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CHAPTER l." 1. INTRODUCTION 

In this work we examine self-similar solutions of the equationb governing 

unsteady, two-dimensional, isentropic flow of a polytropic gas, that is 

solutions of the equations in which the independent variables x, y and t 

occur only in the combinations x/t and y/t. 

In Chapter 2 we develop the basic equations, showing the form which they 

take under the.assumption that the independent variables occur only in the 

above combinations and some account is given of the type of problem which can 

be solved in terms of these special coordinates. The hodograph plane is 

introduced and a derivation is given of the partial differential equation 

satisfied by the sound speed when regarded as a function of the cartesian 

velocity components. The important equations providing the transformation 

between the physical and hodograph planes are given and the concepts of 

simple and mixed waves are explained. The chapter concludes with asurvey of 

some of the existing work in the subject. 

Chapter 3 gives a discussion of four exact self-similar solutions. It 

is pointed out that, although three of these four are well known; in some cases 

they take on a new aspect when viewed as solutions of the self-similar 

equations of gas dynamics. For example, one such case is that of steady, 

uniform flow. When regarded as a solution of the equations governing two-

dimensional steady gas dynamics, uniform flow has associated with it no real 

characteristics if the flow is subsonic and two families of parllel lines if 

the flow is supersonic. However, when viewed as a solution of the self-

similar gas dynamic equations, uniform flow has an entirely different pattern 

of characteristics in which there are no real characteristics inside a certain 

circle whilst outside the circle the two characteristics through any point are 
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just the two tangents to the circle drawn through that point: and this 

regardless of whether the flow is subsonic or supersonic. 

The least well known of the four solutions discussed is a remarkable 

exact solution obtained by Suchkov, which describes the expansion into 

vacuum of a wedge of gas. 

In Chapter It are presented three problems which are tackled by linearised 

theory, the solutions sought being perturbations on three of the exact 

solutions presented in Chapter 3. The second of these problems is formulated 

in the hodograph plane and leads to a singular perturbation problem in which 

the domain in which a solution is sought vanishes as the perturbation parameter 

tends to zero. The problem is overcome by a boundary layer type stretching 

of coordinates. The results obtained are shown to be in agreement with some 

obtained by Powell. The same problem leads naturally to a discussion of a 

paper due to Anderson. It is suggested that some of Anderson's results are 

not correct and alternative conclusions are put forward. 

Chapter 5 is concerned with two non-linearised problems. The second of 

these is tackled in the hodograph plane by a numerical method and results are 

given. These two problems involve unsteady flows of Prandtl-Meyer type and 

they illustiate how the classical steady Prandtl-Meyer solution describing 

supersonic flow into vacuum around a sharp corner can be considered as the 

limit as time t - 	of the solution of an initial value problem. 
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CHAPTER 2. 	FUNDA1NTALS 

2.1 	The Basic Equations 

The equations governing unsteady, two dimensional, isentropic gas 

dynamics are the momentum equations 

(2.1.1) 
at 	ax 	ay 	pax 

(2.1.2) 
at 	ax 	ay 	pay 

and the continuity equation 

av  + u 	+ v 	
+ p( 	+ 	= 0 

at 	ax 	ay 	ax 	ay 

where 	u(x, y, t), v(x, y, t), p(x, y, t) 	and 	p(x, y, t) 	are the x 	and 

y 	components of velocity, the pressure and the density of the gas 

respectively. 

If the gas  is taken to be polytropic, then the density and pressure 

satisfy the relation 

p 	Kp (2.1. 1 ) 

where 	K 	is a constant and 	y 	is the adiabatic index of the gas (which may 

be taken to be between 1 and 3). 	The local speed of sound 	c(x, y, t) 	is 

then given by 

C 2 	= Kyp' 1  =  

and, since 	y * 1,. (2.1.5) may be used to eliminate both 	p 	and 	p from 

(2.1.1), 	(2.1.2) 	and (2.1.3) to give the system 

• 	au 	
+ 	+ u au 	v au 	c ac 

- + - 	- -- = 0 
• 	at 	ax 	ay 	Kax 

• 	av 	u 	9 	vav 	cac 
-• 	+ - — = 0 at 	ax 	ay 	Kay 

acu ac 	v ac 	au 	av — + 	- + 	- + Kc(—  + 
—) = 0 

at 	ax 	ay 	ax 	.ay 

where 	K= 
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2.2 Similarity Solutions 

One method of attacking (2.1.6) is to seek solutions in which the 

independent variables x, y and t do not occur truly independently but 

only in the combinations 

f(x, y, t) 	and 	g(x, y, t) 

Such a solution is termed self-similar, since, if u, v and c are known 

for all x and y at a time t = t o , during the motion, then they are known 

for all x and y for all subsequent t > t o . If u, v and c are each 

functions of f(x, y, t) and g(x, y, t) then there exists a functional 

relation between u, v and c and we may write c = c(u, v). Conversely, 

if •c = c(u, v) then u, v and c are each dependent upon two functions 

f(x, y, t) and g(x, y, t). This suggests that an alternative approach 

might be to consider u and v as independent variables and to seek a 

solution for which c = c(u, v). This is the hodograph plane method, a 

method which has proved very useful in two dimensional, steady gas dynamics. 

We shall return to describe itlater. 

Interesting as it may be to consider solutions of (2.1.6) in which 

U, v and c are dependent on x, y and t only in the combinations 

f(x, y, t) and g(x, y, t), consideration of many physical problems leads 

us to conclude that one particular choice of the functions f and g may 

be of greater interest than any other. 

Consider the physical problem in which gas, initially at rest, at 

constant pressure, in the quarter plane x > 0, y > 0 is suddenly allowed 

to expand into vacuum by the removal of the walls x = 0 and y = 0. Since 

the problem contains no length or time parameter in its formulation, except 

in the form of a velocity, we deduce that the independent variables x, y 

and t can occur only in the combinations x/t and y/t. Or again, consider 
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the problem in which gas, initially flowing uniformly in the x direction 

filling the half plane y > 0, is suddenly permitted to expand into vacuum 

by removal of the boundary y = 0, x > 0. The argument used above enables 

us again to assert that x, y and t can occur only as x/t and y/t. 

Many problems in two dimensional, unsteady gas dynamics may be formulated 

without reference to any length or time parameter, except in the form of a 

velocity, and so must have solutions involving x, y and t only in the 

form x/t and y/t. The problems which we shall describe are all of this 

type and so henceforth we shall restrict the term 'self-similar' to solutions 

of (2.1.6) in which x, y and t occur only in the combinations x/t and 

y/t 

The substitutions 

	

X = -x - Y 	U- 	V - 	F - c 	' 	c- t 	c ' 	 C' 	 c 
0 	 0 	 0 	 0 	 0 

where c is some reference velocity, which will, whenever appropriate, be 

taken to be the speed of sound in the gas at rest, reduce (2.1.6) to 

(U - x)u+ (v - Y)u + FF = 0 

(u - x) v1  + ( v - ) v1 + 1 FF = 0 	 (2.2.1) 

(U - X)Fx + (V - Y)F + KF(UX + v) = 0 

where the subscripts denote partial derivatives. 

If, in addition, the flow is irrotational, as will be the case in the 

problems we shall consider, we can introduce a dimensionless velocity 

potential and derive the second order partial differential equation which it 

satisfies. In the rest of this section, as in the next section, on the 

hodograph plane, we follow the approach of Mackie (1966). 

Irrotationality ensures that there exists a dimensionless velocity 
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potential 	(x, y), related to the physical velocity potential 	(x, y, t) 

by 

(x, Y, t) 	= co 2t 	(X, Y) (2.2.2) 

for which U = 	
, 	V (2.2.3). 

If the values of 	F1 	and 	F from the first and second members of 

(2.2.1) are substituted into the third, the equation 

[(U - x) 2  - F2 ] 	+ 2(U - x)(v - + [Cv - 	- F2]"YY = 0 

results. Using (2.2.3) we obtain the equation 

HO x - x)2 - 
F2]0 

x 	+ 2( 	- x)( 1  - Y) 	+[( 	- 	- F2]4)yy = 0 
XY  

(2.2.14) 

for the dimensionless potential (x, Y). This equation is clearly quasi-

linear. The characteristics are given by 

dY 	- ( u - X) (V - y) ± F [(u - x) 2  + (v - Y) 2 - F2 ] 2  
dX 	- 	 [(u-x) 2 -F2] 

or equivalently 	 (2.2.5) 

- (u - x)(v - y) 	F [(U - x) 2  + (v - y)2 - F2 1 2  
dY g± - 	 [(v-Y) 2 -F2 ] 

Equation (2.2. 14) is valid throughout the region of flow in the X-Y plane. It 

is easily shown that the unsteady form of Bernoulli's theorem 

+ 	y2) 
+ f 	= function of t 	 . (2. 2-6) 

becomes 

1 	 F2  F 2  - 	- 	+ 	2 + 	2) + 	= 	 (2.2.7) 

with F a constant. 
0 

2.3 The Hodograph Plane 

As we remarked in 2.2 an attempt at solving (2.2.1) may be made by 

seeking a solution for F of the form F = F(u, v). We now derive the 
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partial differential equation satisfied by F in the hodograph plane. We 

have 
dU = UdX + U1dY 

dV = VxdX + V1dY 

dF = FxdX + FydY. 

If the Jacobian J 	(U, V)/(X, Y) V 0 or 	, dX and dl may be 

eliminated from the third equation of this system by means of the first two, 

giving 

(UxVy - vu1) dF = ( FxVy - F1Vx) dU + ( FyUx - FxUy) dV 

Substituting for F   and 'F1  from the first two members of (2.2.1) and 

using the irrotationality condition U1 = V we obtain 

X = U +1 FFu $1 Y=V+FFv. 	 (2.3.1) 

These are the important equations which provide a transformation from the U-V 

to the X--Y plane. Substituting these into the last member of (2.2.1) we 

obtain 

(FuUx + FvVx) Fu + (FUUY + FvV1) Fv = <2 ( U + v1). 

The homogeneity of this equation in U, U1 , V and V. allows us to 

replace these derivatives by Y, ) 	and 
XU. 
 respectively. 

Furthermore, these last mentioned quantities may be obtained from (2.3.1). 

Hence we obtain, finally 

(K2 - F 2 'F 	+ 
V / 	2FuFvFijv + (K 	u

2 - F 2\p 	= [ (F2 + Fv2) (i - K) - 2K 2] 

(2.3.2) 

This 'equation is clearly quasi-linear and the characteristics are given by 

dV= FUFV ± 	+ F. 2 	K2 	
(2.3.3) dU 	

(K2 - Fv2 ) 

Equation (2.3.2) is valid only in regions of the U-V plane in which the 

Jacobian 	(u, v)/(x, 1) is neither zero nor infinite. 

Any solution of (2.2.1) satisfying this requirement is termed a mixed wave. 

	

Solutions of (2.2.1) for which the Jacobian 	(u, v)/(x, Y) is 



identically zero may belong to one of two classes. The first is the class 

of solutions of the form U = U(F), V = V(F); any solution belonging to 

this class is termed a simple wave; The second class is made up of 

solutions U = constant, V = constant, F = constant. This is the class of 

uniform flows. 

It is clear that any solution of (2.2.1) must be a mixed wave, a simple 

wave or a uniform flow. Further, it is clear from their, definitions that a 

mixed wave region in the X-Y plane maps into a region in the U-V plane, 

whilst a simple wave region in the X-Y plane maps into a curve in the 

hodograph plane and a uniform flow maps into a point. Thus only mixed waves 

may be studied in regions of the hodograph plane. 

The solutions to the physical problems which we shall consider will 

consist of combinations of mixed waves, simple waves and uniform flows. 

2.4 Summary of Existing Work 

Perhaps the first example of the use of similarity variables is to be 

found in a paper of Busemann (1943). In applying the linearised theory of 

supersonic flow to conefield flow he was able to use similarity reasoning to 

reduce a boundary value problem involving the wave equation in three variables 

to one involving the same equation in two variables. 

Since then a number of physical problems have been successfully tackled 

by the use of. similarity variables: some of these problems are described 

below.. 

