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CHAPTER 1. INTRODUCTION

~In this work we examine self-similar solutions of the equations governing
unsteady, two—dimensional, isentropi; flow of a ﬁolytropic gas, that is
solutions of the equations in which the independent variables k, y and t
occur only in the combinations x/t énd y/t.

In Chapter 2 we develop the basic equations, showing the form which they
take under the assumption that the independent variables oécur only in the
above combinations and some account is given of the type of problémrwhich can
- be solved in terms of these special coordinates. The hodograph piane is
introduced and a derivatioﬁ_is given of the partial differential equation
Safisfied by tﬁe sound speed when regarded as a function of the cartesian
- velocity components. The important equations providing the transformation
between the physical and hodograph planes are.given and the.concepts of
simple and mixed waves are explained. The chapter concludes with a:survey'of
- some of the existing‘work in the subject.

" Chapter 3 givesva.discussion of four exact self-similar solutions. It
is poihted out that, alﬁhough three of these four are well known, in some cases
£hejAtake on a new aspect when vieﬁed as soluﬁions of tﬁe éelf—similé%
equations of gés dynamics., For examp1e, one such case is that of steady,
;uniform flow. When fegardedvas a solution of the equations goﬁerning two—
dimensional steady gas dynamics, uniform flow has associated with it no real
characterisﬁics if the flow is subsonic and two.families~6f parallel lines if
'the flow is supersonic. However, when viewed as a solution of the éelf—
siﬁiiar gas dynamic equatiops, uniform fiow has an entirely different pattern
of characteristics in which there are no real characteristics inside a certain

circle whilst outside the circle the two characteristics through any point are

B R
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Just the two taggents to tﬁe circle drawn through that point: aﬁd this
regardless of whether éhe flow is subsonic or supersonic.

The least well known of the four solutions.discussed is a remafkable‘
exact solutionvobtained by Suchkov, which describes the expansion into
vacuum of a wedge of gas.

'In éhapfer L a;e presented‘three problems which are tackled by linearised
theory, the solutions sought being perturbations on three of the exact
solutions prgsénted in Chapter 3. The second of these problems is formulated -
in the hodograph plane and leads to a singular perturbation problem in which
the domain in which a solution is sought vanishes as the perturbation parameter
tends to zero. The problem is overcome by a boundary layer type stretching
of coordinates. The results obtained are shown to be in4agr§ement with some
obtained by Powell. The same problem.ieaas naturally to a discussion of a
~paper due to Anderson. It is suggested that some of Anderéon's results are
ﬁot correct and altérnative conclusiops are put forward.

Chapter 5-is concerned with two non-linearised problems. The second of
these is tackled in the hodograph plane by a numerical method and results are
given. These two problems involve unsteady fléws of Prandtl-Meyer type and
they illustrate how the classipal steady Prandtl-Meyer solution describing
supersonic flow into vacuum around a sharp corner can be éonsidefed as the

limit as time t > « of the solution of an initial value problem.
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CHAPTER 2. FUNDAMENTALS

2.1 The Basic Equations

The equations governing unsteady, two dimensional, isentropic gas

dynamics are the momentum equations

du ., udu , vou _ 1 3p : o

i s = =2E s 1.
ot T T ay Teoax O , (2.1.1)
3v.. uov . vav 1 3p '

— —— e — ——— = . .
&t ox o oy 0 B (2.1.2)

and the continuity equation

fu L Wy Ly - (2.1.3)

% ,udp v,
9x ay

ot x ay * Pl
" where u(x, y, t), V(x, y,lt), p(x, vy, t) and p(x, y, t) are the x and
y Vcomponents of velocity, the pressure and the density of the gaé |
respectively. |

If the gas is taken to be polytropic, then the density‘and pressure
satisfy'the relatioq

| p=ko¥ S L (2.1.8)

where K is a constant and Yy - is the adiabatic index of the‘gas (which may
be taken to be between 1 and 3). The local speed of sound c{x, y, t) 1is
then given by | |

B o _
2 = Lo gyp¥H = IR ' (2.1.5)

. dp , p
and, since vy ¥ 1, (2.1.5) may be used to eliminate both p and p from

(2.1.1), (2.1.2) and (2.1.3) to give the systenm

3u  udu Vv du . ¢ ac
ou du  vou, cdc

ot 3x y Kk 9x 0

3v . udv v 3Iv ¢ dc

T ax Y 3y * K- 3y ° ' (2.1.6)
ac u ac v Bc- ou oV

— 4+ = —_— — 4+ —) =

ot o T oy TRl ) =0

where k = J;é%;L



2.2 Similarity Solutions

One method of attacking (2.1.6) is to seek solutions in which the
independent variables x, y and t do not'occur truly independently but
only in the combiﬁations

f(x, y, t) and glx, Ys t) .
Such a solution 1s termed self-similar, since, if u, v and c¢ are known
for all x and y at a time t = to, during the motion, then they.are known
for all x and y for all subsequent *t > to; If u, v and c¢- are each
functions of f(x, y, t) and g(x, Ys t) thén there exists a functional
relation between u, v and c¢ and we mey write c = c(u, v). Conversely,
if ¢ = c(u, v) then u, v and c¢ are each dependent upon two functions
flx, y, t) and glx, y, t). This suggests that an aiternative approaéh
might be to consider u and v as independent variables and to seek a
solution for which c¢ = c(u, v). This is the hodograph plane method, a
method which has proved very useful in two dimensional, steady gas dynamics.
We shall feturn to describe it:later.

Interesting as it may be to>consider solutions of (2.1.6) in which
u, v and c are dependent on x, y and t only in the combinations
f(x, y, t) and g(x, y, t), consideration of many physical problems leads
us to conclude fhat one particular choice of the functions f and g may
be of greater interest than any other. .

Consider the pﬁysical problem in which gas, initially at'rest, at
constant pressure, in the qﬁarter plane x > 0, y > O is suddenly allowed
to expand into vacuum by the removal .of the walls x =0 and y = 0. Since
the problem contains no length or time parameter in its formulation, except
in the form of a velocity, we deduée that the independent variables x, ¥y

and t can occur only in the combinations x/t and y/t. Or again, consider

- ——— e Bt
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the problem in which gas, initially flowing uniformly in the x direction
filling the half plane y > 0, is suddenly permitted to expand into vacuum
by removal of the boundar& y =0, x ; 0. The arguﬁent used above enables
us again to assert that x, y and t can occur only as x/t and y/t.

Many problems in two dimensional, unsteady gas dynamics may be formulated
" without reference to any length or time parameter, except in the form of a
velocity, and so must have sélutions involving x, y and t only in the
form x/t and y/t. The problems which we shall describe are all of this
type and so henceforth we shall restrict the term 'self-similar' to solutions
of (2.1.6) in which x, y and t occur only in the combinations x/t and
y/t: |

The substitutions

~

= X = " =V - c_
X t X ct v c ? v c ? F c
) ) 0 ) )

o

vhere ¢, is some reference velocity, which will, whenever appropriate, be

taken to be the speed of sound in the gas at rest, reduce (2.1.6) to

. N )
(U-XUu, + (V- Y)U, +=FF =0

. . i -J; _ )
(U - v, + (V- Y)Vy + = FF, =0 ‘ o (2.2.1)

(U'— x)FX + (v - Y)FY'+ kF(U_ +V,) =0

where the subscripts denote partial derivatives.

If, in éddition, the flow is irrotational, as will be the case in'the
problems we shall consider, we can introduce a dimensionless velocity
potential and‘derive the second order partial‘differential equation which it
satisfies. In the rest of this section, as in the next section, on the
hodograph plane, we follow the approach of Mackie (1966).

Irrotationality ensures that there exists a dimensionless velocity
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potential ¢(X, Y), related to the physical velocity potential o(xy, ¥, t)
o(x, ¥, t) =c 2t o(X, ¥) (2.2.2)

(o]
for which u=9%6,, V=20 (2.2.3).

Y
If the wvalues of Fy and FY from the first and second members of
(2.2.1) are substituted into the third, the equation

[(U-Xx)2 - FZ]QXX + 2(u - X)(v - Y)@XY +[(V-1Y)2 - F2]q>YY =0

results. Using (2.2.3) we obtain the equation

[ (o) - X)2 - F2]4>XX + 2(ey - x) (e - Yoo, + (o, - Y)? - F2]¢YY § 0 (2.2.4)

Y
for the dimensionless poténtial ®(X, Y). This equation is clearly quasi-
liﬁear. The characteristics are given by

(U=-X)(V-Y)+F[(U-X)2 4+ (V-Y)2 - FZ]%

ay
ax gi - [ (U - X2 = 7
or eduivalently‘ | (2.2.5)
x| - U-0W-Y)+F[(U=-X2+ (V-1Y)2 - FZ]%
ay @i [(V-Y)% - F]

Equation (2.2.4) is valid throughout the region of flow in the X-Y plane. It

is easily shown that the unsteady form of Bernoulli's theorem

EY S NPT /gzz.."-" »
ot T 2(¢x + ¢y ) + P function of t E (2.2.6)
becomes:
5 - Xo, - Yo + 202 4 0.2) + Eo = Fo? C (2.2.7)
2\ X Y 2k 2« e

X Y
with F_ a constant.

2.3 The Hodograph Plane

As ve remarked in 2.2 an attempt at solving (2.2.1) may be made by

seeking a solution for F of the form F = F(U, V). We now derive the
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partial differential equation satisfied by F ' in the hodograph plane. We

have
= +
du UXdX UYdY
av = VXdX + VYdX
ar =

. F 4X + F Y.
If the Jacobian J = 3(U, V)/3(X, Y) # 0 or =, dX and dY may be:
eliminated from the third equation of this system by means of the first tvo,
giving : .

(UXVY - VXUY)dF = (FXVY - FYVX)dU + (FYUX - FXUY)dV.

Substituting for F., and F, from the first two members of (2.2.1) and

X Y
using the irrotationality condition UY = VX we obtain
T R R |
X=U+=FF, , Y=V+ZFF,. (2.3.1)

These are the important eguations which provide a transformation from the U-V

to the X-Y plane. Substituting these into the last member of (2.2.1) we

obtain . : L )

(FyUy + FVVX)FU + (FUUY +F, Y)FV = (U, + Vi)
The homogeneity of this equation.in UX’ Uy, VX and ‘VV allows us to
replace these derivatives by YV’ —XV, —YU and XU, respectively.

Furthermore, these last mentioned quantities may be obtained from (2.3.1).
Hence we obtain, finally

(k2 - FVZ)FUU + 2R F P+ (k2 - FUZ)FVV = —l'f;[(FU2 + F2) (- k) - 2],
| (2.3.2)

This -equation is clearly quasi-linear and the characteristics are given by

+ W2+ F 2 -2
AV _ F Ry E kES HF -k

au - I 5
(k FV)

(2.3.3)

Equation (2.3.2) is valid only in regions of the U-V  plane in which the

Jacobian 98(U, V)/3(X, Y) is neither zero nor infinite.

Any solution of (2.2.1) satisfying this requirement is termed a mixed wave.

Solutions of (2.2.1) for which the Jacobian 3(U, V)/3(X, Y) is
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identically zero ma& belong t§ oﬁe of two classes. The firsf is the class
of solutions of the form U = U(F), V = V(F); any solution belonging to
this class is termed a simple wave. The second class is made up of
solutions U = qonstant, V = constant, F = constant. This is the class of
uniform flowg. |

It is clear that any solutéon of (2.2.1) must be a mixed wave, a simple
wave or a uniform flow. Further, it is clear from their<définitions that a -
mixed wave region in the X-Y plane méps into a region in the U-V plane,
whilst a simple wave region in the X;Y plane maps into a curve in the
hodograph plane and a uniform flow maps into a point. ’ Thus only mixed waves
may be studied in regions of thé hodograph-plaﬁe. |

The solutions to the ph&sical problems which we shall consider will

consist of combinations of mixed waves, simple waves and uniform flows.

2.4 Summary of Existing Work
Perhaps the first example of the use of similarity variables is to be

found in a paper of Busemann (1943). In appljing the linearised theory of

supersonic flow to conefield flow he was able to use similarity reasoning to

S

reduce a boundary'value problem iﬁvolving the wave equation in three variables

to one involving the same equation in two variables.

éince then a number df ﬁhysical problems have been successfully tackled
by the use of,similarity variables: séme of these problems are aeséribed'
below.. |

Lighthill (1949) used Busemann's transformation in studying the
linearised theory of the diffraction of a pléne shock by a corner of small
angle. An extension of Lighthili's work was carried out by Chester (1954).

