultant form of the feature cannot be pre-

determined in the build procedure.

Model evaluation 	The process of combining all the instances of features

in the model to produce a result.

Geometric primitive 	The pre-defined solid representation of a shape used by

• geometric modeller. For example, a cylinder, a cube,

• prism, etc.

Feature handle / origin 	A point which can be defined in the implicit, intrinsic

description of a form feature which is useful as an aid

to positioning the feature.

Feature Mapping 	Features are application or view specific. Feature

mapping is the process of generating a new - feature

model, representing a different view, from an existing

set of features. For instance, a component may be

described by design features representing the view of

the designer. A mapping may be defined.which allows

the same geometric model to be described by a different

set of features that represent the view of the

manufacturing engineer.

Simultaneous engineering The integrated design of both product and

manufacturing process performed simultaneously in

order to shorten time to market. The term is frequently

used interchangeably with concurrent engineering.

A.G. Pedley 	 Ph.D. Thesis 	 xxi

Implicit Feature Interaction An interaction between features, or feature elements,

which is implicit in the model. For example, proximity,

obstruction, and the like which could potentially cause

manufacturing problems.

Explicit Feature Interaction An interaction between features, or feature elements,

which is explicitly stated by the constructor of the

model - typically dimensional and geometric tolerances.

Hyper-Feature Model 	Also referred to as a Multi-Dimensional Feature Model.

A single computer data structure which consists of a

number of feature trees. Each tree contains only one

major class of feature: form, dimensions, tolerances,

etc. The trees are related by links from parameters in

one feature tree to features or resulting geometry in

another.

Parameter Dimension 	A dimension feature which explicitly represents a

single length, diameter, radius or angle parameter of a

unique feature parameter. It is defined in the feature

template and is represented as a graphical 3D symbol

by the system. It is used to change the model

interactively.

A.G. Pedley 	 Ph.D Thesis 	 xxii

Chapter 1

Introduction

1.1 	Introduction

1.1.1 	Chapter Overview

The fundamental concept investigated in this thesis is to integrate in a single

computer software representation the information required by designers to define a

component for analysis and manufacturing, thus enabling software based

simultaneous engineering strategies to be implemented. The investigations will

examine and advance the understanding of a specific modelling technique used in

Computer Aided Design (CAD) and Computer Aided Manufacturing (CAM)

software applications known as feature modelling. Feature modelling has been

developed in response to industry needs to improve competitiveness, particularly in

the vital area of reducing product development time.

In this chapter (chapter 1) the principles of feature modelling will be introduced. The

historical background and industrial needs which have led to its development will be

described. The deficiencies of current systems will be detailed, and the aims and

objectives of the work reported in this thesis will be established in order to address

these problems. The software implementation reported forms refinements and

additions to an existing commercial feature modelling system which will be

A.G. Pedley 	 Ph.D. Thesis 	 1-1

introduced. An overview of the thesis will be provided. In chapter 2 CAD and CAM

strategies, software technologies and relevant standards will be reviewed with respect

to their influence on feature modelling techniques and the developments to be

reported in this thesis.

1.1.2 	Chapter Structure

Section 1.2 will introduce the concept of feature modelling. An overview of the

historical development of manufacturing strategy, and consequently design and

manufacturing software support, will be given in section 1.3. The need for the

investigations undertaken originates from a number of deficiencies with feature

modelling systems which will be described in section 1.4. In section 1.5 the aims

and objectives of the work will be stated in order to address these problems; the

contribution of this work to the knowledge and advancement of feature modelling

techniques will be stated. A commercial system will provide the baseline for the

developments reported in this thesis, it will be introduced in section 1.6. The

structure of the thesis will be described in section 1.7. A summary of the chapter will

be provided in section 1.8.

1.2 	Feature Modelling Concepts

Features are typically used to describe the geometric shape of an object. A form

feature may be broadly described as "a geometric form or entity" [LUB86] that has

some engineering meaning, a hole, a pocket, or a slot, for instance. Feature models

use a tree like data structure to maintain the feature information and ordering of the

model which is separate from the geometry [CHA90]. A conventional geometric

(usually solid) modelling engine is used to represent the geometry of the individual

features and combine each feature under the control of the feature modelling engine

to generate the desired model, Figure I.I. Although this structure appears at first

similar to that of a constructive solid geometry (CSG) solid modeller, there are

A.G. Pedley 	 Ph.D. Thesis 	 1-2

significant differences. Changes may be made to the feature model by setting new

values for the parameters which define the form of any feature, followed by re-

evaluation of the model, rather than by the addition and removal of further primitive

shapes.

4;?

Figure 1.1 Feature Model Structure

The feature data structure may also be used to support information related to the form

of a model, such as tolerances or other manufacturing information, in which case

other classes of feature are introduced, accuracy features, for example. Features

represent a functionally specific view of a component, design compared to

manufacturing, for example, Figure 1.2.

Centre-Drill
Hole

Pilot Hole 	 Counter-Bore

Thread

Counter-Bored
Threaded

Hole

Design Feature 	 Manufacturing Features

Figure 1.2 Functionally Specific Features

A.G. Pedley 	 Ph.D' Thesis 	 1-3

The manufacturing feature model may be obtained from the design feature model

using a top down approach known as feature mapping, or a bottom up approach

called feature recognition. If a set of features in a model represent the manufacturing

engineer's view of the component, manufacturing processes and operations may be

associated with them, leading to the development of the manufacturing process

model simultaneously as the design progresses. If tolerances and other information

may be supported within a feature modelling structure and associated with the

features, process, tool and operation selection may be more easily automated. It is the

possibility of feature technology to represent different views of a component (design,

manufacturing, etc.) combined with non-geometric information that offers the

potential to improve CAD and CAM integration.

Feature Modelling Systems are provided with pre-defined sets of features. However,

an infinite set would be required to functionally model all possible geometric needs

from the specific point of view of the user. For example, a designer modelling a car

body panel has very different needs from a designer of a milling machine, Figure 1.3.

Figure 1.3 (a) Car Wing (b) Connecting Plate

Therefore it is desirable to extended feature modelling techniques to provide a

flexible data structure in which the user may define additional features (user defined

features) that represent the specific needs of the user's business environment. The

ability to parametrically pre-define shapes and to have manufacturing know-how

associated with the features used to construct a model is seen as a means of more

A.G. Pedley 	 Ph.D. Thesis 	 1-4

rapidly designing both the product and the manufacturing process, hence reducing

development time.

Feature Modelling offers the potential to build more highly developed, information

rich models than geometric modelling methods allow, but has yet to achieve the wide

spread industrial acceptance of well established techniques such as surface and

parametric modelling.

1.3 	Historical Developments

The advent of industrialisation has led to people becoming specialists in a particular

area: design, manufacturing or sales, for example. There are very few people today

who both conceive, realise and sell a product, as was the case with a blacksmith. This

specialisation and division of labour has led to compartmentalisation of business

functions and a sequential flow of processes from design, through production

planning to manufacturing. Generally the approach taken has been one of "over the

wall" from one department to the next with surprisingly little interaction, Figure 1.4.

Factors such as hierarchical status, training and particularly non-existence of

interdisciplinary aids and support tools have contributed to a maintenance of the

status quo.

The development and application of computer technology has mimicked this division

of labour whereby applications are of a specialist nature, they rarely take into

consideration the needs of other applications, generally use different data structures

and modelling techniques, and communicate poorly with each other. As a

consequence, providing feedback of problems through the software chain is almost

impossible and feeding through design changes is fraught with difficulties, additional

costs and lengthening of product development periods.

A.G. Pedley 	 Ph.D Thesis 	 1-5

Figure 1.4 The "Over the Wall" Approach

Computers were first applied to support the manufacturing process during the 1950's

with the development of the programming language APT (Automatically

Programmed Tools) [GR084]. This language enabled tool cutter paths of the then

recently developed numerically controlled (NC) milling machines to be defined

independently from the machine itself. It was not until 1963, however, that graphical

representations of a component model were able to be created on a computer screen

and modified. The Sketch Pad system from Sutherland [SUT63] could only produce

two dimensional (213) wire frame models, the generation and display of complex

geometry was not possible. However it was possible to automate draughting and

simple NC part programming via two dimensional contours. Mathematical modelling

of complex geometry also began in the early sixties with DeCasteljau at Citroen and

Bezier at Renault separately developing the same method to describe free form

curves. The curves became known as Bezier Curves because of wide publication and

use of the software system IJNISURF [ZEI91]. It is interesting to note that it was

demand from manufacturing engineering rather than design needs that pushed the

early developments of computer support for product development.

A.G. Pedley 	 Ph.D'Thesis 	 1-6

(I)

Z5 z

oo
o)

fr-

H 	 H
H
H

H

_

XSédtiônBB 	 -

All holes and edges must be deburred

I Material
Connecting Plate

Run-out, Form and positional tolerances 	Dimensions without given tolerances use
use N291.30 	 standard value and grade

Today 2D engineering drawings, Figure 1.5, albeit frequently produced with the aid

of computer software applications, are still accepted as the standard method of

U

0 	'0%
3 052

3 	6055

6 	50058

0 	8 025

8 	30 026
30 	50 0.35
00 	80 0.37
80 	20 0.43
20 	80 050

580 250 057
250 355 0.65
355 400 070

400 500 017

L..- 	i..

Figure 1.5 Traditional 2D Engineering Drawing

4S 13

defining a component. 	

2,5

COO 	 A

1Z4 f/5!o,c

000 	
10

E

Schnitt A-A

1
5chnit B-B

Na 	N?

vv vv)
Mat. , . 4 .,, 44C//............. Kiass...............................

Masse oflne roleranzangabe

.

Gez. MaOstab

2 1 KB 00— 22 /0 Pr

________________ Norm

LaQeOeoao,gkelt floOr 629530

Ersatz 6

Ges. Referenz .. 8° IType .D.CJ'(............

ZELLWEGER AG, CH-8610 LJSTERISCI-4WEIZ Isdar Bait

2 4'828 Apoarate- und Maschsnenfabrrken Uster Nr

A.G. Pedley 	 Ph.D. Th esis 	 1-7

2D engineering drawings are of little use in efforts to advance computer integration

of design and manufacturing, nor do 2D data models meet the requirements for

product modelling seen as a core element of simultaneous engineering activities.

Simultaneous engineering is the concurrent design of both the product and the

process by which it will be realised and should consider all aspects of a product's life

cycle. A model that is used to support such activities is called a product model. It is

clear that many design and manufacturing analysis tasks are three-dimensional (31))

in nature and therefore cannot be supported by 2D drawings. A 3D geometric model

is an essential element of product modelling systems.

The simplest form of 31) geometric model is the wire frame model which was

developed in the early 70's. A wire frame model is an edge representation of an

object which contains no information about surfaces or what is solid. Much is left to

visual interpretation, Figure 1.6.

Figure 1.6 Interpretation Problems Of Wire Frame Models

3D surface modelling pioneered by Bezier provides a description of the surfaces of

an object but not how the surfaces are connected together. This type of representation

is used to model the smooth continuously changing surfaces commonly found in the

aerospace and automotive industries where the techniques were pioneered, Figure

A.G. Pedley 	 Ph.D Thesis 	 1-8

1.7. This precludes geometric reasoning but advanced techniques have been

successfully developed to generate 3, 4, and 5 axis NC part programmes from the

models. Generation of the model is generally very inefficient.

Complete three dimensional descriptions of a component are provided by solid

modellers. Also referred to as volume modellers, they have typically been used to

model 3D geometry defined using planar or analytic surfaces. More recently much

effort has centred on introducing and integrating the synthetic geometry of surface

modellers.

Figure 1.7 Surface Model Of Car Body Panel

A solid model is a complete description, of both geometry (the description of the

geometric elements) and topology (the connectivity between the geometric

elements), enabling points in space to be classified as in, on or outside an object, and

cross-sections through a model to be generated, Figure 1.8. A solid model may have

mass properties calculated and is frequently used as a basis for generation of

representations suitable for numerical analysis methods, such as finite element (FE).

Significantly, geometric reasoning tasks can be performed that are necessary in

A.G. Pedley 	 Ph.D Thesis 	 1-9

advanced process planning [M1L94] and fixturing systems [CH196]. Solid modelling

is acknowledged as an essential element of the technological solution to automating

and integrating design and manufacturing functions [ZEI91].

Figure 1.8 Cross-Section Through Solid Model

The two most popular forms of model representation used by solid modellers are

Boundary Representation (BREP) and Constructive Solid Geometry (CSG). The

former, pioneered by Braid with the BUILD system [BRA73] in the early 70's, is a

complete topological description of the surfaces, edges and vertices that constitute

the body, and is said to be an evaluated model. The latter, pioneered by Requicha

[V0E77] is a tree structure of primitive volumes related by Boolean operators

(union, difference, intersection), and is said to be an unevaluated model. Both

methods produce the same geometric and visual result.

The concept of form features has been introduced as an intuitive and informative way

of describing geometry. For instance, we talk about a chamfer, a hole, a slot, a key

way, etc. Most standards for dimensioning and tolerancing use the term feature to

indicate a portion of the component geometry to which a dimension or tolerance is

A.G. Pedley 	 Ph.D1 Thesis 	 1-10

applied. However, the main motivation for the development of feature technology

has been to integrate CAD and NC machining via Computer Aided Process Planning

(CAPP), Figure 1.9.

CAD
	

CAPP
	

CAM
Design Features
	

Manufacturing Features
	

Machining Features
(Form, Accuracy, Material)

	
(Form, Accuracy, Material)

	
(Form, Tool, Strategy)

Figure 1.9 CAD-CAPP-CAM Process Chain

At Cambridge University in 1980 pioneering work by Kyprianou [KYP80] proposed

the characterisation of a component into a set of form features by recognising

topological and geometric patterns in a boundary representation model. Such

techniques are known as feature recognition. Interest in features was furthered in the

mid eighties by Computer Aided Manufacturing - International (CAM-1) in the USA,

with their publication of a catalogue of part features for process planning [BUT86].

Also in the mid eighties, again under the auspices of CAM-I, design by features was

first proposed by Pratt and Wilson [PRA85]. The development of prototype Feature

Based Design Systems followed from a number of researchers: Cunningham and

Dixon [CUN88], Cutkosky [CUT88] and Shah [SHA88a] in the US and Krause

[KRA90] and Rudolf [RUD92] in Europe. Form features used in design provide a

level of abstraction from the geometric entities or primitives of solid modelling

systems. Solid modelling systems can only store low level information about faces,

edges, curves and points or primitive objects such as blocks and cylinders. However,

designers think in high level terms of the functionality and aesthetics of shapes which

are usually a combination of these primitives. Clearly, when it is known that a

particular combination of faces and edges actually represent a hole, it is a simpler

task to decide how to produce those faces and edges in the model, because there is

significant knowledge about the manufacturing of holes which can be directly

associated with part of the geometry of the model. A form feature contains not only

the geometry and topology of the entity, but the semantics (meaning) as well, for

example a bearing seat, Figure 1.10.

A.G. Pedley 	 Ph.D' Thesis

B

F

Figure 1.10 Bearing Seat Feature

This application specific knowledge makes it easier for the designer to construct a

model of a product. It also means that if the form feature information can be passed

to the manufacturing system then it should provide additional data (more than pure

geometry) to the planning system as an aid to decision making on how to produce it.

- Hence form features provide for enhanced integration of CAD and CAM systems. A

form feature modeller is usually a front end to a solid modeller. The geometric and

topologic model is maintained by the solid modeller; the form feature model is

maintained separately by the system and is evaluated by making calls to the solid

modeller to produce a geometric result. Due to the application specific nature of form

features it is necessary for widespread acceptance that they can be easily tailored to

represent any design/manufacturing environment, hence the need for user defined

feature capabilities [PED96a]. Such capabilities allow the user to define new features

and use them in the system in combination with a pre-defined library.

It is impossible to manufacture to a perfect size and so an allowable variation, called

a tolerance, is specified in the design depending on intended use. A manufactured

part that falls within this allowable variation is said to be in tolerance. The size of

this tolerance dramatically affects the selection of manufacturing process, method,

and hence cost. Tolerances are typically added as the last part of detail design when

nominal shape is defined. Tolerances are traditionally indicated on 2D drawings,

A.G. Pedley 	 Ph.D Thesis 	 1-12

typically being applied to the dimensions as dimensional tolerances. More recently

geometrical tolerances have been used to control the form of the model

independently of its size. Dimensioning and tolerancing for design drawings are well

established via the standards: ISO [ISO], ANSI [ANSI], BSI [BSI], for example.

1.4 	Problem Definition

Presently, the support of tolerancing in product modellers is an academic issue as

most current solid modelling systems do not yet support tolerancing [SAL93].

Clearly, if form features provide for enhanced integration between design and

manufacturing by way of aiding process selection and tolerances are a core factor in

development of manufacturing strategy, then it would be desirable to provide

tolerance information related to the form features. This is not possible when

tolerances are added to 2D engineering drawings. However if the tolerances could

not only be related to the form features and the solid model data structure but could

be visualised in three dimensions, then -it would be possible togenerate2D

engineering drawings automatically without the possibility for error. Equally

integration between design and manufacture would be further advanced because the

accuracy information would be available in the same model to CAPP applications. If

the dimensions and dimensional tolerances that are related to both the form features

and the geometric model could also be made to represent the size parameters of form

features, it would be possible to control the size of the model graphically. Such a

representational structure would also enable future investigation of variational

models by making the size of the features change to the upper or lower limits of the

dimensional tolerance. Another significant factor is that if user defined form features

are necessary to fulfil the application specific nature of form features then any

dimension and tolerancing system must be equally applicable to user defined features

and not be restricted to system developments.

Current international standards (STEP [STEP], IGES [IGES]) govern only the

exchange of geometric and to some extent tolerance data, but there is no method of

A.G. Pedley 	 Ph.D Thesis 	 1-13

exchanging feature models or of combining tolerance data with the features. The

current standards do not meet the functional needs of feature based techniques for the

transfer of feature model descriptions and hence restrict the integration of design and

manufacturing functions.

Feature based solid modelling systems should have highly developed facilities for the

user to define new features in addition to those provided by the system to model

application specific environments, especially free form type geometry. Free form

geometry is widely used in the casting and plastic injection moulding industries. Tool

making for these and sheet metal press tools form a very significant proportion of

modelling, analysis and manufacturing needs. The feature modeller should be a

general purpose modeller capable not only of supporting geometric descriptions of

form but other information that a designer uses to define a product that enables the

manufacturing engineer to realise the component meeting the specifications. An

integral and homogeneous part of the system must be able to define and present in

3D the dimensions and associated tolerances that the designer uses to constrain the

component. This representation should be equally applicable to user defined features.

It should be possible to generate automatically 2D engineering drawings without the

need to use a separate draughting system. It must also be noted that legacy data in

terms of pure solid models must also be considered from an industrial point of view.

It is now widely recognised that the foundation for all software in highly automated

processes in manufacture has to be a geometrically complete model of the product

[SAB87]. Geometrical completeness is provided by a solid model. Form features are

a higher level method of describing such a model. Feature modelling techniques

provide a more intuitive and efficient way for a designer to work, and are accepted as

an aid to process integration and simultaneous engineering strategies [CUT9 1]

[TOE94a]. However, a number of problems restricting the impact of feature

modelling technology in Computer Aided Design and Manufacturing have been

identified:

A.G. Pedley 	 Ph.D Thesis 	 1-14

There is a considerable' legacy of purely volume based models.

Libraries of predefined features are too restrictive.

User defined feature functionality, particularly definition, has been neglected.

Features are assumed to have implicitly defined topology and geometry, little

support being given to features of extrinsically defined form.

Only nominal, or perfect size geometry is supported.

Dimensions and tolerances are detailed in engineering drawings which are 2D

representations separate from the feature model.

Tolerances and dimensions that are not homogeneous with the shape model

preclude the development of variational models and enhanced design and

manufacturing analysis.

- 8. There are no standards for the exchange of user defined feature models. 	- 	- -

9. The effectiveness of advanced computer aided process planning, computer aided

quality and part programming systems based on feature models derived from a

separate design system is reduced because only nominal shape data is supported;

other information necessary being input after interpretation of 2D engineering

drawings.

These general deficiencies in current feature modelling systems lead to multiple

models of the same design and redundancy. There is the possibility of differences

between models and in interpretation of incomplete 2D data causing ambiguity. The

effects of errors at the design stage not detected until later in product development

are much more costly and time consuming to correct. There are clearly inefficiencies

due to duality of effort: creating multiple models of the same design, information

added to models further along the design path must be verified and corrected if

modifications are made to more fundamental models.

A.G. Pedley 	 Ph.D Thesis 	 1-15

In order to more closely integrate design, process planning and part programming

functions a method is needed of representing and combining extra design information

(dimensional tolerances, geometric tolerances, surface conditions, surface coatings,

etc.) with both the resultant geometry and the form features of the 3D design model,

so that it is available automatically to other applications. The capability of a feature

modelling system to support user defined features in addition to a system library is

necessary for acceptance of feature based design systems and enhancement of

process integration [PED96a]. Any data model or tools developed must be able to

support user defined features. Furthermore, it would be highly desirable if 2D

engineering drawings could be generated directly from the 3D environment without

the need for a separate 2D drafting module. This is necessary because 2D engineering

drawings still form the standard and accepted method of product definition.

Therefore it would be necessary to support the layout of dimensions and tolerances in

3D.

1.5 	Aims And Objectives 	 -

The fundamental concept investigated in this thesis is to integrate in a single

computer software representation the information required by designers to define a

component for analysis and manufacturing, thereby creating a partial product model

and a graphical user interface allowing the model to be created, viewed and changed.

The concept necessitates combining into a single integrated and fully associative

model the requirements of 2D drafting for the production of detailed engineering

drawings, representing 3D solid geometry containing both analytic and free form

surfaces, and, modelling dimensional and geometric tolerances, and surface

conditions. Feature models are accepted as capable of supporting data rich

representations which can form integrated partial product models and provide an

intuitive working environment. However, feature modelling techniques have had

little industrial impact to date. This thesis proposes that by investigating and

advancing feature modelling techniques, it will be shown that the fundamental

concept of providing an integrated partial product model can be achieved.

A.G. Pedley 	 Ph.DThesis 	 1-16

Therefore the aim of the investigations is to advance the understanding and

functionality of feature modelling technologies in order to provide better computer

aided support for design and manufacturing. Industrial acceptance of feature

modelling systems will therefore be widened, and consequently process integration

will be enhanced, product development cycles shortened, quality increased and costs

lowered, thereby raising competitiveness.

Geometric
apeClassifiraon

Model 	
Feature

Definition
Architecture 	Feature

Modelling
FeatureTechniques

Modelling 	 Parameter
 Definition

Feature

Strategy

\(" Model 	User
Exchange 	Interface

Figure 1.11 Areas Of Investigation

- 	By examining the feature modelling techniques shown in Figure 1-11 four specific

objectives have been identified for investigation and software implementation in

order to address the fundamental concept and aim (stated above), and the problems

described in section 1.4. The four specific objectives are:

Development of methods and techniques to model features of extrinsically defined

form, typically swept geometry.

Implementation of a 3D dimension and tolerance modelling module related to

both the feature and solid models.

Establishment of techniques to control a feature's size through the use of 3D

dimensions.

Investigation of structures for the exchange of user defined feature models.

This focus of the work will be on the development of a dimension and tolerance

model that is a homogeneous part of a full feature-based solid modelling design

A.G. Pedley 	 Ph.D.Thesis 	 1-17

system that may be applied to user defined features of implicitly and extrinsically

defined topology and geometry.

The investigations make original contributions to the knowledge and understanding

of feature modelling technology by proposing the following concepts:

The original concept that certain features cannot be completely described by

their make methods has led to the collective grouping of these features and

definition of an important new class of features called extrinsic form features.

The new concept of a multi-dimensional or hyper feature model has been

examined in order to increase the scope and architectural complexity of feature

model data structures, enabling a wider group of feature classes to be represented

including form, dimension, and tolerance features.

The original concept that feature parameters, like features themselves, have

characteristics that allow them to be grouped together in classes has enabled a

novel combination of procedural and declarative approaches to be applied touser

defined feature definition languages, which allows more intelligent mechanisms

to be built as a part of the feature modeller kernel and graphical user interface.

The new concept that combines the ideas presented in concepts II and III into a

new, more sophisticated feature definition language, which describes both the

dimensions and tolerances of a feature in a 3D manner in the template definition.

The original concept that provides "handle" like functionality which is

applicable to all extrinsically defined features and utilises the body coordinate

system of the objects that form the unknown aspects of the features.

The new concept for the exchange of feature models, that increases the

information content that can be transferred by reducing the flexibility of systems

to subsequently change a non-native feature model.

A.G. Pedley 	 Ph.DThesis 	 1-18

This work contributes to the advancement of feature modelling technology in the

following areas:

• Extending procedural methods for user defined form feature definition.

• Considering the needs of the user interaction in user defined feature definition.

• Applying a feature modelling system architecture to the representation of

dimensions and tolerances.

• Suggestion of a method for the exchange of feature models containing user

defined features.

1.6 	Baseline

Feature Modelling has been the focus of much academic research in the past ten

years. A general result of this work has been the development of feature modelling

system architectures where the feature and geometric data structures are separate.

Earlier feature based design systems whilst offering the ability for the user to define

the type of feature and its parameters suffered from the fact that the definition of the

geometry had to be produced by the system developer rather than the user

[KRA91][RUD92]. Two solutions have been established:

to develop sophisticated interpreted languages used for procedural feature

definition that drive both the feature modeller and the geometric engine, and

to develop declarative feature definition languages which is the subject of current

research.

The development of sophisticated procedural languages is a commercial task rather

than a research issue. One of the first commercial Feature Modelling Systems

appeared in 1992 and was developed by Strässle Informationssysteme AG [SIS],

Switzerland, and is today known as FeatureM. Features may be fully user defined in

a proprietary interpreted language called MCL+.

A.G. Pedley 	 Ph.D.Thesis 	 1-19

The work reported in this thesis has been undertaken in collaboration with Strassle

Informationssysteme AG. The collaborative nature of the work has meant that the

developments have been restricted to the use of the feature modelling system,

FeatureM, together with the MCL+ language and other system components such as

the geometric kernel, ACTS [SPA]. Major aspects of the system have already been

defined and the developments reported in this thesis use these concepts to extend the

architecture and functionality of the system. The use of a relatively well defined

system has influenced the developments by providing a well defined domain in

which to work, which is not the case when developing a new system.

The feature modelling system, FeatureM, will be described in chapter 3. It is

necessary to provide a full description because feature modelling systems are

complex software applications, and no one part can be developed in isolation or

without consideration for the other parts. The author has only contributed in minor

areas to the system as described in chapter 3 which is predominantly the work of

others and forms the starting point for the work developed and reported in chapters 4

and 5.

1.7 	Structure Of Thesis

This chapter (chapter 1) has introduced the topic of the thesis, advancing feature

modelling technology, and the related subjects of geometric, dimension and tolerance

modelling. Current deficiencies in feature modelling techniques have been identified,

and the aims and objectives of the work reported in this thesis have been stated. The

baseline for the work has been defined.

Chapter 2 will present a general review of the subjects involved in the developments

of the work. An overview of the design process (including simultaneous engineering,

agile manufacturing and product modelling) and the applicability of feature

modelling techniques will be given. Geometric modelling techniques will be

described because of the need for feature modellers to use a geometric kernel to

represent shape. Parametric and variational modelling techniques will be discussed.

A.G. Pedley 	 Ph.D Thesis 	 1-20

Feature modelling technology will be presented, including feature recognition and

feature based design methods. Dimension and tolerancing practices will be

introduced and the application of software support for dimension and tolerance

representations associated with solid and feature models will be reviewed. Standards

in the areas of product, geometric and feature modelling and the representation of

dimensions and tolerances will also be reported.

Chapter 3 will present the architecture of the of the feature modelling system,

FeatureM, which forms the baseline for developments reported in chapters 4 and 5.

The main software components will be described and consist of the graphical user

interface, MCL+, the geometric kernel, the feature modelling kernel and application

modules. Feature modelling systems are complex and no one aspect can be

developed independently and without consideration of the others.

In chapter 4 the existing methods of describing and controlling user defined features

in FeatureM will be presented in detail. The architecture and definition methods will

be extended to provide for parameter validation and increased- user interface support.

The modelling of features with extrinsically defined form will be described because

of the importance of integrating geometry defined externally to the feature definition.

This will focus on constraint based 2D sketchers, free form surfaces and swept

geometry.

In chapter 5 the needs of the dimension and tolerance module will be defined, the

software architecture and functionality developed will be presented. The methods

developed to associate dimensions and tolerances with both solid and feature models,

and represent 31) feature size parameters and 2D sketcher constraints with

dimensions, will be described. Representing 3D relational constraints will be

investigated by implementation of a parallel geometric tolerance. Functionality -

developed to enable editing of the layout of the dimensions and tolerances will be

described.

Chapter 6 will explicitly describe a number of aspects of the work concerning the

original concepts investigated, industrial collaboration, analysis and testing. The

A.G. Pedley 	 Ph.D Thesis 	 1-21

chapter will present the fundamental concept of the thesis that has been investigated

through the aims and objectives of the work. The importance and extent of industrial

collaboration involved in the research will be described, together with references to

the information and feedback provided. Chapter 6 will present the research

techniques used to acquire and analyse information in order to define the software

architecture which resulted in the implementation reported in chapters 4 and 5. The

software testing methodologies employed for the evaluation of the experimental

software and the results of tests will be given. The original contributions to

knowledge made by the investigations will be stated.

The results of the work will be discussed in chapter 7. The following aspects will be

considered for the feature (form, accuracy, etc.) developments: classification, system

architecture, and, representation. Possibilities for the exchange of user defined form

feature models and the potential of feature modelling systems to act as process

integrators will also be discussed.

The conclusions and recommendations will be made in chapter 8. The references are

stated in chapter 9.

Appendix 1 lists seven published papers of the author relating to the work reported in

this thesis. Four papers form part of the general background to the work reported:

[PED89] introduces feature modelling concepts as a means to process integration.

[HUS90] describes a feature based manufacturing model used for automated

process plan generation.

[HUS91] presents a component formed from features which provide specific

difficulties for process planning systems.

[M1L93] discusses problems of representing form features focusing on the

interactions between features, which may be defined as implicit or explicit.

A.G. Pedley 	 Ph.D. Thesis 	 1-22

A further three papers report work which is drawn directly from this thesis:

[PED95] presents the modelling methods for dimensions and tolerances as a

means of representing explicit feature interactions.

[PED96a] reports on the needs for user defined features and the techniques

developed to represent them.

[PED96b] discusses the problems of exchange of feature models.

1.8 	Chapter Summary

This chapter (chapter 1) has introduced the topic of the thesis, advancing feature

modelling technology, and the associated subjects of geometric, dimension and

tolerance modelling. Current deficiencies in feature modelling techniques have been

identified and the aims and objectives of the work reported in this thesis have been

stated. The baseline for the work has been defined and an outline of the thesis

described.

Chapter 2 will present a review of the subjects involved in the developments of the

work. These subjects include the design process and simultaneous engineering,

geometric, parametric and variational modelling, feature modelling, dimension and

tolerance modelling and the standards associated with them.

A.G. Pedley 	 Ph.D Thesis 	 1-23

Chapter 2

Computer Aided Design

And Manufacture

2.1 	Introduction

2.1.1 	Chapter Overview

Chapter 1 presented the subject of this thesis, feature modelling, and the problems

associated with representing dimensions and tolerances. In this chapter representation

methods and standards will be reported.

Chapter 1 introduced a range of computer modelling techniques used to represent the

nominal geometry of engineering components - wire frame, surface and solid

modelling. In this chapter these techniques will be discussed in more detail. The

underlying representations and usage will be described because the concepts are

fundamental to the development of feature modellers, and in particular, the

description of the system used as a baseline for this work to be presented in chapter

3.

A.G. Pedley 	 Ph.D. 'Thesis 	 2-1

Chapter 1 also presented the concept of tolerances which are typically added to

engineering drawings to indicate an acceptable variation from nominal to allow for

the inherent inaccuracy of manufacturing methods, yet maintaining functional needs.

The representation of dimensions and tolerances in engineering drawings is governed

by national and international standards which will be detailed in this chapter.

Research in the area of dimension and tolerance modelling with computers has

focused on data structures, analysis and modelling techniques that can be applied to

3D geometric models. This work will also be reviewed in this chapter because it

provides a baseline and context for the developments described in chapter 5 to

integrate dimensions and tolerances with both geometric and feature models.

Other computer techniques were also introduced in chapter 1 that have been

developed to aid the planning of manufacturing processes (Computer Aided Process

Planning) and the writing of NC code (NC Part Programming) required to control

NC machine tools that produce the modelled component. These techniques mimic

industrial practice of separating function and using different abstract representations

- to model each application specific view of the component. Much work has focused

on integrating this disjoint functionality, both for the engineering structure of the

workplace and the software support tools. Simultaneous, or Concurrent Engineering

[BED91] is an approach that is seen to address these issues and will be described in

this chapter.

The demands on software tools to support Simultaneous Engineering strategies are

greater than for a single function because of the much higher degree of integration

required and the more automated functionality to be delivered. Product data

modelling has emerged under the auspices of the Standard for the Exchange of

Product Data [STEP] as the structure for supporting all information relevant to a

component throughout its complete life cycle. Product modelling and more

specifically the standards relating to the exchange of product data will be discussed

in this chapter.

A.G. Pedley 	 Ph.D.'Thesis 	 2-2

Feature modelling techniques have been the subject of much research and

commercial systems are now finding acceptance in the market place. Approaches to

feature modelling will be reviewed in this chapter to provide a context for the system

described in chapter 3 and a baseline for the developments reported in chapter 4.

2.1.2 	Chapter Structure

The introduction forms section 2.1 of this chapter (chapter 2). Section 2.2 gives an

overview of the design and manufacturing process and recent trends. Section 2.3

describes geometric modelling techniques. Section 2.4 presents approaches to feature

modelling. Dimension and tolerance modelling techniques are described in section

2.5. The standards relevant to the objectives of the work are detailed in section 2.6. A

summary of the chapter is presented in section 2.7.

2.2 	Design And Manufacture

2.2.1 	Background

Ever since computers were applied to aid engineering processes in order to improve

design and production they have been applied to support particular applications.

Typical design applications are drafting, 3D modelling, finite element analysis,

kinematic analysis, and visualisation. The result of the design phase was passed from

the design department to the planning department for preparation (process planning

and NC part programming) and finally to manufacturing. More recently rapid

prototyping techniques have been developed to create physical models of a

component directly from its geometric solid model as an aid to design verification

[CH193]. Concurrent engineering strategies have been proposed which aim to

integrate these functions into teams [0GR96]. Software support of concurrent

engineering has focused on integration via the development of product models.

A.G. Pedley 	 Ph.D.'Thesis 	 2-3

Feature modelling is seen as a method of realising a partial product model. A

significant factor in design and manufacturing integration is the availability of

tolerances associated with the features and geometry of a model. Tolerances are

required for correct selection of manufacturing methods, processes and tooling.

2.2.2 	The Design Process

Cross [CR089] suggests that problems are either well defined, like a game of chess,

or ill-defined. Ill-defined problems have vague, but numerous, and often conflicting

constraints, are solution dependent but have no definitive solution. Design problems

are widely recognised to be ill defined and consequently problem solving strategies

are termed solution focused.

Attempts to model the design process have produced two approaches:

• descriptive, and

• prescriptive.

Descriptive models simply describe the sequence of activities that occur in designing.

Prescriptive models attempt to provide a rigorous, systematic set of activities that

lead to a solution of the "real" problem.

The simplest descriptive model consists of three processes: generation of solutions,

evaluation of them, and communication of the chosen solution. French [FRE85]

developed a more detailed descriptive model based on the following activities:

analysis of the problem, conceptual design, embodiment design, detailing.

Prescriptive models are said to have a particular design methodology. A number of

prescriptive design models have been proposed [ARC84][MAR84][VD12221],

however the most widely reported is that of Pahl & Beitz [PAH84]. In Figure 2.1

there are four phases: clarification of the task, conceptual design, embodiment

design, detail design.

A.G. Pedley 	 Ph.D Thesis 	 2-4

Task

_j Clarity the task

EI(I bOrcte the soecificotion

Specification

identify essential proolems

Establish function structures

r4

Search for solution principles
Combine and firm up into concept variants
Evaluate against tecninical and economic criteria

Concept

a I 	Develop preliminary layouts and form designs

Select Pest preilininary layouts

Refine and evaluate against tecrusiccl and economic criteria

Preliminary layout

Optimize and complete form designs

I-..- Check for errors and cost effectiveness
Prepare the preliminary ports list and production
doCumenti

(Definitive layout

Finalize details

Complete detail dntesngs and production documents
Check all documents

A

2Z 	I
00

I 	I
=

I.
0 1
-

0

p
E
	

2

? 6 y

6

0

Documentation

(Solution ')

Figure 2.1 Pahl & Beitz Model Of The Design Process

To date, 3D and feature modelling techniques have been applied in the latter stages

of embodiment and for detailed design. Some of these approaches will be reported in

sections 2.3 and 2.4.

2.2.2 	Concurrent / Simultaneous Engineering

The division of labour, specialisation and compartmentalisation has led to a cascade

of processes being used to develop a product:

• design

• production planning

• manufacture

A.G. Pedley 	 Ph.D. Thesis 	 2-5

The part would be designed (more or less completely) and passed to production

engineering. Once in production engineering it would be too late to have design

modifications made to ease manufacture. Similarly the component would be passed

to the shop floor for production, again too late to effect any changes to improve

quality because the design would have been frozen. The only method of

improvement was to go round the whole loop once again drastically lengthening the

time to full production. Today, competitiveness is seen to be greatly effected by the

time it takes to bring a product to market. The speed with which a manufacturing

enterprise can respond to marketing demands enhances the probability of commercial

success.

By contrast Concurrent Engineering aims to:

• shorten lead times

• increase quality

• lower costs

• consider the total life cycle of the product

Not only is it necessary to engineer the pre-sales phase, servicing of the product

during its useful life must be considered, as should environmental issues such as

recycling and decommissioning.

The above goals can be partly achieved by using teams of multi-disciplinary people.

Success of concurrent engineering efforts however, depend on coordination,

cooperation, communication and a sharing of knowledge and experience between all

functions involved in the development of a product: marketing, engineering,

purchasing, sales, etc. Computer tools can clearly be an aid to such strategies. The

Concurrent Engineering approach is compared to a traditional strategy in Figure 2.2.

A.G. Pedley 	 Ph.D Thesis 	 2-6

_(1)
C 0)
.2w

Co

UO..

CAD

Time

Concurrent Approach

I
operate in parallel

Reduced
lead
time

Traditional Approach

- U)
w (1)

.2 U)
00
Co

u-u-

Design

Production
Planning

Cascade of processes

Manufacture

Time

Figure 2.2 Comparison Of Traditional And Concurrent Engineering

Approaches

Concurrent Engineering has been defined [1DA88] as:

"The systematic approach to the integrated, concurrent design of products

and related processes including manufacture and support. This approach

is to cause the developers from the outset, to consider all the elements of

product life-cycle from conception through disposal including quality,

cost, schedule and user requirement"

Simultaneous Engineering is a widely used synonym for Concurrent Engineering. In

1991 Eversheim described Simultaneous Engineering as:

A.G. Pedley 	 Ph.D.' Thesis 	 2-7

"Process oriented, function integrated, product and production design

realised by parallel task processing in order to shorten time to market"

Results of projects such as SESAME [SES] have shown that idealised parallel

processing is achieved in practice by a series of short sessions with a set of highly

integrated software tools. It can be seen from Figure 2.3 that the time span for a

single process to be completed increases with simultaneous engineering techniques,

however, the overall development lead time for both product and production process

is shortened.

Highly integrated software tools

0'

CAD

H Reduced

NCP

Time

Figure 2.3 SESAME View Of Simultaneous Engineering

Fundamental to the success of Concurrent Engineering approaches is the ability to

provide a workpiece description that supports the information required at all stages in

the process chain. Geometry alone is not sufficient. Feature modelling is seen as a

method of providing information rich models consisting of geometry, the tolerances

associated with that geometry and a higher level description that captures the

meaning of the geometry that allow manufacturing decision making to be performed

by computer. Such rich data models can be referred to as partial product models.

The influence of all aspects of the engineering development are considered from the

beginning. This integration of product and process design leads to higher quality

being designed in. Customer requirements may be met without compromise, and

A.G. Pedley 	 Ph.D Thesis 	 2-8

because engineering changes are 'minimised late in the design phase so costs are

reduced. An added advantage of highly integrated software tools is that they provide

for greater flexibility which is regarded as an essential element for success in today's

markets.

	

2.2.3 	Agile Manufacturing

Social and economic changes in industrialised society over the last decade and the

globalisation of business activities have significantly changed the way in which

design and manufacturing technologies are used. No longer can factories be strictly

functionally organised and operate in near isolation of the market. Manufacturing

systems have become customer and product oriented, aiming to reduce lead times,

minimise work in progress, utilise just in time flow of materials, and maximise

efficiency and flexibility of manufacturing capacity. There are complex relationships

between customers, conceivers of products, manufacturers, sub-contractors and

suppliers. Agile manufacturing encompasses these characteristics. Implementation of

agile manufacturing methodology requires that product design, production

engineering and manufacturing are closely integrated. Concurrent engineering

methodologies address part of this concept. Close integration of manufacturing

system functions demands that sufficiently complete and accurate information of the

shape, technology, processes and operations is available. A computer representation

of the shape, technology, processes and operations required to realise a product is

called a product model.

	

2.2.4 	Product Models

The variety of manufactured articles is vast and no one product model representation

is likely to cater for all possible applications. The most general product model

structure to date developed is that of the Standard for the Exchange of Product Data -

STEP [STEP], which is described in section 2.6. STEP makes restrictions on the

A.G. Pedley 	 Ph.D Thesis 	 2-9

application of the model to such areas as mechanical engineering (which is also very

broad), electrotechnical engineering and ship building.

Within the area of mechanical engineering it has been found necessary to reduce still

further the scope of product models for actual integrated systems. One such example

is that provided by the Brite/Euram project SESAME [SES], which provided a partial

product model for prismatic parts consisting of a set of company specific 2 1/2D

features. The partial product model did however extend to include not only design

information, but that of process planning and NC part programming.

It is likely for the foreseeable future that commercial development will provide

partial product models particularly focused on design, process planning and NC part

programming. Feature modelling techniques are seen as a method of realising

sufficient high level partial product models that are particularly suited to integration

of process planning and NC part programming software applications.

2.3 	Geometric Mode11iñg Techniques

2.3.1 	General

A geometric model is an occurrence of a mathematical system employed in shape

representation [STEP48]. Wire frame, boundary representation (BREP) and

constructive solid geometry (CSG) models are examples. Geometric modelling

systems are relatively abstract and are applicable to broad classes of shapes.

Modelling complex geometry in 3D space has developed along two relatively

independent paths: free form surface modelling and volume modelling.

To date however, 2D engineering drawings still form the accepted design definition

of a product. Although 3D geometric information, particularly in the case of free

form surface data, is used to aid communication of the definition of a component

between engineering functions, 2D engineering drawings are always supplied. This is

A.G. Pedley 	 Ph.D Thesis 	 2-10

because geometric models do not support the range of design information required of

a product model for use in downstream processes, namely manufacturing. Computer

drafting systems are still an essential element of computer aided design tools.

2.3.2 	Drafting

21) computer based drafting systems have developed rapidly to a high level of

sophistication from the humble beginnings of SketchPad [SUT63]. 2D systems

initially replicated the actions of the draftsman's pencil and paper producing a

computer based representation. 2D systems have become ever more complex. The

latest relational systems (ObjectD [SIS]) go some way to offering associativity

between engineering views. This certainly is an aid to developing complex drawings

and rapidly speeds up the implementation of changes.

However, the generic model is still 2D. It consists only of lines, arcs and textual

information,- Figure 2.4.- These are frequently unrelated. Dimensions and tolerarièes - - -

are added to engineering drawings to indicate allowable variation of the

manufactured part. A first interpretation of the 3D world is initially prepared by the

designer. This is reinterpreted by the planning engineer who prepares the process

plan. It is reinterpreted a second time by the manufacturing engineer who prepares

the NC part programmes. This chain of processes is shown in Figure 2.5. Both

planning and manufacturing engineers use the dimension and tolerance information

which they have to relate to their interpretation of the 3D object in order to reason

about manufacturing strategies. Clearly there are opportunities for misinterpretation.

Direct computer aid to the planning task from the 2D data model is limited to group

technology and latterly interactive planning particularly for sheet metal parts. NC

part programming has benefited considerably in the 2 1/2 D area with 2D drafting

systems providing contour data.

A.G. Pedley 	 Ph.D Thesis 	 2-11

Statement of ownership of drawing and
] that drawing may not be copied or passed

to third party withoyt written consent

Sharp edges

Spindle[Body

Un4oIrh5ed
nensions

Scale

A

-

F
LL

z
0

13LJol

	

1mb 	 S
t 	C

ffl-CJ# 	 >

	

r 	J t"- -
1 r'ssoi

-

—ci

MOW

a

?1 	A

i1_ flH
cr/IHs;.jII 1"\ 	,l

L._PtMt
'•'

-L-i
L _—j

VO

Figure 2.4 Traditional 2D Engineering Drawing

However, virtually all reasoning about the geometry is done by the engineer with

little support form the geometric model. This is because of its two dimensional

nature. Computer representations of engineering drawings do not provide a

A.G. Pedley 	 Ph.D. Thesis 	 2-12

sufficiently complete or accurate model of the part for integrated software tools, yet

they are still required to be produced. One aspect of the work reported in chapter 5 is

not only the implicit, but the explicit definition of engineering drawings directly from

the 3D solid feature model without the need for a separate 2D representation.

j oesigner I 	Planner 	 NC-Progr.

:TL1i4Ji 4 P
Figure 2.5 Engineering Drawings Are Insufficient For Process Integration

2.3.3 	Wire Frame Modelling

The simplest 3D representation is that of the wire frame model, Figure 2.6 (a). Whilst

engineering views generated from the model are associative, no information about

the surfaces of the component are provided. Surfaces that cannot be explicitly

defined limit greatly the type of objects that can be completely and accurately

modelled. Surfaces are important for manufacturing reasoning' and again must be

interpreted form the data model. A wire frame model is not sufficiently complete for

the requirements of product development. However, a wire frame model can

represent the contours and paths that define swept objects. Despite this, the result

requires a solid model representation for completeness. Objects modelled by more

A.G. Pedley 	 Ph.DThesis 	 2-13

complex surface or solid methods are frequently viewed as wire frames. This aids

picking of geometry and display response. Wire frames of solid models are generally

viewed with the addition of silhouette lines generated from the surfaces, Figure 2.6

(b). Silhouette lines are particularly important for the visualisation of non-planar

surfaces.

Figure 2.6 (a) Wire Frame View (b) Wire Frame View With Additional

Silhouette Lines

2.3.4 	Surface Modelling

Free form surface modellers were developed to meet the needs of modelling

smoothly blended geometry such as created by a designer's clay model. A typical

surface model of a car body panel is shown Figure 2.7.

A.G. Pedley 	 Ph.fl' Thesis 	 2-14

Figure 2.7 Surface Model Of Car Body Panel

Surface modelling techniques were pioneered in the automotive industry for body

design by Bezier with the system UNISURF [BEZ74], and in the -aircraft industry by

Coons, Ferguson and Forrest [F0R72, C0074] for wing and fuselage design. B-

Splines were developed as an additional representation method [G0R74]. Latterly

NURBS (Non-Uniform Rational B-Spline) [D1N87] surfaces have been presented as

the most general, if not widely used, modelling representation. This is because they

can represent analytical geometry exactly and the representations of Bezier et al can

also be supported. The mathematical representations of curves and surfaces may be

found in [FAU87].

Free form curves are constructed from curve segments using parametric cubic

polynomials. The geometry of a curve segment is defined by a number of controlling

parameters. The curve representation developed by Ferguson uses the two end points

and the tangent vectors at the end points to define the curve. The bi-cubic patches

developed by Coons use the corner points, the tangent vectors and the surface twist

vector at the corners to define the surface, Figure 2.8.

A.G. Pedley 	 Ph.D.Thesis 	 2-15

U01

Vol 	
16 Boundary Control Elements Pol 	

4 Points P-P 11
01 	

4 Tangent Vectors U - U 11
4 Tangent Vectors V - V 11

Twist Vectors Too - T 11

U00 	 P 11
V00 	 vii

JD 	
u 11 	T11

Too

P 10

V10
U 10 T10

Figure 2.8 Coons Surface Patch Definition

Bezier curves are defined by four points, the two end points and two points which do

not lie on the curve but are used to define the tangent vectors at the start and end 	-

points. Bezier patches are defined by sixteen points: four corner points and twelve

points which do not lie on the surface but control its shape, Figure 2.9.

tsp,po3p3op33

P20 	P30 	 4 Boundary Control Points

3l

	

T32 	 2 Additional Points
Points 'DCI. '02

Points P20, P21 , P,,
P21 	 P22

Plo 	 P33 	 Points P, 1 , P32 	
P23

Plo

fD00 	

Points P 10, P 11 , P12, P,3

Pil 	
PP23

P01
P 12

P03
P 13

Figure 2.9 Bezier Surface Patch Definition

Free form curves and surfaces are defined over some finite region. Often boundary

curves are defined within a surface patch to indicate the required shape. Coons and

Bezier patches can be joined together with tangent continuity. Spline surfaces are

required if curvature continuity is to be maintained. To date the Bezier form of

A.G. Pedley 	 Ph.D Thesis 	 2-16

manipulating curves and surfaces is the most popular because of the intuitivity and

representational simplicity of defining surfaces using only points.

The generation of surface models is generally very tedious. Surface modellers

generally have no topological structure, no knowledge of the cross sectional surfaces

of a component, and are not sufficiently complete. The methods of describing non-

analytic curves and surfaces, particularly the NURBS representation, are used by

solid modellers to define complex geometry. Feature modelling with free form

curves and surfaces is a current research issue [AUR95].

2.3.5 	Solid Modelling

Solid models maintain a description not only of the surfaces that constitute a solid,

the regions bounded by the surfaces as solid or void are also defined. This enables

cross-sectional models to be correctly generated, Figure 2.10. Surface areas and mass

properties can be calculated: Interference checking between models may be

performed. To date solid models form the most complete and accurate geometric

description of a component. Although this description is limited to the nominal or

perfect size of the geometry, solid models do form the definition of the geometric

aspect of product models.

Solid modelling techniques have become well established since the first

developments in the early 70's. The BREP approach pioneered by Braid [BRA73]

and the CSG approach developed by Requicha [V0E77] have formed the basic

approaches for developments since. The two methods have been widely reported in

most texts on computer aided design and manufacturing, of which [ZEI91] and

[FOL90] are typical. Today the BREP approach forms the basis for most commercial

systems. However, both techniques will be briefly described in order to aid the

reporting of feature modelling technology in section 2.4, the system description in

chapter 3, the enhancements relating to extrinsically defined features in chapter 4 and

the development of dimensions and tolerances in chapter 5.

A.G. Pedley 	 Ph.D.'Thesis 	 2-17

Currently, solid modelling techniques are limited to rigid, homogeneous bodies. A
(jjA.

Figure 2.10 Cross-Section Through Solid Model

2.3.5.1 	CSG

In constructive solid geometry a model is represented as a combination of simpler

solid objects. These objects are known as primitives which themselves are

combinations of even simpler entities called half-spaces.

Half-spaces are analytic geometric surfaces which divide space into two halves: solid

and void. The boundary between the two regions of a planar half-space extends to

infinity. Half-spaces can be semi-bounded as is the case of an infinitely long

cylinder, or fully bounded as is a sphere or torus.

Fully bounded half spaces, such as a sphere, can be mapped directly to a realisable

physical object. Unbounded and semi-bounded half spaces require combination with

other half-spaces to produce a result which is mappable to a physical object. The

manipulation of half-spaces by the user in a geometric modeller is generally very

A.G. Pedley 	 Ph.D.Thesis 	 2-18

much abstracted from the bounded objects of the real world and makes the

construction of solid models tedious. For this reason half-spaces are typically

combined into primitive entities which are directly mappable to physical objects. For

example, the combination of six planar half-spaces define a cube, and the

combination of an infinitely long cylinder capped by two planar half-spaces produce

a cylinder, Figure 2.11. The use and manipulation of primitives, such as cubes and

cylinders, is much more intuitive. =normals infinity

Figure 2.11 Half-Spaces Combined To Define A Cylinder

Any point may be classified as "inside", "on" or "outside" the boundary of the

model, which corresponds to the point being in the solid, on its surface, or in space.

The mathematical representation denotes the void region by defining that the normal

vectors of surfaces point into space. The mathematical representation cannot

distinguish between physical reality and the abstract model. Therefore, it is possible

by reversing the surface normals to reverse the sense of the half spaces, creating what

is termed a negative model. For the case of a cube, everything contained within the

six half spaces is void, everything outside is solid. Such a model has a negative

volume.

A.G. Pedley 	 Ph.D.'Thesis 	 2-19

Primitives are combined using Boolean set operations of union, difference and

intersection, Figure 2.12. The results of Boolean operations in CSG modellers are

regularised to remove any dangling faces, edges or vertices. The data structure

representing the complete object consists of a binary tree in which the leaf nodes

represent the primitives and the internal nodes represent the Boolean operators.

Figure 2.12 Boolean Operators (a)Bodies (b)Union (c)Difference (d)Intersection

The ordering of primitives in the tree, and hence the ordering of combination,

determines the resultant geometry. It is generally the case in models of even relative

simplicity that evaluating the primitives in a different order will produce a different

result, Figure 2.13. A CSG model is an unevaluated model because the data structure

does not store a representation of the resultant model. Visualisation of the faces,

edges and vertices requires the process of boundary evaluation to be performed on

the evaluated model. A significant factor affecting the performance of modelling

systems is the calculation of silhouette lines, particularly if formed by non-analytic

curves.

Figure 2.13 Ordering Of Bodies

A.G. Pedley 	 Ph.D.Thesis 	 2-20

The use of free form surface definitions in CSG modelling is limited because they are

not infinite or periodic semi-bounded half-spaces. The geometric equivalents of

natural manufacturing operations such as filleting, rounding and chamfering are

tedious to achieve because the volume of material to be removed or added must be

created using primitives. Much of the geometric reasoning performed by computer

aided process planning and NC part programming systems uses the topological

connectivity between faces and edges in the model. These are not readily available in

a CSG modeller nor are they supported in a useful data structure. Proponents of CSG

modellers build a separate data structure representing the boundaries of the model

[REQ86]. However, the concept of the CSG tree is used extensively in Feature

Modelling techniques.

2.3.5.2 	BREP

In contrast to the CSG approach, a BREP representation is an evaluated data

structure containing the elements which describe its boundary, Figure 2.14.

[~~
B,

= Body

B i

F, = Face

E = Edge

V, = Vertex

B '

F.

 JJI 	
F,

F5 	 K
E,,-... 	v,/Ei 	E

E,1 	V4 	 V2 	E3

Elo V7
v. E4

E6 / / /V6\
E8E7 	"E,

Figure 2.14 Topological Graph Structure

A.G. Pedley 	 Ph.D.' Thesis 	 2-21

The elements are separated into two categories: topological and geometrical. The

topological elements define the connectivity or relationships between the faces, edges

and vertices, and are supported in a network or graph structure. One common graph

structure is the winged-edge representation, Figure 2.15.

Face 1

Next 	
Coedge

/Previous
Coedge

Loop 1 	
Coedge

Coedge

Start End

	

Vertex 	EDGE 	
Vertex

Coedge 	I
Previous Next

\coee Coede/ Coedge
Loop 2

Face 2

	

Figure 2.15 Winged Edge Data Structure 	 -

The face-edge-vertex graph contains no geometric information about the object. The

geometric elements which give the topological elements form and fix them in space

are represented separately with pointers from the topological elements to the

corresponding geometric representations (surface equations, edge equations,

positions, etc.). Such data structures contain redundant information but can be

traversed easily allowing the elements of the model to be explored by geometric

reasoning algorithms.

Realisable models are called manfold objects. A non-manifold object is joined to

itself or to other objects along an edge or at a vertex. Such objects are unrealisable. A

manifold body obeys the Euler-Poincaré formula [ZEI9 1] given by equation 2. 1.

	

V - E + F - H = 2(M - G) 	 (2.1)

A.G. Pedley 	 Ph.D.Thesis 	 2-22

Where V = number of vertices in object

E = number of edges in object

F = number of faces in object

H = number of interior face loops in object

M = multiplicity of object (number of disjoint bodies)

G = genus of object (number of through holes)

Closed periodic faces such as those that form the cylindrical face of a cylinder or the

boundary of a sphere have special representations. A cylindrical face consists of two

vertices and three edges: the two circular edges have one vertex each which denote

the equivalent start and end points of the edges, the vertices are also connected by an

edge. A spherical face consists of a single vertex. Objects such as wire bodies defined

by edge chains, and sheet bodies defined by faces are classed as non-manifold.

However, such bodies are very useful in the construction of BREP models and

recent modellers such as ACIS [STI] allow their inclusion in the data structure and

Boolean operations may be performed with them. The edges that connect tangentially

connected faces may, or may not, be visualised although they always exist in the

-

	

	graph structure. BREP models may be created in a number of ways: using Euler

operations, using Boolean operations, by sweeping, and by tweaking.

In a similar way to CSG modelling with half-spaces, Euler operations [ZEI91]

provide the basic elements from which more natural operations can be built. Euler

operations allow: edges and vertices to be created, open loops of edges to be closed

to form faces, etc.

