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Abstract 

 

Financial markets are vital for capital allocation and as a consequence, for the wider economy. 

They perform two primary functions: liquidity and price discovery. Liquidity refers to the 

ability to trade large quantities of an instrument quickly, and with relatively little price impact. 

Therefore, it offers investors the flexibility to make investment decisions. Price discovery 

encompasses the price formation process in financial markets and is, therefore, critical for 

efficient capital allocation. Both these functions are linked to the functioning of the wider 

economy. Over the last decade, financial markets have been transformed with the help of 

technology and are now a completely different proposition. Specifically, technological 

advancements, such as high frequency trading (HFT), have altered the structure of financial 

markets, the strategies of traders, and the liquidity and price discovery processes. These 

changes and developments have ignited a heated debate among academics and regulators. 

While some researchers claim that HFTs increase the market efficiency by improving the 

liquidity and price discovery (see as an example, Brogaard et al., 2014b), others argue that they 

create adverse selection risks for slow traders and contribute to market instability by 

exacerbating illiquidity shocks, such as flash crashes (see as an example, Kirilenko et al., 2017). 

Motivated by these contrasting views, this thesis investigates these issues, and is therefore 

situated at the intersection of financial markets, technology and regulations. It specifically 

examines the topical issues around the transformative role of technology in financial markets 

by adopting novel and unique approaches. In the first study, I present a novel framework 

illustrating the links between order aggressiveness and flash crashes. My framework involves 

a trading sequence beginning with significant increases in aggressive sell orders relative to 

aggressive buy orders until instruments’ prices fall to their lowest levels. Thereafter, a rise in 

aggressive buy orders propels the prices back to their pre-crash levels. Using a sample of S&P 

500 stocks trading during the May 6 2010 flash crash, I show that the framework is correctly 
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specified and provides a basis for linking flash crashes to aggressive strategies, which are found 

to be more profitable during flash crashes. The second study is a methodological contribution 

to the financial econometrics literature, in which I propose a state space modelling approach 

for decomposing a high frequency trading volume into liquidity- and information-driven 

components. Using a set of high frequency S&P 500 stocks data, I show that the model is 

empirically relevant, and that informed trading is linked to a reduction in volatility, illiquidity 

and toxicity/adverse selection. Furthermore, I observe that my estimated informed trading 

component of volume is a statistically significant predictor of one-second stock returns; 

however, it is not a significant predictor of one-minute stock returns. I show that this disparity 

can be explained through the HFT activity, which eliminates pricing inefficiencies at high 

frequencies. The third study exploits the impact of the international transmission latency on 

liquidity and volatility by constructing a measure of the transmission latency between 

exchanges in Frankfurt and London and exploiting speed-inducing technological upgrades. I 

find that a decrease in the transmission latency increases the liquidity and volatility. In line 

with the existing theoretical models, I show that the amplification of liquidity and volatility is 

associated with the variations in adverse selection risk and aggressive trading. I then investigate 

the net economic effect of high latency, which lead to the finding that the liquidity deterioration 

effect of high latency dominates its volatility reducing effect. This implies that the liquidity 

enhancing benefit of increased trading speed in financial markets outweighs its volatility 

inducing effect.  

 

Keywords: trading volume, permanent component, transitory component, market quality, time 

series models, state space modelling, transmission latency, microwave connection, high-

frequency trading, liquidity, volatility, order aggressiveness, algorithmic trading, asymmetric 

information, extreme price movement, high-frequency data, logistic regression. 
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1. Introduction  

1.1 A summary of the thesis 

Technological advancements have significantly altered the nature of trading in financial 

markets; the structure of financial markets, the strategies of traders, and the mechanisms of 

liquidity and price discovery are completely different today. One of the most important 

implications of the evolution of technology in financial markets is HFT, which has grown 

tremendously over the past decade and now drives at least half of all the trading in major 

financial markets (see Brogaard et al., 2014b). In response to the changes in the structure of 

financial markets, and in order to ensure a stronger level of competition and a more efficient 

pricing system, new trading rules and regimes, such as the Regulation National Market System 

(Reg NMS) and the Markets in Financial Instrument Directives (MiFID), have been 

implemented. These new trading rules have further altered critical market processes and 

mechanisms, resulting in an even more complex market structure. Therefore, it is vital to 

examine the effects of these developments in financial markets. This thesis directly addresses 

the questions arising from these developments, and consequently fills a yawning gap in the 

existing literature.  

The evidence regarding the impact of technological advancements on financial markets 

has hitherto been inconsistent. While some studies show the positive impact of HFTs on 

liquidity and price discovery (see as examples Brogaard et al., 2014b; Hendershott et al., 2011; 

Hoffmann, 2014), others suggest that HFTs can increase the adverse selection (and hence, 

deteriorate liquidity) and contribute to flash crashes (see as examples, Biais et al., 2015; 

Foucault et al., 2016; Foucault et al., 2017; Hendershott and Moulton, 2011; Kirilenko et al., 

2017). Motivated by these contrasting predictions/findings, I conduct three studies examining 

the questions linked to the recent major developments and challenges in financial markets. 

Specifically, I investigate the role of aggressive traders in flash crashes in HFT-driven markets, 
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the effects of informed/liquidity trading on financial markets at high frequency, and the 

relationship between speed/latency and the market quality. I directly contribute to the literature 

through the investigations described below. The contributions and research questions of the 

thesis are briefly discussed in the following paragraphs.  

Chapter 2 contains an investigation of the contribution of aggressive orders to flash 

crashes by proposing a novel framework illustrating the links between order aggressiveness 

and flash crashes. The framework is a hypothetical three-stage trading strategy, which 

generates a similar price evolution process to flash crashes and provides more profit for 

aggressive traders under some conditions. The framework motivates three important 

predictions. First, excessive sell order aggressiveness creates a downward pulling effect on 

stock prices prior to and during the first half of flash crashes. Then, in the second stage of flash 

crashes, the balance of order aggressiveness shifts to the buy side which generates an increasing 

pressure on stock prices. Second, the framework predicts that order aggressiveness prior to 

flash crashes is linked to it. Third, aggressive orders are more profitable during extreme price 

movements; thus, traders tend to behave more aggressively during these periods. Thereafter, I 

test these predictions using ultra-high frequency trading data for the components of the S&P 

500 stock index impacted by the May 6 flash crash, i.e. the biggest flash crash in the financial 

market history. The empirical results are consistent with the framework’s predictions. First, I 

documented that, as predicted by the framework, during the first half of the flash crash stock 

prices going down as a result of excessive aggressive order imbalance favouring the sell side. 

Then, the aggressive order imbalance shifts to the buy side, which pushes the prices back to 

the pre-flash crash level. Second, the study shows that increased build-up order aggressiveness 

contributed to the May 6 2010 flash crash. Third, the findings suggest that aggressive trading 

is significantly more profitable during flash crashes than normal trading periods; the difference 

is both economically and statistically significant. Specifically, an informed/aggressive trader 

could earn up to a cumulative return in excess of 1,482 basis points (bps), based on my analysis 
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of a sample of flash crash-affected stocks. This chapter differs from previous studies (see as 

examples, Easley et al., 2011; Jacob Leal et al., 2016; Kirilenko et al., 2017) in at least two 

aspects. First, my framework makes no assumptions regarding the liquidity constraints in the 

market, and, therefore, is more consistent with the reality of the HFT-driven financial markets. 

Second, while some studies show the contribution of aggressive traders to the flash crash (see 

as an example Mcinish et al., 2014), to the best of my knowledge, the theoretical framework 

and empirical analysis I present in this study are the first to explain the economic motivation 

for aggressive trading. Explicitly, the results suggest that higher profitability of aggressive 

orders may be a driver of the traders’ aggressiveness during flash crashes.  

In Chapter 3, I propose the state space modelling approach for decomposing a high 

frequency trading volume into liquidity- and information-driven components. More explicitly, 

I demonstrate trading volume as a sum of two unobserved series: a non-stationary permanent 

series and a stationary transitory series. I argue that uninformed/liquidity traders and informed 

traders can be respectively modelled by using estimated permanent and transitory components 

from the state space approach. I then test this argument, i.e. the empirical relevance of the 

proposed state space approach, by developing a set of univariate analysis and multivariate 

regression models. Using a set of high frequency S&P 500 stocks data, I find that the model is 

empirically valid and that informed trading reduces volatility, illiquidity and toxicity/adverse 

selection. The validity of the empirical relevance of the model is further confirmed by the price 

efficiency test prescribed in Chordia et al. (2002; 2008).  Specifically, I demonstrate that one-

second stock returns can be predicted from the estimated transitory component of the volume, 

which implies that the transitory component of the state space approach can indeed provide a 

signal about informed trading. However, I observe that both Chordia et al.’s (2008) and my 

informed trading proxies are not able to predict one-minute stock returns. By using the 

NASDAQ-provided HFT data, I show that HFTs eliminate pricing inefficiencies at minute 

intervals. 



13 
 

This chapter makes the following contributions to the existing literature. First, the 

proposed state space modelling approach is fundamentally different from the existing 

decomposition methods and has significant economic worth. Second, I examine the role of 

informed trading activity in market quality by using a relevantly new proxy – market toxicity 

– which is not well-documented in the literature. Finally, I present new evidence on the speed 

of price adjustment in HFT-driven markets.  

The study reported in Chapter 4 involves estimating the information transmission 

latency (TL) between a home exchange in Frankfurt and a satellite exchange in London; 

subsequently, its effect on the liquidity and volatility of cross-listed stocks in the satellite 

market is examined. This study provides important empirical findings. First, I find that the TL 

between Frankfurt and London is 3–5ms. Second, and more importantly, my findings suggest 

that while higher transmission speed improves the market quality by increasing liquidity, it 

nevertheless raises volatility, and thus, harms the market quality. By adopting a quasi-

experimental setting, I show that the positive relationship between the transmission speed and 

liquidity/volatility is causal. Furthermore, I show that channels proposed by various theoretical 

models, i.e. adverse selection avoidance and aggressiveness, can explain the main findings – 

the positive relationship between speed and liquidity/volatility. Finally, I report that the net 

economic impact of high speed is positive for the economy.  

My contributions to the existing literature are as follows. First, the study is the first to 

empirically estimate the TL between the two biggest European financial centres, Frankfurt and 

London. The highly fragmented characteristic of the European trading venues makes it 

particularly important for this region. Second, I provide causal evidence on the direct impact 

of speed on volatility, which is unclear in the literature. Third, the latency metric I constructed, 

TL, is more relevant for fragmented financial markets, and it implies that it has further 

economic insight and is more consistent with the reality of trading in modern financial markets. 
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Finally, the study investigates the net economic effect of high speed, which is unclear in the 

HFT literature and thus, has many important implications for the wider economy. 

Chapters 2, 3 and 4 individually focus on a single issue, as stand-alone studies. I use 

the US and European stocks as sample data for empirical tests across the three chapters. The 

next part of this section discusses the literature related to my studies. 

 

1.2 Financial markets: microstructure and technology 

Financial market microstructure is the branch of financial economics, dedicated to the 

study of pricing dynamics of financial securities and the mechanisms used for trading those 

securities. According to Madhavan (2000, p.205) “market microstructure studies the process 

by which investors’ latent demands are ultimately translated into prices and volumes”. 

Whereas O'Hara (1995) views market microstructure as involving an investigation of the way 

in which price discovery is affected by trading mechanisms. Furthermore, O'Hara (2003) 

argues that market microstructure mainly analyses two important functions of financial 

markets: liquidity and price discovery. Financial markets impact the wider economy through 

these two channels, and thus, well-functioning financial markets are essential for the stability 

of the financial system and long-term economic growth. Hence, examining the microstructure 

of financial markets is vital and has many important implications.  

 O'Hara (2015) suggests that technological advancements have altered the entire system 

of financial markets; therefore, investigating the implications of these changes for market 

microstructure is important. The author further argues that researchers must change their 

directions to reflect the fundamental differences in the new market microstructure, i.e. the high 

frequency market microstructure.  

While the intersection of financial markets and technology has several implications, in 

this section, I provide the literature review for two of them, namely HFT and market 

fragmentation, as they are directly linked to the studies investigated in this thesis; the most 
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important result of the intersection of financial markets and technology is HFT. The evidence 

of the impact of HFT on financial markets has so far been inconsistent. While some studies 

find that HFTs improve the liquidity and price discovery process (see as examples, Brogaard 

et al., 2014b; Hendershott et al., 2011), others suggest that they increase the adverse selection 

risks for slow market makers and exacerbate price crashes (Biais et al., 2015; SEC, 2010).  

For example, Jovanovic and Menkveld (2016) propose a model where HFTs interact 

with investors in a limit order book; the authors assume that HFTs are equipped with hard 

information about the common values of assets. The study shows that HFTs use their speed 

advantage to avoid being adversely selected and thereby, increase liquidity and reduce the 

adverse selection in financial markets. Furthermore, their findings suggest that well-designed 

double auctions maximise the welfare impact of HFTs. Similar to Jovanovic and Menkveld 

(2016), Hoffmann (2014) also shows that HFTs can reduce adverse selection by avoiding it 

and increasing the trade. However, the study finds that if the proportion of HFTs is not given 

exogenously, they can cause social welfare loss. The predictions of the abovementioned studies 

are empirically confirmed by Hendershott et al. (2011). Hendershott et al. (2011) conducts one 

of the first studies that examined the role of Algorithmic Trading (AT) in the market quality. 

By using the New York Stock Exchange’s automated quote dissemination in 2003 as an 

exogenous shock, the study finds that AT improves the liquidity and reduces (increase) the 

noise (efficient) price discovery. Similar to Hendershott et al. (2011), Brogaard et al. (2014b) 

also find that HFTs increase (reduce) the efficient (noise) price discovery. The study conducts 

an analysis using the NASDAQ-provided HFT data, and by employing the state space 

approach, described in Menkveld et al. (2007), to decompose the price discovery into efficient 

and noise parts. 

The negative impact of HFT on financial markets is modelled by Biais et al. (2015), 

Foucault et al. (2016), and Foucault et al. (2017). Biais et al. (2015) develop a simple model 

where financial institutions have heterogeneous private valuations and private information. 
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While heterogeneous private valuations create additional gains from trades, private information 

causes adverse selection for slow traders. More importantly, the authors show that as a result 

of the negative externality of fast trading, i.e. adverse selection impact, investments in fast 

trading exceed their utility and hence, fast trading reduces social welfare. The study proposes 

various approaches that allow all traders, slow and fast, to obtain social gains. Foucault et al. 

(2016) build on Kyle (1985) and allow one speculator (slow or fast) and one competitive dealer 

in the model. The study shows that when the speculator is fast, the dealer has a higher adverse 

selection risk and thus, the market is less liquid. Furthermore, in the model, the speed of price 

discovery is independent on the types of speculators (fast or slow), since the fast speculator’s 

trades have less (more) information content for long-run (short-run) price changes, and these 

two effects offset each other. Similar to Biais et al. (2015) and Foucault et al. (2016), Foucault 

et al. (2017) also show that HFT can raise adverse selection in financial markets. The study 

argues that there are two possible channels for arbitrage opportunities: (1) demand and supply 

shocks (price pressures) and (2) asynchronous adjustments in asset prices. The study models 

the latter channel and demonstrates that while HFTs improve price efficiency in financial 

markets, they increase the adverse selection for dealers. The prediction of the mentioned 

theories, i.e. positive relation between HFT and the adverse selection cost, is empirically 

confirmed by Hendershott and Moulton (2011). Hendershott and Moulton (2011) find that 

although automation trading systems make the prices more efficient, these systems increase 

adverse selection and thereby, raise the cost of immediacy. 

 Kirilenko et al. (2017) empirically show that HFTs behave differently than traditional 

market makers during the flash crash. More specifically, the study reveals that during the May 

6 flash crash, the trading strategies of HFTs are based more on quote sniping and latency 

arbitrage rather than traditional market making strategies. This implies that HFTs may 

adversely select/stale quotes of slower market makers during extreme price movements; 

therefore, while HFTs did not trigger the flash crash, they contributed towards it (see also SEC, 
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2010). By contrast, Brogaard et al. (2014a) show that although the profits of HFTs are high 

during extreme price movements, there is little evidence of HFTs causing extreme price 

movements. Furthermore, the study states that while HFTs provide liquidity when a single 

stock experiences extreme price movements, they demand liquidity in multi stocks case, i.e. 

when there are simultaneous extreme price movements in multiple stocks. In addition to these 

studies, Easley et al. (2011), Kyle and Obizhaeva (2016), Madhavan (2012), and Menkveld 

and Yueshen (2017) show other technology-linked factors that are susceptible to contribute to 

flash crashes. Further literature about the impact of HFTs on financial markets and wider 

economy can be found in Menkveld (2016). 

Another noteworthy outcome of the intersection of financial markets and technology is 

market fragmentation. Market fragmentation implies that stock trading is spread across 

multiple financial markets. Although the impact of this phenomenon on market quality has 

been extensively investigated in the market microstructure field, the studies do not have a 

consensus. On the one hand, O'Hara and Ye (2011) show that market fragmentation improve 

the market quality by lowering the transaction costs and increasing the execution speeds (see 

also Battalio, 2012). On the other, Bennett and Wei (2006) find that when stocks switch from 

a more fragmented market (NASDAQ) to a less fragmented one (NYSE), they experience the 

better market quality and more efficient price discovery.  

While market fragmentation is not directly studied in this thesis, one of the most 

important and HFT-related implications of it – the transmission latency between financial 

markets – is investigated. Shkilko and Sokolov (2016) examine liquidity when weather-related 

episodes disrupt the microwave transmission between the lead and lag markets; they find that 

adverse selection and trading costs decline and the liquidity improves during these periods, 

implying that a higher transmission speed between trading venues may harm the market 

quality. Menkveld and Zoican (2017) and Baron et al. (2018) also investigate the role of speed 

differentials in financial markets, however, by focussing more on a consolidated market 
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structure rather than a fragmented one. More explicitly, Menkveld and Zoican (2017) 

theoretically model the HFT arms race. The study extends Budish et al.’s (2015) model by 

adding the impact of exchange speed to it. Their model explains the impact of exchange speed 

on the market quality by using two contrasting channels. In the first channel, high frequency 

market makers (HFMs) obtain speed advantages as a result of the improvements in exchange 

latency; by doing so, they avoid being adversely selected and improve liquidity. In the second 

case, high frequency speculators (HFSs) obtain speed advantages as a result of improvements 

in the exchange latency; thereby, they adversely select the HFMs’ orders, leading them to 

widen the bid-ask spread to compensate for the increased adverse selection risk. The widening 

of the bid-ask spread implies a deterioration in liquidity. The authors further analyse the net 

effect of the exchange speed improvements and show that it depends on the news-to-liquidity 

ratio of the asset. Specifically, Menkveld and Zoican (2017) present that the former (latter) 

channel is strong when the news-to-liquidity ratio is high (low). Baron et al. (2018) study the 

relationship between speed differentials and the trading revenue in a single market and find 

that the fastest firms (HFTs) can generally earn the largest trading revenues. 

 

1.3 Background 

In this section, I provide detailed information on the structures of the markets 

investigated in the thesis. I further discuss a few of the key aspects and regulations that should 

be understood before reading the studies presented in this thesis. 
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1.3.1 U.S. Markets: The New York Stock Exchange (NYSE) and the Nasdaq Stock Market 

(NASDAQ) 

As of January 2007, the NYSE is a hybrid market, and in terms of liquidity, it is 

considered the best exchange in the US.1 The NYSE’s market model mainly consists of three 

players: (1) the designated market makers (DMMs), (2) the floor brokers, and (3) the 

supplemental liquidity providers (SLPs). The DMMs improve price discovery and liquidity by 

maintaining well-coordinated markets. Furthermore, the DMMs minimise the order latency by 

matching the incoming orders from traders. Previously, the NYSE used the specialists instead 

of the DMMs. In order to eliminate the issue of front running, the NYSE replaced specialists 

by the DMMs. Explicitly, while the specialists could see all incoming orders, the DMMs do 

not have an advanced view and they thus behave like a regular market participant. As of 2017, 

there are five DMMs in the NYSE. 

The floor brokers execute transactions, i.e. buying and selling stock, on behalf of their 

firm’s clients. Their firm should be the member firm of the NYSE. The SLPs are established 

by the NYSE to improve liquidity and they are electronic, high-volume members of the 

marketplace. One of the most important obligations of the SLPs is to keep a bid price at the 

National Best Bid or Offer (NBBO) level, at least 10% of the trading day. Six order types are 

commonly used in the NYSE. They are immediate or cancel, displayed limit, displayed limit 

reserve, non-displayed limit, auction, and other. Almost half of all orders are immediate or 

cancel and displayed limit orders.  

Similar to the NYSE, the NASDAQ is also considered a hybrid market. The NASDAQ 

is considered the largest trading venue by volume in the US.2 While both of them are hybrid 

markets, in contrast to auction market system of the NYSE (at market open and close), the 

NASDAQ is a purely dealer’s market. More explicitly, in the NASDAQ market, security 

                                                           
1https://www.nyse.com/markets/nyse 
2http://www.nasdaqtrader.com/Trader.aspx?id=TradingUSEquities 

https://www.nyse.com/markets/nyse
http://www.nasdaqtrader.com/Trader.aspx?id=TradingUSEquities
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transactions are executed through dealers. However, at market open and close periods, market 

participants can buy and sell securities from each other in the NYSE. Another important 

difference is in terms of their market models. As already noted, the NYSE relies on the DMMs 

and the SLPs for providing liquidity and efficient trading/price discovery processes. However, 

the NASDAQ is a purely electronic market and therefore, has different “traffic control” 

mechanism, i.e. the electronic market makers. In contrast to the NYSE, in the NASDAQ 

exchange, each stock has more than one market maker. The NASDAQ’s market maker buys 

and sells securities at the NASDAQ’s prices and can execute transactions for his/her own 

account as well as his/her client’s account. The NASDAQ uses the price-time priority rule to 

execute transactions and has various types of orders, such as intermarket sweep orders, post-

only orders, supplemental orders, and more. 

 

1.3.2 European Markets: Deutsche Börse Xetra (Xetra) and Cboe European Equities 

(CBOE) 

Xetra is a main German stock exchange where 90% of security trading at all German 

exchanges are executed. Furthermore, 30% of all exchange traded funds (ETFs) in Europe are 

transacted at this trading venue. Xetra uses “continuous trading with auctions” for securities; 

this model is a combination of continuous trading and auctions. Through the continuous trading 

mechanism, liquid securities are executed immediately at the current market price. In addition 

to this continuous trading system, three auctions are organised during the day. By adopting 

auctions, Xetra aims to determine the price level for the exchange which can be used by 

institutional investors for valuing their trading positions. In addition to this system, Xetra offers 

the designated sponsors (DSs). The primary aim of the DSs is to provide liquidity for less liquid 

securities. Xetra also has the regulated market makers (RMMs) who provide liquidity to the 

market and have similar obligations to the DSs. The major difference between the RMMs and 

the DSs is their requirements. More specifically, while the RMMs should include a presence 
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of at least 50% during continuous trading, this number is 90% in equities and 80% in ETFs for 

the DSs. The basic types of orders used by market participants in Xetra are market order, limit 

order, stop market order, stop limit order, and trailing stop order. 

CBOE is the largest European trading venue in terms of the value traded, and was 

formed through the merging of BATS Europe and Chi-X Europe in 2011. CBOE offers an 

excess to 18 major European financial markets, and more than 6,000 securities are traded 

through this venue. 

CBOE continuously accepts orders from 08:00 to 16:30 and further, has a periodic 

auctions book which aims to publish the prices and order quantity, prior to the order execution. 

CBOE uses the post trade model and offers the central counterparty (CCP) to provide liquidity 

to the venue. This market participant is used by trading participants to clear their trades. More 

specifically, the CCPs can be a buyer (seller) to each seller (buyer). This type of a trading 

model allows participants to trade and clear their trade with minimum cost and counterparty 

risk. 

CBOE operates two lit (BXE-lit and CXE-lit) and two dark order books (BXE-dark and 

CXE-dark). Between these four order books, CBOE holds nearly 25% of the daily equities 

trading in European markets. The lit order books have four categories of orders: (1) visible 

orders, (2) interbook orders, (3) hidden orders and (4) peg orders. Each order category has 

different order types. For example, visible orders have visible limit order, post only order, and 

reserve order types. There are two order categories in the dark order books: minimum 

acceptable quantity and midpoint peg orders. 

 

1.3.3 Regulations: The Regulation National Market Systems (Reg NMS) and the Markets 

in Financial Instrument Derivatives (MiFID) 

As previously noted, the new trading rules and regimes have been proposed in response 

to the changes in the structure of financial markets. In this section, I discuss two important 
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regimes, the Regulation National Market System (Reg NMS) and the Markets in Financial 

Instrument Directives (MiFID), which have been respectively implemented in the US and 

European financial markets.  

According to SEC (2005), Reg NMS has four key provisions: (1) the order protection 

rule (OPR), (2) the access rule (AR), (3) the sub-penny rule (SPR), and (4) the market data 

rules (MDR). The OPR has been designed to protect limit orders against trade-throughs – a 

trade-through is an order with a suboptimal price. More specifically, these orders are executed 

at non-optimal prices, even if there is a better price on the same or other exchanges. It is 

important to note that the OPR protects only the displayed and automatically accessible orders. 

The SEC offers the OPR to strengthen price discovery and market efficiency by protecting the 

limit orders. The AR has been proposed to set better standards for ruling access to quotations 

in securities. This rule is very vital for the OPR, as market participants and trading centres need 

to have effective access to prices to protect them against a trade-through. The AR rule provides 

more efficient access to quotations using various ways. For instance, the rule allows 

participants to use private linkages in addition to a collective linkage facility. More specifically, 

before the AR rule, traders could use only a collective linkage facility, such as inter-market 

trading systems (ITS), to gain access to the quotations of exchange-listed stocks. These 

collective linkages are generally offered by trading venues. However, following the success of 

private linkages in electronic markets (for example, NASDAQ), the SEC decided to use the 

same connection systems for traditional exchange-listed stocks. In contrast to ITS, private 

linkages are offered by various connection providers and aim to obtain better access to the 

quotations displayed by exchanges. 

The SPR was proposed to prevent market participants from “stepping ahead” of the 

displayed limit orders through trivial amounts. More specifically, the rule implies that 

exchanges cannot accept quotes that are prices in increments of less than $0.01, if the quote 

price is more than $1.00. The main aim of the rule is to improve liquidity by protecting liquidity 
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providers from losing their priority owing to trivial amount changes in order prices. The MDR 

is designed to fairly allocate the market data revenues of self-regulatory organisations (SROs)3 

and, by doing so, promote the wide availability of market data. Before the MDR, the market 

data revenue was allocated according to the number of trades reported by the SROs. However, 

the MDR allocates more revenue to SROs who provide greater contributions to the best 

displayed quotes. Furthermore, in addition to the required best quotes and trades data 

distributed by exchanges through the different plans, the MDR allows exchanges to distribute 

their own data independently. This further promotes the wide availability of market data.  

While the Reg NMS’s OPR mandates the best execution by enforcing trade-through 

provisions, the European equivalent of the all-encompassing financial regulation, the MiFID, 

does not enforce trade-throughs. However, the European regulation/MiFID requires that 

investment firms ensure the best execution on behalf of their firms. This somewhat differs from 

the US regulation/Reg NMS, requiring that platforms forward orders to other platforms 

offering the best execution.  

The MiFID has been designed to promote transparency, competition and integration in 

European financial markets. Two levels of this regulation have been implemented: MiFID and 

MiFID II. The MiFID has been effective from November 2007. The first important implication 

of the MiFID is pre- and post-trade transparency. Pre-trade transparency allows market 

participants to continuously monitor transactions and quotations; thereby, this transparency 

provides traders with the opportunity to immediately obtain new information about the 

fundamental value of assets. It is important to note that pre-trade transparency has been applied 

to lit order books only. Post-trade transparency requires that market participants report their 

post-trade information within three minutes of the relevant trade.  

                                                           
3SROs are multilateral trading platforms such as NYSE. 
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Another important implication of the MiFID has been proposed for market 

fragmentation. The MiFID has been designed to promote competition, and this competition 

leads to more fragmented financial markets in Europe. As pointed out, this implication raises 

an important difference between the MiFID and the Reg NMS. Specifically, while the Reg 

NMS requires orders to be executed at the best bid and ask prices – even if these best prices 

are available at different markets – the MiFID does not have this requirement. Rather, the 

MiFID requires investment firms to take all the necessary steps for the best execution, 

considering the costs, speed and likelihood of execution. Therefore, under the MiFID, orders 

might sometimes be executed at non-optimal prices. 

The MiFID II has been proposed to address the shortcomings of the MiFID, considering 

the consequences of the 2008 financial crisis and was implemented in January 2018. One of 

the important implications of the MiFID II covers the HFT/AT. According to the rule, HFTs 

should disclose their algorithms and test them in specific environments prior to trading in 

financial markets. Furthermore, all HFTs that trade in European markets should register as 

investment firms. To prevent market participants from leaving HFTs during stressed periods, 

MiFID II has set clear “exit” conditions. The MiFID II has also introduced cancellation fees 

for HFTs to mitigate the adverse impact of some HFT strategies, such as quote stuffing. In 

addition to the HFT-related regulations, the MiFID II sets two important limits for dark trading. 

First, in any trading venue, the dark trading volume for each stock should not be more than 4% 

of the total trading volume for that particular stock in that particular venue. Second, the dark 

volume of any stock in all trading venues cannot exceed 8% of the total trading volume of that 

particular stock in all venues. 
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2. Order aggressiveness and flash crashes 

2.1  Introduction 

Flash crashes are characterised by high price volatility, a significant negative return in 

instruments’ prices and are defined by a sharp price reversal (see Aldridge, 2010; Easley et al., 

2011). The most notable flash crash in recent history occurred on May 6, 2010 (see Kirilenko 

et al., 2017). On this day, market indices such as the S&P 500, the Dow Jones Industrial 

Average, the Russell 2000, and the Nasdaq 100, fell significantly before rebounding within an 

extremely short period.  

In the aftermath of the May 6 flash crash there has been a widespread concern that 

trading strategies commonly deployed by the fastest traders in financial markets – the so-called 

high frequency traders (HFTs) – induce or worsen price crashes.4 Kirilenko et al. (2017) argue 

that, although there may be no evidence of HFTs causing the May 6 flash crash, they 

nevertheless exacerbated it by demanding immediacy. The immediacy demanded at a 

heightened pace in a liquidity-constrained environment appeared to have led to an unbearably 

high level of order flow toxicity, thereby worsening the price crash.5 The aggressiveness of 

HFTs in demanding liquidity could therefore be argued to be a major contributing factor to the 

extent of the price crash recorded on May 6, 2010. However, to date, there has been no study 

directly linking order aggressiveness6 to flash crashes, with no constraints placed on market 

agents. This chapter addresses this gap in the literature.  

                                                           
4 About five months after the flash crash, on September 30 2010, the Commodity Futures Trading Commission 

(CFTC) and the Securities and Exchange Commission (SEC) released a study identifying an automated program 

executing the sale of 75,000 E-mini S&P 500 futures contracts as the main trigger for the flash crash (see SEC, 

2010). 
5 Easley et al. (2011) highlight the key role played by order flow toxicity in the occurrence of the flash crash; they 

also propose a measure of order flow toxicity, which they call the Volume-Synchronized Probability of Informed 

Trading (VPIN). 
6 I define aggressive orders in line with the classification approach of  Biais et al. (1995); specifically, aggressive 

orders are defined with respect to their sizes and tendency to cross the spread.  
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This chapter differs from previous studies (see as examples, Easley et al., 2011; Jacob 

Leal et al., 2016; Kirilenko et al., 2017) in at least two respects. Firstly, the links I draw between 

order aggressiveness and flash crashes make no assumptions regarding liquidity constraints in 

the market.7 Secondly, although there are a few studies examining the role of trader 

aggressiveness in flash crashes (see as an example Mcinish et al., 2014), to my knowledge, the 

theoretical framework and empirical analysis I present in this study is the first to explain the 

economic motivation for aggressive trading. Specifically, I show that higher profitability of 

aggressive orders during flash crashes may be a driver of traders’ aggressive trading behaviour 

during periods of extreme price movements.  

My approach involves extending the approach of Menkveld (2013), developed to 

decompose the trading profit in a normal market environment into its spread and positioning 

components. Menkveld (2013) illustrates the decomposition of traders’ profits by presenting 

two extreme cases – aggressive and passive market making trading strategies. The framework 

shows that traders adopting aggressive trading strategies incur losses during normal trading 

days and, therefore, the majority of traders – about 80% – tend to deploy passive market making 

trading strategies. The losses reported for aggressive traders on normal trading days is due to 

incoming market orders adversely selecting aggressive orders in the market (see also Glosten 

and Milgrom, 1985). My extension of this two-stage approach shows how aggressive trading 

strategies affect the price discovery process in financial markets.  

The framework involves a trading sequence beginning with significant increases in 

aggressive sell orders relative to aggressive buy orders until instruments’ prices fall to their 

lowest levels. Thereafter, a rise in aggressive buy orders propels prices back to their pre-crash 

levels. Using the predictions of the framework, I highlight the role of order aggressiveness in 

                                                           
7 Jacob Leal et al. (2016) also develop an agent-based model of a limit-order book to show the impact of HFT on 

financial markets; their HFTs are assumed to deploy only predatory high frequency trading strategies (aggressive 

trading strategies). They conclude that aggressive HFTs are culpable in flash crashes. Consistent with Jacob Leal 

et al. (2016), Mcinish et al. (2014) show that the aggressive behaviour of Intermarket Sweep Orders contributed 

to the May 6, 2010 flash crash. 
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extreme price movements, such as flash crashes, and argue that order aggressiveness can 

contribute to flash crashes.8 In this case, the framework shows that even in a liquid trading 

environment where there are no significant liquidity constraints, order aggressiveness can 

contribute to an environment of severe illiquidity such that prices become extremely volatile, 

as evident during the May 6, 2010 event.  

Furthermore, the framework shows that profits in aggressive trading strategies are 

positive and large during extreme price movements such as flash crashes, and therefore the 

fraction and the number of aggressive orders should be higher during these periods when 

compared with normal trading periods. I decompose the profits of aggressive traders into their 

spread and positioning components and similar to Menkveld (2013), I show that traders are 

confronted with a position profit and, inevitably, a spread loss when they trade aggressively. 

However, unlike during normal trading periods, when markets are volatile, the position profit 

eclipses the spread loss, thus making aggressive trading ultimately profitable during periods of 

high price volatility. Since my framework involving a three-stage aggressive trading strategy, 

which results in a price collapse and a subsequent sharp price reversal, mimics the form of a 

flash crash, I argue that aggressive trading strategies can contribute to flash crashes (see also 

Mcinish et al., 2014). I test the foregoing arguments and framework predictions using ultra-

high frequency trading data for the components of the S&P 500 stock index affected by the 

May 6 flash crash. The empirical results obtained are completely in line with the predictions 

of my framework.  

Firstly, I find that a significant imbalance in order aggressiveness favouring sell orders 

ensues in the run-up to and during the flash crash. I document a significant increase in the 

number of aggressive sell orders relative to aggressive buy orders in the run-up to and during 

the flash crash until instruments’ prices plummeted to their troughs. The increase in aggressive 

                                                           
8 This argument is also motivated by the results of Griffiths et al. (2000) and Wuyts (2011), who show that 

aggressive orders have price impacts larger than those of other trades. 
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sell orders with no corresponding rise in aggressive buy orders precipitated the crash in 

instruments’ prices. This finding is very important, since the total number of aggressive orders 

could be high; however, a significant price crash will only occur if aggressive sell orders 

significantly outstrip aggressive buy orders. This result is consistent with the official reporting 

following the flash crash (see SEC, 2010). 

Secondly, I link the evolution of order aggressiveness to the flash crash within an 

econometric framework, showing that increased order aggressiveness is related to the May 6 

2010 flash crash; hence, a build-up of aggressive orders ahead of the flash crash appears to be 

a contributory factor to the onset of the flash crash.  

Thirdly, I show that aggressive trading is significantly more profitable during periods 

of high price volatility such as flash crashes, than during normal trading periods. The increase 

in profitability is economically meaningful. I find that an informed trader could earn up to a 

cumulative return in excess of 1,482 basis points (bps) based on my analysis of a sample of 

flash crash-affected stocks, this is significantly higher than possible during the non-flash crash 

periods. Consistent with this finding, the fraction of aggressive buy and sell orders during the 

May 6, 2010 flash crash is higher than the fraction of these kinds of orders during other periods 

under investigation. The actual number of aggressive sell and buy limit orders during the flash 

crash is also remarkably higher than during the surrounding periods (before and after the flash 

crash). The results are robust to alternative estimation approaches and model specifications, 

including estimation frequencies. Overall, the empirical results show that the framework is 

correctly specified and the arguments I present valid in the case of the flash crash I examine. 

Thus, my theoretical framework not only predicts the aggressive behaviour of HFTs during the 

flash crash, more importantly, it explains the economic intuition behind this aggressive 

behaviour. This is a further distinguishing element of this current contribution to the existing 

literature. 
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2.2  The approach 

2.2.1 Motivation 

Griffiths et al. (2000) and Wuyts (2011) find that aggressive orders generate larger price 

impacts. Given this finding, there is a case to be made for aggressive orders being culpable in 

inducing extreme price movements, such as flash crashes. However, this argument raises an 

interesting question about why aggressive orders do not always cause flash crashes, given that 

they are likely to be submitted repeatedly on any given day in financial markets. In order to 

examine this question and demonstrate the potential relationship between order aggressiveness 

and flash crashes, I extend the approach of Menkveld (2013). Following Sofianos (1995), 

Menkveld (2013) decomposes the profit of traders into two components: the spread component 

and the positioning component. Menkveld's (2013) framework focuses on two extreme cases 

involving aggressive trading on the one hand and passive market making on the other, by using 

a two-stage approach: 

Aggressive trading strategy 

          

Passive market making strategy                               
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where
a

tP0  is the ask price at time t0,
b

tP0  is the bid price at time t0, 
mp

tP0  is the mid-price at time 

t0, 
aag

tP .

1 ,
bag

tP .

1 and
mpag

tP .

1 are the ask price, the bid-price and the mid-price at time t1 under 

aggressive trading strategy, respectively, and
amm

tP .

1 ,
bmm

tP .

1 and
mpmm

tP .

1  are the ask price, the bid-

price and the mid-price at time t1 under passive (market-making) trading strategy, respectively. 

In the first extreme case, i.e. aggressive trading strategy, a trader consumes liquidity in 

order to pursue a fundamental value change, and then quickly follows this with a sell order. By 

submitting a buy limit order at the ask price and a sell limit order at the bid price, the trader 

will make a spread loss at t0 and t1, but will make a position profit at the end of the trading 

session. The trader will adopt this trading strategy if she expects a large position profit at the 

end of the trading session – this is necessary to compensate for the spread losses incurred from 

the first and second trading stages. However, adverse selection is a potential risk here, as the 

position profit could be negative if the trader’s orders are adversely selected by an informed 

market order (see Glosten and Milgrom, 1985). Consistent with this argument, Menkveld 

(2013) finds that position profit is negative in the Dutch stock market during normal trading 

periods – periods of no or very low price volatility. In the second extreme case, i.e. the passive 

market making strategy, a trader acting as a market maker makes a profit from the spread in 

the first and second trading session, and a loss from her position at the end of trading.  

In this chapter, I alter the strategies above and further extend the framework to 

decompose the profit of traders. Specifically, I employ a three-stage approach and alter the 

order of submitted orders to show the relationship between order aggressiveness and flash 

crashes; what this means is that while Menkveld's (2013) framework begins with a buy order, 

my approach begins with a sell limit order. 

 

2.2.2 My three-stage approach 

Trading at t0   
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Traders submit sell limit orders at t0 by following one of two trading strategies (passive 

and aggressive), while the subsisting bid and ask prices, with mid-price
mp

tP0 , are set before 

traders come to the market: 
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+
=                                                      (2.1)                                                

I assume that a trader will submit a sell limit order at the prevailing best bid price if she wants 

to adopt an aggressive trading strategy, or a trader will submit a sell limit order at ask price is 

she wants to adopt a passive market making strategy. I focus on one of these extreme cases, an 

aggressive trading strategy, as I aim to illustrate the relationship between order aggressiveness 

and flash crashes. By submitting a sell limit order at the bid price, a trader will make a loss at 

t0. The trading sequence is illustrated below: 

                                  

The loss of my hypothetical aggressive trader is therefore given as: 

                              
mp

t

b

t

ag

t PP 000 −=                                                   (2.2)       

Trading at t1   

Inevitably, different types of trading strategies in t0 will have different impacts on ask 

and bid prices. This implies that bid and ask prices at t1 will be different under either of the two 

extreme (passive and aggressive) strategies/cases. By submitting an aggressive sell limit order 

at t0, the trader consumes liquidity, which in turn induces a price change. An aggressive trading 
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strategy will therefore have a downward pulling effect on bid and ask prices, leading to bid and 

ask prices going down at t1. However, if an aggressive order is adversely selected by an 

incoming informed market order, the price will go up at t1 and the aggressive trader will incur 

a significant position loss. I therefore concentrate on the case where an aggressive order is not 

adversely selected (see Glosten and Milgrom, 1985). This assumption is in line with the recent 

literature, arguing that HFTs can predict adverse selection and therefore are able to avoid 

falling prey to it (see Hirschey, 2017; Hoffmann, 2014; Jovanovic and Menkveld, 2016). This 

assumption is critical for my framework to mimic the price evolution during a flash crash, i.e. 

price falling significantly from the level at t0 to t1.  

During the second trading stage, the aggressive trader submits an aggressive buy limit 

order at the ask price:  

             

The submission of a buy order at the ask price will again lead to the trader incurring losses at 

t1. The payout at this stage will be: 

                         
a

t

mp

t

ag

t PP 111 −=                                                     (2.3) 

Trading at t2   

As earlier stated, the deployed trading strategies will have varying impacts on ask and 

bid prices. An aggressive trading strategy at t1 will generate an increasing pressure on bid and 

ask prices, thus bid and ask prices will appreciate subsequently at t2 and reach initial position 

(t0). If an aggressive order is adversely selected by an incoming informed market order, the 
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price will go down at t2 and the hypothetical trader will again incur significant position loss. 

