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Abstract 

Nanofiltration (NF) membranes have been applied successfully for the removal of 

inorganic and organic pollutants, including micropollutants, from drinking water for 

the past two decades. However, a complete and quantitative understanding of NF 

removal mechanisms has yet to be achieved. Quantifying the factors governing 

solute transport and retention by NF is necessary in order to achieve higher treatment 

efficiency at a lower cost.   

 

The aim of this research was to contribute to the current state of the knowledge of the 

mechanisms of solute retention and transport by NF membranes. The focus was on 

evaluating the contribution of solute-solute interactions and solute-membrane 

interactions on solute removal and transport mechanisms. To the knowledge of the 

author, at the start of this research there was a lack of understanding of the 

simultaneous impacts of both interactions on the performance of NF membranes, 

which renders this research novel. 

 

To highlight challenges faced by modern membrane plants and identify inorganic 

and organic pollutants of interest, a study of water quality in Scotland was carried 

out. Experiments were performed in dead-end stirred cells using two commercial NF 

membranes, TFC-SR2 and TFC-SR3 provided by Koch, which were extensively 

characterized. Radiolabeled Endosulfan (ES, 10 µg/L), manganese (5-1,500 mg/L) 

and Humic Acids (HA, 5-250 mgC/L) were spiked in synthetic water with 

background electrolyte (1 mM NaHCO3 and 20 mM NaCl). Calcium (Ca, 2.5 mM) 

was employed in fouling experiments.  

 

The influence of the complexation of solutes with HA on solute retention by NF was 

for the first time quantified for the solute concentrations employed in this study. It 

was found that manganese retention was influenced by membrane pore size and 

charge (solute-membrane interactions) and solute speciation (solute-solute 

interactions). Complexation of manganese and HA (solute-solute interactions) 

occurred at alkaline conditions but did not enhance manganese retention. At high pH 
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manganese precipitated as solid MnCO3 and these precipitates achieved high 

retention (99%), even without the presence of HA.  

 

ES retention by NF membrane was controlled by size exclusion (solute-membrane 

interactions). For the tighter TFC-SR3, whose pore size are smaller than the size of 

ES, ES retention increased in the presence of HA, while for the looser TFC-SR2, 

whose pores are bigger than ES diameter, ES retention decreased in the presence of 

HA. For TFC-SR3 increase of ES retention in the presence of HA was due to size 

exclusion (solute-membrane interactions) and formation of ES-HA complexes 

(solute-solute interactions). For TFC-SR2 HA-membrane interactions were dominant 

with respect to solute-solute interactions, increasing membrane molecular weight 

cut-off (MWCO) and in turn passage of ES. 

 

The influence of pressure (5-15 bar) on ES retention in the presence of HA was 

systematically investigated. Results showed that ES transport through TFC-SR2 and 

TFC-SR3 was dominated by convection. For the tighter TFC-SR3 lower permeate 

flux was responsible for the increase of retention with pressure, while for the looser 

TFC-SR2 higher permeate flux increased concentration polarisation, decreasing 

retention with pressure. The presence of HA lowered the permeate flux, resulting in a 

less pronounced variation of retention with pressure for TFC-SR2 and in constant 

retention for TFC-SR3.  

 

The impact of manganese scaling on the performance of NF membranes was 

investigated at neutral pH. The effects of inorganic precipitates on flux and solute 

retention by NF have been so far scarcely studied and the impact of inorganic scaling 

on micropollutant retention by NF is unknown. Findings from this research indicated 

that manganese deposits did not foul the membranes but on the contrary enhanced 

their flux and prevented fouling by HA and Ca. The retention of ES, manganese and 

HA by membranes through which manganese was previously filtered was found to 

decrease with respect to solute retention by virgin membranes.  Manganese filtration 

was shown to increase membrane MWCO and hydrophilicity. It was proposed that 

manganese-membrane interactions caused swelling of the membrane active layer by 
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increasing the membrane free volume. The findings of this research indicated the 

importance of investigating simultaneously the impacts of solute-solute interactions 

and solute-membrane interactions to understand and explain transport and removal 

mechanisms of organic and inorganic contaminants by NF.  
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1. Introduction  

Lack of access to clean, fresh water is one if the major challenges the humanity is 

facing worldwide and over 780 million people lack access to improved sources of 

drinking water [1]. About 1.2 million people live in water-stressed areas and about 

1.5 million people live in developing countries where water scarcity is caused by 

lack of infrastructures to extract, deliver and treat water [2]. Population growth, 

climate change, industrialization and contamination of freshwater resources 

contribute to exacerbate the problem [3].  

 

Groundwater and surface water are increasingly more contaminated with synthetic 

and geogenic pollutants: from traditional compounds such as metals and nutrients to 

“emerging contaminants”, that is organic micropollutants such as pesticides, 

pharmaceuticals and personal care products. Health and environmental concerns are 

driving the removal of these contaminants from drinking water [4-6].  

 

Membrane processes have been employed successfully in the past two decades for 

the removal of inorganic and organic pollutants from drinking water [4, 7, 8]. 

Membrane plants are particularly suitable for small and remote communities, where 

the construction of traditional water treatment plants is not viable for technical and 

economical reasons [9]. Traditional treatments like coagulation, flocculation and 

sedimentation require large land areas, heavy civil works and high operation and 

maintenance resources, which make them convenient for serving towns and cities 

only. On the contrary, membrane plants are compact, modular, easily adapted to the 

scale of the process and can be partially automated. For these reasons, decentralised 

membrane plants have been considered as an alternative solution also in developing 

countries [10, 11]. 

 

Among the existing membrane processes, nanofiltration (NF) constitutes the 

preferred choice for the removal of inorganic and organic pollutants from surface 

water and groundwater [12]. Microfiltration (MF) and ultrafiltration (UF) have 

bigger pore size than NF, can remove viruses and bacteria but cannot remove many 
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solutes of interest, such as organic micropollutants, arsenic and fluoride, without 

dedicated pre- or post- treatments [13-16]. Reverse osmosis (RO) can successfully 

desalinate seawater and brackish water but it is not usually selected for the treatment 

of low salinity water. RO can remove the majority of the ions and post-

mineralization is required to produce drinking water, since water lacking minerals 

such as magnesium and calcium can have adverse health effects [17]. Moreover, 

energy consumption for RO is higher than for NF due to the higher pressure required 

to produce water [3, 18]. Due to these advantages with respect to MF, UF and RO, 

NF is increasingly adopted worldwide for drinking water production [12] and for 

these reasons it was selected for this thesis.  

1.1 Mechanisms of solute retention in nanofiltration  

Given the huge potential for NF processes to tackle drinking water challenges, 

extensive research has been carried out to explain NF removal mechanisms [7, 19-

21]. Understanding the factors governing solute retention by NF is necessary in order 

to achieve higher treatment efficiency, lower energy consumption and lower 

economic costs. Nevertheless, a complete and quantitative understanding of NF 

removal mechanisms has yet to be achieved [22, 23].  

 

There is a lack of understanding of the simultaneous impact of all solute-membrane 

interactions and solute-solute interactions on solute retention and transport by NF in 

aqueous solutions. The consideration of all interactions is fundamental for 

elucidating retention and transport mechanisms of solutes through NF. Many solute-

membrane interactions, such as size exclusion and electrostatic repulsion have been 

thoroughly studied [23-25]. Other solute-membrane interactions, such as 

hydrophobic-hydrophobic interactions between solutes and membranes, are not yet 

completely understood [26, 27]. Fouling, i.e. flux decline due to particle adsorption 

or deposition, is one of the main drawbacks in membrane applications [12, 21]. 

Studies on the interactions of specific foulants, especially inorganic scalants, with NF 

membranes (solute-membrane interactions) and their impact on membrane 

performance have been limited to a small number of solutes [28, 29]. Likewise, the 

impact of solute-solute interactions on solute retention by NF, in particular the 
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impact of the interactions between natural organic matter (NOM) and organic and 

inorganic solutes have not yet been entirely elucidated [23, 30, 31].   

1.2 Aim and objectives of the thesis 

The general aim of this study is to contribute to the knowledge and understanding of 

the mechanisms of solute retention and transport by NF membranes. The focus is on 

evaluating the contribution of solute-solute interactions and solute-membrane 

interactions on solute removal and transport mechanisms.  

 
The objectives of the thesis are to: 

• Elucidate the role of solute-NOM interactions in solute retention by NF. The 

contribution of solute-NOM complexation on solute removal by NF has never 

been quantified before. Studies on the impact of inorganic-NOM interactions 

on solute retention by NF are limited, while studies on the impact of 

micropollutant-NOM interactions on micropollutant removal show 

conflicting results [23, 30, 31], indicating the need for further investigations.  

• Evaluate the role of solute-solute interactions and solute-membrane 

interactions in the influence of pressure on solute removal. The impact of 

pressure on micropollutant retention by NF is not well understood [7, 13] and 

it warrants a throughout  analysis. 

• Examine the effects of manganese precipitate on the performance of NF 

membranes (solute-membrane interactions) and the effects of scaling on 

micropollutant retention (solute-solute interactions). Studies investigating the 

influence of inorganic fouling on solute removal are limited and there are few 

investigations on the impact of scaling on micropollutant removal [32, 33]. 

1.3 Structure of the thesis 

This thesis is organised in ten chapters. A comprehensive literature review presenting 

the main concepts in membrane technology and highlighting the gaps in knowledge 

at the time this work started is undertaken in Chapters 2. In order to achieve the 

thesis objectives within this research, the investigation was limited to specific solutes 

chosen as model contaminants: humic acids (HA), which constitute the largest 
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portion of NOM in upland source waters, manganese, selected as model inorganic 

solute and pesticide Endosulfan (ES), chosen as model micropollutant. The reasons 

for the choice of these contaminants are explained in Chapter 3, together with a 

description of their physicochemical characteristics and a review of their removal by 

traditional treatments and membrane processes. A detailed description of 

experimental methods, equipment and the two membranes selected in this work is 

presented in Chapter 4. Chapter 5 describes the theory behind the transport models 

employed in Chapter 8.  

 

Chapter 6 investigates the impact of solute-solute interactions and solute-membrane 

interactions on the removal of manganese and HA. The impact of solute-solute 

interactions and solute-membrane interactions on transport and removal mechanisms 

of HA and ES are determined in Chapters 7 and 8. Chapter 7 investigates the impact 

of ES-HA interactions and HA-membrane interactions on ES removal by quantifying 

the contribution of complex formation on ES retention. Chapter 8 evaluates the 

influence of pressure on ES retention and elucidates the transport mechanisms of the 

solutes through NF membranes in the presence of HA. Finally, the effects of 

manganese-membrane interactions on membrane fouling and on the removal of ES 

are investigated in Chapter 9. In Chapter 10 the conclusions of the thesis are drawn 

and suggestions for future work are presented.  

 

In Appendix 1, a study of the performance of two Scottish membrane plants is 

carried out to highlight challenges faced by the plants in terms of operational 

parameters, water quality, energy consumption and costs. Scotland was selected 

because of the high number of small membrane plants located in remote areas 

(Sections 3.2 and 3.3). Appendix 2 and 3 present the characterization of the 

membrane used in this work and of the fouled membranes used in Chapter 9, 

respectively. Appendix 4 describes the experiments carried out with a small battery-

less membrane system powered by renewable energy in order to evaluate the impact 

of fluctuating energy on the system performance and on solute removal.  
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2. Literature Review 

2.1 Introduction  

Inorganic and organic solutes are present in groundwater and surface water both 

naturally and as a result of human activity. The main drivers behind the use of NF 

membranes for removing these solutes from drinking water are: (i) the development 

of highly sophisticated analytical instruments that has allowed for the detection of 

more compounds present in water at lower concentration levels than in the past; (ii) 

new awareness of the potential hazards to human health caused by exposure to 

chemical substances in drinking water [5, 34-38]; (iii) increasingly stringent 

guidelines that have been established to indicate the maximum allowable 

concentration of compounds in drinking water and ensure the provision of safe water 

supply [17, 39].   

 

The effects of the above listed drivers on the choice of NF membranes as option for 

water treatment are exemplified in the removal of emerging micropollutants, such as 

pesticides, pharmaceuticals and personal care products, from drinking water. Organic 

micropollutants are increasingly detected around the world in groundwater and 

surface water [6, 40-42] and concerns is growing about their adverse effects on 

human health [5, 43-45]. NF membranes have been shown to provide effective 

micropollutant removal, resulting in increasing installation of NF plants worldwide 

[12, 13, 23, 46, 47]. Despite the widespread use of NF membranes, mechanisms of 

removal and transport are not completely understood and drawbacks to their 

operation, such as high energy consumption and fouling, have still to be resolved.  

 

This chapter will describe NF principles and mechanisms, highlighting the 

importance of fouling, scaling and operational conditions (flux, pressure and 

recovery) on membrane performance. The role of solute-solute interactions and 

solute-membrane interactions on solute retention and transport will be elucidated.  
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2.2 Removal and transport of solutes by nanofiltration   

2.2.1 Nanofiltration principles 

NF is generally defined as “a process between UF and RO” with lower retention of 

monovalent salts with respect to RO and higher retention of divalent salts with 

respect to UF (Figure 2-1) [12, 19].   

 

Figure 2-1 Application range of membrane processes compared with size of 

common contaminants and the contaminants used in this thesis (adapted from [19]) 

 

The above definition usually implies that the pore size of NF membranes is smaller 

than the pore size of UF membranes and bigger than the pore size of RO membranes. 

As a consequence, solute transport through NF is characterized by both solution 

diffusion, as for RO, and convection, as for UF (Section 2.2.3).  

 

NF membranes are believed to be characterised by a pore size distribution [48] and 

the average pore size rp can be used as membrane characteristic [49]. The existence 

of pores in NF membranes is a controversial topic. Some authors [50-53] discard the 

notion of pores and refer to “free volume” within the membrane layers. Free volume 

is defined as the volume in the membrane polymer not occupied by the polymer 

molecules, through which solutes can permeate. Free volume does not indicate any 

fixed pore and its size and location fluctuate with time [50]. The free volume theory 
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therefore allows for a less static representation of the voids within the membrane. In 

order to find an agreement between these views, the average pore radius rp can be 

interpreted as the average pore radius of a “hypothetical” membrane whose 

hindrance to solute passage is equivalent to the hindrance experienced by the solute 

through the actual membrane [27, 54]. However, in contrast with the concept of 

membrane pores, the average pore radius rp of the “hypothetical” membrane is not 

static but might change in time depending on solute-membrane interactions (i.e. the 

presence of charged solutes, variation in solution pH and conductivity) and on 

operations conditions (i.e. pressure).   

 

Molecular weight cut-off (MWCO), which is the molecular weight (MW) of the 

compound that has 90% retention by the membrane, is also adopted as a measure of 

the pore size [25]. Pore size and MWCO are not the only parameters employed to 

characterize NF membranes, as membranes with similar pore size and MWCO can 

differ by type of material, thickness, porosity, charge, hydrophilicity and roughness.  

 

Asymmetric thin film composite (TFC) NF membranes consist of a thin selective top 

layer, called the active layer, supported by a porous non-selective layer and a woven 

or non-woven fabric layer. The thickness of TFC NF membranes usually varies 

between 150 and 500 µm, with the active ultra-thin layer being at maximum a few 

µm thick. The most common materials for the support layer are polysulfone (PS) or 

polyethersulfone (PES) while the active layer can be made of polyamide (PA), 

cellulose acetate (CA) or piperazineamide [55]. The chemical composition of the 

active layer is related to other membrane characteristics [56]. Proprietary and 

unknown additives are usually added during manufacturing, altering membrane 

characteristics.  

 

Membrane porosity ε is expressed as pore density or effective number of pores and it 

is defined as the percentage of membrane area occupied by voids 

m

v

A

A
=ε                                                                                                                                            (2.1) 

with Av the area of voids and Am the membrane area.  
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Membranes acquire charge in contact with aqueous solution due to the dissociation 

of functional groups and the adsorption of ions or charged molecules. As a 

consequence, solution conditions influence membrane charge (Section 2.3.1). 

Solution pH induces the protonation/deprotonation of polymeric functional groups 

and PA membranes have been shown to acquire positive charge at low pH and 

negative charge at high pH [57]. The presence of divalent cations, such as calcium 

and magnesium (also responsible for hardness) has been shown to increase 

membrane positive charge, while membranes became more negative when NaCl was 

present in solution [57-59]. Furthermore, membrane charge has been shown to 

become less negative with increasing temperature of the solution [60].  

 

Membrane charge is linked to the zeta potential of its surface and its pores. 

According to the electrical double layer theory [61, 62], a surface in contact with a 

liquid acquires two layers of charge, a layer of fixed charge (Stern layer), due to ions 

specifically adsorbed to the surface, and a diffusive layer (Gouy–Chapman layer), 

characterised by ions attracted by Coulomb interactions. The thickness of the two 

layers is denominated Debye length. The plane of shear defines the region at which 

the fluid becomes mobile and it is just beyond the Stern layer. The potential at the 

boundary between the Stern and diffusive layers is called Stern potential, while the 

potential at plane of shear is called zeta potential. According to the Gouy–Chapman 

equation, the electric charge in the diffusive layer is proportional to the Stern 

potential. Since the Stern potential can not be measured directly, while the zeta 

potential can be measured with several techniques (Section 4.3.7), the zeta potential 

is commonly employed as an indication of membrane charge [58].  

 

Hydrophilicity is the characteristic of NF membranes to interact with water 

molecules allowing water to penetrate into the molecular structure of the polymer. 

Hydrophilicity can be estimated by measuring the contact angle (i.e. the wettability) 

of the membrane surface; the smaller the angle the higher the ability of the surface to 

interact with water and the higher the hydrophilicity [63-65].  
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The above described membrane characteristics have been shown to affect the 

performance of NF membranes and their determination is fundamental to the 

understanding of removal and transport mechanisms.  

 

Membrane performance or efficiency is determined by two parameters: flux and 

retention [19]. Permeate flux Jv is defined by: 

dt

dV

AA

Q
J

p

mm

p

v

1
==                                        (2.2) 

where Qp is the permeate flow, i.e. the volume Vp of permeate produced in a 

determined time t and Am is the membrane area. 

Solute retention is expressed as  

f

p

o
c

c
R −= 1                                     (2.3) 

where cp is the solute concentration in the permeate, cf is the solute concentration in 

the bulk feed and Ro represents the (observed) retention.  

 

In order to increase the understanding and prediction of membrane selectivity and 

flux, mechanisms of solute retention and transport through NF membranes have been 

thoroughly investigated. The following sections will present an overview of these 

mechanisms.    

2.2.2 Retention mechanisms  

Solutes are retained by NF membranes via the combined influence of (i) size 

exclusion, (ii) charge repulsion and (iii) adsorption/precipitation (Figure 2-2). Size 

exclusion depends on the ratio λ between the size of the solute and the membrane 

pores. If size exclusion is the only retention mechanism involved, the smaller the 

pores the higher the solute retention [46].  
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Figure 2-2 Schematic of main factors affecting retention and transport mechanisms  

 

As the size of membrane pores is expressed by rp and MWCO, the size of the solute 

can be expressed using the Stokes-Einstein radius rs and the solute MW. In the case 

of  ions, the hydrated radius has been shown to predict retention better than the 

Stokes-Einstein radius [66-69]. The hydrated radius depends on the ion charge and 

on the ion crystal radius: ions with smaller crystal radius have higher charge density 

and exhibit higher hydrated radius [70] so they are expected to be retained more. The 

strength of hydration energy has also been correlated with ion retention. Some ions 

have weak hydration energy and they are able to detach from their hydration layers 

and pass more easily through membrane pores. In particular, anions are believed to 

hold their hydration shells more strongly than cations [69] and as a consequence 

should be retained more by NF. 

 

For organic compounds, in addition to the Stokes-Einstein radius the molecular 

width and the mean molecular size have also been employed as measures of 

molecular size [23, 71]. Some studies have suggested that the hydrated radius should 

be considered also for organics [22, 72, 73]. Since hydrophilic organic compounds 

are more solvated in water than hydrophobic ones, their retention might be higher 

even if their Stokes-Einstein radius is similar.  
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Solute retention by electrostatic repulsion depends on the charge of (i) the solute, (ii) 

the membrane surface and (iii) the membrane pores. In the case of salt retention, the 

Donnan charge exclusion mechanism applies. Charged membranes retain ions of the 

same charge (co-ions) and for electroneutrality their counter-ions are also retained. 

Retention is affected by ion charge density, ion concentration and by membrane 

shielding by ions in solution. Salts with higher valence co-ions and lower valence 

counter-ions will be better repelled, since in the first case charge density is higher 

while in the second case charge shielding is weaker. As a consequence, divalent co-

ions are better retained than monovalent co-ions [25, 66, 67, 74].  

 

Electrostatic repulsion is important for solutes that dissociate. Both organic and 

inorganic molecules can acquire charge at pH above their dissociation constants pKa, 

if acid functional groups are present, and below their pKa for basic groups; higher 

retention occurs for charged dissociated solutes [75-80]. The mechanism of charge 

repulsion applies also to neutral molecules that are highly polar. If the dipole 

moment of the solute is high, one side of the dipole will be attracted to the charged 

membrane while the other side will be repelled. The solute will assume an 

orientation perpendicular to the pores and its passage will be facilitated [76].  

 

Precipitation and adsorption of solutes is the third mechanism influencing solute 

retention. Although precipitation and adsorption are based on very different chemical 

and physical phenomena they are determined with the same mass balance: 

md = Vfcf - ΣVpcp- Vccc                                                     (2.4) 

where md is the mass of solute deposited or adsorbed, Vf, Vp, and Vc are the volume 

of feed, permeate, and concentrate, respectively, and cc is the solute concentration of 

the concentrate.  

 

In the case of inorganic compounds, precipitation of solid species can occur on the 

membrane surface impacting solute retention [29, 74, 81]. Hybrid coagulation-NF 

processes exploit the precipitation of coagulants to remove solutes that adsorb onto 

them [82, 83].  However, the effects of inorganic precipitates on solute retention and 

permeate flux are, to date, scarcely studied [28, 29, 84, 85].  
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Adsorption of inorganic and organic solutes on the membranes also affects retention 

[26, 64, 73, 86-90]. In particular, hydrophobic organic micropollutants, whose 

octanol-water partition coefficient logKow > 2, have been shown to adsorb to 

hydrophobic membranes and have an initial high retention which decreases with time 

until membrane saturation is reached [22, 91-93]. It has been shown that 

hydrophobic interactions between micropollutants and membranes become more 

important for solutes whose MW is lower than the membrane MWCO, while their 

role in retention decreases for bigger solutes [73]. Nevertheless, mechanisms of 

adsorptive interactions between solutes and membranes, such as hydrophobic-

hydrophobic interactions, are to date not completely understood [23, 94]. 

 

The influence of solute precipitation and adsorption on retention is complicated by 

the occurrence of concentration polarisation, fouling and scaling. These phenomena 

will be discussed in detail in Sections 2.2.3 and 2.2.4.  

 

In summary, retention mechanisms are influenced by the physical and chemical 

characteristics of membranes and solutes. Membrane characteristics (material, pore 

size, thickness, porosity, charge, hydrophilicity and roughness) and solute 

characteristics (size, shape, charge, polarity, and hydrophilicity) impact size 

exclusion, electrostatic interactions and solute precipitation/adsorption to the 

membrane. Solution characteristics, such as pH, temperature and conductivity and 

solution composition, such as the presence of multiple contaminants, also affect 

membrane and solute characteristics, influencing in turn retention (Figure 2-2). The 

impact of the feed composition on solute retention will be discussed in Section 2.3.2. 

 

Operating conditions, such as pressure, flux, crossflow velocity and recovery are 

important parameters for retention and will be described in Section 2.2.5. Finally, the 

occurrence of fouling/scaling is another important factor impacting solute retention, 

as schematically represented in Figure 2-2, and will be examined in Section 2.2.4. 

 

Retention mechanisms occur simultaneously during solute filtration, although some 

mechanisms can be stronger than others depending on the type of solute and 
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membrane, operating (hydrodynamic) conditions and solution characteristics. 

Retention mechanisms are well understood but it is important to evaluate their 

relative roles in solute retention by NF.  

 

Numerous studies [7, 12, 23, 53, 66, 76, 92, 95-99] have elucidated the role of each 

mechanism in affecting retention of organic and inorganic solutes and have also 

related solute retention to the physicochemical properties of solutes and membranes 

and to the operating conditions. A through comprehension of retention mechanisms 

increases membrane efficiency by enabling the choice of optimum operating 

conditions for the removal of specific compounds [100].  

2.2.3 Transport mechanisms 

The study of transport mechanisms is fundamental in order to understand solute 

retention and evaluate membrane efficiency. Transport models include both models 

describing solute transport to the membrane surface and models describing the 

transport across the membrane [101]. 

 

Transport to the membrane surface is described by the film theory [19]: during solute 

filtration the solute can accumulate at the membrane surface and the concentration in 

the boundary layer becomes higher than the solute concentration in the bulk feed cf. 

The accumulation of solute at the membrane surface is defined as concentration 

polarisation. As a result of concentration polarisation the real retention Rr is lower 

than the observed retention Ro. The film theory and the equations that describe the 

concentration polarisation phenomenon are presented in Section 5.1.  

 

Transport of solutes across membranes has been described by several models [23, 

102-105] that take into consideration the main mechanisms of solute transport, 

namely convection, diffusion and electromigration (Figure 2-2).  

 

The solution diffusion model [102] predicts that solute separation by the membrane 

is achieved by dissolution of solute in the membrane and consequently diffusion to 

the permeate side. This model has been applied successfully to the transport of 
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inorganics and organic micropollutants through RO and NF membranes [106, 107], 

but it usually gives poor predictions for NF membranes, since solute transport by 

convection cannot be neglected [7, 23].  

 

The thermodynamic model [104] and the hydrodynamic model [103] take both 

diffusion and convection into account and their application to the description of 

solute transport through NF is widespread [27, 67, 97, 101, 108-114]. Both models 

result in the same equation for solute retention when diffusion cannot be considered 

negligible [115].  

 

In this work the hydrodynamic model was chosen because it describes the transport 

of solutes though membranes using variables with a well-defined physical meaning, 

while the thermodynamic model treats the membrane as a black box. Unknown 

parameters can be estimated from experimental data to gain information about the 

physical mechanisms behind the transport of solutes. The model has been used in 

previous studies in a non-predictive fashion to explain solute transport mechanisms 

[101, 111, 113]. The equations describing the hydrodynamic model are presented in 

Section 5.2.  

 

The transport of charged solutes through NF membranes is described by the extended 

Nernst-Planck equation in which a transport term due to the electric field gradient is 

added to the equation of the hydrodynamic model [54, 105, 114].  

 

According to the hydrodynamic model, solute transport through NF membranes is 

affected by solute and solution characteristics, membrane characteristics and 

operating conditions, as depicted in Figure 2-2.  The investigation of transport 

mechanisms is fundamental for improving the efficiency of NF. Evaluating the role 

of the different mechanisms for specific solutes is crucial for optimising their 

removal  [100, 110, 113, 116, 117].  
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2.2.4 Fouling and scaling  

Fouling has been described as a loss of membrane performance due to solute 

adsorption or deposition on the membrane surface or within its pores resulting in 

irreversible flux decline [12]. Concentration polarisation, as described in Section 

2.2.3, is not considered fouling since its effects are reversible, but it can contribute to 

worsen fouling.  

 

Fouling remains one of the unresolved problems of NF [118, 119]. Numerous studies 

[29, 118, 120-129] have investigated fouling mechanisms, mainly focusing on the 

impact of fouling on solute retention and on the formation and characterisation of the 

fouling layer.  

 

The main NF membrane foulants are considered to be organic molecules (especially 

NOM), colloids, biological solids and inorganics. Several studies obtained minimal 

flux decline when NOM alone were filtered and fouling was caused when divalent 

ions, such as calcium and magnesium, were present [125, 126, 129-131]. However, 

these results can not be generalised since NOM characteristics vary largely 

depending on the source (Section 3.4), so the type of NOM and its molecular weight 

distribution might play an important role.  

 

Fouling caused by the precipitation of inorganics is referred to as scaling. While 

fouling mechanisms of NOM, colloids and proteins on NF and RO membranes have 

been thoroughly investigated in several studies [15, 112, 125-127, 129, 131-134], 

research on scaling caused by non-colloidal inorganics have been limited to a small 

number of solutes, such as iron hydroxide and calcium sulphate [28, 29, 84, 85, 119, 

135]. There is a lack of investigation into the effect of non-colloidal inorganic 

scalants on the performance of NF and RO membranes.  

 

The observed flux decline during membrane fouling is explained with the resistance 

in series model and with the cake-enhanced concentration polarisation model. 

According to the resistance in series model, the permeate flux is inversely 

proportional to the membrane resistance. Membrane resistance increases with the 
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presence of the fouling layer, therefore flux declines [19, 125]. According to the 

cake-enhanced concentration polarisation model, the fouling layer hinders the back 

diffusion of solutes during filtration, increasing concentration polarisation and the 

osmotic pressure near the membrane, resulting in turn in severe flux decline [128]. 

The first model has been shown to be valid for fouling caused by organics, while the 

second model has described satisfactorily fouling caused by colloids [128, 129, 132].  

 

Membrane fouling not only causes flux decline but also impacts solute retention.  It 

has been proposed that when fouling causes an increase of the membrane resistance 

(as in the case of organics) solute retention increases since the fouling layer behaves 

as a further barrier (an “active” membrane) to solute transport [129]. Conversely, 

when cake-enhanced concentration polarisation occurs (as for colloidal fouling), 

solute retention decreases since the solute concentration at the membrane increases 

and the diffusive transport of the solute to the permeate side increases too [128].  

 

However, experimental results show that fouling mechanisms cannot be easily 

described with simple rules. Fouling caused by NOM and calcium, which according 

to the resistance in series model should increase solute retention, was shown to 

increase sodium and calcium retention but decrease NOM retention [135, 136].  

Colloidal fouling, expected to decrease solute retention by cake-enhanced 

concentration polarisation, was shown to decrease retention of small MW inert 

organic solutes and hormones, but it did not affect retention of large MW inert 

organic solutes [129, 132].   

 

Scaling was shown to reduce salt retention [29, 135] but studies investigating the 

influence of inorganic fouling on solute retention are limited. In particular, there are 

few investigations into the impact of scaling on micropollutant removal [32, 33].    

 

The impact of fouling on retention is complicated by the simultaneous role played by 

the retention mechanisms (Figure 2-2). In the case of micropollutant retention by 

membranes fouled with NOM and calcium, it was inferred that the predominance of 

the resistance in series model and the cake-enhanced concentration polarisation 
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model might depend on the membrane pore size. Pore blocking, which improved 

retention by increasing membrane resistance, was predominant for loose membranes, 

while cake-enhanced concentration polarisation occurred for tighter membranes 

[134, 137].  

 

The retention of pharmaceutically active compounds by membranes fouled by 

surface water was inferred to decrease due to cake-enhanced concentration 

polarisation and increase due to charge repulsion, as foulants increased the 

membrane negative charge [112].  

 

In summary, fouling and scaling affect retention and transport mechanisms, as shown 

in Figure 2-2 and vice versa retention and transport mechanisms affect fouling, since 

solutes that are retained by the membrane accumulate on the boundary layer or 

adsorb to the membrane where they can contribute to flux decline.  Finally, fouling 

and scaling can affect membrane characteristics (Figure 2-2), as discussed in more 

detail in Section 2.3.   

 

Due to the complicated inter-relationships among all the parameters affecting and 

affected by fouling, the impact of fouling on membrane performance is a complex 

topic which still remains unclear [13]. 

2.2.5 Influence of operating conditions 

Operating conditions, such as pressure, crossflow velocity and recovery, directly 

affect solute retention and transport by NF.  

 

As described by the hydrodynamic model, crossflow velocity affects concentration 

polarisation and in turn solute retention (see equations 5.3, 5.5, 5.6 in Chapter 5). 

Pressure affects the permeate flux Jv and consequently solute flux Js and solute 

retention (see equations 5.7, 5.12 and 5.13 in Chapter 5). The influence of pressure 

on retention of metals, ions and inorganic solutes has been thoroughly elucidated [54, 

66, 138]. Retention of inorganic solutes increases with pressure and it can be 

effectively described by the solution-diffusion model. However, the influence of 
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pressure on micropollutant retention has shown conflicting results [7, 75, 91, 116, 

139-142] and mechanisms are not well understood [7, 13].  

Recovery r, which indicates the quantity of permeate produced with respect to the 

feed, is defined as:  

f

p

Q

Q
r =                         (2.5) 

where Qp is the permeate flow and Qf is the feed flow.   

 

Membrane plants in drinking water are usually operated at 80% total recovery, which 

is obtained in two or three stages, each operating at 50-60% recovery [143]. High 

recovery is beneficial because it increases the drinking water production (permeate 

flow) and decreases the waste stream (concentrate flow). Increase in recovery has 

been shown to result in a decrease in flux, even when fouling does not occur [129], 

and recovery-flux relationships are membrane and solute dependent. Recovery 

impacts solute retention: increase in recovery was shown to increase retention of 

boron, arsenic and fluoride [14, 144] and decrease pesticide retention [145, 146]. 

 

Operating conditions can affect membrane characteristics, influencing in turn 

retention and transport mechanisms. Pressure has been shown to influence membrane 

pore size and porosity, although findings reported in the literature are contradictory 

[96, 108, 147]. Van der Bruggen and Vanecasteele [108] showed that pressure 

decreased membrane MWCO, while results obtained by Kiso et al. [148] indicated 

the pore radius slightly increased with pressure. Kosutic et al. [147] inferred that 

with increasing pressure the number of pores increased but the medium-sized pores 

shrunk to smaller dimensions.  

 

Operating conditions also affect fouling [28]. High pressure and flux were shown to 

increase the rate of convective transport of solutes to the membrane and therefore 

their deposition, increasing fouling [84, 125, 127]. As a consequence, fouling can be 

avoided if the membrane is operated below the “critical flux” [122, 123, 126]. 
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Crossflow velocity, which impacts the Reynolds number, affects fouling and scaling. 

High crossflow velocity was shown to increase the critical flux, in turn decreasing 

fouling [121, 149]. Change in crossflow velocity has been shown to disturb the 

fouling layer formed by deposited iron hydroxide particles, decreasing the rate of 

scaling [84].  

 

Higher recovery increases solute concentration in the feed, increasing concentration 

polarisation and hence fouling potential. During NOM and calcium filtration, 

increase in recovery was shown to raise the resistance of the cake layer and reduce 

membrane flux [129]. Scaling by inorganic solutes was worsened by concentration 

polarisation enhanced by high recovery [143, 144].   

2.3 Solute-membrane and solute-solute interactions 

NF retention and transport mechanisms are related with physical and chemical 

characteristics of membranes, solutes and solution; operating conditions; and fouling; 

as described in the previous sections and illustrated in Figure 2-2. These relationships 

are controlled by the interactions between solutes and membranes and the 

interactions between the solutes themselves.  

2.3.1 Solute-membrane interactions 

The interactions between solutes and membranes are fundamental to the retention 

mechanisms of size exclusion, electrostatic repulsion and solute adsorption to the 

membrane described in Section 2.2.2. Therefore, the retention mechanisms have 

been classified as solute-membrane interactions [24, 32, 150].  

 

Solute-membrane interactions not only regulate retention and transport mechanisms 

directly, but they also indirectly influence membrane performance through affecting 

membrane characteristics such as pore size, charge and hydrophilicity.  

 

Solution pH affects charge of polymeric membranes since they are amphoteric, i.e. 

they have ionisable groups that protonate and deprotonate according to the pH [57]. 

Solution pH can affect membrane pore size and MWCO, which have been shown to 
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increase in alkaline conditions [151, 152]; it has been inferred that when membranes 

acquire charge their matrix is in a more expanded state due to intra-membrane 

electrostatic repulsion and their pore size increases [153].   

 

Solution ionic strength and the presence of charged solutes, such as NOM and 

divalent cations, were shown to affect membrane charge, potentially influencing 

membrane pore size [24, 57, 77, 87, 98, 125, 133, 153, 154]. The Debye length, i.e. 

the thickness of the electrical double layer, decreases with increasing electrolyte 

concentration and increasing valence of  the charged solutes [62], influencing the 

membrane zeta potential and in turn membrane charge. Decrease in glucose retention 

and in turn increase in membrane pore size were observed when salt ions were added 

to the solution [155].  

 

Solutes adsorbed or deposited on the membranes can affect their hydrophilicity [65, 

156, 157]. Membrane contact angle was shown to increase after filtration of HA and 

calcium [137]. Contact angle after filtration of secondary effluent water was shown 

to increase for hydrophilic membranes and decrease for hydrophobic ones, 

potentially indicating that the membranes acquired an intermediate hydrophobicity 

reflecting the organic deposit characteristics [133].    

 

Fouling is regulated by solute-membrane interactions as fouling is caused by an 

interaction between the foulant and the membrane [158]. Contaminant characteristics 

have been shown to influence the rate of fouling. Contaminant size can affect fouling 

and particles whose radius was bigger than 5 µm were shown to minimally contribute 

to fouling [159].  

 

Membrane characteristics can influence the rate of fouling. Roughness is considered 

the most influential membrane characteristic for colloidal fouling. Colloidal particles 

were shown to deposit preferentially on the “valleys” of rough membranes, while 

smooth membranes were fouled less [160]. Fouling seemed more severe for 

hydrophobic membranes due to the higher solute adsorption to the membrane surface 
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[131, 161]. Membranes with bigger pore size experienced higher fouling by NOM, 

probably due to the greater initial flux or to greater pore plugging [126, 134].  

 

The fouling layer can affect membrane characteristics and in turn membrane 

performance. After fouling, the charge and hydrophilicity of the membrane surface 

have been shown to reflect those of the fouling layer [65, 112, 133, 161-163]. 

Membranes fouled by NOM were inferred to have an increased MWCO due to 

increased negative surface charge and consequent membrane swelling [87, 133].  

 

The consideration of all solute-membrane interactions is fundamental for evaluating 

the retention and transport mechanisms of solutes through NF. The hydrodynamic 

model takes into account solute-membrane interactions by considering hindered 

diffusion and convection transport (Section 5.2). Recently developed expressions of 

the partition coefficient Φ  for micropollutants have included solute adsorption to the 

membrane in the hydrodynamic model [27]. Nevertheless, other solute-membrane 

interactions, like fouling and scaling, have not yet been considered in the traditional 

transport models due to the limited understanding of their underlying mechanisms. 

 

Some solute-membrane interactions, like sieving and electrostatic retention 

mechanisms, are fairly well understood [23]. However, other interactions, such as 

adsorptive interactions between some solutes and the membranes, fouling by specific 

solutes like inorganic scalants, and the effects of solutes on membrane 

characteristics, have not yet been completely elucidated. In this work particular stress 

will be placed on highlighting the influence of solute-membrane interactions on 

solute retention and transport across NF, and on investigating specific solute-

membrane interactions whose mechanisms are to date unclear.  

2.3.2 Solute-solute interactions 

The interactions between solutes affect their retention and transport by NF, so studies 

investigating the impact of solute-solute interactions on solute retention and transport 

are fundamental to understand NF mechanisms. Unlike for solute-membrane 

interactions, the effects of solute-solute interactions are not included in transport 
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models such as the hydrodynamic model, where transport of only a single solute is 

described (see Chapter 5). Solute-solute interactions are exploited to increase solute 

retention by NF. For example, chelating agents, flocculants and adsorbents can be 

dosed to remove particular solutes by size exclusion [82, 83, 164-167].  

 

The majority of the studies in the literature investigates the impact of the interactions 

between organic and inorganic solutes with NOM. NOM removal is an issue in water 

treatment since it is ubiquitously present in surface water and is a precursor of 

disinfection by-products, which are considered carcinogenic [36-38]. The influence 

of the interactions between NOM and organic and inorganic solutes on solute 

retention have been thoroughly examined in the case of UF [86, 168-170]. However, 

to the knowledge of the author, only a limited number of studies [95, 171] has 

investigated the influence of inorganic solutes-NOM interactions on solute removal 

by NF in non-fouling conditions.  

 

Several studies investigated the impact of the presence of NOM on micropollutant 

retention by NF [31, 75, 87, 142, 172-175]. Nevertheless, obtained results and 

explanations of mechanisms are contradictory and these ambiguities have been 

attributed to the different types of micropollutants  and organic matter used in the 

studies and to the complexity of the retention mechanisms [23, 30, 31].  There is an 

obvious need to further explore the role of solute-NOM interactions in solute 

removal by NF.  

 

Solute-solute interactions are important because they can influence membrane 

fouling. The presence of divalent cations, such as calcium and magnesium, has been 

shown to increase membrane fouling by NOM. Increased fouling has been attributed 

to the formation of NOM-cation complexes [121, 126, 131, 149]. Cations are 

believed to interact with the membrane functional groups, and form “ionic bridges” 

between NOM and the membrane, increasing NOM adsorption on the membrane and 

consequent fouling. A recent study [131] has shown that a different mechanism could 

be responsible for increasing fouling: cations could promote NOM aggregation that 

could be the cause of fouling.  
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The presence of coagulants, such as alum sulphate, ferrous sulphate and ferric 

chloride has been shown not only to improve flux decline caused by HA, reducing 

fouling, but also to enhance permeate flux [82, 83]. Dosing of coagulants improves 

flux decline caused by NOM fouling for UF membranes, since the formation of flocs 

reduces the number of small particles responsible for fouling [176]. However, the 

enhancement of permeate flux when coagulants are dosed, as observed for NF 

membranes [82, 83] is a phenomenon that is still not understood and further 

investigations are required.  

 

Solute-solute interactions can also influence the rate of fouling and the nature of the 

fouling layer. Solution pH influences formation of inorganic deposits and in turn 

scaling [29, 74, 84]. The deposition of HA and the consequent fouling was shown to 

be higher at low pH values when both membrane and HA were not charged [125, 

126].  Ionic strength in the feed can impact fouling by influencing the solubility and 

configurations of foulants and in turn their fouling potential [177]. High ionic 

strength has been shown to increase fouling by organics as the presence of salts may 

enhance organic aggregation [121, 125, 126]. Ionic strength can impact fouling 

through increase of osmotic pressure, by contributing to flux decline and by 

influencing membrane-foulant interactions [177]. High ionic strength was shown to 

increase colloidal fouling as the repulsion of the electrostatic double layer between 

membrane and colloids was reduced [127]. 

 

Solute-solute interactions are fundamental to understanding solute retention 

mechanisms by NF. In particular, a better understanding of the role of inorganic-

NOM interactions and micropollutant-NOM interactions in NF is required. This 

work will focus on elucidating the contribution of solute-solute interactions with 

respect to solute-membrane interactions in solute removal and transport.  