Further similarity between CSG and BREP modelling is provided by the use of a set

of primitive shapes and Boolean operations for combining bodies. Evaluating the

resulting body of a Boolean operation involves determining any face-face

intersections. Such intersection curves are likely to form additional edges in the new

structure. The old structures have to be split at the correct points and along the

correct boundaries, the two structures are joined and unnecessary elements deleted.

Euler operations are applied to achieve this.

A.G. Pedley 	 Ph.D. Thesis 	 2-23

Sweeping is a generic term applied to several kinds of operation: linear sweeps,

rotational sweeps (swinging) and generalised sweeps (along a path). The validity of

any sweep operation is determined by the complexity of geometry that the modeller

will support, generating the topological structure is relatively easy.

In a linear sweep operation a face is swept a distance defined by a vector to produce a

solid, Figure 2.16.

02~Z2 5

Figure 2.16 Vector Sweep Operations (a) Rigid, (b) Orthogonal, (c) Draft,

(d) Draft With Rounded Edges

The way in which the face is swept may be further modified by sweeping rigidly or,

for planar faces, orthogonally. In a rigid sweep the closing face is an exact copy of

the swept face. However, in an orthogonal sweep the volume is closed by cutting

with a planar face orthogonal to the sweep direction. The swept volume may be

created with draft, and the edges created in the sweep direction may be rounded.

In a rotational sweep operation planar faces may be swung about an axis, either

partially or completely creating a solid of revolution, Figure 2.17. For rotational

sweeps of less than 3600, draft may also be applied and the edges modified as with

linear sweeps.

A.G. Pedley 	 Ph.D Thesis 	 2-24

Figure 2.17 Rotational Sweep

Generalised sweeps use another object to define a path that the face is swept along.

By using a straight edge a linear sweep may be achieved, Similarly, using a circular

edge achieves a rotational sweep. However, very complex shapes may be achieved

- usigchainsof edges - At inecessary -that thp1h be lanã hiëh ieffeôtiVe

for modelling pipe systems in single operations, Figure 2.18. The modifiers

applicable to linear sweeps may be applied. An additional modification to a

generalised sweep is possible whereby the face may be twisted through a specified

angle as it is swept along the path. The path must start orthogonally to the face.

Complex free form faces are produced in the resulting body.

Figure 2.18 Sweep Along A Path

A.G. Pedley 	 Ph.D' Thesis 	 2-25

Tweaking is any method by which small adjustments are made to an existing shape.

Hence tweaking operations are also known as local operations. Particularly filleting,

rounding and chamfering are much more easily achieved in BREP models than in

CSG because the elements are immediately available to be modified, Figure 2.19.

Existing elements in a model may also be swept in any manner outlined above,

locally modifying the model. It is very easy to create a topologically valid but

nonsensical model.

In BREP models there is no need for the geometry to be infinite as with the half-

spaces required in CSG representations. This means that synthetic geometry of

limited extent that defines free form surfaces may be introduced. This gives BREP

representations a significant advantage over CSG.

Figure 2.19 Tweaking A BREP Model

In theory there is no reason why free form geometry used by surface modellers

should not be represented by BREP solid modellers. However, in practice, the

precision with which a solid modeller determines that one point is equal to another is

of the order of ten thousand times smaller than with a surface modeller. Directly

using data generated by a surface modeller is frequently unsuccessful because the

generation of control points can lead to discontinuities. Surfaces defined using

splines provide problems in determining the surface to surface intersections

A.G. Pedley 	 Ph.D Thesis 	 2-26

necessary to maintain the detailed topological structure of the model. Providing a

stable solid modelling environment which supports free form geometry is currently a

priority area of work for developers.

2.3.5.3 	Rigid Body Transformations

A rigid body transformation allows a new point to be defined by translating, rotating,

scaling or reflecting the original point. The rigid body transformation of a point

denoted by the position vector, P. to a new point denoted by the position vector, P,

is given in equation 2.2.

= [T] P
	

(2.2)

where [T] is the transformation matrix.

Equation 2.2 represents the transformations in homogeneous coordinates. This is so

that translation, which is a vector addition in Cartesian coordinates, may be

represented as a matrix multiplication [ZEI9 1].

Therefore in homogeneous coordinates, equation 2.2 may be rewritten as shown in

equation 2.3.

[

[xyzi]
T

[

T21
 lip (2.3)

where the 3 x 3 sub-matrix [T 1] produces rotation. The 3 x 1 column matrix [T2]

generates translation. The 3 x 1 row matrix [T3] generates perspective projection but

is set to [0 0 Olin feature modelling systems. The element "1" is the homogeneous

coordinate scale factor. Scaling and reflection may also be described by [T 1], but for

feature modelling applications such functionality is not necessary. Throughout this

thesis the transformation matrix in homogeneous coordinates, [T], will be called

transform for convenience.

A.G. Pedley 	 Ph.D.' Thesis 	 2-27

Each body within a solid model has its own coordinate system and a transform which

locates and orients it with respect to the World Coordinate System. The entities that

represent the body are described with respect to the Body Coordinate System. This is

so that only the transform need be changed to move all entities and hence the body.

Transforms and their inverses are used extensively within the feature modelling

system described in chapter 3 to maintain and manipulate workpiece models.

2.3.6 	Parametric And Variational Modelling

Solid models of complex objects may take weeks or months of effort to develop. Re-

use of existing data in such an environment is of great importance because many new

designs are based on modifications to existing ones. Solid models are modified by

using the same techniques that were applied to create them. CSG models have

primitives either added or subtracted. BREP models have their topology and/or

geometry locally modified. Any modifications that necessitate even small changes to

the model are generally extremely tedious.

Parametric modellers have been developed as a means to more productive creation

and editing of geometric models. A parametrically defined shape is controlled as the

name implies by a number of parameters, which express the constraints between

elements of the shape, which when solved, determine the geometry. Parametric

techniques are particularly suited to the control of contours which are subsequently

swept to generate a solid. Such techniques are typically used for the generation of

BREP models. Parametric elements have been defined for CSG models. The

approach is procedural leading to constrained shapes defined by macros.

In BREP based systems a 2D sketcher is generally used to create some topology and

geometry in terms of lines and arcs for example. The fact that there is some topology

implicitly defines certain constraints such as coincidence between start and end

points of elements, and combined with the geometry present defines other constraints

like tangency conditions on the meeting of curved, and straight elements.

A.G. Pedley 	 Ph.D Thesis 	 2-28

Dimensional constraints such as distance, radius and angle are added to the structure.

The set of constraints is then solved to produce a solution which is visualised as the

desired geometric shape. In addition to deleting and adding geometric elements to the

parametrically defined shape, the geometry may be changed through the constraints

by deleting, creating or assigning new values.

Parametric and variational modelling are words that are frequently used

interchangeably, particularly in commercial contexts, and such systems appear

outwardly similar. The main difference is in the underlying method used to solve the

set of constraints. Parametric models use explicit sequential constraint satisfaction

whereas variational models use implicit simultaneous constraint satisfaction.

Parametric models can be solved faster but variational models can deal with coupled

constraints. For instance, in a parametric modeller suppose a straight line, b, is

constrained to be parallel to a. Subsequently, b may only be moved if the parallel

constraint is maintained to a. However, the orientation of a may be changed freely,

and the system will update the orientation of b to maintain the parallel constraint with

a. In a variational modeller, a parallel constraint defines that a and b should be

parallel. Therefore, either the orientation of a or b may be changed, and the system

will maintain the parallel constraint of the other element.

Parametric techniques have been applied to 2D drafting systems but today their main

application is in commercial BREP solid modelling systems. ProEngineer from PTC

[PTC] uses parametric geometry, whereas IDEAS from SDRC [SDRC] uses

variational geometry. Feature modelling can be regarded as the next stage of (partial)

product model development which utilises the previously described parametric and

geometric modelling techniques.

A.G. Pedley 	 Ph.D Thesis 	 2-29

2.4 	Feature Modelling Technology

In similarity with the first support of manufacturing by computers for the control of

machine tools it is manufacturing's need for more automated generation of NC part

programs, rather than an improved method of designing, that has provided the

motivation for the development of feature technology. Features provide a means of

associating manufacturing processes and strategy with geometry. Feature modelling

is a technology for realising product models.

2.4.1 	Definition Of A Feature

Most workers in the field of feature modelling technology have attempted to define

what is meant by the term feature. The meanings that have been presented have

reflected strongly the application domains that have been under investigation.

Early definitions focused on the manufacturing domain that -features - were - first -u~-ed

to describe and can be said to define manufacturing form features as:

"specific geometric configuration formed on the surface, edge, or corner of a

work piece" [CAMI8 1]

or,

"distinctive or characteristic part of a work piece, defining a geometrical

shape, which is either specific for a machining process or can be used for

fixturing" [ERV88]

As the concept of features spread to design, definitions of design form features were

proposed by those who practised design by features:

"a geometric form or entity whose availability to a designer as a primitive

facilitates the design process" [LUB86]

A.G. Pedley 	 Ph.D Thesis 	 2-30

and those who attempted to define an already existing solid model by recognising the

features which may have formed the model considered features as:

"a set of faces or other geometric entities which together form a pattern useful

in part analysis" [HEN9 1]

The concept of a form feature has been generalised to provide a domain independent

description that is applicable to any stage of the life cycle of a product. However,

descriptions still concern form:

"a generic shape which carries some engineering meaning" [WIN9 1]

and

"a region of interest" [CAM90]

Feature technology has been widened to include other information that is used in

design and manufacturing which is related to, but does not necessarily produce, a

geöméfri shape. Such features are accuracy features for the definition of tolerances,

surface conditions and the like. Features may therefore be broadly described as:

"any entity used in reasoning of design, engineering or manufacturing"

[CAM9O]

Weber [WEB96] has discussed these further and under the auspices of the FEMEX

working group has produced a generalised formal definition:

"A feature is an information unit (element) representing a region of

interest within a product"

Where "region of interest" does not necessarily mean geometry, and a product is

something which is realisable.

Features are high level entities which imply engineering meaning and are said to be:

"a semantic grouping used to describe a part and its assembly" [GIA90]

A.G. Pedley 	 Ph.D Thesis 	 2-31

Even within a single company to have accepted meaning features must be used

frequently and therefore can be described as:

"recurring patterns of information related to a part description" [SHA90]

STEP Part 48 [STEP48] proposes that a form feature is:

"described by an implicit representation and typically has a number of

constituent elements: surfaces, edges, vertices, etc. Implicit representations,

by their nature, do not have referenceable sub-representations that correspond

to the constituent elements of the shape aspects that they represent. This

means that one cannot refer to a portion, as distinguished from the whole, of

the representation, and hence cannot associate a representational entity with a

constituent element of a shape aspect. For example, surface condition on the

"base" of a pocket."

This contrasts with recent research which purposefully describes features as

cöñsisting of
,--

süb-ëkñnts whiëheäh be rëfetred to [BRU96J. This cöntradictidñ is

perhaps symptomatic of the stagnation of ISO standardisation efforts for form

features. However a form feature is a special representation applicable to a limited

class of shape, which usually uses lower level elements from other abstract methods

such as geometric modelling.

2.4.2 	Feature Recognition

Process planning is the activity in which a representation of the design of a

component is assessed with the manufacturing capabilities of an enterprise and

mapped into a set of instructions describing how the part will be made. For a

component that is able to be made by conventional machining these instructions

describe a series of operations, each of which typically has a volume of material to be

removed, a metal removal process and a tool are associated. Operations are grouped

by machine and by set-up. The operations define a sequence of volume removals

A.G. Pedley 	 Ph.D. Thesis 	 2-32

from the stock material to the finished part. Clearly if a model of a component could

be analysed and compared to a model of the blank then a sequence of volumes could

be defined. If the volumes belonged to a generic type such as a hole, they could be

related to manufacturing processes and tool selection. The volumes to be removed

are typically defined as features, the process of identifying them is known as feature

recognition, and the process of isolating them is called feature extraction.

Kyprianu [KYP80] first applied syntactic pattern recognition to a BREP solid model

to identify depression features such as slots, holes and pockets, and protrusion

features such as bosses and bridges. The sets of features produced were applied to

group technology classification (an early approach to CAPP). There have been many

workers addressing feature recognition problems using a number of different

approaches: volume decomposition [W0082], rule based [HEN84], graph based

[J0S87]. Feature recognition algorithms are generally applied to BREP models.

Separation of disconnected machining regions in a CSG model has been reported

[SHP94], although the task of dividing the regions into feature sets was not

addressed. The approach to feature recognition is often divided into two stages: hint

generation, and completion [HAN96].

Feature recognition is accepted as difficult and no completely successful solution has

yet emerged [JAR89]. Feature recognition has a number of problems:

. A definition must exist (in whatever form) of the feature that is to be recognised.

It is impossible to recognise information that is not supported in a solid model,

tolerances and relationships for instance.

. Feature recognition does not aid the designer or the design process

A.G. Pedley 	 Ph.D Thesis 	 2-33

2.4.3 	Feature Based Design

Interest in features was furthered in the mid eighties by Computer Aided

Manufacturing - International (CAM-1) in the USA with their publication of a

catalogue of part features for process planning [BUT86]. Also in the mid eighties

under the auspices of -CAM-I design by features was first proposed by Pratt and

Wilson [PRA85]. The development of prototype Feature Based Design Systems

followed from a number of researchers: Cunningham and Dixon [CUN88], Cutkosky

[CUT88] and Shah [SHA88a] in the US and Krause [KRA90] and Rudolf [RUD92]

in Europe. The first commercial feature based design system was presented in 1992

by Strässle Informationssysteme AG [STI]. This system has been developed into the

system, "FeatureM", which forms the baseline for the developments reported in this

thesis. Commercial systems such as ProEngineer [PTC] and IDEAS (SDRC) are

architecturally parameterised BREP modellers which offer feature characteristics.

Dsigwby 	frequently referred-to as Feature .Based Design, or, Featur&

Oriented Design, offers the user a library of predefined features from which

examples are instantiated in order to build up a model. A feature is defined by a set

of parameters which the user can vary to change the size or shape of the feature and

consequently (though not necessarily) the model.

Early feature based design systems suffered from limited sets of features which

designers felt were too constraining and did not provide sufficient geometry

definition functionality. However the following truism was proposed [HUS9 1]: in

order to recognise a feature, a definition must exist, and if a definition does exist,

there is no reason why it should not be made available to the designer.

Designing with features offers other advantages over conventional modelling

techniques:

A.G. Pedley 	 Ph.D. Thesis 	 2-34

• form features are generic shapes with characteristics defined by attributes that

define the geometry of a model and have knowledge associated with them that can

be used for reasoning.

• features can represent the engineering significance of geometry not only in design

but for process planning and manufacturing.

• feature modelling can be used in more stages of the design process because

features can represent the function and behaviour of objects used in design.

• features ease design changes because they capture design intent and can be

associated with each other.

• features can represent information that is not geometric but is related to the

geometry.

• features aid more efficient and effective construction.

- 	
• features consist of shape information associated with characteristics, attributes and

knowledge which aids downstream applications because reasoning is not

performed at a geometric level.

The types of features that it is desirable to represent in a model have been suggested

by [SHA88] and [CHU88] as:

form features

• tolerance features

• assembly features

• functional features

• material features

The features that are used to describe a component are specific to a particular view of

that model. For instance both the design and manufacturing form feature models

A.G. Pedley 	 Ph.D Thesis 	 2-35

evaluate to the same result. However, the actual features contained in the model and

their ordering will be different.

Consequently feature classification has been application specific. Large catalogues

such as the John Deer Catalogue of process planning features [BUT] for machining

have been produced. The IMPACCT project [IMP] focused on sheet metal parts for

instance. The STEP form feature classification [STEP48] is broadly outlined in

Figure 2.20.

if-rep

explicit

enumarative-rep { compound

	
sweep-if-rep 	 linear

profile-sweep 	I circular

r volumetric-rep 	axisymmetric-sweep

axisymmetric-sweep

edge-flat-rep

.....
edge-blend-rep -]

L.. edge-round-rep

corner-flat-rep

implicit-rep 	 corner-blend-re
corner-round-rep

replicate-if-rep

array

if-pattern-rep 	
circular

Figure 2.20 STEP Form Feature Classification

A feature consists of a number of possible properties [SHA95] of which the

following are fundamentally important:

• generic shape

• dimension parameters

• default values

• location / orientation method and parameters

• relationships to other features

• tolerances

A.G. Pedley 	 Ph.D Thesis 	 2-36

• inheritance rules

• validation rules

• non-geometric attributes

It is immediate to see that whilst the concept of feature modelling is relatively simple

the practicalities of implementation are not.

So called hybrid feature modelling architectures proposed by Pratt [PRA88] have

become the accepted structure for development of feature modelling systems. The

architecture is called hybrid because the feature model data structure is separated

from the geometric model which acts as a slave to the feature modelling system,

Figure 2.21.

Graphical User Interface

Feature Menu 	 Property Sheet 	 DISPLAY

Internal Feature Library 	 Feature Modeller 	 Georrietric Modeller

Feature Model 	 Geometric Model

User Defined 	 [Geometric Data
Feature Library 	 Partial Product Model 	 les

Figure 2.21 Hybrid Feature Model Architecture

Explicit instances of features are created from an implicit definition stored in an

internal library. The user explicitly allocates values to the parameter descriptions.

The feature model is built up as an ordered list of features instantiated from the

A.G. Pedley 	 Ph.D Thesis 	 2-37

library. If the features represent form then the geometric model will produce a body

representing the form of the feature on request from the feature modeller according to

the parameters. To produce a resultant model the list of features is combined by the

geometric modeller using Boolean operators which are defined for each feature. The

list of features is essentially a one sided CSG tree. The features are described by a

number of parameters which may be changed at any time. These parameters control

the position and size of the feature. After changing one or more parameters the model

may be re-evaluated by re-combining each feature in order from the tree. Changing a

feature causes the feature modeller to request a new representation from the

geometric modeller before combination. When the geometric modeller is a BREP

modeller, features may request that local operations be performed on the current state

of the model, such as filleting. This requires a mechanism to provide persistent object

identity. This is particularly difficult to achieve after editing operations when the

entities which constitute a feature are moved or changed. Little support for object

identity maintenance is provided by academic systems.

There is no finite set of features in design {SRE9 1} therefore the concept of user

defined feature definition has developed. Systems which allow the user to define

features in addition to a pre-defined set enable the user to implement features which

represent exactly a specific environment. A template is created in which the

parameters of the feature and its methods are defined. The definition of the features

exist in an external library which is parsed to produce an internal runtime version.

Approaches are described as procedural when a feature's methods are defined as a

set of procedures, one of which controls the geometric modeller to produce the body

used for combination with the rest of the model. Though a number of systems have

been proposed which allow the user to define the parameters of the feature in a user

defined manner, the geometric representation has been developed as a canned

procedure in C++ [KRA90][AUR95]. To be fully user definable requires the

development of an interpreted language that can control the feature modeller, the

geometric modeller and the user interface. One such language is MCL+ [SIS].

A.G. Pedley 	 Ph.D Thesis 	 2-38

Another approach to feature definition is declarative. Declarative methods

[SAL95][SHA95][BRU96] use some general algorithm to construct the feature from

a description of its elements and the relationships (constraints) between them.

Procedural methods are simpler to implement (except the development of the

interpreted language), more efficient and are completely unconstrained as to the 3D

complexity of the feature. Declarative methods provide better modularity, are

potentially more readily transferred between systems, less efficient due to complexity

and to date have only been applied to relatively simple 2Y2D features. Declarative

methods potentially offer greater ability than procedural methods for the user to

create the new features graphically on screen. However, whichever method is used it

has been said that features "know about" their instantiation and dimensioning

properties [SHA95].

Furthermore, procedural methods are attractive because rather than selecting a

minimum set of dimensional parameters, each dimensional parameter that might

reasonably be used in industrial dimensioning practice may be represented. The user

indicating which set is required by selecting a particular mode, stored as a further

parameter.

The interface provided by feature based design systems to the user can dramatically

effect how efficient the user can model geometry with the system. The concept of

"handles" [CHA90] has been introduced, Figure 2.22. "Handles" provide

characteristic (but not necessarily real) elements of the features as alternative origins

for the coordinate system within which the feature is defined. Hence the user is able

to efficiently position and orient the feature in the model. The implementation of

"handles" will be described in detail in chapter 4.

A.G. Pedley 	 Ph.D.' Thesis 	 2-39

C) Potential handle location

Feature defined relative to this
origin

Figure 2.22 Feature "Handles"

2.4.4 	Features And CAM

The problems of providing an automatic link between design and manufacturing,

particularly process planning, has been a major factor in the lack of success of

attempts to develop Computer Integrated Manufacturing (CIM). Features have been 	-

seen as a means of forming a link by being able to associate manufacturing processes

and strategies with feature definitions. Such features are defined as manufacturing

features. However, it is usual that because manufacturing features are related to

manufacturing operations they are of a more primitive nature and a different form

than the design features the model was efficiently constructed with. Derivation of the

manufacturing feature model from the design model has been approached in two

ways:

1. By applying feature recognition algorithms to the resultant model. This can be

done with or without recourse to the features that were used to design the model.

Knowledge of the features that were used to design the model can be used as hints

for faster recognition of manufacturing features. Feature recognition techniques

have already been reviewed in section 2.4.2. One such system that uses feature

recognition as the method for defining a process planning model is PART

[HOU91].

A.G. Pedley 	 Ph.D' Thesis 	 2-40

2. By defining algorithms that convert design features to manufacturing features.

Such techniques are known as feature mapping. Different modes of mapping have

been defined [SHA93]:

• Direct mapping (1:1) - one design feature is exactly the same as one

manufacturing feature.

• Direct mapping with parameter changes (1:1) - one design feature generates

one manufacturing feature but parameterised differently.

• Discrete aggregation (n: 1) - more than one design features are amalgamated

into one manufacturing feature.

• Discrete decomposition (1 :m) - one design feature is split into several

manufacturing features.

• Disjoint mapping (n:m) - two or more design features are amalgamated and

- split into several manufacturing features. - -

Direct mapping (1:1) and discrete decomposition (I :m) methods are particularly

suitable for use with 2Y2D volumetric features. The systems reported in [TOE94b]

uses semiautomatic planning strategies, whereas [M1L94] uses a fully automatic

approach with genetic algorithms as an optimisation method [HUS91].

Disjoint mapping (m:n) is typical of parts defined with free form surfaces or when

positive 2'/2D volumetric features, such as bosses or ribs, have been used in the

design process. Disjoint mapping is a non-trivial task. [G0R96] reports an approach

to map a positive feature into a set of negative features but only whilst the positive

feature is contained within the original form of the blank. Mapping of free from

features is related to the prior selection of tools and processes based on the quality

requirements defined in the design followed by an assessment of what is able to be

cut and with what quality. It is partially very basic feature recognition and an

iterative process.

A.G. Pedley 	 Ph.D Thesis 	 2-41

2.5 Dimensions And Tolerances

A dimension is explicitly specified by the designer over some single geometric

property of the part, defining perfect or 'nominal' size, position or orientation of the

geometric elements. It is accepted that solid modellers (CSG, BREP) provide

geometrically complete models of the nominal geometry. Manufacturing methods are

incapable of producing parts with perfect geometry. Therefore tolerances are applied

to dimensions to denote an allowable variation of the manufactured component from

the nominal geometry. Traditionally these are applied to a 21) engineering drawing,

as shown in Figure 2.4. The definition and representation of dimensions and

tolerances on engineering drawings are governed by the standards detailed in section

2.6. The set of components that are 'in tolerance' form a variational class and a

mathematical model of a variational class is known as a variational model. Clearly

the tighter the constraints on the variations of a manufactured part the costlier it is to

make. Tolerances have the following function:

• To ensure that parts function properly.

• To ensure that mass produced parts are interchangeable.

• To ensure that parts are manufacturable at reasonable cost.

• To ensure that the design is robust.

It has long been recognised that tolerancing information combined with complete and

unambiguous representation of geometry is required for fully automatic

manufacturing and assembly planning [REQ83]. Indeed, it is necessary to support

both complete geometric and manufacturing data in design and to provide this

automatically to process planning systems [PED89]. For advanced systems it is the

modelling of the interactions between features that will be a prerequisite for progress

[M1L93]. Such interactions are either explicitly stated in the model or implicitly

evaluated from it [PED95]. Explicitly stated interactions are typically dimensional

and geometric tolerances. Interactions implicit in the model are proximity,

obstruction and the like. Geometric reasoning techniques have to be applied to

A.G. Pedley 	 Ph.D.' Thesis 	 2-42

evaluate implicit interactions [M1L94], whereas a data structure and modelling

format must be developed for explicit interactions.

The primary task of dimensional tolerances is to limit distance and angle deviations.

The Independence Principle [1005] requires that dimensional tolerances and

geometric tolerances of form, position and orientation must be measured and verified

independently of each other. [1S0406] defines how linear (length, diameter, radius)

dimensions and angular dimensions may be toleranced and displayed in a 2D

engineering drawing. Linear dimensions have the value followed by either the upper

and lower deviations, or, a limit orfit descriptor. Angular dimensions have the value

in degrees followed by the upper and lower deviations and the units should always be

indicated (degrees, minutes, etc.).

The inherent inaccuracy of manufacturing methods, coupled with the fact that parts

produced which are not "exactly" to size can function correctly, indicates that an

allowable deviation, or limit, from nominal is acceptable. Where two parts mate to

provide function they are said to fit together. The functionality required can be

described by the type offit: clearance, interference, transition. A tolerance grade is

used to denote a level of accuracy for all basic sizes. The value of the deviations from

nominal, or upper and lower limits, are dependent on the nominal size and tolerance

grade of the shape aspect considered. A standard [1S0286] describes the system of

limits and fits which provide a set of tolerances and deviations that will provide the

desired mating functionality between two cylindrical surface areas or between two

parallel planes. The nomenclature is presented but no indication of which fit is

suitable for which function is given. In contrast to the Independence Principle the

Taylor Principle, which is often applied to limits and fits, can also constrain certain

geometric tolerances: straightness, flatness, roundness, cylindricity and parallelism.

Statistical tolerances [HEN95] are applied especially to tolerance chains. Worst case

scenarios are unlikely to occur for all member dimensions of the chain, so they may

be statistically relaxed depending on manufacturing process. A plus-minus tolerance

A.G. Pedley 	 Ph.D.Thesis 	 2-43

• is defined for the boundaries of the tolerance, a central zone is specified and a

percentage of parts that must fall within this zone.

Purely dimensional tolerances are insufficient to fully define the form, attitude,

location and runout of the geometric elements of a part. This is partly due to the

ambiguity (that the data may be interpreted differently) of 2D drawings and partly

due to the limited nature of the dimensional tolerances. By defining a different class

of tolerances - geometric tolerances - of form, attitude, location and runout, the

relationship between size and form (attitude or location) may be decoupled, yet the

desired shape is more accurately specified. Geometric tolerances according to

[ISO 1101] are given in Figure 2.23.

GEOMETRIC TOLERANCES

I
FORM

I 	 I
ATTITUDE 	POSITION 	RUNOUT 	PROFILE

I
Straightness

I 	 I 	 I 	 I
Parallelism 	Location 	- 	 Circular 	 Line

Flatness Perpendicularity 	Concentricity 	Total 	 Surface
Roundness Angularity
Cylindricity

Figure 2.23 ISO Geometric Tolerance Classification

Vectorial dimensioning and tolerancing differs from conventional tolerancing

because the dimensions and tolerances are specified on or between substitute

elements rather than the actual elements. Substitute elements are imaginary

geometrically ideal shape aspects (line, circle, plane, cylinder, sphere, etc.) calculated

from the assessed points on a component's surfaces. In general, substitute elements

are calculated by coordinate measuring machines. Substitute elements are defined by

vectors (location, orientation) and size. To date there is no standard though the

system is described in [HEN95]. The system would appear more suitable for

representation in 3D geometric modelling systems because it consists of idealised

elements, vectors and sizes.

A.G. Pedley 	 Ph.D.'Thesis 	 2-44

Tolerance analysis techniques have been discussed that do not use a geometric

modeller. In [ZHA91] linear tolerance chains are analysed for optimum cutting

sequences in CAPP. In [WE188] chains of designed dimensions are compared to the

proposed measured dimensions. The effects of manufacturing tolerances such as

fixturing and tool positioning are included. In [FLE85] relationships between parts

were discussed and in [FLE86] tolerances were represented as networks of

relationships. These representations do not meet the needs of a highly integrated and

automated environment because they are not associated with the geometric model of

the component.

Modelling dimensions and tolerances with 3D solid and feature modellers has been

widely reported [JUS92] [TAI] and follows a number of approaches:

Simple textual attributes attached to a solid model.

Incorporated in the solid model.

Incorporated in form feature definitions. 	 -

Supported in an independent model associated with a feature and/or solid model.

Tolerances supported as textual attributes may only successfully represent the default

tolerances applied to the whole component. This is clearly not sufficient for a

complete description.

Techniques for incorporating tolerances into a solid model have used several

approaches:

1. Variational Dimensional Model

Direct parameterisation leads to the development of part families. Indirect

parameterisation is based on the variational or parametric modelling architectures

(depending on how the implicit dimensions are determined). They are generally

used for 2D sketches and the tolerances are applied to the constraints. The

constraints manager solving the set of tolerances. The approach is suited to

A.G. Pedley 	 Ph.D.Thesis 	 2-45

sensitivity analysis but to date has not been widely applied to 3D structures,

although its application to polyhedrons has been reported [H1L78]. Tolerances of

form (because the representation deals with points), position and orientation

(because the there is no concept of datum and target in the constraints) cannot be

supported.

Offset Zone Model.

The Offset Zone Model is reported in [REQ83]. The tolerance zone is created by

the Boolean set difference between the maximal and minimal object volumes,

which are created by offsetting the boundaries of the object. The objects

boundaries can lie anywhere in the zone for a valid shape which makes the

approach applicable to non-perfect geometry unlike the Variational Dimension

Model. The Offset Zone Model combines the effects of all tolerances (size,

attitude, form, etc.) into one tolerance which is in conflict with current practice.

Topological changes caused during offsetting of the boundaries can cause

problems. - -

Variational surface model

This approach extends the concept of the variational model to the 3D domain by

controlling surfaces by their characteristics rather than the points that define their

boundaries [MAR93]. This approach may be regarded as vectorial tolerancing.

Surfaces may be non planar. For example a cylindrical surface may be defined by

a point vector, a unit vector defining the direction of the axis and the size

parameters of diameter and height. These are allowed to vary and the positions of

vertices and edges computed from the result. Form tolerances can be supported by

using higher degree surfaces. However, moving surfaces can lead to topological

problems. [GUP9 1] replaces edges and vertices with imaginary faces which are

used to trim the real face objects, sometimes leading to new topological elements.

It is unclear how resolved or derived entities (axes, intersection points, planes of

symmetry, etc.) would be treated. There is no form feature support or

consideration for a 3D graphical representation.

A.G. Pedley 	 Ph.D.'Thesis 	 2-46

Form feature descriptions appear to provide an intuitive structure for representing

tolerances. Tolerances may be added as extra parameters to form features and can be

associated with the size and position parameters. Geometric tolerances that are local

to the form feature may also be supported such as roundness of a hole. An intelligent

use of handles and reference features when building a feature model allows datum to

be made implicit in the definition, however this is not always the natural way to

design the model. It is inefficient when default tolerances are applied to a part and

only those dimensions that are critical have to be especially toleranced. A most

significant problem is that shape aspects in the resultant model that the designer

wishes to tolerance may not be represented by a single form feature's parameters, nor

may inter-feature relationships be sufficiently well represented. Simply adding a

plus-minus tolerance attribute to the feature parameter is insufficient for visualisation

in 3D.

The most widely investigated approach is that of developing an independent

dimension and tolerance model. Pointers from the dimension and tolerance model
--

 structure tagelethentsiñ the gêdmètric model friitué If the geometric elements are

also related to the form features which created them, the dimensions and tolerances

can be (to a lesser or greater degree) related to the features. Datum reference frames

may be derived form the geometric elements, therefore, both intra feature and inter

feature dimensions and tolerances may be represented. Various independent

dimension and tolerance models related to geometric and feature models have been

developed.

Work by CAM-I [RAN88] has centred around the development of an evaluated

dimension and tolerance (EDT) model. A BREP solid modelling system is accessed

via an application interface specification (AIS). A hierarchy is proposed whereby the

lowest level geometric features are primitive face templates used to construct the

BREP model. At the next level of extraction, or application layer, design and

manufacturing features exist, having been previously constructed from the low level

face feature templates. Further, higher level layers may exist such as group

technology. Datum, dimensions and tolerances constructed in a separate model may

A.G. Pedley 	 Ph.D.'Thesis 	 2-47

be assigned to point to these face feature primitives. There are obvious limitations in

this implementation. Only planes and right-circular cylinder geometric surface types

may be used. The BREP model must exist before the dimensions and tolerances are

applied. It is unclear if the dimensions and tolerances can be associated with the high

level design features parameters and whether these are user definable. No visual

representation of the dimensions and tolerances is reported. --

One of the most significant efforts is the development of the STEP Shape Variational

Tolerance Model [STEP47] (described in section 2.6). This is very similar to the

EDT model. Implementing [STEP47] as an ACIS Husk has been proposed [S1M95],

but this assumes persistent object identity. It is unclear how the toleranced features

(shape aspects) are generated and what would happen to the model after

modifications to the underlying geometric model. It is certainly not integrated with

the control mechanisms of a feature based design system used to generate the solid

model to which it is applied.

The-EDT approach-is, not .applicableto .a .CSGmodelling environment. -This problem 	- -

has been partially addressed by the construction of variational graphs[REQ86]. Face

elements in the graph are associated with the faces of the primitives used to construct

the model, and hence to the actual faces in the model. Tolerances must be attached to

faces in the primitives before combination in the model. However, only one

variational graph is used for the model and it is updated incrementally as changes are

made to the model. This resolves the problem of persistent object identity. The

representation is not feature based and is restricted to predefined volumetric

primitives. Visualisation aspects are not considered.

Taiber [TAT 1] reports a system that maps the contents of conventional engineering

drawings into a rule based graph theoretic model. The tolerances are applied after

definition of a solid model either by conventional or feature based techniques. The

geometric elements of the model are used to define, or derive the shape aspects and

datum required for geometric tolerance definition. The system performs tolerance

chain analysis. What happens to the representation if the geometric model is changed

A.G. Pedley 	 Ph.D.Thesis 	 2-48

is not discussed. The tolerances are not related to the feature control mechanisms, nor

are visualisation aspects discussed.

A hybrid form feature modeller consisting of a combined CSG/BREP architecture

which allows the addition of dimensions and tolerances has been described [R0Y88].

The form feature model structure is maintained in a CSG tree. Each form feature is

represented simultaneously with a face adjacency graph (FAG), a form of BREP.

The addition of new form features to the form feature tree generates a new FAG and

the resultant Structured FAG (SFAG) is updated. The root of the SFAG represents

the resultant model, each node a FAG. A spatial relationship graph (SRG) maintains

the spatial relationship between the form features at each level in the tree using

transformation matrices. Variations in size and spatial relationships is limited to plus-

minus tolerances. Dimensions and tolerances may be attached to the individual FAGs

in which case they are inherited by the resulting SFAG. Alternatively dimensions and

tolerances may be attached to the SFAG. Datum reference frames may also be

constructed. The system is limited to representing form features constructed from

CSG primitives. No visualisation is considered.

[SAL95] describes a feature modelling system that uses a torsor method for

describing assembly tolerances between rigid bodies. The tolerances are presented as

graphs of related elements. No 3D engineering drawing representation was associated

with the solid assembly model. [R0S96] investigates the use of NURBS surfaces to

replace the nominal faces of form features to represent manufacturing uncertainties.

The imperfect form feature model is then used for functional assessment of

assemblies.

Simple textual attributes are clearly insufficient to meet the needs of complete and

accurate product models. Combining the information purely in the solid model is too

restricting and does not consider feature technology. Supporting the information as

feature attributes is often ambiguous and incomplete. Independent structures allow

use of both geometric and form feature data representations and appear to offer the

entities necessary for complete descriptions and provide the best route to progress.

A.G. Pedley 	 Ph.D.. -Thesis 	 2-49

Modelling techniques are numerous and it is clear that no completely successful

solution has emerged so far [JUS91]. Currently deficiencies exist with respect to 3D

visualisation of dimensions and tolerances and linking them to the control structures

and parameters of features, especially user defined, in order to use them to change the

model. In chapter 5 a method is proposed that aims to address these deficiencies.

2.6 	Relevant Standards

2.6.1 	Product Modelling

STEP, the Standard for the Exchange of Product Model Data [STEP], is not a simple

data exchange interface, but aims at the development of a reference model that

includes all information concerning the life cycle of a product. Although STEP began

as a European development, it has now been combined with parallel activities in the

US [PDES] into an international standard consisting of a-seriesof parts

The parts of the STEP standard are divided into three categories:

1. Generic Resources

Generic resources define the basic elements which are used to define and represent

the objects which are used to build the product model, define relationships

between objects in the model and manage the model. Fundamental to STEP is the

data modelling language defined in Part 11, EXPRESS [STEP 11], which is used

to as the syntactical base for defining all other parts of the STEP standards.

EXPRESS is an object oriented language. Generic resources are independent of

application area. Other important generic resources of significance to the

objectives of this thesis concern product description [STEP4I], geometric

modelling [STEP42], dimensions and tolerances [STEP47] and form features

[STEP48].

A.G. Pedley 	 Ph.D.'Thesis 	 2-50

Application Resources

Application resources provide product information which is application specific.

For instance drafting is specific to mechanical engineering, electrotechnical

engineering, ship building, etc.

Application Protocols

Application protocols include parts of the generic and application resources,

defining the use of partial models for specific applications. For instance the

exchange of engineering drawings is dependent on the explicit representation of

geometry and dimensions.

2.6.2 	Geometric Modelling

To date IGES [IGES] is the most commonly used and generally applicable standard

----------for-the exchange of geometric models: IGEScan exchange 2D engineering drawings;

3D surface and 3D solid models, but suffers problems with large, complex free form

models because of very large file sizes generated. SET [SET] can be seen as a

development of IGES that solves the problems of large models, however its usage is

limited to the European aerospace industry. VDA-FS [VDA] has been developed

within the European automotive industry for the exchange of surface models only. It

has gained favour because of its stability. The development of STEP was begun

approximately ten years ago partly with the aim of providing a single representation

for the exchange of geometric and associated data without the problems of stability,

model size, speciality and localisation. The objective being to provide a single world

wide standard.

STEP part 21: Clear Text Encoding Of The Exchange Structure [STEP2 1] defines

the physical file structure for STEP compliant representations. Part 42: Geometric

and Topologic Representation [STEP42] defines all necessary geometric and

A.G. Pedley 	 h.D.'Thesi, 	 2-51

topologic elements needed to describe a geometric model, whether 2D or 3D,

surface or solid.

Although the necessary parts of the STEP standard have been available since 1994 in

practice it is rarely used as an exchange format.

2.6.3 	Feature Modelling

Part 48 of the STEP standard [STEP48] is concerned with the representation of form

features. The standard is not yet normative. Within the context of this standard a

form feature is defined as being a shape which conforms to some preconceived

pattern or stereotype and is, for the purposes of some application, usefully dealt with

as an occurrence of that stereotype. The standard only concerns form features which

are

• generic shape properties of a product, that have no application connotation and no

presumptions as to representation, or

• representations employed in shape modelling to represent shape properties

(geometry).

Shape feature models that characterise information may exist without a geometric

representation, similarly a geometric feature model may exist without being

characterised. However, the two are mutually supportive.

Form features are characterised into three categories:

volume feature representing an added/subtracted volume applied to some pre-

existing shape.

transition feature separates or blends the surfaces of a shape.

pattern feature represents a set of similar form features occurring in a recognised

arrangement.

A.G. Pedley 	 Ph.D.Thesis 	 2-52

Additionally, a form - feature element is defined as a positional relationship between a

form feature and a shape aspect. For example, a planar face (shape aspect) can be

said to be the "bottom of' a subtractive volume feature typically described as a

pocket.

The form features classified by STEP have been presented in Figure 2.20 The

representation does allow new features by combining existing features. Previously

defined geometry may be integrated with the feature model. The scope of the

standard is relatively narrow. Association of non-shape information with shape

information is not supported. Shape tolerance information or representations are not

supported. User defined form features are not supported. General capability to define

inter-feature relationships is not supported. Furthermore, shape characterisation

based on functionality, product class, manufacturing methods, and size is not

considered. Also, general geometric representations such as boundary representations

and b-spline surfaces are outwith the scope of the standard. Sweeps must be of planar

profiles.

The representation methods presented and terminology are in contrast to the process

planning features defined by Part 244 {STEP244}. Part 244 is an Application

Protocol developed for mechanical product definition for CAPP using form features,

whereas Part 48 is a Generic Resource and should therefore provide a domain

independent definition. Part 48 does not prescribe any unique parameterisation in

contrast to common features such as holes, slots and pockets which are uniquely

defined in Part 224. Features with the same name are sometimes defined differently

in Parts 48 and 224. For instance a transition feature may only be applied to an edge

in Part 224, whereas it may be defined between surfaces in Part 48. The scope and

limitations of the draft standard, Part 48, do not meet the needs of the objectives of

this thesis.

A.G. Pedley 	 Ph.D.'Thesis 	 2-53

2.6.4 	Dimensioning And Tolerancing

The International Standards governing the definition and representation of

dimensions and tolerances are produced and maintained by the International

Organisation for Standardization [ISO]. These standards are the result of integration

and further development of National Standards, such as the American ANSI Y14.5:

Dimensioning and tolerancing [ANSI145], and the British BS308 Parts 1, 2 and 3

Engineering Drawing Practice [BS1308]. It is a migratory process by which national

standards will become superseded by the international standards. The national

standards to date have been concerned with the definition and representation of

dimensions and tolerances on 2D engineering drawings. The international standards

under the auspices of the STEP programme take the national standards to a higher

level of complexity by introducing the definition and representation of dimensions

and tolerances that may be related to 3D solid models [STEP47]. However, this

definition and representation does not concern aspects of visualisation or of relating

the-definitions -to the parameter descriptions of-the feature definitions -in [STEP48] .- - - - -

As has been stated [STEP48] does not include consideration for User Defined

Features therefore the current standards do not fully meet the needs of the objectives

of this thesis.

However, the requirements:

to represent dimensions and tolerances in 3D associated with the solid feature

model and,

that the visual representation, when viewed from the correct direction, should

produce a 2D engineering drawing view,

necessitates that, when displayed in the engineering view of the 3D model the

dimension and tolerance representation complies with the standards for 2D

engineering drawings. The standards which concern the definition and representation

of tolerances on 2D engineering drawings are as follows:

A.G. Pedley 	 Ph.D.'Thesis 	 2-54

• ISO 129:1985 Technical Drawings - Dimensioning - General principles,

definitions, methods of execution and special indications [ISO 129].

ISO 8015:1985 Technical Drawings - Fundamental Tolerancing Principle

[1S08015].

• ISO 286-1 1988 ISO system of limits and fits [1S0286].

• ISO 406:1987 Technical Drawings - Tolerancing of linear and angular dimensions

[IS 0406].

Further standards describe in more detail geometric tolerancing: [ISO 1 101],

[1S05459], [1S02692].

The only standard concerned with the definition and representation of dimensions

and tolerances that may be associated with both 2D and 3D geometric models is:

• ISO 10303-47 Industrial Automation Systems - Product Data Representation And

- - - - - 	--.Exchange- --Part 47-:-Integrated -Generic -Resources:- Shape Variational Tolerances -- 	-

[STEP47].

ISO 10303-47 describes the definition and representation of dimensions and

tolerances which may be related to a 3D solid model by providing a syntax to support

the classes of dimensions and tolerances that are applied to 2D engineering drawings

(as specified in the above standards). The shape of product may, but need not have a

geometric representation. In this way the dimension and tolerance model is defined

separately to the geometric model.

The standard provides a set resources in order to describe dimensions and tolerances

which may be divided into three sections:

1. Shape aspect definition resources define a set of shapes that are required for

applying dimensions and tolerances. In addition to shape aspects and shape aspect

relationships which are defined in [STEP4I], derived shape aspects and datum

may be defined. Shape aspects representations are formed from the product shape

A.G. Pedley 	 Ph.D.Thesis 	 2-55

or boundaries of a solid model (they are extracted from a solid model, but are not

used to create it). Derived shape aspects, which though derived from the model,

are not required to define its shape, nor necessarily lie on the boundary of the

model. Datum are shape aspects that provide the origins to which dimensions and

tolerances are referenced.

Shape dimension resources that provide representations of size and relative

location to meet the requirements of engineering design. Dimensions are

implicitly defined in a 3D geometric model and the values are derived from the

shape aspects, whereas dimensions are explicitly presented with a 2D engineering

drawing. The standard defines methods for representing size and location

dimensions. The measure of a dimension is derived from the geometric

representation of the shape aspects. If no geometric representation exists the

measure of a dimension may have a value assigned therefore defining the size of

the shape aspect. Location dimensions define a relationship between the origin

shape aspect or datum to the target shape aspect. This representation is non-

directed. Three types of measurement path for applying a dimension are provided:

linear, curved and angular.

Shape tolerance resources that provide definitions of limits within which

manufactured shapes are permitted to vary. Two types of tolerance are

represented: plus-minus and geometrical. Plus-minus tolerances may be defined in

two ways: specification of upper and lower limits, specification of limits and fits

found in [1S0286]. Statistical tolerances provide an additional method of

specifying the allowable variation of a dimension and are represented by

associating them with the direct specification of the upper and lower limits of the

plus-minus tolerance. Geometric tolerances provide the structures for applying

tolerance zones to shape aspects. Tolerances of form, orientation, location, profile

and runout of a shape aspect are supported.

The dimension and tolerance data model is further described in [FEN], where a

simple 2D example is given.

A.G. Pedley 	 Ph.D.'Thesis 	 2-56

The object of the standard is to provide a computer interpretable neutral

representation that is independent of any particular system but allows exchange of

data between differing systems. Whilst not constraining any internal system

implementation of dimensions and tolerances the concepts and definitions stated in

the standard must be considered from the aspect of information content.

The STEP tolerance model does not consider the validity or completeness of

tolerance data; nor does it concern itself with the practical problem of relating the

tolerance information to the underlying geometric model (if one exists). Furthermore

the STEP model does not propose any methods or rules for graphical visualisation in

a 3D modelling space. A further and most significant deficiency is that there is no

method inherent in the tolerance model to relate the dimensions to feature parameters

which enables the dimensioning scheme to control the shape of the model.

Consideration for surface conditions such as roughness, heat treatments, and coatings

are included - in - other application resources. The STEP tolerance model is not

sufficiently developed particularly for user defined feature developments.

2.7 	Chapter Summary

Chapter 2 has summarised the needs for computer support relating to design,

production planning and manufacturing due to recent economic and social trends and

strategies. Geometric modelling techniques have been presented as fundamental to

providing complete and accurate descriptions of parts. Feature modelling has been

described as a technology that directly aids strategies such as concurrent engineering.

Dimensions and tolerances are used by designers to communicate to planners and

manufacturing engineers the scope of manufacturing deviations allowable from

nominal geometry. Their use is governed by international standards which have been

detailed. Approaches by other workers taken to integrate dimensions and tolerances

in 3D geometric and feature models have been reported.

The next chapter, chapter 3, presents the architecture of the feature modelling

system, FeatureM, which is used as the baseline for developments to provide less

A.G. Pedley 	 Ph.D' Thesis 	 2-57

constrained geometric feature representations (chapter 4) and the integration of

dimension and tolerances (chapter 5).

A.G. Pedley 	 Ph.D Thesis 	 2-58

Chapter 3

Feature Modelling System

3.1 	Introduction

	

- 	3.1.1 	--Chapter Overview

	

- 	-Chapter -1 - introduced- -feature - modelling- - 	a- promising software - technology- - --- -

particularly focused at modelling the form of mechanical components. The baseline

for the work reported in this thesis was also introduced in chapter 1, and consists of

the Feature Based Mechanical Design System, FeatureM, from Strässle

Informationssysteme AG [SIS]. Chapter 2 went on to describe feature modelling

methods in general and the solid modelling techniques that are used in feature

modelling systems to represent the form of objects. In this chapter (chapter 3) the

architecture of FeatureM will be presented. The architecture, design and functionality

of FeatureM are described in order to help the understanding of the developments

which form the work reported in chapters 4 and 5 of this thesis related to feature

definition and the representation of dimensions and tolerances. The author has made

only minor contributions to the system as is reported in this chapter.

A.G. Pedley 	 Ph.D1 Thesis 	 3-1

3.1.2 	Chapter Structure

Section 3.1 provides an overview of this chapter (chapter 3) relating the contents to

the other chapters of the thesis, and describes the chapter structure. Section 3.2

presents the architecture of the feature modelling system, FeatureM, and details the

sub-components. The sub-components are described in further sections of this

chapter. Section 3.3 presents the geometric modelling kernel ACS. Section 3.4

briefly describes the interpreted language MCL+. The graphical user interface is

presented in section 3.5. Application modules are briefly described in section 3.6. In

section 3.7 the feature modelling module is detailed because it is fundamental to the

developments relating to feature definition and dimension and tolerance

representation reported in chapters 4 and 5.

3.2 	System Architecture 	 -

- ---------The-feature modelling system- uses -a-number-of standard software components: AC-IS ------- -

is used as the geometry engine with X Windows, OSF Motif and HOOPS generating

the graphical user interface. The feature modelling system is currently supported on

UNIX workstations.

The modeller is a combined CSG/BREP or hybrid feature modeller (as described in

chapter 2) producing an ACIS BREP solid model as the result. It is a general purpose

feature modeller which may represent information other than geometry. The user

interface to the model is via buttons and dialogue boxes. In addition, all functionality

available graphically may be programmed by the user. Visualisation of the model can

be achieved in wire frame, faceted or fully shaded modes, with or without display of

hidden lines. Multiple views of a model may be seen simultaneously. Each view is a

projection (axionometric, single/double point perspective) of the 3D model which

may be rotated interactively. A property sheet is used to present and allow

modification of all feature parameters. A view of the FeatureM screen showing

multiple views and the property sheet is shown in Figure 3.1. The architecture of the

A.G. Pedley 	 Ph.D. Thesis 	 3-2

modeller has been established to aid the development of User Defined Features. The

way in which User Defined Features are defined will be described in chapter 4

rkwws 2MM feat'rew V- 4 	 -Sop - 1 iIi1 	 t5/ts'r 1rs1 	 - 1 1

Fil. Et D ispl ay EOM Opor -1 	F,a1u. S'l

strassle 	 ith L

iui iT1 	
Mc6 	 -

• IL IV ! fTh

UDFI
}rot ur tJrOpert IS

[iII

- 	 o 	 Iid fI

0 0
w

T 	 -p
cl~* 	Nell

55-10 ,
nIHi

Figure 3.1 FeatureM Screen

The system architecture is shown in Figure 3.2. It consists of five main software

components which communicate as indicated. The system reads externally defined

feature descriptions from a library and is able to save and restore complete feature

models to and from files.

The five major software components are:

1. ACIS

ACIS is a geometry engine marketed by Spatial Technology Incorporated [STI]

and is used by the feature modelling kernel to produce the geometry of individual

form features and to combine them to produce the resultant solid model. ACTS is

MEN

A.G. Pedley 	 Ph.D. Thesis 	 3-3

an Object Oriented Open Architecture BREP solids modeller accessed through a

well defined Application Procedural Interface.

Graphical User Interface

MCL+

i 	
Application

Modules

0000 FeatureLibrary
ACIS

Geometry 	
Feature Modeller

Engine

GBREPolid 	

Feature Models

Model

Figure 3.2 FeatureM System Architecture

MCL+

This is an interpreted language developed by Strässle [SIS95a] that allows the user

to control the complete system by programming. It forms the syntactical base for

the definition of the feature libraries. It provides a link between the high level

description of the GUI and the low level commands that form the system

functions. The user can make direct calls to ACIS through MCL+.

Graphical User Interface (GUI)

The GUI provides the interface between the user and the feature modelling

system. The Graphical User Interface (GUI) is concerned with how the user sees

and works with the system. This GUI controls screen design and layout, the

management of user interaction, and, the display and visualisation of the model.

Application Modules

These are modules that can:

. Extend the functionality of the feature modeller: User Defined Commands.

A.G. Pedley 	 PhD Thesis 	 3-4

• Provide functionality to aid the feature modeller: 2D Contour Sketching.

• Provide basic stand alone functionality that is also used by the feature

modeller: Volume Modelling.

• Provide functionality that is independent of the feature modeller: 3D Sheet

Metal Modelling.

5. Feature Modeller

The feature modeller consists of kernel functionality and template administration.

The kernel provides the data model and management structures. Feature template

administration is concerned with making an internal representation of the features

defined in the feature libraries and linking the calls defined in the libraries to the

procedures defined externally to the system. The kernel has a built in interface to

the geometry engine, ACTS, through its API. The library of features is defined

externally in a file. This is necessary for user definition.

The system level programming language is C++ which is functionally compatible

with C (which provides many of the pre-compiled libraries).

The five software components will be described in sections 3.3 to 3.7 of this chapter.

3.3 	ACIS

ACIS is an object oriented geometric modelling toolkit designed for use as a

geometry engine within 3D modelling applications. Written in C++, ACIS provides

an open architecture framework for wireframe, surface and solid modelling with a

common unified data structure. Linear and quadratic geometry is represented

analytically whilst free form synthetic geometry is represented by non-uniform

rational B-splines (NURBS). ACIS supports manifold and non-manifold topology, as

well as bounded, semi-bounded, and unbounded geometry. ACIS represents solids

using a BREP data structure, providing CSG type Boolean operations on solid, sheet

and wire bodies, and local operations directly on the BREP model. ACIS

A.G. Pedley 	 Ph.D. Thesis 	 3-5

communicates with application programmes through a well defined Application

Procedural Interface (API), described in [Sill.

ACIS uses a boundary representation as the basis for the topologic and geometric

classes used to build ACTS models. In addition, ACTS entities may have a list of

attributes attached. The entities are arranged in a hierarchy of classes which allow for

extension with additions made by application developers, as shown in Figure 3.3.

ENTITY 	 Topology

BODY
LUMP
SHELL
SUBSHELL

FACE
LOOP
COEDGE

EDGE
VERTEX

WIRE

Geometry

SURFACE PLANE

PCURVE SPHERE

CURVE CONE

POINT TAURUS

TRANSFORM SPLINE

STRAIGHT

ELLIPSE
SPLINE

Attribute Classes

ATTRIB 	 SYSTEM

USER

User Application Classes

[R 1

Figure 3.3 ACIS Class Structure (Source: [STI])

This is a very powerful concept because it allows the application developer to create

new, specialised objects in the data model and to attach any information to any entity

A.G. Pedley 	 Ph.D. Thesis 	 3-6

that exists. The ACIS model then becomes a much more general data model

particularly suited to development of feature modelling systems and enabling better

integration between design and manufacturing. Such models are often referred to as

product models.

ACIS entities are of four general types: topologic, geometric, attribute, and user

defined. All application classes and attributes are children of ACIS entities. Hence,

the model management mechanisms that perform the save, restore and roll-back /

roll-forward functionality will work for application classes as well. Roll-back and

roll-forward is a mechanism provided by ACIS whereby all calls the modeller and its

data structure are stored in a tree like representation. The modeller may step back

through each state to a desired point. Further modelling may then proceed creating a

new branch. The history remains and may be returned to. This is a useful mechanism

not only for the "undo" procedure, but it could be imagined that different design

scenarios may be developed in the same model and explored. Such possibilities are

an aid to simultaneous engineering goals.

ACIS allows wire frame entities to coexist with solid and sheet bodies, sharing

edges, coedges, and vertices. This coexistence enables mixed dimensionality models

to be constructed. This is useful in the development of sweep features where the

contour and path exist but have not yet generated a volume. Non closed models can

also be created, such as a plane with three bounding edges and one unbounded,

infinite direction. Non closed sweep features provide powerful ways of creating

complex free form geometry.

It is clear to see that the geometry is separated from the topology. Topology

represents the spatial relationships between the various geometric elements. Each

body has a transform. The transform contains the complete object space

transformations for the entire body: rotation, translation, scaling, reflection and shear.

In feature modelling systems it is the rotation and translation components that are of

interest. It the use of the transform and its inverse that allows easy conversion from

A.G. Pedley 	 Ph.D. Thesis 	 3-7

one coordinate system to another; from feature coordinates to world coordinates for

example.

3.4 . 	MCL+

MCL+ has been developed by Strässle Informationssysteme AG [SIS95a]. MCL+

stands for Macro Command Language (MCL) with Object Oriented characteristics

(+) that are derived from the C++ language with which it has been developed. It is an

interpreted language which requires no compiling or linking to produce executable

code. This means that code that the user develops may be immediately executed.

A great advantage of the language is portability. From the user's perspective it is

platform independent. It is not untypical, often for historical reasons, that companies

have more than one hardware type. If user developed code has to be compiled and

linked before running it is often necessary to make small, but significant, changes in

the code to be valid with that particular system's compiler. MCL+ is identical on any

platform, therefore the user merely needs to make his programs available on a central

server and need not concern himself with providing several versions.

MCL+ is more sophisticated than normal concepts of an interpreted language.

Procedures may be loaded into system memory and are subsequently available

internally on demand. ACTS entities exist in MCL+ and bindings to ACIS API

functions exist. Data types and functions developed for other modules such as the

GUI and volume modeller are also available through MCL+. This is very powerful

because it allows the functionality for user defined features to be highly developed.

MCL+ forms the syntactical base for defining user defined features and programming

the control routines.

