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Abstract

This thesis investigates problem-solving in domains featuring incomplete information
and multiple agents with opposing goals. In particular, we describe Finesse — a
system that forms plans for the problem of declarer play in the game of Bridge.

We begin by examining the problem of search. We formalise a best defence model of
incomplete information games in which equilibrium point strategies can be identified,
and identify two specific problems that can affect algorithms in such domains. In
Bridge, we show that the best defence model corresponds to the typical model analysed
in expert texts, and examine search algorithms which overcome the problems we have
identified.

Next, we look at how planning algorithms can be made to cope with the difficulties
of such domains. This calls for the development of new techniques for representing
uncertainty and actions with disjunctive effects, for coping with an opposition, and
for reasoning about compound actions. We tackle these problems with an architec¬
ture that identifies and resolves conflicts on the basis of probabilistic reasoning about
resources. The prime contribution of this architecture is that it can construct plans
which succeed under a large number of possible world states without having to consider
each world state separately. By casting our algorithm within the classical plan-space
planning paradigm we show how our techniques differ from, yet may be incorporated
into, existing planning architectures.

The original motivation for this work came from the field of mathematical reasoning.
In Edinburgh, a technique known as proof-planning has been developed to control the
search for the proofs of mathematical theorems. The defining feature of this paradigm
is that it restricts the available options at any stage of planning to a pre-determined
set of possibilities. By applying proof-planning techniques to the domain of Bridge
(although currently only in the sub-problem of play without a trump suit), Finesse
becomes capable of constructing plans that look ahead right to the end of the tree
of possible actions. Against human players it is therefore less prone to the short¬
sightedness that afflicts the traditional look-ahead approach. This allows it to solve
problems that are beyond the range of previous systems.

We also describe two useful side-effects of formalising the way in which Bridge can
be played. Firstly, the high-level nature of the objects in Finesse's plans, combined
with the utilisation of a qualitative uncertainty representation language, gives the
system the ability to produce meaningful textual explanations for its actions. Secondly,
by distilling the large diversity of card-play examples found in the Bridge literature
into a manageable number of concrete and distinct manoeuvres we arrive at a deeper
understanding of the game itself.
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A game may be as integral to a culture, as true an object of aesthetic
appreciation, as admirable a product of human creativity as a folk art or a
style of music; and, as such it is quite as worthy of study.

— Michael Dummett
The game of Tarot



Chapter 1

Introduction

All reality is a game. Physics at its most fundamental, the very fabric of
our universe, results directly from the interaction of certain fairly simple
rules, and chance; the same description may be applied to the best, most
elegant and both intellectually and aesthetically satisfying games.

— Iain M Banks
The Player of Games

[With] the kinds of problems that are completely specified ... in principle,
if you work hard enough (how long may not be known), you can find the
answer because all the information needed to solve the problem is right there
with the statement of the problem. But in the real world the situation is
seldom so pure and precise. Only some of the cards are faceup on the table.

— Heinz Pagels
The Dreams of Reason

This thesis is about incomplete information. In particular, it's about how solving a

problem becomes more difficult when the problem is only partially specified. To make
life even harder, we'll also assume that our problems include an opponent. These

types of problems will be like the 'real world' of Pagels, in that they are not 'pure and

precise', and also like the 'reality' of Banks, since we will use games as examples. Our

particular example will be the game of Bridge, or more accurately Bridge card play. In

Bridge, each player always has incomplete information because the game starts with
the dealing of a deck of cards. Thus, the problems we tackle really will be real-world
situations where 'only some of the cards are face-up on the table'.

1



CHAPTER 1. INTRODUCTION

1.1 Motivation

2

Originally, this work was motivated by wanting to apply the notion of proof-planning
to new domains. Proof-planning is a technique originally developed at the University

of Edinburgh to find proofs for mathematical theorems. However, mathematics has

several features that make it considerably simpler than 'real-life' problems. For ex¬

ample, there's no opposition, and no restriction on backtracking once the execution of
a plan has begun. Also, there's no incomplete information, so any action will always

have a predictable outcome, and plans will never need to be revised in the light of new
information. Further, since the only possible actions are proof steps carried out by

the computer, there are never any problems with co-ordinating the actions of several

agents.

All of these problems can be found in games, however, so adapting proof-planning

techniques to a game-playing environment appealed as a natural intermediate step

towards the goal of tackling real-world problems.

Why Bridge in particular? Well, one reason is that computer programs have yet to

prove as successful in Bridge as they have in other games, such as chess, checkers, or

backgammon. More compellingly, though, we recognised a basic similarity that Bridge
shares with mathematical theorem-proving: that is, despite an incredibly large search

space, human experts are still able to identify good solutions, and have built up a

large variety of techniques for successful problem-solving. It was the success of proof-

planning in declaratively capturing such human problem solving strategies in theorem-

proving that was the main motivation for wanting to apply the same techniques to

Bridge.

1.2 Aims

The main aim of this research was to build a system that utilised proof-planning ideas to
control the search in the planning of Bridge card play. By producing a working system,

we hoped to learn about planning and search in domains with incomplete information
in general, and also about the game of the Bridge itself. We restricted ourselves to
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the task of declarer play, where one player tries to play his cards to achieve a specific

goal that is decided upon before the start of the play. Also, although we constructed
an architecture general enough to deal with every possible aspect of declarer play, we

mainly concentrated on the sub-problem of No Trumps play, where each suit is of equal
value.

1.3 Achievements

The concrete result of this research was the Finesse system. Finesse is a body of

Prolog code consisting of five main modules: a pre-planner, a planner, an interpreter,
an interleaver and a play module. A simplified outline of the system architecture is

shown in Figure 1.1, which also indicates the thesis chapters that describe each module.

Prior to actually initiating any planning, a small amount of pre-computation is carried
out by the pre-planner in order to determine the significant missing high cards (the
critical cards). The planner then combines this information with the original game state
and uses proof-planning techniques to produce a (minimax) tree of possible actions
in each suit. These trees are not immediately executable as plans, however, since

they contain branching points at which choices between the available paths will have
to be made. To facilitate this selection, the trees are analysed by the interpreter,

which produces qualitative statements about the subdivisions of the outstanding cards
that would lead to the 'success' or 'failure' of the lines of play contained in the plan.
The interleaver then uses this information to select lines of play to interleave. This

interleaving involves the posting of ordering constraints and also the introduction of
inter-suit operators to represent actions which may have been neglected by the original

decomposition into separate suits. Different combinations of lines of play are tried on

backtracking until planning time is exhausted, when the best global plan so far (as
determined by the probability profiles) is returned. The actual style of play can be
varied by choosing between these profiles on the basis of different criteria.

We can categorise the lessons learned from this implementation into the following

general areas:
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between different selection criteria

Chapter 10

Figure 1.1: Thesis chapters describing the live main modules of Finesse
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Search

5

We show that adaptations of traditional algorithms are not sufficient to cope with
domains with incomplete information, and formalise two problems that can occur in
such domains. For the particular problem of Bridge card play we also demonstrate how
these problems can be overcome by the use of domain-specific heuristics. (Chapter 6
and Chapter 7)

Planning

Under incomplete information there are many possible states of the world, and plans

may only succeed under a small subset. However, typical classical planning algorithms
function by introducing constraints until a plan is guaranteed to succeed. This will
not always be possible in domains with incomplete information, and our architecture
introduces new techniques for coping with this. By casting our algorithm within the
classical plan-space planning paradigm we show how our techniques differ from, yet

may be incorporated into, existing planning architectures. (Chapter 8)

Bridge

We produce new lower bounds on the size of the search space size involved in Bridge
card play. These bounds are tighter than those developed by previous authors and
allow us to make more informed speculations on the future of computer Bridge research.

(Chapter 4)

In addition, the creation of Finesse's declaratively encoded methods formalised know¬

ledge which was only previously expressed in the form of examples in the Bridge lit¬
erature. This is analogous to the way in which the study of proof-plans at Edinburgh
has led towards a theory of inductive theorem proving. (Chapter 5)

The Proof-planning Paradigm

Finesse itself proved to be a capable system, especially in single-suit problems, consist-
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ently identifying a best plan that matched or was very close to the recommended lines

of play found in the Bridge literature. In some cases, Finesse's analysis even revealed

shortcomings in the explanations presented by recognised authorities. These examples

were generally situations in which authors had overlooked particular subdivisions of
the outstanding cards that would lead to the success or failure of a line of play. Such

'discoveries' demonstrate the fallibility of humans, even when they are 'experts', in

dealing with problems that involve combinatorial explosion. Finesse's ability to cope

with such problems can be directly attributed to use of the proof-planning paradigm,
which results in a search space typically four or five orders of magnitude smaller than

the space that would result from considering all the possible ways the cards could

be played. This reduction makes analysis of the entire search space computationally
feasible. (Chapter 5)

Moreover, Finesse has given us valuable insight as to how proof-planning techniques

can be extended to 'adversarial domains' that necessitate disjunctive choice based on

probabilistic or uncertain information, and to domains which involve reasoning about
interactions between plan steps. (Chapter 9)

1.4 Bridge

To provide an adequate background, we will present a brief introduction of the game

of Bridge. To do the game justice, however, would require many pages, and is beyond
the scope of this thesis. We therefore simply present a summary of the basic rules, and

refer those readers interested in further details to one of the many excellent books on

the subject (see the Bibliography for suggestions).

1.4.1 The Basic Rules

Bridge is a card game played with a deck containing 52 cards, comprised of 4 suits

(spades hearts <v>, diamonds Cs and clubs 4») each containing the 13 cards Ace,

King, Queen, Jack, 10, ..., 2 (we will sometimes abbreviate the first live of these to A,

K, Q, J and T). The game begins with the chance move of shuffling the deck, and the
cards are then dealt between four players, traditionally named North, South, East and
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West. These players form two teams: North/South against East/West.

Card play starts when one player lays a card on the table, which all the other players
then cover in turn (in a clockwise direction) with a card from their own hand. Each
round of four cards is called a trick, and the winner of one trick becomes the first

person to play a card on the succeeding round. Before this play begins there is an

auction during which one team wins a contract to make a certain number of tricks.
One member of the winning team becomes the declarer and the other is the dummy.
The other team are the defenders. The defender to the left of the declarer starts the
card play, and the dummy's cards are then laid face-up on the table from where they

are played by the declarer, along with his own cards. For simplicity, our examples will

usually assume that South is the declarer, so that North is the dummy and East and

West are the defenders. For the purposes of this thesis, the only significant rules will
be:

• The first player in a trick can freely choose which card to play from all those

present in his hand.

• Subsequent players must follow suit by playing a card of the same suit as the one

that started the trick, if they hold such a card — if they do not (i.e., they are

void in the suit), they can make a free choice from among the remaining cards
in their hand.

• The winner of the trick is the player who plays the highest card (ranked by A

>K>Q>J>10>...>2)of the suit led. The only exception to this when
there is a suit declared as the trump suit; if any trump cards are played, then
the player playing the highest trump card is the winner. Playing a trump when

you cannot follow suit is known as ruffing.

1.4.2 Who Wants To Be a Millionaire?

The poor performance of computer Bridge programs to date has prompted the former
World Champion Zia Mahmood to offer one million pounds to the designers of a com¬

puter system capable of defeating him. Although it seems that he may now want

to withdraw this bet (perhaps worried by the progress of research in other games like
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chess and checkers), at the moment it still appears that his money should be completely
safe. For example, Brent Manley, Bridge expert and reviewer of Bridge programs for

the magazine of the American Contract Bridge League, has this to say about the

problems facing would-be millionaires [Manley 94]:

It is generally accepted that writing a computer Bridge program that plays
Bridge well is nearly impossible.

Tom Throop, one of the leading producers of commercial Bridge software, is also far

from sanguine about the prospects of computer Bridge [Throop 83]:

The task ofwriting a Bridge-playing program that demonstrates a high level
of intelligence is actually more difficult than writing a similarly intelligent
chess program.

In a more optimistic vein, though, Christina Erskine, Bridge-playing editor of the

magazine PC Review, writes [Erskine 92]:

One day, someone will program bridge to play more like an expert (and a

very long, fascinating exercise in artificial intelligence it will be, too) and
put all those chess programs in their place.

Like those that have gone before, we haven't succeed in producing an expert-level

Bridge program. But we hope that we have shown that the task isn't quite the im¬

possibility that Manley claims, and is also maybe not even as difficult as Throop

suggests. And, of course, we'd like to think that we've definitely shown it to be the

fascinating exercise in AI that Erskine envisaged. And maybe even as long...

1.5 The Rest of This Thesis

Here's how the thesis is laid out:

Chapter 1, Introduction. The current chapter. By now, you should have a good idea
whether the rest of the thesis is for you or not.

Chapter 2, A Good Deal of Bridge Literature. Describes the previous work on computer

Bridge.
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Chapter 3, Planning Literature. Gives some necessary background on AI planning
research.

Chapter 4, The Bridge Search Space Size. Just how hard is Bridge anyway? We
establish some new lower bounds on the search space size.

Chapter 5, Proof-planning: Solving Independent Goals using Tactics and Methods. This
is where the description of the Finesse system begins. This, and each of the following

chapters, describes a particular aspect of the overall architecture. Here, it's how to

solve a problem by breaking it down into sub-problems and solving each of those in

turn. Figure 1.1 on Page 4 has already shown which bits of the system are described
in the other chapters.

Chapter 6, Search in Games with Incomplete Information. What algorithms can be
used in this kind of game? What problems can occur?

Chapter 7, Identifying the Best Strategy: Tackling Non-locality. In fact, when there's

incomplete information algorithms like minimaxing suffer from a problem we call non-

locality. Here, we look at some work-arounds for this, including some heuristics specific
to Bridge.

Chapter 8, Interleaving Plans with Dependencies. The plans here are plans for a single
suit in Bridge; the dependencies arise because typically what you do in one suit affects
what you can do in another. Putting them together isn't always easy.

Chapter 9, Re-introducing Neglected Actions. Just breaking a problem up and then

putting together the plans for the sub-problems doesn't always solve your problem.
Sometimes you actually have to consider more than one sub-problem at a time to

come up with the best answer.

Chapter 10, Overall Architecture. This chapter pulls together the developments in the
rest of the thesis and makes a coherent whole out of them.

Chapter 11, Results. We give examples of the system at work on examples taken from

Bridge books or randomly generated.

Chapter 12, Conclusions. The conclusions. What would you expect?
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Appendix A, An Overview of Commercial Computer Bridge Systems. Reviews of com¬
mercial systems that didn't fit into the Bridge literature review of Chapter 2 because

the only information about them was about their level of play, and not how they did

it. They're also at the end because there are too many of them to fit into the main

text.

Appendix B, Generating Explanations. Finesse can explain its decisions using plain

English text. Here, we tell you how it's done, using plain English text.

Appendix C, Further Examples. A collection of examples from the Bridge Encyclopedia

illustrating Finesse's performance in detail.

Appendix D, User Manual. Gives you all the information you need to know to run the

system.

Appendix E, Code. Gives you all the information your computer needs to know to run

the system.

A Glossary and an Index are also included to help make sense of the thesis itself.



Chapter 2

A Good Deal of Bridge
Literature

Rincewind looked blankly at Ysabell as words like 'rebiddable suit', 'double
finesse' and 'grand slam' floated through the velvet.
'Do you understand any of that?' she asked.
'Not a word,' he said.
'It sounds awfully complicated.'
On the other side of the door the heavy voice said: DID YOU SAY HU¬
MANS PLAY THIS FOR FUN?

'Some of them get to be very good at it, yes. I'm only an amateur, I'm
afraid.'

BUT THEY ONLY LIVE EIGHTY OR NINETY YEARS!
— Terry Pratchett

The Light Fantastic

Behaviour of the program is heuristic in nature. The program evaluates
trick objectives, formulates goals, and executes the play of the declarer's
and the dummy's cards. The program performs in accordance with heur¬
istic principles I have always practised in tournament play and which I
incorporated into the computer program.

— T. Throop

Computer Bridge

Yes, humans play Bridge for fun. Like most things that are fun, though, it's difficult to

enjoy alone. And, since it can sometimes be hard to find others who share your taste

in pastimes, ingenious designers have come up with computer programs to substitute
for live participants. The three basic features to be found in such programs are:

11
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• Bidding. The ability to bid for one or more of the players, according to the

particular bidding system incorporated into the program (examples of bidding

systems are ACOL, Standard American, Schenken, and Kaplan-Sheinwold).

• Declarer Play. The ability to play the declarer's and dummy's hands at a

contract specified by the program or the user.

• Defending. The ability to play one or more of the defenders' hands in an

attempt to defeat the declarer.

The automation of these tasks has been carried out by both academics and by producers

of commercial software. We survey the academic research by reviewing the published

papers and literature. For commercial products, on the other hand, there is usually

scant information on their actual workings, with Throop's description above being
rather typical of the level of detail available. For these systems, then, we will just

present assessments of their playing strengths. These will be based on both our personal

experiences with the programs and on reviews drawn from the specialist computer game

and Bridge press.

2.1 Computer Bidders

We begin by examining the first broad category of computer Bridge programs — com¬

puter bidders. By the very nature of the bidding process, such programs are all basically

rule-based systems. The area where they differ is in their approach to interpreting the
bids made by the other players in an auction.

2.1.1 The Rule-based Approach

The first Bridge bidding program to appear in the literature is that of Carley [Carley 62].
This system is essentially intended as a card playing system, but it also incorporates a

small bidding component, consisting of just four bidding rules with a total of 13 cases.

Carley's own assessment of the bidding [Carley 62, Page 7] is:

The ability level is about that of a person who has played a dozen or so
hands of bridge and has little interest in the game.
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This level of bidding was acceptable for Carley's program, as it was primarily designed
to cope with card play, and also because 'an extremely sophisticated bidding program'
was already 'well under way' at Carley's institution. However, there is no record of this
more sophisticated program in the literature, so the next Bridge bidder we find is that
of Wasserman [Wasserman 70]. Like Carley's program, this is essentially a rule-based

system — the difference being largely in the number of rules involved.

Wasserman divides his rules into a collection of classes which handle different types

of bid, such as opening bids, responding bids or conventional bids. These classes are

then organised by a set of procedures into sequences which specify the allowable orders
in which the bids from each class may be used. Examples of these procedures are

those that handle sequences starting with a bid of 1 Jjk, or sequences that start with a

'weak two' bid. Wasserman views these procedures as reducing the search space size
of the possible bidding sequences by identifying specific sequences to which attention
is restricted.

Wasserman's system uses the standard Bridge bidding practice of assigning any hand
a number of points based on its high cards, or the length of each suit. The strength
of a hand measured by these points then helps to determine an opening bid, and
this bid in turn determines a specific procedure. This procedure is then used for all

subsequent bids of the partnership, determining the classes of rules to be used for
each bid. However, there is a further significant addition. Before each bid is made, the
bidder's hand is 're-evaluated' to take into account the history of the bidding sequence,

considering such factors as awarding extra points on the basis of length in partner's bid

suit(s) and adding/subtracting points based on shortness/length in his unbid suit(s).
Wasserman describes the program's use of these factors as attempting 'to bid in the
same manner as a human would, using the same decision-making criteria'. We will
return to this issue in the following section.

Wasserman presents test results for his program that show it to achieve 'the level of
human experts' in unopposed bidding sequences. These tests are based on bidding

problems collected from the magazine Bridge World, involving actual deals in which
each possible contract is awarded a number of points by the editors of the magazine.
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Any partnership may then test their skill by bidding the hands together and summing

their score. On a set of hands for which the editors of Bridge World considered a score

above seventy to be outstanding, a score above sixty excellent, and a score above fifty

to be above average, Wasserman's program scored 58.2. Further, Wasserman added

extra bidding classes to his program to enable different bidding systems to be used

(thus implementing the Standard American and the Kapian-Sheinwold systems as well
as the original Schenken), which he also tuned to produce a comparable performance.

In addition to normal partnership bidding Wasserman extended his program to handle

competitive bidding by adding classes for bids such as take out doubles, penalty doubles
and overcalling. In a 30 hand contest against two human Life Masters, split into two

sessions, the program was victorious in the first session, defeated in the second, and

narrowly beaten overall. Based on these results, Wasserman estimated that 'the pro¬

gram was slightly more skillful than the average duplicate Bridge player at competitive

bidding'.

2.1.2 Interpreting Other Players' Bids

Wasserman points out that Bridge bidding presents 'many opportunities for the exer¬

cise of judgement and imagination, since no Bridge bidding system specifies action to

be taken in all cases'. We saw above that Wasserman's program contains algorithms

which deal with such considerations by adjusting the evaluation of any hand depending
on the bidding history. We also saw that Wasserman justified this approach by appeal¬

ing to parallels with human thought processes. Others have argued, however, that the
'human' approach more closely resembles reasoning with explicit inferences about the

meanings of previous bids by the other players. For example, Stanier presents a discus¬
sion of the particular sequence of bids where North opens 1JV and South responds with

l<|k- Assuming the standard ACOL system, South's bid could simply be interpreted as

showing at least 6 points and 4 or more cards in the spade suit. However, Stanier also

presents the following deeper analysis [Stanier 75, Page 376]:

If we assume that South is making what he believes to be his best bid,
then the bid of l<(k describes his hand more precisely than any other. From
this we may infer that he holds more spades than, say diamonds, as with
longer diamonds, or with an equal number, he would have bid 1<0> (it being
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a cheaper bid). Similarly, he cannot hold more than three clubs, or he
would have bid 2*. More information is available from the facts that he
did not bid 1^?, INo Trumps, etc.

The implication is that directly representing such inferences would reflect more closely
the type of reasoning carried out by human players of the game. Also, the ability
to make inferences in this form would be highly useful to a card playing component

called upon to make or defend a contract. However, the performance of programs at¬

tempting to explicitly represent such information has yet to be proven in practice. For

example, [MacLeod 91] describes a system which attempts to use the bids of any player
to build a 'picture' of cards he holds (Macleod's system is also described in §A.13).

Unfortunately, the representation used for capturing such information is not capable
of coping with disjunction, and when any bid with more than one possible interpret¬

ation is made, information is therefore lost. This illustrates an important obstacle in

the implementation of such systems: designing a representation language in which ex¬

pressions describing all the possible inferences about each hand can be automatically

generated. One technique for this which could be borrowed from mathematical reas¬

oning is the use of a set of confluent rewrite rules to produce expressions in a normal
form. However, we can already see from the above discussion that there are many pos¬

sible types of inference that can be made about a single hand, including the number of
cards in each suit, the maximum and minimum number of total points, the maximum

and minimum length in each suit, and the relative lengths of each suit. Further, the

position of particular high cards is often important, as is the breakdown of a hand's
overall points into the points held in each suit. Since most of these possible types of

inference can interact, it becomes difficult to prove termination of any given re-write
set. Such problems were encountered in the work of [Asher 93] and [Green 95].

2.1.3 Incorporating Look-ahead

An attempt to create a more general system capable of Bridge bidding is found in

[Stanier 75]. Stanier's aim was to 'keep knowledge of Bridge peripheral to the program,
and use a general core'. Stanier reasons that whilst bidding systems 'provide useful

guidelines for the bidding, they by no means make the process of bidding mechanical',
and he therefore argues that an element of planning should occur during the bidding
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phase in order to produce realistic performance. Although this is a worthy aim, the

problems involved are even larger than those in making inferences from single bids, and

Stanier eventually concedes that 'it was found necessary to put this [domain] knowledge
in the core itself'.

Another system which proposes the use of look-ahead search over the space of pos¬

sible bids is given in [Gamback et al 91]. In this system, the rule-based portion is used

simply to suggest possible bids for a player. These bids are then evaluated by conduct¬

ing a look-ahead search; at each node, the valid inferences about each hand are made,
a set of hands consistent with the constraints is generated, and a neural network is

used to assess the chance ofmaking the contract under each deal. The top-level control
of this process is carried out by the further addition of a Bayesian planning system.

Unfortunately, no test results are given.

2.1.4 Cobra

Judging purely by performance, the best bidding systems are those which do no looka-
head search and deal with the problem of inferencing using quantitative adjustments

to hand evaluations rather than by explicitly representing inferences. The epitome of
this approach is Lindelof's Cobra [Lindelof 83].

In Cobra, each player's hand is assigned a number of points as a 'measure of the

probable trick winning power of a hand'. At the beginning of the game, with no

information available about the other hands, this evaluation is referred to as the basic

points count (BPC) and is based on the assignment of points for each high card (A=4,

K=3, Q=2, J=l), with extra points added and subtracted for considerations such as

distribution, controls, shape and unprotected honours. The BPC 'is chosen so that

any opening promises 13+ points' (except for bids by the third player). Its exact

specification was produced by examining 'several million hands' which were randomly

generated and assessed largely automatically.

During the auction, the points count of any player is adjusted and is then referred to as

the distributional points count (DPC). The actual rules for this are not complicated, but
take three pages of Lindelof's book to describe [Lindelof 83, Pages 31-33]. Basically,
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points are added or subtracted from the BPC for short suits, fit with partner, fit
with the opponents, and other such considerations. These modifications are designed
so that a joint value of 28 between two hands 'gives the partnership a better than
50% chance of making ten tricks in their best trump suit' with any additional trick

requiring another 3 points. Again, these modification rules were tested by generating

large numbers of random hands.

Lindelof claims that Cobra's bidding is of world expert standard, and provides evid¬
ence that in fact make this assessment sound rather modest. On a collection of 37

sets of 'challenge' hands from Bridge Magazine, taken from the period 1973 to 1979,

Cobra scored an average of 89% and only once finished below the leading human pair.
On another test, Cobra was used to replace the bidding of the human teams in the
1975 Bermuda Bowl final. Lindelof claims that Cobra would have improved the North

American score by 98 IMPs (International Match Points) or the Italian score by 69
IMPs — enough to translate the narrow Italian victory of 214-189 into a comfortable
win either way.

An independent test of Cobra was carried out by David Grabiner [Grabiner 94], Un¬
der similar criteria to that of Lindelof, Grabiner used Cobra to replace the human

players in the 1987 Bermuda Bowl and Venice Trophy. The results of this test are

summarised in Figure 2.1, showing that the total swing produced by using Cobra
would have been +74 over the 512 deals. Although this is still a positive result, it is
much less than Lindelof's +167 in 192 boards. However, Grabiner attributes some of
this discrepancy to the likelihood that Lindelof's book is not complete in some areas,

and is also open to mis-interpretation.

Whatever the exact strength of Cobra it seems indisputable that it makes expert-level

Bridge bidding a reality. The approach has been criticised, however, by [Gamback et al 91]
on the grounds that it will 'only have a very limited ability to reason about its op¬

ponents bids' and that this will be a 'serious problem', since 'successful play requires
that the bidding component is able to pass on the (probabilistic) information extracted
from the bidding to the playing component'. This objection can be tackled by noting
that a separate deduction system, such as that of [Quinlan 79] (see §2.3) could be used
to produce these types of inferences. Also, it should be clarified that it is not the case
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Tournament Actual Result
Difference when replacing one
team with Cobra

Bermuda Bowl
US - GB
241 - 148

Cobra - GB

+ 15
US - Cobra

+43

Venice Trophy
US II - France

254 - 219

Cobra - France
-2

US - Cobra

+ 18

Figure 2.1: Grabiner's test results for Cobra

that Cobra is only a world-class bidder 'when it is allowed to bid undisturbed towards
a slam' as [Gamback et al 91] suggests. In fact, the test results summarised above were

all produced under conditions of competitive bidding by all four players. Cobra has
a full set of rules to cope with both defensive and pre-emptive bidding, and indeed
the random hands on which Cobra was optimised necessarily allowed for bids by all
four players, since a bidding system designed for uncontested auctions would have been

heavily skewed towards slow development. The experimental evidence, then, is that
the technique of calculating a numerical measure of each hand simplifies the intricacies
of reasoning with qualitative information very effectively. One of the few problems
overlooked by such an approach is the desirability of reaching the optimal contract
whilst giving as little information about your own cards to the opposition. However,
this may also be incorporated in future versions of the system.

2.2 Computer Defender/Declarers

The search space in a Bridge card play problem contains at least 9.91 X 1022 legal play

sequences (see Chapter 4). The main pre-occupation of programmers attempting to
automate card play has therefore been the effective control of the search through this

space of possibilities. Below, we identify and discuss four techniques that have been
used for this purpose.
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2.2.1 Rule-based Systems
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We have already mentioned the early research of [Carley 62] in the context of bidding.
In fact, the rule-based operation of Carley's bidding system is almost identical in

principle to that of the play program with which it is coupled; the issue of search is

side-stepped completely by simply specifying a set of rules for actions to take in certain
situations. Carley describes the resulting system as 'essentially a long list of rules of
thumb'. An example of one of these is:

Defender, can follow suit, third card to
trick, second card high, probability the trick —*■ play lowest such winner
can be won in this hand is more than 0.6

As might be expected from a collection of such rules, the performance is not particularly

robust, although Carley claims it plays 'quite respectably'. However, it is interesting
to note that this approach has survived until very recently, and indeed was the method

adopted by the Bridge King program which won the gold medal for Bridge at the 1992

Computer Games Olympiad. There is little description in print about this system,

but some comments by Hans Leber — one of its designers — are reported in the
19 September 1992 edition of New Scientist magazine [Geake 92]. He describes the

program a little, revealing that it does no look-ahead search at all — a design decision
he justifies by claiming that its decisions must be made in 'seconds rather than minutes'.

Apparently, 'Bridge King simply deduces as much as it can about where the cards are,

then follows a set of rules'. Its level is indicated by the claim that it can 'beat a hobby

player, but not a tournament player'. 'Our program still makes silly mistakes,' says

Scholz, 'but we feel happy because others make bigger mistakes'.

An interesting attempt to tune the rules in such a system is presented in [Napjus 69].
His approach was to use a machine-learning technique that would 'discover' the best

options in any given situation by playing out rival possibilities against a large number
of different subdivisions of the outstanding cards. Each possibility (which Napjus
referred to as a line of play — a concept we will discuss in more detail later) was

given a weight and the one which performed better on most of the subdivisions had its

weight strengthened slightly. The problem with this approach is that it suffers from a

kind of 'Catch-22' situation: in order to test the lines of play open to the declarer, an
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algorithm for generating defensive plays is necessary, but defenders judge the selection
of their defensive play by reasoning about which lines of play the declarer is likely to be

following. In practice, Napjus' system could be easily misled by defence that was very

good into thinking that a good line of play was in fact inferior. The learning procedure

eventually relied on an algorithm for generating defensive plays that was 'good, but
not too good'.