2.4 Conclusions 

This chapter has presented the principles governing NF membranes and highlighted 

the role of solute-solute interactions and solute-membrane interactions in influencing 

membrane efficiency. Despite the extensive research investigating the retention and 
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transport mechanisms of NF membranes, a complete understanding has yet to be 

achieved. There is a lack of investigations into the simultaneous impact of solute-

membrane interactions and solute-solute interactions on solute retention and 

transport by NF.  

While some solute-membrane interactions, like size exclusion and electrostatic 

retention mechanisms, are fairly well understood, other interactions have not been 

completely elucidated. Membrane fouling is a complex phenomenon, whose 

mechanisms are not fully explained. The effects of scaling by non-colloidal 

inorganics on membrane flux and solute removal, especially micropollutants, are 

unknown. Fouling reduction caused by inorganic solutes is an interesting effect that 

warrants detailed investigation. The effects of solutes and foulants on membrane 

characteristics (pore size, charge, and hydrophobicity) and in turn on membrane 

performance require further studies.  

 

Studies exploring the impact of solute-solute interactions on NF membranes are 

scarce. In particular, given the ubiquity of NOM in water resources, there is a need to 

understand the role of solute-NOM interactions in solute removal by NF. The 

influence of the interactions between NOM and solutes, especially inorganics and 

micropollutants, on NF removal mechanisms is not completely understood.  

 

This study will evaluate the role of solute-membrane and solute-solute interactions in 

the removal of a model inorganic contaminant and model micropollutant, in the 

presence of HA, chosen as NOM representatives (Section 3.4). Focus will be placed 

on investigating solute-membrane interactions whose mechanisms are to date 

unclear. The impact of scaling on membrane characteristics and performance (solute-

membrane interactions) and on retention of salts, HA and micropollutants (solute-

solute interactions) will be investigated.  In the following chapter a review will be 

carried out to select the model organic and inorganic contaminants to be used in this 

study.   
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3. Contaminants of interest  

3.1 Introduction  

This chapter will describe the characteristics, occurrence and effects on human health 

and on the environment of the contaminants selected in this work. The removal of 

these contaminants by traditional treatment and membrane processes, as presented in 

the literature, will be reviewed.  

 

Firstly, an overview of the principal contaminants in the water resources of Scotland 

will be carried out. Secondly, the choice of membrane plants to treat drinking water 

for Scottish remote communities will be discussed. The objective is to identify and 

select relevant compounds of interest for this study.  

3.2 Water quality and treatment in Scotland  

In Scotland the majority of the population lives in the major cities, while only 7% 

(about 350,000 people out of a total population of 5 millions) is scattered in remote 

rural areas that constitute the majority of its territory [178]. The areas of high 

population density coincide with the lowland areas, while remote rural areas are 

generally in the highlands and islands. Several small settlements, ranging from a few 

households up to 3,000 people, are located in sites that can be difficult to reach, often 

isolated due to adverse weather conditions and at times subjected to intermittent 

power supply [179]. This distribution of population influences the water quality, the 

type of drinking water sources and the choice of water treatment process.   

 

Surface water from lochs (lakes) and burns (rivers) constitutes the principal source of 

drinking water, with groundwater making up only 7% of the public water supplies. 

However, the influence of groundwater is estimated to be much higher than 7% as 

groundwater naturally feeds into reservoirs and composes river baseflow [180]. 

Scottish water is “flashy” in nature due to snow melt and high intensity rains that 

cause large seasonal and daily fluctuations in the water quality [9, 181]. 
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Surface water in the more populated lowland areas is more affected by anthropogenic 

pollution and large scale traditional water treatment plants serve the major cities. 

Surface water in highland areas is generally less polluted, although it has been facing 

increasing quality problems [182]. Surface water in Scotland is very soft, i.e. with 

low alkalinity and mineral content, and low bacteriological quality. It is characterised 

by a yellow-brown colour due to the presence of NOM, in particular humic and 

fulvic acids, caused by Scottish acidic peaty soil, and high concentrations of iron, 

manganese and aluminium [9]. 

 

In raw water bacteriological parameters (Coliforms, E.coli, and Enterococci) and 

colour are the components that most commonly exceed the Prescribed Concentration 

Values (PCV) established for drinking water in Scotland [183] (Figure 3-1). 

Unfortunately, data on Total Organic Carbon (TOC) in raw water is not available 

since TOC samples are collected at the point of supply only.  
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Figure 3-1 Percentage of raw water samples that exceed their Prescribed 

Concentration Value, based on 300 samples collected at the inlet of water treatment 

works from 2006 to 2009 (Iron data available from 2008 and Aluminium data 

available for 2009 only)- Source: Drinking Water Quality Regulator of Scotland 

[184] 

 
Table 3-1 shows the average, minimum and maximum values for components of 

interest in Scottish raw water, together with their PCV and the World Health 

Organization (WHO) guidelines. Among the inorganic solutes, iron and manganese 

were the parameters with the highest average and maximum concentrations in raw 
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water with respect to their PCV. Concentrations of manganese in excess of its PCV 

are also found in Scottish groundwater [185].  

 

Based on data collected from 2004 to 2006 at the outlets of water treatment plants 

throughout Scotland, manganese exceeded its regulatory limit more frequently than 

iron, aluminium and nitrite (Figure 3-2), indicating insufficient manganese removal 

to achieve the desired standard. The reason for the higher failure rates in 2004 is 

unknown. The number of raw water samples that exceeded 50 µg/L was only 

marginally higher in 2004 with respect to 2005 and 2006, probably due to the higher 

precipitation experienced in 2004 [186], and it can not fully explain the higher failure 

rates.  
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Figure 3-2 Number of samples collected at the outlet of water treatment works above 

their Prescribed Concentration Value, based on 400 samples collected from 2004 to 

2006 Scottish-wide (Nitrite data available from 2005 only)- Source: Scottish Water 

[187] 

 

Pesticides and herbicides are a not major problem in Scotland, although the reporting 

of their occurrence in raw water is increasing, probably due to lower instrumentation 

detection limits and increasing sampling frequency [180, 188, 189]. An area of 

particular concern is the east coast, where herbicides have been detected above the 

regulatory limits both in raw water and at the outlet of the existing traditional water 

treatment works [190].  
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Table 3-1 Average, minimum and maximum water quality values detected in raw 

water at the inlet on water treatment plants based on 300 samples collected Scottish-

wide in 2006-2009 - Source: Drinking Water Quality Regulator of Scotland [184] 

1Analytical instrument Detection Limit (DL) 
2 Prescribed Concentration Value [183] 

3 World Health Organization guidelines [17] 
4 Recommendation based on aesthetic considerations such as taste and colour 

3.3 Membrane plants in Scotland 

The existence of small remote communities and of strict drinking water regulations, 

the type, nature and quality of the water sources, and the variability in the water 

demand due to tourism have determined the choice of membrane plants as the main 

water technology for remote Scottish areas.  

 

Membrane plants were chosen by Scottish Water, the water company in Scotland, as 

best treatment process due to their small physical footprint, the minimisation of civil 

works compared to traditional plants and their modularity and availability as turn-key 

Parameter Unit DL
1 Average 

Values 

Minimum 

Values 

Colour Pt/Co 2 44.4 < 2 
Turbidity NTU 0.25 0.73 < 0.25 

pH - - 7.10 3.2 
Aluminium µg/L 10 217.10 < 10 

Iron µg/L 17 470.60 < 17 
Manganese µg/L 1 90.51 < 1 

Total 
Coliforms 

number/100mL - 99.64 0 

E.Coli number/100mL - 25.80) 0 
Enterococci number/100mL - 2.74 0 

Parameter Unit 
Maximum 

Values 
PCV

2
 

WHO
3
 

Guidelines 

Colour Pt/Co 358 20  
Turbidity NTU 5.78 4 0.14 

pH - 10.2 6.5 - 9.5 6.5 - 8.54 
Aluminium µg/L 9,640 200 2004 

Iron µg/L 44,586 200 3004 
Manganese µg/L 25,974 50 400 

Total 
Coliforms 

number/100mL 9,640 0 0 

E.Coli number/100mL 2,200 0 0 
Enterococci number/100mL 160 0 0 
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plants that are particularly suitable for remote area that are difficult to access. Their 

lower maintenance requirements and reduced use of chemicals with respect to 

traditional plants were also deemed an advantage as they allow operators to visit the 

sites less frequently and reduce problems of supply and disposal of large quantities of 

chemicals at distant sites. Moreover, the single-stage process was considered able to 

deal with fluctuating water quality and provide consistent final water in compliance 

with the regulations [9]. 

 

Scottish Water installed the first membrane plant in 1994 and currently 82 membrane 

plants are operating across Scotland (Figure 3-3a). In the last five years Scottish 

membrane plants delivered more than 80,000 m3/day of drinking water, with variable 

output depending on demand. Individual plant capacity ranges from 3 m3/day for the 

smaller plants up to 50,000 m3/day for the biggest plant, with 80% of the plants 

having a capacity of less than 450 m3/day (Figure 3-3b). 
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Figure 3-3 (a) Number of membrane plants installed in Scotland from 1994 to 2010 

(b) Cumulative frequency (%) versus capacity (m3/day) on logarithmic axis of 

Scottish membrane plants Source: Scottish Water [187] 

 

As shown in Figure 3-4, there are more than 50 membrane plants located in areas 

classified as “remote rural” according to the Scottish Government 6-Fold Urban 

Classification [178]. Some of these sites, such as those situated in the northern and 

western islands can be isolated from the mainland for long periods during winter. It 
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is interesting to note that membrane plants are not present in the eastern part of 

Scotland where pesticides are found, despite the successful use of NF membranes for 

pesticide removal [47, 191]. 

 

Apart from a minority of ceramic membranes, the majority of the NF modules in 

Scotland are spiral wound CA membranes supplied by Koch Membrane System 

[192] and tubular CA or PES membranes supplied by PCI Membrane Ltd. [193]. 

Tubular membranes constitute approximately 60% of the total membrane plants 

[194, 195].  

 

Spiral wound modules usually need pre-treatment as they get clogged with 

particulate matter and require daily chemical cleaning [9, 194]. Tubular membranes 

are more robust than spiral wound membranes and do not require pre-treatment, but 

they are more complex to produce, have a lower packing density, hence require 

larger land areas and they are more energy intensive as they are operated at higher 

crossflow velocity [194, 196].  

 

Despite the high number of membrane plants in Scotland and the availability of 

operational and water quality data, there is a lack of dedicated studies assessing the 

performance of membrane plants. Apart from a few publications [47, 197, 198], 

analyses of the performance of full scale NF treatment plants are limited.  
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Figure 3-4 Map of Scotland indicating remote rural areas (yellow areas) as 

categorised according to the Scottish Government 6-Fold Urban Classification [178] 

with location of membrane plants marked. Source: Drinking Water Quality Regulator 

of Scotland [184] 

 

3.4 Occurrence and removal of organic and inorganic 

contaminants  

The review of the existing literature undertaken in Chapter 2 showed that although 

removal and transport mechanisms have been intensively studied in the past two 

decades, a complete and quantitative understanding of NF principles is still to be 

achieved. The co-influence of solute-membrane interactions and solute-solute 

interactions on solute removal and transport needs to be investigated to better explain 

NF mechanisms.   

 

Among the contaminants of interest in drinking water production, NOM has the 

leading role. NOM is ubiquitous in surface water and is a precursor of disinfection 

by-products which are considered carcinogenic [36, 37]. As described in Section 
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2.3.2, the interactions between contaminants and NOM have been shown to highly 

influence contaminant removal by NF.  

 

NOM is composed of a hydrophobic fraction, represented by humin, humic acids and 

fulvic acids, a hydrophilic fraction, constituted by polysaccharides, amino acids, 

proteins and a transphilic fraction of carboxylic acids and carbohydrates [130, 199]. 

In upland source waters, the dominant fraction of NOM is represented by the 

hydrophobic fraction, while the hydrophilic part might be dominant in other types of 

waters [200, 201]. For this reason in this work, commercial HA were chosen to 

represent NOM because they have been extensively characterised in the literature 

[202-207]. Moreover, the use of commercial substances allows the comparison of 

results with findings in the literature [208].  

 

Manganese was chosen as a model inorganic because it is one of the most abundant 

elements in Scottish water and it is difficult to remove with conventional treatments 

(Section 3.2). Removal mechanisms of manganese from drinking water by NF have 

never been systematically investigated. Although NF is known to remove divalent 

ions, removal is solute specific due to solute speciation and different solute 

interactions with the membranes.  

 

Manganese is known to form complexes with HA [209-212] but the impact of HA on 

manganese removal by NF is unknown. The study of the removal of manganese and 

HA complexes will increase the knowledge of the role of inorganic solutes-NOM 

interactions in removal mechanisms by NF, that have so far received little attention 

(Section 2.3.2).  

 

Manganese can precipitate at pH above 7.5-8 [211, 213, 214] but the effects of 

manganese scaling on NF membrane flux and solute retention are unknown. The 

impact of scaling on micropollutant removal will be investigated for the first time in 

this work.  

 



 
 

 33

Pesticide ES was selected as a model micropollutant because it is extensively used 

worldwide, it is very persistent in the environment, it is toxic to aquatic life and it has 

been shown to have estrogenic properties similar to DDT [43, 215-219]. ES is a 

particularly suitable compound for investigating the role of micropollutant-NOM 

interactions and solute-membrane interactions on NF retention because it is 

hydrophobic, neutral over a large pH range [220] and forms complexes with NOM 

[221-224].   

 

In the following sections, the physicochemical characteristics of the selected model 

contaminants will be described together with a brief summary of their removal 

achieved by traditional treatments and membrane processes.  

3.4.1 Humic acids  

HA are complex and heterogeneous mixtures of high to low molecular species 

containing both aromatic and aliphatic components with primarily carboxylic and 

phenolic functional groups [225, 226]. A proposed structure of HA has been reported 

in the literature [227, 228] and it is shown in Figure 3-5.  

 

Figure 3-5 Proposed structure of HA. Adapted from [227] 

 

Characteristics of HA such as molecular weight, radius and structure that are 

presented in the literature vary considerably depending on the source (soil or water) 
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and the method of extractions and purification. Commercial HA were shown to have 

different characteristics from natural HA [204]. However, properties such as 

charging behaviour and ion binding are believed to be less diverse as humic 

substances from various sources have similar functional groups from a physical point 

of view [229].  

 

HA molecular weights reported in the literature vary from 3 to 100,000 g/mol [200, 

203, 205] and molecular radii vary from fractions of nanometres to several hundreds 

of nanometres [230]. Even if HA are structurally stable, their molecular size varies in 

natural water, since they continuously undergo association and dissociation [231]. 

HA are insoluble at pH < 2 and most of their functional groups dissociates at pH > 4, 

so they become more negative with increasing pH [225, 229]. 

 

The structure of soil HA was found to be dependent on sample concentration, pH and 

ionic strength. At high concentration, low pH or high electrolyte concentration soil 

HA have been shown to behave like rigid spherocolloids with a small hydrodynamic 

radius, while at low sample concentration, high pH or low electrolyte concentration 

they behave as flexible linear colloids with a bigger hydrodynamic radius [232, 233]. 

These structural characteristics are believed to be applicable also to water HA and 

commercial HA [125, 153, 206, 234].   

 

Commercial HA used in this study are peat-derived humic with molecular weights 

ranging from 4,000 to 20,000 g/mol [203, 229]. Further characteristics are reported 

in Table 3-2. 

 

Table 3-2 Elemental composition and inorganic impurities of Aldrich Humic Acids 
Composition  C H O N S P ash Ref. 

% 63.15 5.60 34.98 0.80 4.58 <0.05 31.21 [204] 

Inorganic 

impurities 
Al Ca Cr Fe Mg Na Si Ref. 

µg/g 2950 9931 15.2 12207 698 75116 3333 [205] 
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NOM has been traditionally removed with coagulation, granular active carbon and 

ion exchange resins, with rate of removals depending on the polarity and/or 

hydrophilicity of NOM. Conventional water treatment processes are ineffective in 

the removal of NOM with a molecular weight of less than 500 g/mol [200].  

 

NF membranes can obtain good NOM removal via size exclusion and charge 

repulsions. HA retention between 80% and 100% is usually achieved, depending on 

the membrane MWCO and HA concentration in the feed [125, 153, 206, 207, 235]. 

At low pH, HA have a smaller size and lower charge and they are less retained by 

TFC NF membranes, whose charge is also lower at low pH, while at high pH HA 

retention increases [125, 235].  

 

Aromatic/hydrophobic interactions between HA and the membrane also play an 

important role in HA retention [236]. Adsorption of HA to polymeric membranes is 

more favourable at low pH, since both HA and membrane are less negatively 

charged and HA are more hydrophobic, and minimum at high pH [125]. 

 

HA-membrane interactions affect membrane characteristics. HA in solution 

increased membrane negative charge in comparison with a solution containing NaCl 

only, due to electrostatic and hydrophobic interactions [24, 57, 125]. Membranes 

with different charges were shown to acquire a similar (negative) charge after HA 

filtration and it was inferred that the new charge reflected the zeta potential of the 

deposited HA layer [154, 235, 237]. Similarly, the contact angle measurements of 

different membranes fouled by HA showed similar values, indicating the deposit of a 

HA layer of intermediate hydrophobicity [65, 133, 161, 163]. 

 

Membrane MWCO has been shown to increase after HA filtration and fouling, as a 

result of increased membrane negative charge and consequent membrane swelling 

[49, 87, 133].  
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3.4.2 Manganese  

Manganese is one of the most abundant elements on Earth, naturally occurring in 

water and food and introduced into the environment by anthropogenic activities such 

as manufacturing of iron and alloys, batteries, glass, fertilizers, fungicides and 

varnishes [17].  

 

A small amount of manganese is necessary in the human diet and the World Health 

Organisation (WHO) estimates that the adequate manganese intake for adults is 2-3 

mg per day resulting in a health-based guideline value for drinking water of 0.4 mg/L 

[17]. A concentration of manganese exceeding 0.1 mg/L creates problems of 

undesirable metallic taste and coloured water at the consumer tap and so the Scottish 

regulatory limit has been set to 0.05 mg/L [238].  Nevertheless, a recent paper [239] 

has criticised the WHO guideline value for manganese on the basis of studies linking 

exposure to manganese (at low concentrations of 0.1 mg/L) with intellectual 

impairments and neurotoxic effects in children [34, 35, 240]. Potential relationship 

between manganese concentrations (down to 0.3 mg/L), cancer death rates and infant 

mortality rates have been reported [241-243]. 

 

Speciation of manganese in natural waters is difficult to determine and various 

techniques, such as ion-selective electrodes, anodic-stripping voltammetry, 

differential pulse polarography, UF, dialysis, ion-exchange, nuclear magnetic 

spectrometry and electron paramagnetic resonance have been employed [213].  

 

In natural water manganese can occur in three common oxidation states: +II, +III and 

+IV, but mixed oxidation states can also be present [213]. The dominant manganese 

species is Mn(II) which is present as soluble Mn2+ in acidic conditions. Mn2+ can 

precipitate as MnCO3 at pH about 7.5 or as Mn(OH)2 when pH > 11 and reducing 

conditions exist. MnCO3 is more stable than Mn(OH)2 under the conditions of most 

natural waters and it is therefore the most likely insoluble form of Mn(II) [214]. 

Mn(III) does not appear to be stable in natural water, unless Mn3O4 is produced 

[213]. Mn(IV) species can be obtained by oxidation of Mn(II), but the oxidation by 
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oxygen is very slow and it is very unlikely to occur without the addition of other 

strong oxidants (ozone, chlorine, potassium permanganate) [213, 214].  

 

Field investigations have confirmed that in natural water the dominant manganese 

species is  Mn2+ [244-246]. Crystal, Stokes and hydrated radii have been derived for 

Mn2+ [70] and are presented in Table 3-3.  

 

Table 3-3 Crystal, Stokes and hydrated radii at 25 ºC for Mn2+ [70] 
Element Crystal radius Stokes Radius Hydrated  radius 

Mn2+ 0.08 nm 0.368 nm 0.438 nm 

 

Manganese is conventionally removed by filtration preceded by vigorous oxidation 

as part of the clarification processes. Oxidisation of manganese to its precipitated 

MnO2 form is an autocatalytic process, requiring either strong oxidants (ozone, 

chlorine, or potassium permanganate) or dissolved oxygen and a catalyst (manganese 

ore or filter sand that has to be pre-treated with manganese ore). The process is 

difficult to start up, the filterability of MnO2 is low and when the manganese 

concentration is higher than 5 mg/L too much solid is produced that shortens 

filtration cycles and makes the process unprofitable. Furthermore, process control is 

difficult for waters of variable quality, such as surface waters [247]. 

 

Conventional methods have proven to be insufficient for manganese removal, in 

particular in the presence of manganese concentrations higher than 5 mg/L and 

dissolved organic matter. The presence of NOM increases the coagulant demand and 

further decreases manganese removal by filtration [187, 247-250]. Natural and 

synthetic adsorbent have also been employed to remove manganese, but their 

efficiency is dependent on the sorbent material, manganese concentration, pH and 

temperature [251]. 

 

Removal of manganese, alone or with organic matter, by MF and UF has been 

investigated in several studies, as summarised in Table 3-4. Soluble manganese 

passes through MF and UF membranes and pre-treatments that precipitate 
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manganese are necessary to achieve effective removal. Strong oxidation has been 

shown to be the most effective pre-treatment but it increases the cost of the process, 

in both economical and environmental terms.  

 

Table 3-4 Summary of manganese (Mn) removal studies with MF and UF 

membranes 

 

A limited number of studies have examined removal of manganese by NF 

membranes [165, 166, 252]. Lastra et al. [165] studied the removal of manganese, 

iron and organic content by NF from the effluent of a bleaching plant used in the 

pulp industry. NF was preceded by a chelating stage with an acetic acid based agent. 

Polymeric membranes gave almost complete retention of chelates of iron and 

manganese whereas ceramic membranes had 70-90% rejection. However, this 

research was specific to the effluent studied, which was characterised by TOC 

content 500 times higher than the average in natural waters and by a high 

temperature (80 ºC). As a consequence, these findings can hardly be applied to 

drinking water treatment. 

 

Molinari et al. [252] performed NF tests with tap water spiked with HA, nitrates, 

silica and Mn2+ at pH 7.2. HA retention showed an average of 40%, while average 
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Mn2+ retention was 80%. However, manganese and HA concentrations were up to 10 

times higher than  the average in natural waters and information on the tap water 

analysis and membrane characteristics was not provided, so removal mechanisms 

were not elucidated.  

 

Potgieter et al. [166] tested NF membranes for removal of iron and manganese in the 

presence of dissolved organic matter in a South African river. Removal of 

manganese by NF membranes was around 65% and FeCl3 and H2O2 were tested as 

pre-treatments. FeCl3 and H2O2 together seemed to worsen manganese retention, 

while H2O2 alone gave better results. Nevertheless, manganese concentrations in the 

river water were very low (0.15-0.29 mg/L), probably approaching the instrument 

detection limit, thereby increasing the error in measurement of the membrane 

permeate composition. In addition, different samples with different solute 

concentrations were used, making results incomparable. 

 

The Fyne process using NF PCI membranes has been reported to work satisfactorily 

for the removal of organic matter, manganese and iron in North America and 

Scotland [9, 196, 253]. However, the obtained removal rates were site and condition 

dependent and cannot be generalised. 

 

A systematic study of the mechanisms of manganese removal by NF in the presence 

of HA as a function of speciation will be undertaken in Chapter 6, where the 

influence of solute-solute and solute-membrane interactions in manganese and HA 

removal will be investigated.  

 

Manganese precipitates have been indicated as potential scalants for MF and UF 

membranes causing flux decline and loss of performance [247, 254-258]. Manganese 

was found, together with other organic and inorganics, on the fouling layer of a NF 

membrane, but its contribution to flux decline was not evaluated [259]. The impact 

of manganese on NF fouling and solute removal will be investigated in Chapter 9.  
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3.4.3 Endosulfan   

ES, also known as Benzoepin, Endocel, Parrysulfan, Phaser, Thiodan, Thionex, is a 

organochloride insecticide of the cyclodiene group commonly applied to cereals, 

fruits, vegetables and cotton [260]. ES is transported to water bodies by surface 

runoff following rain.  

 

ES is extensively used worldwide and has been detected in surface water in several 

countries such as India, where it is one of the most common pesticides, Australia, 

Taiwan, Portugal, Greece, Canada, South America, China and Turkey [215, 224, 

261-267]. ES has also been detected in air samples in regions far away from where it 

had been applied, for example in the Arctic Region, thus showing its persistence in 

the environment [216, 217]. 

 

ES is detected in natural water in concentrations ranging from 0.02 µg/L to 60 µg/L 

[262, 263, 265-267]. The regulatory limit for pesticides in Europe is 0.1 µg/L [268]. 

 

Due to ES high toxicity to terrestrial and aquatic species and the high hazard it poses 

to humans and the environment, since April 2011 it has been included in the list of 

Persistent Organic Pollutants (POP) by the Stockholm Convention, an international 

treaty that lists particularly dangerous pollutants whose use is to be restricted or 

banned. As a consequence, ES will be banned in 173 countries in 2012, joining the 

list of 21 other substances previously banned [269].    

 

ES is commercially produced as a 7:3 isomeric mixture of α and β forms and it 

disperses in water with the same ratio [270]. ES isomers degrade by hydrolysis 

mainly to ES-diol and ES-sulphate. Formation of ES-diol is caused by chemical 

hydrolysis, favoured in alkaline conditions. ES-sulphate can only be formed in the 

presence of microbiological activity or strong chemical oxidants and it was not 

detected in synthetic water samples produced in the laboratory after eight weeks 

[261, 271]. For this reason the formation of ES-sulphate can be ruled out in the 

experimental conditions used in this research. Characteristics of α-ES, β-ES and ES-

diol are presented in Table 3-5. 
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Table 3-5 Characteristics of Endosulfan isomers 

 α-ES β-ES Endosulfan diol 

 
Cl

Cl

Cl

Cl

Cl

Cl O

O

S O

H
H

H

H

H
H

*

*

 

Cl

Cl
Cl

Cl

Cl

Cl

O

O

S
O

H

H H

H

H

H  

OH

OH
Cl

Cl

Cl

Cl

Cl

Cl

 
Formula C9H6Cl6O3S C9H6Cl6O3S C9H8Cl6O2 
Molecular Weight 
(g/mol) 

406.93 406.93 360.88 

Log Kow   3.83 [272] 3.83 [272] 3.68 [273] 
pKa [273] - - 14.62–15.22 
Dipole Moment  
[220] 

1.02 3.18 Not available 

Diffusion 
coefficient ∞D  
(m2/s) [274] 

4.50 * 10-10 4.50 * 10-10 Not available 

Henry’s constant 
(Pa*m3/mol) 
[275] 

0.72 0.04 1.3*10-4 

Solubility in 
water (mg/L) 
[275] 

0.45 0.51 300 

Estimated  
Stoke radius (nm) 

0.476 0.476 - 

Note: Asterisk (*) on α-ES indicated the position of 14C label within the ES structure. Numbers in 

brackets refer to references were values used in this research were reported. 

 

The Stokes radius rs has been estimated from the diffusion coefficient using the 

Boltzmann equation:  

∞

=
D

Tk
r b

s
πη6

                          (3.1) 

where kb is the Boltzmann constant, T is temperature, ∞D diffusion coefficient of the 

solute in water and η is the liquid viscosity. 

 

The hydrolysis rate Kh (hour-1) of ES isomers in water can be expressed as [261]: 

α-ES:  logKh=0.895 pH – 9.648                             (3.2) 

β-ES:  logKh=0.800 pH – 8. 550                (3.3) 

 

* 

* 
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The half life of α-ES and β-ES, that is the time required for 50% of the compound to 

disappear, can be calculated as follows  [276]: 

hK
t

2ln
2/1 =                            (3.4) 

Using equations 3.2-3.4 the degradation of ES isomers to ES-diol can be determined 

as a function of pH (Figure 3-6). At pH > 8 α-ES and β-ES have a half life of less 

than 10 hours, therefore ES-diol can be considered the dominant form of ES in 

solution after 20 hours.  
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Figure 3-6 Half life of α-ES and β-ES as a function of pH – from equations 

developed by [261] 

 

Pesticides are difficult to remove from water because of the low concentrations in 

which they are present. Conventional treatments, i.e. flocculation, coagulation and 

filtration, are not sufficient for pesticide removal and pre-oxidation, usually using 

ozone, is required to achieve desired standards [277]. Filtration by activated carbon 

is commonly used for pesticide removal but the presence of NOM can lower 

treatment efficiency. Concentration of NOM is usually much higher than the 

concentration of pesticides and it occupies the whole adsorption capacity of the 

activated carbon columns, increasing their regeneration frequency and therefore the 

treatment costs [191].   

 

NF has achieved satisfactory removal of pesticides and other micropollutants [7, 13, 

22, 23, 47]. To the best knowledge of the author, ES retention by NF has never been 

evaluated. Various authors [22, 23, 72] have developed methodologies to predict 
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micropollutant removal on the basis of known parameters but prediction remains 

only qualitative. The lack of precision has been attributed to the use of a limited set 

of parameters for predicting retention [22]. A better knowledge of micropollutant 

removal mechanisms by NF will contribute to improved removal prediction.  

 

Micropollutant removal by NF is influenced by size exclusion, charge repulsion and 

hydrophobic-hydrophobic interactions. As a rule of thumb, micropollutants of larger 

size (MW, width or length), higher hydrophilicity and/or higher charge are well 

rejected by NF [71, 72]. As explained before (Section 2.2.2), hydrophobic 

micropollutants like ES adsorb on polymeric membranes and retention is 

overestimated if membrane saturation is not reached [91-93]. Removal mechanisms 

of hydrophobic micropollutants are not well understood after adsorption equilibrium 

has been reached [87] and further studies are required.  

 

The influence of solute-solute interactions, solute-membrane interactions and 

pressure on ES removal in the presence of HA will be investigated in Chapters 7 and 

8. In Chapter 9 the impact of Mn deposits on ES removal will be elucidated.  

3.5 Conclusions 

The review of NF principles and mechanisms carried out in Chapter 2 highlighted the 

need to study the contributions of solute-membrane interactions and solute-solute 

interactions to solute retention and transport through NF. In particular, the role of 

inorganic-NOM interactions and micropollutant-NOM interactions in NF requires 

thorough investigation. The review also highlighted the lack of studies on the impact 

of scaling on NF flux and solute retention, especially for micropollutants.  

 

The review of water quality in Scotland carried out in Section 3.2 identified NOM 

and manganese as contaminants of interest. Both are ubiquitous in Scottish waters 

and manganese exceeded the regulatory limits in the outlet of conventional treatment 

plants more than other inorganics such as iron and aluminium. Herbicides were also 

identified as a growing concern in the eastern part of Scotland.  
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As a result of this review, manganese was chosen as a model inorganic contaminant 

and the herbicide ES was chosen as a model micropollutant for the purposes of this 

study. Commercial HA were selected as representative of the highest fraction of 

NOM, since the hydrophobic fraction of NOM is usually dominant in upland waters.  

The use of commercial HA overcomes the drawback of difficult comparison between 

the results in the literature where scarcely characterised NOM are employed. 

However, the other fractions of NOM, such as hydrophilic components, might 

influence solute-solute interactions and solute-membrane interactions, limiting the 

application of the results of this study to upland waters. Sometimes conventional 

methods have proven to be insufficient for manganese removal and studies on 

manganese retention mechanisms in the presence of HA by NF are lacking. 

Moreover, manganese precipitates at pH above 8 allowing the study of the effect of 

scaling on membrane performance. ES was chosen because it is hydrophobic, neutral 

over a large pH range and forms complexes with NOM, making it a suitable 

compound for the investigation of the role of solute-membrane and solute-solute 

interactions. Moreover, ES is extensively used worldwide, extremely toxic and its 

removal by NF has never been investigated.   
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4. Materials and Methods 

4.1 Introduction 

 This chapter will describe the chemical solutions, analytical equipment and 

experimental equipment used in this project. Reference to this chapter will be made 

throughout the following chapters.  

 

The work carried out in this study has employed artificial water to which known 

quantities of solutes were added. The analytical equipment used for the analysis of 

the solution, the organic and inorganic solutes and the radiolabeled ES will be 

presented. Equipment employed for characterizing the membranes will be depicted. 

The experimental equipment used during the work, stirred cells and diffusion cells, 

will be described together with the experimental protocol. Experimental protocols 

specific to particular experiments will be detailed in the respective chapters. The 

negligible-depletion solid phase micro-extraction (nd-SPME) methodology 

developed by Neale et al. [278] will be described. The characteristics of the 

membrane used in this work will be presented.  

4.2 Chemicals and background solutions 

All solutions were made in ultra-pure water obtained by PuraLab Ultra (Elga 

LabWater, UK), if not otherwise specified. All chemicals were of analytical grade.  

 

HA were purchased from Sigma Aldrich UK and stock solutions containing 250 

mgC/L were conserved in glass bottles in the fridge in the dark for one week 

maximum. HA concentration used in the experiments ranged from 5 to 250 mgC/L. 

While concentrations of 5-12.5 mgC/L represent typical NOM concentrations found 

in natural water [207, 226], experiments with higher HA concentration were 

performed to study the mechanisms of formation of ES-HA complexes [279].  

 

Manganese was purchased as MnCl2 from Fisher Scientific, UK. Manganese stock 

solutions of 10 g/L where acidified at pH < 2 with nitric acid (Aristar VWR 
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International, UK) and conserved in glass bottles in the fridge for two weeks 

maximum. Manganese was used at a concentration of 5 mg/L, as it is the typical 

concentration found in Scottish water (Section 3.2). Concentrations up to 1,500 mg/L 

were used to simulate fouling conditions in the laboratory (Chapter 9).  

 

Radiolabeled [2,3-14C] ES (>95% purity; 18.5 MBq solid form) was purchased from 

the Institute of Isotopes Co., Ltd. (Hungary). Radiolabeled ES was employed due to 

ease of detection with the liquid scintillation counter at very low concentrations (up 

to 0.1 µg/L). Moreover, the position of the 14C label in the ES structure (Table 3-5) 

allowed the detection of ES irrespectively of the isomer formed (α-ES, β-ES and/or 

ES diol), although individual identification was not possible. Since detected 

concentration of ES in natural water ranges from 0.02 µg/L to 60 µg/L [262, 263, 

265-267], 10 µg/L was chosen as ES feed concentration. Due to the low solubility of 

α-ES and β-ES in water (Table 3-5), stock solutions of 10 mg/L were prepared in 

ethanol (C2H5OH, Fisher Scientific, UK) and intermediate stock solutions of 

100 µg/L were prepared in methanol (CH3OH, Fisher Scientific, UK) and conserved 

in glass bottles in the fridge for 6 months maximum. Feed solutions (10 µg/L) were 

prepared in ultra-pure water the day before the experiments were conducted (Section 

7.2).  

 

Electrolyte background solution consisted of 1 mM NaHCO3 and 20 mM NaCl 

[207], both supplied by Fisher Scientific, UK. pH was adjusted with 1M HCl and 

NaOH (Fisher Scientific, UK).  

 

Calcium was purchased as CaCl2 from Fisher Scientific, UK. A concentration of 2.5 

mM (278 mg/L) of CaCl2 was used in fouling experiments, since this concentration 

was shown to increase fouling of NF membranes by HA [207]. Feed solutions were 

prepared from acidified stock solutions containing 50 mM (5.56 g/L) of CaCl2 and 

conserved in the fridge in glass bottles for one week maximum.  

 

Inert organics for membrane MWCO and pore size determination consisted of 25 

mgC/L of dioxane, dextrose PEG 400, PEG 600, PEG 100 (Fisher Scientific, UK) 
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and xylose (Acros Organics, UK) prepared in stock solutions of 10 gC/L and 

conserved in glass bottles in the fridge for one week maximum. 

4.3 Analytical Equipment 

4.3.1 pH and conductivity meters 

pH and conductivity of the solution were measured with a pH/conductivity 340i  

meter (WTW, Germany). The pH probe was calibrated every day with pH buffer 

solutions at pH 4, 7 and 10 (Fisher Scientific, UK) and the conductivity meter was 

calibrated when required with 0.01 M KCl (Fisher Scientific, UK). When only NaCl 

was used, conductivity measurements were used for determining NaCl concentration 

and the following relationship between conductivity and NaCl concentration was 

developed:  

NaCl [M] = 0.011 x Conductivity [mS.cm-1] (r2=0.999)                                        (4.1) 

The detection limit for NaCl was 0.01 M.  

4.3.2 Inductively-coupled plasma optical emission 

spectroscopy 

Analysis of manganese and sodium was performed with an inductively-coupled 

plasma optical emission spectroscopy (ICP-OES) instrument (Perking Elmer Optima 

5300 DV, UK). Samples for inorganic analysis (10 mL in volume) were acidified 

with nitric acidic (Aristar VWR International, UK) at pH<2 and conserved in 

polyethylene centrifugal vials in the fridge for a maximum of three months. ICP-OES 

calibration standards were made using ICP multi-element standard and manganese 

standard (Merck, Germany) and verified using a certified reference material, ICP 

multi-element standard solutions VI (CertiPUR, Germany). Calibration curves were 

performed before each analysis. The detection limit for Mn was 0.01 mg/L and for 

Na was 0.5 mg/L. Maximum concentration for the inorganics was 300 mg/L, 

therefore samples with higher concentrations were diluted with ultrapure water prior 

to analysis. No dilution was required for the experiments carried out in Appendix 1. 

For the fouling experiments in Chapter 9, a ten time dilution for Mn and a hundred 
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time dilution for Na were required since solute concentration in the samples was 

higher than the maximum detection limit.  

4.3.3 Total organic carbon analyser 

The concentration of organic solutes was measured with a TOC VCPH/CPN Shimadzu 

analyser in a non-purgeable organic carbon mode. The high sensitivity mode was 

employed for the analysis of inert organics. Samples for TOC analysis (20 mL in 

volume) were collected in glass vials and analysed the same day of collection. 

Calibration standards were prepared using potassium hydrogen phthalate (Acros 

Organics). Calibration curves were performed each time the catalyst was substituted 

(about every 6 months). The detection limit for the TOC was 0.1 mgC/L, while when 

the high sensitivity mode was employed detection limit reduced to 0.01 mgC/L.  In 

order to avoid sample carry over, a maximum TOC concentration of 20 mgC/L was 

analysed. Samples with higher concentrations were diluted ten times with ultrapure 

water.  

 

The oxidation efficiency for HA was determined to be 69.7%, due to chemical 

properties of the humic substances (Figure 4-1). The concentrations of HA reported 

in this study are the concentration measured by the TOC analyser in mgC.L-1.  
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Figure 4-1 TOC efficiency for HA  

4.3.4 UV-visible spectrophometer 

Ultraviolet absorbance of HA was measured at a wavelength of 254 nm with an 

Ultraviolet Visible (UV-Vis) Spectrophometer Cary 100 (Varian). Samples (3 mL in 
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volume) were collected in glass vials and analyzed within a few hours from 

collection. Ultraviolet absorbance measures the aromatic part of HA [207].  

When radiolabeled ES was employed in the experiments, it was not possible to 

determine the concentration of HA with the TOC analyser, due to the methanol 

present in the ES stock solution. The concentration of HA was estimated by 

measuring the UV absorbance and the following relationship between UV 

absorbance and HA concentration was established: 

HA [mgC/L-] = 23.544 x Absorbance [cm-1] (r2=1)                                              (4.2) 

 

Detection limit for HA was 0.1 mgC/L and maximum HA concentration analysed 

was 50 mgC/L. Samples with higher concentrations were diluted ten times with 

ultrapure water.  

4.3.5 Liquid scintillation counter 

The activity of ES radiolabeled with carbon (14C) was measured with a liquid 

scintillation counter (Beckman LS 6500, USA). 1mL of sample was analysed in glass 

scintillation vials containing 7 mL of scintillation liquid (Ultima Gold LLT, UK). 

Each sample was counted in triplicate with a counting time of 10 minutes and 

counting precision was set at 2% in the counter [280]. Detection limit for ES was 100 

ng/L. The instrument was calibrated every time a new stock solution was prepared to 

establish a relationship between activity (disintegrations per minute, dpm) and 

concentration.  

 

The presence of coloured HA can affect the detection of the activity as colour 

adsorbs the light emitted by the liquid scintillation cocktail. The relationship between 

activity and ES concentration was determined at different concentrations of HA, as 

indicated in Figure 4-2. 
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Figure 4-2 Relationship between activity and ES concentration as a function of HA 

concentration. 

4.3.6 Contact angle measurement 

The hydrophobicity of the membranes was determined by measuring membrane 

contact angle with the sessile drop method [63] using two instruments, Easy Drop 

Kruss (Germany), located at Imperial College London (UK) and CAM 100, KSV 

Instrument Ltd (US), located at ITM-CNR (Italy). The sessile drop method measures 

the contact angle of air dried membranes and it might not be fully representative of 

the contact angle of membranes in water, as polymers change their surface energy 

depending on the surrounding medium. Furthermore, results might be affected by 

contamination of the membrane specimen by hydrophobic components present in the 

air and evaporation from the water droplet. It has been shown that the sessile drop 

method overestimates the membrane contact angle, hence its hydrophobicity, with 

respect to the captive bubble method, that measures the contact angle of the 

membrane in water [63].   

 

Virgin membranes were rinsed thoroughly and soaked in deionised water for 24 

hours prior to measurement. The membranes were then left to dry for at least 8 hours 

at room temperature to ensure that the results were not affected by the degree of 

dryness of the membrane [63]. At least three measurements per membrane were 

taken.  
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Contact angles were also measured for compacted membranes through which 

solutions of ultrapure water, HA, HA + Ca, Mn, Mn + HA and Mn + Ca + HA were 

filtered. After the filtration experiments, the membranes were conserved in the fridge 

and let dry for at least 8 hours at room temperature prior to measurement. At least 

three measurements per membrane were performed and in the case of membranes 

that presented zones of different colour, measurements were repeated in triplicate for 

different zones. 

 

The membranes were glued to a glass holder to obtain a perfect plane surface. A pure 

water drop was placed onto the membranes and it was photographed within 15 

seconds and then every minute for at least 6 minutes to automatically calculate the 

contact angle with a goniometer. The contact angle decreased with time (Figure 4-3). 

This was mainly attributed to the evaporation of the water drop, as a decrease was 

also observed for a very hydrophobic PTFE surface.  