Lighthill (1949)  used Busemann's transformation in studying the 

linearised theory of the diffraction of a plane shock by a corner of small 

an 	An extension of Lighth±ll's work was carried out by Chester (1954). 

Powell (1957) applied linearised theory to the problem of diffraction 

of a complete rarefaction wave by a corner whilst Anderson (1966) studied 
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the diffraction of an incomplete rarefaction wave by a corner. We shall 

discuss these last two works in greater detail in 4.2. 

In a non-linearised problem, Jones, Martin and Thornhill (1951) used 

similarity variables to discuss the diffraction or reflection of a plane 

shock, travelling parallel to a rigid wall, meeting a corner. 

Several Russian authors have tackled problems by use of the hodograph 

plane. Pogodin,Suchkov and lanenko (1958) studied the motion of a gas, 

initially at rest in x > 0, y > 0 caused by the walls, x 0, y= 0, 

beginning, at time t = 0, to move away from the gas with constant speed. 

Ermolin and Sidorov (1966) and Ermolin, Rubina and Sidorov (1968) 

investigated the ensuing motion of a gas, originally contained at rest between 

two walls meeting at angle < 7n2, caused by the walls beginning, at time 

t = 0, to move away from the gas with constant speed. 

Suchkov (1963) studied the motion of gas, initially contained at rest 

between two walls meeting at an angle < in, allowed, at time t = 0, to 

expand into vacuum by the instantaneous removal of the walls. He was able to 

show that when a certain relation between the adiabatic index of the gas and 

the angle between the walls was satisfied, the solution to the problem could 

be given explicitly in a remarkably simple form. 

Levine (1968) has given a detailed study of Suchkov's problem, including 

some numerical results for a range of values of y when the angle between 

the walls is 7/2. The same author (1969)  has derived certain important 

properties of simple waves in two dimensional, unsteady gas dynamics. 

Mackie (1966) has showed how Suchkov's results can be interpreted in the 

physical plane. The same paper includes a discussion of unsteady Prandtl-

Meyer flows. 
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Gorshkova and Stan.ukovich (1966) have also discussed unsteady Prandtl-

eyer flows, as have Greenspan and Butler (1961) in a paper dealing with 

everal topics involving the expansion of a gas into vacuum. 
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CHAPTER 3..'  EXACTSOLUTIONS 

There are four exact solutions of the system (2.2.1) to be found in the 

literature. In this chapter we shall discuss in turn each of these 

solutions both in the X-Y plane and, where appropriate, in the hodograph 

plane. 

3.1 Uniform Flow 

Let us consider steady, uniform flow of. a polytropic gas given by 

U = U 1  , V = V 1  , F = F 1 	U15  V15  F1  constants. 

Substituting these values into (2.2.5) we obtain the differenti al equation 

satisfied by the characteristics in the X-Y plane. 

dY 	= (u -. x)(v - ) ± F[(U1 - x) 2  +(v- 	2 	21 
 

' 	± 	 [(u 1  - x) 2  - F1 2 ] 

where the..4' ~  family of characteristics is obtained by taking the positive 

sign and the - family by taking the negative sign. The change of 

variable 
R cos 0. = 	 , 	 R sin 0 

= 

leads to 

= ±R/R 2 -1 
dO 

which has the solution 

R cos(0 ± 0) = 1 	with 0 	constant. 
- 	 0 	 0 

Thus in the region (x - U1 ) 2  + (Y - V 1 ) 2  < F 1 2  there are no real 

characteristics. In the region (x - U 1 ) 2  + (Y - V 1 ) 2  > F 1 2 the two 

characteristics through any point are the two tangents to the circle 

(x - U) 2  + (y - V 1 ) 2  = F 1 2 drawn from that point. The region interior to 

the circle (x - U1 ) 2 	(y - v 1 ) 2  =
.
F 1 2  is therefore an elliptic region, the 

region exterior to this circle a hyperbolic region and the circle itself a 



figure 1 
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parabolic line. The system of characteristics is shown in figure 1. 

We conclude this description of the first of the four exact solutions 

by remaking the point which was made in Chapter 2, that a region of uniform 

flow in the X-Y plane maps into a single point in the hodograph plane. 

3.2 Rarefaction Waves 

Consider the situation shown in figure 2, in which polytropic gas at 

rest, at constant pressure, is contained in the half space x > 0. The gas 

is separated from the vacuum x < 0 by the rigid wall x = 0. 

Suppose now that at some instant the wall x = 0 is suddenly withdrawn 

from the gas with constant speed, u 1 . The resulting motion of the gas will 

clearly be both one-dimensional and self-similar. The system (2.2.1) 

reduces to the two coupled ordinary differential equations 

(U - x) dU + F dF - 0 	 - 

	

dx 	KdX - 

and 	 (U - x)dF + KF dU  =0 

	

dX 	dx 

which, together with the appropriate boundary 

determine the resulting motion. Writing U 1  

are two distinct cases to consider. 

If 1U 1 1 	1/K the resulting flow is gi 
X -1 l+KX 

V- - 0 , F_l +K  

conditions are sufficient to 

= u1 /c , we find that there 

venby 

- 	
x 	1 	(3.2.1) 

Such a flow is termed a complete rarefaction wave or Riemann wave. 

If lu 1 1 < 11K the resulting flow is given by 

V=0 	 1-(1+K)U 1 Xl 

(3.2.2) 
U = -U 1 	, V = 0 , F = 1 - KU1 	- U1 	X < 1 - (1 + K)U 1  

Such a flow is an incomplete rarefaction wave. 



figure 2 
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Substituting the expressions for U, V and F from (3.2.1) into the 

second member of (2.2.5) we find that the characteristics of the Riemann 

wave satisfy the equation 

l+KX ;1+KX 1  
- l+K 	l+K 

• 	 (3.2.3) dli 	- 
1+KX2 

Thus the family of 	characteristics is seen to be made up of lines 

X = constant whilst the equation 

	

dX 	2Y 1  

	

dY 	 1 +K I - _____ 
It.. 	12(1+KX2 

1+K 

may be integrated to show that the family of . 	characteristics is given 

l+ 
by 	

K 
 

)4(1 - K 2 )Y 2  = (2KX + 2)2 + A (2KX + 2) K 	 (3.2.) 

where A is the parameter of the family. We observe that, for any value of 

K, two of the characteristics (namely those given by A = 0) are straight 

lines. The system of characteristics of the Riemann wave for the case 

K = 22  (y = 2) is shown in figure 3. We note in passing that Y = 0 is a 

parabolic line although there is no region of ellipticity. 

In the region X > 1 the gas is at rest which is, of course, a special 

case of uniform flow. The two families of characteristics in X > 1 are 

easily seen to be the two families of tangents to the circle X2  + y2 = 1. 

Continuity of U, V and F across X = 1 ensures that the characteristics 

have no discontinuity of slope across this line. That the characteristics 

given by (3.2.) do indeed have the required gradient at X = 1 may be 

verified by elementary means. 

The characteristics of the incomplete rarefaction wave are identical to 

those of the' complete rarefaction wave in the region 1 - (1 + K)U 1 	X 1. 



figure 3 
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However, in - U 1  < X 1 - (1 + K)U 1  the gas is in uniform flow and thus the 

characteristics in - U 1 	X 1 - (i + K)U 1  are found to be the tangents 

to the circle (x + u 1 ) 2  + 	= ( i 	KU1) 2• The circle 

(x + U) 2  + Y2  = (1 - KU )2 is a parabolic line and the region bounded by 

this circle and the line X = - U 1  a region of ellipticity. The system of 

characteristics of the incomplete rarefaction wave for the case K = is 

shown in figure 14. 

In the hodograph plane the Riemann wave maps into 

_Uo , v=o 

and elimination of X between the first and third members of (3.2.1) gives 

Fl+KU on V0 

The Riemann wave is clearly a simple wave. 

The incomplete rarefaction wave given by (3.2.2) maps into 

-U 	UO , V0 
1 

in the hodograph plane and the relation 

Fl+KU on V0 	-U1 UO 

is obtained as before. 

3.3 Suchkov's Solution 

Suchkov (1963) set himself the task of determining the resulting flow 

when polytropic gas, initially at rest at constant pressure and contained 

between the infinite wall y = x cot 0 and the semi-infinite wall x = 0, 

y > 0, is allowed to expand into vacuum by the removal, at time t = 0, 

of the wall x = 0, y > 0 ; the wall y = x cot 0 being retained as a rigid 

barrier. The condition of no-flow across the barrier y = x cot 0 enables 

us to reflect across this line the solution obtained, thus obtaining the 

solution to the problem of expansion into vacuum of a wedge of gas of angle 
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At any finite time, t, after the start of the motion there exists a 

value of y = y(t) sufficiently large that no disturbance originating at 

y = 0 at t = 0 can have reached y in time t. Thus it may be reasoned 

that, for sufficiently large Y, the gas is, so to speak, unaware of the 

existence of the corner at Y = 0 and expands as a Riemann wave. Therefore, 

in the hodograph plane, an integral part of the solution is the Riemann wave 

	

F = 1 + KU , V = 0 , - - 	U 	o. 	 (3.3.1) 

The wail y = x cot '0 is clearly also given by Y = X cot 0 and on this 

wall we require V = U cot 0. Substitution of this condition into the 

transformation equations (2.3.1) yields immediately 

F=Fcot0 	on 	VU cot O. 
	

(3.3.2) 

The boundary conditions (3.3.1) and (3.3.2), together with equation (2.3.2) 

(K2 - Fv2 )Fuu 	2FuFvF 	+ (K2 - Fu2 )F 	= 	[(F2 + F2)(l - K) 	2K 2 ] 

provide the boundary value problem in the U-V plane. 

The Riemann wave (3.3.1) is, of course, a characteristic of (2.3.2) and 

hence the normal derivative on V = 0, Fv,  may be calculated. Substituting 

F = 1 + KU, Fu = K and F = 0 into (2.3.2) we obtain the equation 

	

K 
d (F•vZ) = 1 + KU [(1 - K)Fv2 	K(l + K)] 	 (3.3.3) 

which may be integrated to give 

Fv(U, 0) = 	+ K + ( cot20 - 	
K 	

(1 + Ku)K 

where the constant of integration is fixed by noting that (3.3.1) and (3.3.2) 

together imply Fv(0, 0) = K cot 0. 

Suchkov observed that if cot 2 0 (i + K)/ - K), that is if the semi-angle 

of the wedge, 0, and the adiabatic index of the gas, y, satisfy the relation 

cot 2 O = 	, 	 ( 3.3.5) 



then the above specified boundary value problem possesses the linear solution 

	

Il 	- 1 
F 1 + KU + K 	

+ 

	

11 	
K 

v . 	 ( 3.3.6) 

Among the values of 0 and y satisfying (3.3.5) is the pair 0 = 

y = 2. It is well known that the equations governing the motion of a 

polytropic gas of adiabatic index y = 2 are identical in form to those of 

shallow water theory. Thus (3.3.6) with y = 2 and the variables suitably 

interpreted describes the subsequent motion when shallow water, initially 

contained at rest between two plane walls forming an infinite dihedral, is 

allowed to 'expand' by the removal, at time t = 0, of the two walls. The 

water (or more correctly, fluid) 'expands' only in the sense that the average 

height of the fluid surface decreases and the area in the physical plane 

covered by the fluid increases. Rather than discuss the solution (3.3.6) for 

arbitrary y (and, of course, suitably related 0 ) we shall discuss in 

detail the case 0 = ir/G,y = 2. This case exhibits all the essential 

character of the solution for general y. 

With K = 22 then, we substitute the values of Fu  and  F  obtained 

from (3.3.6) into (2.3.1) to obtain the equations 

x=l 

and 

These may be solved for U and V to give 

U = 	(5x - /3Y - 2) , 	 (3.3.1) 

and 	 V = 	(- /3X + 3Y - 2/3). 	 (3.3.8) 

Substituting these last two results into (3.3.6) gives 

F = 1  (x + /3Y + 2) . 	 (3.3.9) 

So curves F = constant are given by /3Y + X = constant and in particular the 
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curve F0 is given by /3Y+X+2=0. 

Substitution of the values of U, V and F from (3.3.7), (3.3.8) and 

(3.3.9) respectively into (2.2.5) gives 

dX  
dY 	

-o 	 dY 	- 

showing that the family of 	characteristics is made up of lines X = 

constant whilst that of 	characteristics is composed of lines 

V'3Y - X = constant. 