2.2.2 Tactics

Given that the technique of simply using rules has obvious limitations, we now consider

how search can be incorporated into card play programs.

The obvious problem when using look-ahead in Bridge is the size of the search space in¬

volved. However, one way to avoid examining every possible play sequence in this space

is to limit consideration at each stage of planning to a pre-determined set of options.
This was the approach taken by Stanier, who constructed plans by Unking together

schemas corresponding to types of plays typically used by human players [Stanier 76].
Stanier's system recognises six schemas: taking top tricks, drawing trumps, ruffing, es¬

tablishing long cards, finessing, and the promotion of non-masters. However, the exact

nature of these schema is never clearly defined and no performance tests or evidence

of a working implementation are given.

A more successful attempt at constructing a planner with restricted options is the
Finesse system [Frank 91]. This system restricts itself to considering plays in a single

suit, identifying seven types of possible play, or tactics. The apphcability conditions of
each of these tactics are specified as methods, which the planner then uses to solve any

given problem by generating the entire tree of legal combinations of tactics. Using this

technique, a probabihty of success can be assessed for each option, and later versions

of the system also incorporated the ability to generate textual explanations. A typical

example of such an explanation [Frank et al 92, Page 75] is:

This leads to 2 tricks if West holds at least one of the King or Queen and
West holds the ten, or if West holds both the King or Queen, East holds
the ten, and East holds the remaining four low cards.

This approach of specifying higher level operators is also employed in the ASPEN sys-
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tem [Nygate & Sterling 93], which in fact even uses the same terminology of 'tactics'.
However, Aspen is less able to distinguish between actual probabilities than Finesse,
and simply attaches one of the three designations certain, usual, or possible to the
outcome of any sequence of actions. The general framework of tactics and methods
also fits the tlgnum system developed by [Smith & Nau 93], who explain that 'to

represent the tactical and strategic schemes of card-playing in Bridge we use instances
of multi-agent methods'. However, they characterise their system as an example of

forward-pruning — a search algorithm which picks one choice at any point in the
search [Smith & Nau 94].

An extreme application of the use of tactics can be found in the work of [Khemani 94].
For Khemani, 'the main idea is to retrieve complete plans from memory, which contains

the cumulative experience internalised into easily accessible structures' [Khemani 94,

Page 287]. These high-level objects, which Khemani calls 'Thematic Actions', are

clearly the same notion as Finesse's methods. However Ivhemani's TA's typically

represent longer strings of actions: play sequences composed of four or five tricks,
rather than the single tricks of finesse.

In fact, Khemani's system has no method of comparing the worth of competing op¬

tions, so it becomes highly important to ensure that 'best' matching TA is always
returned first for any given problem. However, since this approach necessarily entails

constructing a large database of possible situations, it suffers from the obvious draw¬
backs of ensuring completeness (i.e., that a reasonable play sequence will be selected
for every card combination) and of maintaining the integrity of the database to ensure

the 'best' play for any situation is always the first returned. Further, even if such an

approach could eventually be made to play the game of Bridge perfectly it would rep¬

resent a rather unsatisfactory solution in terms of explaining its actions. Consider, for

example, the distinction made by Victor Allis [Allis et al 91] between the cracking of
a game (achieved by producing a computer program which can play perfectly) and the

solving of a game (which further requires that the algorithm embodied by the program

be explicable in human terms). Khemani himself admits that 'the knowledge contained
in the TA cannot provide explanations as to why this play is best'.

The lack of a method for evaluating the worth of plans seems quite a severe limitation,
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since there will often be more than one way to make a contract, and in such situations

some measure of the plan which is most likely to succeed could prove very important.

Further, the object of Bridge declarer play is typically not simply to make a contract,

but also to make some overtricks (especially in situations like match-pointed pairs,

where the same cards are played by many players and the results compared). Khemani's
control system of accepting the first plan which has a chance of making the contract

therefore seems overly simplistic. He attempts to justify his approach by arguing that:

Since the cards of all the players cannot be seen, one cannot project moves
into the future. Methods like minimax search are therefore ruled out im¬

mediately.

However, as we shall see in Chapter 6, this claim represents a substantial over-simplification
of the problem.

On close examination, the plans produced by Khemani's system tend to demonstrate

some of the weaknesses of his system. For example, in the deal of Figure 2.2, against

an opening lead of the J* by West, Khemani's system counts the top tricks (there are

11) and then tries to identify suits in which extra tricks could be made.

Contract: South - 7 No Trumps
Lead: West -J* * A K 3 2

0 A Q T 9 8
0 J 3 2
* Q

A J 9 7 5

0 K 3

0 7
* J T 7 6 5 2

W
s

N
*4
0 J 6 5 4 2

<> T 9 6 5
*943

* Q T 8 6
0 7

0 A K Q 8 4
* A K 8

Figure 2.2: An example Bridge deal from [Khemani 94, Page 292]

Diamonds obviously provide an extra trick unless the cards are split 5-0 between the

defenders, and the spades produce an extra trick if they are split 3-2. Khemani's
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system realises this and plans to play for an extra trick in both suits, starting with the

spades. After cashing the A4 and K4, however, it discovers the spade break, and then

re-plans, eventually deciding to re-enter the South hand by winning with the Q4>, and
then finessing the QC (the concept of finessing will be described in greater detail in
later chapters). Although this results in making the contract, the more natural way of

representing this approach would be to explicitly state that the plan being considered is
to make extra tricks in the spades and diamond suits, with the heart finesse as a backup
source. However, since Khemani's approach is to take the first plan which stands a

chance of making the contract, this overall scheme cannot be explicitly represented.

Readers with some Bridge knowledge may also notice that in fact there are ways for
declarer to further increase his chances in Khemani's problem. For example, if just one

of the diamond or spade suits fails to break favourably an extra trick can be produced
without resorting to the finesse if the declarer sets up a simple squeeze. For example,
consider the situation above where the diamonds break but the spades do not. By

playing all the winners in spades and diamonds as well as the K4 and Q4 declarer
can bring the play to the situation of Figure 2.3.

4 J
<?K3

❖ -
*-

* 3
9 A Q
0-
* —

N
W E

S

4 T
C 7

❖ -
* A

4 —

9 —

0 J 6 5
*

Figure 2.3: Setting up a squeeze in Khemani's example

When South now cashes the A4, West cannot help allowing the declarer to win the
final two tricks. If he plays the J4, declarer will win with the 104 and then the

AC. If he plays the 3C, declarer will win with the AC and QC. This play is called
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a squeeze because West is literally squeezed into throwing away a card that he needs
to keep. This technique will be investigated in more detail in Chapter 9, but for now

the important point to realise is that the play still succeeds even if East and West's

cards are swapped in Figure 2.3. We can therefore win whenever the player with the

long spades also holds the K9. A similar squeeze situation can also be set up if it is
the diamonds that break unfavourably instead of the spades, and also even if both the

diamonds and spades break unfavourably, if we can finesse the Q9.

Such squeeze plays are very subtle, and currently beyond the means of any card play

program (although see the discussion of Python in §2.3). This example therefore
illustrates the points that Bridge situations are in general difficult to solve, and also
that it is not uncommon to find errors in deals presented in Bridge papers. For instance,

Figure 2.4 shows the example deal from [Smith & Nau 93] which they claim that their
Tignum system 'correctly solved'.

Contract: South - 54k
Lead: West -60

4k 10 9 8
9 Q 9 6
0 10 8 6
* A 9 8 7

* 4 3 2
9 5 4 3 2

0 5 4 3 2
4k 3 2

4k 7
9 J 10 8 7

0 Q J 9 7
4k K Q J 10

4k A K Q J 6 5
9 A K

OAK
4k 6 5 4

Figure 2.4: An example Bridge deal from [Smith & Nau 93, Page 90]

This hand is obviously rather artificial, as South's hand is composed of plain winners,

except for the three clubs. However, an obvious way to get rid of one of these losers is
to ruff it with one of North's trumps. On the lead of the 60, Tignum wins with the

AO and then correctly attacks the club suit. Two club tricks are lost, with the defence

returning to diamonds each time. After winning East's second diamond continuation
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with the 5<|k, however, the club ruff is immediately taken. This, of course, risks over-

ruffing by a defender. A better play is to draw two rounds of trumps in case one

defender originally started with two clubs and one or two spades.

2.2.3 Tackling Card Combinations

A third way to reduce the search space size in Bridge is to consider only the sub-

problems of the card combinations in individual suits. This was originally suggested in
the domain of Bridge by [Berlin 85]. In Berlin's case, the simplification was made in
order to demonstrate a modification to the classical planning framework for deciding
how to order possibly interacting subgoals. It is based, however, on the common

problem-solving strategy of identifying sub-problems which are solved independently.

The Finesse system described above benefited from the reduced search space in in¬

dividual suits (coupled with the use of tactics) to the extent that it could gener¬

ate the entire tree of legal play sequences for any given card combination. Also,

[Kibler & Schwamb 92] make use of the reduction in search space offered by this ap¬

proach to implement an algorithm for deciding the best moves in single-suit problems.

However, this system does not employ tactics, and thus searches through a much larger

space (typically in the order of 104 compared with the 102 of Finesse).

The problem with tackling card combinations independently, of course, is that they

typically interact. Thus, even if sub-plans can be generated for each suit, combining
them together into a global plan may not be easy. The dependencies which may

exist between the suits give rise to such considerations as entries, unblocking, and

end-plays as well as the squeeze plays we examined above. However, human players

seem to learn techniques for reasoning about such complications with relative speed.

[Gamback et al 91] put forward the suggestion that such problems can be tackled by

reasoning about properties such as resources. These ideas are not developed beyond
a very superficial level, however, and are not implemented. One system which has

attempted to implement this approach is that of [Nygate & Sterling 93], described
above. This system contains a 'strategy synthesis' module, but very little evidence of

performance is included.
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Some authors have tried to simplify the task of automating Bridge card play by

solving the easier situation where all the players reveal their cards to each other

[Berlekamp 63, Wheen 89]. In this circumstance, the uncertainty over incomplete in¬

formation is completely removed, and thus the search space of possible moves is also

reduced. Since this complete knowledge situation is akin to the opponents placing their
cards on the table in the same manner as dummy, this scenario is often described as

double-dummy Bridge.

The relative ease of solving double-dummy problems has prompted some researchers,

for example Levy [Levy 89] and Ginsberg [Ginsberg 95], to suggest Bridge-playing
architectures that work by examining a statistically significant number of the possible
distributions of the outstanding cards that are consistent with a player's knowledge.

They speculate that in any given situation the use of search reduction techniques

(such as alpha-beta pruning) would enable the minimax value of each possible action
to be established in each of these randomly generated sub-problems, and the best

overall action to be predicted by suitably combining these values. In Chapter 6 we

present a formalisation that shows that, even in very simple incomplete information

games, algorithms like those suggested by Levy and Ginsberg yield suboptimal results

against 'best defence'. In particular, we identify two serious problems which afflict
such algorithms, independently of how many possible distributions are considered.

2.3 Miscellaneous Bridge Research

There is some Bridge research which does not fit the computer bidder/declarer/defender
classification. Nygate, for example, has produced an expert system called Python for

identifying squeeze situations [Nygate 84, Nygate & Sterling 90]. As we have already

seen, squeezes are an advanced strategy which many human players have difficulty un¬

derstanding, so even automating their recognition is an achievement. Nygate himself,

however, recognises that Python has some important limitations. Firstly, squeeze

play is an end-game strategy that normally arises when there are 3 to 7 cards remain¬

ing. Python is only capable of recognising such squeeze situations when they are
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immediately applicable, producing a plan which creates an extra trick whenever the
cards are positioned favourably. Although it was later coupled to a primitive Bridge

playing program which could execute these plans [Lustig 85], the system is not capable
of suggesting what order the cards should be played in to reach a potential squeeze
situation. Secondly, when the possibility for more than one squeeze play exists, Py¬
thon cannot choose which one is more likely. This is because it 'has no knowledge of
the distribution of the outstanding cards, in contrast to a Bridge player who can infer
a great deal about the adversaries cards' by clues drawn from the bidding and the play

[Nygate 84, Page 45].

Another unusual system is that of [Quinlan 79] — a knowledge-based system capable
of making conclusions about card location based on information from the bidding and

the opening leads. This system can either locate honours with one of the defenders
with certainty, or it can make less specific assertions of the form lx holds either y or

z\ It is not capable of making probabilistic statements, but even so the inferences
are of a type that would be useful to a card playing program. Actually producing a

system capable of explicitly utilising such inferences would undoubtedly represent a

step forward in the state of the art of Bridge programs.

2.4 Commercial Bridge Programs

[Throop 83] traces the development of Bridge-playing programs (mostly those resulting
in a consumer product, but also some of a research nature) as far back as 1957. Many
of the systems Throop describes achieve a reasonable level of performance, especially in

bidding. Unfortunately, however, the descriptions of the algorithms for card play are far
from enlightening. For instance, we have already seen Throop's complete description
of one of his own programs at the start of this chapter. Throop makes no attempt to

detail the 'heuristics' he talks of, leaving readers to imagine for themselves the kinds of

algorithms involved. The overall impression is therefore of programs that rely on some

kind of pattern-matching to identify common game states, and ad hoc modifications
to cope with unusual situations.

Since Throop's book was published, many new commercial programs have been de-
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veloped. In order to review these systems, we have gathered together the reviews

which have appeared in the specialist computing and Bridge press, and also experi¬

mented with some programs ourselves. However, rather than present this review here,

we have placed it in Appendix A. The reason for this is partly that the number of

programs we examine is very large (over 20), but also because the general summary of
our findings simply reinforces the conclusions we have drawn already that whilst some

programs may be reasonably good bidders, there are as yet no programs which can play
the cards with any degree of expertise. This point is emphasised by, for example, the
recent review of computer software in the magazine of the American Contract Bridge

League [Manley 94], which found that

While most of the programs received good to excellent ratings on ease
of use, graphics, speed and features, scores dropped dramatically when
testers rated the skill of the programs - that is, expertise in dummy play
and defence. Only three of the nine programs rated above average in skill.

2.5 Comparison with Other Games

The history of serious computer game-playing starts with Shannon's incorporation

of the game theoretic results of [von Neumann & Morgenstern 44] into his proposal
for a chess playing program [Shannon 50]. The algorithm put forward by Shannon

subsequently became known as the minimax algorithm, and was soon adopted by

others, for example Samuels, who used it to produce a checkers (8x8 draughts) program

[Samuel 59]. Samuels added a learning component to his program and it was quickly
able to learn to play better than Samuel himself. Much of the subsequent history
of game-playing programs has been devoted to devising other such enhancements to

the basic search architecture, with improvements such as alpha-beta pruning, killer

heuristics, opening books and end-game databases. More recently the techniques of
connectionist computing have also been successfully applied to game-playing situations

(for example, see the discussion of TD-Gammon below).

Some non-trivial games have now been completely solved with the aid of computers.

Qubic, for example, was solved by [Allis 92] and Connect-Four by [Uiterwijk et al 89]
and by [Allen 89]. Interestingly, these two solutions to Connect-Four used complement¬
ary approaches: Uiterwijk et al employed a knowledge-based approach to deduce the
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value of any position whereas Allen used brute-force depth-first search. The former,

knowledge-based approach led to the formalisation of nine rules which, if followed,
would result in the game being played perfectly. The contrast between this and Allen's
brute-force approach in part formed Allis' motivation for distinguishing between the

cracking and the solving of a game discussed previously.

Other games, whilst not being cracked or solved by computers, have seen domination

slip away from the human players. In Othello, for example, the Santa Cruz Machine
Othello Tournament in 1982 prompted the then human World Champion Jonathan
Cerf (quoted in [Rosenbloom 82]) to write that:

In my opinion the top programs from Santa Cruz are now equal (if not
superior) to the best human players.

The winner of this contest was Iago [Rosenbloom 82]. However, a more recent pro¬

gram called Bill [Lee & Mahajan 88] incorporates a scheme for learning evaluation
functions and is even more impressive. On a collection of endgame problems in which
human experts had an accuracy of 47.4%, Bill's success rate was 68%. In a contest

against Brian Rose, the then highest-rated U.S. Othello player, it won resoundingly by
a margin of 56 games to 8. It seems undeniable that computers now perform at World

Championship level in Othello.

Another game in which computers are on a par with the best humans is Backgammon.
In 1980, Berliner's Bkg9.8 program beat the then World Champion in an exhibition
match by a score of 7 games to 1 [Berliner 80]. Although this victory was partly due
to luck, more consistent computer programs have recently emerged. In particular, the
use of neural networks by [Tesauro & Sejnowski 89] has led to the development of TD-

Gammon, which has been estimated to play at -0.05 points per game against the noted
and highly respected former World Champion Bill Robertie, making the program the
best anywhere, and one of the strongest players in the world [Tesauro 94].

The first program to actually play for a World Championship was the Chinook check¬
ers playing program [Schaeffer et al 92]. This was a right which the program won by

placing second behind the World Champion Marion Tinsley in the 1990 Checkers U.S.
National Open. In his title defence, Tinsley won by a score of 4 wins to 2, with 33

draws [Schaeffer et al 93b]. However, this still represents a very creditable performance
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by Chinook, since Tinsley had the unparallelled record prior to the meeting of only

losing 7 games in the past 42 years.1

In chess, computers have not yet managed to challenge for the world title, although
the well-known Deep Thought program has been given a rating of 2552 by the U.S.

Chess Federation, placing it in the bottom half of the grandmaster range [Hsu et al 90].

However, its designers are optimistic [Hsu et al 90, Page 50] that the trend of increased

speed leading to an increased rating will enable their next generation system, with a

1000-fold increase in speed, to

play at a 3400 level, about 800 points above today's Deep Thought and
500 points above Kasparov's rating record.

This speculation is questioned, though, by the team designing Chinook. Chinook
searches to a minimum depth of 17-, 19-, and 21-ply (one ply is one move by one

player) in the opening, middlegame, and endgame respectively, and uses a selective

deepening heuristic that results in major lines of play being searched to 30-ply or

more. In checkers, however, it appears that the advantage gained by searching an

extra ply at such depths is very small. For example, during Chinook's title play-off

with Tinsley each player made about 1000 moves, and since all the games which led to

a result could be traced to a single mistake by one of the players, it can be estimated
that their accuracy when choosing a move was 99.6% and 99.8% respectively. In fact,
the errors made by Chinook against Tinsley would not have been prevented even with
an extra 10-ply of search! (See Figure 2.5.)

An example of these deep search problems comes from an exhibition match against

Tinsley in 1990. Chinook realised it was in difficulty on move 25 and the programmers

resigned on its behalf on move 35. After the game, however, Tinsley revealed that 'on
move 12 he had seen to the end of the game and knew he was going to win'. The best

estimate of the chinook team was that this feat involved 'selective searches of over 60

ply'. Even in one of Chinook's victories from the 1992 World Championship, Tinsley
said he realised he was lost immediately after making the fatal move. Chinook, on

the other hand, took an additional 12 moves (24 ply) before a 21-ply search found the
1 Sadly, Marion Tinsley has since died, on April 17 1995.
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Figure 2.5: Chinook's performance as a function of depth (after [Schaeffer et al 93a,
Page 54])

win. That is, 'although Chinook found the best moves...it did so without knowing it
was winning' [Schaeffer et al 93a, Page 55].

It is unclear exactly how these results carry over to the game of chess, although

[Schaeffer et al 93a] speculates that both games follow similarly-shaped curves to that
of Figure 2.5. With the current top chess programs searching about 10-ply, it could be
that the performance of the next generation of chess computers will not be as strong

as their developers hope. The implications of this for Go, where 'there is no program

in the world which can defeat an amateur of moderate strength in an even game'

[Erbach 92] have also yet to be seen.

2.6 Summary

We have looked at literature on the game of Bridge, examining both academic research
and commercial products. The important conclusion for this thesis is that although

expert level performance has been achieved in the sub-problem of Bridge bidding,
the overall standard of computer Bridge play in general is very low. Especially when

compared to the success of computers in other games, this is surprising. In games



CHAPTER 2. A GOOD DEAL OF BRIDGE LITERATURE 32

like chess and checkers, computer programs are amongst the top players in the world.

In Bridge, however, a history of academic research and a proliferation of more than
two dozen commercial software packages has failed to produce a system capable of

competing with even good novice human players. Despite the protestations by Death2
at the beginning of the chapter that 'THEY ONLY LIVE EIGHTY OR. NINETY

YEARS!', then, humans appear to make very good Bridge players. In Chapter 4 and

Chapter 6 we will identify some of the reasons why this might be so.

2 Death always speaks in capital letters.



Chapter 3

Planning Literature

What are hopes, what are plans?
— johann cristoph friedreich von schiller

Die Jungfrau von Orleans, act I, sc. 2

What are plans? In this chapter, we answer this question by looking at AI planning

systems. Such systems use operators to represent the possible actions that can be
carried out in a domain. The ultimate aim of planning is then typically to find a

ground operator sequence (i.e., a sequence with no variables) which, when executed in
the initial state of some problem, will produce the desired behaviours or sequences of
states in the domain. This is relevant to Bridge since declarer play involves playing
cards in such a way as to make a specific number of tricks.

We also introduce refinement search — a formalism recently employed in [Kambhampati 94,

Kambhampati et al 95] as a unifying framework within which to cast and compare

various planning algorithms. The nature of this framework facilitates the comparative

analysis of existing planning systems, and will also allow us to describe the nature of
the Finesse system more clearly in later chapters. To make use of this formalisation,
we set out the basics of refinement search and then examine how some of the historical

planning systems we discuss may be viewed as different flavours of the basic algorithm.

3.1 Plan-space and State-space

There are a large number of planning systems in the AI literature. To help us to make
sense of the diversity we therefore begin by establishing some terminology.

33
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It is possible to distinguish two types of plan representation schemes used by AI plan¬

ning systems. Firstly, there is state-space representation, in which a plan is composed

of states — representations of the problem at each stage of its solution — and operators

which transform one state to another. State-space plans are easily represented on a

computer, for example using directed graphs with nodes describing the states and arcs

describing the application of the operators that make the appropriate transformations
between the states. With this kind of encoding, a solution is just a path which starts

at the goal and finishes at one of the leaf nodes that corresponds to a solution of the

problem.

A different representation is the action-ordering representation. This kind of plan

usually has nodes which correspond to actions and branches that determine ordering

relations between the actions. The advantage of this type of representation is that two

operators can be ordered within a plan without the need to generate, or even specify,
the intermediate states arising between the execution of each. However, the drawback,

compared to a state-space representation, is that it becomes more difficult to determine
when a plan is actually a solution to a problem. As the state of the domain is no longer

explicitly present in the plan representation, the achievement of the goal behaviours

must be checked by reasoning about the possible orderings of the plan's operators.

In either of these types of plan representation, the ordering over the operators need
not be fully specified. That is, it can be possible for two or more operators to be

executed in any order or even at the same time. Plans which allow this are called

partially ordered and planners constructing such plans are called partial order planners

(or sometimes non-linear planners, since the emerging plan resembles a network rather
than a linear sequence).

3.1.2 Search Techniques

The possible search regimes of planners also come in two main flavours that broadly
mirror the distinction between the types of plan representation. Firstly, it is possible
to take the initial state of the problem as a start state and apply operators until a goal
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state is reached. In such a planner, the nodes of the search space correspond to states

and the arcs to possible operators. This type of planner therefore searches through all
the possible states, and planners adopting this approach are described as state-space

planners. The benefits of this approach are described by [Drummond & Tate 87, Pages

9-10]

...the search procedure is almost all the reasoning that's required of the
planning system. The reasoning required to build a plan is packaged into
the planner's next-stage generator. This means that the planner will only
generate possible plans, and need perform no check after extending a plan.

The main alternative possibility to state-space planning is plan-space planning in which
each node of the search space contains partial plans. Initially, there are typically two

'null' operators in the plan which correspond to its start and its finish. The start

operator is used to assert the starting conditions of the plan by specifying them as the

operator's postconditions. The finish operator asserts the goal conditions by specifying
them as the operator's preconditions. At each stage of planning, operators are added
or orderings imposed on hitherto unordered operators until a plan is produced that
is guaranteed to work. [Drummond & Tate 87, Page 10] summarises one distinction
between state-space and plan-space planning.

When the planner searches through [the space of] states, plan modification
is only possible at the 'tail end' of the plan. Operators are added to the plan
by trying out another operator application, and operators are removed from
the plan when backtracking occurs. This is a result of confusing the plan
construction reasoning with search space navigation control. However, if
the planner searches through a space of partial plans, it can add and remove
operators wherever in the plan it sees fit.

The drawback to the plan-space planning approach is that the task of determining
when a plan actually represents a solution becomes much harder. It is no longer the

simple matter of checking the current state against the goal state, but instead calls
for reasoning about whether the operators and constraints of the plan are sufficient to

guarantee the goal state being produced when the plan is executed. We will examine
this issue in more detail below.
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Before introducing refinement search, we look briefly at some of the AI planning sys¬

tems to date. For a more detailed survey, readers are referred to literature such as

[Drummond & Tate 87].

The most influential single planning system is probably Strips, produced in 1972

[Fikes et al 72]. This is a state-space planner that applies the principle of means-
ends analysis (MEA), first introduced by the General Problem Solver (GPS) project

[Ernst & Newell 69]. MEA is a search heuristic which works by selecting operators

that can be shown to be significant in reducing the differences between the current

state in the search space and the desired state. However, differences are reduced one

by one, which means that the heuristic will not always be able to correctly solve some

problems. The reason for this is described by [Simon 83, Page 15]:

The search procedure of GPS is built on the implicit premise that if the
present situation differs from the goal situation by features A, B, C, ...,
then the goal situation can be attained by removing the differences A,
B, C,..., in some order. Of course this premise is false unless the matrix
of connections between differences and operators can be triangularized.
This matrix can be triangularised just under those conditions when an

appropriate composition axiom would be valid in the modal logic; that is,
just when there is independence among the actions.

This assumption of independence means, for example, that MEA will not be able to

solve the Sussman anomaly in which solving one subgoal undoes the achievements of

the plan for solving the other. This anomaly is from the domain of blocks worlds, and
involves trying to make a stack of three blocks with the goals (On A B) a (On B C).

Forming and executing separate plans for each of the subgoals in this problem, however,
does not guarantee achieving them both because the initial conditions of the plan are

such that, whichever subgoal is established first, the operators for establishing the

second subgoal will undo the first subgoal in the process. Sussmans's own planner,

Hacker, was also unable to solve this problem, since it assumed [Sussman 73, Page 58]
that 'Subgoals are independent and thus can be sequentially achieved in an arbitrary
order'. This assumption of independence explicitly removes the solution from the
search space.
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In fact, to produce a solution to the Sussman anomaly, the operators for achieving each

subgoal have to be interleaved together: assuming that the subgoals can be achieved

independently prevents this from happening. Other plan-space planners such as inter-
plan [Tate 75] and Warplan [Warren 76] could solve the Sussman anomaly because

they did not assume independence of subgoals. Noah, the first partial-order planner

[Sacerdoti 75], could also solve the problem, but mostly because of its choice of 'goal
to work next on' and not its use of partial ordering.

Noah performed little (if any) search, as it had no means of backtracking from decisions
that did not lead to a solution. This was partly because of the relative difficulty in

partial-order plan-space planning, noted above, of deciding whether the preconditions
of any given operator hold at a particular point. The first system to demonstrate this

ability to any degree was Non lin [Tate 77], which used a procedure called question

answering (QA) to determine the truth of operator preconditions. This is described

by Drummond [Drummond & Tate 87, Page 11]:

If the precondition in question is true, the QA simply returns true. If the
precondition is false, then QA returns a description of how the precondition
can be made true. The alternatives include the addition of operators, the
addition of orderings and the bindings of variables within the developing
plan.

Chapman formalised some of what Nonlin does, producing the Tweak planner based
on his observations [Chapman 87]. Tweak checks the validity of its plans with a modal
truth criterion (MTC) that specifies the necessary and sufficient conditions for a con¬

dition to be true at a point in a partially ordered plan. However, Chapman also shows

that the truth criterion of any non-linear planner will be NP-complete if the operat¬

ors it uses are powerful enough to represent actions whose outcome depends on their

input situation. Despite this, some planners have evolved which allow such repres¬

entations. slpe, for example has operators which may have context-dependent effects

[Wilkins 84, Wilkins 88]. In order to use such operators efficiently, slpe incorporates

heuristics. For example, the truth of the 'main effects' of an operator are always

checked explicitly, but [Wilkins 89, Page 5]:

for other query predicates the system merely proves that there is one pos¬
sible ordering of the partially ordered actions that makes the query predic¬
ate true, without enforcing that order. This is efficient, but can produce
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temporarily invalid plans, since different calls to the truth criterion may
assume different implicit orderings.

Another technique for coping with context-dependent effects are the secondary pre¬

conditions of [Pednault 88, Pednault 91]. These preconditions are used to define the

conditions under which actions actually have their desired effects. An example of a

planner using this approach is Ucpop [Penberthy k Weld 92], which is an extension
of the planner Snlp [Barrett et al 91, McAllester k Rosenblitt 91].

Sipe, as well as Noah, Nonlin and other more recent planners such as O-Plan

[Currie k Tate 85] are examples of Hierarchical Task Network (HTN) planners. In
such planners, the nodes do not have to correspond to simple domain actions and can

instead represent higher-level 'tasks', such as 'Paint the ceiling' or 'Build a house'.

One of the planning techniques employed by such planners is then the notion of 'task

reduction' in which the higher-level tasks are broken down to a lower level. HTN

planning continues until all the nodes in the plan correspond to simple domain actions.