Powell (1957) applied linearised theory to the problem of diffraction’

of a complete rarefaction wave by a corner whilst Anderson (1966) studied

.
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the diffraction of an ipcomplete rarefaction wave by a corner.  We shall
discuss these last two works in greater detail in 4.2,

In a non-linearised problem, Jones, Martin and Thornhill (1951) used
similarity variables to discuss the diffraction or reflection of a plane
shock, travelling parallel to a rigid wall, meeting a corner.

Sevéral Russian authors have tackled problems by use of the hodograph
plane. Pogodin, Suchkov and Ianenko (1958) studied the motion of é gas,
initially at rest'in x> 0,y > O céused by the walls, x = 0, y = O;
beginning, at time t = O, to move away from the gas with constant speed.

Ermolin and Sidorov (1966) and Ermolin, Rubina and Sidorov (1968) A
investigéted the ensuing motion of a gas, originally contained at rest between
two walls meeting at aﬁgle < m/9, cavsed by the walls beginning, at time
t = 0, to move away from the gas with constant speed.

Suchkov (1963) studied the motion of gas, initially contained at rest
betweén two walls meeting at an angle < w, allowed, at time t = O, to
expand into vacuum by the instantaneous removal of the walis. He was able to
show that when a certain relation between the.édiabatic index of the gas and
the angle betweén the walls was satisfied, the solution to the problem could
bé given explicitly in a remarkably simple fgrm;

Levine (1968) has given a detailed study of Suchkov's problem, including
some numerical results for a range of values of <y when the angle between
the walls is m/,. The same author (1969) has derived certain important
properties of simple waves in two dimensional, unsteady gas dynamics.
| Mackie (1966) has showed how Suchkov's results can be interpreted in the
physical plane. The same paperlincludes a discussion of unsteady Prandtl-

Meyer flows. .
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Gorshkova and Stanukovich (1966) have alsd discussed unsteady Prandtl-

eyer flows, as have Greenspan and Butler (1961) in a paper dealiné with

everal topics involving the expansion of a gas into vacuum.
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CHAPTER 3. ~EXACT SOLUTIONS

There are four exact sélutions of the system (2.2.1) to be found in the
litgrature. In this chapter we shall discuss in.turn each of these
solutions both in the X-Y plane and, where appropriate, in the hodograph
plane. .

3.1 Uniform Flow

Let us consider steady, uniform flow of. a polytropic gas given by

.g=uU, , V=V, F=F . U,V

1 1 1 F constants{

1 12 71

Substituting these values into (2.2.5) we obtain the differential equation
satisfied by the characteristics in the X-Y plane.

ay U =Xy - Y) x FI(U - X)2 + (V= Y)2 - Fq?]

ax 2 (v - X)2 - 7y2]

(3.1.1)

where the,é2+ family of characteristics is obtained by taking the positive
sign and theé? - family by taking the negative sign. The change of

variable ' .
R cos 6-=.§——~Hl R sin 8 = X——;Kl

. 3
Fl Fl

leads to
: ) dR
Eg = tRVﬁ_z—l

which has the solution

Rcos(eo + ) =1 with _ constant.

Thus in the region (X - U1)2 + (Y - V1)2 % F12 thére are no real
characteristics. In the region (X - U1)2 + (Y - V1)2 > F12 the two
characteristics through any point are the two tangents to thg circle
(x - U1)2 + (Y - Vl)2 = Fl2 drawn from that point. The region interior to
the circle 4(X - Ul)2 + (Y - V1)2 =_F12 is therefore an elliptic region, the

" region exterior to this circle a hyperbolic region and the circle itself a

cp e
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parabolic line. The system of characteristics is shown in figure 1.
We conclude this description of the first of the four exact solutions
by remaking the point which was made in Chapter 2, that a region of uniform

flow in the X-Y plane maeps into a single point in the hodograph plane.

3.2 Rarefaction Waves

Consider the situation shown in figure 2, in which polytropic gas at
rest, ‘at constant pressure, is contained in the half space x > 0. The gas
is separated from the vacuum x < O by the rigid wall x = O.

Suppose now that at some instant the wall x = 0 1is suddenly withdrawn
from the gas with constant speed, u, - The resulting motion of the gas will
‘clearly be both one-dimensional and self-similar. The system {2.2.1)

reduces to the two coupled ordinary differential equations

(U-% au , FaF _

ax tiax 70

and (U - X) aF A _
ax + kTP X - 0

which, together with the appropriate boundary conditions are sufficient to
determine the resulting motion. Writing U = ul/co , we find that there
are two distinct cases to consider.

If IUII > 1/k  the resulting flow is given by

_X-2 _ 1 4 kX -1 '
U—1+Kav“oa F—-l+|< . KcXSl (3.2-1)‘
Such a flow is termed a complete rarefaction wave or Riemann wave.
If |U1| < 1/k the resulting flow is given by
X -1 N 1+ kX ~
U-A1+K,vfo,F.——————lJr'< 1 (1+K)Ul_sxs1
_ (3.2.2)
U=—U1 », V=0 ,F=1-«l —Ulsxsl—(1+.<)U1,

Such a flow is an incomplete rarefaction wave.

1



VACUUM GAS AT REST

figure 2
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Subétituting the expressions for U, V and F from (3.2.1) into the
second member of (2;2.5) we find that the characteristics of the Riemann

wave satisfy the equation

_ 1 + kX -1 + kX
aX 1 + k- T+ 1 + k Y
o - . (3.2.3)
.g_{_ Y2 _ (l + KX)Z .
- 1+«

Thus the family of éz+ characteristics is seen to be made up of lines

X = constant whilst the eguation

ax oy L+ kKX
a‘f = 1l + K
g_' Yz _ (l + KX)Z
1 +x 7

may be integrated to show that the family of é?_ characteristics is given
1+«

b1 - 2)Y2 = (2¢X +2)2 + A (2kX +2) © , (3.2.4)

by

where A is the parameter of the family. We observe that, for any value of
kK, two of the characteristics (namely those given by A = 0) are straight
‘lines. ‘The system of charaéteristics of the Riemann wave for the case

k =3 (y =2) is shown in figure 3. We note in paésing that Y =0 is a
parabolic line although there is no regionvof eliipticity.-

In the région X > 1 the gas is at rest which is, of course, a special
case of uniform flow. The two families of characteristics in X > i are
easily seen to be the two famiiies of tangents to the circle X2 + Y2.= 1.
Continuity of U, V and F across X =1 ensures that the characteristics
have no discontinuity of slope acfoss this line. That the characteristics
“.given by (3.2.4) do indeed have the required gradient‘at X=1 maf be
verified by elementary means . | =

‘The characteristics of the incomplete rarefaction wave are identical to

those of the complete rarefaction wave in the region 1 -~ (1 + K)U1 £ X <1,
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However, in - U g X g1 - (1 + k)U the gas is in uniform flow and thus the

1
characteristics in - Ulﬂs Xg1l-(1+ K)Ul are found to be the tangents

to the circle (X *U)2+Y? = (2 —‘KUI) 2. The circle’

(X + U1)2 +Y2 = (1 - KU1)2 is a parabolic line'and the region bounded by

this circle and the line X = - U1 a region of ellipticity. The system of
characteristics ofAihe incomplete rarefaction wave for the case « = i is

shown in figure Uu.

In the hodograph plane the Riemann wave maps into

]
A=

<Ug0O0, V=20

and eliminationwof X between the first and third menmbers of (3.2.1) gives

-1

‘ F=1+ kU on V=20 "

sU<0.

'The Riemann wave is clearly alsimple wave.
The incomplete rarefaction wave given Ey (3.2.2) maps into
- ﬁl <UxgO ,' V=0
in the hodograph plané aﬁd the relation

F=1+4+«kU on V=0 ~-1U

A
[
7N
o

is obtained as before.

3.3 Suchkov's Solution

éuchkov (1963) set himself the task of determining fhe»resulting flow
when polyfropié gas, initially‘at rest at constant préssure,and contained
between the infinite Qall y = x cot & and the semi-infinite ﬁall x =0,
y >0, 1is allowed to éxpand into wvacuum by the remoﬁal, atAtime t =0,
of the wall x =0, y > 0 ; the wall y = x cot 6 being retained as a rigid
barrier. ,The'condition of no-flow across the barrier y = x cot 6 -enables
us to reflect across this line the solution obtained, thus obtaining the
solution to the problem of expansion into vacuum of a ﬁedge of gas of angle

© 28,
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At any finite time, t, after the start of the motion there exists a
value of y = y(t) sufficiently large that no disturbance originating at
y =0 at t =0 can hafe reached y in time t. Thus it may be reasoned
that, for sufficiently large Y, the gas is, so to speak, unaware of‘the
existence of'the corner at Y = 0 and expands as a Riemann wave. Therefore,
in the hodograph plane, an integral part of the solution is the Riemann wave

1+xU, V=0, =<U<0. (3.3.1)

. F
K

il

The wall y = x cot 8 is clearly also given by Y = X cot 6 and on this

wall we require V = U cot 6. Substitution of this condition into the

transformation equations (2.3.1) yields immediately
'FV =F cot 6 on V=1Ucoto. (3.3.2)
The boundary conditions (3.3.1) and (3.3.2), together with equation (2.3.2)

2+ R 2)(1 - k) - 22]

2 _w 2 . 2 _ 2 =£/
A(K Tv )JF. + 2F F.F _ + (k FP )Py = 5 [(Fy

Uu U v uv
provide the bcundary value problem in the U-V plane.
- The Riemann wave (3.3.1) is, of course, a characteristic of (2.3.2) and

‘hence the normal derivative on V = 0, F may be calculated. Substituting

\'As
F=1 + «U, Fy =« and Fygg = O into (2.3.2) we obtain the equation
| KA g2y oK' (1 - )p2 -
@ ) =75 1A - F2 - «(1 + )] - (3.3.3)
vhich may be integrated to give 1 - ¢
- . —Kin
{ . =— : .
_ 11tk 2 1+« K-
= — 4 - —
F (U, 0) L} m_— (cot4o 1T ) (1 + «xU) i | (3.3.4)

where the constant of integration is fixed by noting that (3.3.1) and (3.3.2)
together imply 'FV(O, 0) = k cot 9.
Suchkov observed that if cot26 =(l + @Wi - K), that is if the semi-angle

of the wedge, 6, and the adiabatic index of the gas, Yy, satisfy the relation

: +
cotze = 1ty

3=y (3.3.5)
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then the above specified boundary value problem possesses the linear solution -

F='1+KU+|<-if:zV. - (3.3.6)

Among the values of 6 and vy satisfying (3.3.5) is the pair 6 = u/6,
y = 2. It is well known that thevequations governing the motion of a
polytropic gas of adiabatic iﬁdex Y =2 are identical in form to those of
shallow water theory. Thus (3.3.6) with y =2 and the variablesvsuitably
interpreted describes the subsequent motion when shallow water, initially
contained at rest between‘tyo plane walls forming an infinite dihédral, is
allo&ed to 'expand' by the reﬁoval, at time t = 0, of the two walls. The
watér (or more correctly, fluid) 'expands' only in the sense that the average
height of‘the fluid surfacé decreases and the area in the physical plane
covered by the fluid increases. Rather than discussvthe solution (3.3.6) for
arbitrary Y (and, of course, suitably reiated 8 ) we shall discués in
detail the case 0 = 1/6, v = 2.. This case exhibits all the essential
character of the solution for general Y. | |

With «k = 3 then, we substitute the values of FU and FV obtained

from (3.3.6) into (2.3.1) to obtain the equations

g .30, 3
X =1+ > + 5 Vo
and Y=v/3+3 5
. , 5 U + 5 vV .
Theée may be solved for- U and V to give
L |
U=% (5x - 3y - 2) , (3.3.7)
and V=%—(— V3X + 3Y - 2V/3). : ‘ (3.3.8)

Substituting these last two results into (3.3.6) gives

F=2 (X+ /30 +2) . | (3.3.9)

So curves F = constant are given by V3Y + X = constant and in particular the
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%
curve F =0 is given by VY3Y + X + 2 = 0.
Substitution of the values of U, V and F from (3.3.7), (3.3.8) and
(3.3.9) respectively into (2.2.5) gives

ax _ : ax -
ay =0 dy &

@+ «@f
showing that.the family of é?+ characteristics is made up of lines X =
constant whilst that of.é?_ characteristics is composed of lines
Y3Y - X = constant.