The curve across which the mixed wave as given by (3.3.9) adjoins the 

Riemann wave is obtained by equation V, as given by (3.3.8), to zero. Thus 

the required curve is 

V'3Y - X - 2 = 0 

This curve, of course, is. a characteristic both of the mixed wave (3.3.9) 

and the Riemann wave. It is in fact one of the two straight characteristics 

of the Riemann wave which we noted earlier. This was pointed out by 

Mackie (1966). 

Thus we see that in the X-Y plane the flow is made up of regions of 

uniform flow and of simple-wave and mixed-wave regions, the boundaries 

between these various regions being made up of straight lines. The X-Y 

plane is shown in figure 5. 

In the hodograph plane the characteristics are given by 

V3  V3 
dV le 	FuFv ± KV'Fu2 + F 2  - K 2 	± 
dU= 	( K2 - FV2 ) 	 = 

- - V3 	 = 0 dV  
dUl 	- 	 dU 

whilst the curves F = constant are given by 
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dV  I '- U 	-1 

F = constant 

Therefore in the U-V plane the system of characteristics is as shown in 

figure 6. 

We end this discussion of Suchkov's solution by noting that in cases in 

which 0 and y do not satisfy (3.3.5) the boundary value problem posed 

cannot be solved analytically and a numerical method must therefore be used. 

This has been done by Levine (1968) in studying the case 0 = 7/4. 

3.4 Prandtl-Meyer Flow 	 - 

It is well known that steady, supersonic flow of a polytropic gas past 

the convex wall 	 0 

y0 	 x<O 

x - ycota 	y<O 

is given by 

u = 2- sin  [Xe + tan 1 (X cot )1 )J 	 (3..1) 

c = u0 = 	cos [Xe + tan 1 (X cot p)} 	 (3..2) 

where c is the sound speed f .ax upstream, p 1  is the upstream Mach angle, 

Ur u0  and 0 are as shown in figure 1 and X and q*  are given by 

= 1 	
' 	q* = cV'l + X 2 cot2 p 

+ K  

(3.4.1) and (3.4.2) are valid in 0 < 0 < 0 	where 

	

+ tan (X cot [Xe + tan- 
1 
 (X cot p 1 )]) = p 1  + a . 	( 3.,3) 

The region 0 < 0 < 00 is often referred to as .a Prandtl-Meyer fan. For 

0 > 60 the flow is steady, uniform, supersonic and parallel to the wall 

x = -y cot a. 

Consider the case in which the wall x = -y cot a is absent and the gas 



U 

U0  

figure 7 
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flows past the sudden termination of the wall y = 0 at x = 0 into vacuum. 

The steady solution is then given by (3.14.1) and (3.14.2) but now extends from 

0 = 0 to 0 = 01 where  01  is given by 

xe 1  + an 1 (X cot p 1 ) = 	. 	 ( 3.14.14) 

In the Xy  plane the characteris1ics of the Prandtl-Meyer flow are found 

to satisfy 

dy 	
= tan(p1 - 0) = 	

V 	(3.14.5) 

dy 	
= tan (p -0 -2 tan-  [)cot[AO + tan 1 (Acotp 1 )}]). dx 

(3..6) 

Hence the .4 characteristics are straight lines through the origin. The 

characteristics can be obtained from (3.14.6) only by numerical integration. 

It is easily seen from (3.14.1.) and (3.14.2) that 

U 	sin[A0 + tar[(Xcotp1)}cos(p1 - 0) + qcos[A0 + tan(Xcotp 1 )]sin(p 1 -0) 

V 	

V 	
(3.14.1). 

V  =-qL sin[X0 + tan(Acotpi)1sin(u - o) V_ q3 cos[X0 + tan(Xcotp 1 )} Cos (p-0) 

V 	 (3.14.8) 

where u and v are the cartesian velocity components. V  Thus the Frandtl-

Meyer flow maps into a curve in the u-v plane. The curve is a part of an 

epicycloid, as are all characteristics in the u-v plane. 

So far, in this section, our discussion has been restricted to steady 

flow. However, it was pointed out in a paper of Jones, Martin and Thornhill 

(1951) that, since (3.14.1) and (3.14.2) represent a solution of the gas 

dynamic equations which involves x and y only in the combination y/x, 

and since for all t 

X - 
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where X and Y are our usual similarity variables, then 

UR = 	= 	-_' X0 + tan 1 (X cot iii)]. 

and 	F = U0  = 	cos [Xe + tan- ' (X cot 	A 	 (3. 14.10) 

where R2  = X2  + Y 2  and tan 0 = Y/X , represent a solution of the gas 

dynamic equations in terms of similarity variables. 

Now with H and 0 defined above, the equation (2.2. 14) governing the 

dimensionless potential, becomes - 

RRH - H)2 - F2] + R0[2(uR - H)--] Ue2 -- F2  
+ 

+ UR Eu0 2  + F21 + 2UO 2  = 0 	 (3.14.11) 
H 

where UR 	R and RU0  E 0  . The characteristics of this equation are 

given by 	 - 

dO 	- (U - R)U ± FI(U - H) 2  + U 2 - F2  
dR 	

R[UH - R 	F2 ] 	 - 	- 	3. 
.12 

Substituting UR  U0  and F from (3.14.9) and (3.14.10) into (314.12) gives 

dO 
dR 

(3.14.13) 

and 	dO 	- 	- 2(U - R)U 
1R. (U - R) - UO2  ] 	

with U, U0  as given 	(3.14.114) 
R  

by (3.14.9) and (3.14.10). 

Hence we see that the 	characteristics in the X-Y plane are straight 

lines through the origin. As was the case in the x-y plane the 

characteristics may be obtained only by numerical integration. However, it 

is easily seen from a comparison of equations (3.14.6) and (3.14.114) that the 

e_ characteristics in the X-Y plane are completely different from those in 
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the x-y plane, even though they are derived from the same physical flow. 

It is clear that the cartesian velocity components in the self-similar 

plane are given by 

U = 	sin[AO + tan(Acotp )}cos(p - e) +2. cos [A& + tan 1 (Xcoti )]sin(p - 0) 
C 	 1 	1 	 1 
0• 	 0 

(3.14.15) 

V = 	sinE AU + tan-  (Xcot )]sin(p -  o) --cos[A0 + tan(Acoti )}  Cos (p —o) 
c 	 1 	1 	.c 	 1 
o 	 0 

(3.14.16) 	-- 

The Prandtl-Meyer flow, when regarded as a solution of the self-similar 

equations, is a simple wave and its map in the U-V plane is a part of an 

epicycloid. However, whereas in the case of steady flow, one could assert 

a priori that the Prandtl-Meyer flow, being a simple wave (that term having 

the obvious interpretation in the case of steady flow) must map into one of 

the already known characteristics in the u, v plane, in the case of self-

similar flow the hodograpli equation (2.3.2) is non-linear and thus the 

characteristics not known a priori. 
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CHAPTER 4. PERTURBATIONS 

OF EXACT SOLUTIONS 

4.1 Perturbation of Uniform Flow 

Consider the problem shown in figure 8. AOB is a rigid wall 

consisting of the two planes y= 0, x > 0 and y = x tan c, x < 0 where 

c is a small angle. The plane wall DC is perpendicular to OB and. 

moves in the negative x direction with speed u 1 . The space to the right 

of DC and above the wall AOB is supposed filled with polytropic gas 

moving with the wall DC, that is to say the gas has everywhere the velocity 

-u1 , and a corresponding sound speed c 1  (also supposed uniform throughout 

the gas). At time t = 0 the wall DC passes 0, thereafter continuing to 

move according to x = -ut but in such a way as to remain in contact with 

AO. We seek to use a perturbation method to determine the resulting motion 

of the gas. Accordingly, with U 1  = u1 /c 	and F 1  = c 1 /c we put 

u(x, Y) = -u 1  + Of (x, y) + o(e) 

v(x, Y) = 	V' Cx, 1) + o(c)  

F(X, Y) = F 1  ± cF' Cx, Y) + o(c) 

and substitute into (2.2.1). The linearised equations are readily seen to be 

(u 1 +x)+YU'-F1 =o 	. 

(U 1  

(u 1  + x) 	+ YF' 	- K F (U' 	
+ 	) = 

 0.1  

With (u 1  + x) = F 1 X 1 , Y = FY 1  these become 
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au' 
1 

x .+
Y 

-t 

	

1 ax 1 	- 1 

	

aF' 	all 

	

1 ax 	1 ay 
1 

From (4.1.2) the equation 

laF,  
K 3X 

K 3Y 

	

atJ 	av' 
+ 	= 0 

	

ax 	Dy 

	

1 	1 

a2V • a2F' 	
+ Y -a-- + ii (x L + ax12 + 	2 = (x1 ax 1 	1 	 1 ax 	Dy 

a 2 F' 	 aF' 	 aF' or 	(x12 - Uax2 + 2X 1  Y1 ax 	+ (y12 	1)ay2 + 2X1 	+ 2Y 1 	0 - 
 DY 

(4.l.3) 

is easily deduced. 

It is necessary to distinguish between subsonic and supersonic unperturbed 

flow; that is to consider separately the cases U 1  < F 1  and U 1  > F 1 . We shall 

deal with the subsonic case first. - 

At any time after the commencement of the perturbation, the situation in 

the x 1 -y 1  plane is as shown in figure 9. In the x 1 -Y 1  plane the wall CD 

is X, = 0 and the wall AOB may be consistently approximated by Y 1  = 0. 

The corner maps into the point (M 1 , 0), where Mi  = U 1 /F 1 , and since we are 

considering subsonic unperturbed flow, this point lies inside the sonic 

circle X 1 2 + y 	 = 1. The linear equation (I.1.3) is elliptic inside the 

sonic circle and hyperbolic outside it. It is clear that the perturbation 

quantities vanish outside the sonic circle. Thus we have the boundary 

condition 

F1  = 0 	on 	x 1 2  + 	= 1 . 	• 	 ( 1 .l. 1 ) 

Since U' = 0 on X 1  = 0 • the first member of (4.1.2) gives 

• 	
= 0 	on 	x 1  = 0 . 	 (.1.5) 
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The linearised boundary. condition on the wall AOB becomes 

V1 	 0<X 

on Y =0. 
M1  <X1 	

1 

Hence V' /X 1  vanishes on Y,= 0 except at X 1  =M where it is 

undefined. However, we have 

fM1 +c( 

I ) 	
4X 1  = U1 	c > 0 

which, together with the second member of (1.1.2) implies 

DY 
c 	 = dX

1  = KM 1U1 

M1   

 

We now solve the boundary value problem specified by (.1.3), 

(1.1.5) and (1i.1.6) by means of Busemann's transformation 

2pcosO 	 - 2 sinO 
(l+p2) ' 	l - (l+p 

) 	 (. 1.7) 

	

pcosO = a 	 psinO = T. 

By means of the transformation ( 1 .1.7) equation (1.1.3)  in the interior of 

the circle X  2+ 	= 1 is transformed into 

2 
+ 	= 0  

Daz

whilst the boundary conditions (14.1.14), (14.1.5) and (14.16) become 

F' = 0 	on 	p = 1  

= 0 	on 	a = 0 	 (14.1.1o) 
acy 

and 	 (F') 	= KM1U1 	
) 	

( 4.1 . ii)  
TQ 	

L-M12 

respectively where a 	Ii - M 1 2 /M1  and 	((Y - a) is the Dirac delta 
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function having singularily at a = a. The boundary value problem specified 

by (1.1.8) to (.i.ii) has as solution the Green's function 

F' 	KM1F1 	
a2 -2aa+02 +T 2 	a 2 +2aa+a2 +T21  

__ log 
2i/l - M12 	L2(a2 + T2) - 2aa + 1 	a 2 (o2  + T 2 )+ 2ao + iJ 

( 1 .l.12) 

This analysis of the subsonic case has been closely modelled on some 

work of Anderson (1966). In this work, Anderson asserts that a boundary 

value problem such as that specified by (.1.8) to (4.1.11) can by symmetry 

considerations be transformed into one requiring solution of Laplace's 

equation in the unit circle with boundary condition F' 	0 on the 

circumference of the circle. This can indeed be done. However, he then 

invokes the mean value theorem to argue that F' = 0 at the centre of the 

circle. This reasoning is invalid because of the singularity at ((x, 0) 

(and that at ( -a, 0) obtained by reflection). That F' does not vanish 

at the origin is readily seen from (1.1.12). 