 

For TFC-SR3 the decrease with time was higher than for the other membranes 

(results repeated six times) and it was inferred that adsorption of the water droplet to 

the membrane occurred.   
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Figure 4-3 Contact angle of nanofiltration membranes versus time 

4.3.7 Zeta potential measurement  

The charge of the membranes was determined by measuring the membrane zeta 

potential (Section 2.2.1). Zeta potential can be measured with several techniques and 

streaming potential is widely recognised as the most suitable for membrane surfaces 
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[58]. The streaming potential was measured using an electrokinetic analyser EKA, 

Anton Paar KG (Austria) located at Imperial College London (UK). The streaming 

potential method only provides semi-quantitative values of membrane charge since 

results depend on the methodology employed for the measurements [281]. Therefore 

in this work the zeta potential measurements are not considered as absolute values 

but discussed relatively to each other.  

 

The membrane zeta potential ζ was calculated from the streaming potential 

measurements using the Helmholtz- Smoluchowski equation [282]:  

rqppP

U l

0

η
ξ

∆
=                    (4.3) 

where U is the streaming pressure measured by the electrodes, ∆P is the induced 

pressure between the membrane samples, η is the liquid viscosity, p is the liquid 

permittivity, po is the permittivity of the vacuum, l  and q are the length and cross-

sectional area of the channel and r is the electric resistance. 

 

 l , q and r were calculated by the Fairbrother-Mastin equation [283]:  

κ=
rq

l
                         (4.4) 

where κ is the specific conductivity of the electrolyte solution. 

 

The streaming potential measurements were performed using the protocol developed 

by Elimelech et al. [57, 58]. Virgin membranes were rinsed thoroughly and soaked in 

deionised water for 24 hours prior to measurement before being cut in two pieces 

(7.5 cm x 2.5 cm) and being left in a beaker containing the electrolyte solution for 30 

minutes. The same electrolyte solution as in the filtration experiments was used (was 

20 mM NaCl, and 1 mM NaHCO3) since membrane charge is dependent on the 

conductivity of the solution with which it comes into contact [57]. After assembling 

the membrane pieces in the measuring cell, the system was flushed first with ultra-

pure water for 3 minutes, then with the electrolyte solution for 30 minutes, taking 

care of removing all the air bubbles from the cell. The pH of the electrolyte solution 
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was adjusted automatically from 3 to 12 by the instrument autotritator and six 

measurements were taken for each pH value, three in each direction.  

4.3.8 Atomic force microscopy 

The roughness of the membrane was estimated with an atomic force microscopy 

(AFM) instrument (Bruker Corporation, formally Veeco, USA). Measurements were 

performed in a tapping mode [284] with a silicon probe (Mikromasch CSC38/AIBS 

type B). The probe had a spring constant of 0.01-0.08 N/m, a resonant frequency of 

7-14 kHz, nominal tip radius of 10 nm and cantilever length of 350 µm. Virgin 

membranes were rinsed thoroughly and soaked in deionised water for 24 hours prior 

to measurement. Four measurements per membrane were performed.  

 

The roughness analysis considers that the membrane surface occupies a mean x-y 

plane area, which in this study had size 2.0 x 2.0 µm. The size of the scanned area is 

very important in determining the roughness, since the larger the area the larger the 

roughness [284]. The cantilever tip measures the relative height z at each x, y 

location.  

 

The parameters chosen for determining membrane roughness were the average 

roughness, Ra, and the root-mean square roughness, Rq. Ra is the average of the 

measured z-values, while Rq describes the standard deviation of the z-values. Rq is 

considered the most accurate measure of roughness since Ra takes less into account 

the roughness at low frequencies [284]. Hoek et al. [285] showed that for NF 

membranes a relationship between Ra and Rq existed: Rq values increased in the 

same order as Ra values and they were larger than Ra values. In this study both 

parameters will be reported.  

4.3.9 Scanning electron microscopy  

Images of the membrane surface and cross-section were obtained with scanning 

electron microscopy (SEM), using a Quanta FENG 200 (FEI Company, US) 

microscope located at ITM-CNR (Italy). An accelerating voltage of 12.5 kV and 
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magnification of 50,000 were used for the images of the membrane surface, while a 

magnification of 1,000 was employed for the cross section.  

 

Compacted membranes through which solutions of ultrapure water, HA, HA + Ca, 

Mn, Mn + HA and Mn + Ca + HA were filtered were conserved in the fridge and let 

dry for at least 48 hours at room temperature prior to measurement. Membrane 

samples were prepared by freeze fracturing the membrane coupons in liquid 

nitrogen. 

 

Membrane thickness was measured from the cross-section images using the image 

processing program ImageJ developed by the US National Institute of Health 

(http://rsbweb.nih.gov/ij). At least 3 measurements per cross section were performed.  

 

Solute deposits on the membrane were characterised with SEM in a back scattering 

electron (BSE) mode (Cambridge Stereoscan 360, UK) and by coupling SEM with 

energy dispersive X-ray spectroscopy (EDX or EDS) employing a Philips EDAX 

analysis system.  

 

The BSE mode visualizes the presence of solutes of different atomic weights 

deposited on the membrane [286]. Solutes with low atomic weight appear dark in the 

SEM image, while solutes with higher atomic weight (such as manganese) appear 

clearer.  

 

The chemical composition of the inorganic deposits was analysed with the EDX 

technique. By determining the energies of X-rays emitted by the area excited with 

the electron beam, this technique offer a semi-qualitative chemical analysis of the 

inorganic solutes deposited on the membrane. EDX is performed on the membrane 

surface, so information on the spatial distribution of the solutes is not available [287]. 

For this reason, in this study the information obtained with EDX was analysed 

together with SEM-BSE.  
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4.3.10 Infrared spectroscopy 

Characterisation of membranes was performed with a Fourier transformed infrared 

(FTIR) spectrophotometer (Spectrum One, Perkin Elmer, US) equipped with an 

attenuated total reflectance (ATR) device with a micrometer torque and a 

Diamond/ZnSe crystal as internal reflection element, located at ITM-CNR (Italy). 

ATR-FTIR provides semi-quantitative information on the functional groups of the 

membrane layers, mainly at the surface [288]. 

 

Compacted membranes through which solutions of ultrapure water, HA, HA + Ca, 

Mn, Mn + HA and Mn + Ca + HA were filtered were conserved in the fridge and let 

dry for at least 48 hours at room temperature prior to measurement. An average of 30 

scans in the range of 650 – 4000 cm-1 wavelength was performed for each 

membrane. The depth of penetration was up to 1.66 µm, therefore both active layer 

and support layer were reached, and the spectra were recorded at a resolution of 4 

cm−1.  

 

ATR-FTIR characterisation returns spectra of the polymeric layers of the membrane 

in which peaks obtained at certain wavelengths correspond to functional groups. 

Changes in chemicals bonds due to the presence of deposited solutes can be 

investigated [289]. 

4.4 Experimental equipment and protocol 

4.4.1 Stirred cells 

Filtration experiments were performed with a custom-made apparatus consisting of 

three “dead-end” stainless steel stirred cells operating in parallel (Figure 4-4). Stirred 

cells were selected because they allow performing experiments in controlled 

conditions for filtration, at the same time reproducing the hydrodynamic conditions 

of full-scale spiral wound membrane modules [290].  
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Figure 4-4 Stirred cell apparatus used for filtration experiments  
 

Each cell had a volume of 990 mL and a diameter of 70 mm, resulting in a 

membrane area of 38.5 cm2 (Figure 4-5). The membrane coupon was mounted at the 

bottom of the cell and the cell was filled with feed solution and tightly closed with 

clamps. The cell was pressurised with filtered air; the pressure was kept constant 

during the whole duration of the experiment and automatically measured with a 

pressure transducer (Omega Engineering, UK). Temperature inside the cell was 

measured with a thermocouple (Omega Engineering, UK) and the permeate was 

collected in beaker seating on an electronic balance (Advancer Pro, Ohaus, UK). 

Pressure, temperature and permeate weight were automatically measured every 

minute and the data collected on a PC using LabView 8.0 (National Instruments, 

UK). 

 

The feed solution was constantly stirred with a plastic stirrer (Millipore, UK) guided 

by a digital magnetic stirrer plate (Fisher Scientific, UK) on which the cell was 

placed. The stirring speed, corresponding to the crossflow velocity of membrane 

modules, was kept at 300 rpm in all experiments to minimize concentration 

polarisation.  

 

In all filtration experiments carried out in this study, the membrane coupons were cut 

the day before from a flat sheet batch, thoroughly rinsed with ultrapure water to wash 

the preservative away, and left overnight in ultrapure water to allow the polymer to 

swell.  
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Figure 4-5 Schematic of the stainless steel stirred cell used in this work. (not to 

scale)  

 

One batch flat sheet membrane was employed per set of experiments, since different 

batches can have slightly different characteristics. A new membrane coupon was 

used for each experiment. 

 

The membranes were compacted for an hour at a pressure 3 bar higher than the 

pressure used during the experiments up to 15 bar, that was the maximum pressure 

obtainable with the apparatus (see Appendix 2). Flux of ultra pure water was 

measured for half an hour before and after the experiments at the same pressure 

employed during the experiments, to check changes in membrane permeability 

during solute filtration due to fouling.   

 

Experimental protocols for the filtration of specific solutes and fouling experiments 

will be detailed in the respective chapters.  



 
 

 58

4.4.2 Diffusion cells  

Diffusion experiments, whose results are presented in Chapter 8, were performed in 

custom-made diffusion cells (Figure 4-6) to determine diffusion coefficient of 

pesticide ES through NF membranes. 

 

 

Figure 4-6 Diffusion cells for pesticide ES diffusion experiments through NF 

membranes  

 

Each diffusion cell consisted of two glass chambers of 250 mL volume with the 

membrane separating the feed from the permeate side (Figure 4-7). The membrane 

area in the cell was 19.6 cm2. To study ES diffusion though the membrane, the feed 

cell was filled with a solution containing ES and background electrolyte while the 

permeate cell was filled with ultrapure water and background electrolyte only.  

 

Figure 4-7 Schematic of the diffusion cell used in this work. Not to scale. 

 

The model used for the determination of the diffusion coefficient in the membrane 

Dm is derived from the Fick’s law [116] 
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where CF and CP are the solute concentration in the feed and permeate cells 

respectively, VF and VP are the volumes of the feed and permeate, Am is the 

membrane area and ∆δm is the membrane thickness (active layer and support layer).  

 

Equation 4.5 is based on the following assumptions [291]:  

- The main force driving solute transport through the membrane is the solute 

concentration gradient between the two cells. Additional effects such as 

concentration polarisation and flow resistances are not considered.  

- Membrane cells are fully mixed. 

- Dm is constant with concentration in the range of concentrations used in this 

study.  

- The amount of solute adsorbing to the membrane is negligible with respect to 

the amount in the cells. If the amount of solute adsorbed to the membrane is 

not negligible a non-stationary model that can only be integrated numerically 

should be adopted [291].  

- The phenomenon of diffusion coupling is negligible. Since water is soluble in 

the membranes, a concentration gradient of solutes across the membrane 

causes a corresponding concentration gradient of water in the opposite 

direction, causing diffusion coupling between the solute and the water inside 

the membrane [291].  

 

The main errors in the determination of Dm are (apart from errors in measuring the 

thickness of the membrane, the cell volume and solute concentration in the cells) the 

presence of concentration polarisation, adsorption of solute to the membrane and 

diffusion coupling.  

 

In order to avoid concentration polarisation at the membrane surface, both feed and 

permeate solutions were stirred with a magnetic stirrer (Fisher Scientific, UK) at 

1000 rpm for the whole duration of the diffusion experiments.  
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Before being mounted in the diffusion cells the membranes were compacted with 

ultrapure water and saturated with ES in the stirred cells. By compacting the 

membrane the swelling due to water solubility in the membrane should be limited, 

limiting the diffusing coupling effect. By pre-saturating the membrane the amount of 

solute adsorbed to the membrane during diffusion experiments should be negligible, 

allowing the use of the stationary diffusion model.    

 

Six samples of 1 mL each were taken from the feed and the permeate solution at 

regular intervals up to 121 hours. The total sample volume withdrawn from each cell 

(6 mL) was small with respect to the total cell volume (250 mL), so the error due to 

change in solution volume was deemed negligible.  

 

Diffusion experiments were performed simultaneously for the two NF membranes 

employed in this study to limit the influence of temperature on the diffusion 

coefficients.  

 

The diffusion coefficient was calculated by determined the slope 
m

mD

δ∆
of the linear 

fitted line:  
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where ∆δm was determined by SEM measurements (Section 4.3.9)  

4.5 Speciation modelling  

Modelling of the speciation of manganese and the formation of manganese and HA 

complexes as a function of pH (Chapter 5) was performed with the programme 

Visual MINTEQ 2.5 [292].  

 

The software, available free from the internet [293], models equilibria among 

dissolved, adsorbed, solid and gas species in dilute aqueous systems using an 

extensive thermodynamic database. Solute saturation indexes are taken into account, 

making it possible to model solid precipitation. 
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Modelling was carried out for the experimental conditions used in Chapter 5: 

manganese concentration of 5 mg/L, HA concentration of 5 mgC/L, 21 mM of 

background electrolyte, pH from 4 to 12.  

4.5.1 Manganese speciation 

During the filtration experiments, the stirred cell solution was pressurized with air, 

increasing the dissolved oxygen content of the feed solution and the partial pressure 

of CO2 in the air above the solution. This is expected to affect the speciation of the 

carbonates species in solution and in particular their precipitation. As a consequence, 

speciation was performed both at atmospheric pressure (1.01 bar) and at the pressure 

of 5 bar used during the filtration experiments. 

 

Mn(II) was assumed to be the only oxidation state at which manganese was present 

during the filtration experiments. Redox of MnCl2 to Mn(IV) was not considered to 

occur during the experiments, despite the presence in the stirred cells of dissolved 

oxygen at concentrations higher than in a solution in equilibrium with the 

atmosphere. The oxidation reaction of Mn(II) into Mn(IV) is very slow (several 

hours) in absence of catalytic effects, and aeration alone has been shown to be 

insufficient to precipitate manganese as MnO2, the dominant form of  Mn(IV) [213, 

214].  

 

Mn2+ may precipitate as MnCO3 (Rhodochrosite) and Mn(OH)2 (Pyrochroite) [214]. 

The formation constant K and enthalpy constant H used in Visual MINTEQ 2.5 for 

the considered species are presented in Table 4-1.  

 

Table 4-1 Formation constant  and enthalpy constant used in the speciation 

modelling  [294] 

Specie Log K H (kJ/mol) 

MnOH+ -10.5970 55.8100 

MnHCO3
+ 11.6290 -10.6000 

OH- -13.9970 55.8100 

H2CO3 (aq) 16.6810 -23.7600 
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HCO3
- 10.3290 -14.6000 

Mn(OH)2 (s) 15.194 -97.0099 

MnCO3 (s) -11 -1.88 

4.5.2 Manganese and humic acids complexation  

Modelling the complexation of metals with HA presents several difficulties, due to 

the heterogeneous and complex nature of humic binding sites, the competing binding 

of protons, since they interact with the same sites as metals ions, and the presence of 

electrostatic interactions [295].   

 

Commonly used complexation models are Model V/VI and VI-S, NICA-Donnan 

Model and Stockholm Humic Model [295-299].  

 

The NICA-Donnan Model present in Visual MINTEQ 2.5 was chosen in this study 

since it has been extensively validated over experimental data for several elements, 

such as H+, Ca2+, Cd2+, Cu2+, Pb2+, Al2+ [299-302] and Fe3+ [303, 304].  

 

The NICA-Donnan model is composed of two sub-models. The NICA sub-model 

simulates the specific binding of NOM and metals by using two binding functions 

corresponding to the carboxylic and phenolic groups of HA. A continuous 

distribution of binding site types is assumed. The Donnan sub-model simulates non-

specific binding due to the electrostatic forces caused by the net negative charge of 

dissociated carboxylic and phenolic groups. The organic matter is considered as a gel 

phase with homogenous charge and homogenous potential distribution and counter-

ions are assumed to accumulate in the gel volume.  

 

The two sub-models are interrelated, as the concentration of ions accumulated 

electrostatically competes with the ions bound specifically, and they are employed 

simultaneously. Detailed description of the NICA-Donnan model can be found in the 

literature [295, 299].   
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Since specific experimental data with manganese and HA were not available in the 

literature, NICA-Donnan model parameters derived by Milne et al. [305] were used. 

Manganese parameters were estimated using the variation of the hydrolysis 

behaviour as an indication of the likely binding capacity of humic substance [305]. 

These parameters can be used as a starting point for general speciation modelling and 

they were deemed accurate enough for the scope of this study.  

 

Also for the modelling of Mn-HA complexes, the formation of Mn(IV) species has 

not been considered.  Moreover, natural organic matter lowers the redox intensity pε 

of the solution and in turn the likelihood of any  oxidation of Mn (II) to Mn(IV) [212, 

214]. 

4.6 Solid-phase micro-extraction  

The formation of complexes between ES and HA was quantified with the nd-SPME 

methodology developed by Neale et al. [278].  

 

nd-SPME is a technique that measures the freely dissolved concentration of a 

micropollutant in a water matrix by determining, at equilibrium, the micropollutant 

uptake to a fibre [306]. nd-SPME uptake depends on the affinity of the compound for 

the fibre coating and  on the compound’s hydrophobicity [307].  

 

nd-SPME has been used to evaluate the interactions between organic micropollutants 

and NOM and determine the partition coefficient Koc between dissolved organic 

carbon and water for various micropollutants [278, 308-312]. The determination of 

Koc is based on the valid assumption that only the micropollutant freely dissolved 

and not the fraction bound to the organic matter is measured by the fibre [313].  

 

Several conditions must be verified in order for nd-SPME to give reliable results: 

equilibrium must be reached, the micropollutant must not be depleted and the matrix 

in the sample must not interfere with the fibre [306, 307, 314]. In particular, if the 

micropollutant is depleted, accurate measurements of the freely dissolved 

concentration can be prevented [315]. 
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SPME has been largely employed as a technique for extracting organic 

micropollutants from aqueous solution to be analysed by gas chromatography (GC) 

and high-performance liquid chromatography (HPLC) [316]. Both 

polydimethylsiloxane (PDMS) and polyacrylate (PA*) fibres have been used for ES 

extraction [317-321]. In this study PA* fibres were chosen to allow the comparison 

of results with the work by Neale et al. [278]. 

 

PA* fibres with a fibre coating thickness of 34.5 µm bought from Polymicro 

Technologies (Phoenix, US) were cut in 5 cm length to obtain a volume of the fibre 

Vfb of 0.77 µL. Further fibre characteristics can be found in Neale [168]. 

4.6.1 Fibre calibration and determination of Kfw 

The SPME fibres were calibrated to establish the time necessary to reach equilibrium 

and calculate the fibre-water partition coefficient Kfw for ES as a function of pH. 

 

Seven PA* fibres, 10, 25, 50, 100 µg/L of radiolabeled ES and background 

electrolyte (1mM NaHCO3 and 20 mM NaCl) were put in 100 mL solutions adjusted 

at pH from 4 to 12. The solutions were sampled before introducing the fibres to 

determine the freely dissolved ES concentration before the extraction mTOT. The 

solutions were shaken at 200 rpm at 25 ºC in a Certomat BS-1 incubator shaker 

(Sartorius Germany). At time intervals 0.5, 1, 2, 5, 8, 24, 33, 48, 96 and 146 hours a 

fibre was extracted with tweezers, cut into three pieces, added to a scintillation vial 

with 7 mL of scintillation cocktail, manually shaken and left to desorb overnight 

before being analyzed to determine the mass of ES on the fibre (mfb) by liquid 

scintillation counter (Section 4.3.5). Control solutions without fibres were also 

sampled at the same time intervals to establish ES adsorption to the glass. 

 

A kinetic approach was used to quantify Kfw at equilibrium  
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K ==                            (4.7) 

where Cfb (µg/L) is the concentration of ES in the fibre, CW (µg/L) is the 

concentration of freely dissolved ES in aqueous solution, mW (µg) is the mass of 
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freely dissolved ES in aqueous solution as sampled from the solution at the end of 

the fibre experiments and VW (L) is the volume of the aqueous solution. 

 

The uptake experimental curve was used to calculate mfb at the equilibrium by fitting 

the kinetic model 

)exp1( )(
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*
1 2tK

fb
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K
m

−−=                                      (4.8) 

where K1* and K2 are the uptake and release rate and were calculated using 

Microsoft Solver and t is time (h).  

 

To ensure negligible-depletion this condition must be satisfied [322]: 
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W
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xK                                           (4.9) 

Kfw can be assumed to be constant with micropollutant concentration [276].  

4.6.2 Determination of KHA 

The HA-water partitioning coefficient for ES, KHA, was estimated as a function of 

pH and HA concentration.  

Solutions of 100 mL volume containing 10, 25, 50 and 100 µg/L of ES, 12.5 mg/L of 

HA and background electrolyte were prepared and the pH adjusted from 4 to 12. 

Other 100 mL solutions containing 10, 25, 50 and 100 µg/L of ES, 12.5, 50, 125, 250 

mgC/L of HA and background electrolyte were prepared at pH 4 and 8.  

 

ES-HA solutions were shaken at 200 rpm at 25 ºC in in a Certomat BS-1 incubator 

shaker (Sartorius Germany) for 24 hours to allow the formation of ES-HA complexes 

and the solution was sampled to determine the initial mass of ES in solution mTOT. 

One PA* fibre was introduced in each solution and shaken for 96 hours (chosen as 

equilibrium time on the basis of the fibre calibration) before being removed and 

analysed in the liquid scintillation counter to determine mfb.  

 

By definition:  
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where CHA (µg/kg) is the concentration of ES sorbed to HA, mHA (µg) is the mass of 

ES sorbed to HA and mDOM (kg) is the total mass of dissolved HA in solution. 

 

The following equation was used to quantify KHA: 

logCHA = logKHA + ni logCW                        (4.11) 

where ni is the slope of the linear regression.  

 

KHA can be calculated from the linear regression of CHA as a function of Cw if the 

sorption isotherm is linear, i.e. ni=1 [278]. Therefore four values of Cw corresponding 

at four concentrations of ES (10, 25, 50 and 100 µg/L) were plotted on a logarithmic 

scale against the determined four values of CHA to quantify the partition coefficient 

KHA. The use of four ES concentration was necessary to determine the slope of 

equation 4.11 and therefore KHA. 

 

CW in equation 4.11 was calculated as  
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where mW was calculated with the following equation   
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where Kfw was previously determined at equilibrium as described in Section 4.6.1, 

mfb was determined during the ES-HA experiments and Vw and Vfb are known 

 

CHA was calculated as  

DOM

HA
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m

m
C =                                           (4.14) 

where mHA was calculated with the full mass balance 

mHA = mTOT – mfb – mW                             (4.15) 

The full mass balance was required since mF was similar to mHA and mTOT was 

similar to mW [278]. 

 

The fraction of ES bound to HA HAf  (%) was determined as [279]: 
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4.7 Membrane characteristics 

Two commercial TFC NF membranes, TFC-SR2 and TFC-SR3 provided by Koch 

(http://www.kochmembrane.com/support_nf_lit.html) were selected for the work 

carried out in this study. The membranes were extensively characterised (Appendix 

2) and were chosen because they have a high NOM retention and low salt retention, 

being therefore particularly suited for treating surface water. SEM images of the 

membrane surfaces are presented in Figure 4-8. 

 

a b 

Figure 4-8 Surface SEM images of (a) TFC-SR2 and (b) TFC-SR3 by SEM  
 
The two membranes are both made of a PA active layer on a PS support layer but 

they have different pore size, hydrophobicity and roughness (Table 4-2). The 

MWCO and pore size of TFC-SR2 is bigger than the MW and radius of manganese 

and ES (Table 3-3 and Table 3-5), while the MWCO and pore size of TFC-SR3 is 

smaller. Their size difference allowed the study of the effect of steric exclusion on 

solute removal and on solute-solute and solute-membrane interactions. 

Characteristics of the virgin membranes are summarized in Table 4-2. A detailed 

description of membrane characterization is present in Appendix 2. 
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Table 4-2 Characteristics of virgin TFC-SR2 and TFC-SR3 membranes 

 Average 

permeability 

(L. h-1.m-2.bar-1) 

MWCO1 

(g.mol-1) 

Estimated pore radius1 

(nm) 

NaCl retention2 

(%) 

TFC-SR2 16.10 ± 0.98 460 ± 20 0.52 ± 0.03 21± 8 

TFC-SR3 6.74 ± 1.79 167 ± 10 0.38 ± 0.03 30 ± 8 

 pH of point of zero 

charge3 

(-) 

Roughness 

(nm) 

Thickness  ∆δm  

(µm) 

Contact angle 

(º) 

TFC-SR2 4.25 ± 0.01 17.9 ± 0.6 158 ± 3 61.5 ± 2.6 

TFC-SR3 3.84 ± 0.01 5.2 ± 0.6 142 ± 1 48.5 ± 1.4 
1 pressure 10 bar, neutral pH 
2 20 mM NaCl and 1 mM NaHCO3, pressure 5 bar, pH 6 
3 background electrolyte 1 mM NaHCO3 and 20 mM NaCl 

4.8 Quality assurance and quality control 

This section describes the procedures and practices of quality assurance and control 

employed in this work [323].  

 

The laboratory in which the experiments were conducted was kept tidy and regularly 

cleaned. The areas in which experiments with radiolabeled ES were carried out were 

decontaminated at the end of each experiment using RBS® solution (Sigma Aldrich, 

UK) and checked for radioactivity every month or when a spill occurred using a 

portable Geiger–Müller counter. Protective personal equipment (laboratory coat, 

nitrile gloves, and safety goggles) was worn when in the laboratory.  

 

All chemicals were of analytical grade, dated once opened and discarded when 

outdated, or when evidence of deterioration was detected. All solutions were 

properly labelled and stored according to the type of solute, as detailed in Section 

4.2. All glassware used in the laboratory was of high quality borosilicate glass. 

Glassware and laboratory supplies in contact with chemical solutions were rinsed 

with ultrapure water, washed with cleaning solution, rinsed thoroughly with ultrapure 

water and dried with hot air. The cleaning solutions were chosen according to the 

type of solute. Solutions of 8% in volume of acetic acid, (Fisher Scientific, UK) were 

employed for inorganic solutes, NaOH solutions (5% in weight) were employed for 
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organic solutes and RBS® solutions (30% in volume) were used to decontaminate 

from radiolabeled ES. All chemical waste and radioactive waste was stored and 

disposed according to the university regulations.  

 

Samples were analysed according to standard methods [323], as described in 

Sections 4.3.1-4.3.5. All analytical instruments were calibrated prior to the analysis 

to obtain a calibration curve with concentrations bracketing the range of 

concentrations in the samples. The calibration was verified during sample analysis by 

analysing a standard at specific intervals. Limits of detection were identified for each 

analyte. Instrument blanks, i.e. samples containing ultrapure water only, were 

analysed before, after and during sample analysis to determine instrument 

contamination. Equipment rinse blanks were analysed regularly to check the 

effectiveness of the decontamination procedures. All samples were analysed in 

triplicate and the average of the three measurements was reported. Instrumental 

errors were determined as the standard deviation of the three measurements (Table 

4-3). 

 

Table 4-3 Instrumental errors 

 Error E (%) 

Pipette 0.6 

Balance 0.1 

Volumetric flask 0.04 

TOC 6 

ICP-OES 5 

Liquid scintillation counter 0.8 

 

Loss of ES due to volatilisation and adsorption to glass and plastic (i.e. adsorption to 

the plastic stirrer used during stirred cells experiments) was evaluated. Volatilisation 

of α-ES and β-ES from aqueous solution might be expected due to their low water 

solubility (Table 3-5). 900 mL feed solutions containing ES were prepared in 1 L 

closed glass bottles and left to stir overnight before experiments were conducted 

(Section 7.2). The concentration of α-ES and β-ES in air was estimated from the 
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Henry’s constant [280] and resulted to be 0.03% and 0.002% respectively. As a 

result, volatilisation was considered negligible.  

 

In order to estimate adsorption to glass and plastic, ten solutions containing 10 µg/L 

of ES and background electrolyte (Section 4.2) and adjusted at pH 3-12 were 

prepared in glass bottles containing plastic stirrers. Solutions were left stirring for 96 

hours and sampled at time 0, 33, 48, and 96 hours. The variation of concentration of 

ES after 96 hours was ±1.8%. Adsorption of ES to glass and plastic was therefore 

considered negligible.   

 

The determination of the error in calculating flux, retention and solute adsorption 

during filtration experiments presented several challenges. When a quantity is a 

function of measured quantities, the error is estimated via error propagation. The 

error of the measured quantities is calculated and it is propagated via mathematical 

expressions to determine the error of the quantity [324]. 

 

By following the rules described above, the error of flux could be determined by 

propagating the error linked with measurement of the permeate volume and the 

membrane area (equation 2.3), the error of retention could be determined by 

propagating the error in measuring permeate and feed concentration (equation 2.2) 

and the error of adsorption by propagating the errors in permeate, feed, concentrate 

retention and volume (equation 2.4).  

 

However, flux, retention and adsorption not only depend on the above listed 

quantities but, as explained in Chapter 2, are affected by other variables like pressure 

and temperature that are not taken into account in the formulas used to calculate 

them. As a result, when the same experiment is repeated several times, the variability 

in flux, retention and adsorption is higher that the error calculated by propagating the 

errors in the measurements.  

 

For these reasons, in the membrane field, experiments are sometimes repeated in 

triplicate and the standard deviation of the obtained retention and adsorption is used 
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to calculate the experimental error [325]. Nevertheless, statistical analysis of 

experiments repeated only three times is questionable.  

 

In this study it was not possible to repeat all experiments three times or more due to 

the limited number of membrane coupons available. As a consequence, an analysis 

of the factors affecting the reproducibility of results was carried out. Pressure in the 

stirred cells during the experiments had a variability of ± 0.8% while the variability 

in pressure of repeated experiments (conducted at the same pressure) was ± 0.44%. 

Variability in temperature among experiments was ± 5%. The highest variability (± 

15%) was caused by the difference in pure water flux among different membrane 

coupons (all the other conditions being the same). A new membrane coupon was 

used for each experiment and, even if the coupons belonged to the same flat sheet, 

differences in flux were observed.  

 

The variability in pure water flux of different membrane coupons is the factor that 

most affected retention and adsorption results. By repeating in triplicate and 

duplicate experiments with coupons that had a pure water flux ± 15% of the average 

pure water flux, the retention had a variability of ± 8% and adsorption had variability 

of ± 10%. The variability in retention and adsorption cannot be rigorously defined 

error as it is not calculated using standard deviation.  The variability values above 

were used for all the experiments in this work in which results from different 

membrane coupons were compared. For quality control, only coupons with a pure 

water flux ± 15% of the average pure water flux were employed in this study. 

 

For experiments that use the same membrane coupons, such as experiments carried 

out for the determination of the average membrane pore size (Appendix 2), only 

instrumental errors were considered and the error propagation rule was adopted. In 

these cases, the error was obviously lower, as the variability due to flux difference 

among membrane coupons was eliminated.  
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5. Transport models 

Transport of solutes through NF membrane is described by transport to the 

membrane surface and transport across the membrane.   

5.1 Film theory 

Solute transport to the membrane surface is described by the film theory [19].  

 

It is assumed that outside the boundary layer, i.e. at a distance δ from the membrane, 

complete mixing occurs, so cf is constant, while in the boundary layer the solute 

concentration increases with proximity to the membrane, reaching a maximum value 

cmf at the membrane surface (Figure 5-1). The accumulation of solute at the 

membrane surface results in a diffusive back flow towards the bulk feed.  

 

Figure 5-1 Concentration polarisation according to the film theory (adapted from 

[19]) 

 
From the mass balance on the boundary layer among the flux towards the membrane, 

the back flow towards the bulk feed and the permeate flow: 

pvv cJ
dx

dc
DcJ =+ ∞                       (5.1) 
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 where c is the solute concentration at axial distance x from the membrane and ∞D is 

the diffusion coefficient of the solute (at infinite dilution). 

 

Integrating using boundary conditions and introducing the real retention Rr 

mf

p

r
c

c
R −= 1                              (5.2) 
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1
ln                         (5.3) 

  

where kf is the mass transfer coefficient defined as:  

δ
∞=

D
k f                                          (5.4) 

 

According to equation 5.3 the observed retention is lower than the real retention 

(cmf>cf) therefore (cp/cmf < cp/cf) and (1- cp/cmf > 1- cp/cf) and as the concentration 

polarisation increases, Jv /kf increases and the observed retention become lower.  

 

The ratio Jv/kf, represents the back-diffusion transport of solute in the boundary layer 

and it can be used as an indication of the hydrodynamic operating conditions. Jv/k 

shows the ratio of solute transport towards the membrane by convection and solute 

back transport by diffusion [19].  The smaller than Jv/kf ratio the closer the solute 

concentration at the membrane will be to the concentration in the bulk [326]. When 

Jv/kf is larger than unity convection dominates solute transport to the membrane 

surface, when it is less than unity, back-diffusion dominates solute transport to the 

membrane surface [87]. 

 

From equation 5.3 the smaller Jv/kf the closer the real retention is to the actual 

retention, indicating lowest concentration polarisation. Since Jv/kf increases with 

pressure (Jv increases with pressure while kf is constant), the higher the pressure the 

higher the concentration polarisation at the membrane surface.  
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Various empirical equations have been developed to determine kf [327]. kf depends 

on the system geometry, hydrodynamic conditions (cross flow velocity), solute 

diffusivity and solvent viscosity.   

 

In this study, the mass transfer coefficient for the stirred cells was determined using 

the following expression [113, 328]:  

 
567.0'ωkk f =                                       (5.5) 

  

where ω is the stirring speed and 
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with rsc is the radius of the cell and ν sis the solution kinematic viscosity.  

 

The empirical equations for the calculation of the mass transfer coefficient have been 

demonstrated to be valid for stirred cells of different geometries [290, 329]. 

 

According to equations 5.5 and 5.6, kf depends on the type of solute, on the geometry 

of the membrane and on the crossflow velocity, but it is independent from the solute 

concentration at the membrane surface. The independence of concentration 

polarisation from cmf was demonstrated by van den Berg et al. [329].  

5.2 Hydrodynamic Model 

As explained in Section 2.2.3, in this work the hydrodynamic model has been chosen 

to describe transport of solutes across the membrane [103].  

 

According to the hydrodynamic model the flux of the solute Js is expressed as: 

cK
J

dx

dc
DKJ c

v

ds
ε

+−= ∞                                                                      (5.7) 

where Kd is the hindrance factor due to diffusion and Kc is the hindrance factor due 

to convection.   
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The transport of solute though the membrane is therefore composed by a diffusion 

term, dependent on the solute concentration, and a convection term, dependent on the 

permeate flux (i.e. on pressure).   

 

Kc and Kd are dependent on λ and they have been calculated as [328] 

Kc = (2 – Φ )(1 + 0.054 λ – 0.988 λ2 + 0.441 λ3)                                                    (5.8) 

Kd = 1- 2.3 λ + 1.154 λ2 + 0.224 λ3                                                                         (5.9) 

with 
p

s

r

r
=λ                                          (5.10) 

  

Since in NF membranes a distribution of pore sizes exists, empirical equations have 

been developed for expressing λ as a function of the pore size distribution [101]. Due 

to the errors linked to the empirical equations and to complexity of the 

characterisation of membrane pore distribution, equation 5.10 was used in this study. 

A small deviation between model prediction and experimental values is expected as a 

result [27]. 

 

Φ  is the solute partitioning coefficient in the membrane polymeric matrix defined as 

[27]:  

mp

imp

mf

mfi

c

c

c

c
==Φ                                                                       (5.11) 

where cimf is the concentration inside the membrane at the feed side, cimp is the 

concentration inside the membrane at the permeate side and cmp is the concentration 

at the membrane surface on the permeate side, as represented in Figure 5-1. 

 

Integrating equation 5.7 with the boundary conditions within the pores and using 

equation 5.2 to express retention, the hydrodynamic model can determine the real 

solute retention as a function of the hydrodynamic parameters:  

)1)(exp(1
1

c

c
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K
R

Φ−−−

Φ
−=                            (5.12) 

 

where Pe is the Peclet number 
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∞

=
DK

LJK
Pe

d

vc

ε
                                                                (5.13) 

with L the active layer thickness. 

 

Using equations 5.12 and 5.3 the observed solute retention can be predicted by the 

model. The only unknown parameter is the partition coefficient Φ  since cimf, cimp 

and cmp in equation 5.11 cannot be measured. A purely steric model, valid only when 

interactions between solute and membrane can be considered negligible, is used to 

determine Φ  as follows [103] 

2)1( λ−=Φ                                                      (5.14) 

 

Other expressions for Φ  have been developed in order to take into account different 

shapes and  orientations of the molecules [148]. For solute whose interactions with 

the membrane cannot be considered negligible, such as hydrophobic organic 

micropollutant that adsorb to the membranes, expressions for Φ  dependent both on 

steric exclusion and micropollutant-membrane affinity have been developed [27, 90]. 

 

Verliefde et al. [27] proposed the following equation for Φ :  








 ∆
−−=Φ

Tk

G

b

iexp)1( 2λ                        (5.15) 

where ∆Gi expresses the solute-membrane affinity as free energy of interaction 

between solute and membrane, kb is the Boltzmann constant and T is temperature. 

Equation 5.15 was shown to predict satisfactorily transport of several organic 

micropollutants through NF and RO [32]. 

 

If λ is constant, a decrease in ∆Gi results in an increase in Φ , that is an increase in 

solute-membrane affinity and a decrease in retention (equation 5.12). Vice versa if 

Φ  decreases repulsion between solute and membrane increases and solute retention 

is improved.  
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5.3 Limitations of the Hydrodynamic Model 

The hydrodynamic model described in the previous section is based on the following 

assumptions [103]: 

- Solutes are rigid spheres of radius rs that behave as hydrodynamic particles  

- Membrane have rigid cylindrical pores of radius rp. 

- λ expressed with equation 5.10 is a fixed property of the membrane 

- If λ > 1 solute retention is total 

- Electrostatic forces between solute and membrane are not taken into account 

- The effects of osmotic pressure are not taken into account 

 

The above listed assumptions constitute also the model limitations. Solutes do not 

behave as rigid spheres and their molecular structure (width, length) influences 

retention [71, 73, 76, 148]. Membrane pores are not rigid and cylindrical, pores 

bigger and smaller than the average rp exist and solute transport can occur through 

these existing bigger and smaller pores. Moreover, the same existence of pores in NF 

is under discussion with some authors referring to “free volume” within the active 

layer [50, 51]. As a consequence, retention of solutes whose rs is bigger than rp (λ > 

1) can be lower than the theoretical 100% retention predicted by the model.  

 

In order to use the hydrodynamic model when λ > 1 and retention is less than 100%, 

the model can be fitted using the obtained retention results for the studied solute to 

determine a new pore radius rp
*.  rp

* represents  the average radius of an 

“hypothetical” membrane whose hindrance to the studied solute passage is 

equivalent to the hindrance experienced by the solute through the actual membrane 

[27, 54].  

 

If electrostatic forces between the solute and the membrane cannot be considered 

negligible, the modified Nernst-Planck equation, which contains a transport term due 

to the electric field gradient should be employed to describe solute transport through 

the membranes [54, 100, 105, 330, 331].  
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5.4 Sieving coefficients  

Solute retention can be expressed through sieving coefficients, with So defined as the 

observed sieving coefficient and Sa as the actual (real) sieving coefficient [101, 111, 

113]: 

oRS −= 10                                                        (5.16) 

ra RS −= 1                                                                      (5.17) 

Equations 5.12 and 5.13 can be expressed as: 

)1)(/exp(1 cdcv

c

a
KDKLKJ

K
S

Φ−−−

Φ
=

∞ε
                     (5.18) 

When Sa is plotted against Jv a characteristic curve is obtained according to equation 

5.18 (Figure 5-2): at low values of Jv (i.e. pressure) Sa is maximum (i.e. retention is 

minimum) and with increasing Jv Sa decreases up to an asymptotic value 

( cKS Φ=∞ ), which represents the maximum theoretical retention of the membrane 

for that particular solute.  

 

So can be plotted against Jv by substituting So to Sa in equation 5.18 using equations 

5.3, 5.16 and 5.17. The plot of So against Jv (Figure 5-2) shows a characteristic U-

shaped curve: at low Jv the plot is similar to the curve of Sa, reaches a minimum with 

increasing Jv  (i.e. maximum observed retention) and increases at high  Jv peeling 

away from the Sa curve due to concentration polarisation [101, 113].  The position of 

the minimum of the curves with respect to the x and y axes depends on λ, Kd and Kc, 

kf and L/ε and can be determinated by differentiating equation 5.18 with respect to Jv. 

At low Jv retention increases with Jv because diffusion dominates transport, so while 

water passage increases with pressure, solute transport does not change as it is driven 

by the concentration gradient and not by pressure. As Jv goes to zero retention tends 

to zero (So and Sa tend to one) as feed and permeate equilibrate by diffusion [101]. 
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Figure 5-2 Sieving coefficients S0 and Sa as a function of Jv according  

 

According to equation 5.18 Sa (and therefore Rr) can be predicted as a function of Jv 

once the solute characteristics (rs and ∞D ), the membrane characteristics (rp and L/ε) 

and Φ  are known.  
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6. Manganese and humic acid removal mechanism 

6.1 Introduction 

The investigation of the co-influence of solute-membrane interactions and solute-

solute interactions on solute removal and transport by NF is of paramount 

importance to explain NF removal mechanisms.  

 

This chapter aims to investigate the role of solute-membrane and solute-solute 

interactions in mechanisms of removal of inorganic solutes and NOM. As explained 

in Section 3.4, manganese was chosen as model inorganic and HA were chosen as 

representative of NOM. Manganese is one of the most abundant inorganic solutes in 

surface water in Scotland and exceeds its regulatory limit more frequently than other 

inorganic elements at the outlet of Scottish water treatment plants (Figure 3-2). 

Scottish waters are rich in organic matter and NOM removal is necessary to avoid 

the potential formation of carcinogenic trihalomethanes [36, 37].  Commercial HA 

were chosen to represent NOM because they have been extensively characterised in 

the literature (Section 3.4.1).  

 

Removal mechanisms of manganese from drinking water by NF will be for the first 

time systematically investigated. As explained in Section 3.4.2, NF has been shown 

to be a suitable process for manganese removal, especially considering the 

drawbacks of conventional treatments and the insufficient removal achieved by UF 

and MF if manganese precipitation is not achieved before filtration. However, 

manganese removal mechanisms by NF have never been evaluated before. Removal 

of divalent ions by NF depends on the type of solute as it is affected by speciation 

(solute-solute interactions) and solute-membrane interactions and results obtained for 

other divalent ions or metal cannot be generalised. A dedicated study is therefore 

required. 