Therefore, I again assume that an aggressive order is not adversely selected, to mimic the price 

evolution during a flash crash, i.e. price rebounds from t1 to t2 and attains the pre-flash crash 

level.  

I further assume that the asset price at time t2 will be equal to the asset price at time t0. 

This is necessary for the sequence of events/price evolution to be consistent with a flash crash; 

i.e. a sudden/sharp fall in the price of an asset and a full rebound in price shortly afterwards: 

 

By submitting a sell limit order at t2’s bid price, the aggressive trader makes a profit from her 

position and incurs losses from the bid-ask spread. Thus, her position profit and spread loss are 

as follows: 

                Position Profit     
mp

t

mp

t

pag

t PP 12

.

2 −=                                       (2.4) 

                Spread Loss        
mp

t

b

t

baag

t PP 22

.

2 −=                                       (2.5) 

                 Total Profit        
mp

t

b

t

ag

t PP 122 −=                                         (2.6) 

To sum up these trading strategies thus far, I can examine the profitability of an 

aggressive trading strategy. By combining the above equations, I generate the following 

equations for an aggressive trading strategy, assuming that the bid and ask prices at time t2 

equal the bid and ask prices at time t0 : 
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                    (2.7) 

Typically, a trader should pay the clearing fee and the aggressive exchange fee (usually 

imposed by exchanges on traders consuming liquidity) when she adopts an aggressive trading 

strategy. For simplicity, I assume that these fees are zero. As seen from Equation 2.7, the 

position profit of an aggressive trading strategy is high if there is a sharp reduction in the asset 

price at t1 )( 1

a

tP . The interesting point is that this type of sharp reduction is consistent with the 

extreme price movements documented in the case of flash crashes. Therefore, I argue that 

although Menkveld (2013) shows that position profit is negative during normal trading days, it 

might be large and positive during extreme price movements. This implies that this kind of 

extreme price movement could be profitable for some traders. This argument is consistent with 

Brogaard et al. (2014a), who show that although HFTs do not cause extreme price movements 

such as flash crashes, these types of price movements is more profitable for HFTs. The 

argument raises an interesting question about why traders fail to always adopt an aggressive 

trading strategy and therefore obtain large and positive profitable positions or, more 

specifically, are there some other conditions that ensure that traders become aggressive? I argue 

that there should be other conditions, which are not necessarily directly linked with the traders 

themselves, which may lead to traders choosing an aggressive trading strategy. The important 

point to note is that the price decrease in t1 should be very sharp in order to compensate for the 

losses from the spread. As already stated, that there will be a position loss if the order submitted 

by an aggressive trader is adversely selected by an incoming informed market order (see also 

Glosten and Milgrom, 1985). Therefore, traders must be sure that they do not face adverse 

selection risk when attempting an aggressive trading strategy. Indeed, this argument explains 

Brogaard et al.'s (2014) view regarding the profitability of extreme price movements for HFTs. 
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The ability of HFTs to make hay of volatile trading conditions as described above is not far-

fetched.  Hirschey (2017) argues that HFTs can anticipate buying and selling pressure, which 

could help them avoid being adversely selected when deploying aggressive trading strategies 

(see also Hoffmann, 2014; Jovanovic and Menkveld, 2016). Indeed, Hirschey (2017) finds that 

HFTs’ aggressive sales and purchases consistently lead those of other investors. This implies 

that the framework I illustrate above is more likely to be successfully deployed when it is 

implemented at a high frequency. 

 

2.2.3 Order aggressiveness and flash crashes 

Thus far, I have demonstrated price evolution under an aggressive trading strategy. The 

sequence of aggressive trading strategy I describe is useful for understanding the contribution 

of order aggressiveness to flash crashes. Although, the sequence of orders is not based on the 

May 6 2010 flash crash, the aggressive trading strategy shares three notable characteristics with 

the May 6, 2010 flash crash. Firstly, the price movement under this strategy exactly mimics the 

price movements in the US financial markets during the flash crash, i.e. asset prices collapse 

and rebound very rapidly within a very short period of time.  Secondly, the SEC (2010) finds 

that a large amount of seller-initiated E-mini contracts executed by algorithmic traders 

triggered the flash crash. My approach also begins with a sell limit order. Thirdly, consistent 

with recent empirical findings, my framework also predicts the aggressiveness of  HFTs in 

demanding liquidity during flash crashes (see as an example Kirilenko et al., 2017). Inspired 

by these three commonalities, I argue that an aggressive trading strategy can contribute to flash 

crashes under certain conditions, mainly when there is excessive aggressiveness prior to flash 

crashes and aggressive traders can avoid adverse selection risk. In order to test my arguments, 

using relevant data, I examine the aggressiveness of the order flow during, and prior to, the 

May 6, 2010 flash crash. If, indeed, the predictions of the framework are consistent with the 

flash crash, then, firstly, there should be an excessive sell order aggressiveness in financial 
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markets, which will create a downward pulling effect on prices. Thereafter, the excessive 

aggressiveness should shift to the buy side and as a result, prices will rise. Secondly, the 

fraction and number of aggressive buy and sell orders during the May 6, 2010 flash crash 

should be higher than the fraction of aggressive buy and sell orders during the surrounding 

periods. This is simply because, as I have shown, aggressive orders are more profitable during 

these periods. It is very important to note that I do not argue that the three-stage aggressive 

trading strategy I illustrate in this chapter is the reason for the May 6 flash crash. Rather, I 

argue that order aggressiveness prior and during the May 6, 2010 flash crash contributes to 

flash crashes (see SEC, 2010). 

 

2.3  Data 

2.3.1 Sample selection 

In order to empirically test my hypotheses, as developed above, I focus on the biggest 

and most reported flash crash in the recent financial markets history, the May 6, 2010 flash 

crash experienced in the U.S. markets. The flash crash was one of the most turbulent periods 

in U.S. financial markets history and has been considered to be the most harmful flash crash to 

date, during which the biggest intraday point decline in the history of the Dow Jones Industrial 

Average was recorded. Instruments such as options, exchange-traded funds, and individual 

stocks, also suffered from the May 6, 2010 flash crash.9 I focus on the May 6, 2010 flash crash 

because it provides an ideal ground for testing the relationship between a flash crash and pre-

crash aggressiveness.  

The data employed consists of ultra-high frequency tick-by-tick data for a selection of 

53 S&P 500 stocks sourced from the Thomson Reuters Tick History (TRTH) database. 

                                                           
9 According to SEC (2010), the May 6, 2010 flash crash lasted for approximately 36 minutes and could be viewed 

as consisting of two halves: (1) prices collapse and reach their lowest levels from 2:32 PM to 2:45 PM, (2) prices 

rebound and reach their pre-crash levels from 2:46 PM to 3:08 PM. 
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Appendix 4.B contains a detailed list of all stocks included in the sample.  I obtain data for all 

messages recorded for  May 6, 2010, but focus mainly on the period between 1:30 PM and 4 

PM, since the flash crash started around 2:32 PM and lasted for about 36 minutes (see SEC, 

2010). In the data, each message is recorded with a time stamp to the nearest 1/1000th of a 

second (millisecond). The following variables are included in the dataset: Reuters 

Identification Code (RIC), date, timestamp, price, volume, bid price, ask price, bid volume, 

and ask volume. 

Although the S&P 500 index consists of 500 large companies listed on the NYSE and 

NASDAQ, I select only the 53 stocks deemed to have been severely affected by the flash crash. 

I employ these stocks, because only stocks affected by a flash crash are appropriate for testing 

the predictions of a framework depicting a flash crash. In addition, I select S&P 500 stocks 

because SEC (2010) also examines the impact of the flash crash on individual stocks by using 

a sample selected from this index. SEC (2010) shows that a large trader executing a sell 

program for 75,000 E-mini S&P 500 index futures contracts triggered the flash crash of May 

6, 2010. As the performance of this index future is directly linked with the S&P 500 stocks, it 

is reasonable to select the components of S&P 500 for my analysis. 

Once the raw data is obtained, I determine the prevailing best bid and best ask quotes 

for each transaction by using the order flow as downloaded. I then follow Chordia et al. (2001) 

and Ibikunle (2015) in applying a standard set of exclusion criteria to the data, thus deleting all 

inexplicable observations which might arise due to errors in data entry. 

 

2.3.2  Sample Description 

In order to better observe the dynamics of stocks during the flash crash, I classify the 

sample into three periods: before the flash crash (from 1:30 PM to 2:32 PM), the flash crash 

period (from 2:32:01 PM to 3:08 PM), and after the flash crash (from 3.08:01 PM to 4:00 PM).  
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Table 2. 1 Transactions’ summary statistics and statistical tests 

Panels A and B respectively present trading summary statistics and statistical tests of differences between the 

period of the flash crash and surrounding periods for 53 S&P 500 stocks affected by the May 6, 2010 flash crash. 

The statistical tests conducted are two-sample t-tests and pairwise Wilcoxon-Mann-Whitney U tests. The sample 

period covers 1:30 PM to 4 PM May 6, 2010. The time series on May 6, 2010 is divided into three: before the 

flash crash (from 1:30 PM to 2:32 PM), the flash crash period (from 2:32 PM to 3:08 PM), and after the flash 

crash (from 3.08 PM to 4 PM). 

Panel A. Summary statistics 

  
Total transactions 

(000s) 

Average per minute 

transactions (000s) 

Number of  1:30 PM – 2:32 PM  186.6 3.0 

Transactions 2:32 PM – 3:08 PM 329.9 8.9 

 3:08 PM – 4 PM 405.8 7.8 

 All 922.3 19.7 

 

  
Total trading volume 

(000s) 

Average per minute trading 

volume (000s) 

Trading  1:30 PM – 2:32 PM  62878.8 1014.2 

Volume 2:32 PM – 3:08 PM 98185.5 2653.7 

 3:08 PM – 4 PM 119209.9 2292.5 

 All 280274.2 5960.4 

 

  
Total dollar trading 

volume ($'000,000) 

Average per minute dollar 

trading volume ($'000,000) 

Dollar 1:30 PM – 2:32 PM  2541.6 41.0 

Trading 2:32 PM – 3:08 PM 4332.2 117.1 

Volume 3:08 PM – 4 PM 5239.7 100.8 

 All 12113.5 258.9 

 

Panel B. Statistical tests 

Trading volume 

Method  p-value 

Two-Sample T tests   

Pooled  <0.0001 
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Satterthwaite  <0.0001 

Wilcoxon-Mann-Whitney U tests  <0.0001 

Dollar trading volume 

Method  p-value 

Two-Sample T tests   

Pooled  <0.0001 

Satterthwaite  <0.0001 

Wilcoxon-Mann-Whitney U tests  <0.0001 

 

Table 2. 2 Order quoting summary statistics 

Table presents order quoting summary statistics for 53 S&P 500 stocks affected by the May 6, 2010 flash crash. 

The sample period covers 1:30 PM to 4 PM May 6, 2010. The time series on May 6, 2010 is divided into three: 

before the flash crash (from 1:30 PM to 2:32 PM), the flash crash period (from 2:32 PM to 3:08 PM), and after 

the flash crash (from 3.08 PM to 4 PM). 

 

  

Total number of 

shares at the bid side 

(000,000s) 

Average shares/minute at 

the bid side (000,000s) 

Number of  1:30 PM – 2:32 PM  168.4 2.7 

shares in 

orders 

submitted 

2:32 PM – 3:08 PM 93.3 2.5 

at the bid 

side 
3:08 PM – 4 PM 130.0 2.5 

 All 391.7 7.7 

 

  

Total number of 

shares/minute at the 

ask side (000,000s) 

Average shares/minute at 

the ask side (000,000s) 

Number of  1:30 PM – 2:32 PM  168.3 2.7 

Shares in 

orders 

submitted 

2:32 PM – 3:08 PM 85.7 2.3 

at the ask 

side 
3:08 PM – 4 PM 123.9 2.4 
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 All 377.8 7.4 

 

Panel A of Table 2.1 presents the summary statistics of trading activities of the selected 

stocks. I observe a marked increase in average per minute transactions and trading volume 

during the flash crash, followed by a fall after the flash crash. This volatility is consistent with 

the modelled effects of the flash crash as presented in the framework. Prior to the flash crash, 

the average per minute trading volume is about 1 million. This increases by 161% during the 

flash crash and afterward falls by approximately 14%. Furthermore, the average per minute 

number of transactions and dollar trading volume during the flash crash are about three times 

higher than before the flash crash. After attaining the highest levels, average transaction and 

dollar trading volumes per minute fall by about 13%. I compute statistical tests to show the 

differences in trading volume and dollar trading volume between the period of the flash crash 

and surrounding periods. In Table 2.1’s Panel B, I present the p-values of different statistical 

approaches, testing for the null that there is no difference between the trading activity during 

the flash crash and non-flash crash periods. For robustness, I construct two-sample t-tests and 

pairwise Wilcoxon-Mann-Whitney U tests. Both methods show that the difference between 

these two periods is statistically significant. Given that, in the market microstructure literature, 

changes in trade sizes are thought to reflect the changing composition of the traders/participants 

in a market, one may assume that the fraction of traders that submit aggressive orders increases 

during flash crash. 

Table 2.2 presents the order submission summary statistics for my sample of stocks. 

Although average per minute trading volume increases sharply during the flash crash, the 

average volume of shares submitted in bid and ask orders over the same frequency decline 

during the flash crash. Firstly, this is consistent with what I would expect in t1, following 

liquidity consumption in t0. Secondly, when the ratio of shares in orders to trading volumes is 

calculated, I find that the ratio is 5.3 before the flash crash, indicating that approximately one 
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in five submitted shares in the orders submitted is executed prior to the flash crash. The ratio 

quickly falls to 1.8 during the flash crash and increases 2.1 afterwards. Thus, the rate of order 

execution quickens during the flash crash as the search for liquidity intensifies. The estimate 

of 1.8 share in order to trade ratio shows that more than half of shares in orders submitted 

during the flash crash are executed. This result further supports my argument that traders 

become more aggressive during the flash crash or, at the very least, the proportion of aggressive 

traders in the market increases during the flash crash. 

 

2.4  Empirical analyses, results and discussions 

My aim in this section is to formally test hypotheses arising from my three central 

framework arguments. The first argument suggests that excessive aggressiveness in trading is 

culpable in the inducement of flash crashes; this implies a significantly increased volume of 

aggressive sell and buy orders in the period leading up to and during the flash crash. More 

specifically, my framework predicts that, firstly, there should be an excessive sell 

aggressiveness in the first half of the flash crash and this aggressiveness will create a downward 

pressure on prices. Then, the buy side should subsequently become more aggressive, which 

will inevitably create an upward pressure on prices. Secondly, my framework predicts that 

aggressive orders contribute to the severity of flash crashes if there is excessive aggressiveness 

in the market in the build-up to extreme price movements. Thirdly, the framework suggests 

that aggressive orders are more profitable during extreme price movements such as flash 

crashes. The implication here is that the fraction and number of aggressive orders in the lead 

up to and during flash crashes should be higher than the fraction and number of aggressive 

orders during other trading periods surrounding flash crashes. 
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2.4.1 The evolution of order aggressiveness 

In order to proceed with the test of the arguments/hypotheses above, I need to identify 

an appropriate indicator or proxy for aggressive orders. This is required to be able to compute 

interval-based fractions and volume of aggressive orders in the market. For consistency with 

the existing literature, I employ an established approach as developed by Biais et al. (1995) to 

categorise limit orders according to their aggressiveness for my empirical analysis. The 

acceptance of this classification scheme in the market microstructure literature is underscored 

by its relatively wide use (see as examples Degryse et al., 2005; Griffiths et al., 2000; 

Hagströmer et al., 2014). The Biais et al. (1995) order classification algorithm involves 

dividing buy and sell orders into six groups by their level of aggressiveness; Category 1 orders 

are the most aggressive orders, while Category 6 orders are the least aggressive. A Category 1 

buy order has a bid price higher than the best ask price and a quantity larger than the quantity 

available at the best ask price at its time of submission. These kinds of buy orders would 

normally walk across the order book. A Category 2 buy order has a bid price equal to the best 

ask price but has a target quantity exceeding the prevailing depth at the best ask price. Category 

3 buy orders also have bid prices equal to the best ask prices, however their target quantities 

do not exceed the prevailing depth at the best ask price. The bid price of Category 4 buy orders 

is higher than the best bid price but less than the best ask price. The quantity of this order is not 

necessary for categorisation purposes. Categories 5 and 6 buy orders are the least aggressive. 

Like the Category 4 buy order, there are no quantity requirements for categorising Category 5 

buy orders, however the bid prices of these orders are equal to the best bid prices. All buy 

orders not otherwise categorised above are classified as Category 6 orders; specifically, the 

prices of these orders are less than the best bid prices. Based on their classification, Category 

4, 5 and 6 orders are not usually immediately executed, and are therefore considered passive.  

The categorisation for the sell orders mirror those of the buy orders. The ask prices of 

the Category 1 sell orders are less than the best prevailing bid price and their sizes exceed the 
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depths at the current best bid prices. The ask prices of the Category 2 and 3 sell orders equal to 

the best bid price. Furthermore, the target quantities of Category 2 orders are higher than the 

quantities available at the best bid prices, whereas the quantity of Category 3 sell orders are 

not. Consistent with the categorisation of buy orders, the prices of Category 4 sell orders lie 

within the best bid-ask spread, i.e. less than prevailing best ask prices. The prices of Category 

5 sell orders equal the best ask price, while the remaining orders are classified as Category 6 

sell orders. The prices of this latter group of sell orders are higher than the prevailing best ask 

prices. 

 Degryse et al. (2005) show that the most aggressive order types (Categories 1 and 2) 

execute immediately and cause price movements. Although Category 3 orders are less 

aggressive than the first two classes of orders, they still usually result in prompt transactions, 

therefore these three types of orders (Categories 1, 2 and 3) can be considered as aggressive 

orders (see Degryse et al., 2005; Foucault, 1999). Thus, I focus on the first three types of orders. 

Specifically, I compute the sum of fractions of the aggressive order categories for the May 6, 

2010 flash crash, as well as for the normal periods surrounding the flash crash. I then compare 

the volumes within a statistical framework to determine whether the fraction of aggressive 

orders during the flash crash is higher than the fraction of the same types of orders during 

normal periods. 

Figure 2.1 presents the evolution of order aggressiveness during the day of the flash 

crash. I use 1-minute time intervals to construct both panels of the panels in the figure. In Panel 

A, I employ the standard errors of the cross-sectional means to construct 99% confidence bands 

for the order aggressiveness estimates in Panel A, to show the upper and lower bounds of the 

fraction of aggressive orders during the flash crash. 



 

44 
 

Figure 2. 1 Intraday evolution of the fraction of aggressive orders 

Panels A and B depict the minute-by-minute evolution of the fraction of aggressive orders for 53 S&P 500 stocks affected by the May 6 2010 flash crash; Panel B presents the 

fraction of aggressive orders when disaggregated into buys and sells, as well as the fraction of all aggressive orders, while Panel presents only the fraction of all aggressive 

orders. 99% confidence bands are constructed for Panel A using the means of the minute-by-minute fractions of aggressive orders across the stocks in the sample. The sample 

period covers 1:30 PM to 4 PM May 6, 2010. The shaded area indicates the flash crash period. 

Panel A. Fraction of total aggressive orders 

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

1
:3

0
 P

M

1
:3

4
 P

M

1
:3

8
 P

M

1
:4

2
 P

M

1
:4

6
 P

M

1
:5

0
 P

M

1
:5

4
 P

M

1
:5

8
 P

M

2
:0

2
 P

M

2
:0

6
 P

M

2
:1

0
 P

M

2
:1

4
 P

M

2
:1

8
 P

M

2
:2

2
 P

M

2
:2

6
 P

M

2
:3

0
 P

M

2
:3

4
 P

M

2
:3

8
 P

M

2
:4

2
 P

M

2
:4

6
 P

M

2
:5

0
 P

M

2
:5

4
 P

M

2
:5

8
 P

M

3
:0

2
 P

M

3
:0

6
 P

M

3
:1

0
 P

M

3
:1

4
 P

M

3
:1

8
 P

M

3
:2

2
 P

M

3
:2

6
 P

M

3
:3

0
 P

M

3
:3

4
 P

M

3
:3

8
 P

M

3
:4

2
 P

M

3
:4

6
 P

M

3
:5

0
 P

M

3
:5

4
 P

M

3
:5

8
 P

M

F
ra

ct
io

n
 o

f 
a
g
g
re

ss
iv

e 
o
rd

er
s

Time of day

Flash crash period Fraction Lower Bound Upper Bound



 

45 
 

Panel B. Fraction of total, buy and sell aggressive orders 
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As evident in Panel A, the fraction of aggressive orders almost tripled during the flash 

crash from about 8% at 1:30 PM to 21.36% at 2:43 PM. The proportion of aggressive orders 

during the flash crash is, on average, higher than the surrounding time intervals. This finding 

suggests that aggressive trading activity is more prominent during the flash crash than in the 

surrounding periods. This result is consistent with the view that since aggressive orders might 

be more profitable during periods of extreme price movements, traders tend to show more 

aggressive behaviour during such periods. Furthermore, in Figure 2.1, I observe that the first 

of the two peaks of aggressive trading occurs just prior to the onset of the flash crash at about 

2:23 PM, when the fraction of aggressive orders attains about 20.71% of the total order volume. 

This appears to underscore my intuition regarding the contribution of pre-flash crash order 

aggressiveness to the flash crash. I discuss the results of my formal test of this assertion in the 

next section.  

Panel B makes the important distinction between buy and sell aggressive orders. 

Consistent with the framework’s predictions, the sell side is more aggressive from 2:17 PM to 

2:45 PM and then the buy side becomes more aggressive until 2:58 PM. This is not unexpected 

since SEC (2010) show that prices reached their lowest levels at 2:45 PM and the start to 

increase thereafter. This shows that the predictions of my framework are consistent with the 

empirical evidence and the arguments I make are valid in the case of the flash crash I examine. 

A clearer view of the balance between sell and buy aggressive orders is presented in Figure 

2.2.  
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Figure 2. 2 Intraday evolution of aggressive order imbalance I 

The figure presents the minute-by-minute evolution of aggressive order imbalance (difference between the fractions of aggressive sell and buy orders) for 53 S&P 500 stocks 

affected by the May 6 2010 flash crash. The sample period covers 1:30 PM to 4 PM May 6, 2010. The shaded are indicates the flash crash period. The shaded area indicates 

the flash crash period. 
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Consistent with the results of Figure 2.1, Figure 2.2 shows that, as predicted by my 

framework, there is a significant increase of aggressive sell orders until the stocks’ price 

attained their lowest levels during the flash crash (at 2:45 PM) and thereafter the number of 

aggressive sell orders are outstripped by the number of aggressive buy orders until the prices 

reverted back to their pre-crash levels. Furthermore, Figure 2.2 shows that I observe a peak in 

aggressive order imbalance (the difference between aggressive sell and buy orders) at 2:17 PM; 

this implies that as predicted by my framework, aggressive orders’ build-up ahead of the flash 

crash is a contributory factor to flash crashes. 

However, it is important to note that, based on my predictions, a high fraction of 

aggressive orders during some specific days alone is not enough to influence extreme price 

movements such as a flash crash; flash crashes are more likely induced by a large amount of 

aggressive orders. Therefore, I also need to examine the number of aggressive orders during 

the flash crash day in order to adequately investigate the prediction made in my framework.  



 

49 
 

Figure 2. 3 Intraday evolution of aggressive orders 

The figure presents the minute-by-minute evolution of the numbers of total, sell and buy aggressive orders for 53 S&P 500 stocks affected by the May 6, 2010 flash crash. The 

sample period covers 1:30 PM to 4 PM May 6 2010. The shaded area indicates the flash crash period. The shaded area indicates the flash crash period. 
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Figure 2.3 presents the evolution of the number of aggressive orders on May 6, 2010. 

As evident in the figure, there is a noteworthy rise in the number of aggressive orders as I 

approach the epicentre of the crash. The number of aggressive orders increases by about 6 times 

from the number at 2:00 PM (10,586/minute) to 62,760/minute at 2:43 PM, then falls 

precipitously to about 24,000/minute thereafter. Consistent with the data on the fraction of 

aggressive orders, I also observe a peak in the number of aggressive orders prior to the onset 

of the flash crash, at 2:22 PM (45,050/minute). This implies that, consistent with the predictions 

of my framework, excessive aggressiveness is likely to occur prior to flash crashes. 

Furthermore, as evident in Figure 2.2, I observe an excessive level of sell order aggressiveness 

from 2:17 PM to 2:45 PM and an excessive buy order aggressiveness thereafter. A review of 

the balance between aggressive sell and buy orders is useful in clarifying the changing of order 

dominance between the two order types. Thus, I compute aggressive order imbalance by the 

numbers of orders.   
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Figure 2. 4 Intraday evolution of aggressive order imbalance II 

The figure presents the minute-by-minute evolution of aggressive order imbalance (difference between the number of aggressive sell and buy orders) for 53 S&P 500 stocks 

affected by the May 6 2010 flash crash. The sample period covers 1:30 PM to 4 PM May 6, 2010. The shaded area indicates the flash crash period. The shaded area indicates 

the flash crash period. 
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Similar to the picture painted in Figure 2.2, Figure 2.4 shows that the predictions of my 

framework are completely in line with the evolution of the number of buy and sell orders during 

a real flash crash. I observe a surge in sell order aggressiveness prior to and during the first half 

of the flash crash until the price levels of instruments reached their minimum levels. Thereafter, 

the number of aggressive buy orders start to increase relative to the number of aggressive sell 

orders until the prices regain their pre-crash levels. The implications of the findings presented 

in Figure 2.2 and Figure 2.4 are significant, since the total number of aggressive orders could 

be high for a number of reasons; however, a flash crash is unlikely to ensue if there are no 

significant differences in the fractions and numbers of aggressive buy and sell orders. 

Thus far, the univariate empirical results presented have been generally consistent with 

the predictions of my framework concerning the relationship between order aggressiveness and 

flash crashes. Firstly, there is a significantly increased level of sell order aggressiveness prior 

to and during the first half of the flash crash and then, buy order aggressiveness gradually 

outstrips sell order aggressiveness. Secondly, there is excessive order aggressiveness prior to 

the flash crash. Thirdly, the number and the fraction of aggressive orders attain their highest 

levels during the flash crash and is in line with my argument that these types of orders might 

be more profitable during extreme price movements. Although the initial results suggest that 

my hypothesis on the predictive power of aggressive orders for flash crashes has merit, it is 

imperative that these results are formally tested within a multivariate framework. 

 

2.4.2  Multivariate Analysis 

Next, I formally investigate the relationship between aggressive orders and flash 

crashes within a multivariate framework. Specifically, I estimate the following regression 

model with stock-specific variables: 
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ititMFitBASitOIB

itVLTitVPINitVitNAOit

MFBASOIB

VLTVPINVNAOFC





++++

++++= lnln
                             (2.8) 

where FCit is a binary dependent variable and time, t, equals one-second.10 I employ two cases 

of the Model (4.8). Firstly, I use the standard logit model; in this step, my aim is to test whether 

the build-up of aggressive orders ahead of the flash crash is linked to its onset. In the logit 

model, FCit equals one for the pre-flash crash period (2:17 PM to 2:32 PM).  Secondly, I 

employ the multinomial logit mode, which allows me to concurrently examine the relationship 

between both the pre-flash crash and flash crash periods on the one hand and contemporaneous 

order aggressiveness on the other. Thus, in the multinomial estimation of Model (8), FCit equals 

one for the pre-flash period (2:17 PM – 2:32 PM), two for the flash crash period (2:32:01 PM 

– 3:08 PM) and zero otherwise. NAO is the number of aggressive orders obtained by using the 

order classification scheme described above. I estimate the above regression for sell (NASO) 

and buy (NABO) aggressive orders separately in order to capture the marginal impact of each 

type of order. Estimating the depth of the impact of each order type is important since according 

to the literature and my framework, aggressive sell orders should play a more important role in 

flash crashes (see SEC, 2010). As already noted, the first three categories of orders are 

earmarked as aggressive orders. This is the most important variable in my study, and according 

to my arguments, I expect to see a positive relationship between the number of aggressive 

orders and the pre-flash crash (FCit=1) period (see also Griffiths et al., 2000; Mcinish et al., 

2014; Wuyts, 2011). 

Apart from the key variable, I employ some control variables in order to strengthen the 

consistency of my results. lnV is the natural logarithm of the number of shares traded for 

one/five second interval. This proxy is used to control for the effect of trading volume. The 

                                                           
10 For robustness, I also employ five-second interval analysis and obtain qualitatively similar results. For 

parsimony, the results of the five-second estimation results are not presented; however, they are available on 

request. 
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VPIN metric is introduced as a real-time indicator of order flow toxicity. VPIN is a modified 

version of the Easley et al. (1996) and Easley et al. (1997) probability of an informed trade 

(PIN) metric and is proposed by Easley et al. (2011) as a measure of the probability of an 

informed trade in a high frequency environment. Easley et al. (2011) and Easley et al. (2012) 

highlight the role of order flow toxicity in the May 6, 2010 flash crash.11 Easley et al. (2011; 

2012) argue that VPIN can be used to predict flash crashes. By contrast, Andersen and 

Bondarenko (2014) show that VPIN is a poor predictor for flash crashes after controlling for 

volume. Therefore, including VPIN as a control variable in Model (8) offers another 

opportunity to examine the flash crash predictability potentials of VPIN. In addition to VPIN, 

OIB is also employed to control for the order flow toxicity. Note that multicollinearity is not 

an issue here, since the correlation coefficient between VPIN and OIB is very low, at 0.054 (see 

Table 2.3). SEC (2010), Kirilenko et al. (2017), and Easley et al. (2011), show that a large 

order imbalance was one of the contributing factors to the May 6, 2010 the flash crash, hence 

the inclusion of order imbalance as an explanatory variable is completely in line with the 

literature. OIB is calculated as the absolute value of the difference between the number of buy 

and sell trades, divided by the total number of trades (see Chordia et al., 2008). In order to 

obtain OIB, trades must first be classified into buys and sells. Generally, three types of trade 

classification schemes are used to classify trades; these are the tick rule, the Lee and Ready 

(1991) algorithm, and Easley et al. (2011; 2012) bulk volume classification (BVC) method.  In 

this study, I employ the Lee and Ready (1991) algorithm for order classification.12 Chakrabarty 

et al. (2015), in their comparative analysis of the aforementioned trade classification methods, 

                                                           
11 Computing VPIN requires determining the number of buckets to be employed for volume classification and a 

buy/sell trade classification method. I use 200 buckets for volume classification, because  Wu et al. (2013), who 

examine 16,000 various parameter combinations for evaluating the effectiveness of VPIN, concludes that 200 

buckets yield optimal results. Buy and sell volumes are computed using the BVC approach proposed by Easley et 

al. (2011). 
12 For robustness, I also compute OIB using the other two methods and employ them in Model (8), the inferences 

drawn from those estimations are unchanged irrespective of which OIB computation approach I use. 
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conclude that the Lee and Ready (1991) algorithm method is a more accurate trade 

classification method than competing methods.  

VLT is the one/five-second standard deviation of mid-price returns; this variable is 

introduced to control for trading volatility.13 Prior contributions report extreme price volatility 

during the May 6, 2010 flash crash day (see as examples Easley et al., 2011; 2012; Kirilenko 

et al., 2017; SEC, 2010). Furthermore, an increase in the volatility of an instrument’s price will 

increase its market risk, leading to a larger price impact as well as extreme price movements. 

BAS is the one/five second spread between the best ask and best bid prices, and is a proxy for 

liquidity. BAS tends to be narrow when liquidity is high; hence, under liquidity constraints, i.e. 

when BAS is wide, I therefore expect a larger price impact (see Borkovec et al., 2010). MF 

corresponds to market fragmentation. Madhavan (2012) and Golub et al. (2012) show that 

market fragmentation is one of the factors that contribute to flash crashes, and Menkveld and 

Yueshen (2017) underscore and further explain the results of Madhavan (2012). In this study, 

the inverse of the Herfindahl-Hirschman Index is used for capturing how fragmented each stock 

is across various venues for each corresponding interval.14 

Table 2. 3 Correlation matrix of explanatory variables 

The table presents the correlation matrix for the explanatory variables employed in the flash crash models. NAO 

is the number of aggressive orders, NASO is the number of aggressive sell orders, NABO is the number of 

aggressive buy orders, VPIN is the Volume-Synchronized Probability of Informed Trading, VLT is the standard 

deviation of the mid-price returns, OIB is the order imbalance, BAS is a bid-ask spread, MF represents market 

fragmentation, and lnV is the natural logarithm of the number of shares. The sample includes 53 S&P 500 stocks 

affected by the May 6, 2010 flash crash. The sample period covers 1:30 PM to 4 PM May 6, 2010. 

 

 NAO NASO NABO VPIN VLT OIB BAS MF lnV 

NAO 1         

NASO 0.91 1        

NABO 0.90 0.92 1       

                                                           
13 I employ mid-price returns in order to reduce bid-ask bounce (see Avramov et al., 2006).  
14 The index is defined as: ( ) =

=
K

k

k

tt sHHI
1

, where k

ts is volume share of venue k on day t. The value of the index 

ranges from 0 to 1; higher value implies less fragmentation. 
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VPIN 0.014 0.013 0.014 1      

VLT 0.093 0.094 0.093 0.146 1     

OIB 0.385 0.383 0.384 0.054 0.139 1    

BAS -0.013 -0.012 -0.014 0.10 0.27 0.03 1   

MF 0.273 0.274 0.273 0.12 0.20 0.13 0.05 1  

lnV 0.394 0.395 0.394 0.08 0.30 0.27 0.05 0.58 1 

Table 2.3 presents the correlation matrix of the explanatory variables; the low 

correlation coefficient estimates suggest that multicollinearity is not an issue with the 

regression model. 

The results for both the logit and multinomial logit models’ estimations are presented 

in Table 2.4 and Table 2.5 respectively.  

Table 2. 4 Standard logit model for one second frequency 

The predictive power of the number of aggressive orders on flash crashes is estimated using the following model: 

ititMFitBASitOIB

itVLTitVPINitVitNAOit

MFBASOIB

VLTVPINVNAOFC





++++

++++= lnln  

The table reports logit regressions’ coefficient estimates using one second frequencies. Results for standard logit 

model estimations are presented for the number of aggressive orders, aggressive sell orders and aggressive buy 

orders in the second, third and fourth columns respectively. FCit equals zero from 1:30 PM to 2:17 PM, and from 

2:32 PM to 4:00 PM, while it takes the value of one from 2:17 PM to 2:32 PM. NAO, NASO and NABO are the 

number of aggressive orders, number of aggressive sell orders and number of aggressive buy orders, respectively, 

lnV is the natural logarithm of the number of shares, VPIN is the Volume-Synchronized Probability of Informed 

Trading, VLT is the standard deviation of the mid-price returns, OIB is the order imbalance, BAS is the prevailing 

bid-ask spread and MF represents market fragmentation. Standard errors are presented in parentheses. The sample 

includes 53 S&P 500 stocks affected by the May 6, 2010 flash crash. The sample period covers 1:30 PM to 4 PM 

May 6, 2010. *** and ** correspond to statistical significance at the 0.01 and 0.05 levels, respectively. 

 

Variables NAO NASO NABO 

 4.98 x 10-3*** 

(2.18 x 10-4) 

1.66 x 10-2*** 

(7.27 x 10-4) 

7.12 x 10-3*** 

(3.12 x 10-4) 

lnV -1.23 x 10-2*** 

(2.37 x 10-3) 

-1.23 x 10-2*** 

(2.37 x 10-3) 

-1.23 x 10-2*** 

(2.37 x 10-3) 

VPIN -1.2531*** 

(2.43 x 10-2) 

-1.2531*** 

(2.43 x 10-2) 

-1.2530*** 

(2.43 x 10-2) 

VLT -1460.6*** 

(45) 

-1460.6*** 

(46.002) 

-1460.5*** 

(45.998) 

OIB -3 x 10-5*** 

(5.1 x 10-6) 

-3.11 x 10-5*** 

(5.1 x 10-6) 

-3 x 10-5*** 

(5.1 x 10-6) 

BAS -1.34*** 

(6.48 x 10-2) 

-1.3432*** 

(6.48 x 10-2) 

-1.3431*** 

(6.48 x 10-2) 

MF 1.70 x 10-3 1.68 x 10-3 1.7 x 10-3 
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(5.26 x 10-3) (5.26 x 10-3) (5.26 x 10-3) 

Mc Fadden’s R2 0.025 0.0292 0.0251 

 

The results presented in Table 2.4 show that, as predicted by my framework, aggressive 

orders are positively linked with the pre-flash crash period. The result holds for a combination 

of buy and sell aggressive orders as well as for each type of aggressive orders separately. The 

positive and statistically significant coefficients suggest that order aggressiveness in the lead 

up to the flash crash is linked to the onset of the crash. An essential point to note is that the 

relationship between aggressive orders and the pre-flash crash period is statistically significant 

even after controlling for volume, liquidity, order flow toxicity and volatility. This finding is 

important given recent findings by Andersen and Bondarenko (2014), showing that a popular 

metric for order flow toxicity, the VPIN metric, developed by Easley et al. (2011; 2012), is a 

poor predictor for flash crashes once trading activity is controlled for. The practical implication 

of this result is that traders seeking to avoid the adverse effects of a flash crash must act quickly 

to do so. However, their actions could be inevitably endogenous, leading to a self-fulfilling 

prophecy, as their actions could exacerbate what might already be proving to be a challenging 

and increasingly illiquid trading environment. As already noted, according to the existing 

literature and the predictions of my approach, I expect that sell orders to play a more important 

role in the flash crash (SEC, 2010) and therefore, estimation separate regressions for aggressive 

sell and buy orders may provide more insightful results. This expectation is confirmed by the 

magnitude of the coefficient estimates and explanatory power for both the buy and sell 

aggressive orders estimations. Firstly, the coefficient estimate for aggressive sell orders is 2.3 

times higher than the coefficient for the number of aggressive buy orders. Secondly, according 

to the McFadden’s R2, the model with the sell order has a higher explanatory power.  

The estimated coefficients for all the other explanatory variables, except MF (market 

fragmentation), are also significantly correlated with the pre-flash crash period; however, the 
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aggressive orders variables (NAO, NASO and NABO) are the only positive and statistically 

significant variables. As already noted, my model allows us to test the flash crash predictability 

potential of VPIN after controlling for trading activity, liquidity and volatility. My findings 

show that VPIN is negatively correlated with the pre-flash period; increases in the value of the 

VPIN metric does not provide a signal about extreme volatility. This is in some ways an 

unsurprising result, since Andersen and Bondarenko (2014) also show that VPIN is negatively 

correlated with future short-term volatility after controlling for trading activity. The 

explanatory power of the standard logit model reported for the NAO, NASO and NABO 

regressions using McFadden’s R2, are 2.5%, 2.9% and 2.51% respectively. This is also 

unsurprising because of the following two reasons. Firstly, I employ one-second frequency for 

the estimations.15 Secondly, although McFadden’s R2 is a similar measure of the goodness of 

fit to the classic R2, the value of McFadden’s R2 tend to be remarkably lower than the value of 

R2 (see David and Peter, 1979). 

 

 

 

 

                                                           
15 McFadden’s R2 rises to about 4.5% when I estimate the regression at five-second frequencies; the results are 

not presented for parsimony, but are available on request. 
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Table 2. 5 Multinomial logit model for one second frequency 

The predictive power of the number of aggressive orders is estimated using the following model: 

ititMFitBASitOIB

itVLTitVPINitVitNAOit

MFBASOIB

VLTVPINVNAOFC





++++

++++= lnln
 

The table reports multinomial logit regressions’ coefficient estimates using one second frequencies; Results for multinomial logit model estimations for the number of aggressive 

orders, the number of aggressive sell orders and the number of aggressive buy orders are presented in the second, third and fourth columns respectively. FCit equals zero from 

1:30 PM to 2:17 PM, and from 3:08 PM to 4:00 PM, while it takes the value of one from 2:17 PM to 2:32 PM (pre-flash crash period) and takes the value of two from 2:32 PM 

to 3:08 PM (the flash crash period). NAO, NASO and NABO are the number of aggressive orders, the number of aggressive sell orders and the number of aggressive buy orders, 

respectively, lnV is the natural logarithm of the number of shares, VPIN is the Volume-Synchronized Probability of Informed Trading, VLT is the standard deviation of the mid-

price returns, OIB is the order imbalance, BAS is the prevailing bid-ask spread and MF represents market fragmentation. Standard errors are presented in parentheses. The 

sample includes 53 S&P 500 stocks affected by the May 6, 2010 flash crash. The sample period covers 1:30 PM to 4 PM May 6, 2010. *** and ** correspond to statistical 

significance at the 0.01 and 0.05 levels, respectively. 