The problem of planning under uncertainty has also been tackled, notably by a family
of planners related to Snlp. For example, Sensp [Etzioni et al 92] and Cassandra

[Collins k Pryor 95, Pryor 95] build on Ucpop (which we noted above is based on

Snlp), while Cnlp [Peot k Smith 92] is based on Snlp directly. The first two of these
use the context-dependency of operators to represent actions with uncertain outcomes,

while Sensp uses a three-valued logic, and allows actions to have multiple, mutually
exclusive sets of outcomes. The different possible outcomes of the uncertain actions

contained in these systems' plans can be referred to as contingencies, and in general,
'the aim of contingency planning is to construct a single plan that will succeed in all cir¬
cumstances' [Pryor k Collins 96]. Buridan [Kushmerick et al 95], a further planner
based on Snlp, is probabilistic, and tries to construct plans that have a high probability
of success. Buridan itself cannot construct contingency plans (i.e., plans containing
alternatives courses of action for different circumstances), but it has been extended
into a probabilistic contingency planner in the C-Buridan system [Draper et al 94b,

Draper et al 94a], which also draws on Cnlp. Another contingency planner strongly
influenced by Cnlp is Plinth [Goldman k Boddy 94a, Goldman k Boddy 94b] which
is a total order planner based on McDermott's Pedestal [McDermott 91].
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Other approaches to planning under uncertainty include interleaving planning with
execution (for example, Ipem [Ambros-Ingerson & Steel 88] and Sage [Knoblock 95]),
and reactive planning, in which a set of condition-action rules is generated instead of a

branching plan containing specific actions (the universal plans of Schoppers [Schoppers 87],
or Situated Control Rules [Drummond 89]).

3.3 Refinement Search

As we will see in Chapter 8, one of the techniques used by Finesse to produce

plans for the game of Bridge is partial-order plan-space refinement. We will therefore
look at this type of planning more closely. To do this, we will present a formalisa-
tion of such systems introduced by [Kambhampati 94] and more recently updated in

[Kambhampati et al 95]. This formalisation uses refinement search to describe partial-
order plan-space planners. More recently, Kambhampati has extended this to further

incorporate state-space planners and HTN planners. Readers interested in these de¬

velopments are referred to [Kambhampati & Srivastava 95] and [Kambhampati 95],
respectively.

3.3.1 Background

Refinement search is essentially a particular view of the generate-and-test paradigm
first discussed by Newell and Simon in their Turing Award Lecture [Newell &: Simon 76].
Rather than employing a search process that involves the gradual construction of a solu¬

tion, refinement search starts with the complete set of possible sequences of actions,

and then gradually subdivides it into smaller subsets by a process of repeated splitting

(or branching, or refinement). Thus, at each stage of the search, the overall set of

possible solutions will be reduced to a smaller subset — the solution candidates. Of

course, a solution (if one existed) could have been found initially by simply conducting
an exhaustive check on each member of original complete set of possibilities, but the
size of this set usually makes this impractical. Refinement search generally continues
until an actual solution can be picked out from the solution candidates in bounded
time.
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Since the number of solution candidates at any search node may be enormous, or in¬

finite, in practice they are never represented explicitly. Instead each set is typically

implicitly described by a set of constraints, so that any sequence of actions that is con¬

sistent with the constraints is taken to be a solution candidate of that node. Under this

interpretation, refinement search involves starting with a null constraint set, and then

systematically adding new constraints at each step until a solution can be identified.

3.3.2 Basic Formalisation

A slightly modified form of the refinement search algorithm introduced by Kambham-

pati is reproduced in Figure 3.1. It is specified by providing the following:

• G, the solution criterion of the problem (the conditions a solution must meet),

• R, a set of refinement operators (or strategies), and

• sol the solution constructor function; a 2-place function that takes as its ar¬

gument a search node M and the solution criterion G, returning one of three
values:

— *fail*, meaning that none of A/*'s solution candidates is a solution to the

problem.

— Some solution candidate ofN which does satisfy the solution criterion G.

— _L, meaning that sol can neither find a candidate that is a solution, nor
determine that no such candidate exists.

Search is initiated by calling Refine-Node on a node with a null set of constraints and
then progresses, through the application of refinement operators, until a node is found
for which the solution constructor function returns a solution.

3.3.3 Brief Discussion

As an example to illustrate refinement search, consider the well-known '8 Queens Prob¬

lem' of placing 8 queens on a chess board in such a way that none of them attack any of
the others. This problem can be approached by starting with an empty board and then
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Algorithm Refine-Node(Af)
Parameters: sol, the solution constructor function

R, Refinement operators
G, Solution criterion

0 Termination check. If sol(A/", G) returns a candidate c, then return it and
terminate. If it returns Tail* then fail. Otherwise continue.

1 Refinement. Pick a refinement operator r € R. (Not a backtrack point.)
Nondeterministically choose a refinement AP from r(iV), the refinements of AI
with respect to r.

2 Consistency check (Optional). If AP is inconsistent (i.e., the node has no
solution candidates; its constraint set is unsatisfiable), fail. Else continue.

3 Recursive invocation. Recursively invoke Refine-Node on AT'.

Figure 3.1: A generic refinement search algorithm (after [Kambhampati et al 95, Page
172])

repeatedly placing a queen in a random but legal position. Viewed from a generate-

and-test perspective each partially filled board in this search process would represent a

building block in the construction of a completed solution that would include the pieces

already in place. From a refinement search perspective, however, the partially filled

board is actually a representation for the (perhaps very large) set of all the possible
boards that contain its configuration as a sub-grouping. So, in refinement search, the

partial solution itself contains (by virtue of representing a set of solutions) the even¬

tual solution, whereas in a generate-and-test approach the roles are reversed, with the
eventual solution containing each partial solution generated during its construction.

The refinement search framework became popular in the field of operations research,
and it is this difference in pedigree with the generate-and-test paradigm that accounts
for their differing outlooks. In operations research, great importance was attached to

theoretical guarantees of optimality and completeness. AI, on the other hand, has

'always emphasised the heuristic and implementational aspects of problem solving and
its parity with human style over its mathematical foundations' [Pearl 84]. In AI, acts
such as adding a Queen to a board in the 8-Queens problem, or the extension of a path
in a search for a solution to the 8-puzzle, are naturally thought of as creative steps in
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the search for a solution, rather than as deletions in a process of refinement. [Pearl 84],

however, points out that

The split-and-prune paradigm emphasises the commonality of problem-
solving methods over many problems, whereas the object creation paradigm
focusses on the unique structure featured by a specific symbolic represent¬
ation of a given problem.

This focus on the common aspects of problem-solving algorithms can be exploited, as

we shall see in the following sections, to emphasise both the points of similarity and the
areas of divergence of different algorithms, as well as enabling the clear presentation
of the place and function of new enhancements.

3.4 Plan-space Planning as Refinement Search

We now examine how plan-space planning can be cast as refinement search, drawing
on [Kambhampati 94] and [Kambhampati et al 95].

3.4.1 Partial Plan Representation

The first task when describing plan-space planning in a refinement search framework
is to decide how to represent a partial plan. Kambhampati uses a 5-tuple of quantities

for this purpose which we describe below.

Definition 3.1 (Partial Plan) A partial plan is a 5-tuple V: (T,G,B,ST,C) where:

• T is the set of steps in the plan.

• O is a partial ordering relation over T.

• B is a set of codesignation (binding) and non-codesignation (prohibited binding)
constraints on the variables appearing in the preconditions and postconditions of

the operators.

• ST is a symbol table which maps steps to ground operators in the domain.

• £ is a set of auxiliary constraints. (See \3-4.2.)
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Before introducing auxiliary constraints, we will first examine a simple example plan
without this complication. Figure 3.2 gives an example of a plan which contains the
four steps t0,ti,t2, and t^. There are three operators in the domain with preconditions
and postconditions (the facts 'add'ed or 'del'eted by the operators) as shown in the

figure. The four steps in the plan are mapped to the operators start, o1? o2, and
fin respectively, and the ordering constraints are as shown in the standard network

representation.

Partial plan: Operator Pre- and
Postconditions:

:start

t\'0\

t2:o2

/oo:fin

Operator Prec Add Del

0\ r P q

°2 — q —

03 — r P

•p . / T : t2, ^oo}) O : {t0 -< tut0 -< t2,ti -< too, t2 -< too} \E '

\ B : 0,<ST : {ti -> ox,t2 —► o2,t0 -*■ start,t^ —> fin} J

Figure 3.2: A simplified partial plan (Pe) in a domain with three operators (after
[Kambhampati et al 95, Pages 177-178])

Recall from the start of this chapter that we described the main aim of planning
as being the generation of a ground operator sequence which, when executed in the

initial state of some problem, will produce the desired behaviours or sequences of
states in the domain. To see how the representation of Figure 3.2 represents a set

of possible ground operator sequences we can define the following mapping function

[Kambhampati et al 95, Page 179]:

Definition 3.2 (Mapping Function) M is said to be a mapping function from a

plan V to a ground operator sequence S if

• A4 maps all steps of V (except the dummy steps t0 and too) to elements of S,
such that no two steps are mapped to the same element of S,

• AA agrees with ST (i.e., A4(t) = ST(t) for all steps, t, ofV), and
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• for any two steps t{, tj in P such that t( -< tj, ifM(ti) = S[l] (i.e., M maps t,

onto the Ith operator in S) and M{tj) = *S[m] then I < m.

Thus, for our example plan of Figure 3.2 any ground operator sequence which con¬

tains the operators cq and o2 will be a solution candidate of the plan, since there are

no ordering relations between tx and t2 in Pe, and we simply need to specify M so

that it maps tx and t2 onto (one of) the occurrences of the operators ox and o2, re¬

spectively. (Notice that the distinction between the steps in the plan and the actual
domain operators enables sequences in which some operators are repeated to be easily

accommodated.)

An important concept which can also be defined on just the simplified representation

of Figure 3.2 is that of a ground linearisation [Kambhampati et al 95, Page 178]:

Definition 3.3 (Ground Linearisations) A ground linearisation of a partial plan
V: (T,0,B,ST,jC} is a fully instantiated total ordering of the steps of V that is con¬

sistent with O (i.e., a topological sort) and B.

A ground linearisation captures 'the syntactic notion of what it means for a partial plan
to be consistent with its own ordering and binding constraints' [Kambhampati et al 95,

Page 179]. For the example plan of Figure 3.2 there are two ground linearisations:

^o^i^2^oo and t0t2titoo. Ground linearisations go part of the way towards addressing
how to produce 'desired behaviours' from sequences of actions. In order to see the full

story, we now need to consider the auxiliary constraints.

3.4.2 Auxiliary Constraints

According to [Kambhampati 94, Page 332], 'almost all of the auxiliary constraints

employed in classical planning can be formalised in terms of two primitive types of
constraints'. The first of these— interval preservation constraints, or IPCs — constrain

all the operators that occur between two specific points in a plan to preserve some

specified condition. Kambhampati's formal definition of how some ground operator

sequence S can satisfy an IPC of a partial plan is given below, and in Figure 3.3 on

the next page we also supply a pictorial representation to aid visualisation.
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Definition 3.4 (Interval Preservation Constraints) An interval preservation con¬

straint (ti,c,tj) of a plan V is said to be satisfied by a ground operator sequence S
according to a mapping function Ai that maps steps ofV to elements of S, if and only

if every operator o in S that comes between A4(ti) and A4(tj) preserves the condition
c (i.e., if c is true in the state before o, then c will be true in the state resulting from
its execution).

Mapping (M) between partial plan

steps and ground sequence operators

Ground operator sequence S

operator M(t-)

□—□ D:
operator M( tj )

D C

Operators in this
range must preserve c

Figure 3.3: How a ground operator sequence S can satisfy an IPC (ti,c,tj)

The second type of constraints are point truth constraints, or PTCs, which as their
name suggests, concern constraints which must be true at just one particular point in
a plan. Kambhampati's definition of PTCs [Kambhampati 94, Page 332] is as follows:

Definition 3.5 (Point Truth Constraints) A point truth constraint (c@t) is said
to be satisfied by a ground operator sequence S with respect to a mapping AA that maps

steps of V to elements of S, if and only if either c is true in the initial state and is

preserved by every action of S occurring before A4(t), or c is made true by some action

<S[j] (i.e., the jth element in the operator sequence) that occurs before Ai(t), and is

preserved by all the actions between <S[j] and A4(t).
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To see how these constraints can be used to make a plan achieve a desired goal, consider

Figure 3.4 which gives a more complete version of our original simple example of a

partial plan. Let us assume that the initial state of the world in which this plan will be

executed is null and that the top-level goals are p and q. These goals are represented

by including the two PTCs (p@too) and (qt&too) as the preconditions of the final step.
Now imagine that the steps and t2 have been introduced to achieve these goals. In
order to ensure that no other operator 'undoes' these goals after they are achieved,
the two IPCs (ti,p,too) and (t2,q,too) can be added to the plan, as shown. Also,
because operator Oi has r as its own precondition, the PTC (r@ti) is further added.

Any ground operator sequence satisfying these constraints will be a solution to the

problem.

Partial plan:

(r@ti) ti'.Oi

(^1t Pi ^00)
t^-.f in

(h,q,too)

Operator Pre- and
Postconditions:

Operator Prec Add Del

0i r P q

°2 —

q
—

03 — r P

r
B
c

. {t0 tut0 ^ooi^2 ^00}
0,NT : {tj -+ Oi,t2 o2,t0 -> start,^ -* fin)
{(ti,P,too), (t2, q, tTO), (p@too), (q@too), (r@t1)}

Figure 3.4: The full representation of the partial plan Ve (after [Kambhampati et al 95,
Page 177-178])

3.4.3 A General Plan-space Planning Algorithm

Although the actual solutions to a planning problem at some node V will have to obey
all of the auxiliary constraints of V, during the search process it will be useful to make
a distinction between two types of constraint: those that are monotonic, and those
that are not [Kambhampati 94, Page 332]:
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Definition 3.6 (Monotonicity of Auxiliary Constraints) An auxiliary constraint
C is monotonic if, given a ground operator sequence S that does not satisfy C, no op¬

erator sequence S' obtained by adding additional ground operators to S will satisfy

C.

Interval preservation constraints are monotonic. To see this, look again at the example
of Figure 3.3 on Page 45. If it is the case that S does not satisfy the constraint in
this diagram, then (at least) one of the operators between A4(ft) and A4(tj) must be
violating the condition c. The act of adding extra operators to S, no matter what

position they are inserted, cannot change the fact that the protected condition is

violated in the protected range, so the constraint is monotonic.

Point truth constraints, on the other hand, are non-monotonic. If some PTC (c@t) is
not satisfied by an operator sequence S, the constraint can still be made true by adding

extra operators (for example, by inserting an action that makes c true immediately

prior to t).

This distinction is useful because the monotonic constraints provide a useful pruning
mechanism which can be used during planning. Specifically, if the search ever reaches
a node at which none of the solution candidates satisfy all the monotonic constraints,

the node can be safely pruned; no extensions of the linearisations will ever be able to

satisfy the constraints, since they are monotonic. To make use of this feature, we will

define the following concept [Kambhampati et al 95, Pages 179&183]:

Definition 3.7 (Safe Ground Linearisation) A ground linearisation G of a plan
V is said to be safe, if it satisfies all the monotonic auxiliary constraints. In our

representation, the monotonic constraints are all IPCs. G satisfies an IPC (t,p,t') if
for every step t" between t and t' in G, the operator ST(t") does not delete p.

Let us consider the ground linearisation G\ : totit2too in our example of Figure 3.4. G\
satisfies the IPC {t\,p, too) since the only step between ti and t<*, is t2, and the operator

ST(t2) is o2, which does not delete p. G\ also trivially satisfies the IPC (f2,<Moo)>
since there are no steps between t2 and Gi is therefore a safe linearisation. The

linearisation G2 : fo^Moo? on the other hand, is not safe since it breaks the constraint
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(t2,q,too); the operator 0\ corresponding to step t: deletes q.

48

The Algorithm

Kambhampati's planning algorithm is reproduced in Figure 3.5 on the following page.

For simplicity, this algorithm is designed to process just the PTC's of a partial plan

until they are guaranteed to be satisfied. It therefore only really solves problems

whose goals are goals of attainment (since, as we have seen, the goal of achieving some

condition p can be expressed as the PTC (p, too))- However, other types of goals giving
a richer behaviour could also be modelled. For example, maintenance goals could also

be handled by imposing interval preservation constraints on the initial plan. Also,

intermediate goals could be handled by introducing dummy steps along with PTC's

stating the goals that should be achieved at these steps.

To keep track of the PTC's yet to be specifically addressed by the planner, an agenda is

used. During planning, the preconditions from this agenda are successively examined
and removed, after extra orderings or actions have been introduced. Any extra PTC's
introduced are generally added to both the agenda and to the list of auxiliary con¬

straints, but notice that if there are conditions that we don't want the planner to work

on explicitly (Pednault [Pednault 91] gives the example of not wanting to build an air¬

port for the express purpose of visiting a city as an example of such filter conditions)

they may be added only to C.

Given a problem with the set G of goals (of attainment) planning is invoked by calling

Refine-Plan with the 'null' partial plan and agenda:

Planning continues until the solution constructor function can identify a solution.

Kambhampati identifies the solution constructor function all-sol which terminates

only when all the ground linearisations of a partial plan correspond to solutions

[Kambhampati et al 95, Pages 179&189].

T : {to? foo}> O : {t0 X too}, B '■ 0,
ST : {t0 —> start,f2 —► fin},£ :

A0 : {(<7;@too)|<7; € G}
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Algorithm Refine-Plan((V: (T,0,B,ST,C),A))
Parameters: sol, the solution constructor function

G, the set of goals of the problem.
pick-prec, routine for picking preconditions from the plan

agenda for establishment,
interacts?, routine used by pre-ordering to check if a pair of steps interac
conflict-resolve, routine for resolving monotonic auxiliary constraint co

0 Termination check. If solfiP,G) returns a solution, return it, and terminate.
If it returns *fail*, fail. Otherwise continue.

1 Refinement. Refinements fall into two broad classes:

• Establishment Refinement. Refine the plan by selecting a goal, choosing
a way of establishing that goal and optionally remembering the establish¬
ment decision:

1.1 Goal Selection. Using the pick-prec function, pick from V a goal
(c, s) to work on. Not a backtrack point.

1.2 Goal Establishment. Non-deterministically select a new or existing
establisher step s' for (c, s). Introduce enough ordering and binding
constraints, and secondary preconditions to the plan such that (i) s'
precedes s (ii) s' will have an effect c, and (m) c will persist until
s (i.e., c is preserved by all the steps intervening between s' and s).
Backtrack point; all establishment possibilities need to be considered.

1.3 Book Keeping (Optional). Add auxiliary constraints noting the es¬
tablishment decisions, to ensure that these decisions are protected by
any later refinements. This in turn reduces the redundancy in the search
space. The protection strategies may be one of goal protection, interval
protection, and contributor protection. The auxiliary constraints may
be either point truth constraints or interval preservation constraints.

• Tractability Refinements (Optional). Help in making the plan-handling
and consistency check tractable. Use either one or both:
1.4 Pre-ordering: Impose additional orderings between every pair of steps

of the partial plan that possibly interact, according to the static inter¬
action metric interacts?. Backtrack point; all interaction orderings
need to be considered.

1.5 Conflict Resolution: Add orderings, bindings and/or secondary (pre¬
servation) preconditions to resolve conflicts between the steps of the
plan, and the plan's monotonic auxiliary constraints. Backtrack point;
all possible conflict resolution constraints need to be considered.

2 Consistency Check (Optional). If the partial plan is inconsistent (i.e, it has
no safe ground linearisations), fail. Else continue.

3 Recursive Invocation. Call Refine-Plan on the refined plan.

Figure 3.5: Generalised plan-space planning algorithm (after [Kambhampati et al 95])
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Definition 3.8 (All-sol) Given a partial plan V, return success only when all ground
linearisations of the plan are:

• safe, and

• satisfy all the PTC's.

A ground linearisation G is said to satisfy a PTC (c@t) if there exists a step t' before
t (t' could be t0), such that the operator ST(t') has an effect c and for every step t"
between t' and t in G, ST{t') does not delete c.

According to [Kambhampati et al 95, Page 189], 'the solution constructors used by
most existing planners correspond to some implementation of all-sol.''

3.4.4 Applying the Framework to Classical Planning Systems

The reward of setting up this formalism is its modularity; it now becomes possible to

describe individual planning architectures by specifying the way in which they behave
at each point in the architecture. Kambhampati's summary of how existing plan-space

planners can be categorised is shown in Figure 3.6 on the next page.

From this we can see, for instance, that while some planners implement a solution

constructor function by explicitly checking the conditions of an MTC, others use pro¬

tection strategies to guarantee that solutions exist. These protection strategies are

facilitated by bookkeeping steps, of which the main varieties are interval protection
and contributor protection.

Protection strategies are easy to characterise using the auxiliary constraints introduced
earlier. For example, consider the act of adding a step t to a plan to provide some goal

p for another step t'. Interval protection of this goal would then involve the posting

of a constraint that prevents any other steps from deleting p between t and t'. This
is simply modelled by adding the IPC (t,p,t'). Contributor protection, on the other

hand, further specifies that p cannot be added by any other steps between t and

This is modelled by adding the extra constraint (t, ->p, t')

Other important differences are revealed in the possible tractability refinements used

by planners. Since checking whether a plan has a safe ground linearisation requires ex-



Planner

Soln.Constructor
GoalSelection

Bookkeeping

TractabilityRefinements

Tweak[Chapman87]

MTCbased0(n4)
MTC-based0(n4)
None

None

UA[Mintonetal91]

MTCbased0(n2)
MTC-based0(n2)
None

Unambiguousordering

Nonlin[Tate77]

MTC(Q&A)based
Arbitrary0(1)
Interval&GoalProtection
ConflictResolution

Tocl[Barret&Weld93]
Protectionbased0(1)
Arbitrary0(1)
ContributorProtection
TotalOrdering

Pedestal[McDermott91]
Protectionbased0(1)
Arbitrary0(1)
IntervalProtection

TotalOrdering

Snlp[McAllester&Rosenblitt91] Ucpop[Penberthy&Weld92]
Protectionbased0(1)
Arbitrary0(1)
ContributorProtection
ConflictResolution

MP,MP-I[Kambhampati92]
Protectionbased

Arbitrary

(Multi)contributorprotection
Conflictresolution

tq

rO Co

q § Q

tr-i i—i
H

tq tq

> H

<3

Pi

tq

Figure3.6:Characterisationofplan-spaceplannersasinstantiationsofRefine-Plan.Thenusedinthecomplexityfiguresisthenumber
ofstepsinthepartialplan.([Kambhampatietal95,Page26])

Oi



CHAPTER 3. PLANNING LITERATURE 52

amining a potentially infinite number of ground linearisations, the task is intractable.

One way to avoid explicitly enumerating all of these, however, is to utilise pre-ordering

refinements. [Kambhampati et al 95, Page 196] describes total ordering and unam¬

biguous ordering as follows:

Total ordering orders every pair of steps in the plan, while unambiguous
ordering orders a pair of steps only when one of the steps has an effect c, and
the other step either negates c or needs c as a pre-condition (implying that
two steps may interact). Both of them guarantee that in the refinements
produced by them, either all ground linearisations will be safe or none will
be (in the case of total ordering, this holds vacuously true since the plan
has only one linearisation). Thus, consistency can be checked in polynomial
time by examining any one ground linearisation.

Another possibility here is conflict resolution, which attempts to replace the auxiliary

constraints of a partial plan with equivalent ordering and binding constraints. When all
conflicts are resolved in this way, the resulting partial plans will 'have the property that
all their ground linearisations are safe...Thus, checking the partial plan consistency will
amount to checking for the existence of ground linearisations' [Kambhampati et al 95,

Page 33]. For more complete descriptions of this, and other details on classical plan¬

ning, readers are referred to [Kambhampati et al 95].

3.5 Summary

We have looked at classical planning systems and presented a formalism within which

they can compared and contrasted. As well as providing a unified and coherent back¬

ground, this formalism will be useful later in the thesis when we come to describe some

of the techniques used by Finesse for planning in the game of Bridge.



Chapter 4

The Bridge Search Space Size

Factorials were someone's attempt to make math look exciting.
— Steven Wright

In Chapter 2 we examined some of the techniques that designers of computer Bridge

programs have used to control search (rule-based systems, tactics, decomposition into

sub-problems, and exhaustive search on double-dummy sub-problems). The Finesse

system uses what could be described as the knowledge-based approach of decomposing
the problem into card combinations and then restricting the possible actions to a set of
tactics. In this chapter we present a justification for this by analysing the typical search

space size for a Bridge card play problem. This analysis is based on the calculation of
the number of possible legal play sequences (lps's) in a slightly generalised version of

Bridge, where the deck of cards contains four suits of N cards each, so that each player
starts the game holding N cards. We use our results to assess the relative potential
of knowledge-based and brute-force approaches to the game, and also speculate on the
future of Bridge playing programs in general.

We proceed as follows. In §4.1 we establish some very basic upper and lower bounds
on the search space size. §4.2 then introduces the concept of shape, which we make use

of in §4.3 to improve our lower bounds both in the situation where all the cards are

visible and then under the more normal assumption that two hands are unseen. We

also interpret these results, suggesting that Bridge may be more amenable to solution

by knowledge-based rather than brute-force approaches. In §4.4 we then examine the

special case of double-dummy Bridge, and §4.5 gives a summary.

53
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4.1 Preliminary Estimates
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We begin by making some simple observations which allow rough upper and lower
bounds on the number of lps's to be established. In fact, an upper bound is easily

produced by just noticing that the highest possible number of cards that a player may
choose from on any one round is equal to the total number of cards he holds. Thus,

if we can construct a situation where each player has this freedom on every round

(no matter what the distribution of the unseen cards), we can be sure that this will

produce the largest possible search space.

Such a situation does in fact occur when one player is dealt a complete suit of cards.

Assuming that this player retains the lead throughout the play, the final three players
on any trick will always be void in the suit which is led, allowing their contribution
to the trick to be made from a free choice amongst their remaining cards. Since the

player who leads is also free to play any card from his complete suit, there are A4 ways

to play the first trick, (A — l)4 ways to play the second, (A — 2)4 for the third, etc.
An upper bound on the number of lps's is therefore (A!)4, which when A is 13 as in
actual Bridge, gives approximately 1.50 X 1039.

A lower bound of A!, (or 6.28 X 109 for Bridge) can be produced by a similar argument,
this time simply ignoring any choices that the final three players on a trick may have,

and taking the free choice of the first player to be the sole contribution to the number
of possibilities.

Values for the number of lps's when two hands are unknown can be produced by

assuming that these bounds on the number of lps's hold in each of the possible game

states reached by dividing the unknown cards between the two unseen hands. Since
there are2iVCV ways of carrying out this distribution, the upper and lower bounds in

Bridge are 1.56 X 1046 and 6.48 X 1016 respectively.

Being general bounds on the number of lps's in an arbitrary Bridge card play problem,
these bounds are rather loose. A more realistic solution would capture the tendency of

the search space to increase with the skewness of the card distribution. In particular

it seems that the lower bound on the number of lps's severely underestimates the

contribution of particularly uneven distributions. Below, we develop a more realistic
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formula for the number of lps's in a given situation, making use of the Bridge notion
of the shape of a hand.

4.2 Shape

The shape of a hand is simply the number of cards it contains in each of the four suits

4t, D, <), and 4k. When discussing Bridge problems, it is common to describe a player's
hand by talking about its shape, since this allows a basic amount of information to be

conveyed quickly and efficiently, without resorting to naming each card individually.
The following hand, for example, can be easily characterised as having a 4-4 — 4 — 1

shape.

* A K Q J
9 8 7 5

0 A Q 6 2
*4

We can make use of this concept of shape to derive a new lower bound on the number
of lps's possible in a given situation. To do this we first look at the number of choices

open to one player whose hand is of shape Si — S2 — S3 — S4.

Figure 4.1 shows the choices that can be made by this player during the play of a
hand. The root node of the tree describes the initial shape, and the nodes at the
second level represent the possible shapes that may be reached after one trick. Since

advance knowledge of the suit which will be led at the start of each trick is impossible,
four arcs emanate from the root node, the first representing the transition that takes

place on a 4 lead, the second on a 9 lead, the third on a 0, and the fourth on a 4k.
The labels attached to these arcs indicate the number of choices open to the player in
each of these circumstances.

If we make the conservative assumption that there is no point in the game at which
the player wins the lead, the cards that are chosen by the other players to begin each
trick will determine a path through the tree of alternatives. The number of choices
made by the player in following this path will therefore be the multiple of all the labels
attached to the path's branches.
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Figure 4.1: Choices and resulting shapes for a single player

It is fairly easy to show that is a lower bound on the value of this number
of choices. If the path through the tree involves no nodes at which the player is void
in the suit which is led, then the number of choices he makes is obviously £x!£2!£3!£4!,
since at the end of the game he has no remaining cards, and has therefore made £x plays
in the spade suit, S2 in the heart suit, etc. If, on the other hand, tricks are initiated

by cards of a suit in which the player is void, we can still show that £i!£2!£3!£4! is
a lower bound for the number of eventual choices. For example, consider the node in

Figure 4.1 at which the player's shape is 0—£2—£3—£4. If a spade is led at this point,
there are £2 + S3 + £4 alternative choices for the player, since he may choose any of

his S2 cards in the heart suit, or one of his S3 cards in the diamond suit, or one of his

£4 cards in the club suit. However, notice that each of the shapes that can be reached

by following this branch is duplicated on one of the branches representing the other

possible leads. Since the contributions of these other branches to the total number of
choices are just £2, S3 and £4 respectively, we can prune the spade branch, effectively

replacing its S2 + S3 + £4 choices by either S2, £3 or £4. By repeating this pruning

argument at all nodes where the player has zero cards in some suit, the only remaining
paths will be those in which there are £4!£2!£3!£4! choices, and all the pruned paths
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will have at least this number of choices.
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4.3 Tightening the Bounds

To use the above argument on shapes to produce a better estimate of the number of

lps's in a given Bridge game, it is simply sufficient to note that the number of lps's is

just the product of the choices faced by each of the four players. Thus, if we define
as follows:

the number of cards held by player i in suit j,
__ where i = 1 • • *4 are the players' hands, and

j — 1 is the 4b suit, j = 2 is
j = 3 is <0>, and j = 4 is 4k.

the number of possible lps's is given by the formula:

ri sij', (4.1)
i fj= 1

which in Bridge achieves its maximum (1.50 X 1039) when all the players hold one

complete suit, and its minimum (7.22 X 1014) when each player holds 4 cards in one

suit and three in all the others. Comparing these figures with the bounds from §4.1

(1.50 x 1039 and 6.23 x 109) we can see that although (4.1) provides us with the same

upper bound, its lower bound is significantly tighter. We therefore now go on to utilise
this new bound in the general situation where there is incomplete information.