MCL+ does not allow strictly defined classes to be created as in C++ because there is

no concept of scope. However, classes are simulated with type definitions and other

object oriented functionality such as function parameter and operator overloading are

provided. MCL+ not only provides typical functionality found in C++ or other high

A.G. Pedley 	 Ph.D. Thesis 	 3-8

level languages, but is considerably extended. Special data types have been provided

in MCL+ that represent frequently used structures such as lists and strings. Direct

pointer manipulation with MCL+ is not possible; it is provided automatically by

MCL+ in the way that variables are declared and instantiated. This is an advantage to

the user because it removes the problem of correct addressing. Bindings to ACIS API

functions, the ACTS data structure and classes enable direct interrogation and

manipulation of the model. Bindings are also provided to application classes and

functions developed for the feature modeller and other application modules.

MCL+ removes much of the detailed problems of sophisticated programming

languages, such as memory management, whilst providing a powerful toolbox

suitable to the application of geometric modelling, geometric reasoning and the

development of user defined features. MCL+ has been predominantly used for the

developments reported in this thesis.

3.5 	Graphical User Interface (GUI)

3.5.1 	High-Level Design Methodology

The purpose of the GUI is to provide a high level interface to the feature modeller

removing the need for the user to interact with the modules at programming system

level. This creates a visually integrated and highly graphical working environment,

which is a requirement for efficient and productive use of the system. The

architectural methodology of the GUI is presented because it is structured to aid the

development of user defined functionality. The detailed design and coding of the

GUI will not be discussed.

The GUI is a very important part of a feature modelling system. Feature modellers

whilst providing significant advances over pure volume modelling approaches for

creation, manipulation and editing, can appear much more complex. The GUI to a

feature modeller can make much of this complexity transparent to the user: In an

A.G. Pedley 	 Ph.D. Thesis 	 3-9

environment where user defined features are seen as a necessity, the ability of the

user to be able to control the GUI to reflect the way in which the features are to be

used is also essential. Another important function of the GUI is that of language

support. Nowadays software is rarely both designed and used in a single language

community. Industrial pressures have meant that sub-contractors (manufacturer) are

often in a different country to the contractor (designer). The ability to switch between

different languages in a system is a commercial need.

A schematic of the GUI of Figure 3.1 is shown in Figure 3.4.

Product Parent Vndow . i

Pididown Menu Bar

Strssle Upper Static Button Menu

Display m Module Modifier Lower Static Button Menu

Selector
Buttons Prompt Display Text Input Field fl Cmd. Mod.

Dynamic
Module

Feature

Pop-up 	I
Butto

Wnd Function
Button Property

Menu
Sheet

Wridow

Static
Function
Button
Menu Oisp[ay \Modow

Figure 3.4 Schematic Of GUI Window Layout

It consists of:

o a parent window which controls the GUI, all other GUI objects are its children.

• a sub-window which displays the graphical representation of the model, highlights

entities for identification, provides rubber banding for graphical input and allows

the user to pick entities in the model.

a pull down menu bar.

A.G. Pedley 	 Ph.DThesis 	 3-10

• static and dynamically controllable areas for the citing of buttons for function

selection.

pop-up windows, dialogue boxes, menus, button selectors, and slider controls.

Command prompt display, default presentation and keyboard echo.

• Coordinate and measurement display.

The functionality of the GUI can be split into two aspects:

The windows and their management, buttons, menus, dialogue boxes, keyboard

input, slides, and the like.

Graphical representation of the model and graphical input functions: highlighting,

rubber banding, picking.

3.5.2 GUI Architecture

The GUI consists of a four layer architecture, which is shown in Figure 3.5.

The GUI presents all system manipulation possibilities using keyboard, mouse,

windows, menus, buttons, dialogue boxes, icons, graphics, etc. All user interaction is

transferred via X, Motif and SGUI to the MCL+ level. MCL+ allows the user to

define his own functions; both for screen layout and modelling functionality. Special

direct interfaces are provided from X to the input controller so that interactive rubber

banding is as fast as possible. The HOOPS graphics model has a pre-processor that

builds or changes parts of the model with respect to commands that are posted to the

Feature Modeller bulletin board.

This graphical environment has been developed using a number of different software

tools. The low level functionality is written in C or C++ to communicate with the

graphical environment, geometric modelling engine (ACS), and the feature

modelling sub-system. The graphical display in the main window is driven by a

A.G. Pedley 	 Ph.D. Thesis 	 3-11

library of C functions provided by HOOPS (Hierarchical Object Oriented

Programming System) [ITH]. Widget sets and window management are provided by

OSF Motif. The windowing system is the X Window System. To provide a highly

sophisticated user definable development environment, MCL+, which is able to

manipulate GUI objects is used. Such a flexible environment is needed for the

effective development of User Defined Feature Functionality.

Figure 3.5 GUI Main Software Components

A.G. Pedley 	 Ph.D; Thesis 	 3-12

The window, menu, button and input control commands are transferred to the SGUI

(Strässle Graphical User Interface) level, which is a high level abstracted language

for the OSF Motif / X Windows standard. It provides a set of predefined objects to

build the user interface with that will provide a product wide standard look and feel.

The main graphics display commands are processed directly by HOOPS. The model

manipulation commands are processed by the feature modeller and ACIS followed

by rebuilding of the HOOPS model which then updates the graphics display.

3.5.3 	X Windows I Motif

3.5.3.1 	Overview

The X Window System and OSF Motif are now accepted as de facto industry

standards for window based UNIX graphical interfaces. They are described here

together because in reality they are very closely related in terms of system

development and functionality. Detailed descriptions may be found in [XWI] and

[BER9 1] respectively. Due to the need for user defined functionality it is necessary

to provide the user with a high level tool box. Direct programming by the end user at

the X and Motif level are not possible or desirable therefore simplified and structured

control functions have been provided by SGUI in MCL. These functions are user

definable and closely related to the application environment of geometric and feature

modelling and so provide a sophisticated toolbox.

3.5.3.2 	X

The X Window system, developed at MIT in the mid eighties, provides for a (semi)

hardware independent window based graphical interface. It makes applications think

that the window it is using is the only display device. The application need. not be

A.G. Pedley 	 Ph.D. Thesis 	 3-13

aware of the others because X takes care of this. Applications running on different

hardware platforms may be simultaneously displayed on the same screen. It provides

functionality to create, realise, destroy, clip, map, etc. X also provides for cursor

functionality with a pointing device such as a mouse. Importantly, detection of events

such as movement of the cursor, button presses and key presses are noted and passed

to the window manager. The ability is also provided to return the position of the

cursor in the window when a button press occurs. This is important for input

functionality, such as picking.

X itself provides certain graphics functionality such as line drawing, flat polygon

shading and fonts. However this is very simple pixel based and is related to the

ability of the display device. Hardware vendors frequently provide extensions to X in

order to provide better support for displaying 3D objects such as defined by solid

models. SUN [SUN] have developed XGL and Hewlet Packard [HP] have developed

Starbase for example. These give much superior support for polygon shading such as

Gouraud and Phong, and rendering of curved surfaces.

In X, each window has some functionality associated with it. A window is divided

into sub areas or sub windows (buttons) in hierarchical manner. Callbacks are

attached to the windows (usually looking like buttons) which call application

programme functions. Communication between X and the application programme is

asynchronous. X simply responds to events caused by the user. The application

programme may redefine what is displayed by X in response to a callback but it does

not necessarily wait for a reply.

X has a. tool box called X Toolkit Intrinsics. These are used by all window manager

developers as the building blocks to build the Widget sets that allow the look and feel

of the windowing system to be developed.

A.G. Pedley 	 Ph.D.Thesis 	 3-14

3.5.3.3 	OSF Motif

Motif gives the window system its look and feel. It controls the 3D borders to the

windows and buttons. Functionality such as pull-down menus, pop-up menus, slider

controls, multistate buttons, toggle buttons, browsers, copying, cutting and pasting of

textual entries and highlighting is provided.

The windows or objects that are displayed to provide the above functions are known

as widgets. The widgets are built using the X Toolkit Intrinsics. They respond

autonomously to events from the X server, triggering some internal actions. Actions

may produce output to the window, changes in the internal state and callbacks to the

application programme. The application may intervene by setting resource fields or

executing functions.

The interaction between the X Window system (the X server), the X Toolkit

Intrinsics, Motif Widgets and the application programme is shown in Figure 3.6

1:.

Output

<1
E>

Events

Widgets

Functions

- 	I Resource
Fields

Actions 	
- 	Callbacks

Application

Programme

X Toolkit Intrinsics 	j
Figure 3.6 Schematic Of XfMotif Interface (Source [BER911)

A.G. Pedley 	 Ph.D..Thesis 	 3-15

3.5.4 	SGUI

Strässle Graphical User Interface (SGUI) [EGG95] forms the interface between the

feature modelling system and OSF Motif. SGUI is based directly on OSF Motif and

consists of the following components:

C functions for connection to OSF Motif. 	 -

MCL+ functions.

. MCL+ parser file.

UIL (User Interface Language), which is part of OSF Motif. Compiled into UID

(User Interface Definition) files.

SGUI provides the development engineer with a toolbox of MCL+ and C objects

required to define and build a user interface. It is a higher level language than OSF

Motif simplifying its use, though knowledge of OSF Motif is required to use it

correctly. User definability is provided through the MCL+ objects.

NLS (National Language Support) is an important software function. SGUI NLS

enables all textual messages, field definitions, and the like to have different text

strings associated with the MCL+ call depending on the language that is required.

The messages are defined in an NLS file with a unique module and message number.

There as many lines of text per message as different languages are required. The

definition number remains the same but the language descriptor is different, as of

course, is the text. The system works well with different alphabets, such as Cyrillic.

SGUI NLS support is fully described in [PRO].

Such functionality is very important because it is rare that CAD/CAM software

systems aimed at SME's will be sold into a single national market. Similarly when

larger OEM's are applying simultaneous engineering strategies it is very likely that

the suppliers are in a different country.

A.G. Pedley 	 Ph.D.Thesis 	 3-16

3.5.5 	HOOPS

HOOPS (Hierarchical Object Oriented Programming System) [ITH] is a system for

creating interactive graphics applications. The display and manipulation of graphics

is a data base problem [FOL84]. HOOPS is best described as a database which stores

information about which objects to draw, where they should be displayed, and how

they should be rendered. HOOPS provides other systems with tools for modifying,

querying, searching and displaying the database. HOOPS comprises a library of C

routines that form a toolbox for the application developer.

Data consists of geometrical primitives, cameras, lights, rendering and modelling

attributes, and application specific information. Related elements are grouped

together in segments which are the units of organisation in the database. Segments

may consist of segments and hence correspond to the nodes of the tree structure. The

hierarchical grouping is an efficient way to organise data, since it allows

manipulation of just the components of the objects, or groups of objects as a whole.

The object oriented nature of HOOPS is provided by the way it treats segments as

objects in a hierarchical manner, rather than the programming language it is written

in.

All information stored in the database can be changed: geometry can be edited,

attributes can be modified, and the hierarchy reshaped. After a series of changes is

specified, the system updates the display to reflect the current contents of the

database. The geometric definitions in the database are provided by an ACIS model.

When the ACIS data model is modified, information is posted to a bulletin board.

This notifies the HOOPS pre-processor which rebuilds the graphics database and

displays the modified model.

In FeatureM the HOOPS implementation is shown schematically in Figure 3.7. The

root of FeatureM's data structure is the display window defined in X. The display

consists of one layout made up of one or more views. Each view comprises many

segments defining the bodies that should be displayed, textual information such as

A.G. Pedley 	 Ph.D. Thesis 	 3-17

labelling, and of course coordinate systems. Clearly there is likely to be more than

one body and almost certainly more than one dimension. Each body or dimension is

treated as an individual segment. Hence, the nodes displayed in Figure 3.7 are the

roots for further lists of segments.

Window Display

Layout

Coordinate
Systems

iew 	 View 	 ew

CE) CD 	(ghIghls

Figure 3.7 HOOPS Implementation In FeatureM

The HOOPS pre-processor consists of a series of functions that edit the HOOPS

segment structure by removing branches (or leaves, or the whole tree except for the

root window segment) and adding new ones. The functions are called depending on

what statements exist in the ACTS bulletin board. Each entity that may be posted on

the bulletin board has associated with it a corresponding procedure which describes

how the HOOPS database should be built to display it. In other words, each object

that can be displayed knows how to display itself. The pre-processor simply removes

the old description (if one existed) and adds in the new one. A good example where

partial update occurs is that of camera rotation. The faces and edges of a body remain

the same but the silhouette lines are different. Thus the function asks ACTS to

calculate the new silhouette lines, replacing the old ones with the new ones. From the

users perspective, the X Window system, Motif and HOOPS appear as an

homogeneous system.

A.G. Pedley 	 Ph.D. Thesis 	 3-18

3.5.6 	Input Controller

The Input Controller controls the following functionality:

• Highlighting

Highlighting is a graphics function that changes the colour of an object or provides

some graphic indication of an object. This is used to show that the object is

currently the focus of attention of the cursor, or is the selected object that will be

the subject of the next function call.

• Rubber banding

Rubber banding (or echoing) is the technique whereby as the cursor is dragged across

the screen a graphical representation changes size correspondingly. Typically this

has been used for simple geometric entities, such as straight lines, circles and arcs

in 2D draughting. More recently complex 3D rubber bands have been used to fully

represent the solid objects such as blocks, cylinders, prisms, etc.

• Pick filtering

Pick filtering is necessary to return an entity of the type desired even though it is

impossible to pick that entity in the graphics mode used. For example, in shaded

mode only faces are known by the graphics model shown in X. Therefore to pick

an edge, it is necessary to find the edge nearest the pick point of the face returned.

The input controller provides MCL+ with a series of functions that are used to define

input strategies through the GUI by means of an input decoder The Input Decoder is

the method by which interactive input using textual prompts, rubber band graphics,

pop-up menus, keyboard and mouse is controlled. Although implemented in C++ the

functionality is provided for the user in MCL+ making the construction of input

command sequences completely user definable. A necessity for successful

implementation of user defined feature functionality. The decoder is described in

[ALT96].

A.G. Pedley 	 Ph.D.Thesis 	 3-19

3.6 	Application Modules

Application Modules are software components that are external to the feature

modeller but add functionality to the system as a whole. Modules can be stand alone

utilising ACIS functionality to produce solid models, or they can be interfaced to the

feature modeller to provide support functionality. One module is completely user

definable. The following modules are part of FeatureM: Volume Modelling, 2D

Contour Modelling (Sketcher), 3D Sheet Metal Modelling, User Defined. The

combination of the 2D Contour Modelling Module and some of the pure Volume

Modelling functions associated with generation of sheet and wire bodies are useful in

the implementation of swept geometry features.

3.7 	Feature Modeller

3.7.1 	Architecture

FeatureM is a full open architecture general purpose feature modeller. Features are

not restrained to merely representing form but may represent any piece of

information (limited only by the allowable parameter types provided for features)

that the user would wish to support in a workpiece oriented data structure. This

capability helps the development of product modelling techniques and the subsequent

integration benefits that are a natural byproduct of supporting a more complete

information set than is defined by form alone.

All feature template definitions that form the library from which users create

instances to build a model are defined externally in a file. The procedures that

represent the semantics of the feature are also defined externally in a file. MCL+

forms the language used for both template and procedure definition. The system is

very strongly oriented to the development of user defined features through this

mechanism.

A.G. Pedley 	 Ph.D. Thesis 	 3-20

A single FeureM model may consist of many workpiece models all of which may

or may not produce geometry. A form feature generally produces a volume which is

integrated with the rest of the model by a Boolean operation. Certain from features

do not have a volume associated with themselves but produce a volumetric result by

acting locally on the BREP ACIS model. Such features are fillets / rounds, and

chamfers. Previously defined ACTS bodies may be integrated with features in the

model. Such bodies may form the base geometry, be added or subtracted, but their

geometry cannot be changed parametrically. Features that are defined parametrically

may have any parameter value changed at any time. Unusually when compared to

parametric BREP models, this is equally applicable to features deep in the tree where

topological changes can cause difficulties. Features are positioned using coordinate

system reference frames. Features may be referenced to any other that exists before it

in the feature tree, and features may be grouped. Special positioning features are used

to locate one feature relative to topological entities rather than the workpiece

coordinate system. This enables features to be located with respect to faces and

edges. This provides more advanced functionality than general parametric modellers

because not only position but attitude may be controlled together or independently.

The Feature Modeller communicates with ACIS through an API, Figure 3.8.

Figure 3.8 Feature Modeller - ACIS Communication

A.G. Pedley 	 PhD Thesis 	 3-21

There are external parts corresponding to the definition of the feature templates and

the control and build procedures which are implemented in MCL+. The internal part

consists of the internal representation of the feature catalogue (parsed from the

external library), the callback procedures for build and control, and the workpiece,

feature and entity classes which act through the ACIS API. The Feature Modeller is

divided in two main components built using the MCL+ and C++ languages and

utilising ACIS through its API: the Kernel, and the Feature Template Administrator,

Figure 3.9.

Feature Modeller

Kernel 	 Feature Template
Administrator

Save/Load Model
Manipulation

Interpreter 	Control
Procedures

Dependency Model 	Template Feature Build
Administration Interogation 	Builder Call Back

Procedures

Features.txt

MCL+

C++

ACIS - API

Figure 3.9 Feature Modeller Software Components

Kernel functionality is associated with model management, the Feature Template

Administrator is concerned with providing the internal representation of the feature

library and associating the build and control procedures defined externally with the

internal call backs.

The kernel does not concern itself with the definition of features merely the

instantiation of an implicit representation to create an explicit entity which can be

added to, and manipulated within, the model data structure. The kernel functions

build up the basic ability to generate 3D models by combining explicit instances of

features.

A.G. Pedley 	 Ph.D. Thesis 	 3-22

The Feature Template Administrator interprets the external MCL+ feature template

definitions building an internal data structure. Any procedures for build and control

are loaded into the MCL+ data structure. The MCL+ procedures are associated with

the calls in the internal implicit feature definitions.

ACTS the geometric solid modelling engine has been used through its API

(Application Procedure Interface). The connection of MCL+ and the ACIS API is

made by C++ function calls.

The internal representation of the workpieces, features and parameters is made by a

class structure, Figure 3.10. This utilises the ACTS User Class so that all additions for

part of the ACTS data structure and are therefore included in the save, restore, roll

back and roll forward mechanisms. A simple link class, EntityKon, is used between

the ACTS User Class and the feature modeller classes. This provides for

differentiation of classes within the ACTS world.

ACIS User

EntityKon 	WORKPIECE
CLASS USES

-

P
Model

Geometry

FEATURE
CLASS

Model
Fea

Geometry

PARAMETER
CLASS

Param Info
FeePar

VaI/Formula

Figure 3.10 Feature Modeller Internal Class Structure

The data structure employed to support the feature model structure is one of linked

lists. A model must consist of at least one workpiece producing a geometric result.

A.G. Pedley 	 Ph.D Thesis 	 3-23

Each workpiece will consist of more than one featiire, and each feature will have

more than one parameter. The Wop and Fea classes provide the management

functionality such as creation, deletion, determining status, listing, unique identifiers,

next pointer, feature pointer, etc. The parameter class is used to support the parameter

values and control methods. The class structure has been developed in order to allow

extension and efficient use.

FeatureM models consists of one or more workpieces. Each workpiece forms an

element of a list, with a pointer to the next. All features are contained in lists, one for

each workpiece. Similarly, each feature has a list of parameters. Features may be

grouped creating lists with sub-lists. This structure is shown in Figure 3.11.

	

Wxioeoe 	aiIxk 	blerdftue 	 tatue

M_ 	ttr 	paTeS r 	 paaTas rd

base 	
synbd OP 	first

geom.,

OStxxiy 	 ZRF2

POSbdy POStxxIy

POStxxIy

Figure 3.11 Feature Model Data Structure

This structure may be represented as a tree. The tree structure of workpieces defining

form feature models capture the design history of the component, Figure 3.12. When

a feature returns a volume on evaluation this is combined with the rest of the model

generated from the previous part of the tree by one of the Boolean operators of union

or difference. The parts of the tree representing a group of features is traversed in the

order that each feature was put into the group. Group features offer a major

advantage to the user because the whole group of features can be moved, copied

positioned or oriented together, rather than individually. The first feature in a

A.G. Pedley 	 Ph.D. Thesis 	 3-24

workpiece representing 'a physical component describes the base geometry, or root, to

which all other features are added, subtracted or locally manipulate the current state

of the model.

Workp iece

U Base Geometry

Features

Figure 3.12 Workpiece Feature Tree Structure

3.7.2 	Kernel

The kernel functionality is associated with the creation and maintenance of the model

data structure. The kernel handles all interactions with the feature model creating

explicit instances of the implicit library definitions. All coordinate systems are

maintained by the kernel and therefore positioning of features. The important

functions of saving and restoring feature models are also performed by the kernel.

3.7.2.1 	Save I Restore

FeatureM models consist not only of workpiece data structures but of other elements

that the user uses to define the working environment: layouts, views, coordinate

systems. It is necessary to be able to Save / Restore the combined tree structure,

shown in Figure 3.13.

A.G. Pedley 	 Ph.D. Thesis 	 3-25

ureM Model] 	
I Coordinate

Systems

	

Lcsl 	I
Lcs2 __

	

Layouts 	
Views

I I 1 Viewl I

	

Layoutl 	E view2J

	

out 2 	

View

w1 I

	

Vw 2 	

Parameters

	

ature!] 	
r 	Par I

	

Fe al 	
Par2

	

Fea2 	

Parametersi

Workpieces

	

Twopi 	 [P ar 1

Par2

I Parameters]

lFeatures 	r 	Pan
Par 2

1 Parameters]

F— 'Pari

Lr2

Figure 3.13 Combined Model Structure

The Save / Restore function uses a textual method to describe the workpiece, feature,

and parameter tree structure. A more problematic part of the save / restore

mechanism is to maintain object identities to topological elements on restoration.

Such topological elements are edges which may be rounded / filleted, chamfered or

swept faces. The mechanism assumes that when ACIS rebuilds a model that it does

so in exactly the same manner and that the topological identifiers are the same. To

date experience has shown this to be the case. As a safeguard the ACIS BREP model

of the resultant geometry is also stored inside the save file. This would allow exact

matching of the new topology with the old, and hence derivation of new pointers

from old. The feature library is not stored in the save file.

A.G. Pedley 	 Ph.D. Thesis 	 3-26

3.7.2.2 	Dependency Administration

The Dependency Administration module provides the management functionality of

the kernel in order to maintain a consistent model. Dependency Administration is

required in the following areas: model tree data structure, coordinate system

maintenance, parameter setting, use of formulae in parameters, persistent -object

identity and error handling.

3.7.2.2.1 	Model Tree Maintenance

The tree data structure described in section 3.7.1 requires managing to enable the

user to edit it without causing inconsistencies.

Naming conventions require that all names are unique for workpieces and for

features- within a workpiece. A feature is not only identified by its name but that of

the workpiece to which it belongs. Therefore the tuple is unique even if features in

different workpieces have the same names. Management of renaming of workpieces

and features is governed by the system.

The order of evaluation of features effects both the geometry created due to the

Boolean operations, and entity existence in the model. It makes no sense to define

parameters which point to entities that do not exist at that point in the model

evaluation. Similarly, it is a nonsense to define a positioning feature after the feature

that it is supposed to position. Reordering of the features is possible but only by

moving them to the end of the feature list. This may be done many times to produce

the result that is desired. Maintenance of the feature lists is also performed when the

base geometry is exchanged.

When a feature is instanced from the library it is added to the feature tree in its

implicit form. Only when the user instantiates all parameters or accepts all default

values does the feature become explicit.

A.G. Pedley 	 Ph.D.. Thesis 	 3-27

Optimisation parameters may be set so that only part of the model is evaluated at

each regeneration. This is sensible for large models where modifications occur in

localised areas. Effectively part of the tree is saved as a body, the remainder of the

feature tree being evaluated with the new, pseudo base feature.

3.7.2.2.2 	Coordinate System Maintenance

The Feature Modelling System uses a number of different coordinate systems:

World Coordinate System

World Coordinates define three dimensional space into which all objects are

positioned. It is the base coordinate system to which all other coordinate systems

are referenced.

Body Coordinate System

Each body that ACIS produces has its own coordinate system. A body is

positioned and oriented with respect to World Coordinates by applying a

transform relative to the World Coordinate System. This transform is an attribute

of the body. A vector or position that is derived in Body Coordinates will maintain

its direction or position relative to the body under transformation of the body.

Positions and vectors may be easily converted from one coordinate system space

to another. For example,

World Position = Body Position * Body Transform 	 (3.1)

Body Vector = World Vector * Inverse (Body Transform) 	 (3.2)

Workpiece Coordinate System

A workpiece gets its coordinate system from its base feature. Although ACIS

produces the body of the base feature it is usual and desirable that the workpiece

coordinate system is different from the body coordinate system. This provides the

user with the ability to position the body of the workpiece relative to its

A.G. Pedley 	 Ph.D , Thesis 	 3-28

coordinate system origin. A workpiece, via its base feature has an attribute

transform which enables easy conversion from one coordinate space to another:

World Position = Workpiece Position * Workpiece Transform 	 (3.3)

Workpiece Position = World Position * Inverse (Workpiece Transform) 	(3.4)

Note that the position and orientation parameters of the workpiece are defined in

World Coordinates.

Feature Coordinate System

Each feature has a coordinate system origin. The size parameters of the feature are

developed in this coordinate system. The position and orientation of the feature

coordinate system origin is with respect to the workpiece coordinate system; the

position and orientation of the feature will remain invariant under transformation

of the workpiece, which is desirable. Each feature has a transform attribute.

Conversion between feature and world coordinates is as follows:

World Position = 	Feature Position *

Feature Transform *

Workpiece Transform 	 (3.5)

Feature Position = 	World Position *

Inverse (Workpiece Transform) *

Inverse (Feature Transform) 	 (3.6)

Note that the position and orientation parameters of the feature are defined in

Workpiece Coordinates.

Local Coordinate System

The Local Coordinate System (LCS) or Working Coordinate System is a movable

frame of reference. The user is provided, through the GUI, with many interactive

methods for positioning and orienting the LCS. Further functions are provided to

enable the user to snap a Feature Coordinate System origin to the LCS (either

A.G. Pedley 	 Ph.D..Thesis 	 3-29

position or orientation only, or both). Similarly the LCS may be snapped to the

Feature Coordinate System origin. This provides the user with a very intuitive and

simple method of locating features in space and visualising how they are defined.

These coordinate systems are shown in Figure 3.14.

L
(1) World 	

y
z

(2)Body 	 Ày
Workpiece

2 Feature 	 ______

Local (5)

Y

z

Figure 3.14 Different Types Of Coordinate Systems

Using this simple method of conversion from one coordinate space to World

Coordinates it is then possible to convert to any other coordinate space. ACIS

provides built in functionality for transform manipulation.

3.7.2.2.3 	Attribute Maintenance

The public parameters of the class definitions of workpieces and features are

available in MCL+ as attributes of the corresponding type definitions. The

consistency of these attributes is maintained by the kernel.

Workpiece attributes are:

A.G. Pedley 	 Ph.D..Thesis 	 3-30

Name, Body, IsValid, Transform, Type, Kind; FuliName, Ident, LinAttrib,

hasColour, Colour.

Feature attributes are:

Name, Template, Body, Parameters, Workpiece, Feature Type, Faces,

Faces Exclusive, Info List, Info Text, Transform, kind, FuilName, Ident.-

3.7.2.2.4 	Parameter Maintenance

A most important function of the Kernel is to allow setting of parameters to new

values. It is important that values of the correct type are allocated. The kernel checks

this automatically. Parameters may have access rights set to read only. In such

circumstances editing of the parameter value is not possible. It is also possible to

"freeze" a feature, which disables any editing function for that feature. Features that

represent standard items such as threaded holes have geometric sizes governed by

one or two parameters, M8 for screw type and Long for depth of pilot hole. The

physical dimensions required to generate the body are calculated and stored as

parameters of the feature. The kernel enables a feature's own control and build

procedures to update its own parameters. This can cause a problem of recursion

because setting a parameter's value invalidates the parameter and feature. The kernel

ensures that those parameters that are set from within the same feature's control

procedures do not invalidate it. Hence, recursion cannot occur. If features are

working in pairs and recursion does take place this is limited to a certain number of

iterations. The kernel knows if a parameter has been evaluated or not in a model

regeneration since the feature was set invalid.

Another important task is that of maintaining object pointers. Pointers to topologic

entities in the geometric model will be discussed in section 3.7.2.2.5. because they

pose special problems; object identity is not inherently persistent. Pointers to other

features in the tree, within the same workpiece, or in another, are maintained. These

pointers are used by features to indicate a reference to another feature other than its

A.G. Pedley 	 Ph.D. Thesis 	 3-31

own workpiece, to point the next feature in the list, to create group features and to

create related pairs. If features are deleted then the pointers must be reset. The

pointers must be carefully treated upon reordering of features and copying.

3.7.2.2.5 	Formulae

It is possible to define a parameter with a formula and assign this directly in the

property sheet. This is possible because the value of the parameter class is always

stored as a string. The string is parsed to define whether it is a value (real, vector,

position) or a statement that can be evaluated.

For example, equation 3.7 calculates the depth of a hole using its diameter.

h1 = 	* 2 	 (3.7)

f + 	parameter name -_diameter 	 I
current feature or feature identifier I
current workpiece or workpiece identifier

depth parameter is assigned formula

The language and syntax of a formula is that of MCL+. There is one exception: the #

sign. This is an extension to MCL+ and provides the user with a shortcut to define

the current workpiece and the current feature. If the # sign is not used then the full

name of the workpiece or feature must be given. Using position features is one

method of constraining features, formulae provide another.

If a formula cannot be parsed correctly, or a workpiece or feature that was referenced

no longer exists, the kernel, in order to maintain consistency, uses the last available

value. The formula remains within the parameter but is commented out. It is,

therefore, relatively easy to develop.

As with the ordering of features in the tree, ordering of parameters is also crucial

when formulae are used. Parameters are said to be independent if they do not have

formulae that calculate their values from other parameters in the feature. If

A.G. Pedley 	 Ph.D. Thesis 	 3-32

parameters are calculated from other parameters in the feature they are said to be

dependent. The order of the parameter list governs the order of evaluation of

formulae. If there is a sequence of related dependent parameters before an

independent parameter occurs, a once through iteration will not produce the desired

result. The system iterates until all values stabilise. If a loop is generated by the

formulae, the system sets a limit for the number of iterations. The last generated

values are used.

Consider the example shown in Figure 3.15.

Parameter List:

x =2* y
y=2*z

Z 	 z20

A
Figure 3.15 Dependent Parameters

Original values:

x = 30
y = 20
z = 10

First iteration through parameter list after z is set to 20:

x = 40
y = 40
z = 20

Second iteration through parameter list provides the desired result:

x = 80
y = 40
z = 20

A.G. Pedley 	 Ph.D.Thesis 	 3-33

	

3.7.2.2.6 	Persistent Object Identity

A special mechanism has been developed to maintain persistent object identity for

topological elements in the geometric model. This is necessary because after every

generation (addition of new feature, change of parameter value, feature deletion)

ACTS creates a new model deleting the old one. Hence, pointers to the entities, in the

old model do not point to anything and object identity is lost.

Instead of storing just a pointer to a topological entity as a parameter, a description

that allows the entity to be found from the elements that it is related to is also stored.

In some circumstances such as optimised partial rebuilds and the use of local

operations, ACIS object identity is maintained. If the ACTS object identity cannot be

found attributes such as the feature or features which were used to create the faces,

the faces that created the edges, the edges that created the vertices, are used by

functions to establish identity. These functions can be likened to a small Expert

System. This mechanism is transparent to the user, but is subject to limitations

particularly when significant changes in topology take place. Providing improved

functionality is a subject of on going work.

	

3.7.2.2.7 	Error Handling

Errors fall into two categories: trapped and untrapped.

Untrapped errors at the C++ level can be catastrophic generally causing segmentation

faults and system failure. These should not be allowed to occur in system

developments. However, software, like the programmers who write it, is not perfect

and untrapped errors can occur. Monitoring of instructions (writing a copy of the

instructions to a file) occurs when a Notestate is called in the Input Decoder. The

monitor file is an ASCII file which can be edited to remove the problem command. It

is in MCL+ format and can be executed by the interpreter, regenerating the model.

A.G. Pedley 	 Ph.D.Thesis 	 3-34

This provides a recovery path but does not lessen the need to develop quality robust

software. User Defined Functionality is programmed in MCL+. Untrapped errors in

MCL+ code do not cause system failure, the MCL+ function merely fails to produce

the desired result. If this occurs in a procedure that forms part of a feature's control

routines the kernel recognises that the routine has not terminated correctly,

suppresses the feature and stops model regeneration.

Trapped errors in MCL+ and C++ produce controlled error messages via SGUI and

NLS. The kernel handles the errors in different ways. The system can be made to

rollback to the previous state of the system. In complex feature definitions where

invalidity may be remedied by changing one of a choice of parameters it is not

desirable to rollback. In this case the system can be forced to suppress the feature.

Rollback does not occur, therefore all (even problem) parameter values are contained

in the feature. The user can then adjust other parameter values to eliminate

inconsistencies, unsuppress the feature and regenerate the model to a successful

outcome.

3.7.2.3 	Model Manipulation

The functionality provided by the kernel to enable editing the model has been

discussed in Section 3.7.2.2 from the perspective of maintaining the consistency of

the model. These administrative tasks are performed internally within the kernel.

Interface functions must be provided that exist at the MCL+ level to enable the user

to manipulate the model from outside the kernel, i.e. via the user interface. The

property sheet shown in Figure 3.16 is managed dynamically and shows the

administration information used by the kernel and all parameter values.

Features may be manipulated directly via MCL+ programming statements. Functions

may be called to manipulate features via GUI buttons. Another way to manipulate a

feature is via a property sheet which is the typical method for feature modelling

systems. It is less intuitive than working graphically but is necessary for those

A.G. Pedley 	 Ph.D.. Thesis 	 3-35

parameters that have no obvious graphical sign (and are not common to all features).

The feature that appears in the property sheet is known as the active feature (to avoid

confusion with the pre-selected feature). Note that activating a feature also activates

the workpiece that it belongs to. Any commands called from the property sheet act on

the active feature visibly displayed in it. For other command calls the active feature is

used by default.

Feature properties

fj
I-Part 	0-bI211I 	(block) [70 	on; valid full

formula

eJ___

pos 	 I000

originJ

Y -1 	 54

IZI 	5_3

xl 	 fJ4S

- _j -

yayis 	!13)1

Ii

Figure 3.16 Feature Property Sheet

The following functionality is provided for workpieces:

Create, Assign variable to, Select, Copy (as workpiece), Copy (body of

workpiece), Rename, Delete, Transfer a feature from one workpiece to

another, Swap feature positions in workpiece, Generate the workpiece. Save /

Restore. (individual workpieces as well as complete models)

The following functionality is provided for features:

Create, Assign variable to, Select, Copy (as feature), Copy (body of feature),

Snap Lcs to feature, Snap feature to Lcs, Delete, Rename, Suppress, Fix, Mode

(model, symbolic, combined), Define alias, Show Body.

A.G. Pedley 	 Ph.D.. Thesis 	 3-36

The following functionality is provided for parameters:

Set value, Set rank, Define alias, Copy (as parameter value), Copy (out body of

parameter)

These functions are fully discussed in [SIS95a] and [SIS95b].

Normally the attributes of a feature or workpiece are read only so that the kernel can

maintain consistency of the model. The transform attribute, however, can be set by

the user. This provides a very efficient way of setting position, orientation, or both,

of a workpiece or feature. A transform is a defined type in MCL+ therefore it is

impossible to create an invalid matrix. It has been shown that transforms provide an

easy means to move between different parameter spaces and therefore of controlling

features from the MCL+ programming level. The user may elect to set the parameters

of a feature directly (position, wx, wy, wz - the rotations about the x, y, and z World

Coordinate axes) but the rotation angles are difficult to calculate. The user has the

option of viewing the direction vectors of the rotation matrix. These are read only for

consistency therefore creating a valid transform and assigning it is the way to work

with the direction vectors. However using the LCS and snapping the Feature

Coordinate System to the LCS is a very simple and highly efficient method of setting

a feature's transform. The system automatically converts the from the LCS to

Workpiece or reference feature coordinates.

3.7.2.4 	Model Interrogation

Interface functions must be provided at the MCL+ level to enable the user to access

information contained within the model from outside the kernel, i.e. via the user

interface.

The following functionality is provided for workpieces:

List all workpieces, Print workpiece.

A.G. Pedley 	 Ph.D. Thesis 	 3-37

The following functionality is provided for features:

List all features, List all invalid features, List all features that created a face,

List all formulae, Get Alias, Move, Rotate, Transform

The following functionality is provided for parameters:

Get value, Get value (list of possible objects subject to identity maintenance),

Get Info, Get parameter type, Get alias

These functions are fully discussed in [STR95a] and [STR95b].

The workpiece and feature class attributes that are maintained consistently by the

dependency administration module can be easily accessed from MCL+. The model

interrogation functions provide accessibility to all information stored in the model: a

prerequisite for open systems architectures.

3.7.3 	Feature Template Administration

The Feature Template Administrator contains the mechanisms to build an internal

representation of the feature templates by parsing the descriptions defined in the

external library. The internal descriptions can then be called from the kernel. The

build and control procedures also defined externally to the system have to be

correctly associated with the callbacks defined in the templates.

3.7.3.1 	Interpreter

All features available to the feature modeller, whether system developed or user

defined are described in a series of external files. The contents of these files will be

described in chapter 4. The interpreter reads these files during the system start up, or

when requested to do so. A template and its build and control procedures can be

defined and loaded into the feature modeller at any time. Naturally they cannot be

A.G. Pedley 	 Ph.D Thesis 	 3-38

used before they are loaded. Any syntactic errors in the template definition and the

build and control procedures are detected at this stage. Any defective definitions or

procedures will not be loaded or be accessible by the kernel.

3.7.3.2 	Template Builder

The Template Builder takes the valid template definitions parsed by the interpreter

and builds an internal representation. The build and control procedures are also

loaded into the MCL+ table. The Template Builder associates the calls defined in the

template with the relevant procedures. These procedures provide the callbacks to

ACTS to create the solid bodies of the features.

MCL+ allows procedures to be overwritten. This does not cause potential problems

for the build and control procedures because they do not store data. They take data

stored in the parameter definitions and do something with the data or to the system. It

is undesirable to overwrite template definitions because features that exist in the

model may no longer have a valid definition. The Template Builder does not allow

the user to overwrite templates for consistency. Problems can be caused by users

changing feature template definitions and loading them at system start-up after files

have been saved with features from previous definitions in them. In such cases,

different algorithms must be used in the build and control procedures. Often it is

better to name the modified template differently increasing the number of features in

the library.

3.7.33 	Build and Control Procedures

The build and control procedures are written in MCL+.

Only features have build procedures. The build procedures create the objects that the

feature modelling kernel uses to generate the models. In the case of form features the

A.G. Pedley 	 Ph.D. Thesis 	 3-39

build procedures would return either the body of the feature to be integrated with the

rest of the model, or the symbolic (independent) representation.

Both features and parameters have control procedures.

The feature control procedures are called once only: when the feature is created, and

when the feature is deleted. These procedures give the user the ability to perform

house keeping operations for the feature. For instance, when one feature is created it

might be desirable to instance a partner feature at the same time. Similarly, when one

feature is deleted that has a partner it sensible to delete the partner as well.

The parameter control procedures are used to modify the feature by allowing

procedures to be called when a parameter has its value changed, or when a parameter

requires a value but the user has not set one (and no default exists). For example, a

slot feature may be straight or form a circular arc. Rather than use separate feature

template definitions it is possible to define a parameter that indicates the form. On

setting of this parameter it is desirable to change how the feature is defined: a curved

slot has radius and interior angle parameters, a straight slot has a length parameter. In

this case the form control procedure is used to set the visibility of parameters. By

contrast, if the user has not set a value and no default exists, a procedure may be

developed to calculate the parameter value depending on other parameters, or the

wider state of the model. The parameter is said to need a value.

The use of build and control procedures will be described in more detail in chapter 4.

3.8 	Chapter Summary

In this chapter the feature modelling system, FeatureM, which forms the baseline for

the developments in chapters 4 and 5, has been described. The system consists of five

major software components: the geometric kernel provided by the BREP modeller

ACS, the interpreted language MCL+ used for user defined functionality, the GUI

that can be controlled by the user with MCL+ commands, application modules that

provide associated functionality such as 2D sketching, and the feature modeller itself.

A.G. Pedley 	 Ph.D. Thesis 	 3-40

In the next chapter (chapter 4) the methods used to enable user definition of features

will be described in detail. These techniques will be developed to enable definition

features with extrinsically defined form, improved control of the GUI and better

feature parameter validation.

A.G. Pedley 	 Ph.D.Thesis 	 3-41

Chapter 4

User Defined Feature

Definition

401 	Introduction

4.1.1 	Chapter Overview

Chapters 1 and 2 of this thesis have introduced feature modelling technology as an

aid to process integration and realisation of simultaneous engineering goals.

Problems affecting the commercial impact of feature modelling systems have been

stated. The feature modelling system which forms the baseline for the developments

presented in this chapter and in chapter 5 has been described in chapter 3. In this

chapter advances are reported which aim to address some of the problems that have

been detailed in chapter 1. Namely: representing features with neither implicit or

explicitly defined form (extrinsically defined form), providing enhanced GUI

support, and extending the methods for describing user defined features.

This chapter presents the needs for feature modelling systems to support more

complex geometry than 2V2D. Feature modelling systems to. date have predominantly

A.G. Pedley 	 Ph.D. Thesis 	 4-1

used catalogues of well defined features. Features where the topology, geometry and

constraints are predetermined, and are implicitly described in the feature library

template definition. The features are said to "know about" themselves. Such features

are typically formed from geometric modelling primitives, or are 2.51) in nature.

Many of the products that are desired to be produced have much less constrained

shape, being 3D in nature and are said to contain free form geometry. Formed

components, rather than machined are typical examples. The ability of a feature

modeller to represent such objects is highly desirable.

The general method of definition of user defined features, which was briefly

described in chapter 3, is presented in detail in this chapter. The general method of

definition' provides a baseline for development of features of extrinsically defined

form. Developments for two types of extrinsically defined features are described.

Non-parametric extrinsic features simply enable the inclusion and manipulation of

previously defined ACIS bodies in the feature model. Parametric extrinsic sweep

features enable ACIS objects to be swept and combined with the feature model.

These features may produce different results by editing the parameters. Enhanced

GUI support for features of both implicit and extrinsic form is provided by the use

origins ("handles") . The feature definition method is formally extended to provide

these advances for all user defined features.

4.1.2 	Chapter Structure

The introduction to chapter 4 forms section 4. 1, providing an overview of the chapter

and details its structure. Section 4.2 presents the needs for feature modelling systems

'The extension of the general feature template description method, investigation of the domain of

extrinsically defined features, and advancement of techniques using "handles" is the work of the

author. The general intrinsic feature description method described in sections 4.3 and 4.4 is the work

of the team.

A.G. Pedley 	 Ph.D. Thesis 	 4-2

to support features with extrinsically defined form. Section 4.3 describes the general

template definition method which forms the baseline. In section 4.4 an example is

presented of an implicitly defined form feature. These methods are contrasted with

those of an extrinsically defined non-parametric feature described in section 4.5.

Section 4.6 details the methods developed to represent extrinsically defined geometry

for parametric sweep features. Support for feature origins ("handles") is presented in

section 4.7. Enhanced GUI functionality has been developed which is applicable to

both implicitly and extrinsically defined features. An extension to the feature

template description method is presented in section 4.8 to enable the advances to be

applicable to both user defined and pre-defined features. A chapter summary is

provided in section 4.9.

4.2 	The Need To Model Features With
Extrinsically Defined Form

Features of extrinsically defined form are those features where the complete

description of the topologic and geometric elements, and their constraints, is not

prescribed in template definition or its methods. Such features allow previously

defined ACIS bodies to be combined with a feature model. Swept features where

either the base or the path are not fully described in the make function also have

extrinsically defined form. Volumes and surfaces created by sweeping are an

intuitive method of creating more complex shapes than 2'/2D, providing an

intermediate stage between traditional feature modelling approaches and fully

implementing free form surface functionality. If feature technology is to mature and

become a general purpose simultaneous engineering tool, methods must be

developed to support the definition and use of features of more complex form.

Customer driven demand for manufactured products has resulted in pressures to

increase quality, reduce cost, provide greater diversity and reduce environmental

impact. These demands have perhaps had their greatest influence in the automotive

industry, though they are applicable to all branches of manufacturing. The modelling

A.G. Pedley 	 Ph.D. Thesis 	 4-3

and subsequent downstream use of free form geometry has increased dramatically in

recent years. Increased use of complex one piece plastic parts for interiors, more

aerodynamic and better fitting exteriors, a plethora of model derivatives and

elimination of hand finishing are just some of the reasons. Components that meet

these criteria are mostly manufactured by forming processes such as sheet metal

pressing, plastic injection moulding, forging and casting. Although the designer

thinks and designs the product, the task of designing and manufacturing the tooling

to make the product is as important, if not more so. The emphasis on machining is

transferred from the product to the tooling that is used to make the components.

In products manufactured by forming processes the component surfaces in the

tooling will generally be different than those of the design because of factors such as

shrinkage, component removal, spring back and the use of multistage tooling. The

design of the tool is a complex task. Tools frequently consist of moving parts to

enable the part to be removed where undercuts exist. The mechanics of these parts

must be designed and modelled. The power systems (mechanical, hydraulic,

pneumatic) require access as do heating and cooling passages. How such tools are

designed is not addressed in this thesis. It is assumed that the designer knows what he

wants to model. The feature based design system described in this thesis is to be used

as a detail design tool and not as a knowledge based design engineering system (such

as ICADTM) and analysis tool. However, through the use of features design intent is

recorded, and formulae allow a limited amount of knowledge to be represented.

When dealing with complex 3D forms it is virtually impossible in 2D, and is still

difficult in 3D surface modellers, to layout all the ancillary features (cooling passages

and the like) of the tooling so that they do not conflict with the component surface

ftrnctionality. A solid model is ideally suited for such applications. A feature

modeller is seen as a superior tool for generating a solid model and should therefore

provide support for free form features. The unconstrained nature of free form objects

indicates that the topology and geometry cannot be defined implicitly in the feature

template. The "how" may be defined, but not the result. For example, this form (face)

is swept along this form (path) to produce this form (volume). The topology and

A.G. Pedley 	 Ph.D Thesis 	 4-4

geometry of the resulting volume is completely dependent on the topology and

geometry of the construction elements which are not implicitly defined in the

template.

To date it is theoretically possible to work fully with synthetic geometries in solid

modellers, but as significant performance disadvantages make interactive modelling

virtually impossible, this is not a chosen solution. [F0L84] cites calculating surface /

surface intersections as one reason. Stability of Boolean operations, stitching surfaces

together to form solid bodies, model precision, and calculating silhouette lines are

general practical problems.

Sweeping of one shape along a path (vector or curve sequence) or around an axis

provides an intuitive and powerful way of generating complex geometry in a solid

modeller. The geometry engine, ACS, makes some restrictions. Splines that are used

to define a sweep path must be planar. Furthermore, splines that form the base

contour or surface being swept must be planar in all cases except for rigid sweeps

along a path or vector.

To date FeatureM has no direct method for the user to generate spline curves or

surfaces. It is relatively easy to generate synthetic curves and surfaces by performing

model operations, but such methods are generally of little use to define required

geometric elements. Importing such items from a surface modeller is a natural desire,

particularly as the performance in generating the geometry interactively is so much

better. 2D geometry is frequently manipulated in a sketcher because of the relative

ease of defining constraints and more importantly, of solving them. Sweep operations

make the most flexible and powerful use of geometry from any source, going some

way towards full manipulation and use of free form geometry in feature based solid

modellers.

Import of fixed (non-parametric) geometry into the feature modeller is of importance

for two reasons:

A.G. Pedley 	 Ph.D. Thesis 	 4-5

• There are many ACIS models not generated by the feature modeller. This allows

use of legacy solid models within the feature modeller and a general re-use of

existing data.

• To date there are no fully implemented and accepted standards for the exchange of

feature models. Any exchange with other parametric or feature modelling systems

must be of pure geometry. Exchange of pure geometry is governed by a number of

existing standards: VDA [VDA], IGES [IGES], STEP [STEP].

For these reasons it is highly desirable that a general method of supporting non-

feature generated volumetric and geometric elements within the feature model data

structure is developed. Implementation of sweep functionality is desirable because of

the flexibility and power in creating complex geometry in a feature based solid

modeller.

The non-implicitly defined nature of these features necessitate that significant

functionality is developed to aid the user to manipulate such objects within the

feature modelling environment.

4.3 	General Template Definition

4.3.1 	General

The MCL+ function Def Template is used to define a feature template. All features

forming the feature library use this method whether provided by the system or

defined by the user. DefTemplate has the following syntax:

mt DefTempiate (List feature, List parameters

The argument feature, defines the attributes and method types that are generic to all

features regardless of their parameters. The argument parameters defines the

A.G. Pedley 	 Ph.D. Thesis 	 4-6

different parameters that are associated with an individual feature. The value returned

by the function call is 0 for unsuccessful definition and 1 for successful definition.

DefTemplate can only be called once in any session to define a particular feature.

Feature templates cannot be overwritten in the feature modeller. The definition is

created with a text editor and saved as a file. The file is read by the MCL+ interpreter

and the internal definition of the feature is created. Instances of the feature in the

model are created from the internal definition.

If any of the feature or parameter attributes are names of MCL+ procedures these

must also be developed and saved in a file. It is desirable to keep the definition of the

procedures separate from the definition of the template for two reasons.

Firstly, because MCL+ procedures can be over written but the template definitions

cannot, it is of practical use when developing user defined features. It is relatively

simple to define the template in terms of its attributes and parameters but much more

difficult to develop the methods (MCL+ procedures). Loading files of procedures

defining the methods is frequently done, overwriting the previous ones. This means

that the system does not have to be restarted after each modification.

Secondly, it provides a cleaner interface between the declaration of the feature

template and the methods which are used to generate the entity that is the feature.

The methods could be much more diverse than pure MCL+ programming. MCL+

may make calls to other systems, using completely different processing logic, which

is used to return the ACIS body of a form feature. This is a stage between purely

procedural and purely declarative techniques that greatly increase the flexibility and

hence applicability of the feature modeller.

A.G. Pedley 	 Ph.D..Thesis 	 4-7

4.3.2 	Generic Feature Template Definition

This part of the feature description is generic because all features defined in the

system require such a description to be prepared. This contrasts with the description

of the feature parameters which will be specific to that feature.

The list feature consists of eight strings:

feature =

name, alias, type, parent, make, symbol, if—created, if—deleted

where:

name 	the internal name of the template. The name must be unique. Note that

this is the generic name of the feature not the name of an individual

instance which will be created from this template and is uniquely

- 	identifiable in the model.

alias 	the internal name of the template may be given an alias. The alias is

seen in any user interface, but programming must use the internal

template name.

type 	the type of feature is specified as being one of:

BASE The root feature of a workpiece model. All other features act

with respect to this feature.

ADD Additive feature. The volume produced by this feature is

integrated into the rest of the model with a Boolean union

operation.

SUB Subtractive feature. The volume produced by this feature is

integrated into the rest of the model with a Boolean difference

operation.

LOC Local operation directly on the BREP model.

A.G. Pedley 	 Ph.D.Thesis 	 4-8

GRP Collection of features.

parent 	Declares a previously defined feature from which this feature may

inherit methods and parameters.

make 	This is the method that tells the modeller how the feature is to be

evaluated. For user defined features an MCL+ function name is

declared. In the case of a form feature of type BASE, ADD or SUB the

ACTS body defining the geometry is returned to be integrated in to the

model. Certain flags may be used instead of an MCL+ function name:

n 	indicates that the modeller should do nothing.

p 	indicates that a hard coded C++ function exists. This is of no use

for user defined features, but allows system developers the

option of tuning the pe-1 formance.

e 	indicates that the feature should inherit the method of the

parent.

This function is evaluated when the mode of the feature is set to model

or combined. It is called on each model generation (when the feature

is not suppressed), or when the graphical protocol is set to display

the ShowBody after any change in the feature's status or that of its

parameters, particularly value.

symbol 	This method works in exactly the same way as the make method

except that any bodies returned by the procedure are not integrated

into the rest of the model they are merely positioned in space.

This function is evaluated when the mode of the feature is set to

symbol or combined. It is called on each model generation (when the

feature is not suppressed), or when the graphical protocol is set to

A.G. Pedley 	 Ph.D.. Thesis 	 4-9

display the ShowBody after any change in the feature's status or that of

its parameters, particularly value.

if—created This is the method that tells the modeller what to do the first time the

feature is instanced from the library. For user defined features an

MCL+ function name is declared. The function is called only once per

instance on creation. The codes n, p and e may also be used as

previously described. It is used to perform complex initialisation of

the feature or related elements. The initialisation is user defined and

would otherwise not be known to the kernel (as setting of default

values are, but not references or pointers).

if deleted This is the attribute that tells the modeller what to do when the feature

is deleted from the model. For user defined features an MCL+

function name is declared. The function is called Ofli once per

instance on deletion. The codes n, p and e may also be used as

previously described. It is used to perform housekeeping operations

that are user defined and otherwise unknown to the kernel.

4.3.3 	Specific Feature Parameter Definition

Although the method of describing each parameter is the same, the differences in

number, type, and meaning of parameters make this part of the feature template

description unique to each feature in contrast to the generic part described in Section

4.3.2.

The list parameters consists of a series of sub-lists. Each sub-list describes one

parameter:

parameters =

{name, alias, type, access, if—needed, if—set, default }, . . , ..

where:

A.G. Pedley 	 Ph.D.. Thesis 	 4-10

name 	Is the internal system name of the parameter. It must be used in any

procedures and (to date) formulae that reference it.

alias 	The name of a parameter may be given an alias. However this is only

used in the GUI to present this to the user. The alias may not be used

in programming of procedures or formulae.

type 	The MCL+ data type of the parameter. The following data types are

supported:

mt 	integer value.

real 	real value.

String 	string value.

Position position in Cartesian coordinates.

Vector 	vector or unitvector.

List list containing elements of the same type. A restriction on

the normal usage of a list.

Fea pointer to a Feature

Ent pointer to any Face, Edge or Vertex in a workpiece or

ACIS Body.

Body pointer to any ACIS Body but not a workpiece Body.

Face pointer to any Face in a workpiece or ACIS Body.

Edge pointer to any Edge in a workpiece or AdS Body.

Vertex pointer to any Vertex in a workpiece or ACIS Body.

access 	this sets the visibility of the parameter in the GUI. Where:

A.G. Pedley Ph.D..Thesis 	 4-11

w 	 read and write.

r 	 read only.

n 	 is not visible.

The access attribute may be set by the user via MCL+ programming.

In the property sheet the parameter names and values are shown

clearly for read/write and may be set by the user.

The names and values are shown in half tone to indicate read only

status; these values may not be set through the GUI or by direct

programming externally to a feature's methods. The kernel is able to

set read only parameters. This is desirable in such cases as the x, y and

z axis rotation matrix vectors which must be maintained in a

consistent state. Programming from within a feature's methods it is

also possible to set read only parameters. This is valuable for

representing numerical parameters in objects defined by or derived

from non-numerical codes.

Non-visible parameters are not present in the GUI property sheet and

caimot be set via the GUI or by programming outwith a feature's

methods. The parameters still exist however and may be set by the

kernel. This is useful where information should be hidden from the

user. For example both the rotation matrix vectors and the Euler

angles are maintained consistently by the kernel, however, it is

desirable to see only one set at once. Redundancy is a frequently

occurring example where a features methods maintain consistency. A

cone may be defined by its base diameter and height, or by its base

diameter and included angle, or by included angle and height. It is

desirable to show only one pair of parameters, and only one pair at a

time may be set for consistency.

A.G. Pedley 	 Ph.D. Thesis 	 4-12

Any parameter may have its access code changed by programming to

read/write after which the parameter value may be set.

if needed For User Defined Features this method defines the name of an MCL+

function. Alternatively, the n, p, e codes may be used as previously

described. This function is used to calculate a value for the parameter

if no value has been set, and no default value exists. It is a method of

deriving values for parameters independently from the make function.

if—set 	For User Defined Features this method defines the name of an MCL+

function. Alternatively, the n, p, e codes may be used as previously

described. This function is called immediately the user, either via the

GUI, or by programming, sets the value of the parameter. It is not

called if the parameter is set from within a features methods to avoid

rp'iircinn An emn1e nf its use is th set the 	 riehts of other

parameters inin the feature after a change in mode.

The if—set procedure should not be used for parameter validation.

Although the procedure appears ideal for this purpose its use as a

validation check can lead to problems, particularly in features with

many inter-related parameters, or where formulae are used.

default 	When a feature instance is created the values of the parameters are set

to the implicit values denoted by the predefined values in the template.

The user either accepts these, or sets new values, making an explicit

instance. For pointer attributes, when no default can be given, the

strings "---" or "@UNDEF" signify a NULL pointer.

A.G. Pedley 	 Ph.D.Thesis 	 4-13

4.4 	Feature Template Definition With
Implicitly Defined Form

Consider the block depicted in Figure 4.1. When ACIS creates such a body, the Body

Coordinate System is located at the centre of the block as shown.