It is easily shown that, to first order in c 

L 
F 1 	'yp 1  

where p 1  is the pressure in the unperturbed flow and p' is the 

perturbation pressure. Hence, from (.1.12), the perturbation pressure is 

given by 

-yM 1 2p 	 a 2  - 2aa + a2  + T 2 	a 2  + 2aa + a2  + T2 	1 ____ 	log 
La2(a2 + T2) - 2aa + 1 a2 (a 2  + T2)  + 2aa + 1 J 

2/1 - M 1  2- 	
(.1.13) 

This last equation implies that the perturbation pressure becomes 

logarithmically infinite at (a, 0). However, we should not be surprised to 

find that linearised theory breaks down in the neighbourhood of the corner. 

The same equation, together with (1.1.7),  implies that 
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/ 
B 	

-yM12p1 

\\ Bp ) 	- irV'l - M 2  

P=i 

2(1 	
t) 

(i +c)2 - 4a2cos20 

so that 

urn { 	-cyM 1 2p 	 2(1 - a) 	urn 1 - /1 - 
R1- BRf- M 2 (1 + a2)2 - 2 cos 20 Rl_[ R2 /l - R2 ] Tr Yj  

1 

This singularity in the pressure gradient was found by Lighthill (1949)  in 

a study of shock diffraction. He concluded that the true phenomenon is a 

shock when c < 0 and a rapid but not discontinuous expansion when s > 0. 

We now turn our attention to the case in which the unperturbed flow is 

supersonic. In this case, in the X 1 -Y 1plane the corner again maps into 

(M15  0) but this point now lies outside the sonic circle. There can be no 

disturbance upstream from the leading Mach line through 0. We conclude 

that in the X1 -Y 1  plane the perturbation is confined to the region bounded 

by the Mach line through A, the arc of the sonic circle CD and the axes 

OX1 , DY 1 , as shown in figure 10. Again, we have 

	

B 2F' 	 B2 F' 	 B 2 1 1 	BP1 	BF 
(x 1 2  - 1) 	+ 2X 1Y 1  DX BY 	

+ ( 1 2  - 
1) BY 2 + 2X1  --- + 2Y 1--- 	0. 

	

1 	 11 	 1 	 1 

As in the subsonic case we require If (0, Y 	0 and the first member of 

(4.1 .2) can be used to establish the boundary condition 

ax (0, Y 1 ) = 0 . 	 (4.1.14) 

Since the corner is at (M 1 , 0), we have that on OBA V t  = -U 1  and the 

second member of (4.1.2) now gives 

= 0 	on 	OBA . 	 (4.1.15) ay 

We clearly require F' 	0 on AC and on CD. 

Now the substitutions 



y  

x  

figure 10 
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p=  Cos '() 	

= R sin 6 
(.1.16) 

valid in B 	1 reduce (1.1.3)  to 

B2F' 	D2F1 

- 	= o  

In BAC we have a Goursat type problem for F' which in the p-o plane may 

be formulated as follows 

AC is 	(Y 1  - cos p 1 ) = - tan 	- sin Pd 

where 	sin p 1  = l/M 1  

AC 'is thus 

and on this line F' = 0. AB is clearly 0 = 0 and on this line 

0. Thus in the p-0 plane we have the boundary value problem shown 

in figure 11. And, since the general solution of (4.1.17)  is known to be 

F' = G(p - o) + H(p + 0) for arbitrary twice differentiable functions G 

and H, it is readily seen that the above problem possesses only the trivial 

solution F' = 0. 

So we have seen. that in ABC the only solution of (1.1.3)  consistent 

with the boundary conditions is the trivial solution F' ('x 1 , Y 1 ) = 0. This 

should not surprise us for, in the exact treatment of this problem, we should 

certainly conclude that near the corner the solution would be a Prandtl-Meyer 

expansion occupying a region expanding linearly with time. Further, AC 

would be the first member of a family of straight characteristics passing 

through A making up a fan of small angular extent through which all flow 

variables would change continuously. In the linearised theory of steady 

supersonic flow past the wall y = x tan c, x < 0; y = 0, x > 0 the solution 

is found to be 	- 
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( 	
Ft = 0 	- 	 ( x 1  - M 1 ) 

(4.1.18) 

2-1 

-2KF 1 M1 2  
_ 	 -1 

= F's , say 	
< 	- 	

- M 
V/M

1).  
1 2_1 

In the steady problem, then, we accept a discontinuity in F1  (arid, 

therefore, of course, in the perturbation pressure and density and in one 

velocity component) across the line Y 1 V41 2  - 1 + (x - N 1 ) = 0. This 

discontinuity in the steady problem is a result of the Prandtl-Meyer fan's 

being 'collapsed' onto the line 	- 1 + ( x 1  - M 1 ) = 0. 

Bearing in mind that we require the solution of our unsteady problem to 

tend in some sense to the solution of the steady problem as the time t --

we are led to conclude that the correct approach to our unsteady problem is 

to accept a discontinuity in F across Y 	 + (x1 - N 1 ) = 0 and in 

BAC (figure 10) to take F' F's. The solution in OBCD is then readily 

obtained by an application of the Poisson integral formula. 

By symmetry considerations we can see that the required solution in 

OBCD is the solution of Laplace's equation in the unit circle which takes 

the value i(s) on the circumference of the circle where f(S) is given by 

f(6) 	= 	F's 0 < 0 
Tr 

< - 	- 

o - - i_il < ü < 	+ 1_ti 

-, 
Vs  

iT 	-- 	+ p1 < 0 
3ir 

•< -•- - p 1  

- 0 - p1 < 0 < - + p 1  

E1s -- + p 1  < 0 < 2 7 

Hence, in OBCD F' is given by 
TI 

F'— 	- 	
-p 1 	j---p1 	 (a. -. R2 ) d 

- 2ir J 	+ 1 	(1 + R 2 ) - 2R cos ( - 0) 
2 	 Tr 



- 29 - 

 11 where, as before 	.R cos 0, 	R sin 0. Hence, for 0 < 0 < - - 

F' = 	
[LT - 
	

2 	+ urn [T( - 0 	+ urn 	- 	
Pi] 

Tr 	 2 	-*0+--- 	 - +p 1 	c-*0+L_ 

+ R •1 where T(x) = tan. Li - R tan xj the principal value of the inverse tangent 

being taken. Hence it is found that 

I'S  ff F' 
= 	

+ T( - p 1  - o) + T(-! -  p 1  + o) - T(-2 + p 1  + o) - T( + p 1  - 8)]. 
Tr 	

2(1.i.l9) 

Similarly it is found that for Z - p < 0 < 	F' is given by 

I's [T( - p 1  - o) + T( - p 1  + e) - T( + 	+ o) - T( ± 	- oJ 
7f 	

2(4.u,2o) 

It is easily established that F as given separately in 0 < 0 <- 

and - p 1  < 0 < - by (4.1.19) and ( 1 .1.20) respectively is continuous 

across the line 0 = - p. 

As in the subsonic case, the radial derivative of the perturbation 

pressure (or, equivalently, perturbation dimensionless sound speed) 

is singular on the sonic circle X 
1 
 2 + 	= 1. 

4.2 Perturbation of the Rarefaction Waves 

In this section we shall consider perturbations of both the complete 

and the incomplete rarefaction wave. 

In figure 12 AOC is the plane rigid wail y = x tan e. Initially the 

space y > x tan c, x > 0 is occupied by polytropic gas at rest at constant 

pressure. At time t = 0 the plane wall OB is withdrawn from the gas 

with constant speed u1  in such a way that for all subsequent time the wall 

OB remains in contact with A0. In the case c = 0 the resulting motion 

of the gas would be either the complete rarefaction wave given by (3.2.1) or 

the incomplete rarefaction wave given by (3.2.2) according as ju 1 J > or 



A 

x 

figure 12 
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< hg where c 	= u1 . With e ~ 0 the resulting flow is more complicated 

and we seek a solution of the linearised problem. 

We attempt first the case JU! > 1/K : the case in which the 

unperturbed flow is the complete rarefaction wave or Riemann wave. Powell 

(1957) has studied this case and has obtained the complete solution to the 

problem in the X-Y plane. In fact, Powell has obtained, in the X-Y plane, 

the complete solution to the more general problem in which the wall AOC 

is no longer straight but takes the form y = - x tan(61 + 62), x. 0; 

y = - x tan 62  x > 0. We present here an. outline of Powell's work and 

results. We have altered the approach to the problem somewhat and, have found 

it convenient to use notation different from that of Powell. We have also 

	

restricted our discussion to the case 6 	0, 62 =E for reasons which we 

shall amplify later. 

	

The substitution of the expressions 	 . 

X - 1 = 	
+ c(XI) y) + 0(E) 	 . 

1+K 

V = 	 cVt(X, Y) + 0(6) 

21+K 

= 1 + K 	
+ 6(x, Y) + o(e) 

into (2.2.4) results in the equation 

2Y l+X t + 	- (l+KX\2 I' 
- 

2 l+KX 	- 	 y' + 	 = 0 
xi 	L 	1.+K  I YY 	l+K X l+ 	Y l+g 

(.2.2) 

for the perturbation potential 	(x, Y). The characteristics of this 

equation are just those of the Riemann wave and can be written . 

Q = constant 	or 	Q.K R = constant 	 (14.2.3) 

where 	
= l+KX 	

B = 	 . 	
. 	 (14.2.14) 

[
'
2 - 

1-K  _y2 ] 
L 	l+g 
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With Q, R as new independent variables and with ' written in the form 

= Yf(Q, B) 	 (4.2.5) 

(4.2.2) becomes R(R2  - l)f 	(R - 1)fflQ + 3RfR = 0 
RE 1-K 

which has the general solution 	
1-K 

fR  = (B - 1)
-31 

 ij(Q K B) 	 (14 .2.6) 

where i is an arbitrary function of its argument. 

Powell then uses this result to argue that all perturbation quantities 

1K 
vanish beyond the boundary Q -KR = 1, which is just the curved characteristic 

through X = 1, Y = 0 in figure 3. He then uses the condition 11Y= 0 on 

this boundary, together with the linearised boundary condition wall at the 

wall, which is readily seen to be 

0) 	
X - 1 - Q - 1 
l+K 	K 

(14.2.7) 

to obtain an integral equation for the function p. Powell is then able to 

show that this equation reduces to an Abel integral equation which he solves 

for the-function p. For later convenience we quote here some results for 

the case. y 	2. In this case, Powell's method yields 
1 	 - 1 

—14/3 	Q(Q-1 )(R2-1)2 sin- 
 11 	- 1)1 	Q Cos 1Q2R + 	(1QR) 

-Tr L 	B 	sin L l - Q I -  

- 	(Q - 1) (R2 -1) 
	

(11.2.8) 

From (14.2.14), (14.2.5) and (14.2.7) it can be shown that on the wall 

	

0) = 
	

LQ3/2(1 - 	- Q Cos.,  Q 

çx,o) = _ 	
- 	- Cos QJ

Tr LQ 
and 	 (x, 0) = 	[_(Q - i)1 = 2(Q - 1) as required. 

Tr  

Confining ourselves to this case 61 = 0, 6 = -e we ask whether it is 

(14.2.9) 

(it. 2.10) 

possible to obtain Powell's solution by using .a perturbation technique in the 
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hodograph plane. We first formulate in the U-V plane the exact boundary 

value problem to be solved. 

In the X-Y plane, it is clear that for sufficiently large values of. 

Y the resulting motion of the gas will be described by the Riemann wave 

solution. Therefore, in the hodograph plane one boundary condition is 

given by 	 - 

F = 1 + KU on 	v = o 	u 0. 	 (1.2.11) 

A second boundary condition is furnished by the requirement that the velocity 

at the wall AOC be parallel to the wall. Thus we require 

-V = U tan E 	on 	Y = X tan c . 	 (1.2.12) 

This condition, taken in conjunction with (2.3.1) implies 

Fv = Fu tan c 	on 	V = U tan c  

The partial differential equation to be satisfied is (2.3.2) viz. 