 

Relating solute removal and flux to solution pH has been shown to be mandatory for 

understanding removal mechanisms by NF membranes, as the variation of solution 
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pH affects not only membrane characteristics (as described in Section 2.3.1) but also 

the different forms (species) at which solutes exist [24]. Different species of the same 

element exhibit different size, charge and mobility [214, 332] and they are removed 

differently by NF. Despite this, the number of NF studies in which a detailed 

knowledge of solute speciation is related to the membrane removal mechanisms is 

limited.  

 

Furthermore, the impact of NOM on manganese retention by NF has not been taken 

into account in previous studies. Manganese is known to form complexes with HA 

[209-212] but the influence of complexation (solute-solute interactions) on 

manganese removal is unknown.  

 

The study of removal of manganese and HA complexes will increase the knowledge 

of the role of inorganic solutes-NOM interactions in removal mechanisms by NF, 

that, as outlined in Section 2.3.2, has so far received less attention in the literature. 

NF membranes TFC-SR2 and TFC-SR3 are particularly indicated for investigating 

the role of membrane characteristics in the removal of manganese (with and without 

HA) because their pore size (0.52 nm for TFC-SR2 and 0.38 nm for TFC-SR3) is 

respectively bigger and smaller than the manganese hydrated radius (0.44 nm). 

Hydrated radius has been shown to predict ion passages through membranes better 

than crystal and Stokes radius [69].   

 

The objectives of this chapter are to investigate: 

- the impact of speciation and manganese complexation with HA (solute-solute 

interactions) on manganese and HA removal by NF; 

- the role of membrane characteristics, pore size and charge (solute-membrane 

interactions) on manganese  and HA removal by NF; 

- the mechanisms of manganese and HA removal by NF. 

 

In this chapter, manganese speciation and complexation with HA as a function of pH 

will be firstly quantified using Visual MINTEQ 2.5 [292]. Finally, removal of 
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manganese with and without HA will be determined and underlying mechanisms 

explained.  

6.2 Filtration protocol 

Filtration experiments were carried out as described in Section 4.4. The manganese 

concentration used in the experiments was 5 mg/L, as this is the typical concentration 

found in Scottish water (Section 3.2). HA concentration was 5 mgC/L, representing 

typical NOM concentration found in natural water [207]. Electrolyte background 

solution consisted of 1 mM NaHCO3 and 20 mM NaCl (Sections 4.2).  

 

The feed solution (500 ml) was prepared at the desired pH (varied from 4 to 12) the 

day before and stirred overnight at 100 rpm at ambient temperature (21 ± 2 ºC) to 

allow the formation of species and complexes. All experiments were carried out at 

pressure 5 bar. Permeate was collected in three aliquots of 40 mL each (24% 

recovery).  

 

Three types of experiment were conducted:  

1. Manganese only: feed solution contained 5 mg/L of manganese and 

background electrolyte.  

2. HA only: feed solution contained 5mgC/L of HA and background electrolyte.  

3. Manganese and HA: feed solutions contained 5 mg/L of manganese, 5 mgC/L 

of HA and background electrolyte.  

6.3 Manganese and humic acids speciation  

Visual MINTEQ 2.5 [292] was used in this study to model both manganese 

speciation and manganese and HA complexation as a function of pH as described in 

Section 4.5.  

6.3.1 Manganese speciation  

Manganese speciation was performed both at atmospheric pressure (1.01 bar) and at 

the pressure of 5 bar used during the filtration experiments. Figure 6-1 shows the 

variation of the manganese concentration, expressed as logarithmic of its activity, 
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with pH at the two considered pressures. The activity coefficients were  calculated 

with the Davies equation [292, 332]: 

( ) 









−

+
=− I

I

I
zzactivityLog 15.0

1
5.0 21                 (6.1) 

where z1 and z2 are the charges of the ions in which manganese dissociate (Mn2+ and 

Cl-1) and I is the ionic strength.  

 

As expected, the higher partial pressure of CO2 affects the precipitation of carbonates 

in solution. At atmospheric pressure, MnCO3 precipitation starts at pH 7.5 (dashed 

line in Figure 6-1a) and it is completed at pH 10, while at 5 bar, it starts at pH 7.1 

(dashed line in Figure 6-1b) and it is completed at pH 9.6. At higher pressure the 

speciation graph is “shifted” to the left and a higher content of solids in solution at 

lower pH occurs.  
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Figure 6-1 Manganese speciation in absence of HA as logarithmic of the activity. 

Mn concentration: Mn concentration 5 mg/L, background electrolyte 1 mM NaHCO3 

and 20 mM NaCl. Pressure: (a) 1.01 bar (b) 5 bar.  

 
Apart from a slight shift in the pH of manganese precipitation, at both pressures the 

speciation graphs are quite similar. At low pH the majority of manganese is 

dissolved in solution (TOTMndiss) as Mn2+, MnCO3 (aqueous), MnHCO3
+ and 

MnOH+. Mn2+ constitutes the majority of the dissolved manganese present in 

solution.  At pH greater than 7 manganese starts precipitating as MnCO3 (solid) and 
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the total concentration of dissolved manganese decreases. The concentration of 

dissolved Mn2+, MnHCO3
+ and MnOH+ decreases and the concentration of MnCO3 

(aqueous) stays constant.   

 

Figure 6-1b has been redrawn showing the species of manganese as percentage of the 

total manganese (Figure 6-2).  At lower pH all manganese is dissolved while with 

increasing pH manganese starts precipitating as MnCO3 (solid). As indicated in 

Figure 6-1b, where the logarithmic scale of the activity allows visualising the 

distribution of the dissolved species, at lower pH dissolved manganese is mainly 

present as Mn2+. At pH > 9.6 dissolved manganese constitutes only 1% of the total 

manganese and it is present as MnCO3 (aqueous), while 99% of the manganese in 

solution is precipitated as MnCO3 (solid). 
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Figure 6-2 Manganese speciation in absence of HA as percentage of total manganese 

concentration: Mn concentration 5 mg/L, background electrolyte 1 mM NaHCO3 and 

20 mM NaCl, pressure 5 bar.  

 

The obtained speciation graphs are in agreement with published investigations on the 

chemistry of manganese in natural waters. Chisweel and Mokthar [211, 213] 

observed that in acidic conditions and in absence of complexing ligands the stable 

form of manganese is Mn2+. MnCO3 (solid) is the most likely form of insoluble 

Mn(II), while MnO and Mn(OH)2 only precipitate at pH>11 when the redox intensity 

of the solution, pε, is negative (reducing solutions). In the pH range of natural waters 

pε is usually between 12 and 14 [214], confirming that manganese precipitates as 

MnCO3.  
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6.3.2 Manganese and humic acids complexation 

Modelling of complex formation between manganese and HA was performed as 

described in Section 4.5.2 both at atmospheric pressure (1.01 bar) and at the pressure 

of 5 bar used during the filtration experiments. Figure 6-3 shows the variation of the 

manganese concentration, expressed as logarithmic of its activity, with pH at the two 

considered pressures in the presence of HA.  

 

4 6 8 10 12
-10

-8

-6

-4

Mn-HA

Mn
2+

L
o
g

 a
c
ti
v
it
y
 (

m
o

l.
L

-1
)

pH (-)

MnOH
+

MnCO
3
 (s) presentTOTMn

diss

MnHCO
3

+

MnCO
3
(aq)

(a) 

4 6 8 10 12
-10

-8

-6

-4

Mn-HA

Mn
2+

L
o
g

 a
c
ti
v
it
y
 (

m
o

l.
L

-1
)

pH (-)

MnOH
+

MnHCO
3

+

MnCO
3
(aq)

TOTMn
diss MnCO

3
 (s) present

(b) 

Figure 6-3 Manganese speciation in the presence of HA as logarithmic of the 

activity. Mn concentration: Mn concentration 5 mg/L, HA 5 mgC/L, background 

electrolyte 1 mM NaHCO3 and 20 mM NaCl. Pressure: (a) 1.01 bar (b) 5 bar.  

 

As for the case without HA, at atmospheric pressure MnCO3 precipitation starts at 

pH 7.5 and it completed at pH 10, while at 5 bar it starts at pH 7.1 and it is completed 

at pH 9.6, indicating that  HA does not influence the pH at which the precipitation 

occurs. Also in this case the effect of pressure on speciation is to “shift” the graph to 

the left. 

 

The presence of HA does not change dramatically the speciation of dissolved 

manganese. At low pH the majority of manganese is dissolved in solution 

(TOTMndiss), mainly as Mn2+. MnCO3 (aqueous), MnHCO3
+ and MnOH+ are also 

present. Some of the dissolved manganese, mainly Mn2+, is complexed with HA. At 

pH greater than 7 manganese starts precipitating as MnCO3 (solid) and the total 

concentration of dissolved manganese decreases. As for the speciation graphs 
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without HA, with increasing pH the concentration of dissolved Mn2+, MnHCO3
+ and 

MnOH+ decreases and the concentration of MnCO3 (aqueous) stays constant. The 

concentration of Mn complexed with HA increases with pH and becomes constant 

with the formation of MnCO3 (solid). 

 

The presence of Mn-HA complexes impacts the formation of precipitated MnCO3. 

As observed by comparing Figure 6-1 and Figure 6-3 much less precipitate is formed 

when HA are present since Mn-HA complexes are formed.  

 

When the species are presented as percentage of the total manganese in solution 

(Figure 6-4), the influence of HA on manganese speciation is more obvious. At low 

pH all manganese is dissolved, mainly as Mn2+ (as depicted in Figure 6-3). At higher 

pH dissolved manganese decreases as it starts precipitating as MnCO3 (solid) and it 

complexes with HA. While it is not possible to identify a pKa value for HA, due to 

their complexity and heterogeneity,  the majority of HA functional groups dissociates 

at pH > 4 [225, 229], so HA are expected to be negatively charged in the pH range 

considered. The formation of Mn-HA complexes is limited at low pH and is 

maximum at pH above 7.  Due to the formation of Mn-HA complexes the quantity of 

precipitate when HA are present is 35% less than the precipitate formed when HA 

are not in solution (Figure 6-2).  
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Figure 6-4 Manganese speciation in the presence of HA as percentage of total 

manganese concentration: Mn concentration 5 mg/L, HA 5 mgC/L, background 

electrolyte 1 mM NaHCO3 and 20 mM NaCl, pressure 5 bar.  
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The obtained speciation graph of manganese in the presence of HA must be used 

with caution, given the high number of assumptions made by the complexation 

model and the lack of experimental data validating the results (Section 4.5.2). 

Despite these limitations, the results are in general agreement with findings for other 

inorganics.  

 

Organic matter has been shown to influence the solubility of inorganic compounds 

[209] and in particular to increase metal ion solubility through binding [207, 299, 

304]. In the case of manganese, the formation of Mn-HA complexes reduce the 

quantity of precipitated MnCO3 by 35%. Figure 6-4 is in agreement with speciation 

graphs obtained for Fe3+ in the presence of HA [303] and iron and manganese have 

been shown to have very similar complexing characteristics for carbonates and 

sulphates [333]. The increase of inorganic-HA complex formation with pH has been 

observed for Fe3+ and Ca2+ and it has been attributed to the availability of carboxyl 

functional groups of HA at higher pH [125, 304]. 

6.4 Membrane flux  

Flux of ultra pure water was determined with equation 2.2 by measuring the volume 

of permeate produced for half an hour before and after solute filtration at the same 

pressure employed during the experiments in order to check changes in membrane 

permeability during solute filtration (Section 4.4). The ratio of J, pure water flux 

after the experiments and Jo pure water flux before the experiments can be used as an 

indicator of fouling, since if flux decline occurs the J/J0 ratio would be lower than 

one.  

 

The ratio of J and Jo as function of pH is presented in Figure 6-5a. Water flux 

decline after the experiments was not observed, showing that membrane fouling did 

not occur. Lack of fouling can be attributed to the short duration of the experiments, 

the low concentrations of the solutes and the relatively low flux obtained in the 

stirred cells. The absence of fouling allowed relating the obtained retention results 

directly to the membrane characteristics (solute-membrane interactions) and solute 
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speciation (solute-solute interactions), without considering membrane and solute 

modification due to the formation of the fouling layer. 
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Figure 6-5 (a) Ratio of pure water flux after (J) and before (J0) experiments as a 

function of pH, (b) Permeability (Jv/pressure) of TFC-SR2 and TFC-SR3 as a 

function of pH. Mn concentration: 5 mg/L, HA concentration: 5 mgC/L, pressure: 5 

bar, background electrolyte 1 mM NaHCO3 and 20 mM NaCl.  

 
In some cases, especially for TFC-SR3, water flux after experiments was enhanced, 

resulting in a flux ratio greater than one. This phenomenon was observed with HA in 

a study by Hong and Elimelech [125] and was attributed to the hydrophilization of 

membrane surface by adsorbed solutes. Adsorption of negative solutes, such as HA, 

can increase the membrane negative charge, thus its hydrophilicity. However in this 

study, flux enhancement occurred for TFC-SR3 also when Mn2+ alone was present 

indicating that ions might enhance permeability also. TFC-SR2 experienced a slight 

flux ratio increase at higher pH, while no trend could be observed for TFC-SR3.  

6.5 Manganese and humic acid retention  

Manganese and HA retention was calculated using equation 2.3 for manganese only, 

HA only and when both manganese and HA were present (Figure 6-6). 

 

Manganese retention was higher for the tighter TFC-SR3 than for looser TFC-SR2 

(Table 4-2). Manganese retention by TFC-SR3 did not show high variation with pH 

and it was high (94.7%) also at lower pH when manganese is mainly present as 

dissolved Mn2+ (Figure 4-3). Hydrated radius for Mn2+ has been calculated to be 0.44 
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nm [70], while the average pore radius of TFC-SR3 is 0.38 nm (Table 4-2). When 

the hydrated radius is larger than the membrane pore radius, as for TFC-SR3, steric 

hindrance effects are predominant [67]. As a consequence, ions are hindered to enter 

the pores and size exclusion is the main removal mechanism.  

 

Manganese retention by TFC-SR2 was high at pH 4 (92.2%) and at pH 10-12 

(99.1%) with a minimum (37.3%) at pH 8 (Figure 6-6). At pH 10 and 12 manganese 

is predominantly present as visible MnCO3 (solid) that precipitates on the membrane, 

so manganese removal was mainly due to size exclusion. Between pH 4 and 7 almost 

all manganese is present as soluble Mn2+. High manganese retention at pH 4 cannot 

be explained by steric hindrance, as the hydrated radius of Mn2+ (0.44 nm) is smaller 

than the average pore size of TFC-SR2 (0.52 nm), nor by charge repulsion forces 

between the membrane surface and the solute, as TFC-SR2 has point of zero charge 

at pH 4.25 (Table 4-2). Minimum retention of ions is expected in correspondence of 

the point of zero charge of the membrane surface, when the electrostatic repulsion 

forces are minimum [53]. In this study, instead, minimum retention for TFC-SR2 

occurred at pH 6 and at pH 8, higher that the point of zero charge of the membrane 

surface.  

 

Childress and Elimelech [24] observed  minimum retention of NaCl at pH higher 

than the pH corresponding to the point of zero charge of the membrane surface. They 

inferred that minimum retention occurred at the point of zero charge of the 

membrane pores. The streaming potential, hence the charge, of capillary pores might 

differ from the streaming potential measured on the membrane surface because the 

Debye length (i.e. thickness of the double layer) may be larger than the pore radius, 

resulting in double layer overlapping [334]. Moreover, zeta potential of capillary 

pores has been demonstrated to depend on the pore radius, on the surface 

conductivity of the walls, on the double layer thickness and on the fixed charge of 

the capillary walls [335, 336]. These parameters are not taken into account in 

equation 4.3 (Section 4.3.7) employed for determining the zeta potential of surfaces.   
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According to  Childress and Elimelech [24], when pores are charged, the electrostatic 

repulsion between the membrane functional groups causes the pore to expand. When 

pores are neutral, i.e. at their point of zero charge, the pore size would not be 

reduced, flux would be maximum and salt retention minimum. They inferred that for 

“loose” porous membranes pore charge could be more important than surface charge 

in controlling flux and salt retention, since pore charge might become important 

when solutes are not hindered to enter the pores. Pontalier et al. [68] also inferred 

that when the hydrated radius is smaller than the pore radius, ions can enter the pores 

and electrostatic and friction forces within the pores acquire importance.  
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Figure 6-6 Manganese and humic acid retention for (a) TFC-SR2 and (b) TFC-SR3 

as a function of pH.  Manganese concentration: 5 mg/L, HA concentration: 5 mgC/L, 

pressure: 5 bar, background electrolyte 1 mM NaHCO3 and 20 mM NaCl 

 

For TFC-SR2 and TFC-SR3, minimum retention of NaCl and slight increase in 

permeate flux was observed at pH 6 and 8 (Appendix 2), corroborating the theory by 

Childress and Elimelech [24].  It is therefore inferred that for the loose TFC-SR2 

lower manganese retention at pH 6 and 8 occurred at the point of zero charge of the 
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membrane pores. Furthermore, a slight increase in permeate flux was observed at pH 

6 and 8 (Figure 6-5b). This mechanism might also explain the increase of retention at 

pH 4, where the pores will be positively charged and charge repulsion could occur.     
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Figure 6-7 Retention of aromatic fraction of HA for TFC-SR2 and TFC-SR3 as a 

function of pH.  Manganese concentration: 5 mg/L, HA concentration: 5 mgC/L, 

pressure: 5 bar, background electrolyte 1 mM NaHCO3 and 20 mM NaCl 

 

Retention of HA was high for both membranes (about 80%) and did not present a 

specific trend with pH. HA were retained by size exclusion by both membranes. 

When HA retention was determined by calculating HA concentration with ultraviolet 

absorbance (Section 4.3.4), both membranes showed high retention (83-93% for 

TFC-SR2 and 80-100% for TFC-SR3) and no trend with pH could be observed 

(Figure 6-7). Ultraviolet absorbance measures the aromatic part of HA [207], 

indicating that both membranes removed mainly the aromatic compounds of the HA.   

 

The presence of manganese did not affect HA retention. Also manganese retention 

was not affected by the presence of HA, as evident by the same trend of the curves 

for Mn2+ only and for Mn2+ and HA in Figure 6-5. Several studies documented the 

formation of complexes between manganese and HA [209-212] and the NICA-

Donnan model predicted that 37% of manganese in solution would complex to HA at 

pH above 7.2 (Figure 6-3). However, in this study enhancement of manganese and 

HA retention when both elements were present was not observed. In the case of 

TFC-SR3 membrane, high retention was already achieved due to size exclusion 

mechanisms, while for TFC-SR2 precipitation overlapped with complexation effects.  
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6.6 Mass deposited on the membranes  

Mass deposit on the membranes was determined with equation 2.4 to substantiate the 

results obtained in the previous section.  
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Figure 6-8 (a) Percentage of manganese deposit and (b) HA deposit on TFC-SR2 

and TFC-SR3 as a function of pH.  Manganese concentration: 5 mg/L, HA 

concentration: 5 mgC/L, pressure: 5 bar, background electrolyte 1 mM NaHCO3 and 

20 mM NaCl 

 
As shown in Figure 6-8 the deposit of solutes was low, generally less than 10%. 

Nevertheless, when manganese only was present in solution, manganese deposit was 

higher for pH 10 and 12, as manganese deposited as precipitated MnCO3, and the 

membranes showed a yellow-brownish layer. For both membranes, manganese 

deposit at high pH was generally less when HA were present, with the exception of 

TFC-SR2 at pH 12. Considering the high error associated with HA mass deposit 

calculation (10.0%), HA deposit with and without manganese can be considered 

negligible for both membranes at any pH. This result agreed with visual 

observations, confirming that fouling did not occur during the experiments.  
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Fouling conditions were not obtained during the experiments performed in this 

chapter, probably due to the short duration of the experiments (2-3 hours) and the 

low concentration of the solutes. However, in the long term the presence of HA and 

manganese precipitation at high pH are likely to decrease membrane flux and reduce 

membrane performance. The precipitation of inorganic compounds on membrane has 

been shown to affect solute retention [29, 74, 81, 337]. As observed in Section 2.2.4, 

the effects of inorganic precipitation on solute retention and permeate flux have been 

scarcely studied and will be investigated in Chapter 9. 

6.7 Manganese and humic acid retention in real Scottish 

water 

In order to validate the obtained results, manganese retention from real Scottish 

water was investigated.  

 

The water was collected from a well in the Isle of Mull, an island located on the west 

of Scotland. The quality parameters of the water are presented in Table 6-1. The 

collected water was rich in organic matter and very low in manganese and iron 

(below the detection limits of ICP-OES). Arsenic was slightly above the regulatory 

limit.  

 

Table 6-1 Quality parameter of well water collected in the Isle of Mull 

 

1PCV Prescribed Concentration Values according to Scottish regulations [338].   
 

Since manganese was not naturally present in the collected real water, commercial 

manganese (see Section 4.2) was spiked at a concentration of 5 mg/L the day before 

Parameter Concentration PCV
1
 Unit 

pH 8.5 6.5 – 9.5 - 
TOC 10.85 - mgC/L 
Calcium 159.61 - mg/L 
Potassium 12.23 - mg/L 
Magnesium 7.64 - mg/L 
Nitrate  34.63 50 mg/L 
Aluminium 42.855 200 µg/L 
Manganese < 2 50 µg/L 
Iron < 12 200 µg/L 
Arsenic 11.35 10 µg/L 
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the experiments and the feed solution (500 mL) stirred overnight at 100 rpm at 

ambient temperature. Filtration experiments were carried out as described in Section 

4.4 and Section 6.2.  

 

As reported in Table 6-2, retention of TOC was high for both membranes and about 

80%, confirming what was obtained for commercial HA retention in synthetic water 

(Figure 6-6b). Retention of manganese was higher for TFC-SR3 (80%) and lower for 

TFC-SR2 (55%). Considering that the pH of the water was 8.5, the obtained 

manganese retention is in good agreement with the results obtained for synthetic 

water in which both HA and manganese were added (Figure 6-6a). Arsenic retention 

for both membranes was quite high allowing the achievement of its regulatory limits.  

 

Table 6-2 Retention of TFC-SR2 and TFC-SR3  

 

 

 

 

 

These results indicate that commercial HA selected for this study have similar 

organic matter retention properties with respect to TFC-SR2 and TFC-SR3 than real 

Scottish NOM. Moreover, retention of commercial manganese was similar in the 

presence of commercial HA and Scottish NOM, showing that in this case 

commercial HA were representative of Scottish NOM.  Unfortunately, the lack of 

natural manganese in the collected Scottish water prevented the validation of the 

results obtained with the commercial manganese.  

 

 Retention (%) 

Parameter TFC-SR2 TFC-SR3 

TOC 81.89 82.42 
Calcium 64.15 83.24 
Potassium 10.60 25.64 
Magnesium 84.94 87.86 
Nitrate  39.77 57.65 
Aluminium 73.21 52.11 
Arsenic 98.21 72.12 
Manganese 55.69 79.32 
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6.8 Conclusions 

This chapter investigated the impact of solute-solute interactions and solute-

membrane interactions on manganese and HA removal by TFC-SR2 and TFC-SR3.   

 

Manganese retention was influenced by speciation (solute-solute interactions) and 

membrane pore size and charge (solute-membrane interactions). In the conditions of 

the experiments (pressure 5 bar and only manganese in solution), manganese was 

present mainly as dissolved Mn2+ at pH lower than 7 and started precipitating as 

MnCO3 at higher pH. For the tighter TFC-SR3 manganese retention was higher than 

90% and independent of pH due to size exclusion. For the looser TFC-SR2, high 

retention (99%) was achieved at high pH, due to size exclusion, while lower 

retention (about 45%) was achieved at pH 6 and 8. The hydrated radius of Mn2+ is 

lower than the average pore size of TFC-SR2, so at those pH manganese can enter 

the pores. It was inferred that pH 6-8 corresponds to the point of zero charge of the 

membrane pores; therefore the lack of electrostatic repulsion caused the lower 

retention. High manganese retention (90%) at pH 4 was attributed to charge 

repulsion between Mn2+ and the positively charged pores.  

 

Complexation of manganese with HA (solute-solute interactions) occurred at pH 

above 7. However, enhancement of manganese and HA retention when both 

components were present was not observed during the experiments, as manganese 

retention was not affected by the presence of HA and, vice versa, HA retention was 

not affected by the presence of manganese. In the case of TFC-SR3 high retention 

was already achieved due to size exclusion mechanisms, while for TFC-SR2 

precipitation overlapped with complexation effects.  

 

The deposition of manganese on the membranes was speciation dependent and 

higher manganese deposits were formed at high pH when MnCO3 precipitated. 

Nevertheless, flux decline due to manganese precipitation was not observed, 

probably due to the short duration of the experiments and the low concentration of 

the solutes. Scaling due to manganese deposits will be further investigated in Chapter 

9. HA deposits were negligible for both membranes for any pH.  
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It can be concluded that at pH 7, i.e. the pH of most natural waters, the behaviour of 

the two membranes was drastically different for manganese retention. TFC-SR3 

presented retention above 95%, while TFC-SR2 presented retention of about 45%. 

To achieve a drinking water quality of 0.05 mg/L with feedwater concentration of 5 

mg/L of manganese, retention of 99% is required. This can only be achieved at pH 

10 and 12 for both membranes. Both membranes proved to be particularly suitable 

for surface waters where NOM is present since they showed high retention of HA 

(about 80%) for any pH. The results obtained with synthetic water spiked with 

manganese and commercial HA were in good agreement with manganese and TOC 

retention achieved by spiking manganese in real Scottish water collected from a well 

in the Isle of Mull.  
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7. Endosulfan and humic acid removal mechanisms 
 

7.1 Introduction 

This chapter investigates the role of solute-membrane and solute-solute interactions 

on removal of micropollutants and NOM. In previous studies [31, 75, 87, 142, 172-

175] the impact of NOM on micropollutant removal by NF showed conflicting 

results since the presence of NOM could increase, decrease or have negligible effect 

on micropollutant removal by NF.   

 

The increase of micropollutant retention in the presence of NOM was attributed to 

the formation of micropollutant-NOM complexes (solute-solute interactions) of 

bigger size and higher charge [30, 31, 172-174, 339]. Jin et al. [31] attempted to 

estimate estrone removal by NF in the presence of HA using the percentage of 

estrone bound to HA from the literature. Poor estimation was attributed to difference 

in estrone concentration between the experiments and the literature and to the 

hypothesis that most of the estrone-HA interactions took place on the membrane 

rather than in solution.  

 

Neale and Schäfer [279] were able to quantify the contribution of hormone-HA 

interactions on increased hormone removal by UF in the presence of HA by 

determining organic matter-water partition coefficients. Increasing HA concentration 

led to more hormone-HA partitioning and in turn to greater hormone removal by UF, 

demonstrating the role of micropollutant-NOM interactions on micropollutant 

removal by UF. 

 

Increase of micropollutant removal by NF in the presence of NOM was also 

attributed to the modification of the membrane surface caused by adsorption of NOM 

(solute-membrane interactions). NOM deposition can cause pore clogging and 

change membrane surface charge, resulting in improved retention by steric and 

electrostatic mechanisms [31, 87]. 
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Retention of micropollutants did not change when NOM was present and this was 

attributed to an inferred lack of binding between NOM and the studied 

micropollutants [30, 31].   

 

When the presence of NOM decreased micropollutant retention, several 

explanations, sometimes contrasting, were offered in the literature. Nghiem et al. 

[142] speculated that reduced micropollutant retention was due to a bigger membrane 

pore size than the micropollutant-NOM complex size (solute-membrane 

interactions). Reduced micropollutant retention in the presence of NOM was 

attributed to increased membrane MWCO caused by the presence of organic matter 

(solute-membrane interactions) [87, 133]. Organic matter has been shown to enhance 

the negative charge of NF membranes, increasing electrostatic repulsion within the 

membrane pores and in turn MWCO [57, 153]. In another study [339], organic 

matter was also inferred to increase membrane hydrophilization (solute-membrane 

interactions), since pure water flux after organic matter filtration was enhanced, and 

in turn to reduce estrone removal by NF membranes.   

 

In previous studies [87, 133, 142, 339] decreased micropollutant retention in the 

presence of NOM was observed in “loose” NF membranes (MWCO bigger than 

micropollutant MW), indicating a possible correlation between micropollutant 

removal mechanisms in the presence of NOM and the ratio of  micropollutant MW 

and membrane MWCO.   

 

Lower micropollutant retention in the presence of NOM has also been linked to the 

competition of micropollutant-NOM adsorption on the membrane (solute-membrane 

interactions). However, different authors offered contradictory explanations of the 

potential mechanisms. Yoon et al. [340] observed that in the presence of NOM 

micropollutant adsorption to the membrane decreased. They also observed that after 

membrane saturation occurred, retention increased for micropollutants that adsorbed 

more. Therefore, they inferred that lower retention was due to decreased 

micropollutant adsorption. Boussahel et al. [30] observed higher micropollutant 

adsorption to the membrane in the presence of NOM. They linked the increased 
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adsorption to a decrease in retention since micropollutants might experience higher 

diffusion to the permeate side.  

 

In summary, previous studies have inferred the following main mechanisms 

responsible for increase/decrease of micropollutant retention by NF in the presence 

of NOM: 

- solute-solute interactions: formation of  micropollutant-NOM complexes; 

- solute-membrane interactions: pore blocking by NOM, increased membrane 

MWCO and hydrophilization due to the presence of NOM and competition of 

micropollutant-NOM adsorption on the membrane.  

A correlation seemed to exist between the ratio of micropollutant MW, membrane 

MWCO and the decrease in micropollutant retention in the presence of NOM.  

 

Interpretation of results and proposed mechanisms in the literature is complicated by 

the lack of indication, in some studies [30, 75, 173, 174], that membrane saturation 

was reached. As explained in Section 2.2.2, for hydrophobic compounds that adsorb 

to the membranes, retention decreases with time until membrane saturation is 

reached; therefore retention could be overestimated if adsorption on the membrane is 

not taken into account [91, 92].  

 

The conflicting results obtained in the literature for micropollutant retention in the 

presence of NOM have been attributed to the different types of micropollutants  and 

organic matter used and to the complexity of the retention mechanisms [23, 30, 31]. 

However, the contradictory explanations of findings presented in the literature are 

due to the lack of systematic investigation of the inferred mechanisms. Apart from 

the study of Neale and Schäfer [279], in which the contribution of estrone-NOM 

complexation to estrone removal by UF was effectively quantified, only hypotheses 

were offered in the other studies. A systematic investigation of the factors affecting 

increase/decrease of micropollutant retention by NF in the presence of NOM will be 

accomplished for the first time in this chapter.  
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As explained in Section 3.4, ES was selected as a model micropollutant because it is 

hydrophobic, neutral over a large pH range [220] and forms complexes with organic 

matter [221-224]. To the best knowledge of the author, ES retention by NF has never 

been evaluated. As in the previous chapter, HA were selected as representative of 

NOM.   

 

TFC-SR2 and TFC-SR3 membranes are particularly indicated for investigating the 

role of membrane characteristics in the removal of ES (with and without HA) 

because their MWCO (460 g/mol for TFC-SR2 and 167 g/mol for TFC-SR3) is 

respectively bigger and smaller than ES MW (407 g/mol). Their different ratio of 

micropollutant MW and membrane MWCO allows investigating if a correlation 

exists between pore size and micropollutant removal mechanisms in the presence of 

HA. Furthermore, TFC-SR2 is a more hydrophobic membrane than TFC-SR3 (Table 

4-2). Their different hydrophilicity allows studying the role of micropollutant 

adsorption to the membrane in micropollutant removal mechanisms in the presence 

of HA. 

 

The objectives of this chapter are to investigate: 

- the influence of ES-HA complexation (solute-solute interactions) on ES 

removal by NF;  

- the role of membrane characteristics, MWCO and hydrophobicity (solute-

membrane interactions) on ES retention with and without HA;  

- the mechanisms of ES retention by NF in the presence of HA.  

 

The retention of ES with and without HA will be investigated as a function of pH 

and HA concentration. The role of pH in understanding the contribution of different 

interactions in ES removal is important since pH not only influences ES chemistry 

(Section 3.4.3) and potentially complexation with HA, but also membrane 

characteristics (Section 2.3.1). Likewise, studying ES removal as a function of HA 

concentration allows the investigation of the role of ES-HA complexes in ES 

removal. In order to quantify the role of ES-HA complexes in ES removal, the 
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formation of ES-HA complexes as a function of pH and HA concentration will be 

determined using the methodology described in Section 4.6.  

7.2 Filtration protocol 

Filtration experiments were carried out as described in Section 4.4. ES concentration 

used in the experiments was 10 µg/L since ES concentration in natural water 

typically ranges from 0.02 µg/L to 60 µg/L [262, 263, 265-267]. Experiments with 

HA ranging from 5 to 250 mgC/L were performed to study the effects of HA 

concentration on ES-HA complex formation. A concentration of 12.5 mgC/L of HA 

was then selected because it represents typical NOM concentration found in natural 

water and it was found to increase the percentage of ES complexed with HA more 

than a concentration of 5 mgC/L. Electrolyte background solution consisted of 1 mM 

NaHCO3 and 20 mM NaCl (Sections 4.2).  
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Figure 7-1 ES retention, feed and permeate concentration during ES filtration 

through (a) TFC-SR2 and (b) TFC-SR3, ES 10 µg/L, pressure: 5 bar, background 

electrolyte 1 mM NaHCO3 and 20 mM NaCl, pH 6. Values of the feed concentration 

that were not directly measured by sampling were calculated with a mass balance.  

 
The feed solution (900 ml) was prepared at the desired pH (varied from 4 to 12) the 

day before and stirred at 100 rpm at ambient temperature for 24 hours to allow the 

formation of ES-HA complexes. In order to ensure membrane saturation by ES, 480 

mL of permeate were filtered and 6 samples were collected. For both membranes, 

filtration of 480 mL was sufficient to reach ES saturation, as indicated by the plateau 
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reached by the permeate concentration in Figure 7-1. After saturation was reached 

the permeate was recirculated back into the cell and four permeates of 60 mL each 

were collected (recovery of 26%). Retention was constant for the last four permeates 

since equilibrium was reached. 

7.3 Formation of ES-HA complexes 

The formation of complexes between ES and HA was quantified with the nd-SPME 

methodology developed by Neale et al. [278] and described in Section 4.6.   

 

Previous studies [221-224] investigated sorption/desorption of ES to soil. ES was 

observed to sorb more and faster in soils rich with organic matter and it was 

concluded that ES molecules strongly attached to soil organic matter [224]. Values of 

Koc for ES isomers were determined for various soils (Table 7-1). Interactions 

between NOM and ES in water have never been studied and, to the best knowledge 

of the author, there are no published data on aquatic HA-water partition coefficients 

for ES.  

 

Table 7-1 Koc values for ES isomers determined for soils rich in organic matter. 

Isomer Koc Ref. 

α-ES 7800-21300 

[221] 
β-ES 8600-13900 
ES-Sulphate 5700-11500 
ES-Diol 700-1200 
α-ES 7969-21347 

[222] β-ES 8612-13906 
ES-Sulphate 5667-1145 
α-ES 7969-21347 [223] 
β-ES 8612-13906 

 

The quantification of aquatic HA-water partition coefficients for ES is important 

because Koc determined with soil might differ from KHA. Aquatic HA-water partition 

coefficient for pesticide atrazine was found to be three orders of magnitude greater 

than soil organic carbon-water partition coefficient, possibly indicating that atrazine 

associated with dissolved organic matter was higher than atrazine associated with 

solutions of suspended soils [341].  
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Moreover, it is fundamental to quantify Kfw and KHA (as defined in Section 4.6) at 

the same conditions (concentration, pH, ionic strength) used during the experiments 

with membranes as environmental conditions have shown to influence the obtained 

coefficients [307].  

7.3.1 Fibre calibration and determination of Kfw 

The SPME fibres were calibrated to establish the time necessary to reach equilibrium 

and calculate the fibre-water partition coefficient Kfw for ES as a function of pH, as 

described in Section 4.6.1.  

 

SPME has been largely employed as a technique for extracting organic 

micropollutants before analysis by GC and HPLC [316]. Therefore, values of Kfw for 

α-ES and β-ES are available in the literature [318-320], as reported in Table 7-2. To 

the best knowledge of the author, there are no published data on the variation of Kfw 

for ES with pH. Moreover, the free-standing fibre method used in this work differs 

from the traditionally employed techniques using fibre holders. Fibre calibration was 

therefore required to establish equilibrium time and determine Kfw. The difference in 

values obtained in the literature for the same type of fibre can be considerable (Table 

7-2) even though a difference of ±0.5 log units is usually considered acceptable for 

Kfw values obtained using SPME fibres [315]. Differences in partitioning values 

could be attributed to the fact that the criterion of negligible depletion was not 

always respected and temperature and ionic strength might vary in different 

experiments [307].  

 

As indicated in Figure 7-2a, PA* fibres reached equilibrium after 48 hours. 

Therefore 96 hours were chosen for the determination of the partitioning coefficients. 

In order to check ES adsorption to the glass, ES concentration with time was 

determined in control samples which did not contain fibres. No adsorption of ES to 

the glass was measured (Figure 7-2b).  
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Table 7-2 Kfw values for ES isomers (numbers in italics are calculated and numbers 

in normal font are published) 

Isomer Type of 

fibre  

Kfw log Kfw Ref 

α-ES PA* 8491±23 3.93 [318] 
β-ES PA* 6582±18 3.82 

α-ES PDMS 27820 ±18 4.44 

β-ES PDMS 6253±123 3.80 

α-ES PDMS 25000 4.40 [319] 
β-ES PDMS 10000 4.00 

α-ES PDMS 2138 3.33 [320] 
β-ES PDMS 1995 3.30 
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Figure 7-2 (a) Uptake of ES to PA* coated fibres as a function of time for pH 4 to 

12 (b) ES concentration as function of time for pH 4 to 12 in the control samples, ES 

10 µg/L, background electrolyte 1 mM NaHCO3 and 20 mM NaCl.  

 

Kfw for ES as a function of pH was determined by firstly establishing the mass on the 

fibre, mfb, at the equilibrium with the kinetic model (equation 4.8, Section 4.6.1). As 

shown in Figure 7-3, PA* fibre uptake was constant with pH up to pH 8 and then 

decreased rapidly. Since ES does not dissociate, this was attributed to the hydrolysis 

of α-ES and β-ES to ES-diol, which has lower log Kow and therefore less affinity to 

the fibres [307].  
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Figure 7-3 Mass of ES on the fibre for different ES concentrations and log Kfw 

values for ES as function of pH, background electrolyte 1 mM NaHCO3 and 20 mM 

NaCl. 

 

Once mfb at the equilibrium was determined, Kfw for ES as a function of pH was 

calculated with equation 4.7 in Section 4.6.1. In order to obtain a more precise value 

for Kfw, four concentrations of ES were employed. Kfw for ES was constant with pH 

up to pH 8 and then decreased. However, the decrease at pH 10 and 12 can be 

considered negligible once the logarithmic is calculated (the difference was less of 

0.3 log units) and log Kfw for ES can be considered constant with pH (Figure 7-3). 

The obtained values of log Kfw were in agreement (maximum difference 0.3 log 

units) with the values obtained by Valor et al. [318] for PA* coated fibres (Table 

7-2) 

 

For all studied pH the negligible-depletion condition (equation 4.9) was fulfilled 

(Table 7-3).  

 

Table 7-3  Negligible depletion condition for PA* fibres at different pH values  

 pH 4 pH 6 pH 8 pH 10 pH 12 

W

F
fw

V

V
xK

 

0.0630 0.0470 0.0442 0.0584 0.0332 
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7.3.2 Determination of KHA and percentage of ES bound to HA 

The HA-water partition coefficient for ES, KHA, was estimated as a function of pH 

and HA concentration, as described in Section 4.6.2. It can be assumed that no 

interactions between HA and the fibres occurred since no HA fouling on the same 

PA* fibres was detected in a previous study [168] and no colour on the fibres was 

visually observed during this work.  

 

The mass on the fibre mfb was determined in order to estimate the mass and 

concentration of freely dissolved ES in aqueous solution, mw and CW (equations 4.12 

and 4.13 in Section 4.6.2), the mass and concentration of ES sorbed to HA, mHA and 

CHA (equations 4.14 and 4.15) and in turn calculated KHA with equation 4.11. 

Different concentrations of ES were employed to determine KHA with more 

precision. 

 

Figure 7-4a shows mfb as a function of pH for different ES concentrations with and 

without HA (HA concentration 12.5 mgC/L). The results indicated greater extraction 

of ES when HA was not present, since ES was bound with HA and there was less 

freely dissolved ES available in solution to be removed by the fibre. These results are 

confirmed by the values of mfb as a function of HA concentration (Figure 7-4c), as 

lower extraction is achieved with increasing HA concentration due to the increase of 

percentage of ES bound to HA.  

 

Figure 7-4b and Figure 7-4d show the sorption isotherms (equation 4.11) obtained as 

a function of pH and HA concentration, respectively. The slopes of all the obtained 

isotherms were close to unity , so ni was set equal to 1 for the determination of KHA 

[278]. All isotherms had a correlation coefficient r2 above 0.98 
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Figure 7-4 (a) Uptake of ES by PA* fibre as a function of pH, HA 12.5 mgC/L (b) 

Humic Acid-water sorption isotherms for ES as a function of pH (c) uptake of ES by 

PA* fibre as a function of HA concentration (d) Humic Acid-water sorption 

isotherms for ES as a function of HA concentration, background electrolyte 1 mM 

NaHCO3 and 20 mM NaCl. 

 

The logarithmic values of KHA obtained from the slope of the sorption isotherms are 

represented in Figure 7-5, together with the fraction of ES bound to HA, HAf , 

determined with equation 4.16.  
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Figure 7-5 (a) HA-water partition coefficient and fraction of ES bound to HA as a 

function of pH, HA 12.5 mgC/L and (b) as a function of HA concentration, ES 10 

µg/L, background electrolyte 1 mM NaHCO3 and 20 mM NaCl. 

 

LogKHA and the fraction of ES bound to HA can be considered constant with pH, in 

agreement with what was found for other organochloride pesticides [309]. Log KHA 

decreased with increasing HA concentration indicating that complexation is limited 

by the ES mass available [168]. The percentage of ES bound to HA increased with 

HA concentration. 