4.3.1 Factoring in the Number of Possible Deals

Using (4.1) as the lower bound on the number of lps's when the shape of all four hands
is known, we can attempt to calculate the minimum number of lps's in the normal
situation where just two hands are known. Let us assume that the hands which are

visible are described by the values 5^, for i = 1,2 and j = 1 • • - 4. If we let S denote the
set of possible shapes which respect this constraint and number(s) denote the number
of card distributions which have shape s £ S, the formula for the number of lps's can

be written as:
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4

^~^number(s) ]j[ Sjj!.
s €«S i ,j= 1

Now, number(s) is just the number of ways of distributing the cards not present in
the visible hands to produce the shape s. If we write the number of cards remaining
in suit k as the constant Nk = (N — Sn — 52fc), the number of ways of assigning s3k

cards to player three in suit k can be written as:

N„r - N"1
S3k*(Nk ~ $3k) •S3fc!'54J:!

The number of ways of producing a given overall shape is therefore:

number(s) = TT —^\k' ,

k= 1 *^4k •

and the total number of possible lps's becomes:

E IIp^IIvs€S \k= l S3k-S4k- ij_!

s£S i=lj=l

=
. (4.2)

i=1 j= 1

where | S | denotes the size of the set S, (i.e., the total number of possible shapes,

given that two hands are fixed).

To produce a numerical value from this formula we require a way of calculating the

value of | <S |. Below, we therefore derive an expression for this, by first examining
the number of shapes that an individual hand may take when being dealt cards from

a complete deck, and then considering how many of these shapes become impossible
when the number of available cards is reduced to Nk in each suit.
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4.3.2 The Number of Possible Shapes of a Single Hand
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Figure 4.2 shows how N cards may be dealt to a single player from a 4-suited pack of
cards containing N cards per suit. In the first suit, the player may have any number
of cards from 0 to TV (represented by the arcs branching from the root node). Dealing
a certain number of cards in this suit, however, restricts the number which can then

be dealt in the second suit. If no cards are dealt in the first suit, there may obviously

again be up to N cards in the second suit, but if one card is dealt in the first suit, the
maximum number of possible cards in the second suit drops to IV — 1 (since otherwise,
the hand would contain more than N cards). The branches at the second level of the
tree in Figure 4.2 show how this pattern continues, until the maximum number of cards
in the second suit finally decreases to 0 when the number of cards in the first suit is

N. A similar pattern occurs on the third level of the tree (representing the number of
cards possible in the third suit), with the number of alternatives decreasing as the sum

of the cards already allocated becomes larger. Finally, at the bottom level of the tree,

the number of cards in the final suit is uniquely determined by the restriction that the

player's hand must contain N cards in total.

\N-1 \N-1

. 0 N-l 0 N-l N-2 . 0 N-2 N-3

V—

(N+1) +... + 1

V

(N-1) + ... + 1 +•• + 1

Figure 4.2: Number of ways to produce shapes for a single hand

Each possible path through the tree, then, describes one of the shapes that a single

player's hand may take (for example, the leftmost path represents the shape 0—0—0—A),
and summing all the possible paths will give us the total number of possible shapes.

At the base of the tree, branches with a common root at the second level have been

grouped together and annotated with a term describing the number of branches in the



CHAPTER 4. THE BRIDGE SEARCH SPACE SIZE 60

group. From this it is clear that the number of paths with n cards in the first suit is:

N-n+ l

E i-

The total number of paths is therefore:

jv+i j

EE;

iU ± i)
2

(4.3)

In Bridge, where N is 13, the number of possible shapes for an individual hand is

therefore 560.

4.3.3 The Number of Possible Shapes of The Unseen Hands

How does (4.3) help us to find the size of the set <S? Well, notice that when assigning
the 2N unknown cards to the unseen hands, specifying the shape of just one hand
will also completely specify the other. The number of possible shapes that the unseen

hands may take is therefore equivalent to the number of shapes for a single hand

when dealing from a pack with Nk cards in each suit, where Nk, N?, N3, N4 < N, and

Ni + N3 + N3 + N4 = 2N. The possible shapes which may be produced in this scenario

are therefore a proper subset of the possible shapes in Figure 4.2, since the reduction
of the number of available cards will make some of the branches in this tree impossible.

For example, if Nk < N, all the root-node branches from Nk + 1 up to IV will no longer

be possible. We will call the number of branches pruned by reducing Nk in this way,

D(Nk). Its value is given by the following:

N-Nk j
= E E;

1 JV-JVfc

=

2 S M +

j=1 2—1

I N-Nk



CHAPTER 4. THE BRIDGE SEARCH SPACE SIZE 61

(N — Nk)(N — Nk + l)(N — iVfc + 2)
_ (4_4)

The total number of paths which are pruned by reducing the number of cards in
each suit to Nk, however, is not simply J2t=i D{Nk), since this expression may count

more than once any shape that is pruned when there are insufficient cards available in

more than one suit. (For example, the shape 6-6-1-0 will contribute twice to this sum

whenever both Nk and N2 are less than 6). To rectify this, we will define I(Nk,Ni) to
be the number of shapes which become impossible both when suit k is reduced to Nk

cards and when suit I is reduced to iV, cards (in other words, the number of shapes
with more than Ni cards in suit I that are counted in the calculation of D(Nk)). The
value of I(Nk, iV() can be calculated as follows:

N-Nk-N,~ 1

I(Nk,N,) = (N-Nk-N,-i)i
i=1

N-Nk-Ni-1 N-Nk-Ni-1

= (N-Nk-N,) i~ £ <2
i=l i=1

(N-Nk-N,-l)(N-Nk-Ni)(N-Nk-Ni + l) if j\Tfc + iV, < iV - 1
0 otherwise. (^-^)

It is possible to show that with 2N cards remaining there are no shapes which can be

pruned three times, so that the formula for the total number of shapes is:

\s i= (A, + 1)(A,6+2)(Af + 3) - ± +1 ± «,)■ (4.6)
k= l k= ll=k+ l

To see this, consider the conditions that must hold if a shape s'j — s'2 — s'3 — s'A is to be
pruned three times. Let us say that the three suits in which Nk < s'k are those given by
A: = 1,2,3. The inequality Ni + N2 + N3 < + s'2 -f Sg — 3 must therefore hold. Since

5i +s2 + 53 must in turn be less than or equal to N, we can write Nk + N2 + N3 < N — 3.
In our situation of distributing the final 2N cards between the opponents, having N — 3

cards available in three suits would require there to be N + 3 in the final suit. This,
of course, cannot occur, since each suit only contains N cards when complete, and
therefore the situation where a shape is pruned three times is not possible.
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4.3.4 The Incomplete Information Search Space in Bridge

Given a particular Bridge position, the shape information on the visible hands can be

substituted into (4.2), (4.4), (4.5), and (4.6) to find the lower bound on the number
of lps's. Using a Prolog program, we did this for all the possible compatible shapes

which two visible hands could take. Also, for each of these assignments of shapes, we
calculated the number of ways in which a standard pack of cards could be dealt to

fit the constraints. In Figure 4.3, we present the results of this program in the form
of a graph where each point represents the number of deals for which a specific lower

bound was returned by our equations. As one might expect, the most common deals

(at the right hand side of the graph) have relatively low search spaces (the lowest value
is 9.91 X 1022), and as the value of the lower bound increases the number of deals for
which this bound holds also goes down. It is interesting to note that the relationship
between the lower bound and the number of deals having this bound appears to be

roughly linear (with a negative coefficient).

Interpretation

We can use the graph of Figure 4.3 to speculate on the likely prospects of computer

Bridge programs. For instance, consider Figure 4.4 on Page 64 in which Allis 'very

crudely' details the number of search space positions in the games which appeared in

the 2nd Computer Games Olympiad.

Note that this table is concerned with the number of positions in each search space.

In many games, the number of lps's isn't finite, because of loops, so it makes sense to

talk instead about the number of search space positions as a measure of difficulty. In

Bridge, however, there is a finite number of legal play sequences, because each sequence

is only 52 moves long. Since we can count the number of legal play sequences, we have
a lower bound on the number of nodes in the actual game tree. We can argue that this
is close to the number of positions in the search space because firstly the exponential

nature of the tree means that the number of nodes at the final level make the largest

contribution to the total and secondly, there are some 'identical' nodes in the space,

which reduce the total number of search space positions.
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Lower bound
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Figure 4.3: Log-scaled graph of search space lower bound against frequency
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Game 10log of positions in search space

Nine Men's Morris 11

Awari 12

Connect-Four 14

Backgammon 19
Checkers (8x8) 20

Qubic 30

Othello 30

Bridge 30

Draughts (10 X10) 35

Go (9x9) 35

Chinese Chess 45

Chess 50
Go-Moku 105

Renju 105

Scrabble 150

Go 170

Figure 4.4: Estimated search space complexities [Allis et al 91, Page 236]

Given this, we can see that our graph of Figure 4.3 is in broad agreement with Allis'
estimated figure for Bridge of 1030. However, it adds the dimension of visually demon¬

strating that the number of possibilities depends upon the starting position and also
that lower search space sizes are more likely. We can therefore broadly reinforce the

claim which Allis makes based on his figures that Bridge playing programs will at best
be performing at Grand Master strength by the year 2000.

One remarkable fact about Bridge which these figures highlight is the extraordinary

ability of humans to play the game. Although we would not expect a computer to be
able to search the size of space discussed above, this is precisely the ability displayed

by human players! In Checkers, with a comparable search space size, no player (human
or otherwise) can sit down at the table at the beginning of a game and announce that

they have decided upon their best moves through to the end. However, this is in fact
what human declarers do in Bridge, forming and comparing complete strategies in a

matter of tens of seconds before playing to trick one.

Explaining this human ability to effectively search such a large space so quickly may

well be the key to understanding the poor performance of computer Bridge programs
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to date. One possibility is that human declarers achieve this by employing the com¬

mon problem-solving strategy of splitting the initially complex problem into several
smaller sub-problems which are then worked on independently. This is the approach
taken by Finesse, which separately tackles the sub-problems of the play of the card
combinations in each individual suit, as discussed in Chapter 2.

We suggest that in Bridge it is the presence of a natural decomposition into sub-

problems, combined with the ability of humans to learn techniques for reasoning about
the dependencies between sub-plans, that makes computers appear to be poor at

Bridge. In games like chess and checkers, where such decompositions are difficult
to identify, both humans and computers achieve limited lookahead (the computer by
sheer brute force, humans by recognising promising patterns and areas of the search

space), and the gap in performance is now being closed. In Bridge, however, limited
lookahead is comprehensively outclassed by any human opponent who can project play

through to the crucial end stages of the play by considering how plans for each suit
can be pieced together. Indeed, faced with such a human opponent, it is questionable
whether brute-force lookahead over the number of lps's indicated above will ever prove
to be competitive. For instance, recall from §2.5 the analysis of the team designing the

Chinook checkers playing program [Schaeffer et al 93a]. They cite an instance from a

match against the World Champion Marion Tinsley, where chinook played its 10th
move and on the basis of a 17-ply search claimed a small advantage. However, the

game was lost in 35 moves and afterwards Tinsley revealed that 'on move 12 he had
seen to the end of the game and knew he was going to win'. The best estimate of
the Chinook team was that this feat involved 'selective searches of over 60 ply'. In a

game such as Bridge with a comparable search space size and human opponents that
are regularly able to project the play through to its conclusion, such occurrences will

surely be even more likely.

A (presumably knowledge-based) system capable of forming complete global plans by

handling multiple sub-plans and reasoning about their interactions may fare better,
but it should be pointed out that this approach poses serious complications. A large

proportion of AI planning research has concentrated on simple blocks-world-like do¬
mains [Fikes et al 72], [Sacerdoti 74], with no concept of an opposition, or of actions
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with multiple possible outcomes [Wilkins 88]. Even in these simple domains, the 'mul¬

tiple goal plan optimisation problem' (of which declarer play is an example) is NP-hard

[Nau et al 91]. Given this, the lack of progress on a domain with a search space as large
as that of Bridge is hardly surprising.

4.4 Double-dummy Bridge

In Chapter 2, we noted that some authors have tried to simplify the task of automating

Bridge card play by solving the simpler double-dummy situation, where all the players
reveal their cards to each other.

One obvious way to assess the feasibility of creating a fast double-dummy solver is to

produce some measure of the search space size typically involved in such a problem. It

turns out that this question has been tackled by other authors with arguments about
the number of lps's that may occur. Berlekamp, for example, claims that 'for most

deals, the size of the complete tree of legal moves is about 1020' [Berlekamp 63]. Levy,

however, argues that the number is 'somewhat less, nearer to 1016', presenting an

argument which leads to an estimate of 1015 7 [Levy 89]. Levy goes on to point out
two types of errors in his method of estimation, one of which tends to over-estimate

the answer and the other to under-estimate. Confusingly, he then states his belief
that 'these errors would cancel each other out to the extent that 10157 is more likely

to be an upper bound than it is to be a lower bound'. Clearly, 10157 cannot be an

upper bound, since we have already seen from (4.1) that the number can be as high
as 1.50 X 1039. However, such a large lower bound is of course very unlikely to occur.

More useful than a simple lower bound, then, would be a lower bound on the expected
number of lps's in a randomly generated double-dummy problem. Below, we adapt

our previous analysis to produce an answer to this question.

4.4.1 The Expected Number of Legal Play Sequences

Let us again consider a four-suited pack of cards with N cards per suit. The total
number of possible deals is (41V)!/(Ar!)4. Let us consider one particular deal in which
the cards are distributed with shape s{j for i, j = 1 • • -4. If we look at just the cards
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in one suit, say spades, then the number of ways to deal player l's holding is:
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N°°11 sn\(N — 5U)! '

and the number of ways of dealing the remaining (N — sn) cards in the suit to player
2 is:

N-sllr _ (N ~ gll)'
521 s2i\(N - sn - s21)!

The number of ways of dealing the spades to the remaining players can be expressed in
the same way, and multiplying these expressions together to find the number of ways
in which the suit can assume a given shape produces:

N!

*^11 !*^21 *^31 *^41 •

The number of deals which can assume the shape Sij for i,j = 1 • • -4, then, is:

(AH)4
n-i=iV

(4.1) already gives us a lower bound on the number of lps's for a deal with a given

shape, so if we let S' be the set of possible shapes that an entire hand may take, a lower
bound on the expected number of lps's in a double-dummy problem may be derived as

follows:

Lower Bound = 2 Prob(s) JJ Sij\
s£S' i ,j= 1

^ number of deals of shape s -jij- (
total number of deals .A-*-, 13'

i,j = 1

V- (iV!)7n-,=1^! A
(4N)\/(N\y 1W

v (JV!f
k$' (4N)l
(JV!)8 ,

(4N)\
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To find the total number of possible shapes, we resorted to a brute-force programming
solution and, for N = 13, produced the value 3.75 X 107. (4.7) therefore gives us a lower
bound on the expected size of a double-dummy problem in regular Bridge of 1.05 x 1018.
This falls midway between Berlekamp's estimate and Levy's 'upper' bound.

4.4.2 Interpretation

The lower bound which (4.7) places on the expected size of a double-dummy search

problem at least suggests that Levy's estimate of the number of double-dummy searches

possible per second may need to be revised downward by a factor of a hundred or

so. This rather undermines his argument that the use of various heuristics and the

alpha-beta algorithm with killer heuristics could reduce the 1015 ' nodes of each double-

dummy search space to a practically manageable number.

However, it is, of course, difficult to formally analyse the effects of some of the search

reduction techniques that may be applicable. For instance, Levy argues that 'the real

improvements in search' in Bridge will come from 'the nature of the problem', since
some of the most skewed distributions where the search space is apparently highest are

also the easiest in practice to play. (For example, when a player holds a complete suit
of cards, his choice of play on each round is actually immaterial, as he can play the

cards in any order without affecting the result.)

Unfortunately, the possible benefits of such considerations also remain unproven in

practice. To date, Berlekamp [Berlekamp 63] and Wheen [Wheen 89] have produced

programs that work in a matter of minutes for end-game situations where each player
holds a reduced number of cards, but which take at best in the order of hours for

complete hands. Ginsberg, however, has recently reported some success, claiming in

postings to the Internet Usenet group rec.games.bridge a reduction in the average

branching factor for the number of possible options on each move to 1.27, thus enabling
a single hand to be analysed in 'about thirty seconds'. It is unfortunate that, at the
time of writing, very few details about Ginsberg's system are available, making close

analysis impossible.
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4.5 Summary
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We have looked at the search space size in Bridge, initially establishing simple upper

and lower bounds, and then producing a detailed analysis utilising the concept of
the shape of a hand. Our analysis suggests that Bridge programs using a brute-force

approach may find it difficult to compete with human players.

We also examined the special case of double-dummy Bridge, establishing a lower bound
which was higher than that suggested by some other authors. We will return to the no¬

tion of using fast double-dummy solvers as the basis for a Bridge program in Chapter 6,
where we will discover that it suffers from rather more serious shortcomings.



Chapter 5

Proof-planning:
Solving Independent Goals using
Tactics and Methods

'Now,' said Rabbit, 'this is a Search, and I've Organised it -'
'Done what to it?' said Pooh.

'Organised it. Which means - well, it's what you do to a Search, when you
don't all look in the same place at once.'

— A. A. Milne
The House at Pooh Corner

In the beginner's mind there are many possibilities, but in the expert's
there are few.

— Shunryu Suzuki

In this chapter, we begin the description of the finesse system itself, starting with
the pre-planner and the planner modules. A basic framework for these modules was

developed previously as an MSc project [Frank 91], producing legal play sequences for

single-suit Bridge problems. In the course of incorporating this into a larger system

capable of planning complete games of Bridge, however, a substantial amount of modi¬
fication became necessary. This chapter describes both the surviving portions of the

original and these modifications.

The main feature to have survived intact is the notion, borrowed from proof-planning,

of using tactics to specify the possible operators that can be applied at any stage of the

plan. The features that have been either enhanced or newly introduced fall broadly
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into the following categories:
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• Representation. Simplifications were made to the representation of the plan
structure itself, and to the representation of the preconditions under which each

tactic could be used.

• Efficiency. The performance of the planning algorithm was improved, both as

a result of the above representation changes and also by the introduction of a

'history' mechanism for reducing duplication of effort.

• Interface. We introduced a front-end capable of generating a graphical rendition
of the planner's output, and also of tracing the planner's operation. This proved
a significant aid in the debugging of the system.

A further addition to the original system was an algorithm for identifying the best
choices from among the play sequences generated by the planner. However, it transpires
that this problem is very subtle and we will therefore describe it later, in a chapter of
its own. Here we just concentrate on the basic problem of identifying and representing
the possible legal play sequences.

We proceed as follows. In §5.1 we introduce the proof-planning paradigm and motivate
its application to the game of Bridge. In §5.2 we then identify the commonly occurring
tactics for the declarer in single-suit Bridge situations, and in §5.3 we look at how the

opponents may respond to such tactics. §5.4 examines how the preconditions of Bridge
tactics can be represented as methods, and §5.5 then shows how these methods can be
used in a planning algorithm. We then go on in §5.6 to examine the interface to the

planning system, and also, in §5.7, to look at some efficiency issues. Finally, §5.8 gives

a summary.

5.1 Proof-Planning

The technique of proof-planning has been developed by the Mathematical Reasoning

Group at Edinburgh University to find proofs for mathematical theorems [Bundy 88,

Bundy 91]. The basic task in proving a given theorem is to construct a proof tree link¬

ing the theorem to some known axioms, via rules of inference, such as the decomposing
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of a hypothesis, or the cutting in of a new assumption. This task may be approached

by starting with either the theorem to be proven and working backwards, or with the

axioms and working forwards. In Edinburgh it is tackled as a decomposition process,

so in our diagram of Figure 5.1 we place the theorem to be proven at the top of the tree.

Employing the planning terminology introduced in Chapter 3, proof-planning involves

a state-space search and produces a plan in a state-space representation. Notice that

any particular rule of inference in this space may give rise to a number of subgoals,

all of which must be proven if the inference rule is to be successfully applied. This is

represented in the diagram by the use of circular 'AND' nodes.

Theorem

Axiom

Axiom Axiom

Axiom Axiom

Possible rules of inference

Conjunctive subgoals

"g

Figure 5.1: The state-space search in theorem-proving

Rather than search this actual space, which is potentially infinite in size, the proof-

planning paradigm restricts the operators available at any point to a specified set

of possibilities, which are encoded as programs that construct proofs in the spirit of
LCF tactics [Gordon et al 79]. The preconditions and postconditions of these tactics
are in turn specified in a meta-language to form methods, so that planning consists
of combining these methods by reasoning about their specifications. In practice, the
meta-level search space formed by reasoning with the method specifications focuses the
search within areas where it is more likely to succeed. The average branching factor
at the nodes of this space is reduced by many orders of magnitude over that of the
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object-level space, where proof construction consists of applying the primitive inference
rules.

As we saw in the previous chapter, the search space in Bridge card play, like that
of mathematical theorem-proving, is very large — certainly too large to be exhaust¬

ively searched by humans. This, however, has not prevented experts from becoming

remarkably adept at navigating these spaces, building up a large variety of techniques
that they can draw upon to successfully manoeuvre within them. The success of proof

planning by declaratively capturing such human problem solving strategies in theorem-

proving [Bundy et al 91] was the main motivation for wanting to apply the same tech¬

niques to Bridge.

This motivation was further reinforced by the resemblance between the search spaces

of theorem-proving and of Bridge declarer play: whereas theorem-proving requires

repeated applications of rules of inference to a theorem until axioms are reached, the

course of a game of Bridge proceeds with the playing of individual cards until none
remain. This analogy is illustrated in Figure 5.2.

Possible card plays

Responses by opponents

Q

State of play

Figure 5.2: The state-space search in Bridge card play

The square nodes now correspond to states of play rather than theorems to be proven,

and the branches at the circular nodes represent the possible responses which the
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opponents may make to the declarer's possible actions. Thus, Bridge card play and
theorem proving share a basic similarity in form.

5.2 Bridge Tactics

In Bridge, the most basic operation on the state of a game is the play of a single
card. Rather than planning the play by considering all the possible combinations of

these cards, however, any human declarer will look for commonly occurring patterns

that fit the current situation. As suggested above, the size of the search space in

Bridge card play can be reduced by specifying such patterns as tactics and restricting
the declarer's options at each stage of planning/play to a pre-determined set of such

possibilities, Here, we review the tactics for No Trumps, single-suit situations which
were identified as part of the original Finesse project. We illustrate each tactic with a

few single-suit card combinations, assuming in each case that South is the declarer, so
that North's cards are laid on the table and are played by South. Also, we will use an

'x' to represent an arbitrary low card. It should be noted that the majority of the text

describing these tactics is taken, with minor edits and corrections, from [Frank 91].

5.2.1 Cashing

Cashing is probably the simplest, and most intuitive of all the tactics used by human

Bridge players. Whenever the declarer holds any masters — cards that are higher than

any held by the opponents — in a particular suit, he may cash one by leading a low

card towards it, or by leading the master itself. In a No Trumps situation, an attempt

to cash a master will always succeed, since it cannot be ruffed. As examples, consider

the situations of Figure 5.3 on the next page.

The first of these examples is simple: there is one master and one low card, so the
obvious (and only) choice is to cash the Ace. In the second example, declarer has two

masters, so a decision has to be made: which card should be cashed first, the Ace or

the King? It is clear that attempting to cash the Ace first would be a mistake, since
the King would also have to be played on the same trick, leaving declarer with no

masters on the subsequent round. Cashing the King is therefore the correct play. In
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A K A K

N 1
W E

S

N
W E

S

N
W E

S

x Ax Q J

Figure 5.3: Card combinations in which declarer can cash winners

the third example, declarer has four masters but can only cash two of them due to a

shortage of length.

Most Bridge books are full of 'explanations' of card play techniques in the same

'example-driven' vein as those presented above. With the possible exception of com¬

puter learning systems however, this kind of 'knowledge' is not in a very suitable form
for incorporation into computer programs. One of the major challenges of the original
Finesse system was to convert all the expertise contained in book examples into rules
that could be expressed as essentially declarative Prolog code. For example, the first
situation above would suggest the rule 'If you have a master, cash it'. Considering
the second situation would lead to a refinement such as 'Any master can be cashed

provided the opposite hand has a lower card which is not a master (or is void)'. Then
the final situation calls for the relaxation that 'If declarer's longest hand in the suit is
shorter than the number of masters, a master may be cashed even if the lower cards
in the opposite hand are also all masters'.

This task of deciding the rules that govern the applicability of each tactic, however,
is properly the job of the methods. We will describe these more fully, and give some

examples, in §5.4. Here we just concentrate on identifying the possible play patterns.

5.2.2 Finessing

Finessing situations occur when the declarer is trying to develop extra tricks, and are

based on the elementary principle of card play that the best results can be obtained by

forcing an opponent to play ahead of you. A simple illustration is that of Figure 5.4.

Here, it is obvious that the declarer will win one certain trick (in a No Trumps situation)
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A Q

N
W E

S

2

Figure 5.4: A simple card combination allowing a finesse

when he plays the Ace. However, if he were to play this card first, his only chance of

making two tricks would be if one of the defenders held the singleton King, so that it
would fall when the Ace was played. Thus, the cashing of the Ace succeeds in winning

two tricks in only two of the possible 210 distributions of the outstanding cards.

There is, however, another way in which two tricks could be made in the suit: if the

King is held by West, and if West can be compelled to play before the North hand.
To take advantage of this possibility, the proper procedure is to enter the South hand
and lead the two. If West now plays the King, it is beaten by the Ace, and a second
trick can be won on a later round with the Queen. If West keeps the King, the trick

can be won by playing the Queen from the North hand. Of course, if East holds the

King, dummy's Queen will lose this trick, but in this situation declarer's only chance of

making two tricks would have been to hope that East's King was singleton, so that it
would fall when the Ace was cashed. Clearly, the chances of success offered by inserting

the Queen are better than this, since it brings in two tricks whenever West holds the

King, a 50/50 chance.

Again, however, the Bridge literature on this type of play is long on examples and short
on concrete specifications. As part of the original FINESSE system, the wide variety
of finesses found in the literature was divided into a number of broadly distinct types.

Perhaps surprisingly, it was found that just four categories were sufficient to describe
all the examples which were encountered. We describe these below, after establishing
the following terminology:

• Finesse Card. A card with which declarer tries to win a trick, even though it is

not a master (in the above example, this was the Queen). Since the finesse card
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is never a master, at least one of the defenders will hold a card that can beat it.

Any such card is a card that is being finessed against.

• Lead Card. A card which declarer leads in order to initiate the finesse.

• Cover Card. A card in the third hand capable of beating at least one of the cards
that is being finessed against. Unlike finesse cards and lead cards, possession of
a cover card is not a necessary prerequisite for all the types of finesse.

Type 1 finesses

In this type of finesse (probably the most common of the four) the finesse card is

accompanied by a cover card in the same hand (a combination often referred to as a

tenace). Any card from the hand opposite the tenace that is lower than the finesse
card can be used as a lead card. The example of Figure 5.4 was a Type 1 finesse, in
which declarer attempted to win an extra trick with the Queen by leading a low card
towards it from the South hand.

Type 2 finesses

In Type 2 finesses, the lead card is the finesse card, and the hand opposite must contain

a cover card, as in the situations of Figure 5.5.

K 4 2 A K 9 4 A K 4 2

N
W E

S

N
W E

S

N
W E

S

A J 10 J 10 2 J 6 3

Figure 5.5: Card combinations allowing Type 2 finesses

In the first two of these examples the Jack or the 10 may be used as the finesse/lead
card. In each case, the card that is finessed against is the Queen, and the hand opposite
the Jack and 10 contains a cover card for this.
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In the third example, however, the lead of the Jack would be improper, because even

if West holds the Queen he will presumably cover and now one of the opponents must

win a trick with the 10. This leads us to propose the restriction that declarer must

hold at least one card immediately above or below a Type 2 finesse/lead card.

Type 3 finesses

In this type of finesse, no cover card is required. It is best illustrated by an example

(see Figure 5.6).

K Q 2

N
W E

S

8 5 3

Figure 5.6: A card combination allowing a Type 3 finesse

Here, declarer would obviously like to win tricks with both the King and the Queen.

This is possible, but can only be done if West holds the Ace, and if he is compelled
to play before the North hand. To achieve this, the declarer leads a small card from
the South hand. If West plays the Ace, declarer's troubles are over. If he plays small,

declarer wins with the Queen and enters the South hand again to repeat the process.

Note that if declarer had led the King from the North hand, he could only have taken
one trick.

Type 4 finesses

In the situation of Figure 5.7 on the following page, it is possible to take three tricks if
East holds the Queen. A play that achieves this is to cash the King on the first round
and then execute a Type 1 finesse of the Jack on the second, by leading a small card

from the North hand.

Sometimes, however, there may be extra information (for example, from the bidding)
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K 8 7
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A J 9

Figure 5.7: A more complicated finessing situation

which indicates that the Queen is with West. Is it now hopeless to make three tricks?

No, there is one chance, and that is that East has the 10. [Goren 86, Page 342] describes
the correct play:

...execute what is known as the backward finesse, leading the Jack first.
Notice that you must not lead the Ace first. When the Jack is covered by
the Queen, you win with the King and return a low card, finessing the 9,
with the hope that East holds the 10. If West holds both, there is nothing
you can do about it.

This lead of the Jack is different to those of the first three finessing tactics. Since
the Jack plays the role of both the finesse card and the lead card, the play looks very

similar to a Type 2 finesse. In Type 2 finesses, however, the lead card must come from

a sequence, which is not the case with the Jack here. Under normal circumstances,

one would expect the first defender to cover such a lead, removing the chance of any

gain for the declarer. The backward finesse gets around this problem by creating a

new finessing situation against the opposite defender when the first defender covers.