 

 NAO NASO NABO 

Variables FC = 1 FC = 2 FC = 1 FC = 2 FC = 1 FC = 2 

 6.30 x 10-3*** 

(2.33 x 10-4) 

3.81 x 10-3*** 

(1.79 x 10-4) 

2.09 x 10-2*** 

(7.74 x 10-3) 

1.27 x 10-2*** 

(5.95 x 10-4) 

9.0 x 10-3*** 

(3.32 x 10-3) 

5.45 x 10-3*** 

(2.55 x 10-4) 

lnV -2.75 x 10-2*** 

(2.43 x 10-3) 

4.71 x 10-2*** 

(1.77 x 10-3) 

-2.75 x 10-2*** 

(2.43 x 10-3) 

4.71 x 10-2*** 

(1.77 x 10-3) 

-2.74 x 10-2*** 

(2.43 x 10-3) 

4.71 x 10-2*** 

(1.77 x 10-3) 

VPIN -4.25 x 10-1*** 

(2.53 x 10-2) 

2.88*** 

(1.72 x 10-2) 

-4.25 x 10-1*** 

(2.53 x 10-2) 

2.88*** 

(1.72 x 10-2) 

-4.25 x 10-1*** 

(2.53 x 10-2) 

2.88*** 

(1.72 x 10-2) 

VLT -1045.2 *** 

(47.81) 

1106.9 *** 

(19.25) 

-1045.5 *** 

(47.81) 

1106.8 *** 

(19.24) 

-1045.0 *** 

(47.81) 

1106.9 *** 

(19.24) 

OIB -2.00 x 10-5*** 

(5.27 x 10-6) 

2.4 x 10-5*** 

(2.74 x 10-6) 

-2.10 x 10-5*** 

(5.27 x 10-6) 

2.4 x 10-5*** 

(2.74 x 10-6) 

-2.10 x 10-5*** 

(5.27 x 10-6) 

2.4 x 10-5*** 

(2.74 x 10-6) 

BAS -5.2 x 10-1*** 

(6.94 x 10-2) 

2.05*** 

(3.08 x 10-2) 

-5.2 x 10-1*** 

(6.94 x 10-2) 

2.05*** 

(3.08 x 10-2) 

-5.2 x 10-1*** 

(6.94 x 10-2) 

2.05*** 

(3.08 x 10-2) 

MF 4.18 x 10-2*** 

(5.36 x 10-3) 

1.71 x 10-1*** 

(4.24 x 10-3) 

4.18 x 10-2*** 

(5.36 x 10-3) 

1.71 x 10-1*** 

(4.24 x 10-3) 

4.18 x 10-2*** 

(5.36 x 10-3) 

1.71 x 10-1*** 

(4.24 x 10-3) 

Mc Fadden’s R2 0.066 0.0702 0.0665 
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Table 2.5 presents the results for the multinominal logit model estimation. I employ this 

model to test the consistency of the standard logit model and in order to examine the 

relationship between contemporaneous order aggressiveness on the one hand and the pre-flash 

crash and the flash crash period on the other. This approach expectedly leads to a higher model 

explanatory power for the multinominal logit model estimation (McFadden’s R2 of 6.9% and 

6.6% for the number of aggressive sell and buy orders, respectively) when compared with the 

standard logit model estimation reported in Table 2.4. Firstly, the findings in Table 2.5 are 

generally consistent with the results I present in Table 2.4; all the aggressive orders variables 

are positively and significantly related with the pre-flash crash period, which suggests a link 

between the number of aggressive orders and the onset of the flash crash. Furthermore, 

consistent with the findings from Table 2.4, the number of aggressive sell orders play a more 

important role in the flash crash. The only difference in the results is that while market 

fragmentation (MF) is not statistically significant in the standard logit model, it is significantly 

and positively correlated with the pre-flash period in the multinominal logit model. This 

implies that prior market fragmentation is related to flash crashes (see also Madhavan, 2012; 

Menkveld and Yueshen, 2017). The second set of results in Table 2.5, based on the flash crash 

period itself, are also interesting. The results show that the NAO, NASO and NABO are 

positively and significantly correlated with the flash crash period even after controlling for 

volume, liquidity and volatility. The positive and statistically significant estimates of the 

aggressive orders variables appear to confirm that increases in aggressive orders make flash 

crashes more likely to ensue. Specifically, the results suggest that the probability of flash 

crashes at time t rises as the number of aggressive orders increases at the same time. The 

evidence is in line with my approach that order aggressiveness plays an important role in flash 

crashes.   
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The regression results above, documenting the relationship between order 

aggressiveness and flash crashes, are consistent with the previous literature since they show 

that aggressive orders have a larger price impact than non-aggressive orders and that aggressive 

trading behaviour contributes to flash crashes (see as examples Griffiths et al., 2000; Mcinish 

et al., 2014; Wuyts, 2011).  

The estimated coefficient estimates for all the other explanatory variables in Table 2.5 

are also consistent with the existing literature on flash crashes. For example, the market toxicity 

metric, VPIN, has a statistically significant and positive relationship with the flash crash period. 

Taken together with the metric’s documented relationship with the pre-flash crash period, the 

implication here is that while VPIN, may be a poor predictor of flash crashes when trading 

activity is controlled for (see also Andersen and Bondarenko, 2014), it nevertheless is 

positively correlated with flash crashes themselves. This suggests that market toxicity has a 

direct relationship with the flash crash; this evidence is in line with findings of Easley et al. 

(2011; 2012) that market toxicity plays an important role in the flash crash. Volatility exhibits 

a statistically significant and positive relationship with the flash crash. The positive coefficient 

is consistent with the stream of the market microstructure literature that states that an increase 

in the volatility of stock prices causes a larger price impact, since extreme price movements 

and flash crashes are characterized by extreme price volatility (see as examples Easley et al., 

2011; Kirilenko et al., 2017; SEC, 2010). One plausible explanation of this positive relationship 

is that an increase in the volatility of stock prices increases the market risk, which in turn leads 

to larger spreads and extreme price movements.  

The literature identifies order imbalance as one of the instigators of the May 6, 2010 

flash crash (see as examples Easley et al., 2011; Kirilenko et al., 2017; SEC, 2010). 

Furthermore, Sun and Ibikunle (2016) find that order imbalance has information content and 

there is a significant and positive relationship between order imbalance and price impact in a 
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high frequency trading environment. Thus, the positive relationship between OIB and the flash 

crash reported in Table 2.5 is unsurprising and is in line with the literature. The bid-ask spread, 

BAS, is also positively and statistically significantly related with the May 6, 2010 flash crash. 

This result is again unsurprising because existing literature finds that orders have a larger price 

impact when the bid-ask spread is wide (see Aitken and Frino, 1996) and, as already 

enumerated, liquidity constraints contribute to extreme price movements in the market. 

Furthermore, Borkovec et al. (2010), SEC (2010), and Menkveld and Yueshen (2017) find that 

the spread during the May 6, 2010 flash crash was uncharacteristically wide. Market 

fragmentation, MF, exhibits a statistically significant and positive relationship with the flash 

crash as well; this result can be justified that market fragmentation is important in explaining 

the anatomy of the flash crash. This result underscores the results of Madhavan (2012), Golub 

et al. (2012), and Menkveld and Yueshen (2017) that show that the flash crash is linked directly 

to market structure. When liquidity is fragmented across several venues, immediate access to 

counterparties becomes slightly more challenging given that orders may now need to be routed 

through several other channels in order for them to be filled. 

I caution that evidence presented in Table 2.5 should be interpreted carefully. I do not 

claim to have found a causality between order aggressiveness and the flash crash. In addition, 

I do not claim that order aggressiveness was the main factor leading to the crash. However, my 

analysis shows that similar to other suggested factors, like order imbalance, order flow toxicity, 

market fragmentation, order aggressiveness has additional explanatory power for the flash 

crash.  

 

2.4.3  Directional returns during the flash crash 

I now turn my attention to the third mainline argument derived from my framework, 

which is that aggressive orders are more profitable during flash crashes. Earlier, I observe an 
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increase in the volume of aggressive orders during the flash crash, I interpret this to be in 

response to their profitability during such periods. However, I also note that such increases 

may relate to the unwinding of untenable positions that arise as a result of extreme swings in 

instruments’ valuations during a flash crash. In order to examine the veracity of my argument 

regarding the profitability of aggressive orders, I follow the approach proposed by Ederington 

and Lee (1995) to compute hypothetical returns attributable to an informed trader active during 

the flash crash and its surrounding periods  (see also Caminschi and Heaney, 2014; Frino et al., 

2017).  

I estimate simple returns for each stock and sign the returns using a directional 

parameter (𝐷𝐼𝑅𝑡,𝑠), based on the assumption that the informed trader holds private information 

regarding the trajectory of the stocks’ prices she trades. I define the directional return for each 

one-minute interval as 

𝐷𝑅𝑡,𝑠 =  𝑅𝑡,𝑠 ∗ 𝐷𝐼𝑅𝑡,𝑠                                              (2.9) 

where, 𝑅𝑡,𝑠 represents simple return for stock s and time t. In order to define the directional 

parameter (𝐷𝐼𝑅𝑡,𝑠), firstly I compute the returns of each stock for the flash crash period (from 

14:32 PM to 15:08 PM) (𝑅𝑓𝑐,𝑠). The direction factor, 𝐷𝐼𝑅𝑡,𝑠 = 1 if 𝑅𝑓𝑐,𝑠 > 0, 𝐷𝐼𝑅𝑡,𝑠 = −1 

if 𝑅𝑓𝑐,𝑠 < 0, and 𝐷𝐼𝑅𝑡,𝑠 = 0 if 𝑅𝑓𝑐,𝑠 = 0.  𝐷𝐼𝑅𝑡,𝑠 = 1 (−1) indicates that the trader takes a long 

(short) position at time t for stock, s. I compute the average directional return, 𝐴𝐷𝑅𝑡, as the 

average of adjusted returns for all stocks for each one-minute interval. The cumulative average 

directional return, 𝐶𝐴𝐷𝑅𝑡 from 1:30 PM to 4:00 PM is estimated using the average directional 

returns. 
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Figure 2. 5 Directional returns 

Panels A and B are minute-by-minute plots of average direction-adjusted returns and cumulative average direction-adjusted returns measures (in basis points) respectively for 

53 S&P 500 stocks affected by the May 6 2010 flash crash. The sample period covers 1:30 PM to 4 PM May 6, 2010. The shaded area indicates the flash crash period. 

Panel A. Average direction-adjusted returns 
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Panel B. Cumulative Average Adjusted Return 
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Table 2. 6 Average direction-adjusted returns 

Table presents the average adjusted returns (AAR) in 10-minute batches for S&P 500 stocks. All return measures 

are reported in bps (1 bps = 0.01%). The t-value is the statistic of a one-sample t-test testing the null of the mean 

being equal to zero. The sample includes 53 S&P 500 stocks affected by the May 6, 2010 flash crash. The sample 

period covers 1:30 PM to 4 PM May 6, 2010. *** and ** correspond to statistical significance at the 0.01 and 

0.05 levels, respectively. 

 

From (Time) To (Time) AAR Sign t-value 

1:30 PM 1:40 PM -0.90  -0.13 

1:41 PM 1:50 PM 0.56  0.08 

1:51 PM 2:00 PM -0.58  -0.08 

2:01 PM 2:10 PM -1.97  -0.30 

2:11 PM 2:20 PM -1.25  -0.19 

2:21 PM 2:30 PM -0.45  -0.06 

2:31 PM 2:40 PM 6.95  1.06 

2:41 PM 2:50 PM 97.59 *** 14.91 

2:51 PM 3:00 PM 36.19 *** 5.53 

3:01 PM 3:10 PM 11.27 * 1.85 

3:11 PM 3:20 PM -4.85  -0.75 

3:21 PM 3:30 PM 2.01  0.31 

3:31 PM 3:40 PM -0.80  -0.12 

3:41 PM 3:50 PM 4.07  0.62 

3:51 PM 4:00 PM -1.36  -0.21 

 

Figure 2.5 reports the hypothetical returns attainable through aggressive (directional) 

trading in 53 selected S&P 500 stocks around the May 6, 2010 flash crash. Panel A shows the 

simple returns adjusted for direction of price movement over the flash crash period averaged 

across all 53 stocks, while Panel B shows the cumulative average direction-adjusted returns for 

the same stocks. As presented in Panel A, there are positive and significant directional returns 

during the flash crash. Remarkably, as predicted by my framework, the positive directional 

return is gained during the second half of the flash crash and only ends at the end of the flash 

crash at about 3:08 PM. The cumulative directional returns in Panel B shows the clear and 

continuous trend in adjusted returns during the flash crash period. This and the stabilisation of 

the cumulative returns following the conclusion of the flash crash support my arguments about 

the profitability of aggressive orders during periods of extreme price movements like flash 

crashes. The overall cumulative returns accruable to an informed trader during the flash crash 

is in excess of 1,482 basis points. 
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Table 2.6 reports the average direction-adjusted returns in 10-minute batches. 

Consistent with the insights from Figure 2.5, there is a positive and statistically significant 

adjusted returns, which commences in the second half of the flash crash and continues until the 

end of the flash crash. All estimated directional returns outside of the flash crash period are not 

statistically significant.   

Overall, the directional returns analysis yields consistent results with the predictions of 

my framework, implying that aggressive orders are significantly more profitable during 

extreme price movements like flash crashes. 

 

2.5  Conclusion 

In this chapter, I develop a new framework for understanding the role of aggressive 

orders in flash crashes by extending the approach of Menkveld (2013). I then use ultra-high 

frequency data from 53 S&P 500 stocks affected by the May 6, 2010 flash crash to test the 

arguments motivated by the framework. The selection of the May 6, 2010 flash crash for my 

investigation is motivated by its recognition as the most significant flash crash in recent 

financial markets history. My main framework predictions/arguments are as follows. Firstly, 

there should be a significant increase in sell order aggressiveness prior to and during the first 

half of flash crashes, i.e. until instruments’ price levels hit their lowest values and then the 

balance of order aggressiveness should shift to the buy side in the second half of the flash crash, 

i.e., until the prices re-attain their pre-crash levels. Secondly, my framework predicts that the 

build-up of order aggressiveness, which could be observed prior to extreme price volatility 

events, is inextricably linked to flash crashes. Thirdly, aggressive orders are more profitable 

during extreme price movements and thus traders tend to submit orders that are more 

aggressive during those periods. 
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In the formal test of the relationship between the number of aggressive orders and the 

pre-flash crash period, the empirical results are consistent with the predictions of my 

framework. Firstly, I find a significant increase in sell order aggressiveness prior to and during 

the first half of the May 6 2010 flash crash, thereafter the balance of order aggressiveness 

swings to the buy side, with traders submitting more aggressive buy orders relative to 

aggressive sell orders. The sell side is more aggressive until prices plummet to their lowest 

levels and then, the buy side becomes more aggressive in the run-up to prices regaining their 

pre-crash levels. Secondly, I find that the number of aggressive orders in the run up to the flash 

crash is positively and significantly related to the pre-flash crash period; thus, the build-up of 

order aggressiveness may contribute to the onset of flash crashes. Thirdly, the fraction and the 

number of aggressive orders during the flash crash are higher than the fraction and the number 

of orders during the surrounding periods due to the significantly larger (than other periods) 

profits accruable to informed investors during the flash crash. I estimate that for the stocks in 

my sample, an informed investor during the flash crash could achieve a return on his portfolio 

in excess of 1,482 bps, a return far larger than accruable during surrounding periods. This 

finding supports my argument that aggressive orders are more profitable markets are volatile 

and hence, traders tend to submit orders that are more aggressive during such periods.  

While my findings show the contribution of aggressive orders to flash crashes, it is 

essential to note two points. First point is related to potential bias in the study. Explicitly, I 

investigate the role of aggressive orders in extreme price movements by focusing on stocks that 

impacted by the flash crash. While this method is consistent with the literature (see Easley et 

al., 2011), using only the flash crash affected stocks may lead to sample selection bias. Second, 

my findings should not be misconstrued as an endorsement of policies aimed at limiting 

aggressive orders or aggressive trading behaviours in financial markets. While I acknowledge 

that aggressive traders can induce extreme price movements, aggressive trading in itself could 

be a symptom of deeper underlying structural issues, which are not the focus of this study. 
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3. A state space modelling of the information content of trading 

volume 

3.1  Introduction 

Trading in financial markets is driven either by information or by the search for 

liquidity (see Admati and Pfleiderer, 1988). Liquidity traders do not trade on the basis of any 

specific information; their trading strategies are therefore not directly related to future payoffs. 

The trading strategies of informed traders, on the other hand, are based on private information 

and are directly related to future payoffs. The activities of these two fundamental types of 

traders have been extensively analysed in seminal papers in the larger financial markets 

literature, and more so in market microstructure papers. For example, Kyle (1985) predicts that 

the volatility of asset prices partially reflects inside information (informed trading) and is 

independent of liquidity-driven trading effects, while Glosten and Milgrom (1985) predict that 

the breadth of the bid-ask spread is primarily driven by informed trading, which incorporates 

adverse selection costs into the spread.16  

 More recently however, Kaniel and Liu (2006) have extended Glosten and Milgrom's 

(1985) model to show that informed traders with long-lived information are more likely to use 

limit orders than market orders. Therefore, informed traders’ trading strategies, depending on 

the longevity of their information sets, may be negatively related with adverse selection. Using 

a comprehensive sample of trades from Schedule 13D filings by activist investors, Collin-

Dufresne and Fos (2015) show that, consistent with Kaniel and Liu (2006), informed traders 

with long-lived information typically use limit orders, which leads to a negative correlation 

between adverse selection and informed trading (see also Collin-Dufresne and Fos, 2016). 

                                                           
16 Consistent with Glosten and Milgrom (1985), Easley and O'Hara (1987) also suggest that stock illiquidity should 

increase in the presence of informed traders, as information asymmetry increases adverse selection, which widens 

the spread. 
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 This chapter builds on the above predictions and findings by developing a general state 

space-based methodology for decomposing trading volume into unobservable liquidity-driven 

and information-driven components. According to Hendershott and Menkveld (2014), state 

space modelling is a natural tool for modelling an observed variable as the sum of two 

unobserved variables. While the application of state space modelling for decomposing price, 

owing to its efficiency, is very common in the finance literature (see as examples, Brogaard et 

al., 2014b; Hendershott and Menkveld, 2014; Menkveld et al., 2007), the approach has thus far 

not been directly applied to trading volume.17 This is surprising given the preponderance of the 

literature on the strength of the relationship between price and trading volume (see as examples, 

Clark, 1973; Cornell, 1981; Epps and Epps, 1976; Harris, 1986; 1987; Karpoff, 1987).  

 The heavily evidenced relationship shown in the literature is linked to the joint 

dependence of price and volume on an underlying or set of underlying variable(s); this is the 

‘mixture of distribution hypothesis’ (MDH) (see Clark, 1973; Harris, 1986). Harris (1986) 

argues that the underlying variable is the rate of flow of information. Hence, as new information 

arrives, traders act on it by revising their positions and consequently increase trading volume. 

Harris (1987), using data from NYSE, provides an empirical basis for the MDH. This implies 

that the theoretical basis for the application of state space modelling to price (i.e. that price 

reflects both information and non-information components) holds for volume.18 However, it is 

important to note that while the information component of price is its permanent component, 

the information component of volume is transitory. This is simply because although new 

information implies a new permanent level of price it will only affect trading volume 

temporarily, since once prices reflect this information, informed traders will no longer hold an 

                                                           
17 McCarthy and Najand (1993) apply state space modelling to the analysis of price and volume dependence in 

currency futures. 
18 A second explanation for the existence of the price-volume relationship is based on the sequential information 

models proposed by Copeland (1976), Jennings et al. (1981) and Smirlock and Starks (1984). The models suggest 

that volume improves forecasts of price variability and vice versa. 
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informational advantage and will therefore cease their trading based on the exploited 

information (see also Fama, 1970; Chordia et al., 2002; Suominen, 2001).  

 As discussed by Hendershott and Menkveld (2014), the state space approach holds 

significant economic value over other methods that could be appropriated for variable 

decomposition, such as autoregressive models (see as an example, Hasbrouck, 1991). Firstly, 

the estimation of the model using maximum likelihood is asymptotically unbiased and efficient. 

Secondly, maximum efficiency in dealing with missing values is achieved due to the use of the 

Kalman filter, which accounts for level changes across periods with missing observations, 

employed in the maximum likelihood estimation. This is a critical argument in the use of state 

space modelling in decomposing asset prices and trading volume in a high frequency trading 

environment such as the one I examine, since standard estimation approaches do not deal with 

missing observations. For example, estimating a vector autoregression implies truncation of 

the lag structure. Although standard approaches to decomposing trading volume may work well 

in a low-frequency environment, information in today’s markets travel at such ultra-high 

speeds that those standard approaches could potentially discard any additional information that 

could be obtained from high frequency data. Thirdly, following estimation the Kalman 

smoother, which is essentially a backward recursion after a forward recursion with the Kalman 

filter, facilitates a decomposition of any realised change in the series such that the estimated 

permanent or transitory component at any interval is estimated using all past, present, and 

future observations in the series. Thus, the purpose of filtering is to ensure that estimates are 

updated with the introduction of every additional observation (see also Durbin and Koopman, 

2012).  

 In line with the expectation that asset price (and by extension, volume) is driven by 

informed trading and can therefore be decomposed into permanent and transitory components 

(see Brogaard et al., 2014b; Menkveld et al., 2007), I demonstrate that (observable) trading 

volume is a sum of two unobserved series. The first is a nonstationary series (the permanent 
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component), and the second is a stationary series (the transitory component). I argue that the 

unobserved permanent component of trading volume is mainly driven by liquidity traders, 

whereas the unobserved transitory component is primarily driven by informed traders. The 

permanent component in the state space model is a nonstationary series and follows a random 

walk. Consistent with the literature (see as an example, Kyle, 1985), liquidity/uninformed 

traders trade randomly (i.e. the general reference to noise trading in the market microstructure 

literature), and thus I model the trading volume of liquidity traders as a random walk. 

Consequently, the non-random walk component of trading volume is modelled as trading 

volume due to informed trading activity. 

 In a test of the validity of the proposed state space-based volume decomposition 

approach, I use the estimated permanent and transitory components of trading volume to 

examine the impact of liquidity and informed trading activities on market quality metrics, such 

as volatility, liquidity, and toxicity. This part of my analysis serves as a joint test of the 

empirical relevance of the state space model and the impact of informed and liquidity trading 

on market quality. The relevance of my state space approach is underscored when my empirical 

findings are in line with the model predictions in the existing relevant theoretical market 

microstructure literature. I thereafter examine the predictive power of the estimated 

information-driven/transitory component of trading volume on short-horizon returns. This 

analysis furthers my aim of demonstrating the relevance of the state space approach to 

decomposing trading volume into informed and liquidity components. It is also a direct test of 

the efficiency of the price discovery process (see Chordia et al., 2005; 2008). Similar to the 

order imbalance metrics employed in Chordia et al. (2008), the transitory component, which 

also signals private information, is expected to be a predictor of short-horizon returns.  

 All the results obtained are generally consistent with my expectations. Based on my 

state space-estimated information and liquidity-driven components of trading volume, I find 

that after controlling for aggregate trading volume, stock price volatility and liquidity/toxicity 
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are not driven by liquidity trading activity; however, it is impacted by informed trading activity. 

I also find that informed trading activity reduces price volatility and market toxicity and 

enhances liquidity. The results are robust to alternative estimation frequencies, approaches and 

proxies for volatility and liquidity. This finding is in line with the theoretical model developed 

by Collin-Dufresne and Fos (2016), 19  which predicts that the price volatility-informed trading 

relationship is influenced by two effects. On the one hand, informed trading reveals 

information, and this decreases uncertainty in financial markets, which reduces price volatility. 

On the other hand, aggressive trading behaviour on the part of informed traders could increase 

volatility. Thus, the net impact of informed trading on stock price volatility depends on which 

effect dominates. Under normal trading conditions, the former effect would naturally dominate. 

The results are also consistent with the empirical findings of Avramov et al. (2006) and Collin-

Dufresne and Fos (2015), who find that price volatility and adverse selection are negatively 

correlated with informed trading. The negative relationships of informed trading with order 

flow toxicity and illiquidity are linked to informed traders’ use of limit orders rather than 

(aggressive) market orders.  

 Furthermore, I find that the transitory component, as estimated using my state space 

approach, is a significant predictor of one-second stock returns. This implies that although 

financial markets are efficient in the long-term, there are short-term inefficiencies in markets 

because investors need time to absorb new information (see Chordia et al., 2008). However, I 

find that the horizon for short-term stock returns predictability has decreased substantially since 

the five-minute window reported by Chordia et al. (2008). The predictability of short-horizon 

returns now only holds on a per second basis, and no longer at the minutes-long threshold 

reported in earlier studies. I show that high frequency trading is the driver of this sharp 

reduction in the length of short-term return predictability.  

                                                           
19 The rational expectation model developed by Wang (1993), via a different mechanism, also predicts a negative 

relationship between informed trading and stock price volatility.  
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 Several streams of the literature relate to this study. One delineates traders into 

liquidity- and information-motivated traders (see as an example, Avramov et al., 2006), and 

another examines the role of the different types of traders on price volatility and 

liquidity/toxicity (see as examples, Daigler and Wiley, 1999; Van Ness et al., 2016). This 

chapter differs from both of these streams of the literature in at least three respects. Firstly, the 

approach of decomposing trading volume using state space modelling is fundamentally 

different to those employed in existing studies and holds noteworthy economic 

value/significance over other decomposition methods. Secondly, I examine the role of 

informed trading activity in the evolution of specific market quality metrics, including for a 

new market quality metric, market toxicity. Finally, and critically, I present new evidence on 

the speed of price adjustment in the presence of HFT-driven informed order flow.  

 

3.2  Trading volume and the state space model 

3.2.1  The application of state space modelling to trading volume 

State space models are a natural tool for modelling an observed variable as the sum of 

two unobserved variables. The asymptotic unbiasedness and efficiency of their estimation, i.e. 

maximum likelihood via the Kalman filter (see Brogaard et al., 2014b; Hendershott and 

Menkveld, 2014), make them best suited to analysing high frequency time series.  

 In my setting, the state space model decomposes trading volume into two parts: the 

permanent component of trading volume, which is driven by liquidity trading, and the 

transitory component of trading volume, which is driven by information-motivated trading. 

Thus, liquidity-motivated trading is expected to constitute the permanent part of trading 

volume, while informed order flow is expected to make up the transitory part. In other words, 

uninformed/liquidity order flow is necessary for trading, while informed order flow is not as 

critical. These expectations are consistent with the predictions of the models of Glosten and 

Milgrom (1985) and Suominen (2001).  
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 Firstly, the Glosten and Milgrom (1985) model predicts a partial market breakdown if 

there is an excessive level of informed traders in the market relative to liquidity traders. This 

is simply because when there is a dearth of liquidity traders in the market, market makers will 

aim to protect themselves against being adversely selected by widening the spread. Wider 

spreads make order execution more difficult and trading less likely. As suggested by Glosten 

and Milgrom (1985), this prediction is congruous with the well-known lemons problems 

proposed by Akerlof (1970). It simply implies that trading relies on the permanent presence of 

liquidity traders in the market. The permanent character of liquidity order flow is underscored 

by the well-known ‘no trade’ theorems. While trading may not be informationally efficient in 

the absence of informed trades, they can still occur because of the dispersion of beliefs inherent 

in uninformed order flow. This is not the case when liquidity-seeking order flow is unavailable 

in the market. Specifically, high levels of informed orders relative to liquidity orders implies 

that orders will cluster on one side of the order book, leading to no trade scenarios (see 

Brunnermeier, 2001), since there is no dispersion of belief in informed order flow. This is why 

Morris (1994) argues that no trade problems can be solved by adding liquidity traders to the 

market. Therefore, the permanent component of trading volume, as modelled using state space 

modelling, can be characterised as the liquidity component of trading volume. In addition, 

generally, the theoretical literature models liquidity traders as random traders (see as an 

example, Kyle, 1985). In line with this, in the state space representation, the permanent 

component is modelled as a (nonstationary) random walk. 

 Secondly, Suominen (2001) shows that after trading reveals the private information 

held by informed traders, liquidity traders will inevitably revise their pricing and thus become 

more cautious. This may result in a reduction in informed trading in the market. Furthermore, 

according to the Efficient Market Hypothesis (EMH), any new information is simultaneously 

absorbed by traders, and hence can only cause transitory (short-term) changes in trading 

volume (see Fama, 1970). Similarly, Chordia et al. (2002) argues that private information 



 

76 
 

impacts liquidity temporarily in financial markets. Thus any changes in the information-driven 

component of trading volume, while having a durable impact on price (see Menkveld et al., 

2007), should only affect trading volume temporarily. Consistent with this, in the state space 

representation, the stationary and transitory component of trading volume as modelled using 

state space modelling is adopted as a proxy for informed trading activity. 

 The above arguments provide a firm basis for my modelling approach. Additionally, it 

is useful to draw comparisons between my state space modelling approach and a related 

methodological stream of the financial economics literature. When investigating trading 

behaviour in financial markets, modelling may focus on the duration between transactions as a 

means of capturing trading intentions, such that the time stamp may be used as an explanatory 

variable in the mean function of durations. In addition, a cubic spline may be used to smooth 

out huge variations in the duration effects. Such a model is often regarded as a state space 

counterpart of the autoregressive conditional duration (ACD) model of Engle and Russell 

(1998) (see also Durbin and Koopman, 2012).20 The ACD is suitable for analysing trading data 

with transactions at irregular intervals, and the model is extensively used in the market 

microstructure literature to test hypotheses about duration and transaction clustering. In my 

state space representation, the permanent characteristics of the nonstationary series imply 

constant duration, whereas the transitory structure of the stationary series requires non-constant 

duration between transactions. Since the permanent and transitory components of trading 

volume are motivated by liquidity and information trades respectively, there should be constant 

(non-constant) duration in liquidity (informed) trading activity. For example, as transactions 

duration decreases, I would expect an increase in the speed of price adjustment to new 

information (see Dufour and Engle, 2000). Specifically, if indeed my state space representation 

is empirically relevant, then I would expect that non-constant duration or duration clustering is 

                                                           
20 Pacurar (2008) provides a review of the duration modelling literature. 
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driven by informed trading. The empirical findings in the literature (see as examples, Dufour 

and Engle, 2000; Engle, 2000; Russell and Engle, 2005; Zhang et al., 2001) are in line with 

this expectation, and therefore provide an additional set of arguments that further underscore 

the empirical relevance of my state space approach.  However, ultimately, the ACD is an 

autoregressive model and consequently is less efficient for decomposing an observed variable 

into unobserved components than the state space modelling approach using maximum 

likelihood estimation via the Kalman filter (see Brogaard et al., 2014b; Durbin and Koopman, 

2012; Hendershott and Menkveld, 2014).  

 

3.2.2  The state space equation 

I model trading volume as the sum of a non-stationary permanent (liquidity-driven) 

component and a stationary transitory (information-driven) component.21 In its simplest form, 

the structure of the state space model for trading volume, a multiple of I stock prices, T intraday 

periods, and D intervals can be expressed as: 

                                            𝑣𝑖,𝑡,𝜏 = 𝑚𝑖,𝑡,𝜏 + 𝑠𝑖,𝑡,𝜏                                                     (3.1)                   

and 

                                                    𝑚𝑖,𝑡,𝜏 = 𝑚𝑖,𝑡,𝜏−1 + 𝑢𝑖,𝑡,𝜏                                                    (3.2)                                            

where 

                                                   𝑣𝑖,𝑡,𝜏 = 𝑙𝑛(𝑇𝑉𝑜𝑙𝑢𝑚𝑒𝑖,𝑡,𝜏),                                                       (3.3) 

      

for i = 1,…,I and 𝜏 = 1,…,T and t = 1,…,D; both 𝜏 and t index event and calendar times 

respectively (see Menkveld, 2013). 𝑇𝑉𝑜𝑙𝑢𝑚𝑒𝑖,𝑡,𝜏 is the volume traded in stock i at interval t 

                                                           
21 In addition to modelling the natural logarithm of trading volume as an observable variable in the state space 

representation, for robustness, I also employ level trading volume, percentage changes in trading volume and first 

difference of trading volume. My inferences are unchanged irrespective of the approach I employ; indeed all the 

estimates obtained are qualitatively similar. 
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and period 𝜏, 𝑚𝑖,𝑡,𝜏 is a non-stationary permanent component of the volume traded in stock i at 

interval t and period 𝜏, 𝑠𝑖,𝑡,𝜏 is a stationary transitory component of the volume traded in stock 

i at interval t and period 𝜏, and 𝑢𝑖,𝑡,𝜏 is an idiosyncratic disturbance error in stock i at interval t 

and period 𝜏. 𝑠𝑖,𝑡,𝜏 and 𝑢𝑖,𝑡,𝜏 are assumed to be mutually uncorrelated and normally distributed. 

The structure of the model shows that only changes in 𝑢𝑖,𝑡,𝜏 affect trading volume permanently; 

𝑠𝑖,𝑡,𝜏 is temporary because its effects are ephemeral. By using maximum likelihood (likelihood 

is constructed using the Kalman filter),22 I can easily estimate 𝜎𝑖,𝑡
2𝑢  and 𝜎𝑖,𝑡

2𝑠, where t equals to 

one of one second, minute or hour. Specifically, I first partition my sample into one second, 

minute and hour intervals, then estimate 𝜎𝑖,𝑡
2𝑢   and  𝜎𝑖,𝑡

2𝑠 for these intervals by using trading 

volume at different periods (𝜏) during the intervals. This implies that, as in Menkveld et al. 

(2007), my permanent and transitory components (𝜎𝑖,𝑡
2𝑢  and  𝜎𝑖,𝑡

2𝑠 ), as estimated using the state 

space model, are time variant (see Table 4 in Menkveld et al., 2007: 220). I impose the time 

variant structure, because I subsequently use the estimated components in multivariate 

predictive regressions. Brogaard et al. (2014b) also compute time variant permanent and 

transitory components of an observable variable (price).   

 According to the structure of my state space model, the permanent component of 

trading volume is due to the activity of the fraction of the market populated by liquidity traders, 

while the other fraction of the market populated by informed traders reflects the transitory 

component of trading volume. It implies that my estimated coefficients (𝜎𝑖,𝑡
2𝑢  and 𝜎𝑖,𝑡

2𝑠), 

modelled as variances of permanent and transitory trading volume respectively, can be used as 

                                                           
22 The Kalman filter evaluates the conditional mean and variances of the state vector  𝒎𝒕 given past observations 

𝑉𝑡−1 = {𝒗𝟏, . . , 𝒗𝒕−𝟏}: 𝒂𝒕|𝒕−𝟏 = E(𝒎𝒕|𝑉𝑡−1), 𝑷𝒕|𝒕−𝟏 = var(𝒎𝒕|𝑉𝑡−1),      𝑡 = 1, . . , 𝑁.                            

In order to initialize the Kalman filter, I also have 𝒂𝟏|𝟎 =  𝒂 and 𝑷𝟏|𝟎 =  𝑷, where 𝒎𝟏 ~ 𝑁(𝒂, 𝑷). This 

initialization works only if 𝒎𝒕 is a stationary process. However, as in my case, often 𝒎𝒕 is not a stationary process. 

Hence, “diffuse initialization” is done and estimated by numerically maximizing the log-likelihood. This is 

evaluated by the Kalman filter due to prediction error decompositions. It can be shown that when the model is 

correctly specified the standardized prediction errors are normally and independently distributed with a unit 

variance (see Durbin and Koopman, 2012 for further details). 
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proxies for the two fractions of trading volume, i.e. 𝜎𝑖,𝑡
2𝑢  is a proxy for liquidity-motivated 

traders and 𝜎𝑖,𝑡
2𝑠 is a proxy for information-motivated traders. Since informed trading occurs 

only occasionally relative to uninformed trading, which is more regular, I would expect 𝜎𝑖,𝑡
2𝑠 to 

be higher than 𝜎𝑖,𝑡
2𝑢 .   

 Although a one-second interval is a suitable frequency to investigate high-frequency 

trading activity, it is a very short interval for trade-based measures such as trading volume; 

hence, I employ one-minute and one-hour interval analysis for robustness. Furthermore, any 

interval that has fewer than three transactions is excluded from the sample.  

 The value of my volume decomposition approach is inextricably linked to the relevance 

of the estimated transitory and permanent components as proxies for informed and uninformed 

trading respectively. Therefore, in order to test their empirical relevance, I employ a series of 

predictive multivariate regressions, which are discussed in the next section. Specifically, I test 

whether the estimated components of trading volume’s impact on market quality proxies are 

consistent with the predicted and established patterns in the literature. The hypotheses related 

to these tests are developed in Section 3.2.3.  

 

3.2.3   The empirical relevance of state space decomposition of trading volume: theory 

and hypotheses 

This section develops three hypotheses for testing the relevance of my state space 

modelling approach. 

 

3.2.3.1 Hypothesis I: state space model-estimated components of trading volume and 

volatility 

Kyle (1985) presents a theoretical model for deriving equilibrium security prices when 

traders’ information sets are asymmetric. The model predicts a constant volatility in a 
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continuous auction system, reflecting information being incorporated into prices at a constant 

rate. Price volatility in part depends on the informed trader’s information as incorporated into 

prices, and is “unaffected by the level of noise trading” (see Kyle, 1985: 1319).23 Degryse et 

al. (2013) extend Kyle's (1985) model by adding a large liquidity trader to the framework. They 

show that when a market maker perceives order flow as uninformed, she does not revise prices, 

such that the liquidity trader benefits from a lower price impact. This prediction also suggests 

an insignificant level of uninformed trading-price volatility relationship. Crucially, this 

relationship relies on a risk neutrality assumption. 

 Hellwig (1980) takes a more apt approach by assuming that price reflects information 

derived from the auctioning activity of risk averse agents. This assumption yields a prediction 

of a positive relationship between liquidity trading and volatility (see also Collin-Dufresne and 

Fos, 2016; Daigler and Wiley, 1999). Considered together with the well-documented positive 

relationship between aggregate trading volume and stock price volatility (see as examples, 

Karpoff, 1987; Lamoureux and Lastrapes, 1990; Lee and Rui, 2002; Park, 2010), the 

implication of the above prediction is that, in a framework controlling for aggregate trading 

volume, the positive relationship between volatility and liquidity trading activity dissipates. 

This is because, as argued by Collin-Dufresne and Fos (2016) and Daigler and Wiley (1999), 

the positive relationship between trading volume and volatility is driven by liquidity trading. 

Furthermore, Hellwig (1980) shows that informed trading activity decreases volatility in 

financial markets (see also Avramov et al., 2006; Wang, 1993), implying a negative 

relationship between volatility and informed trading activity. 

 I would therefore expect that the negative relationship between informed trading and 

volatility will endure in a framework controlling for trading volume. Conversely, there should 

be no expectation of a statistically significant relationship between liquidity trading and 

                                                           
23 Kalotychou and Staikouras (2009), reviewing several market microstructure models, argue that, consistent with 

Kyle's (1985) model, only informed traders contribute to volatility in the long-run.  
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volatility once volume is controlled for, since liquidity trading is the main driver of the trading 

volume-volatility relationship. I exploit these predicted relationships in a test of the validity of 

my state space modelling approach. Specifically, I test the following hypothesis: 

Hypothesis I. The state space model-estimated transitory component of trading volume reduces 

volatility 

 

3.2.3.2 Hypothesis II: state space model-estimated components of trading volume, 

liquidity and market toxicity 

In the market microstructure literature, the bid-ask spread holds economic significance 

for the market maker (see as an example, Branch and Freed, 1977). Huang and Stoll (1997) 

show that the bid-ask spread incorporates three costs: the order processing cost, inventory 

holding cost, and the adverse selection cost. Huang and Stoll (1997) and Bollen et al. (2004) 

argue that order processing and inventory holding costs respectively are not related to the type 

of traders active in the market, since a market maker incurs those costs irrespective of who they 

trade with. However, the adverse selection cost is trader type-dependent. Glosten and Milgrom 

(1985) and Easley and O'Hara (1987) predict that the adverse selection cost is due to market 

makers facing adverse selection risk when they trade with informed traders. This means that 

the bid-ask spread is driven by informed trading activity. Order flow is considered toxic when 

market makers are adversely selected by informed traders in a high frequency environment (see 

Easley et al., 2011). Hence, market toxicity is seen as the high frequency equivalent of adverse 

selection risk. I would therefore expect market toxicity to rise in line with increases in the 

adverse selection cost and the widening of the bid ask spread. The widening of the bid-ask 

spread implies a reduction in liquidity.  

 While an increase in informed trading activity could lead to increased adverse selection 

risk for the market maker and induce a widening of the spread, this effect is often eclipsed by 

an overall increase in trading volume due to aggregate (uninformed and informed) trading 
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activity. This is because informed trading mainly occurs in tandem with uninformed trading. 

According to Admati and Pfleiderer (1988), increases in uninformed/liquidity trading volume 

go hand in hand with induced informed trading volume, such that liquidity-seeking trading 

activity provides an opportunity for informed traders to camouflage their trades. This implies 

that informed traders would normally trade only when their trades could be disguised, and 

uninformed trading activity offers the opportunity for disguising informed trades. This is 

logical since if informed orders are identified ahead of execution, they would no longer be 

beneficial for informed traders and therefore could no longer be considered informed.  

 Kyle (1985) also states that an increase in noise trading induces a higher level of 

informed trading (see also Ibikunle, 2018). Ibikunle (2018) specifically provides empirical 

evidence that informed traders increase their trading activity in the presence of higher trading 

volumes, which is shown to be dominated by uninformed trading activity. Increased trading 

activity has the effect of enhancing liquidity and therefore inducing a narrowing of the bid-ask 

spread (see Barclay and Hendershott, 2003; Biais et al., 1999 for further empirical evidence). 

Hence, I would expect a positive relationship between market liquidity and informed trading 

activity. This expectation is consistent with Kyle (1981; 1984; 1985; 1989) showing that 

informed trading activity is positively related to market liquidity (see also Collin-Dufresne and 

Fos, 2015). Improvements in liquidity implies a narrowing of the bid-ask spread and by 

extension a reduction in market toxicity.  

Furthermore, according to Collin-Dufresne and Fos (2016), informed traders with long-

lived information mainly use limit orders. This helps them avoid detection and leads to a 

negative correlation between adverse selection and informed trading. Consequently, I test the 

following hypothesis:  

Hypothesis II. The state space model-estimated transitory component of trading volume 

enhances liquidity and reduces market toxicity. 
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3.2.3.3 Hypothesis III: state space model-estimated transitory component of trading 

volume and short-horizon returns 

According to Fama (1970), financial markets are largely informationally efficient over 

a daily horizon. Chordia et al. (2002; 2008) however argue that there are inefficiencies in 

markets at shorter horizons because traders need time to act on new information. Motivated by 

this, Chordia et al. (2002; 2008) examine the predictability of short-term returns from lagged 

order imbalance and find that, indeed, markets are inefficient over short periods. Chordia et al. 

(2002; 2008) use order imbalance in their own regressions investigating the predictability of 

short-horizon returns for two reasons. Firstly, order imbalance signals private information, 

which should result in a permanent price impact (this is also alluded to by Kyle, 1985). 