7.4 Influence of pH on ES retention 

The correlation between micropollutant MW/membrane MWCO ratio and ES 

removal in the presence of HA was investigated by determining ES retention with 

and without HA for TFC-SR2 and TFC-SR3 as a function of pH. While pH did not 

influence the formation of ES-HA complexes and the percentage of ES bound to HA 

(Figure 7-5a), it is known to influence membrane pore size [153].   
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Ratio of permeate flux Jv and initial pure water flux J0, that is an indicator of 

membrane fouling, together with ES adsorption to the membrane were determined as 

they might affect ES retention [30, 132, 339, 340].  

 

Figure 7-6 shows that for both membranes, J/J0 (dark symbols) was above unity and 

fouling did not occur. For similar membranes and the chosen HA concentration (12.5 

mgC/L) fouling has been shown to occur only in the presence of calcium [130]. 

When ES only was filtered Jv/Jo (open symbols) was constant with pH and close to 

unity for both membranes. When ES and HA were filtered Jv/Jo (open symbols) was 

close to unity for the tighter TFC-SR3 but increased with pH for the looser TFC-

SR2. Increased permeate flux in the presence of NOM at pH greater than 4 has been 

previously observed for “loose” NF membranes [153, 339].  
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Figure 7-6 Ratio of pure water flux after the experiments J and initial pure water flux 

J0 (dark symbols) and ratio of permeate flux Jv and initial pure water flux J0 (open 

symbols) for filtration of ES only and ES and HA as a function of pH for (a) TFC-

SR2 (b) TFC-SR3. ES 10 µg/L, HA 12.5 mgC/L, pressure: 5 bar, background 

electrolyte 1 mM NaHCO3 and 20 mM NaCl (error bars not shown for clarity) 

 

ES adsorption to the membranes was calculated with a mass balance using equation 

2.4 (Section 2.2.2). ES adsorption onto the membranes was independent of pH 

(Figure 7-7). For TFC-SR3, ES adsorption was low and not influenced by HA, while 

for the more hydrophobic TFC-SR2 ES adsorption was higher and increased slightly 

with HA.  
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Figure 7-7 ES adsorption to the membranes with and without HA as a function of 

pH. ES 10 µg/L, HA 12.5 mgC/L, pressure: 5 bar, background electrolyte 1 mM 

NaHCO3 and 20 mM NaCl. 

 

ES retention was determined as a function of pH with and without HA. For both 

membranes, in the absence of HA, ES retention varied with pH (Figure 7-8) and this 

was attributed to the variation of membrane characteristics (MWCO) with pH 

combined with hydrolization of ES isomers to ES-diol, which has a lower molecular 

weight and higher polarity (Table 3-5) and it is therefore expected to have lower 

retention [76].   

 

For TFC-SR3 (micropollutant MW/membrane MWCO ratio > 1) HA increased ES 

retention at any pH. For TFC-SR2 (micropollutant MW/membrane MWCO ratio < 1) 

ES retention in presence of HA decreased at pH 6, 8 and 10 and was similar at pH 4 

and 12. Decrease in ES retention in presence of HA was observed for the “loose” 

membrane, confirming the inferred correlation between micropollutant 

MW/membrane MWCO ratio and micropollutant removal in presence of NOM. 

Decreased ES retention in the presence of HA for TFC-SR2 corresponded to an 

increase in flux ratio and ES adsorption, as observed in previous studies [30, 339]. 

The mechanisms behind the lower ES retention in the presence of HA for TFC-SR2 

will be elucidated in Section 7.7. 
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Figure 7-8 ES retention with and without HA as a function of pH for (a) TFC-SR2 

(b) TFC-SR3. ES 10 µg/L, HA 12.5 mgC/L, pressure: 5 bar, background electrolyte 

1 mM NaHCO3 and 20 mM NaCl. Dotted lines indicate ES retention in the presence 

of HA estimated using the calculated partition coefficient KHA. 

7.5 Influence of HA on ES retention 

In order to investigate the role of ES-HA complexes on ES removal, retention of ES 

as a function of HA concentration was studied. Since HA concentration influenced 

ES-HA complex formation and percentage of ES bound to HA (Figure 7-5b), ES 

retention in presence of HA was expected to be affected by HA concentration.  

 

For both membranes ES retention was studied at pH 4 in order to minimize charge 

exclusion effects between the membrane surface and HA. At pH 4 both membranes 

are neutral (Table 4-2) and most of HA functional groups dissociates at pH > 4 [225, 

229], while ES does not dissociate at any of the studied pH (Section 3.4.3). For TFC-

SR2 ES retention as a function HA concentration was investigated also at pH 8, 

where the presence of HA decreased ES retention (Figure 7-8a). For TFC-SR3 ES 
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retention as a function of HA concentration at pH 8 was not studied since ES 

retention in presence of HA was independent of pH (Figure 7-8b).  

 

For both membranes, flux ratio as a function of HA concentration (Figure 7-9) 

confirmed what was observed in Figure 7-6. For TFC-SR2 fouling occurred at pH 4 

for HA concentration above 125 mgC/L, while at pH 8 J/Jo was above the unity for 

HA concentration greater than 12.5 mgC/L. The presence of HA increased Jv and J 

with respect to J0 for the looser TFC-SR2 at pH 8. Fouling did not occur also for 

TFC-SR3 (J/J0 close to unity), even though during filtration Jv/J0 was slightly below 

unity. It is inferred that for the tighter TFC-SR3 concentration polarisation occurred 

during filtration, lowering permeate flux. Nevertheless, concentration polarisation 

did not result in membrane fouling.  
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Figure 7-9 Ratio of pure water flux after the experiments J and initial pure water flux 

J0 (dark symbols) and ratio of permeate flux Jv and initial pure water flux J0 (open 

symbols) for filtration of ES as a function of HA concentration for (a) TFC-SR2 at 

pH 4 and pH 8 and (b) TFC-SR3. ES 10 µg/L, HA 5 - 250 mgC/L, pressure: 5 bar, 

background electrolyte 1 mM NaHCO3 and 20 mM NaCl. 

 

As shown in Figure 7-10, for TFC-SR3 (open symbols) ES adsorption was 

independent from HA concentration, while for TFC-SR2 (dark symbols) ES 

adsorption increased slightly with HA concentration up to HA 50 mgC/L. The 

decrease in ES adsorption for HA greater than 50 mgC/L might be caused by the 
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high HA concentration preventing ES to adsorb to the membrane. As observed in 

Figure 7-7, ES adsorbed more to TFC-SR2 and adsorption was pH independent.  
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Figure 7-10 ES adsorption to the membranes with and without HA as a function of 

pH. ES 10 µg/L, HA 5-250 mgC/L, pressure: 5 bar, background electrolyte 1 mM 

NaHCO3 and 20 mM NaCl. 

 

ES retention was determined for both membranes (Figure 7-11). For the tighter TFC-

SR3 ES retention was independent from HA concentration. For the looser TFC-SR2 

ES retention increased with HA concentration at pH 4, while decreased with HA 

concentration at pH 8 up to HA 50 mgC/L, confirming what observed for HA 12.5 

mgC/L in Figure 7-8.  

 

In summary, the presence of HA (at concentration lower than 125 mgC/L) did not 

foul TFC-SR2 or TFC-SR3 and, on the contrary for TFC-SR2 it increased the 

permeate flux and the pure water flux after filtration at pH above 4. A correlation 

between micropollutant removal mechanisms in the presence of NOM and the ratio 

of micropollutant MW and membrane MWCO was previously inferred, since 

decreased micropollutant retention in the presence of NOM was observed in “loose” 

NF membranes (Section 7.1). The presence of HA increased ES retention for the 

tighter TFC-SR3 and decreased ES retention for TFC-SR2, confirming this 

hypothesis. However, decrease of ES retention in the presence of HA for TFC-SR2 

was pH dependent, indicating that other mechanisms occurred.  
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Figure 7-11 ES retention as a function of HA concentration for TFC-SR2 at pH 4 

and pH 8 and for TFC-SR3 at pH 4. ES 10 µg/L, HA 5- 250 mgC/L, pressure: 5 bar, 

background electrolyte 1 mM NaHCO3 and 20 mM NaCl. Dotted lines indicate ES 

retention in the presence of HA estimated using the calculated partition coefficient 

KHA. 

 
While a relationship between increase/decrease of micropollutant retention in the 

presence of NOM and competition of micropollutant-NOM adsorption on the 

membrane has been inferred [340, 342], in this study ES adsorption to the 

membranes was not believed to influence ES retention in the presence of HA. For 

TFC-SR2 ES adsorption was similar at pH 4 and pH 8 (Figure 7-10) while ES 

retention in the presence of HA increased at pH 4 and decreased at pH 8 (Figure 

7-11).  

7.6 Estimation of ES removal in the presence of HA 

In order to understand the mechanisms of ES removal in the presence of HA, the role 

of solute-solute interactions (formation of ES-HA complexes) and solute-membrane 

interactions on ES retention was quantified.  

 

The influence of the formation of ES-HA complexes on ES retention was estimated 

from the calculated partition coefficient, KHA, and the fraction of ES bound to 

HA, HAf , using  the approach developed by Neale and Schäfer for UF [279] and 

adapted in this study for NF.   
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From equation 2.3: 

p

f

f

p

f

p

o
V

V

m

m

c

c
R −=−= 11                                 (7.1)  

Therefore, in order to determine ES retention in the presence of HA, the mass of ES 

in the feed and in the permeate was estimated. 

 

Some assumptions were made to determine the mass of ES bound to HA and freely 

dissolved in solution in the feed and in the permeate: 

(1) The total mass of ES in solution (mEStot) is either freely dissolved (mfES) or 

complexed to HA (mES-HA):   

              mEStot = mES-HA + mfES                                                    (7.2)  

            therefore in the feed solution 

mEStotfeed = mES-HAfeed + mfESfeed  = HAf · mEStotfeed + (1- HAf )·mEStotfeed        (7.3)  

(2) ES complexed with HA  is retained together with the HA to which it is 

complexed to; 

(3) ES freely dissolved in solution has the same retention of ES during 

experiments without HA carried out at the same conditions (pH, pressure and 

background electrolyte).  

 

The first two assumptions can be considered generally valid, since ES does not sorb 

to the glass and HA have a much bigger MW than ES. However, the last assumption 

will not be true if the presence of HA influences the retention of freely dissolved ES 

via solute-membrane interactions. Even in absence of fouling HA-membrane 

interactions can influence the retention of freely dissolved ES and result in different 

overall ES retention than the estimated retention. As discussed before, HA can 

adsorb on the membrane surface resulting in pore blocking [87] and increasing 

membrane charge [87, 125, 154], membrane MWCO [133] and membrane 

hydrophilicity [125, 339].  

 

From assumption (1) the total retention of ES in the presence of HA, REStot, is the 

“sum” of the retention of the freely dissolved ES, RfES, and the retention of the ES 

complexed with HA, RES-HA [343]. From assumption (2) retention of ES complexed 
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to HA, RES-HA, can be considered similar to RHA and from assumption (3) retention of 

freely dissolved ES, RESf, can be considered similar to the retention of ES during 

experiments without HA, RES.  

 

The total mass of ES in the permeate can be therefore calculated as: 

 mEStotperm = mES-HAperm+ mfESperm = (1-RHA) mES-HAfeed + (1-RES) mfESfeed                        (7.4) 

REStot can then be determined from mEStotfeed and mEStotperm as indicated by equation 

7.1.  

 

The mass of ES adsorbed to the membrane during filtration in the different cases was 

not explicitly considered in this methodology since retention of ES was determined 

after saturation was reached. Moreover, the difference of ES adsorbed to the 

membranes with and without HA was negligible with respect to the full mass 

balance.  

 

REStot determined with the method described above is similar to the retention of ES 

measured during experiments with ES and HA if all the assumptions are valid. 

Therefore, if REStot differs from the experimental retention it can be concluded that 

assumption (3) is not verified and solute-membrane interactions play a role. REStot is 

the total retention of ES due to the formation of ES-HA complexes. If REStot is similar 

to the experimental retention it can be concluded that solute-solute interactions (the 

formation of ES-HA complexes) are the dominant retention mechanism. However, if 

REStot and the experimental retention differ, solute-membrane interactions can be 

considered more important.  

7.7 Mechanisms of ES removal in the presence of HA 

REStot estimated from the calculated partition coefficient KHA (i.e. from HAf ) with the 

methodology described in Section 7.6 is indicated with a dotted line in Figure 7-8 for 

different pH and Figure 7-11 for different HA concentrations, where it was compared 

with the experimental retention obtained for ES in the presence of HA.  
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For both membranes at pH 4 estimated and experimental retention as a function of 

HA concentration were similar (Figure 7-11), confirming that at this pH ES-HA 

interactions were the dominant removal mechanism. ES-HA interactions increased 

with HA concentration (Figure 7-5b) and ES retention in the presence of HA 

increased with HA retention since ES-HA complexes were retained by size 

exclusion. For TFC-SR3 increase in ES retention at high HA concentration was less 

pronounced than for TFC-SR2 due to the high retention already achieved.  

 

For TFC-SR3 estimated and experimental retention were similar for all the studied 

pH (Figure 7-8b), indicating that solute-solute interactions and size exclusion were 

the dominant retention mechanisms for this membrane. The formation of ES-HA 

complexes did not change with pH (Figure 7-5a) and ES retention in the presence of 

HA was constant with pH for TFC-SR3 (Figure 7-8). 

 

For TFC-SR2 estimated and experimental retention differed at pH 6, 8 and 10, when 

ES retention in the presence of HA was lower than retention of ES only (Figure 

7-8b). It is evident that the formation of ES-HA complexes, which was constant with 

pH, was not the dominant removal mechanism and solute-membrane interactions 

played a role.  

 

The difference between estimated retention (dotted line) and experimentally obtained 

retention for TFC-SR2 is evident in Figure 7-11, where ES retention at pH 8 is 

depicted as a function of HA concentration. At low concentrations of HA, solute-

membrane interactions were dominant, ES retention decreased with increasing HA 

concentration and the difference between estimated and experimental retention 

increased. At high HA concentrations, the percentage of ES bound to HA increased 

(Figure 7-5b), the importance of solute-solute interactions with respect to solute-

membrane interactions increased, ES retention in the presence of HA increased and 

the difference between estimated and experimental retention decreased.  

 

The U-shape of the retention curve in Figure 7-11 indicated that solute-membrane 

interactions were dominant for intermediate HA concentrations while ES-HA 
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interactions became more important at high HA concentrations. Nevertheless, even at 

high HA concentrations ES retention was lower than the estimated retention since 

solute-membrane interactions could not be considered negligible.     

 

In order to investigate further the contribution that solute-membrane interactions had 

on ES retention in the presence of HA, the characteristics of both membranes at 

neutral pH were evaluated with and without HA. Retention of inert organics and Na 

was calculated for clean membrane and membranes pre-filtered with 12.5 mgC/L of 

HA and background electrolyte. Membrane MWCO, Na retention and contact angle 

were determined as described in Appendix 2 to evaluate changes in membrane pore 

size and hydrophilicity due to the presence of HA.  

 

As depicted in Table 7-4, membrane MWCO increased after HA filtration and Na 

retention decreased for both membranes, confirming similar results found in previous 

studies [87, 133]. Since the presence of charged HA was shown to increase 

membrane charge [57] and the membrane pore size is believed to increase at higher 

membrane charge [153], it can be concluded that the filtration of HA was responsible 

for the increase in MWCO and the decrease in Na retention.  

 

Table 7-4 MWCO, contact angles and sodium retention for a clean TFC-SR2 and 

TFC-SR3 and membranes through which 12.5 mgC/L of HA and background 

electrolyte were filtered 

 TFC-SR2 TFC-SR3 

 Clean HA Clean HA 

MWCO 460 496 165 179 

Contact angle 57 ± 2 49 ± 1 44 ± 1 59 ± 2 

Na retention (%) 21 15 61 27 

 

The increase in MWCO for TFC-SR3 did not influence ES retention as the increased 

MWCO was still smaller than ES molecular weight (407 g/mol). In the case of TFC-

SR2, for which micropollutant MW/membrane MWCO ratio < 1 and ES was 
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partially retained, the increased MWCO decreased the ratio further, decreasing in 

turn ES retention.  

 

After HA were filtered the observed contact angle decreased for TFC-SR2 and 

increased for TFC-SR3. For membranes fouled by NOM contact angle measurements 

have been shown to be representative of the fouling layer. In the case of fouling by 

HA, contact angles indicated the adhesion of a layer of intermediate hydrophobicity 

[65, 133, 161, 163].  

 

After HA filtration TFC-SR3 had a visible brownish layer, indicating HA deposits, 

and the increased contact angle is thought to represent the hydrophobicity of the 

deposits. Not only the hydrophobic HA could be responsible for higher contact 

angle, but their roughness are likely to increase the observed contact angle [344]. 

Since a coloured layer was not visible on TFC-SR2 after filtration of HA, the 

decreased contact angle for this membrane is  thought to reflect the membrane 

hydrophilization due to filtration of charged HA [125]. Although HA did not foul 

TFC-SR2, the penetration of small HA fractions through the membrane pores (HA 

retention by TFC-SR2 was about 80%, a shown in Figure 6-6) is believed to 

influence membrane characteristics. Increase in hydrophilization can also explain the 

observed increase in permeate flux at high pH (Figure 7-6a).  

 

A schematic of the proposed mechanisms is presented in Figure 7-12. At pH 4 when 

charge repulsion between solute and membrane is minimum, since the membrane is 

neutral and HA are not completely dissociated, size exclusion and solute-solute 

interactions (i.e. formation of ES-HA complexes) dominated ES retention. At neutral 

pH, negatively charged HA are filtered through the membrane pores, increasing their 

negative charge and in turn membrane MWCO. The increased intra-membrane 

electrostatic repulsion due to interactions with HA is believed to expand the 

membrane matrix, increasing the pore size [153]. For the looser TFC-SR2, whose 

micropollutant MW/membrane MWCO ratio < 1, interactions between charged HA 

and the membrane resulted in decreased ES retention. For the tighter TFC-SR3, 

whose micropollutant MW/membrane MWCO ratio > 1, the increase in MWCO was 
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not sufficient to allow the increase in ES passage and ES-HA interactions were the 

dominant mechanism of retention by size exclusion.  

 

(a) 

(b) 

Figure 7-12  Conceptual sketch of main retention mechanisms for freely dissolved 

ES and ES-HA complexes by TFC-SR2 and TFC-SR3 at (a) pH 4 and (b) pH 8.  

7.8 Conclusions 

This chapter investigated and quantified the role of solute-solute interactions and 

solute-membrane interactions on ES removal in the presence of HA. For the first 

time the formation of complexes between ES and aquatic HA was quantified and the 

contribution of the ES-HA complexes to ES retention by NF was estimated.  

 

The percentage of ES complexed with HA increased with HA concentration and it 

was not affected by pH.  For the tighter TFC-SR3, for which ES MW/membrane 

MWCO ratio was higher than 1, ES retention increased in the presence of HA 

independently from pH and HA concentration. For the looser TFC-SR2, for which 

ES MW/membrane MWCO ratio was lower than 1, ES retention in the presence of 

HA increased with HA concentration at pH 4 but decreased with increasing 

concentration at pH 8 (up to HA concentration of 50 mgC/L).  
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For TFC-SR3 ES retention in the presence of HA was due to solute-solute 

interactions (formation of ES-HA complexes) and size exclusion. For TFC-SR2 

solute-solute interactions and size exclusion were dominant at pH 4, when charge 

interactions between HA and the membrane were minimum. With increasing pH 

charged HA increased the MWCO of TFC-SR2, decreasing ES retention: solute-

membrane interactions were more important than solute-solute interactions for ES 

removal in the presence of HA.   

 

The estimation of the specific contributions of ES-HA complex formation (solute-

solute interactions) and HA-membrane interactions (solute-membrane interactions) 

to ES removal was necessary to explain retention mechanisms of ES in the presence 

of HA.  
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8. Effects of pressure on solute retention  

8.1 Introduction 

This chapter investigates the role of pressure on solute retention by taking into 

account solute-solute interactions and solute-membrane interactions. As explained in 

Chapter 1 understanding the influence of operating parameters on solute retention is 

crucial for operating membrane plants in a more economical and environmentally 

friendly manner. Nevertheless, the effects of operational parameters on the retention 

of some solutes are still not well understood [7]. 

 

In Section 2.2.5 and Chapter 5 it was shown that pressure, which is the driving force 

in the transport of water and solutes through NF membranes, affects permeate flux Jv, 

solute flux Js and solute retention. Retention of metals, ions and salts by NF has been 

shown to increase with operating pressure [54, 66, 114, 138, 330, 331]. Transport of 

inorganic solutes and salts through NF and RO membranes is believed to be 

dominated by diffusion and it can be well described by the solution-diffusion model, 

neglecting the convection term in the transport equation [102, 110, 114]. If diffusion 

is dominant, the driving force for the transport of solutes becomes the concentration 

gradient between the feed and the permeate (equation 4.5 in Section 4.4.2). With 

increasing pressure the permeate flux increases while diffusion remains constant, 

since it depends on the concentration gradient not on pressure. Therefore, if diffusion 

is the main mechanism of solute transport, retention increases with pressure as water 

flux increases but solute flux does not.  

 

Retention of organic micropollutants by NF and RO was shown to increase with 

pressure and the solution-diffusion model was successfully applied to predict their 

retention [71, 106, 107], indicating that also the transport of  micropollutants through 

NF might be dominated by diffusion. However, several studies [75, 91, 116, 139-

142] showed that micropollutant retention could be constant or could decrease with 

pressure.  
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Retention of NOM, disinfection by products and halogenated solvents by NF was 

observed to decrease with increasing pressure and this was attributed to convective 

dominated transport through the membranes [116, 345]. If convection is the 

dominant transport mechanism, higher pressure is expected to increase both water 

flux and solute flux, resulting in decreasing or constant retention. It is widely 

accepted that transport of organic solutes by convection cannot be neglected in NF 

membranes [7, 23, 108] and both diffusion and convection terms are present in the 

hydrodynamic model (Section 5.2). 

 

From the literature it can be inferred that the relative importance of diffusion and 

convection on organic solute transport might be responsible for increase/decrease of 

solute retention with pressure. However, this hypothesis has never been 

systematically investigated for micropollutants. Studies on the importance of 

diffusion and convection on transport of organic solutes through NF membranes have 

focused on evaluating the contribution of each term to solute transport, without 

correlating it with increase/decrease of retention with pressure [108, 116, 117].  

 

Diffusion was shown to contribute more than convection to transport of organic 

solutes for NF membranes that had the smallest pores [108, 116] and for organic 

solutes that had the smallest MW [117], indicating the importance of the ratio of 

solute size to pore size λ on the relative role of diffusion and convection. In another 

study on micropollutant retention, convection was found to be dominant for 

hydrophobic polar compounds, hydrophilic compounds and charged organic 

compounds, while diffusion was dominant for hydrophobic non-polar compounds 

[116]. However, micropollutant adsorption to the membranes was not taken into 

account, limiting the correctness of the obtained results. As expected from the 

hydrodynamic model equation, convection became dominant at high pressure (i.e. 

high Jv) [108, 116].  

 

From the results obtained in the literature, it can be inferred that the ratio of solute 

size to pore size λ (equation 5.10 in Chapter 5) might be responsible for the 

predominance of diffusion or convection in micropollutant transport through NF 
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[346]. If λ < 1 convection should be the dominant transport mechanism, while if λ > 

1 solute cannot penetrate inside the pores and diffusion should be prevailing. As a 

consequence, it could be expected that for λ < 1 retention should decrease with 

pressure, while for λ > 1 retention should increase with pressure.  

 

Nghiem et al. [142] inferred that micropollutant adsorption to the membrane could 

be responsible for decrease of retention with increasing pressure. They inferred that 

when pressure increases, permeate flux and the drag forces within the membrane 

pores increase, desorption of micropollutants might be enhanced or adsorption time 

reduced, contributing to lower the retention.  

 

In summary, it can be hypothesized that increase or decrease of micropollutant 

retention with pressure might depend on: 

- solute size/pore size ratio λ (solute-membrane interactions), in turn affecting 

the importance of diffusion and convection contributions to solute transport 

through NF membranes;  

- solute adsorption to the membranes (solute-membrane interactions).  

A systematic study to investigate these hypotheses will be carried out in this chapter.   

 

The influence of NOM on micropollutant retention with pressure has been scarcely 

studied. Xu et al. [87] observed both increase and decrease of retention with pressure 

for charged hydrophobic organics through several NF membranes. In the presence of 

NOM, retention of the charged hydrophobic organics was constant with pressure for 

all the studied membranes. The mechanisms behind this phenomenon were not 

examined. As shown in the previous chapter, HA can influence the size of the solutes 

by forming complexes with them (solute-solute interactions) and can influence the 

pore size of the membranes by solute-membrane interaction, in turn modifying λ. HA 

might also influence micropollutant adsorption to the membranes [340, 342]. 

Therefore HA are expected to influence solute retention with pressure and their 

effects on ES retention with pressure will be studied in this chapter. 
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In the first part of this chapter, retention of manganese, the chosen model inorganic, 

by TFC-SR2 and TFC-SR3 will be investigated as a function of pressure in order to 

verify findings in the literature for retention of inorganics with pressure. The 

influence of HA on manganese retention with pressure will not be investigated since 

results obtained in Chapter 6 showed that manganese-HA complexation did not 

affect manganese retention.  

 

In the second part of this chapter, retention of pesticide ES, the chosen model 

micropollutant, by TFC-SR2 and TFC-SR3 will be investigated as a function of 

pressure. The contrasting results obtained in the literature for micropollutant 

retention with pressure invites a systematic investigation of the underlying 

mechanisms. The pore size of TFC-SR2 (rp = 0.52 nm) and TFC-SR3 (rp = 0.38 nm) 

is respectively bigger and smaller than the size of ES (Stoke radius rs = 0.48 nm), 

allowing the study of the influence of λ on retention trends with pressure. Retention 

of ES in the presence of HA, chosen as representative of NOM, will also be 

investigated as a function of pressure.  

 

The objectives of this chapter are to: 

- confirm findings in the literature for retention of inorganic solutes as a 

function of pressure;   

- investigate the role of λ, convection, diffusion and adsorption (solute-

membrane interactions) on ES retention as a function of pressure; 

- investigate the role of HA on ES retention as a function of pressure (solute-

solute interactions); 

- elucidate the transport mechanisms responsible for increase/decrease of ES 

retention with pressure.  

 

ES diffusion was quantified with experiments in diffusion cells (Section 4.4.2) in 

order to establish the contribution of convection and diffusion to ES transport. 

Consequently, a similar approach to the one adopted by Opong and Zydney [113] 

and Yuan and Kilduff [101] was employed to elucidate solute transport mechanisms 

with pressure. The mentioned authors combined the hydrodynamic model with the 
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film model (Chapter 5) and utilised them in a phenomenological and non predictive 

manner to provide insight into how operating variables affected protein and NOM 

transport mechanisms through UF membranes. In this work, the models were applied 

in a phenomenological way to evaluate the transport mechanisms of ES through NF. 

While the hydrodynamic model has been already applied to predict the transport of 

several micropollutants through NF [27, 92, 347], its use in a phenomenological and 

non-predictive fashion for studying the influence of pressure on micropollutant 

retention is novel.  

8.2 Filtration protocol 

Filtration experiments for manganese and ES were carried out as described in 

Section 4.4.1 and Section 6.2. Manganese concentration of 5 mg/L, 1 mM NaHCO3 

and 20 mM NaCl of electrolyte background solution were employed in the 

experiments with manganese (Section 4.2). Pressure was varied between 5 and 15 

bar and experiments were carried out at pH 7.  

 

ES concentration of 10 µg/L, HA concentration of 12.5 mgC/L, 1 mM NaHCO3 and 

20 mM NaCl of electrolyte background solution were employed in the experiments 

with ES (Section 4.2). Membrane saturation by ES was reached in all experiments. 

The amount of ES required to reach membrane saturation was constant with pressure 

and depended on the volume of the filtered solution (i.e. on the mass of ES filtered). 

All experiments were carried out at pH 4 to minimise electrostatic interactions 

between HA and the membranes (Section 7.5), in turn minimizing the influence of 

HA on membrane pore size (Section 7.7) and allowing the use of the hydrodynamic 

model without the electrostatic term (Section 5.3). 

8.3 Influence of transmembrane pressure on Mn removal   

Figure 8-1 shows J/J0 (the ratio of pure water flux before and after the manganese 

filtration experiments) and J0 (pure water flux) and Jv (permeate flux) as a function of 

pressure. For TFC-SR3 flux ratio was slightly above the unity for any pressure and 

fouling did not occur, while for TFC-SR2 fouling occurred at high pressure (Figure 

8-1a).  
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From Figure 8-1b it is possible to calculate the membrane permeability from the 

slope of the best linear fit. For both membranes the permeability did not change 

considerably between the filtration of pure water flux and the filtration of 

manganese. For TFC-SR3 the permeability decreased from 7.6 L/m2.h.bar during the 

filtration of pure water flux to 6.7 L/m2.h.bar during the filtration of manganese, 

while for TFC-SR2 the permeability decreased from 15.4 L/m2.h.bar during the 

filtration of pure water flux to 13.5 L/m2.h.bar 1 during the filtration of manganese. 

Decrease of permeability was attributed to concentration polarisation. Concentration 

polarisation was more pronounced for TFC-SR2 and increased with increasing 

pressure.   
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Figure 8-1 (a) Ratio of pure water flux after the experiments J and initial pure water 

flux J0 and J and (b) J0 and Jv as a function of pressure for TFC-SR2 and TFC-SR3. 

Manganese 5 mg/L, background electrolyte 1 mM NaHCO3 and 20 mM NaCl, pH 7 

(error bars not shown for clarity) 

 

Manganese retention with pressure was higher for TFC-SR3 than for TFC-SR2 

confirming the results obtained in Chapter 6 at pH 7. Manganese retention increased 

with pressure confirming findings in the literature for other salts and metals [54, 66, 

114, 138, 331]. Manganese deposits on both membranes were negligible for any 

pressure, confirming results obtained in Chapter 6 for pH below 10.  
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Figure 8-2 (a) Manganese retention and (b) manganese deposits as a function of 

pressure for TFC-SR2 and TFC-SR3. Manganese 5 mg/L, background electrolyte 1 

mM NaHCO3 and 20 mM NaCl, pH 7 

 

A study of the impact of NOM on retention of inorganics as a function of pressure 

would be valuable in order to investigate the influence of solute-solute interactions 

on transport mechanisms of inorganic solutes. In the case of manganese, 

complexation with HA occurred at pH above 8.5 (Figure 6-4) when manganese 

retention was high (99%) due to precipitation of MnCO3 (Figure 6-6) and manganese 

transported across both membranes was negligible. For this reason, it was not 

possible to study the influence of HA on manganese transport as a function of 

pressure.  

8.4 Influence of transmembrane pressure on ES removal   

The retention of ES with and without HA as a function of pressure was determined 

for TFC-SR2 and TFC-SR3. As shown in Figure 8-3, for both membranes fouling 
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did not occur during ES filtration, since J/J0 (ratio of pure water flux after filtration 

and initial pure water flux) and Jv/J0 (ratio of permeate flux and initial pure water 

flux) were close to unity and constant with pressure. In the presence of HA, fouling 

occurred for TFC-SR2 with increasing pressure. The increase of flux reduction with 

increasing pressure in the presence of HA was attributed to cake layer formation and 

concentration polarisation [126]. For TFC-SR3 in the presence of HA Jv/J0 was lower 

than unity and decreased with pressure, while J/J0 was close to unity. For this 

membrane HA filtration decreased the flux, but the flux was easily restored once 

pure water was filtered.  
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Figure 8-3 Ratio of pure water flux after the experiments J and initial pure water flux 

J0 (dark symbols) and ratio of permeate flux Jv and initial pure water flux J0 (open 

symbols) for filtration of ES only and ES and HA as a function of pressure for (a) 

TFC-SR2 (b) TFC-SR3. ES 10 µg/L, HA 12.5 mgC/L, pH 4, background electrolyte 

1 mM NaHCO3 and 20 mM NaCl (error bars not shown for clarity) 

 

Figure 8-4 shows that pressure did not influence the mass of ES adsorbed to the 

membranes (±0.02 µg/cm2 variability). ES adsorption to the more hydrophobic TFC-

SR2 was higher than to TFC-SR3. The presence of HA slightly decreased ES 

adsorption on TFC-SR2, while it had negligible influence on ES adsorbed to TFC-

SR3, confirming what was observed in the previous chapter.  
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Figure 8-4 ES adsorption to the membranes with and without HA as a function of 

pressure. ES 10 µg/L, HA 12.5 mgC/L, pH 4, background electrolyte 1 mM NaHCO3 

and 20 mM NaCl. 

 

Results of ES retention with pressure showed that for the tighter TFC-SR3 (λ > 1) ES 

retention increased with pressure, while for the looser TFC-SR2 (λ < 1) ES retention 

decreased with pressure (Figure 8-5a). In the presence of HA, ES retention slightly 

decreased for TFC-SR2 and was constant with pressure for TFC-SR3.  

 

The flux of ES, determined as the passage of ES mass to the permeate side with time, 

confirmed the retention results (Figure 8-5b). For TFC-SR3 ES flux was constant 

with pressure and since Jv increased with pressure, it resulted in increasing ES 

retention. For TFC-SR2 both ES flux and Jv increased with pressure, decreasing ES 

retention. For both membranes ES flux in the presence of HA was lower than the 

flux of ES alone, resulting in higher ES retention.   

 

These results confirmed the findings in the literature and seemed to endorse the 

hypotheses that λ and HA have a role in increase/decrease of retention with pressure. 

Decrease in retention was observed for TFC-SR2, which has higher ES sorption, in 

agreement with the hypothesis by Nghiem et al. [142] that micropollutant adsorption 

to the membrane could be responsible for decrease of retention with increasing 

pressure. 
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In the previous chapter it was concluded that when HA interacted with the 

membranes an increase of MWCO occurred. HA-membrane interactions were 

influenced by pH and their effects on ES retention depended on the ratio of ES MW 

and membrane MWCO (i.e. λ). The presence of HA increased the membrane 

MWCO at neutral pH, but HA-membrane interactions were negligible at pH 4. For 

the looser TFC-SR2 the increase in MWCO decreased the retention of ES in the 

presence of HA with respect to the retention of ES alone. In the case of the tighter 

TFC-SR3 the increase of MWCO was not sufficient to decrease ES retention in the 

presence of HA. In Figure 8-5a ES retention increased in the presence of HA for both 

membranes, confirming that HA did not increase membrane MWCO at pH 4 and 

therefore ES-HA interactions were the dominant mechanisms of ES retention.  
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Figure 8-5 (a) ES retention with and without HA as a function of pressure for TFC-

SR2 and TFC-SR3 (b) ES flux with and without HA as a function of pressure for 

TFC-SR2 and TFC-SR3. ES 10 µg/L, HA 12.5 mgC/L, pH, 4, background 

electrolyte 1 mM NaHCO3 and 20 mM NaCl.  
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8.5 ES diffusion through NF membranes  

In order to establish the contribution of convection and diffusion to ES transport, ES 

diffusion through TFC-SR2 and TFC-SR3 was quantified in diffusion cells, as 

described in Section 4.4.2. The aim was to verify the hypothesis that increase of 

micropollutant retention with pressure (TFC-SR3 case) was due to diffusion and 

decrease of retention with pressure (TFC-SR2 case) was due to convection.   

 

Figure 8-6 shows the variation of the concentration of ES in the feed cell and in the 

permeate cell (Cf and Cp in equation 4.5) with time. Four concentrations of ES were 

employed in order to determine the diffusion coefficient Dm as the slope of the fitted 

equation 4.6. Even if both membranes were pre-saturated with ES in the stirred cell 

filtration apparatus, equilibrium during diffusion was not reached after 121 hours for 

any ES concentration.  
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Figure 8-6 ES concentration in feed and permeate diffusion cells with time (a) TFC-

SR2 and (b) TFC-SR3. ES 10-100 µg/L, pH 4.  

 

Values of Dm for TFC-SR2 and TFC-SR3 are shown in Table 8-1. Dm was higher for 

the looser TFC-SR2 than for the tighter TFC-SR3, confirming that diffusion is more 

hindered in smaller pores and denser membranes [117].  

 

The goodness of fitting (represented by r2) for TFC-SR2 was worse than for TFC-

SR3 (Table 8-1). One of the hypotheses of the Fick’s law used for calculating Dm is 

that mass adsorbed to the membrane during diffusion is negligible with respect to the 
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mass in the diffusion cells (Section 4.4.2). The mass of ES adsorbed to TFC-SR3 

during the whole diffusion experiments was negligible (Figure 8-7b). In the case of 

TFC-SR2 a small percentage of ES (0.2% of the mass of ES in the feed cell after 25 

hours) adsorbed to the membrane at the beginning of the diffusion experiments 

(Figure 8-7a). Although both membranes were pre-saturated with ES during filtration 

experiments to reduce the amount of ES adsorbed during the diffusion experiments, a 

small quantity of ES still adsorbed to TFC-SR2 till its saturation. While the mass of 

ES adsorbed to TFC-SR2 was too small to invalidate the use of Fick’s law, it is 

believed to be responsible for the lower goodness of fitting.     

 

Diffusion coupling, i.e. the passage of water from the permeate cell to the feed cell, 

was between 2-3 mL for TFC-SR3 and 3-9 mL for TFC-SR2 out of the 250 mL of 

solution in each cell and it was considered negligible.  

 

Table 8-1 Diffusion coefficients for ES through TFC-SR2 and TFC-SR3 membranes 

determined by fitting Fick’s equation with experimental data obtained with diffusion 

cells. The coefficient of determination r2 indicates the goodness of fitting. The 

membrane thickness ∆ mδ  was determined by SEM measurements.   

Membrane 
m

mD

δ∆
 (cm/s) r

2
 mδ∆  (µm) Dm (cm

2
/s) 

TFC-SR2 2.12E-06 0.933 157.85 ± 2.60 3.34E-08 
TFC-SR3 1.19E-06 0.993 142.07 ± 3.72 1.69E-08 

 

In order to estimate the contribution of diffusion to the total passage of ES through 

the membranes during the filtration experiments, the flux of ES through the 

membranes during diffusion experiments was compared with the flux of ES during 

the filtration experiments. According to the hydrodynamic model the flux during 

filtration is composed by a diffusion term and a convection term (in absence of 

electrostatic interactions). It was assumed that the diffusion term could be quantified 

during the diffusion experiments [116, 117].  
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Figure 8-7 Adsorption of ES to (a) TFC-SR2 and (b) TFC-SR3 during diffusion 

experiments. ES 10-100 µg/L, pH 4. 

 

While Dm has been inferred to be constant with solute concentration in the range of 

concentrations used in this study (Section 4.4.2), the flux of solute through the 

membrane is affected by the solute initial concentration, as observed for ES flux 

through TFC-SR2 and TFC-SR3 (Figure 8-6). ES fluxes during diffusion and 

filtration experiments were therefore compared by expressing the flux as a function 

of the estimated concentration of ES in the membrane boundary layer, cmf (Figure 

8-8).  

 

In the case of diffusion experiments, cmf was considered equal to CF since 

concentration polarisation was assumed to be negligible (high stirring speed was 

employed). For the filtration experiments with the stirred cells, cmf was calculated 

with the following equation derived from the film theory (see Section 5.1): 














=

−

−

f

v

pf

pmf

k

J

cc

cc
exp                                (8.1) 

where the mass transfer coefficient kf  for ES was determined with equations 5.5 and 

5.6 in Chapter 5 and corresponded to 2.10E-05 m/s.  
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Figure 8-8 ES flux through (a) TFC-SR2 and (b) TFC-SR3 during diffusion 

experiments (open symbols) and filtration experiments (dark symbols) as a function 

of the estimated concentration in the membrane boundary layer.    

 

It can be noted from Figure 8-8 that during filtration experiments cmf increased with 

pressure more for TFC-SR2 than for TFC-SR3 (feed concentration cf was 10 µg/L 

for all the filtration experiments). The higher increase of cmf for TFC-SR2 was due to 

higher Jv values for a certain pressure, since kf in equation 8.1 was the same for both 

membranes. It can be concluded that for the same pressure higher concentration 

polarisation occurred for the looser TFC-SR2.  

 

ES flux determined in diffusion experiments was higher for the looser TFC-SR2, 

confirming that the diffusion rate is higher through bigger pores. The percentage of 

ES flux due to diffusion with respect to the total flux obtained during filtration was 

lower for TFC-SR2 (0.9%) than for TFC-SR3 (2.9%). The obtained results 

confirmed that convection contribution to transport is higher for the looser membrane 

[116].  

 

Findings from the diffusion experiments indicated that convection was the main 

transport mechanisms of ES through TFC-SR2 and TFC-SR3. The convection 

dominated transport of ES through both membranes invalidated the hypothesis for 

which when λ > 1 diffusion should be prevailing.   
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It must be highlighted that diffusive flux obtained with diffusion experiments is only 

an approximation of the diffusive flux considered in the hydrodynamic model [110, 

117]. In filtration, solute retention and transport are controlled by the active layer; 

therefore solute transport through the membrane depends only on diffusion and 

convection through the active layer. The two transport terms of the hydrodynamic 

model (equation 5.7 in Chapter 5) refer to solute transport through the active layer 

only, without considering transport through the support layer and the non-woven 

fabric as these layers do not contribute to solute retention. In diffusion experiments, 

the diffusive flux of the entire membrane is measured. The support layer and the non-

woven fabric hinders solute diffusion even if their pores are much bigger than the 

pores of the active layer because their thickness is two-three orders of magnitude 

bigger than the thickness of the active layer. The resistance of the support layer and 

of the non-woven fabric to diffusion cannot be neglected [113, 348].  As a result, the 

diffusive flux obtained with diffusion experiments is lower than the diffusive flux 

term in the hydrodynamic model.  

8.6 Transport of ES through NF membranes  

From diffusion experiments it appeared that convection was the dominant transport 

mechanism for ES through TFC-SR2 and TFC-SR3.  As a result, the contribution of 

convection and diffusion could not explain ES retention trends with pressure. In 

order to understand how pressure influenced ES retention and examine transport 

mechanisms of ES, the hydrodynamic model combined with the film model was 

employed in a phenomenological, non-predictive way. 