The curve across which the mixed wave as given by (3.3.9) adjoins the
. Riemann Vave is obtained by equation V, as given by (3.3.8y, to zero. Thus
the required curve is

/3Y - X -2=0
This curve, of course, is a characteristic both of the ﬁixed wave (3.3.9)
and thé Riemann wave. It is in fact one of the two straight charaéteristics
of the Riemann wave which we noted earlier. This was pointed out by
Mackie (1966).

Thus we see that in the X-Y plane the-flow is made up of‘regions of
wiform flow and of simple-wave énd mixed-wave regions, the boundaries
between these various regions being made up of straight lines. vThe X~-Y
plane is shown in figure 5.

In the hodograph plane the characteristics are given by

av FyFy + k/Fy® + F 2 - 7 l/%t-%’

v ) (k% - F 2) -4
J+ v

av - av _

U = -3 , U 0

G+ é-

whilst the curves F = constant are given by
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av - =T = A
av | F /3
F = constant
Therefore in the U-V plane the system of characteristics is as shown in
figure 6.
We end this discussion of Suchkov's solution by noting-that in cases in

which 6 and .y do not satisfy (3.3.5) the boundary value problem posed
cannot be solved analytically and a numerical method must therefore be used.

This has been done by Levine (1968) in studying the case 06 = u/k:

3.4 Prandtl-Meyer Flow

It is well known that steady, supersonic flow of a polytropic gas past -
-the convex wall o o

y =0 x <0

P
it

-y cot o "y <O

is given by

X ‘_q_* . -1 ST - )
w, =3 sin [A8 + tan "(X cot u))} (3.4.1)
¢ = uy, = g* cos [r6 + tanwl(A cot )] "~ (3.4.2)

where c1 is the sound speed fgr upstream, My is the upstream Mach angle,

W Uy and 6 are as shown in figure T and X and g¥ are given by

32 =

, £ =0 /1 + NootZu.
Te o ¢ c1¢i AZcot M

-{3.4.1) and (3.&.2)4are valig in O £ 0 g 60 where

. -1
: eo + tan l(A cot [Aeo + tan () cot ul)]) = ko (3.4.3)

The region O g 6'5‘60 is often referred to as a Prandtl-Meyer fan. For
0 >'60 the flow is steady, uniform, supersonic and parallel to the wall
X = -y cot a.

Consider the case in which the wall x = -y cot a is absent and the gas
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flows past the sudden termination of the wall y =0 at x =0 into vacuum.
The steady solution is then given by (3.4.1) and (3.4.2) but now extends from

"8 =0 to 6 = 6, wvhere 6, is given by

Ael + tan_l(l cot ul) = (3.4.4)

Ul
5 -
In the x-y plane the characteristics of the Prandtl;Méyer flow are found

to satisfy

It

e ten (u, = 0) = L ©(3.h.5)

3

d+

ay
dx

tan (“1 ~ 8 - 2 tan [ Acot[ A0 + tan-l(kcotul)]]).

/s | (3.5.6)

Hence the {Z characteristics are straight lines through the origin. The

+

g{ characteristics can be obtained from (3.4.6) only by numerical integration.

It is easily seen from (3.4.1) and (3.4.2) that

o
]

%i-sin[ke + tan—l(kcétﬁl)]cos(ﬁl - Q) + q*cos[)é } tén—l(xcéful)]sin(ul—e)
| (3T
v = %i-sin[xe + tan—l(kcotul)rsin(yl - 6)'--q*cos[ke + tan(xcotpl)]cos(ui;e)
o | (3.1.8)
where "u and v are the cértesian velocityicomponents. ~Thus the Prandti-
Meyer flow maps into a‘curve in the u-v plane. The curve is a part of an
epicycloid, as are all characteristics in the u-v plane.
So far;~in this section, our discussion has been restricted £o}steadx
flow. However, it was pointed out in a paper of Joﬁes, Martin and Thornhill
(1951) that, since (3.4.1) and (3.4.2) represent a solution of fhe gas

dynamic .equations which involves x and Yy only in the combination y/x,

and since for all %
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where X and Y are our usual similarity variables, then

U= =9 gin [0 + tan Y(A cot w)]. ' (3.%.9)
R —_— c A 1
c 0 , A
o
* - . .
and F = Ue = %“ cos [ A6 + tan l(k cot ul)] _ (3.4.10)
o .

where R2 = X2 + Y2 ang tan 6 = Y/X , represent a solution of the gas
~dynamic equations in terms of similarity variables.
Now with R and 6 defined above, the equation (2.2.4) governing the

dimensionless'potential, ® becomes

2 2
_R)2 _ §2 ~ r) U8 Up” — F°
@RRKUR R) F?] + ¢R6[2(UR R)R 1 + @66[ =
+ Riu2+¥2] +202=0 | (3.4.11)
- 0 0
Rv
where ,UR = @R and RUe E.@e . The characteristics of this equation are
given By
e  (u, -R)U, + FAU, -R)Z + U2 - FZ
ar = & o X d ' : (3.4.12)
- SV ANa . , i
@,ﬂ RlU; - R) F<] _ ,
Substituting Up> U, and F from (3.4.9) and (3.4.10) into (3.k.12) gives
as N ' . :
= = 0 | B (3.4.13)
Aé+
and ae } 2(up, - R)U, |
v dr éz_ R{(UR —_R)Z — Uez i with UR, Ue as given (3.4.14)

by (3.4.9) and (3.4.10).

Hence we see that the é?; ‘characteristics in the X-Y plane are straight
lines through the origin. As was the case inxthe x=y plane the é?_
characteristics may be obtained only by numerical integration. However, it
'is easily seen from a comparison of equations (3.4.6) and (3.4.1L4) that the

é{ characteristics in the X-Y plane are completely different from those in

e

B



- 21 - : <
the x-y plane, even though they are derived from the same physical flow.

It is clear that the cartesian velocity components in the self-similar

plane are given by

% .. ) L _
U = %_i sin[ A8 + tan l()\cotul)]cos(ul - 9) +%—cos[ A6 + tan l(Acotul)]sin(ul—e)
0 - C
(3.4.15)
® -1 . g -1,
v ='%—A51n[le + tan (Acotul)]51n(u1 - 9) —%%—cos[xe + tan 1()\cotpl)]cos(ul-—e)

o] [

(3.4.16)
The.Prandtl—Meyer flow;‘when regarded as a solution of the self-similar
equations, is a simple ﬁave'and its map in the U-V plane is a part of an
epicyclbid. However,_whereas in the case of steady flow, one could assert
a priori that the Prandtl-Meyer flow, béing a simple wave (that term having
the obvious interpfetation iﬁ the case of steady flow) must map into one of
the already known characteristics in the wu, v plane, in the case of self-
similar flow the hodograph equation (2.3.2) is non-linear and thus the

characteristics not known a priori. .
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CHAPTER 4. PERTURBATIONS
OF EXACT SOLUTIONS

4.1 Perturbation of Uniform Flow

Consider the problem shown in figure 8. AOB 1is a rigid wall
consisting of the two planés y =0, x>0 and y = x tan €, x < O vwhere
€ is a small angle. The planelwall DC .is perpendicular to 0B and.
moves'in the negative x direction yith speed u - The space to the_right
of DC and above the wall AOB is supposed filled'with polytropic gas
moving with the Wall. DC, thét is to say the gas has everywhere the velocity
;u 5. and'a corresponding sound speed ¢, (also suppésed uniform throughout

1
the gas). At time t =0 the wall DC passes O, thereafter continuing to

move according to x = —u_t but in such a way as to remein in contact with

AO. We seek to use a perturbation method to determine the resulting motion

of the gas. Accordingly, with U1 = ul/co and F,; = cl/cO we put

1

u(x, Y) = -u, + et (X, Y) + o(e)
VX, Y) = eV (X, Y) + o(e) o - (4.1.1)
F(X, Y) = F +eF (X, ¥) + ofe) | |

‘and substitutevinto (2.2.1). The linearised equations are readily seen to be

TR | o
(U1+x)dx+1U’Y—E'§'1F’X-o

_ ol
(U1+x)v’X+yv'Y—EFi§’Y-o
(U1_+ X)F"X + YF'Y -k F (U'X + V'Y) = 0.

With (U1 + X) = F,X;, Y = F Y these become

4
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X 2X, Yy Tk ox, S0
1
W . &V 1 oF - L
—_— Y —_— e o m——— = . ol .
28 ox, T 1Y, ke, O | i (k.1.2)
1 1 }
oF oF - au 3V
Fiax] T h oY, ~ "ax, ayl) 0

From (4.1.2) the equation

o2F - 82F . ) d oF . - oF
ox,7 Tz T R Y v, " 1 o, T ey
: 2y 2y 32§ oF oF
2 _ 9 -a--—-—- 2 - - —— o — =
or (%, l)axl2 * AN ax ey, Y (¥, l)aylf FAN et ‘Ylayl =0

(k.1.3)

is easily deduced.
It is necessary to distinguish between subsonic and supersonic unpérturbed

£1ow; that is to consider separately the cases U, <F, and U, > F,. We shall

1
deal with thersubsonic case first.

At any time after the commencement of the pertﬁrbation, the. situation in
the Xl_Yl plane is as shown in figure 9. Iﬁ the Xl-Yl ﬁlane‘the.wall CD
is X, = 0 agd the yall AOB may be consistently approximated by Y, = 0.
The corner maps into the point (Ml’ O), wheré M1 = Ul/Fl’ and since we are
considering subsonic unperturbed flow, this point lies inside the sonic |
circle X12 + le = 1. The linear equation (4.1.3) is elliptic inside the -
sonic circle and hyperbolic outside it. It is clear that the perturbation
quantities vanish.outéide'the sonic circle. Thus we have the boundafy

condition

F =0 on X12 +Y?2=1. ' (k.1.4)
"Since U =0 on X, =0 , the first member of (4.1.2) gives

0 on X =0. o (4.1.5)
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The linearised boundary condition on the wall AOB becomes

v’=—u1_ 0 <X, <M -
on Y =0.

=0 M, <X

0 except at Xl = M, vwhere it is

Hence av’/axl vanishes on Y, 1

undefined. However, we have

M1+ E//jﬂf
EERNDH = T 0

M -¢ =
1 Yl 0

which, together with the second member of (4.1.2) implies

M.+ ¢ :

1 5/ oF _ .
/ \3Y1 ax; = MU, . » _ (4.1.6)
M. —-¢ Y =0

1 1

We now solve the boundary value problem specified by (4.1.3), (4.1.k4),

(4.1.5) and (L4.1.6) by means of Busemann's transformation

x 0= %12232()3 ’ S gli;nze o
. ‘ (170 o (%.2.7)
pcosf = o psind = T, '

By means of the transformation (4.1.7) equation (4.1.3) in the interior of

the circle X12 + YIZ =1 is transformed into

w2 2 _ : _
%+%=0 R o (b.1.8)

whilst the boundary conditions (4.1.4), (4.1.5) and (4.1.6) become

P20 on p=1 (b9

%g‘ =0 on o=0 ; | (h.ll.‘lAOA)

nd (%?) o UL g ) C(b.1.11)
1= : ' '

respectively where o =1 - V1 - MIZ/M1 and 6(o — @) is the Dirac delta

:
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function having singularily at o = o. The boundary value problem specified
by (4.1.8) to (4.1.11) has as solution the Green's function

’ _ 2
F o= KMl Fl

log [" 0?2 - 2a0 + 0% + 12 02 + 200 + 02 +.1% 7]
— TTo? 3 22) = PRy g .
zﬂxffjiﬂg' | @ (0% + 1°) =200 +1 " «a <0 + 1%)+ 200 + l_}

(4.1.12)

.This anélysis-of the subsonic case has been closely modelled on some
work of Anderson (1966). In this work, Anderson asserts that a boundary
value problem such as that specified by (4.1.8) to (4.1.11) can by symmetry
cbnsiderations be transformed into one requiring solution of Laplace's
equation in the unit circle with boundary condition F =0 on the .
circumference of the circle. This ban indeed be done. However, he then
Aiﬁvokes the mean value theorem to argue that F = 0 at the centre of the
circlé. This reasoniﬁg is invalid because of the singularity at (a, 0)
(and tﬁat at _(—u,‘O) obtained by reflection). &hat F  does not vanish
at the origin is readily éeeﬁ from (4.1.12).