Figure 4.1 Block Feature With Form Defined Implicitly In Template

The feature template definition for the block is given in Figure 4.2.

outcome = DefTemplate(

II name 	alias 	type parent 	make 	symbol if_deleted
II

if—created

{"block", 	", SS55l 	S___ ,
	 , 'I n " , SS 	, S•S 	}

II name alias type access 	if—set default
if—needed

x 1 , " - - - , " real ,, 	SSfl , " n", 'In", " 50 . 	}
y 1 " , " - - " , "real " , " W", jFt , SS n" , "50.0"

	

"Z1", SS___FI, 	 "w", 	 S500 	},

Figure 4.2 User Template Definition For A Block Feature

Additionally for features of type BASE, ADD, sua and GRP the system automatically

adds the parameters shown in Figure 4.3.

A.G. Pedley 	 Ph.D.Thesis 	 4-14

1/ name alias type access if set default
if—needed

 g" , " - -
	

, " Fe a" , "w" , 11 n neff ,

" @ tiN DE F" 	}
"p0 s " , " - -

-'i ,
" Position" , "w" , %%n"" , "0. 0 , 0. 0 , 0. 0

%%WX,f "real", "n", "n", %10 .011
	}

ss Wy,,, "S--", "real", "w", 11 n 11, flfl' "Q
U --- fl, "n", "00"

"Xa xis" , "- - -"
, "Vector", "r", "n" , "n", 0 . 0 , 0 . 0 , 0 .

SSyj5 'r" "0.0,0.0,0.0 	}
"n", "0.0, 0.0, 	} , --

"next", " 	
, " Fea" , , " @UNDEF"

Figure 4.3 Parameters Automatically Added To The Template Definition

The parameter g is aliased via NLS and is observed as reference. It holds a pointer to

a feature, other than the BASE feature, used as a reference for positioning and

orienting. The parameter pos contains the position of the feature. The parameters wx,

wy, and wz contain the Euler angles defining the orientation of the feature. The

orientation is also represented by the read only parameters Xaxis, Yaxis and

Zax is, the rotation matrix vectors. The parameters pos, wx, wy, w z, Xaxi s,

Yaxis and Zaxis are all defined with respect to the Workpiece Coordinate System or

the Feature Coordinate System referred to in the parameter g (reference). The

parameter next is used in group features to point to the next feature in the group.

The make function is shown in Figure 4.4. No parameter validation is performed for

clarity. It returns a body the shape of a block created by ACTS.

Within the feature modeller make functions, the coordinate system may be regarded

as being at the World Coordinate System origin. On returning from the make function

to the kernel, the origin of the coordinate system in the make function is transformed

with respect to the workpiece or reference feature and the parameters: pos, wx, wy,

As a consequence, if a body is moved from the origin in the make function it will

appear offset in the resultant model from the location indicted by the feature

parameters. In the example the Body Coordinate System of the block is not moved,

therefore it is identical to the Feature Coordinate System which is located and

oriented in the model with respect to the parameters: pos, wx, wy, wz. One must

be aware of the interaction of coordinate systems within the make functions.

A.G. Pedley 	 Ph.D.. Thesis 	 4-15

proc List make block (Fea this_fea_pointer, String this fea name

local real xl = GetParVal("xl", this tea pointer)
local real yl = GetParVal("yl", this _fea_pointer)
local real zl = GetParVal("zi", this_fea_pointer)
II get the values of the parameters defining the block

local Body block = Block(xl, yl, zi
II create the block with the ACTS Body Coordinate System origin

return {block}
II give the block to feature modelling kernel

end proc II make block

Figure 4.4 Block Feature make Function

Positioning the block accurately in the model is tedious because the user has always

to calculated the position of the centre with respect to the dimensions of the feature

and the rest of the model. This problem will be addressed with the use of origins

("handles") as described in section 4.7.

4.5 	Feature Template Definition With
Extrinsically Defined Non-Parameteric
Form

The purpose of this feature is to be able to integrate any previously existing ACIS

body within the feature model data structure and to combine its geometry with the

rest of the geometry created by evaluating the feature tree. The form of the feature is

said to be fixed, or non-parametric, because the form cannot be changed by, or within

the feature modeller. However, the position and orientation may be changed using

any of the techniques available to all features. The method uses the geometry of the

ACIS body to define the form and size of the feature and use the feature parameters

to position and orient the body instead of using its own transform.

The feature template is shown in Figure 4.5. The feature only has one user defined

parameter: Solid. The system automatically creates the parameters pos, wx, wy, wz,

etc. as detailed in Figure 4.3. This feature may be said to be a non-parametric feature

A.G. Pedley 	 Ph.D. Thesis 	 4-16

because the form and size of the feature cannot be changed by feature modelling

functionality.

outcome = DefTemplate(

II name alias 	type parent make 	symbol 	 if deleted
II 	 if created

- - , "BASE", 55--
, "make_np11 , "s ynibo 1_np", U

II name 	alias type access if—needed 	if—set 	default

{ {"Solid", "----", "Body", "w", 	"n", "ifsetnpsolid", "@UNDEF" } })

Figure 4.5 User Template Definition For A Non Parametric Form Feature

The feature modelling kernel treats parameters of type Body differently to other

pointer type parameters to objects such as Faces, Edges, Features, etc. Pointers to

objects other than Body can be regarded as true pointers because the objects remain

in their previous state, fully accessible in the browsers and via MCL+, selectable and

operable on. In contrast, when a feature body parameter pointer is assigned to point

to a body, the body can be said to be consumed by the feature. The body is no longer

in any data dictionary visible to the user, cannot be selected or operated on. The body

is only accessible via the feature parameter by the special function: CopyParSolid.

This creates a copy of the body.

An if—set function is used to set the feature transform to be that of the body. The

make function returns to the kernel a copy of the body. The copy of the body has no

transform applied. Its position and orientation being defined by the pos, WX, WY and

wz parameters of the feature with respect to the workpiece or reference feature. The

if—set function is shown in Figure 4.6 (without validation checking for clarity).

A.G. Pedley 	 Ph.D. Thesis 	 4-17

proc List if_set_np_solid (Fea this feaptr, String this fea name)

local Solidobj solid = CopyParSolid("Solid","",thisfeaptr,2)
1/ the body has its original transform with respect to
II the World Coordinate System

this fea ptr.Transf = solid.Transf
II feature gets position and orientation
II from solid relative to world coordinate system
II internally converted relative to
II workpiece or reference feature coordinate system

return 11

end proc

Figure 4.6 Non-Parametric Form Feature if—set Function

The make function is shown in Figure 4.7 (also without validation checking for

clarity).

proc List makenp (Fea this feaptr, String this fea name)

local SolidObj solid = CopyParSolid("Solid","",thisfeaptr,l)
II the body has the identity transform with respect to
II the Feature Coordinate System

return {solid}

end proc

Figure 4.7 Non-Parametric Form Feature make Function

In both the if set and make functions the body that is the actual parameter (pointer

to) of the feature is not changed. Instead, a copy of the body is made from the

parameter. In the if—set function the copy is made and the transform of the original

body is applied; this is with respect to world coordinates. The feature is assigned the

transform of the copied body. Internally the kernel converts this transform in world

coordinates to the correct position and orientation parameter values with respect to

the workpiece or reference feature coordinate systems. The Feature and Body

Coordinate system origins now coincide in world coordinate space. Therefore when

the feature model is generated, the geometry generated by the feature appears exactly

where the original body was located in space (World Coordinates). The user is now

free to position and orient the feature (and consequently) .body within the feature

A.G. Pedley 	 Ph.D.Thesis 	 4-18

model using any of the methods previously described. In particular the LcsToFea and

FeaToLcs functions work consistently.

This method is very flexible because any valid ACIS body, regardless of complexity,

can be integrated into the feature modelling structure. Thereafter the feature and its

geometry may be positioned and oriented freely as with all other features. Ease of

positioning and orienting is reliant on the relationship between the original Body and

its Coordinate System. The Body Coordinate System origin is positioned relative to

the geometry by ACIS. Where it is, is dependent upon the modelling operations and

how ACIS creates the fundamental building blocks. It is not necessary for the origin

to be within the body or on the surface of it, let alone at some useful point. Nor is it

necessary for the origin to be aligned with any edges or face normals. This is

perfectly sensible for objects such as a hemispherical shell where the body origin is

located at the centre point of the imaginary sphere. This can lead to difficulties in

locating and aligning the solid bodies of features because the user must locate and

align the feature origin when it is not easily known how it is related to the geometry.

The offset vector and angles can be calculated through the use of multiple coordinate

systems but it is tedious. This problem will be addressed in section 4.7.

4.6 	Feature Template Definition With
Extrinsically Defined Swept Form

4.6.1 	Requirements

Sweep functionality offers the designer the ability to create (semi-) free form objects

relatively simply in solid modellers. The different types of sweep operation and the

modifications that are possible to geometry through sweeping have been discussed in

chapter 2. Implementing sweep functions as features poses a number of problems:

A.G. Pedley 	 Ph.D. Thesis 	 4-19

Number of objects required.

Sweep functions require either:

one object which is swept using a vector, or spun about an axis, or,

two objects, one of which is swept along the other.

The variation in the number of objects raises several questions: If there is more

than one object, should both objects be contained within the same feature? If both

objects are supported within the same feature, how is one object positioned

relative to the other? If the objects are supported in different features how should

the relationship be maintained? Should the position of one object be dependent on

the other so as to maintain the same resultant body despite a change in position

and orientation of the independent object?

Type of objects.

There is a variety of objects which may be used validly with sweep functions:

• Sheet or lamina bodies (of nil volume) consisting of two faces (identical in

form and location), or single faces. Bodies consisting of single faces may be

double or single sided. Sweeping of a sheet or lamina body can produce an

independent volume after sweeping (generally desirable), or an open shell.

• Faces of bodies may be swept. A face sweeping operation makes local changes

to the underlying BREP model and does not produce an independent volume.

• Wire bodies consisting solely of edge sequences may be swept and may also

form the paths for other objects to be swept along. Sweeping a wire body

produces a sheet or lamina body.

The variety of object that may be swept gives rise to a number of questions:

Should these different types of objects be supported in a single feature family?

A.G. Pedley 	 Ph.D Thesis 	 4-20

What, if any validity checking is done? Should validity checking be performed on

the body(ies) forming the parameters and/or on the resultant body?

Source of objects.

The variety of objects discussed in point 2 may be generated from many sources:

• Non-lamina sheet bodies will generally be created by copying an existing face

and creating an independent body, or by importing from a surface modelling

system.

• Lamina bodies are typically created with the use of a sketcher. The sketcher is

not internal to the kernel and generally produces contours as closed wire

bodies.

• Open wire bodies may also be created using a sketcher or by copying an

existing edge, or edge sequence and creating an independent body.

• Faces may be pointed to directly for local sweep operations.

The following points must be considered: Must all objects be in the same

workpiece? Can all these sources of object be treated in the same way? Where

does the responsibility lie for covering a closed contour to create a lamina body,

hence producing a volume by sweeping?

Definition of other parameters

Positions and vectors are parameters of the sweep functions used to define the

sweep direction or spin axis. With respect to which coordinate system should

these be defined: World, Workpiece, Feature? If the swept object via its feature is

relocated or aligned, should the volume or sheet generated remain the same?

These three coordinate systems correspond to features that generate an

independent volume. Local sweeps of faces are more difficult because the face is

not contained within, or produced by, the sweep feature. It is independent,

A.G. Pedley 	 Ph.D. Thesis 	 4-21

therefore there is no coordinate system directly related to the face. Should a

coordinate system be defined that is related to the face? If so, how?

Creation of Positive Volumetric Bodies

It is important within the feature modelling system architecture to produce

positive solid volumes from sweeps with the exception of the specific

functionality detailed in point 6. Single sided faces when swept produce infinitely

thin semi-bounded shells like an open cardboard box. It would be extremely

problematic both for the user and the feature modeller to use such objects in an

effective manner. In order to create a volume either one side of a double sided

face, or one face of a sheet body consisting of two identical faces, must be swept.

Which side or which face that is swept determines if a positive or a negative body

is created. It is undesirable to create a negative body because of problems on

+I... 	 --h1
I11U..,I aLL'.Ji.t 1L1L 	 U.I.L4J. 	iIJ%J%..JL.

How can it be ensured that a positive volume is always generated by a sweep

feature?

Use of Non-Manifold Objects

As described in chapter 2 ACTS has the ability to perform Boolean operations with

semi-bounded objects. This functionality can be easily integrated into the feature

modeller. It provides a means to sculpt solid objects in a very efficient manner.

Faces and open contours can be used to remove volumes without the user having

to create a volume. In order to achieve this faces that are single sided must be

used Existing faces may be copied, but this does not provided very significant

benefits unless the face is made from spline geometry. The biggest advantage is

when an open contour is used as the swept object in a sweep operation to generate

a sheet body consisting of single sided faces. The sweep produces many faces

which bound part of space which can be subtracted from the model in a single

operation. The side of the sheet body where all the face normals point outwards

indicates space. The opposite side is defined to be solid and because of the semi-

A.G. Pedley 	 Ph.D. Thesis 	 4-22

bounded nature this extends to infinity. The semi-bounded solid creates one

restriction in ACIS however. No boundary edges of the sheet object may be

contained within the model being integrated, that is, the sheet object must

completely cut through the model, Figure 4.8.

Figure 4.8 Combining Swept Semi-Bounded Sheet Bodies In A Model

How can this functionality be supported within the feature modelling architecture?

The implementational solutions to the questions raised in the above points are

described in section 4.6.2.

4.6.2 	Implementation

With respect to the points discussed in Section 4.6.1, sweep functionality has been

implemented as follows:

1. Where more that one object is required to define a sweep feature, each object will

be supported as a separate feature. This is the case with a sweep of one object

A.G. Pedley 	 Ph.D.. Thesis 	 4-23

along another object, a face created from a 2D contour swept along a path formed

by a wire body created from a sequence of connected edges for instance. It is not

necessary that the path is planar, only that any spline segments in it are. The use of

two features allows each object to be positioned independently using the feature

parameters of pos and wx, wy, wz. To maintain consistency with sweep features

needing only one object (the face or contour that is swept), the swept object-rather

that the path object is made the reference object to maintain the relationship

between them. This is a bi-directional relationship. The swept feature has a

parameter which points to the path. The path feature has its reference set to point

to the swept feature. This means that if the position or orientation of the swept

feature (the base) is changed the position and orientation of the path will remain

the same relative to the base. Hence the same volumetric body (or sheet body) will

be generated, only located and aligned differently in the model. Changing the

position or orientation of the path, changes the shape of the resultant body.

2. The types of object that may be swept can be split into two categories:

Independent bodies that form sheet (or lamina) bodies, and wire bodies. The

result of sweeping produces an independent volumetric or sheet body which

may be added or subtracted from the model.

Topologic face elements of existing bodies. The result of sweeping produces

local changes in the BREP model.

Sweep features of the first category will be modelled as features of type BASE, ADD

or sua, with parameters of type BODY consuming the objects within the feature

as described in section 4.5. Sweep functions in the second category will be

modelled as features of type LOC, with parameters of type FACE denoting the face

pointed to in the same workpiece model.

Validity checking is performed to establish that for local sweep operations of

existing faces, the faces belong to the same workpiece as the sweep feature.

A.G. Pedley 	 Ph.D.. Thesis 	 4-24

Similarly that for sweeps that generate a fully bounded or semi-bounded volume

that the generating bodies are either sheet or wire bodies.

The advantage of using the parameter of type BODY for the independent (not part

of a workpiece model) objects is that they are all treated in the same way,

regardless of their source. Although the bodies are consumed by the feature as

described in section 4.5, they are treated in a more advanced manner because of

the need to aid positioning, orienting and, in the case of the sweep along a path,

the relative positioning of both features. This is described in section 4.7.3.

The feature modeller must be as consistent as possible in its treatment of features,

whether they are of implicitly defined topology and geometry or not. This means

that a feature's form should not be a function of its position or orientation in the

model, unless that is explicitly stated by the user (by using formulae or more

general nrg n-ron, n, in n\ Tn nm,1 or t1 of tin c' inn fl,- rota cnr e00t1 ,rac' 	n nn_. i-nm.l n
 .J,LULIIILIIIIb). III SJI..t*.'L I.LI(JL LIII..) La..' LII' '.I(..t.fl# J.'.JI £SL1.LL4IIO '.11 II'.JLL IIIIJJII.#ILIJ

defined topology and geometry, any position and direction parameters must be

defined in a coordinate system that is defined with respect to the object being

swept.

This is achieved relatively easily for sweeps where the object being swept is

contained within the feature and the object is independent of the rest of the model.

This is because the feature transform positions and orients the object being swept

so that any parameters can be defined in the Feature Coordinate System by

multiplying world values by the inverse transform before assigning to the feature.

For sweeps of existing faces that generate local operations on the model, features

of type LOC do not have a coordinate system associated with them. Therefore a

coordinate system is generated from the properties of the face. Parameters may

then be converted and stored as feature parameters in a coordinate system defined

by the face. The Face Coordinate System must be maintained every time the

feature is to be evaluated, parameters set, or read.

A.G. Pedley 	 Ph.D. Thesis 	 4-25

Sweep functions within ACIS may be generated with the following modifiers:

rigid, orthogonal, with twist, without draft, with straight draft, with curved draft,

as described in chapter 2. These are represented by string parameters indicating a

mode, the angles are described by reals. Sweeps with twist can only be performed

along a path which starts orthogonally to the swept object. Careful masking of the

property sheet is needed to allow access to parameters only when necessary.

The generation of negative bodies is not desirable in the feature modelling

environment because it does not coincide with the users view of the real world and

with general assumptions made in the kernel and the graphics. The make functions

control the returned bodies to ensure that they are positive. This involves checking

that either two identical faces exist in the sheet body or that the face is double

sided. For planar faces the face normal is easily obtainable. For non-planar faces

checking of the face normals at all vertices provides the best method of

determining the "sense" of the face with respect to the direction it is to be swept.

The evaluation of sweeping of faces containing undercuts is performed by ACIS.

Either a valid result is produced or an error generated.

A sweep feature by definition generates objects by sweeping. When faces (closed

contours) are swept they produce a volume in the context of this feature modelling

environment. Faces are created by sweeping an open contour. Sweeping an open

contour creates a set of single sided faces. The use of single sided semi-bounded

objects in the feature modeller makes sense only for subtraction operations. If the

feature is of type BASE or ADD, the set of faces is converted to double sided

which provide a body that can undergo Boolean operations and produce a valid, if

non-manifold, result. If the feature is of type SUB, an extra parameter is exposed

that indicates whether the feature should remain single sided or be double sided.

The user may reverse the set of faces to control which direction the face normal

points, therefore controlling which part of the model is retained.

A.G. Pedley 	 Ph.D Thesis 	 4-26

4.6.3 	Template Definition

The following general sweep functionality has been implemented:

Sweep of sheet or wire body along a vector path.

Sweep of sheet or wire body about an axis.

Sweep of sheet or wire body along a path defined by wire body.

Sweep of existing face along a vector path.

Sweep of existing face about an axis.

Sweep of existing face along a path defined by wire body.

These require the definition of 12 templates:

. 3 each for sweep functions a, b, and c of type BASE, ADD and SUB.

. 3 for sweep functions d, e and f of type LOC.

Inheritance makes the definition of the BASE, ADD and SUB templates simple. As an

example, the template definition for sweep function "c" is shown in Figure 4.9.

DefTemplate
- - - {"b1413" "WireSw__p , "BASE",

"mk - sweep wire", "mk base symb", "cre wire", "deiwire"},
{ 	IF {"base it , 	, " Body" 	, 	low , 	, 	if set sweepbase", "---"},

wire'', '' ' I ''Fe a IF 	I 	 fir'', " n", ''ri 	 It ---

{ It wc " if '

I " real'' 	, if
it ,

TWIT , '' n " , 	
Two. 0

it 	
I

form" 	Flit, "St r iLg ' I 	 -
'"

I

' n , "n ,, , 	 e
,

("kind" ' f ill
, "String", "w", "n", "if setsweepkirid", "r" },

("reverse" " "String", 	, 	, n" 	 "fw"

	

,, 	,,._,, 	,,_.,,
I

DefTemplate
''e" "e" {"a1413", "WireSweep","ADD","b1413","e , 	, 	,

{ 	})

DefTemplate
{"s1413", "WireSweep", "SUB", I'b14 13 11,

Flell, "
 e ,e ' , e Of

(})

Figure 4.9 Template Definition For Sweep Of Sheet Or Wire Body Along A

Path Defined By A Wire Body

A.G. Pedley 	 Ph.D. Thesis 	 4-27

An example of a sweep operating locally on a face is shown in Figure 4.10 for sweep

function 'T'.

DefTemplate
{"11413", "WireSweep","LOC"," --- ",
"mksweepwirefa", "n", "cre wire", "delwire"},

('If ' "U, " Face " "w '' '' n Il II if set sweep face","---" 	},
I

"'if
I "Pea" 	, ''r'' , ,

— 	 if 	 V 	
}

{ '' wc " ,

fill , ' real '' I
lv " r 	, ,,._,,

,

if 	 ,,

	

n 	, I, 0 . 0
11 f I I "String", " r il l ' n ''

, ''n I T

'' e " 	
}

"kind", "" I "String", "w", "fl", "if setsweepkind", "r" 	},
{"Csorg" "" "Position " , , n'' , " n'

,
" n " IWO, O,0"},

CS xa xis ' ' "Vector" , II
 ,

lint!
, , fill0, 0

{"CSyaxis "'Vector'', " n '' , ''n'' , ''n'' , "0, 1, Off I

Figure 4.10 Template Definition For Sweep Of Existing Face Along A Path

Defined By A Wire Body

The parameters Csorg, CSxaxis, CSyaxis are required to provide a definition of

the Face Coordinate System that is used to define any parameters that should be

invariant to re-posisitioning of the face.

Additionally a thirteenth template is required to contain the path wire body, Figure

4.11.

I DefTemplate
"a162", I 	 I 	 I

It___ll
I

wiresymb", "n"},
("wire" I "Body", "5", "n", "if

_",
set a162" , "---"

("wirepos" I "Position,,

"

s e t

 I,
	l,I,

 "if set wirepos", "O,O, O"

"mk wire s

.

 ymb " , "
m k

"wirexaxis " 	 " Hwirezaxis

"Vector" " n 	, 	'"

sy mb

, 	 if set wirexaxis""l,O,O"
"0,1, 0"}

}}}

 "0,0, 1"}
{"wireyaxis U

,
II

, Vector" TWIT "n , 	 if set wireyaxis", ,

'"" "Vector" Ifni,, 'I n " if set wirezaxis",

Figure 411 Template Definition For Feature Defining A Sweep Path

The parameters wirepos, wirexaxis, wireyaxis, wirezaxis are required to

provide parameters that the user may set to control the position and orientation of the

path feature partnering a local sweep of an existing face.

A.G. Pedley 	 Ph.D. Thesis 	 4-28

4.6.4 	Methods

The methods described in this section will focus on the template definitions

presented in section 4.6.3. Sweeps along a path form the most complicated type of

sweep and offer the most powerful geometry creation methods.

4.6.4.1 	Sweep Sheet Or Wire Along Path Defined By Wire Body

The template definition shown in Figure 4.9 requires the definition of six methods:

"mk sweep wire", "mk base symb", "cre wire !!, "del wire" },

"if—set—sweep—base", "if set sweep kind"

When the feature is first instanced, its parameters are set by default except for the

parameter base that indicates the sheet or wire body to be swept. During the

instantiation process the cre_wire (if_created) method is called. This creates the

partner feature that is to contain the wire body forming the sweep path. It sets the

reference parameter in the path feature (template definition is shown in Figure 4.11)

to point to the swept feature and sets the access to read only (not necessary if the

swept feature is of type BASE). This prevents corruption of the model through use of

the property sheet. Similarly the wire parameter in the swept feature is set to point to

the path feature and its access is also set to read only.

When a feature has been instanced the kernel calls the mk_sweep_wire (make)

method to attempt to generate its ShowBody. The make method returns a NULL pointer

because the base parameter is also NULL. The first operation whether by the user

acting directly through the property sheet or via the input decoder is to set this

parameter.

Setting the base parameter by clicking on the button corresponding to the parameter

name in the property sheet (or by picking in a decoder input step) the

if—set—sweep—base method is called. This method is more complex than that

A.G. Pedley 	 Ph.D. Thesis 	 4-29

detailed in Figure 4.6 because the transform of both the base body and the feature

are changed in order to position the swept object and the path object accurately to

define precisely the geometry of the resulting feature As before the body is copied

from the feature with its transform relative to the World Coordinate System. If its

transform is exactly the same as that of the feature (set to the transform of the Local

Coordinate System on feature instancing) then the method is exited to prevent

recursion.

In order to aid positioning and orienting it is desirable to have the Feature Coordinate

System located at a position on the boundary of the body. For a face body, one of the

coedges of the closed boundary is chosen. For an open contour it is necessary to

search for the starting coedge rather that the first edge in the list of edges pointed at

from the body. The list of edges may be in any order whereas the coedge chain is

directed from the start to the end. Hence the correct start may be found. This is very

important for the wire bodies that form the path along which to sweep. If the coedge

chain start point is not found it is extremely difficult to position the path relative to

the base within the make method.

The feature coordinate system is located at the start point of the start coedge and the

x axis is aligned with the start tangent. For a face the z axis is aligned with the

normal to the face at that point. For a contour (open or closed) a piane is generated

using the first three non-linear points (start, middle or end) taken from the coedge

chain. The normal to this plane is used. If no plane can be generated then the system

makes a consistent transform with the x axis direction as stated. The alignment is

achieved by generating a transform using the start point, x and z axes as described.

This transform relative to World Coordinates is assigned to the feature. Internally the

system will set its position and orientation parameters to be in Workpiece

Coordinates or Reference Coordinates. The transform of the base body is also

changed to that assigned to the feature. This has the effect of changing the internal

representation of the elements of the body so that they remain in the same place

relative to World Coordinates despite having a different transform.

A.G. Pedley 	 Ph.D. Thesis 	 4-30

It is important to maintain the consistency of any other features in the model that

reference the transform of the feature. This is because the geometry of the feature

stays in the same place in World Coordinates but has a different transform. Any

features referencing this must also have their transforms changed to maintain their

positions and orientations relative to the sweep feature. This is obviously the case of

the path feature which references the swept feature and where the swept feature

forms the root feature of the workpiece, in which case all features must have their

transforms changed. As will be described in chapter 5 this is also true of all

dimensions associated with the resultant body of the workpiece.

The mk sweep wire (make) method is called after any action that sets a feature

invalid. Assuming that the base parameter has been correctly set (the make routine

validates that it is a sheet or wire body) it is copied out but untransformed. If the path

feature does not have a valid path the mk_base_symb (symbol) method is called to

return only the body of the swept object. It must be remembered to delete the bodies

created within the feature methods if they are not returned to the kernel for

integration with the model.

The mk_base_symb method copies the base parameter. If it is a closed wire body it

is covered to create a single sided face. The face is then converted to a double sided

face which may be integrated by Boolean operations into the model generating a non

manifold result. If the base parameter is an open wire body the wire body is returned.

A minimal amount of validation is performed in the mk_sweep_wire method

because ACIS provides much better checking not only of the elements generating the

sweep but of the resultant body. However, there is no NLS support for ACIS error

messages and some checks may be performed relatively easily. It is bad practice to

duplicate tests that ACIS performs in the make methods because the make method is

called after every invalidation of the feature and during every model generation.

Functionality that has the effect of prolonging the run time of the make method

should be avoided. A simple validation test is that only planar faces may be swept

orthogonally or with twist.

A.G. Pedley 	 Ph.D. Thesis 	 4-31

A more problematic test is to define which side of a double sided non-planar face is

to be swept to generate a positive volume. By assessing the sense of the all the face

normals (at each vertex on the boundary) with respect to the start tangent of the

sweep path (or sweep vector) the face may be reversed to ensure generation of a

positive body. This only works for faces without "undercuts". The sweeping of

undercut faces generates a trappable error in ACIS.

When an open wire body is swept along a wire to produce a face, if the type of

feature is BASE or ADD the single sided face is converted to a double sided and

returned. If the feature is of type SUB, a user controlled parameter dictates how the set

of single sided faces should be treated: left as they are, reversed, or double sided.

The if—set—sweep—kind method controls the visibility of associated parameters in

the property sheet. If a rigid sweep is selected then the form and draft angle are not

applicable and are set read only. If twist is selected only the twist angle is set to

read/write. If orthogonal is selected, both the draft angle and form (rounded or

straight) are set to read/write.

The del—wire method performs house keeping operations when a feature is deleted.

The related path feature is also deleted. It is rarely necessary to delete a sweep feature

even if different sweep objects are required. If it is not possible to edit the contour

(returning to the contour/sketcher modules whilst a sweep feature is active

regenerates automatically the 2D boundary, which on returning to the feature module

is rebuilt in the feature) a new body may be set.

A.G. Pedley 	 Ph.D. Thesis 	 4-32

4.6.4.2 	Sweep Face In Existing Body Along A Path Defined By
A Wire Body

The template definition shown in Figure 4.10 requires the definition of five methods:

"mksweepwirefa", "cre wire", "del wire",
"if—set—sweep—face", "if set sweep kind"

The cre wire, del—wire and if—set—sweep—kind methods are the same as

those described in section 4.6.4.2. They are only declared once in the program

because they are MCL+ procedures and are globally available.

The if set sweepface method is used to define the coordinate system that will

remain invariant with respect to the face. The Face Coordinate System is constructed

using the three additional parameters "csorg", "CSxaxis", "Csyaxis" shown in

Figure 4.10. Using a position and two directions it is possible to define a transform

with respect to the World Coordinate System. The feature is of type LOC and

therefore does not have a coordinate system by default or a reference feature. Faces

are formed with closed (for manifold models) boundary edges. Searching for the start

coedge is therefore dependent on which edge is chosen from the list as the start point,

unlike an open loop. A trait of ACIS is that it orders the model consistently and

identically each time it builds a model exactly the same way using exactly the same

elements. This means that the list of edges attributed to the face appears in the same

order. For a closed loop the first edge in the list is chosen and its corresponding

coedge used to define "Csorg", ' tCSxaxis", "Csyaxis" with the coedge start point,

start tangent and cross product of start tangent and start normal. The user does not

see this representation of the Face Coordinate System nor is the user able to set any

of its values due to careful setting of the access attribute of the parameters.

The mksweepwirefa method is concerned with two actions. Firstly, maintaining

the coordinate system with respect to the face. This is done using the method

described above. Secondly, performing the sweep operation in World Coordinates

because it is a direct operation on ACIS. This means positioning and orienting the

wire body of the path correctly. The wirepos, wirexaxis, wireyaxis, and

wire zaxis parameters in the path feature define the transform (position and

A.G. Pedley 	 Ph.D.Thesis 	 4-33

orientation) of the wire body with respect to the Face Coordinate System. Therefore

to determine the location of the body in World Coordinates the wire body transform

is multiplied by the face transform defined by the parameters "CSorg", flCsxaxistT,

"Csyaxis". The path feature has four parameters to define its transform in order that

the user can set these to position the path body with respect to the face. This is in

contrast to the definition of the transform of the face. The sweep proceeds as defined

by the parameters: kind, form and wc.

4.6.4.3 	Sweep Path Defined By Wire Body

The wire body that forms the sweep path is somewhat more constrained than the

bodies forming the swept object. If it is open there are only two possibilities for

suitable origin points: the start and the end point. This is because the paths must

touch the base for the sweep to be acceptable to ACS. Clearly it is easier to position

the path when it is known where the start point is. The transform of the wire body is

set in a similar manner to the swept object in the parent but using the if—set—a162

method.

The path feature does not itself add or subtract any body(ies) from the model (the

parent sweep feature does that) but it is useful to visibly see in the model where the

path is positioned to enable the user to change its position and hence the model. This

is achieved by using the body of the path as a symbol. This mode of the feature is set

to symbol on feature creation using the set symb (if_created) method. The

mk_wiresymb method positions the wire body in either workpiece coordinates or

reference coordinates (if the reference parameter is set). The kernel then positions

objects automatically in these coordinate systems. Where the wire body defines the

path of a local sweep of a face the parameters wirepos, wirexaxis, wireyaxis,

and wirezaxis define the transform (position and orientation) of the wire body

with respect to the Face Coordinate System. Four parameters are used where only

three (one position and two orthogonal directions) are required to define a transform.

This is because the button displaying the parameter name. in the property sheet is

A.G. Pedley 	 Ph.D Thesis 	 4-34

used by the user as a command to set that parameter via picking and pop-up

modifiers. This method should always be used because, although direct input is

possible, the user does not know how the face coordinate system is defined. Input

from the pick functions sets the values in Workpiece (or Reference) Coordinates. On

setting, i fs e t procedures of the parameters convert the values into the Face

Coordinate System Structure. -

4.7 	Feature Origins

4.7.1 	Requirements

Feature origins may be attributed to the work of Chang [CHA90] though the term

1a1utL was used. Ti.
C concept is s 	most academic JaLu

IL

•S,L-11 - .. uiu ..tiCi w a

lesser or greater extent. Any predefined shape usually has a number of convenient

locations on its body. If the body represents that of a particular form feature the user

may wish to use these origins to locate the feature in the model and to define this as

the feature coordinate system origin for defining the feature. A simple example of a

block and its origins is shown in Figure 4.12.

Figure 4.12 Simple Block Feature With Origins

A.G. Pedley 	 Ph.D..Thesis 	 4-35

In practice it is possible to define many more origins at positions such as the

midpoints of edges and faces. Intuitive points that do not lie on the body may also be

used such as the centre of radius, Figures 4.13.

x

I
,/\ \

Figure 4.13 Origins Located At The Centre Of Radius

When ACIS creates a body, the Body Coordinate System origin is generally not at

the desired Feature Coordinate System origin. Therefore, in the make function of the

feature a compensation must be made by moving the body by an offset vector.

Feature origins are of major significance because of the ability of the system to snap

the LCS to the Feature Coordinate System origin and to snap the Feature Coordinate

System origin (and hence feature) to the LCS. This is used as the preferred method of

locating and orienting features. It should also be remembered that the use of special

positioning features and referencing of one feature to another is specifically related to

Feature Coordinate System origins. The importance of the feature origins demands

that GUI support is also strong.

GUI support for feature origins has the following requirements:

To be applicable to user defined as well as system developed features;

With user defined features the system does not know if the feature has origins,

what the valid descriptors of the origins are, what the descriptors mean, how to

calculate the position of each origin in World Coordinates, and what to do with

related features.

A.G. Pedley 	 Ph.D.Thesis 	 4-36

• to be able to indicate graphically the possible choice of origins;

Origin positions may not necessarily coincide with vertices, or midpoints of

edges, centres of arcs, or even lie on the body. Purely graphical indicators of all

valid origins should be generated.

• to be able to pick the graphically displayed options;

Picking of purely graphical entities is problematic and requires relevant pick

filtering.

The above assumes that the features are of a known topology and geometry. Hence,

the creator of the feature template (implicit definition) can define the origins with

respect to this known topology and geometry (shape but not size). Where free form

geometries are concerned, either imported or generated from a sketcher this is not the

case. The extrinsically defined random nature of the features increase the importance

of being able to choose an origin because of the complexities of positioning and

orienting. Origin definition must, therefore, function perfectly with the LcsToFea and

FeaToLcs methods. It is, therefore, necessary:

to provide a mechanism that provides the user with a good graphical method of

locating and orienting non-uniform, extrinsically defined features.

• to ensure compliance with the kernel functions relating to the LCS and to the

feature.

4.7.2 	Features With Implicitly Defined Form

It is assumed that the user when defining a feature knows the topology and geometric

elements, if not their sizes (usually, hence the parametric nature) that are to be

described. An example of the template definition for the simple block shown in

Figure 4.12 is presented in Figure 4.14. The parameter ursprung defines the origin.

A.G. Pedley 	 Ph.D Thesis 	 4-37

outcome = DefTemplate(
"block", " - ", "BASE", " - ", "make block", "n" , "n" ,)

if " x 1 " , 	- - , "real" "nil S 	
" 50.-d"

" y 1 " , " - - - '' , "real", " 	, 'I n" , " 50.0" }
z 1 " , "- - 11, "rel " , "n" , "n" , "50.0" }

"Ursprung", "Origin", "String", " n " , "n", "-x-y-z"

Figure 4.14 Template Definition Of Block Feature With Origins

The system automatically creates the parameters pos, wx, wy, WZ, etc. as detailed

in Figure 4.3.

It is also assumed that the user knows where the origins should be located with

respect to the definition of the feature's topologic and geometric elements. The user

builds this information into the make function as a matter of course. A simple

example of a make function for the block and origins shown in Figure 4.12, is

presented in Figure 4.15.

The MCL+ function make—block creates a block with origins at the eight vertices

and at the centre. The centre also coincides with the Body Coordinate System origin.

For simplicity no parameter validation is performed. The function returns a List

containing the body which forms the volume of the feature which the kernel

combines into the model.

In this function the user has told the system what the feature is, and how it behaves

with respect to its parameters. The position and orientation of the Feature Coordinate

System does not change, merely the local position and orientation of the body of the

feature relative to its origin.

A feature stores the body generated by the make function as an attribute. It is known

as the ShowBody and is used in circumstances when it is impossible to pick a feature

because all of its edges form edges of the workpiece or other features. Displaying the

ShowBody allows the feature to be picked from its own body directly. Using the LCS

and the ShowBody it is possible to obtain automatically the positions of all the

origins without the system having any prior knowledge of them.

A.G. Pedley 	 Ph.D.-Thesis 	 4-38

proc List make—block (Fea this_fea_pointer, String this fea name

local real xl = GetParVal("xl", this _fea_pointer)
local real yl = GetParVal("yl", this fea pointer)
local real zi = GetParVal("zi", this _fea_pointer)
II get the values of the parameters defining the block
local Body block = Block(xl, yl, zi
II create the block with the ACIS Body Coordinate System origin
local String origin = GetParVal("Ursprung", this_fea_pointer)

xl = 0.5 * xl
yl = 0.5 * yl
zi = 0.5 * zl
II compute distances from the Body Coordinate System origin

local Vector offset = Vector(0,0,0)
II move vector for body

if (origin == "xyz") then
offset = Vector(xl,yl,zl)

else if (origin == "-xyz") then
offset - V ¼ ¼ ¼ -

 ,
_fl S Y

1
 I 1

1
 /

else if (origin == "-x-yz") then
offset = Vector (-xl, -yl, zi)

else if (origin == "x-yz") then
offset = Vector(xl,-yl,zl)

else if (origin == "xy-z") then
offset = Vector(xl,yl,-zl)

else if (origin == "-xy-z") then
offset = Vector(-xl,yl,-zl)

else if (origin == "-x-y-z") then
offset = Vector(-xl,-yl,-zl)

else if (origin == "x-y-z") then
offset = Vector(xl,-yl,-zl)

else
II default => origin == "m" => do not move
return {block} II give the block to feature modelling kernel

end if

Move (block, -offset)
II move the body in opposite direction to offset vector
return {block}
II give the offset block to feature modelling kernel

end proc II make block

Figure 4.15 make Function For Block Feature With Origins

A.G. Pedley 	 Ph.D..Thesis 	 4-39

Consider Figure 4.16. The technique is to move the LCS to the current origin of the

feature. This position in World Coordinates is known, denoted by a. The translation

component of the ShowBody transform describes the position of the Body Coordinate

System origin, b. The origin parameter is set to a different valid origin, moving the

ShowBody. The new ShowBody transform translation gives the location in World

Coordinates of the new Body Coordinate System origin, c. The position, d, in .World

Coordinates of the new origin (but when the feature was in its original position) is

given by equation 4.1:

d =a + b - C

Body Coordinate
System Origin

Position of
Origin for

- Highlight 	
1

(4.1)

Original Feature
Coordinate System Origin

and LCS

Original Position
of Feature

Temporary
Position of

Feature

World Coordinate
System Origin

Figure 4.16 Generation Of Position Of Feature Origins

In MCL+ operator overloading defines that the addition of a vector to a position

returns a position. By cycling through all possible valid values of the origin

parameter the positions of all origins can be calculated by the system without

A.G. Pedley 	 Ph.D..Thesis 	 4-40

knowing specifically about the Origin definitions. The method relies on the fact that

the make function is always used and this builds the feature body in the same way

each time. When ACIS builds a body consistently in the same manner the Body

Coordinate System origin is always in the same place relative to the body. The make

function naturally takes into account that the positions will be in different locations

with variations in the values of the size parameters. Once the positions are known,

which need not be at vertices or on other elements of the body, highlights can be

displayed and picked via the Input Decoder.

Hence for features of known topology and geometric elements (but variable in size)

the system can automatically calculate all. origin positions provided that the

following procedure is adhered to:

the user denotes the origin parameter as Ursprung.

the user positions the body of the feature in the make routine relative to the Body

Coordinates System origin with respect to the origins that are defined.

the user tells the system what all the valid names of the origins for that particular

feature are.

Currently this is limited to position movements. However, relatively easy extension

would be possible for orientations by comparing the vector elements of the rotation

matrix part of the transform.

The use of modifiers (multistate buttons) in the input sequence defined by the Input

Decoder for feature instance creation allows the user to select the origin of choice

interactively whilst sizing the feature with rubber bands. This is very intuitive

because the user sees, selects and places the origin and feature graphically as the

feature instance is being created. The user need not be aware of the origin

descriptors. This leads to a right-first-time approach when building a model. Being

the last feature in the tree, because it has just been created, it cannot have dependent

features; that is features that reference it for the origin of their position and

A.G. Pedley 	 Ph.D..Thesis 	 4-41

orientation coordinates. Any changes in the chosen origin at this stage have no knock

on effects to other features in the tree.

When a feature has a different origin selected, and that feature is established deep in

the feature tree, undesirable effects can occur. The feature body moves relative to the

feature's current position (and orientation); these parameters remaining fixed.

Consequently, any features which reference it will remain static and not interact with

the feature body as before. Certainly the relative positioning will be different. It may

be the case, however, that the features referencing the feature (of new origin) do not

interact with the feature (of new origin) at all. The difficulty is that it is not known if

that is intended by the user or not.

A solution may be to provide a modifier for the origin selection function. This

would:

Move the feature origin only.

Move the feature origin and by the same offset all features which reference it.

This allows the user to tell the system his intentions and for the system to support

that thinking by automating the simple but tedious task of repositioning all child

features. This can be non-trivial when the user does not know, or cannot easily

calculate the necessary offset vector used by the system to change the origin. If it is

the base feature that has its origin changed, then all features in the model that do not

reference any other feature may have to be repositioned. This is functionality that is

GUI oriented and, as such, is not a part of the kernel.

One obvious disadvantage of this approach is that it is not instant. There is noticeable

pause of one or two seconds before the positions of the origins are highlighted. This

is because there are many calls to the modeller to create, move and delete bodies. The

more complex the body, the greater the number of origins defined, the slower the

response. Despite this in a GUI based system where interactive working is the aim it

is not seen as a problem. The pause is short enough not to cause a loss of

A.G. Pedley 	 Ph.D..Thesis 	 4-42

concentration in the user of the task in hand. It only occurs after a specific user action

and not during every generation of the model which is time critical.

This disadvantage is considerably outweighed by the generality, flexibility and

robustness of the approach for user defined features. System delivered features that

are hard coded do not suffer from lack of response because bespoke functions may be

called to generate the points without the need for creating, moving and deleting

bodies. There remains one implementation task: that of the user telling the system in

a consistent and reliable manner, what the valid origin descriptors are. This will be

addressed in Section 4.8.

4.7.3 	Features With Extrinsically Defined Form

This class of feature in contrast to those that have their topology and geometry fully

described procedurally in the make function cannot be defined and manipulated in the

same manner. The interface between the feature modeller and the rest of the system

are the ACIS bodies that define (completely, or partially) the form of the feature.

However these bodies are fixed and cannot be changed by the feature modeller. It

may be that the body is a wire in the form of a contour which has been generated by a

sketching module. The wire body is fixed with respect to the feature modeller but

may be changed in the sketching module. All that the feature modeller knows about

is the resultant ACIS body. The topology and geometry of the ACIS body are

completely defined (for a valid body), therefore they are known, but they are

unknown in a procedural manner by the feature modeller; there is no make function

to capture to some extent the semantics of the feature. Hence the concept of feature

origins developed in section 4.7.2 is not applicable.

All ACIS bodies have a Body Coordinate System origin. This is located and oriented

with respect to the World Coordinate System origin to position and align the body at

the desired point in space. Any (previously defined) ACIS body can be positioned,

oriented and combined in the feature tree by providing that body to the feature

A.G. Pedley 	 Ph.D. Thesis 	 4-43

modelling kernel through the make method. The templates and methods used to

instance and manipulate such extrinsically defined features have been described in

section 4.5. An integral part of the sweep feature definitions was the need to position

the Feature Coordinate System origin at a useful location on the body of the object.

This concept can be extended to provide user functionality that enables the origin to

be set to any position and/or orientation for all extrinsically defined features. -

Certain points must be noted. It is not sensible to orient the origin of a planar body so

that the z axis is not parallel to the normal. Doing so would preclude editing the

contour within the contour/sketcher module. For open wire bodies representing the

path of a sweep there are only two sensible origins; the start and end points of the

loop. Closed wire bodies may sensibly have any vertex on the loop as an origin. One

additional problem for the path feature is that if the origin is changed to another

vertex then the order of the edge list and cooedge loop must also be changed so that

the new origin is accepted by ACIS as the start point of the loop. For an open wire

body the ends may be toggled between as origins. The direction of the chain of

cooedges is easily "reversed", it is much more problematic for a closed loop.

The functionality described in section 4.6.4.2 that adjusts the feature coordinate

system and the body transform on assignment of the wire body to the feature

parameter is used. The Local Coordinate System is positioned at the desired point

and with the desired orientation on the feature base parameter. The user via the

property sheet calls a command to set the feature origin and the body transform to be

that of the Local Coordinate System. Modifiers enable only the position, only the

orientation or both position and orientation to be set. As with the assignment of the

parameter for the first time any features that reference that being changed must also

have their transforms modified.

The advantage of this approach is that it is applicable to any feature, whether system

or user defined, that has extrinsically defined form. The method is completely

compatible with the FeaToLcs and LcsToFea functions.

A.G. Pedley 	 Ph.D Thesis 	 4-44

4.8 	Template Definition Extension

4.8.1 	Requirements

The current template definition method described so far in section 4.3 does not allow

the user to define limits or ranges for values for parameters; only single default

values may be defined. The user must perform any validation by controlling the

parameters in the make function. Whilst this could be regarded as acceptable, if not

desirable, it would be much more effective if the simple validation checks could be

defined for each parameter in the template and the kernel would perform these

automatically. This would simplify the construction of the make method and go some

way to ensuring that invalid features do not become part of the model. In the case of

more complex features where many parameters are dependent on each other it is not

possible to define a test for one parameter that is independent of all others. In this

instance a procedure would be required to be written with the "@Procedure_Name"

syntax. The fact that parameter values may be set that create an invalid model means

that an invalid model may be saved. In determining the validity of a feature, all

parameters must be instantiated to their desired values, as well as any other features

that the feature being validated is dependent on through the use of formulae or

programming.

A further advantage of being able to define the valid values of parameters in the

template definition is that the kernel of the feature modeller knows about them. A

particularly relevant example is that of origin definition for features of implicitly

defined form. It is necessary for the GUI to know what the valid origins are called

and where they are located so that the user may select from the set allowable points.

Furthermore, much of the support for the definition of parameters by picking,

selection of rubber band functions and modifiers set from pop-up menus is dependent

on the type of parameter. For example, length, angle, diameter, radius, mode, and

entity.

A.G. Pedley 	 Ph.D..Thesis 	 4-45

Therefore it is desirable that the template definition be extended to incorporate the

above requirements.

4.8.2 	Implementation

Each sub-list describing a parameter in the list parameters defined in section 4.2.2

is extended with the addition of two parameters: kind and decode. Therefore the

sub-list parameters has the folowing definition:

parameters =

{name,aiias, type,access,if needed,if set,defauit, kind, decode}

The parameter kind describes the class of parameter. It is defined as a string of one

of the following values:

Undefined (empty string)

1" Length

Angle

Diameter

"r" Radius

"m" 	Mode. A set of finite values.

Entity. A list of entity pointer types (Face, Edge, Vertex)

The parameter decode describes the valid set of values, ranges and types. decode is

a list of the following general form:

{ datal, data2, data3

A.G. Pedley 	 Ph.D. Thesis 	 4-46

where 	data 1, 	data2, 	data 3 	take on different meanings depending on the

definition and validity checking functionality required for the parameter being

defined:

Undefined
{ 	 }

The parameter has no validation values.

Range
{

datal, 	data2
}

or
{

datal
}

The parameter must lie within a range where:

datal <= parameter value <= data2, or, datal <= parameter value

DeltaRange
{

datal, 	data2, 	data3 }

The parameter must lie within a range and may only have a specific

value within that range:

datal <= parameter value <= data2, and

parameter value = datal + n * data3, for integer n >= 0

List
{

datal, 	data2, 	data3 } or
{

datal, 	data2 }

The parameter may only have a value that is stated in the list defined:

data 1: default value.

data2 list defining the valid values.

data3: if data2 is defined by a procedure ("@procedure name

then data3 = "List".

EntityList
{

datal, 	data2, 	data3
}

or { datal, 	data2 }

The parameter is a list of entities of specific types.

A.G. Pedley 	 Ph.D. Thesis 	 4-47

data 1: minimum number of entities required. Eg. 1.

data2 list of valid entity types. Eg. {Face, Edge}.

data 3: if data2 is defined by a procedure ("@procedure name () ")

then data3 = "List"

The ability to make the validity checking dynamic is of great benefit particularly in

the definition of origins for features which change their topology depending on the

value of their parameters. For instance a slot feature may be straight and curved.

When it is curved it has more origins than when it is straight because the axis

defining the centre of radius also provides useful definition points, Figure 4.13.

To date these developments have not been fully built into the kernel. The class of

parameter may be stated but the decode parameter is always set to undefined ({ }).

The functionality is provided for the user interface during actions that use the

property sheet. The template definitions are made separately using the DefFeaar

command which has exactly the same syntax for the validation parameters as

described above. However, each list defines the parameter name, its class (kind) and

then the validation parameters (data 1, data2, data3). The example for slot

shown in Figure 4.13 is given in Figure 4.17.

A.G. Pedley 	 Ph.D. Thesis 	 4-48

proc List ursprung 12214 (Fea fea = FeaQ)
static List origins =

 it
UyTV, Vvyz , xyz , xy" , "xy-z it, 	 , 	

, ,, - ', I,
y ,

Vt 	,

V__yVV

,,_yz 11,11
	 yz'' , '' x-y'' ,

''x-j--z'' , '' 	If , If- x—y—z" ,
'-x-y" ,

IF- x_yzV
}

IT
{ 	

., Vt
,

y2-z", t_2Vt,tt_y2ztt, "y2z''},
ITt

, ''Cz" ,

local List selected =
if (fea.IsValid) then

local String form = GetParVal("Form", fea)
selected = Copy(origins[0]) 	 II form == "A"
if 	(form == "B") then

selected = selected + origins[1J
else if (form == "C") then

selected = selected + origins[2]
end if

end if
return selected

end proc

IDefFeaPar({ "s12214" },
Form", 	" 	'' B" 	("At', 	''C''

	

, 	 I

{
" Jrsprun g

	

 ',
	"i, 	

"

M" , "@ursprung12214()) V , List },
"r2" 	'£", 0.0 },

{ "xl" I "1" I RESPtBSFEA },
{ "yl" I "1" I RESABSFEA },
{

11-1 to 	"1", RESABS'' J

l!rl U 	 VV . £ fl , RESABSFEA }, { 	
..

{ "Wa", "w", RESABSFEA, 360.0-RESABSFEA } })

Figure 4.17 Parameter Validation Definition

4.9 	Chapter Summary

In this chapter the general toolkit provided by FeatureM for developing user defined

implicit features has been described. A simple example of the definition of a block

feature has been developed. The integration of ACIS bodies in the feature model

structure, regardless of their origin, has been shown to be extremely useful. Legacy

solid data may be re-used and ACIS bodies form the only implemeneted standard of

exchange. Such elements may be constructed in 2D sketchers, or be imported

synthetic surfaces and curves, or existing ACIS bodies. Extrinsically defined non-

parametric features have been developed to support such objects. Modelling of less

constrained geometry is needed in order for feature modelling techniques to be

applicable to wider product groups such as manufactured by forming processes.

Methods have been presented to model sweep functionality. This is seen as a logical

A.G. Pedley 	 Ph.D. Thesis 	 4-49

next step from typical 2'/2D features towards fully implementing free form feature

based surface modelling functionality. The accepted concept of "handles" has been

applied to implicitly defined form features. A different method of achieving the

outwardly similar results has been developed for extrinsically defined form features.

Both these approaches have methods that use and interact with the kernel in a

transparent manner to provide the same functionality for both user defined and pre-

defined features. A further result of the work presented in chapter 4 has been to

develop an extension of the template definition for each parameter. Not only is the

extended description useful for improving the user interface to the feature by

enabling picking of feature origins but allows validation rules for non-interrelated

parameters to be built into the feature definition.

In chapter 5 a data structure and representation methods will be presented that allow

dimensions and tolerances to be associated with solid and feature models. In

addition, the template definition will be further extended to enable dimensions to

represent the size parameters of features. Parameter dimensions will allow direct

setting of feature parameters without the need for a property sheet.

A.G. Pedley 	 Ph.D. Thesis 	 4-50

Chapter 5

Feature Based Dimension

And Tolerance Modelling

5.1 	Introduction

5.1.1 	Chapter Overview

The feature modelling system described in chapter 3 and the developments reported

in chapter 4 allow the user to define features of implicitly and extrinsically defined

form, and to create and manipulate models containing them. The models produced

contain only nominal geometry which, as explained in chapter 2, is not sufficient to

meet the needs of integrating advanced manufacturing software tools. In this chapter

a data structure and representation methods will be developed to allow the generation

of dimensions and tolerances that are associated with both solid and feature models.

The feature template definition will be further enhanced to support the description of

dimensions that represent the size parameters of features. These advances will

provide a richer partial product model suitable for the integration of design and

manufacturing software tools to meet the goals of Concurrent Engineering strategies

described in chapter 2. Furthermore, the representation of dimensions and tolerances

A.G. Pedley 	 Ph.D Thesis 	 5-1

will be developed such that they can be manipulated in 31) space so that specific

views of the model will provide an engineering drawing without the need for a

separate 21) representation. The developments will include advanced support for user

defined features.

5.1.2 	Chapter Structure

Section 5.1 forms this introduction. Section 5.2 will consider the requirements of

dimensions and dimensional tolerances in a feature modelling environment. Section

5.3 will present a classification of the dimension features developed. Section 5.4 will

present the modelling architecture used. Section 5.5 provides details of the

implementation. Section 5.6 explains the editing functionality developed. Section 5.7

provides a chapter summary.

5.2 	Requirements For The Dimension And
Tolerance Model

5.2.1 	Background

The use by design engineers of dimensions and tolerances has been explained in

section 2.5. Although nominal dimensions are implicitly defined by the resultant

geometric model they are represented explicitly on an engineering drawing and

combined with tolerances indicate allowable variations in the manufactured part from

the basic size.

Many of the problems restricting the impact of feature modelling systems highlighted

in section 1.4 can be attributed to the lack of support for dimensions and tolerances

associated with 3D feature and solid models. Namely:

• Only nominal geometry is supported.

A.G. Pedley 	 Ph.D. Thesis 	 5-2

. Dimensions and tolerances are detailed on engineering drawings which are 2D

representations separate from the feature and geometric models.

. Dimensions and tolerances that are not associated with the feature and geometric

models preclude the development of variational models needed for advanced

design and manufacturing analysis

The partial product model defined by a feature model lacking dimensions and

tolerances is not sufficient for manufacturing reasoning and hence the most

efficient integration of CAPP and CAM software.

The goals of Concurrent Engineering cannot be met.

Furthermore, user interaction with instances of the features forming the model is

predominantly with the use of a property sheet. The property sheet whilst providing

an effective method of displaying parameter values and allowing the user to change

them does not provide an aesthetically good working environment. Therefore, the

lack of a graphical representation of a dimension that is associated with a feature size

parameter leads to:

• a poor user interface.

The ability to measure a model in 3D would mean that any dimension desired on a

2D engineering drawing could be generated in the 3D modelling environment.

Further enhancement of the definition of a feature to represent its size parameters

with dimensions that the user can pick in order to set the value of the parameter and

change the model would greatly reduce the need for continuous display of the

property sheet improving visible display area. User interaction with the feature model

is improved because of the intuitive, direct setting in the display of the parameter to

be changed.

Despite the definition of geometrical tolerancing standards (Section 2.6),

dimensional tolerances, used in conjunction with the Taylor Principle, still provide

the widest and most frequently used method for specifying a design, particularly of

A.G. Pedley 	 Ph.D. Thesis 	 5-3

single components or tooling to be manufactured on numerically controlled

machining centres. The work in this chapter is consequently focused in the area of

dimension and dimensional tolerances although some geometric tolerance

functionality will be investigated.

The stability and validity of the associativity of the dimensions and tolerances to

changes in the form feature model and geometric model will be investigated. Most

approaches to date assume persistent object identity [S1M95]; providing persistent

object identity is a significant problem in hybrid feature modelling architectures.

In order to remove the need for a separate 2D engineering drawing representation the

dimensions applied to the 3D model must be able to be laid out in a similar manner

to 2D. This in turn means that the display must provide a set of views that correspond

to the engineering views defined by a first or third angle projection. Views

containing cross sections, or details, should also be automatically produced. These

facilities will go some way towards removing the need to use 2D draughting systems.