 

Opong and Zydney [113] and Yuan and Kilduff [101] compared experimental data 

for sieving of bovine serum albium and NOM with the predictions of the 

hydrodynamic model to determine the convective and diffusive contributions to 

solute transport through UF membranes. According to the hydrodynamic model 

equation, the plots of the observed and actual sieving coefficients, So and Sa, versus 

Jv show characteristic curves (Section 5.4). At low values of Jv the sieving 

coefficients tend to one and diffusion is dominant. At high values of Jv, So tends to 

one, Sa decreases to an asymptotic value and convection dominates transport [101]. 
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In the vicinity of the minimum of So both convection and diffusion contribute to 

solute transport [113]. In previous studies, the hydrodynamic model was used to 

estimate the contribution of diffusion and convection to solute transport by 

determining the position of the sieving coefficients obtained experimentally with 

respect to the minimum of the curve.  

 

Furthermore, in the same study Yuan and Kilduff [101] fitted the hydrodynamic 

model with experimental results to estimate the effective size of NOM. The authors 

treated the effective radius of NOM as the unknown parameter in the model. Other 

authors fitted the hydrodynamic model with experimental results obtained by organic 

solutes to evaluate unknown parameters, such as the membrane pore radius and/or 

Φ , the solute partitioning coefficient in the membrane [27, 99, 148, 347]. In these 

studies, the hydrodynamic model was used in phenomenological, non-predictive 

fashion to acquire information on unknown parameters and in turn on transport 

mechanisms.  

 

In this work, the approach described above was adopted to investigate the transport 

of ES through TFC-SR2 and TFC-SR3. The validity of the hydrodynamic model for 

predicting micropollutant retention by NF has been demonstrated for several organic 

micropollutants [27, 92, 99, 347]. The hydrodynamic model can describe well the 

transport of micropollutants through NF provided rp, L/ε and Φ  in equation 5.18 

(Chapter 5) are known.  

 

For TFC-SR2 and TFC-SR3 rp and L/ε were determined, as shown in Section A.2.3 

in Appendix 2, by calibrating the purely steric hydrodynamic model with inert 

organics. Φ  was estimated in two ways: firstly using the purely steric model 

(equation 5.14 in Chapter 5) and secondly by fitting the experimental results obtained 

with ES, following the approach used by Verliefde et al. [99]. The authors showed 

that the purely steric hydrodynamic model overestimated solute retention for 

micropollutants. Discrepancies between the purely steric model and experimental 

results were attributed to the existence of non negligible solute-membrane 

interactions, represented by Φ . 
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For TFC-SR3, rp estimated with inert organics cannot be used to evaluate ES 

transport since the size of ES, rs, is bigger than the estimated rp. According to the 

hydrodynamic model when λ > 1 retention is 100%, while for TFC-SR3 total 

retention did not occur (Figure 7-8a). As observed in Section 5.3, when λ > 1 and 

retention is less than 100%, the model can be fitted using the obtained retention 

results for the studied solute to determine a new pore radius rp
*. rp

* represents  the 

average radius of an “hypothetical” membrane whose hindrance to the solute passage 

is equivalent to the hindrance experienced by the solute through the actual membrane 

[54]. As a consequence, for TFC-SR3 both rp and Φ  were estimated simultaneously 

in the hydrodynamic model by fitting the experimental results obtained with ES.   

 

The objectives of fitting the experimental results for ES to the hydrodynamic model 

were dual: 

- establish the position of the sieving coefficients obtained experimentally with 

respect to the minimum of the hydrodynamic model curve and obtain 

information on the prevalence of convection and diffusion in ES transport 

through the membranes (to compare with the results obtained with the 

diffusion cells); 

- acquire information about the unknown parameters and in turn explain 

transport mechanisms of ES through the membranes. 

 

Figure 8-9 shows the experimental sieving coefficients obtained for TFC-SR2 and 

TFC-SR3 as a function of Jv (i.e. pressure). Jv was determined by dividing the 

permeate flow measured during the experiments by the membrane area as indicated 

in equation 2.2 in Section 2. So was calculated from the observed retention (Figure 

7-8) with equation 5.16 (Chapter 5). Sa was calculated from the real retention 

(equation 5.17 in Chapter 5) using equations 5.3, 5.5 and 5.6 in Chapter 5.  

 

Figure 8-9 also shows the curves of Sa and So, continuous lines for TFC-SR2 and 

dotted lines for TFC-SR3. The curve of Sa was determined with equation 5.18 

(Chapter 5) and the curve of So was calculated by substituting So to Sa in equation 

5.18 using equations 5.3, 5.16 and 5.17. As stated before, rp and L/ε were determined 
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by fitting the purely steric hydrodynamic model with retention results obtained for 

inert organics (Chapter 5).  
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Figure 8-9 Observed sieving coefficients So and actual sieving coefficients Sa as a 

function of permeate flux Jv for TFC-SR2 and TFC-SR3. The continuous lines 

indicate (a) the purely steric hydrodynamic model (b) the hydrodynamic model with 

Φ fitted for TFC-SR2. The dotted lines indicate the hydrodynamic model with Φ and 

rp fitted for TFC-SR3. 

 

Figure 8-9a shows the curves of Sa and So for TFC-SR2 with Φ  estimated with 

equation 5.14 in Chapter 5 (purely steric model). For TFC-SR2 the purely steric 

hydrodynamic model underestimated the experimental values, confirming that ES-

membrane interactions were not negligible for this membrane [27, 92]. As a result, 

the hydrodynamic model was fitted with So values obtained experimentally to 

determine Φ  (Figure 8-9b). The parameters obtained in the two cases and the 

correlation coefficients between experimental and modelled values are presented in 

Table 8-2. Both Sa and So showed a better correlation with the experimental results 
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and Φ  increased with respect to the steric model. Since λ was considered constant 

with pressure, the increase of Φ  reflected the affinity between ES and TFC-SR2 

[27], as expected from the results of ES adsorption to TFC-SR2 in Figure 8-4.  

 

Table 8-2 Hydrodynamic model parameters and correlation coefficients between 

experimental and modelled values 

TFC-SR2 

Steric model Φ unknown 
rp (nm) Φ  r2 (So/Sa) rp (nm) Φ  r2 (So/Sa)

 

0.52 0.01 0.91/0.81 0.52 0.12 0.99/0.82 
TFC-SR3 

Steric model Φ and rp
* unknown 

rp (nm) Φ  r2 (So/Sa) rp (nm) Φ  r2 (So/Sa)
 

0.38 - - 0.49 0.03 0.90/0.89 
 

For TFC-SR3 the purely steric hydrodynamic model could not be used and rp and Φ  

were estimated by fitting the hydrodynamic model with experimental results for ES. 

Values of rp and Φ  obtained with the purely steric hydrodynamic model were used 

as starting points. The two parameters are not independent as Φ  is a function of λ, in 

turn function of rp (Equation 5.15 in Chapter 5), therefore they were fitted 

simultaneously. The pair of values that achieved the best correlation coefficient was 

chosen. The new average membrane radius was bigger than the average membrane 

radius calculated with the inert organics (Table 8-2), in agreement with the findings 

by Verliefde et al. [27]. It is inferred that inert organics underestimated the radius of 

TFC-SR3 because the interactions of inert organics and the membrane were not 

negligible [27]. The obtained Φ  for TFC-SR3 was lower than Φ  for TFC-SR2 

confirming the lowest affinity (adsorption) of ES for TFC-SR3 (Figure 8-4). . 

 

A fitting simulation was also carried out for TFC-SR3 to determine simultaneously 

rp, L/ε and Φ . The value of L/ε did not change with respect to the value determined 

with the inert organics (Table A-2.2, Appendix 2). Similarly, Φ and rp were 

determined simultaneously for TFC-SR2. The value of rp was identical to the value 

determined with the purely steric model (0.52 nm). It can be concluded that the pore 
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radius determined by inert organics described well the hindrance behaviour towards 

ES for TFC-SR2.  

 

From the position of the experimental sieving coefficients with respect to the 

modelled So and Sa curves, it is possible to see graphically the influence of 

convection and diffusion on ES transport. The percentage of transport by diffusion 

with respect to the total solute transport in filtration can also be estimated by 

comparing the total flux of ES during filtration (Section 8.5) with the diffusive flux 

of ES, determined with the transport equation of the hydrodynamic model (equation 

5.7 in Chapter 5) fitted with the experimental results. In the hydrodynamic model, 

the diffusion coefficient through the active layer is determined by the term Kd 

x ∞D [349], where Kd is the hindrance factor due to diffusion (function of λ) and 

∞D is the diffusion coefficient of the solute in water (4.50E-06 cm2/s for ES 

[274]).The estimated diffusion coefficients of ES through the active layer and the 

percentage of ES diffusive flux with respect to the total ES flux during filtration are 

shown in Table 8-3.  

 

Table 8-3 Diffusion coefficients and percentage of ES diffusive flux, estimated with 

diffusion experiments and the hydrodynamic model, with respect to the total ES flux 

during filtration. 

 Diffusion experiments Hydrodynamic model 

 
Dm (cm2/s) 

% ES diffusive 
flux to total ES 

flux 
Kd* ∞D (cm2/s) 

% ES diffusive 
flux to total ES 

flux 
TFC-SR2 3.34E-08 0.9 1.5E-07 2.0 
TFC-SR3 1.69E-08 2.9 1.26E-07 10.8 

 

Figure 8-9b shows that ES retention by TFC-SR2 was dominated by convection, 

since the experimental sieving coefficients are on the right of the minimum of the So 

curve and diffusion is estimated to be 2% of the total ES flux during filtration (Table 

8-3). The experimental sieving coefficients for TFC-SR3 are located on the bottom 

of the curve and diffusion is estimated to be 10.8% of the total ES flux during 

filtration (Table 8-3). 
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Table 8-3 compares the diffusion coefficients of ES through the membranes and the 

percentage of flux by diffusion (with respect to the total ES flux during filtration) 

estimated by the diffusion cells and the hydrodynamic model. As expected, values 

obtained with diffusion cells underestimated ES diffusion determined with the 

hydrodynamic model, since the resistances of the support layer and the non-woven 

fabric were taken into account in the diffusion experiments. The highest difference 

was obtained for the tighter TFC-SR3.  

 

Despite the discrepancies, the hydrodynamic model confirmed the findings obtained 

with the diffusion cells, showing that convection was the dominant transport 

mechanisms of ES through both membranes. The increase of retention with pressure 

for TFC-SR3 was due to the lower Jv obtained with the tighter membrane at the 

studied pressures, which located the experimental sieving results at the bottom of the 

hydrodynamic model curve. The decrease of retention with pressure for TFC-SR2 

was due to the high Jv obtained at the chosen pressures and to concentration 

polarisation.  

 

Fitting the hydrodynamic model with the experimental results obtained for ES 

allowed establishing quantitatively that convection was the dominant mechanism of 

ES transport through both membranes and ES-membrane interactions played a role in 

ES transport. However, the goodness of fitting for hydrodynamic model was not 

ideal (i.e. r2>0.999).  

 

Pressure has been shown to influence membrane pore radius rp (i.e. λ) even if there is 

not agreement in the literature if rp increases or decreases as a consequence [108, 

147, 148]. If λ varies with pressure, Φ  also varies with pressure (see equation 5.15 

in Chapter 5). However, the hydrodynamic model considers rp and Φ  constant with 

Jv. It is inferred that this simplification of the hydrodynamic model might be the 

cause of the relatively low goodness of fitting obtained in this work.  
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8.7 Transport of ES through NF membranes in the presence 

of HA 

Figure 7-8a showed that in the presence of HA, ES retention slightly decreased for 

TFC-SR2 and was constant with pressure for TFC-SR3. The obtained results seemed 

to confirm the findings by Xu et al. [87], for which in the presence of NOM 

micropollutant retention was constant with pressure. In order to explore transport 

mechanisms of ES in the presence of HA, the same approach described in Section 

8.6 was adopted and the hydrodynamic model combined with the film model was 

employed in a phenomenological, non-predictive way. Experiments with diffusion 

cells were not carried out because the determination of the diffusion of a solute 

through membranes in the presence of a second solute cannot be correctly estimated 

if the complexation between the solutes is not 100% [350]. In the case of ES, 100% 

complexation with HA was never reached (Figure 7-5).  

 

In the previous chapter it was found that at pH 4 and with HA concentration of 12.5 

mgC/L, 25% of ES in solution was complexed with HA. The presence of ES-HA 

complexes increased ES retention as a function of pressure with respect to the 

retention of ES only (Figure 8-5a), indicating that ES-HA complexes influenced ES 

transport through TFC-SR2 and TFC-SR3. Nevertheless, the existing transport 

models do not take into account solute-solute interactions in their formulation. The 

hydrodynamic model describes the transport of a solute of radius rs, without taking 

into account the potential formation of higher size complexes. 

 

In order to overcome this drawback, the hydrodynamic model was fitted with the 

experimental results to determine λ and Φ  simultaneously. It was assumed that the 

newly fitted rs
* represented the average radius of all solutes passing through the 

membranes, i.e. the average radius of ES molecules and ES-HA complexes, and the 

newly fitted rp
* represented the hindering behaviour of the membranes for the 

passage of ES and ES-HA complexes. The mass transfer coefficient kf was assumed 

to have the same value as in the case of transport of ES only.  
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While this approach might seem far-fetched, it must be remembered that not only rp 

is a non-physical parameter representing an average pore size, but also rs represents 

the size of solutes considered rigid and perfectly spherical (see Section 5.3). The 

above assumptions were considered acceptable for this study since the objective was 

to estimate the contribution of diffusion and convection to ES transport and acquire 

information on ES transport mechanisms. However, the higher number of unknown 

variables with respect to the ES only case did not allow gaining information on rs and 

rp.  

 

Figure 8-10 shows the So and Sa coefficients for TFC-SR2 and TFC-SR3 with the 

fitted hydrodynamic models and Table 8-4 reports the obtained parameters and the 

correlation coefficients. λ increased for both membranes with respect to the ES only, 

probably due to the increase of rs caused by the formation of ES-HA complexes, 

while Φ  decreased with respect to the ES only case. Decrease of Φ  is due to the 

increase in λ causing a decrease of the term 2)1( λ−  in equation 5.15 of Chapter 5. 

Unfortunately, the higher number of unknown parameters with respect to the ES only 

case did not allow gaining information on the physical meaning of λ and Φ .  
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Figure 8-10 Observed sieving coefficients So and actual sieving coefficients Sa as a 

function of permeate flux Jv for TFC-SR2 and TFC-SR3. The continuous lines 

indicate the hydrodynamic model with Φ and λ fitted TFC-SR2 and the dotted lines 

indicate the hydrodynamic model with Φ and λ fitted for TFC-SR3. 
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Table 8-4 Hydrodynamic model parameters and correlation coefficients between 

experimental and modelled values 

TFC-SR2 TFC-SR3 

λ Φ  r2 (So/Sa) λ Φ  r2 (So/Sa)
 

0.97 0.09 0.90/0.99 0.99 0.007 0.80/0.94 
 

These results suggested that, since the experimental sieving coefficients of TFC-SR2 

and TFC-SR3 were located after or close to the bottom of the So curve, convection 

was the dominant mechanism also for the transport of ES with HA. As observed in 

Figure 8-3, the permeate flux Jv was lower in the presence of HA than in the case of 

ES only. Therefore the experimental sieving coefficients were located closer to the 

flat bottom of the So curve than the experimental coefficients obtained for ES only. 

As a consequence, retention did not show the marked increasing/decreasing trend 

observed for ES only but was more constant with pressure.      

8.8 Conclusions 

This chapter investigated solute transport mechanisms through TFC-SR2 and TFC-

SR3 membranes in order to explain the role of pressure on solute retention. The role 

of solute-solute interactions on solute transport was also studied by investigating the 

influence of HA on solute retention as a function of pressure.  

 

Manganese retention increased with pressure confirming findings in the literature for 

inorganic solutes. The influence of HA on manganese retention with pressure was 

not investigated since manganese-HA complexes are formed at pH above 10, when 

manganese precipitated and retention was almost total. Further work is required to 

study the influence of HA-inorganic interactions in the retention of inorganic solutes 

with pressure. Inorganic solutes which are not totally retained when complexed with 

NOM should be selected to investigate the influence of pressure on their transport 

through NF membranes.       

 

Results of ES retention with pressure showed that for the tighter TFC-SR3 (λ > 1) ES 

retention increased with pressure, while for the looser TFC-SR2 (λ < 1) ES retention 

decreased with pressure. From the hypotheses in the literature it was inferred that 
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convection and diffusion might be responsible for increase/decrease of ES retention 

with pressure. Since previous studies stated that convection was dominant when λ < 

1 and diffusion was dominant when λ > 1, it was inferred that λ could be responsible 

for increase/decrease of ES retention with pressure.  

 

By contrast, results obtained with diffusion cells and the hydrodynamic model 

showed that convection dominated ES transport through both membranes. The 

increase of retention with pressure for TFC-SR3 was due to the lower Jv obtained 

with the tighter membrane at the studied pressures, while the decrease of retention 

with pressure for TFC-SR2 was due to the high Jv obtained at the chosen pressures 

and to concentration polarisation.  

 

It can be concluded that λ did not directly influence convection and diffusion 

mechanisms, as inferred in previous studies, but influenced Jv and concentration 

polarisation. The hydrodynamic model indicated that the increase/decrease of 

retention with pressure depended on the parameters Jv and kf.    

 

Experiments with diffusion cells underestimated ES diffusion through the 

membranes due to the non-negligible resistance of the support layer and the non-

woven fabric. While diffusion experiments can only give an approximation of the 

diffusive flux in filtration, they can offer an independent indication of the 

predominance of diffusion or convection in micropollutant transport.   

 

In the presence of HA, ES retention slightly decreased for TFC-SR2 and was 

constant with pressure for TFC-SR3. The presence of HA lowered Jv and changed λ 

affecting in turn the increase/decrease of ES retention with pressure.  

 

The hydrodynamic model was shown to be a valuable instrument in quantifying the 

contribution of diffusion and convection on solute transport and in evaluating the 

parameters that influence ES retention. Further studies are required to understand the 

influence of pressure on the membrane characteristics, especially membrane pore 

size, and incorporate findings into the hydrodynamic model. Furthermore, the 
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hydrodynamic model describes the transport of a single solute through the 

membrane, without taking into account the potential formation of higher size 

complexes. Incorporation of a bimodal distribution of solutes into the model might 

overcome this drawback.  
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9. Effect of manganese scaling on NF performance 

9.1 Introduction 

This chapter will investigate the impact of manganese scaling on the flux and solute 

retention of TFC-SR2 and TFC-SR3 membranes, highlighting the role of solute-

membrane interactions and solute-solute interactions. The review carried out in 

Chapter 2 concluded that fouling of NF membranes is a complex phenomenon, 

which, despite several studies, is not totally understood. Less attention has been 

given so far to the study of the effects of scaling of non-colloidal inorganic 

components on membrane flux and solute retention. While the impact of NOM and 

colloidal fouling on micropollutant retention has been investigated in several studies 

[112, 132-134, 137, 351], there is a lack of investigations on the impact of non-

colloidal scaling on the retention of micropollutants [33]. 

  

The mechanisms of non-colloidal scaling have been investigated for iron hydroxide 

and calcium sulphate [28, 84, 85]. It was proposed that the formation of the scaling 

layer followed two mechanisms: (1) surface blockage by surface crystallization and 

(2) cake layer formation by bulk crystallization. The phases of nucleation and growth 

characterise the surface blockage mechanism. During the nucleation phase small 

nuclei are deposited on the membrane, while during the growth phase polymerization 

reactions occur to build up the fouling layer. Surface crystallization was inferred to 

depend on pressure and crossflow velocity, the former responsible to bring more 

particles to the membrane and the latter controlling the shear force to erode the 

thickness of the fouling layer. Membrane fouling was more severe for more 

permeable membranes due to pore blockage.  

 

The mechanism of cake layer formation by bulk crystallization was inferred to be 

characterised by crystal particle formation in the bulk phase that would precipitate 

and form a layer on the membrane. Cake layer formation was more dominant than 

surface blockage at higher crossflow velocities and low pressures. At low pressures 

the concentration polarisation is low, so surface crystallization was reduced and cake 
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layer formation was dominant. At higher pressures the rate of growth of the cake was 

increased, probably due to increase deposition of particles on the membrane. For 

calcium sulphate the two mechanisms could be observed by SEM images: crystals 

were visible when surface crystallization occurred, while a cake layer could be 

observed for bulk crystallization [28].    

 

Scaling was shown to reduce salt retention. Decrease in salt retention by a RO 

membrane fouled by iron hydroxide was attribute to cake enhanced concentration 

polarisation, where the cake layer hindered the back diffusion of solutes to the feed, 

increasing concentration polarisation [135]. Reduction of magnesium sulphate 

retention by NF membranes fouled by calcium sulphate was attributed to the reduced 

charge of the membrane due to the presence of the scaling layer and/or to the reduced 

thickness of the active layer that caused more ion transport [29]. However, the 

number of studies elucidating the impact of scaling on solute retention is scarce and 

results are solute specific.  

 

In Chapter 6, manganese was shown to precipitate at pH grater than 7 as MnCO3, 

with 99% precipitated at pH 10, resulting in 99% retention for both TFC-SR3 and 

TFC-SR2. Manganese is ubiquitous in surface water, but the effects of its 

precipitation on membrane performance have never been studied. During filtration of 

5 mg/L of manganese fouling did not occur, probably due to short duration of the 

experiments and low solute concentration. Nevertheless, it was inferred that in the 

long term manganese precipitation would reduce membrane flux, hence its 

performance.  

 

The objectives of this chapter are to: 

- Determine the effect of manganese precipitates on membrane fouling (solute-

membrane interactions).  

- Quantify the retention of pesticide ES as a result of membrane scaling by 

manganese (solute-solute interactions) 

- Propose the mechanisms responsible for the effects of manganese scaling on 

ES retention by the membranes. 



 
 

 150

9.2 Filtration protocol 

Filtration experiments were carried out as described in Section 4.4. All experiments 

had a background electrolyte of 1 mM NaHCO3 and 20 mM NaCl (Sections 4.2). 

Feed solution (900 ml) containing manganese (150-1500 mg/L) was prepared the day 

before and stirred overnight at 100 rpm at ambient temperature. pH was not adjusted 

and was around 7 (±0.3) in all experiments. Since the scope was to determine the 

effects of manganese precipitates on the fouling of TFC-SR2 and TFC-SR3, the 

experiments were carried out at 80% recovery. High recovery increases solute 

concentration in the feed, increasing concentration polarisation and hence scaling 

[129, 143, 144].   

 

After the experiments with manganese, the membranes were rinsed with ultrapure 

water without being dismounted from the stirred cells to remove any manganese 

loosely deposited on the membrane. The pure water flux after filtration J was 

consequently measured.  

 

Three different sets of experiments were carried out. The first set of experiments had 

the scope to determine the effects of manganese precipitates on the fouling of TFC-

SR2 and TFC-SR3 and was carried out according to the following procedure: 

1. Experiments with manganese (Mn) concentration varied from 150 mg/L to 

1,500 mg/L (and background electrolyte) at pressure 10 bar and stirring speed 

of 300 rpm.  

2. Experiments with Mn concentration of 500 mg/L (and background 

electrolyte), pressure varied from 5 to 15 bar and stirring speed of 300 rpm.  

Four permeates were collected and analysed for manganese with ICP-OES as 

described in Section 4.3.2. 

 

Manganese concentrations employed in this study were unrealistic and much higher 

than the average concentrations found in natural water (Section 3.2), but they were 

chosen to accelerate fouling in the stirred cells. The scope was to simulate long-term 

operation of membranes with short term experiments in the laboratory. Experiments 

as a function of pressure had the scope to evaluate pressure influence on manganese 
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scaling. High pressure was shown to increase the rate of fouling by increasing the 

deposition of organic and inorganic solutes on the membrane [84, 125].  

 

The second set of experiments had the scope to compare the effects of manganese 

precipitates on membrane performance with the effects of other solutes whose 

mechanisms have been thoroughly investigated in the literature. The experiments 

were carried out at pressure 15 bar, pH 7 and stirring speed 300 rpm as follows: 

(a) filtration of background electrolyte (1 mM NaHCO3 and 20 mM NaCl) 

(b) filtration of HA (12.5 mgC/L) and background electrolyte 

(c) filtration of HA (12.5 mgC/L) + Ca (2.5 mM) and background electrolyte 

(d) filtration of Mn (500 mg/L) and background electrolyte 

(e) filtration of HA (12.5 mgC/L) + Mn (500 mg/L) and background electrolyte 

(f) filtration of HA (12.5 mgC/L) + Mn (500 mg/L) + Ca (2.5 mM) and 

background electrolyte. 

 

Nine permeates of 80 mL were collected and analysed for Na and HA with ICP-OES 

and TOC analyser respectively as described in Section 4.3.2 and Section 4.3.3. The 

higher number of permeates with respect to the first set of experiments allowed 

studying in more detail solute retention mechanisms in the presence of manganese 

scaling. Analysis of Na by ICP-OES was necessary to determine its retention in 

solutions containing HA and other inorganics, as conductivity cannot represent Na 

retention correctly when several solutes are present. Analysis of Mn was not carried 

out since 99% of manganese retention was observed in the first experiments (Section 

9.3).  

 

The effects of scaling by manganese precipitates was compared with fouling 

potential by HA alone and HA + Ca, since the fouling mechanisms of these 

compounds have been extensively investigated [125, 128, 129, 132, 162]. Schäfer et 

al. [130] obtained maximum flux decline when 12.5 mgC/L of HA and 2.5 mM of 

Ca were filtered through Koch TFC membranes similar to TFC-SR2 and TFC-SR3. 

For this reason the same concentrations were employed in this work. Experiments 

with HA + Mn were aimed at establishing if Mn2+ could behave as Ca2+ in increasing 
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membrane fouling. Experiments with HA + Mn + Ca has the scope to determine if 

Mn could prevent/enhance fouling by HA and Ca.   

 

During the third set of experiments, pesticide ES (10 µg/L) was filtered through the 

membranes used in the experiments (b) to (f) and results were compared with ES 

filtration through “clean” (virgin) membranes. The filtration protocol used in Section 

7.2 was employed. The membranes were not removed from the stirred cells and ES 

filtration was carried out the day after the second set of experiments. The scope was 

to investigate the impact of manganese scaling on ES retention and compare it with 

ES retention obtained after fouling by HA and calcium. Mechanisms of 

micropollutant retention by membranes fouled by NOM have been investigated in 

previous studies [112, 134], while the effects of non-colloidal inorganic scaling on 

micropollutant retention are unknown.  

9.3 Effect of manganese on membrane fouling 

The effect of manganese on membrane flux decline was determined by measuring 

the pure water flux before and after the filtration experiments (J0 and J) and the 

permeate flux during solute filtration (Jv).  

9.3.1 Effect of manganese concentration and pressure 

The first set of experiments investigated the influence of manganese concentration 

and pressure on membrane fouling. Due to the high manganese concentration 

employed in the experiments manganese deposits were visible on both membranes 

(Figure 9-1).  
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      (a)        (b) 

Figure 9-1 (a) TFC-SR2 and (b) TFC-SR3 after manganese filtration at neutral pH. 

Manganese concentration: 500 mg/L, pressure: 10 bar, background electrolyte 1 mM 

NaHCO3 and 20 mM NaCl 

 

As shown in Figure 9-2, for the looser TFC-SR2 the filtration of Mn increased Jv and 

J compared to J0. The trend J > Jv > J0 was independent from the concentration of 

manganese in the feed and from pressure. For the tighter TFC-SR3 Jv decreased 

compared to J0 while J increased. Also for this membrane the trend J > J0 > Jv was 

independent from the concentration of manganese in the feed and from pressure.  

 

Flux decline was observed only during manganese filtration through the tighter TFC-

SR3 and was independent from pressure. These results are in contrast with findings 

obtained during filtration of Fe(OH)3 and HA, where higher flux decrease was 

observed at higher pressures and looser membranes had higher flux decline than 

tighter ones [85, 126]. Since fouling by Fe(OH)3 and HA was attributed to pore 

blocking, this mechanism did not seem to occur in the case of manganese 

precipitates.  

 

Since J constantly increased with respect to J0 it can be concluded that manganese 

precipitates did not foul the membranes and on the contrary they enhanced 

membrane flux.   
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(d) 

Figure 9-2 (a,b) Pure water flux before experiments J0, permeate flux Jv and pure 

water flux after experiments J as a function of manganese concentration, pressure 10 

bar, pH 7, background electrolyte 1 mM NaHCO3 and 20 mM NaCl for TFC-SR2 

and TFC-SR3 membranes (c,d) J0, Jv and J as a function of pressure, manganese 500 

mg/L, pH 7, background electrolyte 1 mM NaHCO3 and 20 mM NaCl for TFC-SR2 

and TFC-SR3 membranes. 

9.3.2 Comparison with fouling by other solutes  

The second set of experiments compared the effects of manganese filtration on 

membrane flux with the effects of other solutes filtered alone or with manganese. 

Since the effects of manganese precipitates on Jv and J were independent from the 

feed concentration and pressure, a concentration of 500 mg/L of manganese was 

selected and all the experiments were carried out at 15 bar (Section 6.2). 
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(b) 

Figure 9-3 Pure water flux before experiments J0, pure water flux after experiments J 

and permeate flux Jv during filtration of background electrolyte only, humic acids 

(HA), humic acids and calcium (HA+Ca), manganese (Mn), humic acids and 

manganese (HA+Mn), humic acid, manganese and calcium (HA+Mn+Ca) by (a) 

TFC-SR2  and (b) TFC-SR3; HA 12.5 mgC/L, CaCl2 2.5 mM (278 mg/L of Ca), 

MnCl2 500 mg/L as Mn, background electrolyte 1 mM NaHCO3 and 20 mM NaCl, 

pH 7, pressure 15 bar. 

 

Filtration of HA and calcium (HA+Ca) (experiment c) caused decline of Jv and J 

with respect to J0 for both membranes. Flux decline was worst for the looser TFC-

SR2. These findings confirmed the results obtained by previous studies on NOM 

fouling in the presence of calcium, where looser membrane were more prone to 

fouling [125, 128, 129, 132, 162]. Filtration of HA alone (experiment b) did not foul 

the membranes, in agreement with previous results obtained for TFC membranes 

similar to the ones employed in this study [125, 130]. 

 

J, Jv and J0 during filtration of background electrolyte only (experiment a) and HA 

only (experiment b) followed the same trends as for manganese: for TFC-SR2 J > Jv 

> J0 and for TFC-SR3 J > J0 > Jv. Flux enhancement was more pronounced after 

filtration of manganese. Flux enhancement was also observed during the filtration of 

HA and manganese (experiment e). Despite manganese forming complexes with HA 

at pH > 7 (Chapter 6), manganese did not behave like calcium in increasing 

membrane fouling. Manganese addition prevented irreversible fouling caused by HA 

and Ca, as already observed in previous studies where coagulants dosed to increase 
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NOM removal prevented fouling [82, 83, 286]. These results confirmed the ability of 

manganese to enhance pure water flux after filtration and prevent fouling by HA and 

calcium.  

 

Flux enhancement after solute filtration was observed in previous chapters during the 

filtration of 5 mg/L of manganese, especially for TFC-SR3 (Section 6.4) and during 

the filtration of HA (12.5 mgC/L) and ES for TFC-SR2 at pH > 6 and for TFC-SR3 

at pH > 10 (Section 7.4 and Section 7.5). Flux enhancement after solute filtration was 

first observed with vanillin and NaCl by Nyström et al. [52] and with HA by Hong 

and Elimelech [125]. Following studies confirmed that filtration of NaCl and NOM 

could increase the membrane pure water flux [87, 133, 339, 352, 353].  

 

Recently, calcium sulphate deposits on NF membranes were shown to increase 

membrane flux [29]. Other non-colloidal inorganics, such as ferric chloride [83] 

alum sulphate, ferrous sulphate [82] and polysilicato-iron hydroxide [286], dosed as 

coagulants in the feed to improve solute removal by membranes, were shown to 

improve flux decline caused by NOM, reducing fouling.  

 

In order to explain the mechanisms of flux enhancement and fouling prevention, the 

following hypotheses were inferred in the literature: 

- NOM filtration increases membrane charge, increasing repulsion between the 

membrane pores and in turn MWCO [87, 133]; 

- NOM filtration increases membrane hydrophilization [125, 339]; 

- Calcium sulphate deposits decrease the thickness of the active layer [29]; 

- NaCl filtration increases the membrane free volume due to internal 

electrostatic repulsion within the membrane pores [52]; 

- the interactions between NaCl and the membrane cause swelling of the active 

layer [353]; 

- polysilicato-iron deposits prevent foulants to sorb onto the membranes [286]. 

- Coagulants cause the precipitation of foulants, increasing their retention and 

in turn decreasing fouling.  
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The applicability of these above hypotheses for manganese will be discussed in 

Section 9.7. 

 

Flux enhancement and decrease of solute retention have also been linked to 

membrane degradation caused by free chlorine (HClO) and chloramines solutions 

[354-356]. Cl+ is thought to attack the aromatic ring of the polyamide layer 

chemically modifying the membrane.  

9.4 Solute retention during manganese filtration  

In order to understand the impact of manganese precipitates on membrane 

performance, retention of manganese, sodium and HA was investigated. The 

examination of solute retention and passage through the membranes had the 

objective to offer an insight into the mechanisms responsible for the flux change.  

 

The calculation of manganese retention and manganese deposits on the membranes 

during the first set of experiments were related with the flux results presented in 

Section 9.3.1. The calculation of sodium and HA retention obtained during the 

second set of experiments were related with the flux results presented in Section 

9.3.2. In the case of sodium and HA, which were not completely retained by the 

membranes, solute flux, determined as the mass of solute that is filtered through the 

membrane in a determined time, was calculated. The variation of solute flux with 

volume of permeate collected (i.e. recovery) was correlated with the permeate flux to 

investigate mechanisms of flux enhancement/decline.  

9.4.1 Retention of manganese 

Manganese retention and precipitation on the membranes as a function of manganese 

concentration and pressure obtained during the first set of experiments are presented 

in Table 9-1 and Table 9-2. 
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Table 9-1 Manganese retention, mass of manganese deposits and percentage of 

manganese deposits as a function of manganese concentration in the feed solution as 

a function of concentration of manganese in the feed. Pressure 10 bar, pH 7, 

background electrolyte 1 mM NaHCO3 and 20 mM NaCl. 

 TFC-SR2 TFC-SR3 

Mn Feed 

Concentration 

(mg/L) 

Mn 

retention 

(%) 

Mn 

deposit 

(mg) 

Mn 

Deposit 

(%) 

Mn 

retention 

(%) 

Mn 

deposit 

(mg) 

Mn 

Deposit 

(%) 

150 98.43 12.06 14.58 98.90 0 0 
250 99.38 33.32 24.65 95.85 36.30 28.89 
500 89.45 40.75 12.75 97.78 95.81 30.25 

1000 96.48 397.01 72.80 95.90 136.26 26.05 
1500 97.84 353.94 41.81 99.23 273.56 27.87 

 

 

Table 9-2 Manganese retention, mass of manganese deposits and percentage of 

manganese deposits as a function of manganese concentration in the feed solution as 

a function of pressure. Manganese 500 mg/L, pH 7, background electrolyte 1 mM 

NaHCO3 and 20 mM NaCl. 

 TFC-SR2 TFC-SR3 

pressure 

(bar) 

Mn 

retention 

(%) 

Mn 

deposit 

(mg) 

Mn 

Deposit 

(%) 

Mn 

retention 

(%) 

Mn 

deposit 

(mg) 

Mn 

Deposit 

(%) 

5 97.16 151.22 36.70 99.35 101.96 27.32 
7.5 97.21 139.45 33.87 98.34 53.66 16.16 
10 92.56 211.61 48.30 97.78 95.81 30.25 

12.5 97.02 225.37 51.75 99.32 98.82 26.05 
15 98.69 210.43 47.81 99.70 60.73 18.06 

 

Manganese retention was high (more than 89%) for both membranes for any 

concentration and pressure studied, confirming that precipitates are well retained. 

The mass of manganese deposited on the membrane was higher for TFC-SR2, which 

has bigger pore size and higher roughness (Table 4-2). Manganese deposits increased 

with manganese concentration in the feed (slightly decrease observed when the feed 

was 1500 mg/L is attributed to the error due to sample dilution for analysis) but no 

trend could be indicated with pressure.  
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These results are in contrast with the findings obtained during membrane fouling by 

Fe(OH)3 and HA, where increasing pressure was shown to increase solute deposition 

on the membranes [84, 125]. The obtained results confirmed that the behaviour of 

manganese precipitates was different from the behaviour of Fe(OH)3 and HA 

deposits, which were shown to foul the membranes by pore blocking.   

9.4.2 Retention of sodium  

Retention of sodium obtained during the second set of experiments was calculated in 

order to explain the flux trends obtained in Section 9.3.2. Sodium retention was 

higher for TFC-SR3 due to size exclusion (Figure 9-4a). 

 

The results obtained for manganese and sodium retention gave an indication on the 

reason for the trend J > J0 > Jv for TFC-SR3 in contrast with the trend J > Jv > J0 for 

TFC-SR2 allowing to explain why permeate flux Jv was lower than J for the tighter 

TFC-SR3 only.  

 

When fouling does not occur (J ≥  J0), lower permeate flux during solute filtration 

has been attribute to four causes: concentration polarisation, increase of membrane 

resistance due to the presence of deposits, pore blocking and/or increase of osmotic 

pressure [52, 84, 125, 126, 357].   

 

In the case of the membranes used in this study, concentration polarisation was 

higher for the looser TFC-SR2, which had higher Jv than TFC-SR3 for the same 

pressure. Concentration polarisation depends on the ratio Jv/ kf and the mass transfer 

coefficient kf is independent from the type of membrane and the solute concentration 

at the membrane surface (Chapter 5), so concentration polarisation depended only on 

Jv. As a consequence, if concentration polarisation was the cause of the decline of Jv 

with respect to J0, TFC-SR2 should show permeate flux decline instead of permeate 

flux enhancement.   

 

Increase of membrane resistance due to manganese deposits could also be ruled out. 

The mass of manganese deposited on the membranes was higher for TFC-SR2 than 



 
 

 160

for TFC-SR3 (Tables 9-1 and 9-2), therefore if the increase in membrane resistance 

caused by manganese deposits was the cause of flux decline, higher Jv decline would 

have occurred for TFC-SR2. 

 

If pore blocking was the cause of permeate flux decline for TFC-SR3, flux decline 

and manganese deposits should have increased with pressure, as observed for 

Fe(OH)3 and HA [84, 125]. Instead, as shown in Figure 9-2 and Table 9-2, both flux 

decline and manganese deposits were independent from pressure.  

 

Osmotic pressure is the most likely cause of flux decline during manganese filtration 

through TFC-SR3. Osmotic pressure depends on the difference between the solute 

concentration at the membrane surface cmf and the solute concentration in the 

permeate cp according to this relationship [177]: 

∆π = α (cmf - cp )                                   (9.1) 

where α is an osmotic pressure coefficient depending on the solute and on the 

temperature. 

 

In the case of TFC-SR3 the difference (cmf - cp) was higher than for TFC-SR2 as 

sodium and manganese retention were higher, so the osmotic pressure was higher for 

TFC-SR3. Other authors [52, 177, 357]  also attributed the decrease of permeate flux 

during NaCl filtration to the increased osmotic pressure.  

 

The calculation of the flux of Na as a function of the volume of permeate collected is 

showed in Figure 9-4b and Figure 9-4c. For both membranes, during filtration of all 

solutions, sodium flux increased with increasing permeate volume. The more the 

solutes were filtered, the faster they seemed to pass through the membranes. 

However, the opposite trend happened when both HA and calcium were filtered. The 

more the solutes were filtered, the more difficult their passage through the 

membranes seemed to be. It might be inferred that a relationship might exist between 

increase of solute passage with permeate volume and increase in pure water flux J 

and vice versa, decrease in solute passage and membrane fouling.  
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(c) 

Figure 9-4 (a) Retention of sodium and (b, c) sodium flux during filtration of 

background electrolyte only, humic acids (HA), humic acids and calcium (HA+Ca), 

manganese (Mn), humic acids and manganese (HA+Mn), humic acid, manganese 

and calcium (HA+Mn+Ca) by TFC-SR2 and TFC-SR3 respectively. HA 12.5 

mgC/L, CaCl2 2.5 mM (278 mg/L of Ca), MnCl2 500 mg/L as Mn, background 

electrolyte 1 mM NaHCO3 and 20 mM NaCl, pH 7, pressure 15 bar. 
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It is also possible to note a considerable increase in sodium flux in the experiments in 

which manganese was filtered, alone or together with other solutes. This increase 

was more pronounced for TFC-SR2 than for TFC-SR3. The presence of manganese 

seemed to enhance the transport of sodium across the membranes.  

9.4.3 Retention of humic acids 

The retention and flux of HA was determined for the experiments (b), (c) and (e) 

detailed in Section 9.2 in order to examine the flux results obtained in Section 9.3.2. 

HA retention was high for both membranes confirming results obtained in previous 

chapters (Figure 9-5a).  

 

The results of HA flux (Figure 9-5b and Figure 9-5c) confirmed what was obtained 

for sodium flux. HA flux decreased with the volume of permeate in the case in which 

both HA and Ca were filtered, i.e. when fouling occurred. When flux enhancement 

after solute filtration occurred, HA flux increased with recovery. For both 

membranes, HA flux was highly enhanced in the presence of manganese.   

9.5 Retention of pesticide Endosulfan 

In the third set of experiments, pesticide ES was filtered through the membranes used 

in the second set of experiments. The scope was to estimate the influence of solute 

filtration on ES retention and in particular the influence of manganese scaling with 

respect to fouling by HA and calcium.  

 

As shown in Figure 9-6a, ES retention was higher for the tighter TFC-SR3 due to 

size exclusion, confirming results obtained in Chapter 7. ES retention by membrane 

previously filtered with HA and HA + Ca did not change with respect to the retention 

by virgin membranes. Fouling by HA and calcium did not have any impact on ES 

retention, in agreement with previous findings of retention of pharmaceuticals 

through membranes fouled by NOM [112].  
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(c) 

Figure 9-5 (a) Retention of humic acids and (b, c) humic acids flux during filtration 

of humic acids (HA), humic acids and calcium (HA+Ca), humic acids and 

manganese (HA+Mn), humic acids, manganese and calcium (HA+Mn+Ca) by TFC-

SR2 and TFC-SR3 respectively. HA 12.5 mgC/L, CaCl2 2.5 mM (278 mg/L of Ca), 

MnCl2 500 mg/L as Mn, background electrolyte 1 mM NaHCO3 and 20 mM NaCl, 

pH 7, pressure 15 bar. 
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ES retention by membranes previously filtered with manganese decreased with 

respect to retention through virgin membranes. These findings were confirmed by the 

results obtained when ES flux was calculated (Figure 9-6b and Figure 9-6c). Higher 

ES flux was observed when ES was filtered through membrane pre-filtered with 

manganese, while the lowest ES flux was obtained through the fouled membranes, 

due to the lower water flux that the fouled membrane experienced. Filtration of 

manganese seemed to increase both water flux and solute flux through the 

membranes.   