(K 2_Fv2 )F 	+ 2FVF 	+ (K2_FU2 )F 	[U2+FV2)(1)_ 2K21. 

The exact boundary value problem is illustrated in figure 13. 

We observe-that as c - 0 the region in the U-V plane in which we seek 

a solution vanishes. We note also that the c = 0 solution (the Riemann 

wave) is not 'a solution of (2.3.2). This result should occasion no surprise 

since the E = 0 solution is a simple wave whereas (2.3.2) is valid only 

where J = ( u, V)/a(X, Y) is non-zero. We are thus confronted with a 

singular perturbation problem.*-  

We attempt to solve this problem by the method of stretched coordinates, 

introducing W by the relation V = 6W where 6 = tan c. We transform 

(2.3.2) to new independent variables U,W obtaining 

[6 2 K 2 F 21F 	+ 2F 	F 	+ (K2-F 2 )F 	= (62F 2+F 2)(lK)262K2]. 



V 

L$i 

figure 13 
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The boundary conditions (4.2.11) and (.2.13) become 

F = 1 + KU on 	W = 0 , 	U 0 	 (1.2.15) 

and 	Fw= 62F 	
on 	W = U 	 . 	. 	 (4.2.16) 

respectively. Having now transformed our original boundary. value problem 

to one in which the solution is sought in a domain which does not vanish 

as c ± 0, we seek a solution for F of the form 

F(U,W) = F(U, w) + 6F (U, w) ± 6 2F2 (u, w) + ... . 	( 4.2.17) 

Upon substituting this form for F(U, w) into (1.2.I4), (.2.15) and (4.2.16) 

and equating like powers of S we find that the function F(U, w) is 

required to satisfy the following conditions 

	

(F \ 2 2F 	F. F 2F 	CFO 2 2F 	 (F 2 
0 ) 	0 	.0 	0 	0 	2 	 0 	 0 I

u22UWUaWK 	UJ]aW2  + F 	
=0 

0 

IF 

	

F (u, 0) = 1 + KU 	0 U U - 0 

	

0 	 . 	 ' ' 	- 

	

Hence we may take F(U, w) 	1 + KU . 	 . ,. 	(. 2.18) 

The differential equation and boundary conditions to be satisfied by the 

second term in the expansion (4.2.17)  depend upon the first term. When the 

expression ( 1 .2.18) is used it is found that F 1 (U, w) is required: to satisfy 

	

P F 2F 	F 2F 	 I /F : 2 
(1 + KU) 	1 	1 	1 	r 	- 1 	KI I 	1 1 	2 1 + K 

	

L 	BUW - U 	_1 - 2 L\awJ 	K 1 - K 	.2.19 

	

F 1 (U, 0) = 0 	. 	. 	 . 	. 	 . 	(I.2.20) 

and 
: 1  (u, U) = 0. 	. 	 ,. 	. 	. 	 (.2.21) 

Now (4.2.19) is a quasi-linear second order equation which in passing we 

may note is nowhere elliptic. Its characteristics may be obtained by 

equating to zero the determinant of the matrix of coefficients in the 

system 

.1 



- 	-.-. 	 .._. 

3 - 

o 	F 1 	 F 1  

avi 	au U2  
2 F2  

a auw = 
de 	do 

2F 
dU 	- 	dW 
do 	 do - 	0 

1 
w2 

—' 	Nw, 2- 
l+KU 	2  1KJ 

d(l 

d(l 

( 	2.22) 

It is readily seen that this results in the equation 

L 	u 	I  .+ 

	 =0. 	. 	. 	 (1.2.23) 

Hence one family of characteristics is the family of lines U = constant 

whilst the other is the family of curves upon which F 1  is constant. Thus 

(I,2.19) has the unusual property of having one family of characteristics 

independent of the solution considered (a property of the linear hyperbolic 

equation) and the other family dependent upon the individual solution 

considered. The coinpatability conditions upon these characteristics may be 

found in the usual manner (that is by equating to zero the determinant of 

the matrix resulting when any column of the above matrix is replaced by the 

column vector on the right of .(1.2.22)). The compatability condition on the 

characteristics u = constant is non-integrable but that on the characteristics 

F 1  = constant can be integrated to give 	. 

(SF 1  ' _.K2 1 + K 	
A(l + KU)K 	on F = constant 	 (4.2.24) 

'\aw1 	1-K 	 . 	1 

where A is a constant. Hence A is a function only of F 1  and we may 

write 
2 l+K 	

/F1\2 

W) = g I K 	
- 	( 1.2.25) 

L (1+ KU) -- 

throughout the domain in which the solution for F 1 (U, w) is sought. Thus 
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(.2.19) has been re-written as a first order equation, but at the expense - 

of introducing the unknown function g. However, the whole apparatus of the 

theory Of first order partial differential equations is now available to us 

and so the presence of the unknown function g may not prove too great a 

difficulty. 

Since F 1 (U, 0) = 0, the line W = 0 is a characteristic and it is 

easily deduced that on this line 

	

DF 	
1-K 

i(u, 0) = K 	[1- 	+ KU) K] . 	 ( 14.2.26) 

DW 

Substitution of (14.2.26) into (14.2.25), together with F(U, 0) 	0 implies 

(_ 
• 	g [ K21 + KJ = o . 	 ( 14.2.21) 

Our problem now is to find an integral surface of the equation 
• 	

r 	(F\ 2  

F 1  - g K 1K 	 = 0 
lK 

• 	 (1-i-KU) K 

where g is an, as yet, unknown function of its argument, satisfying 

( 14.2.21), which passes through the curve in U, W, F 1  space paraetrised 

by 	 • 	• 

	

U= 	• 	W=O , 	= O 	 • 
• 	(14.2.28) 

0 	5W
= KI- Ll 

 - ( i + KS)K 	2 = A(s), say 

and which, in addition, satisfies the requirement that DF 1 /W ='O on W U. 

The technique for finding an integral surface of a first order partial 

differential equation, L [(x, y)] 	0, which passes through a given 

twisted curve in x, y, 4(x, y) space is well known. Here the Lagrange- 

Charpit equations become 
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dU 
dt 

dW 
a gP 

(l+KU) K 

d.F __.! 
\ 2F 	2 

,, 	. 	' 	1W' 
= 	gpj

" 
  

dt 
iK 

(l+KU) '  

dF 
F 

 K(1+KU) 	1U 
dt 

dF iW = 	-F 7  
dt 

(I.2.29) 

K2 - ( F )2 

where we have set 	 1K 	1W 	= 	 (1.2.30) 

(i + KU) K 

and denoted SF 1 /aU and DF 1 /W by FlU  and  F1w respectively. The first 

niembers of (4.2.28) and (1.2.29)  together imply 

	

U = s , 	 (4.2.31) 

whilst the fifth members of these same equations give 

	

F.w = A(s) et 	 (4.2.32) 

From (1.2.32)  we deduce that the line W = U is approached as t Co. The 

same equation gives also 

K 	- [ A(s)] e = 	1K 	

1K 	
0 . 	 (.2.33). 

-- 	 (l+ks) 	K 

Substitution of (.2.31), (4.2.32) and (.2.33) into the second member of 

(4.2.29) now gives 	 - 

K
1+ 2 	K 	r A I SIj  \2e 

 2t 	
t dW 	 — . 	 2A(s)e 

	

L (l+ KS) K 	- 	(i+ KS)  K 

and, since W U as t 	we have, 

•-- 
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[m()2A(s)e 	
dt 

Jo 	(l+ Ks) 

- and, after some manipulation 

	

1 (~2  1+K

L
2 	)1K1 	

f  13 

 l-K ) 

1K 

where we have set 	K 2  1+K (l+ Ks) 
	

(.2.35) 

This is an Abel integral equation; and has the explicit solution 

dW 	
2 1+K L(2)i

j (236) 
Tr 	 K 	1- K 	L 	K 

1-K 
Therefore 

g() 	
. 	

J \L 	• 

 

	

(L 2  I+K 	

- 	 (4 . 2-37)  31) 

K 

Hence the function g may be determined. 	When g is determined, then 

F 1  is known in terms of s and t. Since U and W are each known as 

functions of s and t (by (.2.31) and (1.2.32)  respectively), F 1  may be 

obtained, in principle at least, in terms of U and W by elimination of 

the parameters s and t. 

We now take y = 2 (K = ) in ( 1 .2.37) and proceed to show that the 

solution obtained is in agreement with that obtained by Powell. With 

K, then, 	..2.31) becomes 	 - 

f 	()  

2. 

 ( - 1) 

• which may be-integrated to give 

g() = 	[5' 
( 3 )  + 	

( 2 
IT 	 2~ 	 2~ 	2 3 	 - 
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NOW W = U 1P 
= 2(2+ s) 	

and therefore, on W = U we have

13  F 1  = 	
L'' (i 

+ s) + (2 + s)j 2 	' - 	
]. 	

(4.2.40) 

It is readily seen that, on W = U, .F lu  is given by 

F 	= '- u(-2u - U2 ) 2  . 	 (. 2.1) 
"U 

Hence, using (2.3.1), we may write 

X = U +2 	1 + + c V3  [(-2u -,U2)12 	cos_ 1 ( 1+u)]1 x 

+ 'c 	(_U)(2UU2)2] + o(c) 
2 	Tr 

= i + 	+ c 	[(_2u - U2)2 - Cos (1+U) - U(2+U)(_2U_U 27 	+ o(c) 

3U = 1 + 	+ Ef(U) + o(c), say. 

Therefore 	U = 	( x - 1) 	f [- (x - 1)] + 

Hence, on W = U, we have 

U = 	(X -1) - 6 	. 	[2[ (1- x) 	(2 + x)] Cos.- 05(2x)j+ o(c) 

	

=(x-l) -c*[2 (2+x) 
(lx) 	

Cos- 1(x)+OC) 

which is in agreement with Powell's results. 	 - 

Thus the solution expressed in parametric form by. ()-.2.3l), (4.2.32), 

(4.2.25) and (1.2.39)  is seen to,give results in accord with Powell's along 

the axis I = 0. 

Throughout this work on the diffraction of the Riemann wave, we have 

restricted ourselves to the case 6, = 0 , that is, the case'in which the 

wall has no 'kink' in it. We have not imposed this restriction to lessen the 

labour involved, but for a more significant reason. The boundary condition 
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at the wall gave us (4,2.13) viz. Fv = Fu tan c on V = U tan c. However, 

had we taken as our wall the boundary y = - x tan(61 + 62), x < 0; 

y = - x tan 62, x > 0, as does Powell, then, in the hodograph plane our 

boundary condition at the wall would take the form 

Fv = - Fu tan(6 1 	2 	 1 
+ ó ) on V = - U tan(6 + 6 

2 

F_Ftan62 	on V=-Utan62  

U 	FF 
K U 

U> — FF 
K U 

The boundary value problem specified by this condition and by (2.3.2) and 

(4.2.11) is in a. completely different category and we do not consider it 

further here. Despite'the limitation imposed by setting 6, = 0, the 

recovery of Powell's solution by using hodograph methods is felt to be of 

some interest and the device of preventing the domain in the hodograph plane 

from shrinking to zero by a boundary layer type stretching of coordinates is 

one which may well have other applications. 

We now turn our attention to the case 1u11 < 11K, the case in which 

the unperturbed solution is the incomplete rarefaction wave given by (3.2.2). 

This problem has been studied by Anderson (1966), again in the more general 

case in which the boundary ADC (figure 12) is given by y = -x tan(61+ 62), 

x < 0; y = -xtan 62,  x > 0. In this discussion of the diffraction of the 

incomplete rarefaction wave, we shall be concerned only with the X-Y plane 

and thus shall not find it necessary to make the restriction 6, = 0. 

Accordingly, with the wall AOC as given above, we begin by describing 

briefly Anderson's work. 

The system of characteristics associated with the incomplete 

rarefaction wave was shown in figure 14. Figure .14  is reproduced in figure 114 

with some of the characteristics omitted. 