It is easily shown that,'té first order in e

_F_J__'_va'__'

where P, is the pressure in the unperturbed flow and P “is the

perturbation pressure. Hence, from (4.1.12), the perturbétion.pre3sure is

given by
v —YM12P13 1o {N o2 - 200 + 0% + 12 a? + 200 + 02 + 12 —‘
P = - - 108 L_a2(02 + 12) — 200 + 1 " a?(c% + t2) + 200 + 1
om/l - M, 2 : : =
| g (4.1.13)

This last equation implies that the perturbation pressure becomes
logafithmigally infinite at (a, 0). However, we should not be surprised to
find that linearised theory breaks down in the neighbourhood of the corner.

The same equation, together with (4.1.7), implies that
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-, .
_ ey 2(1 - o")
\ m;) Tl - Miz (1 +.0%)? - ha%cos?®e

so that _ ‘
lim [_ag]_ -eYM; %p, 2(1 - oY) lim [1 - VL - R? ,
—- - i . 2y2 _ 2 2 - 2 _ R2 .
R+1- |3R 'n/i_T_MTZ (1 + a?) | Ya?cos?e R+1-| R%/1 - R

This singularity in the pressure gradient was found by Lighthill (1949) in
é study of shock diffraction.: He concluded that the true phenomenon is a
shock when € < O and a rapid but not discontinuous expansion wvhen e ; 0.
| We now-turn our attention to the case in which the unperturbed flow is
supersonic. In this case, in the Xl—Ylplane the cofner again maps into

(M., 0) %but this point now lies outside the sonic circle. There can be no

13
disturbance upstream from thevleading Mach line through O. We conclude

that in the Xl_Yl plane the pérturbation is confined to the region bounded

by the Mach line through A, the arc of the sonic circle CD and the axes

OXl’ 0Y,, as shown in figure 10. Again we have
2F 25 2§ - ‘ F’ F
2 _ 3 e A 2 _ 3 OF L oy 8
(X% =) 5z x 7" A axer, t ()% -1) gz + 2X1 B3 QYlaYi__; 0.

As in the subsonic case we require U'(O, Yl) = 0 and the first member of

(k.1.2) can be used to establish the boundary condition

BF,_ | ’ . . ' y
ax (0, Y. ) . _ | _ (h.1.14%)
Since the corner 1s at (Ml’ O), we have that cn OBA vV = -Ul and the

second member of (4.1.2) now gives

oF

—BY; 0 on .OBA . ) (4.1.15)

We clearly require F =0 on AC and on CD.

Now the substitutions
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X, =Rcos 6 Y =Rsin
T (h.1.16)
= cos ! (i) :
P R
valid in R 2 1 reduce (k4.1.3) to
32F  32F ‘
557" T 0. (L.1.17)

In BAC we have a Goursat type problem for F  which in the p-6 plane may

be formuwlated as follows

AC 1is (Y, = cos ul) = — tan ul(X - sin ul)
vhere sin My = l/M1

. _ o
AC 1s thus p =806 + ¥y >

and on this line F = 0. AB is'clearly 8 = 0 and on this line

3F786 = 0. Thus iﬁ the p-08 plaqe we>have the boundary value problem shown
in figure 11. And, since the general solution of (L.1.17) is known to be

F = G(p.— 9) + H(p + 6) for arbitrary twice differentiable functions- G
.and H, it is readil& seen that the above problem possesses only the trivial
. solution F = 0.

So we have scen- that in ABC the only solution of (4.1.3) consistent
with the boundary conditions is the trivial solution F’(Xl, YI) = 0, This
should not surprise us for,.in the exact treatment of this problem, we shg;ld
certainly cqnclﬁde that near the corner the_solution would»be a Prandtl-Meyer
expansion occupying a region expanding linearly Vith time.. Further, AC
would Be the first member of a family of stréight‘characteristics passing
through A making up a fan of small angular e#teﬁt through vhich all flow
variables would change éontinuously. In the lineaﬁised thebry of steady
supersoﬁic flow past the wall j = g tan e, x < O3 y:= 0, x > O' the solution

is found to be
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. . -1 _
¥ ¢ ..Y1>m1—z—_——l(xl Ml)

= T2kF M 2
¥ = Fs , say Y o< ot (X, - M,).
716712 ? 1 /_Mlz~l 1 1

(4,1.18)

In the steady‘problem, then, we accept a discontinuity in F (and,
therefore, of course, in the perturbation pressure and density and in one
ve1001ty component ) across the line Y /”7f7:—" + (X - M, ) = 0. This
discontinuity in the steady problem is a result of the Prandtl-Meyer fan s
being 'collapsed’ onto the line YIJMITT:_I + (X1 - Ml) = 0.

Bearing in mind that e require the solution of eur unsteédy'problem to
tendvin some sense to the soiution of the steady problem as the time t > o,
we are led to conclude that the correct approach to our\unsteady'problem'is
£o accept a discontinuity in F across YIJEIY_:_I + (X1 - Ml) =0 and in
BAC (figuie 10) to take F = Fs. The solution in OBCD is then readily
obtained by an application of thevPeisson integral fprmula.

By symmetry considerations we can see that the required solution in

OBCD is the solubtion of Laplace's equation in the unit circle which takes

the value f£(6) on the circumference of the circle where f(8) 1is given by

£(8) = Fs- 0<6 <—
‘TT ki
0 R TR S
o 3
LIS 25 _
Fs 2 L} <0< 2 ul
3 _ 3n
0 o T My b T
Fs -3'%+u <0 <27

"Hence, in OBCD F is given by

o ~§£,_'
Fs /2 31 . | Hy (1 - R?) ay
: (1L + R%) - 2R cos (v - ©)

- =+ U
2 ™M 5 Ty

T Y
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where, as before X =.R cos 0, Yl = R sin 6. Hence, for 0 < 6 <-% =My

. - - 20
¥ = s [L‘I’(w - e)_J 2 l}il + lim | T(y - e)J THO7E 4 1im iT(l}J - e)f l:l

+
2 ™M1 es0+ Tt e+ - T+0+e
111 +R L .. .
where T(x) = tan. LET:_E tan 3x |, the principal value of the inverse tangent

being taken. Hence it is found that

r«’=%s~|:n + 2(3 - Wy - 8) T(3 - u, +8) = T(Z+u +6) - T(Z + o, - e)].
' (4.1.19)

Similarly it is found that for -g R < 8 <-g F is given by

I’S[(—~u1"e)+T(__p1+e)—T(%+u1+6)_T(%+ul—ei]'

(4.1.20)
It is easily established that F as given separately in 0 < 0 < g-— M
and.-g - u <0 <'% by (4.1.19) and (4.1.20) respectively is continuous
~

across the line 6 = % - .
As in the subsonic case, the radial derivative of the perturbation
pressure (or, equivalently, perturbation dimensionless sound speed)

is singular on the sonic circle Xl2 + le = 1.

4.2 Perturbation of the Rarefaction Waves

In this section we shall conéider perturbations of both'the complete
. and the incomplete rarefaction wave.

| In fiéure 12 AOC is'the‘plane rigid wall y = x tan €. Initially the
spacé Yy > X tan'e,‘x > 0 1is occupied ﬁy polytropic'gas at rest at constant
préssure, At time t = 0 the plane wall 0B is withdrawn from the géé

with constant speed u, in such a way that for all subsequent time the wall

1
OB remains in contact with AO. 1In the case e = O the resulting motion
of the gas would be either the complete rarefaction wave given by (3.2.1) or

the incomplete rarefaction wave given by (3.2.2) according as |U1| > or
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<1/ }where_ COU1 =u. Wifh e # 0 Athe resulting flow is more complicated
" and we seek a solution of fhe linearised problem.

-We attempt first the case |U1|<> 1/x fhe case in which thé’
unperturbed'flow is>the complete rarefaction wave or Riemann wave. Poﬁell
k1957)Ahas studied this case and has obtained the complete solutién to the
?roblem.in ﬁﬁe X-Y plane. In fact, Powell has obtained, in the X-Y plane; .
the complete solution to the more generél problem in wﬁich the wall A0C |
is no longer straighflbut takes'the‘form y = - x tan(61 + 62), x. € 03
Yy = - X tan 62 x > 0. We present here an outline of Powell's work.and
results. We have altered the approach to the problem somewhat-and‘have-fouhd
it convenient to use notation different from that of Powell. We have also
réstricteé our discussion to_thé case 6, =0, Gé = ~eg _ for reasons whiéh'ﬁé
shall amplify later.

Tﬁe‘substifution of the expressiqns'

X -1

U=+ eU(X, X) +4o(e)
Vo= eV(X, ¥) + o(e) =
. : ' (4.2.1)
=L (X ~-1)2% . . :
o= 2 17« + e@(X, Y) + o(e) -
o 1+ kX o
vF = —Ef:~z 4+ eF(X, Y) + o(s):
into (2.2.4) results in the equation
1+cX s ‘ 2 _ (l+xX 2—‘ ' 1+kX o+ 2K .t 2K .
Y S Y LY R ey e T T T YN T ¥ 50 ,
- - - . T . (h.2.2)

for the perturbation potential &(X, Y). The characteristics of this

equation are just those of the Riemann wave and can be written

. 1-k . S
Q = constant or Q2% R = constant _ . (4.2.3)
where Q = %{EK , R= ?_K T . ’ A (k.2.4)
| R s S .

1+ -
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With Q, R as new independent variables and with ¢ written in the form
= Yf(Q, R) ‘ (4.2.5)

(4.2.2) becomes R(RZ - 1)f (R2 - 1), + 3R2f, =0 .

RR l RQ

which has the general solution 1=
: -3 ,
£o= (82 - 1)7°/2 y(o “ B) I (4.2.6)

—

where ¢ is an arbitrary function of its argument.

Powell then uses this result to argue that all pérturbation quantities

1-K
vanish beyond the boundary Q ) K R = 1, which 1s Just the curved characteristic

"through X =1, Y =0 in figure 3. He then uses the condition @% =0 on

this boundary, together with the linearised boundary condition wall at the
wall, vhich is readily seen to be

' X-1_Q-~-1 )
d,(x, 0) = 2oL - &= | (4.2.7)

: ’ A
to obtain an integral equation for the function . Powell is then able to

show that this equation reduces to an Abel integral equation which he solves
for the .function Y. For later convenience we quote here some results for

the case vy = 2. In this case, Powell's method yields

i 1 - 1 : 1
r =03 QUe-L)(R2-1)% L -1 (RZ - 1) P 3 3/2(1 -QRr?)®
¢ = T L‘ R sin ——37177§~t} - Q cos Q R+ Q R
~ _.Q _ 2 _ %.ﬂ'i} :
TR (@ - 1)(R2 - 1) L (u.2.8)
From (4.2.4), (4.2.5) and (4.2.7) it can be shown that on the wall
r 1 1
¢(x, 0) = W3 i_Q3/2<l Q)% - @ cos™'Q? (k.2.9)
; (2 1 -1 2 ' -
¢ d(x,0) = .‘_”ﬂﬁ- I_q?(l - Q)% - cos 1@? (4.2.10)
and _ ¢;(X, 0) = :%- [}(Q - l)%j]. =2(Q - 1) as iequired.
Confining ourselves to this case §, =0, §, = -e we ask whether it is

2

possible to obtain Powell's solution by using a perturbation technique in the
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hodograph pléne. We firsf formulate iﬁ the U4V plane the exacf bouﬁdary
value problem to be solved. |

In the X-Y plane, it is clear that for sufficiently large values of
Y the resulting motion of the gas will be described by the Riemann wave
solution. Therefore, in the hodograph plane one boundary condition is

given by

F=1+«xU on V=07, :% U goO. | o (k.2.11)

A-secohd boundary écndition is furnished by the reéuirement that the veiocity-
’ ét the wall AOC be paralléi to the wall. Thus we require

V =Utan ¢ on Y=Xtane. | _ (k.2.12)
This condition, faken in conjunction with (2.3.1) implies

A

The partial differential equation to be satisfied is (2.3.2) viz.

F, = F tan ¢ on V=Utane . (k.2.13)

2.7 2
_(K FV )FUU

+ 2P FF o+ (k2-F 2)F = & [F24F,2) (k)= 26
' The exact boundary value problem ig illustrated in'fiéure 13.
Ve obsérvé.that as € > 0 the regioﬁ in the U-V plane in which we seek-
T a solutionbvanishes.~ We note also that.the' e =0 solution (the Riemann
vwave) is not a solution of (2.3.2). 'This résult should occasion no surprise
" since the € = 6 solution is a simple wave wheréas (2.3.2) is valid only
wheré“J = 3(U, v)/a(X, ¥Y) is non-zero. Wévare thusiconfronted with a
singﬁlar perturbation prﬁblem.'