The possibility of leading a lone finesse card was explicitly guarded against in Type 2

finesses, since it usually produces no gain. To remedy this situation, we introduce a

new tactic, the Type 4 finesse, which generates just such a lead. A Type 4 finesse is
defined as being applicable whenever a lone finesse card can be led to create a (Type 1
or Type 2) finesse situation on the following round.

It is important to realise that this tactic does not correspond to the play of two finesses.
It merely generates a lead for a finessing round which would be overlooked by the first
three finessing tactics. The finesse which is applicable on the second round will have
to be discovered by the planner, when it examines the possible states resulting from a
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Type 4 finesse. To see why it is expedient to represent the tactic in this way, consider

the situation of Figure 5.8, in which a Type 4 finesse of the Jack is followed not by a

Type 1 finesse but by a Type 2 finesse of the 8.

A 9 8

N
W E

S

K J 4

Figure 5.8: A further example of a backward finesse

5.2.3 Ducking

Ducking entails playing low from both hands on one round of a suit. Declarer gains
no immediate benefit from this exercise, but instead hopes to increase his chances of

creating extra tricks on the following rounds. An example of a situation in which a

declarer might consider ducking is shown in Figure 5.9.

A Q x

N
W E

S

x x

Figure 5.9: A card combination in which ducking may profit

With this holding, declarer is certain to win one trick with the Ace (given a No Trumps

situation), but ideally he would like to win with the Queen as well. As we have seen

already then, the crucial play, is a (Type 1) finesse of the Queen against West — a

play with a 50/50 chance of success, since the declarer will win two tricks whenever the
King is with West. These odds can be improved slightly, however, if the declarer ducks
one round in the suit before attempting the finesse. If East's only card in the suit is
the King, he will be forced to play it, allowing the Ace and Queen to be cashed on the
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following rounds. The advantage gained by this round of ducking is rather small (in
this case, gaining an extra trick one under just one of the 28 possible distributions of
the outstanding cards in the suit) but a declarer would possibly attempt the play if it
was inevitable that one trick had to be lost in this suit1 in any case.

In addition to being used in an attempt to remove the defence's high cards, ducking

may also be employed as a means of retaining control in a suit. This is illustrated by
the example of Figure 5.10 which we take from [Goren 86, Page 341].

* A Q 7 5 4 2

N
W E

S

*63

The North hand has no other entries than Spades, and your object is to
win five tricks. It can be seen that regardless of how the adverse cards are
distributed one trick must be lost in any event. Therefore a trick should
be conceded to the opponents at once. Now our only hope is for West to
have the King. The finesse is taken the next time, and if the King is in the
West hand, dummy's Spades will all be good. It is true that if the finesse
loses you will succeed in taking no spade tricks instead of one, but it was
your only hope and it was well worth spending an extra trick to try it.

Figure 5.10: A card combination illustrating ducking [Goren 86, Page 341]

5.2.4 Top Sequences

Declarer may find himself in the fortunate position of having enough high cards to play
one on each trick. If this is the case, there is obviously no point in using the finessing
or ducking tactics, and Figure 5.11 presents some situations in which even cashing is
not possible.

In the first situation, the appropriate action is to either lead one of the K, Q or J or to

lead a small card towards them. Since all the cards that constitute the declarer's top

1 Note that another way to account for the singleton King is to cash Ace and then execute a Type 3
finesse of the Queen. This plan would have the added advantage of not necessarily giving up one
trick to the defence.
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KQJ Q 8 3 J 10 73
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952 K J 5 Q 9 4 2

Figure 5.11: Card combinations where declarer has high cards but no winners

sequence are contained in the same hand, the effect of playing a round to the Q or the

J is exactly the same as that of playing to the K, so there is really just one meaningful

course of action. This is not the case in the other situations, however, where declarer's

top sequence is split between the two hands. In the second situation, for example, if

the defence decline to play their Ace, playing one of the top cards on a trick can leave

the lead in either the North or the South hand. Since declarer can play a high card
from the sequence on each round of the suit, playing either the King or the Jack will

essentially be equivalent. Therefore there should be just two possible courses of action

in this situation: play the Queen or play one of the King/Jack.

These situations are not covered by any of the tactics we have identified so far, so we

will introduce another, calling it the sequence tactic. In general, whenever sequence

tactics are applicable to a game state, there will be either exactly one or exactly two

valid instantiations: one if the entire sequence is contained in one hand, or two if the

sequence is split between the two hands.

5.2.5 Summary of the Tactic Set

In summary, then, seven distinct tactics for single-suit problems were identified in the

original Finesse system, and retained during this research. This set of tactics has
been sufficient to describe the optimal lines of play for all the single-suit situations

to which the system has so far been applied. They are represented by the following

Prolog predicates:

1-4. finesse (Type, Player, Card, Suit) — Type represents the type of finesse

being used; Player is the defender being finessed; Card and Suit specify the
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finesse card.

5. cash(Card, Suit) — represents a trick on which declarer plays the card specified

by Card and Suit from one hand, and plays a low card (or throws away a card
from another suit) in the other.

6. duck(Suit) — represents a trick on which declarer plays low from both his
hands.

7. sequence (Card, Suit) — represents a trick on which declarer plays the card

specified by Card and Suit (which must come from a sequence of length 2 or

more) from one hand, and plays low (or throws away a card from another suit)
in the other.

Having examined the possible plays by the declarer in single-suit situations, we now

turn our attention to the complementary problem of representing the possible responses

that can be made by the opposition, again drawing on [Frank 91].

5.3 Representing the Defenders' Plays

Given the declarer's holding in a particular suit and a choice of tactic, what are the

possible plays by the defence when the tactic is executed? In theory, any combination

of the outstanding cards may appear on the trick. For example, in the situation of

Figure 5.12 there are seven outstanding cards in the suit: the A, K, J, 8, 7, 6 and 3.

Q 10 9

N
W E

S

5 4 2

Figure 5.12: Example card combination with seven outstanding cards

If each defender plays a card from the suit when a tactic is executed, there will be

seven choices for the first defender, and six for the second (42 choices in total). In

addition, there is the chance that one of the defenders may be void in the suit, and will
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therefore have to discard a card from another suit. Even ignoring the actual identity
of these discards, this creates another fourteen possibilities (seven in which the first
defender is void, and seven in which the second defender is void), making a grand total
of 56 possible responses by the defence. Admittedly, some of these possibilities may

be somewhat remote (e.g., both the Ace and the King being played) but all must be
catered for if we are to produce a fully predictive plan.

In general, if the defence hold a total of n cards, the number of possible plays to a

single trick is given by the formula n(n— l) + 2n, which simplifies to n(n + 1). Reducing
this branching factor is an important goal for the Finesse system, which it achieves

by merging together plays which are in some sense 'equivalent', as we describe below.

5.3.1 Card Sequences

Opportunities for reducing the branching caused by the defenders' possible moves arise
in any situation where the playing of different cards lead to a similar new game state.

One example of such situations is when the defenders hold a sequence of cards.

For example, in Figure 5.12 the defenders hold two sequences of length 1 (the J and
the 3), one sequence of length 2 (the A K) and one sequence of length 3 (the 8 7 6).
We make the simplification that the play of one card from each of these sequences

is completely equivalent to the play of another. In practice, this is not strictly true,

since conventional meanings can be attached to playing certain cards and used to pass

signals to other players. We will return to this issue in more detail in §6.2.4. For

now, we will use the simplification to allow some of the defence's possible plays to be

identified together. For example, the case where East plays the 3 and West plays the
Ace can be merged with the case where East plays the 3 and West plays the King

to form a single situation where East still plays the 3 but West plays either the Ace
or King. In general, if the outstanding cards form nx sequences of length 1 and n2

sequences of length greater than 1, the number of distinct possible responses by the
defence to a single tactic (including the cases where one defender is void) is expressed

by:

n2(n1 + n2) + ni(«i + n2 - 1) + 2(nx + n2)
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= (ni + n2 + 2)(ni + n2) - nx

85

(5.1)

In the example of Figure 5.12, where ni = n2 = 2, the number of possible combinations

therefore decreases from the original 56 to 22 — a significant saving.

5.3.2 Critical Cards

It could be argued that the efficiency improvement achieved by identifying sequences

above is a trifle fortuitous, as the outstanding cards happen to contain two sequences

of length greater than 1. For example, had the seven outstanding cards been the A,

K, J, 8, 6, 4, and 2, (i.e., n1 = 5 and n2 = 1) there would still have been 43 possible
branches. However, there is a further technique that we can call to our aid, based on

the approach, common among human Bridge players in such situations, of ignoring the
distinction between all the small cards held by the defence, and classifying them all as
'low'. Take, for example, Goren's description of the situation in Figure 5.12 [Goren 86,

Page 311]

If West holds both the Ace and the King, you can win one trick if you lead
from the South hand However, inasmuch as it is improbable that West
has both the Ace and the King, the better procedure is to wish that he
holds the Jack. A small card is led from the South hand, and when West
plays low North follows with the 9, hoping that this will drive out either
the King or the Ace. The South hand is entered and another small card is
led, and since West is known to hold the Jack one trick must be built up.

The Ace, King, and Jack are identified as the 'important' cards, and the play of any
of the others is described as 'playing low'. We will use the term critical cards to

describe the high cards still held by the defence that are considered to be 'important'.
In Finesse, these cards are identified by a pre-planner module which then passes them
to the planner. This module survives largely intact from the original system and is
described in [Frank 91].

By classifying the outstanding cards as either critical cards or low cards, the search

space branching factor due to the defenders' play can be more consistently reduced.
For instance, in the example of Figure 5.12, the critical cards are the Ace, King and
Jack. Each defender may therefore choose between the following possibilities:
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• The Ace, King (a sequence of length 2),

• The Jack (a sequence of length 1),

• A low card (a sequence of length 4), or

• A card from another suit.

Under this categorisation, nx is 1 and n2 is 2, so we can see from (5.1) that the number
of possible branches is now just 14. In later chapters, we will see that this categorisation

also helps in the generation of textual explanations.

5.4 Methods

In Edinburgh's theorem-proving system (Clam, [Bundy et al 90b, van Harmelen 89]),
methods are the basic stuff that make up proof plans. They are specifications of tactics,

which are procedures that execute a (large) number of proof steps as a single operation.
Clam's methods are structures with 6 'slots':

1. A name-slot, giving the method its name, and specifying the arguments to the
method.

2. An input-slot, specifying the object-level formula to which the method is applic¬
able.

3. A preconditions-slot, specifying conditions that must be true for the method to

be applicable.

4. A postconditions-slot, specifying conditions that will be true after the method
has applied successfully.

5. An output-slot, specifying the object-level formulae that will be produced as

subgoals when the method has applied successfully.

6. A tactic-slot, giving the name of the tactic for which this method is a specification.
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These structures are represented as a Prolog method/6 term. Each of the slots corres¬

ponds to an argument of the method/6 term, in the order listed above. The general
form of a method/6 term is shown in Figure 5.13.

method (name (.. .Args...), '/, name slot: Prolog term
h==>g, input slot: sequent
[...Preconditions...], '/, preconditions-slot: list of conjuncts
[...Postconditions...], '/, postconditions-slot: list of conjuncts
[...Outputs...], '/, output slot: list of sequents
tactic (.. .Args...) '/, tactic slot: Prolog term

).

Figure 5.13: The general form of a method/6 term [van Harmelen 89]

In these methods, the post-conditions and preconditions are combined together, form¬

ing an object which in essence resembles a Strips type operator [Fikes et al 72]. Un¬

fortunately this kind of representation was found to be ill-suited to planning in Bridge,
as the results of applying a Bridge tactic depend on the particular response chosen by
the opponents. For example, in the Type 1 finesse tactic described in §5.2.2, the card

played by the third hand depends on the card chosen by West: if West plays the King,
declarer plays the Ace; otherwise declarer plays the Queen. This is an example of the

context-dependency of actions we discussed in Chapter 3.

Finesse's approach to dealing with context-dependency is to use a database of rules

which, for each tactic, allows the declarer's cards to be chosen and played, taking into
account the cards chosen by the defence. This deduction of context-dependent effects
is very similar to the way slpe [Wilkins 84] uses domain rules to alleviate problems
in operator representation caused by the Strips assumption. A consequence of using
such rules is that the amount of information which has to be stored in Finesse's

methods is reduced. In fact, the number of 'slots' required by Finesse is just three;
the post-conditions and output-slots are no longer needed (since they are deduced by
the domain rules), and a further slot is removed since the name-slot and the tactic slot

always contain the same terms. Figure 5.14 on the following page shows the general
form of the method predicates used by the original Finesse system.

The significant information in these methods is the specification of the preconditions.
These are written in a meta-language which survives largely intact from the original
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method(name(...Args...), '/, tactic/name slot: Prolog term
State, '/, input slot: game state
[...Preconditions...] '/, preconditions-slot: list of conjuncts

).

Figure 5.14: The general form of a method/3 term in the original Finesse [Frank 91]

system. The types of properties which can be described by this language are suggested

in Figure 5.15, which gives an example of the preconditions of a tactic in plain English.

Preconditions:

- Declarer must have at least one loser2 in the suit.
- Declarer has a sequence of any length beneath a
critical card.

- Declarer has a card that can beat the critical card,
in the same hand as a card from the above se¬

quence.
- The opposite hand has a low card to lead toward
the tenace.

- The player being finessed is not known to be void
in the finesse suit.

Figure 5.15: Preconditions of the Type 1 finesse [Frank 91, page 38]

In the course of this research the major change to Finesse's methods was the re-writing

of these pre-conditions to remove Prolog cuts. This was an unpleasant feature of the

original system, as it compromised the declarative nature of the method specifications.
The re-writing of the meta-language to remove the need for such occurrences resulted
in a clearer representation, and also paved the way for a change in the actual repres¬
entation of the methods. Given the reduction in the number of method slots to just

three, a more natural representation is to directly utilise Prolog clauses of the form:

applicable(State, Tactic) :- Preconditions.

Notice that this representation has clear efficiency advantages over the original, due

to the checking of preconditions being conducted by the Prolog interpreter as part of
an attempt to satisfy an applicable(+State, ?Tactic) goal, instead of by a user-

defined procedure examining a list of preconditions. However, a planning algorithm
2 See the Glossary for a definition of the Bridge notion of losers.

A J 9

3 4



CHAPTER 5. PROOF-PLANNING 89

using backtracking to produce all the possible legal play sequences would have been
unable to utilise such a representation if Prolog cuts were permitted as part of the

language describing preconditions.

5.5 Finesse's Planning Algorithm

The tactics we have introduced in this chapter do not specify complete strategies to

be followed for any particular card combination, but only continuations for the next

trick. The task of examining all the possible legal play sequences is performed by a

planning algorithm which constructs a tree of tactics.

In the original version of Finesse, the planning algorithm was modelled on those used

by Clam in the domain of mathematical theorem-proving. At any node at which more

than one tactic was applicable, a choice was made according to a heuristic ordering.
This algorithm therefore could only return subtrees of the possible space; trees in which
each branching point controlled by the declarer had only one branch. The remaining

possible subtrees could also be returned on backtracking, but the entire search space

was never explicitly represented. In Clam, a substantial amount of progress has been
made in specifying progressively higher-level tactics and methods to direct this type

of search algorithm to the best, or at least good, solutions without the need for large
amounts of backtracking. Bridge, however, presents new demands on planning that
are not encountered in mathematics, the most significant being the need to cope with
an opposition. Since cards played may not be retracted once plan execution has be¬

gun, the value of a Bridge planning system hinges on its ability to identify the most

beneficial alternatives before acting in any particular situation. This is not an issue

in mathematical proofs, since one may always backtrack from failed branches until a
successful proof is found. Furthermore, as information on the distribution of the op¬

ponents' cards is initially unknown, probabilistic information must be used in Bridge
to choose among possible plans. It is therefore important for us to examine as many

play sequences as possible before selecting the one which is believed to be the best.
Since the reduction in search space size achieved by restricting the declarer's options
at any point to a set of methods proves sufficient to allow the whole search space to be
examined (relative to the tactic/method set), we therefore implemented a new plan-
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ning system which could produce an explicit representation of the entire search space.

Such plans are then passed to a separate module which identifies the branch selections

which would be optimal (we discuss this in the next chapter).

To form a plan, the planning algorithm first calls an applicable(+State, -Tactic)

goal to find all the Tactics applicable to the initial State. The possible responses by
the defence are then generated, and the post-conditions determined. This process is

continued recursively for the resulting states until no tactics are applicable to any of the

leaf nodes in the tree. Thus, planning involves a form of heuristically constrained state

space search, using the declarer's initial holdings as the starting state, and working
forwards until reaching a state to which no tactics apply.

5.5.1 A Planning Example

We will demonstrate this planning procedure with the help of an example. Figure 5.16

shows how the plan for the game state where North holds the A, Q and South holds

the 2 is built up. There are two tactics applicable to this state: the cashing of the Ace
and a Type 1 finesse of the Queen against West.

Start State:

finesse( 1 ,west,q,s)

QAQAQQA QQQQQQQ

□□□□□□□□□□□□□□
Leaf

0 0 0 0

Leaf

0 0 0

Leaf Leaf

0 0 0

Leaf Leaf Leaf Leaf Leaf Leaf Leaf Leaf Leaf Leaf

Figure 5.16: A planning example
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The responses to these initial tactics are represented in Finesse by the seven possible

plays possibilities enumerated in Figure 5.17. Here, 'discard' refers to playing a card
from a different suit (i.e., the defender is void), and it is assumed that the King is the

only critical card, and that there is no trump suit.

Code Card played by West Card played by East
CI King discard

C2 low discard
C3 discard King
C4 low King
C5 discard low
C6 King low
C7 low low

Figure 5.17: Key for Figure 5.16

Removing the cards played by each hand leads to new states, from which planning
continues on the next round. In the case of the cash tactic, all possible branches lead
to a state where North holds the Queen and South is void. For the finesse tactic,

however, the card played by North is determined by West's play after the 2 is led: if
the King appears then declarer covers with the Ace; otherwise, the finesse is attempted

by playing the Queen.

In some of the states at the second level, declarer's remaining high card will be a master,

so he will be able to continue the play by cashing this card. This is represented in the

figure by the further level of play on which each branch represents a cash tactic. For

each of these tactics, the cards played by the defence are immaterial, as declarer will

not be playing any further tricks in the suit. Therefore, there is only one branch at

each of the circle nodes. The declarer wins two tricks on any path that is two tricks

long, and one trick otherwise (assuming no trump suit).

The tree of Figure 5.16 is represented in Finesse using a Prolog term of the form:

functor(Node, Labels, Trees), where:

• functor is an arbitrary atom (tree or plan, for example),

• Trees is a list of subtrees which form the trees rooted on the daughters of the
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current Node,

• Labels is a list of terms describing the branches leading from the current Node

to each of the subtrees in Trees, and

• leaf nodes are represented as functor (Node, [] , []).

5.6 Interface Issues

Interpreting and visualising the rather large data structures produced by the planning

algorithm described above was found to be a non-trivial task. To facilitate easier

debugging and to increase the inspectability of the output, a Prolog package capable
of producing a graphical rendition of tree data structures was written.3 This package
enabled Finesse to display its plans in windows such as that shown in Figure 5.18 on

the following page, which depicts the system's output for the simple planning example
considered in the previous section. (Note that the cards A, K, Q, and J, are represented

by the numbers 14, 13, 12, and 11, respectively. Also, this display uses the string 'Max'
to label nodes where it is the declarer's turn to play, and 'Min' to label those where it is

the turn of the defence. These names are motivated by the well-established literature

on 2-player games, which we will examine in detail in the following chapter).

In order to further enhance the utility of this interface, the ability to examine the

planning state at any node of the tree was introduced. For this purpose, the planning

algorithm was modified to store data on the important planning information in each
Node of the plan representation. To facilitate this, the data contained in this argument

is represented as a list of field:data pairs, where the field describes the meaning

of the data entry it is paired with. Examples of the possible fields utilised by the

planner are:

• label — the name of the node (i.e., Min, Max, or Leaf).

• state — the current game state (which specifies the North the cards, the South
3 This package was designed for portability, and has since been incorporated into further systems by
other researchers. For example, in [Vasconcelos 95] it is used to visually realise Prolog programming
techniques.
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cards, the outstanding cards, the critical cards, and two flags indicating whether
East or West are known to be void in the suit).

• tactics — the applicable tactics (only relevant to Max nodes).

• branches — the possible card plays (only relevant to Min nodes).

At any node in the plan, the values of these data items can be examined by simply

clicking on the node to produce a pop-up window, as shown in Figure 5.19 on the next

page. The pop-up window for the root node of the tree shows how the data associated

with the state field is displayed graphically by a picture of the game state.

5.6.1 Tracing the Planner

When upgrading Finesse to produce an explicit representation of the entire search

space (relative to the method set), it was found that some problems for which the

original planner was capable of producing partial trees now caused the new system to

crash due to segmentation faults or failed memory allocations. This behaviour was at¬

tributed to either the actual plan formation process exceeding the memory limitations
of the machine, or to the possible presence of looping. In order to diagnose the latter of
these possibilities, some way of monitoring the planner's execution was necessary. Un¬

der the original implementation, this was not readily possible, so a modified planning

predicate was implemented allowing a window to be opened onto the planning oper¬

ations. Figure 5.20 on Page 96 shows an example of such a trace window monitoring
the planning of the situation of the AQ<(k opposite the

Experimentation with this tracing facility, however, failed to locate any looping on

problem examples. In fact, all the planning states being reached appeared to be legit¬

imate, and breakdowns occurred at times when the planner appeared to be operating

normally. The alternative explanation for Finesse's problems — insufficient physical

memory — was therefore examined. Reducing the amount of memory required by
the planner led to the resolution of the problems with the system and to a significant
increase in efficiency. This was achieved through the introduction of the notion of

planning histories, which we describe below.
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IS) Planner Trace
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lead unknown

Creep OFF
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Figure 5.20: Example trace window showing menu options

5.7 Searching with Histories

In the process of constructing a Bridge plan, it transpires that the same planning
state may be encountered a number of times. An automated Bridge planning system

therefore runs the risk of wasting time on repeated calculation of identical sub-plans.
For example, let us consider once more the case of the AQ opposite the 2. In this

situation, Finesse has to choose between the two possible tactics of finessing the Queen

(Type 1) against East, or simply cashing the Ace. However, in examining the possible
responses by the defenders to these tactics, repeated states may be encountered. For

example, on any branch where West plays the King, both the cash and the finesse
tactic will lead to the same state (since both tactics will play the 2 from the South
hand and the Ace from the North hand in this situation). Similarly, if West is void,
the two tactics will also lead to identical states (since Finesse's domain rules choose
to select the cash card when the defender being finessed turns out to be void). Further,
when cashing the Ace, the two branches where one defender plays the King and the

other plays low will also be indistinguishable, since the declarer's cards will always be
Ace and the 2 irrespective of the cards chosen by the defence. This means that of the

fourteen states which are produced on the second level of the plan, only five will be

unique, as shown in Figure 5.21.

In a simple situation such as this, the duplication of the effort involved in planning
each of the repeated states afresh is not particularly significant. However, since the



CHAPTER 5. PROOF-PLANNING 97

Figure 5.21: Example showing repeated states on the first planning level

size of a tree grows exponentially with the branching factor, the number of repetitions
can be expected to be significantly larger in states with more applicable tactics.

In addition to the simple computation time that can be saved in not re-calculating

repeated sub-plans, it is also possible that memory could be utilised more efficiently:

constructing the finished data structure using pointers to shared sub-structures could
avoid creating many copies of entire sub-trees. In §5.7.2 we examine how such efficien¬
cies were achieved in Finesse by the use of a history list mechanism. This very simple
idea involves recording the plans that are generated for each distinct state encountered

by the planner, so that when a state that has already been analysed is reached, the as¬

sociated plan can be copied again rather than having to be re-generated from scratch.4
Before examining the results of this implementation, however, we introduce a short
mathematical analysis to aid in their interpretation.

4 Note that this approach bears a resemblance to the dominance-based pruning technique of dynamic
programming [Dreyfus & Law 77]. However, dynamic programming is more often used to find a
lowest-cost solution to a search problem, utilising pruning to remove a node from a search space
when the discovery of another, cheaper path to an identical node is made. The object of Finesse's
planner, on the other hand, is to generate all the possible play sequences in a given situation and
previous planning results are therefore simply re-incorporated into the search tree when encountering
repeated nodes.
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5.7.1 General analysis

98

Utilising a history of states which have already been examined is simplified in the

domain of Bridge by the knowledge that there is a measure of the states which strictly
decreases as the tree is descended — the total number of cards remaining. Clearly, at

any node in a tree the corresponding state will contain more cards than all the states

of lower nodes, and less than those at higher nodes, since the descent of any branch

involves the removal of cards. Thus, establishing whether a state has already been

encountered requires only the checking of all the previous states at the same depth,
and not the entire history.

In Prolog, support for hashing tables — the most efficient choice of data structure

for implementing histories — is not readily available, so the basic list structure was

adapted to the purpose. The history mechanism was therefore implemented by keeping
a separate list of states and their calculated plans for each level of the tree. In general,
under such a scheme, if the average branching factor between levels of a tree at which

history checking is carried out is 6, the number of extra comparisons made in checking
the history list at level i when no matches are found is:

0 + 1 + h (6' - 1) = — 1)2(6' 2) . (5.2)

If, however, we succeed in finding a plan from the history list for just one of the
nodes at level i we will make the time saving of not having to expand all the nodes
which would have been generated below it. (A memory saving is also produced if the

algorithm is coded carefully, but here we will just consider the time savings, in order
to produce a guide by which to measure the planner's performance.) In FINESSE, the
main cost in expanding a node is due to the application of the method set to determine

the applicable tactics. When the plan for a node at level i is found from the history

list, then, the saving is on average m X Rd~'\ where m is the average cost of applying
the method set to a single state, and d is the depth of the tree, which we assume to be
uniform.

If the proportion of nodes at level i which are duplicated is some small fraction a,-, the

saving made by using the history list is therefore
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a{ ■ bl • m ■ b(d ^ = a, • m ■ bd . (5.3)

So, we have a saving at level i whenever the value of (5.3) is greater than the value of

In Finesse, the cost of applying the method set can be measured using simple exper¬

imentation, to be approximately 15 times as expensive as a simple unification check.

Thus, if we approximate a; to be 1/30 (not unreasonable in Finesse), (5.4) reduces
to:

Therefore, it appears that keeping a history list is effective for any level above half the

depth of the tree. This makes some kind of intuitive sense, since the cost of searching a

large history list at lower levels of the tree could be expected to outweigh the benefits
of the relatively small number of branches pruned.

5.7.2 Performance

A planner with the ability to carry history lists for any number of levels in a tree was

implemented and tested on a number of problems. The bar charts in Figure 5.23 show
some timings of this planner on the set of four test problems, of varying difficulty,
shown in Figure 5.22. History lists are kept for each level of the plan (where it is the
declarer's turn to play), so a maximum history depth of 0 is equivalent to using no

history at all, and an increase in depth of 1 extends the history facility to the next

(5.2), or

b2i
a,- • m ■ bd > —-

2

2 • ttj • m ■ bd > b2t

ln{2 ■ aj • m) + d • ln(b) > 2 • i ■ ln(b) . (5.4)

d ■ ln(b) > 2-i-ln(b),or

d/2 > i.
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level. The height of the bar graphs represents the total computation time required for
each test (so that a bar of height 10 seconds for a problem repeated 100 times indicates
that each individual run took 0.1 seconds), and were produced on a Sun SPARCstation
ELC.

A K Q A Q
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S
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S

Problem a Problem b

A Q 10 J 8 7 6

N
W E

S

N
W E

S

3 2 A 10 3 2

Problem c Problem d

Figure 5.22: Four test problems for single-suit planning

In the first of these problems, Finesse recognises that the only tactic worth considering
is the cashing of a top card, and that the defenders' responses to this can have no effect
on the number of tricks won in the suit. There is therefore only one planning state

produced on the first planning level of the tree below the root node. Similarly, the

second and third levels will contain only single states, so the complete plan will be

entirely linear. Carrying a history in this example would therefore not be expected

to have any effect (the history would never be checked, as it would always be empty

when the single state is examined) and indeed this is the story told (within the bounds
of experimental error) by the first bar graph of Figure 5.23. The remaining examples,

however, give rise to larger trees, with problem b having two initially applicable tactics
and a depth of two planning levels below the original root, problem c having three

applicable tactics and a depth of three, and problem d having six applicable tactics

and a depth of four.
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Problem a (100 repetitions) Problem b (100 repetitions)
CPU time (sees)

12.00

Problem c (2 repetitions) Problem d (1 repetition)

I I

Figure 5.23: Graphs of cpu time against history depth for four single-suit problems

In the light of the analysis of §5.7.1, the results depicted in Figure 5.23 are somewhat

surprising. It appears that performance improves as the history list mechanism is

extended to lower levels of the tree, with the improvement being marked at first,

becoming less significant at levels below half the depth of the search tree, and minimal
at the final level. There are two possible reasons why searching through the history
lists should fail to become more expensive than checking the method set. One is that
our estimate of a,- may have been incorrect. After all, this value has to be small for the

analysis of §5.7.1 to hold, and at the lower levels of the tree, where there are a large
number of nodes and only a relatively small number of cards remaining with which
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to create distinct states, it may well be that the value of ^ is a significant under¬
estimate. A second possibility is that the process of building trees by using pointers to

repeated substructures rather than creating fresh copies results in a significant saving
of system memory. If the increased efficiency in memory handling can compensate for

the expected cost of extending the history mechanism to the lower levels of the trees,

a performance benefit may well be the result.