Secondly, large order imbalances exacerbate the inventory problem faced by the market maker, 

leading to quote revisions and changes in the bid-ask spread. Similarly, I argue that my 

transitory component of trading volume signals private information, and thus I expect the 

component to be a significant predictor of short-horizon stock returns and, by extension, an 

inverse predictor of market efficiency (see Chordia et al., 2008; Chung and Hrazdil, 2010).  

 The informative element of both Chordia et al.’s (2002; 2008) order imbalance measure 

and my own state space-based transitory component of trading volume24 measure make them 

suitable predictors in the short-horizon return predictive regressions. Consequently, my third 

hypothesis is as follows: 

Hypothesis III. The state space model-estimated transitory component of trading volume is a 

significant predictor of short-horizon returns. 

 

                                                           
24 In addition, the idea that returns depend on trading volume (or its components) is consistent with the literature. 

The relationship between return and lagged trading volume is predicted by the sequential information arrival 

model developed by Copeland (1976) and Jennings et al. (1981). This model assumes that initially, new 

information is observed only by a trader, leading to her revising her beliefs and beginning to trade advantageously 

with the information. This informed trading activity generates a new equilibrium price, and therefore returns (price 

changes). Specifically, sequential information flow models argue that contemporaneous absolute stock returns can 

be predictable by lagged trading volume (see also Hiemstra and Jones, 1994). 
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3.3 Data and measures 

3.3.1 Data 

I use two sets of data in this study. The first consists of ultra-high frequency tick-by-

tick data for the most active 100 S&P 500 stocks, as sourced from the Thomson Reuters Tick 

History (TRTH) database; trading activity is measured by dollar trading volume. It includes 

data for the trading days between October 2016 and September 2017. In the data, each message 

is recorded with a time stamp to the nearest millisecond. The following variables are included 

in the dataset: Reuters Identification Code (RIC), date, timestamp, price, volume, bid price, ask 

price, bid volume, and ask volume. I apply Lee and Ready’s (1991) algorithm to classify trades 

as buyer- or seller-initiated.25 The final dataset after cleaning26 contains about 216.37 million 

trades, out of which 106.89 million (109.48 million) are buyer- (seller-) initiated. The total 

value of all trades captured in the analysis equals US$3.28 trillion. 

 The second dataset is used to execute additional out of sample tests of the validity of 

my state space modelling approach. It is a proprietary dataset obtained from NASDAQ, and 

contains transactions for 120 randomly selected NASDAQ and NYSE-listed stocks trading 

during all the trading days in 2009. The data is complementary to the first dataset I employ 

because it disaggregates transactions into those executed based on orders submitted by HFTs 

and non-HFTs. This is the same dataset described in detail by Brogaard et al. (2014b). The 

dataset contains the following information on each transaction included in the sample: date, 

time (in milliseconds), transaction size (shares), price, buy-sell indicator, and liquidity nature 

of the two sides to each trade (HH, HN, NH and NN). HH indicates a trade based on an HFT 

demanding liquidity and an HFT supplying the required liquidity. HN implies that an HFT 

demands liquidity and a non-HFT supplies liquidity, while NH is the opposite. NN refers to 

                                                           
25 Chakrabarty et al. (2015) compare the different trades classification methods and conclude that Lee and Ready’s 

(1991) is the most accurate method. 

26 I follow Chordia et al. (2001) and Ibikunle (2015) in applying a standard set of exclusion criteria to the data, 

with the aim of eliminating inexplicable values due to erroneous data entry. 
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trades where both counterparties are non-HFTs. I identify the sum of HH, HN and NH as HFT 

volume. Based on this classification, HFTs are counterparties in about 71.30% of all trades in 

the sample. The NASDAQ-provided dataset is only used in Section 3.5 of this chapter, where 

further justification for its use is outlined.  

 

3.3.2 Measures and descriptive statistics 

In order to conduct a joint test of the empirical relevance of my state space modelling 

approach and the impact of liquidity and informed trading on price volatility, liquidity, and 

market toxicity, I estimate a set of predictive regressions. Thus, apart from the state space-

estimated permanent and transitory components of trading volume, my volatility, liquidity, and 

market toxicity measures are the main variables of interest. Below I elaborate on how these 

and other relevant variables are computed. 

 

3.3.2.1 Volatility measures 

Consistent with the literature, I use the absolute value of price changes, |∆𝑝𝑖,𝑡|, as the 

main proxy for stock price volatility (see Karpoff, 1987). ∆𝑝𝑖,𝑡 is the difference in price change 

between the last transaction prices, p, for stock i at intervals t and t-1. 

 For robustness, I also proxy volatility using the standard deviation of stock returns 𝜎𝑖,𝑡
𝑅  

(see Barclay and Hendershott, 2003; 2008; Lamoureux and Lastrapes, 1990; Malceniece et al., 

2018), where R is the midpoint-to-midpoint return with each midpoint computed using the best 

bid and ask quotes corresponding to each transaction in stock i during interval t; R is thus 

defined in event/transaction time. The standard deviation of these returns within each interval 

t is my volatility measure. This midpoint-based approach is used in order to reduce the 

incidence of bid-ask bounce, which transaction prices are susceptible to (see Avramov et al., 

2006; Chordia et al., 2008). However, an alternative set of volatility estimates computed from 
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transaction prices do not yield materially different results. Interval t corresponds to one of one 

second, minute or hour for both volatility proxies. 

 

3.3.2.2 Liquidity measures 

For robustness, I employ three spread measures as proxies for liquidity; the spread 

metrics are the effective spread (𝐸𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡), quoted spread (𝑄𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡), and relative spread 

(𝑅𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡). The 𝑅𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 is obtained by dividing the difference between interval t’s best 

ask and bid prices by the midpoint of both prices for stock i, while the 𝑄𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 is simply 

the difference between interval t’s best ask and bid prices for stock i. The 𝐸𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 is twice 

the absolute value of the difference between the last transaction price for stock i in interval t 

and the midpoint of the prevailing bid and ask prices when the transaction occurs for stock i. 

Interval t corresponds to one of one second, minute or hour for all liquidity proxies. 

 

3.3.2.3 Market toxicity 

I use the nominal order imbalance metric employed by Chordia et al. (2008) as a proxy 

for the level of order flow toxicity in the market; in this chapter, I call the measure 𝑀𝑇𝑖,𝑡. This 

is because existing order toxicity measures, such as the volume synchronised probability of 

informed trading (VPIN - see Easley et al., 2012), essentially capture the essence of order 

imbalance in the market and thus are highly correlated with 𝑀𝑇𝑖,𝑡. 𝑀𝑇𝑖,𝑡 is computed as the 

absolute value of the number of buyer-initiated trades minus the number of seller-initiated 

trades divided by the total number of trades for stock i during interval t, where t corresponds 

to one of one-minute or one-hour. I employ only minute and hour intervals because it is 

challenging to obtain enough trading volume for the lower volume stocks to compute unbiased 

order imbalance metrics within a one-second interval. 
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3.3.2.4 Volume measures 

In my state space model, trading volume is the observable variable, which is then 

decomposed into unobservable proxies of liquidity trading activity (𝜎𝑖,𝑡
2𝑢) and informed trading 

activity (𝜎𝑖,𝑡
2𝑠) in stock i at time t. Thus, the proxies could be mechanically correlated with 

trading activity and volume. In order to ascertain that observed effects of the proxies are not 

due to aggregate trading volume, I need to include at least one proxy for trading volume/activity 

in my secondary models. This is particularly important in my framework since Andersen and 

Bondarenko (2014) show that the relationship between VPIN, also estimated from trading 

volume, and future short-term volatility is trivial after controlling for mechanic correlation 

between VPIN and trading volume. Controlling for trading volume/activity in my secondary 

models addresses the Andersen and Bondarenko (2014) criticism. I employ the natural 

logarithm of trading volume for stock i at time t (𝑇𝑉𝑖,𝑡) as a proxy for trading volume. A second 

trading activity-related proxy is also included in my models: 𝐵𝑆𝐼𝑖,𝑡. 𝐵𝑆𝐼𝑖,𝑡 is the absolute value 

of the difference between buyer- and seller-initiated trades for stock i during interval t. 

According to Chordia et al. (2002), the metric adequately proxies trading activity because it 

strongly influences prices and liquidity.  

Table 3. 1 Definitions of variables and descriptive statistics 

The table defines the variables calculated for each stock-interval, i, t, and reports the descriptive statistics. All 

variables, except 𝑀𝑇𝑖,𝑡, are computed at a one-second frequency (t equals one-second). 𝑀𝑇𝑖,𝑡 is computed at a one-

minute frequency. The sample contains the most active 100 S&P 500 stocks traded between October 1, 2016 

through to September 30, 2017 on NYSE and NASDAQ. 

 

Variable Description Mean Median Stand. 

Deviatio

n 

𝐸𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 Effective spread for stock i at interval t. 

Computed as twice the absolute value of 

the difference between the last execution 

price and the midpoint of the prevailing 

bid and ask prices at interval t.  

0.0090 0.0100 0.0462 
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𝑅𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 Relative spread for stock i at interval t. 

Computed as the difference between the 

best ask and bid prices divided by the 

midpoint of both prices during interval t. 

0.0003 0.0002 0.0009 

𝑄𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 Quoted spread for stock i at interval t. 

Computed as the difference between the 

best ask and bid prices during interval t. 

0.0186 0.0100 0.0564 

𝐵𝑆𝐼𝑖,𝑡 Absolute difference between buyer- and 

seller-initiated trades for stock i during 

interval t. 

1584.05 424.00 35771 

|∆𝑝𝑖,𝑡| Absolute value of price change for stock 

i during interval t. Computed as the 

absolute value of the differences 

between last prices at intervals t and t-1. 

0.0091 0.0090 0.0670 

𝑅𝑖,𝑡 Midpoint-to-midpoint return for stock i 

during interval t. Computed as the 

difference between the midpoints 

corresponding to the last transactions at 

intervals t and t-1 divided by the 

midpoint corresponding to the last 

transaction at interval t-1 

-0.412x10-6 0.00 0.0013 

𝜎𝑖,𝑡
𝑅  Standard deviation of midpoint-to-

midpoint returns for stock i during 

interval t; each midpoint during the 

interval t corresponds to a transaction 

occurring during the interval. 

0.92x10-4 0.59x10-4 0.0009 

𝑀𝑇𝑖,𝑡 Market toxicity for stock i for interval t. 

Computed as the absolute value of the 

difference between the numbers of buy 

and sell trades divided by the sum of the 

numbers of buy and sell trades occurring 

during interval t. 

0.5406 0.5037 0.3419 

 

Table 3.1 presents the descriptive statistics for volatility, liquidity, market toxicity and volume 

metrics. Midpoint return estimates for stock i at time t, 𝑅𝑖,𝑡s, are also presented. All measures 

except that of market toxicity (𝑀𝑇𝑖,𝑡) are based on one-second computations; 𝑀𝑇𝑖,𝑡 is based on 

one-minute calculations. Consistent with recent evidence (see as an example, Malceniece et 

al., 2018), the spread measures are tight, with the average 𝐸𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡, 𝑅𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡, and 

𝑄𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 corresponding to 0.009, 0.0004, and 0.018, respectively. Average midpoint returns 
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are weakly negative over my sample period. However, volatility is generally low irrespective 

of which proxy I focus on. The mean and median for |∆𝑝𝑖,𝑡| are about 0.0092 and 0.009 

respectively, while 𝜎𝑖,𝑡
𝑅  is lower still at 0.00009. 

 

3.4 Analysis of state space decomposition of trading volume 

3.4.1 State space decomposition of trading volume: estimates 

Table 3.2 presents the cross-sectional mean estimated values of the permanent 

(liquidity-driven) and transitory (information-driven) components of trading volume as 

decomposed using the state space model. 

Table 3. 2 State Space Estimates 

The table contains mean cross-sectional estimates of transitory (information-driven) and permanent (liquidity-

driven) components of trading volume for the most active 100 S&P 500 stocks trading between October 1, 2016 

and September 30, 2017. Stocks are divided into quartiles according to their level of trading activity; trading 

activity is based on trading volume. Quartile 1 contains the least active companies, while Quartile 4 contains the 

most active stocks. The estimates are based on the following state space model for decomposing trading volume 

into its transitory and permanent components: 

𝑣𝑖,𝑡,𝜏 =  𝑚𝑖,𝑡,𝜏 + 𝑠𝑖,𝑡,𝜏 ; 𝑚𝑖,𝑡,𝜏 =  𝑚𝑖,𝑡,𝜏−1 + 𝑢𝑖,𝑡,𝜏 

where 𝑣𝑖,𝑡,𝜏 = 𝑙𝑛(𝑇𝑉𝑜𝑙𝑢𝑚𝑒𝑖,𝑡,𝜏), i = 1,…,I (stocks), t = 1,…,D (intervals),  𝜏 = 1,…,T (periods), 𝑇𝑉𝑜𝑙𝑢𝑚𝑒𝑖,𝑡,𝜏 

corresponds to the trading volume of stock i at interval t and period 𝜏, 𝑚𝑖,𝑡,𝜏 is a non-stationary permanent 

component of stock i at interval t and period 𝜏, 𝑠𝑖,𝑡,𝜏 is a stationary transitory component for stock i at interval t 

and period 𝜏 and 𝑢𝑖,𝑡,𝜏 is an idiosyncratic disturbance error for stock i at interval t and period 𝜏. 𝜎𝑖,𝑡
2𝑠 and 𝜎𝑖,𝑡

2𝑢 are the 

respective estimates of the transitory and permanent components of trading volume for stock i and interval t, 

estimated by maximum likelihood (constructed using the Kalman filter). Estimations are presented for one-

second, one-minute, and one-hour frequencies (t equals one-second, one-minute and one-hour). 

 

Stock quartiles 

Variable Least active 2 3 Most active 

One-second frequency (t equals one-second) 

𝜎𝑖,𝑡
2𝑠 1.02 1.24 1.37 1.51 

𝜎𝑖,𝑡
2𝑢   0.46 0.49 0.53 0.78 

One-minute frequency (t equals one-minute) 

𝜎𝑖,𝑡
2𝑠 1.21 1.36 1.63 1.88 

𝜎𝑖,𝑡
2𝑢   0.49 0.55 0.72 0.85 

One-hour frequency (t equals one-hour) 
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𝜎𝑖,𝑡
2𝑠 1.34 1.65 1.77 1.96 

𝜎𝑖,𝑡
2𝑢   0.51 0.59 0.76 0.97 

 

The results are presented for the mean estimates based on one-second, one-minute, and 

one-hour estimations. For improved insight, I divide my sample into quartiles according to 

their level of trading activity; trading activity is measured by dollar trading volume. The stocks 

in Quartile 1 are the least active stocks, while Quartile 4 stocks are the most active. As expected, 

the mean 𝜎𝑖,𝑡
2𝑠 is consistently higher than the mean 𝜎𝑖,𝑡

2𝑢  across all quartiles, irrespective of the 

estimation frequency of the state space model. This is consistent with the structure of my state 

space modelling approach. Informed trades are modelled as transitory, occurring only when 

traders have an informational advantage in the market, while uninformed trades are a 

permanent fixture in markets. This implies a higher variance for informed trades, hence I would 

expect higher estimates for 𝜎𝑖,𝑡
2𝑠 relative to 𝜎𝑖,𝑡

2𝑢 .   

 Informed traders are, strategically, more active when trading volume and liquidity 

trading are high, because higher trading volumes provide better “camouflage” for informed 

trades (see Admati and Pfleiderer, 1988). The estimates presented in Table 3.2 are consistent 

with this widely held view in the market microstructure literature. The mean variance of 

liquidity-motivated trades in Quartile 4 is higher than the mean variance of liquidity trades in 

all of the other quartiles, and is lowest in Quartile 1. This suggests that informed traders should 

be most active in Quartile 4 and least active in Quartile 1. The transitory component estimates 

in Table 3.2 are completely in line with this expectation. The mean transitory component in 

Quartile 4 are 1.51, 1.88 and 1.96 for the one-second, one-minute and one-hour estimations 

respectively. These estimates are 48%, 55.37% and 46.27% larger than the one-second, one-

minute, and one-hour frequencies mean estimated values for Quartile 1 stocks at 1.02, 1.21, 

and 1.34 respectively.  
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 Inferring from the Kyle (1985) and Glosten and Milgrom (1985) models, when 

uninformed traders are scarce in the market, the price discovery process becomes impaired or 

even breaks down. This is because the prospect of compensation for gathering information is 

reduced in markets where uninformed traders are few, and this leads to fewer than optimal 

potential informed traders being incentivised to acquire information. The absence of informed 

traders in the markets impairs the price discovery process, since their trades convey information 

to the market. Thus, both liquidity and informed traders are critical to the price discovery 

process. An approach that allows me to directly estimate the proportion of trading volume that 

can be attributed to both types of traders is therefore valuable in several contexts, not least in 

market reporting activities, investment management, and policy/regulations development. For 

example, firm managers’ responses to the so-called speeding ticket (Price and Volume Query) 

often issued by some exchanges, such as the Australian Securities Exchange, focus mainly on 

explaining the evolution of trading volume. 

 

3.4.2 State space decomposition of trading volume: analysis of empirical relevance 

3.4.2.1 Hypothesis I: state space model-estimated components of trading volume and 

volatility 

I estimate the multivariate predictive model presented in Equation (3.4) in order to 

examine the relationship between the state space estimated proxies of liquidity (𝜎𝑖,𝑡
2𝑢) and 

informed ( 𝜎𝑖,𝑡
2𝑠) trading activities on the one hand and volatility on the other. This is a direct 

test of Hypothesis I in Section 3.2.3.1. 

  |∆𝑝𝑖,𝑡| = 𝛼 +  𝛽1𝐸𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡−1 + 𝛽2𝑇𝑉𝑖,𝑡−1 + 𝛽3𝐵𝑆𝐼𝑖,𝑡−1 + 𝛽4𝜎𝑖,𝑡−1
2𝑠 + 𝛽5𝜎𝑖,𝑡−1

2𝑢 + 𝜀𝑖,𝑡   (3.4),                                                                                                                                

where all variables are as defined in Section 3.3.2. Equation (3.4) is estimated at one-second, 

one-minute, and one-hour intervals. 𝜎𝑖,𝑡−1
2𝑠  and 𝜎𝑖,𝑡−1

2𝑢 , the proxies for informed and 

uninformed/liquidity trading respectively, are estimated from trading volume. Multicollinearity 
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may therefore be of potential concern, since I include two proxies of trading activity (𝑇𝑉𝑖,𝑡−1 

and 𝐵𝑆𝐼𝑖,𝑡−1) in the model. However, as shown in Table 3.3, this is not the case. Note that my 

state space representation models informed and uninformed trading volume as variances of 

transitory and permanent trading volume. I employ these variance measures as proxies of 

informed and uninformed trading volume in Equation (3.4), and subsequent models. Therefore, 

collinearity is not expected in the regression framework. Consistent with this view, the 

correlation coefficient estimates presented in Table 3.3 show that there are no multicollinearity 

issues in my empirical models. 
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Table 3. 3 Correlation matrix for variables 

The table plots the correlation matrix of the variables employed in this study’s models. One-second frequency (t equals one-second) is used to compute all variables.  

𝑄𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 is the quoted spread for stock i for interval t and is computed as the difference between the best ask and bid prices for interval t. 𝑅𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 is the relative spread for 

stock i and interval t and is computed as the difference between the best ask and bid prices divided by the midpoint of both prices for interval t. 𝐸𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 is the effective spread 

for stock i for interval t and computed as twice the absolute value of the difference between the last execution price and the midpoint of the prevailing bid and ask prices for interval 

t, 𝑇𝑉𝑖,𝑡 is the natural logarithm of trading volume for stock i for interval t, while 𝐵𝑆𝐼𝑖,𝑡 is the absolute difference between buyer- and seller-initiated traders for stock i for interval 

t. 𝜎𝑖,𝑡
2𝑠 is the state space model-estimated transitory component of trading volume and is the proxy for informed trading in stock i during interval t, while 𝜎𝑖,𝑡

2𝑢 is the state space model-

estimated permanent component of trading volume and is the proxy for liquidity trading in stock i during interval t. |∆𝑝𝑖,𝑡| is the absolute value of price change for stock i for 

interval t and is computed as the absolute value of the differences between the last prices at intervals t and t-1, while 𝜎𝑖,𝑡
𝑅  is the standard deviation of midpoint-to-midpoint returns 

for stock i during interval t; each midpoint corresponds to a transaction. The sample contains the most active 100 S&P 500 stocks traded between October 1, 2016 and September 

30, 2017 on NYSE and NASDAQ. 

 

 𝑄𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 𝑅𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 𝐸𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 𝑇𝑉𝑖,𝑡 𝐵𝑆𝐼𝑖,𝑡 𝜎𝑖,𝑡
2𝑠    

 

𝜎𝑖,𝑡
2𝑢  |∆𝑝𝑖,𝑡| 𝜎𝑖,𝑡

𝑅  

 𝑄𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 1         

𝑅𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 0.79909 1        

 𝐸𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 0.90722 0.72476 1       

𝑇𝑉𝑖,𝑡 

 

-0.04144 -0.06261 -0.01673 1      

𝐵𝑆𝐼𝑖,𝑡 0.00133 0.01265 0.00284 0.11090 1     

𝜎𝑖,𝑡
2𝑠   0.00000 0.00013 0.00007 0.00326 0.44342 1    

𝜎𝑖,𝑡
2𝑢  0.00000 -0.00001 0.00005 0.00021 -0.00001 -0.00000 1   

|∆𝑝𝑖,𝑡| 0.08621 0.05052 0.06789 0.01904 0.01101 0.00004 0.00008 1  

𝜎𝑖,𝑡
𝑅  0.12381 0.16384 0.11483 0.01700 0.01050 0.00004 0.00001 0.42911 1 
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As stated in Section 3.2.1, for robustness, I employ a second volatility proxy, i.e. the 

standard deviation of midpoint returns. Consistent with the literature, I include the proxy’s 

lagged value as an additional explanatory variable (see as examples, Justiniano and Primiceri, 

2008; Schwert, 1989) in Equation (3.5): 

𝜎𝑖,𝑡
𝑅 = 𝛼 +  𝛽1𝜎𝑖,𝑡−1

𝑅 + 𝛽2𝐸𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡−1 + 𝛽3𝑇𝑉𝑖,𝑡−1 + 𝛽4𝐵𝑆𝐼𝑖,𝑡−1 + 𝛽5𝜎𝑖,𝑡−1
2𝑠 + 𝛽6𝜎𝑖,𝑡−1

2𝑢 + 𝜀𝑖,𝑡 

 (3.5), 

where all variables are as previously defined.  Equations (3.4) and (3.5) are estimated using 

time fixed effects with panel corrected standard errors. For robustness, I also include stock 

fixed effect and both stock and time fixed effects jointly. All of the estimation approaches yield 

qualitatively similar results.  

 Both of the volatility proxies I employ encapsulate all variation in stock prices; no 

distinction is made between permanent and temporary price changes. This approach is based 

on the extensive market microstructure literature stream investigating the impact of various 

market phenomena on market quality proxies (see as examples the recent works by Buti et al., 

2011; Comerton-Forde and Putniņš, 2015; Malceniece et al., 2018). The purpose of this 

analysis is to test the empirical relevance of my state space modelling approach by verifying 

whether the estimated components of trading volume affect market quality variables as 

predicted in the literature (see Section 3.2.3), hence my adoption of the volatility measures 

developed in the existing literature. 

 The results obtained from the estimation of Equations (3.4) and (3.5) are presented in 

Table 3.4.  

Table 3. 4 Predictive regressions of market volatility on lagged components of trading 

volume 

The predictive power of one-second/minute/hour permanent and transitory components of trading volume is 

estimated using the following models: 

|∆𝑝𝑖,𝑡| = 𝛼 + 𝛽1𝐸𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡−1 + 𝛽2𝑇𝑉𝑖,𝑡−1 + 𝛽3𝐵𝑆𝐼𝑖,𝑡−1 + 𝛽4𝜎𝑖,𝑡−1
2𝑠 + 𝛽5𝜎𝑖,𝑡−1

2𝑢 + 𝜀𝑖,𝑡 
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𝜎𝑖,𝑡
𝑅 = 𝛼 +  𝛽1𝜎𝑖,𝑡−1

𝑝
+ 𝛽2𝐸𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡−1 + 𝛽3𝑇𝑉𝑖,𝑡−1 + 𝛽4𝐵𝑆𝐼𝑖,𝑡−1 + 𝛽5𝜎𝑖,𝑡−1

2𝑠 + 𝛽6𝜎𝑖,𝑡−1
2𝑢 + 𝜀𝑖,𝑡 

where |∆𝑝𝑖,𝑡| is the absolute value of price change for stock i and interval t and computed as the absolute value of 

the differences between last prices at intervals t and t-1, 𝐸𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡−1 is the effective spread for stock i for interval 

t-1 and computed as twice the absolute value of the difference between the last execution price and the midpoint 

of the prevailing bid and ask prices for interval t-1. 𝜎𝑖,𝑡−1
𝑅  is the standard deviation of midpoint-to-midpoint returns 

for stock i during interval t-1; each midpoint corresponds to a transaction. 𝑇𝑉𝑖,𝑡−1 is the natural logarithm of 

trading volume for stock i and interval t-1, and 𝐵𝑆𝐼𝑖,𝑡−1 is the absolute difference between buyer- and seller-

initiated traders for stock i and interval t-1. 𝜎𝑖,𝑡−1
2𝑠 and 𝜎𝑖,𝑡−1

2𝑢  are state space model-estimated proxies (estimated 

using Kalman filter constructed maximum likelihood) for informed and uninformed trading activity respectively 

for stock i and interval t-1. The sample contains the most active 100 S&P 500 stocks traded between October 1, 

2016 and September 30, 2017 on NYSE and NASDAQ. ***, ** and * correspond to statistical significance at the 

0.01, 0.05 and 0.10 levels, respectively. 

Panel A 

Dependent Variable: |∆𝑝𝑖,𝑡| 

 One-second 

frequency 

One-minute 

frequency 

One-hour frequency 

𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡  0.643x10-2*** 

(625.22) 

0.192x10-1*** 

(132.36) 

0.116x10-1*** 

(21.50) 

𝐸𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡−1  0.595x10-1*** 

(234.89) 

0.463x10-1*** 

(77.39) 

0.323x10-1*** 

(15.08) 

𝑇𝑉𝑖,𝑡−1  0.921x10-3*** 

(19.90) 

0.402x10-2*** 

(5.74) 

0.169x10-2*** 

(4.66) 

𝐵𝑆𝐼𝑖,𝑡−1  0.571x10-6*** 

(166.23) 

0.132x10-6*** 

(129.64) 

0.727x10-6*** 

(12.20) 

𝜎𝑖,𝑡−1
2𝑠   -0.325x10-4*** 

(-10.82) 

-0.412x10-3*** 

(-7.33) 

-0.326x10-2*** 

(-4.97) 

𝜎𝑖,𝑡−1
2𝑢   0.864x10-5 

(0.83) 

-0.215x10-4 

(-0.27) 

-0.827x10-4 

(-0.42) 

Sample size (n) 29959938 8880028 204354 

Fixed effects Time Time Time 

𝑅2̅̅̅̅  0.87 % 2.49 % 5.58 % 

 

Panel B 

Dependent Variable: 𝜎𝑖,𝑡
𝑅  

 One-second 

frequency 

One-minute 

frequency 

One-hour frequency 

𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡  0.724x10-4*** 

(413.26) 

0.780x10-4*** 

(255.85) 

0.848x10-4*** 

(14.40) 

𝜎𝑖,𝑡−1
𝑅   0.333x10-1*** 

(64.52) 

0.375x10-1*** 

(52.94) 

0.616*** 

(88.49) 

𝐸𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡−1  0.161x10-2*** 

(367.79) 

0.155x10-2*** 

(53.28) 

0.475x10-4 

(1.53) 

𝑇𝑉𝑖,𝑡−1  0.753x10-5*** 

(16.46) 

0.780x10-5*** 

(8.09) 

0.107x10-4*** 

(5.18) 

𝐵𝑆𝐼𝑖,𝑡−1  0.121x10-8*** 

(265.09) 

0.255x10-8*** 

(140.46) 

0.230x10-8*** 

(23.75) 
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𝜎𝑖,𝑡−1
2𝑠   -0.613x10-6*** 

(-17.75) 

-0.729x10-5*** 

(-14.25) 

-0.903x10-3*** 

(-12.37) 

𝜎𝑖,𝑡−1
2𝑢   0.725x10-7 

(0.08) 

0.684x10-6 

(0.02) 

-0.578x10-3 

(-0.01) 

Sample size (n) 29959938 8880028 204354 

Fixed effects Time Time Time 

𝑅2̅̅̅̅  1.12% 3.24% 8.73% 

 

The inferences drawn from the estimates in Table 3.4 are consistent across all frequency 

estimations. The coefficient estimates show that lagged 𝜎𝑖,𝑡
2𝑠 is a significant predictor of the 

absolute value of price changes, |∆𝑝𝑖,𝑡|, and the standard deviation of stock returns, 𝜎𝑖,𝑡
𝑅 ; the 

𝜎𝑖,𝑡
2𝑠 coefficients are statistically significant at the 0.01 level. The negative coefficient estimates 

indicate that increases in information-motivated trades reduce price volatility in financial 

markets. This result is consistent with the findings of Avramov et al. (2006), who find that 

stock price volatility is negatively correlated with informed traders (see also Hellwig, 1980; 

Wang, 1993). Hypothesis I is therefore upheld.  

 In contrast, 𝜎𝑖,𝑡
2𝑢  is not a significant predictor of volatility once I control for volume. 

This is because the positive relationship between trading volume and volatility is driven by 

trading volume due to liquidity trading (see Collin-Dufresne and Fos, 2016; Daigler and Wiley, 

1999).27 The significant negative 𝜎𝑖,𝑡
2𝑠 and the insignificant 𝜎𝑖,𝑡

2𝑢  coefficient estimates imply a 

validation of my state space approach to decomposing trading volume into informed and 

liquidity-driven components. 

 I note that while the coefficient estimates are consistent for all estimation frequencies 

across both panels, the impact of 𝜎𝑖,𝑡
2𝑠 is stronger for lower frequencies. For example, in Panel 

                                                           
27 For robustness and in a test of the arguments presented by Collin-Dufresne and Fos (2016) and Daigler and 

Wiley (1999), i.e. that a positive volume-volatility relation is driven by liquidity trading, I exclude the trading 

volume proxy from a follow-up model. I find that once trading volume is not controlled for, the liquidity trading 

proxy becomes a positive and statistically significant predictor of volatility. For parsimony, I do not show this 

result, however it is available upon request. 
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A (B), the effect of 𝜎𝑖,𝑡
2𝑠 on volatility proxies for the one-hour frequency estimation is 6.65 

(124.28) and 98.80 (1,249) times larger than that of the one-minute and one-second frequency 

estimations respectively. These differences are due to more information being typically 

released over longer intervals. It is plausible that the market learns more about the 

developments relevant to an instrument over an hour than over a second or a minute, or at the 

very least, comes to terms more with new information over a longer time horizon. The 

estimated coefficients for all of the other explanatory variables are consistent with the existing 

literature.  

 The explanatory powers of the one-second regressions are low, with the 𝑅2̅̅̅̅
 being only 

about 0.87% for |∆𝑝𝑖,𝑡| in Panel A and 2.49% for 𝜎𝑖,𝑡
𝑅  in Panel B. This is unsurprising and is 

because I estimate the models at a one-second frequency, with very little information being 

released during the very narrow window (see Chordia et al., 2008). Consequently, the 𝑅2̅̅̅̅
 

estimates are larger for the one-minute and one-hour frequencies, which are 3.24% and 8.73% 

respectively in Panel B.   

 

3.4.2.2 Hypothesis II: state space model-estimated components of trading volume, 

liquidity and market toxicity 

I next test Hypothesis II from Section 3.2.3.2. Specifically, I investigate the nature of 

the relationship between my state space model-estimated components of trading volume on the 

one hand, and liquidity and market toxicity on the other. For this purpose, I estimate the 

following multivariate predictive models: 

    𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 = 𝛼 +  𝛽1𝜎𝑖,𝑡−1
𝑝 + 𝛽2𝑇𝑉𝑖,𝑡−1 + 𝛽3𝐵𝑆𝐼𝑖,𝑡−1 + 𝛽4𝜎𝑖,𝑡−1

2𝑠 + 𝛽5𝜎𝑖,𝑡−1
2𝑢 + 𝜀𝑖,𝑡          (3.6),                   

     𝑀𝑇𝑖,𝑡 = 𝛼 +  𝛽1𝜎𝑖,𝑡−1
𝑝 + 𝛽2𝑇𝑉𝑖,𝑡−1 + 𝛽3𝐵𝑆𝐼𝑖,𝑡−1 + 𝛽4𝜎𝑖,𝑡−1

2𝑠 + 𝛽5𝜎𝑖,𝑡−1
2𝑢 + 𝜀𝑖,𝑡                (3.7), 
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where 𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 corresponds to one of 𝐸𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡, 𝑄𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡, and 𝑅𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡. All variables 

are as previously defined. Equation (3.6) is estimated at one-second, one-minute, and one-hour 

frequencies, while Equation (3.7) is estimated at one-minute and one-hour frequencies only. 

This is because trading activity during a one-second interval is minimal and not substantial 

enough to compute 𝑀𝑇𝑖,𝑡 within the interval in an unbiased manner. 

Table 3. 5 Predictive regressions of market liquidity on lagged components of trading volume 

The predictive power of the state space-estimated lagged permanent and transitory components of trading volume 

is estimated using the following model: 

𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 = 𝛼 + 𝛽1𝜎𝑖,𝑡−1
𝑅 + 𝛽2𝑇𝑉𝑖,𝑡−1 + 𝛽3𝐵𝑆𝐼𝑖,𝑡−1 + 𝛽4𝜎𝑖,𝑡−1

2𝑠 + 𝛽5𝜎𝑖,𝑡−1
2𝑢 + 𝜀𝑖,𝑡 

where 𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 corresponds to one of 𝐸𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡, 𝑄𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 and 𝑅𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡. 𝐸𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 is the effective spread for 

stock i at interval t and is computed as twice the absolute value of the difference between the last execution price 

and the midpoint of the prevailing bid and ask prices for interval t, 𝑅𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 is the relative spread for stock i at 

interval t and is obtained by dividing the difference between the best ask and bid prices by the midpoint of both 

prices for interval t, 𝑄𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡  is the quoted spread for stock i for interval t and computed as the difference 

between the best ask and bid prices for interval t. 𝜎𝑖,𝑡−1
𝑅  is the standard deviation of mid-price returns for stock i 

during interval t-1 and calculated as the standard deviation of midpoint-to-midpoint returns during interval t-1; 

each midpoint corresponds to a transaction. 𝑇𝑉𝑖,𝑡−1 is the natural logarithm of trading volume for stock i during 

interval t-1 and 𝐵𝑆𝐼𝑖,𝑡−1 is the absolute difference between buyer- and seller-initiated traders for stock i during 

interval t-1.  𝜎𝑖,𝑡−1
2𝑠 and 𝜎𝑖,𝑡−1

2𝑢  are state space model-estimated proxies (estimated using Kalman filter constructed 

maximum likelihood) for informed and uninformed trading activity respectively for stock i and interval t-1. The 

sample contains the most active 100 S&P 500 stocks traded between October 1, 2016 and September 30, 2017 on 

NYSE and NASDAQ. ***, ** and * correspond to statistical significance at the 0.01, 0.05 and 0.10 levels, 

respectively. 

Panel A 

Dependent Variable: 𝑅𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 

 One-second 

frequency 

One-minute 

frequency 

One-hour frequency 

𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡  0.443x10-3*** 

(232.56) 

0.518x10-3*** 

(197.78) 

0.594x10-3*** 

(48.25) 

𝜎𝑖,𝑡−1
𝑅   0.574x10-1*** 

(243.51) 

0.196x10-3*** 

(55.67) 

0.321x10-1*** 

(75.11) 

𝑇𝑉𝑖,𝑡−1  0.498x10-5 

(0.54) 

0.978x10-4 

(1.57) 

-0.482x10-4 

(-0.27) 

𝐵𝑆𝐼𝑖,𝑡−1  0.135x10-8*** 

(290.72) 

0.322x10-8*** 

(253.17) 

0.868x10-8*** 

(65.88) 

𝜎𝑖,𝑡−1
2𝑠   -0.888x10-5*** 

(-21.43) 

-0.964x10-4*** 

(-14.53) 

-0.305x10-4*** 

(-12.64) 

𝜎𝑖,𝑡−1
2𝑢   -0.349x10-6 

(-0.04) 

-0.234x10-4 

(-0.09) 

-0.645x10-4 

(-0.03) 

Sample size (n) 29959938 8880028 204354 

Fixed effects Time Time Time 

𝑅2̅̅̅̅  1.20% 2.76% 19.49% 
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Panel B 

Dependent Variable: 𝑄𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 

 One-second 

frequency 

One-minute 

frequency 

One-hour frequency 

𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡  0.177x10-1*** 

(184.56) 

0.175x10-1*** 

(95.13) 

0.148x10-1*** 

(25.21) 

𝜎𝑖,𝑡−1
𝑅   2.461*** 

(209.08) 

2.27*** 

(102.41) 

114*** 

(53.72) 

𝑇𝑉𝑖,𝑡−1  -0.866x10-3* 

(-1.81) 

-0.144x10-3 

(-0.36) 

-0.376x10-2 

(-1.33) 

𝐵𝑆𝐼𝑖,𝑡−1  0.867x10-7*** 

(199.53) 

0.954x10-7*** 

(153.56) 

0.345x10-7*** 

(34.17) 

𝜎𝑖,𝑡−1
2𝑠   -0.256x10-4*** 

(-16.53) 

-0.352x10-4*** 

(-9.51) 

-0.114x10-3*** 

(-6.43) 

𝜎𝑖,𝑡−1
2𝑢   0.157x10-6 

(0.09) 

0.370x10-6 

(0.32) 

-0.289x10-5 

(-0.22) 

Sample size (n) 29959938 8880028 204354 

Fixed effects Time Time Time 

𝑅2̅̅̅̅  1.05% 2.02% 18.36% 

 

Panel C 

Dependent Variable: 𝐸𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 

 One-second 

frequency 

One-minute 

frequency 

One-hour frequency 

𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡  0.792x10-2*** 

(104.07) 

0.928x10-2*** 

(72.07) 

0.916x10-2*** 

(17.26) 

𝜎𝑖,𝑡−1
𝑅   2.633*** 

(137.44) 

15.66*** 

(74.68) 

108.56*** 

(13.55) 

𝑇𝑉𝑖,𝑡−1  -0.161x10-3*** 

(-4.32) 

-0.118x10-3 

(-0.47) 

-0.189x10-2 

(-0.35) 

𝐵𝑆𝐼𝑖,𝑡−1  0.567x10-7*** 

(125.39) 

0.646x10-7*** 

(89.28) 

0.216x10-6*** 

(27.35) 

𝜎𝑖,𝑡−1
2𝑠   -0.209x10-4*** 

(-11.10) 

-0.321x10-4*** 

(-12.92) 

-0.122x10-3*** 

(-10.65) 

𝜎𝑖,𝑡−1
2𝑢   -0.764x10-4 

(-0.23) 

-0.187x10-4 

(-0.13) 

-0.205x10-4 

(-0.13) 

Sample size (n) 29959938 8880028 204354 

Fixed effects Time Time Time 

𝑅2̅̅̅̅  1.77% 2.16% 16.43% 

 

Panels A, B, and C of Table 3.5 show the results for Equation (3.6), where 𝑅𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡, 

𝑄𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 and 𝐸𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 correspond to 𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 respectively. The negative and 
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statistically significant (p-value <0.01) 𝜎𝑖,𝑡−1
2𝑠  coefficient estimates show that, consistent with 

Hypothesis II and the predictions of Kyle (1981; 1984; 1985; 1989), informed trading activity 

is positively linked to liquidity. By contrast, 𝜎𝑖,𝑡−1
2𝑢 ’s coefficient estimates are not statistically 

significant, suggesting that 𝜎𝑖,𝑡
2𝑢  is not a significant predictor of liquidity once I control for 

volume and order flow dynamics. This is in line with the estimates obtained in the estimation 

of Equation (3.5). The results are also consistent with the empirical findings of Collin-Dufresne 

and Fos (2015) and suggest that, as predicted by Kaniel and Liu (2006), informed traders use 

limit orders rather than market orders. The coefficients of all of the control variables are in line 

with the consistent literature. The consistency of the results with the literature emphasize the 

relevance of my state space modelling approach. Similar to the price volatility model, 𝑅2̅̅̅̅
 values 

in Panels A, B, and C are generally small for the one-second and one-minute high frequency 

estimations, with estimates ranging from 1.05% to 2.76%. The low 𝑅2̅̅̅̅
 values are due to the 

estimation frequencies. Hence, the one-hour frequency models have much higher levels of 

explanatory powers. In Panels A, B, and C, the 𝑅2̅̅̅̅
 values are 19.49%, 18.36% and 16.43% 

respectively for the one-hour frequency estimations.  

Table 3. 6 Predictive regressions of market toxicity on lagged components of trading volume 

The predictive power of the state space-estimated lagged permanent and transitory components of trading volume 

is estimated using the following model: 

𝑀𝑇𝑖,𝑡 = 𝛼 + 𝛽1𝜎𝑖,𝑡−1
𝑅 + 𝛽2𝑇𝑉𝑖,𝑡−1 + 𝛽3𝐵𝑆𝐼𝑖,𝑡−1 + 𝛽4𝜎𝑖,𝑡−1

2𝑠 + 𝛽5𝜎𝑖,𝑡−1
2𝑢 + 𝜀𝑖,𝑡 

where 𝑀𝑇𝑖,𝑡 is the proxy for market toxicity for stock i and interval t and is calculated as the absolute value of the 

difference between the numbers of buy and sell trades divided by the sum of the numbers of buy and sell trades 

occurring during interval t. 𝜎𝑖,𝑡−1
𝑅  is the standard deviation of mid-price returns for stock i during interval t-1 and 

calculated as the standard deviation of midpoint-to-midpoint returns during interval t-1; each midpoint 

corresponds to a transaction. 𝑇𝑉𝑖,𝑡−1 is the natural logarithm of trading volume for stock i during interval t-1 and 

𝐵𝑆𝐼𝑖,𝑡−1 is the absolute difference between buyer- and seller-initiated traders for stock i during interval t-1.  