D 	 I c E 

(-u 15, 0) 	 (1-(i+K)U 15  0) 	 (i, 0) 

figure 14 



4o 

Anderson argues that all perturbation quantities vanish beyond the 

boundary EBFA. EB is a part of that characteristic which, were the 

unperturbed flow the complete rarefaction wave, would bound the region of 

perturbation. The straight line FB is a characteristic of the uniform flow, 

which is the unperturbed solution in -U 1 	X .< 1 - ( 1+K)U 1 . The arc AFC 

is, of course, part of the sonic circle (x + U1)2 + y2 = [1 - KU1
1 2 . 

The quadrant bounded by AFC, AD and DC is a region of ellipticity. 

The origin of our coordinate system X = 0, Y = 0 lies inside,or outside 

the sonic circle according as U 1  < or > 1/(1 + K). 

Anderson then, reasoning that the boundary conditions 	= 0 on the 

characteristic BE and 4j,  = (x -  1)[ 2  + 5 1H(X)]/(l + K) on the non-

characteristic CE together with the differential equation (4.2.2) provide 

a well posed Goursat type boundary value problem states that the solution 

for ' in BEC is just Powell's solution. He then asserts that in. FEC 

the solution is a simple wave. However, he then goes on to argue that it is 

possible to solve for the perturbation velocity components or the 

perturbation pressure in AFBCD without reference to the boundary condition 

on BC which Powell's solution. in BEC provides. He is thus led to 

postulate the existence of a discontinuity across the line BC of the 

perturbation quantities we have listed above. We intend to put forward an 

alternative formulation to show that no such discontinuity need exist. 

In AFBCD, the solution we seek is a perturbation on the uniform flow 

U = -U 12  V = 0, F = (1 - KU 
1
). The analysis embodied in equations  

(14.1.2) and (14.1.3) is therefore valid and so with X + U 1  = F 1 X 1 , Y = F 1Y 1  

we have equation (14.1.3) 

(x 1 2  - 1) 	+ 2XiYiXY + (Y 1 2- l)2 + 2X1 	+ 2Y 1 	= 0  DY 
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valid in AFBCD. As we have remarked previously (1.1.3) is elliptic in 

x 
1  2 + 	< 1 and hyperbolic in X 1 2  + 	> 1. Further, in FBC the two 

characteristics through any point are just the two tangents to the sonic 

circle X 1 2  + 	=1. Now a comparison of the situation obtaining in 

AFBCD with that obtaining in Triconti's problem (see, for example, 

Garabedian (1964)) might lead one to conclude that boundary data for F' 

(in the form of the function itself or its normal derivative) on AD, 'DC 

and AFB provide in AFBCD a well posed problem for F'. However, such a 

conclusion would not be correct. For, in the Tricomi problem, the solution 

is required to be continuously differentiable across the parabolic line 

(otherwise it would be sufficient to let the dependent variable take, on the 

parabolic line, any suitable value and to solve separately a Dirichiet 

problem in the elliptic domain and a Goursat problem in the hyperbolic domain). 

However', we now show that the requirement that the solution in FBC be a 

simple wave in which the perturbation sound speed, F' , is constant upon 

each characteristic of that family of which FB is a member implies that the 

normal derivative of F' becomes infinite as one approaches the parabolic line 

AFC. For, in figure 15, let F' be given on the circumference of the circle 

R = 1 by any continuous function f(0) and let F' be constant on any 

tangent of the family of which AB and CD are members. The radial 

derivative of F' at C is given by 

- 	
[ f(0 + 60) - f(0)] cos 60 

- 	
1- cos 60 

= urn 	
EF'() 	(63) 2 ±/'(0) + ...][i - 	(6Q)2 + 

60-+O 	 (60) 2  [1 _(60)2 +
12 

which is finite only if ±'(o) = 0. The case ±'(&) = 0 corresponds to 

uniform flow in the region immediately exterior to the circle R = 1, as is 



figure 15 
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discounted. 

Thus we have shown that the requirement that the solution in FBC 

(figure 114) be a simple wave of the required type implies that the normal 

derivative of the perturbation sound speed becomes infinite as one approaches 

the sonic circle AFC through values of (x 1 2  + 	greater than unity. 

Hence the condition of continuity of normal derivative across the parabolic 

line cannot be used in this problem. It therefore follows that the Tricomi 

problem may not be taken as a model, that data on AF, FB, CD and D.A. do not 

constitute a well posed mixed-type problem in the Tricomi sense and that 

information on BC is necessary to determine the solution in AFBCD. This 

point of view is consistent with the actual data as determined by the physical 

problem in relation to finding a unique continuous solution. 

Anderson, in claiming that the solution in FBC (figure 114) can be 

obtained without reference to any information on BC, makes use of a result 

(Anderson (1966) p.913) which, we suggest, is not correct. He claims that 

if .  T 1T2  is any characteristic in FBC of the same family as FB and if 

(u 3b) ,  5(v3b) and 6q denote changes in the two components and magnitude 

of the perturbation velocity respectively across T 1 T2 , then 

6(u 3b =q cos 0 	and 	6(v 3b
= q sin o 

(where the meaning of 0 is seen in figure il#.) These equations imply that 

the change in. the perturbation velocity vector in making aninfinitesimal 

change of position across T 1  T  2 
 is perpendicular to T 1T 2 . There seems no 

justification for this assertion which is then used to deduce a solution in 

FBC without making any use of data on BC and thereby leading to an 

artificial discontinuity across BC. We now show how 	the solution in 

FBC can be found such that all perturbation quantities are continuous 

across BC. Let us deal with the dimensionless perturbation sound speed, F' 
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The value of F' on BC may be obtained from an application of the linearised 

form of Bernoulli's theorem. Let us therefore consider F' known on BC and 

denote its value by G(Y 1 ). In FBC the perturbation sound speed F' 

satisfies (1.1.3) 

(x 1 2  - i) 	+ 2X 1  Y1 	
F' 	

+ ( 1 2  - i) 	+ 2X1 	+ 2Y 1 	= 0
ayl 

which can by means of the transformations 

+ 1x12 + 	y2 - 1 	 - 	+ 

	

a = - 1 	' 	= 	Y 1 2  - 1 	
(.2.2) 

be reduced to the equation 

which has the general solution 

F' = A(a) +B() 
	 • 	(l.2.lt) 

where A and B are arbitrary functions of their arguments. It should be 

noted that the two families of lines a = constant and 13 = constant are just 

the two families of characteristics of 4 .1.3). 

Now FB is a line upon which a is constant and since F' = 0 on this 

line (I.2.4) reduces to 

F' 	A(a) 
	

(I.2. 1i5) 

Further, BC is X 1  = 1 and on BC 

2Y 1  
a 

Since F' 	G(Y 1 ) on BC , (.2.I5) gives 

G(Y ) = Ar 2Y1 
	

1. 	• 	 (. 2.6) 
1 	

LY12—hi 

If 2Y 1 /(Y 1 2  - 1) be denoted by • A, then ( 1 .2.6) can be inverted to give 

- / +x 2  
• 	A( A ) GL 	A• 
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Hence-, in FBC , F1  is given by 

- vi + 
F' ' 	G 	

a 	 (4027) 

L 	
a 

The solution as given by (4.2.4V1) is a simple wave since the analysis which 

has been applied to F' could equally have been applied to if or V to 

establish that the perturbation velocity components are constant on one 

family of characteristics. 'Further, it satisfies the boundary condition on 

BC and, provided that the perturbation pressure tends to zero on BC as 

one approaches the point B (which is the case), it satisfies the boundary 

condition on FB. 	 - 

On the arc FC, a = -Y 1 /X 1  and (4.2. 1 7) then gives 

F' ' 	G[tan 6/21 

which, together with the requirement that F' = 0 on AF, and the boundary 

conditions on AD and DC enables us to solve for F' in AFCD. 	S  

Thus we have seen that it is possible to solve for F' in AFBCD, 

obtaining a solution which is continuous across BC. It should be pointed 

out that the solution obtained by the method which we have outlined is 

continuous everywhere (except, in the case 6 * 0, 	 ') and that 

this is the best that can be achieved since the normal derivative (of, say, 

the perturbation pressure) necessarily becomes infinite on the sonic circle. 

4.3 Perturbation of Suchkov's Solution ' 	 S  

We have seen that when the adiabatic index of the gas y and the semi 

angle 0 of the wedge satisfy the relation (3.3.5) 

2 	l+i 	l+K 
cot 0- = 
	 1-K 	 S  

then the problem of the expansion of a wedge of gas into vacuum has the 

remarkable exact linear solution (3.3.6)  
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F =. ]..+ KU + ' K 	 V 

where, of course, K = ( y - 1)/2. With K considered fixed, denote the 

value of 8 for which (3.3.5) holds by 8*  and consider the problem of the 

expansion into vacuum of a wedge of gas of semi angle 0 = 8* + c where 

is a small quantity. 

In the hodograph plane, we readily see that the full problem may be. 

formulated exactly as the boundary value problem shown in figure 16. We seek 

now to obtain a solution by the use of first order perturbation theory. 

Accordingly we put 

	

F = 1 + KU + K 	
+ K v + c(U, v) + o(c) 

and substitute into (2.3.2). Retaining only the terms linear in c we 

obtain 

l_K [ J ] U1J j(J1iK) UV  fil  + K 
K) 	 ( -K) 	o . 	 (. 3.2) 

We note first of all that, since the unperturbed solution is a mixed wave 

and therefore a solution of (2.3.2), we are not faced with the difficulties 

which confronted us when examining a perturbation of the Riemann wave, that 

is to say we are able to pose the problem in a region of the hodograph plane 

which does not degenerate to zero as c. -3-  0. We note secondly that (4.3.2) 

is elliptic nowhere. The transformations 

	

•••/U+—V-J 	 ()4.3.3) 

reduce (.3.2) to 

ATf + K
-1 	+ 	= 0 
K 	'+ fl 

which is the Euler-Poisson-DarbouX equation, an equation encountered not 
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infrequently in Applied Mathematics. 

The boundary condition on V = 0 becomes 

F' = 0 	on 	 = 0 	0 	E 	
1 	

(1435)  
Y _K 

Now the boundary condition 

F  = Fu cot (0* + c) 	on V = U cot (0* + 

can be linearised to 

4 = 	cot O - K cosec 2 O* on V = U cot 0* 	 (4-3.6) 

which, under the transformations (4.3.3) becomes 

F' 	2K 	on 	= 	
- 1K 	

• 	 ( 14.3.1)
J_ K 

The boundary value problem to he solved in the c-n  plane is thus that shown 

in figure 11.  The equation (14.3.14) is in its normal form and thus the 

characteristics are the lines E = constant and the lines r = constant. The 

Goursat type boundary value problem illustrated in figure 11 determines B' 

up to the line E = 0. We are unable to solve this problem in its fall 

generality, but the solution is readily obtained in certain special cases. 

In the case y = 2 (K = ) the solution is found (almost by inspection) to 

be 

(14.3.8) 

and hence the solution of the perturbed problem is given by 

	

F(U, v) = 1 + U + V3 	- c (/3U + V + 2/3)(2V) + o(c) 
22 

that is F(U, v) = 1 + U /3 

	

- + 	V - 	(/3w + V2  + 2/3V) + o(c). 	(14.3.9) 

Let us now return to the boundary value problem for general K, as 

shown in figure 11, and write the Euler-Poisson-Darboux equation in the form 

B' 	+N+F'fl) =0 
ETI  (14.3.10) 



•1 /1+Ki 
T1= 

figure 17 
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where N 

= 	< 0. Equation ( 1 .3.10) has several well-kno'm and interesting 

properties which may be used to solve our boundary value problem for certain 

values of K (and therefore N). We illustrate this by considering the 

case K = - (N = -2). 