5.7.3 Memory Management

As indicated by the final graph of Figure 5.23, planning with history lists enabled

FINESSE to produce plans for even problem d in around 20 seconds. This was one of

the hardest problems we have encountered, and one of those which originally had often
resulted in system crashes. The difficulties encountered with this problem were directly

responsible for our discovery of the phenomenon of non-locality, which we discuss in

the following chapter. By writing the output of the system to a file we were able to

measure the size of the plan for this problem, which we found to be 4.3 Mb! To a large

extent, the size of this data structure can be put down to the inclusion of substantial

amounts of book-keeping information at each node of the tree, and especially to the
data which is generated by the algorithm for identifying the optimal choices at nodes
where the declarer must select the next action. We will discuss this algorithm in detail
in the following chapters. For now, we will simply point out that with data structures

of this size, the benefits of not explicitly constructing repeated substructures can be

highly significant.

If the data structure is formed utilising pointers, however, it also becomes important
that this form is retained. Unfortunately, the initial implementation of the graphical
interface ignored this constraint, creating a form of 'global variable' by recording the

plan structure in the Prolog database. In SICStus Prolog, this action created an

actual copy of the entire data structure, without respecting those portions constructed

using pointers, leading to the sudden consumption of 4.3 Mb of memory. To deal
with this problem, the entire system, including the display predicates, was modified
to carry pointers to all the currently active plans, without requiring the use of the

Prolog database. This allowed inspection of the data structures without the creation
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of complete copies. The drawing options available for displaying a tree were also
modified to allow just a small portion of large trees to be rendered, and navigation

through the tree structure was made possible via the ability to select different root
nodes.

This issue may appear to be solely implementational, but the problems involved in

readily understanding system output measured on the scale of megabytes are non-

trivial. If the tree structure is recorded in the Prolog database (as in Clam, for

example) with records for each node, care needs to be taken to ensure that no nodes are

duplicated, identifying any newly produced state that has been examined once before
with the previously expanded node. However, such a method of storage would make

any alteration of the plan structure by subsequent algorithms an awkward process.

Since Finesse is a modular system, with the output of one stage being passed to the
next for further processing (e.g., for the identification of the most promising branch

selections), the new implementation therefore refrains from using the Prolog database
for this purpose.

5.8 Summary

In this chapter we have introduced the proof-planning paradigm, and in particular
the notion of using tactics and methods to restrict the available options at any stage

of a state-space planning algorithm. We showed how these ideas could be applied to

single-suit play in the game of Bridge, introducing the original version of the Finesse

system of which this thesis is an extension. We presented the seven single-suit tactics
used by Finesse and noted that this set was sufficient to represent the optimal lines of

play for all the single-suit situations we have so far encountered. We then detailed how
the methods describing these tactics were incorporated into a new planning algorithm

capable of constructing the entire tree of legal tactic sequences for any position. We also
looked at some enhancements to the representation, the efficiency, and the interface of
the system which have been made during the course of this research, producing data
and analysis demonstrating a significant improvement in system performance.



Chapter 6

Search in Games with

Incomplete Information

The player on the other side is hidden from us. We know that his play is
always fair, just, and patient. But also we know, to our cost, that he never
overlooks a mistake, or makes the smallest allowance for ignorance.

— Thomas Henry Huxley

Lay Sermons, etc, iii. A Liberal Education

We demand rigidly defined areas of doubt and uncertainty!
— Vroomfondel

The Hitchhiker's Guide to the Galaxy

In the previous chapter we described how the search space in single-suit Bridge play

problems can be reduced by a planner utilising tactics and methods. In order to

actually use the output of such a planner to play the game of Bridge, it is necessary to

identify the best strategy from amongst the possibilities produced by the planner. The

original version of Finesse [Frank 91] contained no mechanism for this, simply selecting
the left-most branch at each choice point (and allowing user-directed backtracking

through all possible combinations of selections).

In this chapter we address this issue by presenting a general examination of search

algorithms in games with incomplete information. In particular, we identify two prob¬
lems that can occur in such domains. The framework established here will then be

used in the following chapter to suggest both domain-independent and Bridge-specific

algorithms for coping with these difficulties.

104
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6.1 Introduction

We base our analysis on the introduction of incomplete information into the standard
framework of strategy optimisation for zero-sum two-player games [Nash 51]. To aid

analysis of actual games, we formalise a particular best defence model of a game which

corresponds to the often-made assumption of playing against a rational, informed op¬

ponent. We show for such games that an equilibrium point for the two players' strategies
is well-defined, and we describe an algorithm which we call exhaustive strategy min¬
imisation that identifies such equilibrium points. This algorithm formalises the idea
of selecting a strategy directly, by explicitly enumerating the possibilities, computing
the minimum payoff of each, and then selecting the strategy with the best payoff. By

explicitly manipulating strategies, our algorithm has different properties from stand¬
ard minimaxing and produces more accurate results than adaptations of minimaxing

(discussed below) to domains with incomplete information.

Unfortunately, the complexity of exhaustive strategy minimisation makes it impractical
on all but the smallest of game trees. In the following chapter, we therefore examine
some techniques that may improve performance in some games. Here, though, we use

our formalisation to examine approaches like the double-dummy algorithms of Levy
and Ginsberg which we introduced in §2.2.4. Recall that the idea of such an algorithm
was to tackle the incomplete information in Bridge by examining some significant
subset of the possible distributions of cards. In more general incomplete information

games, this will be equivalent to examining some subset of the possible worlds in which
the play make take place. We use our formalisation to show that, even in very simple

incomplete information games, this approach can yield suboptimal results against best
defence. In particular, we identify two serious problems which afflict such algorithms,

independently of how many worlds are considered.

The first of these problems, which we name strategy fusion, affects any algorithm which

attempts to combine together strategies for particular worlds to produce an optimal

strategy across all (or some statistically significant subset) of worlds. The flaw in this

approach occurs because of the property of incomplete information games that the
exact state of the world at any given point of the play may not be known to a player.
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This fact imposes a constraint on a player's strategy that he must behave the same

way in all possible worlds at such points; a constraint which is typically broken when

combining together strategies designed for individual worlds.

The second problem, which we name non-locality, arises when the players of a game

have differing information on the possible worlds. An opponent with knowledge of
the likely possible worlds can use this to his advantage. In particular, he can direct

play towards the portions of the tree of possible moves which are most favourable in

the worlds he expects. Thus, some positions in the game may never be reached under

particular worlds (as the opponent may always find better alternatives). In general, de¬

termining which nodes in the search space will be reached under which worlds requires

examining the entire tree of possibilities (since each move an opponent makes gives
him the chance to select different portions of the tree in different worlds). Tree search

algorithms, however, are generally 'compositional', in the sense that they determine
the best play at an internal node of a search space by analysing only the subtree of that
node. Such algorithms (e.g., minimaxing) will not take into account the possibility that
under some worlds the play may never actually reach that node. As in strategy fusion,

the problem here is one of handling the notion of strategy incorrectly. By just evaluat¬

ing subtrees, such algorithms consider only partial strategies; the complete strategies
for the entire game would also have to specify what actions would have been taken in
all other nodes outside the subtree.

We show that in incomplete information games, both strategy fusion and non-locality

can lead to sub-optimal performance, illustrating our arguments using simple game

trees and with actual play situations from Bridge itself. In the context of Bridge, we

also show that our model corresponds closely to the form of the game typically analysed
in expert texts, thus raising serious questions about the possibility of achieving true

expert-level Bridge with the type of architecture suggested by Levy and Ginsberg.

We proceed as follows. In §6.2 we introduce preliminary concepts from game theory
and apply these in §6.3 to games with incomplete information; in particular we show
how Bridge can be analysed within this framework by introducing a best defence model
of such games. We follow this in §6.4 by giving an algorithm for computing optimal

strategies in this best defence model. The second half of the chapter then considers
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Bridge in some detail: in §6.5 we present proposed architectures for Bridge card play
based on the minimax algorithm, and in §6.6 and §6.7 we use our game theoretic
framework to identify why such architectures must yield suboptimal results against

best defence. Afterwards, we summarise our conclusions.

6.2 Game Theory Background

In this section we introduce definitions and terminology necessary to make the discus¬
sion self-contained. This is based largely on the work of [von Neumann & Morgenstern 44]
and [Luce & Raiffa 57].

6.2.1 The Extensive and the Normal Forms of 2-player Games

In its extensive form, a game is a finite tree in which each node corresponds to a

move where a selection between the branches is made. Each node is identified as being
either a personal move or a chance move. Personal moves are made freely by one of

the players, creatively named '1' and '2', since we will consider only two-player games.

Chance moves are decided by some mechanical device {e.g., the shuffling of a pack
of cards, or the tossing of a coin) that selects a branch in accordance with definite

probabilities. There is one distinguished node which represents the start of the game:

a play, a, of the game involves starting at this node and allowing each of the players

(or chance) to choose a branch until a leaf node of the tree is reached. The value that
each player i attaches to the outcome of a play a, {i.e., a leaf of the tree), is given by
a numerical utility function K,{a). This value is sometimes also called the payoff and
Kj a payoff function.

One complication is that at any particular move a player may not have full knowledge
of the choices made prior to that point in the play. For example, in many card games

the play begins with the shuffling and dealing of a pack of cards into hands, which
are not visible to all players. Also, the outcome of personal moves may be hidden
from other player(s), such as when a card is played face-down. At any move, then, it
is possible that a player will be unsure of the actual position of the play within the

game tree. To precisely formalise the extensive form of a game, therefore, requires the
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nodes of the tree to be partitioned into sets of nodes between which a player will not
be able to distinguish. We will follow [Luce & Raiffa 57] in referring to these sets as

information sets. We will also model our actual definition on that of [Luce & Raiffa 57,

pages 39-51], requiring the specification of a 2-player game in extensive form to include
the following:

• A finite tree, t, with a distinguished node (the first move in the game).

• A partition, V(n), of the nodes, n, of the tree into three sets. These sets tell
which of the two players (1 or 2) or chance (0) selects the next move at each
node.

• A probability distribution over the branches of each chance move, defined by

assigning a probability 7r(n) to each daughter of a chance node.

• A refinement of the player partitions into information sets, 2j(n), for each player
i. Each node, n, at which V{n) = i is classified by I8(n) into one of the sets of
nodes (numbered as integers 1,2, • • •) between which player i will not be able to

distinguish.

• An identification of corresponding branches for each of the moves in each of
the information sets. (Since a player cannot distinguish between nodes in an

information set, the possible moves will appear the same to him at each node of

a set. When constructing the tree representation of the extensive form, we must

therefore indicate which branch at each node of an information set corresponds to

the 'first' possible move, the 'second' possible move, and so on. In our diagrams,
we will assume that this identification is in simple left-right order.)

• For each player, i, a numerical utility function, A',, defined over the set of end

points of the game tree.

Figure 6.1 gives an example of the extensive form of a two-player game that starts with
a chance move (represented by a diamond). This move has five possible outcomes, and
is followed by a personal move of one of the players (represented by a circle). The
information set for this player, whatever the outcome of the first chance move, contains
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only one node, i.e., there is no ambiguity over his actual position in the game tree.

This means that the outcome of the initial chance is known to him. For the second

player's moves (represented by squares), however, there are two information sets. This
is because he is only aware of the outcome of the previous player's move, and not of
the outcome of the initial chance move. The payoff he will receive (represented by the
numbers at the leaf nodes) therefore depends on information which is not known to

him.

Figure 6.1: Information sets in the extensive form of a two player game with one chance
move

Most games will be represented by a game tree that is too large to enable the extensive
form to be given in practice. In order to facilitate mathematical analysis it is therefore

common to work instead with an equivalent formalisation called the normal form.

This formalisation forces each player, before the game starts, to state in advance what
choices they would make in any situation that could possibly arise during the course of
the game. Such a specification forms a strategy. Given the extensive form of a game,

an easy way to formulate the possible strategies for each player is to assign a number

1, • • •, r, to each branch stemming from a node with r branches. A strategy for a player
with q information sets can then be represented by a g-tuple in which each element

corresponds to the move to be made in one of the sets. Utilising this notion of strategy,
a 2-person game in normal form is defined by specifying:

• two strategy spaces Xi and X2, which are the respective sets from which the two

players can choose their strategy, and

• two real-valued payoff functions Ki(xi,x2) and K2{xx,x2) which give the utility
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for each player when strategy x{ is selected by player i. If there are no chance

moves in the game, then a given strategy selection (xi,x2) determines a unique

play of the game, a, and we can define if,(ii,x2) = Ki(a). If the game contains
chance moves then (xi,x2) instead impose a probability distribution over all the

possible plays. If we use prob(a) to denote the probability of play a occurring
when (»i,»2) are chosen, the payoff for each player is expressed in terms of the
mathematical expectation /f,(X\,x2) = '£iaprob(a)Ki(a).

Formulated in this way, the course of a single play of a game first involves the choice
of a strategy by each player. In non-cooperative games, this choice is made without

any pre-play communication between the players. The basic theory of non-cooperative

games is based of the concept of an equilibrium point, due to J. Nash [Nash 51]. This
views any selection of strategies by each player as being a 'solution' to a game whenever

no single player can individually increase his payoff, or expected payoff, by changing
his strategy selection. That is, a pair (xi,x2) is an equilibrium point if the following
hold.

KI(xi,X2) > KI(XuX2) MxleXl,

I{2(x 1,x2) > K2(xi,x2) Va?2 € X2 ■ (6.1)

A special case, relevant to our domain, is that of zero-sum games, where Ki(xi,x2) +

I(2(xi,x2) — 0) f°r all xi € Xi,x2 6 X2. Under this condition, we can arbitrarily select
a Ki (we choose K\) and rewrite (6.1) as

Ki(xi,x2) < h\(xi,x2) < Ki(xi,x2),Vxi e Xi:x2 € X2. (6.2)

This states that K\ must have a saddle point; we consider next when this holds.

6.2.2 Minorant and Majorant Games: The Minimax Theorem

Let T represent a non-cooperative, zero-sum, two-player game where the players pick
their strategies without knowledge of that of their opponent. To analyse such games,

von Neumann and Morgenstern introduce two variations on T. The first of these, Ti,
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is defined so that it agrees with T in every detail except that player 1 must choose xx

before 2 chooses x2, so that 2 makes his choice in full knowledge of the particular xx

decided on by 1. Since 1 is at a disadvantage in this game compared to his position in
the original game, Ti is termed the minorant game of F. The second variation, T2, is
the dual whereby 2 chooses his strategy first; this game is termed the majorant game
of r.

For these new games, Ti and T2, the identification of the optimal strategy is simplified,
as the 'best way of playing' may be given a clear meaning. Let us consider the minorant

game r1? in which 1 is the first to select a strategy. For any particular selection, xx,
2 will choose an x2 to minimise the value of Ki(xx,x2). Thus, when 1 is choosing
an Xi he can be sure (assuming a competent opponent) that the expected outcome of
the game is minX2 Kx(xi,x2). This formula is a function of xx alone, and since 1 is

attempting to maximise his payoff, the best expected outcome he will therefore be able
to achieve is

Vi = maxmin Kx(xx, x2).
xi x?

A similar argument shows that if both players play the majorant game well, the res¬

ulting payoff that can be expected by 1 is

v2 — minmax Kx(xx,x2).
X2 »1

Von Neumann and Morgenstern show that these values can be used to establish upper

and lower bounds on the value, v, that 1 can hope for from a play of T itself. This

result is then refined to produce a theorem that states that there is a subclass of zero-

sum two-player games (those with perfect information) for which vx — v = v2. This is

equivalent to writing

maxmin/fi(xi,i2) = minmaxiFTxi,x2), (6-3)
x\ x 2 x2 xi

which is in turn logically equivalent to (6.2) (i.e., it states that Kx has a saddle point).
The form of (6.3) has led Von Neumann and Morgenstern's result to be referred to
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as the minimax theorem and it forms the basis of the well-known minimax algorithm

suggested by Shannon [Shannon 50].

6.2.3 Pure and Mixed Strategies

The minimax theorem does not hold for all two-player games. To achieve an exist¬

ence theorem for general games, Von Neumann and Morgenstern extend the notion of

strategy as follows. If the sizes of the sets X\ and X2 are m and n respectively, the

players, rather than choosing an Xi and an x2 from these sets, instead specify vectors

P = (Pw',Pm) and q = {qu---,qn) (Pi,qi > 0,J2p> = 1>Eft = !) where p{ gives the

probability that 1 will select the ith member of X\ as his strategy and q{ is the probab¬

ility that 2 will select the ith member of X2. When the players select their strategies

in this probabilistic manner, the natural interpretation of the expected outcome is the
mathematical expectation

m n

K(p,q) = Ki(x» xi )Pi1j ■

1=8 jzz 1

As in the previous section, it is possible to show that for this augmented game, the

function K has a saddle point. This is a probability theoretic interpretation of the

previous saddle point theorem, and illustrates that in some games there is a definite

disadvantage to having your strategy 'found out' by the opponent. Using a probability

vector to select randomly from among a number of possible strategies affords protection
from exactly such an occurrence. Strategies in this augmented sense are called mixed

strategies. The strategies of the previous section are a special case of mixed strategies

in which the probability distribution is a 1-point distribution, and are referred to as

pure strategies.

6.2.4 Preliminarily and Anteriority

Let us consider again the extensive form of a game. If we represent a particular play
of a game as a sequence of moves Mi, M2, M3, • • •, we can define the moves which are

anterior to some personal move Mk as being any move M, with i < k. Notice that
this property is transitive, i.e., if Mm is anterior to M\ and M\ is anterior to MK, then
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Mf, is anterior to MK. We can also look at the amount of information on the outcome
of the anterior moves that is available to the player who is called upon to make move

Mk. It is possible that this player will know which branch was chosen for each of the
moves Mi, • • •,Mk-i, but it may also be that he has only partial knowledge, or no

knowledge at all. The simplest way to describe a player's state of information at move

Mk is to form a set of preliminary moves, V. This set consists of the moves M,-, for
some i G {1, • • •, k — 1}, such that the branch chosen for any of the M, £ V is known
to the player, but the exact choice made at any of the other anterior moves is not.

The class of games in which preliminarily and anteriority coincide (i.e., where a player
called upon to make a move is informed about the outcome of all the anterior moves)
is called perfect information games. We have already seen in §6.2.2 that the minimax
theorem enables each player's optimal strategy to be interpreted in a precise way for
such games. However, in games where anteriority does not imply preliminarily (which
we call incomplete information games), peculiar features can result. For instance, the

property of preliminarily need not be transitive, as illustrated by the following example,
which we quote from [von Neumann & Morgenstern 44, page 52]:

Poker: Let be the deal of his 'hand' to player 1—a chance move; M\
the first bid of player 1—a personal move of 1; MK the first (subsequent)
bid of player 2—a personal move of 2. Then M^ is preliminary to M\ and
M\ to MK but Mp is not preliminary to MK (i.e., 1 makes his first bid
knowing his own 'hand'; 2 makes his first bid knowing l's (preceding) first
bid; but at the same time 2 is ignorant of l's 'hand'.)

This intransitivity of preliminarily involves both players, but it is also possible that

preliminarily could be intransitive among the personal moves of one particular player.

Bridge provides an example of this, since although it is played by four players, the
rules of the game dictate that these players form two teams, which play against each
other. Again using a description from [von Neumann & Morgenstern 44, page 53]:

Bridge is a two-person game, but the two players 1 and 2 do not play it
themselves. 1 acts through two representatives A and C and 2 through
two representatives B and D. Consider now the representatives of 1, A
and C. The rules of the game restrict communication, i.e., the exchange of
information, between them. E.g.: let MM be the deal of his 'hand' to A —
a chance move; M\ the first card played by A — a personal move of 1; MR
the card played [...] by C — a personal move of 1. Then M^ is preliminary
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to M\ and M\ to MK but M^ is not preliminary to MK. Thus we again
have intransitivity, but this time it involves only one player.

Intransitivity of preliminarily raises the possibility of signalling (i.e., the spreading
of information to other players). In Bridge, players who form one team but cannot
see each other's cards will wish to promote this signalling, and an elaborate system

of conventional signals has been developed to enable this. In Poker, the interest of a

player lies in preventing this signalling, and this is usually achieved by irregular and

seemingly illogical behaviour when making a choice. The first of these two types of

procedures is direct signalling and the second is inverted signalling.

6.3 Equilibrium Points in Bridge

With the definitions of the previous section behind us, we can now formalise the par¬

ticular problem that we address in this chapter. Since our motivation is the study of

Bridge as a game with incomplete information, we first describe the game's charac¬
teristics in more detail, and then present some simplifying assumptions that will aid

analysis of the problem.

6.3.1 Bridge as a Game of Incomplete Information

Analysis of the game of Bridge is extraordinarily complicated. The shuffling and dealing
of the pack of cards at the start of the game in effect selects one of 521/13!4 possible

positions for the subsequent play (the order of the cards in a hand does not matter —

hence the dividing factors). Further, each player can initially see only their own hand,
so (as we have already seen) preliminarity will be intransitive among the moves of the

players, giving the opportunity for both direct signalling between partners, and inverted

signalling to confuse the opponents. A related problem caused by this mis-match
between the available information is that of predicting an opponent's beliefs. Korf, for

example, although not motivated by considering games with incomplete information,
examined the situation where two players have evaluation functions which are not

known to the other [Korf 89]. Such a game can be viewed either as a zero-sum game in
which the difference in evaluation functions is due to their heuristic nature, or as a non¬

zero-sum game in which the evaluation functions represent the payoffs that each player
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would actually receive, or as an incomplete information game in which the difference in
evaluation functions is due to the differing information available to each player. Korf's

description of this situation uses the common convention of naming the two players
MAX and MIN. In the context of the previous section where we (arbitrarily) chose R\
as the payoff function, MAX will be player 1, since he tries to maximise the value of

I(i- Similarly, MIN will be player 2, since he tries to minimise the value. The decision

process in a three-level MAX-MIN-MAX tree is described by Korf as follows:

MAX's decision will be based on what he thinks MIN will do. However,
MIN's decision will be based on what he thinks MAX will do two levels
down. Thus, MAX's decision is based on what MAX thinks that MIN
thinks that MAX will do. Therefore, the evaluation function that is applied
to each of the frontier nodes is MAX's model of MIN's model of MAX's
evaluation function, and the nodes with the maximum values are backed
up to the MAX nodes directly above the frontier. Next, MAX's model of
MIN's evaluation is applied to the backed up nodes, and the nodes with the
minimum values are backed up to the MIN nodes directly below the root.
Finally, MAX's evaluation is applied to these backed up nodes to determine
the final move.

In Bridge, then, we can identify the following four related complications over perfect
information games. First, the intransitivity of preliminarity between the moves of the
two sides will lead us to encounter the problem of ever-deepening levels of reasoning
about the opposing side's beliefs. Second, as we saw in §6.2.4, this intransitivity also
makes inverted signalling possible, making it advantageous for one side to attempt to

prevent the spread of information about their position to the other side. Third, there is

the opportunity for direct signalling, in which the two players who form the opposition

play to increase each other's information of their side's situation. Finally, the absence

of perfect information will entail solutions which are mixed strategies, since using a

pure strategy will typically give the opponents an advantage if they can 'find out' what
this strategy is. The probabilistic nature of mixed strategies prevents the opponents

from knowing which pure strategy will be followed, even if they are aware of the exact

mixed strategy that will be used.
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6.3.2 The Best Defence Model of an Incomplete Information Game

The problems outlined above present serious difficulties when combined with game

trees the size of those generated in Bridge (recall our examination of the search space

size in Chapter 4). Thus, rather than tackling the actual game directly, we will make
the following simplifying assumptions.

A-I MIN has perfect information (i.e., preliminarity and anteriority coincide for

MIN). This cuts the cycle of reasoning about beliefs since now MIN knows ex¬

actly what information MAX possesses at any stage of the game, and MIN's
model of MAX's evaluation function will be MAX's function itself. Further, this

assumption removes the need for MAX and MIN to signal information about

their holdings.

A-II MIN chooses his strategy after MAX. This is the same assumption as that made

by Von Neumann and Morgenstern in reducing a game to its minorant form. As
indicated in §6.2.2, the outcome of the game can then be specified as a function
of MAX's strategy only, thus aiding formal analysis.

A-III The strategy adopted by MAX is a pure strategy (as defined in §6.2.3). This
enables us to search for the optimal strategy from among a finite (although

possibly very large) set, in contrast to the set of possible mixed strategies.

We will refer to the result of transforming any game by making these modifications as

the best defence model of the game. It may seem that the assumptions are so severe

that analysis of the best defence version will tell us very little about the original game.

However, we can justify the transformation by noting that, at least in the context of

Bridge, it is very common to see this best defence model of the game implicitly used in

expert texts, which often analyse play problems under exactly the assumptions given

formally above. For any given example, such texts typically start by selecting a small
number of promising strategies. For each of these strategies, its chance of success is

then found by enumerating the possible card distributions and analysing the return

produced when the opponents are allowed to choose their best strategy in each perfect
information situation. The Bridge Encyclopedia [ACBL 94], for example, devotes 56
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pages to presenting the best strategies (with percentage chances of success) for different
card combinations, all of which are analysed in this way. Notice that such an analysis

is precisely the situation modelled by the assumptions A-I and A-II: first MAX picks
a strategy, and then a MIN with perfect information about the outcome of all prior
chance moves is allowed to select the best response. This kind of MIN opponent is one

which knows the way in which MAX plays, and will always use this knowledge to be

ready with the best possible response to MAX's actions in any world.

Under the assumptions A-I and A-II, the optimal strategies for MAX will in general
be mixed strategies, since this will afford some degree of protection from his actual
moves being completely predicted by MIN. However, many Bridge books, including the

Bridge Encyclopedia, restrict their consideration to pure strategies as solutions to these
situations. This restriction may either be motivated by a desire to make the game easier
to analyse (as in our case above), or may simply be an error of oversight. Whatever
the reason, such books typically refer to this as choosing the best strategy 'against
best opposition' or 'against best defence', and the formulation is presumably popular
because the payoff that can be obtained against the strongest opposition can be treated
as a kind of lower bound on the payoff which can be expected when the opponents are

less accomplished. Since we are not aware of any way of analysing the actual game, with
all the inherent difficulties identified in the previous sections, we will follow the tradition

of using an analysis of the best defence model to produce useful insights into the actual

game itself. However, we should point out that the analysis that follows, which is

designed to identify the best pure strategies for MAX, could in turn be used to generate

good mixed strategies. The identification of a small number of good (pure) strategies for
each player makes it feasible to form a matrix of the payoffs produced for each possible
choice of these strategies by the declarer and the defenders. This matrix can then be
solved using established techniques, for example by reducing the vector maximisation

problem set up by the matrix to a set of constrained scalar maximisation problems that
can be solved by techniques ofmathematical programming. The strategies produced in
this way would be solutions to the probability theoretic interpretation of the minimax

theorem introduced in §6.2.3.
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6.3.3 Solving the Best Defence Model

What does it mean to solve the best defence model of an incomplete information game?
One of the main differences between the best defence model and the actual game is
that MIN chooses his strategy after MAX. This makes the best defence model similar

to the minorant form of a perfect information game, for which, as we saw in §6.2.2,
the value to be expected by MAX (player 1) is:

V\ = maxminI{1(xi,x2) ■ (6-4)
x<2

For the minorant game, min^ Ki(xi,x2) is a function of Xi, so it is easily maximised.
In our best defence model, however, there is a complication. MIN (player 2) now has

perfect information. He therefore always knows his current position in the game tree,

and for any choice of aq by MAX he can select an optimal x2.

MAX, however, is not party to the same information as MIN, so he will be unable to

directly identify whether any x2 will be optimal for MIN. Specifically, since he does

not have perfect information, there may be moves in the game for which MIN knows
the outcome, but MAX does not. Selection of an optimal x2 will require knowledge of

the outcome of these moves. In the following section we will introduce an algorithm
which deals with this problem by identifying (possibly different) choices of x2 which
are optimal under each of the possible outcomes of these moves. After, we discuss the

implications of this for games with incomplete information in general, and also more

specifically for some algorithms which have been proposed for the game of Bridge.

6.4 Exhaustive Strategy Minimisation

The algorithm we propose comes from directly computing (6.4) with respect to the
best defence model: we enumerate all strategies aq for player 1 (MAX) and for each
of them we separately and exhaustively evaluate minX2 AT(aq, x2) by examining each

possible x2 under each possible outcome of the chance moves. Since this carries out

a minimisation operation for each MAX strategy, we call the algorithm exhaustive

strategy minimisation.
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6.4.1 The Algorithm

Assume that for t a tree, node(t) returns its root node and sub(t) computes the set of
immediate subtrees of node(t). Figure 6.2 then defines exhaustive strategy minimisa¬
tion. Note that this algorithm is very simply defined to directly compute (6.4). It is
therefore not necessarily the best implementation in terms of efficiency — an issue we

will discuss in more detail in §6.4.5. The assumptions involved in modifying a game

Algorithm esm(r): Returns optimal strategies for player 1 (MAX) in the best de¬
fence, extensive form, 2-player game F

• Form the set of player l's strategies, S, as g-tuples in which the ith entry rep¬
resents the branch that is chosen at all nodes, n, for which I\(n) = i.

• For each Sj 6 S, calculate Ej = esm(t,Sj).
• Return the strategy (or strategies) Sj for which Ej is maximum,

where, esm(t, s) takes the following actions, depending on t.

Condition Result

t is leaf node A'i(f)

V(node(t)) is 2
(i.e., MIN to move)

min esm(ti,s)
ti£$ub(t)

V(node(t)) is 1
(i.e., MAX to move) esm(ti,s), where i is the Ix(node(t))th element of s.

V(node(t)) is 0
(i.e., chance move) Y Tr(node(ti)) esm(ti,s)

ti£sub(t)

Figure 6.2: The exhaustive strategy minimisation algorithm

into its best defence form are central to the correctness of this algorithm. Firstly, to
be able to actually form the set of MAX strategies, S, assumption A-III restricting
consideration to pure strategies is needed. Secondly, in fixing a particular Sj £ S and
calling esm(t, Sj), assumption A-II that MIN selects his strategy after MAX is required.

Finally, assumption A-I (that MIN has perfect information) is used at chance and MIN
nodes, since it is only valid to assume that the evaluation of a particular node depends

just on the subtree of that node if there is no ambiguity over the position in the tree.
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Under these assumptions, it follows by induction on the height of game trees t, that
for any strategy s for MAX, esm(t, s) computes the minimal payoff to which MAX can

be restricted by MIN. Therefore, given the top-level maximisation loop, the algorithm
returns the optimal strategy for MAX and thus correctly computes (6.4).