𝜎𝑖,𝑡−1
2𝑠 and 𝜎𝑖,𝑡−1

2𝑢  are state space model-estimated proxies (estimated using Kalman filter constructed maximum 

likelihood) for informed and uninformed trading activity respectively for stock i and interval t-1. The sample 

contains the most active 100 S&P 500 stocks traded between October 1, 2016 and September 30, 2017 on NYSE 

and NASDAQ. ***, ** and * correspond to statistical significance at the 0.01, 0.05 and 0.10 levels, respectively. 
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Dependent Variable: 𝑀𝑇𝑖,𝑡 

 One-minute frequency One-hour frequency 

𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡  0.609*** 

(408.71) 

0.564*** 

(111.41) 

𝜎𝑖,𝑡−1
𝑅   1.612*** 

(59.48) 

1.690*** 

(42.84) 

𝑇𝑉𝑖,𝑡−1  0.248x10-3*** 

(8.54) 

0.296x10-2 

(1.28) 

𝐵𝑆𝐼𝑖,𝑡−1  0.187x10-6*** 

(58.15) 

0.219x10-6*** 

(54.29) 

𝜎𝑖,𝑡−1
2𝑠   -0.535x10-2*** 

(-5.72) 

-0.152x10-2*** 

(-24.11) 

𝜎𝑖,𝑡−1
2𝑢   -0.242x10-3 

(-0.62) 

-0.745x10-3 

(-0.63) 

Sample size (n) 8880028 204354 

Fixed effects Time Time 

𝑅2̅̅̅̅  0.95% 3.99% 

 

Table 3.6 presents the estimated coefficients for the model estimated at one-minute and 

one-hour frequencies. Consistent with the results in Tables 3.4 and 3.5, 𝜎𝑖,𝑡−1
2𝑠  is negatively and 

statistically significantly related to 𝑀𝑇𝑖,𝑡 at the 0.01 level of statistical significance, however 

𝜎𝑖,𝑡−1
2𝑢  is not, once volume and liquidity are controlled for. The inverse relationship between the 

𝑀𝑇𝑖,𝑡 and 𝜎𝑖,𝑡−1
2𝑠  suggests that information-motivated trading volume reduces order flow 

toxicity in financial markets, even after controlling for the overall impact of trading volume 

and volatility. This is in line with the arguments that informed trading, which is dependent on 

uninformed trading activity, enhances liquidity (see Kyle, 1981; 1984; 1985; 1989). Another 

explanation for the ameliorating effect of informed trading on market toxicity is presented by 

Admati and Pfleiderer (1988), who show that when informed traders observe the same 

information signal (a very plausible scenario), they compete against each other to exploit the 

signal. This competition may lead to the market maker facing reduced adverse selection risk. 

When faced with reduced adverse selection risk, market makers will respond with tighter 

spreads, implying a reduction in toxic order flow. 
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 Although all other control variables are significant in the one-minute frequency model 

estimation, the explanatory power of the regression is small, with the 𝑅2̅̅̅̅
 being only about 

0.95%, again owing to the high frequency of the model estimation. This view is underscored 

by the larger 𝑅2̅̅̅̅
 value for the one-hour frequency estimation at 3.99%. 

3.4.2.3 Hypothesis III: state space model-estimated components of trading volume and 

short-horizon returns 

As outlined in Section 3.2.3.3, my third hypothesis suggests that 𝜎𝑖,𝑡
2𝑠 is a significant 

predictor of short-horizon stock returns. In a test of this hypothesis, I estimate the following 

regression model: 

   𝑅𝑖,𝑡 = 𝛼 + 𝛽1𝜎𝑖,𝑡−1
𝑝 + 𝛽2𝐸𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡−1 + 𝛽3𝑇𝑉𝑖,𝑡−1 + 𝛽4𝐵𝑆𝐼𝑖,𝑡−1 + 𝛽5𝜎𝑖,𝑡−1

2𝑠 + 𝜀𝑖,𝑡       (3.8)                

where all of the variables are as previously defined. All variables are computed over a one-

second frequency.  

Table 3. 7 Predictive regressions of short horizon stock returns on lagged transitory 

component of trading volume 

The predictive power of the state space-estimated lagged transitory component of trading volume is estimated 

using the following model: 

𝑅𝑖,𝑡 = 𝛼 + 𝛽1𝜎𝑖,𝑡−1
𝑅 +  𝛽2𝐸𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡−1 + 𝛽3𝑇𝑉𝑖,𝑡−1 + 𝛽4𝐵𝑆𝐼𝑖,𝑡−1 + 𝛽5𝜎𝑖,𝑡−1

2𝑠 + 𝛽6𝑀𝑇𝑖,𝑡−1 + 𝜀𝑖,𝑡 

where 𝑅𝑖,𝑡 is the midpoint-to-midpoint return for stock i during interval t and is computed as the difference between 

the midpoints corresponding to the last transactions at intervals t and t-1 divided by the midpoint corresponding 

to the last transaction at interval t-1. 𝜎𝑖,𝑡−1
𝑅  is the standard deviation of mid-price returns for stock i during interval 

t-1 and calculated as the standard deviation of midpoint-to-midpoint returns during interval t-1; each midpoint 

corresponds to a transaction. 𝐸𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡−1 is the effective spread for stock i and interval t-1 and computed as twice 

the absolute value of the difference between the last execution price and the midpoint of the prevailing bid and 

ask prices for interval t-1 𝑇𝑉𝑖,𝑡−1 is the natural logarithm of trading volume for stock i during interval t-1 and 

𝐵𝑆𝐼𝑖,𝑡−1 is the absolute difference between buyer- and seller-initiated traders for stock i during interval t-1. 𝑀𝑇𝑖,𝑡−1 

is a proxy for market toxicity for stock i and interval t-1 and calculated as the absolute value of the difference 

between the numbers of buy and sell trades divided by the sum of the numbers of buy and sell trades for interval 

t-1   𝜎𝑖,𝑡−1
2𝑠 is a state space model-estimated proxy (estimated using Kalman filter constructed maximum likelihood) 

for informed trading activity for stock i and interval t-1. The sample contains the most active 100 S&P 500 stocks 

traded between October 1, 2016 and September 30, 2017 on NYSE and NASDAQ. ***, ** and * correspond to 

statistical significance at the 0.01, 0.05 and 0.10 levels, respectively. 

 

Dependent Variable: 𝑅𝑖,𝑡 
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 One-second frequency One-minute frequency 

𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡  -0.551x10-5*** 

(-24.19) 

-0.650x10-4*** 

(-6.68) 

𝜎𝑖,𝑡−1
𝑅   0.513x10-3** 

(2.20) 

-0.103x10-4 

(-1.04) 

𝐸𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑡−1  0.388x10-3*** 

(75.37) 

0.833x10-3*** 

(42.25) 

𝑇𝑉𝑖,𝑡−1  0.147x10-6*** 

(6.88) 

0.771x10-5*** 

(7.82) 

𝐵𝑆𝐼𝑖,𝑡−1  0.499x10-9*** 

(53.14) 

0.100x10-8*** 

(46.25) 

𝜎𝑖,𝑡−1
2𝑠   -0.165x10-6*** 

(-24.58) 

-0.303x10-4 

(-1.11) 

𝑀𝑇𝑖,𝑡−1   0.301x10-5 

(0.82) 

Sample size (n) 29959938 8880028 

Fixed effects Time Time 

𝑅2̅̅̅̅  0.17% 0.65% 

 

Table 3.7 presents the estimated coefficients for Equation (3.8). All of the coefficients, 

except 𝛽1 (for 𝜎𝑖,𝑡−1
𝑅 ), are statistically significant at the 0.01 level. This result is a validation of 

my third hypothesis and thus further emphasizes the empirical relevance of my state space 

modelling approach. The statistically significant relationship between 𝜎𝑖,𝑡−1
2𝑠  and one-second 

𝑅𝑖,𝑡 implies that 𝜎𝑖,𝑡
2𝑠, as obtained using the state space model approach, signals private 

information similar to the order imbalance metrics used by Chordia et al. (2008). The 𝜎𝑖,𝑡−1
2𝑠  

coefficient estimate is negative, suggesting that an increase in the level of informed trading 

eliminates/reduces return predictability/arbitrage (see Hellwig, 1980; Wang, 1993). The 𝑅2̅̅̅̅
 is 

0.17%. The low 𝑅2̅̅̅̅
 is linked to the estimation frequency of the regression model, which is one 

second in this case.  

 An estimation of the model over a lower frequency, such as the one-minute interval, 

could also prove insightful. This is because the trading volume in my sample appears to be 

mainly driven by HFTs, given the sample period and the market I focus on (see Brogaard et 
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al., 2014b). Thus, if HFTs are responsible for driving a substantial proportion of the informed 

trading volume, the predictability of stock return should be greatly diminished over a one-

minute interval, since a one-minute interval cannot be considered a short-horizon in an HFT-

driven market. I estimate the following regression at a one-minute frequency; the only 

difference to Equation (3.8) is the addition of 𝑀𝑇𝑖,𝑡, which can only be validly computed at a 

minimum frequency of about one minute: 

 𝑅𝑖,𝑡 = 𝛼 + 𝛽1𝜎𝑖,𝑡−1
𝑝 +  𝛽2𝐸𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡−1 + 𝛽3𝑇𝑉𝑖,𝑡−1 + 𝛽4𝐵𝑆𝐼𝑖,𝑡−1 + 𝛽5𝜎𝑖,𝑡−1

2𝑠 +

𝛽6𝑀𝑇𝑖,𝑡−1 + 𝜀𝑖,𝑡     (3.9) 

In this model, I expect that the coefficients for the two information signal proxies, i.e. 𝑀𝑇𝑖,𝑡−1 

and 𝜎𝑖,𝑡−1
2𝑠 , will not be statistically significant at the one-minute interval because of the superfast 

trading systems of HFTs trading in S&P 500 stocks. 

 The final column of Table 3.7 presents the estimated coefficients for Equation (3.9). As 

predicted, 𝜎𝑖,𝑡−1
2𝑠 ’s coefficient is not statistically significant, owing to the lack of return 

predictability over a time period stretching into a minute. However, the 𝑅2̅̅̅̅
 coefficient at 0.65% 

is larger than for the one-second frequency estimation in Equation (3.8). The lack of statistical 

significance for 𝜎𝑖,𝑡−1
2𝑠 ’s coefficient  in the one-minute frequency regression model is due to the 

prevalence of HFT activity in the data I use, and the ability of HFTs to absorb and act on new 

information at a fast pace and thereby eliminate arbitrage opportunities. This leads to the 

elimination of return predictability at less than ultra-high frequencies. 𝑀𝑇𝑖,𝑡−1 is an information 

signal based on the order imbalance metric used by Chordia et al. (2008); however, in contrast 

to the results presented by Chordia et al. (2008), the metric is not statistically significant here. 

This shows that while one-second stock returns are predictable from lagged metrics that signal 

private information, one-minute stock returns are not predictable in financial markets 

dominated by HFTs. 
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 A key finding here is that although 𝜎𝑖,𝑡
2𝑠 is a lag predictor of one-second stock returns, 

one-minute stock returns are not predictable using either 𝜎𝑖,𝑡
2𝑠 or the order imbalance metric 

𝑀𝑇𝑖,𝑡 inspired by Chordia et al. (2008). Thus, the latter part of the findings is not consistent 

with the results presented by Chordia et al. (2008), who show that even five-minute stock 

returns can be predicted from past order imbalance. The inconsistency here is linked to the data 

period employed by both studies. While Chordia et al. (2008) employ a dataset covering the 

years 1993 to 2002, when HFTs were not the main drivers of trading in financial markets, the 

analysis in this section is based on a much more recent dataset from 2016 to 2017. In Section 

3.5, I show that, based on 2009 data, 71% of NASDAQ and NYSE’s trading volume is linked 

to HFT activity. It is therefore not surprising to find that in recent years, the speed of price 

adjustment through the incorporation of new information has become much higher. 

 

3.5 High frequency trading and return predictability28 

In Section 3.4.2.3, I argue that the lack of a statistically significant relationship between 

𝜎𝑖,𝑡
2𝑠 and one-minute 𝑅𝑖,𝑡 is due to HFTs driving a faster incorporation of information into prices. 

In this section, I substantiate this theory by addressing the role of HFTs in the elimination of 

return predictability. In comparison with non-HFTs, HFTs could be viewed as being informed, 

simply on the basis that they trade with either private or public information (e.g. the sudden 

arrest of a firm’s CEO for fraudulent activities) at a faster pace than non-HFTs. This is referred 

to as latency arbitrage; it involves the exploitation of a trading time disparity between fast and 

slow traders, when that trade is executed solely because of a latency advantage. Ibikunle (2018) 

argues that this speed advantage is tantamount to an information advantage when traders trade 

at different speeds, since the end result remains the same – a set of traders exploit information 

                                                           
28 I am grateful to an anonymous referee for suggesting this analysis. 
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(whether private or public) ahead of a different set of traders. Thus, exchanges with 

infrastructures that especially accommodate HFTs tend to display efficient prices ahead of 

others when instruments are traded simultaneously across those exchanges. This is the case 

with the analysis of price leadership in the London equity market conducted by Ibikunle (2018). 

Chaboud et al. (2014) and Brogaard et al. (2014b) also show that HFTs enhance informational 

efficiency by speeding up price discovery and eliminating arbitrage opportunities.  

 In order to capture the transitory nature of informed trading volumes linked to HFT 

activity, I design a test which reflects the extent of transitory informed trading in the market 

when arbitrageurs observe that instruments’ prices have deviated from their underlying values. 

I note that, while HFTs could be considered informed in comparison with non-HFTs, not all 

HFTs employ arbitrage strategies. Menkveld (2013) and Hagströmer and Nordén (2013) show 

that the majority of HFTs (about 80%) typically apply market making strategies. Furthermore, 

in a market dominated by HFTs, the speed advantage will not consistently confer appreciable 

advantages over the also fast competition. Thus, my test is designed to capture the changes in 

HFT volumes attributable to informed HFT activity.  

 For the test, I use the transactions dataset for 120 NASDAQ and NYSE stocks obtained 

from NASDAQ. The data disaggregates transactions into HFT and non-HFT transactions for 

the year 2009. Employing the dataset, I re-estimate Equations (3.8) and (3.9) with one 

additional variable, 𝐷𝐻𝐹𝑇,𝑖,𝑡−1 ∗ 𝜎𝑖,𝑡−1
2𝑠 : 

𝑅𝑖,𝑡 = 𝛼 + 𝛽1𝜎𝑖,𝑡−1
𝑝 + 𝛽2𝐼𝑙𝑙𝑖𝑞𝑖,𝑡−1 + 𝛽3𝑇𝑉𝑖,𝑡−1 + 𝛽4𝐵𝑆𝐼𝑖,𝑡−1 + 𝛽5𝜎𝑖,𝑡−1

2𝑠 + 𝛽6𝐷𝐻𝐹𝑇,𝑖,𝑡−1 ∗

𝜎𝑖,𝑡−1
2𝑠 + 𝜀𝑖,𝑡       (3.10) 

𝑅𝑖,𝑡 = 𝛼 + 𝛽1𝜎𝑖,𝑡−1
𝑝 +  𝛽2𝐼𝑙𝑙𝑖𝑞𝑖,𝑡−1 + 𝛽3𝑇𝑉𝑖,𝑡−1 + 𝛽4𝐵𝑆𝐼𝑖,𝑡−1 + 𝛽5𝜎𝑖,𝑡−1

2𝑠 + 𝛽6𝑀𝑇𝑖,𝑡−1 +

𝛽7𝐷𝐻𝐹𝑇,𝑖,𝑡−1 ∗ 𝜎𝑖,𝑡−1
2𝑠 + 𝜀𝑖,𝑡     (3.11) 
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𝐷𝐻𝐹𝑇,𝑖,𝑡−1 ∗ 𝜎𝑖,𝑡−1
2𝑠  is obtained by interacting a new variable, 𝐷𝐻𝐹𝑇,𝑖,𝑡−1, with the lag transitory 

component variable, 𝜎𝑖,𝑡−1
2𝑠 . 𝐷𝐻𝐹𝑇,𝑖,𝑡−1is a dummy variable equalling one for stock i for interval 

t-1 during periods of high HFT activity. In order to determine the intervals of high HFT activity, 

I compute the proportion of HFT trades to non-HFT trades using the designations (HFT/non-

HFT) for the transactions in the NASDAQ data. A one-second or one-minute interval is 

designated as an interval of high HFT activity if the proportion of HFT trades for that interval 

is one standard deviation higher than the mean for the surrounding -60, +60 corresponding 

intervals. Intervals correspond to one-second or one-minute. No other interval is considered 

because the existing literature (see as an example, Chordia et al., 2008) shows that short horizon 

predictability is eliminated within a few minutes. The NASDAQ dataset, as pointed out by 

Brogaard et al. (2014b), does not identify all HFTs. Hence, for robustness, I employ an 

alternative measure of HFT activity in my analysis; this is the widely deployed proxy based on 

the ratio of messages to the number of transactions (see as examples, Boehmer et al., 2015; 

Malceniece et al., 2018). 𝐼𝑙𝑙𝑖𝑞𝑖,𝑡−1 is a proxy for one period lag illiquidity and corresponds to 

one of either the Amihud (2002) illiquidity ratio or 𝐸𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡. As in Equations (3.8) and (3.9), 

Equations (3.10) and (3.11) are estimated at one-second and one-minute frequencies 

respectively.  

If 𝐷𝐻𝐹𝑇,𝑖,𝑡−1 ∗ 𝜎𝑖,𝑡−1
2𝑠 ’s coefficient is negative and statistically significant, it implies that 

a transitory rise in HFT activity is informed and reduces return predictability. This conclusion 

will be especially strengthened if 𝜎𝑖,𝑡−1
2𝑠  is not statistically significant in Equations (3.10) and 

(3.11), since it would imply that the reduction in return predictability is primarily driven by 

transitory HFT volume. A result of this nature would be in line with one of the assumptions 

underlying my state space modelling approach, i.e. informed trading volume is transitory and 

only arises to exploit deviations in the price of an instrument from its fundamental value. 
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Table 3. 8 Predictive regressions of short horizon stock returns on lagged components of 

trading volume interacted with a dummy variable for high frequency trading 

The predictive power of the state space-estimated lagged transitory component of trading volume (interacted with 

a dummy variable for high frequency trading activity) is estimated using the following model:  

𝑅𝑖,𝑡 = 𝛼 + 𝛽1𝜎𝑖,𝑡−1
𝑅 +  𝛽2𝐼𝑙𝑙𝑖𝑞𝑖,𝑡−1 + 𝛽3𝑇𝑉𝑖,𝑡−1 + 𝛽4𝐵𝑆𝐼𝑖,𝑡−1 + 𝛽5𝜎𝑖,𝑡−1

2𝑠 + 𝛽6𝑀𝑇𝑖,𝑡−1 + 𝛽7𝐷𝐻𝐹𝑇,𝑖,𝑡−1 ∗ 𝜎𝑖,𝑡−1
2𝑠 + 𝜀𝑖,𝑡 

where 𝑅𝑖,𝑡 is the midpoint-to-midpoint return for stock i during interval t and is computed as the difference between 

the midpoints corresponding to the last transactions at intervals t and t-1 divided by the midpoint corresponding 

to the last transaction at interval t-1. 𝜎𝑖,𝑡−1
𝑅  is the standard deviation of mid-price returns for stock i during interval 

t-1 and calculated as the standard deviation of midpoint-to-midpoint returns during interval t-1; each midpoint 

corresponds to a transaction. 𝐼𝑙𝑙𝑖𝑞𝑖,𝑡−1 is a proxy for one period lag illiquidity and corresponds to one of the 

Amihud (2002) illiquidity ratio (𝐴𝑚𝑖ℎ𝑢𝑑𝑖,𝑡−1) or 𝐸𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡. 𝐴𝑚𝑖ℎ𝑢𝑑𝑖,𝑡−1 is computed as absolute return divided by 

trading volume for stock i during interval t-1. 𝐸𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡−1 is the effective spread for stock i and interval t-1 and 

computed as twice the absolute value of the difference between the last execution price and the midpoint of the 

prevailing bid and ask prices for interval t-1 𝑇𝑉𝑖,𝑡−1 is the natural logarithm of trading volume for stock i during 

interval t-1 and 𝐵𝑆𝐼𝑖,𝑡−1 is the absolute difference between buyer- and seller-initiated traders for stock i during 

interval t-1. 𝑀𝑇𝑖,𝑡−1 is a proxy for market toxicity for stock i and interval t-1 and calculated as the absolute value 

of the difference between the numbers of buy and sell trades divided by the sum of the numbers of buy and sell 

trades for interval t-1   𝜎𝑖,𝑡−1
2𝑠 is a state space model-estimated proxy (estimated using Kalman filter constructed 

maximum likelihood) for informed trading activity for stock i and interval t-1. 𝐷𝐻𝐹𝑇,𝑖,𝑡−1 is a dummy variable 

equalling one during periods of high HFT activity for stock i and interval t-1. A one-second or one-minute interval 

is designated as an interval of high HFT activity if HFT trades for that interval is one standard deviation higher 

than the mean for the surrounding -60, +60 corresponding intervals. The sample contains the most active 100 S&P 

500 stocks traded between October 1, 2016 and September 30, 2017 on NYSE and NASDAQ. ***, ** and * 

correspond to statistical significance at the 0.01, 0.05 and 0.10 levels, respectively. 

Panel A 

Dependent Variable: 𝑅𝑖,𝑡 

 One-second frequency One-minute frequency 

𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡  -0.301x10-3*** 

(-6.18) 

0.445x10-2** 

(2.15) 

𝜎𝑖,𝑡−1
𝑅   0.635*** 

(8.79) 

0.061x10-1 

(1.50) 

𝐴𝑚𝑖ℎ𝑢𝑑𝑖,𝑡−1  -2.998*** 

(-4.10) 

-1.554 

(-0.37) 

𝑇𝑉𝑖,𝑡−1  0.193x10-4*** 

(4.05) 

0.299x10-3** 

(2.49) 

𝐵𝑆𝐼𝑖,𝑡−1  0.01x10-9* 

(1.57) 

0.01x10-6* 

(1.79) 

𝜎𝑖,𝑡−1
2𝑠   -0.103x10-6 

(-1.44) 

0.493x10-4 

(1.33) 

𝐷𝐻𝐹𝑇,𝑖,𝑡−1 ∗

𝜎𝑖𝑡−1
2𝑠   

-0.371x10-4*** 

(-3.16) 

-0.168x10-3 

(-1.28) 

𝑀𝑇𝑖,𝑡−1   -0.165x10-2 

(-1.33) 

Sample size (n) 8291971 2069787 

Fixed effects Time Time 

𝑅2̅̅̅̅  0.45% 0.91% 
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Panel B 

Dependent Variable: 𝑅𝑖,𝑡 

 One-second frequency One-minute frequency 

𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡  -0.211x10-5*** 

(-3.17) 

-0.163x10-4* 

(-1.84) 

𝜎𝑖,𝑡−1
𝑅   0.283x10-2** 

(2.60) 

-0.697x10-4 

(-1.32) 

𝐸𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑡−1  0.288x10-3*** 

(17.74) 

0.486x10-3*** 

(3.15) 

𝑇𝑉𝑖,𝑡−1  0.204x10-6** 

(2.83) 

0.313x10-5*** 

(11.06) 

𝐵𝑆𝐼𝑖,𝑡−1  0.236x10-10 

(0.85) 

0.482x10-8*** 

(13.47) 

𝜎𝑖,𝑡−1
2𝑠   -0.266x10-8 

(-0.03) 

-0.270x10-7 

(-1.14) 

𝐷𝐻𝐹𝑇,𝑖,𝑡−1 ∗

𝜎𝑖,𝑡−1
2𝑠   

-0.256x10-5*** 

(-3.49) 

-0.142x10-10 

(-1.38) 

𝑀𝑇𝑖,𝑡−1   0.137x10-5 

(0.54) 

Sample size (n) 29959938 8880028 

Fixed effects Time Time 

𝑅2̅̅̅̅  0.21% 0.77% 

 

I present the results based on the two approaches to computing 𝐷𝐻𝐹𝑇 in Table 3.8; Panel 

A shows the results using the NASDAQ-defined HFT/non-HFT transactions, while Panel B 

shows the results using the ratio of messages to transactions HFT proxy. 𝐼𝑙𝑙𝑖𝑞𝑖,𝑡 corresponds to 

the Amihud (2002) illiquidity ratio and 𝐸𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 in Panels A and B respectively. Contrary 

to the results in Table 3.7, although it remains negative, 𝜎𝑖,𝑡−1
2𝑠 ’s coefficients for the one-second 

frequency estimation in both panels are not statistically significant. However, when the 

transitory component variable is interacted with 𝐷𝐻𝐹𝑇,𝑖,𝑡−1, it becomes highly statistically 

significant, while retaining its negative sign. This implies that the reduction in the return 

predictably observed in the earlier analysis is driven by informed HFT activity. Consistent with 

the assumption underlying my state space modelling approach, the transitory component of 

trading volume, i.e. an increase in HFT volume above the mean, aids the speedy incorporation 
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of information into instruments’ prices and leads to the elimination of arbitrage opportunities. 

With this analysis, I ascertain that the transitory trading volume component relevant to 

eliminating return predictability in today’s financial markets is the HFT kind. 

 

3.6  Conclusion 

In this chapter, I develop a state space model for decomposing trading volume into 

liquidity-driven (permanent) and information-driven (transitory) components. I argue that the 

permanent component of trading volume is driven by liquidity-seeking order flow, while the 

transitory component is driven by information-motivated order flow. In addition to providing 

a robust set of arguments grounded in the literature to support my theses, I further develop a 

set of multivariate regression models to formally test them. Firstly, I find that the transitory 

component of trading volume obtained from my state space model has a statistically 

significantly relationship with volatility, liquidity and market toxicity, even after controlling 

for volume. There is no such relationship observed for the permanent component once volume 

is controlled for. These results are consistent with an extensive stream of theoretical and 

empirical studies on the relationship of the informed and liquidity trading activity with 

volatility, liquidity and market toxicity. The consistency therefore implies that the permanent 

and transitory components, estimated using my state space modelling approach, can be viewed 

as encapsulating the liquidity- and information-motivated trades, respectively. 

 I also demonstrate that the transitory component is a significant predictor of short-

horizon returns. This underscores the argument that the transitory component is a proxy for 

private information. However, in contrast to Chordia et al. (2008), I find that one-minute 

returns cannot be predicted using either the state space-estimated transitory component or the 

minute(s)-long order imbalance metrics employed by Chordia et al. (2008). This implies that 

in today’s high frequency trading environment, arbitrage opportunities are eliminated at a much 
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faster rate than in the early 2000s period examined by earlier studies. I show that this sharp 

decline in the window for return predictability is driven by HFT activity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

112 
 

4. Need for Speed? International transmission latency, 

liquidity and volatility 

 

“The rise of high-frequency traders has opened up a debate among investors, brokers and 

exchanges. Critics have long claimed that speed-driven traders unfairly hurt traditional 

investors… Supporters argue that faster traders are now a vital element of modern markets…” 

Financial Times, 15th May 2019 

  

4.1  Introduction 

The speed of trading and, ultimately, of price adjustment, is an important factor in the 

price discovery process in financial markets. That factor, today, holds a significance that 

transcends market quality implications. It is the driving force behind a recent upsurge of latency 

arbitrage in modern financial markets, as markets become increasingly dominated by ultra-

high-frequency algorithmic traders. However, speed may also be good for markets. The 

evidence of this has thus far been inconsistent. Some studies find that speed is good for liquidity 

and price discovery (see as examples Brogaard et al., 2014b; Hendershott et al., 2011; 

Hoffmann, 2014), while others suggest a positive relationship between speed and adverse 

selection cost (see as examples Biais et al., 2015; Foucault et al., 2016; Foucault et al., 2017; 

Hendershott and Moulton, 2011), implying a negative effect on market quality and liquidity in 

particular. Jovanovic and Menkveld (2016) show that better informed high-frequency traders 

(HFTs) can reduce welfare, and Kirilenko et al. (2017) argue that although HFTs did not trigger 

the flash crash, they nevertheless exacerbated it by demanding immediacy.  

While the existing literature focuses on traders’ execution speed in their examination 

of the role of speed on market quality, I focus on a new variable capturing the combination of 

microwave/fiber optic connection latency, traders’ information execution time, and exchange 

latency. I call this variable of interest Transmission Latency (TL). The distinction I make here 
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is important since speed between different exchanges is not only dependent on the 

heterogeneous technological capacity of traders, but also depends on the connection latency 

between financial markets and exchange latencies of different financial markets. This implies 

that TL holds economic significance for market quality beyond what the factors linked to trader 

execution speed hold. Furthermore, modern financial markets are characterized by high 

fragmentation. This underscores how critically inter-venue speeds must be incorporated into 

any examination of market quality implications of speed. The economic insights this 

consideration could generate are likely substantial (see also Menkveld and Zoican, 2017).  In 

addition, recent arguments by regulators and investors suggest that while higher information 

transmission speed offered by HFTs improves liquidity (and by extension, market quality), it 

nevertheless contributes to higher volatility and market risk, and hence impairs market 

quality.29 Motivated by these contrasting arguments and the incomplete picture drawn by the 

existing literature, I investigate the effects of speed on the quality of financial markets by 

applying the measure of latency, TL.  

The focus of my study is therefore closely related to the works of Shkilko and Sokolov 

(2016), Menkveld and Zoican (2017), and Baron et al. (2018). Shkilko and Sokolov (2016) 

examine liquidity when there are speed differentials among traders, and find that these 

differentials impair liquidity and volatility in financial markets. It is important to note that 

Shkilko and Sokolov's (2016) focus on the 2011-2012 period, during which microwave 

networks are only accessible to a small group of sophisticated trading firms. By contrast, I use 

more recent data allowing me to capture the latest changes in microwave technology, which 

has recently lost much of its exclusivity and is now available for a nominal fee. It implies that 

my study offers a clearer picture of the effects of speed on market quality in financial markets. 

                                                           
29 https://www.reuters.com/article/us-highfrequency-microwave/lasers-microwave-deployed-in-high-speed-

trading-arms-race-idUSBRE9400L920130501 

https://www.reuters.com/article/us-highfrequency-microwave/lasers-microwave-deployed-in-high-speed-trading-arms-race-idUSBRE9400L920130501
https://www.reuters.com/article/us-highfrequency-microwave/lasers-microwave-deployed-in-high-speed-trading-arms-race-idUSBRE9400L920130501
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Specifically, I directly estimate transmission latency between trading venues from transaction-

level data and empirically examine the impact of estimated latency on liquidity and volatility. 

Similar to my study, Baron et al. (2018) construct measures of latency from transaction-

level data, and examine the performance and competition among HFTs. There are two 

important differences between my study and Baron et al.’s (2018). First, Baron et al. (2018) do 

not estimate transmission latency between financial markets, which is particularly important in 

today’s highly fragmented markets. Specifically, Baron et al. (2018) estimate what they call 

Decision Latency, which is the difference between timestamps from a passive trade to a 

subsequent aggressive trade by the same firm, in the same security and at the same exchange. 

Secondly, and more importantly, their study analyzes the impact of latency on HFTs’ trading 

performance, not liquidity and volatility, in financial markets. Menkveld and Zoican (2017) 

model the HFT arms race by adding the impact of exchange speed to Budish et al.’s (2015) 

model, and find that indeed, there is a nontrivial relationship between exchange speed and 

liquidity. It is important to note that in Menkveld and Zoican’s (2017) model, exchange latency 

does not include the trader’s execution latency, and thus is assumed constant for all traders. 

Their model identifies two channels through which exchange speed affects the bid-ask spread. 

Firstly, as a result of improvements in exchange latency, high-frequency market makers 

(HFMs) can quickly update their quotes and reduce their adverse selection risk, which implies 

that HFMs narrow the competitive spread, since speed allows them to face reduced adverse 

selection risk. Secondly, high-frequency speculators may still prevail in an arms race; therefore, 

HFMs would need to set a wider spread in order to compensate for higher adverse selection 

risk.  

My study differs from Menkveld and Zoican (2017) in at least two aspects. Firstly, their 

study is a theoretical contribution. Secondly, while Menkveld and Zoican (2017) focus on the 

role of exchange latency in financial markets, my main variable of interest, TL, captures the 



 

115 
 

combined effect of trader execution latency, exchange latency, and connection latency between 

exchanges.  

My empirical approach involves first estimating the TL between the home exchange in 

Frankfurt (Xetra Stock Exchange – XSE) and a satellite exchange in London (Cboe Stock 

Exchange – CBOE), where XSE-listed stocks are cross-listed, and then examining its effect on 

liquidity and volatility of cross listed stocks  in the satellite market. I thereafter investigate the 

channels, as informed by various theoretical models, through which my latency measure 

impacts market quality metrics.   

My findings suggest that 49% (80%) of price-changing trades on CBOE occur within 

3 (5) milliseconds (ms) of similar and proportional price-changing trade on XSE. This means 

that the existing microwave and fiber optic connections affect price responses on CBOE within 

3-5ms of price changes on XSE. These estimates are consistent with the anecdotal evidence 

provided by industry practitioners active in both markets, since the latency (3-5ms) includes 

the traders’ execution latencies, exchange latencies in CBOE and XSE, and connection latency 

between XSE and CBOE. For example, Perseus, one of the microwave connection providers 

between London and Frankfurt, states that a round trip latency via microwave and fiber optics 

between London and Frankfurt is 4.6ms and 8.4ms, respectively (see Footnote 29). The 

significance of these estimates is that analysis shows that higher TL leads to lower liquidity and 

volatility (i.e. speed enhances liquidity and increases volatility). The results are robust to 

alternative proxies for liquidity and volatility and more importantly, the magnitudes of these 

effects are economically meaningful. In order to address potential endogeneity concerns, I 

present causal evidence from a quasi-experimental setting, studying the impact of two 

technological upgrades by XSE on liquidity and volatility in CBOE. I compare the liquidity 

and volatility of stocks that are impacted by these updates with those that are not and show 
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that, consistent with the previous results, increases in speed lead to enhanced liquidity and 

higher volatility. 

The positive effect of speed on liquidity is linked to fast traders using their speed 

advantage to avoid adverse selection risk and thereby increasing liquidity. Another channel 

through which speed impacts market quality metrics is explained by the prediction of Roşu 

(2016), specifically that speed increases the aggressiveness of traders and this aggressiveness 

then leads to higher price volatility (see also Collin-Dufresne and Fos, 2016). Thus, it appears 

that while speed enhances market quality by enhancing liquidity, it impairs it by intensifying 

market volatility. This implies a trade-off between the benefits of speeds (liquidity 

improvements) and its unwanted effects (increased volatility). I therefore examine the net 

economic implication of latency on market quality, with liquidity and volatility as market 

quality characteristics. The analysis shows that while high latency can improve market quality 

by reducing volatility, its liquidity deterioration effect dominates its volatility reducing effect. 

This implies that the net effect of increasing (reducing) latency (speed) is an impairment of 

market quality.    

My contributions to the existing literature are as follows. Firstly, my study is the first 

to empirically estimate TL between the two biggest European financial centers, Frankfurt and 

London, and by so doing corroborates the information provided on connection speed by the 

microwave and fiber optic connection providers (such as McKay Brothers). This exercise is 

particularly important in Europe, where financial markets have become increasingly 

fragmented across dominant national exchanges and a dominant London-based pan-European 

trading venue, CBOE. Secondly, I provide causal evidence on the direct impact of speed on 

market quality variables, such as volatility, which is unclear in the current literature. Thirdly, I 

complement the existing empirical literature that examines the relationship between trader and 

exchange speed on financial markets, by analyzing the combined role of traders’ execution 
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latency, exchange latency, and connection latency (microwave or fiber connections) between 

exchanges on liquidity and volatility of financial markets. The approach I take is more realistic 

and the measure I use is more relevant when measuring the impact of speed on market quality 

in a fragmented trading space – the reality of trading in modern financial markets. Finally, 

using a framework that controls for the undesirable (increased volatility) and desirable 

(enhanced liquidity) effects of speed, I show that the dominant effect of increased speed of 

trading is positive for market quality. 

 

4.2  Institutional and technical backgrounds 

4.2.1   Transmission latency between financial markets 

In today’s trading environment, information transmission speeds between trading venues play 

an important role in facilitating price discovery in an increasingly fragmented market place. A 

decade ago, the most common way to transmit information from Frankfurt to London was via 

a fiber optic cable; at this time fiber optics offered information transmission latencies of about 

4.2ms.30 Although fiber optic technology offers fast transmission, it is not the fastest. This is 

simply because with fiber optic technology, “information” (photons) travels through cables and 

it is difficult to place cables in a straight line between trading venues. For example, Shkilko 

and Sokolov (2016) show that until 2010 the fiber optic cabling between Chicago and New 

York exceeded the straight line distance between the two cities by about 200 miles. In contrast 

to fiber optic technology, with microwave technology, “information” (microwaves) travels 

through air. Hence, microwave networks offer information transmission speeds that are 

between 30 and 50% faster than with fiber optic technology. For example, microwaves shave 

about 1.9ms off the information transmission latency between Frankfurt and London when 

                                                           
30    https://www.reuters.com/article/us-highfrequency-microwave/lasers-microwave-deployed-in-high-

speed-trading-arms-race-idUSBRE9400L920130501 

https://www.reuters.com/article/us-highfrequency-microwave/lasers-microwave-deployed-in-high-speed-trading-arms-race-idUSBRE9400L920130501
https://www.reuters.com/article/us-highfrequency-microwave/lasers-microwave-deployed-in-high-speed-trading-arms-race-idUSBRE9400L920130501
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compared to fiber optics, a reduction from 4.2ms to 2.3ms.31 It is therefore not surprising that 

the past decade has seen an emergence of the operation of microwave networks between major  

financial trading locations, such as London and Frankfurt.32 Some of these networks are 

operated by specialist network providers (e.g., McKay Brothers), while others are operated 

directly by HFTs (e.g., Jump Trading).

                                                           
31  https://www.quincy-data.com/product-page/#latencies  
32  https://www.bloomberg.com/news/articles/2014-07-15/wall-street-grabs-nato-towers-in-traders-speed-

of-light-quest  

https://www.quincy-data.com/product-page/#latencies
https://www.bloomberg.com/news/articles/2014-07-15/wall-street-grabs-nato-towers-in-traders-speed-of-light-quest
https://www.bloomberg.com/news/articles/2014-07-15/wall-street-grabs-nato-towers-in-traders-speed-of-light-quest


 

119 
 

Figure 4. 1 A map of microwave networks connecting the British Isles to continental Europe 

Microwave networks between the UK and continental Europe as mapped out by Laumonier (2016). The providers of the microwave networks are also indicated. 
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Figure 4.1 shows the microwave networks between the UK and Germany, and their 

respective providers (see Laumonier, 2016). Given the notable speed advantage of microwave 

networks, HFTs are ready to pay significant amounts of money to obtain several microseconds 

of speed advantage over their competitors.33  

In this study, I estimate the information transmission latency between XSE and CBOE 

by using transaction-level data. My TL estimate is therefore composed of the following 

elements: (i) the connection latency between XSE and CBOE, (ii) the exchange latencies for 

XSE and CBOE, and (iii) the traders’ execution latencies. Explicitly, the connection latency is 

the time it takes for information to travel via microwave/fiber optic connections between XSE 

and CBOE. The exchange latencies consist of the time it takes for the exchanges to process 

incoming and outgoing instructions. According to Menkveld and Zoican (2017), the exchange 

latency is the sum of gateway-processing latency and gateway-to-matching-engine latency. 

Gateway-processing latency equals the time spent inside the gateway application, and gateway-

to-matching-engine latency is the time between an order’s departure from the gateway and 

when the matcher begins processing the order. Finally, the transaction-level data from TRTH 

that I employ provides exact exchange timestamps for executed transactions. It thus also takes 

into account the time needed to execute transactions, which includes the traders’ execution 

latencies, i.e. their signal processing and reaction times. 

 

4.2.2   Technological upgrades on XSE 

In order to address potential endogeneity concerns, I study the impact of two 

technological upgrades implemented by XSE on liquidity and volatility at CBOE. These 

technological upgrades are (1) the “New T7 Trading Technology” upgrade first offered on July 

                                                           
33  https://www.businessinsider.com/locals-angry-at-flash-boy-traders-want-to-build-a-tower-taller-than-

the-shard-2017-1?r=US&IR=T  

https://www.businessinsider.com/locals-angry-at-flash-boy-traders-want-to-build-a-tower-taller-than-the-shard-2017-1?r=US&IR=T
https://www.businessinsider.com/locals-angry-at-flash-boy-traders-want-to-build-a-tower-taller-than-the-shard-2017-1?r=US&IR=T
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3, 2017, and (2) the “Introduction of PS gateways” upgrade first offered on April 9, 2018.34  

The Deutsche Börse T7 Trading Technology system reduces order processing time 

significantly and should be captured by my TL measure. The PS (Partition Specific) gateways 

upgrade for all cash market instruments operates in parallel to the existing HF gateways. 

Usually, latency jitters on parallel inbound paths encourage multiplicity to reduce latency. 

However, this leads to greater system load and choking at busy times, and thus less predictable 

latencies may arise. The PS gateways upgrade introduces a single low-latency point of entry, 

which addresses this issue and consequently reduces exchange latency at XSE. This reduction 

should also be captured by TL. Since the two technological upgrades are introduced to reduce 

exchange latency at XSE, they could be employed as exogenous shocks in my quasi-natural 

experiment to examine the relationship between latency and market quality characteristics. 