Dimension and tolerance representation schemes are required in a number of areas

during the development of a product, particularly when taking a concurrent

engineering approach:

• Design of Component

• Design of Tooling

• Component Manufacturing Planning

• Tooling Manufacturing Planning

• Tooling Manufacture

• Quality of Tooling

• Component Manufacture

• Quality of Component

Generally the tooling used to manufacture a product (sheet metal press tool, plastic

injection moulding tool, jig, fixture, etc.) does not look like or even have the same

geometry as the component. This is caused by the nature of the design and

A.G. Pedley 	 Ph.D. Thesis 	 5-4

manufacturing process. Often incomplete designs are passed from design to

manufacturing because they cannot be completed without expert process knowledge.

Forming processes have multistage tooling; castings and plastic injection mouldings

shrink. It is likely that there will be differences between the design tolerances of the

final component, design tolerances applied to the tooling, and manufacturing

tolerances applied to manufacture of the tooling. Although tooling and

manufacturing tolerances are related to the component design tolerances it is a

specialist task to define what they will be. It will not be a function of the

representation scheme developed to provide for migration from the component

design to the tool design. The applicability will be to the design of a single object,

which may be the component or tool. Mapping or transmutation between model

representations, or the representation of tolerances within external modules will not

be addressed directly. Similarly the use of dimensions and tolerances with coordinate

measuring machines and associated analysis will not be directly addressed.

5.2.2 	Kind

In compliance with the standards (Section 2.6) linear and angular dimensions will be

supported. This will require four dimension kinds to be implemented:

Linear

Angular

Diameter

Radius

Dimensions are prerequisite to dimensional tolerances. Dimensional tolerances of

plus-minus or limit-fit must be definable for the dimensions.

An investigation of a geometric parallel tolerance will be made. It is believed that

such relational tolerances will have to be treated in a significantly more complex

manner because they do not always reflect the status of geometry, as a dimension

does, but act as a three dimensional constraint. To date 3D constraint problems have

A.G. Pedley 	 Ph.D. Thesis 	 5-5

been limited to the assembly of rigid bodies rather than controlling the form, location

or attitude of elements that constitute a body [S0L94].

5.2.3 	Usage

The usage of the 3D dimension and tolerance representations developed should

comply as far as is possible with 2D standards (section 2.6) and as described in

respected handbooks [VSM91][HEN95]. This is so that when viewed in an

engineering view the dimensions and tolerances will appear as in a 2D drawing.

All dimensions and tolerances have a dimension plane associated with them. This is

obviously provided by the plane of paper for 2D engineering drawings. In 3D each

dimension and tolerance must have a dimension plane defined and associated with it.

In 2D there are only one set of in-dimension-plane projection lines from the shape

aspect being dimensioned to the dimension line. In 3D there may be projection lines

that are projected form the shape aspect to the dimension plane (to-dimension-plane

projection lines), and then from the to-dimension-plane projection lines to the actual

dimension line (in-dimension-plane projection lines), Figure 5.1.

Dimensions and tolerances should be able to be applied to the model as the design

progresses in order to allow part finished components to be assessed by

manufacturing modules providing for better compliance with the goals of

simultaneous engineering. This requires persistent object identity to be maintained

during each generation of the feature model and between each Boolean operation

between solid bodies.

The dimension and tolerance representation should be open to interrogation from

external systems because it is unlikely that all manufacturing software modules will

be a part of the feature modeller. Consideration for STEP (section 2.6) compliance

should be given when developing a representation that most likely will be transferred

to other systems. The shortcomings and restrictions of STEP (section 2.6) should not

be allowed to restrict progress.

A.G. Pedley 	 Ph.D Thesis 	 5-6

Figure 5.1 3D Projection Lines

"aphical Display

The graphical display of dimensions and tolerances should be fully in 31), appearing

as a homogeneous part of the feature model subject to all camera functions, such that

viewing the 31) model from a set camera angle should provide a 21) engineering

elevation.

The GUI for creation and editing should be highly interactive and comfortable to

work with. The user should be provided with graphical rubber banding during

creation and editing because of their intuitive nature; the WYSIWYG approach is

very important because of the abstract nature of essentially 21) objects being applied

in a 3D world. The look and feel of the GUI should be compatible with the rest of the

system for consistency. Picking should be kept to a minimum.

In order to display the dimensions in a view as with a 21) engineering drawing it

must be possible to manipulate:

• the location and attitude of the dimension-plane,

A.G. Pedley 	 Ph.DThesis 	 5-7

• the direction of projection of linear dimensions or the direction of a diameter or

radius dimension line,

• the position of the dimension line in the dimension plane,

• position of the text along the dimension line,

• and the arrangement of groups of dimensions should be possible for aesthetically

good layouts.

Layouts of pre-defined views corresponding to the first and third angle projections

should be available. Assignment of the dimensions and tolerances to different views

is necessary to provide the effect of a 2D layout. Hence, the need for a separate 2D

representation is eliminated. Free cross-sectional and perspective views should also

be definable

Tables of standard limits/fits should be presented that are applicable to the dimension

value. The values should be able to be restricted to define a set of user preferred

values.

5.2.5 	Associativity

In common with the features of extrinsically defined form described in chapter 4,

dimensions an tolerances have to be applied to a range of objects in a consistent

manner. Consistency of treatment is important from the users perspective for the

dimensions should look and feel the same despite their different origins and

functionality. The dimensions and tolerances should form a homogeneous model

with the geometry and features, being saveable as part of the component model.

The associativity of dimensions and tolerances to the resultant geometry and feature

model can be described in terms of levels:

Level 0: Non-associative

A.G. Pedley 	 Ph.D. Thesis 	 5-8

Dimensions and tolerances are not associative with the model. They are

simply a means of measuring a model in its current state providing a visual

representation but contain no information about the geometric elements or

features in the model. They most closely represent the after the event

architectures of conventional 2D systems where dimensions and tolerances

are added after the design has been completed. Changes that occur--in the

model are manually updated in the dimensions and tolerances by deletion

and creation. This is a natural progression from 2D to 3D but does not meet

the demands of feature modelling systems ability to support model changes.

Non-associative dimensions do provide some useful functionality. Their

static nature allows the user to visually compare the effects of design

changes. Points not on the model may be dimensioned, such as references to

fixtures.

Level 1: Uni-Directionally Associative

Dimensions and tolerances that are uni-directionally associative are used to

measure the solid or feature model. The do however respond automatically

to changes in the feature model and are maintained after Boolean operations

between solid bodies. They are associated with geometric elements in the

model and through these to the features that created them. They are of great

benefit to represent dimensions in the model that are not represented by

feature parameters.

Level 3: Bi-Directionally Associative

Bi-directionally associative dimensions and tolerances are a means of both

representing feature parameters and measuring the model, and hence are a

direct means of graphically changing the model. Where negative features

overhang the model or features intersect they do not reflect the resultant

geometry but the features that created it. Dimensions may appear to hang in

space not connected with the geometry or be embedded in the solid portion

of the model. Bi-directionally associative dimensions are always fully

A.G. Pedley 	 Ph.D. Thesis 	 5-9

consistent with the features used to create the model. On creation of the

model much of it is pre-dimensioned easing construction; nothing is

forgotten.

Level 4: Functionally Associative

Functionally associative dimensions and tolerances will be used to measure

functional aspects of the model that are not described by a feature

parameter. In contrast with level 1 dimensions which merely follow the

resultant geometry, level 3 dimensions will be able to change the geometry.

In this respect they will be more complex than the level 2 dimensions

because a method of defining how the model (other feature parameters)

should be changed to have the desired result. Relationships must be defined

between the dimensions and other aspects of the control structure of the

model.

It must be possible to associate the dimension and tolerance representations with the

resultant geometry as well as to the feature instances used to create it. This is

particularly necessary when features intersect creating entities in the model that did

not exist in the feature templates. Hence dimensions and tolerances have to tag

features, faces, edges and vertices in the model. Important points to consider are the

derivation of the starting points of projection lines from objects such as faces and

edges, points generated from more than one object, and how to deal with merged

faces.

The functioning of the dimension and tolerance representation is dependent on

persistent object identity of the entities (faces, edges, vertices) in the model. The

system kernel should handle persistent object identity, it is not a function of the

dimension and tolerance representation. It is impossible to always guarantee

persistency of object identity, therefore a suitable method for handling lost object

identities must be developed. A method for describing object identity when

transferring models between systems is needed.

A.G. Pedley 	 Ph.D.Thesis 	 5-10

5.2.6 	Functionality

Dimensions and tolerances may be applied directly to solid models or to workpiece

(feature) models. Solid models provide the only means of importing geometry from

other feature modelling or solid modelling systems to date. The function of these

dimensions is to measure and respond to changes in the model.

Dimensions applied to contours created in 2D draughting systems should be

maintained after importation to the 3D feature modelling system. 2D engineering

drawings in many cases still provide the standard definition of components and are

used for relatively complex designs. The function of these dimensions is to measure

and respond to changes in the model.

Sketchers that use variationally constrained geometry have dimensions that are

associated with certain constraints: radius and distance, for example. The function of

these dimensions is to measure, respond to changes in the model, and be used to set

the value of the constraints and hence control the model.

Dimensions should be able to represent the size parameters of features. The property

sheet covers up to one third of the display area in contrast to modem user interface

development philosophy which tries to maximise visualisation of the model. The

majority of parameters displayed in the property sheet represent the size, position and

orientation of the feature. In chapter 4 methods were developed that enabled

graphical setting of feature position and orientation with the use of the LCS which

did not require the property sheet. The position and orientation of features within the

model may be represented graphically by level 1 dimensions. Representing the size

parameters graphically as level 2 dimensions (including the special positioning

feature) and being able to set the parameter values graphically will eliminate the need

for these parameters to be present in the property sheet, hence reducing its displayed

size, or eliminating the need for it completely. Therefore, user interaction with the

feature modeller will be improved. The function of these dimensions is to measure,

A.G. Pedley 	 Ph.D..Thesis 	 5-11

respond to changes in the model, and be used to set the value of the size parameters

and hence control the model.

All of these objects can be integrated in a feature model and validity of the

dimensions on combination should be maintained.

The dimension and tolerance functionality should be equally applicable to both

system developed and user defined features. User defined features make the system

open and are a prerequisite for widespread acceptance of feature modelling systems

and enhanced process integration.

Any implementation should take into account the performance for large models with

features of many and complex parameters. Such models lead to a great many

dimensions being present which could lead to degradation of interactive performance

which they are designed to enhance.

Last but not least the dimension and tolerance scheme should be able to be applied to

existing data as well as newly created models. Re-use of existing data is a major

factor in the efficiency of developing designs. Significant amounts of legacy data

exists in the form of solid and earlier versions of form feature models.

5.3 	Classification

In section 5.2 three important requirements were established that influence dimension

classification in the modelling system: kind, associativity, functionality. The

implementational complexity of the three factors is used to determine classification.

Level of associativity is seen as providing the most fundamental differences in

implementation strategy because of the differences between merely measuring the

model statically, measuring the model and responding to changes, and both

measuring and controlling the model.

Significant differences will be needed in the approach to modelling the dimensions

that represent functionally different things. For example, simple 3D dimensions,

A.G. Pedley 	 Ph.D..Thesis 	 5-12

dimensions imported from 2D draughting systems, dimensions representing the

constraints applied to a sketched contour, dimensions representing parameters of

features. These considerations sub-divide the three associativity categories.

In each sub-division the four kinds of dimension provide for further division leading

to the classification in Figure 5.2.

[Dimensions & Tolerances

ASSOCIATIVITY 	FUNCTIONALITY KIND

Non-Associative 1 Linear I
Angular 	I
Diameter I

- 	iDiei Radius

O Solid 	 b Linear 	I
Angular

Diameter I
Radius

Workpiece Models- I 	Linear 	I
I Angular

Diameter I
Radius

Imported 2D Contours I 	Linear 	I
I Angular

Diameter I
-1BiDirectional Associative 1 	Radius

Feature Parameters I 	Linear

I Angular

Diameter I
Radius

Sketcher Constraints I 	Linear 	I
I Angular

Diameter I
Radius

onalsociativ
Linear I
Angular 	I
Diameter I
Radius

Figure 5.2 Dimension Classification

A.G. Pedley 	 Ph.D.Thesis 	 5-13

Dimensional tolerances are by definition applied to dimensions and cannot be

described independently. Although there are three kinds of dimensional tolerance:

Plus-minus.

Limit/fit.

Statistical

They will not be independently classified, but will be included with the dimension

representation.

Geometric tolerances have similarities to the dimensions; they can be non-

associative, uni-directionally and (possibly) bi-directionally associative. The

usefulness of non-associative geometric tolerances is extremely limited because of

the lack of relationships to either the geometry or features.

Non-associative geometric tolerances will not be investigated. Of major significance

are uni-directional associative geometric tolerances because they are applied to the

geometry, respond to changes in the geometry and most importantly can be related to

features. The possibility of geometric tolerances acting in a bi-directional manner

will be discussed in chapter 6. Only uni-directional associative geometric tolerances

will be considered. Of the tolerances classified in Figure 2.18, the parallel tolerance

will be fully investigated because of the need to be related to two shape aspects.

5.4 	Architecture

It is very tempting to use the information repositories of the form feature templates as

a means of supporting dimension and tolerance data for the model. The size

parameters of the features correspond one to one with size dimensions, the position

of the feature and its orientation angles correspond with the location dimensions

defined by the STEP Shape Variational Model [STEP47]. Geometric tolerances that

are intra-feature can be supported. However, there are a number of significant

problems with this approach:

A.G. Pedley 	 Ph.D. Thesis 	 5-14

• Only features of intrinsically defined form may have dimensions and tolerances

represented. Features of extrinsically defined form which include swept objects,

any solid bodies integrated with the feature modeller or any other objects such as

imported 2D contours or sketcher contours cannot have dimensions and tolerances

represented.

• Only a limited representation of inter-feature relationships can be supported.

Location dimensions of position and orientation and their associated dimensional

tolerances define inter-feature relationships between the origin of one feature and

its reference feature or workpiece origin.

• Only resultant geometry created by independent features could be fully

dimensioned. Non-intersecting features describe too simplistic geometry for

industrial needs.

• Resultant geometry that is left after volume removal by a negative feature cannot

be dimensioned. No feature parameters exist that represent the remaining shape

aspects.

• Only geometric elements that exist in the feature templates can have dimension

and tolerance attributes associated with them.

• Features that intersect creating merged faces become over dimensioned

(toleranced).

All possible tolerances have to be pre-defined in the feature templates. This is

unrealistic and inefficient for intra-feature dimensions and tolerances and virtually

impossible for inter-feature relationships. It is not known how many and which

aspects of the feature are to be constrained, or what they are to be constrained to.

Clearly supporting the representation of dimensions and tolerances as intrinsic

parameters of a form feature is too constraining and cannot meet the objectives of the

work. A data structure is required that is external to the definition of the form feature

workpiece but is a part of the more general feature, or product, model.

A.G. Pedley 	 Ph.D.Thesis 	 5-15

In an analogous manner to workpieces consisting of form features producing a

geometric model, it is intuitive to consider a workpiece consisting of accuracy

features providing the manufacturing constraints. Such a product model consisting of

multiple workpieces representing different aspects of the component may be called a

hyper feature model [PED96a]. There are a number of compelling reasons to use this

architecture:

• The data structure is an integral part of the component model, but is separate from

the form features.

All objects in the feature modeller, geometric or otherwise are accessible.

• There are well developed and understood techniques for defining a feature

template, its parameters, controlling how a features behaves via its methods,

creating and deleting, saving and restoring. Defaults values for parameters may be

assigned or procedures defined to calculate them.

• Persistent object identity is provided by the kernel and is needed in both form

feature models for local operations and by the accuracy features for referencing.

• The order of evaluation of workpiece feature models may be set so that the

accuracy feature workpiece is evaluated after any geometric workpieces.

• Features can be defined to have two methods for informing the kernel what to do

with them. The make method and the symbol method. This has advantages

because the procedure that generates the graphic segment can be separated from

the procedure that validates the description of the accuracy after model changes.

• As can be seen from the requirements for graphical display (section 5.2.4) a

dimension feature will consist of many parameter values The user defined

template definition functionality can easily define these parameters and may be

readily extended if the need arises.

A.G. Pedley 	 Ph.D..Thesis 	 5-16

• The classification of dimensions and tolerances detailed in section 5.3 can be

readily represented by using different workpieces to support the level of

associativity, different feature types to support the different functionality, and

different template names to represent the different kinds of features.

• Other kinds of accuracy features such as surface conditions, and bespoke

developments such as flush checks and edge gap [1MP95] may be readily

integrated into the environment either by developer or end user. In this way the

system is not closed but is open to further development providing capacity for an

ever more complete product model.

Representing dimensions and tolerances as features and utilising the user defined

feature functionality of the feature modeller provides many advantages as described

in the above points. The architecture can be more clearly defined by considering the

classification shown in Figure 5.2. The classification has been divided into the

following family types which can be clearly distinguished:

Type 1: Non-Directionally Associative Dimensions

A single workpiece will be constructed that is separate from all other workpieces.

Four different feature templates specifically defined for non-associative

dimensions will be required to represent the four kinds. The workpiece will

consist of instances of these four accuracy features. The parameters describing the

dimension will be defined in the World Coordinate system because the

dimensions are not related to any objects in the model. For the same reason the

features do not require any validation of the description after changes in the

model.

Type 2: Uni-Directional Associative Dimensions

Dimensions applied to solid bodies or to workpiece models may be represented

with the same accuracy workpiece and feature templates because in both instances

the dimensions are related to geometric elements of a body; in the case of a form

feature model it is the resultant body of the workpiece.

A.G. Pedley 	 Ph.D..Thesis 	 5-17

A single workpiece will be constructed that is separate from all other workpiecés.

Four different feature templates specifically defined for uni-directional associative

dimensions will be required to represent the four kinds. The workpiece will

consist of instances of these four accuracy features. References to the geometric

elements being dimensioned providing persistent object identity must be

supported in the feature in order to enable validation of the dimension description

after changes in the model. The parameters describing the dimension will be

defined in the Body Coordinate system of the solid, this allows the dimensions to

move with any rotations or translations of the body or workpiece.

Type 3: Imported 2D Draughting Contour Dimensions

These have an identical structure to the Type 2 dimensions. They require an

independent workpiece and features to differentiate them from other accuracy

features. This is because the dimensions are not created by the user in the interface

but automatically be the import functions and should not be editable in terms of

their graphical appearance to maintain consistency with the 2D system.

Type 4: Feature Parameter Dimensions

Performance of the system degenerates proportionately with the number of entities

in data dictionaries that are displayed by browsers. This is because of the poor

response of X/Motif to building large dynamic objects. Large models consisting

of many features will have many parameters. The more complex each feature, the

more parameters, the more dimension representations, and the greater the

problem. Any function that requires picking of objects entails filling a browser.

Feature parameter dimensions will exist for each size parameter in the model and

are therefore the most numerous of all dimension types. To avoid such

performance problems, the workpieces and features providing the data structure

for the dimensions and tolerances will not be present in the data dictionaries.

In order to simplify management of the dimensions each form feature will have a

workpiece associated with it that contains features each of which represents a

A.G. Pedley 	 Ph.D.-Thesis 	 5-18

single dimension. Each dimension feature is therefore related to only one form

feature parameter. References must be supported that allow a dimension to know

which size parameter it represents, and vice verse. This architecture enables

parameter dimensions to be managed on a feature by feature basis. One

application is to display only those dimensions of the currently active feature.

The features representing parameter dimensions are defined in a different manner

to the other features, i.e. they are not defined independently as user defined

features with DefTemplate. This is because they are defined as part of the

parameter description of the form feature parameter as described in section

5.5.6.4. The reason for defining them as part of the form feature description is so

that they are applicable to any user defined form feature.

The parameters forming the extended template definition describe how to display

the symbol of the dimension as with the earlier dimension types. All parameters

that describe the display symbol of the dimension feature are defined in the

coordinate system of the form feature (of which the dimension represents a size

parameter). This is so that the display of the dimension symbol will always be

consistent with the position and orientation of the form feature. The actual values

of the parameters will have to be validated after each change in the feature so the

dimensions remain consistent with the size of the feature.

5. Type 5: Sketcher Constraint Dimensions

Sketcher Constraint Dimensions are dependent on the type and implementation of

the constraints. 2D Sketcher constraints typically are either single value or

variable. For instance, elements may be constrained to be parallel, tangent,

orthogonal, coincident, etc., or the constraints simply do not exist. By contrast

distance, radius and angle constraints must have a value associated with them. It is

the multi-value constraints that may be represented as dimensions. The dimension

feature contains only part of the information required to represent the dimension,

the other parameters are supported in the constraint. For dimensions the important

constituents are the value of the constraint, the entities that the constraint is

A.G. Pedley 	 Ph.D..Thesis 	 5-19

applied to, and the aspect of the entity (start point, end point, centre point of

circular arc). Constraints are applied after the contour has been sketched and so

their definition is totally derived from geometry. In this respect they emulate the

type 1 dimensions and therefore any defining parameters are stored in the Body

coordinates of contour (a contour, though consisting of many elements only has

one body). The data structure used to associate the constraints with a particular

contour body is implemented using the ACTS attribute mechanism. This provides

encapsulation of all information used to create that body. Encapsulation brings

model management benefits. In order to maintain encapsulation a contour body

will have a workpiece associated with it to which the dimension features

representing the constraints will be assigned. In a similar manner to the type 4

parameter dimensions the workpieces and features will not appear in browser data

dictionaries. Mechanisms must be provided to associate a dimension with a

constraint and vice verse.

6. Type 6: Functional Dimensions

To date no developments have been made. It is believed, however that such

dimensions will closely reflect the development of the Complex Form Feature

type. This is because in both cases the feature will have to support a set of rules

defining how the constituent parts are related together. For Functional Dimensions

it is necessary to define which parameter(s) of which feature(s) will be controlled

from the controlling dimension, and what the relationship(s) will be.

Dimensional tolerances can only be applied to dimensions and are therefore

supported as attributes of the respective dimension features forming parameters in the

template definition. Perhaps the natural object oriented architecture would be to use

individual features for the tolerances (only one template would have to be defined)

and reference the specific dimension to be toleranced. However, there are a number

of overheads which make this approach unattractive. Dimensional tolerances support

simple data which can be defined in three parameters: textual indicating limit/fit or

statistical distribution, and real values defining the upper and lower deviations.

A.G. Pedley 	 Ph.D..Thesis 	 5-20

Supporting the tolerances in an individual feature requires the definition of extra

reference parameters and the addition of all the hidden attributes of the feature that

control its existence in the workpiece. This makes a model with many dimensioned

tolerances larger, particularly with the majority of dimensions being toleranced as is

common practice. The graphic routines are more straight forward to implement and

are therefore quicker when the data is in one location. Dimensional tolerances are

associated through the geometry to features or directly with the features via

parameter dimensions.

Interactions between features provide the most significant challenges for process

planners and automated process planning systems [M1L93]. Geometric tolerances of

form are generally related to a single shape aspect of the model. The shape aspect is

often derived from a single feature, but when more than one feature has been

combined to produce merged faces, any geometric tolerance applied to that face is

related to both features. In contrast to tolerances of form, tolerances of location and

attitude relate two shape aspects. The shape aspects can relate two elements of the

same feature, two elements generated by different features, or even two elements in

separate workpiece models. Unlike dimensional tolerances which have a simple

definition related to a single size parameter, geometric tolerances are related to the

geometric elements produced in the resultant model by the features. Supporting

geometric tolerances as attributes is extremely inefficient because each tolerance

must be represented as a parameter and parameters must be included for each

reference entity. It is impractical in most cases and impossible for features of

extrinsically defined form that each shape aspect has a set of tolerance attributes.

Therefore the structure of all geometric tolerances will be implemented as with Type

2 uni-directional associative dimensions. Each tolerance will be a feature and be

assigned to the Type 2 accuracy feature workpiece. Associativity with any geometry

will be via entity references. Parameter definitions will be in Body Coordinates.

Therefore the description will be invariant under translation and rotation. The

representation is equally applicable to intra as well as inter feature tolerances.

Problems with merged faces are eliminated because the tolerances are applied to the

A.G. Pedley 	 Ph.D..Thesis 	 5-21

resultant faces in the model. The tolerances are related back to the generating features

via the face attribute which stores a list of the generating features.

5.5 	Implementation

5.5.1 	Class Structure

The class structure shown in Figure 3.10 has been extended, as shown Figure 5.3, to

provide better support for the concept that a workpiece structure does not necessarily

have to produce a solid model as its result. The original Wop and Fea classes have

been simplified and the original functionality is now represented by the classes

FormWop and FormFea which inherit from Wop and WopBase, and Fea and

FeaBase respectively.

I ACIS User

EntityKon

WORKPIECE CLASSES 	USES

Parameter

Dimensions

Dimensions

rmWop Ce:
Geometry

Tolerances

FEATURE CLASSES

FeaBase

Fea

FormFea
Geometry

Dimensions

EntityFeaConst.Geom.
Tolerances

PDTI-lFea Parameter
Dimensions

PARAMETER CLASS

Param Info
FeaPar

Val I Formula

Figure 5.3 Extended Class Structure

A.G. Pedley 	 Ph.D.-Thesis 	 5-22

As indicated in Figure 5.3, the WopBase class is used to define workpieces

consisting purely of dimensions representing the size parameters of features. These

workpieces do not produce solid geometry, nor do they appear in the browser data

dictionaries. The Wop class is used to define workpieces which may or may not

produce solid geometry. However, each features' geometry will not be combined to

produce a resultant model, the workpieces do appear in the browser dictionaries and

are used to support dimensions, tolerances and construction geometry. The FormWop

class supports the original concept of a workpiece containing form features which

generate geometry which is combined to produce a resultant model.

The FeaBase class is used to support common attributes and functions between the

Fea and PDTHFea classes. The PDTHFea class is used to support a single symbolic

graphic entity which represents the size parameter dimension of a feature. It does not

produce solid geometry, nor is the feature combined to make a model, nor do the

features appear in browser dictionaries. The Fea class is used to support commonality

of attributes and functions for features which appear in browser dictionaries. There

are two sub-types. The FormFea class represents the original concept of a form

feature which produces geometry which is combined to produce a resultant model.

The EntityFea class supports features which return symbolic geometry in the form of

a graphic entity or solid body, which are not combined to produce a model. This

class is used to represent dimensions, tolerances and construction geometry.

It is envisaged that this class structure will be further extended to provide a

ComplexFea type that will be used to enable the user to create new features from

combinations of existing features.

5.5.2 	Workpiece Structure

The workpiece structures used to represent the dimension types are built from three

workpiece/feature class systems.

A.G. Pedley 	 Ph.D..Thesis 	 5-23

All workpieces that appear in the browsers supporting non- and uni-directional

dimensions are constructed as shown in Figure 5.4. Workpieces supporting parameter

dimensions are structured as shown in Figure 5.5. Workpieces supporting sketcher

constraint dimensions are structured as shown in Figure 5.6.

Wop 	
FeaPar

L r EntiFea 	f 	Par 2

I2 I'LFeaPar I
Pail
Par2

Figure 5.4 Non And Uni-Directional Workpiece Class Structure

WopBase 	I Wop 1

LW0P2

1

FeaPar

DTHFeaJ I L L
L1 FeaPar

F- I
Lii Par2

L FeaPa]

PDTHFeaJ

I 	 L 	FeaPar

H Pail

Li

Figure 5.5 Workpiece Class Structure Supporting Parameter Dimensions

A.G. Pedley 	 Ph.D..Thesis 	 5-24

FeaPar

EntityFea 	 F- Par 1
]—Par2

Feal

F- Fea2
L_ 	 Lf_FeaPar

H
Li

WopBase 	r
H Wopi

if 	P 2 	

EntityFea 	f 	Par 2

FeaPar

I Fea 1

if Fea 2 	

FeaPar

H Pail

Li___

Figure 5.6 Workpiece Class Structure Supporting Sketcher Constraint

Dimensions

The following workpieces have been pre-defined in the system:

":DirnWop" 	for non-associative dimensions.

":DimWop2" 	for uni-directional associative dimensions created by the user

in.

":DimWop3" 	for uni-directional associative dimensions imported from 2D

draughting systems.

When the user creates a workpiece in MCL+ with a name which begins with a

this is automatically assigned to be of the class Wop.

The workpieces associated with each form feature to represent the parameter

dimensions are created automatically by the template builder when reading the

template description (section 5.5.6.4). Similarly the workpieces associated with the

A.G. Pedley 	 Ph.D. Thesis 	 5-25

sketcher constraints are automatically created on generation of a contour (section

5.5.5.5).

5.5.3 	Technical Views'

In order to eliminate the necessity for a separate 2D modelling environment for the

component it must be possible to develop hard copy 2D drawings directly from the

3D representation. A view layout has been developed, known as technical layout, in

which any views defined by the user must conform to first or third angle technical

engineering drawing conventions (which ever is selected). A standard layout of front,

plan and right views and an isometric projection is provided. Any of the other formal

views may be added but must conform in size and position with the current scheme.

Views from any angle may be specified, as can cross-section, detail, and completely

free views.

The use of technical views is very helpful to aid the user in creation of dimensions

because the orientation of the dimension plane is defined. Each technical view has a

line of sight which is taken as the dimension plane normal vector. The graphics and

windowing systems of HOOPS and XfMotif (via the Input Controller) are able to

determine which view a pick took place in, and the place of the pick. The

combination of the view line of sight and pick position can be used to good effect to

reduce the number of parameters that the user must define in constructing a

dimension (section 5.6.1).

Technical views also aid the display of dimensions. A dimension may only appear in

a technical view defined by the line of sight vector being parallel to the dimension

plane normal. The plane of display of a dimension value is always parallel to the

'The development of technical views is predominantly not the work of the author. The use, response

and behaviour of the dimension and tolerances within the technical views is the work of the author.

A.G. Pedley 	 Ph.D. Thesis 	 5-26

plane of a view, horizontal and sited on the dimension line. This is independent of

camera angle. In a technical view the text is additionally maintained parallel to and

above the dimension line as in a standard engineering drawing.

5.5.4 	Description Of Dimension Templates

5.5.4.1 	Linear

Linear dimensions are defined between two points in a model. The value of the

dimension is calculated with respect to the direction of projection, and the dimension

plane in which the dimension line is located. The in-dimension-plane projection lines

should always have a length that helps clarity of the drawing.

This description requires the definition of the following parameters:

"posi , 	, "Position", "W" , ''fl",
Wi
n

 If , If FYI

"pos2 ,
IV, "Position", "W",

	''n" , if If I

The start points of the projection lines.

{

UjII
, I'll , '' vector" VI.,,jU

,
lt_U UIl fill }

The normal vector of the dimension plane.

, 	 , "W", "n'' , " fl" 	
IV

The direction of projection in the dimension plane. It is defined to be in the

projected direction ofposi to pos2.

{ "]..ocavec" , 	, 	, 	"n" 	, fill}

The vector points from pos 1 to the start point of the dimension line. This

defines the position of the dimension plane and the position of the dimension

line in the dimension plane. Hence the lengths of the to-dimension-plane

projection lines and the in-dimension-plane projection lines are defined. This

may produce all four projection lines of different length.

A.G. Pedley 	 PhD, Thesis 	 5-27

(I, L of 	"real" , 	 I 	 I 	
I

I o .0"}

Defines the position of the value of the dimension and tolerance to be displayed

on the dimension line. tof is zero at the centre of the dimension line, +1 at the

intersection of the projection line from pos 1 with the dimension line, -1 at the

other end of projection line, and proportionally positive or negative if not

positioned within the projection lines.

The parameter meanings are shown in Figure 5.7.

Figure 5.7 Linear Dimension Parameters

5.5.4.2 	 Angular

Angular dimensions are defined with respect to three points in the model. The plane

defined by the three points also defines the attitude of the dimension plane. The value

is calculated to be the interior or exterior angle as defined by the three points, Figure

5.8. The in-dimension-plane projection lines should always have a length that helps

clarity of the drawing.

This description requires the definition of the following parameters:

A.G. Pedley 	 I Ph.D. Thesis 	 5-28

{"posl V
,""," Position `, "w" , "n " , "n '

"pos2 	Pc s 1.1: ion1 , "w'' , "nTT , II iT I'll)
{

The start points of the projection lines.

(" 	 , pos3" "',"Position", 	" w , " n" "n

The intersection point which defines the angle as the interior angle formed by

two straight lines drawn through posi and pos3, and, pos2 and pos3. 	-

no inn " ,
It

,
'' 	

"Vector" , 'w'' , ''n I F
, '' n" , it

 If I

The normal vector of the dimension plane. Partially redundant because the

normal is always calculated from the cross product of the vectors joining p053

to posl and pos3 to pos2. It is maintained for version and graphic routine

compatibility.

ii w II Ti n 	niT IF if {"iocavec" " "Vector " ,

The vector points from posl to the start point of the dimension line (arc). The

"x" component of the vector is defined to be in the direction from pos3 to

posi. The "y" component is always zero. The "z" component is defined to be

in the direction of the dimension plane normal as defined above. This is so the

positions describing the dimension line will remain consistent with changes in

angle. locavec defines the position of the dimension plane and the position of

the dimension line in the dimension plane. Hence the lengths of the to-

dimension-plane projection lines and the in-dimension-plane projection lines

are defined. The to-dimension-plane projection lines will be of the same length,

the in-dimension-plane projection lines may be of differing lengths.

(TI to f", ' Tiff , " •-
	

TI TI Ti II n11 "-'I, 	Q 0

	

 w , 	,

Defines the position of the value of the dimension and tolerance to be displayed

on the arc of the dimension line, to f is zero at the centre of the dimension line,

+1 at the intersection of the projection line from posi with the dimension line,

-1 at the other end of projection line, and proportionally positive or negative if

not positioned within the projection lines.

A.G. Pedley 	 Ph.D. Thesis 	 5-29

The parameter meanings are shown in Figure 5.8.

Figure 5.8 Angular Dimension Parameters

5.5.4.3 	 Diameter

Diameter dimensions are defined by a circular arc which may or may not be a full

circle. The dimension plane is defined either by the plane of the arc or by a plane

orthogonal to the plane of the arc. The value is simply twice the radius of the arc. The

value may also be represented as a standard thread size such as M8. The direction of

the dimension line is dictated by a vector. This vector orients the dimension plane if

normal to the plane of the arc. Diameter dimensions may have full or half dimension

lines. The in-dimension-plane projection lines should always have a length that helps

clarity of the drawing, except if the dimension line intersects the axis of the arc, in

which case the length may be zero. The dimension line nevet cuts the arc being

dimensioned.

This description requires the definition of the following parameters:

A.G. Pedley 	 Ph.D. Thesis 	 5-30

'' ' n'' " n" "Position " , w , 	 , ("posi ii
 ,

"
it 	tinit, " n it , If it "',"Position", w , { "pos2 , 	

ii

The start points of the projection lines at opposite ends of a diameter for a full

dimension line. For a half dimension line, posi defines the start point of the

single projection line, and pos2 is the opposite end of the diameter to posi but

has no projection line.

n ' "norm"

	

	 , w '
, " "'' , " I "Vector

The normal vector of the dimension plane.

{ iidldi , " "Vector", ii wit
,

it n" , tntt , If ii

The direction of the dimension line. It is defined to be in the direction from

posi to pos2.

, 	i locavec" I
"it

I "Vector", "
W

il l i n I T it n"

The vector points from posl to the start point of the dimension line. This

defines the position of the dimension plane and the position of the dimension

line in the dimension plane. Hence the lengths of the to-dimension-plane

projection lines and the in-dimension-plane projection lines are defined.

{ to fit if IT , tt real" ' 	 TWIT "0 . 0" w , 	,

Defines the position of the value of the dimension and tolerance to be displayed

on the dimension line. For a full dimension line indicating a complete diameter

to f is zero at the centre of the dimension line, +1 at the intersection of the

projection line from posi with the dimension line, -1 at the other end of

projection line, and proportionally positive or negative if not positioned within

the projection lines. For a dimension line showing a half diameter the

dimension line has a length equal to the radius. to f is zero at the centre of the

dimension line, +1 at the intersection of the projection line with the dimension

line, -1 at the other end of projection line, and proportionally positive or

negative if not positioned within the length of the dimension line.

A.G. Pedley 	 Ph.D. Thesis 	 5-31

n it , Vt

	

"Position I,
 , " w", II n

II
, VI 	O,O,0"} { " spos ,

Defines the start point of the arc in order to describe where any help arc may be

drawn from.

Vt 	 it 	TI 	TV_..IT 	 I

	

Pos it ion , w , 	 , nit , 5, 0, 0 {"epos ,

Defines the end point of the arc in order to describe where any help arc may be

drawn from. If the arc forms a complete circle epos is defined to be the same as

spos.

{" 	I arcpos" I'll , "Position", IT
W

it , VI n ''
, "n " , 2.5,2.5,0"}

Defines a position on the arc in order to define the normal to the arc and which

of the two possible segments of a circle defined by spos and epos forms the

arc. If the arc is open, arcpos is defined as the midpoint of the arc. If spos

equals epos, arcpos is defined as a point at the end of a diameter which is

perpendicular to didir.

	

, 	 , 	
, IV 0"} { "touch" ,

" ", mtT ,
11

W
 Vt VI

n
 VT TI ._ TI

Defines if posi and / or pos2 lie on the arc. touch is needed to indicate if a

help arc is to be displayed. touch is zero if neither posi or pos2 lie on the arc,

1 only if posi lies on the arc, 2 if only pos2 lies on the arc, and three if both

posi and pos2 lie on the arc.

The parameter meanings are shown in Figure 5.9.

nolL tof
norm

tof 	

pos2

didir

	

poos2 :locavec

epos 	 spos

 epos

locavec

Figure 5.9 Diameter Dimension Parameters

A.G. Pedley 	 Ph.D. Thesis 	 5-32

5.5.4.4 	Radius

Radius dimensions are defined by a circular arc which may or may not be a full

circle. The dimension plane is always defined by the plane of the arc. The value is

simply the radius of the arc. The direction of the dimension line is dictated by a

vector. The dimension line direction always passes through the centre of the arc.

This description requires the definition of the following parameters:

I
w

II 	 II 	 V 	 I grit} U 	
, { "posl flti "Position

The start point of the dimension line is sited on the imaginary circle that the arc

forms a part of.

{" 	 , pos2" ", "Position", w 'I n ',

The end point of the dimension line. The position of pos2 is defined by tof.

(''norm","", "Vector " , IIw, If '
-' !T,_ II lit!

The normal vector of the dimension plane.

{"dldi. , "Vector", "W", "ii" "in

The direction of the dimension line. didir is defined to be from the centre of

the circular arc outwards.

"locavec" I "","Vector", "Were 'in if, iz

Is always of zero length. Kept for historical reasons.

ITT to f it , If TV, real", fe
w " "n "1 n If , Ito. 0 "

Defines the position of the value of the dimension and tolerance to be displayed

on the dimension line. tof is zero at pos i (however the value may never be

zero), +1 at a distance equal to the radius from posi in the dimension line

direction, -1 at the centre of the circular arc, and proportionally positive or

negative.

The parameter meanings are shown in Figure 5.10

A.G. Pedley 	 Ph.D..Thesis 	 5-33

didir 	
arcpos

tof

fpos2
norm norm 	

arcpos 	
didir

epos 	

posi

epos 	 tof

Figure 5.10 Radius Dimension Parameters

	

 If n {"spos,"', " Position", ''w'' , 	"nit, ''0, 0, o III

Defines the start point of the arc in order to describe where any help arc may be

drawn from.

l 	 n 	U II epos, "',"Position" 	, • , n" , "5, 0, 0 {" FvI

Defines the end point of the arc in order to describe where any help arc may be

drawn from. If the arc forms a complete circle epos is defined to be the same as

spos.

"a rcpo s " , "' , "Position", w" , nit, 2.5,2.5,0")

Defines a position on the arc in order to define the normal to the arc and which

of the two possible segments of a circle defined by spos and epos forms the

arc. If the arc is open, arcpos is defined as the midpoint of the arc. If spos

equals epos, arcpos is defined as a point at the end of a diameters which is

perpendicular to didir.

	

 If {"touch","", mt ", wig, n" , 	 ,
110U

Defines if posi lies on the arc. touch is needed to indicate if a help arc is to be

displayed. touch is zero if posi does not lie on the arc, 1 if posi lies on the

arc.

A.G. Pedley 	 Ph.D. Thesis 	 5-34

5.5.4.5 	 Dimensional Tolerances

Dimensional tolerances are supported by three parameter attributes as shown below.

"t type 	" "String", "W " , VT VT U TV 	 TI IT
I 	 I

Supports any textual representation of the tolerance such as limit, fit or

statistical description..

"toll'' I 	 "real'', if " w 	''n'' ''0 QIT

Represents the lower deviation of the tolerance.

"to 12 IT I 	 I rel" , w" $ n VT
,

TV n VI
,

110. 0

Represents the upper deviation of the tolerance.

	

1 1 ... 	 Li_U 	--
-i apnI Parameters

The following parameters are used by the graphics to correctly display a dimension

line.

{ "val "

	

VT 	.., II real", "w ,
VT 	

,
VTj_tV "10 . 0

Represents the numerical value of the dimension to be displayed.

{"dlesyml " 	"i_nt", IVVV UVV
,

VTU TI 1
-L II

TV 	II TV 	IV 	
" 	"

TV 	IV "dlesym2 , 	, i_nt, 11
W ,

II n ,
ITn", "l"}

Represents the type of arrow head to be used for the display of the dimension

line. Planar arrow heads, crossed planar arrow heads, spheres and tick marks

may be specified. If dlesym2 is set to zero for a diameter dimension this

indicates that it is represented as a half diameter dimension line. dl e s ym2 is

not necessary for a radius dimension.

{
VIjjVV

I 	
IV "intir, " w I

 ,
IV n II

,
VI n" , ''0 }

Indicates the direction of the arrow on the dimension line. The arrow head may

be sited inside the projection lines pointing outwards, or outside the projection

lines pointing inwards.

A.G. Pedley 	 Ph.D..Thesis 	 5-35

"locplane", 1
I "intil, 	, 	

f_tt Vrfl

Indicates that a small rectangle should be displayed to show the plane of the

dimension plane. A small arrow is displayed to indicate the direction of the

dimension plane normal.

5.5.5 	Object Decoding

It has been shown in section 5.5.4 that all dimension kinds require the derivation of

positions to enable a graphical representation to be displayed. The positions form the

start / end points for the dimension lines or the projection lines. These points are

directly derived from the geometry for all dimension types apart from Type 4

(Parameter Dimensions) which are procedurally generated from the definition of the

feature (section 5.5.6.4). The derivation of positions from geometry may be general

or functional. Even though the derivation of points from geometry may be classed as

general, the points must always be compatible with the kind of dimension being

represented. It is necessary to be very specific with functionally derived points from

entities in order to maintain consistency with the definition of the constraints which

they represent. Geometry may be picked from the display with types 1, 2 and 5, or

prescribed when importing dimensioned contours from a 2D draughting system, type

3. Object decoding is not applicable to type 4 parameter dimensions.

5.5.5.1 	General Decoding

There are three types of object that can be picked in the display that can be decoded

to generate dimension positions: faces, edges, and vertices. These are topological

entities and the corresponding geometry is interrogated to evaluate positions.

Decoding is performed in MCL+.

A.G. Pedley 	 Ph.D..Thesis 	 5-36

	

5.5.5.1.1 	 Vertices

Vertices are the least complicated. The position coordinates of the vertex are given by

its attribute point. In MCL+:

local Position pos = this vertex.Point

Where this—vertex is a valid vertex pointer. The coordinates must be converted

from Local Coordinates to the desired (usually World) coordinate system.

	

5.5.5.1.2 	 Edges

In MCL+ all edges have an attribute GeoType which may be Straight, Circle,

Ellipse, or Spline. To date Spline edge types may not be decoded or have

dimensions applied. ill decoding of an edge intuitive points are used. The mid point

of a straight edge and the centre point of a circular edge are used to indicate that it is

an edge entity that has been used, rather than the vertices which form its start / end

points.

Single edges may be decoded to generate one position. In this case the position

decoded is the mid-point of a straight edge, or the centre of a circular or elliptical arc.

Single edges may be decoded to generate two positions. The decoded positions are

the start and end points of the edge. This is independent of edge type and may be

interpreted to be the length of a straight line or the chord of an arc.

Two edges may be decoded to generate one position. The edges must be straight, in

which case the intersection point of the geometric straight lines is decoded (if the

edges are not parallel).

The coordinates must be converted from Local Coordinates to the desired (usually

World) coordinate system.

A.G. Pedley 	 Ph.D..Thesis 	 5-37

5.5.5.1.3 	 Faces

In MCL+ all faces have an attribute GeoType which may be Plane, Cylinder, Cone,

or SplineSu, etc. To date only Plane and Cone face types may be decoded to

generate a point for use in dimensioning.

Conical faces are decoded to generate the position of the apex.

In decoding of planar faces there are no intuitive points that lie within the face rather

than on its boundary. Utilising points on the boundary would indicate in the display

that it was an edge or vertex that was used for dimensioning. A further consideration

when generating a point that lies within a face is that a face may have inner loops

producing holes or protrusions.

A single face is decode to produce a position that lies on the face. This is achieved by

intersecting the face with a plane whose normal is defined by the dimension plane

and the root point is calculated to be the mid-point of the diagonal of the box

surrounding the face. This produces a series of curve segments which lie on the face.

The mid-point of the segment nearest to the root point is the decoded point.

A pair of non-parallel planar faces may be decoded to produce three points: a point

on each face and an intersection point. The three points are used to define an angle.

The dimension plane normal vector is defined by the cross product of the face normal

vectors. A point on the first face is generated as described above. A point on the

second face is generated, also as described above, but the root point is defined to be

the point generated for the first face. Equations of the straight lines formed by the

straight line segments are intersected. The intersection point is the third point

generated.

A.G. Pedley 	 Ph.D..Thesis 	 5-38

5.5.5.2 	Functional Decoding

Distance constraints in the Sketcher are formed between points in the Constraint

Manager [DCU]. The points are generated from edges by specifically indicating how

the position should be calculated. For straight edges the points may be either the start

or end points. For circular arcs, the positions may be the start or end points, or centre

of radius.

Radius constraints are related to a circular arc. Further decoding is not required.

5.5.6 	Dimension Types

In addition to the parameters described in section 5.4 further parameters are required

1___1
upiituiflg 011 L11 uimiiiuii LypL. I 11 	pdra1I1cLc1 dilU UIC Wdy 111 wiiifl LIIC

methods described in the feature templates are used to maintain the validity and

display the dimensions and tolerances are described in this section.

In all dimension templates the symbol methods are denoted by "p", or the "p"

functions are inherited with the use of "e". This means that the method is

implemented as a C++ function. The symbol procedures consist of two parts: a part

which creates the graphic display segments and the part that converts the parameter

values from the coordinate system that they are maintained in, to the World

Coordinate System that the graphic segments use. Conversion is performed by

multiplying the points or directions by the necessary transform.

The templates use the following naming convention. They are of the form:

template name = d3a

where "d" indicates that the template is of a dimension,

"3" indicates that it is a 3D dimension,

A.G. Pedley 	 Ph.D..Thesis 	 5-39

"a" is an integer which indicates the dimension type (1 to 5), and

"3" is an integer which indicates the dimension kind, 1 to 4 corresponding to

linear, angular, diameter and radius respectively.

Dimension types 1, 2, 3 and 5 are of feature type DTH which is of the EntityFea class.

Dimensions of type 4 are of the feature type PDTH which is of the PDTHFea class. The

feature templates representing the dimensions are described using inheritance to

simplify and ease definition.

5.5.6.1 	Type 1: Non-Associative Dimensions

DefTemplate({"ENTITYDIM1 V
,

V V
,

V D[F •
,

tl --- Vt 	IV. Vt 	lV IV, tin TI Vt .V

{val Vt TV TV Vt
 real11 ,

wtt, Vt 1 .1 It
,

I D IV , I110 O ff) 1

I

{ Vt 	Vt
I

Vt Vt
I

VT real t ,
	, n it , Vt Vt , Vt Q 0 }

dl e symi TV , Vt Vt , Flint", Vt if , If nit,
Vtntt,

 frill },

ttype Vt , Vt Vt, "String", ttWVt ,
VV fl VT , VV

n il , tIlt }

Vtto]_1VV Vt IV "rea1 VV
W

IT , VVtt , tVfltt
 ,

VV 0 . 011 1
t o 12 	IT IT Vt real It VV Vt , IV n Vt , It ...LI VI Ito . Off)

adi r 	it IF flint IT it w it , tt n Vt , Vt Vt Vt 0
VVptV

, IF
Vt

I "Position" ,
IVtV VtVt ttntt ,

Vt Vt }
"pos2 it 	" Position", it ion , IV W

 tt
,

Vt
fl

IV
, ii

Vt_ It
,
 fill 1 { 	I,

("norm

	

t VI Vt
"Vector " , " WIT,

tV.. Vt
,

TV
fl

V 	 tVtV

 "WIT
, Vt.... it 	Vt

n
il , Vt IV 1 {ttlocavec Vt It Vt "Vector " , 	,

	

"m 	It TV { locplane Vt
 ,

tV tV
, 	t , w ,

TV_tV
 ,

Vt n" , Vt 0tV }

Figure 5.11 Type 1 Dimension Parent Template

A parent entity is used, ENT I TY DIM1, as shown in Figure 5.11. The parent entity is

used to contain all the common parameters for the dimension kinds as described in

section 5.5.4. There are no make methods associated with type 1 dimensions because

there are no associated objects. Validity checking occurs once at creation, and

ensures the dimension is consistent with the geometry.

The dimension kind templates are shown in Figure 5.12.

A.G. Pedley 	 Ph.D..Thesis 	 5-40

/1 Type 1 Linear Dimension
Def Template ({"d311 V

,
V V

,
V DTJ","ENTITY DIM1 V

, 	
'I

n
" , it p Vt

,
	V ,

	
IF

,
Vt

	

"didir Vt 	Vt Vt 	"vect"Vector", lV

	

, 	I
tt 	It 	•i Vt 	._. 	Vtit

"diesnn2 	' mt Vt, "w", "n'' I 	 I , "n" , "1"

II Type 1 Angular Dimension
Def Template ({"d312 Vt , Vt Vt 	Vt DTH , 	ENTITY DI Ml Vt 	Vt n , VV p 	, tt,-,tV , 	Vt n 	}

fl ttpos3 Vt , Vttt , "Position", , ttVV 	tV fl VV , 	VVVV } No
w

 IF "die s.'rn2 tV , or", "intly, 	, 	n ot , n 	11 111)

II Type 1 Diameter Dimension
Vt Vt 	''DTH" DefTemplate({ttd3l3 , , ''ENTITY 	DIM1 IV , 	VtVt ttptt , 	tVtt , 	VVtt }

'dicir I
, ,

I "vectort, VV W Vt , ttyVI

 , "n", 'If, 	, fl

y' 1, , It Vt dies yrn2 	, VtVt , Vt m nt Vt 	lo w " , " n or , Vt Vt I 	tt 1

I

{ " touch " , 	'lint " , Vt
W

 Vt
,
 Vt,, Vt , Vt

fl
Vt 	VtOtt

{ " spos Vt 	Vt Vt 	
" Position " , Vt

,
 Vt

W
 tt , Vt

ii
 Vt 	Vt

IL
Vt,
	, O r 	0, 0 11),

{ "epos " , Vt tV 	
" Position", Position" 	Vt

W
 tt , tV

n
 Vt , Vt n Vt , 11 5 , 0,

	

VI 	 Vt Vt
	" Position " , 	

Vt 	tV

	

{tt arcpos 	, 	, 	Positio11 , 	w Vt 	Vt,, VV 	 Vt, 	Vt 	Vt , 	, 	, 	2•512•510tt}
})

II Type 1 Radius Dimension
Vt 	Vt Vt 	Vt DTH Def Template ({ttd3l4 , "ENTITY 	DIM1 VV

 , 	
tt ,. Vt , Vt

p
Vt

,
Vt

	
if 	 tV

n
or

	

,.Vt 	Vt Vt 	"Vector", 	VV,, { 'tdidi 	, 	 ,

	

Vt 	tV,_,tt 	tV1 	fi 	0 11),

	

ii 	, 	ii 	 , 	,,

	

{"touch", 	Vt 	"mt Vt
	'T w o' , VV,_. IT

	

, 	, 	, 	tt IVn o,, "0" } 	}

Vt Vt 	
" Position", 'T w o' ,

{ " spos 	 I
Vt ii Vt 	"

n or, "0, 0, 0 ,
{ tt epos 	, 	" Position " , 'T w o' , VtVt 	Vtfitt

	11 5, 0, O " } ,
{Vtarcpos Vt , VVVt , " Position" , 'T w o' , Vt 	Vt , VtVt , " 2.5, 2.5, 0 1' 1, (''parent". "" ."Ent " . tt.Vt 	ttVV "n" 	"" I

Figure 5.12 Type 1 Dimension Template Definitions

Only those parameters are detailed in the child templates that are not common to all

four dimension kinds. For instance, an angular dimension has no direction of

projection (didir), a radius dimension does not have a second end symbol

(diesym2). Both diameter and radius require the parameter touch. In addition,

diameter and radius dimensions require the parameters spos, epos and arcpos to be

defined.

spos, epos and arcpos are required to define the arc of type 1 dimensions in order to

allow the dimensions to be edited correctly (section 5.6.2).

A.G. Pedley 	 Ph.D..Thesis 	 5-41

5.5.6.2 	Type 2: Uni-Directionally Associative Dimensions

It is a restriction of the feature modelling system kernel that feature templates may

only inherit from a single parent. This makes the definition of the type 2 templates

not as efficient as could be. It would be desirable that the type 2 templates could

inherit from both their own type entity parent and the type 1 kind templates. This is

not possible so the clearest method of developing the next branch of the dimension

family is for the type 2 parent template to inherit from the type 1 parent template.

The definition of the type 2 dimension kind templates is less efficient.

An interesting problem occurs when type 2 dimensions are applied to two separate

solid bodies which are then combined using Boolean operations. Before the Boolean

operation both bodies have different transforms and any dimensions that are applied

to the bodies (or between them) are defined in one of the Body Coordinate systems.

After combination there is a new body but only one Body Coordinate system. A

method is required that converts any dimension parameters from their previous

coordinate systems to the new one. A pre-NoteState function stores the previous

transforms before the Boolean operation is performed. Then, after combination, when

each feature in the dimensions workpiece is having its object identity reset to the new

body a MCL+ function is called that applies the previous transform to the required

parameters to convert them to World Coordinates, followed by application of the

inverse of the new transform converting them into the Body Coordinates of the new

body.

The type 2 definition of the parent entity, ENTITY_DIM2, is shown in Figure 5.13.

Type 2 dimensions are related to at least one entity (face, edge, or vertex), which is

supported by parameter obrelli. Type 2 dimensions may be applied between

entities in different bodies or workpieces. Type 2 dimension parameters are

supported in the Body Coordinate system of one of the bodies. This is indicated by

the parameter obrel, which stores the number of the entity, 11 for example. Each

entity has an attribute, Body, which may be interrogated to get the correct transform.

A.G. Pedley 	 Ph.D..Thesis 	 5-42

Parameter, ptypobl, indicates how the position required by the graphics should be

decoded from the entity. delopt is a parameter that is used to indicate how lost (non

persistent) object identities should be treated. Object identities associated with solid

bodies will never be refound once they are lost, therefore the dimension with lost

object identities should be deleted. Object identities related to entities in a feature

model may be found at a later stage after further topological changes (It is severe

topological changes that tend to cause lost object identities). Therefore delopt is set

to zero when the dimension is associated with a solid body and set to 1 when

associated with a feature model. The parameters parname and formfea are used to

maintain associativity between the dimension when applied to a contour and the body

parameter of a sweep form feature that consumes it.

Def Template
Vt

'In" ,
UtI

'In",
Vt

	

{ttENTITY DIM2't 	11 DTHtt I "ENTITY DIM1 ,

	

, 	I

	

" 	 U 	 ,- ft .-. O
I 	, '' int 	, ft W U

,
Vt

IL 	VtIL , 11 11 11 },

_. l Pt ypob 1 I IF 11 , " String , wVt , ft.-.tt Vt LI , I' M"),
obrel 11 I Ent ft 	 ft U Vt

It it}, I 	 I

del opt 	' 	i nt 	" w it , It ii U " n " , U 0) ,

{"parname I
,

f t , "String", 	, " n il , U It U It 1

	

U 	 " Fea Tt 	 n

	

{"formfea , 	, 	 ,
U

w
tI

,
ft...Vt ,ft " "ft

,

Figure 5.13 Type 2 Dimension Parent Template

The type 2 linear dimension template is shown in Figure 5.14.

DefTemplate

	

{"d321" 	'" 	ttDTHtI,IVENTITY

	

, 	 I DIM2',"geo model 	d32111, ftpU, Itntt, Vt
n

 U
},{

1dldir 	ft ft 	"Vector " , I 	I
Vt 	" W " , tt...it",

	

Il 	tttt

	

LI 	 }

{"dlesym2 V
, mt U

, "wit , tt 	,
U 	11 	Illy),

{"obrell2 t

, " Ent" , "wit , It
r 	 ,

tt II 	Vt It
}

U
	

11" , {"ptypob2 "String", ,
 It

	

ft 	Vt 	ft['4tt

	

n 	,

ttobrel2 1tt 	ft ft "Ent " , "will Vl 	fI

	

 ,. 	
,

It 	It 	VIII n
{ ''obrel22 tt I Vt Vt

I "Ent", II
W

 ft It... II
, 	 ii tt,.. II 	Vt Vt

} 	 } IL

Figure 5.14 Type 2 Linear Dimension Template

As with type 1 linear dimensions a direction of projection is required, dldir. This is

supported in Body Coordinates of obrelil. The second dimension line end symbol,

dlesym2, is also necessary. If linear dimensions are between two entities (rather than

a single edge which is decoded to give the start and end points) the second entity is

A.G. Pedley 	 Ph.D. Thesis 	 5-43

supported by parameter obrel2l. ptypob2 indicates how the point should be

decoded from the entity. Two straight edges may be used to define an intersection

point (which need not coincided with any point on or in the body), hence each point

requires two defining entities. The second entities are supported by parameters

obrell2 and obrel22. The parameters ptypobl and ptypob2 are set to "I" from the

default values of "M".