6.4.2 An Example

To illustrate this algorithm, we will consider again the example of Figure 6.1. Let us

interpret this diagram under the common convention that nodes where it is MAX's turn
to move are represented as squares, and those where it is MIN's turn are represented

as circles. MAX therefore has two information sets, with two possible moves in each,

allowing him four strategies. These strategies can be identified by the tuples (1,1), (1,2),

(2,1), and (2,2). Let us assume that the 'lower' of the information sets in Figure 6.1 is
the set '1', and the 'upper' is the set '2': the first of the tuples above then corresponds to

selecting the left-hand branch at every MAX node; the second corresponds to choosing
the left-hand branch at all the MAX nodes in the lower set and the right-hand branch

in the 'upper' set, and so on.

In (6.4), the result of each of MAX's possible strategies is found by minimising over

all the possible responses by MIN. The esm(r) algorithm models this by calculating

esm(t, s) for each possible MAX strategy, s. Let us consider how this will function for
the strategy (1,1). The original call to the esm(t,s) algorithm will examine the root of
the tree, find it to be a chance node, and make recursive calls on each of the subtrees.

Each of these subtrees has a MIN node at the root, so further recursive calls will then

be made on each of their subtrees. The roots of these trees are now MAX nodes, so

the branch to select is recovered from the strategy under consideration, and found to

be branch 1. Further recursive calls on the subtrees along these branches encounter

leaf nodes, at which point the payoffs are returned. These payoffs are then passed back

up the tree. At the MIN nodes, the minimum of the subtree evaluations is returned.
This process is depicted in Figure 6.3, which shows that the strategy (1,1) will lead to

a payoff of 0 under each outcome of the chance move except the third. If the outcomes

of this move are all equally likely, then, the evaluation of this strategy is 1/5.

Examining the remaining strategies in the same way shows that the strategy (1,2) leads
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Figure 6.3: MAX's expected payoffs when selecting strategy (1,1)

to a payoff of 1 in just the first two of the outcomes of the chance move, strategy (2,1)
leads to a payoff of 1 in just the final two outcomes, and strategy (2,2) always produces
a payoff of 0. The two strategies which maximise (6.4) are therefore (1,2) and (2,1), if
we assume equally likely outcomes for the chance move.

6.4.3 Comparison with Standard Minimaxing

The exhaustive strategy minimisation algorithm should not be confused with minim¬

axing, which correctly produces the game-theoretic value of any finite tree in which the

players have perfect information. For comparison, in Figure 6.4 we give a formalisation
of the minimax algorithm on games in extensive form.

Notice that where the esm(r) algorithm explicitly manipulates strategies by passing
them as arguments and analysing them, the mm(T) algorithm builds a MAX strategy

for each of the possible outcomes of the chance moves by determining a course of
action for each MAX node on the basis of the subtree with the largest minimax value.
It should be clear that this approach will always produce an evaluation which is greater

than or equal to the maximum Ej produced by the esm(r) algorithm. To see this,
consider any MAX node (the only node at which the actions of the mra(r) and esm(T)
algorithms differ substantially). At these nodes, the mm(T) algorithm selects the
maximum subtree value to back up through the tree, whereas the esm{t, Sj) algorithm
must select the branch determined by Sj. The evaluation produced by the mm(V)
algorithm can therefore never be less than that produced by esm(r). The differences
between the two algorithms can be summarised as follows:
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Algorithm mm(Y): Take the following actions, depending on t.

Condition Result

t is leaf node Kx(t)

V(node(t)) is 2
(i.e., MIN to move)

min mm(ti)
ti£sub(t)

V(node(t)) is 1
(i.e., MAX to move)

max mm(ti)
ti£sub(t)

V(node(t)) is 0
(i.e., chance move) Y *■(<«•) mm(ti)

ti£sub(t)

Figure 6.4: Simple adaptation of the minimax algorithm to best defence, 2-player,
extensive form games

• mm(r) does not respect the constraint imposed by information sets. That is,
it does not always choose the same branch at nodes which belong to the same

information set.

• Since mm(r) commits to one branch selection at each MAX node, it risks in¬

completeness.

In §6.6 and §6.7 we show that these differences cause difficulties in games with in¬

complete information. Specifically, we will show that the first leads to the problem of

strategy fusion, and the second leads to the phenomenon of non-locality.

6.4.4 Possible Worlds

The tree of Figure 6.1 contains just one chance node, and this node is located at the
root. Let us say that in a tree which contains chance nodes, each possible pure strategy

for player 0 (chance) defines a world state, or more simply a world, in which the play
takes place. Consider the special case of a tree which contains just one chance node,
and where that chance node occurs at the root of the tree. If, with the exception of the

payoffs and the MIN information sets, the subtrees in each possible world are identical,
we will say that the tree can be 'flattened' by representing the possible worlds in the
vertical dimension as differing payoffs at the leaf nodes, rather than in the horizontal
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dimension using information sets. For example, Figure 6.5 shows how the tree of

Figure 6.1 can be represented if we refer to the possible outcomes (left to right) of the
initial chance move as the worlds w1? w2, w3, w4, and w5.

w, 1 o 0 1
w2 1 0 01
w3 1 0 10
w4 0 1 10
w5 0 1 10

Figure 6.5: Flattened tree of MIN and MAX moves in a domain with five worlds

We will use such trees in the remainder of this thesis to compactly and simply present

game trees. Notice that the MIN nodes are the result of identifying together nodes
with distinct information sets, and that a MIN strategy must therefore allow different
branch choices under each world. A MAX strategy, on the other hand, must specify
the branches to be chosen at each MAX node under all worlds.

Note that game trees in Bridge cannot in fact be represented in this way, even though

they will always have just one chance move at the top of the tree. This chance move

will determine a world, but the possible plays under each of these worlds will not in

general be the same. For example, MAX will only be able to play a given card, such
as the A*, in worlds where he was actually dealt the card to begin with. Thus, the
subtrees in each world are different and cannot be 'flattened' as described above. The

applicability of the esm(r) algorithm, of course, is unaffected.

6.4.5 The Complexity of Exhaustive Strategy Minimisation

Exhaustive strategy minimisation, while identifying optimal strategies, is not cheap: its

complexity is significantly worse than conventional minimaxing. To investigate this, we
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first examine how the set of possible MAX strategies, S, may be generated. We do this

by looking at the type of flattened trees we introduced in the previous section, using the

complete binary tree of Figure 6.6 as an example. Here, we have numbered the MAX

nodes in the order in which they would be encountered during a pre-order traversal
of the tree. We will use this numbering to construct 5-tuples which correspond to the

possible strategies in the game by virtue of the zth element representing the choice to

be made at the node numbered i (effectively, the ith information set).

Figure 6.6: Complete binary tree of MIN and MAX moves

To examine how this set of 5-tuples may be generated, let us consider MAX's possible
branch selections. In the strategies where MAX initially selects the left-hand branch at

the root of the tree, play is directed to the left-hand MIN node. Since we do not know
which branch will be selected at this node, we must now specify branch selections

throughout both its subtrees. Continuing to examine the left-most branch first, we

encounter MAX node 2 and then MAX node 3, where we will assume that we initially

again select the left-hand branch. This detail has been glossed over until now, but it
should be clear that by selecting the left-hand branches at these two nodes, we will
in fact complete a strategy for the game; once the left-hand branch has been selected
at the root of the tree, it is no longer necessary to specify branch selections for nodes
4 and 5. We will indicate such superfluous branch selections by an underscore. The

strategy we have generated by always selecting the left-most branch, then, is (1,1,1,_,_);
overall, the set of possible strategies is:
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Left-hand branch at root Right-hand branch at root

(1,1,1,-,-) (2,-,-,1,1)
(1,2,1,-,-) (2,-,-,2,1)
(1,1,2,-,-) (2,-,-,1,2)
(1,2,2,_-) (2,_-,2,2)

In general trees, the number of actual strategies in a game is bounded by the number
of possible n-tuples. As we have seen above, when encountering a MAX node, any one

of the branches may be selected. However, at nodes which are moves of another player,

MAX will have to cater for all of the possible branches that may be chosen. Thus, for
a given tree, t, the total number of strategies g(t) is given by the following:

9{t)

T, g(ti) if MAX is to move at the root of t
ti£sub(t)

]^[ g(U) if another player is to move at the root node of t
ti£sub(t)

1 if t is a leaf node

For complete 6-ary trees which alternate between the moves of MAX and MIN this

formula can be written as a standard recurrence relation. As the addition of an extra

layer of MIN nodes to the leaves of a tree does not alter the number of MAX strategies

present, we will write this recurrence as a function of the number of MAX levels, n, in
a tree. For a 6-ary tree with a MAX node at the root, then, we can write the number
of MAX strategies, gn, as

if n = 1
9n 1 6((/n_1)6 if n > 2

which has the solution

9n = .

For the example above where n = 1, and 6 = 2 this formula gives 8 strategies, as

expected. For trees with a MIN node at the root, we can solve a similar recurrence to

produce the formula

Qn = b( "-1 > .
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For 6-ary trees in general, then, the number of strategies that must be examined is

doubly exponential in the number of MAX levels which the tree contains. Further, all

of these strategies are examined in each of the possible worlds. Thus, the exhaustive

strategy minimisation algorithm will require too much computation to be applied to

all but the smallest of game trees. However, note that this is an upper bound to the

complexity of this problem. We do not know if there is a more efficient way of finding

the optimal strategy; however, as we will show in the following sections, minimaxing,

and algorithms based on it, are not a substitute.

6.5 Bridge Architectures Based on Standard Minimaxing

In the remainder of this chapter we use the above framework to analyse the game of

Bridge and in particular to examine the technique, described in Chapter 2, of sim¬

plifying the task of card play by solving instead the easier problem where all the

players reveal their cards to each other. Since the perfect knowledge situation cre¬

ated by this act is akin to the opponents placing their cards on the table in the same

manner as dummy, this scenario is often described as double-dummy Bridge. Be¬

low, we present the double-dummy architectures proposed by both Levy and Ginsberg

[Levy 89, Ginsberg 95]. After, we use our framework to demonstrate why such ap¬

proaches produce suboptimal results and to formalise two general problems that can

afflict search algorithms in games with incomplete information.

A Million Pound Bridge Program?

The first person to explicitly propose the use of a double-dummy solver as the basis for
a program to play Bridge appears to have been Levy [Levy 89]. He was confident that
this kind of program could win the prize of 1 million pounds offered by former Bridge
World Champion, Zia Mahmood, to the designers of a computer player that could

defeat him. Here, we describe Levy's algorithm by considering the general problem of

selecting MAX's next move in an arbitrary incomplete information game.

Let us say that, for some move under consideration, the set of worlds which are con¬

sistent with the outcomes of the previous (anterior) moves is given by W. Let us also
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say that it is possible to choose an n such that when we randomly generate n members,

wx, • • •, w„ of W, we have sufficient computing resources to find the minimax value of
the current (complete information) game tree under each of these worlds. If there are

m possible moves, Mi,- • -,Mm, to choose between and we use e,j to denote the min¬
imax value of the ith possible move under world wj, the situation in this world will be
as depicted in Figure 6.7.

trees of legal moves in world wr

Figure 6.7: The minimax values, e,-j, of each move Mt under world Wj

Levy's proposal was that each legal move, M,, could be given a score based on its

expected payoff. In the context of Figure 6.7, Levy's score can be expressed as the

scoring function, /:

Selecting a move is achieved by actually using the minimax algorithm to generate the
values of the etJ s, and determining the M{ for which the value of /(M,) is greatest. Since
this technique relies on repeated applications of the minimax algorithm to problems
with perfect information, we will refer to it as repeated minimaxing, and to the limiting
case where every possible world is examined as exhaustive minimaxing.

Of course, other possible definitions for the scoring function / can be envisaged, and
indeed Ginsberg's notion of selecting 'the play that works best on average' [Ginsberg 95]
suggests the following alternative:

n

f(Ml) = J2eijPr°b(Wj)
j = 1
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7

where k ranges from 1 to to, and = is an infix function which equals 1 if both sides are

equal, and 0 otherwise (that is, a move is given a score of 1 for each world in which it is
the best, or equal best, alternative). Another possibility (particularly in Bridge, where
the objective is usually to win at least a certain number of tricks) is to only consider
moves which guarantee a result at least as large as some minimum value, e, say. That
is:

However, more important than the choice of the scoring function in our current con¬

text is the answer to the more fundamental question of whether Levy is justified in

speculating that this kind of architecture is the key to playing the cards 'perfectly'

(Levy's quotes). Below we show that no possible scoring function can work optimally.

6.6 Repeated Minimaxing Fails: Strategy Fusion

The repeated minimaxing architecture described above is based on looking at a rep¬

resentative sample of possible distributions of outstanding cards and using them to

evaluate the best strategy. We use the framework we developed in §6.3 to show that
this is not possible, i.e., suboptimal strategies may be returned. Indeed, we show
that even an exhaustive minimaxing algorithm, examining all the possible distribu¬

tions, may fail to select the correct strategy! Although our discussion is driven by

the problems experienced by repeated minimaxing, we also show that any algorithm
which shares specific characteristics with minimaxing will experience the same diffi¬
culties. We use examples from Bridge to show how such sub-optimal algorithms lead
to improper play in real games.

Let us return to the flattened version of the game tree we first introduced in §6.2,
this time labelling the nodes and adding one extra possible path, as shown by the
nodes d, e, and / in Figure 6.8. If MAX picks the left-hand branch at node d, he will
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w, 1 o 0 1
w2 1 0 0 1
w3 1 0 10
w4 0 1 10
w5 0 1 10

Figure 6.8: A tree of MIN and MAX choices which is mis-analysed by exhaustive
minimaxing

encounter the tree with four possible strategies that we have already examined in §6.4.

Alternatively, he may select the right-hand branch, which leads to a subtree in which
no further MAX choices are necessary. Thus, the extra branch increases the number of

possible MAX strategies by one. Since we have already seen that none of the strategies
in the left-hand subtree give a payoff of 1 in more than two worlds, MAX's best option
at the root of the tree, guaranteeing a return of 1 under every world, is to select the

right-hand branch.

However, using the standard minimax algorithm under any single world, the two MIN
nodes — a and e — will always have a minimax value of 1 (since in any single world
MAX can always choose a branch with a payoff of 1 at nodes 6, c and /). Applying

repeated minimaxing to the root of the tree then, irrespective of the scoring func¬
tion used, must assign both the left-hand branch and the right-hand branch the same

score. Thus, repeated minimaxing will perform no better than making a random choice
between the two moves, even in the limiting case of exhaustive minimaxing. Further¬

more, reducing the number of worlds in which the right-hand branch gives a payoff of 1

can produce situations in which repeated minimaxing will usually select the incorrect

move, and indeed where exhaustive minimaxing will always select incorrectly. For ex-
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ample, consider how exhaustive minimaxing behaves in the situation of Figure 6.9(a),
where the payoffs on the right-hand branch have been modified so that a payoff of 1

is achieved in only three worlds. Despite this modification, this branch still represents

MAX's best move at the root of the tree, under the assumption that all the worlds are

equally likely. For exhaustive minimaxing, however, it is the other branch that will be

selected by any of the scoring functions of §6.5, as the left-hand MIN node has a min-

imax value of 1 in all five worlds, whereas the right-hand node has a value of 1 in just

three. (Repeated minimaxing may pick the correct branch, but only if it does not ex¬

amine either of the worlds Wi and w2 and then makes a fortunate guess). Any sensible

scoring function will never lead exhaustive minimaxing to select the right-hand branch
in this situation, as it clearly cannot be rational behaviour, given a set of alternatives
to choose between, to prefer an option whose evaluation is always less than or equal

to that of one of the others. To see that no possible scoring function can cope with
all such situations, consider Figure 6.9(b). To an exhaustive minimaxing algorithm,
this tree will be indistinguishable from that of Figure 6.9(a), as the minimax values of
the MIN nodes in each are the same under every world. However, in Figure 6.9(a) the
best move is the right-hand branch, and in Figure 6.9(b) the best move is the left-hand
branch. Any given scoring function will therefore either make the correct choice in just

one of these situations or will be unable to distinguish the best move in either case.

The source of the difficulty which repeated minimaxing experiences on these trees lies
in a crucial deviation it makes from the exhaustive strategy minimisation algorithm
we presented in §6.4. Recall that for each world that it considers, exhaustive strategy

minimisation examines the result of every possible strategy. Repeated minimaxing, on

the other hand, uses the minimax algorithm to find the best strategy in a number of
worlds. As we pointed out in §6.4.3, using minimaxing in this way does not respect the
constraint imposed by information sets: it allows different strategies to be chosen in

different worlds. Collecting the minimax values of these strategies and assuming that

they represent the payoffs that can be expected under each world ignores the fact that

a choice of a particular strategy has to be made. We therefore call this problem strategy

fusion. As we saw in §6.4.3, allowing the minimax algorithm to ignore the constraint

imposed by information sets results in evaluations greater than or equal to the correct

values (e.g., produced by exhaustive strategy minimisation). Repeated minimaxing
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w, 1 0 0 10 W1 1 0
w2 1 0 0 10 w2 1 0
w3 1 0 10 1 w3 1 1
w4 0 1 10 1 w4 1 1
w5 0 1 10 1 ws 1 1

(a) (b)

Figure 6.9: Two trees with the best initial move marked in bold

will therefore have the tendency to over-estimate its scoring of any node; the strategy

fusion effect leads it to believe that it has the luxury of choosing a different strategy
in each world, instead of the best single strategy across all worlds. For example, given

perfect information at node b or node c it is easy to determine which branch to select
to produce a payoff of 1. Node a will therefore always have a minimax value of 1 under

repeated minimaxing. However, we have already seen that when a single strategy

selection is enforced, the best that can be achieved is a payoff of 1 in at most two

worlds.

Another way to visualise the strategy fusion problem is to note that the repeated min¬

imaxing architecture actually models the task of selecting between some number of

perfect information games each starting with the same chance move. For example,

imagine that the subtrees rooted on nodes a and e in Figure 6.8 represent the MIN
and MAX moves in a game starting with a chance move that selects one of the pos¬

sible worlds wl5 • • - ,w5. Which of these games would we rather play given that they
have perfect information (for both players)? This is the question which exhaustive

minimaxing answers, and to which repeated minimaxing approximates. It should be
clear that such an algorithm will always expect to win the game based on the tree of
node a and the game based on the tree of node e. It should also be clear that the
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situation modelled by this algorithm is different from the original game as well from
the model produced by our assumptions about a best defence model, since it involves

assumptions about MAX, as well as MIN, having perfect information.

6.6.1 A Bridge Example

To see an example of strategy fusion in the game of Bridge, consider the situation

of Figure 6.10, where we control both the North and the South hands against two

opponents who see just their own hand and the North hand, which is the dummy.

4 A
V -

OA
4 A

W

4-
9 -

0 3 2
* 2

Figure 6.10: A Bridge situation requiring a guess over the best strategy

N
E

S

Outstanding:
4 2
0 -

0 5 4
* 5 4 3

Assume that spades are trumps — recall that cards in the trump suit beat cards in

every other suit — and that it is South's turn to play. We are worried about the

last outstanding trump (the 24) but cannot force the opposition to play this card by

leading the A4 because currently it is not North's turn to play, and South has no cards
in the suit. However, whichever opponent has the last trump must also have at least

one diamond or one club. Since players must always follow the suit of the card which
starts a trick, it is therefore possible to win all the remaining tricks by leading a suit

which the opponent with the last trump holds, winning in the North hand with the Ace
of that suit, and then clearing the trumps with the A4- In reality, this choice between

leading a diamond or a club is a guess, but a double-dummy program will find that it
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is always possible because it has perfect knowledge of every world. A Bridge situation
where repeated minimaxing is misled by strategy fusion can therefore be constructed

by adding four cards to the above situation, as in Figure 6.11.

* A
V A

0 A
4 A

W

6 3
9 -

<C> 3 2
* 2

Figure 6.11: A Bridge example where strategy fusion obscures the best strategy

In this new situation, let us assume that the lead is now in the North hand, so that there

are four possible moves: the lead of the Ace of any suit. Choosing either of the diamond
or the club suits will be (correctly) evaluated by a repeated minimaxing algorithm as

less than 100% plays, provided the algorithm examines at least one world in which
the Ace may lose to a trump played by an opponent. Choosing the spade suit, on the
other hand, will be (correctly) evaluated as a 100% play, since after the A4 is played
there will be no remaining trumps and North's other Aces will be guaranteed winners.

However, exhaustive minimaxing will also assess the Ace of hearts to be a 100% play.
This is because a trump can be played on this card from the South hand (winning the

trick) and then the North hand re-entered by making a guess between diamonds and
clubs as described above. This play, of course, is clearly not guaranteed to succeed,
as would be revealed by an algorithm such as exhaustive strategy minimisation, which
would separately evaluate the strategies of re-entering the North hand with a club or

with a diamond, finding that they would each lose under some of the possible worlds.

Outstanding:
* 2
0 -

0 6 5 4
* 6 5 4 3
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6.6.2 Some Practical Consequences

To our knowledge, the concept of strategy fusion has not been formalised before.

However, some of the effects of strategy fusion have been discussed in the literat¬

ure on computer Bridge, although they have typically been mis-analysed. Ginsberg,

for instance, presents the card combination of Figure 6.12.

K J 10 x

N
W E

S

A 9 8 x

Figure 6.12: An example card combination used by Ginsberg

This is a finessing situation where, if the location of the missing Queen is known, it
will always be possible to win four tricks. To see this, consider what happens if we
know that West holds the Queen. We start by playing a low card from the South hand,

and if West plays the Queen we win with the King and cash the remaining top cards.
If West chooses not to play the Queen, we win with the Jack or the Ten (a Type 1

finesse), and repeat the same procedure on the following trick. Similarly, we can always
win the trick if we know that East holds the Queen, this time by leading low from the

North hand. In practice, the location of the Queen is unknown and must be guessed;
a wrong guess will allow the Queen to defeat the finesse. However, a double-dummy

program will always see the position of the cards and 'know' which opponent to play
for the card.

Ginsberg correctly realises this problem, pointing out that a double-dummy program

will 'assume that it can always play KJlOx opposite A98x for no losers'. However, he

also suggests that such an algorithm 'won't mind playing this suit by starting with
the 9 (for example)', whereas human players 'might play the Ace first to cater to a

singleton Queen on our right'. To see why this is not the whole story, consider a game
tree composed of just the node b in Figure 6.13.

We have already seen that under any single world the minimax value of node b is
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b

w, 1 0
w2 1 0
w3 1 0
w4 0 1
w5 0 1

Figure 6.13: A simple tree with just one MAX choice

always 1, and that such nodes can lead to strategy fusion. However, consider this new

situation where the node is at the root of the tree of possibilities. If we use repeated

minimaxing to analyse this tree, the best move is found by determining the branch
that has the highest score under some function /. This separate examination of each
branch removes the freedom to select the best strategy for each world, and since neither
of these branches alone can guarantee a payoff of 1 under every world, there must now

be a payoff of 0 in some worlds. In effect, then, node b represents a point where a

choice between strategies which win under different worlds has to be made. If such
a decision point occurs within a game tree, as in Figure 6.8, a repeated minimaxing

algorithm will deceive itself into thinking that it can always make the correct choice.
If the decision point occurs at the root of the tree as in Figure 6.13, however, some
of the freedom to choose different strategies in different worlds is lost. A repeated

minimaxing algorithm will therefore have a tendency to delay such decision points

wherever possible, as 'doing it later' will always appear to be better than 'doing it

now'. Only when it actually reaches a point where a choice has to be made will it
realise that its previous evaluations were inflated by the effects of strategy fusion.

To see how this is relevant in Ginsberg's example, observe that in order to be able to

always win the finesse against either East or West for the outstanding Queen it is

necessary to retain both the Ace and the King. Starting a trick by actually playing
either of these cards, then, will remove this ability, making it impossible to win all
the tricks in the suit under every world. Repeated minimaxing will therefore correctly
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evaluate the play of the Ace or the King at less than 100% if it selects any of these worlds
to examine. The play of any other card in the suit, however, leaves the ability to finesse

against either opponent intact, always resulting in an (over-estimated) evaluation of

100%. Therefore, it is not that repeated minimaxing is indifferent over the card to lead

in the suit, as Ginsberg suggests, but rather that it will prefer to play one of the J,

10, 9, 8, x. Indeed, an exhaustive minimaxing algorithm will only choose to play these

cards.

Sometimes the delaying of a crucial decision can be important, as the later an actual
choice is made, the more information there is likely to be to inform the decision. For

example, consider the situation in Figure 6.14, where the aim is to win all the tricks
and there is no trump suit.

4 K J 10 x
A K Q

OAKQ
X X X X

N
W E

S

4k A 9 8 x
9xxx

<) xxx
* A K Q

Figure 6.14: An example deal in Bridge. South is declarer, North is dummy and there
are no trumps

The spade suit is identical to that of Ginsberg's example, so there is again a guess

over the position of the Queen. However, this is not necessarily a complete guess.

As Frank [Frank 89, Page 207] points out in a similar example, 'by playing out the
winners in the other three suits, information will be gained which will increase one's
chance of making the right play, possibly up to certainty'. It might be hoped that the

tendency of a repeated minimaxing algorithm to delay such decisions would result in
this discovery play being made. However, as we have already seen, although the Ace
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and King are less than 100% plays, the lower cards in the suit are not, so a repeated

minimaxing algorithm may well choose to play the spade suit early.

6.7 Non-locality (Repeated Minimaxing Fails Again)

The failure of minimax-like algorithms we address here is more subtle than that of

strategy fusion and, to our knowledge, has not been studied before. To illustrate it,
we will refer once more to the flattened version of the tree introduced in §6.2, which

we repeat here in Figure 6.15 for ease of reference.

w, 1 o 01
w2 1 o 01
w3 1 0 10
w4 0 1 10
w5 0 1 10

Figure 6.15: Simple tree of MIN and MAX choices in a domain with five possible
worlds

When actually playing the game represented by this tree, MAX will only ever have to

make one decision: the selection of a move at either node b or node c (effectively, one
choice for each of the information sets in the game). Let us again assume equally likely
worlds. Irrespective of the MAX node at which the play arrives after MIN's move at

the root of the tree, repeated minimaxing, using any of the scoring functions from §6.5,
will usually select the left-hand branch (in the limiting case of exhaustive minimaxing,
the left-hand branch will always be chosen). Thus, the strategy that will typically
be chosen by repeated minimaxing, and indeed the one that will always be selected

by exhaustive minimaxing will be the one we have identified as (1,1). However, we
have already seen in §6.4 that under the assumption of equally likely worlds, the best

strategy selections are actually (1,2) and (2,1)!
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The problem here is distinct from that of strategy fusion, and can be traced to a

different cause: the way in which a branch selection is made at a node on the basis

of an evaluation only of its direct subtree. The inherent assumption in making a

branch selection in this way is that the correct move is a function only of the possible
continuations of the game. In perfect information situations (i.e., where the position in
the game tree is known), this assumption is justified and the minimax algorithm, with
its compositional evaluation function, finds optimal strategies for such games. With
more than one possible world, however, this assumption is no longer valid. The reason

for this is that a decision procedure making this assumption considers only partial

strategies at any internal node of a tree: the actual strategies themselves would have
to specify further choices at other MAX nodes in the tree. This is the manifestation

of the incompleteness we alluded to in §6.4.3.

To illustrate the discussion here, let us return to the task of selecting a strategy in

our example tree. If we just analyse the subtree of node b, we see that the left-hand

branch appears to be the best choice because it produces a payoff of 1 in three out

of the five possible worlds. In the context of the entire game, however, selecting the

left-hand branch at node b affects the analysis of node c. Since the left-hand branch at

node b produces payoffs of 0 in worlds w4 and w5, MIN (who chooses his strategy after

MAX) will be able to restrict MAX's payoff to 0 in these worlds irrespective of MAX's
choice at node c. Under this circumstance, it is the right-hand branch that is the best
choice at node c, since it offers a payoff of 1 in two worlds (w4 and w2), compared to

the single payoff of 1 (in world w3) offered by the left-hand branch. Similarly, if we
consider making a branch selection at node b after choosing a branch at node c, we

find that the best selection is no longer the one which leads to a payoff of 1 in most

worlds.

In general, the choice of branch at a given MAX node is not simply a function of the

payoffs of the paths which contain the MAX node, but of the payoffs along any path
in the tree. If MIN can choose a play at a node's ancestor which reduces the payoff

(in any world) from that which MAX would expect from examining the MAX node's
direct subtree, the best choice of branch at that node may change. For example, in

the case of Figure 6.16, the initial selection of branch a may be rendered incorrect
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if reducing some of the eia can result in the maximum value of the function / being
achieved at a different branch.

Figure 6.16: A search process in which the selection of branch a may be rendered
incorrect by non-locality

We call this problem of having to consider all other nodes in the tree non-locality. To
see that no possible scoring function can cope with the effects of non-locality, consider
the examples of Figure 6.17. The left-hand MAX node is the same in both trees, and

leads to a payoff of 1 in just one of the two worlds. However, in one tree the best

choice is the left-hand branch and in the other it is the right (since against a MIN

player who knows the actual state of the world, the other strategies in each tree always

give a payoff of 0). No algorithm analysing these MAX nodes in isolation will be able
to make the correct selection in both situations.

Unlike strategy fusion, which is linked with incorrect assumptions about MAX having

perfect knowledge, it should be clear that non-locality is closely related to the presence

of differing levels of information between the players of the game. MIN's ability to lead
the play away from a given node under certain worlds by selecting branches higher in
the tree relies both on his ability to choose a strategy after MAX (assumption A-II in
our best defence model), and knowledge of the actual state of the world (which under



CHAPTER 6. SEARCH IN GAMES WITH INCOMPLETE INFORMATION 140

wi
w,

(a) (b)

Figure 6.17: Two trees with the best MAX strategy marked in bold

best defence is complete knowledge, from assumption A-I). Under these conditions, it
will generally benefit MAX to select mixed strategies rather than pure ones, since this
will help prevent his actual moves from being known by MIN. The main limitation of
our model is therefore that it restricts consideration to pure strategies. In our case,

this restriction was imposed to aid formal analysis, allowing the e,sm(r) algorithm to

be specified using a simple loop. However, as we noted in §6.3.2, pure strategies are

also often given as solutions in standard Bridge texts, and we can further justify this
restriction by pointing out that if a number of 'good' pure strategies are identified for
a game they can then be used to generate mixed strategies which select between them

probabilistically.