 

ES flux increased with recovery for both membranes in all cases. During ES 

experiments permeate flux was constant, as ES neither fouled the membranes nor 

enhanced flux (Table 9-3). The decrease with recovery observed for the flux of 

sodium and HA was therefore linked to fouling.  

 

Table 9-3 Jv/J0 (ratio of permeate flux and pure water flux before experiments) and J/ 

J0 (ratio of pure water flux after experiments and pure water flux before experiments) 

for TFC-SR3 during experiments with pesticide Endosulfan. ES 10 µg/L, 

background electrolyte 1 mM NaHCO3 and 20 mM NaCl at 15 bar pH 7. 

 TFC-SR2 TFC-SR3 

 Jv/J0 J/J0 Jv/J0 J/J0 

clean 1.00 1.09 0.92 1.16 
HA 0.96 1.06 0.86 1.02 
HA+Ca 0.97 1.12 0.87 1.09 
Mn 1.02 1.02 0.87 1.03 
HA+Mn 1.01 1.08 0.87 1.03 
HA+Mn+Ca 1.00 1.05 0.91 1.05 
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Figure 9-6 (a) Retention of pesticide Endosulfan and (b, c) Endosulfan flux for 

TFC-SR2 and TFC-SR3. ES 10 µg/L, background electrolyte 1 mM NaHCO3 and 20 

mM NaCl at 15 bar pH 7. Membrane previously filtered with humic acids (HA), 

humic acids and calcium (HA+Ca), humic acids and manganese (HA+Mn), humic 

acid, manganese and calcium (HA+Mn+Ca). HA 12.5 mgC/L, CaCl2 2.5 mM (278 

mg/L of Ca), MnCl2 500 mg/L as Mn, background electrolyte 1 mM NaHCO3 and 20 

mM NaCl, pH 7, pressure 15 bar. 
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9.6 Effect of manganese deposits on membrane 

characteristics  

Membranes used in the second set of experiments were thoroughly characterised to 

identify the changes in chemical and physical properties caused by solute filtration. 

Membrane characterisation is an effective tool for investigating foulant-membrane 

interactions and for explaining retention and flux results obtained during the 

experiments [133].  

 

The objectives were to investigate the changes in membrane properties due to 

manganese scaling in order to explain: 

- increase of membrane flux due to manganese filtration; 

- decrease of solute retention after manganese filtration. 

 

The mechanisms inferred in the literature and summarised in Section 9.3.2 were 

systematically investigated.  Membrane charge, hydrophilicity and MWCO were 

determined. SEM images were performed to visualize the deposits and infer the 

mechanisms of manganese scaling. ATR-FTIR was performed to investigate 

potential changes in functional groups due to solute filtration. The methods used for 

membrane characterisation are described in Chapter 4.  

9.6.1 Visualization of deposits 

SEM images of membrane surface and cross section are reported in Appendix 3. 

Images of the virgin membranes confirmed that TFC-SR2 has higher roughness than 

TFC-SR3, as indicated by AFM results (Appendix 2, Section A.2.6).  

 

HA deposits looked different on the two membranes. HA deposits looked like 

inhomogeneous crystals on the looser TFC-SR2 while appeared as a more compact 

layer on TFC-SR3. EDX graphs showed presence of sodium, aluminium, silicon and 

iron on both membranes, in agreement with the inorganic impurities found in 

commercial Aldrich Humic Acids (Table 3-2). The presence of calcium made the HA 

layer more compact and homogenous for both membranes, even though the presence 

of crystals was more visible for TFC-SR2.  
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Manganese deposits looked as a cake layer on both membranes and appeared more 

homogenous on the tighter and less rough TFC-SR3. Since crystals were not visible, 

the mechanisms of manganese scaling might be described as cake layer formation by 

bulk crystallization (Section 9.1). The presence of HA did not alter the aspect of the 

manganese deposits. However, the co-presence of HA and calcium resulted in a less 

homogenous cake on both membranes. It is interesting to note from the EDX spectra 

that for both membranes calcium was barely detected when filtered together with 

manganese and HA, while it showed a clear peak when filtered with HA only. It is 

possible that the presence of manganese masked the calcium signal but reasons for 

this are unclear.  

 

The images of the membrane cross-section confirmed the existence of the layer of 

manganese deposits on the membranes. Manganese could be easily visualised in the 

BSE mode, since it appeared clearer than the membrane due its higher atomic 

weight. For TFC-SR2 manganese could not be visualised when manganese was 

filtered together with HA and HA+Ca. On the contrary, for TFC-SR3 manganese 

was visible in all the membranes. For both membranes, manganese seemed present 

along the whole cross-section and not limited to the membrane surface. These images 

need to be interpreted with caution, as manganese might have been removed and/or 

displaced during membrane cutting.  

 

Membrane thickness was measured on the cross-section images (Section 4.3.9). The 

scope was to determine if manganese deposits decreased the thickness of the active 

layer, as observed by Nanda et al. [29] in the case of calcium sulphate deposits 

(Section 9.3.1). Variation in the active layer thickness among membranes used in 

different experiments was less than 10% and no conclusion could be drawn. The 

magnification reached with the instrument used in this work might have been too low 

to visualise any change in the active layer thickness resulted from solute filtration or 

deposition.  
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9.6.2 Membrane chemical composition 

Membrane function groups were analysed using ATR-FTIR as described in Section 

4.3.10 in order to identify any change in chemical bonds resulting from solute 

filtration. The ATR-FTIR results of the virgin membranes (membrane only 

compacted with ultrapure water) shown in Appendix 2 (Figure A-2.9) revealed that 

TFC-SR2 and TFC-SR3 had the same spectra in terms of both signal positions and 

shape. Both membranes displayed the same chemical composition and structure.  

 

ATR-FTIR spectra of the membranes used in the second set of experiments were 

graphically compared with the spectra of the virgin membranes in Appendix 3. When 

HA was filtered through TFC-SR2 and TFC-SR3, the membrane spectra showed 

major differences. The spectra of TFC-SR2 with HA deposits decreased at 3,200-

3,600 cm-1 with respect to the spectra of the virgin membrane, but other 

dissimilarities were not observed. The spectra of TFC-SR3 with HA deposits was 

different from the spectra of the virgin membrane probably due to the adsorption of 

HA on the membrane. The increase of the height of the signal might indicate the 

increased amount of OH groups of HA in the sample or the presence of water 

molecules. The increase of the C-H stretch signals (2,918 and 2,850 cm-1) might 

reflect the enhanced amount of carbonaceous material on the sample due to HA 

adsorption. The increased intensity of the band at 1,714 cm-1 (carbonyl of carboxylic 

functionalities) strengthened this interpretation. The ATR-FTIR spectra seemed to 

show a preferential adsorption of HA to TFC-SR3, confirming the more compact HA 

layer observed in SEM images for TFC-SR3 compared with the less homogenous 

HA layer on TFC-SR2 (Section 9.6.1). 

 

When HA and calcium were filtered the spectra of TFC-SR2 and TFC-SR3 returned 

to be similar. Both spectra showed an increase of the height and the broadening of 

the band 3200-3600 cm-1 with respect to the virgin membranes. In the presence of 

calcium, HA seemed more effective in covering TFC-SR2 surface with respect to the 

case of HA alone, as confirmed by SEM images (Section 9.6.1).   
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The spectra of TFC-SR2 and TFC-SR3 with manganese deposits did not show major 

differences with respect to the spectra of the virgin membranes. Peak intensity was 

consistently reduced due to the presence of the scaling layer that attenuated the 

infrared signal. TFC-SR3 showed a more intense spectrum than TFC-SR2 indicating 

less manganese deposition. This interpretation was confirmed by the results obtained 

during manganese filtration, where the mass of manganese deposited on the 

membrane was higher for TFC-SR2 (Section 9.4.1). From the spectra it was not 

possible to perceive any change in chemical bonds resulting from manganese 

deposits. 

 

The filtration of other solutes (HA alone and HA+Ca) together with manganese, 

completely attenuated the infrared signal for TFC-SR2. The membrane was 

completely covered by a non-infrared adsorbing layer. The spectra of TFC-SR3 were 

more similar to the spectrum of the virgin membrane, with a shift and an increase of 

the band at 3,200-3,600 cm-1, which might be due to the presence of HA. These 

results seem to confirm the preferential deposition of manganese to TFC-SR2.  

9.6.3 Molecular weight cut-off 

The MWCO of the membranes used in the second set of experiments was determined 

with the methodology described in Appendix 2, Section A.2.2. Pure water fluxes 

were measured for 30 minutes after filtration of each inert organic. The pure water 

fluxes changed less than 7% for TFC-SR2 and less than 5% for TFC-SR3 in 

agreement with flux variability (Section 4.8), showing that the inert organics did not 

disturb the deposits on the membranes.  

 

As shown in Figure 9-7, inert organic retention did not change considerably for the 

membranes filtered with HA only and HA+Ca. By contrast, the filtration of Mn 

decreased inert organic retention considerably, especially in the presence of HA and 

calcium. The decrease in retention was so substantial that MWCO could not be 

defined for the membranes filtered with manganese, HA and calcium, since the 

retention of PEG1000 and PEG 800 was much lower than 90%. The presence of 

manganese seemed to increase the MWCO, confirming the hypothesis inferred in 
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previous studies [87, 133] that flux increase and reduction of solute retention was 

due to increased MWCO. 
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Figure 9-7  Retention as function of molecular weight for (a) TFC-SR2 and (b) 

TFC-SR3, molecular weight at 90% retention shows membrane MWCO; 

concentration organic solutes 25mgC/L, pressure 15 bar, pH 6.5±0.5 (no pH 

adjustment); membranes previously filtered with HA 12.5 mgC/L, CaCl2 2.5 mM 

(278 mg/L), Mn 500 mg/L, background electrolyte 1 mM NaHCO3 and 20 mM 

NaCl.  

9.6.4 Contact angle 

Contact angle of the membranes used in the second set of experiments was measured 

as described in Section 4.3.6 and compared with the contact angle of virgin 

membranes (membrane only compacted with ultrapure water). As mentioned in 

Section 7.7, contact angle values for membrane through which solutes have been 

filtered represent the hydrophilicity of the deposit layer. 
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Figure 9-8 Contact angle of TFC-SR2 and TFC-SR3. Membranes previously filtered 

with HA 12.5 mgC/L, CaCl2 2.5 mM (278 mg/L), Mn 500 mg/L, background 

electrolyte 1 mM NaHCO3 and 20 mM NaCl.  

 

As shown in Figure 9-8, the presence of HA decreased the contact angle for TFC-

SR2 and increased it for TFC-SR3, as already commented in Section 7.7. The 

presence of calcium did not change the contact angle with respect to the case of HA 

only. The presence of manganese decreased the contact angle of both membranes, 

increasing their hydrophilicity. This seemed to confirm the hypothesis that flux 

increase and reduction of solute retention was due to increased membrane 

hydrophilization [125, 339].  

9.6.5 Surface charge 

The membrane surface charge in the presence of manganese deposits was measured 

according to the method described in Section 4.3.7 and compared with the charge of 

virgin membranes (Figure 9-9).   
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Figure 9-9 Zeta potential of (a) TFC-SR2 and (b) TFC-SR3. Virgin membranes and 

membranes previously filtered with Mn 500 mg/L and background electrolyte 1 mM 

NaHCO3 and 20 mM NaCl.  

 

Manganese increased the negative charge of TFC-SR2 at pH lower than 7 and 

slightly decreased it at higher pH, while it decreased the negative charge of TFC-SR3 

at pH above 5. For both membranes, manganese seemed to form a surface layer 

whose charge did not vary with pH. The reduced negative charge of both membranes 

at pH 7 (the pH of the experiments) could have contributed to the decrease in sodium 

and HA retention, but it would not explain the decrease in ES retention, as ES is not 

charged. These results allowed discarding the hypothesis that the increase in MWCO 

could be attributed to an increase in membrane negative charge (Section 9.3.1).   
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9.7 Suggested mechanisms  

Manganese filtration caused enhancement of pure water flux and reduction of solute 

retention by both TFC-SR2 and TFC-SR3. The cake-enhanced concentration 

polarisation model usually used to explain decrease of solute retention caused by 

colloidal fouling (Section 2.2.4) could not be applied for manganese since flux 

decline did not occur. 

 

The hypotheses inferred in the literature to explain the increase of flux after solute 

filtration and the reduction of solute retention, as listed in Section 9.3.2, were 

systematically investigated. Modification of membrane chemical composition as a 

result of manganese filtration could not be observed so chemical degradation was 

excluded. At the pH employed in the experiments, the presence of manganese 

increased membrane MWCO and hydrophilicity without increasing the membrane 

negative charge. The hypothesis that increase in membrane MWCO was due to 

increasing repulsion between the membrane pores caused by higher negative charge 

could not be applied in the case of manganese filtration.  

 

It is proposed that manganese-membrane interactions could increase membrane 

swelling. The presence of manganese along the cross-section of both membranes 

(Table A-3.3 and Table A-3.4 in Appendix 3) seems to substantiate that manganese 

entered the membrane pores, even if SEM images need to be interpreted with 

caution, as manganese might have been removed and/or displaced during membrane 

cutting. Increase in swelling of the active layer would increase the membrane free 

volume, which plays an important role in the transport of small solute through 

membranes [50, 358]. Membrane swelling due to the contact with water solution has 

been shown to be connected with membrane permeability and solute retention [51]. 

Increase in membrane swelling due to membrane exposure to 20% sulphuric acid 

was shown to cause increase in water flux and decrease in glucose retention [359].  

 

It is inferred that prolonged exposure to manganese would modify physically (but not 

chemically) the membranes and the resulting increase in free volume would be 

responsible for pure water flux enhancement and decrease in solute retention. These 
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hypotheses would need to be verified by measuring quantitatively the increase in 

active layer thickness after membrane contact with manganese deposits. Freger et al. 

[51, 359] developed a methodology to measure swelling and morphological changes 

in the active layer of NF membranes using AFM. The methodology is semi-

quantitative, relies heavily on the skills and precision of the technicians performing 

the measurements and needs to be tailored to the different solutions in contact with 

the active layer. The development of an easy to implement and standardised 

methodology to measure membrane swelling would be extremely valuable. 

9.8 Conclusions  

The impact of manganese scaling on the performance of TFC-SR2 and TFC-SR3 has 

been investigated. Manganese deposits were shown to enhance the pure water flux of 

both membranes and prevent fouling by HA and calcium. Reduced permeate flux 

during manganese filtration for the tighter TFC-SR3 was attributed to concentration 

polarization.  

 

The impact of manganese scaling on the retention of the pesticide ES was 

investigated. Filtration of manganese through the membranes resulted in reduced ES 

retention with respect to retention by virgin membranes or membranes filtered with 

HA alone and HA + Ca. Manganese is one of the most abundant elements in surface 

water and these findings indicate that manganese deposits can lower solute retention 

without causing fouling (i.e. flux decline). Since membrane plant operators usually 

clean the membranes when fouling occurs, the frequency of the cleaning cycle might 

need to be increased when feed water is rich in manganese. 

 

TFC-SR2 and TFC-SR3 were thoroughly characterized in order to elucidate the 

mechanisms of manganese scaling. Cake layer formation by bulk crystallization was 

proposed as the scaling mechanisms for manganese deposits. Manganese filtration 

increased membrane MWCO and hydrophilicity, without increasing membrane 

negative charge. It was inferred that prolonged exposure to manganese could modify 

physically the membranes by increasing the membrane free volume. In turn, 

membrane swelling would cause flux enhancement and lower solute retention.  
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10. Conclusions and future work 

10.1  Conclusions  

This research investigated the contribution of solute-solute interactions and solute-

membrane interactions on solute retention and transport by NF. NF membranes are 

increasingly selected for the removal of organic and inorganic pollutants from 

drinking water, but a comprehensive understanding of NF mechanisms has yet to be 

achieved, limiting the application and performance of NF plants. The general aim of 

this work was to contribute to the knowledge and understanding of the mechanisms 

of solute retention and transport by NF. 

 

The objectives of this thesis were to: 

• Elucidate the role of solute-NOM interactions and NOM-membrane 

interactions in solute retention by NF.  

• Evaluate the role of solute-solute interactions and solute-membrane 

interactions in the influence of pressure on solute removal.  

• Examine the effects of manganese precipitate on the performance of NF 

membranes (solute-membrane interactions) and the effects of scaling on 

micropollutant retention (solute-solute interactions).  

 

In order to achieve the thesis objectives within this research, this investigation was 

limited to specific solutes chosen as model contaminants: commercial HA were 

selected as representative of NOM, manganese was chosen as model inorganic and 

pesticide ES was selected as model micropollutant. Two commercial NF membranes, 

TFC-SR2 and TFC-SR3, particularly suited for treating surface water, were 

employed for this study. 

 

The role of solute-solute and solute-membrane interactions in manganese removal in 

the presence of HA was elucidated. The removal mechanisms of manganese by NF 

were for the first time thoroughly investigated.  Manganese retention was influenced 

by speciation (solute-solute interactions) and membrane pore size and charge (solute-
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membrane interactions). Manganese retention depended on size exclusion, but for the 

looser TFC-SR2, whose pore diameter was larger than the hydrated radius of 

manganese, pore charge played a role too. Complexation of manganese and HA 

(solute-solute interactions) did not enhance manganese retention because 

precipitation overlapped with complexation effects.   

 

The influence of solute-solute and solute-membrane interactions on ES removal in 

the presence of HA was evaluated. ES is hydrophobic and uncharged and once the 

membranes were saturated it was removed by size exclusion (solute-membrane 

interactions) only. For the first time the formation of ES-HA complexes was 

quantified as a function of pH and HA concentration and the contribution of ES-HA 

complexes to ES removal was estimated. ES-HA complexes (solute-solute 

interactions) contributed to increase ES retention with respect to the retention of ES 

alone. The strength of ES-HA interactions depended on the concentration of HA but 

was independent from pH. HA-membrane interactions were shown to be responsible 

for increased membrane MWCO and become important at alkaline pH. For the looser 

TFC-SR2, HA-membrane interactions decreased ES retention in the presence of HA 

with respect to the retention of ES alone. For the tighter TFC-SR3, the increase of 

MWCO due to HA-membrane interactions was not sufficient to allow higher ES 

passage. These results explained the contrasting results obtained in the literature 

regarding the influence of NOM on micropollutant retention.  

 

The role of pressure on solute retention was examined. In the case of manganese, 

retention increased with pressure, confirming results obtained in the literature for 

inorganic solutes. The influence of HA on manganese retention as a function of 

pressure was not investigated as manganese-HA complexation occurs at alkaline 

conditions, when precipitation take places and retention is almost complete. In the 

case of ES, the retention as a function of pressure was found to be dependent on 

permeate flux and concentration polarization. The hydrodynamic model was 

employed in a phenomenological way to study the prevalence of diffusion and 

convection in ES transport through NF membranes and explain transport 

mechanisms. Results showed that ES transport was dominated by convection. Lower 
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permeate flux obtained for the tighter membrane was responsible for increase of ES 

retention with increasing pressure, while higher permeate flux obtained for the looser 

membrane caused concentration polarization and decrease of ES retention with 

pressure. The presence of HA lowered permeate flux for both membranes, resulting 

in less pronounced variation of ES retention with pressure. These findings elucidated 

the impact of pressure on ES retention, which was not well understood before the 

start of this work. 

 

Finally, the effects of manganese precipitation on membrane flux (solute-membrane 

interactions) and on solute retention (solute-solute interactions) were investigated. 

The mechanisms of manganese scaling on NF membranes were studied for the first 

time.  It was proposed that manganese formed a cake layer on the membranes by 

bulk crystallization. Results showed that manganese precipitates did not foul the 

membranes but on the contrary enhanced pure water flux after filtration and 

decreased solute retention. Retention of ES decreased after filtration of manganese 

with respect to ES retention by virgin membranes, while pre-filtration of HA alone 

and HA+calcium (which fouled the membranes) did not affect ES removal. 

Manganese precipitates did not modify the chemical composition of the membranes 

but increased membrane MWCO and hydrophilicity, decreasing membrane negative 

charge. It was proposed that manganese filtration impacted membrane free volume, 

increasing membrane swelling, which in turn might be responsible for enhancement 

of flux and solute passage.  

 

The findings of this research highlighted the importance of considering both solute-

membrane interactions and solute-solute interactions when investigating the removal 

and transport mechanisms through NF membranes. The quantification of the 

influence of ES-HA interactions and HA-membrane interactions on ES retention was 

shown to be critical for explaining ES retention mechanisms. ES-HA interactions 

affected ES retention with pressure, confirming their importance in transport 

mechanisms. Solute-membrane interactions were also found to be essential for 

understanding retention mechanisms. HA-membrane interactions were responsible 

for the decrease of ES retention in the presence of HA, a phenomenon that had 
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already been observed in other studies but was unexplained. Manganese-membrane 

interactions, for the first time investigated in this thesis, were shown to impact 

membrane flux and solute retention. 

 

This work contributed to the knowledge of mechanisms of solute removal and 

transport through NF membranes. The findings in this research not only have 

practical applications in the operation of membrane plants, but can be valuable to 

develop new membranes and extend their applications. Novel membranes and novel 

materials, with better removal properties and reduced fouling and energy 

consumption, could be developed as a consequence of better understanding of 

removal and transport mechanisms. Novel applications of membrane technology 

could be conceived following the increased knowledge in membrane processes, 

contributing in turn to the challenge of providing clean fresh drinking water to the 

world.  

10.2  Future work 

This research was limited to a selected number of compounds chosen as model 

contaminants. Further work in evaluating the impact of the interactions between a 

broader range of solutes on membrane performance would be valuable. Firstly, it 

would be important to quantify the interactions of solutes with the different fractions 

of NOM and with NOM extracted from real water. Secondly, it would be relevant to 

consider several inorganic solutes commonly found in water (i.e. iron, aluminium, 

arsenic) and micropollutants with diverse characteristics. The interactions between 

HA and manganese happened at alkaline pH when manganese precipitated and was 

fully retained, so it was not possible to study the influence of HA on manganese 

retention and transport. The choice of inorganic compounds, like arsenic, that do not 

precipitate would allow investigating the contribution of solute-solute interactions on 

transport of inorganic solutes through NF. Pesticide ES employed in this study is 

hydrophobic and uncharged, so micropollutants with different size, hydrophilicity 

and charge could be chosen. A comprehensive assessment of the influence of 

different types of solute-solute interactions carried out for a number of 

micropollutant could reveal trends and mechanisms, in turn contributing to 
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qualitative prediction of micropollutant retention in the presence of NOM. Research 

focused on including solute-solute interactions in transport models would be 

extremely important, since it would allow quantitative prediction of solute retention.   

 

Likewise, the introduction of solute-membrane interactions, such as influence of 

solutes on membrane characteristics or fouling, in transport models would increase 

considerably their prediction capability. Further work is required to quantify the 

interactions between different solutes and different type of membranes and in a 

second time, evaluate the impacts of these interactions on solute removal and 

transport. It would be interesting to measure the influence of different fractions of 

NOM on different membrane materials, in terms of impact on pore size, charge and 

hydrophilicity. Findings would also be useful to increase the understanding of 

fouling by NOM. Impact of scaling on membrane performance and membrane 

characteristics also warrants further work, especially the impact of different types of 

scalants on micropollutant removal.   

 

Methods of membrane characterization have an essential role in enabling the 

examination of solute-membrane interactions. Future work on improving the current 

characterization methods and in finding new methods is therefore paramount. The 

quantification of membrane free volume and its role on solute transport and retention 

is an exciting new topic which promises to shed light on many NF mechanisms. 

Research has been limited to hydrogels and copolymers [358, 360, 361], so its 

application to composite NF membranes has huge potential in increasing the 

understanding of membrane processes. 
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Appendix 1 – Membrane plants in remote Scottish 

communities 

A.1.1 Introduction  

Sections 3.2 and 3.3 offered an overview of the water quality and of the type of 

treatment selected in Scotland to provide safe drinking water. Despite the high 

number of membrane plants in Scotland and the availability of operational and water 

quality data, dedicated studies assessing the performance of membrane plants are 

lacking.  

 

The majority of the NF modules in Scotland are tubular membranes, while spiral 

wound membranes constitute only 40% of the total membrane plants [1]. Tubular 

membranes are the preferred choice, as they do not require pre-treatment and daily 

chemical cleaning. Tubular membranes are produced by PCI [2] in modules 

containing 72 tubes (12.7 mm inner diameter) arranged in parallel. CA membranes of 

2kDa nominal MWCO or PES membranes of 4kDa nominal MWCO are employed. 

PES membranes were initially installed in the majority of the plants but experienced 

irreversible fouling in many small plants and were retrospectively substituted with 

CA membranes [1].  

 

Bowen et al. [3] characterised PCI CA and PES membranes extensively. CA 

membranes are tighter and have smaller pores (estimated pore radius 0.96 nm with 

respect to 1.56 nm for PES membranes), but they have a higher charge (-11 mol/m3 

as effective charge density from salt retention data with respect to -9 mol/m3 for PES 

membranes). Laboratory tests on synthetic water simulating Scottish surface water 

showed that CA membranes have lower flux (12.7 L/m2h) than PES membranes 

(37.6 L/m2h) but they have similar HA and NaCl retention (HA retention was 96% 

for CA membranes and 89% for PES membranes, while NaCl retention was 20% for 

both).  CA membranes have also lower fouling tendency (relative flux loss after 4 

hours of HA filtration was 0.98 for CA membranes and 0.88 for PES membranes).  
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A mechanical method for cleaning tubular membranes called the “Fyne process” was 

developed by PCI in Scotland [4, 5]. A foam ball with a slightly smaller diameter 

than the membrane is automatically passed every 4-6 hours inside the membrane 

tubes at a pressure of 2-3 bar in order to remove deposits on the membrane surface 

by hydraulic shear force. In addition to the mechanical cleaning, PCI recommends 

performing chemical cleaning every 3-4 months and at the same time renew the foam 

balls [2].  

 

This chapter will evaluate the performance of selected Scottish NF plants in terms of 

operational parameters, water quality, energy consumption and costs. The aim is to 

identify the challenges faced by Scottish membrane plants and highlight how the 

research on solute removal mechanisms can contribute to improved plant efficiency.  

 

Two small membrane plants, Plant A located in a northern island and Plant B located 

on an island in the west of Scotland will be compared and their performance 

evaluated. These plants were chosen as they both use the same type of membranes 

but they are of different sizes and are operated differently. Operational parameters 

(flux and pressure), raw and final water quality, costs and energy consumption will 

be presented for both plants.   

 

Data on water quality in the raw water (i.e. at the plant inlet) and in the final water 

(i.e. at the plant outlet) for parameters whose analysis are mandatory [6] were kindly 

received from the Drinking Water Quality Regulator for Scotland [7] and from 

Scottish Water [1]. Water quality data from January 2007 till December 2009 were 

available for both plants. Operational data and information about the plants were 

collected from the plant operators during one site visit to each plant. Operational data 

for Plant A and Plant B were available for the periods July 2009 -March 2010 and 

January 2007 - January 2010 respectively. Although operational data spanned a 

shorter period than water quality data, this was considered sufficient to understand 

the operating philosophy of the plants.  
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A.1.2 Case study A: small size plant on a Northern island 

A.1.2.1 Plant Description 

Plant A has a capacity of 360 m3/day, operated 23 hours/day during summer and 20 

hours/day during winter and serves a population of 420 people. The plant contains 78 

modules, 3.66 m long, working in parallel, with a total membrane area of 819 m2 

(Figure A-1.1). The plant was installed in 2005 with PES membranes, but new CA 

membranes were installed at the beginning of 2009 due to irreversible fouling that 

resulted in very low flux when the plant was operated at the maximum pressure (12 

bar) recommended by the manufacturer.   

 

 a 
  

  b 

Figure A-1.1 Pictures of Plant A installed in a remote north island  

 

Raw water is pumped from a lake near-by and after being screened at the intake, is 

passed through a 200 µm sand filter and it is pumped through the membrane modules 

(Figure A-1.2). The plant operates at a recovery ranging between 65-70% and a 

recirculation flow rate 1.5 times higher than the raw water flow in order to maintain 

sufficient crossflow across the membrane (1.2-1.6 m/s) and reduce particle 

deposition. Any concentrate that is not recirculated can be returned to the local 

watercourse as it is chemical-free [4]. After the membrane treatment, a disinfection 

step with sodium hypochlorite (NaOCl) is performed, and a fraction of the permeate 

is passed through the limestone contact tank to increase the pH and blended 

downstream with the rest of the permeate to achieve the target pH. A clear water tank 
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with a volume of 0.5 million gallons (4545 m3) is used as storage tank to compensate 

for fluctuations in demand due to tourism and agriculture and ensure supply during 

plant downtime.  

  

 
 Figure A-1.2 Typical schematic of the tubular membrane plants in Scotland 

A.1.2.2 Operational parameters  

An operator is employed full time at the plant. Since the plant aims to deliver 

constant flow, the operator manually adjusts the pressure when required (even daily) 

to keep the flow constant. As shown in Figure A-1.3, the flux obtained since the CA 

membranes were installed in 2009 was very stable and only a slight pressure increase 

was noticeable with time (operational data before 2009 not available).  

 

The operator performs a full chemical cleaning and foam ball replacement on-site 

every 6 weeks, independently of pressure build up in the plant. This high frequency 

was deemed necessary for PES membranes, due to rapid pressure increase caused by 

fouling and was retained by the operator once CA membranes were installed. To 

perform the chemical cleaning the operator chooses among detergent (2 g/L), citric 

acid (2 g/L), NaOH (0.10 g/L) or NaOCl (0.44mL/L), according to what he deems 

necessary. This cleaning frequency seems to prevent the pressure from increasing 

rapidly. However, long term data are required to establish if this type of operation 

will reduce irreversible fouling and increase the life span of the membranes.   
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Figure A-1.3 Flux and pressure of Plant A from July 2009 to April 2010 (since 

installation of CA membranes) 

A.1.2.3 Water quality  

For Plant A, the final water quality was consistently below the PCV despite the high 

variability of the raw water quality (Figure A-1.4). pH values were within the target 

range of pH 8-9 established by Scottish Water (Figure A-1.4d). On average, a 

decrease of 96±2% in colour, 90±7% in aluminium, 90±10% in iron, and 92±3% in 

manganese concentrations was obtained in the final water compared to the raw water. 

Colour, i.e. organic matter, removal is particularly important to prevent THM 

formations. 

 

Results depicted in Figure A-1.4 show water quality data also for PES membranes 

installed before 2009. No difference between the final water quality before and after 

the installation of the CA membranes can be noticed. In 2007 the performance of the 

plant for manganese was poorer than in the following years, as manganese 

concentration in the final water increased and one detection above PCV was 

registered. A deterioration of the membrane modules can be ruled out, as retention of 

turbidity and colour was satisfactory. It is believed that the decreased manganese 

retention can be attributed to higher concentration in the feed, exceeding the 

retention capacity of the membrane.  
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 It can be concluded that both types of membranes, despite different characteristics, 

can produce very good water quality. Moreover, fouling of PES membranes did not 

compromise water quality but only the quantity of water produced.  
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Figure A-1.4 Water quality in raw and final water for Plant A; (a) turbidity , (b) 

colour, (c) iron, (d) pH, (e) manganese (f) aluminium [1]. Dotted lines indicated the 

Prescribed Concentration Value (PCV) of each parameter.  
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A.1.3 Case study B: micro-plant on a Western island 

A.1.3.1 Plant Description 

Plant B is a small membrane unit with a design capacity of 5 m3/day, producing 

around 3 m3/day (for 23 hours/day operation) and serving a population of about 20 

people. It contains 3 membrane modules, 0.92 m long, working in parallel, for a total 

membrane area of 7.9 m2. The plant is the smallest unit in Scotland (together with 

another two identical ones) and all its components are incorporated into a single 1m 

x 2m skid (Figure A-1.5). These micro-plants were installed in 2006 mainly to 

remove Cryptosporidium from drinking water. Plant B was originally equipped with 

PES membranes, but these were exchanged with CA modules in 2007, following 

fouling in other plants located on the same island.  

 

 a    b 
Figure A-1.5 Pictures of Plant B located on the remote western island  

 

Raw water is supplied by gravity from a lake nearby and no pre-treatment is carried 

out apart from a coarse screen at the intake. A single pump is required to pressurise 

the feed through the membrane and recirculate part of the concentrate. The treatment 

schematic is identical to Plant A (Figure A-1.2), with the only difference that a sand 

filter is not installed before the membranes modules in Plant B. After chlorination 

and pH adjustment, the final water is stored in an 8 m3 clear water tank.  
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The plant operates with a recovery of 50% and a recirculation flow rate 5 times 

higher than the raw water flow. As in the case of Plant A, high recirculation flow rate 

is maintained to achieve the desired crossflow velocity in the membranes.  

A.1.3.2 Operational parameters  

An operator visits the plant once a week for a couple of hours so the plant is left to 

operate automatically for the rest of the time. As for Plant A, the operation 

philosophy aims to deliver constant flow (i.e. constant water production) by varying 

the pressure if necessary.  
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Figure A-1.6 Flux and pressure of Plant B from January 2007 to January 2010 (since 

installation of CA membranes) 

 

Nevertheless, in contrast with Plant A, the flux of Plant B experienced some 

variations within the 4 year period since 2007 when the CA membranes were 

installed (Figure A-1.6). Higher flux occurred during summers when water 

temperatures were higher (average 16ºC compared to average 11ºC in winter) and 

from April to July 2007, when the output was increased on purpose to 5 m3/d from 

the 3 m3/day usually provided. The lack of an operator constantly on site did not 

allow obtaining the same constant flux as for Plant A.  

 

Pressure also varied considerably with respect to Plant A. From Figure A-1.6 it is 

possible to note an increase in pressure caused by fouling followed by a rapid 

decrease corresponding to foam ball changing and/or chemical cleaning. While PCI 
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recommends performing the two operations simultaneously, at Plant B foam balls 

were changed every 4-6 months, when the pressure reached about 8 bar, without 

chemically cleaning the membranes. The chemical cleaning frequency was as low as 

22 months since the membranes need to be transported to a different plant located on 

the same island that is equipped with a cleaning facility. Foam ball replacement 

alone lowered the feed pressure up to 2 bar, comparable with the pressure drop 

obtained for chemical cleaning. It can be concluded that mechanical cleaning, 

although it cannot replace the use of chemicals, can substantially lower their 

frequency and hence plays an important role in reducing fouling.  

A.1.3.3 Water quality  

Despite the high variability of raw water (Figure A-1.7), the quality of the final water 

was consistently high, with an average 90±4% decrease in colour, 81±10% decrease 

in aluminium, 78±14% decrease in iron and 54±25% decrease in manganese 

concentration compared to the raw water values. These removal values, especially 

for manganese, are lower than for Plant A because the concentration of contaminants 

in the raw water was lower while their concentration in the final water was often 

below the instrument detection limits for both plants.  

A.1.4 Energy requirements and costs 

The specific energy consumption (SEC, energy used per m3 of permeate produced) 

for the two plants was determined considering the energy consumed by the pump. 

SEC of Plant A was 1.2 kWh/m3 while SEC of Plant B was 10.4 kWh/m3. When the 

total energy consumed by the plant as indicated by the plant electricity bills in 2009 

was taken into account, the SEC increased to 1.5 kWh/m3 for Plant A and 21.9 

kWh/m3 for Plant B.  

 

It is difficult to compare these values with others presented in the literature, as SEC 

is highly dependent on system components and their efficiency and the quantity and 

quality of the produced water. SEC has been shown to increase with decreasing  

plant size and increasing concentration of salt [8]. As a comparison, a plant using RO 

tubular membranes for brackish water and producing 5 m3/day, obtained a SEC of 
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1.2 kWh/m3 [9]. Tubular membranes in Scotland are therefore highly energy 

intensive, due to the high pressure employed (average 6 bar compared to 3-5 of 

tubular membranes in Norway) and due to the high recirculation flow used for 

creating the high crossflow required for fouling prevention. 
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Figure A-1.7 Water quality in raw and final water for Plant B; (a) turbidity , (b) 

colour, (c) iron, (d) pH, (e) manganese (f) aluminium [1]. Dotted lines indicated the 

Prescribed Concentration Value (PCV) of each parameter.  

 

The ratio of recirculation flow to raw water flow in Plant B is much higher than for 

Plant A (5 times with respect to 1.5) and this caused higher energy consumption in 

Plant B. The pump employed in Plant B has a theoretical efficiency of 30% with 

respect to 80% efficiency of the pumps in Plant A [10], increasing the energy costs. 
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Furthermore, the electricity consumption of the ancillary equipments (on-line meters, 

programmable logic controller, telemetry) constitutes a higher proportion of the 

whole energy for the smaller plant (50% of the total SEC with respect to 20% for 

Plant A). In particular, a 0.5 kW heater is left in constant operation during the winter 

months to prevent freezing of small pipes and thermal comfort of the operator during 

his duties, greatly contributing to the electricity utilization (17% of the total SEC).  

 

Membrane plants in Scotland have not been specifically optimized for energy 

efficiency and lower energy consumption could be achieved.  The plants could be 

operated at lower pressure and lower flux. Lower flux would also result in lower 

membrane fouling, lowering in turn the need of high recirculation flow. Moreover, a 

more efficient pump, an automated heating system and better building insulation 

would considerably reduce the energy consumption of Plant B.  

 

Operational costs for the two plants were estimated based on the hours spent by the 

operators on site, the costs of electricity, chemicals (considering transport to the 

islands) and replacement of membranes and spare parts [11].  

 

Table A.1-1 Estimated operational and maintenance costs for small scale membrane 

plants  

 Plant A Plant B 

Operator £41,200 £4,200 
Electricity £11,000 £1,300 
Membrane replacement £15,600 £300 
Ancillary Equipment Maintenance £700 £250 
Chemicals £10,000 £150 
Total (per annum) £78,500 £6,200 

Total/m
3
 water produced £0.8/m

3
 £7.50/m

3
 

 

A life time of 5 years for the membrane was considered, although CA tubular 

membranes in Scotland are reported to last up to 8-9 years [12]. Operating costs of 

Plant A were estimated to be £0.8/m3, while for Plant B they were £7.5/ m3 (Table 

A.1-1), Especially for the small Plant B, labour and energy costs resulted to be 

greater than the membrane cost itself. The calculated values are comparable with 
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other estimation for similar PCI plants in Scotland, but higher than £0.2/m3 estimated 

for a conventional plant producing 3,200 m3/day and the average water rate of 

£0.46/m3 for the West of Scotland in 2000 [11]. On the other hand, operational costs 

of cartridge filter and chlorine dosing pump previously installed instead of Plant A 

were estimated to be about £14/m3 [13], as the operator was required daily on site for 

maintenance and water analysis, making the operational cost of the small membrane 

unit very competitive for this remote location.  

A.1.5 Conclusions 

The two plants presented in this study achieved final water quality in compliance 

with Scottish regulations, despite high variability in raw water quality with high 

content of organic matter, iron and manganese. Long term plant operation resulted in 

improvement of the original plant design. PES membranes were replaced with CA 

membranes due to fouling. Fouling resulted in flux decrease even at high pressure, 

but it did not compromise the final water quality.  

 

The two plants operated in completely different ways. Plant A operated at constant 

flux and pressure is adjusted accordingly by the operator. Every 6 weeks the operator 

performed a chemical clean and changed the foam balls. This procedure prevented 

rapid pressure increase in the system, even if long term data are required to establish 

if it will reduce irreversible fouling. Plant B operated at variable flux and variable 

pressure caused by fouling. Foam balls were changed every 4-6 months without 

chemical cleaning and the procedure was able to reduce pressure up to 2 bar and 

decrease chemical cleaning frequency. The frequency of chemical cleaning and the 

choice of the cleaning product were left to the operator’s judgment.  

 

Research on the causes of membrane fouling would allow the establishment of a link 

between raw water quality and foulants in order to make an informative choice on 

operational and cleaning procedures. Furthermore, more information on the 

membrane critical flux would allow setting up optimal operation procedures for the 

plants to decrease fouling.  
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Operational costs of membrane plants decreased with increasing size but were still 

higher than for traditional processes. However, costs were competitive with respect 

to small traditional processes located in remote areas, due to operator time required 

for maintenance and water analysis.   

 

Tubular membrane plants, such as those installed in Scotland are highly energy 

intensive, due to the high pressure and high recirculation flow used for creating high 

crossflow in the modules, while considerably lower energy consumption could be 

achieved. Energy consumption could be easily decreased by employing higher 

efficiency pumps and reducing electricity consumed by ancillary equipment.  

 

Research on mechanisms of solute removal would improve plant efficiency, not only 

regarding to fouling prevention but also for reducing energy consumption. A 

comprehensive understanding of solute removal mechanisms would allow the 

operation of the membranes at the lowest pressure and flux which still provide water 

in compliance with regulations. Lower flux would also reduce membrane fouling, 

lowering in turn the need of high recirculation flow and hence reducing further 

energy consumption. 
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Appendix 2 – Membrane characterisation 

A detailed characterisation of the membranes used in this work, TFC-SR2 and TFC-

SR3 supplied by Koch, was carried out. Membrane characterisation allows 

identifying the chemical and physical properties of the membranes and it is a 

fundamental tool for understanding membrane performance and solute-membrane 

interactions [1]. 

A.2.1 Flux and Permeability 

Before determining the pure water flux the membranes were compacted for an hour 

at a pressure 3 bar higher than the pressure used during the experiments. Membrane 

compaction has the scope to stabilize membrane flux as the flux is expected to 

reduce as a consequence of compaction. However, for both membranes pure water 

flux did not decrease during compaction and, once the regime in the stirred cells 

stabilised, it was stable both at 8 bar and 15 bar (Figure A-2.1).   
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Figure A-2.1 Pure water flux during compaction at 8 bar and 15 bar for TFC-SR2 

and TFC-SR3 

 

The pure water flux as a function of pressure for TFC-SR2 and TFC-SR3 was 

determined using equation 2.2 (Figure A-2.2). Flux incresed linearly with pressure 

indicating that the membrane was compacted [2]. 
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Figure A-2.2 Pure water flux as a function of pressure for TFC-SR2 and TFC-SR3 

 

Membrane permeability was determined by dividing the pure water flux by the 

pressure. TFC-SR2 had an average permeability of 16.10 L. h-1.m-2.bar-1, while the 

average permeability of TFC-SR3 was 6.74 L. h-1.m-2.bar-1. TFC-SR2 has higher flux 

and permeability than TFC-SR3 

 

Membrane flux and permeability varied with each experiment since a new membrane 

coupon was used for each experiment.  For quality control, only coupons with a pure 

water flux ± 15% of the average pure water flux were employed in this study.  