We.attgmpt to solve this problem by the mefhod of—stretched coordinates,'

introducing W by the relation V.= W wvhere & = tan e. We' transform

(2.3.2) to new'independent variables U, W obtaining

Y[SZKZ—FWZ]FUU + 2R FF i + (K2-FU2)FWW = %KGZFU2+FW2)(1-K)—252K2]Eh "
' | | 2.1

¢



;l/K ‘ F = 1+xU

F_= F tan €

V =1Utan ¢

figuré 13
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 The boundary conditions (4.2.11) and (4.2.13) become

F=1+4«U on W=0, “SgUzg0. (4.2.15)

and” Fw: 621;’U ‘o'n. | w‘= U" _ : o (4.2.16)
respectively. Hgving now transformed our original boﬁndary<vaiue problem
to one in which the solution is éought in a domain which does not vanish |
as € >0, we seek a solution for‘ F of the form .

F(U,W) = FO(U, W) + §F (U, W) + §2F,(U, W) + oo o (k.2.17)
Upon substituting this form for F(U, W) into (L4.2.1k), (h.E.lS) énd'(h.2:16)
vand équgting like powers of § we find that the function Fo(U’ W) is

required to satisfy the following conditions

[oF \ 2 32F oF oF 32F a?F /[ oF \2
\ 0 O _ 5.0 _0 o _ | 2 _ , k(1-x) \ 0/ _
Naw 7/ au? U oW oUW | aw-’- F oW
F (U, 0) =1 + U,
o'’ , _ aw (U U) =
Hence we may take F_(U, W) =1 + kU . , N (h.2.18)

.. The differential equafion and boundary conditions to be satisfied by the
second term in the expansion (4.2.17) depend upon the first term. When the

expression (4.2.18) is used it is-found that FI(U’ W) is required to satisfy

L , e o

1+ cu)l Oy 3P OF, 3F_J —K[./fi> o1 +.<_J (4.2.19)

LW Bwaw T B0 oW e, T -k 2 Ve

F(u,0) =0 . . L o - (b.2.20)
wma T -

Now (4.2.19) is a quasi—linear‘secoﬁd order equation which in passing we
.may note is novhere elliptic. Its characteristics_may be obtained by
equating to zero the determinant of the matrix of coefficients in the

system

RN

——ore

g



oW aU au2 1+kU *° 2 W/
au aw 2 . / oF

- | e V[ a2r ] " ™ o -
o . 3 o oF, 9°F, N 1| [OF h J
dc - do | ‘ E?J\au)

. 21
o aw a ! -af f’.f’i.) '
-do do oW do\BW

(4.2.22)

It is readily seen that this results in the equation

F = ‘ :
Laul o %J = o. ‘ | T (h2.23)

Hence one family of characteristics is the family of lines U = éanstant
whilst the other is the femily of curves upon which F1 is copstant. -Thus
(4.2.19) has the unusval property of having one family ofAéharacteristics
independent of the solution considered (a préperty of the lineér hyperbolic
equation) and the other family dependent upon the individual solution
considered. The compatability conditions upon these characteristics may be
found in the usuval manner (that is:by equating to zero the determinant of
'tﬂe matrix resulting when any éolumn of the above matrix is replaced by fhe
. column vector on the right of (4.2.22)) The compatability condition on the
characteristics U = constant is non-integrable but that on the characteristics

F1 = constant can be integrated to give

. . ' L A
+ : — o
<3F1\§ - k2 i — E = A(1l + kU) ¥ on F,o= constaiit ~(k.2.24)

where A 1is a constant. Hence A is a function only of Fl and we may

write 3F : ' .
i 2 l+K (___) . .
F (U, W) = g | K i J : : (4.2.25)

(l + KU)

throughout the domein in which the solution for FI(U’ W) 1is sought.  Thus



- 35 =

(4.2.19) has been re-written as a first order equation, but at the expense
of introducing the unknown function g. However, the whole aﬁpafatus of the
theory of first order partial differential equations ié now available to us
and so the presence of the_unknown functioﬁ g may not prove too-great a
difficulty.

Since F1<U, 0) =0, the line W =0 1is a characteristic and it is .

easily deduced that on this line
1

’ r l-K;1§ ' . ,'
oF 14k | —
1 (U, 0) =« /—-—- | 1 - (1 +«U) K J . - (h.2.26)
75?— l-k L_ ) R

Substitution of (4.2.26) into (4.2.25), together with FI(U’ 0) = 0 implies

[ /1 + z>_J | | |  (&.2.2‘7)

Our problem now is to find an integral surface of the equation

2 l+K _Kaw>

(1 + «U) Kf

' whe?é‘ g dis an, as yet, ﬁnknown function of its argument, satisfying
(k.2.27), wnich passes through-thé curvé in U, W, F, space parametrised
o " |

U=s 5, W=0 ,v F, =0 . :
'3F1 .' 14k - =K 2 | :
oo B[ (e e

and which, in addition, satisfies the requirement that _aFl/SW =0 on W=U.

(u.2.28) |

The technigue forifinding an integral surface of a first order partial
differential equation, L [¢(x, y)] =0, which passes through a given
twisted curve in x, ¥y, ¢(x, y) space is well known. Here the Lagrange-

Charpit equations become
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au

a0 °
at -8 1«
(1+xU) K
2
- [ 2(Flw)
1 .= ,g(lp) T 1«
dt (1+xU) K'
__lg = 5(¢) K(l+KU) FlU
dt
Ty = -
@ W
L2 Ltk 2
: K™ 1=« (Fy)
where we have set - -
(1 + «U) ¥

U

(4.2.29)

= P - (h.2.30)

W

and denoted QFI/SU and aFl/aw by F1 and F respectively. The first

members of (4.2.28) and (Lk.2.29) together imply

U=s,

(Lh.2.31)

whilst the fifth members of these same equations give

- —t
'Flw = A(s) e " .

(h.2.32)

From (4.2.32) we deduce that the line W = U is approached as t - ©, The

same equation gives also

2 1tk _h,[A(vs)]ze"Zt :

1-k

v = 1-k

(L +xs) X

W

0. - (4.2.33).

Substitution of (4.2.31), (k4.2.32) and (4.2.33) into the second member of

(4.2.29) now gives

2 1+k _ 2 -2t
ai _ | < LA(s)]%e

2A( s)em.t

dt_lg : 17K
' (1L +«s) K

‘and, since W > U as t » o we have,

1-k
(1 +«ks) K



® )(¢)2A(s)e_t dt'

-S?/' g . 1ok
" [o] (l+KS)K

and, after some manipulation

<E“ K>—r R I gwar 55
e | _J = | B (h.2.3
: ©oolk. . .
K )
S ke <
where we have set 2 1= (1 + KS) K =8 2 0. . (h,2.35)

This is an Abel integral equation, and has the explicit solution

' _ 1l 4 ‘ 1 1+ KE 14k
eV =T % [/ < <e 1« > L\s I (h.2.36)
- s1+k '
S “ - o - ,
.Therefore - : : ' A
, A o _ LK ‘ .
C1 [V L (k2 am V[T k2 1 \ T ap’ | '
gly) =3 f = <B . ) [(B T 1\ 7F - (th.2.37)
o oo 21+K : : t : . ) _
- 1k T _ . .
‘Hence the functlon g may be determined.. When g is determined, then

F1 is known in terms of Vs and t. Since U and W are each known as

functions of s and t (by.(h.2.31) and (4.2.32) respectively), F, may be

1
lobtained, in principle'atileést, in.terms éf U and W 'by'eliminagioh of
'Wepummuxs é:@d ﬂ : » . -

Ve nbw take ‘y =2 (g‘= %):'in,(h.2.3f) énd prqceéd to sﬁoﬁ'thaf the'T4
‘solution 6btained is in égreement with that obtaiﬁed by Powell. With |
 K;% then, (H.2.37).5ecomes | |

1

g(w /‘1’ (usa_(s—l)’—ffﬁ—s L (h2.38)

~which may be- 1ntegrated to glve

g(w>='—;[" (__g) Q_LM_EJ  (ne.39)
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Now W =' u=yqy = 55—3—:5—) apd therefore; on . W =U we have
po=23 [sin_l (.1 +s) +(2+s) = -L ] ‘ - (4.2.40)
1 T _ 2 + s 2 o '
It is readily seen that, on W = U, -FlU is ‘given by
F o= - u(-2u - w2)? . (h.2.41)
10 . :

Hence, using (2.3.1), we may vrite

Nj=

U+2 [:1 + 24 —’/-?—r [ (-2u -'U2)% =~ cos_1(1+U)]] >4

X = 5
oy R
[_—%— + € ——%— (-u)(-2u = U?) ] + o(e) ,
SR L [:(-213 _u2)? - cosl(140) - U(e+u)(-2u—u2ﬂ + ole)
=1 +§Q + ef(U) + o(e), say.

2

2 £ (5 (x- 1)1+ ole),

Therefore U = 2 (x - l) - €
. 3

Hence, on W = U, we have

U =-§ (x - 1) —.e% . iﬁ- [2[—2— (1 - X) % (2 + 01% - cos.—1<%2-)-(>‘\f 0(8)‘
= % (X.— 1) -« Vgn[2 <2 ; X>-§ <l; %E - cos-l. <——~————2 ; X>§]} o(é)

which is in agreement with Powell's results. _

.Thus the solution_expressed‘in parametric form by. (k.2.31), (4.2.32),
(h.2.é5) and (h.2.39) is'seen to}give.results in acéora with Powell's élong
the axis Y = O. |

Throughout this work on fhe diffractidn of the Riemann wave, we héve
restricted ourselves to the case 61 = d , that is, the case in whicﬁ the

wall has no 'kink' in it. We have not imposed this restriction to lessen the

labour involved, but for a more significant reason. The boundary condition
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at the wall gave us (4,2.13) viz. F, =F; ;tan e on V = U tan €. However,

had we taken as our wall the boundary y = - x tan(él + 62), x < 03
y = - x tan 62, x > 0, as does Powell, then, in the hodograph plane our

boundary condition at the wall would take the form

FV=—'FU ta.n(dl +62) on _V=—Utan(61 +_62) U<—EFFU
F.=-F_ tan & on V=-1Utan § U > = Fr
A U’ 2 2 k U’

The boundary value problem specifiedfby this condition and by (2{3.2) and
- (L4.2.11) is in a completely different category.and we do not consider it
further here. Despite‘the limitation imposed by setting 61 = 0, the
'fecovery of Powell's solution by using hodograph methods is felt to be of
some interest and the device of preventing the domain in the hodograph plane
from shrinking to zéro by a boundary layer typé_stretching of coordinates is
one which may weli héve other applications.

We now turn our attention to thé éase |U1l < 1/k, the case in which
the unperturbed solution is the incomplete rarefaction wave gi?en by (3.2.2).
This problém has been studied by Anderson (1966), again in the mbre genefal
case in which the bouﬁdary ADC  (figure 12) is given by y = -x tan(§l+ 62),
x <03y = —x‘tan 8y, x > O. in this discussion of the diffractidn of the
incomplete rarefaction wave, Ve shall be concerned only ﬁith the X-Y plane
and thus shall not‘find it hecéssary to make the resﬁriction 61 = 0,
Accordingiy, with the wall AOC as given above, we.begin by describing
. briefly Anderson's work.
The sysfem of charaéteristics associated with the incomplefe
" rarefaction wave was shown in figure L. Figﬁre-h is reproduced in figure 1k

°

with some of the characteristics omitted.

A



X=1

U='--U1 V=20 _ U=—-—1+K‘ Vv=0
F = l_KUl _1+KX
1+

figure 1k
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Anderson argues that all perturbation quantities vaniéh'beyond the
boundary EBFA. EB 1is a part of that characteristic'which, vere the
un?erturbed flow the comélete rarefaction wave, would bound the'region of
perturbation. The straight line FB 1is a characteristic of the uniform flow,

<Xgl- (1+K)U1. The arc AFC

which 1s the unperturbed solution in -U,

is, of course, part of the sonic circle (X + Ul)2 +Y2 =[1 —Kupg.
The quadrant bounded by AFC, AD and DC 1is a region of ellipticity.
The origin of our coordinate system X =0, Y = 0 lies inside.or outside

the sonic circle according as U, < or > 1/(1 + k).