The make function, geo model d321, is used to maintain the validity of the

dimension after each change in the model when the dimension workpiece is

evaluated. geo model d321 performs the following functions:

• Tests for valid object identities. If any identities are lost the value of the

dimension is set to -1, the graphic symbol routine will not generate a HOOPS

segment and the dimension will not be displayed. Due to the fact that a feature

may not delete itself, the feature name is added to a global list. Before the

graphics are generated a housekeeping routine checks this list and the value of

delopt for the features. Any features with the value zero are deleted.

• The entities are decoded to generate positions.

The positions are tested to ensure that they are not identical. If they are, and

delopt is zero, the dimension is added to the global delete list.

• The new value is calculated.

• The posi, pos2 and val parameters of the feature are updated. The positions posi

and pos2 are supported in World Coordinates because they are always calculated

from entities that represent the current state of the model.

The type 2 angular dimension template is shown in Figure 5.15.

A.G. Pedley 	 Ph.D. Thesis 	 544

DefTemplate(
{tVd322Vt

, 	 , "" 	 "DTFI", "ENTITY DIM2", "geo model d322U,p,um n U,u n tt},

	

po s 3 Vt 	 It Vt

	

I 	 I " Position " , w't , 	n 	,
ti1.1tt

,

U U

"c,1,icell2 U
,

it U
, "Ent " , "w". tt,,

ii 	
t ,_tt

 ,. 	
U

ii 	 , 	

It 	
},

pt 	2 I
 I "String",

iW
V, " n il , WWI , 	 i Mtt

}

ob re 12 1 It
I

Ii ii " Ent " ,
"

W
il l

ii
ii

Vt

, 	ii Vt ,_, it
, 	

Ii Vt

{ ' ob ce 12 2 Vt ,
Vt Vi

, " Ent", t , 	W

	

it ... ii 	it 	Vt 	Vt Vt
, 	 ii 	 , 	n 	, 	 },

pt y'pob 3 I
if if

I "String" , Vt wit, ltIt 	VttI 	"M")
obrel 31" I

Vt II
I

ti Ent 	, "w", ttn it
 , 	

11,_it 	lift) ,

obrel 32U ,
tI U

,

	

"Ent". 	 it

	

, 	W

	

Vt.,, It 	Vt,, tt 	Vt Vt
, 	 , 	 , 	 } 	})

Figure 5.15 Type 2 Angular Dimension Template

The angular dimension requires a third position to define its value and graphical

representation, pos 3. In exactly the same way as with the linear dimension, each

point may be generated from one, or the intersection of two entities (faces, edges).

The make function, geo model d322, is used to maintain the validity of the

dimension after each change in the model when the dimension workpiece is

evaluated. geo_mode 1_d3 22 performs the following functions:

• Tests for valid object identities. Invalid object identities are treated as with type 2

linear dimensions.

• The entities are decoded to generate positions.

o The positions are tested to ensure that they are not identical. If the intersection

point (pos3) is identical to either of posl or pos2, and delopt is zero, the

dimension is added to the global delete list.

• The new value is calculated. If the three positions are collinear (value = 0) a new

normal is generated from the cross product of the old normal and the vector

defined by the line of the three positions. This generates a vector that is

orthogonal to the line containing the three positions. If the three positions are not

collinear (value # 0) the new normal is calculated from them.

The positions posi, pos2, pos3 and norm are supported in World Coordinates

because they are always calculated from entities that represent the current state of

A.G. Pedley 	 Ph.D. Thesis 	 5-45

the model. This is of use because the previous positions may be used to calculate

the previous value which can be compared to the previous saved value. If they are

different (and the stored value is not -1) this indicates that the dimension

represents the exterior angle. The value calculated from the positions is always the

interior angle. This is modified to be the exterior angle if necessary. The posi,

pos2, pos3, norm and val parameters of the feature are updated.

The type 2 diameter dimension template is shown in Figure 5.16.

Def Template
"d323" ,

"
, "DT H", "ENTI T Y_ D IM2 " , " geo mo de l d 323", "p", linfl,"n"),

"dldir" I 	 "Vector ,
,

i w i
,

ft_If
,

U n","1,0 I
Q"l

I

touch U if U nm 	ii
I 	

If
I

ff_ If
I 	1

ii UQ!f
I

{ '' spo c 	• n

	

"Position", wj , 	" , " '' '' 0 , 	, 0 , O il),
epos ' 	""Position", " 	-' 	U 5 0 0 1

	

W", , 	, n , , 	I

"arcpos" , "' ,"Position", "w " , ,,
n

,, , I, n", "2.5,2.5,0"1 })

Figure 5.16 Type 2 Diameter Dimension Template

The parameters specific to this template are as described in section 5.4.

The make function, geo model d323, is used to maintain the validity of the

dimension after each change in the model when the dimension workpiece is

evaluated. geo model d323 performs the following functions:

• Tests for valid object identity. Invalid object identity is treated as with type 2

linear dimensions.

• The geometry of the edge entity is used to provide the centre, normal and radius.

The centre and normal are converted from Local to World Coordinates.

didir is converted from body to world coordinates and used to calculated the

positions ofposi and pos2 from the centre.

• The positions spos and epos are provided as attributes of the entity. arcpos and

touch are calculated as described in section 5.4. The parameters posi, pos2,

A.G. Pedley 	 Ph.D. Thesis 	 5-46

spos, epos and arcpos (which are set to World Coordinates), touch and val are

re-assigned to the dimension feature.

The type 2 radius dimension template is shown in Figure 5.17.

Def Temp late
{"d324" I "" I ttDTH", "ENT ITY DIM2" geo model d324", "p", "n", "n"},

"diclir", "","Vector" ttu Vt tt u,, Vt w , n , 	,
["touch","", U mt VF

W
 it , Vt U If

 , 	, n", ttVt } ,
spos I

" 	
" Position", "WIT, 	

Vt
n ,

VV,If , IT O , 0, 0 } I

epo stt I 	 " Position", "WIT, "
It

n , ttnVV , Vt 5, 0, 0 } I

"a rcpos I
" "

I "Position", "WIT, ntt , n "2. 5, 2. 5, OFF)

"parent , 	 I 	
Vt

I W Vt 	WVt
, tttt ttfltt ,

IT if)
j

{"facevec", it If
	

Vt
I "Vector", "WIT,

 tInVt , Fin , it 0, 0, 0 if

Figure 5.17 Type 2 Radius Dimension Template

The parameters specific to this template are as described in section 5.4 with one

addition, facevec. There are a number of situations when shape aspects need to be

dimensioned but have no edge that correctly represents the dimension of the aspect.

Rounds or fillets applied to edges are good examples. When an edge that forms a

complete circle is rounded, the resulting face forms part of a torus. In the display the

silhouette lines form perfect circular arcs but they cannot be dimensioned when only

edge entities may be used because no edge exists. Similarly, if straight edges have

fillets or rounds applied, but the ends faces are not perpendicular to the edge then no

circular edge exists. The face that the fillet or round creates is cylindrical. The

facevec parameter in the case of a cylindrical face defines an offset from the point

on the axis of the cylinder sited at the centre of the box containing the face. A cutting

plane is sited here to generate the radius dimension, Figure 5.18.

A.G. Pedley 	 Ph.DThesis 	 5-47

Figure 5.18 Radius Dimension Applied To Cylindrical Face

For a toroidal face, facevec defines a cutting plane radially from the central axis of

the torus, Figure 5.19.

The make function, geo model d324, is used to maintain the validity of the

dimension after each change in the model when the dimension workpiece is

evaluated. geojnodel_d324 performs in a similar way to geo_model_d323 for the

diameter dimension except that pos2 is calculated using both didir and tof as

described in section 5.4, and special checking must be undertaken to ensure that the

cutting planes defined by facevec do actually cut the face entity.

For a cylindrical face if the cutting plane, defined by facevec, no longer cuts the

face it is set to be located at the centre of the box bounding the face.

The treatment of a toroidal face is more complicated. The new pos 1 is calculated

from the attributes of the toroidal face and facevec and didir. If posi does not lie

on the face then the parameters are reflected and the opposite silhouette line is tested

for, in which case facevec is assigned a new value. If pos 1 again does not lie on the

face, the existence of some remainder of the original silhouette line is searched for,

but a help arc will be needed. The possibility that a silhouette line exists on the

opposite side of the torus is also checked, , in which case fcevec is assigned a new

A.G. Pedley 	 Ph.D. Thesis 	 5-48

value and a help are is needed. If neither test is successful a different toroidal face is

searched for which has identical geometry and does produce a silhouette line that

posi lies on. If that fails the face ray point is used to define facevec.

Figure 5.19 Radius Dimension Applied To Toroidal Face

The positions spos and epos are calculated from the intersection of the cutting

planes with the face. arcpos and touch are calculated as described in section 5.4.

The parameters posi, pos2, spos, epos and arcpos (which are in World

Coordinates), touch, val and any new value assigned to facevec are re-assigned to

the dimension feature.

5.5.6.3 	Type 3: 2D Drafting Contour Dimensions

Type 3 dimensions behave exactly as Type 2 dimensions. They have exactly the

same parameters and methods. The only difference is in the template name. This is to

be able to differentiate between the source of dimensions because this affects the

functionality of editing (section 5.6.2). The templates inherit both parameters and

procedures from the type 2 dimensions. The type 3 templates are defined as shown in

A.G. Pedley 	 Ph.D. Thesis 	 5-49

Figure 5.20. Their source in 2D drafting systems means that type 3 dimensions are

only related to edges or vertices.

II Type 3 Linear Dimension Template
Def Template

	

d3 31 	' DT H , d3 21 , e , e , n , n"),(

II Type 3 Angular Dimension Template
DefTemplate

	

d3 22 	, F" , DTI-I , "d322 " , e U e 	Vt U U n "),

II Type 3 Diameter Dimension Template
Def Template

It U d3 23 " U DT H , d3 2311 , e , e Un

/1 Type 3 Diameter Dimension Template
Def Template

d3 2 4 U U ' DT H , d3 2 4 ,
U e U U e Un Vt n)

Figure 5.20 Type 3 Dimension Templates

The problems of performing Boolean operations with dimensions attached to the

different bodies is treated in exactly the same way as described in section 5.5.6.2 for

type 2 dimensions.

	

5.5.6.4 	Type 4: Feature Parameter Dimensions

	

5.5.6.4.1 	Method

Feature parameter dimensions are used to provide graphical representations of the

size parameters that are used to define a feature. Bi-directional associativity means

that the dimensions always represent the geometry of a form feature's ShowBody,

and a dimension may be used to set the value of a parameter forcing a change to the

feature, its ShowBody, and (though not necessarily) the resultant model.

An individual workpiece is assigned to support all parameter dimensions of a single

form feature instance. The workpiece is of class WopBase because it is not required

to support any geometry, nor are the features to be combined. Each feature in the

A.G. Pedley 	 Ph.D. Thesis 	 5-50

dimension workpiece is of class PDTHFea which returns an entity (in this case a

graphic segment). The dimension workpiece is created when a form feature is

instanced from the library and the template parameter definitions define a parameter

dimension (section 5.5.6.4.) The associativity between the PDTHFea and the form

feature parameter (class FeaPar) is by setting of private pointers. The link is

accessible in MCL+ via the MCL+ version of the public C++ function as follows:

Fea dim fea = GetParDim(Fea this—instance, String parameter—name)

where this—instance 1S a pointer to the form feature and parameter—name the

name of its parameter. A pointer to the PDTHFea which supports the description of

the dimension is returned, dim_fea.

From the user's point of view the PDTHFea is accessed exactly like the other

features despite its more limited description in a form feature's template definition.

More parameters are supported for a PDTHFea than are described in the form feature

template dimension definition, but as read only attributes. The parameter formfea

supports a reference to the form feature in which the dimension represents a size

parameter defined by parname. These two parameters enable the bi-direction

associativity to be supported.

The user may also switch on or off the operation of parameter dimensions. This is

useful when form feature descriptions are over dimensioned, the user defining which

group of dimensions to use by selecting a particular mode. The make method of the

feature can turn on those parameter dimensions that are required and switch off those

that are not.

The graphical representation of dimensions are described within the feature

parameter description and form part of the template definition described in section

5.5.6.4.

Procedures of the form:

procname(Fea this—instance, String parname)

A.G. Pedley 	 Ph.D Thesis 	 5-51

may be used instead of giving constant values in the template definition. Such a

procedure is implemented by the kernel as an if—needed procedure for a parameter

value. This is a very simple approach utilising the architecture of the feature

modelling kernel but suffers two disadvantages:

The interface is fixed. This has the effect that procedures cannot be generalised

with the use of extra data parameters.

More significantly, any parameter that has an if—needed procedure associated

with it may not have the parameter set by the user. This is a problem for the

parameter locavec of diameter parameter dimensions. It is desirable that the

diameter dimension line stays a fixed distance from the shape aspect, this requires

a function to program it, but it is also necessary that the user be able to set the

value of the distance. This means that an extra parameter has to be used that the

user may set, while the if—needed function reads this parameter to maintain the

fixed offset from the arc. This parameter is called pt of.

The concept of form feature origins was introduced in chapter 4. It is clear that in

many cases of feature definition these origins would make suitable attachment points

for the parameter dimension representations. The parameters posi, pos2 and pos3

may use the feature origin designator together with the "" sign to signify that the

kernel should calculate the position from the respective origin. An example is given

in section 5.5.6.4.5.

5.5.6.4.2 	 Thread Values

Threads on objects (interior or exterior) are well defined in the standards. Threads

and threaded objects have been implemented as standard features: thread, threaded

hole, etc. Any thread can be created by editing the tables relating value to textual

identifier. Therefore the ability to display textual thread signs is only required by

type 4 parameter dimensions. Two parameters are used in the form feature: a real

parameter value used to generate the geometry and the graphic representation of the

A.G. Pedley 	 Ph.D. Thesis 	 5-52

dimension lines, and a string parameter value used to support the textual description

of the thread size, M8, for example. In order to support the textual parameter value in

the dimension feature an extra parameter is used in the PDTHFea description: ctext.

It has been designed to be flexible because any characters in ctext other than

"@ONDEF" will be displayed instead of the numerical value. In the case of a thread the

textual string M8 is assigned.

5.5.6.4.3 	Template Definition Extension

Each sub-list describing a parameter in the list parameters defined in section 4.3.3

is extended with the addition of one parameter: dimension. Therefore the sub-list

parameters now has the following definition:

parameters =

name, alias, type, access, if—needed, ifset, default, kind,

decode, dimension

The parameter dimension describes the graphical representation of the form feature

size parameter. It is defined as a list of string values, and has the following form:

dimension = { posi, p052, pos3,
norm, locavec, didir,
diesymi, dlesym2, adir, 0, tof, ptof,
spos, epos, arcpos, touch

where the parameters have the meanings of the parameters already described in

section 5.4, plus an additional parameter that has not already been defined:

ptof 	This parameter is used only with diameter dimensions. It is a vector

that indicates the distance and direction of the midpoint of the

diameter dimension line taken across the diameter from either

. the centre of the defining circle (for dimension lines which pass

through the centre axis), or

A.G. Pedley 	 Ph.D. Thesis 	 5-53

• the perimeter of the circle (for dimension lines which are

positioned outside an imaginary cylinder defined by the circle)

It is used because of the mapping of functions to if—needed

procedures as explained in section 5.5.5.4.1.

The parameters ttype, toll and to12 are also supported by the parameter dimension

feature as described in section 5.4. A further additional parameter, ctext, is

supported.

ctext 	This parameter is a string value that the user may wish to have

displayed instead of the actual numerical value of the dimension. This

is used in the case of screw threads to denote the ISO size, M8 for

example. When this parameter is set to a string other than @UNDEF the

string is written in place of the actual value of the dimension.

All parameters may be defined by constants, MCL+ procedures, or C++ procedures

(not useful for user defined features). The parameters posl, pos2 and pos3 may

additionally use the notation "@origin" , where origin is a valid origin definition

for that feature.

5.5.6.4.4 	Examples

1. Block

The block feature shown in Figure 4.12 and the template definition of Figure 4.14

may be extended to describe the size parameters with dimensions as shown in Figure

5.21. The use of the special notation to indicate that the positions pos 1 and po S 2

should be calculated from the origins is shown. The template definition of Figure

5.21 produces the feature and dimensions shown in Figure 5.22 when instanced.

A.G. Pedley 	 Ph.D. Thesis 	 5-54

DefTemplate(
"b1211" I 1111 , " BASE", 	"make block " , 'In", If

n
i ft n"

"Ursprung If
 , "' , " String", "s ", "ri", "p" , "M" }

	

{ "xl'' fill , if
, real I 'is" ,

'' 	' "n 1 , 	12011 ff1 Ii 	 r
, 	.f._

@ -x-y- z 	"@X-Y- Z" , I
will

,

	

,'o,_l lift "(1 	 " 1, ,U , If, 	 , 	L,

 fro if "1" 	"1" I
	 11011 ,
	 ''0 QIi}

}

{ 	
I

'
I "really, list,, IInTI, n '' , "300'' I " i f ' ,

@xy-z 1 , "@ xy-z" 	If IF
I 	 I

fro,
	"fl 1,0" , 	f_f, 	 , 	_, 	 I

1 	, 	, 	., Iii1
I
	 11 0. 0" }

	

"","really, Ii _.. if if 	n" , ''60" 	1 11 ,
 1 1

 I 	 . 	1 	I

" @-x-'-z IF '@ -x-z It

	

I 	 I

,fJ
liii , "- 10,0,0'', " iifl

I O, 1'' I
IF 	 ii 	 (.1 if l\ 	 "o . 0" } } 1, 	1 	, 	if I.) , 	

ff
If

Figure 5.21 Template Definition For Block With Parameter Dimensions

Figure 5.22 Instance Of Block Feature With Parameter Dimensions

2. Cylinder

The template definition of a cylinder feature (a subtractive feature that represents a

hole) is shown in Figure 5.23. The template definition includes the extensions used to

describe the size parameters with dimensions.

A.G. Pedley 	 Ph.D. Thesis 	 5-55

D e fTempl ate ({ z " , "Hole" , "SUB" U - - - U Up U ti p Vt "n U
"ntt

Ursprung" , 	 , "String", 'I
S

" , ii n" , "p , I'M" , m, { } }
 ii U U,_.ii ii.. 	"25'' Udii 	{ }

	

.4 ii tilt "real " , s , 	 , 'J. ,

"solDimDiamPoslFullNegZ", "solDimDiamPos2FullNegZ" , 	 F

"0,0 , 	 F , "solDimDiamLocavecFullz" ti
I 0 0" I

''1" I 	 I ''1" 	''0'' I 	 I ''0'' 	"0.0", ''o,-lo.o,o"
"solDimDiamPoslFullNegZ", "solDimDiamPoslFullNegZ",
"solDimDiamArcPosFullNegZ ,, , " 3"}),

["h", "" , "real", '' '' " n il , '' "" ''60" , " l'' { } , 	 ,

'' @ - x - z '' , '' @ - xz ''

	

I 	I

''0,1 I
OFF , ''-10,0,0 ii , u , n , n

''1" 	''1'' it(hi 	"0.0" } } 	} , 	 S., 	 I

Figure 5.23 Template Definition For Cylinder With Parameter Dimensions

It will be seen by comparing the description of the length parameter, "h",

representing the height of the cylinder (depth of hole) with the description of the

diameter parameter, "d", representing the diameter of the cylinder (hole), that the

diameter parameter requires a number of procedures to be defined. For a static

dimension that could not be rotated (by changing dldir) origin positions could again

be used. However, due to the fact that posi pos2, spos, epos, and arcpos are

dependent on didir the parameters must have procedures associated with them.

locavec is dependent on ptof to maintain a fixed offset under changes to the

diameter of the cylinder, and so requires a procedure.

The procedures to calculate posl, pos2 and arcpos (spos and epos are the same as

pos 1 and pos 2 for a complete circle) all use the face that the z origin defines the z

component (in Feature Coordinates) of peal, pos2 and arcpos. If, as is typical,

many different features use diameter dimensions to describe shape aspects, a general

procedure would be useful using a particular origin as a parameter, and a switch

parameter for peal or pos2. Unfortunately the limitation of the if—needed function

implementation (fixed parameter interface) means that generalisation is limited to

features which have "z", "M", and "-z" origins, for which six separate functions exist

(one each for posi and pos2). They may however be applied to any user defined

feature which has these origins with respect to its feature z axis. The procedures work

with dimension planes both parallel and perpendicular to the plane of the (imaginary)

arc.

A.G. Pedley 	 Ph.D. Thesis 	 5-56

The template definition of Figure 5.23 produces the feature and dimensions shown in

Figure 5.24 when instanced and combined with the block to form a workpiece model.

Figure 5.24 Hole And Block Features Combined In Workpiece Model

5.5.6.5 	Type 5: Sketcher Constraint Dimensions

Type 5 sketcher constraint dimensions are a mixture of both type 2 and type 4

dimensions. Like type 4 dimensions information about the dimension is stored in two

places, both in the dimension and in the object it relates to. In the case of a parameter

dimension it is the form feature, whereas it is the constraint with type 5 dimensions.

Unlike type 4 dimensions where the dimension position parameter values are

programmed, type 5 values, like type 2 are directly derived from the topological and

geometrical elements that are produced by the constraint manager and supported by

the constraints. Unlike type 4 dimensions which must be user definable within the

definition of the form feature template, sketcher dimensions are purely representative

of the constraints that are supported by the constraint manager: These are provided

by the system and applied by the user; the defining parameters do not need to be

programmed and instances are created interactively. The elements in the sketcher are

simpler than the general elements found in a 3D solid. A sketcher object consists

only of edges all of which lie in a plane. For these reasons the template definition has

A.G. Pedley 	 Ph.D. Thesis 	 5-57

been able to be reduced to a minimum number of parameters without the need for

redundancy that was used in the type 2 definitions. The defining positions are all

supported and derived directly from the constraint entity.

In MCL+ a constraint entity has a number of attributes of which those that are

important for dimensioning are: Name, Genre, Value, Entityl, Summiti,

Entity2, Summit2. Only Value and Name are can be set directly as attributes of an

instance. The other attributes are read only and are assigned via the creation function.

Name is a unique identifier that is set to be the same as the name of the dimension that

it is associated with. Genre is the class of dimension: Distance, Radius, etc. Value is

the value of the constraint which is displayed by the dimension. Entityl and

Entity2 are the topological objects which are related by the constraint. Summit 1 and

Summit2 specify how the topological objects should be decoded to generate a point

(section 5.5.5.2). Not all constraints require the definition of Entity2, Summit 1 and

Summit 2. A radius constraint requires only the definition of Entityl, for example.

A parent template definition is again used as shown in Figure 5.25.

Def Template ({ "ENTITY DIM5 , IF , DrH ' , 	 , 	 n", "n", tr I
 ,

II_tl

{ IQfl
, 	I "real'', ''w" , 	 , 	 , "0 • 2"'

d1e5yIfl1 "
,

IF it
I "intil,''w'' , e n , ly

n
il ,

	

{ "ct ext " , WWII, ''String" , 	, ' ri" , ' n ' , " '
ttpe1I , 	''String", "Will,

	 "n's, if U

	

II , II 	II,
	 , ' 0 0'

	

"toll11 IF",
I real , "w 	 • "

I IT to 12" I 	 "real " , 'w" , ' n IT
, n 0''}

" '' 1 nt " adir " , '' , 	, TWIT "n", 'In,' I 	
l

,

' '
, "iiit" , 'sw" , '' n", "n'', "0" }

"parname 	 1

	

"String", 	I ''n I,
,

I! II
j

forrafea" 	' " E'ea " " W " , 	'' 	,..
 "
	

,
Il

Figure 5.25 Type 5 Sketcher Dimension Parent Template Definition

The parameters are as previously described. ctext is used to display the value of a

dimension in square brackets to signify that the value does not correspond to the

current status of the geometry. This may occur if the value of a constraint dimension

is set but the constraint manager has not re-evaluated the geometry, or if the contour

is over constrained and is solved for a subset of the constraints.

A.G. Pedley 	 Ph.D. Thesis 	 5-58

To date the constraints • that have been implemented as dimensions are distance and

radius. The type 5 linear dimension template is shown in Figure 5.26.

DefTempiate({"d351",","DTH","ENTITYDIM5", "fl", "p,, , „ .._ II VV

1 e ac:i1 e ri '","real" ,
	 l 	

ii 	 "2 0 W , 	,' fl ''
I F
	 r-it” "dies yrn2 ,

VVP
,

V j 	w", 	"n", 11 1111
})

Figure 5.26 Type 5 Linear Dimension Template Definition

A Distance constraint may be created for a single (non-closed) edge, the positions,

posi and pos2, required for the graphic segment generation are decoded as the start

and end points of the edge. The decoding is implemented as part of the symbol

procedure in C++. When a distance constraint is applied between two edges in the

contour the points are decoded according to the respective summits. The direction of

projection is defined by the implementation of the distance constraint and is always

point to point. Therefore didir is also calculated in the symbol procedure. The use

of a vector, iocavec, as with the other dimension types to position the dimension

line in the dimension plane is not suitable for application to constraint dimensions.

This is because the vector would be maintained in the Body Coordinate system, yet

even though an element of a contour would change its position (either by direct

editing or through evaluation by the constraint manager) the Body Coordinate system

defined by the transform of the whole body would remain unchanged. Therefore

locavec could no longer be perpendicular to the dimension line direction. Due to the

fact that, didir, is always the direction from posi to pos2, the projection line

direction is defined to be the unit vector of the cross product,

projection— line— direction = norm x dldir 	 (5.1)

where norm is the dimension plane normal vector. This definition is always correct

with respect to the element(s) being constrained. A single real parameter, leadien, is

used to define the distance (positive or negative) with respect to the

projection—line—direction that defines the position of the dimension line.

The type 5 radius dimension template is shown in Figure 5.28.

A.G. Pedley 	 Ph.D Thesis 	 5-59

Def Template ({"d354" I "" I " 	 I DTH" "ENTITY DIM5 ,i
 , 	

U
, 	

IT p it , TWIT "n"},{
"dl di . TV

 ,
TI

IT T

})
"Vector", w TIT

W I T
II TI

I 	
Ill 	

I 	
fl

I 	
IT

Figure 5.27 Type 5 Radius Dimension Template Definition

A Radius constraint requires only one edge entity to define it. However the

dimension display requires the definition of a vector, didir, which cannot be derived

from the edge(s) in the same way that the direction of projection can be for the

Distance constraint. dldir will suffer the problem that, being described in Body

Coordinates, it will not respond to changes to the elements of the contour, rather than

the contour as a whole. However, this is does not pose any difficulties for the

generation of the graphic segment because it is only the positioning of the dimension

line around the arc that is affected, which may or may not require the creation of a

help arc. This is easy to do given that the dimension is related to the edge and the

start and end points are known as edge attributes.

A contour with type 5 constraint dimensions is shown in Figure 5.28, before and after

changes to some of the contour's edge elements.

Lx

Figure 5.28 Type 5 Constraint Dimensions

A.G. Pedley 	 Ph.D. Thesis 	 5-60

5.5.7 	Geometric Tolerances

Geometric Tolerance functionality has been investigated through implementation of a

parallel tolerance. The template definition is shown in Figure 5.29. The graphic

display of a geometric tolerance is similar to that of a linear dimension, with one

important difference. The projection lines from the faces or axes being toleranced

start in a perpendicular direction to each face or axis. In this implementation a

parallel tolerance may be applied between planar faces and / or axes derived from

cylindrical faces. The parameters defined in the template are similar to those used to

define a Type 2 linear dimension which the implementation of the parallel tolerance

closely follows.

DefTemplate
"SUB", TV - - - VI {Upara t o l , fill, 	 , 	

,U make para","symbol para","n","n"},

ob r: e 1 1 1 IV " E nt " I " w ool 	, " n F,

{ "ckre12 TT 	"Ent " , " wool VT IT VT 	 Till n , n ,
VT 1

	

VI TV U
'' ri 'T " if 	, "to1 val",","real , w , 	, if set para val" "'

F, IFf 	 IF F,
'In '/ , 'I

n
" , If {"ctext , , real","w , 	para"},

	

"wool
TT 	 U 	 VT 	 II 	 IV IV 1 "p0 s 1" U "Position", 	, 	, F 	 I

{ "pos2 I
U "Position " , IIw T

,
VTVT

,
 TV
n

TV
,

IT VT 1
 F

1 {'Tdldir" F 	 I "" "Vector", " W " ,

III

, n U
 ,

TV Vt

	

 VI 	 U U U norm V U 	 "Vector " , " wool
TI 	 , U_. ,

	 } I 	 I

10 cave c UI 	F "Vector" " w", "nt' , "nil, " }
ob r e 1 	"String", 	VT

,
TV n VT , U U , fill}

F 	 F

"del opt ,
V T FT mt ", "w" , Un V IV, VI fill

Figure 5.29 Geometric Parallel Tolerance Template Definition

A parallel tolerance is defined between two entities in the model, obrelll, obrel2l

of which the reference body coordinate system is indicated by obrel. delopt is

required because the parallel tolerance could be applied to, or between, solid rather

than workpiece bodies. posl and pos2 are decoded from the entities by the general

decoder as described for Type 2 dimensions. ctext is used to build the displayed

value from the numerical value and the type of tolerance, in this case parallel.

The parallel tolerance has been prototyped by developing the symbol procedure in

MCL+. The lines displayed are formed by returning a wire body from the symbol

A.G. Pedley 	 Ph.D. Thesis 	 5-61

procedure. The text is displayed by the linear dimension segment call with

parameters chosen to cause no dimension lines to be displayed. Parallel tolerances

are shown in Figure 5.30.

- SESAI1 FrM 1.111

F 	Ed! 	Aprs.n1llon 	qpflor 	Mct 	Yo - -]t 	F.aits

fl

•

J I

/
03 0,01 	Pa allel

d1

•

Figure 5.30 Parallel Geometric Tolerance Representation

5.6 	User Interface

The main menu of buttons for the dimensioning and tolerancing module is shown in

Figure 5.31. Very heavy use is made of the decoder described in chapter 3 during

input. Each button may have 1, 2 or 4 commands associated with it. A button may be

complete, split into two halves, or four quarters. Each element has a command

associated with it which is selected depending on where the user picks. Each

command is implemented as a decode list as described in chapter 3. Modifier buttons

are used to direct the sequence of input steps. The aim of the input steps is to reduce

A.G. Pedley 	 Ph.D. Thesis 	 5-62

to a minimum the number of actions the user must make to create or modify a

dimension or tolerance. The status of modifier buttons generally remains the same

until set to another value. Modifier buttons can be toggle (two value) or multi-state

(multi-value).

1-J
J~g H71

Figure 5.315.31 Dimension And Tolerance Module Main Menu

5.6.1 	Creation

Each kind of dimension (linear, angular, diameter, radius) has a creation button,

Figure 5.32.

Dimension types 1, 2 and 5 require input sequences; types 3 and 4 are not defined

interactively. The only differences between the input sequences of types 1, 2 and 5

are the way the positions defining the dimension are generated.

Type I linear and angular dimensions use the built-in functionality of the system

decoder to generate positions from elements or via the pop-up menu functions; the

user is prompted for a position. Type 1 diameter and radius dimensions are based on

the curved edge object but the object itself is not part of the dimension

A.G. Pedley 	 Ph.D. Thesis 	 5-63

representation; the user is prompted for an edge. Type 2 dimensions decode the

objects into positions both during input and within the make (validation) routines.

This decoding is part of the dimensioning module rather than the general decoder.

The user is always prompted for objects which are maintained as part of the

dimension definition. Type 5 dimensions require edge objects that are picked and

decoded via the summits to provide positions from the constraints that are

simultaneously created.

The type of dimension may be selected before creation by setting of a modifier

button. Only types 1 and 2 may be chosen from the dimensioning module. Type 5

dimensions may only be created when the sketcher module is active.

It is important not only to know what type of dimension is to be created but with how

many elements. For instance, a linear dimension may be created using a single edge

(with different start and end points) or between two elements (faces, edges, vertices).

Similarly an angular dimension may be created from three elements defining

positions or between two intersecting planar faces or straight edges. The number of

elements is selected with a modifier button.

It is clear that the object(s) must always be picked by the user to indicate what is to

be dimensioned. In 3D the next most important definition is that of the dimension

plane. In non-technical views the direction of the active Local Coordinate System z-

axis defines the direction of the normal vector of the dimension plane. The position

of the dimension plane (the attitude having been defined) can be described as local or

global, and is selected by a third modifier button. The position of the local dimension

plane is defined by the first position picked or decoded for a linear dimension, the

plane defined by the three decoded points of an angular dimension, and the plane of

the arcs of diameter or radius dimensions. The position of the global dimension plane

is defined by the origin of the active Local Coordinate System. This may or may not

be valid for the dimension; check procedures validate the dimension plane after

picking of the positions or objects. For instance, diameter dimension planes must be

parallel or orthogonal to the plane of the arc, angle dimension planes must be parallel

A.G. Pedley 	 Ph.D..Thesis 	 5-64

to the plane defined by the three defining positions. Radius and any Type 5

dimensions always use the local dimension plane, in which case the modifier is

disabled. Picking objects in a technical view sets the dimension plane position to be

local and the direction of the normal vector to be equal to the line of sight defined for

the view (not necessarily the current line of sight as the camera in technical views

can also be rotated, but may be reset). Dimensioning in technical views is effectively

the same as dimensioning a 2D engineering drawing except that the dimensions are

related directly to the 3D solid or feature models.

The higher level the entity that is used for dimensioning, the more likely persistent

object identity will be maintained. It is better to dimension between faces, than use

edges. A higher level entity can be used better to reason about how a dimension

should be created. For instance, creating a linear dimension between two parallel

faces allows the dimension plane and dimension line direction to be deduced. The

dimension line direction is formed by the face normals. The dimension plane normal

is perpendicular to the dimension line direction and in the direction of the Local

Coordinate System z-axis. Single edges have the dimension line direction set to be

from start point to end point. The perpendicular to an adjoining face is used for the

dimension plane normal vector. These rules for choice of dimension line direction

may be overridden by the user using the modifier for selecting change of direction.

The next parameter needed to define the dimension line (not for angular dimensions)

is the direction of projection. This can be automatically calculated for linear

dimensions or set by the user. The direction is always projected onto the dimension

plane regardless of input. The automatic value is (projected) point to point. The

direction must be input for diameter dimensions if the dimension plane is parallel to

the plane of the arc. If the dimension plane is perpendicular to the plane of the arc

(globally defined or by picking in a technical view) the direction is defined and lies

in both the plane of the arc and the dimension plane. A radius dimension always

requires input of the dimension line direction. The direction of the dimension line

may be modified during input of the position of the dimension line in the dimension

plane because the direction is best visualised by the rubber band. The final input

A.G. Pedley 	 Ph.D..Thesis 	 5-65

parameter is the position of the dimension value on the dimension line. This is

required for all dimensions.

Angular dimensions have a modifier that indicates whether the interior or exterior

angle should be represented. This replaces the dimension line direction modifier

button which is not applicable.

5.6.2 	Editing

The user is provided with the following edit functions as depicted in the menu shown

in Figure 5.31:

• Change the dimension plane.

Not applicable to radius dimensions. Only the position of the dimension plane

may be changed for angular dimensions. The plane must remain parallel or

perpendicular to the arc for diameter dimensions. For type 4 parameter dimensions

the plane may only be changed to a plane perpendicular (but valid) to the original

so as to maintain consistency (measuring direction) with the size parameter it is to

represent. This is applicable to all type 4 linear dimensions and those diameter

dimensions which represent the diameters of elliptical shapes that have fixed

directions.

It is useful to move the graphical representation from one technical view to

another. Dimensions only appear in a technical view when the dimension plane

normal and technical view line of sight (definition, rather than current) are

parallel.

• Rotate the dimension plane.

Only applicable to linear dimensions when the dimension line direction is parallel

to the direction between points one and two. It is useful to visualise dimensions in

a view with a non-technical line of sight.

A.G. Pedley 	 Ph.D. Thesis 	 5-66

• Move the position of the dimension plane.

Not applicable to radius dimensions. This allows the dimensions in 3D to be

positioned away from the model for clearer visualisation.

Change the direction of the dimension line.

Not directly applicable to angular dimensions, the function acts as a toggle

between interior and exterior representation. Not applicable to linear type 4

parameter dimensions and certain diameter dimensions which represent the

diameter of an ellipse. For example, it is useful to measure the "height" rather than

"width" of a sloping face with a linear dimension. This allows radius and diameter

dimension lines to be positioned for maximum clarity.

• Move the position of the dimension line in the dimension plane.

Applicable to all dimensions. This allows dimension lines to be positioned for

maximum clarity.

• Move the position of the text along the dimension line.

Applicable to all dimensions. This allows the dimension text to be positioned for

maximum clarity.

• Equispace dimension lines.

It is tedious to individually position dimension lines so that together they are

visually clear. This function allows dimension lines to be positioned with a

constant offset (which may be zero) from a root dimension (the first selected).

This allows the layout to be optimised for maximum clarity.

• Set dimensional tolerances.

The user may set different plus-minus tolerances (the default), or by selecting

from a pop-up menu, equal plus-minus tolerances, plus-zero tolerances, minus-

A.G. Pedley 	 Ph.D. Thesis 	 5-67

zero tolerances, or zero-zero tolerances (which removes the dimensional tolerance

from the display).

. Set limit.

Limit values may be set textually or selected form a pop-up menu. The pop-up

menu presents the ISO 286 [1S0286] standard limits and fits from 1 to 500 mm

appropriate for the value of dimension to be toleranced.

All dimensions, other than type 4 parameter dimensions may be deleted. Deleting

a type 5 sketcher dimension also deletes the associated constraint.

In addition, there are other functions which filter the display of the dimensions. A

small indicator in the form of a rectangle and arrow may be switched on or off in the

graphical display to show the attitude and direction of the dimension plane. Type 4

parameter dimensions (because they cannot be deleted) may be hidden from display.

This may be done per workpiece, feature, dimension, or view. Other filters that

assign or remove dimensions from views are implemented automatically for

technical views, i.e. only those dimensions may be visualised in a technical view

when the dimension plane normal vector is parallel to the definition (not necessarily

current) line of sight of the technical view.

5.6.3 	Auxiliary Dimension Features'

Auxiliary dimension features provide 3D representations of the 2D indicators for

symmetry, centre lines and pitch circles, and construction geometry such as single

lines or intersection points. These are implemented as in the same way as type 1, 2

and 3 dimension types, each type having its own work piece. They produce symbolic

solid objects that may be used to generate positions for dimensioning.

'The implementation of auxiliary dimension features is predominantly not the work of the author.

A.G. Pedley 	 Ph.D. Thesis 	 5-68

P1pïiiii
'IIUClLI4_k -Fill

-

UI
hr

- 	 IWTIDIH

A-A

Wr

5.6.4 	Example

The parts shown in the 2D engineering drawing of Figures 1.5 and 2.4 have been

supplied for evaluation and subsequently modelled with the feature modeller as

implemented in chapters 3, 4 and 5. The feature model of the part shown in Figure

1.5 in presented in chapter 7, Figure 7.14, where it will be discussed: The

representation shown in Figure 5.32 is of the feature model of the part shown in the

drawing of Figure 2.4. The model representation is complex and is not typical of that

presented by traditional a solid modeller.

V) 	 4

F. 	dt OispIs EqM 	ptior 	McSofid , Fi1u.

	

JJ 	!i1JJ 1_J _LL

ft 	 -

fill
f

1(5> 	 cs

j

l/

iH

LL
Figure 5.32 Feature Model Using Dimensions And Tolerances

The model is completely built from features. Intrinsic and extrinsic features are used;

the latter forming the complex grooves by rotationally sweeping contours defined in

a sketching module. The model uses the technical views, cross-section views, detail

A.G. Pedley 	 Ph.D Thesis 	 5-69

views, auxiliary dimension features and the dimension and tolerance features

described in chapter 5 to display the 3D model as if it were a 2D drawing. However

all views are of the 3D model and each view may be rotated and fully shaded. The

model is constructed so that the parameters of features correspond to the dimensions

of the drawing. In this case parameter dimensions are used and can be used to change

the geometry. Where the resultant geometry of the model is to be dimensioned uni-

directional associative dimensions and tolerances are applied. Thereafter, they

respond to changes in the model. A significant complication is that all dimensions

(with one exception) are applied to cross-section or detailed views of the model. This

poses even greater difficulties for the persistency of object identity and it was

necessary to use non-associative type 1 dimensions for some of the detailing of the

grooves.

The aim of removing the need for separate 2D drafting systems, even for detailing,

by applying feature based techniques to the representation of dimensions and

tolerances, has been shown to be possible in Figure 5.32.

57 	Summary

In this chapter the needs of dimension and tolerance representations associated with

both solid and feature model have been established. A classification of dimension

types has been proposed and an architecture to support these types developed. A

system has been implemented which allows both solid and feature models to be

dimensioned and toleranced. The dimensions and tolerances are uni-directionally

associative with the models and will follow any changes made. The template

definition for user defined features presented and extended in chapter 4 has been

further enhanced to enable size parameters to have dimension representations

described within the feature template. Such parameter dimensions may be used to

change the model and are said to be bi-directionally associative. Bi-directionally

associative dimensions representing sketcher constraints have also been

implemented.

A.G. Pedley 	 Ph.D; Thesis 	 570

The next chapter (chapter 6) will explicitly describe a number of aspects of the work

concerning the original concepts investigated, industrial collaboration, analysis and

testing. The next chapter will present the fundamental concept of the thesis that has

been investigated through the aims and objectives of the work. The importance and

extent of industrial collaboration involved in the research will be described, together

with references to the information and feedback provided. Chapter 6 will present the

research techniques used to acquire and analyse information in order to define the

software architecture which resulted in the implementation reported in chapters 4 and

5. The software testing methodologies employed for the evaluation of the

experimental software and the results of tests will be given. The original

contributions to knowledge made by the investigations will be stated.

A.G. Pedley 	 Ph.D, Thesis 	 5-71

Chapter 6

Analysis

6.1 	Introduction

6.1.1 	Chapter Overview

The purpose of this chapter (chapter 6) is to describe explicitly a number of aspects of

the work concerning the original concepts investigated, industrial collaboration,

analysis and testing.

Chapter 1 introduced feature modelling technology and stated the aims and objectives

of the work reported in this thesis. Chapter 2 presented the technologies associated

with the concepts presented in the thesis and reviewed the literature. Chapter 3

described a form feature modeller that allows user defined feature definition. The

feature modeller described in chapter 3 was selected as a test bed for the new

concepts implemented in chapters 4 and 5. In chapter 6 (this chapter) a number of

aspects of the work will be reported. Chapter 6 will explicitly present:

The fundamental concept of the thesis that has been investigated through the aims

and objectives of the work.

The importance and extent of industrial collaboration involved in the research.

References to the information and feedback provided will also be given.

A.G. Pedley 	 Ph.D. Jhesis 	 6-1

The research techniques used to acquire and analyse information in order to define

the software architecture.

The software testing methodologies employed for the evaluation of the

experimental software and the results of tests.

The original contributions to knowledge made as an outcome of the

investigations.

In this chapter the relationships between the areas of investigation, the sources of

information provided and the sections of the thesis analysing the information are

presented.

In the next chapter (chapter 7) the results of the investigations will be discussed.

6.1.2 	1 Chapter Structure

Section 6.1 explains the purpose of this chapter, introduces its contents and provides

an overview of the chapter structure. Section 6.2 presents the fundamental concept of

the work represented by the aims and objectives. Section 6.3 details the extent of

industrial collaboration. Section 6.4 describes the techniques used to acquire and

analyse the information used in defining the software architecture. Section 6.5

presents the software testing methods used. Section 6.6 states the original

contributions made to knowledge by the work. A chapter summary is provided in

section 6.7.

A.G. Pedley 	 Ph.D. Thesis 	 6-2

6.2 	Fundamental Concept

The fundamental concept investigated in this thesis is to integrate in a single computer

software representation the information required by designers to define a component

for analysis and manufacturing, thus enabling software based simultaneous

engineering strategies to be implemented. In essence, the aim is to create a partial

product model and a graphical user interface allowing the model to be viewed and

changed. The concept necessitates combining into a single integrated and fully

associative model the requirements of 2D drafting for the production of detailed

engineering drawings, representing 3D solid geometry containing both analytic and

free form surfaces, modelling dimensional and geometric tolerances, and surface

conditions. The concept of an integrated model has been described in section 1.4 and

conceptualised in Figure 6.1.

L. ...f 	Dimension &

3D Solid Model 	
A 	

Tolerance Model

LI

O]Debur

Product

2D Drawing 	 rI 	
Manufacturing

Information

Integrated Partial

Figure 6.1 Fundamental Concept

Current product model definition standards, described in section 2.6, constitute a

series of parts covering 2D drawings, BREP solid models, dimension and tolerance

A.G. Pedley 	 Ph.D. Thesis 	 6-3

models, and feature models, but do not provide the necessary integration. Product

modellers have focused on the data structure, are unwieldy and do not provide the

required design environment or functionality for model creation and manipulation.

Feature models are accepted as capable of supporting data rich representations which

can form integrated partial product models, as described in section 2.2.3 and 2.4, and

provide an intuitive working environment.

A feature based representation has therefore been chosen as a basis for further

investigations in order to realise the concept of an integrated partial product model.

6.3 	Industrial Collaboration

Industrial collaboration has been necessary in order to conduct the applied research

reported in the thesis. The collaboration has been important to the success of the

investigations because it has focused on user defined functionality and the advanced

nature of the intended implementation. Both end users and software developers have

been helpful in a number of areas such as during problem definition, user requirements

specification, prototype assessment, implementation, testing and evaluation.

6.3.1 	Collaboration With Users

The companies that have collaborated specifically in the investigations as users of

design and manufacturing software tools, produce a variety of differing products and

have differing needs. The varied products, product information and needs provide a

basis for the general applicability of the work. The companies that have specifically

collaborated as end users are:

• GEC Marconi[GEC] British defence electronics designer and manufacturer. Metal

housings for electronic circuits are manufactured to provide radio frequency

screening.

A.G. Pedley 	 Ph.D. Thesis 	 6-4

• Mandelli[MAN], Italian machine tool designer and manufacturer. Utilise heavy

steel castings into which predominantly 2'/2D features are machined.

• Rover Group[ROV], British motor car designer and manufacturer. Concerned with

design of sculptured surfaces and the design and manufacture of sheet metal press

tooling and plastic injection moulds.

Cadam Model[CAD], Italian plastic injection mould tool designer and

manufacturer.

Collaboration with users is helpful for three reasons:

Users provide component geometry and function focused information and needs.

Users provide design and manufacturing process focused know-how and needs.

Users test and evaluate the results of implementation work.

In a user defined feature modelling environment end users provide information on

feature shapes, feature functions, relationships between features, feature constraints

and associated manufacturing data, particularly tolerances. End users provide useful

knowledge of the design and manufacturing process and current shortcomings,

especially lack of systems integration as stated in section 1.4. This information is

vital input to the analysis phase leading to software architecture definition as

described in sections 4.2, 4.6.1, 4.7.1, 4.8.1, 5.2, and 6.3. A part of the process of

architectural definition is that of prototyping ideas. User evaluation of the software

prototypes has played an important role in the formulation of the chosen software

architecture as described in section 6.4. Final end user evaluation of the software

implementation has provided feedback with respect to both functionality and, "look

and feel". The examples presented in the thesis (Figures 1.2, 1.3(a), 2.7, 7.4, 7.6, 7.9,

7.10) have been supplied by end users.

Numerous other companies have also contributed indirectly to the investigations as

end users through their input at software user group meetings. Many more needs and

A.G. Pedley 	 Ph.D. Thesis 	 6-5

examples from these users have been assessed as part of these investigations. These

have been supplied via software engineers as reported in the next section (section

6.3.2).

6.3.2 	Collaboration With Software Engineers

Software engineers from Strassle Informationssysteme AG [SIS] have collaborated in

the research.

Collaboration with software engineers is helpful for three reasons:

Product support and marketing provide contact with a wider group of customers

increasing the diversity of information used in the investigations.

Complex and advanced graphically oriented software systems require large

quantities of code to be written for results visualisation. Software engineers

provide a programming resource for graphics implementation.

Software engineers provide evaluation of software quality in terms of the

architectural stability and scalability of the experimental implementation.

User groups highlight specific needs for shape creation, manipulation and the quality

of the graphical user interface. Complex software systems, such as feature modellers,

necessitate considerable programming resources in order to achieve sophisticated

results, especially for graphical interaction. Software developers have provided

programming support to implement system designs in much the same way that

technicians construct a machine to a given design in order that experiments can be

performed. Software engineers have undertaken assessment of the results of the work

by modelling customers' components.

The examples presented in the thesis (Figures 1.3(b), 1. 5, 1.7, 1.8, 2.4, 2.7, 2.10, 3. 1,

5.32, 7.11, 7.14) have been supplied by end users through user group meetings and

product support.

A.G. Pedley 	 Ph.D. Thesis 	 6-6

6.4 	Research Techniques

In this section the methods used to acquire and analyse information will be detailed.

There are many sources of information which have enabled the new concepts

reported in this thesis to be identified and investigated. The sources range from

academic research teams, material reported in the standards and literature,_ other

software engineers and the very significant group of end users for whom the results

of the investigations are intended to benefit. Analysis of the information acquired led

to the design of the software system architecture and implementation that has been

reported in chapters 4 and 5.

6.4.1 	Acquiring Information

6.4.1.1 	Literature and Standards

The literature and applicable standards have been reviewed in chapter 2. The

literature provides information about existing techniques, the approaches other

investigators in the area have taken, and reports their achievements. This review

allows the current state of knowledge to be established and enables the areas of

further investigation to be determined (section 6.4.2.1) from the shortcomings

identified. The standards are important in this research because they embody the

currently approved and used methods for describing products in a format that can be

exchanged and is understood by all users. The purpose of the research is to

investigate methods of combining the information presented by a number of

standards into a single integrated model suitable for the interactive creation and

editing of designs. Investigation of the direction in which the standards are

progressing is important because the model must not only be capable of supporting

current requirements but also of being flexible in order that future needs may be

addressed, particularly that of the emerging vectorial tolerancing standard (section

2.5).

A.G. Pedley 	 Ph.D.Thesis 	 6-7

	

6.4.1.2 	Research Meetings

Meetings with other researchers are important because they allow more in depth

investigation of the work reported in the literature. Approaches and their limitations

can be better established. The meetings also allow the work reported in the thesis to

be presented and be subject to peer group review. The published papers reporting the

work of this thesis that have been peer group reviewed are listed in Appendix A.

Research meetings have been of the following types:

• Conferences - in both Europe and the USA where world wide feature research is

presented.

• Workshops - by invitation, to enable less formal and more investigative

presentations and discussions to be held.

• Visits - to major research groups in Europe and the USA [HUS91b] provide the

most detailed review of progress and trends. Teams at the following research

institutions have been visited: [MPG][IFW][WMG][IPK][FHI][E'rH]{LKC]

[USC].

	

6.4.1.3 	Collaborating companies

The companies that have directly collaborated in the investigations have been

identified in section 6.3.1. They have provided a considerable quantity of information

relating to the following topics:

• Shape

• Shapes function

• Associated information and use

• Current representations

A.G. Pedley 	 Ph.D. Thesis

System Requirements

This information has been presented in a number of reports:

The shape, shape function and associated information of hole, slot and pocket

features machined into billets by Marconi are reported in [MIL9 1].

Mandelli provided information on shape, shape function, associated information,

and particularly related tolerance data that has been reported in [DFL92] and

[FTR95]. Mandelli provided information that enabled the user requirements

documents to be prepared for both the man machine interface [MM193] and the

Feature Based Design System [FBDS93]. Requirements documents have been

prepared following the guidelines of the European Space Agency Software

Engineering Standards (PSS-05) [ESA]

CADAM Model have provided information on shape and shape function which

has been reported in [DSF95] and forms the user requirements for solids based

sculptured surface generation.

Rover has provided information on shape and shape function that has been

reported in [DSF95] and forms the user requirements for surface based sculptured

surface generation.

Indeed many design and manufacturing processes investigated in the collaborating

companies already show feature characteristics even though the companies are

unaware of this. This lends support to the claim that design by features is an intuitive

method of construction.

6.4.1.4 	Software engineers

Software engineers have provided information as part of the investigations because

they have been exposed to the needs of a wider group of users than the specific

collaborating companies. The information provided by software engineers was more

A.G. Pedley 	 Ph.D. Thesis 	 6-9

generalised than the specific requirements of the collaborating' companies and

concerned the following areas:

Shape creation - more flexible ways to create sculptured shapes was required as

described in [TAN95] and section 4.6.1.

Look and Feel - concern was voiced about the dominance of the property sheet in

a graphically interactive system as the main method for user input. This

manifested itself as the requirement for "point and click" methods to change the

model as stated in section 5.2.1.

Performance - users of large models consisting of hundreds of components

suffered from the poor dynamic characteristics of Motif for the browsers. This

produced the requirement to reduce to a minimum the number of objects

necessary to be presented in browsers as stated in section 5.2.6.

6.4.2 	Analysis Of Information

6.4.2.1 	Areas Of Investigation

The review of the literature presented in chapter 2 identified feature based

representations as the most promising approach for realising an integrated design

system capable of supporting the needs of down stream manufacturing applications.

Though feature modelling techniques have been proposed for over a decade further

investigations are required to establish if there are deficiencies in the understanding

of features which has resulted in little industrial impact of the technology to date and

the continuing lack of design model and manufacturing application integration. None

of the collaborating companies were users of feature technology.

The review of the literature reported in chapter 2 has highlighted a number of areas

of feature modelling technology that would benefit from further investigation. In

A.G. Pedley 	 Ph.D.Thesis 	 6-10

section 2.4 it was reported that to date feature modellers have focused on modelling

form and simply displaying the resultant solid geometry as a means of representation.

Little use of free form geometry has been made. Section 2.5 reported on the

modelling of dimensions and tolerances and experiments to associate dimensions and

tolerances with feature models. Little graphical feature based support has been

provided.

The particular characteristics of feature modelling techniques highlighted in chapter

2 that will be investigated in this thesis are shown in Figure 6.2.

Problems

	

Requirements

Georne 	Feature
Shape 	CAassification

/ 	Feature Feature
Model

Feature 	Definition I 	..
Modelling 	

Parameter
Feature 	Techniques

Modelling

Feature
Model

Knowledge

Strategy

User
Exchange 	Interface 	

Solutions

Figure 6.2 Areas Of Investigation

The areas identified in Figure 6.2 have formed the focus of investigations reported in

this thesis for the following reasons:

1. Feature Classification

Feature classification has been dominated by parallels drawn with shape

classification in solid modelling. Little emphasis has been placed on user defined

features and the functionality or meaning that can be represented. Investigations

are needed to identify any commonalities between seemingly varied and

functionally specific features that may help to improve built-in system support.

A.G. Pedley 	 Ph.D. Thesis 	 6-11

Geometric Shape

To date little emphasis has been placed on feature modelling with sculptured

surfaces. Investigations are required to show how this may be achieved.

Feature Definition

It has been assumed that features "know" all about themselves. This is not

necessarily the case when elements that form geometry cannot be pre-defined.

Such is the case in modelling free form geometry when sweeping one object along

another. The mechanism can be defined but not the result. Investigations are

needed to show how such "unknown" objects can be represented and manipulated

in a feature modelling system.

Feature Model Architectures

Feature models have predominantly consisted of single tree structures modelling a

single component. Simultaneous engineering strategies necessitate that

manufactured parts fit together in assemblies requiring multiple component models

and the definition of dimensions and tolerances between them. Investigations are

required to assess the feasibility of more complex feature model architectures and

their uses.

Parameter Definition

The parameters that define a feature's shape are often represented by dimensions

on a 2D drawing. There has been no attempt to define a graphical representation

for the parameter that is consistent with 2D drawing standards and can also be

used to change the model. Investigations are necessary to show how complex

parameter descriptions can be achieved.

A.G. Pedley 	 Ph.D. Thesis 	 6-12

Modelling Strategy

Dimensions and tolerances are typically added to the finished model or drawing.

Simultaneous engineering necessitates continuous review and modification of the

design, which requires that dimensions and tolerances be added at any stage of the

design process. Experiments are necessary to show that feature models can

represent partial product models during an evolutionary design process.

Graphical User Interfaces

Graphical user interfaces to experimental feature modellers have been rudimentary

compared to the "point and click" sophistication of parametric modellers.

Experiments are needed to explore the potential to make feature definition

languages more expressive in order to improve user interaction provided by the

system.

Feature Model Exchange

Current standards are applicable only to shape and specifically exclude associated

function and user defined features. There has been little attempt at the general

transfer of user defined features which requires investigation.