A.2.2 Molecular weight cut off 

Membrane MWCO was determined with the stirred cells following the method by 

Teixeira et al. [3].   

 

The membranes were compacted and pure water flux was measured as described in 

Section 4.4. A 900 mL feed solution containing 25 mgC/L of a single inert inorganic 

(PEG 200, 400, 600 or 100, Section 4.2) was filtered at 10 bar and permeate was 

collected in three aliquots of 40 mL each. Retention Ro of the inert organics was 

determined using equation 2.3. Pure water flux was measured after the filtration of 

each organic to confirm that the inert organics had not effect on the membrane 

characteristics.   
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The curve fitting of log(Ro/(1-Ro) versus inert organic MW was intersected by the 

91% retention line, corresponding to a value of log(Ro/(1-Ro)=1, to determine the 

membrane MWCO [3].  
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Figure A-2.3 Determination of molecular weight cut-off (MWCO) for (a) TFC-SR2 

and (b) TFC-SR3 

 

TFC-SR2 has a higher MWCO (460 g/mol) than TFC-SR3 (167 g/mol) in agreement 

with the higher flux and permeability (Figure A-2.3).  

A.2.3 Pore size  

Membrane pore size was determined with the stirred cells using the methodology 

described by Nghiem et al. [4]. Bowen et al. [5] observed that the determination of a 

pore size for NF membranes does not imply that well-defined pores with an average 

radius rp exist. More appropriately, it indicates that the hindrance to solute passage 

through the polymer is equivalent to the hindrance to passage through pores of radius 

rp.     

 

The membranes were compacted and pure water flux was measured as described in 

Section 4.4. A 900 mL feed solution containing 25 mgC/L of a single inert organic 

(dioxane, xylose or dextrose, Section 4.2) was filtered through the membranes as 

pressure varied from 5 to 15 bar. The same membrane coupon was used for all 

experiments. To ensure the membranes were stabilized when retention was 

calculated, 240mL of solution was filtered at the chosen pressure before being 
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recirculated in the cell. After recirculation permeate was collected in three aliquots of 

40 mL each and observed retention Ro of the inert organics was determined using 

equation 2.3. The same protocol was repeated for each pressure and for each inert 

organic. Pure water flux was measured after the filtration of each organic to confirm 

that the inert organics had not effect on the membrane characteristics.   

 

The hydrodynamic model (Chapter 5) was employed to determine membrane 

characteristics, pore radius rp  and L/ε, by fitting the actual sieving coefficient Sa 

(obtained from Ro using equations 5.3, 5.5, 5.6, 5.17 in Chapter 5)  in equation 5.18 

in Chapter 5.  

 

Figure A.2-4 shows the observed and calculated retention for dioxane, xylose and 

dextrose as a function of pressure for TFC-SR2 and TFC-SR3.  
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(b) 

Figure A-2.4 Observed retention R0 and actual retention Ra of inert organics as a 

function of pressure for (a) TFC-SR2 and (b) TFC-SR3 

 

Inert organics characteristics and hydrodynamic conditions for each organic are 

listed in Table A-2.1. kf was determined with equations 5.5 and 5.6 in Chapter 5 and 

depended only on the solute diffusion coefficient ∞D since the stirred cell radius and 

the stirring speed did not change.  
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Table A.2-1 Solute characteristics and hydrodynamic conditions 

  

Solute Stoke 

radius rs (nm) 

Diffusion 

Coefficient  ∞D  

(m
2
/s) 

kf (m/s) 

Dioxane 0.234 9.82E-09 3.50E-05 

Xylose 0.290 7.40E-09 2.89E-05 

Dextrose 0.324 6.72E-09 2.71E-05 

 

Given the solute characteristics rs and ∞D , the hydrodynamic condition kf, Jv 

(depending on pressure) and Ro measured during the experiments, the only 

unknowns in equation A.18  were rp  and L/ε. Φ  was determined with the purely 

steric model (equation 5.14 in Chapter 5) since inert organics do not interact with the 

membranes.  

 

Figure A-2.5 shows the curves of the hydrodynamic model calibrated with rp and     

L/ ε. Since the hydrodynamic model was fitted for the actual sieving coefficients Sa, 

the good correspondence between the model and the observed sieving coefficients So 

indicated the validity of equations 5.5 and 5.6 in Chapter 5 to determine kf for the 

stirred cells. 

 

Membrane characteristics were calculated as an average of the values obtained for 

the three inert organics (Table A-2.2). The low variation of rp and L/ε obtained with 

the three inert organics confirms that, despite its limitations, the purely steric 

hydrodynamic model can be used to define average membrane characteristics when 

calibrated with inert organics 

 

The obtained average pore size for TFC-SR2 and TFC-SR3 is in agreement with 

permeability and MWCO results, confirming that TFC-SR2 is a looser membrane 

while TFC-SR3 is a tighter membrane.  
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Figure A-2.5 Observed sieving coefficient S0 and actual sieving coefficient Sa as a 

function of Jv for the inert organics and fitted hydrodynamic model curves for (a) 

TFC-SR2 and (b) TFC-SR3 

 

Table A.2-2 Membrane characteristics determined by fitting the hydrodynamic 

model with sieving coefficient Sa obtained for the inert organics 

TFC-SR2 TFC-SR3 

 rp (nm) L/ε (m)  rp (nm) L/ε (m) 

dioxane 0.55 2.41E-06 dioxane 0.37 1.55E-06 

xylose 0.51 2.42E-06 xylose 0.38 1.61E-06 

dextrose 0.49 2.52E-06 dextrose 0.39 1.62E-06 

average 0.52 2.45E-06 average 0.38 1.59E-06 

A.2.4 Zeta potential  

Membrane charge, expressed by zeta potential was measured as described in Section 

4.3.7. As observed in Figure A-2.6 both membranes are amphoteric since their 

surface zeta potential is positive at pH lower than the point of zero charge, due to the 
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protonation of the amine groups (≡NH2→≡NH3
+), and negative at higher pH, due to 

the deprotonation of  carboxylic groups (≡COOH→≡COO-) [6].   

 

The two membranes showed similar surface charge characteristics, with similar point 

of zero charge (at pH 4.25 for TFC-SR2 and pH 3.84 for TFC-SR3) and similar zeta 

potential at pH 12 (-26.7 ± 9.2 for TFC-SR2 and -26.8 ± 5.5 for TFC-SR3), while 

TFC-SR2 was slightly more positively charged at pH 3.5 (2.2 ± 4.7 for TFC-SR2 and 

1.2 ± 5.7 for TFC-SR3). 
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Figure A-2.6 Zeta potential as a function of pH for TFC-SR2 and TFC-SR3 

(background electrolyte 1 mM NaHCO3 and 20 mM NaCl). Error bars represent the 

standard deviation of five repeated measurements, while the symbols represent the 

average of the five measurements.  

A.2.5 Contact angle  

Membrane hydrophobicity was estimated by contact angle measurements carried out 

as described in Section 4.3.6. Contact angles of virgin membranes performed at 

Imperial College London, UK (Figure A-2.7) and contact angle of membranes 

compacted with pure water, carried out at ITM-CNR (Italy) are reported in Table A-

2.3. While contact angles of compacted membranes are scarcely reported in the 

literature, they might better represent membrane hydrophobicity [7].  
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(a) 

 

(b) 

Figure A-2.7 Photographs of water drops on (a) TFC-SR2 and (b) TFC-SR3 

employed to measure contact angle 

 

Table A.2-3  Contact angle of TFC-SR2 and TFC-SR3 

 TFC-SR2 TFC-SR3 

Virgin membranes 61.5º ± 2.6 º 48.5 º ± 1.4 º 

Compacted membranes 57.2 º ± 2.1 º 44.0 º ± 1.2 º 

 

TFC-SR2 has a higher contact angle and it is therefore more hydrophobic than TFC-

SR3. The contact angle for the compacted membranes did not change dramatically 

with respect to the contact angle of the virgin membranes and the difference can be 

attributed to the different membrane coupons employed. Verliefde et al. [7] observed 

an increase in contact angle after compaction for two commercial NF membranes 

and they attributed the higher hydrophobicity to the flux decrease during compaction. 

For TFC-SR2 and TFC-SR3 flux remained constant during compaction (Figure A-

2.1) in agreement with no change in contact angle.  

A.2.6 Roughness 

Membrane roughness was estimated with AFM as described in Section 4.3.8. Images 

of the membrane surface and cross section constructed on the basis of AFM data are 

presented in Figure A-2.8. Table A-2.4 presents Rq and Ra values obtained for the 

membranes. As reported in the literature [8] Rq values are larger than Ra values. 

TFC-SR2 has higher roughness than TFC-SR3.  
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 (a)  (b) 

(c) (d) 

 

Figure A-2.8 Images of surface for (a) TFC-SR2 and (b) TFC-SR3 and three 

dimensional cross section for (c) TFC-SR2 and (d) TFC-SR3 obtained with AFM.  

 

Table A.2-4 Average roughness Ra and root-mean square roughness Rq for TFC-SR2 

and TFC-SR3 

 TFC-SR2 TFC-SR3 

Ra (nm) 5.2 ± 0.6 17.9 ± 0.6 

Rq (nm) 6.8 ± 0.7 23.0 ± 1.3 

A.2.7 Thickness  

Total membrane thickness (active layer, support layer and non-woven fabric) was 

measured on SEM images of membrane cross-section as described in Section 4.3.9 

(Figure A-2.9). Average of three measurements resulted in thickness of 158 µm for 

TFC-SR2 and 142 µm for TFC-SR3 (Table 4-2). 
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(a) (b) 

Figure A-2.9 Cross-section images of (a) TFC-SR2 and (b) TFC-SR3 by SEM with 

thickness measurements 

A.2.8 Functional groups 

The functional groups of the membranes were analysed with ATR-FTIR as described 

in Section 4.3.10. Both membranes had very similar spectra in terms of both signal 

positions and shape (Figure A-2.10).  
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Figure A-2.10 ATR-FTIR spectra of TFC-SR2 and TFC-SR3. 

 

Since the depth of penetration of the infrared scan was up to 1.66 µm both the 

support layer and the active layer were present in the spectra. All peaks at 

wavelengths lower than 1500 cm-1 can be attributed to the PS support layer.  

 

The PA layer is visible in the amide I band at 1622 cm-1 (carbonyl stretching of the 

group –CO−NR2). The absence of the amide II band at ~ 1540 cm-1 (N−H in-plane 
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bending and N−C stretching of a −CO−NH− group) indicates that the polymer used 

for the active layer is a secondary (or fully substituted) amide. Peaks found at 

1718/1734 cm-1 (C=O stretching of carbonyl functions: aldehydes, ketones, 

carboxylic groups and esters) could be attributed to additives. 

 

At wave number greater than 2500 cm-1 the depth of penetration is shallower and 

information on the PA layer can be obtained [1]. Both membranes present peaks in 

the region of 2900-3000 cm-1 and 3000-3100 cm-1. These peaks correspond 

respectively to the stretching of the aliphatic C-H bond and to the stretching of the 

aromatic =C-H bond. The absence of any predominant peak in this region might 

indicate that the membranes might not have any coating layer [1]. The broad peak at 

around 3300 cm-1 is due to presence of N-H and carboxylic groups of the PA layer. 

The relatively low intensity of this peak corroborates the hypothesis of the absence of 

a coating layer [1].  

A.2.9 Salt retention 

The retention of NaCl by TFC-SR2 and TFC-SR3 was determined as a function of 

pH and pressure with stirred cell experiments. The membranes were compacted and 

pure water flux was measured as described in Section 4.4.  

 

A 500 mL feed solution containing 20 mM NaCl and 1 mM NaHCO3 with pH 

varying from 4 to 12 was filtered at pressure 5 bar and permeate was collected in 

three aliquots of 40 mL each. NaCl concentration was measured by conductivity 

(Section 4.3.1) and NaCl retention was determined using equation 2.3. Figure A-2.11 

shows membrane permeability determined during filtration experiments and NaCl 

retention as a function of pH. NaCl retention is pH dependent with lowest retention 

at pH 6. These results are discussed in Chapter 6. 
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(b) 

Figure A-2.11 Membrane permeability (Jv/pressure) (a) and NaCl retention (b) as a 

function of pH for TFC-SR2 and TFC-SR3 Feed solution 20 mM NaCl and 1 mM 

NaHCO3, pressure 5 bar.  

 

A 500 mL feed solution containing 0.1 mM NaCl (pH not adjusted and around 7) 

was filtered and permeate was collected in three aliquots of 40 mL each. NaCl 

concentration was measured by conductivity (Section 4.3.1) and NaCl retention was 

determined using equation 2.3. At low pressure (5 bar) NaCl retention for the two 

membranes was similar (Figure A-2.11), confirming what was observed at pH 6-7 in 

Figure A-2.9. With increasing pressure NaCl retention for the tighter TFC-SR3 

increased, while for the looser TFC-SR2 NaCl retention was constant with pressure 

(Figure A-2.10).   
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Figure A-2.12 NaCl retention as a function of pressure (pH not adjusted) for TFC-

SR2 and TFC-SR3. Feed solution 0.1 mM NaCl.  
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Appendix 3 – Characterisation of fouled membranes 

SEM images and ATR-FTIR scans were performed on the membranes employed in 

the experiments described in Chapter 9.  

(a)  membrane compacted with ultrapure water (virgin membranes) 

(b) membrane after filtration of HA (12.5 mgC/L) and background electrolyte 

(c) membrane after filtration of HA (12.5 mgC/L) + Ca (2.5 mM) and 

background electrolyte 

(d) membrane after filtration of Mn (500 mg/L) and background electrolyte 

(e) membrane after filtration of HA (12.5 mgC/L) + Mn (500 mg/L) and 

background electrolyte 

(f) membrane after filtration of HA (12.5 mgC/L) + Mn (500 mg/L) + Ca (2.5 

mM) and background electrolyte. 

A.3.1 SEM images 

SEM images and EDX spectra (Section 4.3.9) of membrane surfaces and cross 

sections are presented in Tables A.3-1.  
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Table A.3-1 Surface SEM images (left side), SEM-BSE images (right side) and 

EDX spectra for TFC-SR2 

Virgin membrane 

  

 
HA deposits 
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HA + Ca deposits 

  

 
Mn deposits 
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HA + Mn deposits 

  

 
HA + Mn + Ca deposits  
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Table A.3-2 Surface SEM images (left side), SEM-BSE images (right side) and 

EDX spectra for TFC-SR3 

Virgin membrane 

  

 
HA deposits 
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HA + Ca deposits 

  

 
Mn deposits 
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HA + Mn deposits 

  

 
HA + Mn + Ca deposits  
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Table A.3-3 Cross-section SEM images (left side), SEM-BSE images (right side) for 

TFC-SR2 

 

Virgin membrane 

  
HA deposits 

  
HA + Ca deposits 

  
Mn deposits 
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HA + Mn deposits 

  
HA + Mn + Ca deposits  
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Table A.3-4 Cross-section SEM images (left side), SEM-BSE images (right side) for 

TFC-SR3 

 

Virgin membrane 

  
HA deposits 

  
 

HA + Ca deposits 

  
Mn deposits 
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HA + Mn deposits 

  
HA + Mn + Ca deposits  
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A.3.2 ATR-FTIR spectra 

Spectra of virgin membranes were compared with the spectra of the membranes 

filtered with different solutes.  

Table A.3-5 ATR-FTIR spectra of TFC-SR2 (left) and TFC-SR3 (right) 
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Appendix 4 – Solute removal using membranes 

powered by renewable energy 

A.4.1 Introduction 

Appendix 1 showed that in remote areas of Scotland membrane plants successfully 

produced drinking water delivered to small communities. This is the case even if 

high energy consumption per volume of produced water, which increases as plant 

size decreases, remains one of the main drawbacks. The availability of electricity in 

remote areas is usually limited as many small remote communities are located off-

grid. In this content, membrane plants powered by renewable energy (RE) have a 

huge potential to produce safe drinking water. 

 

To date, several photovoltaic (PV) and wind energy powered membrane systems 

have been developed, and several big scale desalination plants powered by RE are 

currently operated worldwide [1-17]. In fact, it ha s been reported that by 2003 PV 

panels were already employed to power 43% of the existing big scale RE-RO plants, 

while only 20% used wind energy [1].  

 

Small scale RE-membrane systems have been developed primarily for research or 

demonstration purposes [1]. Small scale PV-RO plants have been reported to 

produce between 0.1 to 45 m3/day of drinking water with SEC between 0.8 kWh/m3 

to 4.2 kWh/m3 for brackish water and 4 kWh/m3 and 22.8 kWh/m3 for seawater, 

depending on the feed water salinity and quantity of produced water [1-5, 18-20]. 

Less research has been carried out with small wind-RO systems. The capacity of the 

systems presented in the literature varies between 0.18- 9 m3/day and reported SEC 

varies between 3.5-10.3 kWh/m3 (only results for seawater available) [7-9, 21-23]. 

Research on RE-membrane systems employing membranes other than RO and 

treating water other than seawater and brackish water is scarce.  

 

Small scale RE-membrane systems employ batteries or other energy storage devices 

to avoid energy fluctuation due to the variability of the RE sources. However, the use 
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of batteries is not ideal, especially in remote communities and at high temperatures. 

This is because batteries decrease the system efficiency and increase the system 

maintenance and operational costs, as they need replacement every 2 to 5 years. RE 

systems instead are usually designed for a 20 year life time. Additionally, batteries 

present a higher risk due to potential accidental spillages due to improper battery 

disposal [24, 25], and therefore associated environmental impact in a life cycle 

assessment. As a consequence, small scale battery-less membrane systems have been 

developed, in which RE is directly coupled with the pump used to pressurise water 

through the membranes [2, 3, 26-31]. Lack of energy storage results in variable 

operation of the membranes in terms of power, hence pressure and flow, which 

presents new challenges with regards to the operation of membranes in non-steady 

conditions. The use of wind energy without battery storage presents a bigger 

challenge than solar energy as wind energy is more intermittent due to turbulence 

and guts over short periods of time (ranging from seconds to minutes) [32].  

 

Membranes have been designed to operate at stable pressure and flux, so fluctuating 

operation has been inferred to cause mechanical fatigue to membranes, shorten 

membrane lifetime and increase fouling and scaling [1, 2, 7]. However, no 

membrane damages was observed after 7,000 hours of fluctuating operation of a 

battery-less wind-RO desalination system [31]. Moreover, fluctuating operation has 

been shown to disturb the polarisation layer and potentially reduce the effects of 

fouling and scaling [33-35].  

 

Studies on small scale battery-less RE-membrane systems have mainly employed RO 

membranes for desalination of seawater and brackish water and they have mainly 

focused on proving the technical feasibility of the systems in terms of robustness and 

conductivity removal. Studies on the impact of energy fluctuation on system 

performance, in terms of pressure, flux, recovery, SEC and studies on the impact of 

fluctuations on the removal of specific solutes other than conductivity are scarce.  

 

In this work, the performance of a battery-less hybrid UF-NF/RO membrane system 

powered by solar and wind energy producing around 1 m3/day of drinking water was 
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evaluated. This system has been previously tested with solar energy during a six 

week period in six different remote locations of central Australia [25, 36-39]. In Pine 

Hill, one of the locations selected for the field trials, the system was shown to 

tolerate large solar fluctuation (500-1,200 W/m2) and treat brackish water to 

Australian drinking water standards [25]. The impact of fluctuating energy on the 

retention of inorganic solutes was found to be solute specific. For solutes with large 

hydrated radius, retention by RO membranes was high (>99.5%) and independent 

from the change in solar power throughout the day. Retention of smaller inorganics 

was lower (>85%) and was impacted by solar irradiance [37]. The system has also 

been previously tested with simulated wind energy in the laboratory using synthetic 

brackish water and the influence of wind speed, wind turbulence intensity and period 

of oscillations on the system performance and conductivity removal were evaluated 

[32]. The system produced good quality permeate unaffected from fluctuations, but 

significant deterioration of performance was observed during pump switching on and 

off.  

 

The objectives of this study were to: 

• Analyse data collected in Australia during a field trial at Coober Pedy in 

order to establish the performance of the system for conductivity removal 

when powered by solar energy. 

• Test the system in the laboratory with simulated solar and wind energy in 

order to evaluate the impact of fluctuating energy on the treatment of real 

Scottish surface water.  

A.4.2 Materials and methods 

The battery-less RE-membrane system employed in this work used a RE simulator, 

PV modules or a wind turbine to power a two-stage membrane process. The first 

stage consisted of submerged UF membranes, while the second stage consisted of a 

pressurised NF or RO membrane module (Figure A-4.1). A custom-designed 

progressive cavity pump (Mono-Pumps Australia, Permanent Magnet Brushless 

Direct Current Motor) drived the feed through the UF membranes at negative suction 



 
 

 256

pressure of about -0.5 bar, pressurising the UF permeate through the NF/RO module 

(maximum 12 bar).  

 

During the Australian field trip at Coober Pedy, six Zenon ZW10 UF membranes 

connected in parallel and immersed in a 300 L stainless steel tank were employed. A 

RO membrane, FILMTECTM BW30 (Dow Water Solutions) was selected for the 

second stage since it was shown to have a good performance for brackish water [25].  

During the laboratory experiments, a cassette of Zenon ZW1000 UF membranes 

immersed in a 500 L stainless steel tank was used. For the second stage, TFC-SR2 

NF membrane (Koch Membrane Systems) was selected to treat Scottish surface 

water since TFC-SR2 showed high organic matter removal (Chapter 6) and required 

less energy than the tighter TFC-SR3. Moreover, solute retention for the looser 

membrane was expected to be more influenced by fluctuating energy, since retention 

of solutes with smaller hydrated radius (with respect to membrane pore radius) were 

shown to be impacted by a change in power [37]. The TFC-SR2 module employed in 

this study had a pure water permeability of 14.4 L/m2hbar, comparable to the pure 

water permeability obtained from the membrane coupons used in the stirred cells 

experiments (Table 4-2).  

 

Figure A-4.1 Schematic of the RE-membrane system used in this study.  
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During the Australian field trail the system was powered by four 24 VDC (nominal) 

PV modules (BP solar, BP3150S), rated at 150W peak (under laboratory conditions 

of 1000W/m2). The PV panels were mounted onto a single-axis solar tracker 

composed by a linear actuator (Mono-pumps Australia) that allowed the modules to 

follow the sun path from east to west during the day. During the laboratory 

experiments, the system was powered by a programmable power supply (Agilent 

Technologies, E4350B) which could simulate constant power inputs (range 0-300W) 

and solar power. Wind power was simulated in the laboratory using a wind turbine 

simulator constituted by a wind turbine generator (FuturEnergy) with the blades 

removed and a geared induction motor (Nord, SK51E-160M/4) controlled using a 

vector frequency inverter (Nord, SK700E-112-340-A) [40].  

 

During the Australian field trail the power requirements were monitored manually 

from the electronic interface of the pump. The feed, permeate and concentrate flows 

were determined manually. Electrical conductivity and temperature for feed, 

permeate and concentrate were measured with conductivity probes and 

thermometers. Manual measurements and sampling of process streams were 

performed every 0.5-1 hour. Pressure was measured at 5s intervals with transducers 

located upstream and downstream of the pump and on the concentrate stream after 

the RO membranes. Solar irradiation was measured with a temperature-compensated 

sensor mounted in the same plane as the PV modules. Pressure and solar irradiation 

data were supplied to a data logger (DataTaker DT500) and downloaded to a laptop. 

During laboratory experiments, flow rate, pressure and temperature were taken in the 

feed, permeate and concentrate stream every second. Voltage and current output 

from the programmable power supply or the wind simulator were read at rate of 1 

Hz. Flow, pressure, temperature, voltage and current were recorded using a data 

logger (DataTaker DT800) and downloaded to a PC. Feed, permeate and concentrate 

sample were collected at regular intervals and analysed for pH, TOC and inorganic 

compounds using the methods described in Section 4.3. The temperature of the feed 

water was maintained constant at 15 ºC by constant circulation through a water 

chiller system.  
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Solute retention, membrane recovery and flux were calculated using the expressions 

provided in Sections 2.2.1 and 2.2.5. Transmembrane pressure (TMP) and SEC were 

determined as follows: 

p

cf
p

pp
TMP −

+
=

2
                           (A.1) 

where pf, pc and pp are the measured pressure of the feed, concentrate and permeate, 

respectively (pp = 0).  

p

pumppump

Q

UI
SEC =                                (A.2)        

where Ipump is the pump current, Upump is the pump voltage and Qp is the permeate 

flow.  

A.4.3 Experimental  

A.4.3.1 Australian field trial 

Field trials were performed in October 2005 by students of the University of 

Wollongong in Coober Pedy, a very remote town of 3,500 inhabitants (plus about 

1,000 tourists during winter) located in central Australia.  The town receives a yearly 

average solar irradiation of 5.8 kWh/m2day (1990-2008), while in the month of 

October the average daily solar irradiation is 6.78 kWh/m2day (1990-2008) [41]. 

Drinking water at Coober Pedy is mainly obtained from a sand aquifer, characterized 

by relatively low salinity water, with conductivity of about 7 mScm-1. Drinking water 

is treated by two RO plants, a main plant with capacity of 850 m3day-1 that was 

commissioned in 1985 and a back-up plant built in 2001 of 600 m3day-1 capacity. 

Both plants are equipped with the BW30 membrane modules used in the trails.  

 

In order to estimate the performance of the PV-RO system for treating Coober Pedy 

brackish water, two pilot tests were performed using real solar energy: 

• First pilot test performed on 26 October 2005 in batch mode, i.e. the permeate 

and concentrate were continuously recycled back to the feed tank (Figure A-

4.1).  
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• Second pilot test performed on 27 October 2005 in a continuous mode, i.e. 

the feed tank was continuously filled directly from the bore and the permeate 

and concentrate were discarded (Figure A-4.1).  

 

In both experiments, the feed tank was filled before sunrise and the back-pressure 

valve was manually set to provide a pressure of 7 bar at feed flow of 300 Lh-1. The 

system was then left to run powered by solar energy without any further 

manipulation of the valves until sunset, when the system shut down automatically. 

 

The batch mode experiment allowed testing the system with constant feed water 

characteristics, while the continuous mode test was aimed to reproduce a more 

realistic performance of the system over time. 

A.4.3.2 Laboratory experiments 

Laboratory experiments employed surface water collected from a site located 10 

miles from Edinburgh. The raw water was collected from a water reservoir with a 

clean 1 m3 tank and brought to the laboratory. All experiments were performed 

within five days of water collection and the water in the tank was continuously 

stirred with a pump.  

 

In order to evaluate the impact of fluctuating energy on solute removal four 

experiments were performed: 

• Steady state experiments: experiments at constant power held for an hour at 

steps of 60, 120, 180, 240 and 360 W. Feed, permeate and concentrate 

samples were collected for each condition. These experiments constituted a 

baseline for comparison of the results obtained during fluctuating energy 

experiments. 

• Solar energy experiments: solar energy power was simulated using irradiation 

data recorded at Loughborough (UK) on 09/01/11. Feed, permeate and 

concentrate samples were collected every half an hour. 

• Simulated fluctuation experiments: oscillating power experiments in which 

the random fluctuations of wind were approximated by a sinusoidal wave and  
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average power and peak-to-peak amplitude were varied [32]. Average power, 

corresponding to wind speed, was varied at steps of 60, 120, 180 and 240 W 

and peak-to-peak amplitude, corresponding to wind turbulence intensity, was 

varied from 30 to 300 W (extreme turbulence). The period of oscillation was 

set at 60 seconds, as it was previously shown that system performance was 

less dependent from this parameter [40]. Each condition was kept for 20 

minutes and feed, permeate and concentrate samples were collected for 120 

seconds, hence representing the average of two complete oscillating cycles. 

These experiments allowed evaluating the impact of wind power on solute 

removal in a controlled manner by eliminating the complexity of real wind 

fluctuations. 

• Wind energy experiments: wind energy power was simulated using wind data 

obtained from measurements taken near the town of Emden on the North Sea 

coastline of Germany [40]. A 2.5 hour segment of the wind speed data was 

chosen as it exhibited a wide range of wind speeds and turbulences. Feed, 

permeate and concentrate samples were collected every 15 minutes. 

 

For all experiments the back-pressure valve was manually set to provide a pressure 

of 5 bar at feed flow of 500 Lh-1 and the system was then left to run powered by the 

programmable power supply or the wind turbine simulator.   

A.4.4 Impact of real solar energy on conductivity removal  

Table A-4.1 shows the daily average performance of the system during the tests 

performed at Coober Pedy. Both days had similar solar irradiation, resulting in 

similar average pump power output, which determines the suction pressure at the UF 

membrane, the RO feed pressure, i.e. the TMP and, in turn, the membrane flux. In 

both tests, the system showed high conductivity retention, producing from raw water 

with conductivity of 7.4 mS cm-1 and permeate with conductivity of 0.3 mScm-1, 

below the Australian Drinking Water Guidelines of 0.78 mScm-1 [36].  For both 

batch and continuous tests, the system had a capacity of 764 L per solar day and 

average SEC of 3.2 kWhm-3, comparable with the results obtained in the literature 

(Section A.4-1). 
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Table A.4-1 Daily average results for pilot tests at Coober Pedy 

Date 
Experiment 

Mode 

Solar 

irradiation 

(kWh.m
-2

.d
-1

) 

Power 

(W) 

TMP 

(bar) 

26/10/05 batch 10.2 209 10.2 

27/10/05 continuous  10.3 210 10.4 

Flux  

(L.m
-2

.h
-1

) 

Recovery 

(%) 

Conductivity 

retention (%) 

SEC 

(kWh.m
-3

) 

Total permeate 

volume (L.d
-1

) 

9.1 17.5 96.3 3.2 764 

9.1 17.5 95.9 3.2 764 

 

Figures A-4.2 and A-4.3 show the variation of the system performance when 

operating with variable energy where: (a) is power; (b) feed flow; (c) TMP; (d) UF 

(suction) pressure; (e) flux; (f) conductivity of feed, permeate and concentrate; (g) 

recovery and salt retention; and (h) SEC; while all graphs are overlaid with the solar 

irradiance. 

 

During clear days, as was the case during those experiments, the fluctuations of 

irradiance are minimum and the amount of energy received by solar panels is 

maximum [42]. Solar radiation was at its maximum from about 9 am to 3 pm and 

increased and decreased sharply before 9 am and after 3 pm, respectively. The 

system started and ended operation when the available power dropped below the 

minimum requirement. The system operated for almost 12 hours in this location and 

month with the maximum power of 254W during the midday plateau. 

 

The feed flow had low variations through the day for both experiments, while the 

flux followed the evolution of TMP. The feed conductivity was generally constant 

during the day and the permeate conductivity was higher at the beginning and at the 

end of the day when less solar radiation and hence power were available to produce 

flow and pressure. Recovery and retention had low variations throughout the day. 

The “scattered” points in Figures A-4.2 and A-4.3 represent about 0.3% of all data 

points in the curve and are thought to be due to sensor problems during the tests.   
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For the brackish water tested, power variation during clear sky days due to direct use 

of PV panels without batteries did not affect the permeate conductivity, hence the 

water quality, and had minimal influence on the permeate production. The PV-

membrane system was able to tolerate energy increase and decrease during the solar 

day. Batch and continuous tests presented similar results and trends, showing that the 

system performed satisfactorily under variations of feed water characteristics for the 

brackish water tested. 
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Figure A-4.2 Performance of the PV-RO system tested on 26 October 2005 at 

Coober Pedy – Batch mode. EC is Electric Conductivity 
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Figure A-4.3 Performance of the PV-RO system tested on 27 October 2005 at 

Coober Pedy – Continuous mode. EC is Electric Conductivity. 

 

A.4.5 Impact of fluctuating energy on solute removal from 

real surface water 

Table A-4.2 shows the characteristics of the surface water collected 10 miles outside 

Edinburgh and used in the laboratory experiments. The analysis of the raw water 

confirmed the soft nature of Scottish water, with low concentration of calcium and 

magnesium and in general low mineral content (Section 3.2). Apart from iron, all the 

inorganics were below WHO guidelines [43] and manganese, lead and zinc were 

below the detection limits. Raw water was very rich in organic matter with a very 

strong yellow colour.  
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The Zenon ZW1000 UF membranes, whose scope was to remove bigger particles 

and prevent fouling of the NF membrane, showed low removal (<60%) of metals and 

organics. UF permeate was in compliance with WHO guidelines, but the TOC 

content was still high, leaving the water with a yellow tinge that would not be  

acceptable to Scottish costumers.  

 

Table A.4-2 Characteristic of Scottish surface water used in the experiments and 

removal by UF membranes 

Parameter 
MW 

(g/mol) 

Hydrated 

radius
 
[44] 

(nm) 

Raw 

water 

(mg/L) 

UF 

filtered 

water 

(mg/L) 

UF 

Retention 

(%) 

WHO 

guidelines  

(mg/L) 

Iron 55.8 0.428 0.75 0.31 57.9 0.3 
Aluminium 27 0.475 0.19 0.13 32.58 0.2 
Calcium 40.1 0.412 11.49 10.73 6.61 100-300 
Magnesium 24.3 0.428 1.91 1.85 3.24 100-300 
Sodium 22.9 0.358 2.38 2.15 9.95 200 
Potassium 39.1 0.331 0.38 0.36 5.42 - 
Boron 10.8 NA 0.07 0.06 13.02 0.5 
TOC - - 40.82 34.71 14.96 0.3 

 

During steady state experiments, TMP, flux and recovery increased almost linearly 

with the power delivered to the pump (Figure A-4.4), due to the low salinity content 

of Scottish water. Osmotic pressure of brackish water was shown to level off at high 

power the curves of TMP, flux and recovery versus power [40], but this effect was 

highly attenuated with Scottish water. SEC was independent from power, with 

slightly higher energy consumption at low power, when the flux was also lower, and 

an average SEC of 1.7 kWh m-3 was obtained. 

 

Retention of iron, aluminium and colour (UV) was independent from the pump 

power while retention of calcium, magnesium, sodium, potassium, boron and TOC 

increased with increasing pressure (Figure A-4.4c). Solute retention was due to a 

combination of size exclusion and charge as the order of retention followed the order 

of hydrated radius and MW and the strength of ion charge. Retention of ions with 
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higher hydrated radius and higher MW was not affected by change in power, while 

for smaller ions convection/diffusion dominated retention, confirming what observed 

in a previous study [37]. TOC retention was also dependent on power, potentially 

indicating high presence of smaller fractions of organic matter.     
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Figure A-4.4 Performance of the system in steady state conditions  

 

Table A-4.3 shows the daily average performance of the system during the tests 

performed with simulated solar energy. The solar irradiation was lower than in 

Australia (Table A-4.1), hence the average power delivered to the pump was lower. 

TFC-SR2, whose MWCO and pore radius are 460 gmol-1 and 0.52 nm respectively, 

is a looser membrane than BW30,  whose MWCO is 88 gmol-1 and pore radius is 

0.32 nm [45]. The osmotic pressure of the low salinity Scottish water is considerably 

lower that the osmotic pressure of the Australian brackish water. As a consequence, 

the required TMP was lower and the flux and recovery were higher. Under the solar 

irradiance of the month January in the UK, the system operated for 6 hours, it had 

maximum power of 290W and produced 668 L per solar day.   

 

The system had average SEC of 0.9 kWhm-3, considerably lower than the average 

SEC obtained during steady-state experiments. Lower SEC was attributed to an 

increase in permeate flux during solar experiments (average of 65.8 Lm-2h-1 for an 
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average power of 141 W, against 42 Lm-2h-1 obtained when the steady state power 

was 120 W). The increase in permeate flux was also confirmed during experiments 

with simulated wind energy (Table A-4.3), corroborating the hypothesis that 

fluctuating energy might reduce the effects of fouling by increasing membrane flux 

[33-35].  

 
Table A.4-3 Average results for laboratory tests with Scottish surface water 

Experiment 

Mode 

Solar 

irradiation 

(kWh.m
-2

.d
-1

) 

Power 

(W) 

TMP 

(bar) 

solar 0.92 141 3.6 

wind - 121 3.2 

Flux  

(L.m
-2

.h
-1

) 
Recovery (%) 

SEC 

(kWh.m
-3

) 

Total permeate 

volume (L.d
-1

) 

65.8 25.9 0.9 668 

56.2 25.3 0.4 - 

 
 

Pump power, TMP, flux and recovery followed the evolution of the solar irradiance, 

while SEC was constant throughout the solar day (Figure A-4.5), confirming trends 

obtained in Coober Pedy (Figures A-4.2 and A-4.3). Retention of UV, iron and 

aluminium was constant during the day, while retention of the other metals and TOC  

was more variable, with boron having the highest variably and lowest retention. The 

results confirmed what observed during steady-state experiments. Table A.4-4 shows 

that the average retention obtained during the solar experiment is comparable with 

the average retention obtained during steady state experiments. The system achieved 

44% retention of TOC and 99% of UV (colour) retention, confirming that TFC-SR2 

is an excellent membrane for treating Scottish water.  
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Figure A-4.5 Performance of the system with simulated solar power  

 

Table A.4-4 Average solute retention obtained during laboratory tests with Scottish 

surface water 

 Retention (%) 

Parameter 
Steady 

state 
Solar Wind 

Fluctuations 

60W 120W 180W 240W 

Iron 98.9 99.1 98.2 98.3 99.4 99.5 99.4 

Aluminium 76.3 75.2 69.1 76.4 77.2 77.4 77.1 

Calcium 56.6 59.3 66.1 59.5 60.4 62.9 64.7 

Magnesium 52.5 54.5 61.7 55.3 55.8 58.4 60.4 

Sodium 34.8 36.1 41.1 31.9 35.7 38.6 41.6 

Potassium 29.5 31.1 31.0 30.2 37.1 34.2 37.8 

Boron 13.2 15.8 21.3 3.7 0 5.7 15.5 

TOC 44.9 44.3 28.1 45.8 43.8 46.2 47.2 

UV 98.6 98.7 92.1 98.7 99.3 99.6 98.8 

 

Experiments with oscillating power were conducted to investigate in a controlled 

manner the impact of wind fluctuations on the system performance. Figures A.4-6 
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and A.4-7 present the results obtained when average power of 60 and 120 W was 

employed, corresponding to average wind speed of 3.7 and 5.3 m/s [32]. 

Experiments with average power of 180 W and 240 W (wind speed of 7.0 and 8.7 

m/s [32]) were also performed but they resulted in similar trend and results have not 

been presented. The effects of different peak-to peak amplitudes (wind fluctuations) 

on the system performance are also illustrated.    
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Figure A-4.6 Performance of the system with fluctuating energy- Average power 

60W 

 

Oscillating power resulted in oscillating TMP, flux and recovery. When the average 

power was low (60 W) the system switched on and off for longer periods (Figure A-

4.6), but this did not cause deterioration of the average solute retention, in contrast 

with what observed for conductivity retention [32]. In all studied cases, average 

solute retention compared well with the retention obtained during steady-state 

experiments (Table A.4-4). For sodium, potassium and boron retention increased 

with increasing average power, confirming that ions with smaller hydrated radius and 
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MW are more influenced by oscillating power. SEC exhibited large spikes when the 

system was switched on, due to the higher power necessary to achieve the required 

flux after the system was switched off [40]. Higher average SEC was obtained at 60 

W when the system was off for longer periods.  
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Figure A-4.7 Performance of the system with fluctuating energy- Average power 

60W 

 

The experiment with simulated wind energy showed that TMP, flux and recovery did 

not always follow the pattern of the pump power (Figure A-4.8). Park et al. [32] 

observed that TMP exhibited a decay in order to adsorb the long term fluctuations of 

wind energy but not the short term ones, resulting in a different pattern from power. 

Retention of UV, iron, aluminium, calcium and magnesium was constant during the 

experiments, while retention of TOC, sodium, potassium and boron experienced 

more variability. These results confirmed what observed during steady-state and 

solar experiments. Average solute retention compared well with the average retention 

obtained during the other experiments (Table A.4-4), with the exception of TOC 

retention which experience deterioration. Since the wind experiments were carried 

out after 5 days from bringing the raw water from the lab, a change in type of organic 
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matter might have happened. However, more investigations for explaining this result 

are required. 
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Figure A-4.8  Performance of the system with simulated wind energy  

 

A.4.6 Conclusions 

A small scale battery-less hybrid UF-NF/RO membrane system powered by solar and 

wind energy was tested in the field during trails in Coober Pedy, Australia, where it 

was powered by real solar energy to treat brackish water, and in the laboratory, 

where it was powered with simulated solar and wind energy to treat Scottish surface 

water.  

 

During field tests at Coober Pedy RO membrane BW30 was employed to treat 

brackish water and remove conductivity to levels below the Australian Drinking 

Water Guidelines. The system was able to produce 764 L of permeate in a solar day 

with a SEC of 3.2 kWhm-3. During clear sky days power variation due to direct use 

of PV panels without batteries did not affect the permeate conductivity, hence the 

water quality, and had minimal influence on the permeate production. Batch and 
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continuous tests presented similar results showing that for the treated water 

variations in feed water characteristics did not affect the system performance.  

 

During experiments with simulated solar and wind energy, the system was able to 

treat real surface Scottish water to WHO standards, obtaining good removal of TOC 

and colour. Removal of solutes by fluctuating energy was due to a combination of 

size exclusion and charge, with larger ions mainly unaffected by fluctuations and 

smaller ions, whose retention was dominated by convection/diffusion, more 

influenced by change in power. Fluctuations did not affect the average retention of 

solutes with respect to the average retention obtained during steady-state 

experiments. Steady-state experiments can be used to establish the best and worst 

system performance that can be obtained during operation with RE.  

 

Fluctuating energy increased membrane flux respect to the steady state experiments, 

potentially indicating that fluctuating energy might reduce the effects of fouling and 

scaling. Increase in flux resulted in decrease in SEC during operation with solar and 

wind energy. The system achieved a SEC of 0.9 kWhm-3 and 0.4 kWhm-3 when 

operating with solar and wind energy respectively. Further investigations are 

required to confirm these preliminary results, as these effects could increase the 

benefits of battery-less RE-membrane systems.  

 

Longer experiments are also required to establish the resilience of the system and of 

the membranes to fluctuating energy and evaluating the impact of long term 

operation on the system performance and on the solute retention.   
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