 

4.3  Data and latency estimation 

My data source is the TRTH v2 (Datascope). The most important feature of the 

Datascope-sourced datasets that makes them highly suitable for my analysis is that they provide 

exact exchange timestamps in milliseconds for exchange-traded transactions and order flow. 

The main dataset employed in this study consists of ultra-high-frequency tick-by-tick data for 

the most active 100 German stocks that trade both on XSE in Frankfurt (home market) and on 

CBOE in London (satellite market). The dataset includes transaction-level data for trading days 

between March 2017 and August 2018. I select this period for two reasons. Firstly, Datascope 

does not provide exchange timestamps for European markets before June 2015. Secondly, as 

noted, to address potential endogeneity concerns, I employ a quasi-natural experiment 

approach using the two technological updates described above. The upgrade dates are July 3, 

                                                           
34 The details of the upgrades can be found at https://www.xetra.com/dbcm-en/newsroom/press-releases/New-T7-

trading-technology-goes-live-on-Xetra-144756aand 

https://www.xetra.com/resource/blob/228942/0bbe6323aa5436a88648d298d9b41512/data/143_17e.pdf 

https://www.xetra.com/dbcm-en/newsroom/press-releases/New-T7-trading-technology-goes-live-on-Xetra-144756
https://www.xetra.com/dbcm-en/newsroom/press-releases/New-T7-trading-technology-goes-live-on-Xetra-144756
https://www.xetra.com/resource/blob/228942/0bbe6323aa5436a88648d298d9b41512/data/143_17e.pdf
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2017 and April 9, 2018. I then select a data coverage period spanning four months before and 

after the upgrades for the difference-in-difference (DiD) framework. The Datascope data 

contain standard transaction-level variables such as date, time (both TRTH and exchange 

timestamps), price, volume, bid price, ask price, bid volume, and ask volume.  

From the raw data I determine the prevailing best bid and ask quotes for each 

transaction, enabling me to see the status of the order book at the time of each transaction. I 

divide the sample of 100 stocks into quartiles using their level of trading activity; trading 

activity is measured by euro trading volume. 

 

4.3.1   Trading summary statistics 

Table 4.1 reports trading activity statistics for XSE and CBOE. 

Table 4. 1 Transactions’ summary statistics and statistical tests 

Panels A and B respectively present trading summary statistics for XSE and CBOE. Panel C reports the statistical 

tests of the trading summary differences between the XSE and CBOE. The statistical tests conducted are two-

sample t-tests and pairwise Wilcoxon-Mann-Whitney tests. The sample consists of the 100 most active German 

stocks cross-listed on the XSE and CBOE. The sample period covers March 2017 to August 2018. Stocks are 

classified into quartiles using Euro trading volume. 

Panel A 

 Trading activity: XSE  

 Average 

trading volume 

per stock 

(€’000,000) 

Average 

trading volume 

per stock 

(000,000s) 

Average 

transactions 

per stock 

(000s) 

Average 

trade size 

per Stock 

(€’000) 

Full sample 16,263.46 428.56 984.02 14.94 

Least active  2,388.44 74.33 335.89 7.31 

Quartile 2 4,717.94 145.04 557.78 10.92 

Quartile 3 10,556.57 213.05 933.38 14.03 

Most active 46,835.87 1,267.65 2,083.09 27.19 
 

Panel B 

 Trading activity: CBOE  

Full sample 2,739.96 64.09 356.29 6.87 

Least active  312.36 10.81 80.25 3.92 

Quartile 2 667.55 18.67 165.23 5.72 

Quartile 3 1,539.50 31.12 320.37 6.91 

Most active 8,440.41 195.75 859.32 10.92 



 

123 
 

Panel C 

 Trading activity (Full sample)  

XSE – CBOE 13,523.5*** 364.47*** 627.73*** 8.07*** 

t-test p-value < 0.001 < 0.001 < 0.001 < 0.001 

W-M-W test p-

value 

< 0.001 < 0.001 < 0.001 < 0.001 

 

Panels A and B of Table 4.1 present market activity statistics for XSE and CBOE 

respectively, and Panel C presents the difference in full-sample trading activity between the 

two stock exchanges along with p-values obtained using different statistical approaches (two-

sample t-tests and Wilcoxon-Mann-Whitney tests). The p-values are reported for the null that 

there is no difference in trading activity between XSE and CBOE. Going by the number of 

transactions and nominal and euro-denominated trading volume, XSE appears to be more 

active than CBOE for the selected sample of stocks. This is expected since XSE is the home 

market for my selected sample of German stocks. 

 

4.3.2   Price discovery 

My latency (TL) estimation method assumes that information is transmitted from 

Frankfurt to London; an assumption supported by prior research (see as an example Grammig 

et al., 2005). Indeed, it is implausible to assume that the preponderance of firm-specific 

information about German companies originates from outside of Germany. The expectation 

that information for German stocks largely flows from Germany is also supported by the 

superior volume of transactions recorded for XSE compared to CBOE. Nevertheless, it is 

important to ascertain that XSE holds price leadership relative to CBOE for my sample of 

stocks, especially since the European markets have become increasingly fragmented over the 

past decade. This fragmentation has in some cases upended the natural expectation that superior 

trading activity confers higher levels of price discovery. For example, Ibikunle (2018) 

investigates price leadership for a sample of London Stock Exchange (LSE)-listed stocks cross-
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listed on CBOE, and finds that although LSE holds superior trading activity for the stocks, 

CBOE leads price discovery in those stocks for much of the trading day. 

Table 4. 2 Price discovery analysis 

This table presents the results for three different price discovery metrics estimating the share of price discovery 

for XSE and CBOE. IS is the information share metric as developed by Hasbrouck (1995), CS is the component 

share metric based on Gonzalo and Granger (1995), and ILS is the information leadership share as defined by 

Putniņš (2013). All estimates are computed based on price samples at the one-second frequency. The sample 

consists of the 100 most active German stocks cross-listed on XSE and CBOE. The sample period covers March 

2017 to August 2018. Stocks are classified into quartiles using Euro trading volume. 

 

 IS CS ILS 

Full sample 0.69 0.64 0.61 

Least active 0.63 0.60 0.56 

Quartile 2 0.61 0.58 0.56 

Quartile 3 0.68 0.64 0.58 

Most active 0.76 0.71 0.61 
 

Table 4.2 presents the results of the price leadership analysis between XSE and CBOE. 

For robustness, I employ three measures of price discovery computed using data price data 

sampled at the one-second frequency. The first and second measures are the information share 

metric (IS) developed by Hasbrouck (1995), and the component share metric (CS) developed 

by Gonzalo and Granger (1995).35 These methods are based on the vector error correction 

model (VECM), and usually provide similar results if the VECM residuals are not correlated. 

However, as suggested by Yan and Zivot (2010), both metrics suffer from bias if noise levels 

differ across trading venues. Therefore, I employ the information leadership share metric (ILS) 

prescribed by Putniņš (2013), which corrects for the differential treatment of noise by the IS 

and CS measures and provides a cleaner measure of information leadership. The results are 

consistent with earlier studies, in that price discovery occurs mainly on XSE for German stocks; 

IS, CS and ILS estimates are 0.69, 0.64 and 0.61 respectively for the full sample of stocks. This 

                                                           
35 I would like to acknowledge that the computation of the information follows the SAS codes that can be 

obtained from Joel Hasbrouck’s website: 

http://pages.stern.nyu.edu/~jhasbrou/EMM%20Book/SAS%20Programs%20and%20Data/Description.html 
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result implies that the majority of information is incorporated on XSE first. Therefore, my 

assumption regarding the information transmission direction appears valid. Table 4.2 further 

reports that the information share of XSE is typically highest for the most active stocks. This 

result is consistent with the empirical findings of Brogaard et al. (2014b), and suggests that 

HFTs are more active in the most active stocks. 

 

4.3.3   Latency measurement 

In general, latency can be considered as the delay between a signal and a response (see 

Baron et al., 2018). Following Laughlin et al. (2014), I define the signal as a price-changing 

trade in the home market, and the response as a near-coincident same direction price-changing 

trade in the satellite market. Laughlin et al. (2014) validly employ this method for futures-ETF 

pairs in the US financial markets, and I apply it to measure latency in the case of the 100 most 

active cross-listed German stocks between XSE and CBOE. According to the law of one price, 

the price of the cross-listed stocks should be the same regardless of location. Specifically, the 

difference between cross-listed security prices in different exchanges should simultaneously 

be eliminated in a no-arbitrage scenario and if markets are informationally efficient.36 

The latency measurement approach involves first identifying the exact exchange 

timestamp for each price-changing trade on XSE. I then look for a near-coincident same 

direction price-changing trade on CBOE. In order to identify the near-coincident trade in 

CBOE I examine trades occurring within 10ms of each price-changing trade on XSE. I select 

the 10ms interval since the average information transmission latencies between Frankfurt and 

London are 2.3ms and 4.2ms for microwave and fiber optic connections, respectively.37 

                                                           
36 One may argue that no-arbitrage limits and liquidity and trading cost can prevent market participants perfectly 

arbitraging price differences away. However, this argument cannot cause any serious concerns in my framework 

for two reasons. Firstly, I are using well-traded stocks in a major economy and secondly, on average, 

overwhelmingly, I would expect to see changes replicated across both platforms. 
37 https://www.reuters.com/article/us-highfrequency-microwave/lasers-microwave-deployed-in-high-speed-

trading-arms-race-idUSBRE9400L920130501 
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Table 4. 3 Information transmission latency between XSE and CBOE 

This table presents different statistics for the information transmission latency between XSE and CBOE. Panel A reports the number of responses on CBOE to price-changing 

trades on XSE for different time bins in milliseconds (ms) for the quartiles and full sample of stocks; stocks are classified into quartiles using Euro trading volume. Panel B 

presents the mean and standard deviation of the information transmission latency between XSE and CBOE for each quartile and the full sample of stocks. Panel C shows the 

average information transmission latencies for 21 trading days before and after a technological upgrade on July 3, 2017. The statistical tests conducted are two-sample t-tests 

and pairwise Wilcoxon-Mann-Whitney tests. The sample consists of the 100 most active German stocks cross-listed on XSE and CBOE. The sample period covers March 2017 

to August 2018. 

Panel A 

Speed 

(ms) 

Full sample Least active Quartile 2 Quartile 3 Most active 

Frequency Percentage Frequency Percentage Frequency Percentage Frequency Percentage Frequency Percentage 

3 936,646 48.61 63,563 49.05 108,325 46.50 187,528 44.76 577,230 50.39 

4 286,962 14.89 19,041 14.69 36,303 15.58 63,498 15.16 168,120 14.68 

5 332,286 17.24 21,742 16.78 41,457 17.79 75,439 18.01 193,648 16.91 

6 100,435 5.21 6,496 5.01 11,959 5.13 23,531 5.62 58,449 5.10 

7 81,733 4.24 5,933 4.58 10,862 4.66 20,686 4.94 44,252 3.86 

8 75,895 3.94 5,281 4.08 9,976 4.28 19,924 4.76 40,714 3.55 

9 62,679 3.25 4,106 3.17 7,700 3.31 15,834 3.78 35,039 3.06 

10 50,364 2.61 3,415 2.64 6,389 2.74 12,517 2.99 28,043 2.45 
 

Panel B 

Full sample Quartile 1 (least active) Quartile 2 Quartile 3 Quartile 4 (most active) 

Mean (ms) St. Dev Mean (ms) St. Dev Mean (ms) St. Dev Mean (ms) St. Dev Mean (ms) St. Dev 

4.39 1.86 4.39 1.87 4.45 1.88 4.55 1.94 4.32 1.83 
 

Panel C 

Period  Average latency for the full sample 

Before upgrade 4.40 

After upgrade 4.30 
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Difference  0.10*** 

t-test p value < 0.001 

W-M-W test p value < 0.001 
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Panel A in Table 4.3 reports the number of responses on CBOE to the signals on XSE 

for various latencies. I exclude the responses that fall in the 2ms interval. This is because the 

2ms interval is less than the theoretical limit of 2ms it should take light to travel in a vacuum 

between the two locations. The number of responses in this interval account for only 2% of all 

responses, hence the exclusion should not have any material impact on my analysis. Laughlin 

et al. (2014) argue that the responses at less than the speed-of-light can be considered as a proof 

of the predictive capacity of HFTs. I do not examine this argument since it is outside of the 

scope of this study. 

There are two important findings in Panel A. First, it shows that 48.61% (80.74%) of 

all responses (after excluding the [0 – 2ms] interval) fall within the 3ms (5ms) bin. These 

latencies are consistent with those provided by the microwave network and fiber optic 

connection providers, and corroborate the view that my latency measure indeed captures the 

transmission latency between the two trading venues. For example, McKay Brothers recently 

announced that their average microwave latency between the XSE (FR2) and CBOE (LD4) 

data centres is 2.3ms. Furthermore, it is generally acknowledged that the average latency via 

fiber optic connections is about 4.2ms (see Footnote 29). These announced latencies, 2.3ms 

and 4.2ms, are only transmission latencies between exchanges and do not take into account the 

exchange latencies and the traders’ order execution latencies. Therefore, I expect the actual 

trading latencies to be closer to my estimated transmission latencies. Panel A’s estimates 

suggest that traders are more likely to employ the faster microwave technology than fiber optic 

options for connecting Frankfurt and London. Secondly, on average, the most active stocks 

have quicker response times, with 50.39% (81.98%) of all responses falling in the 3ms (5ms) 

bin. This is unsurprising given that existing studies suggest that HFTs trade more in the most 

active stocks (see Brogaard et al., 2014b). Panel B in Table 4.3 presents the mean and standard 

deviation of latencies for the full sample and each quartile. The average latency for the full 
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sample is 4.39ms and, consistent with Panel A in Table 4.3, the most active stocks have the 

lowest transaction latency.   

The empirical relevance of my latency estimation is underscored by the literature 

(Baron et al., 2018; Laughlin et al., 2014), but I also directly test its precision by examining the 

latency evolution around the technology upgrade events. A downward adjustment of the 

latencies on the event dates would provide support to the accuracy of my estimation. Figure 

4.2 illustrates the impact of the “New T7 Trading Technology” upgrade on my estimated 

latency variable, TL. The figure shows a sharp decrease in latency on the day of the upgrade, 

with the average latency falling by 0.105ms to 4.297ms – a reduction of 2.4%. In addition, 

Panel C in Table 4.3 tests the statistical significance of the difference between the latencies 21 

trading days before and after the implementation of the upgrade. The estimates show that the 

average latency reduction is statistically significant.38 

 

 

 

 

 

 

 

 

 

                                                           
38 Although not explicitly reported, the picture is comparable for the second technological upgrade. The 

“Introduction of PS gateways” leads to a significant latency reduction of 1.6%. The results are available on 

request. 
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Figure 4. 2 Information transmission latency over time 

This figure plots the information transmission latency from June 2017 to July 2017. The period includes 21 trading days before and after a speed-inducing technological upgrade. 

The vertical bar indicates the technological upgrade, “New T7 Trading Technology”, which took effect on July 3, 2017. The sample consists of the 100 most active German 

stocks cross-listed on XSE and CBOE. 
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The fact that my estimated latency variable decreases following the implemented 

upgrade provides suggestive evidence that my latency measure is empirically relevant and 

correctly captures the delay between a signal and a response. 

 

4.4  Empirical findings and discussion 

In this section, I examine the role of latency (speed) in fragmented financial markets by 

linking TL to liquidity and volatility. 

 

4.4.1   Latency and Liquidity 

Motivated by the contrasting theories on the impact of speed on market quality 

characteristics, I begin by testing whether TL is related to liquidity. I estimate the following 

regression model using fixed effects: 

      𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 = 𝛼𝑖 + 𝛽𝑡 + 𝛾𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝑖,𝑡 + ∑ 𝛿𝑘𝐶𝑘,𝑖,𝑡
5
𝑘=1 + 𝜀𝑖,𝑡                                (4.1) 

where 𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 either corresponds to one of quoted (𝑄𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡) or effective (𝐸𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡) 

spread for stock i and transaction t, 𝛼𝑖 and 𝛽𝑡 are stock and time fixed effects, 𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝑖,𝑡 is the 

transmission latency between Frankfurt and London for stock i and transaction t, and 𝐶𝑘,𝑖,𝑡 is a 

set of k control variables which includes the standard deviation of stock returns (𝑆𝑡𝑑𝑑𝑒𝑣𝑖,𝑡) for 

stock i and transaction t as a proxy for volatility, the inverse of price (𝐼𝑛𝑣𝑃𝑟𝑖𝑖,𝑡) for stock i and 

transaction t, the natural logarithm of trading volume (𝑙𝑛𝑇𝑉𝑖,𝑡) for stock i and transaction t, 

market depth (𝐷𝑒𝑝𝑡ℎ𝑖,𝑡) for stock i and transaction t, and momentum (𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚𝑖,𝑡) for stock 

i and transaction t. All of the variables are transactions-based (i.e. t represents trade time rather 

than clock time) because my measure of latency is transactions-based. 

𝑄𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 is computed as the difference between ask and bid prices for stock i 

corresponding to transaction t, 𝐸𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 is measured as twice the absolute value of the 
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difference between the transaction price and the prevailing bid-ask spread for stock i and 

transaction t, 𝑆𝑡𝑑𝑑𝑒𝑣𝑖,𝑡 is calculated as the standard deviation of returns for contemporaneous 

and previous transactions (transactions at time t and t-1) for stock i, 𝐼𝑛𝑣𝑃𝑟𝑖𝑖,𝑡 is the inverse of 

the transaction price for stock i and transaction t, 𝑙𝑛𝑇𝑉𝑖,𝑡 is the natural logarithm of trading 

volume for stock i and transaction t, 𝐷𝑒𝑝𝑡ℎ𝑖,𝑡 is the sum of prevailing bid and ask sizes for 

stock i corresponding to transaction t, and 𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚𝑖,𝑡 is the first lag of the stock return for 

stock i and transaction t (momentum for transaction t is the stock return corresponding to 

transaction t-1). 
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Table 4. 4 Summary statistics and correlation matrix for explanatory variables 

This table reports the summary statistics and correlation matrix for the main explanatory variables. Panel A presents the mean and standard deviation of the main explanatory 

variables and Panel B shows the correlation matrix. All variables are computed for the CBOE. 𝑄𝑠𝑝𝑟𝑒𝑎𝑑 is the quoted spread and computed as the difference between the best 

ask and bid prices, 𝐸𝑠𝑝𝑟𝑒𝑎𝑑 is the effective spread and computed as twice the absolute difference between the transaction price and the midpoint of the prevailing bid and ask 

prices, 𝐴𝑏𝑠𝐶ℎ𝑎 is the absolute value of price changes and computed as the absolute value of price differences between the contemporaneous and previous transactions, 𝑆𝑡𝑑𝑑𝑒𝑣 

is the standard deviation of stock returns for contemporaneous and previous transactions, 𝐼𝑛𝑣𝑃𝑟𝑖 is the inverse price and computed as one divided by the transaction price, 

𝑙𝑛𝑇𝑉 is the natural logarithm of trading volume for each transaction, 𝐷𝑒𝑝𝑡ℎ proxies the market depth and is computed as the sum of the prevailing ask and bid sizes for each 

transaction, and 𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚 is the first lag of stock returns for each transaction. The sample consists of the 100 most active German stocks cross-listed on XSE and CBOE. 

The sample period covers March 2017 to August 2018. Stocks are classified into quartiles using Euro trading volume. 

Panel A 

Variables Full sample Least active Quartile 2 Quartile 3 Most active 

Mean St. Dev Mean St. Dev Mean St. Dev Mean St. Dev Mean St. Dev 

𝑄𝑠𝑝𝑟𝑒𝑎𝑑 (bps) 454.24 1274 717.19 1445 709.86 2202 610.38 1216 289.61 544.66 

𝐸𝑠𝑝𝑟𝑒𝑎𝑑 (bps) 427.25 1190 670.24 1387 666.489 2063 559.01 997.11 275.43 515.22 

𝐴𝑏𝑠𝐶ℎ𝑎 (bps) 327.63 718.26 460.13 806.78 437.37 1145 371.46 629.75 255.59 444.52 

𝑆𝑡𝑑𝑑𝑒𝑣 (bps) 13.35 275.99 20.90 140.18 15.90 315.42 30.99 348.32 8.88 271.96 

𝐼𝑛𝑣𝑃𝑟𝑖 (bps) 302.16 340.52 363.80 557.58 217.24 134.89 423.11 319.73 307.01 329.44 

𝑙𝑛𝑇𝑉 3.88 1.30 3.53 1.26 3.57 1.19 3.93 1.23 4.06 1.32 

𝐷𝑒𝑝𝑡ℎ 424.83 724.68 267.25 647.72 233.48 304.81 351.47 802.66 535.17 812.43 

𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚 (bps) 0.61 276.35 0.45 141.76 0.87 315.81 1.393 349.91 0.46 272.12 

 

Panel B 

 𝐸𝑠𝑝𝑟𝑒𝑎𝑑 𝑄𝑠𝑝𝑟𝑒𝑎𝑑 𝐴𝑏𝑠𝐶ℎ𝑎 𝑆𝑡𝑑𝑑𝑒𝑣 𝐼𝑛𝑣𝑃𝑟𝑖 𝑙𝑛𝑇𝑉 𝐷𝑒𝑝𝑡ℎ 𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝐿𝑎𝑡𝑒𝑛𝑐𝑦 

𝐸𝑠𝑝𝑟𝑒𝑎𝑑 1         

𝑄𝑠𝑝𝑟𝑒𝑎𝑑 0.96 1        

𝐴𝑏𝑠𝐶ℎ𝑎 0.48 0.47 1       

𝑆𝑡𝑑𝑑𝑒𝑣 0.02 0.02 0.02 1      

𝐼𝑛𝑣𝑃𝑟𝑖 -0.16 -0.15 -0.20 0.00 1     

𝑙𝑛𝑇𝑉 -0.15 -0.14 -0.18 -0.00 0.47 1    
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𝐷𝑒𝑝𝑡ℎ -0.10 -0.10 -0.12 -0.00 0.41 0.40 1   

𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚 0.01 0.0 0.00 0.00 -0.00 -0.00 0.00 1  

𝐿𝑎𝑡𝑒𝑛𝑐𝑦 0.02 0.02 0.00 0.00 0.00 -0.03 -0.01 0.00 1 
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Panels A and B in Table 4.4 report the mean and standard deviation estimates for all 

variables, and the correlation between the variables employed in the fixed effects model, 

respectively. As evident in Panel A, spread and volatility proxies are lower for the most active 

stocks. The narrower spreads on the most active stocks suggest that higher trading volume 

encourages traders to provide liquidity, i.e. HFTs are more active in the most active stocks (see 

also Brogaard et al., 2014b). Furthermore, the smaller absolute value of price changes and 

standard deviation of stock returns on the most active stocks are consistent with Kyle’s (1985) 

model, in that informed traders participate more in the most active stocks, and this reduces 

price volatility (see Wang, 1993 for the relationship between informed trading and volatility). 

The low correlation coefficient estimates between the variables (except for the quoted and 

effective spreads, which is to be expected) suggest that I do not face multicollinearity issues in 

the regression models. It is important to note that all variables, except 𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝑖,𝑡, are computed 

for CBOE. This is because, as discussed in Section 4.3.2, information is propagated from 

Frankfurt to London, hence the effects of latency can only be captured for the satellite market.  

I estimate Equation (4.1) for the full sample of stocks and stock trading activity 

quartiles. I estimate the equation for stock quartiles because Jovanovic and Menkveld (2016) 

show that the relationship between exchange latency and financial markets may depend on the 

liquidity of stocks. 
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Table 4. 5 Latency and liquidity 

This table reports the coefficient estimates from the following regression model: 

𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 = 𝛼𝑖 + 𝛽𝑡 + 𝛾𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝑖,𝑡 + ∑ 𝛿𝑘𝐶𝑘,𝑖,𝑡

5

𝑘=1
+ 𝜀𝑖,𝑡 

where 𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 corresponds to one of quoted (𝑄𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡) or effective (𝐸𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡) spread for stock i and transaction t, 𝛼𝑖 and 𝛽𝑡 are stock and time fixed effects, 𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝑖,𝑡 

is the transmission latency between Frankfurt and London for stock i and transaction t. 𝐶𝑘,𝑖,𝑡 is a set of k control variables, which includes the standard deviation of stock returns 

(𝑆𝑡𝑑𝑑𝑒𝑣𝑖,𝑡) for stock i and transaction t as a proxy for volatility, the inverse of price (𝐼𝑛𝑣𝑃𝑟𝑖𝑖,𝑡) for stock i and transaction t, the natural logarithm of trading volume (𝑙𝑛𝑇𝑉𝑖,𝑡) 

for stock i and transaction t, market depth (𝐷𝑒𝑝𝑡ℎ𝑖,𝑡) for stock i and transaction t, and momentum (𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚𝑖,𝑡) for stock i and transaction t. 𝑄𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 is computed as the 

difference between ask and bid prices for stock i corresponding to transaction t, 𝐸𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 is measured as twice the absolute value of the difference between the transaction 

price and the prevailing bid-ask spread for stock i and transaction t, 𝑆𝑡𝑑𝑑𝑒𝑣𝑖,𝑡 is calculated as the standard deviation of returns for contemporaneous and previous transactions 

(transactions at time t and t-1) for stock i, 𝐼𝑛𝑣𝑃𝑟𝑖𝑖,𝑡 is the inverse of the transaction price for stock i and transaction t, 𝑙𝑛𝑇𝑉𝑖,𝑡 is the natural logarithm of trading volume for 

stock i at time t, 𝐷𝑒𝑝𝑡ℎ𝑖,𝑡 is the sum of prevailing bid and ask sizes for stock i corresponding to transaction t and 𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚𝑖,𝑡 is the first lag of the stock return for stock i at 

the time of transaction t (momentum for time t is the stock return at time t-1). The sample consists of the 100 most active German stocks that are cross-listed in XSE and CBOE. 

All variables, except latency, are computed for the CBOE. Stocks are classified into quartiles using Euro trading volume. The sample period covers March 2017 to August 

2018. Standard errors are robust to heteroscedasticity and autocorrelation and t-statistics are reported in parentheses. *, ** and *** correspond to statistical significance at the 

0.10, 0.05 and 0.01 levels respectively. 

Panel A 

Dependent variable: 𝑸𝒔𝒑𝒓𝒆𝒂𝒅𝒊,𝒕 

 Full sample Least active Quartile 2 Quartile 3 Most active 
𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝑖,𝑡 0.988x10-3*** 

(25.49) 

0.112x10-3*** 

(6.67) 

0.111x10-3*** 

(7.52) 

0.166x10-3*** 

(12.83) 

0.656x10-3*** 

(26.87) 

𝑆𝑡𝑑𝑑𝑒𝑣𝑖,𝑡 0.280x10-1*** 

(9.90) 

0.144*** 

(6.39) 

0.267*** 

(12.10) 

0.381x10-1*** 

(4.22) 

0.139x10-1*** 

(8.50) 

𝐼𝑛𝑣𝑃𝑟𝑖𝑖,𝑡 0.280x10-3 

(0.01) 

0.599 

(1.15) 

-0.475 

(-0.78) 

-2.02 

(-1.53) 

0.214 

(1.56) 

𝑙𝑛𝑇𝑉𝑖,𝑡 0.181x10-2*** 

(26.18) 

0.166x10-2*** 

(5.57) 

0.385x10-2*** 

(14.42) 

0.297x10-2*** 

(12.18) 

0.910x10-3*** 

(21.21) 

𝐷𝑒𝑝𝑡ℎ𝑖,𝑡 0.162x10-5*** 

(10.84) 

0.743x10-5*** 

(12.37) 

0.340x10-5*** 

(4.19) 

0.137x10-4*** 

(12.15) 

0.397x10-6*** 

(5.01) 
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𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚𝑖,𝑡 0.233x10-1*** 

(8.46) 

0.372x10-1* 

(1.85) 

0.118x10-1 

(0.59) 

0.694x10-1*** 

(8.10) 

0.544x10-2*** 

(3.35) 

Stock fixed effects Yes Yes Yes Yes Yes 

Time fixed effects Yes Yes Yes Yes Yes 

𝑹𝟐̅̅̅̅  41.6% 24.8% 20.9% 48.5% 25.9% 

 

Panel B 

Dependent variable: 𝑬𝒔𝒑𝒓𝒆𝒂𝒅𝒊,𝒕 

 Full sample Least active Quartile 2 Quartile 3 Most active 
𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝑖,𝑡 0.671x10-3*** 

(18.43) 

0.632x10-3*** 

(4.72) 

0.605x10-3*** 

(4.22) 

0.105x10-2*** 

(8.55) 

0.525x10-3*** 

(22.69) 

𝑆𝑡𝑑𝑑𝑒𝑣𝑖,𝑡 0.248x10-1*** 

(9.35) 

0.142*** 

(7.92) 

0.244*** 

(11.40) 

0.369x10-1*** 

(4.33) 

0.109x10-1*** 

(7.05) 

𝐼𝑛𝑣𝑃𝑟𝑖𝑖,𝑡 -0.821x10-1 

(-0.42) 

-0.348x10-1 

(-0.08) 

-0.752x10-1 

(-0.13) 

-2.32* 

(-1.87) 

0.173 

(1.33) 

𝑙𝑛𝑇𝑉𝑖,𝑡 0.841x10-3*** 

(12.91) 

0.552x10-3** 

(2.33) 

0.201x10-2*** 

(7.80) 

0.101x10-2*** 

(4.35) 

0.497x10-3*** 

(12.22) 

𝐷𝑒𝑝𝑡ℎ𝑖,𝑡 0.108x10-5*** 

(7.70) 

0.560x10-5*** 

(11.77) 

0.234x10-5*** 

(2.99) 

0.116x10-4*** 

(10.94) 

0.197x10-7 

(0.26) 

𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚𝑖,𝑡 0.229x10-1*** 

(8.85) 

0.169x10-1 

(1.07) 

-0.241x10-1 

(-1.25) 

0.740x10-1*** 

(9.14) 

0.559x10-2*** 

(3.63) 

Stock fixed effects Yes Yes Yes Yes Yes 

Time fixed effects Yes Yes Yes Yes Yes 

𝑹𝟐̅̅̅̅  40.9% 29.9% 19.7% 47.5% 25.5% 
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The results obtained from the estimation of Equation (4.1) are presented in Table 4.5. 

Standard errors are robust to heteroscedasticity and autocorrelation. The coefficient estimates 

show that there is a positive relationship between information transmission latency and both 

quoted and effective spreads. The results hold for all the stock quartiles as well as for the overall 

sample. This implies that the increases (decreases) in transmission latency (speed) are 

associated with deteriorations in liquidity. Specifically, the quoted and effective spreads widen 

by 10 and 7bps respectively for each one unit increase (decrease) in latency (speed). Both 

estimates are statistically significant at the 0.01 level.  The magnitude of the association is also 

economically meaningful. For example, the results show that a 1ms decrease in latency is 

expected to reduce quoted (effective) spread by about 10/454 = 2.2% (7/427 = 1.6%). It simply 

implies that using microwave latency over fibre optic cables (the difference between these two 

transmission methods is about 1.9ms) for trading information transmission can potentially 

reduce quoted (effective) spread by 4.2% (3%). This is a substantial change in economic terms, 

especially, considering the staggering number of such trades that could be placed over the 

course of one day.  

This result suggests that displayed liquidity (quoted spread) improves and trading cost 

(effective spread) decreases as a result of an acceleration in speed between the home and 

satellite markets. The results presented in Panels A and B of Table 4.5 are generally consistent, 

but there is a notable point of departure. While Panel A’s estimates show that the effect of 

latency on spreads is larger in magnitude for the most active stocks compared to the least active 

stocks, Panel B’s estimates show otherwise. Thus, Panel A’s results suggest that the positive 

link between speed and liquidity improvements is mainly driven by the most active stocks, 

while Panel B’s results suggest that the least active stocks are the main drivers of this 

relationship. This inconsistency may be linked to differences of intuition behind the 

computation of quoted and effective spreads. Quoted spread is considered the better estimate 
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of trading cost if trades are executed at the quoted prices, while the effective spread is a better 

measure of trading cost when trades are executed inside the quoted spread (see Petersen and 

Fialkowski, 1994). Petersen and Fialkowski (1994) further show that the inaccuracy of the 

quoted spread when trades are executed inside the spread is notably stronger for the most active 

stocks. Thus, I caution that the evidence presented in Panel A, suggesting that the relationship 

between liquidity and speed is mainly driven by the most active stocks, should be interpreted 

carefully. 𝑅2̅̅̅̅ s for the full sample for the quoted and effective spread regressions are 42% and 

41% respectively, which is very high for estimations at transactions (sub-minute) frequency.  

This result is consistent with the predictions of Hoffmann (2014) and Jovanovic and 

Menkveld (2016), and the results of the empirical studies of Hendershott et al. (2011) and 

Menkveld (2013). In general, the theoretical literature suggests two opposite impacts of latency 

on liquidity. On the one hand, high-frequency market makers may exploit higher speeds in 

updating their quotes faster and, hence, face a substantially reduced level of  adverse selection 

risk (see as an example Hoffmann, 2014). On the other hand, speculative high-frequency 

traders can use higher speed to pick off limit orders of market makers, and thus, increase 

adverse selection risk (see as an example Biais et al., 2015). My results indicate that, as shown 

by Menkveld (2013), high-frequency traders generally tend to deploy market making strategies 

rather than speculative strategies. Being faster allows them to avoid being adversely selected 

and to manage their inventory more efficiently. This ability to reduce adverse selection risk 

implies a narrowing of the spread and an improvement in liquidity. In addition to the 

consistency with the liquidity literature stream, my results are also in line with the findings 

from the price discovery stream. Specifically, my results imply that high-frequency traders 

benefit from higher speed to eliminate price distortions quicker, and the improvement in 

efficient price discovery attracts more traders, thereby further increasing liquidity (see also 

Brogaard et al., 2014b). 



 

140 
 

 

4.4.2   Latency and volatility 

Next, I estimate the following regression model using fixed effects in order to test the 

impact of latency on stock price volatility: 

                    𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝑡 = 𝛼𝑖 + 𝛽𝑡 + 𝛾𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝑖,𝑡 + ∑ 𝛿𝑘𝐶𝑘,𝑖,𝑡
5
𝑘=1 + 𝜀𝑖,𝑡                               (4.2) 

where 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝑡 corresponds to either the absolute value of price changes (𝐴𝑏𝑠𝐶ℎ𝑎𝑖,𝑡) or 

the standard deviation of stock returns (𝑆𝑡𝑑𝑑𝑒𝑣𝑖,𝑡) (see Karpoff, 1987). 𝐴𝑏𝑠𝐶ℎ𝑎𝑖,𝑡 is computed 

as the absolute value of transaction price differences between transaction t and t-1. 𝐶𝑘,𝑖,𝑡 is a 

set of k control variables, which includes 𝐸𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡, 𝐼𝑛𝑣𝑃𝑟𝑖𝑖,𝑡, 𝑙𝑛𝑇𝑉𝑖,𝑡, 𝐷𝑒𝑝𝑡ℎ𝑖,𝑡, and 

𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚𝑖,𝑡. All of these variables are as previously defined. The only difference between 

Equations (4.2) and (4.1) is that instead of volatility, I use a liquidity proxy as one of the control 

variables rather than as a dependent variable. 

 

 

 

 

 

 

 

 

 

 



 

141 
 

Table 4. 6 Latency and volatility 

This table reports the coefficient estimates from the following regression model: 

𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝑡 = 𝛼𝑖 + 𝛽𝑡 + 𝛾𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝑖,𝑡 + ∑ 𝛿𝑘𝐶𝑘,𝑖,𝑡

5

𝑘=1
+ 𝜀𝑖,𝑡 

where 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝑡 corresponds to either absolute value of price change (𝐴𝑏𝑠𝐶ℎ𝑎𝑖,𝑡) or the standard deviation of stock returns (𝑆𝑡𝑑𝑑𝑒𝑣𝑖,𝑡), 𝛼𝑖 and 𝛽𝑡 are stock and time fixed 

effects, 𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝑖,𝑡 is the information transmission latency between Frankfurt and London and 𝐶𝑘,𝑖,𝑡 is a set of k control variables, which includes the effective spread (𝐸𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡) 

for stock i and transaction t as a proxy for liquidity, the inverse of price (𝐼𝑛𝑣𝑃𝑟𝑖𝑖,𝑡) for stock i at time t, the natural logarithm of trading volume (𝑙𝑛𝑇𝑉𝑖,𝑡) for stock i and 

transaction t, market depth (𝐷𝑒𝑝𝑡ℎ𝑖,𝑡) for stock i and transaction t, and momentum (𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚𝑖,𝑡) for stock i and transaction t. 𝐴𝑏𝑠𝐶ℎ𝑎𝑖,𝑡 is computed as the absolute value 

of transaction price differences between the time of transaction t and transaction t-1, 𝑆𝑡𝑑𝑑𝑒𝑣𝑖,𝑡  is calculated as the standard deviation of returns for contemporaneous and 

previous transactions (transactions t and t-1) for stock i, 𝐸𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 is measured as twice the absolute value of the difference between the transaction price and the prevailing 

bid-ask spread for stock i and transaction t, 𝐼𝑛𝑣𝑃𝑟𝑖𝑖,𝑡  is the inverse of the price for stock i and transaction t, 𝑙𝑛𝑇𝑉𝑖,𝑡 is the natural logarithm of trading volume for stock i and 

transaction t, 𝐷𝑒𝑝𝑡ℎ𝑖,𝑡 is the sum of prevailing bid and ask sizes for stock i corresponding to transaction t, and 𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚𝑖,𝑡 is the first lag of the stock return for stock i and 

transaction  t (momentum for transaction t is the stock return for transaction t-1).The sample consists of the 100 most active German stocks that are cross-listed in XSE and 

CBOE. All variables, except latency, are computed for the CBOE.  Stocks are classified into quartiles using Euro trading volume. The sample period covers March 2017 to 

August 2018. Standard errors are robust to heteroscedasticity and autocorrelation and t-statistics are reported in parentheses. *, ** and *** correspond to statistical significance 

at the 0.10, 0.05 and 0.01 levels respectively.  

Panel A 

Dependent variable: 𝑨𝒃𝒔𝑪𝒉𝒂𝒊,𝒕 

 Full sample Least active Quartile 2 Quartile 3 Most active 
𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝑖,𝑡 - 0.699x10-4*** 

(-3.20) 

- 0.297x10-3*** 

(-3.63) 

- 0.274x10-3*** 

(-3.49) 

0.142x10-4 

(0.21) 

- 0.544x10-4*** 

(-2.81) 

𝐸𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 0.129*** 

(297.96) 

0.106*** 

(60.75) 

0.117*** 

(101.04) 

0.126*** 

(148.27) 

0.173*** 

(221.64) 

𝐼𝑛𝑣𝑃𝑟𝑖𝑖,𝑡 - 0.104 

(-0.89) 

0.387 

(1.53) 

- 0.463 

(-1.43) 

- 0.722 

(-1.06) 

- 0.833x10-1 

(-0.77) 

𝑙𝑛𝑇𝑉𝑖,𝑡 0.522x10-3*** 

(13.39) 

0.826x10-3*** 

(5.72) 

0.568x10-3*** 

(4.01) 

0.902x10-3*** 

(7.16) 

0.344x10-3*** 

(10.12) 

𝐷𝑒𝑝𝑡ℎ𝑖,𝑡 - 0.101x10-5*** 

(-12.03) 

- 0.634x10-6** 

(-2.18) 

- 0.856x10-6** 

(-1.99) 

- 0.276x10-5** 

(-4.77) 

- 0.924x10-6** 

(-14.71) 
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𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚𝑖,𝑡 - 0.342x10-2** 

(-2.21) 

- 0.158x10-1* 

(-1.65) 

- 0.241x10-1** 

(-2.29) 

- 0.258x10-2 

(-0.60) 

- 0.244x10-2* 

(-1.89) 

Stock fixed effects Yes Yes Yes Yes Yes 

Time fixed effects Yes Yes Yes Yes Yes 

𝑹𝟐̅̅̅̅  41.8% 34.5% 28.6% 49.4% 30.1% 

 

Panel B 

Dependent variable: 𝑺𝒕𝒅𝒅𝒆𝒗𝒊,𝒕 

 Full sample Least active Quartile 2 Quartile 3 Most active 
𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝑖,𝑡 - 0.193x10-4** 

(-1.94) 

- 0.252x10-4 

(-1.18) 

- 0.269x10-4* 

(-1.91) 

- 0.279x10-4 

(-1.24) 

- 0.128x10-4*** 

(-9.10) 

𝐸𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 0.185x10-2*** 

(9.35) 

0.363x10-2*** 

(7.92) 

0.237x10-2*** 

(11.40) 

0.124x10-2*** 

(4.33) 

0.399x10-2*** 

(7.05) 

𝐼𝑛𝑣𝑃𝑟𝑖𝑖,𝑡 0.430x10-1 

(0.80) 

0.289x10-2 

(0.04) 

- 0.150** 

(-2.57) 

0.109 

(0.48) 

0.102 

(1.30) 

𝑙𝑛𝑇𝑉𝑖,𝑡 0.928x10-5 

(0.52) 

0.343x10-4  

(0.91) 

0.159x10-4  

(0.62) 

- 0.298x10-4 

(-0.71) 

0.201x10-4 

(0.82) 

𝐷𝑒𝑝𝑡ℎ𝑖,𝑡 - 0.665x10-7* 

(-1.73) 

- 0.370x10-8 

(-0.05) 

- 0.719x10-7 

(-0.93) 

0.281x10-7 

(0.14) 

- 0.781x10-7* 

(-1.72) 

𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚𝑖,𝑡 - 0.668x10-1*** 

(-94.41) 

- 0.152*** 

(-60.93) 

- 0.618x10-1*** 

(-32.67) 

- 0.179*** 

(-123.03) 

- 0.156x10-1*** 

(-16.83) 

Stock fixed effects Yes Yes Yes Yes Yes 

Time fixed effects Yes Yes Yes Yes Yes 

𝑹𝟐̅̅̅̅  17.8% 25.3% 23.5% 24.8% 22.9% 
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I present the results for the full sample and quartile estimations of Equation (4.2) in 

Table 4.6. Panels A and B show the results for the two stock price volatility proxies. Standard 

errors are robust to heteroscedasticity and autocorrelation. The estimates suggest a negative 

(positive) relationship between latency (speed) and volatility for both proxies. Specifically, the 

absolute value of price change and the standard deviation of stock returns decrease by 0.7 and 

0.2bps respectively per unit increase (decrease) in latency (speed). 𝐴𝑏𝑠𝐶ℎ𝑎𝑖,𝑡 and 𝑆𝑡𝑑𝑑𝑒𝑣𝑖,𝑡 are 

statistically significant at the 0.01 and 0.05 levels respectively. Economically what this means 

is that a decrease in latency from 4.2ms (fibre optic cable) to 2.3ms (microwave connection) is 

expected to increase standard deviation of stock returns by 1.9 * 0.2/13.32 = 2.8%. The 

estimates imply that an increase (decrease) in the latency (speed) of order transmission 

decreases volatility in stock prices. This may not necessarily be a negative effect on market 

quality if increased speed simply means that new information arrives at the market more often. 