Anderson then, reasoning that the boundary conditions @} = 0 on the
characteristic BE and d& = (x - l)[d2 + 61H(X)]/(l + k) on the non-

characteristic CE . together with the differential egquation (4.2.2) provide
a well posed Goufsat type béundary valué problem states that thé solution
for ¢ in BEC is just Poﬁell's solution. He then asserts that in:'FBC
the solution is a simple wave. However, he then goés on to argﬁe tﬁat it 1is
possible to solve for the perturbation velocity components. or tﬁé'
perturbation preésure_in .AFBCD without reference to the boundafy condition
on BC which Powell's solution in BEC provides. He is thus led to
postulate the existence of a discéntinuify‘across the line BC of the
perturbation quantities_wevhave listed above. We intend to put fofwardvén
alternative formulation.to show that no such discqntinuity:need exist.

: In AFBCD, the solution we seek is a perturbation on the uniform flow

Us=-u,V= 0, F=(1- kU ). The analysis embodied in equations (l4.1.1),

1°
(4.1.2) and (4.1.3) is therefore valid and so with X + U, = FX;, ¥ = F)¥,

we have equation (4.1.3)

‘ 2y : 2y | 32F oF oF
, 2 _ ) S 9%F 2 oF _ oF _
(x,2 - 1) ox, 2 * QlelaxlaYI + (¥ l)axlz +2X) aX, +2r oY, 0
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valid in AFBCD. As we have remarked previously kh.l.3) is elliptic in

X12 + Yiz < 1 and hyperbolic in X12 + le > 1, Further, in FBC the two
characteristics through any point are just the two tangents to the sonic
circle X12 + le = 1, Now a comparison of the situation oﬁtaining in

AFBCD with that obtaining in Tricomi's problem (see, for example,

Garabedian (1964)) might lead one to conclude that boundary data for F

(in the fofm,of‘the function itself or its normal derivative) on Ab, DC

and AFB provide in AFBCD a well posed problem for F. " However, such a
coﬁclusion would not be correct. Fdr, in the Tricomi préblem, the solution

is required to be pontinuousiy differentiable across the parabolic line
(otherwise it would be sufficient to let the dependent variable take, on the
parabolic line, any Suiﬁable value and to solve separately a Dirichlet
problem in the elliptic domain and a Goursat problem in the hyperbolic domain).
However, we now show that the requirement that the,solutioﬁ in TFBC be a
simple. vave invﬁhich the perturbation sound speed, F , is constant upon

each characteristic of that family of which FB is a menmber im?lies that the
normal derivative of F becomes infinite as one approaches the parabolic line
AFC. For, in figure 15, let ¥ be gi&en on the circumferenée.of the circle

R =1 by any continuous function f£(6) and let F  be constant on any
tangent of the family of which AB and CD are members. The radial

derivative of ¥ at C 1is given by

oF _ . [f(o + 66) — f(6)]cos 86
3R 3;2;’“0 -1 - cos 40 |
- 15 [s0f(0)+ 2(86)2f" (8) + ...][i - 3(88)2 + ...]
= im 1
§6~0 %(66)2[1—~1—2-(66)2+...]

which is finite only if f(8) = O. The case f(e) = O corresponds to

wniform flow in the region immediately exterior to the circle R =1, as is



§6

. figure 15
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discounted.

Thus we have shown that the requirement that the solution in FﬁC
(figure 1L4) be a simple wave of the required type implies that the normal
derivative of the perturbation sound speed becomes infinite as ohe approaches
the sonig circle ATFC throuéh values of (Xl2 ;‘le)% greater than unity.
Hence the condition of continuity of normal derivative across the parébolic
line éannot be used in this problem. It therefore follows that the Tricomi
problem may not béjtéken as a model, that data on AF, FB, CD and DA do not -
constitute_a well posed mixed-type problem in the Tricomi sense and that
information on BC is necessary to determine the solution in AFBCD. This
point of view is consistent with the actual data as determined by the physical
problem in relation to finding a unigue continuous solution.

Anderson, in claiminé that the solution in FBC (figure 14) can be
 obtained without reference to any information on BC, makes use of a resﬁlt
(Andgrson (1966) p.913) which, we suggest, is not correct. He claims that
if Tsz is any cha?acteristic.in FBC of ﬁhe same family as FB and if

s(u., ), é(véb) and 8q denote changes in the two components and magnitude

3b

of the perturbation velocity respectively across Tsz,zthen
' G(usb) = 8q cos. & and &(v
‘(where the meaning of 8 1is.seen in figure lh.)__Thése equations imply that
- the change in the perturbation velocit& vector in making an,infinitesimai
change of position across Tsz is pefpendicular to Tszf There séems no
justificétion for this assertion-which is then used to deduce a solution in
FBC without making any'use’Of data on BC and thereby ieading to an
artifiéial discontihuity across BC. We now show how the solution in

FBC can be found such that all perturbation quantities are continuous

across BC. Let us deal with the dimensionless perturbation sound speed, F.
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The value of F on BC may be obtained from an application of the linearised .
form of Bernoulli's theorem. Let us therefore consider F known on BC and
“denote .1ts value by G(Yl). In FBC the perturbation sound speed F
satisfies (4.1.3)
2§ 2§ - 2§ - F - F -
2 _ gy B2F B Ly 2 -4y 2 d oF_
(x% - 1) X 2X\ T oX, 91, (¥,= - 1) oY 7 * 22X 2%, *er, oY 0

which can by means of the transformations

) a— - 7 T
- XY, + Ji; + Y 1 - XY, - /X2 +Y*-1 (b.5.12)
Y, -1 ? Y12 -1 *er
be reduced to the equation
32F 2F
202 8z - © < (k.2.43)
which has the general solution
F = A(a) + B(B) | : (4.2.hL)

where A and B are arbitrary funétions of their arguments., It should be
noted that the two families of lines ‘o0 = constant and B = constaht are just
the two families of charécteristics of (h.lfS)._

Now FB 1s a-line upon which a is constant and since F = 0 on this

line (4.,2.44) reduces to -

F = A(a) . . o - (Lk.2.b45)
Further, BC is X, =1 and on BC |
2Y,
@« = yTC-g e
1

Since F = G(Yl) -on BC , (4.2.45) gives
o(x)) = A'[ 2x, :\  (4.2.46)
TZT-T - -

If 2Y1/(Y12 - 1) be denoted by A, then (L.2.46) can be inverted to give

A()) = G.[:} = ‘i * A ':] .
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Hence, in FBC , F is given by

¥ o= g [1 ~ L rel ] - (4o2.47)

The éolutipn as given by (L4.2.47) is a simple wave since the analysis which

has beeﬁ applied to ¥ COuld equally have béen appiiea to .U or V to
establish that the perturbation velocity components aré constant on one
family‘of gharacteristics. ‘Further, it satisfies the boundary condition.on
BC and, provided that the perturbation pressure tends to zero on BC as'
one approaches the pointv B (which is the case), it satisfies thé boﬁndary

condition on FB.

On the arc FC, o —Y]/X1 and (4.2.L7) then gives

¥

which, together with the requirement that ¥ =0 on AF, and the boundary

G [tan /2]

conditions on AD and DC enables us to solve for F"iﬁ AFCD.

Thus we have seen that it is possiﬁle to solve for F in AFBCD,
dbtaining a solution which is continuous. across BC. It sﬁould be_pointed
out that the sclution cbtained by the method which we have outlined 1s
continuous evefywhére (except, in the case &, ¥ o, -7 ") and that
this is the best that can be achieved since the normal derivative.(of, say,
‘the pértﬁrbation pressure) necessarily becomes infinite én the sénic circle.

h.3 Perturbation of Suchkov's Solution

We have seen that when the adiabatic index of the gas vy and the semi
anglé 6 of the wedge satisfy the relation (3.3.5)

2 . 1ty _ 1l + k
cot®6. = 3 - vy 1 -«

then the problem of the expansion of a wedge of gas into vacuunm has the

remarkable exact linear solution (3.3.6)



1 + k
1 -k

F L1+ kU +« v

where, of course, k = (y - 15/2. With « considered fixed, denote the_.'
value of 6 for which (3.3.5) holds by 6% and consider the problem of the
expansion into vacwm of a wedge of gas of semi angle é = 8% + ¢ where e
is a small quantity. |

In the hodograph plane, we readily see that‘the full probleg may be .
formulated e*actly as the boundary value problem shown in figure 16. We seek
now to obtain a solution by the use of first order perturbétion theory.
Accofdingly we put

“F = 1 +«kU+« /%ﬁ?EV'feﬂU,V)4-MeY ' (4.3.1)

and substitute into (2.3.2). ‘Retaining‘only the terms linear in € we

obtain :
K 1+k . 14k - 14k .
'l—i(‘ 1 .+ kU -+ Kk /l-‘K A% :]F’UU /—-—l_K (l + kU + k /l—K> F'UV
3 14 . . ' . .
+ (1. - k) 1-x F% + (1 K)F% =0, | - (4,3.2)

We note first of all that, since the unperturbed solution is a.mi#ed wave
and therefore a solution of (2.3.2), wé are not faced with thé difficulties
which cénfrontéd_us-whén éxamining a perturbation of the Riemann vave, that
is to say we are able to poéé the pfoblem in a regién of the hodograﬁh plane
which does not degenerate to -zero és e+ 0. We ndte'secondly that (h.3.2)

is elliptic nowhere. The transformations

- [Ll¥ x o, 1 [Tk 1 '
£ = 1 Ut g Vo = ° n=3V : . (4.3.3)
reduce (4.3.2) to - ‘ 7 | ”
k-l Fg+ Fn o R Sy
Fon + 55 5 =0 S (3

which is the Euler-Poisson-Darboux equation, an equation encountered not



-1/x F = 1+kU

2_p 2V 4 oF 2_p 2°
G R Ayryyy ¥ (K5=F )Py

[ (F,24F,2) (1%) - 2¢7]

X
F

FV = Fﬁ cqt(e*+e)

.V = U cot(e%+¢)

figure 16
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infrequently in Applied Mathematics.

The boundary condition on V =0 Dbecomes

0 _ 1 /1w Cas)
F=0 on n=0 0s&sz [T0= - (k.3.5)

Now the boundary condition
' FV = FU cot (6% +e¢) on V =U cot (6% + ¢)
can be linearised to

F%‘= Fb'cot 8% - k cosec?6¥ on V = U cot 6% (4.3.6)

which, under the transformations (L4.3.3) becomes

F’g - F"n"= 2k on n = E—% /%--:—E . (4.3.7)

The boundary value problem to be solved in the g&-n plane is thus that shown
in figure 17. The equation (4.3.4) is in its normal form and thus the
characteristics are the lines & = constant and the lines n = constant. The
Goursat tyﬁe boundafy value problemvillustrated in figure 17 determines ¥
up té the line £ = 0. We aré unable to solve this problem in its full
generality, but the solution is readlly -obtained in certain special cases.

In the case y =2 (k = 3) the solution is found (almost by inspection) to

be
F (g, n) =—7'_l En | E (k.3.8)
2 2v3 .
and hence the solution cf the perturbed problem is given by
F(U, V) =1 +U+Y3 - _c_ (V30U +V+2/3)(2V) + ofe)
2 2 2;3 :

that is F(U, V) =1 +U ,L /3 . _ ¢ 2 ‘
. St v 75 (/307 + v +2/3V) + o(e). (4.3.9)

Let us now return to the boundary value problem for general «, as

shown in figure 17, and write the Euler-Poisson-Darboux equation in the form

W+ ) | |
FJEn_+N'—"%:,‘“2— =0 , - (§.3.10)

.......
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vhere N = < 0. Equation (4.3.10) has several well-known and interesting

N

.properties which may be used to solve our boundary value problem for certain

values of «k (and therefore N). We illustrate this by considering the

case Kk =3 (N = =2).
It can be shown (see,for example, Mackie (1965) p.229) that if F&

.. . A -1+ .
satisfies (4.3.10) for some given value of N, then (&+n) ! ZNFk‘ satisfies

(4.3.10) with N -replaced by 1-N. It can also be shown (reference as

above) that, for N a positive integer, (L4.3.10) has the general solution

’

¥ = [g . 8n>] [f(@ + g(a)J - ©(k.3.11)

vhere f and g are arbitrary functions of their arguments. These two

results show that (4,3.10), with N = -2 has the general solution

) 3 . l ’
F=(g+n)d [g e )] L + gln) J (k.3.22)

After some manipulation we obtain

F (g, n) = (g +n) l:f’" ) + g’ ('n)]- 6( +n) [£(8) + & (n)]
+12 [f (g) + g (! . (4.3.13)

Our task now is to use the boundary conditions (L.3.5) and (L4.3.7) to
,detgrmine the functions f and g. fn fact, we-shall be concerned only witﬁ
£ (¢) and ¢ (n) as is obvious from (4.3.13). Now (4.3.5) implies