It can be shown (see,for example, Mackie (1965) p.229) that if 

satisfies (.3.10) for some given value of N, then (+fl) 	N satisfies 

( 1 .3.10) with N replaced by 1-N. It can also be shown (reference as 

above) that, for N a positive integer, (4.3.10) has the general solution 

V  LT  1  

+ 	

N [f() + g()] 	. 	 (.3.11) 

where f and g are arbitrary functions of their arguments. These two 

results show that (4.3.10), with N = -2 has the general solution 

V 	( + )5 	 (- + f ) 	() + g() 	 (4-3-12) 

After some manipulation we obtain'  

V 	= (C + 	 () + g" '1- 6( + TO [?() + g"(n)] 

+ 12 [f' () + g'()] . 	 (4-3.13) 

Our. task now is to use the boundary conditions (1.3.5)  and (.3.7) to 

determine the functions f and g. In fact, we shall be concerned only with 

f' ( 'E ) and g' (r) as is obvious from (4-3.13).. Now 	implies 

	

2 /" (.) - 6 	() + 12 () = g 3 	+ 6g 	2g 

	

-1 1 	 (4.3.14) 

where we have set g 	(0) = g. . Equation (4. 3.14) is an inhornogeneous 

second order ordinary differential equation for f' (). It is readily solved 

by the method of complementary function and particular integral and has the 

general solution 

f' ( ' F 	A 	+ B 3  - 	g 3 2  ~ g2 	g1  (4.3.15) 

A, B 	arbitrary constants. 	Now the boundary condition (4.3.7) with' 	K1/3 

becomes 
on 	r = 	- 3/2 . 	 (4.3.16) 

3 



Differentiation of (4.3.13) gives, after some manipulation 

( 	
+ )2 [f(iv)() - g(V)()] - 6( 	+ Ti)[?'() - 

+ 12 [f'()  

This last equation, together with (.3.16) implies 

"' •\1 = (2+3/2) 2  [f (iv) 	 'fliJ (ri+3 

+ 12[f"(+3/2)-'(n)] 	 (1.3.17) 

which is satisfied if we write 

= 	
(Ti + 312) 

	

uI(.) = f'( Ti ± 3/2) 	
. 	

(.3.18) 

18 

The last of (1.3.18) together with (4.3.15) now gives 

= A(+3/2)+ B( + 3/2)- g 3 ( 
n + 3/2) 2 + g(n + 3/2)- n  + C  2 	 18 

(I.3.l9) 

with C a ,2onstant. 

If it is possible now to choose A, B and C to make (14.3.19) self-

consistent, then f'() and g'(ri) as given by (4-3.15) and (14.3.19) 

respectively with these values of A, B and C may be substituted into 

(14.3.13) to give the required solution. 

	

To determine the constants A, B and C we set r 	0 in (4.3.19) 

to get 

	

1 = A (3 ,/2) 4 + B(3/2)3 -• g 	 3/2 + C 	 . 3.20).g  	 3 	g2 	 i  

Differentiating (14.3.19) once and twice and setting r = 0 gives 

	

92 - 4(3/2)A + 3(3/2) 2B - g 3 3/2 + 92  - 	 ( 14.3.21) 

and 	 g 3  = 12(3/2) 2A + 6.3/2 B. - 
	 (14.3.22) 

which can be solved for A, B and C to give 



 7 5

-I9- 	

C 	g 	(.3.23)A 	B 	/2g 	 gg3
l2.(l8 	

3 	 2 	
12 

d(o) and 	can now be written in terms only of 911 9 2  and 93  and 

since there are no more conditions to be satisfied by these three quantities 

we aim for simplicity and set g 1  = 92  = 9 3  = 0. 

Then 	 -/2 	_____ 
- 	)= 12.( 1 8) 	+ (15) 2  (4-3.24) 

__________ 

	 /2 
and 	g'( 	l2.(18)2 ( +.3/2) +. (18)2 ( + 3/2) - 	- 	(it. 3.25)

18 .12 

when (4.3.24) and (4.3.25) are substituted into.(4.3.13)there results after 

some simplification the equation 

- 	F'(, 
Ti) = ___ 	- 9.18 	

. 	 (it.3.26) 

That P'(, r) as given by (4.3.26) satisfies all the requirements of our 

boundary value problemis readily seen. Thus we have, substituting back for 

U, V 

F(U, v) 

- 6/2V2  + 12tN - 18v j + o()  

The method which has been employed here can clearly be used for other 

values of K, but the amount of labour involved will in many cases militate 

against the use of the method. 
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CHAPTER 5. UNSTEADY FLOWS 

OF PRANIYI'L-NEYER TYPE 

Consider the problem of determining the resulting motion when p6lytropic 

gas, initially in steady, uniform flow in the x-direction in the half plane 

y > 0, is allowed at time t = 0 to expand into vacuum by the instantaneous 

removal of the boundary y = 0, x > 0. Mackie (1966) has remarked that it 

ought to be possible to obtain the classical Prandtl-Meyer solution as time 

t -- co provided that the initial flow is supersonic. We shall formulate the 

problem, both in the X-Y and hodograph planes. We shall indicate possible 

difficulties which might arise in the numerical work which is required to 

obtain a complete solution in either the X-Y or U-V plane. We shall not 

attempt to obtain a complete solution to the problem. 

We formulate the problem first in the X-Y plane and denote by U 1  

(= u1 /c) and F 1  ( c 1 /c) respectivelythe dimensionless X component of 

velocity and the dimensionless sound speed in the initial steady, uniform 

flow. Of course, in this problem we have described there is no region in 

which gas is at rest. Therefore, throughout this chapter, c 	is to be 

interpreted as any convenient velocity. In the formulation of the second 

problem of this chapter, for example, we shall see that a certain choice of 

c produces considerable algebraic simplification. For large values of x, 

the resulting flow will be essentially a one-dimensional expansion of the gas 

into vacuum. This flow differs only slightly from the Riemann wave and is 

given by 
F 

U = U1 5 V= 1 ± K 
(Y - F 1 ) , F = 1 
	K 

[F + KY] - 	I < F1.(5.l.l)17 
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We are, of course, taking the initial flow to be supersonic and therefore 

it seems clear that the steady, uniform flow remains undisturbed upstream of 

the leading Mach line through the origin and that, near the origin, the 

solution is just Prandtl-Meyer flow as given by (3.4.1) and (3.4.2). 

Thus in the X-Y plane the flow pattern at any time after the removal 

of the wall X = 0 5, Y >'O is that shown in figure 18. BD is that curved 

characteristic of the expansion wave passing through the point at which the 

line Y = F1  is a tangent to the circle (x - u 1 ) 2  + Y 2  = F 1 2  and is given 

by 

(1-K 2 )(X-U 1 ) 2  - [ KY + F 1 ] 2  = - 	[ 2K + 2)F1] 
K 
 [2KY'+ 2F1] K • (5.1.2) 

AP is the curved characteristic of the Prandtl-Meyer flow passing through 

the point at which the Mach line through 0. is a tangent to the circle 

(x - U 1 ) 2  + Y 2  = F 1 2 . That is to say, AP is a solution of (3.4.1 1 ). The 

straight lines OP and DE are part of the gas-vacuum interface. The 

remaining problem is to determine the flow in the region between BD and 

PP and in particular to find the portion of the gas-vacuum interface between 

P and D. However, we are not confronted with a normal characteristic 

boundary value problem since AB is a parabolic curve. This militates 

against using a numerical method in the X-Y plane. However, as we remarked 

earlier, the problem can be formulated in'-the hodograph plane. 

The expansion wave given by (5.1.1) is clearly given by 

F=F1+KV, uu1.,._Fivo. 	 (5.1.3) 

The Prandtl-Meyer expansion is given by 

U = 	sin lAO + tan ' (Xcotii 1 )]co(p 1- 0) 	cos[XO + tan(Xboti 1 )] 

sin(p1 - 0) 	 . 	. 	 (5.1.14) 

U
I 



figure 18 



figure 19 
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V = 	sin [xo + tan-  O'cot )] sin(p -  0) - 	cos [AO + tan 1 (Xcotp 1 )] 

Cos ('P o) 	 (5.1.5) 

where the meaning of the various symbols employed is given in section 3,4. 

Elimination of the parameter 0 between (5.1. 14) and (5.1.5) shows that the 

Prandtl-Meyer flow maps, in the hodograph plane. , into a section of an 

epicycloid (as has been stated previously). 

The situation in the U-V plane is shown in figure 19. It is at this 

point that a possible difficulty becomes apparent, for there is no reason 

why the section of the epicycloid should not re-interest the straight line 

representing the expansion wave and the flow thereby map into more than one 

sheet of the hodograph plane. Of course it is possible to obtain a 

restriction on U 1  and F 1  which ensures that such a complication does not 

arise. However, we prefer to consider a completely different problem in 

which, as we shall show, these problems in the U-V and X-Y planes do not 

arise. 

Consider now polytropic gas in steady uniform flow given by U = U 15  

V = 0, F = F 1 . Suppose the gas is travelling behind the rigid wall X = U 1  

and is separated from vacuum by the wall. If at some instant, t = 0, the 

wall is instantaneously removed, the resulting motion of the gas is given 

by 

U = 	[ 1 +KU 1 ) + x] , V = 0, F = 	- [(F 1 + u 1 ) - KX], U1-F1 	
< (F 1 +KU 1 ) 

K 

(5.1.6) 

A comparison of (5.1.6) with (3.2.1) shows that the resulting motion of the 

gas is given by familiar expansion wave solution provided that 

F 1  + KU 1  = 1 . 	 ( 5.1.1) 
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But this condition can always be satisfied by a suitable choice of the 

reference velocity Co . Therefore throughout the rest of this chapter we 

shall consider c 	as chosen to ensure that (5.1.1) is correct. With C 

so chosen, then, imagine the gas to be ins teady, uniform motion behind the 

rigid plane wall X = U 1  as before, but the gas occupying only the space 

Y > 0 , being separated from the vacuum Y < 0 by - the fixed plane barrier 

Y = 02, X < 0. The moving wall is instantaneously removed at time t = -O 

when it reaches the origin, which also marks the termination of the fixed 

wall Y = 0. Considerations similar to those of the last problem indicate 

that, at any time after the removal of the wall X = U 1  the flow pattern 

in the X-Y plane is as shown in figure 20. AB is that characteristic of 

the expansion wave which passes through A, the point at which the leading 

Mach line through 0 intersects X = U 1  - F 1  , the line which, in the 

undisturbed flow, separates the expansion wave from the uniform flow. AC 

is simply that curved characteristic of the Prandtl-Meyer flow which passes 

through A. We note that, in the self-similar plane, we have a characteristic 

boundary value problem to solve to determine the flow in the remaining region. 

The difficulty which was encountered when attempting to tackle the previous 

problem in the X-Y plane is not met here. However, we prefer to go on to 

examine the present problem in the hodograph plane. The Prandtl-Meyer flow 

is again given by (5.1. 1 ) and (5.1.5). The expansion wave is now given by 

F = 1 - KU, V = 0 , U 1  - F 1 	U 	: 	
(5.1 .8) 

The hodograph plane is shown in figure 21. It is clear that the difficulty 

which threatened in the hodograph approach to the previous problem, namely 

the possibility of the two characteristics intersecting in more than one 

point, is no longer present. 



figure 20 



We have tackled numerically the boundary value problem shown in figure 

21, adapting for our purposes a prOgram given by Levine (1968). The modified 

program is given in the appendix and the results in the U-V and X-Y planes 

are shown in figures 22 and 23 respectively. 

The method used by the program is described in some detail by Levine and 

we merely remark that the computation procedes along the (initially unknown) 

characteristics and is not continued across the line F = 0 in order that 

any complication which might be encountered beyond this line (such as the 

equation's becoming elliptic) should not halt the computation. Of course, 

the domain in which the solution is determined by the dataon the two 

characteristics in general will extend beyond the line on which F = 0 but 

the solution beyond this line has no physical significance. 	. 

In fact, in the particular case computed (y 1.4, N 1  = 5) the equation 

becomes elliptic in a very small region near to the centre of the line F = 0. 

We have no a priori guarantee in this non-linear problem that the equation 

will not become elliptic but we believe that this small region of ellipticity 

does not affect the overall qualitative picture given in figures 22 and 23. 

We conclude our discussion of this problem by observing that figure 23 

shows that the remark of Mackie to which we referred earlier was quite 

correct; the figure does indeed show the classical Prandtl-Meyer solution as 

the limit as t - ' of the solution to an initial value problem. 	. 