This thesis proposes that by investigating the areas detailed (1 to 8), it will be shown

that the fundamental concept of providing an integrated partial product model can be

achieved by making specific advances to feature modelling techniques. Therefore, as

described in section 1.5, the aim of the work to provide better computer aided

support for design and manufacturing will have been addressed. The areas of

investigation (1 to 8) have been used to form a set of identifiable objectives for

software implementation and testing as stated in section 1.5. Hence, the industrial

impact of feature modelling technologies will be increased, leading to better process

integration, thereby shortening product development cycles, improving quality,

lowering costs and consequently increasing competitiveness.

A.G. Pedley 	 Ph.D. Thesis 	 6-13

Figure 6.3 shows the correlation between the areas of investigation, the major

sources of information provided, and the analysis of the information in the thesis.

The analysis of the information has been presented in the thesis in an amalgamated

format either as a statement of current practices or of user requirements.

Area of Investigation

Source Of Information 	 -

Literature

& Standards

GEC

Marconi

Mandelli Rover Cadam

Model

Software

Engineers

Dimensions & Tolerances 2.5, 2.6.4 5.2 5.2 5.2 5.2 5.4

Geometric Shape 2.3, 2.6.2 4.2 4.2, 4.6 4.2, 4.6 4.2, 4.6

Feature Classification 2.4.3 7.3 7.3 7.3 7.3

Feature Definition 2.4.1, 2.4.3 4.3,4.4

Feature Model Architectures 2.4.3 3.7

Parameter Definition 7
A 4.3

Modelling Strategy 2.4.3 3.7,

Graphical User Interfaces 3.5 4.7 4.7 4.7 4.7, 5.6

Feature Model Exchange 2.6.3

Note: The numbers in the cells refer to the applicable sections of the thesis.

Figure 6.3 Sources Of Information Used And Impact On Analysis

6.4.2.2 	Selection Of Feature Modelling Test Bed

Three major requirements were significant in the choice of feature modeller on which

the investigations reported in this thesis would be conducted. Firstly, the diverse

forms of feature identified by the end users indicated that the feature based system

chosen must have the ability to define user defined features. Secondly, the feature

modeller should have a true hybrid architecture (the feature model is the dominant

software sub-system, rather than the geometric model) in order to explore

representations of features other than form features. Thirdly, a commercially

available feature modeller was desirable because of the industrially applied nature of

A.G. Pedley 	 Ph.D Thesis 	 6-14

the investigations necessitating a highly developed user interface and an interactive

form feature definition language.

Prior to 1996 the only commercially available feature modeller that could meet these

requirements was produced by Strassle Informationssysteme AG [SIS] and was called

FeatureM. Therefore, FeatureM was selected to be used as the test bed for the

investigations. FeatureM has been described in chapter 3. The interactive form feature

definition language as described in section 4.3 was used as the baseline for the

investigations which led to the software advancements implemented as described in

chapters 4 and 5.

Furthermore, Strässle Informationssysteme AG [SIS] became an industrial

collaborator with the intention of both aiding and exploiting the research.

6.4.2.3 	Prototyping

Prototyping has formed a significant part of the investigations in determining the

chosen software architecture and implementation reported in chapters 4 and 5. The

issues and concerns of both end users and software engineers, produced both as

requirements and as feedback from prototyping and testing, have been described in

the sections of the thesis denoted in Figure 6.3. Prototyping has formed the major

analysis method used during the investigations in order to produce a feasible

architectural concept capable of addressing users needs. The user requirements for the

Man Machine Interface [MM193] and the Feature Based Design System [FBDS93]

were translated into corresponding system software requirements described in

[PED93a] and [PED93b]. A number of experimental implementations were developed

from these software requirements to test ideas corresponding to the major objectives

of the work stated in section 1.5. These are described below:

A.G. Pedley 	 Ph.D.Thesis 	 6-15

	

6.4.2.3.1 	Extrinsically Defined Features

An early attempt to provide a feature with form that could be fully determined only

after instantiation was unsatisfactory in genuinely representing the requirements of

Mandelli. Mandelli required a 2V2D pocket feature that could have as many sides as

designated by the designer: an "n" sided pocket [DFL92]. The prototype

implementation declared a feature template with a large number (30) of possible

positions for the intersection points of the sides, and radii parameters for the

corresponding (30 possible) connecting corners. Mandelli agreed that 30 sides would

be sufficient in normal circumstances. However, the implementation is not

completely flexible and is very inefficient because of the amount of memory

required. Property sheet masking was used to hide the irrelevant parameter slots.

Such features are best represented by defining contours that are then swept to

produce the required volume (section 4.6.3).

This was the first example of a feature where it was not desirable to have its form

fully defined in its make methods. The need to support the geometry of castings

within the integrated model provided the next example of an extrinsically defined

feature. The requirements of Rover and Cadam Model to represent sculptured

geometry provided further examples and highlighted the importance of recognising

the differences between what is known about a feature and what is not (section 4.2).

These differences led to the two different approaches described in chapter 4 being

investigated for intrinsically and extrinsically defined features.

	

6.4.2.3.2 	Handles

The demands on the complexity of handles has evolved as eform features have

become ever more elaborate. There have been five stages of evolution as shown in

Figure 6.4.

A.G. Pedley 	 Ph.D.. Thesis 	 6-16

Technique Disadvantages Advantages Applied To

Single handle at feature • Inflexible • Very simple to
coordinate system origin • Does not aid designer implement

Applicable to all
form features

Multiple named handles • Language specific • Locally understood
described by a single • Ambiguous interpretation • Related directly to
parameter of the form: • Not suited to complex 3D function
oben, unten, links form features • Simple to implement

• Difficult to provide built-in
support

Multiple handles • Not suited to complex • Not language
described by two 2%D form features specific
numeric parameters • More than one parameter • Easier to provide
forming a 3D grid of the built-in support
form: handle (0-9), level
(0-2)
Multiple handles • Reliant on understanding • Not language Intrinsically
described by a single of feature coordinate specific defined form
parameter based on system • Built-in support may features
references to the • Not suitable for be automated
coordinate system origin extrinsically defined form • Suited to complex
of the form: x, -xz, xyz features 2½D form features
Single coordinate • Difficult to implement • Suited to complex Extrinsically
system origin which may • Slow response 3D form features defined form
be repositioned and features
oriented

Figure 6.4 Handle Techniques Investigated

Feedback from end users and software engineers about the implemented approaches

has led to the logical development of the techniques. However, even the most

advanced technique (multiple handles referenced to the feature coordinate system)

applied to intrinsically defined form features suffers from the fact that the user must

always understand the position of the feature coordinate system origin. This need led

to the requirement of graphical indicators for the handles that could be picked from

the screen (section 4.7.1), This was the motivator for the extensions to the feature

definition language reported in section 4.8.

The establishment of extrinsically defined form features immediately warranted the

investigation of a new approach (section 4.7.3). A new approach was required

because the procedural methods described in section 4.7.2 could not be applied due to

the fact that the shape of the feature and hence location of the origins are unknown.

A.G. Pedley 	 Ph.D. Thesis 	 6-17

6.4.2.3.3 	Dimensions

A major prototype was built to establish the feasibility of using the feature model

architecture as a starting point for investigating representation of dimensions and

tolerances.

The prototype generated linear dimensions between the coordinate system origins of

features. Simple wire bodies formed the graphical representations of the dimensions.

The prototype established that:

The information content of a dimension could be supported within a feature

template.

The information describing the graphical representation of a dimension could be

supported within a feature template.

The procedural nature of the feature modeller allowing features to have a

symbolic representation meant that the graphical representation was not

combined with the geometric model, but visualised with it.

It was possible to save and restore models containing both geometric and

dimension features.

The dimensions were associative with the positions of the features. The

dimensions reflected changes to the positions of the features.

The mechanism of the feature modelling kernel allowed one feature's methods to

set the value of the parameters of another, enabling the dimensions to be used to

control the model.

Maintaining the dimensions in the same workpiece structure as the form feature

was unsatisfactory.

A.G. Pedley 	 Ph.D..Thesis 	 6-18

numbering the faces during construction of the feature. However, experiments

showed that the numbering scheme was not stable when features of variable topology

("n" sided pocket) were used [PED94c], or the geometry was built in a different way

(in a different system for example). Thus, the method of using ray point and ray

vector was established [PED 94d].

6.5 	Software Testing

Software testing has two significant purposes. Firstly, it is used to show conformance

of the software implementation to the specified requirements. Secondly, it forms a

part of the investigative process by which continuous assessment of the implemented

system can be reviewed to provide feedback for improvement.

6.5.1 	Informal Testing

Informal review of the architectural concepts and testing of the implemented software

was performed by other software engineers. The proposed architectural solutions and

experimental implementations were reviewed from the practical perspectives of

compatibility with existing software sub-systems

• module integration

reliability

• model stability (saving/loading)

• performance (speed of response)

The results of these informal tests, which were reported verbally, have been

incorporated in sections 4.6.2, 5.4 and 5.5.1.

A.G. Pedley 	 Ph.D. Thesis 	 6-20

numbering the faces during construction of the feature. However, experiments

showed that the numbering scheme was not stable when features of variable topology

("n" sided pocket) were used [PED94c], or the geometry was built in a different way

(in a different system for example). Thus, the method of using ray point and ray

vector was established [PED 94d].

6.5 	Software Testing

Software testing has two significant purposes. Firstly, it is used to show conformance

of the software implementation to the specified requirements. Secondly, it forms a

part of the investigative process by which continuous assessment of the implemented

system can be reviewed to provide feedback for improvement.

6.5.1 	Informal Testing

Informal review of the architectural concepts and testing of the implemented

software was performed by other software engineers. The proposed architectural

solutions and experimental implementations were reviewed from the practical

perspectives of:

compatibility with existing software sub-systems

• module integration

• reliability

• model stability (saving/loading)

• performance (speed of response)

The results of these informal tests, which were reported verbally, have been

incorporated in sections 4.6.2, 5.4 and 5.5.1.

A.G. Pedley 	 Ph.D, Thesis 	 6-20

Further informal testing was performed by demonstrating the implemented software

solutions to the marketing department of the collaborator, Strassle, and to other

academic research groups. The feedback from the marketing specialists focused on

the look and feel of the implemented software, particularly concerning:

The number of input steps to achieve object creation.

Clarity of understanding during creation and editing of the model.

The potential for automatisation.

This feedback has been incorporated in the requirements specified in sections 5.6.1

and 5.6.2.

The feedback from other academic research groups has concerned the novelty of the

concepts and the fact that experiments with the 3D parallel tolerance show it to act as

a 3D constraint in the model. The academic feedback was discussed in section 7.5.

6.5.2 	Formal Testing

Formal assessment of the implemented software has been performed in a number of

ways and has provided feedback throughout the investigations. The methods used

were product comparison, collaborator testing, and product assessment.

6.5.2.1 	Product Comparison

In [S1096] the enhanced feature modeller, as described in chapters 4 and 5, was

compared with CADDS 5. Whilst not being so flexible in geometric shape creation,

the resulting system was more intuitive, allowing easier model construction and

editing.

A.G. Pedley 	 Ph.DThesis 	 6-21

6.5.2.2 	Collaborator Testing

6.5.2.2.1 	Mandelli Evaluation Report

In [FUR95], Mandelli report on their experiences with the enhanced system. Mandelli

used the system to model a large casting (Carro W2200). The casting had several very

complex pocketed areas machined into it. One of these areas has been modelled

independently of the complete casting, and is shown in Figure 7.4 without dimensions

and tolerances for clarity.

In the report [FUR95] no errors in the system compared to the requirements

[M1N'1193] and [FBDS93] were found. A number of enhancements were recommended

to the user interface of varying severity.

The highest priority was the need to provide visual representation of all hole end

conditions [DFL92]. Nine were specified of which four had exact geometric

representations. Mandelli regarded this as important because of the design

functionality associated with end condition and the absolute need for a hole to be

manufactured to design specification. All end conditions were supported by name as a

text parameter but only those with flat or spherical ends, 900 or 1200 tip angles were

represented geometrically in the model.

Of medium priority was the desire to ease the positioning of features by combining the

movement of the local coordinate system and the feature coordinate system.

The above concerns were addressed by further programming of the existing

architectural design.

Of major significance was concern about the relationship between parameters in the

property sheet and the physical dimensions of the model. This relates to size and

handle parameters. The reason for the problem is that it is not obvious which handles

exist, what they are called, and which is where on a rotated feature. A similar

A.G. Pedley 	 Ph.D. Thesis 	 6-22

problem exists relating all size parameters to the physical dimensions of the model

following rotation. These concerns have formed part of the requirements stated in

sections 4.7.1 and 5.2.

6.5.2.2.2 	SESAME Final Assessment

The enhanced system was presented at the final assessment meeting for the SESAME

project [SES]. The CEC Liaison Officer and an independent technical consultant

conducted assessment. The example shown in Figure 7.4 and a further example of a

gearbox casing also prepared by Mandelli were presented. Although project aims had

been accomplished both assessors supported the comments made by Mandelli

regarding the difficulty in establishing the correct relationship between parameters

and the physical model being worked on. This was especially highlighted for

complex, real life models. These comments showed the importance of the

investigations to address these problems presented in chapters 4 and 5.

In [FTR95] Mandelli estimated that 90% of the features machined into their

components could be designed using the small library of features presented in Figure

7.3. Mandelli estimated that using the feature based design system would lead to a

60% reduction in input time for geometry creation. Of the remaining 10% of features

necessary half were geometric primitives (wedge, torus, prismatic solid - Figure

7.12) which have since been implemented as intrinsic procedural features with

parameter dimensions. The remainder are extrinsic features such as a pipe (Figure

2.18), solid of revolution (Figure 2.17) and sculptured surface (Figure 4.8). These

needs reported in section 4.6.1 were implemented as extrinsic sweep features

reported in section 4.6.2.

A.G. Pedley 	 Ph.D. Thesis 	 6-23

	

6.5.2.23 	IMPRESS Midterm Assessment

The investigations into the representation of swept geometry and the software

implementation (section 4.6) were presented at the midterm assessment meeting for

the IMPRESS project [IMP]. The proposed solutions as described in section 4.6 were

reviewed by the CEC Liaison Officer and several designers from Rover and Cadam

Model. It was noted that the geometry creation possibilities were still limited

compared to free form surface modellers. However the possibility to change

interactively the parameters controlling the channel feature shown in Figure 6.9 was

seen as very clear. It was recommended that the freedom to position such extrinsic

objects be improved. This recommendation formed the requirement for providing a

mechanism to support the concept of feature origins for extrinsically defined features

as described in section 4.7.1.

	

6.5.2.3 	Product Assessment

The Product Services Manager for FeatureM at Strässle has tested the implemented

software with examples sent from current and prospective customers. The Product

Services Manager has modelled the examples of the connecting plate (Figures 1.3(b),

1. 5, 2.10, 3,1, 7.14), the rotor (Figures 1. 8, 2.4, 5.32) and soap box (Figure 7.11).

Feedback from the product services manager concerned a number of areas:

Development of more sophisticated rubber bands displayed during feature and

dimension creation.

Reduction in the number of parameters required to be defined during interactive

definition of dimensions. This feedback was helpful in defining the necessary

object decoding described in section 5.5.6 and the user interface for creation

described in section 5.6.1. The effects were to assume logical values for the

dimension plane and direction of the dimension line.

A.G. Pedley 	 Ph.D. Thesis 	 6-24

3. Concern about the performance of large models with many (thousands of)

dimensions. This was another motivator for the investigation of dimensions

representing the dimension parameters of features as stated in section 5.2.6.

6.6 	Contribution To Knowledge

This thesis has reported on the investigation of a number of new concepts concerned

with expanding knowledge of feature technology:

Analysis of feature classification, industrial needs and modelling practices has

shown (section 4.2) that there are a number of form features which cannot have

their shape pre-determined within the build methods of the feature. The original

concept that certain features cannot be filly described by their build methods

enables these features to be collectively grouped together as an important new

class of feature called extrinsic form features. Investigations of methods to

represent, and model with, extrinsic form features have shown that such

features have the ability to support legacy data in the form of pure solid models

(section 4.5), and are particularly suited to representing swept and limited forms

of free form geometry (section 4.6). Furthermore, form features have been

shown to fall into one of three sub-groups (section 7,3): primitive, standard,

specialised.

Analysis of dimension and tolerance representation techniques has shown that

the dimension and tolerance model must be wholly integrated within a feature

modelling architecture in order to provide the rich data models necessary for

the full application of simultaneous engineering strategies. Therefore the scope

and architectural complexity of feature modelling techniques have been

investigated leading to the new concept of multi-dimensional or hyper feature

models (section 5.4). A hyper feature model consists of a number of feature

trees. Each tree contains only one major class of feature: form, dimensions,

tolerances, etc. The trees are related by links from parameters in one feature

A.G. Pedley 	 Ph.D. Thesis 	 6-25

tree to features or resulting geometry in another. Dimensions and tolerances

within a hyper feature model have been shown to act as 3D constraints

governing the manner in which a form feature model may be subsequently

manipulated (section 7.5).

Features and their parameters have been analysed leading to the concept that

feature parameters, like features themselves, have characteristics that allow

them to be grouped together in classes because they behave in a similar manner

and can be treated in the same way by the kernel (section 4.8.1). For example,

length, width, depth and height parameters are all of class length. A novel

combination of procedural and declarative approaches applied to user defined

feature definition languages has been investigated (section 4.8.2). This concept

enables more intelligent mechanisms to be built as a part of the feature

modeller kernel and GUI. These new mechanisms are able to understand the

meaning or function of the parameters that a more sophisticated and extended

feature definition language is able to describe. These experiments show that

feature definition languages rather than their methods can be used to control

how the user is to interact with a feature and that feature modellers can be built

which automatically provide superior GUI functionality. A typical example is

the representation of "handles" on intrinsic form features (section 4.7.2).

Investigation of the methods used to manipulate a feature model has shown that

interaction has been predominantly keyboard based via tabular representation

of feature attributes and parameter values. The majority of these values

describe the parameters of a feature that are typically represented by

dimensions on an engineering drawing. By focusing at the feature level and

combining the ideas presented in II and III into a new concept for a feature

definition language, it is possible to describe both the dimensions and

tolerances of the feature in a 3D manner in the feature template definition

(section 5.5.6.4). This new and sophisticated concept for feature definition

enables:

A.G. Pedley 	 Ph.D.. Thesis 	 6-26

• 	Features to be instanced frilly dimensioned.

• 	The dimensions to be used for changing the model because they represent

the parameters and are therefore called parameter dimensions.

• 	The dimensions can be laid out so that an engineering view of the 3D

model appears as a 2D drawing removing the need for a separate 2D

representation.

• 	The use of parameter dimensions virtually eliminates the need for the

tabular property sheet providing a more intuitive user interface and

increasing available screen space for modelling.

V. Further analysis of extrinsically defined form features has shown that the idea of

"handles" for ease of feature instantiation and manipulation is highly desirable

but cannot be achieved using the concept proposed in III because of the

extrinsic and therefore unknown nature of the feature's form (section 4.7.1).

Experiments have been undertaken with a new concept utilising the body

coordinate system of the objects that is applicable to all extrinsically defined

features and which enables the same functionality to be provided as with

intrinsic form features (section 4.7.3).

VT. Current standards for the exchange of product data (STEP) use a number of

separate models for 2D representations, 3D geometric models, dimension and

tolerance models, and feature models, with no clear indication of how each

model can be related. Furthermore, the feature model explicitly excludes user

defined features, which are seen as essential for effective product modelling.

Methods for the exchange of user defined feature models have been

investigated (section 7.6). A new concept has been proposed which would

integrate within the feature modelling architecture the information necessary

for 3D geometric, and, dimension and tolerance representations, which would

also convey any information traditionally supported by 2D drawings (section

7.6). By reducing the flexibility of systems to change subsequently a non-

A.G. Pedley 	 Ph.D. Ihesis 	 6-27

native feature model, much greater information content can be transferred. This

is an acceptable compromise in situations where downstream applications are

better supported by rich product data that enables more informed decision

making automation to proceed.

6.7 	Chapter Summary

A number of important aspects of the research have been explicitly described in this

chapter (chapter 6). Chapter 6 has described the fundamental concept proposed by

the thesis from which the aims and objectives of the investigations have been

derived. The necessity for industrial collaboration to the investigation of the concepts

presented in the thesis has been stated. How the collaboration impacted on the

proposed software architecture through the information provided, analysis and

feedback from testing has also been reported. The research techniques used to

acquire and analyse information leading to definition of the software, architecture and

implementation described in chapters 4 and 5 have been presented. The software

testing methodologies employed and the results of tests have been detailed. In

chapter 6 the relationships between the areas of investigation, the sources of

information, and the sections of the thesis analysing the information have been

presented. The original contributions to knowledge made by the investigations have

been stated.

In the next chapter (chapter 7) the software implementation and results of the

investigations reported in chapters 4 and 5 will be discussed. The applicability and

suitability of the approaches will be examined and compared to those of other

researchers. Communication of the partial product models developed with other

applications will be assessed because of the importance of data exchange to

concurrent engineering strategies.

A.G. Pedley 	 Ph.D.. Thesis 	 6-28

Chapter 7

Discussion

7.1 	Introduction

7.1.1 	Chapter Overview

The previous chapters of this thesis have presented tools, technologies and

developments to feature modelling techniques that have been applied to address the

deficiencies of current feature-based design systems defined in chapter 1. In this

chapter, the advances made to feature modelling techniques described in chapters 4

and 5 will be discussed with respect to the objectives of improving CAD and CAM

process integration, their limitations and other approaches taken.

In chapter 2 the basic technologies relevant to the work of this thesis were presented:

the design and manufacturing process, geometric modelling, feature modelling,

dimension and tolerance practices, and the international standards applicable to these

areas. Chapter 3 described a hybrid feature-based solid modelling system that was

used as the baseline for the developments advancing feature modelling technology

presented in chapters 4 and 5. Chapter 4 explained how the methods of User Defined

Feature definition were extended to support extrinsically defined form, interactive

origin selection and parameter validation. Chapter 5 explained the techniques that

have been developed for dimensioning and tolerancing of solid and feature models.

A.G.Pedley 	 Ph.D. Thesis 	 7-1

These techniques include further enhancement to the User Defined Feature definition

method that enables dimensions to be associated with the size parameters of features,

which consequently can be used to change the model. In addition, dimensions have

also been developed that represent sketcher constraints; these may also be used to

change the model. Chapter 6 described a number of important aspects of the work

concerning the original concepts investigated, industrial collaboration, analysis and

testing. In addition the relationships between the areas of investigation, the sources of

information provided and the sections of the thesis analysing the information were

presented.

In this chapter (chapter 7) the contribution of the work reported in this thesis to the

advancement of feature modelling technology will be stated. The feature modelling

system presented in chapter 3, the advances reported in chapter 4, the dimension and

tolerance implementation described in chapter 5, and the results of tests reported in

chapter 6 will be discussed from the following perspectives:

Classification.

Modelling architecture.

Representation.

Exchange of feature models.

Feature technology as a process integrator.

Applicability to other feature modelling systems.

7.1.2 	Chapter Structure

Section 7.1 forms this introduction to the discussion by giving an overview of the

contents of previous chapters, and presents the topics and structure of this chapter.

Section 7.2 will state the contribution of the work reported in this thesis to the

A.G.Pedley 	 Ph.D. Thesis 	 7-2

knowledge and advancement of feature modelling technology. Section 7.3 will

discuss feature classification, considering both form and accuracy features. In section

7.4 the architectural issues of the feature modelling techniques used will be

contrasted with other approaches. In section 7.5 the representation techniques and

functionality developed will be considered. This section will include consideration of

the wide applicability of the dimension and tolerance system, and particularly the

description of dimensions in the form feature template definition. Section 7.6

investigates possibilities for exchange of User Defined Feature Models. Section 7.7

considers the claim that feature modelling enhances process integration. The

applicability of the techniques described in this thesis to other modelling systems

will be discussed in section 7.8. A chapter summary is provided in section 7.9.

7.2 	Contribution

This thesis has reported on the investigation of a number of new concepts concerned

with expanding knowledge of feature technology:

The original concept that certain features cannot be completely described by

their make methods has led to the collective grouping of these features and

definition of an important new class of features called extrinsic form features

(section 4.2). Investigations of methods to represent, and model with, extrinsic

form features have shown that such features have the ability to support legacy

data in the form of pure solid models (section 4.5), and are particularly suited

to representing free form geometry (section 4.6). Furthermore, form features

have been shown to fall into one of three sub-groups (section 7.3): primitive,

standard, specialised.

The new concept of multi-dimensional or hyper feature models has been

proposed in order to increase the scope and architectural complexity of feature

model data structures enabling a wider group of feature classes to be

represented including form, dimension, and tolerance features (section 5.4).

Dimensions and tolerances within a hyper feature model have been shown to

A.G.Pedley 	 Ph.D. Thesis 	 7..3

act as 31) constraints governing the manner in which a form feature model may

be subsequently manipulated (section 7.5).

The original concept that feature parameters, like features themselves, have

characteristics that allow them to be grouped together in classes (section 4.8. 1)

has enabled a novel combination of procedural and declarative approaches to

be applied to user defined feature definition languages, which allows more

intelligent mechanisms to be built as a part of the feature modeller kernel and

graphical user interface (section 4.8.2). Investigations have shown that such

feature definition languages rather than their methods can be used to control

how the user is to interact with a feature and that feature modellers can be built

which automatically provide superior graphical user interface functionality. A

typical example is the representation of "handles" on intrinsic form features

(section 4.7.2).

The new concept that it is possible to describe both the dimensions and

tolerances of a feature in a 3D manner in the template definition by combining

the ideas presented in concepts II and III into a new, more sophisticated feature

definition language (section 5.5.6.4). Investigations of the new language have

shown that:

• 	Features can be instanced fully dimensioned.

• 	Dimensions can be used for changing the model because they represent

the feature parameters and are therefore called parameter dimensions.

• 	Dimensions can be laid out so that an engineering view of the 3D model

appears as a 2D drawing removing the need for a separate 21)

representation.

• 	Use of parameter dimensions virtually eliminates the need for the tabular

property sheet providing a clearer, more intuitive user interface.

A.G.Pedley 	 Ph.D. Thesis 	 7-4

A new concept applicable to all extrinsically defined features has been

proposed to provide "handle" like functionality which utilises the body

coordinate system of the objects that form the unknown aspect of the features

(section 4.7.1). Investigations have shown that the same functionality can be

provided for extrinsic form features (section 4.7.3) as that described for

intrinsic form features in III.

A new concept has been proposed for the exchange of feature models that

contain the information necessary for 3D geometric, dimension and tolerance

representations, which would also convey any information traditionally

supported by 2D drawings (section 7.6). By reducing the flexibility of systems

to subsequently change a non-native feature model, much greater information

content can be transferred. This is an acceptable compromise in situations

where downstream applications are better supported by rich product data that

enables more informed decision making automation to proceed.

Implementation of the previously stated concepts (I to VI), which has been reported

in chapters 4,5 and 6 and is discussed in this chapter, contributes to the advancement

of feature modelling technology in the following areas:

Developing methods to model extrinsically defined form features.

Extending and applying a feature modelling system architecture to support the

representation of dimensions and tolerances associative with both solid and

form feature models to create hyper feature models.

Extending procedural methods for user defined form feature definition to

include advanced GUI support and the graphical description of dimensions

representing the size parameters of form features.

Developing techniques to provide GUI support for extrinsically defined form

features.

E. 	Techniques for the exchange of user defined feature models.

A.G.Pedley 	 Ph.D. Thesis 	 7-5

7.3 	Classification

In response to the question of: "What is a feature?", there have probably been more

definitions proposed than systems developed. The author would like to suggest the

following, perhaps less abstract, description developed within the context of the

reported work:

"A feature is an information unit, geometric or otherwise, that is used to

define, or help the understanding of, a component model."

In this context features may produce geometry, defining the nominal form of a

component, when designing for instance. Features may consist of (but do not

produce) geometric elements providing further design definition, when adding

dimensions and tolerances for example. Features may also provide another view of a

component, as is the case with a manufacturing model. Features may contain

information that is associated with a component but not directly related to the shape

of the geometry, the material definition and other, particularly administrative, data.

In chapter 2 features were shown to be environment specific. In the context of design,

a feature is called a design feature, in the context of process planning it is called a

manufacturing feature, and in NC part programming it is called a machining feature.

Even within a single view of a component (such as design) with the geometry

accurately specified, it is necessary to indicate that areas of the geometry are of

special significance. For example, in the design of car body parts it is important to

know which parts of the geometry of a component will be visible in the end product

and which parts will not. This has significant impact on manufacturing reasoning

about where to position tool split surfaces, and machining strategy such as not

dwelling on visible surfaces. For these reasons, features that contain information

about the geometry that is created by other features is of importance in understanding

the model of the component. Such features are highly environment specific.

Feature classification and development of feature taxonomies is an issue that has

received great attention, much of it preceding the development of feature based

A.G.Pedley 	 Ph.D. Thesis 	 7-6

systems and now forming the basis of approaches to exchange of feature models.

Thinking about features and the consequent development of system architectures has

focused on the fact that a feature is presumed to have a known volumetric shape,

which is described in the definition of the feature. This is not true of free form

features (except if explicitly defined, but then they are of limited value). In fact,

sweep features do not necessarily produce volumes. They can also produce surfaces

which is a natural approach to integrating free form geometry into a solid feature

based environment.

Under the auspices of the SESAME Project [SES] the author has developed a

relatively small. focused taxonomy of design featurec [PFD 0 4], Figure 7.1

SESAME Design Features

Base Geometry
Parametric
Non-Parametric

Form Features
Primitive
Standardised
Specialised

Accuracy Features
Auxiliary Features
Dimensions
Dimensional Tolerances, Limits & Fits
Geometric Tolerances
Surface Roughness Tolerances

Technological Features
Material
Heat Treatmensts
Surface treatments
Volume and Mass Properties
General Finishing

Engineering Data Management Features
Drawing Information

Figure 7.1 SESAME Design Feature Classification

The emphasis of the SESAME project was the design, process planning and NC part

programming of parts consisting of 2'/2D form features machined on conventional

A.G.Pedley 	 Ph.D. Thesis 	 7-7

milling machining centres, as proposed by machine tool manufacturer, Mandelli Spa

of Italy, a partner in SESAME. Base Geometry and Form Features taxonomies are

presented in greater detail in Figure 7.2 and Figure 7.3 respectively.

Base Geometry Features

Parametric
Billet
Bar

Non-Pararretric
Body

Figure 7.2 SESAME Base Geometry Feature Classification

Form Features

Primitive
Independent

Parallelepiped
Rectangular Pocket
General Pocket
Ring
Hole
Slice
Slot
Curved Slot
T-Slot

Group
Pitch Circle
Matrix

Standardised
Independent

Screw Hole
Bearing Seat
Elastic Ring Seat
Label

Specialised
Compound

Internal Centering Surface
External Centering Surface

Figure 7.3 SESAME Form Feature Classification

The classification provides a rich set of objects which allow the designer to define

and describe a component creating a partial product model suitable for driving

downstream applications such as process planning. The feature modelling system

A.G.Pedley 	 Ph.D. Thesis 	 7-8

Ii

nflI 	 _____

II .

LP JE;
A—j

B —c

A—A

IRMO

described in Chapters 3, 4 and 5 of this thesis has been used to model the design

features detailed in the classification of Figures 7.1, 7.2 and 7.3. Figure 7.4 shows a

part of a large casting which forms the table of a machine tool. The area modelled is

a complex pocketed area where the guides and bearings are fitted. There are some

forty features in the model.

Q'sYS 20M FetureN 	22-5ep-19%

Rio Edi Display EOM 	 Sh.t 	 Holp

strassle 12 HD LI

rE :

id

B—B

flJL Flu
*HI

Figure 7.4 Model Of Machined Part Of Casting

The design features used to create solid geometry have been split into two categories:

Base Geometry Features and Form Features. The SESAME Base Geometry Features

have been presented in Figure 7.2. A distinction has been made between a Base

Geometry Feature that forms the root of the feature tree which is positive (volume

creating) and the Form Features which are negative (volume removing).

Only 2Y2D negative form features were provided in SESAME because the aim was to

map the design features to manufacturing features to enable semi- and automatic

A.G.Pedley 	 Ph.D. Thesis 	 7-9

process planners to develop a manufacturing strategy for the design. 2'/2D negative

features can generally be mapped to one or more manufacturing features. Positive

and non 2'/2D features are problematic and will be discussed further in section 7.6.

Base geometry features were either of a frilly parametric implicit nature in the form

of a billet or bar, or were extrinsic, non-parametric, solid features used to represent

castings.

Castings are of major significance because they frequently form the stock part which

is machined to realise the desired component. Castings typically contain free form

surfaces which (due to the complexity both of design and manufacturing) were not

the subject of feature development in the SESAME project. However, in SESAME

the features that are machined out of castings are 2'/2D in nature.

The form feature classification presented in Figure 7.3 is divided in to three

categories:

Primitive: Relatively simple features that would be provided by a system as a

library of general features. These features would be widely applicable and not

specifically related to a particular design environment.

Standardised: Features that are defined in ISO, national or company standards

and are fully parameterised from tables depending on the selection of one (or

several) parameters. For instance, a threaded hole for any given thread size, may

have its length defined as short, normal, or long. Some features such as, circlip

grooves, may be automatically positioned a certain distance from the end of the

hole or shaft. These distances are defined in the tables of standards.

Specialised: Completely defined by the user, functionally very specific, complex,

combinations of many features, with few variable parameters.

The classification of Figure 7.3 is a novel way of classifying features because

previous approaches have only considered the shape of the feature, either the implicit

A.G.Pedley 	 Ph.D. Thesis 	 7-10

or explicit nature, or the geometric method of construction. This classification

focuses on the semantics of the feature, the way in which a feature is to be used, and

the representation methods (the way it is defined).

This classification clearly shows the need for User Defined Feature functionality to

be present in systems because of the Specialised features. Such features are

functionally very specific and are unlikely to be found, or used in exactly the same

way in different companies.

The most promising area in which standardisation may be valid in all feature

modelling applications is the use of features that represent specific items defined

completely by international standards. The most common example is that of threaded

objects, such as holes and shafts. User Defined functionality is also required despite

the seemingly high degree of standardisation currently used. This is because

companies will derive preferred sub-sets of the very broad international standards.

Companies supplying stock items such as bearings, and many parts of injection

mould tooling, not only require representations (actual or symbolic) of the objects

but of the cavities that must be cut to locate them in the parts. There will never be a

finite set of features, therefore User Defined functionality is essential.

General features such as hole, pocket, etc., would appear to not to require User

Defined Functionality because of their simplicity and broad applicability. However,

the naming of features should reflect the company and application specific usage,

which requires User Defined functionality. The ability of a feature modelling system

to offer User Defined functionality is essential if the system is to become more than a

parametric volume modeller, playing a much more active role in the definition of

product models which provide a high level view of the component demanded by

manufacturing applications.

The modelling of free form geometry with features has received relatively little

attention to date. The IMPRESS project [IMP] aims to investigate this by considering

the design and manufacture of car body panels and plastic trim consisting

predominantly of free form surfaces. Although some support for solid representation

A.G.Pedley 	 Ph.D. Thesis 	 7-11

is provided, the free form features are predominantly supported within a surface

modelling environment. The taxonomy of form features classified by the author

within the project is shown in Figure 7.5.

Free Form Features

Basic Elements
Curves
Surfaces

Blends
Basic
A-Fillet
S-Fillet

Volume Oriented
Rib

Offset
Flat Top

Corner Reinforcement (Bird Beak)
Pocket
Clip Housing

Cutout
Circular
Non-Circular

Defui ii IdttoII

Channel
Flat Bottom
Flat Cross-Section

Profile Channel
Flat Cross-Section
Sculptured Bottom

Enumerative
Pattern
Pitch Circle

End Conditions
Flush Surface
Intersection
Square End
Runout

Figure 7.5 IMPRESS Free Form Feature Classification

An important aspect to consider is the naming of features because naturally this

implies meaning. However, objects such as car body panels and plastic trim which

contain the free form features are produced by forming processes using tools. The

manufacture of the tool rather than the component itself becomes the focus of

computer aided support. Tools have two halves, and what may be perceived as a

channel by the designer of the product is transformed into a channel in one half of the

tool and a protrusion in the other half, yet still based on the same design feature. The

A.G.Pedley 	 Ph.D. Thesis 	 7-12

usage of features with names such as channel also implies a sidedness to the design

which poses problems for validation. It is interesting to note that designers classify

features according to use rather than topologic or geometric content. The rib features

and the channel features have exactly the same topology, geometry and parameters

but different proportions. Importantly a channel is perceived as a depression, whereas

a rib is perceived as a protrusion. A fact common to all of the features is that the

resultant form of the feature cannot be completely described within the template

definition. Certain aspects of the features may be more well defined than others, the

cross-section of a flat bottom channel compared to a basic surface, for example,

Figure 7.6.

Figure 7.6 IMPRESS Flat Bottom Channel Feature

However the complete form of the feature is only known after the feature has been

evaluated, because the form depends on the elements of the model with which it

interacts, which are not implicitly (or explicitly) defined in the template definition.

The path along which the cross-section is swept for example. Indeed, the usage of

such free form features is much more complex than with the usual concept of form

features because an important part of the feature definition is the way in which the

feature interacts with the other surfaces it meets. These must be trimmed and blended

A.G.Pedley 	 Ph.D. Thesis 	 7-13

together in a defined manner. The concept of the complex feature for 2Y2D features is

akin to such definitions.

The classification of Figure 7.1 which distinguished between those features which

constitute the Base Geometry and the Form Features that are subtracted from this to

realise a model in SESAME is not applicable to the classes of feature derived in

IMPRESS. Free form models are typically built by adding surfaces to the model, and

trimming or removing parts of others. There is no simple concept of additive and

subtractive as with solid modelling.

The following more general form feature classification is proposed in Figure 7.7. It is

logical not to classify separately the Base Geometry Features of Figure 7.2. They

could be of any class in Figure 7.7. It is the semantics of the feature that indicate its

suitability as base feature rather that its geometric shape. Extrinsic features, as

classified in Figure 7.7, are typically primitive in nature due to their wide

applicability. However, they can represent complex shapes and are certainly not

simple to implement. The classes of general body and general sweep were described

in chapter 4. Extrinsic features are unlikely to be formed into standardised classes as

is the case with intrinsic, implicit features because of their unknown characteristics.

Specialised features, and consequently user defined functionality, are likely to

represent many free form features in an environment (company/product) specific

basis. User defined support must therefore be provided for extrinsically defined form

features.

Intrinsic features represent the bulk of features considered by developers of feature

based systems to date, and are represented in primitive, specialised and standardised

forms. Compound features are by their nature compounds of any other and so could

either have intrinsic or extrinsic form. The general sweep implementation described

in chapter 4 is completely extrinsic. This high level classification differs considerably

from the STEP Form Feature Model [STEP48]. This is due to the rather narrow view

of the STEP model which excludes User Defined Features, and concentrates purely

A.G.Pedley 	 Ph.D. Thesis 	 7-14

on the representation of form without considering the practical needs of manipulating

features through a high level user interface.

Design Form Features

Extrinsic
Primitive

General Body

General Sweep
Path
Base

Basic Elements

Specialised
Free Form Feature

Intrinsic

Explicit

Impicit
Primitive

Standardised

Specialised

Compound

Figure 7.7 General Design Form Feature Classification

The accuracy feature classification developed in chapter 5, Figure 5.2, may be broken

down into three levels, as summarised in Figure 7.8. There are two levels of

classification, Associativity and Function, before the Kind of dimension or tolerance

is detailed. This not the case with other classifications which start with the Kind of

the dimension. This is because either the implementational details, such as object

A.G.Pedley 	 Ph.D. Thesis 	 7-15

associativity and modelling functions supported, are not considered as with the STEP

Shape Variational Model, or there is no advanced graphical representation as with

academic systems. These considerations greatly difference the actual implementation

of the accuracy features as described in chapter 5.

uracy Features

Associativity

Function

Kind

Figure 7.8 Levels of Accuracy Feature Classification

7.4 	Model Architecture

In common with systems such as EMOS [AUR95] and SEW [M1L94], which have

strong links to manufacturing applications, the system presented in chapters 3, uses a

procedural architecture. There are certain advantages to using the hybrid CSG tree

and evaluated BREP architectural approach, described in chapter 3, to purely

parametric or variational BREP models, reported in chapter 2.

The hybrid models are more robust to topological changes caused by editing deep in

the feature tree. This is because features are positioned relative to a reference

coordinate system. When this reference is the workpiece or another feature it is

completely invariant to topological changes. Only when specific features are

positioned relative to topological (and geometric) entities can changes in object

identity cause instabilities. The positioning and orienting of features is less

constrained and can be subsequently changed at any time during construction of the

model. The biggest problem with this approach is that of maintaining persistent

object identity. Parametric and variational BREPs can actually maintain pointers

A.G.Pedley 	 Ph.D. Thesis 	 7-16

during addition and editing of the model. All pointers are lost during each evaluation

of the model in the hybrid approach, therefore another mechanism is required to

provide persistent object identity. This is a different function to that provided by all

geometric modelling engines (ACIS included) which allows objects to be saved to

file and pointers to be reset to their original elements after reloading. In this case the

BREP model remains fixed and is simply rebuilt rather than evaluated from a

sequence of operations. Providing robust persistent object identity is an area which

requires further investigation.

Academic systems have predominantly focused on single workpiece models,

particularly where close links to process planning and NC part programming

applications have been the aim. Multiple workpiece models have only been

considered for assembly planning and by commercial systems that offer assembly

modelling capabilities. It is a novel approach to use the workpiece data structures as

dynamic functioning structures supporting the multiple types and kinds of dimension

and tolerances. This is particularly the case when the workpieces are assigned

internally per form feature, to represent parameter dimensions, and per sketcher

contour, to represent size constraints. The architecture is very robust because it can

be applied to solid and feature models, represent size parameters of features and

sketcher size constraints.

The method of defining features described in chapter 4, whether system delivered or

user defined, is procedural. Currently there is interest in the development of

declarative feature definition languages [BRU96]. Declarative languages appear

attractive because of the potential development of graphical support tools that would

aid the definition of user defined features in much the same way in 3D as a 2D sketch

is developed using a constraint manager. There are currently great difficulties in

developing general solvers for 3D objects consisting of constrained topologies. To

date declarative languages have only been applied to relatively simple 2Y2D features

such as slots. The advantage, and disadvantage, of procedural methods is that for

effective user defined functionality an advanced interpreted language is required to

drive both the feature modelling kernel and the geometric engine. It is believed that

A.G.Pedley 	 Ph.D. Thesis 	 7-17

the implementation described in chapters 3 and 4 that uses MCL+ does meet these

needs. Certainly, the only restriction on the form or complexity of the feature

developed, is in the bindings between MCL+ and the functionality provided by

ACTS, and the ability of the user to understand and program the system. However, an

excellent attribute of the declarative feature definition proposed by [BRU95] was the

ability to define extrinsic constraints for a feature. That meant that if a slot was

defined to contain a bottom, left and right side faces, then these, and these only, must

be present in the faces generated by the feature on combination with the rest of the

model. This means that the semantic meaning of the slot is maintained. This could be

achieved by programming in the feature make method of the procedural system

described in chapters 3 and 4 but is currently not done.

The use of both make and symbol procedures in the feature definition described in

chapter 4, unusually, allows a feature to be assigned two representations. This is of

practical value for form features when it is desirable that a symbolic rather that full

representation is used to simplify a model. It is most convenient to represent the path

used to generate a sweep feature symbolically because the path feature itself does not

return the body that is combined with the model which is produced by the base

feature. The use of the two procedures also allows one to control or update the

parameter values in MCL+ whilst the other may use hard coded C++ procedures to

drive graphics. This functionality was of particular use in development of the

dimension and tolerance functionality.

The envisaged extension to the feature definition method to allow parameter

constraints to be described, which has been implemented as property sheet

functionality, is similar to several approaches based on the EXPRESS definition

language [AUR95][KRA91][BRU96]. The advantage is that the procedural definition

of features is simplified because the error handling must not be performed by the user

in make method. Consistency is achieved because both system delivered and user

defined features are provided with the same display and options to rectify. The

extensions also facilitate advanced GUI support for feature modelling.

A.G.Pedley 	 Ph.D. Thesis 	 7-18

The implemented extension of the feature definition method to allow size parameters

to be represented as dimensions in the display is a novel advance. Not only are the

dimensions represented and can be use to change the model, but they may be laid out

aesthetically in order to generate 2D engineering drawings with the aid of the

technical views. To date graphical representations of feature definitions have

concentrated on displaying the constraints applied in declarative methods as graphs

[S0L94], or on representing the size constraints used by parametric or variational

modellers such as ProEngineer [PTC] and IDEAS [SDRC], where features are

defined as contours and swept. The approach developed in chapter 5 is applicable no

matter how complex the feature so long as the user is able to procedurally define the

parameters required to define the dimension.

7.5 	Representation

The representation of features within the context of this work consists not only of

defining the form but also of defining the dimensions and tolerances associated with

the form.

The representation of features with intrinsic and implicit form enables dimensions

and their associated tolerances to be described using the same feature definition

method as described in chapters 4 and 5. Subsequently the dimensions can be used to

change the model graphically without the need for use of a property sheet. For

complex features this is an advantage because the user does not need to know which

parameter controls which shape aspect of the feature. This can be tedious to check

because the user must always snap the Local Coordinate System to the Feature

Coordinate System.

The use of features with extrinsically defined form provides the modelling system

and hence designer with much extended shape creating functionality. Such

functionality is essential for products manufactured by forming processes. Such

products frequently have high aesthetic content and are therefore in high demand,

whilst also having high turnover to meet changing market needs. The ability to model

A.G.Pedley 	 Ph.D..Thesis 	 7-19

such objects in a feature based modelling system is of major significance to the

applicability of the modeller. Features of extrinsic form, by their very definition,

cannot have dimensions (and tolerances) described in the definition of the feature.

The dimensions (and dimensional tolerances) must be supported in the objects that

are use to create the body generated in the make method. This creates the added

problem of maintaining consistency when the dimensioned objects are used to

generate features which are controlled by the feature modeller.

The implicit nature of the form feature definitions allows highly developed GUIs to

be implemented as described in chapter 4 in order to aid and control the positioning

and orienting of features within the model. The philosophy of using a Local

Coordinate System, being able to snap this to the feature coordinate system origin, or

conversely, to snap a feature coordinate system origin to the Local Coordinate

System, provides a comfortable method of changing the model through the GUI. The

calculation of feature origins, whilst physically performed in the make method,

requires definition of the available origin descriptors, in the feature template. The

origin descriptors represented by positions calculated from the make method form

logical attachment points for dimensions representing the size parameters of features.

Features with exstrinsically defined form, implemented as the general sweep features

described in chapter 4, use the same Local Coordinate System philosophy to

maintain GUI consistency. More specialised extrinsically defined form features, such

as the flat bottom channel shown in Figure 7.9, may be partially defined using the

parameter dimensioning technique described in chapter 5.

A.G.Pedley 	 Ph.DThesis 	 7-20

Figure 7.9 IMPRESS Flat Bottom Channel Feature With Parameter Dimensions

The representation of the feature differs between surface and solid environments. In a

surface environment the feature is added to the model but in so doing part of the

existing geometry is removed. In solid modelling the feature is either added or

subtracted from the existing geometry. The solid environment is therefore much

more suitable for creating the model of the press tooling to produce a sheet metal

component with such features. In this case the cross-section of the feature is closed to

produce a volume by sweeping, which is combined with the rest of the model, Figure

7. 10, to produce either the male or female tool halves.

Figure 7.10 IMPRESS Flat Bottom Channel Feature Forming Female Tool

A.G.Pedley 	 Ph.D, Thesis 	 7-21

The path along which the cross-section is swept is 'generated from the original

surface of the component between two points. A significant aspect of the use of the

feature is how the end conditions are formed. These may be formed with simple

blends or by more complex geometry when the form of the cross-section runs out

into the main surface. There are two approaches to achieving such complex end

conditions: create each end condition as a separate sweep feature, or by more careful

construction of the sweep path, include the definition of the ends as well. Creating

the paths for end conditions is a general contour generation problem which can be

addressed with the use of a sketcher.

The use of a sketcher generates many constraints implicitly, such as coincidence and

tangency, whilst the user adds further constraints explicitly such as size (length,

radius) and form (parallelism, perpendicularity). Keeping the constraints out of the

feature and in a dedicated software component is more efficient. This is achieved by

attaching the constraints as attributes of the body generated by the sketcher. This

enables feature template definitions to be more general when taking bodies as

parameters, because it does not matter how they are generated. The dimension feature

for a sketcher constraint supports only that data necessary to generate the graphical

representation. Although the dimensions are associated with entities in the model the

problems of maintaining persistent object identity do not occur because the object

associativity is maintained by the constraint manager. The advantage of the sketcher

constraints is that the user creates them graphically, rather than by programming,

which is very fast and intuitive.

Currently the contour that is to be swept (base) forms the reference coordinate system

in which the sweep path is related. When the sweep base is considered the major

item, such as with the flat bottom channel, this works well. Constructing models

when the sweep path may be considered the important item causes some positioning

problems. Take for instance, the construction of the walls of a soap box, Figure 7.11.

A.G.Pedley 	 Ph.D Thesis 	 7-22

Figure 7.11 Soap Box

In this example the tendency is to locate the base contour (forms the cross-section of

the wall) relative to the path (plan of the box). However, this does not actually

change the relative positioning of the two features (and importantly bodies) for the

sweep, because both features are moved equally due to the path being defined

relative to the base coordinate system.

Feature parameter dimensions describe the feature and are completely associative

with the feature ShowBody, they are not associative with the resultant model. How a

feature is combined within the model does not change how the feature parameter

dimensions are displayed. For example, if a hole feature is not positioned completely

within the model but is sticking half out, then after combination with the model, one

end of the parameter dimension representing the depth of the hole will appear in

space. It would be relatively easy to integrate rules into the feature make method to

A.G.Pedley 	 Ph.D. Thesis 	 7-23

represent extrinsic constraints, however, such simple constraints are only likely to be

valid when the hole is placed perpendicular to a planar face. It might be argued that

for manufacturability, hole forming should always occur in a direction normal to a

planar face. This however is only true for the entrance and not the exit of a through

hole. Such restrictions placed in the make routine, implying a presumption about how

the form could be manufactured before considering the resultant model seem

unhelpful. Furthermore from the users perspective, spot facing of components in

order to enable drilling for instance, would use the same feature in a general feature

based design system. A purely manufacturing oriented system might well distinguish

between blind and through holes, and spot facing features, but such a system would

probably prove too restrictive to the designer. Feature validation and representation

of the semantic meaning is therefore an on going topic.

Feature parameter dimensions are intuitive to describe in the template definition,

particularly when the feature origins may be used as the defining points for the

dimension. There are, however, several difficulties with the implementation.

In order to provide support for user defined feature definition each parameter in the

feature template definition requires a dimension description. When the make method

is relatively complex, as is the case with the flat bottom channel (Figure 7.9), the

defining points of the dimensions are calculated in a procedure. This procedure

calculates all coincidence points of the elements that make up the contour. Each

parameter of the dimension description requires an if needed method to define its

value. This procedure calls the coincidence calculating procedure each time, which is

very inefficient. A more efficient method is to associate a procedure with just the

p051 parameter. This relies on the fact that any function that reads parameters from

the dimension must read posi first. In the posi if needed method all other

parameters for that dimension may be set. This means there is only one procedure

call per parameter set against six previously. This change noticeably improves the

graphical redraw time of the feature. Of course it would be possible to set all

dimension parameters in the feature make method each time. The performance gains

to be achieved are slight and the associativity of a particular method with a particular

A.G.Pedley 	 Ph.D Thesis 	 7-24

function is distorted. A further problem associated with the definition of methods to

calculate the parameters of the dimension description is that to date the interface is

fixed which makes the generation of generally applicable methods difficult.

Certain features such as the obelisk, Figure 7.12, are defined using diameter

dimensions despite the fact that they do not have any circular elements; the diameter

is used to define a circle which encloses all points forming the base, for example.

200D F — ~ u rem V 5.4 	zz - S 	9& 	r 	"erOeft

Rio 	RE 	D}pliy 	EDM 	2PO 	ci 	 s 	 .IP

strasJ43f

I
cc

jJ

R I

UP

LLtJ
Figure 7.12 Obelisk With Help Lines

Simply defining a diameter dimension is not helpful when there are few points

because the attachment points appear to sit in space. The visualisation and

understanding can be improved by constructing a help circle containing all the

points. Currently, a full construction circle cannot be drawn for a dimension, just the

shortest arc from posi to either the start or end vertex of the arc being dimensioned.

A.G.Pedley 	 Ph.D Thesis 	 7-25

This means that the largest construction arc that can be generated is just smaller than

a semi-circle which is simulated by setting of spos, epos and arcpos.

Local operations such as blending (rounding, filleting) are problematic when

describing parameter dimensions that represent the blend radius. This is because to

describe the radius dimension correctly the definition requires the start and end

positions of the arc to be described. These are not described in the feature. They are

available only after the blend operation has been evaluated in the model. Currently

the dimension representation is set to point to the edge to which the local operation

will be applied. This provides an intuitive graphical representation before evaluation

of the blend feature. However, the graphical display of the dimension remains in the

same position with respect to the original edge. Therefore, unfortunately, the

graphical display does not represent the engineering drawing representation of the

dimension. Further work is required to re-associate the representation with the

resultant geometry using the techniques similar to those described in chapter 5 for

generating uni-directional radius dimensions from faces rather than edges. The

problem is further complicated by the ability to generate variable radius blends,

potentially generating spline surfaces.

The use of the technical view layout provides significant advantages in the

automatisation of generation and layout of dimension schemes, Figure 7.13.

Construction of dimensions in technical views automatically defines cutting planes

and location selection simulating the ability to dimension silhouette lines, blend radii

for example. The graphic display of the dimension text may be optimised to sit above

and along the dimension line as is found in 2D engineering drawings.

The camera angle of the technical views may be changed as with any normal view,

the difference being that the view may be instantly reset to its engineering definition.

A.G.Pedley 	 Ph.D..Thesis 	 7-26

)eS(S 25501 Ure4V3.4pr1vte I 0 Sep 1550 	 pCrt/9epert..fr

Flao Edo Dis p l ay EDM Ook,r Mc os.d

lip

On
Mc!>

EJ
-lt-

LJ

çi [

LIFi1iI

Figure 7.13 3D Model Displayed As 2D Drawing

The use of cross-section views, Figure 7.14, poses as yet unsolved problems for the

maintenance of object identity. Currently the kernel is unable to provide persistent

object identity for the elements of a cross-sectional view because this is a different

body to that of the original model which does not exist in the browser data

dictionaries. The cross-section model and dimensions associated with the original

(whole) body, but viewed with the cross-section, will be automatically updated to

represent changes made to the original model. The cross-section may be directly

dimensioned using type 1 non-associative dimensions but these of course will not

respond to changes in the model.

A.G.Pedley 	 Ph.D..Thesis 	 7-27

-I
c,

D.br fl

SY 	OOO Feu 	WS 4-ri v,te I 	 //yp', I 	dr/o4I It

F. EdI Display ED! OpUo 	McI 	 I3hi

MCI,-
ts

jIJ

-E
=

Ij 	 -fb
EI]i

h

L

Figure 7.14 Cross-Section With Dimensions

The term accuracy feature is often used ambiguously to refer to the physical aspects

of the model which are being dimensioned or toleranced, or to the dimension or

tolerance applied to those physical aspects. The architecture implemented in chapter

5 amalgamates both meanings because the data structure supporting the accuracy

feature representations is the feature model data structure and the physical aspects of

the model are referenced in the accuracy feature.

The STEP Shape Variational Model [STEP47] does not consider the visualisation of

dimensions or tolerances, nor does it concern itself with direct association of

dimensions and tolerances with the underlying geometric model. The dimensions and

tolerances are associated with shape aspects or derived shapes aspects such as centre

lines and planes of symmetry, etc. No direct method of associating dimension and

tolerance information with the Form Feature Model [STEP48] is given. The STEP

A.G.Pedley 	 Ph.D. Thesis 	 7-28

model differentiates between directed and non-directed dimensions and tolerances.

The representation described in chapter 5 implicitly describes all dimensions as

directed because of the graphical representation being defined from posl to pos2.

Derived shape aspects are either represented implicitly in the objects which are either

generated by parameter dimensions, provide object identity, or form the elements of

the symbolic construction geometry. Direct relationships are provided between

parameter dimensions and their associated features or between faces in the model and

the objects that created them. Analysis of the topological model allows any vertex or

edge to be related to its generating features via its connecting faces. To date no

attempt has been made to generate a STEP compliant representation of the dimension

and tolerance model. However, the author believes that the richness of the current

representation due to the implicit nature should be able to be mapped to the STEP

model.

The vectorial dimensioning and tolerancing system [HEN95] described in chapter 2

demands that all elements that are dimensioned or toleranced are represented by

points, vectors and sizes. These are implicitly supported by the geometry of a solid

modeller. However certain elements may have no unique representation. For

example, the point describing the root for the normal vector describing a planar face

could be any point in the plane. The graphical representation of the dimensions and

tolerances evaluates this information as the start point of either of the projection

lines. Such points may also be used to define the effective plane in which size

dimensions are calculated. The description of points and vectors implicit in the

description of the dimensions and tolerances is readily applicable to definition of

vectorial tolerancing schemes and the consequent advantages for inspection process

integration because a coordinate measuring machine can readily determine the

measured substitute elements which can be directly and automatically compared to

the dimension and tolerance representation applied to the geometric model. To date

such inspection practices have not been investigated.