If this is the case, I would expect to see more rapid changes in prices as investors revise their 

beliefs about the value of their holdings (see Madhavan et al., 1997). It is important to note that 

for the absolute value of price changes, the negative (positive) relation between latency (speed) 

and volatility holds for all quartiles (except Quartile 3) and the overall sample; however, the 

results for the standard deviation of stock returns suggest that this negative relation is mainly 

driven by the most active stocks, which indicates cross-sectional differences in the impact of 

latency on volatility. 𝑅2̅̅̅̅ s for the full sample results are 42% and 18% respectively, again 

indicating that my model has a high explanatory power when the frequency of the estimation 

is considered.  

The positive correlation between speed and volatility is consistent with the theory of 

Roşu (2016) and the empirical studies of Boehmer et al. (2015) and Shkilko and Sokolov 

(2016). Firstly, Roşu’s (2016) model predicts that low latency will improve liquidity. As the 

market becomes more liquid, fast traders face an even lower price impact, and therefore trade 
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more aggressively. Consequently, increments in aggressiveness in financial markets will 

increase stock price volatility (see also Collin-Dufresne and Fos, 2016). My finding is in line 

with this insight and shows that lower (higher) latency (speed) leads to higher volatility. All 

the estimated coefficients for the control variables are consistent with the literature. 

 

4.4.3   Difference-in-difference estimation of the relationship between speed and market 

liquidity and volatility 

In order to address potential endogeneity, specifically that an unobserved variable 

correlated with information latency might be driving liquidity/volatility or that there exists 

some reverse causality between market quality variables (i.e. liquidity and volatility in my set-

up), I use a quasi-experimental setting studying two technological upgrades that improved 

latency on XSE. Specifically, I attempt to causally link the observed changes in liquidity and 

volatility to latency by employing a DiD framework. 

On July 3, 2017 and April 9, 2018, XSE implemented upgrades to increase the 

exchange’s speed (see Section 4.2.2 for details on the two upgrades). I compare the changes in 

the liquidity and volatility of stocks affected by the technological upgrades with those that are 

unaffected by estimating the following regression model: 

               𝐷𝑃𝑖,𝑑 = 𝛼𝑖 + 𝛽𝑑 +  𝛾1𝐸𝑣𝑒𝑛𝑡𝑑 + 𝛾2𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖 + 𝛾3𝐸𝑣𝑒𝑛𝑡𝑑 × 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖 +

                                                                                                                     ∑ 𝛿𝑘𝐶𝑘,𝑖,𝑑
8
𝑘=1 + 𝜀𝑖,𝑑          (4.3)                                      

where i denotes stocks and d denotes days. 𝛼𝑖 and 𝛽𝑑 are stock and time fixed effects. The 

dependent variable 𝐷𝑃𝑖,𝑑 corresponds to one of the liquidity and volatility proxies: quoted 

(𝑄𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑) and effective (𝐸𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑) spreads for liquidity, and absolute value of price 

changes (𝐴𝑏𝑠𝐶ℎ𝑎𝑖,𝑑) and standard deviation of stock returns (𝑆𝑡𝑑𝑑𝑒𝑣𝑖,𝑑) for volatility. 

𝑄𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 is the average of the differences between the ask and bid prices corresponding to 
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each transaction, 𝐸𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 is a daily average, each intraday value is computed as twice the 

absolute value of the difference between a transaction’s price and the prevailing bid-ask spread, 

𝐴𝑏𝑠𝐶ℎ𝑎𝑖,𝑑 measures the absolute difference between the last prices for stock i for days d and 

d-1, and 𝑆𝑡𝑑𝑑𝑒𝑣𝑖,𝑑 is the standard deviation of transaction prices’ returns. Consistent with 

Equations (4.1) and (4.2), all variables are computed for CBOE.  

𝐸𝑣𝑒𝑛𝑡𝑑 is a dummy taking the value 0 for the pre-upgrade period and 1 for the post-

upgrade period. I employ a 4-month horizon to assess the impact; 𝑑 comprises [-120; +120] 

days. It is important to note that my results are robust to different horizons: 1-, 2-, or 3-month 

periods before and after the upgrade. 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖 is a dummy taking the value 1 for stocks 

that are affected by the upgrade and zero for stocks that are not. Specifically, my treatment 

group is the 100 stocks that are cross-listed on both XSE and CBOE. Hence, any XSE exchange 

latency upgrade will impact the TL of these stocks. My control group comprises of 100 stocks 

that are only listed on CBOE and not on XSE; thus, upgrades should not have any impact on 

them. In this framework, my treatment and control groups belong to different countries. 

However, this should not have a material impact on my results for at least two reasons. Firstly, 

the results are based on variations at frequencies less than one second; at these frequencies, 

microstructure effects are unlikely to be driven by regulatory regimes in the case of stocks 

trading in quite similar market structures. Secondly, all of the stocks in both groups are 

domiciled and traded within the jurisdiction of the European Securities Market Authority 

(ESMA), and are therefore covered by largely similar regulatory regimes. The approach of 

including stocks from different countries within the same DiD framework is consistent with 

the literature (see as an example Malceniece et al., 2018). Furthermore, in order to ensure that 

I compare like-for-like as much as possible, I employ the approach developed by Boulton and 

Braga-Alves (2010) to match each of the treatment stocks to a corresponding control stock; the 

matching variable is trading activity. 
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𝐶𝑘,𝑖,𝑑 is a set of k control variables, which includes 𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚𝑖,𝑑, 𝐼𝑛𝑣𝑃𝑟𝑖𝑖,𝑑, 

𝑆𝑡𝑑𝑑𝑒𝑣𝑖,𝑑 (in the liquidity models), 𝐸𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 (in the volatility models), 𝑙𝑛𝑇𝑉𝑖,𝑑, 𝑇𝑖𝑚𝑒𝑇𝑖,𝑑, 

𝐷𝑒𝑝𝑡ℎ𝑖,𝑑, 𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠𝑖,𝑑, and 𝑀𝑎𝑐𝑟𝑜𝑖,𝑑. 𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚𝑖,𝑑 is the first lag of daily return 

(𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚𝑖,𝑑 is the return of stock i on day d-1), 𝐼𝑛𝑣𝑃𝑟𝑖𝑖,𝑑 is the inverse of last transaction 

price, 𝑙𝑛𝑇𝑉𝑖,𝑑 is the natural logarithm of trading volume, 𝑇𝑖𝑚𝑒𝑇𝑖,𝑑 is a trend variable starting 

at zero at the beginning of the sample period and increasing by one every trading day d, 

𝐷𝑒𝑝𝑡ℎ𝑖,𝑑 is computed as the sum of ask and bid sizes, 𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠𝑖,𝑑 is the number of 

transactions and 𝑀𝑎𝑐𝑟𝑜𝑖,𝑑 is a dummy taking the value 1 for days with macroeconomic 

announcements, and zero otherwise. 𝑆𝑡𝑑𝑑𝑒𝑣𝑖,𝑑 and 𝐸𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 are as previously defined. 𝛾1 

captures any common effects that might have impacted all stocks following the upgrade, 𝛾2 

captures any pre-existing differences between the treatment and control groups. 𝛾3, the key 

coefficient, captures the interaction of 𝐸𝑣𝑒𝑛𝑡𝑑 and 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖 and thus estimates any 

incremental effect of the upgrades on the treatment group. The model is estimated with firm 

and time fixed effects, and standard errors are robust to heteroscedasticity and autocorrelation. 

Similar to Equations (4.1) and (4.2), I estimate the model for the full sample and quartiles. The 

DiD model is also estimated under various specifications, with and without the control 

variables.39 

 

 

 

 

                                                           
39 I find that there is no material difference in the coefficients of interest between the two specifications. For 

parsimony, I present the results with control variables only.  
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Table 4. 7 Difference-in-difference estimation of the effects of latency on liquidity 

This table examines the relationship between liquidity and latency by exploiting two technological upgrades on July 3, 2017 and April 9, 2018. Specifically, the table reports 

coefficient estimates from the following regression model, with observations sampled at the daily frequency: 

𝐷𝑃𝑖,𝑑 = 𝛼𝑖 + 𝛽𝑑 +  𝛾1𝐸𝑣𝑒𝑛𝑡𝑑 + 𝛾2𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖 + 𝛾3𝐸𝑣𝑒𝑛𝑡𝑑 × 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖 +  ∑ 𝛿𝑘𝐶𝑘,𝑖,𝑑

8

𝑘=1
+ 𝜀𝑖,𝑑 

where 𝐷𝑃𝑖,𝑑 corresponds to one of two liquidity proxies: quoted (𝑄𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑) and effective (𝐸𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑) spreads. 𝑄𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 is the average of the differences between the ask 

and bid prices corresponding to each transaction, 𝐸𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 is a daily average, each intraday value is computed as twice the absolute value of the difference between a 

transaction’s price and the prevailing bid-ask spread. 𝐸𝑣𝑒𝑛𝑡𝑑 is a dummy taking the value zero for the pre-upgrade period and one for the post-upgrade period, and 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖 

is a dummy taking the value 1 for stocks impacted by the upgrade and zero for stocks not affected by the upgrade. The treatment group consists of the 100 stocks cross-listed 

on XSE and CBOE and the control group includes the 100 stocks listed on CBOE, but not cross-listed on XSE. 𝐶𝑘,𝑖,𝑑 is a set of k control variables, which includes 𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚𝑖,𝑑, 

𝐼𝑛𝑣𝑃𝑟𝑖𝑖,𝑑, 𝑆𝑡𝑑𝑑𝑒𝑣𝑖,𝑑, 𝑙𝑛𝑇𝑉𝑖,𝑑, 𝑇𝑖𝑚𝑒𝑇𝑖,𝑑, 𝐷𝑒𝑝𝑡ℎ𝑖,𝑑, 𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠𝑖,𝑑 and 𝑀𝑎𝑐𝑟𝑜𝑖,𝑑. 𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚𝑖,𝑑is the first lag of daily return for stock i on day d (𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚𝑖,𝑑 is the 

return of stock i on day d-1), 𝐼𝑛𝑣𝑃𝑟𝑖𝑖,𝑑is the inverse of last transaction price for stock i on day d, 𝑆𝑡𝑑𝑑𝑒𝑣𝑖,𝑑 is the standard deviation of transaction prices for stock i during day 

d, 𝑙𝑛𝑇𝑉𝑖,𝑑 is the natural logarithm of trading volume for stock i on day d, 𝑇𝑖𝑚𝑒𝑇𝑖,𝑑 is a trend variable for each stock i starting at zero at the beginning of the sample period and 

increasing by one every trading day d, 𝐷𝑒𝑝𝑡ℎ𝑖,𝑑is computed as the sum of ask and bid sizes for stock i on day d, 𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠𝑖,𝑑 is the number of transactions for stock i on 

day d and 𝑀𝑎𝑐𝑟𝑜𝑖,𝑑 is a dummy for stock i and takes the value one for days ds with macroeconomic announcements and zero otherwise. Stocks are classified into quartiles 

using Euro trading volume. Firm and time fixed effects are employed, and standard errors are robust to heteroscedasticity and autocorrelation. t-statistics are reported in 

parentheses. The sample period covers [-4; +4 months] intervals around each upgrade. *, ** and *** correspond to statistical significance at the 0.10, 0.05 and 0.01 levels 

respectively. 

Panel A 

Dependent variable: 𝑸𝒔𝒑𝒓𝒆𝒂𝒅𝒊,𝒅 

 Full sample Least active Quartile 2 Quartile 3 Most active 
𝐸𝑣𝑒𝑛𝑡𝑑 0.103x10-2*** 

(6.06) 

0.147x10-3 

(0.31) 

0.247x10-2*** 

(6.27) 

0.415x10-3*** 

(3.65) 

0.104x10-2*** 

(4.17) 

𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖 -0.209x10-2*** 

(-19.38) 

0.399x10-3 

(1.26) 

-0.135x10-2*** 

(-5.45) 

-0.823x10-3*** 

(-11.41) 

-0.293x10-2*** 

(-16.23) 

𝐸𝑣𝑒𝑛𝑡𝑑 × 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖 -0.453x10-3*** 

(-2.95) 

-0.189x10-3 

(-0.44) 

-0.184x10-2*** 

(-5.19) 

-0.202x10-3** 

(-1.98) 

-0.252x10-3*** 

(-11.12) 

𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚𝑖,𝑑 0.154x10-2*** 

(3.55) 

0.560x10-4 

(0.05) 

0.191x10-2 

(0.72) 

0.650x10-3** 

(2.34) 

0.307x10-2*** 

(6.11) 

𝐼𝑛𝑣𝑃𝑟𝑖𝑖,𝑑 -0.159x10-1*** -0.711x10-2*** -0.313x10-1*** -0.193x10-1*** -0.225x10-1*** 
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(-22.30) (-4.63) (-20.39) (-17.72) (-18.59) 

𝑆𝑡𝑑𝑑𝑒𝑣𝑖,𝑑 0.299x10-3*** 

(3.84) 

0.672x10-3*** 

(3.25) 

0.834x10-3* 

(1.79) 

0.212x10-3*** 

(4.18) 

0.669x10-4 

(0.77) 

𝑙𝑛𝑇𝑉𝑖,𝑑 0.151x10-3*** 

(13.98) 

-0.122x10-3*** 

(-3.53) 

0.638x10-4** 

(2.47) 

0.154x10-3*** 

(19.55) 

0.204x10-3*** 

(13.72) 

𝑇𝑖𝑚𝑒𝑇𝑖,𝑑 -0.486x10-5*** 

(-3.15) 

0.318x10-6 

(0.07) 

-0.695x10-5* 

(-1.94) 

-0.251x10-5** 

(-2.45) 

-0.788x10-5*** 

(-3.50) 

𝐷𝑒𝑝𝑡ℎ𝑖,𝑑 0.113x10-5*** 

(13.80) 

0.865x10-6*** 

(3.23) 

0.318x10-5*** 

(17.48) 

-0.651x10-5*** 

(-6.92) 

0.340x10-7 

(0.33) 

𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠𝑖,𝑑 0.566x10-6*** 

(12.70) 

0.396x10-5*** 

(16.85) 

0.173x10-5*** 

(15.54) 

0.190x10-6*** 

(5.84) 

0.745x10-6*** 

(14.17) 

𝑀𝑎𝑐𝑟𝑜𝑖,𝑑 -0.218x10-3*** 

(-2.61) 

-0.302x10-3 

(-1.30) 

-0.283x10-3 

(-1.47) 

-0.118x10-3** 

(-2.12) 

-0.239x10-3* 

(-1.95) 

Stock fixed effects Yes Yes Yes Yes Yes 

Time fixed effects Yes Yes Yes Yes Yes 

𝑅2̅̅̅̅  36.3% 35.8% 17.7% 38.6% 48.8% 

 

Panel B 

Dependent variable: 𝑬𝒔𝒑𝒓𝒆𝒂𝒅𝒊,𝒅 

 Full sample Least active Quartile 2 Quartile 3 Most active 
𝐸𝑣𝑒𝑛𝑡𝑑 0.190x10-2*** 

(5.45) 

0.809x10-3* 

(1.95) 

0.435x10-2*** 

(4.40) 

0.512x10-3** 

(2.06) 

0.178x10-2** 

(2.47) 

𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖 -0.436x10-2*** 

(-19.84) 

0.284x10-2*** 

(10.35) 

0.748x10-3 

(1.20) 

-0.151x10-2*** 

(-9.64) 

-0.885x10-2*** 

(-16.83) 

𝐸𝑣𝑒𝑛𝑡𝑑 × 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖 -0.977x10-3*** 

(-3.12) 

-0.745x10-3** 

(-1.99) 

-0.404x10-2*** 

(-4.52) 

-0.184x10-3 

(-0.83) 

0.243x10-3 

(0.37) 

𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚𝑖,𝑑 0.267x10-2*** 

(3.02) 

-0.181x10-3 

(-0.19) 

0.414x10-3 

(0.06) 

0.125x10-2** 

(2.06) 

0.518x10-2*** 

(3.53) 

𝐼𝑛𝑣𝑃𝑟𝑖𝑖,𝑑 -0.371x10-1*** 

(-25.44) 

-0.160x10-1*** 

(-11.99) 

-0.847x10-1*** 

(-21.98) 

-0.346x10-1*** 

(-14.50) 

-0.595x10-1*** 

(-16.87) 
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𝑆𝑡𝑑𝑑𝑒𝑣𝑖,𝑑 0.106x10-2*** 

(6.71) 

0.629x10-3*** 

(3.49) 

0.743x10-3 

(0.63) 

0.242x10-2*** 

(21.85) 

0.454x10-3* 

(1.81) 

𝑙𝑛𝑇𝑉𝑖,𝑑 0.143x10-3*** 

(6.52) 

-0.617x10-3*** 

(-20.53) 

-0.445x10-3*** 

(-6.85) 

0.249x10-3*** 

(14.48) 

0.377x10-3*** 

(8.71) 

𝑇𝑖𝑚𝑒𝑇𝑖,𝑑 -0.713x10-5** 

(-2.26) 

-0.162x10-5 

(-0.43) 

-0.422x10-5 

(-0.47) 

-0.409x10-5* 

(-1.83) 

-0.157x10-4** 

(-2.39) 

𝐷𝑒𝑝𝑡ℎ𝑖,𝑑 0.228x10-5*** 

(13.69) 

0.298x10-5*** 

(12.79) 

0.610x10-5*** 

(13.36) 

-0.100x10-5*** 

(-4.87) 

0.872x10-7 

(0.29) 

𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠𝑖,𝑑 0.305x10-5*** 

(33.56) 

0.134x10-4*** 

(65.47) 

0.918x10-5*** 

(32.93) 

0.563x10-6*** 

(7.91) 

0.315x10-5*** 

(20.60) 

𝑀𝑎𝑐𝑟𝑜𝑖,𝑑 -0.208x10-3 

(-1.22) 

-0.401x10-3** 

(-1.98) 

-0.105x10-3 

(-0.22) 

-0.140x10-3 

(-1.15) 

-0.542x10-3 

(-1.52) 

Stock fixed effects Yes Yes Yes Yes Yes 

Time fixed effects Yes Yes Yes Yes Yes 

𝑹𝟐̅̅̅̅  30.3% 31.5% 21.6% 8.9% 9.2% 
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Table 4.7 reports the estimation results for when 𝐷𝑃𝑖,𝑑 in Equation (4.3) corresponds to 

either the quoted or effective spreads.  

The interaction coefficients (𝛾3) suggest that the technological upgrades are linked with 

decreases of about 4.5bps and 10bps in quoted and effective spreads respectively for the treated 

group of stocks, when compared to the control group. Both estimates are statistically significant 

at the 0.01 level. In order to put the economic significance of this result into some perspective, 

recall that the average latency reduction from the two upgrades, based on our analysis (see 

Panel C in Table 4.3 and Footnote 38), is about 2% or 0.08ms (2% * 4.39). Thus, a 2% (0.08ms) 

reduction in latency is estimated to decrease quoted (effective) spread by 4.5/454 = 1% (10/427 

= 2.3%). This implies that, following the upgrade, liquidity increases and trading costs decrease 

more for my treatment group relative to the control group, and it further shows that the latency 

improvements are, over and above other controlled effects, driving stock market liquidity. 

Importantly, the fact that stocks that were expected to benefit from the technological upgrades 

see a significant improvement in liquidity allows me to establish a causal relationship between 

speed and liquidity, while ruling out endogeneity concerns. Therefore, the results are consistent 

with the earlier fixed effect models. The findings of the DiD frameworks are also consistent 

with the predictions of Hoffmann (2014) and Jovanovic and Menkveld (2016), and with the 

empirical findings of Menkveld (2013) and Hendershott et al. (2011), and suggest that speed 

is generally used by high-frequency market makers as a means of reducing adverse selection 

risk, thus leading to their provision of a higher level of liquidity. Similar to the earlier estimated 

fixed effects model for liquidity, while the positive relationship between speed improvements 

and quoted spread is driven by the most active stocks, the positive relationship between speed 

improvements and effective spread is driven by the least active stocks. The estimated 

coefficients of the control variables are generally consistent with the literature. The 𝑅2̅̅̅̅  for the 
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quoted and effective spread models are 36% and 30%, respectively. These are substantial 

explanatory levels for daily frequency estimations. 
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Table 4. 8 Difference-in-difference estimation of the effects of latency on volatility 

This table examines the relationship between volatility and latency around two technological upgrades on July 3, 2017 and April 9, 2018. Specifically, the table reports 

coefficient estimates from the following regression model using daily frequencies: 

𝐷𝑃𝑖,𝑑 = 𝛼𝑖 + 𝛽𝑑 +  𝛾1𝐸𝑣𝑒𝑛𝑡𝑑 + 𝛾2𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖 + 𝛾3𝐸𝑣𝑒𝑛𝑡𝑑 × 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖 +  ∑ 𝛿𝑘𝐶𝑘,𝑖,𝑑

8

𝑘=1
+ 𝜀𝑖,𝑑 

where 𝐷𝑃𝑖,𝑑 corresponds to one of two volatility proxies: absolute value of price changes (𝐴𝑏𝑠𝐶ℎ𝑎𝑖,𝑑) and standard deviation of stock returns (𝑆𝑡𝑑𝑑𝑒𝑣𝑖,𝑑). 𝐴𝑏𝑠𝐶ℎ𝑎𝑖,𝑑 is the 

absolute difference between the last prices for stock i for days d and d-1, 𝑆𝑡𝑑𝑑𝑒𝑣𝑖,𝑑 is the standard deviation of transaction prices for stock i during day d. 𝐸𝑣𝑒𝑛𝑡𝑑 is a dummy 

taking the value zero for the pre-upgrade period and one for the post-upgrade period, and 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖 is a dummy taking the value one for stocks that are impacted by the 

upgrade and zero for stocks that are not. The treatment group consists of the 100 stocks cross-listed on XSE and CBOE and the control group includes the 100 stocks listed on 

CBOE, but not cross-listed on XSE. 𝐶𝑘,𝑖,𝑑 is a set of k control variables, which includes 𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚𝑖,𝑑, 𝐼𝑛𝑣𝑃𝑟𝑖𝑖,𝑑, 𝐸𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑, 𝑙𝑛𝑇𝑉𝑖,𝑑, 𝑇𝑖𝑚𝑒𝑇𝑖,𝑑, 𝐷𝑒𝑝𝑡ℎ𝑖,𝑑, 𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠𝑖,𝑑 

and 𝑀𝑎𝑐𝑟𝑜𝑖,𝑑. 𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚𝑖,𝑑is the first lag of daily return for stock i on day d (𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚𝑖,𝑑 is the return of stock i on day d-1), 𝐼𝑛𝑣𝑃𝑟𝑖𝑖,𝑑is the inverse of last transaction 

price for stock i on day d. 𝐸𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 is a daily average, each intraday value is computed as twice the absolute value of the difference between a transaction’s price and the 

prevailing bid-ask spread. 𝑙𝑛𝑇𝑉𝑖,𝑑 is the natural logarithm of trading volume for stock i on day d, 𝑇𝑖𝑚𝑒𝑇𝑖,𝑑 is a trend variable for each stock i starting at zero at the beginning 

of the sample period and incrementing by one every trading day d, 𝐷𝑒𝑝𝑡ℎ𝑖,𝑑is computed as the sum of ask and bid sized for stock i on day d, 𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠𝑖,𝑑 is the number of 

transactions for stock i on day d, and 𝑀𝑎𝑐𝑟𝑜𝑖,𝑑 is a dummy for stock i taking the value one for days d with macroeconomic announcements and zero otherwise. Stocks are 

classified into quartiles using Euro trading volume. Firm and time fixed effects are employed, and standard errors are robust to heteroscedasticity and autocorrelation. t-statistics 

are reported in parenthesis. The sample period covers [-4; +4] intervals around each upgrade. *, ** and *** correspond to statistical significance at the 0.10, 0.05 and 0.01 

levels respectively. 

Panel A 

Dependent variable: 𝑨𝒃𝒔𝑪𝒉𝒂𝒊,𝒅 

 Full sample Least active Quartile 2 Quartile 3 Most active 
𝐸𝑣𝑒𝑛𝑡𝑑 -0.987 

(-0.69) 

-2.832 

(-0.95) 

-1.552 

(-0.57) 

1.389 

(0.39) 

-0.989 

(-0.51) 

𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖 -2.600*** 

(-2.88) 

-0.814 

(-0.41) 

-4.966*** 

(-2.90) 

-0.444 

(-0.19) 

-2.827** 

(-2.00) 

𝐸𝑣𝑒𝑛𝑡𝑑 × 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖 2.550** 

(1.98) 

1.721 

(0.64) 

4.629* 

(1.89) 

0.459 

(0.14) 

3.174* 

(1.82) 

𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚𝑖,𝑑 3.130 

(0.86) 

3.472 

(0.51) 

13.390 

(0.73) 

-0.496 

(-0.06) 

3.408 

(0.87) 

𝐼𝑛𝑣𝑃𝑟𝑖𝑖,𝑑 -14.183** 0.803 -32.249*** -50.965 -4.981 
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(-2.36) (0.08) (-3.01) (-1.47) (-0.53) 

𝐸𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 61.664*** 

(3.84) 

29.520 

(0.52) 

-6.597 

(-0.31) 

325.322*** 

(2.93) 

166.247*** 

(8.00) 

𝑙𝑛𝑇𝑉𝑖,𝑑 0.117 

(1.31) 

-0.344 

(-1.59) 

0.365** 

(2.05) 

0.172 

(0.68) 

0.101 

(0.88) 

𝑇𝑖𝑚𝑒𝑇𝑖,𝑑 0.262x10-2 

(0.20) 

0.385x10-1 

(1.44) 

-0.413x10-2 

(-0.17) 

-0.159x10-1 

(-0.49) 

-0.479x10-2 

(-0.27) 

𝐷𝑒𝑝𝑡ℎ𝑖,𝑑 -0.862x10-4 

(-0.13) 

0.898x10-3 

(0.57) 

-0.503x10-3 

(-0.40) 

-0.716x10-3 

(-0.24) 

0.315x10-3 

(0.39) 

𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠𝑖,𝑑 -0.177x10-4 

(-0.05) 

-0.291x10-2* 

(1.76) 

-0.130x10-3 

(-0.17) 

-0.134x10-4 

(-0.01) 

-0.312x10-3 

(-0.76) 

𝑀𝑎𝑐𝑟𝑜𝑖,𝑑 -0.999x10-1 

(-0.14) 

-1.838 

(-1.26) 

0.133 

(0.10) 

0.560 

(0.32) 

0.708 

(0.75) 

Stock fixed effects Yes Yes Yes Yes Yes 

Time fixed effects Yes Yes Yes Yes Yes 

𝑹𝟐̅̅̅̅  25.9% 8.3% 10.6% 7.7% 46.9% 

 

Panel B 

Dependent variable: 𝑺𝒕𝒅𝒅𝒆𝒗𝒊,𝒅  

 Full sample Least active Quartile 2 Quartile 3 Most active 
𝐸𝑣𝑒𝑛𝑡𝑑 0.114x10-1 

(1.34) 

0.152x10-1 

(0.83) 

0.839x10-2 

(1.27) 

0.402x10-3 

(0.02) 

0.206x10-1 

(0.91) 

𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖 -0.225x10-1*** 

(-4.15) 

-0.250x10-1** 

(-2.05) 

-0.109x10-1*** 

(-2.64) 

-0.152x10-1 

(-1.39) 

-0.496x10-1*** 

(-3.02) 

𝐸𝑣𝑒𝑛𝑡𝑑 × 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖 0.281x10-1*** 

(3.65) 

0.320x10-1* 

(1.94) 

0.144x10-1** 

(2.42) 

0.357x10-1** 

(2.32) 

0.364x10-1* 

(1.80) 

𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚𝑖,𝑑 -0.122x10-1 

(-0.56) 

-0.124x10-1 

(-0.29) 

-0.214x10-1 

(-0.48) 

-0.281x10-1 

(-0.67) 

-0.152x10-1 

(-0.33) 

𝐼𝑛𝑣𝑃𝑟𝑖𝑖,𝑑 -0.116*** 

(-3.19) 

-0.967x10-1 

(-1.63) 

-0.622x10-1** 

(-2.39) 

-0.516x10-1 

(-0.31) 

-0.246** 

(-2.23) 
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𝐸𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 0.647*** 

(6.71) 

1.227*** 

(3.49) 

0.329x10-1 

(0.63) 

11.643*** 

(21.85) 

0.437* 

(1.81) 

𝑙𝑛𝑇𝑉𝑖,𝑑 0.525x10-2*** 

(9.69) 

0.611x10-2*** 

(4.54) 

0.307x10-2*** 

(7.11) 

0.438x10-2*** 

(3.64) 

0.632x10-2*** 

(4.69) 

𝑇𝑖𝑚𝑒𝑇𝑖,𝑑 -0.527x10-3*** 

(-6.80) 

-0.615x10-3*** 

(-3.71) 

-0.303x10-3*** 

(-5.08) 

-0.484x10-3*** 

(-3.12) 

-0.725x10-3*** 

(-3.56) 

𝐷𝑒𝑝𝑡ℎ𝑖,𝑑 0.339x10-5 

(0.82) 

0.113x10-4 

(1.09) 

0.151x10-5 

(0.50) 

0.582x10-5 

(0.41) 

0.133x10-4 

(1.42) 

𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠𝑖,𝑑 -0.705x10-5*** 

(-3.13) 

-0.132x10-4 

(-1.30) 

-0.382x10-5** 

(-2.00) 

-0.153x10-4*** 

(-3.10) 

-0.420x10-5 

(-0.87) 

𝑀𝑎𝑐𝑟𝑜𝑖,𝑑 0.880x10-2** 

(2.09) 

0.644x10-2 

(0.72) 

0.380x10-2 

(1.18) 

0.131x10-1 

(1.56) 

0.116x10-1 

(1.05) 

Stock fixed effects Yes Yes Yes Yes Yes 

Time fixed effects Yes Yes Yes Yes Yes 

𝑅2̅̅̅̅  29.5% 35.2% 47.9% 31.1% 26.9% 
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Table 4.8 reports the estimation results for the volatility measures, i.e. the absolute 

value of price change and the standard deviation of intraday stock returns for stock i on day d. 

The interaction coefficients (𝛾3) suggest that the technological upgrades are linked with 

increases in volatility. Both the absolute value of price change and the standard deviation of 

stock returns (volatility proxies) increase by 2.550 and 0.028 bps respectively for the treatment 

group of stocks in comparison to the control group; the changes are statistically significant at 

0.05 and 0.01 levels respectively. The economic significance of these estimates is put into some 

perspective when we recall that the difference between the latencies of microwave and fibre 

optic cable is about 23 times higher than this reduction (1.9/0.08). Again, the results allow me 

to confirm the causal link between speed and volatility. Generally, the findings presented in 

Table 4.8 further support my earlier results and are consistent with the empirical findings of 

Shkilko and Sokolov (2016) and Boehmer et al. (2015). As already noted, the positive 

relationship between speed and volatility is related to increased aggressiveness in financial 

markets (for a more detailed discussion, see also Collin-Dufresne and Fos, 2016; Roşu, 2016). 

The 𝑅2̅̅̅̅  for the absolute value of price change and standard deviation of stock return models 

are 26% and 30%, respectively. 

  

4.4.4   How does latency impact liquidity and volatility? 

In this section’s analysis, I focus on the two channels literature identifies as potential 

avenues through which speed impacts liquidity. The first is that speed aids adverse selection 

risk avoidance by liquidity providers; I call this the adverse selection avoidance channel (see 

as examples Hoffmann, 2014; Jovanovic and Menkveld, 2016). The second relates to speed 

helping faster traders to pick-off the limit orders of slower traders and hence end up decreasing 

liquidity (see as examples Foucault et al., 2016; Foucault et al., 2017); I call the channel the 

picking-off channel in line with Shkilko and Sokolov (2016). 
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The results suggest that fast traders generally use their speed advantage to avoid adverse 

selection rather than to pick-off limit orders of liquidity providers (see also Hagströmer and 

Nordén, 2013; Menkveld, 2013), or at least the effect of the former action dominates the effect 

of the latter action. In this section, I explore this issue further. If my argument about the adverse 

selection avoidance channel is valid, then latency improvements should be accompanied by 

smaller price impacts (see also Shkilko and Sokolov, 2016). This argument links to the stream 

of the market microstructure literature focusing on the links between price impact and liquidity. 

The argument is also anchored on the theoretical approach described in Menkveld (2013). 

Specifically, HFTs using their speed advantage to avoid adverse selection tend to follow market 

making strategies, basically working off a model based on their profits coming from the bid-

ask spread. Adverse selection risk thus poses a risk to their strategy. It follows that if becoming 

quicker helps them to further decrease the risk of adverse selection, they would be more willing 

to provide more liquidity, which decreases a trade’s price impact. 

I follow Baron et al. (2018) in designing a test of the adverse selection avoidance 

channel. I use a fixed effects framework similar to Equations (4.1) and (4.2), the difference 

being that I now employ the price impact of each transaction as my new dependent variable. 

Price impact is computed as in Shkilko and Sokolov (2016); 𝑃𝑅𝐼𝑀𝑃𝑖,𝑡 = 2𝑞𝑡(𝑚𝑖𝑑𝑡+1 −

𝑚𝑖𝑑𝑡), where 𝑞𝑡 is the direction of the trade,40 and 𝑚𝑖𝑑𝑡 and 𝑚𝑖𝑑𝑡+1 are the prevailing 

midquotes for transactions t and t+1 respectively. Specifically, I run the following model: 

                     𝑃𝑅𝐼𝑀𝑃𝑖,𝑡 = 𝛼𝑖 + 𝛽𝑡 + 𝛾𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝑖,𝑡 + ∑ 𝛿𝑘𝐶𝑘,𝑖,𝑡
6
𝑘=1 + 𝜀𝑖,𝑡                              (4.4) 

                                                           
40 I follow Lee and Ready (1991) algorithm to classify trades as sell and buy trades. 
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Table 4. 9 Price Impact and Latency: testing adverse selection channel 

This table reports the coefficient estimates from the following regression model: 

𝑃𝑅𝐼𝑀𝑃𝑖,𝑡 = 𝛼𝑖 + 𝛽𝑡 + 𝛾𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝑖,𝑡 + ∑ 𝛿𝑘𝐶𝑘,𝑖,𝑡

6

𝑘=1
+ 𝜀𝑖,𝑡 

where 𝑃𝑅𝐼𝑀𝑃𝑖,𝑡 corresponds to the price impact for stock i and transaction t, 𝛼𝑖 and 𝛽𝑡 are stock and time fixed effects, 𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝑖,𝑡 is information transmission latency between 

Frankfurt and London. 𝑃𝑅𝐼𝑀𝑃𝑖,𝑡 = 2𝑞𝑡(𝑚𝑖𝑑𝑡+1 − 𝑚𝑖𝑑𝑡), where 𝑞𝑡 is the direction of trade, 𝑚𝑖𝑑𝑡 and 𝑚𝑖𝑑𝑡+1 are the mid-quotes for transaction t and t+1. 𝐶𝑘,𝑖,𝑡 is a set of k 

control variables, which includes the standard deviation of stock returns (𝑆𝑡𝑑𝑑𝑒𝑣𝑖,𝑡) for stock i and transaction t as a proxy for volatility, the effective spread (𝐸𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡) for 

stock i and transaction t as a proxy for liquidity, the inverse of price (𝐼𝑛𝑣𝑃𝑟𝑖𝑖,𝑡) for stock i and transaction t, the natural logarithm of trading volume (𝑙𝑛𝑇𝑉𝑖,𝑡) for stock i and 

transaction t, market depth (𝐷𝑒𝑝𝑡ℎ𝑖,𝑡) for stock i and transaction t, and momentum (𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚𝑖,𝑡) for stock i and transaction t. 𝑆𝑡𝑑𝑑𝑒𝑣𝑖,𝑡 is calculated as the standard deviation 

of returns for contemporaneous and previous transactions (transactions at time t and t-1) for stock i, 𝐸𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 is measured as twice the absolute value of the difference between 

the transaction price and the prevailing bid-ask spread for stock i at time t, 𝐼𝑛𝑣𝑃𝑟𝑖𝑖,𝑡 is the inverse of the transaction price for stock i at time t, 𝑙𝑛𝑇𝑉𝑖,𝑡 is the natural logarithm 

of trading volume for stock i and transaction t, 𝐷𝑒𝑝𝑡ℎ𝑖,𝑡 is the sum of prevailing bid and ask sizes for stock i corresponding to transaction t and 𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚𝑖,𝑡 is the first lag of 

the stock return for stock i and transaction t (momentum for transaction t is the stock return transaction t-1). The sample consists of the 100 most active German stocks cross-

listed on XSE and CBOE. All variables, except latency, are computed for the CBOE. Stocks are classified into quartiles using Euro trading volume. The sample period covers 

March 2017 to August 2018. Standard errors are robust to heteroscedasticity and autocorrelation and t-statistics are reported in parentheses. *, ** and *** correspond to 

statistical significance at the 0.10, 0.05 and 0.01 levels respectively.  

 

Dependent variable: 𝑷𝑹𝑰𝑴𝑷𝒊,𝒕 

 Full sample Least active Quartile 2 Quartile 3 Most active 
𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝑖,𝑡 0.971x10-3** 

(2.18) 

0.243x10-2 

(0.89) 

0.108x10-2* 

(1.73) 

-0.429x10-3 

(-1.26) 

0.333x10-2*** 

(3.10) 

𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚𝑖,𝑡 0.502*** 

(15.68) 

-8.426*** 

(-26.33) 

-1.059*** 

(-3.65) 

0.191x10-1 

(0.84) 

1.358*** 

(19.17) 

𝐼𝑛𝑣𝑃𝑟𝑖𝑖,𝑡 1.241 

(0.51) 

-18.942** 

(-2.27) 

7.948 

(0.89) 

3.971** 

(2.08) 

-10.334 

(-0.95) 

𝐸𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 -0.964x10-1*** 

(-10.86) 

-0.325x10-1 

(-0.56) 

-0.115*** 

(-3.60) 

-0.159*** 

(-11.52) 

-0.470x10-1*** 

(-3.44) 

𝑆𝑡𝑑𝑑𝑒𝑣𝑖,𝑡 9.111*** 

(277.62) 

-14.958 

(-41.40) 

-22.525*** 

(-69.73) 

12.895*** 

(564.21) 

4.677*** 

(62.65) 

𝑙𝑛𝑇𝑉𝑖,𝑡 0.382x10-2*** 0.194x10-2 0.571x10-2 0.349x10-2*** 0.495x10-2** 
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(4.82) (0.41) (1.46) (5.83) (2.45) 

𝐷𝑒𝑝𝑡ℎ𝑖,𝑡 0.435x10-6 

(0.25) 

0.591x10-6 

(0.06) 

-0.491x10-5 

(-0.42) 

0.191x10-5* 

(1.73) 

-0.143x10-4 

(-1.54) 

Stock fixed effects Yes Yes Yes Yes Yes 

Time fixed effects Yes Yes Yes Yes Yes 

𝑹𝟐̅̅̅̅  14.1% 27.7% 7.4% 22.9% 14.1% 
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where 𝛼𝑖 and 𝛽𝑡 are stock and time fixed effects respectively, and 𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝑖,𝑡is the TL between 

XSE and CBOE for transaction t and stock i. 𝐶𝑘,𝑖,𝑡 is a set of previously defined k control 

variables, which includes 𝑆𝑡𝑑𝑑𝑒𝑣𝑖,𝑡, 𝐸𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡, 𝐼𝑛𝑣𝑃𝑟𝑖𝑖,𝑡, 𝑙𝑛𝑇𝑉𝑖,𝑡, 𝐷𝑒𝑝𝑡ℎ𝑖,𝑡, and 

𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚𝑖,𝑡.  

The results obtained from the estimation of Equation (4.4) are presented in Table 4.9. 

The standard errors are robust to heteroscedasticity and autocorrelation. The estimated latency 

coefficient in Table 4.9 is positive and statistically significant at the 0.05 level. This implies 

that, consistent with the previous sets of results, the price impact increases (decreases) by 10bps 

per unit increase in latency (speed). The magnitude of the effect is also economically 

meaningful; a 1ms decrease in latency is expected to decrease price impact by 4% (10/254). 

The results are therefore in line with the adverse selection avoidance channel argument, and 

suggest that speed incentivizes liquidity providers to trade more as it helps them to avoid being 

adversely selected (see also Hoffmann, 2014; Jovanovic and Menkveld, 2016). The result does 

not hold for the least active stocks, which might be explained by the concentration of HFTs in 

the most active stocks. The 𝑅2̅̅̅̅  for the full sample is 14%.  

As previously demonstrated, volatility also increases with speed. Therefore, I next 

investigate the channel(s) through which speed impacts volatility. A potential channel is 

described in the theoretical model presented by Roşu (2016). Specifically, the model shows 

that as market liquid improves (which, as shown above, is a consequence of speed), fast traders 

face a lower price impact, and therefore trade even more aggressively. Consequently, 

increments in aggressiveness in financial markets will increase stock price volatility (see also 

Collin-Dufresne and Fos, 2016 for the relationship between aggressiveness and volatility). I 

call this channel the aggressiveness channel. A series of estimations already show that speed 

decreases price impact and increases liquidity (see Tables 4.5, 4.7 and 4.9 for details) and form 

the first part of the test of the veracity of the aggressiveness channel. In order to execute the 
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second part of the test of the aggressiveness channel argument, i.e. the role of latency on 

aggressiveness, I estimate the logit regression model in Equation (4.5). If my intuition is valid, 

then latency (speed) should decrease (increase) aggressiveness since Roşu (2016) predicts that 

speed can increase volatility through its impact on aggressiveness.  