Furthermore, figure 23 shows that, at any point at a finite distance from the 

origin, the classical Prandtl-Meyer solution is taken up after a finite time, 

not as a limit as time t ~ . 



figure 21 



N 

figure 22 



•1 
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APPENDIX 

0 J.\1ENS too C (400, 2), C  (600,2) C? (400,2) ,X1 (4 00)(400), 1 00(600) ,D: (400) ,AD 10 V 2  (400 2) ,00 1 OV? (400) 	101 0V2 (400, ,U1 (400,2) lU?
Dl0V(4OO, IIEST(400) , C3(40'O), 3 CS(600,2) 

Dv(2ft)) sDISC(200),t1OV?(4OO?) C10V2(400) 
REAL c;i ,G?,G3,jj1 ,U10, F1fl,GK, TH,PJ 400 	READ (5,10) 0,G,U10 

10 	FOR AT (3110 0) 
WRiTE  

513 	IVRM\1 (1 00 SX, 31f 0z, f74) 
WO LIE (6,51 4i G 

514 	F0R:A1 (100 5X, ÔHGI;MMA=, F128) 
WRITE (6,515) U 10 

515 	FOROAT (1 00 5x, 40010=, F128) 

J= (1 	16Y-1.J1  

Fl 01 0(GKUlfl) 

00 1 Jz1,u 	 - 
AJJ-1 
01 ( J , 1  )(iJ*H.R:10) 
tJ?(J,1)00 

C (J , 1 )1 u+(K*U1 (J , 1) 

C2(J , 1)=GK* SOOT(Bf( ((1 - SHi(!IU1 ) )/ COS 
4 (1 F1 (!.HJ ) )*-k23)*((l ,+GK*U1 )) 1(1 	GKko1 0)) ** ((1 — 6K) /GK)) 
Xi (J ) U1( J , 1) + (C( J 1) *t 1 (J, 1))/ 6K 
X2(J=U(J,1 

 1-- 	C0OTJtWJE 
11 

WRITE (6,1i) I 
11 i- / 	I 3) 

!R Ii E 	( 	,111) 	J 
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--k 	 - 	 - - u- 

	

-111 	1I-'A1. (iH J 5x, 2HU1, 5X. 2U2/(E3U.6)) 

	

I FE (6, 11 	) ..0 cc 	U. Cl (J , 1) , C2 (J , 1) , J 

	

110 	F)-AT (ihO 3x, 1HC.5x, 2Nd, 5X,2HC2/(3F30,)) 
-J IT E (6,121) (xl (J). X20), j  zl , N) 

	

121 	FORMAT (1 HO 5X, 2HX1,5X, 2HX21(2E30,8)) 

	

333 	II1 	 . 
W I I E  
AD 1 U V 2(1 , 1) 4- 1 .0/ TAN ( MU1 ) 
A11-1 
TFiA I * ( 0 5*p f—(33) / (G2* (N1 • 0)) 
Ui (1 ,?)—(c1 *SjN(G2*IIl 4 G3)*CoS(; ,1ui..TFI)41.kG2*Cos(G2*TF+G3)* 

is 1 I'J ( MU1 -III)) 	. 

1 COS (!-UJ1TH) 	 . 	 . 

CALL CALC(TH,U10,GK,C1(l,2),c2(1,2)) 
xl (1 )=U1 (1 ,fl+(c(i ,2)*Cl (1 ,?) )/GK 
X? (1) U2 (1 , 2) + C C (1 ,2) *C2 (1 , 2)) /GK 

	

• 	
p0.2 J2,N 	 . 

T010V2(J)A010V2(J,1) 	•• 

IF (IGT.2) GO TO 2 	 •" 	 • 
Sr) I 0V2(J) AD1 0V2 (J, 1) 	 . 	. 	• 

	

2 	: 	coiu E • . 	. 

WRITE (6,12) (010V2(J .1), J1 ,N) 

	

• 12 	FOIUIAT (1110 5 X, 6IiAD1OV2/(F30.3)) 
BD1OV2(1 )=(cl (1 ,2)*C2(l ,2)+GK* SORT(C1 (1 2)**2+C2(1 ,2)**2GK**2)) 

1 /(6K**?_C1(1,2)**2) 

	

• . 	WRITE 	(6,77) 	I3 )10V2(1 ) 	. 	 . 	. • 

	

.77 	FO-Rt.AT (1 110 2 0X,91,'BD1OV2(1)/(E30)) 
X01 UV2 (1) 	0[)1 0V2 (1) 	•- 	 .: 	 •• ..- .• 
M;: N 	 . 	 . 
DC) 3 J2,M 	 . 	. 	. 	 • 

02 (J , 2) - 10000.0  
Cl(J,2)100000 	••••• 	 ;• 	 •..• •• 

C2(J,2)=10000,0 	 . 	 •. . 
00 4 L.1,250 
1'U1U1(j,2) 	 . 	 . 

	

• 	TU21.I2(J,2) 	 . 	 . 	. 	. 

	

• . '- 	
. TC1C1(J,2) 	. 	. 	. 	. 	. 
TC2C2(J,2) 
0E1' — AD1OV2(J,1)*3o1O\/?(J1)+i, 

	

• 	Z=AD10V2(J,1)*I.j1(j,1)u2(J,1) 

Z - 6DiOV2(J1)*U2(J-1,2)+u1(j1,2) 

	

• 	U2(J,2)=(AD1Uv2(J,1)*ZZZ)/DET 	.. 
00(J) =02 C J ,2) —1j2 ( J , 1) 	 . 

'OW (J ) =U2 (J , 2) U2 (J —1 , 2) 
DV ( J ) = U1 ( J , 2) -tJl( J —1 , 2) 
E=(GK**2_.cl (J , 1 )**2) . . 

	

• 	. 	FAD1OV2(J,1)*(GK**2_C2(J,1.)**2) 
EEE)1 0v2(1 -1 ) * ( GK**2_Cl (J-1 , 2) **?) 
FF(GK**2_C?(J_1  

• DLE*FF_EE*F 

1 +C 1 (j, 1) F+C2 (j , 1) *E 
YLDV (U) *GK/CS (J-1 , 2) * ((Cl (J-1 , 2) **2+c? (J - -1 , 2) **?) * (1 —GK) - 2,* 

1 (C K * *2)) + C  (J —1 , 2) * F F + C 2 (J 1 , 2) * F E 
ci (J , 2) (F*y L--FE *>i) /0 L 
C2(J 	(XL*FF—yL*F)/o. 	 S 

) I S C ( . 1 ) 	C 1 ( . 1 	2 	* 7.4 C 	( 	- 2  
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'-9-  
. 	!)lU v2(j,)( C l(J,2)*C2(j,2*S0Rh 12)2 C 2 1 

	

- 	iCV?,(J)(C1(j,2)*C2(J,2)+GK* SQRT(C1(J,2)**C2(J. , 2)* ***2 fl 

	

2)**2) 	- 

A D 1 0 V 2 (J , 1) = U • 5 * ( I [ 1 0 V 2 (J) A 010 V 2 (J , 2)) 

	

• 	.T)10V2(J1 )=U.5-k(XD1OV2(J — i )+o1uv2(J)) 

TEST(J) 	AOS(TU1—tJ1 (J,2)) 	ABS(TU2- 1 j2(J,2)) 	-ABS(C1—C1 (J,2)) 
• - 	1+ ABS(TC2—C2(J,2))  

IF (TEST(J).LT.000,0001 	) GO 10 55 

-4 	CONTINUE 
- 	WRITE-(6,2001) j,TESI(J)  

2001 	FORI 4 AT (1110 SX, 21J= I3 5X, 

- 
1 5[iTEST= F20,,22H THE TEST DID NOT WORK) 

GO TO 56 	 ' 

55 	WRITE (6,2011) J,L,TEST(J) 

2011 	FORkAT (il-lU SX,2 J,I3,5X. 	L,13, 	,ShTEST— E30.8) 

56 	C (J 2) =CS (J , 1) + (Ui (J ,2)—Ul (J ,1 )) (Cl J , 1) +C1 (J .2)) /2 

1+DU(J)*(C2(J,1)+C2(J ,2 )) 12 , 

CB(J)C5(J1,2)4DV(J)*(C1(J_1,2) 1,2 / 2 P 	 . 

1+DW(J)*(C2(J1,2)+C21,2/ 2 	. 	. 

CS(J. ,2) 	J,2cfl2.  
- - 	Xl (J ) =U1 (J , 2) + (CS (J 2 	C 1(J .2)) /GK 

X2(J)U?(J ,2)+(CS() ,2)*C2(J ,2))/GK 
- 	X10V2(j)(C1(j I 2) .*C2(J,2* SORT (C1(J,2)**? 4 C2(J,2)**2**2 fl 

**?) 

3 	CoNTINUE 	-. - 
619 	WRITE (6,101) (AD10V2(J,1),BD10VL?(J

1) .J 1  

	

- 101 	FORMAT (1HO.5X, 61iAD10V2, 5X, 6HBD10V2/(2E30.)) 
- 	WRITE (6,1010) 	(!J1 (J .2), !J2(J ,2) , J=1,) 	- 

1010 	FORMAT (1 110 5X,. 2HU1,5X, 2H!J2/(2E30)) 
WRITE (6,211) (C(J,2),Ci(J,2),C2(J,2). 	sC(J)- 	J=1,M) 

211 	FORMAT (1 110 5x 	
(.C(J,2),5X,711C1(J,2),,Cj,d,7h10ISfl 

(6E30.a))  

- 	-WRITE (6,1211) 	(CU(J) ,CS(J,?), J2,M) 
	 ' 

1211 	FORMAT (1 1-10 5X,511C0(J)115X, 5HCS(J)/(2E30)) 

- 	WRITE (6,121) 	(Xl (J) , X2 (J) , J1 ,M) - 

IF (I.GE,N) GO TO . 1,00  

DO 90 J1 ,M 
J1(J,1)U1(J,2) 	- 	 - 
1J2(J .1 )=U2 (J .2) 

 

C(J,1)C(J,2) 
CS(J,1)CS(J,2) 
Cl (J .1 )C1 (J .2) 	 ' 	- 	. 	 • 

C2(J .1 )=C2(J .2) 	- 	 - 

90 	CONT I NUE 	 - 	 - 

GO TO 333 	 • 	 - 	 . 	 ' 	- 
END 	, 	- 	 ' 	- 	- 	-• 	 ' 	 - 

SUORO)JT I N E C A L C (Tli,U10,GK, Cl, C 2 ) 

REAL TFI,Ui0,GR,C1 ,C2 
REAL G1,G2,G.5,ti1,F10 
REAL Ul,021vl,V2,Fl,F2,FU1,F02,1\h1,2,AO,OEL 

I NIEGE!< I ,N 
F1U10(GK*U10)  
1.1U1 = ARS I (1:10/010) 	 • 

G3=ATAN(G/1A'-;(-- 1)) 

G1F10/ (G2*COS(G3 -)) 

U  
v10() 	 - 
1 =1 0—GK*1i10 
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F11 .OGK*ulo 	. 	 .. 	.. 
F U 1 G K 	 . 

F '11=6 K* ( • Os I (U 1)) /COs (r.iufl 
GPAD= .1O/Tft4(,1) 	..:.... 
I= 	INT(T*G7*160001.(O503141 59—G3) 
00 1 11,N 

U2(G1*sIj((,?*nFL+C3)* COS(MU 1 DEL)+GlG2* CO SI 	 (62*DFL+63) 1* 	N(M U1 _DEL))*(...10) 

V?61* SJN(G2*DEL+63)* SJH(MUiEL)Gl*G2* COS(62*DEL+63) 1*  COS (;LJ1-.,FL) 
F2=G1 *67* COS((;2*DFL+63) 
FIJ?( ( F2F1) *( GK**2_FtJl**?) ( (V2 Vi) 

1 * 6 RA 0 * (6 K * * 2—F VI * * 2) F V 1 * ( G K * * 2 F U 1 * * 2) 

1(1 

(6K * 7— F Vi * 7) (( K * *2_F U 1 * 2) * (U 2 Ui)) GRA0(FU7*FV7+GK* SORT(Fu7**2+F\/?**?_(ir**?)),(Gy*? 
F')IFu7 

• 	FV1FV7 
U1iJ7 
V1V2 

CONTINUE 

C1FU7 	 . 
• 	C?ZFV2 	 • 	 . 	. 

RETURN 
[NI) 	 . 	. 
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