The uni-associative parallel tolerance investigated in chapter 5 has provided some

interesting results, Figure 7.15. Its construction is virtually identical to that of a linear

A.G.Pedley 	 Ph.D. Thesis 	 7-29

dimension between two planar faces or axes. However, the linear dimension between

two planar faces or axes can always be calculated between the anchor points derived

from each face. The parallel tolerance requires that the planar faces or axes are

parallel. The parallel tolerance follows changes in the geometry and whilst

parallelism is maintained this causes no problem. This is always the case between

two faces generated by the same feature.

SESAME FethrM 5.1.0

P~praserW lon 	 mc% F.Rn.

Li 	Y1ij
16 -P a rt 7-pir.II.Um parII.Dsr,i iLl onviyrnbo

HTJ a1

I 	 r.!

is

• 	 - 	 -F- I I 	—H 	.-t- - - 	 p

Ir 11lB347ll36OO4e

Q fisoo,o
nvi '.4

01 arallel 	0 01 PaealleI

	

ID 	 0 	1

Qp

Figure 7.15 Parallel Tolerance

It is interesting to consider the problem of a parallel tolerance constructed between

two parallel faces of two separate features. On constructing the tolerance the

parallelism is determined before the tolerance may be created. If subsequently one of

the features is rotated so that the two faces related by the tolerance are no longer

parallel this is detected in the make method. The question is which has higher

priority - the orientation of the second feature or the parallel tolerance. The tolerance

A.G.Pedley 	 Ph.D.-Thesis 	 7-30

could be considered as a functional constraint that the designer explicitly states by

using a parallel tolerance; in which case the second feature should be automatically

rotated to maintain parallelism. On the other hand if the designer rotates a feature

knowing that a parallel tolerance is attached, does it mean that the act of rotation

implies that the original functionality indicated by use of the tolerance is no longer

valid and the tolerance should automatically be deleted. If it is decided that the

second feature should be automatically rotated to maintain parallelism between the

two faces a further significant problem is determining in which manner the second

feature should be rotated.

The use of relational geometric tolerances in 3D is analogous to the use of such

constraints in 2D. The solution of constraints in 2D is relatively well understood,

however to date, there is no general solution to the 3D problem particularly when

considerations for feature validation and merged faces are included.

In a similar analogy how should a dimension or tolerance between two entities in the

model be treated when one of the entities no longer exists because of movement of

the feature to outside the model or interaction with another feature which obliterates

it. Clearly the tolerance is no longer valid and cannot be displayed, but should it be

completely removed from the data structure. The approach taken is that it is not

removed from the data structure merely switched off. Thus in future, if the object

identity is re-found by further changes in the model, the tolerance will be

redisplayed. In the case of two faces that are no longer parallel, when parallelism is

regained by realignment of one of the features, the tolerance is redisplayed.

Although consideration has been given to dimensions that can be used to control the

model, but do not represent size or location parameters of features, currently no

implementation work exists. It is envisaged that an approach similar to that being

developed for the generation of new features out of a combination of existing

features will be applied. In both circumstances rules will have to be represented to

describe how and which location and/or size parameters have to be controlled.

A.G.Pedley 	 Ph.D.- Thesis 	 7-31

The complete feature catalogue supplied with the feature modeller described in

chapter 3 uses the parameter dimension definition methods described in chapter 4.

7.6 	Exchange Of Feature Models

To date attempts to formalise exchange mechanisms for feature models have centred

on attempts to define sets of features for all users and applications that are capable of

describing the geometry of a component. The STEP efforts have focused on

providing a Form Feature Model (Part 48) and a Process Planning Features Model

(Part 224). It is the authors understanding that development of the Form Feature

Model has been suspended. The Process Planning Features have been developed

from the John Deer Catalogue. To date there are no standards which address the

subject of the exchange of User Defined Feature Models.

Exchange of feature models may be split into a number of distinct areas:

• the syntax of the features description

• the semantics and meaning of the features

• the geometry of the features and the resulting model

• feature ordering

• object identity

• validation of parameter values

• control of feature manipulation

• control of the user interface to the feature

In order to transfer a model containing user defined features both the implicit

definition of the feature described by the template and the explicit instance of the

feature in the model must be supported in a standard manner. For procedural methods

this poses particular problems for the control methods that 'are declared in the

template definition. For declarative methods the problems are passed to the ability of

three dimensional constraint solvers to generate the same geometry.

A.G.Pedley 	 Ph.D. Thesis 	 7-32

Exchange of feature models is currently achieved by agreeing feature template

names, parameter names and the form that is intended to be generated. Models

generated with the features classified within the SESAME project have been

exchanged using two formats:

CODL - Component Description Language [SAL94]

TEBES - Technische Element Beschreibung Sprache [TOE94a]

CODL has its own syntax where as TEBES is constructed using the EXPRESS

language. The CODL language is specifically focused at process planning

applications. TEBES is a general method for defining form features. The template

definition method described in chapter 4 is based on MCL+ syntax.

For instance, in the system described in chapter 3, all functionality with respect to

defining the feature local coordinate space, how entities in that coordinate space are

manipulated, what geometry is made and put together is defined by the user in the

make, if created, and if set methods. These functions enable the user to control the

user interface by manipulating the access rights of parameters. Features may be

programmed to have completely different topologies in different modes, and the user

is able to define different representations for the features - volumetric, symbolic,

combined. Implicit in the methods is an ability to control the feature modeller and

system interface itself. Such wide ranging and specific functionality is unlikely to be

supported in a standard manner which suggests that the definitions of features must

be kept much simpler. However the ability to define different representations for the

feature and define how it interacts with the model is a complexity that should be

maintained. Purely declarative languages do not have any system or modeller control

functionality and the definition of the feature is completely separate from the

modelling system that uses it. At first this may appear attractive as an exchange

format but there are problems with how the constraints are defined and solved. One

need only take note of the differences between parametric and variational constraint

solvers. To date such languages have considered relatively simple shapes and it is

A.G.Pedley 	 Ph.D. Thesis 	 7-33

difficult to see know how successful they will be at representing much less

constrained shapes compared to the functionality described in chapter 4.

A further and important issue that has received no attention to date is the transfer of

models containing descriptions of dimension that represent the parameters or

constraints associated with feature parameters. To make the analogy with 2D, if a 2D

drawing is exchanged, one would expect the dimensions to appear in exactly the

same place on the exchanged drawing. Therefore in 3D, why should one expect any

less that the dimensions that control the model and with the use of technical views,

represent 2D dimensions, should appear any different between system

representations? This means that a method of associating the dimensions and

defining the start / end points of the dimension lines must also be exchanged. The

STEP model does not begin to address such issues.

To date the models exchanged in the CODL or TEBES format have used hard coded

make methods in the receiving applications. No attempt has been made to exchange

the graphical representation of the dimensions or tolerances.

An important factor in exchanging models is also being able to exchange object

identities such that faces, edges and vertices may be re-found on rebuilding of the

model. This is a different problem to persistent object identity that is internally

required on model evaluation. This is because the geometry does not change, only the

pointers must be reset. If it is assumed that the workpiece models are consistent (if

not manifold), as is the case with the models described in chapter 3, then in a single

body no two vertices will occur at the same point, no two edges, or faces will be

identical. Vertices may be re-found by searching for vertices in the correct body and

checking for equality of position, edges may be defined by the start, end and middle

points which may be similarly found. Faces can be defined by using a ray point and

ray vector. All solid modellers have the ability to return objects hit by the ray, careful

selection of the point will return the required entity. Accuracy features that point to

faces may then be related back to the generating features because the description of a

face includes the list of features. Merged faces are therefore not a problem.

A.G.Pedley 	 Ph.D. Thesis 	 7-34

EXPRESS is a data modelling language, MCL+ is a programming language.

EXPRESS is good at modelling information but not function. Hence, it is able to

easily (if verbosely) describe the feature in terms of its parameters and their ranges,

but not the detailed control functionality required by powerful feature modelling

systems. The ability of EXPRESS to describe validation conditions for parameters is

a standard method of supporting the template definition extension described in

chapter 4. This a positive aspect.

It is interesting to consider other possibilities for the exchange of feature models.

User Defined Features are the most needed element for process integration.

The look, feel and functionality of a system is what differentiates it from its

competitors. If this is transposed into the feature environment then it is the control

and user interface mechanisms that are proprietary to systems not the description of

the feature parameters, their validity, and the geometry of the features. If the control

and user interface functions are discarded then it should be possible to define, using

EXPRESS and the other parts of the STEP standards for the exchange of volume

models (Part 42), a suitable format.

The syntax of features is clearly described by EXPRESS. Object identity at time of

transfer is relatively easy using ray point and vector definitions. The volumetric

geometry representing the current instance of a feature may be described by the

standards [STEP42], its position and orientation in the world are known and can be

easily described. The semantics or meaning of the feature are partially described by

the naming conventions used and the types of parameters. However the functionality

of the feature is bound to the explicitly described control algorithms which are a

function of a particular system and its interpreted programming language. Such an

interpreted language that can make direct calls to all modellers is unlikely to be

developed. This treatment is similar to NC CL data which is mostly a one way

transfer of the tool paths which have to be post processed into a set of control codes.

The control codes may be locally changed but that change is not generally

propagated back to the original source, certainly not automatically. In fact sometimes

A.G.Pedley 	 Ph.D..Thesis 	 7-35

it is desirable not to change the source geometry but to provide such effects as

surface relief by changing the NC code generated. Feature models by defmition

should be able to be changed. Regulation of parameter values can be defined in

EXPRESS as described or simple procedures may be described and called via

attribute mechanisms. Feature ordering is very important for generation of the correct

resultant geometry and can be well defined in the order that the features are written.

What is not clear is how well interaction (editing) of the feature can take place in the

non-original system. Certainly exchange of user defined features and their geometry

should be possible which is much of what is demanded by CAPP and CAM systems.

7.7 	Feature Technology As A Process
Integrator

An advantage of the hybrid technique is that each form feature (except for local

operations) produces an individual volume which is combined with previous features

to create a model. If a volume can be broken down into smaller volumes that can be

assigned a sequence of manufacturing operations, the smaller volumes are said to be

manufacturing features. Mappings may be defined between design features and the

corresponding manufacturing features. Therefore a manufacturing view of the

component may be generated. The combination of the manufacturing view 'with the

design constraints explicitly stated in dimensions and tolerances enables more

sophisticated process planning tools to be implemented. However feature mapping

techniques do suffer a number of problems.

Direct feature mapping only works when features remove material. This can be

successfully applied to 2'/2D component models where the mapping is of a one to

many nature. Feature combinations such as those forming complex pockets cannot be

successfully planned using feature mapping alone. Local operations such as rounding

and chamfering may be mapped to removal processes whereas filleting indicates that

material must not be removed, effectively requiring changes to be made to the

feature(s) producing the edge that is filleted by the local operation. A locally swept

A.G.Pedley 	 Ph.D.Thesis 	 7-36

face into a model, whilst possibly producing a machinable region, does not posses

any higher level meaning helpful to a mapping process because the form produced is

completely dependent on the face contour that is swept, the sweep path and the form

of the face. Sweep operations in general cannot be mapped directly because they

typically produce 3D or free form geometry. Machining strategies for free form

geometry are different to 2'/2D approaches because the techniques used attempt to

machine the whole component as if it were a set of continuous tangentially connected

faces. The strategies are said to be surface oriented. It is a face based approach and

manufacturing features are better defined as area (rather than volume) and process

combinations. The generation of the manufacturing feature model is an iterative

process significantly dependent on tool availability and quality requirements.

Machined free form surfaces are always approximations because relatively small

radius tools are used to create relatively large radius (even flat) surfaces. The quality

requirements are defined by tolerances associated with the faces of the design model

which may be represented by the techniques developed in chapter 5. Therefore,

whether feature mapping strategies or surface based algorithms are used for 2Y2D or

3D components the inclusion of tolerance information associated at a face level is a

requirement for process integration which the developments of chapter 5 address.

Feature recognition techniques have been applied in a constrained fashion to re-map

positive features to new combinations of negative features but only so long as the

positive feature is contained within the body of the base feature. More general feature

recognition techniques can be helped by the generation of hints. Design by features

clearly can provide a relatively robust method of hint generation.

It has been stated that the ability for systems to model the interactions between

features will be a prerequisite for progress of integrated design and manufacturing

software tools [M1L93]. Interactions may be defined as explicit or implicit. Explicit

interactions are stated by the designer and added as information to the model.

Indicating which surfaces in a model form the aesthetic surfaces, dimensional and

geometric tolerances constraining an object. An implicit feature interaction is derived

from the model using geometric reasoning techniques, to identify proximity,

A.G.Pedley 	 Ph.D.. Thesis 	 7-37

obstruction, and how two or more objects interact. Explicit feature interactions are

supported by the dimension and tolerance representation. The integration of the

generating features as attributes of a face would enable rapid reasoning to generate

hints as to where interactions may occur. Supporting interactions between features in

this way aids the integration of CAD and CAM software tools.

Current interfaces to feature modellers tend to be too like interfaces to solid

modellers. Consequently usage is as a parametric solid modeller rather than enabling

the inherent semantic of the features to be used by advanced planning and NC

systems. The use of 3D feature modellers is not as intuitive to engineers used to 2D

draughting systems as might first be thought. It appears that the concept of drawing a

2D profile followed by sweeping is natural for 2D designers. Users of solid models

build models in the same way with features simply treating them as producing either

positive or negative volumetric shapes. These are perhaps two reasons for the success

of commercial parametric or variational BREP modellers, which also to date provide

better functionality for constructing a wider range of geometry. However, the

advances reported in chapters 4 and 5 of this thesis are aimed at addressing these

deficiencies. Furthermore, parametric and variational systems suffer commercially

from a lack of high level manufacturing interfaces, relying on feature recognition

strategies as exemplified by the PART system [ICEM].

To enhance concurrent engineering strategies it is desirable that the base geometry

represents the stock material, and the form features represent the machining volumes

subtracted from this to create the desired component. It must be stated that this is not

always an intuitive way to design, particularly when using swept free form type

geometry as discussed earlier in this section.

To assume that a solid model of the stock material exists and does not require

designing, whilst typical of many original equipment manufacturer - supplier

relationships, is not consistent with the complete life cycle model of a product

required by concurrent engineering strategies. This is because a casting requires

tooling to produce the mould which also must be modelled and produced. To date the

A.G.Pedley 	 Ph.D..Thesis 	 7-38

manufacture of castings receives relatively little direct CAD support primarily due to

the fact that the model required to generate the pattern is different from the model of

the component. Even high value precision castings produced by die casting

techniques which require accurately machined metal moulds will rarely be fully

filleted because of the significant time and cost penalties. Large castings used as the

starting point for machining to form a component are by nature inaccurate because of

the casting process, the number of castings is usually small, and therefore the patterns

are made by hand from wood or polystyrene by considering 2D drawings.

However, the architecture of the workpiece tree model does enable efficient

modification to offer advantages when life cycle modelling. In product development,

functional prototypes are frequently required for testing [CH193]. If the application

demands that a metal prototype is required this is typically machined from solid. As

development progresses, prototypes that are not only functionally representative, but

materially representative of production components may be needed for testing. These

would generally have to be made by a similar manufacturing process. For example, if

pressure die casting was the desired production process, a form of low pressure sand

casting would be used. This necessitates making a pattern for mould making. Three

approaches are typically used: hand fabrication, machining and rapid free form

fabrication techniques such as stereolithography. For rapid free form fabrication a

complete geometric description is essential and for machining it is desirable (it is not

always necessary to model all fillets because careful tool selection can create these as

a by product). A feature model of the raw casting can be created for this purpose, but

a different problem is posed for the finishing of the casting compared to machining

from solid; the base geometry is different, and fewer features will typically be

required because less surfaces need to be cut.

The architecture described in chapter 3 meets these needs by allowing

interchangeable base geometry. This is impossible to achieve in parametric systems

where the positioning of the features is dependent on the topological entities that

previously exist in the model. In this system the features remain in their same

positions and orientations relative to the workpiece. Those features that are not

A.G.Pedley 	 Ph.DThesis 	 7-39

needed may be suppressed (remain in the model data structure but are not used to

generate geometry), the remainder may be readily tuned, if at all necessary. This

removes the need to start the new design from the beginning, provides data

consistency, and shortens modelling time. Thus the methods developed in Chapter 4

to allow features to be assigned solid bodies as parameters is necessary. The base

geometry for one model may itself be a copy of the resultant geometry of another

feature model. The manipulation techniques that allow setting of the origin for a non-

parametric (extrinsic) feature are of significant importance. Feature locations are

referenced from the workpiece origin defined by the origin of the base feature. It

must be possible to position the new base geometry so that it is in the correct position

relative to the other features and its origin is in the same location (World

Coordinates) as the previous workpiece origin. The techniques described in chapter 4

to enable the selection of origins for features of extrinsically defined form make this

possible.

In keeping with the concurrent engineering concept, of designing both product and

process, one form feature has been introduced that captures the fact that a casting is

imprecise. The parallelepiped feature is used to indicate that flat surfaces on castings

require a machining process to create them. In SESAME machining could only take

place when negative features existed in the model (due to feature mapping). Despite

the fact that the designer's computer model showed a perfectly flat face, by creating

it with the parallelepiped, this indicated to the manufacturing engineer that it was not

known exactly where the surfaces of the casting would be and would definitely

require machining. Although implemented in the design system as a pocket which

has. sides because the system requires a valid body to be returned from the make

routine for combination (subtraction) from the model, the manufacturing meaning

does not restrict tool access from the sides as is the case with a true pocket.

It is important to consider if Feature Based Design and Manufacturing Systems help

to produce better products. At the component level such systems are focused on

details and production possibilities. They are necessarily constrained but easily adapt

to development cycles and are therefore useful for the, manufacturing oriented

A.G.Pedley 	 Ph.D.Thesis 	 7-40

engineer. Unconstrained aesthetic design is less well supported by feature based

techniques as is the problem of design automation. Current feature based design

systems are limited when used to support complex tasks such as designing a car, but

are highly applicable when detailing an individual component ready for manufacture.

There is clearly need for further investigation of the combination of large complex

design automation systems with functional manufacturing oriented feature based

systems.

A constant criticism of feature based design has been the constraints that are placed

on the designer. However, one need only look to two recent examples (Lotus Elise,

Porsche Boxter) from the motor industry of design concepts presented at shows being

considerably altered for production. Issues such as safety, cost, quality and

manufacturability influencing the design modifications. Feature based design aims

to produce manufacturable designs of high quality and of reasonable cost. Therefore

it can be concluded that feature based techniques do aid the production of better

products, if not, the most purely aesthetic design.

7.8 	Applicability To Other Feature
Modelling Systems

The architectural design is applicable to development in other hybrid feature

modellers. The techniques are not applicable to parametric or variational BREP

modellers. Two significant aspects of the functionality that must be supported in any

system attempting to apply the reported techniques is the ability to provide persistent

object identity during the process of model evaluation and the flexibility to create

multiple workpiece models and control the order of evaluation of them. The

techniques developed for defining user defined features are suitable for procedural

not declarative systems.

A.G.Pedley 	 Ph.D. Thesis 	 7-41

7.9 	Chapter Summary

In this chapter the contribution made by the work reported in this thesis to the

advancement of feature modelling technology has been stated. The Feature Based

Design System presented in chapter 3, the techniques developed in chapter 4 to

support extrinsically defined form, and the methods implemented in chapter 5 to

represent dimensions and tolerances have been discussed with respect to

classification, modelling architecture, and representation. Investigation of the

possibility to develop general exchange techniques for user defined features has been

shown to be limited. Feature technology, however, is undoubtedly an aid to design

and can contribute substantially to process integration.

In the next and final chapter (chapter 8) the conclusions of this thesis will be

presented and recommendations for further work will be summarised.

A.G.Pedley 	 Ph.D. Thesis 	 7-42

Chapter 8

Conclusions

8.1 	Introduction

Chapters 1 and 2 of this thesis have presented feature modelling technology,

associated problems and the need for further development. Chapter 3 presented the

system used as the baseline for the developments reported in chapters 4 and 5. These

developments allow complex geometry to be integrated in the feature model, and

enable models to be dimensioned and toleranced. Chapter 6 presented the original

concepts investigated, decribed the techniques used to acquire and analyse

information, detailed industrial collaboration and stated the results and feedback from

software testing. The techniques presented in chapters 3, 4, 5 and 6 were discussed in

chapter 7 from the perspectives of classification, architecture, representation, model

exchange and process integration.

In this chapter (chapter 8) the conclusions of the work will be stated in section 8.1. In

section 8.2 the scope for future work will be presented.

A.G. Pedley 	 Ph.D. Thesis 	 8-1

8.2 	Conclusions

The fundamental concept investigated in this thesis has been to integrate in a

single computer software representation the information required by designers to

define a component for analysis and manufacturing, thus enabling software

based simultaneous engineering strategies to be implemented.

One of the recent and significant trends in manufacture is to link automation

with flexibility in order to meet market needs, management of new technology,

and criteria for financial investment. Integration and automation of design,

process planning and part programming functions has long been recognised as a

means of improving competitiveness. Feature modelling technology is believed

to offer the possibility to meet the demands for flexibility which address the life

cycles of the products. The aim of the investigations into feature modelling

technology described in this thesis has been to provide better computer aided

support for design and manufacturing.

A number of deficiencies in feature modelling techniques have been identified

which have resulted in a lack of success in achieving the aims described in 1:

• There is a considerable legacy of purely volume based models.

• Libraries of predefined features are too restrictive.

• User defined feature functionality, particularly definition, has been neglected.

• Features are assumed to have implicitly defined topology and 2'/2D geometry,

little support being given to features of complex extrinsically defined form.

• Only nominal, or perfect size geometry is supported.

• Dimensions and tolerances are detailed in engineering drawings which are 2D

representations separate from the feature model.

• Tolerances and dimensions that are not homogeneous with the shape model

preclude the development of variational models and enhanced design and

manufacturing analysis.

• There are no standards for the exchange of user defined feature models.

A.G. Pedley 	 Ph.D. Thesis 	 8-2

. The effectiveness of advanced computer aided process planning, computer

aided quality and part programming systems based on feature models derived

from a separate design system is reduced because only nominal shape data is

supported; other information necessary being input after interpretation of 2D

engineering drawings.

The following objectives were defined to address the deficiencies detailed in 3:

• Development of methods and techniques to model features of extrinsically

defined form, typically swept geometry and non-parametric solid models.

• Implementation of a 3D dimension and tolerance modelling module related to

both the feature and solid models.

• Establishment of techniques to control a feature model through the use of 3D

dimensions.

• Investigation of structures for the exchange of user defined feature models.

The classification of form features has been extended to include extrinsically

defined features. Extrinsic features do not have a complete description of the

topology and geometry described in the definition of the feature. They allow the

description of more complex geometry than is typical of 2'/2D features.

Techniques have been developed to allow ACIS solid bodies to be integrated

with the feature modeller. Such features are said to be non-parametric because

the size and form of the feature cannot be changed. However the location and

orientation of the feature within the feature model may be controlled through the

feature model structure. Such features allow re-use of legacy data and form the

only standard method of feature model exchange.

The concept of feature origins has been implemented in order to provide a more

natural method for the user to locate features in the model. For implicitly defined

features the method of describing the feature template has been extended. The

enhancements enable valid values and I or ranges of values to be defined. For

any user defined feature, parameter validation may be performed and advanced

GUI support may be provided for highlighting and picking of origins.

A.G. Pedley 	 Ph.D. Thesis 	 8-3

Extrinsic features formed by sweeping operations have been implemented. These

features enable geometry created in a number of complementary systems to be

used within the feature modeller to generate more complex geometry than 2Y2D.

Sculptured surfaces imported from a free form surface modeller, contours

developed in a sketcher, or imported from a 2D drawing, may be used with

extrinsic features. Careful maintenance of coordinate systems is required to

maintain the shape of the feature generated on movement of the feature within

the model. Further manipulation and maintenance of the coordinate systems

enables advanced GUI support to provide the same functionality as the definition

of origins for implicit features.

A multiple workpiece structure has been developed which supports not only

form models but the dimensions, tolerances and construction geometry

associated with a form model.

Classification of dimensions and tolerances requires that the level of

	

associativity with the model and the function that the dimensions and tolerances 	-

convey, must be considered before the kind of dimension.

Non-associative, and uni-associative linear, angular, diameter and radius

dimensions and dimensional tolerances have been implemented that may be

applied to solid and feature models. They are applied to the 3D models and are

visualised in 3D. Dimensions imported from 2D systems attached to contours are

represented as uni-associative dimensions.

Linear and radius dimensions have been implemented that represent the distance

and radius constraints controlling a 2D sketcher. The dimensions not only

represent the geometry but may be used to change it.

The template description method for user defined features has been further

extended to enable the definition of dimensions and tolerances that represent the

size parameters of features. This includes the logical and graphical definition.

The location of features may be defined through the size parameters of the

A.G. Pedley 	 Ph.D. Thesis 	 8-4

positioning feature. These dimensions are fully associative with the feature

model and may be used to control it. They do not necessarily represent the

resultant geometry.

A uni-associative parallel geometric tolerance has been implemented. It has been

shown to behave as a 3D geometric constraint.

The use of a window layout consisting of technical views enables the 3D model

to be viewed as though it were a 2D engineering drawing. The dimension and

tolerance descriptions use the technical views to speed construction. Edit

functions have been provided that enable the dimensions and tolerances to be

laid out as though they were in 2D. This removes the need for the use of a

separate 2D draughting system.

Feature models containing both form and accuracy features have been output in

neutral formats (CODL, TEBES) that can be read by two different process

planning systems. The description can be said to be a partial product model. Any

associative dimensions and tolerances applied to geometric entities in the feature

model may be related to the features that generated them. This is important for

feature based process planners. The method used relied on hard coded

procedures to define the volumetric body of the features in the process planning

systems. Thus the method was only applicable to pre-defined feature sets.

A method for the exchange of user defined feature models has been proposed. It

is necessary to transmit both the implicit definition of the feature and the explicit

definition of the feature that makes up the model. By defining the current state of

the feature in the model as a volumetric body in the implicit definition the form

of the model should be able to be built up correctly. The feature attributes

(names and parameters) may be conveyed by existing EXPRESS based methods.

The only limitation is that the form and shape of the individual features in the

receiving model may not be changed. However, the individual features, their

parameters, and their form are conveyed, which is what is required by

downstream applications.

A.G. Pedley 	 Ph.D. Thesis 	 8-5

The methods reported in this thesis contribute to the extension of feature

modelling technology in the following areas:

• Extending procedural methods for user defined form feature definition.

• Considering the needs of user interaction and GUI support in user defined

feature definition.

• Applying a feature modelling system architecture to the representation of

dimensions and tolerances.

• Proposal of a method for the exchange of feature models containing user

defined features.

The following original contributions to the knowledge and understanding of

feature modelling technology have been made:

The original concept that certain features cannot be completely described

by their make methods has led to the collective grouping of these features

and definition of an important new class of features called extrinsic form

features.

The new concept of multi-dimensional or hyper feature models has been

investigated in order to increase the scope and architectural complexity of

feature model data structures enabling a wider group of feature classes to

be represented including form, dimension, and tolerance features.

The original concept that feature parameters, like features themselves, have

characteristics that allow them to be grouped together in classes has

enabled a novel combination of procedural and declarative approaches to

be applied to user defined feature definition languages, which allows more

intelligent mechanisms to be built as a part of the feature modeller kernel

and graphical user interface.

A.G. Pedley 	 Ph.D. Thesis 	 8-6

The new concept that combines the ideas presented in concepts II and III

into a new, more sophisticated feature definition language, which describes

both the dimensions and tolerances of a feature in a 3D manner in the

template definition.

The original concept that provides "handle" like functionality which is

applicable to all extrinsically defined features and utilises the body

coordinate system of the objects that form the unknown aspects of the

features.

The new concept for the exchange of feature models that increases the

information content that can be transferred by reducing the flexibility of

systems to subsequently change a non-native feature model.

The techniques developed are applicable to all procedural feature based design

systems capable of supporting persistent object identity and multiple workpiece

models.

The work has clearly demonstrated the feasibility of providing homogeneous

form feature, dimension and tolerance models. Feature modelling techniques

have been shown to produce better designs because of their support for

simultaneous engineering strategies and consideration for the life-cycle of

product development.

A.G. Pedley 	 Ph.D. Thesis 	 8-7

8.3 	Future Work

Feature technology is a broad subject that in application is very environment specific.

The scope for future work is also large. There are a number of areas that have been

identified in the course of the work reported in this thesis which would benefit from

further investigation:

Persistent object identity is fundamental to the functioning of the feature

modeller and dimension and tolerance model described. Current performance is

reasonable but could be improved. However it is not currently possible to

maintain object identity for separate but associated bodies such as those forming

cross-section or detail views.

General refinements to the dimension and tolerance module to enable:

• Decoding of more entity types. For example the application of diameter

dimensions to cylindrical faces.

• More general definition of angles with respect to fixed directions rather than

between two entities.

• Better conformation of the graphical representation to the standards

expected for 2D engineering drawings.

Improvement in the representation of parameter dimensions representing local

operations. For example, the update of the dimension description to the actual

geometry after the formation of a fillet.

Extension of the parameter dimension to workpiece level to control shape

aspects in the model not directly defined by feature parameters.

To extend the parameter dimension to control the relative positioning of

workpieces in a model forming an assembly.

Application of the architecture developed for the dimension and tolerance model

to all geometric tolerances. Investigation of the constraint based nature of inter-

feature geometric tolerances.

A.G. Pedley 	 Ph.D. Thesis 	 8-8

Further development of the feature parameter validation method to enable

extrinsic constraints to be defined for a feature.

Development of techniques to define the semantic meaning of the feature that

may be exchanged and understood by other feature modelling systems.

Development and testing of the method proposed to allow the exchange of

feature models consisting only of user defined features

Assessment of the role of feature based design systems in context with large,

typically knowledge based, design automation systems.

A.G. Pedley 	 Ph.D. Thesis 	 8-9

Chapter 9

References

[ALT96] Altermat U., "Echo.txt", Straessle Informationssysteme AG,
Kanalstrasse 33, 8152 Glattbrugg, Switzerland

[ANSI] ANSI Y14.5M-1982 Dimensioning and Tolerancing, The American
Society of Mechanical Engineers, New York, USA.

[ARC84] Archer L.B., "Systematic Method for Designers", in Cross N.,
"Developments in Design Methodology", Wiley, 1984.

[AUR95] Aurich J. PhD Thesis, Hannover University, 1995.

[BED91] Bedworth D.D., Henderson M.R., Wolfe P.M., "Computer-Integrated
Design and Manufacturing", McGraw-Hill, 1991.

[BER91] Berlage T., "OSF / Motif Concepts and Programming", Addison-
Wesley, 1991.

[BRA73] Braid I.C.,"Designing with Volumes", CAD Group, Cambridge
University, Cambridge, UK, 1973.

[BRU96] Brubetti G., Ovtcharova J., Vieira A., "A proposal for a feature
description language", Proc. ISATA 29, Mechatronics, Florence, Italy,
1996, pp1 17-124.

[BSI] BS 308: Part 1, 2 and 3, British Standards Institution.

[BUT86] Butterfield W.R., Green M.K., Scott D.C. Stoker W.J., "Part Features
for Process Planning", CAM-1 Report C-85-PPP-03, Arlington, Texas,
USA, 1986.

[CAD] Cadam Model Srl, 71 Strada Giaveno, 10040 Rivalta, Italy.

[CAM81] N.N., "Glossary of Form Features", CAM-I, R-80-PPP-02.1, 1981.

[CAM90] N.N., CAM-I, P-90-PM-02,1990.

[CHA90] Chang, T.C., "Expert Process Planning For Manufacturing", Addison
Wesley, 1990.

A.G. Pedley 	 Ph.D. Thesis 	 9-1

[CHI93] 	Childs T.C.C., de Pennington A,. Pedley A.G., Smith A., "Computer
Aided Rapid Prototyping - Market Survey", Dept. of Mechanical
Engineering, University of Leeds, June 1993.

[CHU88] 	Chung J.C.H., Cook R.L., Patel D., Simmons M.K., "Feature based
geometry construction for geometric reasoning", ASME Computers in
Engineering, San Fransisco, 1988.

[CR089] 	Cross N., "Engineering Design Methods", Wiley, 1989.

[CUN88] 	Cunningham J., Dixon J.C., "Designing With Features: The Origin Of
Features", Proc. ASME Computers in Engineering Conf., San
Fransisco, 1988, pp 237-243 .

[CUT88] 	Cutcosky M.R., Tenenbaum J.M., Muller D., "Features in Process
Based Design", Proc. ASME Computers in Engineering Conf, San
Francisco, 1988, pp 557-562 .

[CUT91] 	Cutcosky M.R., Tenenbaum. J.M., Brown D.R., "Working with
Multiple Representations in a Concurrent Design System", ASME J. of
Mechanical Design, Feb. 1991.

[DCU] 	"The Dimensional Constraint Manager", D-Cubed Ltd, Cambridge,
UK.

[DEN93] 	Denzel H., Vosniakos G., "A feature based design system and its
potential to unify CAD and CAM", Proc. IFIP, Darmstadt, 1993.

[DFL92] 	"Design Feature List", Brite/Euram Project 4539: SESAME,
Commission of the European Communities, Brussels. 1992.

[D1N87] 	Ding Q., Davies B.J., "Surface Engineering Geometry for Computer
Aided Design and Manufacture", Ellis Horwood, 1987.

[DSF95] 	"Users Requirement Document for Design Surface Feature Library",
Brite/Euram Project 7049: IMPRESS, Commission of the European
Communities, Brussels. 1995.

[EGG95] 	Egger B., "Anwenderdokumentation: Straessle Graphical User
Interface V2. 1.1", Straessle Informationssysteme AG, Kanaistrasse 33,
8152 Glattbrugg, Switzerland, Juni 1995.

[EHR93] 	Ehrmann M., "Supplement of the CODL Format for an Extended
Description of the Design Features", Brite/Euram Project 4539:
SESAME, Commission of the European Communities, Brussels. 1993.

"European Space Agency Software Engineering Standards", PSS-05-0,
{ESA87] 	Issue 1, 1987.

[ETH] 	Dr. J. Taiber, Eidgenossischen Technischen Hochschule, Zurich

[FAU87] 	Faux I.D., "The geometry of curves" and "The geometry of surfaces",
in Rooney J., Steadman P., Computer-Aided Design, Pitman, 1987.

A.G. Pedley 	 Ph.D. Thesis 	 9-2

[FBDS93] "Feature Based Design System - User Requirements Document",
Brite/Euram Project 4539: SESAME, Commission of the European
Communities, Brussels. 1993.

[FEN] 	Feng S.C., Yang Y., "A Dimension and Tolerance Data Model for
Concurrent Design and System Integration", National Institute of
Standards and Technology, Gaithersburg, MD, USA.

[F0L84] 	Foley J.D., Van Dam A., "Fundamentals of Interactive Computer
Graphics", Addison-Wesley, 1984.

[FRE85] 	French M.J., "Conceptual Design for Engineers", Design Council,
London, 1985.

[FTR95] 	"Final Technical Report", Brite/Euram Project 4539: SESAME,
Commission of the European Communities, Brussels. 1995.

[FUR95] 	Furpi F., Mazzocchi G., "SESAME System Evaluation Report",
Brite/Euram Project 4539: SESAME, Commission of the European
Communities, Brussels. 1995.

[GEC] 	GEC Marconi, Donibristle, Fife, Scotland.

[GIA90] 	Giacometti F., Chang T.-C., "A model for parts, assemblies and
tolerance", Proc. IFIP, Enschede, 1990.

[GR084] 	Groover M.P., Zimmers E.W., "CAD/CAM: Computer Aided Design
and Manufacturing", Prentice-Hall, 1984.

[HAN96] 	Han J.-H., Requicha A.A.G., "Hint Generation And Completion For
Feature Recognition", Proc. 29th mt. Symp. on Automotive
Technology and Automation, Florence, 1996, pp 89-96 .

[HAR92] 	Hartley J.R., "Concurrent Engineering, shortening lead times, raising
quality and lowering costs", Productivity Press, Cambridge, Mass.,
USA, 1992. p20 .

[HEN84] 	Henderson M.R., Anderson D.C., Computer Recognition And
Extraction Of Form Features: A CAD/CAM Link", Computers in
Industry, Vol.5, 1984, pp329-339.

[HEN91] 	Henderson M.R, in "Bedworth D.D., Henderson M.R., Wolfe P.M.,
"Computer Integrated Design and Manufacturing", McGraw-Hill,
1991.

[HEN95] 	Henzold, G., "Handbook of Geometrical Tolerancing", Wiley, 1995.

[H1L78] 	Hillyard R.C., Braid I.C., "Analysis of dimensions and tolerances in
Computer Aided Design", Computer Aided Design, Vol. 10, No. 3,
1978, pp 161-166.

[HOU9 1] 	Houten F.J.A.M. van, "PART: A Computer Aided Process Planning
System", Ph.D. Thesis, Unversity of Twente, Enschede, 1991.

A.G. Pedley 	 Ph.D. Thesis 	 9-3

[HUS90] 	Husbands P., Mill F.G., Pedley A.G., "HAPPI", 6" International
Conference on Computer Aided Production Engineering, London,
November 1990, pp 1-6 .

[HUS91] 	Husbands P., Mill F., Pedley A.G., Warrington S., "The Edinburgh
Composite Component", Proc. 5th mt. Conf. On Manufacturing
Science and Technology of the Future, Enschede, 1991.

[HUS91b] 	Husbands P., Pedley A.G., Salmon J.C., "Report on Research Visit to
USA", Dept. of Mechanical Engineering, The Unversity of Edinburgh,
1991.

[1DA88] 	Report R-338, Institute for Defense Analysis, USA, 1988.

[IFW] 	Dr. J. Aurich, Insitut fir Fertigungstechnik und Spanende
Werkzeugmaschinen, Universitat Hannover, Germany.

[IGD] 	Dr. J. Ovtcharova, Fraunhofer Institut für Graphische
Datenverarbeitung, Darmstadt, Germany.

[IGES] 	The Initial Graphics Exchange Specification, Version 5. 1, National
Computer Graphics Association, 1991.

[IMP] 	IMPPACT, ESPRIT Project 2165, Commision of the European
Communities.

[IPK] 	Prof. F.L. Krause, Fraunhofer Institut für Produktionsanlagen und
Konstruktionstecknik (IPK), Berlin, Germany.

[ISO] 	International Organisation for Standardization, Geneva, Switzerland.

[1S01101] ISO 1101:1983 Technical Drawings - Geometric tolerancing -
Tolerancing of form, orientation, location and run-out - Generalities,
definitions, sysmbols, indications on drawings. International
Organisation for Standardization.

[ISO 129] 	ISO 129:1985 Technical Drawings - Dimensioning - General
principles, definitions, methods of execution and special indications.
International Organisation for Standardization.

[1S02692] ISO 2692:1988 Technical Drawings - Geometrical Tolerancing -
Maximum material principle. International Organisation for
Standardization.

[1S0286] 	ISO 286-1 1988 ISO system of limits and fits. International
Organisation for Standardization.

[1S0406] 	ISO 406:1987 Technical Drawings - Tolerancing of linear and angular
dimensions. International Organisation for Standardization.

[1S05459] ISO 5459:1981 Technical Drawings - Geometric Tolerancing -
Datums and datum-systems for geometrical tolerances. International
Organisation for Standardization.

A.G. Pedley 	 Ph.D. Thesis 	 9-4

[1S08015] 	ISO 8015:1985 Technical Drawings - Fundamental Tolerancing
Priciple. International Organisation for Standardization.

	

[ITH] 	Ithaca Software, 1301 Marina Village Parkway, Alameda, CA 94501, USA.

	

[JAR89] 	Jared G., "The Feature Recognition Battle - Latest From The Front",
New Tools For Shape Modelling, The British Computer Society, 1989.

	

[J0S87] 	Joshi S., Chang T.C., "Graph-based Heuristics For Recognition Of
Machinied Features From A 3D Solid Model", CAD, March, 1987.

	

[KRA90] 	Krause F.-L., Ulbrich A., Vosgerau F.H., "Feature Based Approach
For The Integration Of Design And Process Planning Systems", Proc.
23rd Int. Symp. on Automotive Technology and Automation, 1990.

[KRA91] Krause F.L., Kramer S., Rieger E., "PDGL: A Language for Efficient
Feature-Based Product Gestaltung", CJRP Annals, 1991, Vol 40 No 1.
pp 135-138

	

[LKC] 	
Prof. W. Weber, Lehrstuhl fUr KonstruktionsteclmilcjCAD, Universität
des Saarlandes, Germany.

	

[LUB86] 	Luby S.C., Dixon J.R., Simmons M.K., "Designing with Features:
Creating and Using a Features Data Base for Evaluation of
Manufacturability", Proceedings, International Computers in
Engineering Conference, ASME, Vol. 1, 1986, pp285-292.

	

[MAN] 	Mandelli SpA, 35 Via Caorsana, 29100 Piacenza, Italy.

	

[MAR84] 	March L.J., "The Logic of Design", in Cross N., "Developments in
Design Methodology", Wiley, 1984.

	

[MAR93] 	Martinsen K., "Vectorial tolerancing for all types of surface", Proc.
15th ASME Design Automation Conf., Vol 2, Albuquerque, USA.

	

[MIL91J 	Mill F., Naish J., Pedley A.G., Salmon J., "Feature Oriented Design:
Review Report No. 2", Dept. of Mechanical Engineering, University
of Edinburgh, 1991.

	

[M1L93] 	Mill F.G., Pedley A.G., Salmon J.C., "Representation Problems in
Feature Based Design and Process Planning", mt. J. Computer
Integrated Manufacturing, 1993, Vol. 6, Nos. 1 & 2. pp27-33

[M1L94] Mill F.G., Naish J.C., Salmon IC., "Design for machining with a
simultaneous-engineering workstation", Computer Aided Design,
Vol.26, No.7, July 1994.

	

[MM193] 	"Man Machine Interface - User Requirements Document",
Brite/Euram Project 4539: SESAME, Commission of the European
Communities, Brussels. 1993.

[MPG] 	Mr. F. Mill, Manufacturing Planning Group, University of Edinburgh,
Scotland.

	

A.G. Pedley 	 Ph.D. Thesis 9-5

[0GR96] 	O'Grady P., "Concurrent Engineering Systems", Keynote paper, 12th
Int. Conf. on Computer Aided Production Engineering, Cookville, TN,
USA, 1996.

[PAH84] 	Pahl G., Beitz W., "Engineering Design", Design Council, London,
1984.

[PARAM] Parametric Technology Corporation, 128 Technology Drive, Waltham,
MA 02154, USA.

[PDES] 	Kelly J.C., "The Product Data Exchange Standard (PDES)", Federal
Computer Conf., USA, 1985.

[PED89] 	Pedley A.G., "Feature Oriented Design - the Missing Link", 5th mt.
Conf on Computer Aided Production Engineering, Edinburgh, 1989.

[PED93a] 	Pedley A.G., "Man Machine Interface Software Requirements
Document", Brite/Euram Project 4539: SESAME, Commission of the
European Communities, Brussels. 1993.

[PED93b] 	Pedley A.G., "Feature Based Design System Software Requirements
Document", Brite/Euram Project 4539: SESAME, Commission of the
European Communities, Brussels. 1993.

[PED94] 	Pedley A.G., "SESAME Design Feature Classification and
Implementation", Technical Report, Brite/Euram Project 4539,
SESAME.

{PED94b} 	Pedley A.G., "Describing Face, Edge And Point Related Data Within
CODL", Brite/Euram Project 4539: SESAME, Commission of the
European Communities, Brussels. 1994.

[PED94b] 	Pedley A.G., "Features And Their Face Numbers", Brite/Euram
Project 4539: SESAME, Commission of the European Communities,
Brussels. 1994.

[PED94b] 	Pedley A.G., "Minutes Of Technical Meeting To Discuss Describing
Face, Edge And Point Related Data Within CODL", Brite/Euram
Project 4539: SESAME, Commission of the European Communities,
Brussels. 1994.

[PED95] 	Pedley A.G., Ehrmann M., "Explicit Feature Interaction Modelling in
CAD and CAM Systems", 11th mt. Conf. Computer-Aided Production
Engineering, IMECHE, London, 1995, pp269-275

[PED96a] 	Pedley A.G., Buchwald, Denzel H., "User Defined Features: A Means
to Advanced Process Integration", Proc. of 29th International
Symposium on Automotive Technology and Automation" Florence,
Italy, 3-6 June 1996, pp 125-133 .

[PED96b] 	Pedley A.G., "The Potential to Exchange Feature Models With User
Defined Feature Libraries", J. of Materials Processing Technology,
Vol. 61, Nos. 1-2, August 1996, pp78-84.

A.G. Pedley 	 Ph.D. Thesis 	 9-6

[P1E96] 	Pierce S., Rosen D., "Free-Form Surface Modelling as a Tool for the
Analysis and Selection of Assembly Tolerances", Proc. 29th mt.
Symp. on Automotive Technology and Automation", Florence, 1996,
pp 35-42.

[PRA85] 	Pratt M.J., Wilson P., "Requirements for Support of Form Features in
a Solid Modelling System", CAM-1 Report R-85-ASPP-0 1, Arlington
Texas, USA, 1985.

[PRA88] 	Pratt M.J., "Synthesis of an Optimal Approach to Form Feature
Modelling", Proc. Computers in Engineering Conf., 1988, pp 263-274,
ASME.

[PRO] 	Probst T., "Entwichlerhandbuch NLS", V1.0, Straessle
Informationssysteme AG, Kanaistrasse 33, 8152 Glattbrugg,
Switzerland.

[PTC] 	Parametric Technology Corporation, 128 Technology Drive, Waltham
MA 02154, USA.

[RAN88] 	Ranyak P.S., Fridshal R., "Features for Tolerancing a Solid Model",
ASME Computers in Engineering San Francisco, 1988. pp 275-280

[REQ83] 	Requicha A.A.G., "Representation of Tolerances in Solid Modelling:
Issues and Alternative Approaches", Proc. Solid Modelling by
Computers, Michigan, 1983. pp3-22

[REQ86] 	Requicha A.A.G., Chan S.C., "Representation of geometric featutes,
tolerances and attributes in solid modellers based on constructive
solids geometry", IEEE J. Robot. & Automat. Vol. RA-2 No. 3, 1986.
ppl56-l65

[REQ89] 	Requicha A.A.G., Vandenbrande J.H., "Form Features for Mechanical
Design and Manufacturing" ASME Computers in Engineering, 1989.

[ROV] 	Rover Group Ltd, Gaydon Test Centre, Warwick, England.

[R0Y88] 	Roy U., Liu C.R., "Feature based representational scheme of a solid
modeler for providing dimensioning and tolerancing information",
Robot. & Comput. Integr. Manuf, Vol. 4 Nos. 3/4,1988. pp 335-345

[RUD92] 	Rudolf F.N., "Konfigurierbare Technische Elemente Für Konstruktion
Und Arbeitsplannung", PhD Thesis, Hanover University, 1992.

[SAB87] 	Sabin M.A., "A research programme in CAE", Computer Aided
Engineering Journal, 1987, Vol 4 No 2, pp79-82

[SAL93] 	Salomands O.W., Houten F.J., Kals H.J.J., "Review of Research in
Feature Based Design", Jounal of Manufacturing Systems, Vol. 12,
No.2, 1993, pp 113-132.

A.G. Pedley 	 Ph.D. Thesis 	 9-7

[SAL94] 	Salmon J.C., Rieken H.R., "Component Description Language
(CODL) Implementation", Internal Report 18, Manufacturing Planning
Group, Department of Mechanical Engineering, The University of
Edinburgh, July, 1994.

[SAL95] 	Salomons 0., "Constraint Specification and Satisfaction in Feature
Based Design for Manufacturing", PhD Thesis, University of Twente,
Holland.

[SDRC] 	Structural Dynamics Research Association, USA.

[SHA88a] 	Shah J.J., Rodgers M.T., "Feature Based Modelling Shell: Design and
Implementation", Computers in Manufacturing, San Francisco, 1988.

[SHA88b] 	Shah J.J., Rodgers M.T., "Functional requirements and conceptual
design of the feature based modelling system", ASME Computers in
Engineering, San Francisco, 1988.

[SHA88c] 	Shah J.J., Rodgers M.T., "Expert form feture modeling shell",
Computer Aided Design, 1998, Vol. 20 No. 9, pp 515-524

[SHA88d] 	Shah, J.J., Bhatnagar A., Hsiao D., "Feature Mapping and Application
Shell", Computers in Engineering, ASME, 1988.

[SHA90] 	Shah, J.J., "An assessment of features technology", CAM-I, P-90-PM-
02, 1990.

[SHA93] 	Sha J.J., Hsiao D., Leonard J., "A Systematic Approach For Design
Manufacturing Feature Mapping", in Wilson P.R., Pratt M.J., Wozny
M.J., "Geometric Modelling For Product Realization", Elsevier, 1993.

[SHA95] 	Shah J.J., Mantyla M., "Parametric and Feature Based CAD / CAM",
Wiley, 1995.

[SHP94] 	Shpitalni M., Fischer A., "Separation Of Disconnected Machining
Regions On The Basis Of A CSG Model", CAD, Vol.26, No. 1, Jan
1994, pp46-58 .

[S1M95] 	Simons B., "Manufacturing and Tolerance Features Development",
ACIS Open Meeting, 1995, Chicago, USA.

[S1096] 	Siow S.C., "Feature Oriented CAD/CAM", Dept. of Mechnical
Engineering, The University of Edinburgh, 1996.

[SIS] 	Straessle Informationssysteme AG, Kanaistrasse 33, 8152 Glattbrugg,
Switzerland.

[SIS95a] 	Straessle Informationssysteme AG, "MCL+ V5.2 Benutzerhandbuch",
Kanalstrasse 33, 8152 Glattbrugg, Switzerland, 1995.

[SIS95b] 	Straessle Informationssysteme AG, "FeatureM V5.2 User's Manual,
Kanalstrasse 33, 8152 Glattbrugg, Switzerland, 1995.

[SOL92] 	Sohienius G. "Concurrent Engineering", Annals of the CIRP, Vol 41
nr 2, 1992. pp 645-655

A.G. Pedley 	 Ph.D. Thesis 	 9-8

	

[S0L93] 	Solomons O.W., van Houten F.J.A.M., Kals H.J.J., "Review of
Research in Feature-Based Design", J. of Manufacturing Systems, Vol.
12 No. 2, 1993, pp 1 13-132.

	

[SRE91] 	Sreevalsan P.C., Shah J.J., "Unification of Form Feature Methods",
IFIP Workshop on Intelligent CAD, Columbus, Ohio, 1991.

[STEP] 	ISO 10303 Industrial Automation Systems - Product Data
Representation And Exchange. International Organisation for
Standardization.

	

[STEP 1 1] 	ISO 103 03-1 1 Industrial Automation Systems -Product Data
Representation And Exchange - Part 11: Description Methods: The.
EXPRESS Language Reference Manual. International Organisation for
Standardization.

	

[STEP21] 	ISO 10303-21 Industrial Automation Systems - Product Data
Representaticn And Exchange - Part 21: Clear Text Encoding of the
Exchange Structure. International Organisation for Standardization.

[STEP224] ISO 10303-224 Industrial Automation Systems - Product Data
Representation And Exchange - Part 224: Application Protocols:
Mechanical Product Definition For Process Planning Using Form
Features. International Organisation for Standardization.

	

[STEP41] 	ISO 10303-41 Industrial Automation Systems - Product Data
Representation And Exchange - Part 41: Integrated Generic Resources:
Fundamentals of Product Description and Support. International
Organisation for Standardization.

	

[STEP42] 	ISO 10303-42 Industrial Automation Systems - Product Data
Representation And Exchange - Part 42: Integrated Generic Resources:
Geometric and Topological Representation. International Organisation
for Standardization.

	

[STEP47] 	ISO 10303-47 Industrial Automation Systems - Product Data
Representation And Exchange - Part 47: Integrated Generic Resources:
Shape Variational Tolerances. International Organisation for
Standardization.

[STEP48]. ISO 10303-48 Industrial Automation Systems - Product Data
Representation And Exchange - Part 48: Integrated Generic Resources:
Form Features. International Organisation for Standardization.

[5Th] 	Spatial Technology Inc., 2425 55th Street, Building A, Boulder,
Colorado, USA.

[SUT63] 	Sutherland I.E., "Sketchpad: A Man-Machine Graphical
Communication System", Spring Joint Computer Conf., Spartan,
Baltimore, USA, 1963.

A.G. Pedley 	 Ph.D. Thesis 	 9-9

[TA193] 	Taiber, J.G., "Computer-Aided Rule-based Dimensioning and
Tolerancing in 3D-Modelling", Institute of Machine Tools and
Manufacturing, Swiss Federal Institute of Technology, ETH Zurich,
Switzerland.

[TA196] 	Taiber, J.G., "Entwurfeines feature- und constraint-basierten
CAD/CAM-Systems zur fertigungstechnischen Optimierung", PhD
Thesis, Institute of Machine Tools and Manufacturing, Swiss Federal
Institute of Technology, ETH Zurich, Switzerland, 1996.

[TAN95] 	Tani P.-L., "Wunschen Für Komplexierte Geometrie Erzeugung In
FeatureM", Strässle Informationssysteme AG, Zurich, Switzerland,
1995.

[TOE94a] ToenshoffH.K., Baum T., Ehrmann M., "SESAME - A System for
Simultaneous Engineering", Proc 4th mt. FAIM Conference on
Flexible Automation and Integrated Manufacturing, Blacksburg,
Virginia, 1994, pp380-389

[TOE94b] 	Toenshoff H.K., Aurich J., Baum T. "Configurable Feature-Based
CAD/CAPP System", Proc. IFIP Int. Conf. on Feature Modelling and
Recognition in Advanced CAD/CAM Systems, Valenciennes, France,
1994, pp757-769

[TOE94c] 	Toenshoff H.K., Aurich J., Hamelmann S., "Formale
Elementbeschreibung fuer Konstruction and Arbeitsplanung", VDI-Z,
Bd. 135,Nr. 11/12, l99zl, pp. ll3ll6

[T0E96] 	ToenshoffH.K., Baum T., Ehrmann M., "SESAME: Simultaneous
Engineering System for Applications in Mechanical Engineering", in
Life Cycle Modelling for Innovative Products and Processes, Krause
F.-L., Jansen H., Chapman Hall, 1996, ISBN 0 412 75590 4, pp515-
526

[USC] 	Prof. A.G. Requicha, Computer Science and Engineering, University
of Southern California, Los Angeles, USA

[VDA] 	VDAFS: "VDA Surface Data Interface", Verband der
Automobilindustrie e.V. (VDA), Frankfurt am Main, Germany,
Version 2, 1987.

[VDI222 1] VDI 2221: "Systematic Approach to the Design of Technical Systems
and Products", Verein Deutscher Tngenieure, Germany.

[V0E77] 	Voelcker H.B., Requicha A.A.G., "Geometric Modelling of
Mechanical Parts and Processes", Computer, Vol. 10, No.48, 1977.

[VSM9 1] 	"Normen Anzug Für Technische Schulen", Vereins Schweizerischer
Maschinen-Industrieller, Normenbüro, Zurich, Switzerland, 1991.

[WEI88] 	Weill R., "Integrating dimensioning and tolerancing in Computer
Aided Process Planning", Robotics & Computer Integrated
Manufacturing, Vol. 4, Nos. 1/2, 1988, pp 4148.

A.G. Pedley 	 Ph.D. Thesis 	 9-10

[WIIN9 1] 	Wingard L., "Introducing form features in product models, a step
towards cadcam with engineering terminology", Thesis, Royal
Institute of Technology, Stockholm, Sweden.

[WMG] 	Mr. R. Bobrowski, Warwick Manufacturing Group, University of
Warwick, England.

[W0082] 	Woo T.C., "Feature Extraction By Volume Decomposition", Conf. on
CAD/CAM Technology in Mechanical Engineering, MIT., 1982.

[XWI] 	"The X Window System Series - Vols. 0, 1, 2, 3, 4, 5", O'Reilly &
Associates, Inc., Sebastopol, CA, USA.

[ZEI91] 	Zeid I., "CAD/CAM Theory and Practice", McGraw-Hill, 1991.

A.G. Pedley 	 Ph.D. Thesis 	 9-11

Appendix A

Published Papers

The author has published seven papers related to the investigations reported in the

thesis. The papers may be found from the following references:

Pedley A.G., "Feature Oriented Design - the Missing Link", 5th mt. Conf. on
Computer Aided Production Engineering, Edinburgh, 1989. Addendum.

Husbands P., Mill F.G., Pedley A.G., "HAPPI", 6th International Conference on
Computer Aided Production Engineering, London, November 1990, pp 1-6.

Husbands P., Mill F., Pedley A.G., Warrington S., "The Edinburgh Composite
Component", Proc. 5th mt. Conf. on Manufacturing Science and Technology of
the Future, Enschede, 1991.

Mill F.G., Pedley A.G., Salmon J.C., "Representation Problems in Feature
Based Design and Process Planning", mt. J. Computer Integrated
Manufacturing, 1993, Vol. 6, Nos. 1 & 2. pp27-33

Pedley A.G., Ehrmann M., "Explicit Feature Interaction Modelling in CAD and
CAM Systems", 11th mt. Conf. Computer-Aided Production Engineering,
IMECHE, London, 1995, pp269-275

Pedley A.G., Buchwald, Denzel H., "User Defined Features: A Means to
Advanced Process Integration", Proc. of 29th International Symposium on
Automotive Technology and Automation" Florence, Italy, 3-6 June 1996,
pp 1 25-133.

Pedley A.G., "The Potential to Exchange Feature Models With User Defined
Feature Libraries", J. of Materials Processing Technology, Vol. 61, Nos. 1-2,
August 1996, pp78-84.

A.G. Pedley 	 Ph.D. Thesis A-I