   𝐴𝑔𝑔𝑟𝑒𝑠𝑠𝑖𝑣𝑒𝑛𝑒𝑠𝑠𝑖,𝑡 = 𝛼𝑖 + 𝛽𝑡 + 𝛾𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝑖,𝑡 + ∑ 𝛿𝑘𝐶𝑘,𝑖,𝑡
6
𝑘=1 + 𝜀𝑖,𝑡                         (4.5)                             

where 𝐴𝑔𝑔𝑟𝑒𝑠𝑠𝑖𝑣𝑒𝑛𝑒𝑠𝑠𝑖,𝑡 is a binary dependent variable for stock i and transaction t. 

Specifically, 𝐴𝑔𝑔𝑟𝑒𝑠𝑠𝑖𝑣𝑒𝑛𝑒𝑠𝑠𝑖,𝑡 equals one for the aggressive trades and zero otherwise. In 

order to classify trades according to their aggressiveness, I employ the modified version of the 

approach proposed by Barber et al. (2009) and Kelley and Tetlock (2013). I start by 

determining the direction of each transaction in the spirit of Lee and Ready (1991). Then, I 

compare the transaction price with the prevailing best bid (ask) price for sell (buy) transactions. 

If the transaction price is below (above) or equal to the prevailing best bid (ask) price, I classify 

this sell (buy) transaction as an aggressive trade. 𝛼𝑖 and 𝛽𝑡 are stock and time fixed effects, 

𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝑖,𝑡is the TL between XSE and CBOE. 𝐶𝑘,𝑖,𝑡 is a set of previously defined k control 

variables, which includes 𝑆𝑡𝑑𝑑𝑒𝑣𝑖,𝑡, 𝐸𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡, 𝐼𝑛𝑣𝑃𝑟𝑖𝑖,𝑡, 𝑙𝑛𝑇𝑉𝑖,𝑡, 𝐷𝑒𝑝𝑡ℎ𝑖,𝑡, and 

𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚𝑖,𝑡.  
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Table 4. 10 Trade Aggressiveness and Latency: testing aggressiveness channel 

This table reports the coefficient estimates from the following logit regression model: 

𝐴𝑔𝑔𝑟𝑒𝑠𝑠𝑖𝑣𝑒𝑛𝑒𝑠𝑠𝑖,𝑡 = 𝛼𝑖 + 𝛽𝑡 + 𝛾𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝑖,𝑡 + ∑ 𝛿𝑘𝐶𝑘,𝑖,𝑡

6

𝑘=1
+ 𝜀𝑖,𝑡 

where 𝐴𝑔𝑔𝑟𝑒𝑠𝑠𝑖𝑣𝑒𝑛𝑒𝑠𝑠𝑖,𝑡 is a binary dependent variable for stock i and transaction t. Specifically, 𝐴𝑔𝑔𝑟𝑒𝑠𝑠𝑖𝑣𝑒𝑛𝑒𝑠𝑠𝑖,𝑡 equals one for aggressive trades and zero otherwise. In 

order to delineate trades as aggressive or non-aggressive, I first classify trades on the basis of trade direction (buy or sell) using Lee and Ready’s (1991) algorithm. I then 

compare the transaction prices with the prevailing best bid (ask) price for sell (buy) transactions. If a transaction price is below (above) or equal to the prevailing best bid (ask) 

price I classify the sell (buy) transaction as an aggressive trade. 𝛼𝑖 and 𝛽𝑡 are stock and time  fixed effects, 𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝑖,𝑡 is the key variable in the model and the information 

transmission latency between Frankfurt and London. 𝐶𝑘,𝑖,𝑡 is a set of k control variables, which includes the standard deviation of stock returns (𝑆𝑡𝑑𝑑𝑒𝑣𝑖,𝑡) for stock i and 

transaction t as a proxy for volatility, the effective spread (𝐸𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡) for stock i and transaction t as a proxy for liquidity, the inverse of price (𝐼𝑛𝑣𝑃𝑟𝑖𝑖,𝑡) for stock i and 

transaction t, the natural logarithm of trading volume (𝑙𝑛𝑇𝑉𝑖,𝑡) for stock i and transaction t, market depth (𝐷𝑒𝑝𝑡ℎ𝑖,𝑡) for stock i and transaction t, and momentum (𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚𝑖,𝑡) 

for stock i and transaction t. 𝑆𝑡𝑑𝑑𝑒𝑣𝑖,𝑡 is calculated as the standard deviation of returns for contemporaneous and previous transactions (transactions t and t-1) for stock i, 

𝐸𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 is measured as twice the absolute value of the difference between the transaction price and the prevailing bid-ask spread for stock i and transaction t, 𝐼𝑛𝑣𝑃𝑟𝑖𝑖,𝑡 is 

the inverse of the transaction price for stock i and transaction t, 𝑙𝑛𝑇𝑉𝑖,𝑡 is the natural logarithm of trading volume for stock i and transaction t, 𝐷𝑒𝑝𝑡ℎ𝑖,𝑡 is the sum of prevailing 

bid and ask sizes for stock i corresponding to transaction t and 𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚𝑖,𝑡 is the first lag of the stock return for stock i and transaction t (momentum for transaction t is the 

stock return for transaction t-1). The sample consists of 100 most active German stocks that cross-listed in XSE and CBOE. All variables, except latency, are computed for the 

CBOE. Stocks are classified into quartiles using Euro trading volume. Marginal effects are reported in brackets and they are computed as the mean of marginal effects across 

stocks. The sample period covers March 2017 to August 2018. Standard errors are robust to heteroscedasticity and autocorrelation and t-statistics are reported in parenthesis. 

*, ** and *** correspond to statistical significance at the 0.10, 0.05 and 0.01 levels respectively.  

 

Dependent variable: 𝑨𝒈𝒈𝒓𝒆𝒔𝒔𝒊𝒗𝒆𝒏𝒆𝒔𝒔𝒊,𝒕 

 Full sample Least active Quartile 2 Quartile 3 Most active 
𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝑖,𝑡 -0.186x10-1*** 

[-0.284x10-2] 

(-19.09) 

-0.398x10-1*** 

[-0.640x10-2] 

(-11.09) 

-0.276x10-1*** 

[-0.427x10-2] 

(-10.10) 

-0.219x10-1*** 

[-0.332x10-2] 

(-10.90) 

-0.123x10-1*** 

[-0.188x10-2] 

(-9.48) 

𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚𝑖,𝑡 0.105 

[0.161x10-1] 

(0.84) 

0.651x10-1 

[0.105x10-1] 

(0.28) 

-0.378 

[-0.584x10-1] 

(-1.23) 

0.309 

[0.469x10-1] 

(0.56) 

0.924 

[0.141] 

(1.26) 

𝐼𝑛𝑣𝑃𝑟𝑖𝑖,𝑡 1.691*** 

[0.259] 

0.726*** 

[0.117] 

1.192*** 

[0.184] 

4.165*** 

[0.632] 

3.862*** 

[0.588] 
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(25.73) (2.95) (10.59) (10.66) (39.52) 

𝐸𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 1.196*** 

[0.183] 

(35.53) 

1.028*** 

[0.164] 

(8.83) 

1.176*** 

[0.182] 

(14.97) 

0.786*** 

[0.119] 

(19.47) 

4.799*** 

[0.730] 

(49.25) 

𝑆𝑡𝑑𝑑𝑒𝑣𝑖,𝑡 -0.107* 

[-0.164x10-1] 

(-1.95) 

1.037 

[0.166] 

(1.42) 

-0.322 

[-0.498x10-1] 

(-1.03) 

-0.147 

[-0.224x10-1] 

(-1.43) 

-0.113 

[-0.171x10-1] 

(-1.60) 

𝑙𝑛𝑇𝑉𝑖,𝑡 -0.617x10-1*** 

[-0.945x10-2] 

(-36.44) 

-0.625x10-1*** 

[-0.100x10-1] 

(-9.90) 

-0.977x10-1*** 

[-0.151x10-1] 

(-20.24) 

-0.849x10-1*** 

[-0.129x10-1] 

(-22.02) 

-0.548x10-1*** 

[-0.834x10-2] 

(-24.38) 

𝐷𝑒𝑝𝑡ℎ𝑖,𝑡 -0.605x10-4*** 

[-0.926x10-5] 

(-22.66) 

-0.463x10-4*** 

[-0.742x10-5] 

(-14.56) 

-0.371x10-4*** 

[-0.575x10-5] 

(-16.28) 

-0.167x10-4*** 

[-0.254x10-4] 

(-17.55) 

-0.827x10-4*** 

[-0.125x10-4] 

(-19.22) 

Stock fixed effects Yes Yes Yes Yes Yes 

Time fixed effects Yes Yes Yes Yes Yes 

McFadden R2 27.2% 31.1% 14.6% 28.2% 25.7% 
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Table 4.10 reports the estimation results for the logit model. The results are qualitatively 

similar for the overall sample and quartiles. I also report marginal effects in parentheses, which 

show an increase in the probability of aggressive trades if the explanatory variable increases 

by one standard deviation, conditional on all other explanatory variables being at their 

unconditional means. My results show that the 𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝑖,𝑡 coefficient is negative and 

statistically significant at 0.01 level, which implies that indeed increments (decrements) in 

latency (speed) decrease the probability of aggressive trades. Based on the marginal effects, 

traders are 0.3% less (more) likely to aggressively trade subsequent to increasing latency 

(speed). Overall, I conclude that trader improvements in the speed of order execution ultimately 

drives increased trading aggressiveness, a conclusion consistent with the aggressiveness 

channel hypothesis and Roşu (2016). The McFadden R2 for the full sample is 27%, a substantial 

explanatory level for an estimation based on an intraday estimation frequency. 

 

4.5  Economic implications: the trade-off between higher (lower 

liquidity/volatility) and lower (higher liquidity/volatility) latency 

In Section 4.4, I find that, as argued by various regulators and investors,41 lower 

(transmission) latency between financial markets leads to better liquidity and higher volatility.  

In the market microstructure literature, liquidity and volatility are considered to be two 

important market quality metrics (see as examples, Hendershott et al., 2011; Malceniece et al., 

2018). Specifically, higher liquidity is perceived as good whereas higher volatility might be 

perceived as less beneficial. Thus, my main empirical finding, i.e. lower latency improves 

liquidity and increases volatility, is unable to show whether speed is beneficial or harmful for 

financial markets overall; more explicitly, my analysis does not allow me to show the (net) 

                                                           
41 https://www.reuters.com/article/us-highfrequency-microwave/lasers-microwave-deployed-in-high-speed-

trading-arms-race-idUSBRE9400L920130501 

https://www.reuters.com/article/us-highfrequency-microwave/lasers-microwave-deployed-in-high-speed-trading-arms-race-idUSBRE9400L920130501
https://www.reuters.com/article/us-highfrequency-microwave/lasers-microwave-deployed-in-high-speed-trading-arms-race-idUSBRE9400L920130501
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economic implication of latency. Nevertheless, my analysis suggests that there is a trade-off, 

or at least an inflection point at which the liquidity enhancing benefits of speed are offset by 

its volatility increasing effects. Therefore, in this section, I examine the relative impact of 

liquidity, volatility, and latency on expected return by interacting liquidity/volatility with 

latency. This approach allows me to attempt an estimation of the economic implication of 

latency, and to investigate the trade-off between higher (lower liquidity/volatility) and lower 

latency (higher liquidity/volatility). Specifically, I investigate the impacts of volatility and 

liquidity on expected return during regular trading periods and higher latency periods, and then 

compare them. I employ expected return as a key speed-impacting variable for two reasons. 

Firstly, to an investor, expected return serves as an indicator of profits relative to risk; hence it 

holds significant economic implications. Secondly, making valid a comparison between high 

and low latency in this study requires that I employ a variable impacted by both liquidity and 

volatility. The literature shows that, indeed, expected return is a direct measure satisfying this 

criterion. For example, Holmström and Jean (2001) and Acharya and Pedersen (2005) propose 

asset pricing models in which expected return is positively correlated with liquidity risk, and 

Pástor and Stambaugh (2003) empirically test this relationship and find that indeed, expected 

stock returns are positively related to fluctuations in aggregate liquidity. Poterba and Summers 

(1986) explain the theoretical (positive) relationship between expected return and volatility, 

and French et al. (1987) empirically show the positive relationship between expected return 

and volatility (see also Pindyck, 1984). In addition to the well-established literature about the 

relationship between liquidity/volatility and expected return, Malceniece et al. (2018) and 

Brogaard et al. (2014b) show the potential relationship between latency and the cost of 

capital/market efficiency, i.e. the efficiency of capital allocation. The overwhelming view in 

the literature is therefore that expected return is impacted by volatility, liquidity, and latency. 
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Developing a framework estimating the marginal impacts of latency-interacted liquidity and 

volatility proxies is thus a valid approach. My framework includes the following specification: 

        𝐸𝑅𝑖,𝑡 = 𝛼𝑖 + 𝛽𝑡 +  𝛽1𝑆𝑡𝑑𝑑𝑒𝑣𝑖,𝑡 + 𝛽2𝐸𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 + 𝛽3𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝑖,𝑡 +  𝛽4𝑆𝑡𝑑𝑑𝑒𝑣𝑖,𝑡 ∗

                                               𝐷𝑙𝑎𝑡𝑒𝑛𝑐𝑦,𝑖,𝑡 + 𝛽5𝐸𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 ∗ 𝐷𝑙𝑎𝑡𝑒𝑛𝑐𝑦,𝑖,𝑡 +  ∑ 𝛿𝑘𝐶𝑘,𝑖,𝑡
3
𝑘=1 + 𝜀𝑖,𝑡 (4.6)                                                

where 𝐸𝑅𝑖,𝑡 is the expected return for stock i at interval t and computed as the mean of returns 

for the previous 60 transaction intervals. 𝐷𝑙𝑎𝑡𝑒𝑛𝑐𝑦,𝑖,𝑡 is a dummy equalling one during periods 

of high (low) latency (speed); a transaction interval is designated as a high (low) latency (speed) 

transaction interval if the latency for that interval is one standard deviation higher than the 

mean for surrounding -60, +60 corresponding transaction intervals.42 𝛼𝑖 and 𝛽𝑡 are stock and 

time fixed effects, and 𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝑖,𝑡 is the TL between XSE and CBOE. 𝐶𝑘,𝑖,𝑡 is a set of previously 

defined k control variables, which includes 𝐷𝑒𝑝𝑡ℎ𝑖,𝑡, 𝐼𝑛𝑣𝑃𝑟𝑖𝑖,𝑡 and 𝑙𝑛𝑇𝑉𝑖,𝑡.  

I run two variants of Equation (4.6). In the first specification, I run the model with only 

two explanatory variables, 𝑆𝑡𝑑𝑑𝑒𝑣𝑖,𝑡 and 𝐸𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡. In this analysis, my main aim is to show 

if expected return is impacted by both volatility and liquidity, as suggested by the literature 

(see Acharya and Pedersen, 2005; Poterba and Summers, 1986). This analysis is particularly 

important since my motivation for using expected return as a main variable is based on the 

suggestion in the literature of a relationship between liquidity/volatility and expected return. In 

the second specification, I run the complete model as specified in Equation (4.6). As noted, I 

aim to examine the relative impact of liquidity and volatility on expected return, and therefore 

in the second specification, I standardize all variables to compare the size of coefficients on a 

comparable scale.43  

                                                           
42 For robustness, I designate the transaction interval as an interval of high (low) latency (speed) transaction 

interval if latency for that interval is two standard deviation higher than the mean for the surrounding -60, +60 

corresponding transaction intervals. The results obtained are qualitatively similar to the reported results. 
43 For robustness, I compute standardize coefficients based on un-standardized variables within the regression 

model as well. The results obtained are qualitatively similar with the ones I present in the chapter.  
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Table 4. 11 Expected return and trade-off between higher (lower liquidity/volatility) and lower latency (higher liquidity/volatility) 

This table reports the coefficient estimates of two specifications of the following regression model: 

           𝐸𝑅𝑖,𝑡 = 𝛼𝑖 + 𝛽𝑡 +  𝛾1𝑆𝑡𝑑𝑑𝑒𝑣𝑖,𝑡 + 𝛾2𝐸𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 +  𝛾3𝑆𝑡𝑑𝑑𝑒𝑣𝑖,𝑡 ∗   𝐷𝑙𝑎𝑡𝑒𝑛𝑐𝑦,𝑖,𝑡 +   𝛾4𝐸𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 ∗ 𝐷𝑙𝑎𝑡𝑒𝑛𝑐𝑦,𝑖,𝑡 + 𝛾5𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝑖,𝑡 +  ∑ 𝛿𝑘𝐶𝑘,𝑖,𝑡
3
𝑘=1 + 𝜀𝑖,𝑡 

where 𝐸𝑅𝑖,𝑡 is the expected return for stock i and transaction t, 𝛼𝑖 and 𝛽𝑡 are stock and time  fixed effects, 𝑆𝑡𝑑𝑑𝑒𝑣𝑖,𝑡 is the standard deviation of returns for stock i and transaction 

t, 𝐸𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 is effective spread for stock i and transaction t, 𝐷𝑙𝑎𝑡𝑒𝑛𝑐𝑦,𝑖,𝑡 is a dummy equalling one during periods of high (low) latency (speed) for stock i, 𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝑖,𝑡 is the 

information transmission latency between Frankfurt and London, and 𝐶𝑘,𝑖,𝑡 is a set of k control variables, which includes the market depth (𝐷𝑒𝑝𝑡ℎ𝑖,𝑡) for stock i and transaction, 

the inverse of price (𝐼𝑛𝑣𝑃𝑟𝑖𝑖,𝑡) for stock i and transaction t, and the natural logarithm of trading volume (𝑙𝑛𝑇𝑉𝑖,𝑡) for stock i and transaction t. 𝐸𝑅𝑖,𝑡 is computed as the mean of 

the previous 60 transaction intervals (t) returns for stock i, 𝑆𝑡𝑑𝑑𝑒𝑣𝑖,𝑡 is calculated as the standard deviation of returns for the contemporaneous and previous transactions 

(transactions t and t-1) for stock i, 𝐸𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 is measured as twice the absolute value of the difference between the transaction price and the prevailing bid-ask spread for stock 

i and transaction t, 𝐷𝑙𝑎𝑡𝑒𝑛𝑐𝑦,𝑖,𝑡 is designated as an interval of high (low) latency (speed) interval (t) if latency for that interval is one standard deviation higher than the mean for 

the surrounding -60, +60 corresponding transaction intervals for stock i, 𝐷𝑒𝑝𝑡ℎ𝑖,𝑡 is the sum of prevailing bid and ask sizes for stock i corresponding to transaction t, 𝐼𝑛𝑣𝑃𝑟𝑖𝑖,𝑡 

is the inverse of the price for stock i and transaction t, and 𝑙𝑛𝑇𝑉𝑖,𝑡 is the natural logarithm of trading volume for stock i and transaction t. In Panel A reports a parsimous model 

estimation, while Panel B reports results for the full model estimation. The sample consists of the 100 most active German stocks that cross-listed on XSE and CBOE. All 

variables, except 𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝑖,𝑡, are computed for the CBOE. The sample period covers March 2017 to August 2018. Standard errors are robust to heteroscedasticity and 

autocorrelation and t-statistics are reported in parentheses. *, ** and *** correspond to statistical significance at the 0.10, 0.05 and 0.01 levels respectively. 

Panel A 

Dependent variable: 𝑬𝑹𝒊,𝒕 

Full sample 

𝑆𝑡𝑑𝑑𝑒𝑣𝑖,𝑡 0.343*** 

(22.46) 

𝐸𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 0.659x10-2*** 

(2.60) 

Stock fixed effects Yes 

Time fixed effects Yes 

𝑅2̅̅̅̅  22.8% 

 

Panel B 

Dependent variable: 𝑬𝑹𝒊,𝒕 
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 Full sample Least active Quartile 2 Quartile 3 Most active 
𝑆𝑡𝑑𝑑𝑒𝑣𝑖,𝑡 0.655x10-1*** 

(38.89) 

0.211*** 

(63.39) 

-0.666x10-2*** 

(-2.14) 

0.614x10-1*** 

(21.80) 

-0.246x10-1*** 

(-5.12) 

𝐸𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 -0.137x10-2 

(-1.54) 

-0.103x10-2 

(-0.52) 

-0.239x10-2 

(-1.42) 

0.105x10-2 

(0.63) 

-0.293x10-2 

(-1.55) 

𝑆𝑡𝑑𝑑𝑒𝑣𝑖,𝑡 ∗   𝐷𝑙𝑎𝑡𝑒𝑛𝑐𝑦,𝑖,𝑡 -0.419x10-2*** 

(-6.18) 

-0.139x10-1*** 

(-10.45) 

0.137x10-1*** 

(10.57) 

-0.147x10-1*** 

(-11.48) 

-0.347x10-2** 

(-2.27) 

𝐸𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 ∗ 𝐷𝑙𝑎𝑡𝑒𝑛𝑐𝑦,𝑖,𝑡 0.420x10-2*** 

(5.61) 

0.733x10-2*** 

(4.58) 

-0.876x10-3 

(-0.62) 

0.471x10-2*** 

(3.29) 

0.584x10-2*** 

(3.67) 

𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝑖,𝑡 -0.151x10-2 

(-0.88) 

-0.324x10-3 

(-0.10) 

-0.112x10-1*** 

(-3.37) 

0.534x10-2 

(1.62) 

0.266x10-3 

(0.07) 

𝐷𝑒𝑝𝑡ℎ𝑖,𝑡 -0.132x10-2 

(-1.38) 

-0.467x10-2** 

(-2.37) 

0.291x10-2 

(1.61) 

-0.454x10-2** 

(-2.45) 

0.378x10-3 

(0.18) 

𝐼𝑛𝑣𝑃𝑟𝑖𝑖,𝑡 -4.151*** 

(-50.46) 

-2.051*** 

(-12.78) 

-4.297*** 

(-25.15) 

-7.005*** 

(-42.44) 

-3.754*** 

(-22.79) 

𝑙𝑛𝑇𝑉𝑖,𝑡 0.684x10-2*** 

(3.21) 

0.164x10-1*** 

(3.72) 

0.150x10-1*** 

(3.59) 

-0.230x10-2 

(-0.56) 

0.224x10-3*** 

(0.05) 

Stock fixed effects Yes Yes Yes Yes Yes 

Time fixed effects Yes Yes Yes Yes Yes 

𝑹𝟐̅̅̅̅  42.3% 50.1% 40.9% 38.1% 40.1% 
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Table 4.11 reports the estimation results for Equation (4.6). Panel A reports the 

coefficient estimations with two explanatory variables, i.e. proxies for volatility (𝑆𝑡𝑑𝑑𝑒𝑣𝑖,𝑡) 

and liquidity (𝐸𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡). The results show that both 𝑆𝑡𝑑𝑑𝑒𝑣𝑖,𝑡 and 𝐸𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 are 

individually positively and significantly related with expected return. This result is consistent 

with predictions of the theoretical models developed by Acharya and Pedersen (2005) and 

Poterba and Summers (1986). The estimates show that volatility and liquidity risk are indeed 

priced, and therefore higher volatility and lower liquidity leads to higher expected return (see 

French et al., 1987; Pástor and Stambaugh, 2003 for empirical consistency).  Panel B shows 

the estimation results for the complete form of Equation (4.6). The coefficient of 𝑆𝑡𝑑𝑑𝑒𝑣𝑖,𝑡 is 

positive and statistically significant; 𝑆𝑡𝑑𝑑𝑒𝑣𝑖,𝑡 is associated with a 0.065 standard deviation 

increment in expected return. It implies that volatility is priced and consistent with results 

reported in Panel A; higher volatility is linked to higher expected return. Although the 

coefficient for the volatility proxy is statistically significant, 𝐸𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡,  the liquidity proxy, 

is not statistically significant, which is inconsistent with the results reported in Panel A; I 

believe this linked to the addition of the latency interacted 𝐸𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 in the specification.44 

Notwithstanding, the main focus for this estimation are the interaction variables’ coefficients. 

I observe that when 𝑆𝑡𝑑𝑑𝑒𝑣𝑖,𝑡 and 𝐸𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 are interacted with the latency dummy 

(𝐷𝑙𝑎𝑡𝑒𝑛𝑐𝑦,𝑖,𝑡), both variables become highly statistically significant. 𝑆𝑡𝑑𝑑𝑒𝑣𝑖,𝑡 ∗ 𝐷𝑙𝑎𝑡𝑒𝑛𝑐𝑦,𝑖,𝑡 is 

negatively related with expected return, which implies that, while on average volatility leads 

to higher expected return (see the coefficient estimates of 𝑆𝑡𝑑𝑑𝑒𝑣𝑖,𝑡, 0.065), increased latency 

has an ameliorating effect on volatility, leading to reduced compensation since the risk 

presented by volatility reduces. 𝐸𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 ∗ 𝐷𝑙𝑎𝑡𝑒𝑛𝑐𝑦,𝑖,𝑡 is positively related with expected 

                                                           
44 To support this argument, i.e. insignificance of  𝐸𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 in Panel B is sourced by adding the interaction 

coefficient, I run the model without 𝐸𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 ∗ 𝐷𝑙𝑎𝑡𝑒𝑛𝑐𝑦,𝑖,𝑡 and find that indeed 𝐸𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 is statistically 

significant in this case. This shows that the positive relationship between illiquidity and expected return presented 

in Panel A, is eliminated because of the added interacted variable. For parsimony, I do not show this result, 

however they are available upon request.  
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return which shows that illiquidity leads to higher expected return when latency is high. This 

is in line with the expectation that the widening of the spread implies an increase in adverse 

selection, which needs to be priced. Furthermore, the fact that once the interaction 

variable 𝐸𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 ∗ 𝐷𝑙𝑎𝑡𝑒𝑛𝑐𝑦,𝑖,𝑡 is added to the model the significance of 𝐸𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡’s 

coefficient disappears, while 𝐸𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 ∗ 𝐷𝑙𝑎𝑡𝑒𝑛𝑐𝑦,𝑖,𝑡’s coefficient becomes statistically 

significant, implies that latency is a pivotal determinant of the relationship between liquidity 

and expected return. It thus appears that when liquidity is impaired, I would expect to see a 

higher level of adverse selection risk, which leads to investors demanding higher returns as 

compensation for the adverse selection-induced larger spread they are forced to trade with. The 

results reported in Panel B have several important implications. Firstly, transmission latency – 

the combination of traders’ execution latency, exchange latency, and connection latency – is 

one of the most important determinants of the relationship between volatility/liquidity and 

expected return. Therefore, it plays a vital role in today’s financial markets and the economy. 

This insight is consistent with recent empirical findings in the literature, for example, the 

literature on the potential relationship between HFT and the cost of capital (see as an example, 

Malceniece et al., 2018), and the economic importance of market fragmentation in the 

efficiency of modern financial markets (see as an example, O'Hara and Ye, 2011). Secondly, 

the magnitude (absolute value) of 𝑆𝑡𝑑𝑑𝑒𝑣𝑖,𝑡’s coefficient at 0.065 is about 48 times higher than 

the magnitude of 𝐸𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡’s coefficient at 0.0014. This implies that the risk presented by 

volatility is the more important driver of expected return; this result is further underscored by 

the lack of statistical significance of 𝐸𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡’s coefficient in Panel B. However, when both 

proxies are interacted with 𝐷𝑙𝑎𝑡𝑒𝑛𝑐𝑦,𝑖,𝑡, the magnitude of the impact of interacted liquidity on 

expected return, 0.00420, is slightly higher than the magnitude (absolute value) of the impact 

of interacted volatility on expected return, 0.00419, demonstrating the unmistakable effect of 

latency on expected return. Thus, investors may view the risk of trading in slow markets as 
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being as high as the risk of trading in markets where price volatility is driven by increased 

speed, perhaps even seeing the former risk as being higher than the latter. The implication of 

this finding is that the net effect of low latency is the enhancement of market quality. While 

latency influences the effects of both liquidity and volatility on expected return, the effect is 

more defining and stronger for liquidity.  This finding is consistent with that of Aït- Sahalia 

and Saglam (2013), who show that the speed advantage of HFTs improves the welfare of all 

traders, i.e. both HFTs and low frequency traders, in financial markets, and hence the benefits 

of high speed trumps its risks.  The 𝑅2̅̅̅̅  for the full sample is 42%, which shows that my model 

explains a substantial part of the variation in expected return at the intraday level. For 

comparison, return predictability models typically explain single percentage digits (see as 

examples, Chordia et al., 2008; Rzayev and Ibikunle, 2019). 

 

4.6  Conclusion 

In this study, I examine the role of latency on market quality by focusing on liquidity 

and volatility proxies; my findings are four-fold.  

By estimating latency between Frankfurt and London from transaction-level data, I 

provide empirical evidence that prices in London respond to price changes in Frankfurt within 

3-5ms. This result is consistent with the latencies claimed by the providers of microwave and 

fiber optic connections between London and Frankfurt, and thus demonstrates the empirical 

relevance of my information transmission latency estimation method.  

Secondly, I report that decreases in the information transmission latency between the 

home and satellite markets increases liquidity and volatility in the satellite market; the results 

are robust to alternative liquidity and volatility proxies and more importantly, economically 

meaningful. In order to address potential endogeneity concerns I employ a difference-in-

difference framework and test the role of technological upgrades in the home market on the 
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liquidity and volatility in the satellite market, by examining cross-listed stocks. I find that, 

indeed, liquidity and price volatility in the satellite market increases significantly more for 

stocks directly impacted by the technological innovations in the home market. This allows me 

to establish a causal relationship between speed on the one hand and liquidity and volatility on 

the other, thus ruling out endogeneity concerns. 

Thirdly, I examine the potential channels through which latency impacts liquidity and 

volatility. I provide empirical evidence consistent with the predictions of theoretical market 

microstructure models, suggesting that fast traders use their speed to avoid adverse selection 

risk/cost, a component of the bid-ask spread. This ability to avoid adverse selection risk leads 

to a narrowing of the spread/increased liquidity, which in turn reduces the price impact of 

trades. Faced with lower adverse selection risk, fast traders are more likely to trade even more 

readily, leading to increased aggressive trading and higher price volatility. 

The positive effect of speed on market quality through the enhancement of liquidity and 

its adverse effect on market quality through its increasing of volatility implies a trade-off 

between speed’s positive and negative effects. Therefore, I investigate the relative impact of 

liquidity, volatility, and latency on expected return; the latter is driven by the other three. I 

show that latency is an important determinant for the relationship between volatility/liquidity 

and expected return, and more importantly, while high latency can improve market quality by 

reducing volatility, its liquidity deterioration effect dominates its volatility reduction effect. 

This implies that the net effect of low latency is the enhancement of market quality.  
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5. Summary 

5.1 Summary of findings 

5.1.1 Order aggressiveness and flash crashes 

In Chapter 2, I investigate the contribution of aggressive orders to flash crashes by 

developing a new framework; the framework is the extension of the theoretical approach 

described in Menkveld (2013). This chapter contributes to the literature on flash crashes by 

drawing the link between order aggressiveness and flash crashes, making no assumptions 

regarding liquidity constraints in the market, and explaining the economic motivation of 

aggressive trading during flash crashes. The framework is a three-stage trading strategy. At the 

first stage, a hypothetical trader submits an (excessive) aggressive sell order, leading to stock 

prices going down. Thereafter, the trader submits an aggressive buy limit order and thereby, 

generates increasing pressure on prices. During the last stage, the trader sells his/her securities 

and leaves the market. I show that through the adoption of the noted trading strategy, the 

hypothetical aggressive trader can obtain higher profit under a few necessary conditions, i.e. 

when the trader can avoid being adversely selected. The theoretical framework raises three 

arguments: (1) contemporaneous aggressive orders contribute to flash crashes, (2) the build-up 

of order aggressiveness is inextricably linked to flash crashes, and (3) aggressive orders are 

more profitable during flash crashes. Thereafter, I use ultra-high frequency data from 53 S&P 

500 stocks, affected by the May 6 2010 flash crash, to test the arguments motivated by the 

framework.  

This chapter reveals three major findings motivated by the predictions of the 

framework. First, I show that there is an excessive order aggressiveness at the sell side prior to 

and during the first half of the May 6 2010 flash crash, and thereafter, the buy side became 

more aggressive. Second, I find that the build-up of order aggressiveness may contribute to the 

onset of flash crashes; the number of aggressive orders prior to the flash crash is positively and 
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significantly related to the flash crash. Third, I find that traders behave more aggressively 

during flash crashes, and the economic motivation of this excess aggressiveness is the 

profitability of aggressive orders during these periods. Specifically, I estimate that for the 

stocks in my sample, an informed investor during the flash crash could achieve an additional 

1,482 bps return on his portfolio. 

 

5.1.2  A state space modelling of the information content of trading volume 

In Chapter 3, I propose the state space modelling approach to decompose high 

frequency trading volume into informed and uninformed parts. This chapter contributes to the 

literature on the information content of the trading volume, by proposing a more efficient way 

to decompose the trading volume into liquidity- and information-driven components and by 

examining the role of informed trading in market toxicity, and eliminating arbitrage 

opportunities. 

This chapter acknowledges three major findings. First, the state space approach is an 

empirically relevant and more efficient method to decompose high frequency trading volume 

into its components, i.e. uninformed and informed components. Second, I find that informed 

trading reduces volatility, illiquidity and toxicity in financial markets. Third, my findings 

suggest that informed HFTs eliminate arbitrage opportunities and reduce the return 

predictability window. 

This chapter has important implications for financial markets. Specifically, by using 

this approach, stock exchanges may further understand the evolution of high frequency trading 

volume/information in financial markets, as it allows for the direct estimation of both 

motivations of trading from transactions level data. 
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5.1.3 Need for Speed? International transmission latency, liquidity and volatility 

In Chapter 4, I examine the role of latency on market quality by developing a new proxy 

for latency, i.e. information transmission latency (TL), in fragmented financial markets. This 

chapter contributes to the literature on the HFT by being the first to empirically estimate TL 

between the two biggest European financial centres, Frankfurt and London, and analysing the 

combined role of the traders’ execution latency, exchange latency and connection latency 

(microwave or fibre connections) between exchanges on the liquidity and volatility of financial 

markets. This implies that the latency measure I use, TL, is more relevant when measuring the 

impact of speed on market quality in a fragmented trading space; thus, it has further economic 

insights. Furthermore, the study proposes a new method to investigate the net economic impact 

of high speed on financial markets.  

This chapter reveals four major findings. First, my findings suggest that the constructed 

latency metric is empirically relevant, and the information transmission latency between the 

two biggest European financial markets, Frankfurt and London, is 3–5ms. Second, I show that 

higher transmission speed leads to higher liquidity and volatility and that these relationships 

are causal. For this, I employ a difference-in-difference analysis to show the causality. Third, 

I provide empirical evidence that the channels – adverse selection avoidance and 

aggressiveness – proposed by various theoretical models can explain the study’s finding of the 

relationship between speed and market quality. Finally, I show that transmission latency 

between financial markets is an important determinant of the relationship between 

volatility/liquidity and the expected returns, and more importantly, liquidity deterioration 

impact of high latency dominates its volatility reducing effect. It thus implies that the net effect 

of high transmission speed is the enhancement of market quality. 

 

5.2 Limitations and future research suggestions 
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Six main financial markets microstructure issues (flash crashes, trading volume, 

liquidity, volatility, price efficiency and high-frequency trading) are investigated in this thesis. 

My studies deliver the view that the evolution of market structure is not necessarily 

beneficial/harmful for financial markets. Although the studies in this thesis investigate research 

questions in detail, nevertheless there are some limitations in it mainly because of data 

availability.  

Chapter 2 provides an important insights into the links between aggressive orders and 

flash crashes. In this study the aggressive orders and the profit related to these orders are 

estimated from order-level data. While the empirical methods to estimate the number of 

aggressive orders and profits of aggressive traders are well-established and widely accepted in 

the literature, the data employed in this thesis does not have the identifier of traders and thus, 

does not allow me to directly compute the number of aggressive orders and profit of aggressive 

traders for HFTs. Future research can more accurately investigate the predictions of the 

framework described in Chapter 2 employing the data with traders’ identifier. Furthermore, as 

noted in Chapter 2, while my sample selection criteria is motivated by the literature, it may 

lead to sample selection bias. 

Chapter 3 proposes new model, state-space modelling approach, to decompose trading 

volume into liquidity- and information-driven components. I did not include the impact of 

liquidity shocks to the model because of two reasons. Firstly, I aimed to keep model as tractable 

as possible. Secondly, examining the liquidity shocks is outside of the scope of this study. 

Future research can further decompose liquidity-motivated trading volume into general 

liquidity and liquidity shocks components.  

Another limitation can be found in Chapter 4. In this chapter I estimate the information 

transmission speed between Frankfurt and London by using TRTH data. TRTH provides 

exchange timestamps of transactions up to millisecond frequency and therefore, this study is 
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not able to estimate the latency beyond millisecond basis. It is clear that some information can 

be lost in the method described in this chapter as a result. The use of microseconds rather than 

milliseconds is therefore ideal for limiting bias. More empirical studies can estimate more 

accurate latency between financial markets by using data with microsecond frequency.  
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Appendices 
 

APPENDIX 2.A. Framework variables and definitions 

VARIABLE DEFINITION 

a

tP  Ask Price at time t. 

b

tP  Bid Price at time t. 

mp

tP  Mid-Price at time t. 

aag

tP .
 

Ask Price at time t under aggressive trading strategy. 

bag

tP .
 

Bid Price at time t under aggressive trading strategy. 

mpag

tP .
 

Mid-Price at time t under aggressive trading strategy. 

amm

tP .
 

Ask Price at time t under market-making strategy. 

bmm

tP .
 

Bid Price at time t under market-making strategy. 

mpmm

tP .
 

Mid-Price at time t under market-making strategy. 

ag

t  
Profit at time t under aggressive trading strategy. 

baag

t

.  
Profit from bid-ask spread at time t under aggressive trading 

strategy. 

pag

t

.  
Profit from position at time t under aggressive trading strategy. 

st

tU  
Attractiveness or fitness function of each type of strategy at time t. 

  Memory parameter. 

  Intensity of switching parameter. 

ag

t  
Relative weight of aggressive trading strategy at time t. 
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APPENDIX 2.B. List of the sample stocks 

ISIN CODE RIC Security name 

US0378331005 AAPL.OQ Apple Inc. 

US03073E1055 ABC.N AmerisourceBergen Corp. 

IE00B4BNMY34 ACN.N Accenture plc 

US0530151036 ADP.OQ Automatic Data Processing Inc. 

US0236081024 AEE.N Ameren Corp. 

US0015471081 AKS.N AK Steel Holding Corp. 

US0200021014 ALL.N Allstate Corp. 

US0231351067 AMZN.OQ Amazon.com Inc. 

US0325111070 APC.N Anadarko Petroleum Corp. 

US1101221083 BMY.N Bristol-Myers Squibb Co. 

US0846707026 BRKb.N Berkshire Hathaway Inc. 

US2058871029 CAG.N ConAgra Brands Inc. 

US1491231015 CAT.N Caterpillar Inc. 

US1651671075 CHK.N Chesapeake Energy Corp. 

US1567001060 CTL.N CenturyLink Inc. 

US1667641005 CVX.N Chevron Corp. 

US2635341090 DD.N E I du Pont de Nemours and Co. 

US2479162081 DNR.N Denbury Resources 

US2605431038 DOW.N Dow Chemical Co. 

US2786421030 EBAY.OQ eBay Inc. 

US2686481027 EMC.N EMC Corp. 

US30219G1085 ESRX.OQ Express Scripts Holding Co. 

US2971781057 ESS.N Essex Property Trust Inc. 

US3453708600 F.N Ford Motor Co. 

US3696041033 GE.N General Electric Co. 

US38259P7069 GOOG.OQ Alphabet Inc. (Google Inc. Class C) 

US4370761029 HD.N Home Depot Inc. 

US4282361033 HPQ.N Hewlett-Packard Inc. 

US4592001014 IBM.N International Business Machines Corp. 

US4581401001 INTC.OQ Intel Corp. 

US9255501051 JDSU.OQ JDS Uniphase Corp. 

US4781601046 JNJ.N Johnson & Johnson 

US1912161007 KO.N The Coca Cola Co. 

US5260571048 LEN.N Lennar Corp. 

US58155Q1031 MCK.N McKesson Corp. 

IE00BTN1Y115 MDT.N Medtronic Plc. 

US88579Y1010 MMM.N 3M Co. 

US02209S1033 MO.N Altria Group Inc. 

US5949181045 MSFT.OQ Microsoft Corp. 

US68389X1054 ORCL.OQ Oracle Corp. 

US7134481081 PEP.N PepsiCo Inc. 

US7170811035 PFE.N Pfizer Inc. 

US7427181091 PG.N Procter & Gamble Co. 

US7181721090 PM.N Philip Morris International Inc. 

US7132911022 POM.N Pepco Holdings Inc. 

US8454671095 SWN.N Southwestern Energy Co. 

http://www.reuters.com/finance/stocks/overview?symbol=ADP.OQ
https://en.wikipedia.org/wiki/AK_Steel_Holding_Corp.
https://en.wikipedia.org/wiki/Denbury_Resources
http://www.reuters.com/finance/stocks/overview?symbol=GOOG.OQ
https://www.reuters.com/finance/stocks/overview?symbol=IBM.N
https://en.wikipedia.org/wiki/JDS_Uniphase
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US8835561023 TMO.N Thermo Fisher Scientific Inc. 

US8825081040 TXN.N Texas Instruments Inc. 

US91324P1021 UNH.N United Health Group Inc. 

US9497461015 WFC.N Wells Fargo & Co. 

US9311421039 WMT.N Wal-Mart Stores Inc. 

US30231G1022 XOM.N Exxon Mobil Corp. 

US9884981013 YUM.N Yum! Brands Inc. 
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