£2 1" (€) - 61" (g) + 12f (g) = -g,£% + Gg & —iegl (4.3.14)
vhere we have set g(i)(O) =g - Equation (h;3ilh) is an inhomogeneous
second order ordinary differential eqﬁation for ¥ (g). It‘is readily solved

by the method of complementary function and particular integral and has the

general solution ,
f (k) = Ag" + B3 - %g3€2 + g2€ - g (4.3.15)
A, B arbitrary constants. Now the boundary condition (4.3.7) with «k=1/3

becomes

F_-F '=~§- on n =g - 3/2 (h._3.16)
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_Differentiation of (4.3.13) gives, after some manipulation

B e R L P I O IR RN EL RN
+12 [lg) - & (n)] . ' o -

This last equation, together with (4.3.16) implies
2 - (onv3v2)2 1207 (ne3v2) - T ()] -6 (2me3v2) " (ne3v2) -6 ()]
+ 120" (n+3v2)-g" (n)] | (4.3.17)
which is satisfied if we write
g1V () = £ (0 4 3v2)
g (n)

g (n) = (n+3/2) -5

'y N 3v/2) . _ (4.3.18)

The last of (4.3.18) together with (4.3.15) now gives
t,

(n) = A(n+3v/2)% + B(n + 3v2)3%= g (n + 3/2)2%+ g,(n + 3/2)- I5 + ¢
| (4.3.19)

with C a constant. _

If it is possible now to choose A, B and C to make (4,3.19) self-
consistent, then f(&) and g(n) as given by (4.3.15) and (4.3.19)
respectively with tﬁese Values of A, B and C may be substituted into
(Lk.3.13) to give the required solution. o

To determine the constanté AQ B and C we set ﬁ'=~0 in (h.3.19)

to get

1

Differentiating (4.3.19) once and twice and setting n =0 gives

g, = U(3/2)% + 3(3/2)%B - g32 + g, - 35 - (h.3.21)

a .
an g3_

which can be solved for A, B and C to give

g, = A(3v2)"* + B(3/2)3 - 3g,(3/2) + g,3/2 + C . (4.3.20).

12(3v2)2%A + 6.3/2 B - g, ' ) (4.3.22) |

X
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) 1 1 _ A
A=1ram7 > B=ipe; i) . C=g~ 32, 3gm 75 (h.3.23)

g(n) and (&) can now be written in terms only of g,» 8 and g; and
since there are no more conditions to be satisfied by these three quantities

we aim for simplicity and set g, = 8 = g3 = O.

B N S (4.3.28)
R N COLER R ST : -3
and. g(n)= —1-2‘(—%—)7 (n +.3/2)% + —(‘i‘lg)‘z-‘(n +3/2)% - 1o —{—2— (4.3.25)

when (L4.3.24) and (L4.3.25) are substituted into.(k4.3.13)there results after

some simplification the equation

2 (4.3.26)

F’(E: n) = /28 £2 2 - 9?18 52

6
918
That F(£, n) as given by (L4.3.26) satisfies all the requirements of our

boundary value problem is readily seen. Thus we have, substituting back for

U, V , . .
F(U, V) = .+%U+%V+§8[‘/gUZVZ—%—V‘*—-g-V% 7‘/2\72U
- 6/2V2 + 12UV - 18V _\+ o(e) . o (4.3.27)

The method which has been employed here can clearly be used for other
values of «k, but the amount of labour involved will in ﬁany baées militate

against the use of the method.
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CHAPTER 5. UNSTEADY FLOWS

OF PRANDTL-MEYER TYPE

Consider the problem of determining the reéulting motion when pdlytropic
gas, initially in steédy, wiform flow in the x—direction in the half plane
y > 0, 1s allowed at timé t = 0 to expand into vacuum by the instantaneoﬁs
removal of the boundary y = 0, x > O. Mackie (1966) has remarked that it
‘ought to be possible to obtain the classical Prandtl-Meyer solution as time
t > provided that thé initial flowlis supersonic. We shall formulate the
problem, both in the X-Y and hodograph planes. We shall indicaﬁe possible
difficulties which might arise in the_numerical work which is required to
"obtain a complete solution in eithervthé X=Y ér U-v pléne.v We shall not
attempt to obtaiﬁ a complete sélution to the problém. |

W

41

formulate the éroblem first in the X-Y piaqe and deﬂoté by U1

(= ul/co) and F) (= cl/co) ’respectivelyothé dimensionless X ‘cgmponent of
velocity and the'dimensionless~sopnd speed in the initial steady, uwniform
flow. Of course, in this problem we have described there is'no region in
which gas is at rest, Tperefore, throughout this chapter, <, is to be
inﬁerpreted as'any.convenient velocity. In the formulation of the second
problem of this chapter,.for example, ve éhall see that a'éertain choice of
‘co produces cogsiderable algebraic simplification. For large valugs of x,
~the resultiﬁg_flow will be essentially a one-dimensional expansion of the gas
into vacuum. This floﬁ aiffers only slightly from the Riemann wave and is

given by

Fy

1 ,
=

1 + K

1
1+ «k

(y -F) , F= [P +x¥] -~ 5 Y ¢ Fl.(S.l.l)
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We are, of course, taking the initial flow to be Supersénid and'therefore
it seems clear that the steady, uniform flow remains undisturbed upstréam of
the leading Mach line through the origin and that,'near the origin, the
solution is Jjust Prandtl—N@yer flow as given by (3.#.1) and (é.h.2);

Thus in the X-Y plane the floﬁ pattern at any time after the removal
of the wall X = O; Y >0 is'that shown in figure‘iB. BD is that curved

'characteriétic of the expansion wave passihg throuéh the point at which the
1 1

line Y = F, is a tangent to the circle - (X - U1)2 + Y2 =F 2 and is given

’by , ? K—i ' © K+l

(1-x2) (x-U)2 = [¥ + F12 = = 3 [2¢ + 2)F ]  [2x¥ '+ 2F1]_;T: (5.1.2)
AP 1is the curved characteristic of thé Prandtl—Meyer‘flov fassing through.
the point at which the Mach line through O. is a tangent to the circig

(x - u)? + Y2 = F 2. That is to say, AP is a solution of (3.4.1h). The
 straight lines 'OP and DE are part of the gas-vacuum interface. The
remaining ﬁroblém is to determine the flow in the region between BD ‘and

AP and in.particular to find the portion of the gas~va£uum interface between
P ang ‘D. However, wé_are not cpnfrontedlvith a normal characteristic. |
bQundary‘vélue problem'since AB is a parabolic cufve. This militates

against using‘a numerical method in fhe . X=Y plane. Howevér, as we.remarked<‘
earlier, the problem can be formﬁiated in.the hodograph plane.

The expansion wavé given by (S.l.l) is cléariy‘given by

F=F +xV, U=U , - 1 gVgo. (5.1.3)

The Prandtl-Meyer expansion is given by '

T - | ‘ ¥ -1,
U =-%—x sin [ A8 + tan 1(Acotul)]cos(ul— 9) + %b-cos[xe + tan (Acotul)]
o] o] '

sin(u, - 0) S 0 (5.1.h)




figure 18




figure 19
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vV = %ii sin [ 28 + tan-l()\cotul)]sin(u1 - 6) - %f cos [ x6 + tan—l(kcotul)]
o ,
cos(ul— e) ° - (5.1.5)

where the meaniné of the various symbols employed is given in section 3.UL4,
»Elimir.lation of the pz;rameter 0 between (5.1.4) and (5.1.5) shows that the
Prandtl-Meyer flow maps, in the hodograph'plane, into a section of an
epicycloid (as has been stated previously).

TheAsituatiqn in the U-V plane is shownvin'figure 19. It is at this
point that a possible difficulty becomes apparent, for there is nb reason
why the section of the epicycloid shouid not re—-interest the straightiiine
representing the expansion wave and the flow thereby map into more than one
sheet of the hodograph plane. Of course it is possible to obtain‘a
restriction on U1 and F, which ensuies ﬁhat such a complicatiop doeé not
arise. However, we prefer to consider a completely different probieﬁ iﬁ
which, as ve shail show, these problems in the U-V and X-Y planes do not
arise,

Consider now poiytropic gas in steady ﬁniform.flow given by U = Uy

" V=0,F=F Suppose the gas is travelling behind the rigid wall X = U

1° 1

and is separated from vacuum by the wall. If at some instant, t = 0, the

wall is instantaneously removed, the resulting motion of the gas is given

By'
N ' _ _ 1 N A m (F. +¢U,)
U= [(F1+|<U1) + X, V=0, F= Tor [(F1+ Ul) kXl, U, FsXsg 1K 1/,
(5.1.6)

A comparison of (5.1.6) with (3.2.1) shows that the resulting motion of the
gas is given by familiar expansion wave solution provided that

F, +«U =1. = (5.1.7)

A
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‘,But this condition Can‘always be satisfied by a suitsble choice of the
reference velodity e Therefore.throughout the rest of this chapter we .-
shall consider c, as chosen to ensure that (5.1.7) is correct. With <,

so chosen, then, imagine the gas to be ins teady, uniform motion behind the

rigid plane wall X = U. as before, but the gas occupying only-the'space )

1
Y > 0 , being separated from the vaéﬁum Y < 0 by the fixed plane barrier
Y =0, X<O. Thé moving wall is instantanebusly removed at time t =0
when it reaches the origin, which also marks the termination of the fixed
wall Y = 0. Considgrations similar to those of the last prébiem_indicatev

<

that, at any time after tﬁe removal.of'the wall X = Ui the flow pattern
in the X-Y pléne is as shown in figure 20. AB -is that characteristic of
the expansion wave which passes thrdugh‘ A; the point at which the leading
Mach line tﬁrough 0 intersécts X =1 ~»F1 ;‘the line which, in the
undisturbed flow, separatés the éxpansion wave from fhe uniform flow; AC
is:sin@ly'that curved éharacteristic éf‘the Pfandtl;Meyer fiow which passes
through A. Wé note that, in tﬁe self-similar plane; wé have a characteriétic_'V‘.
béundary'value probiem to solve to.determine the flow in the remaining region.
The diffiéﬁlty which was encountered when'atﬁempting to tackle the preﬁious |
éroblem in the X~Y piane'is ﬁot met here. However, we p?efer to go on to
‘examine the present problem in the hddograph‘plane.';The'Prandtl-Meyer flow
is éédinvgiven by (5.1,&) and (5.1.5). The exﬁansion wave is now given by'

. F=.1—KU',V=Q,U1.-F1SUS%: | o ('_5.1'.8)
The hodograph_plane is shown in figﬁre 21. It is:éléar.that the difficulty
which threatened in the hodograph approach to the prévious problem,'namely

the possibility of the two characteristics intersecfing in more than one_‘

point, is no longer present.
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Ve have téékled'numerically the boundary valué problem shown in.figure

21, adapting.for our pﬁ%poses a program given by Levine (1968). The modified

program is given in the appendix and the results in the U-V and k—Y planes

are shown in-figures 22 and 23 respectively. '

The mefhod used by the program is described in some detaii by Levine and
wé merely rémark that the computation procedes along the (initially unknown)
- characteristics and is not cqntinued across the line F =0 in order that
any complication which might.be encountered beyond this line (such as fhe
‘equation's becoming elliptic)vshould not halt the cbmputation. Of course,
" the domain in which the solution is determined by the data on the two
characteristics in general will extend beyond the line on Which F =0 bdbut
the.solutibn beyond this line has no physical significance.‘

. . In fact, in the particular case computed .(y = 1.bh, M, = 5) the eéﬁation
becomes elliptic in a very smali region near to the céntre’of the line F = 0.
We have no a priori guarantee in this non-linear problem that the équation- |
 will not become'eiliptic buf wve believe that this small regioh of ellipticity.
does not affect'thé ovérall gualitative picture given in‘figﬁrés 22 and 23.

vWe concludé our discussion of this problem by observing that figure 23
shdws:that the remark of Mackie’to>which we referfed earlie? was quite.
correct; the figure does indéed’show the élassical-PrandtirMeyer solution as
the limit as t > 6f the soiution to an initial value problem.
Furthérmore,:figure 23 shows that, at any point af a finite distance ffomrthe

origin, the classical Prandtl-Meyer solution is taken up after a finite timé,

not as a limit as time t » « ,

©gA
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figure 21



figure 22
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APPENDIX
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DIMENSTION C(&OO,Z),C1(400,2),C2(400,2),X1(400).x2(400),
_1Du(400).Dw(AUO),nD10v2(400;2),BD1UVZ(400), TDI1GveCap0)y,
ZXD1UV2(AUU),U1(400,2).UZ(hOD.Z)uSD1OV2(AOO),TEST(&OU),CB(AOO),

CSCSCA00,2) oy 200) .DISC(ZUO>,M61UVZ(400,2>.CG1OVZ(AOO)
" U REAL G1'GZ,GS,MU1,UTO.FTO.GK.TH.PI S g '

READ £5,10) 4,606,010 ' E ,
FORMAT (35F10.0) :

CWRITE (6,%1%) .
r(,’RH:\.I (]HO 5)(, 3“ “:c F?slb)
WRITE (6,514) ‘
FORMAT (1HO 5%, GHGAMMA=, F12.,3)
WRITE (6,51%) 10
FORMAT (110 Sk, 4HUT0=, F12.8)
GK=(G=1,)/2,

B=CTa+6K)/ (1e=GK)
H=C1a/6K=U10) /1+1,

PI=3.14159)

F1021.0~(G6K*U10)
MUT=ARSINCFTG/U10)
G2=SQRT(GK/(1,0+6K))
63=ATAN(GZ/TAH(HQ1))
G1=F1Q/{GZ*CDS(63))

DO 1 J=1,0
CAY=J - ’

U1(J,1):"(AJ*H+U10)

U2, 1)=0.0

C(J;1)=1.+GK*U1(J,1)

CSCu,1)=Ccey, M
010, 1) =461 : .

LI TI=GR* SORT(B+(((1,~ SIH(NUT) )Y/ cos<Mu1))**2~B)*((1.+GK*U1
A(J,1))/(1.wGK*U70>)**((1.~GK)/GK)) ' '

XT(J)=U1(J,1)+(C(J,7)*C1(J,1))/GK

XZ(J)=U2(J,1)+(C(J,1)*CZ(J,1))/GK,‘

COMNTINUE
SI=1 v ,

WRITE (6,11) 1

FORMAT (11O SK, 2Hl=, .[%)

HRITE (&,111) <U1(J,1).U2<J,1>.J:1,w)
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FORYAT (142 X, Z2HUT, bx. ZHUZ/(’LjC.u))

Wi ITE (600110) (C(d,1),CT10C4, 1).C£(J.1).J T,H)
FORMAT (150 5%, THC.5X, 2HC1, 5 ZHCZ/(3P5O 8))
ARITE (6,121 (x1(J3), X20J), J~ ,H)

FORMAT (1HO 5X, 2ZEX1,5X, 2HX2/(2E50.8)) "

1=1+1 , . ' '

WRITE (6,11) 1

ADIUVZ2(1,1)=+1T.0/TAN(MUT)

Al=1-1 -

THEAT*(G.5%p [~ Gl)/(ue*(w 1.0))
b1(1,?)z-(f1*JIA(GZ*IH+b3)*COS(MU1—TH)+G1kGZ*COS(GZ*TH+Gj)*

TSIHBUT~TH))

UZ(T,2)=61*SIN(GZ*TH+G5)*SIh(mU1*TH)—GT*GZ*COS(u2*TH+63)*
1COS(HUT-TH) - o S '
CC142)=61%G62+CO5(G2+TH+G3)

€s€1,2)=C(1,2)

CalL CALC(TH,UTD,6K,C1C1,2),C2(1,2))
X1C1)=u1(1,2)+(CC1,2)%C1(1,2)) /6K i Sooh s

X2 (1) =U2(1,2)+(C(1,2)%C2(1,2)) /6K T

No .2 J=2,N4 ' ‘ SR
ADTUV2(J,1)=(C1(¢d,1)*C2(J, 1)+GK*SORT(C1(J 1)**a+c2<J 1)**2 GR¥*2

AN/ GKEHR2 =20, 1) % %2)

TDIOV2C) =A0T10V20d,1)
IF (1.67.2) GO TO ?
SbIOVZCI)=ApT0V2(Y, 1)
CONTINUFE -
WRITE (6,12) (A D1ov2(J,1), J= 1,N>

FORMAT (1HO 5X, OHAD1OV2/(F30.8))

BOTUV2(1)=(CT(1,2)%C2(1,2)+GK* SQRT(C1(1, a)**2+c2<1,2)**2 GKA*Z\)

VS (GE*F2-CT (1, 2) %%2)

WRITE (6,77) 2p10V2(1) - S
FORMAT (1HG 20X,9HR D10V?(1)/(F)0,8)) o : o7
XD10V2(1)=8016v2(1) : G : e

Y , , o - SN

00 35 J=2,M
U104,2)=10000,9

U2, 2)=10000.0¢ T S ,. . S . P ,’,

C1(J,2)=10000,0 ~ P e

€2(J,2)=10000,0

DO 4 L=1,250 : . _
TUTEUT (S, 2) S o ‘
TUZ=U2(J:2) : SR , S
STC1=C1¢4,2)

T62=C02(4,2)

TDET==AD1OV2(JS, 1) *3D10VZ(J=1)+1,

Z=AD10V2(y, 1>*u1(1,1> uz2(Jd,1
VZZ=*8010V2(J"1)*U2(J-1,2)+U1(J~1.2)_
UTCJ¢2)=(~2*BD10OV2(J=1)+2Z)/DET

U2CJ,2)=CADT0V2(J ,1)*22=2) /DET

DUCHI=U2Cd,2)~u20, 1)

DyII=U20d,2)~U200=1,2)

DV =U1(J,2)~ury=1,2)

ES(GK*42-CT1(J,1)*x2)

FEADTOV2(S, 1) % (GK**2=C2(J,1)%%2)

EE=BDTIOV2(Jm1) % (GK*x#2=C1(J=1,2)%%2)
FRE(GK*#2=(2(J=1,2)%%2)

DUSE*FF=EE%F

XL=DUI)*GK/CE(J, 1) *((CT(J, TI)*x2+C200 1) #*2) % (1, =6K) =2 % (GKx*2))
T+C1 (I, 1) *F+C2C ), 1) *E

YLZDV I %GR/ TS (=1,2) % C(CT(JmT, 2) % 42402 (J=, 2) %% 2) % (], ~GK) =2 #
VCGK*%2)) 401 (=, 2) % FF4C2(J=102) 4EE '
CICI 2= (E*YL-EE*XL) /DL

C2CJ 2Y=(XLAFFaYL*F) /DL

NISCUAY=0CT (1. 2% %24 020 1 2Vadk Ttz aa?.
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1F (M EGed=1 ) GG-TD ol‘) -
\)1UV2(’,/)—(L1(J 2)xC20J, 2)+b}*SOPT(L1(J 2)**2+C2(J 2Y**2
1aGE**2) )/ (GR**2-C2(J, 2)kx2).
L g G2 =y, 2)*C2 () 2)+GK SORT(C'!(J 2)*x2+r2(J 2)**2 ~GK**2))
,‘]/((1"**(‘ ~C1(J,2)**%2) ’
ADTUNV2CD,1)=0 LHR(TRIOVZ2CI)Y+ADIQVZ Y, 2))
aptuvey=-1)=0, 5ax(xB1OV2(I~1)+8010V2(4))
TEST(Y) = ABS(TUT=UT(J,2))+ ABS(TUZ-142(J, 2))+ ABS(TC1 c10(Jd, 8))
1+ ABS(TC2-C2(4,2))
. IF (TEST(J).LT.0.0GC0001 ) GO TO 55
4 CONTIHUE
2001 FGRMAT (THO 5X, 2HJd= 1525X,
" 1S5HTEST= E20.8,.22H THE TESI'DID NOT WORK)

GO TO 56
55 WRITE (6,2011) J L. TEST(J)
2011  FORMAT (1HO 5Xx,28J=,13,5X,2HL=,13, SX,5HTEST= E30. 8)
56 C(J,2)=CSCJ, M+ (UT(J,2)-UT1(J, D))+ (010, 1)+C1(J 2))/2,

1+DpULJ)*(C2CY, 1)+C2CJ,2)) /2,
CB(JI=CS I~ 1.2)*DV(J)*(C1(J~1.2)+C1(J.2})/Z,
14D (I *(C2(I=1,2)+C020d,2))/2. '
€5(d,2)=(CJ,2)+CECIN/ 2 "
X1(d)=U1(J,22+(CS(d,2)*C1(J,2))/GK
X2(J)=U2(d,2)+(CS ), 2)%C20y,2))/GK
CXBI0V2 =0T, 2)* 02, 2) +OKX SART(CT(J,2)**2+C2(J,2) **2=GK**2))
1/ (GKREE2 C1(J,2)**?)
3 CONTIHUE '
619 WRITE (6,101) (AD1OV2(J, 1),BD10V’(J"1),J =2 M)
191 FORMAT (1HO.S5X, 6GHADIOVZ2, SX, 6HBD10VZ/(2E3Q. 3))
COWRITE (6,1010) (U1(J,2), U204 ,.2), =14
1010  FORMAT (1HO 5X,. 2HUT,5X. ZHY2/(2E30.8)) '
WRITE (6,211) (C(J,2),C1¢3,2).C20J, 2).018CC4), U= 1.r)
211 . FORMAT (1HD 55X, 6HCCJ, 2) 59X, THCT (I, 2) 45X, /nCd(J 2) 5%, 7THOISC (YD
' 1/(LE30.8)) ' -
WRITE (6,1211) (CRCI),CSCI,2), J=20M)
1211 FORMAT C(1HO 5%,5HCBCI) 15X, SHCS(J)/(2E508))
WRITE (6,121) (X1(J).x203),J= 1.n) '
IF (1.GE.N) GO TO .400
DO 90 J=1,M
U1¢J,1)=U1¢J,2)
U2¢Jd 1) =U2(J4+2)
Cd,1)=c(Jd,2)
CS(J,1)=CSCd,2)
C1(J,1)'=-‘C1(J,2)
22U 1)=C2We2),
90 CONTINUE
6o TO 333
END

SUBRQUTINE CALC(TH,U10,6K,C1,C2)
REAL TH,UT0,06K,C1,C2 :
REAL 61,62,G65,4U1,F10
‘REAL U11U2.V1.”? F1,F2, FU1 FU2, FV1:FVZ GRAD,DEL
INTEGER T.H ’
F10=1,0~(GK*U1H)
MUT=ARSINCFT10/U10)
G2=S02T(GK/(1.0+6K))
”""/\Tf.u(ué/"l/‘\u( 1)) o
G1=F10/(G2*C0S(53))
U1=~uU10
vi=90
F1=1 (O~CK*1110
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“_FV1=GK*(1.0~SIH(HU1))/COS(MU1)
f,CQAo=_1,0/rAN<Mu1> -

F1=1.0-654y10
FUT=6K

M= INT(TH*GZ*1600.0/(0.50*3.14159~63))
DO 1 1=1,H . ' : :
DEL=I*TH/N ) .
UC=(GT*STH(GZ*DFL+G3) % COS(MUT-DEL)+G1%G2* COS(G2+DEL+G3)

1% SIN(MU1~OEL))*(-1.0) ’ S _

V2=GT% STH(GE*DEL+GS) * SIN(MUT=~DEL)=G1%G2% COS(G2«DEL+G3) -

T+ COSCHUT=-5EL) : - : .» o
FE2GT*G2% COS(G2+DEL+G3) ‘ . ' SR
FUZ=((F2~F1)*(GK**Z-FU1**2)-((V2~/1)*GK*((FU1**2+FV1**2)

-1*(1.0*GK)*Z.U*GK**Z)/F1+FU1*GRAD*(GK**Z-FV1**2)+FV1*(GK**2;FU1**2)

2)*(VZ—V1))/((U2-U1)*(GK**Z—FU1**2)*GRAD#(GK**Z-FVT**Z)*(VZ-V1))
FVZ:((F2~F1)*GRAD*(GK**Z-FV1**2)-((VZ"VT)*GK*((FU1**2+FV1**Z)#
1(1.Q-GK)~Z,O*GK**2)/F1+FU1*GRAD*(GK**2~FV1*ﬁ2)+FV1*(GK**Z”FU1**2)

'Z)*(UZ-U1))/((VZ-V1)*GRAD*(GK**2~FV1**2)~(GK**2~FU1**2)*(U2"U1))

GRAD= (FU2*Fy2+;K+ SURTCRUZ 424 FV2%%2mGK4%2) ) / (GK#32-Fypas2)
FUT=FuU2 S | - : - O 4
FV1=FV2

ui=u2

CV1=EY2

F1=F2
CONTINUE
Ci=ruye
C2=FvV2
RETURN
END
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