We should emphasise that since non-locality occurs as a consequence of (the interaction
between the assumptions of the best defence model and) the implicit assumption that
the best choice at a node can be determined by analysing just the node's subtree,

the phenomenon will be independent of the accuracy of the evaluations on which the

branch selection is based. For example, in Figure 6.16, non-locality would still be

possible whether the e's were produced using repeated minimaxing (risking incorrect
values caused by strategy fusion) or by using exhaustive strategy minimisation to

find the results of the optimal strategy for the subtree (therefore producing exact

values). Thus, the solution to improving the double-dummy architectures of Levy and

Ginsberg does not lie with the simple replacement of the minimax algorithm with
modified versions, such as average propagation [Nau et al 88] or product propagation



CHAPTER 6. SEARCH IN GAMES WITH INCOMPLETE INFORMATION 141

[Pearl 81, Pearl 83]. The back-up rules in such algorithms, when calculating a value
to propagate up the tree, take into account the value of each subtree at a node. Their
use in the repeated minimaxing algorithm may therefore reduce the effects of strategy

fusion, but non-locality will still be present. Also, the very property that each node
contributes to the result in such algorithms means that search enhancement techniques
such as alpha-beta pruning cannot be used to improve efficiency without affecting the
values computed.

Currently, we are aware of no correct algorithm for identifying optimal strategies

against best defence other than the exhaustive strategy minimisation algorithm of §6.4.
This algorithm overcomes both the phenomena of non-locality and strategy fusion by
the simple expedient of examining the possible outcomes of each complete strategy

separately.

6.7.1 A Bridge Example

We give below an example of non-locality as it can occur in Bridge. Note that it is
difficult to construct simple examples for the non-specialist in Bridge. The example
below is, however, representative of the kinds of problems that can arise during actual

play.

Consider the situation of Figure 6.18, where one trick must be lost as the highest

remaining card is held by the opposition. For ease of exposition we will assume that
the possible options are represented using the tactics of Chapter 5, which specify not

just a card to lead on a trick, but also the card to played by the declarer from the third

hand, after the first opponent has responded.1

We will look at the two tactics which succeed under most worlds. The first of these is

1 Note that Ginsberg suggests a similar representation when discussing the example of Figure 6.12.
When leading a card, he proposes that declarer should 'decide in advance' the other card he will
play on the trick — essentially creating tactics. Within the repeated minimaxing framework, such a
representation change has the effect of delaying the onset of strategy fusion for one level of search,
since instead of choosing between individual moves — which are really just partial strategies with
only the first step determined — we are now choosing between options which are partial strategies
with the first two steps determined. However, the strategy fusion which results from allowing
different completions of these partial strategies in different worlds will still remain beyond this new
horizon. Although the use of tactics can indeed 'correct' the problems caused by strategy fusion in
Ginsberg's example, then, it cannot provide a complete solution unless the 'tactics' extend to the
end of the play, at which point they become complete strategies.
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J 8 7

Outstanding:
Q 9 5

10 3 2

Figure 6.18: A Bridge card combination where one trick must be lost

a play which begins by leading the 7 from the North hand. If East plays the Queen

straight away, declarer plays a low card from the South hand and wins the next two

tricks with the Jack and the 10. If East plays the 9, declarer covers with the 10 and

is again guaranteed two tricks. Finally, if East plays low, declarer again plays a low
card from the South hand, hoping to find that East holds the 9, thus either forcing

out the Queen or winning the trick outright. This play is a Type 2 finesse (of the 7)

against East. The other possibility we will examine is a Type 3 of finesse, this time of
the Jack, against West. This play begins by leading a low card from the South hand,

intending to play the Jack unless West plays the Queen. Of the eight possible ways to

split the outstanding cards, the distributions under which each of these tactics would

produce two tricks are shown in Table 6.19.

Possible worlds:
East holds

finesse of the 7 finesse of the J

Q95 • •

Q9 • •

Q5 •

95 • •

Q • •

9 • •

5 •

void •

Figure 6.19: Possible worlds under which each tactic will produce 2 tricks

With no further information to guide a choice, then, the most promising of the two

tactics appears to be the finesse of the Jack. This will fail to win two tricks in only
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one of the eight possible worlds (which is also the least likely), whereas the finesse of
the 7 will fail in two. However, notice that the situation of Figure 6.18 can in fact be
reached in one round of play (each player contributing one card) from the state where
the cards are initially distributed as in Figure 6.20.

J 8 7 6

9 4 K Q 5

A T 3 2

Figure 6.20: A Bridge example giving rise to non-locality

If the declarer does not know the actual distribution of the outstanding cards, his best

play in this situation is to lead the 6 from the North hand and play low from the South
hand unless East plays the 9 or one of the King or Queen. Faced with this play, East's
best option if he holds the cards shown is to play low with the 5. If he does this, West

will win the trick with the 9 and the declarer will be restricted to just two tricks in
the suit. Similarly, if East starts with Kx or Qx, the best option will again be to play
low. Thus, if the situation of Figure 6.18 is encountered as the result of leading the 6
and having to beat the King with the Ace, there will be extra information about the
lie of the cards. Specifically, the cases where East holds the Q5 or the singleton 5 can

be ruled out, because under these circumstances another branch, higher in the tree,

would have been chosen by East to restrict the declarer to just two tricks.

This extra information would have a crucial effect on the situation in Figure 6.18. If it
was known that this position would not be reached under the two distributions where

East holds the Q5 or the 5, we can see from Figure 6.19 that the finesse of the 7 would
then succeed under all the remaining worlds, whereas the finesse of the Jack would still
fail in one. The probability of the finesse of the 7 producing two tricks in this scenario
would therefore be higher than that of the finesse of the J, and the selection made in

this position would need to be reversed.
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6.8 Summary

We have looked at the problem of selecting a strategy in zero-sum two-player games
with incomplete information. We formalised the notion of a best defence model of

such games in which equilibrium point strategies could be more easily identified, and

presented exhaustive strategy minimisation as an algorithm capable of finding such

strategies.

Although the problems we address seem central to the design of programs for play¬

ing games in incomplete information domains, it appears that they have not been

adequately studied or addressed in the literature. We were therefore able to newly

formalise two general problems which can result from the incorrect handling of the
technical notion of a strategy in such domains. The first of these, strategy fusion, res¬
ults from combining different MAX strategies in different possible worlds. The second,

non-locality, results from examining only partial strategies at internal nodes of a game
tree.

We demonstrated that both strategy fusion and non-locality are present when the
standard minimax algorithm is applied to games with incomplete information, as in
the repeated minimaxing architecture. In the domain of Bridge, where we showed

that the best defence model of the game corresponds to the typical model analysed in

expert texts, our results must therefore call into question some of the claims about the

prospects of computer players based on fast double-dummy programs. For instance, it

seems at best unproven that such programs will inevitably mean that, as humans, 'our
time as world Bridge champions is limited' [Ginsberg 95].

We pointed out that the main limitation of our model is the restriction to pure, rather
than the general case of mixed, strategies. Also, our solution of exhaustive strategy

minimisation, although capable of producing optimal strategies, is highly intractable.
This suggests that there is a real cost involved in overcoming the effects of incomplete
information. However, we have not yet established a lower bound for the complexity

of this problem, and this remains an open — and apparently important — problem for
the design of programs which play games like Bridge.



Chapter 7

Identifying The Best Strategy:
Tackling Non-locality

'What kind of place is Expectations?' enquired Milo, unable to see the
joke, and feeling very doubtful of the little man's sanity.
'Good Question, good question,' he exclaimed. 'Expectations is the place
you must always go to before you get to where you're going. Of course,
some people never go beyond Expectations, but my job is to hurry them
along whether they like it or not.'

— Norton Juster
The Phantom Tollbooth

Baldric, you wouldn't recognise a subtle plan if it painted itself purple and
danced naked on a harpsichord singing 'subtle plans are here again'.

— Edmund Blackadder

In the previous chapter, we showed that the presence of incomplete information in a

game gives rise to non-locality. We also showed that the solution of exhaustive strategy

minimisation will only be feasible on the smallest of game trees. In this chapter, we
therefore examine alternative ways in which the effects of non-locality can be dealt

with. However, we have already noted that we know of no algorithm which identifies

guaranteed optimal strategies more efficiently than exhaustive strategy minimisation.
The approaches we discuss here will therefore to a greater or lesser extent be heuristic
in nature.

Initially, we introduce the notion of the qualitative representation of incomplete in¬

formation (§7.1), and discuss how such an approach can improve efficiency. In §7.2 we

145
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then look at how the shortcomings of local evaluation functions can be addressed by

providing them with extra information about the rest of the tree. Finally, we apply

these ideas in the game of Bridge (§7.4 and §7.5).

7.1 Representing Information Qualitatively

The exhaustive strategy minimisation algorithm examines each possible MAX strategy

under each possible outcome of the chance moves in a game. Thus, when the algorithm
is applied to a game tree, large portions of the tree will be examined more than once.

In order to reduce the number of times each node is examined, information can be

represented qualitatively.

7.1.1 A One-pass Approach

Let us refer back to the game tree we introduced in the previous chapter as Figure 6.1

on Page 109, and again consider its flattened form. Rather than labelling the leaf
nodes with payoffs in each world separately as we did before, however, let us use a

single vector, K, with one element for the payoff in each of the five possible worlds. In

Figure 7.1 these vectors are represented by ovals which contain the possible payoffs in
worlds Wj, w2, w3, w4 and w5.

C3520o) CoR^Rj> CL0o0O)

Figure 7.1: Representing payoffs as 'vectors' of possible outcomes

It is possible to analyse this type of tree with an algorithm which produces the same res-
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ults as exhaustive strategy minimisation, but achieves this with just one pass through
the tree. To do this, instead of selecting a single branch at each MAX node, the result
of each possible selection is calculated and stored. For instance, in our example above,
let us label the payoff vector at each leaf node with a template to represent a partial

strategy which will become instantiated as the tree is processed (see Figure 7.2). At
node b, MAX has two choices (either the left or the right-hand branch). We therefore
raise the two vectors which are at the leaf nodes and store them at node b. Also, since

b is the first node that will be encountered in a pre-order traversal of the tree, the
two partial strategy templates are filled in correspondingly to indicate which vector

is produced by selecting the left-hand branch, and which is produced by selecting the

right. Similarly, there are two possible vectors for MAX to select between at node c.

(1.1) (1.2) (2,1) (2,2)

((oJo 1 o j>) Cjji | o | ojjT) (o o o o o)

(1.J
b Cojo hB> c C3i|

(-.2)

(_.J (_,J (_,_) <_,_)

Cjpl|l|o[o) Cojo| o| jjT) (ojo| 11 i]T)
w, *2 W3W4W5 W, W2W3W4W5 W, W 2 W3 W4 W5 W 1 w2 W3 w4 w5

Figure 7.2: Annotating each node with a 'vector' describing the outcomes of the pos¬
sible strategies

At node a, we have to analyse MIN's possible actions in response to each of the possible
combinations of choices that MAX may make at nodes b and c. This can be done by

looking at each of the possible combinations of the vectors and partial strategies that
label the MAX nodes. For example, let us consider how to combine together the choices

represented by the partial strategies (1,_) and (_, 1) (corresponding to choosing the left-
hand branch at nodes b and c). MIN's desire to minimise MAX's payoff is modelled

by comparing the payoffs in each of the associated vectors and selecting the smallest
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payoff in each possible world. This results in a new vector with a single 1 in world

w3. The identification of the strategy represented by this vector is found by combining

together the partial strategies to produce (1,1). Thus, we can now label node a with
an oval representing the payoff for this strategy. This procedure is repeated for the

other possible combinations of the strategies at nodes b and c, producing annotations
at node a for the strategies (1,2), (2,1) and (2,2), as shown in Figure 7.2. These are

the same results as those obtained by the exhaustive strategy minimisation algorithm
described in the previous chapter. That is, strategy (1,1) is found to give a payoff of
1 in just world w3, strategy (1,2) is found to give a payoff of 1 in just worlds wq and

w2, etc. Thus, we have analysed all the possible strategies whilst examining each node

of the tree only once.

7.1.2 Discussion

The exact formalisation of an algorithm using qualitative information will depend on

the method used to represent and build the strategies. Since doing this efficiently can

be complicated, we omit a formal specification and concentrate instead on the general
benefits to be gained from a one-pass algorithm.

Of course, analysing the tree in one pass does not of itself imply greater efficiency, as

there is a penalty incurred by having to maintain many vectors at each node. For a

general tree, the number of the vectors present at any MAX or MIN node is given

by the doubly exponential recurrence relations of §6.4.5. Thus, whereas the esm(r)

algorithm calls esmit, s) once for each possible strategy, the approach outlined above
has to retain the results of each traversal of each subtree at its root. Also, the time

complexity of such an algorithm on a general tree will be of the same order as that

of the exhaustive strategy minimisation algorithm, since for each MAX strategy the
result in each of the possible worlds is eventually examined.

However, there are two ways in which this basic one-pass algorithm could be improved

to enhance its performance. Firstly, it is clearly true that if the collection of vectors at a

node contains members which are pointwise less than or equal to any other member at

that node, these vectors may be ignored as inevitably giving rise to inferior strategies.

For example, the vector containing entirely zeros at node a may be omitted from further
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consideration, as there are other vectors at the same node that offer at least as good
a payoff in every world. Prunings of this sort may lead to a noticeable improvement
in performance, but the effect will vary from domain to domain and from problem to

problem.

A more important improvement lies in an appropriate choice of representation for the

payoff information at each node. Rather than representing each payoff in a single slot
of a vector, it is possible to group possible worlds together in a qualitative repres¬

entation. For instance, in our current example, consider the effect of using a simple

propositional language to group together the worlds in which the payoffs are identical

(see Figure 7.3). The generation of the vectors at the root of the tree is now conducted

(1,1) (1,2)
w1aW2 W3 W4AW5 W1AW2 W3AW4AW5

C°TT°>
W1AW2AW3 w4Aws

(2,2)
w1Aw2Aw3Aw4Aw5

Figure 7.3: Improving efficiency via the use of a simple propositional language

not by comparing the payoffs in each possible world, but by manipulating the actual

propositional expressions. Thus, by a suitable choice of representation language, the

complexity that results from the requirement to examine the results of each strategy in
each possible world can be reduced; the qualitative representation allows worlds with
the same payoff to be processed together. In §7.4, we describe how FINESSE uses a qual¬

itative language of simple predicates to describe the uncertainty in Bridge. Typically,
this replaces the task of considering all the possible worlds with that of manipulating
an expression with a very small number of terms. However, the degree of improvement
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offered by this kind of representation change is again difficult to quantify in general.
In the next section, we therefore look at the prospects for more general techniques.

7.2 Parameterised Local Evaluation Functions

We know that in game trees with incomplete information, non-locality makes it im¬

possible to choose the correct action at any internal node of the tree by just analysing
the node's subtree. The exhaustive strategy minimisation algorithm, and the one-pass

approaches described above, avoid making local evaluations but pay the penalty of

having to examine large amounts of information. Here we will examine an alternative

approach: that of using local evaluations parameterised by some extra information
about the situation in the remainder of the tree.

7.2.1 Doublethink

Consider the algorithm of Figure 7.4, which for reasons we describe below, we call
naive minimaxing. This algorithm returns strategies under the assumptions of the

best defence model for the flattened form, t, of a game with payoff vectors at the leaf

nodes, K, as described above. This algorithm commits to just one choice of branch at

each MAX node, while allowing MIN to select any branch in any world.

Algorithm nai've-mm(t): Take the following actions, depending on t.

Condition Result

t is leaf node K(t)

V(node(t)) is 2
(i.e., MIN to move)

min naive-mm(ti)
ti£sub(t)

V(node(t)) is 1
(i.e., MAX to move)

max naive-mmiti)
ti£sub(t)

Figure 7.4: Naive form of a minimax algorithm on flattened trees

Here, the normal min and max functions are extended so that they are defined over

a set of payoff vectors. At a node with m branches and therefore m payoff vectors
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K!,•••, Km to choose between, we interpret the min function as:

151

min K'i = (min /?,[1], minKA2], • • •,min Ki[m]), (7.1)
i i i i

where Ki[j] is the jth element of the vector K,. That is, the min function returns
a vector in which the payoff for each possible world is the lowest possible. This is

equivalent to allowing MIN to choose any branch under any possible world.

MAX, however, does not have knowledge of the possible worlds, so the max function
returns the single vector with the highest expected payoff. That is, in a game with N

possible worlds, it returns the vector, A',, for which

£Pr (v.,)/?[»] (7.2)
;=i

is maximum, where Pr(w, ) represents MAX's assessment of the probability of the
max

actual world being v\q.

We can see from these equations how the problem of non-locality arises. In (7.1) MIN
can choose different branches in each world. However, since the algorithm is recursive,
the MIN choices at any node will always be made after MAX's choices in the subtrees
of that node (in the same way that MIN chooses after MAX in the best defence model
of a game). When analysing any MAX node, then, the choices to be made at its MIN
ancestors will not yet have been decided, and the possible worlds under which the play
will reach the node will therefore be unknown. MAX's evaluation in (7.2) ignores this

problem, simply taking the naive approach of assuming that every world is possible.

To cope with this problem, we can imagine that each time MIN's evaluation function
selects a branch as the best MIN move in world wj, the alternative branches which will
not be selected (i.e., those with higher evaluations in this world), are 'annotated' with
the label -iwq. For any internal MAX node, the subset of possible worlds under which
it will be reached can then be found by excluding all the worlds annotated on the MIN
branches which occur in the path from the node to the root.

Non-local information could therefore be tackled with a two-phase algorithm which
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attempts to use such inferences to improve MAX's move selections. Whilst carrying
out an initial naive minimaxing of the game tree, we can annotate each MIN branch

with the worlds under which MIN would not select it, as described above. Then, a

second pass through the tree can be made, in which these annotations are taken into

account when making selections at MAX nodes. MAX's new formula for choosing a

vector at a node where W represents the exclusion set of the indices of the possible

world annotations in the path connecting it to the root node would then be:

Thus, MAX can attempt to make inferences about the plays that would be selected by

an optimal MIN. These inferences may alter MAX's branch selection at any node and

maybe his overall prospects in the game. They address the problem of non-locality by

allowing MAX to infer some information about the possible situations under which any

node may be reached. The process can thought of as conducting an extra reasoning

step which is akin to doublethinking MIN. As an example, consider the flattened tree

of Figure 7.5. In this tree, there are four possible strategies, with payoffs as shown in

N

E P/rK )^]- (7.3)
J = 1
j€W

(1,1) (1,2) (2,1) (2,2)

CPTO> dED CO) CsB>

b c

w, 3
w2 0

0

2

0

2

1

0

Figure 7.5: Simple example of a flattened tree

the figure. The best of these (given equally likely worlds) is strategy (2,1). However,
if MAX simply uses the naive algorithm of Figure 7.4, he will select the left-hand
branches at nodes b and c, which corresponds to choosing strategy (1,1). To modify
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this choice, we could use doublethink to make inferences about which branches will be
selected by MIN. This will lead MAX to believe that he can improve his chances, and
to change his selection at both nodes as shown in Figure 7.6. Since we do not allow
MIN to change his branch selections after this doublethink stage, MAX will expect a

payoff of 1 in world Wi and a payoff of 2 in world w2.

Naive strategy selection Strategy selection after doublethink

CUb) C02> CO) cfTcp co> CO CO CO

Figure 7.6: Carrying out doublethink

7.2.2 Oddthink

Of course, if we allow MAX to doublethink MIN, we have in fact made MAX's strategy

selection conditional on both the local evaluation of a node and the normal strategy

that MIN would select. Thus, the best defence assumption A-II that MIN chooses
his strategy after MAX is violated. In order to correctly model the best defence

assumptions, we therefore need to add another layer of reasoning by taking the MAX

strategy resulting from the doublethink step and allowing MIN to re-evaluate the best
choices at each MIN node — a step which could be described as triplethink.

To see that MIN's choices may change when applying triplethink, consider again a

MAX node at which, in the naive algorithm, MAX finds the best choice to be branch
a. If this is the case, then

N N

Vz. i^a =>• Y2Ka Pr(Wj) > £j?,Pr(Wj). (7.4)z' max z' max

j = 1 j= 1
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Let us say that when conducting doublethink, however, the exclusion set for the node

is found to be W, and the move which achieves the maximum evaluation (using the
modified assessment produced by (7.3)) changes to branch b, i.e.:

N N

(7-5)
JSB1 j=1
jew jew

For this to be true, Ka[j] < Kt[j] must hold for at least one value of j ^ >V. And, if
this and (7.4) are both to be true, Ka[j] > Kb[j] must be true for at least one value of

j E W. Therefore, MAX's doublethink has the effect of reducing the payoff in at least
one of the worlds represented by the exclusion set, and increasing the payoff in one of
the remaining worlds.

Now, if it happens that the reduction of the payoff for a world in the exclusion set

takes its value below the previous minimum to which MIN could restrict MAX at

that node, allowing MIN an extra step of reasoning will lead him to go down the
branch in this world, despite MAX's inference that he will not. MAX's doublethink

inferences, therefore, can be used by MIN to actually reduce his payoff in certain worlds,
if triplethink is allowed.

Similarly, the increase in payoff for a world not in the exclusion set may be a false

improvement for MAX, since if the increase takes the payoff above the minimum payoff

of its siblings, MIN will no longer select the node in this world, preferring instead to

restrict MAX's payoff by selecting one of the other branches. Thus, if MIN is allowed
to conduct another level of reasoning, the worlds present in the exclusion set of a node

may no longer be correct. Also, worlds which should be present may be absent. To

remedy this, and to be sure of making the best moves, MAX would need to conduct

another level of reasoning about MIN's strategy.

In general, however, it is not easy to see where this chain of reasoning will terminate. It
is in fact relatively simple to construct situations in which successive levels of reasoning

will loop forever through a finite set of choices. For instance, let us return to our

example of Figure 7.5. In this example, we allowed MAX to use doublethink to change
his strategy. But benefit for MAX is also disadvantage for MIN, and to model the
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best defence assumptions correctly we have to allow another stage of reasoning. In this

triplethink step (see Figure 7.7), the return which MAX was expecting from his new

strategy is revealed to be over-optimistic; instead of achieving a 1 in \n1 and a 2 in w2,

he achieves zero in both. Two more stages of reasoning then bring us back to the same

situation as in the original nai've scheme.

It is possible to imagine an algorithm that adapts this approach, conducting a fixed
number of 'thinking' steps (possibly with a check for looping) and then selecting the
best strategy from amongst those encountered. In order to correctly model the best
defence assumptions, however, the last step in this chain must be a MIN reasoning

stage. Thus, since 'even' levels of reasoning (doublethink, 4-think, etc.) are carried
out by MAX, and 'odd' levels by MIN, such an approach could be described as an

oddthink algorithm. However, notice that our example demonstrates that the process

of adding extra reasoning steps may terminate before the optimal strategy is examined;
the two strategies encountered are (1,1) and (2,2), which are both inferior to the two

strategies that remain.

7.2.3 Payoff Reduction

There are in fact two types of inferences involved when producing the exclusion set

of a node as described above. The annotations which were made in Figure 7.7 were

found to change each time MIN was allowed an extra reasoning step. However, there
are some inferences which MAX can make which will never be invalidated by future

reasoning carried out by MIN. For example, consider the flattened tree of Figure 7.8 on

Page 157, in which we have added one extra possible world to our previous example.

In this tree, the payoffs of 8 and 7 in world w3 will never be realised, because the two

zeros under node c will always enable MIN to restrict MAX to a zero in this world.

Thus, the addition of the extra possible world has no effect on the assessment of the

best strategy, since node b will never be reached under world w3, whatever strategy
is selected by MAX. We can therefore annotate node b with the term -■w3, in the

knowledge that this inference will never be incorrect. This inference is different in

nature to the ones that we saw in the previous section, whose truth depended on the
actual strategy chosen by MAX. For instance, if we look again at node b we can see
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MAX is "naive"

Q Co [§> Min's selections:

CO CO cog) CO

Doublethink

Only MAX choices change

Triplethink
Only MIN choices change

4-think

Only MAX choices change

(7) CO) Min's selections:

CO) CO) CO) CO)

(7) CO) Min's selections:

CO) CO CO) CO)

CO CO CO CO)

Figure 7.7: Simple example of how multiple levels of reasoning gives rise to loops
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Figure 7.8: Flattened tree example with one extra world added

that if MAX selects the left-hand branch here, MIN's evaluation function will always

back up the value from node c in world wq. This fact should be represented by a

conditional inference at node b such as 'MIN will not direct play down this branch in
world wq if the left-hand branch is selected'. The ->w2 annotations in Figure 7.7 are

also conditional on the strategy selected by MAX.

It is possible to envisage a two-step algorithm which first identifies all the unconditional
inferences which are correct independent of strategy selection and then uses these to

supply extra information to a local evaluation function. The use of inferences that are

always correct would make it unnecessary to allow MIN a further level of reasoning

after MAX's doublethink step. However, it is possible to do better than this.

Consider what happens when a branch is selected at some MAX node. The need to

make inferences arises when the payoff in some world on that branch is higher than
the payoff in the same world at a branch selected at one of its siblings. For, when
this happens, we can be sure that MIN will direct the play towards the sibling node
with the lowest payoff in that world. The actual values that are achieved at the sibling
nodes depend on the strategy selection made by MAX. However, here we can apply
some reasoning about the nature of the game. If MAX had exact knowledge of the
state of the world, and the game was played perfectly as a complete information game,

the best that he could hope for would be to obtain a payoff equal to the minimax value
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in that world. Therefore, in any world, the complete information minimax value of the

game under that world forms an upper bound on MAX's payoff in that world (since
MAX does not know the state of the world and MIN does). Thus, when making a

branch selection at a node, any payoff which exceeds this upper bound in some world

will never be reached in that world. Such payoffs may adversely affect branch selection

at the node. Rather than checking payoffs against the actual values at sibling nodes,

then, we can compare them to the minimax value of the game in each world.

In fact, this argument holds not just for the minimax values of the entire game tree, but
for every MIN node ancestor; any branch selection that MAX makes in anticipation

of a payoff higher than the minimax value of a MIN ancestor is bound to based on

false information, since on the way to this MAX node, play must pass through a node
at which MIN will always be able to direct the play towards a lower payoff. The

conclusion to be drawn, then, is that if we select a branch with a payoff higher than

the minimax value of any of its MIN ancestors in some world, MIN will avoid the node

in this world.

A simple way to implement this observation is to modify the payoffs of any given game

so that none of them exceed the minimax value of a MIN ancestor in any world. We

can achieve this with the payoff reduction minimaxing algorithm of Figure 7.9. The

Algorithm payoff-reduce-mm(t):
Returns strategies for flattened game trees under the best defence model:

1. Find the minimax values of the nodes of the tree in each possible world.

2. Examine the payoff vectors of each leaf node. Those that exceed the minimax
value of any of their MIN ancestors in the corresponding world are reduced to
this value, and those that do not are left unchanged.

3. Apply the naive-mm algorithm to the resulting tree.

Figure 7.9: The payoff reduction minimaxing algorithm

reductions of the payoffs made by this algorithm do not affect the minimax value of
the tree in each world, since no payoff is reduced to the extent that it would offer MIN

a better branch selection at any node in any world. For example, let us consider how

the algorithm would behave on the previous tree of Figure 7.8. The minimax values in
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each of the three possible worlds in this game are 1, 2, and 0, respectively. Thus, we

begin by reducing all the payoffs in each world to at most these values (there is only
one MIN node in the game, so each leaf node has only one MIN ancestor). This is
shown in Figure 7.10, where the strategy selection subsequently made by the naive-mm

algorithm has also been highlighted in bold. In this tree, then, the payoff reduction

algorithm results in the correct strategy being chosen.

Original Tree Conduct naive minimaxing

dm!) CqRTD CjTzTo) OTQTQ> CARO) C°0]D OTQTQ)

Figure 7.10: Applying the reduce-payoff-mm algorithm

It may seem that this algorithm is inefficient, since it has to conduct minimaxing
once in each world, then reduce the payoffs, and finally carry out naive minimaxing.

However, it is possible to make some of these steps more efficient and to combine others

together. For example, the minimax value of the game in each possible world can be
calculated concurrently in one pass of the tree. This can be done, for example, by

using a modified form of the naive-mm algorithm in which MAX has the same luxury
as MIN to choose different branches in different worlds. That is, we can rewrite the
definition of the max operator over a set of payoff vectors to be:

max A',- = (max A',-[1], maxA', [2], • • •,maxA'j[m]). (7.6)i i i i

In Figure 7.11 we apply this modified algorithm to our example tree. At node 6, MAX
uses (7.6) to choose the payoff in each world and finds that payoffs of 3, 2, and 8 can

be achieved. Similarly, a vector containing payoffs of 1, 2, and 0 is produced at node
c. Then, MIN applies (7.1) to build the vector of minimax values at the root.
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Figure 7.11: Conducting minimaxing in each world concurrently

Calculating minimax values in this way allows for the possibility of efficiency improve¬

ments through the use of a qualitative representation. A re-modelled payoff-reduce-mm

algorithm incorporating this approach is given in Figure 7.12.

Algorithm payoff-reduce-mmft):
Returns strategies for flattened game trees under the best defence model:

1. Conduct (qualitatively) minimaxing on single worlds, storing at each MIN node
its minimax value in each world.

2. Apply a modified form of nai've-mm to the annotated tree: since this stage can be
implemented depth-first, keep a record, for each world, of the minimum annotated
value encountered at the MIN nodes leading to the current position in the tree
— when encountering leaf nodes, reduce the payoff vector K to at most these
values in each world.

Figure 7.12: Modified form of the payoff reduction minimaxing algorithm

Notice that the payoff-reduce-mm algorithm makes all the unconditional inferences we

discussed at the beginning of this section. These inferences occur when a node will
never be visited in a particular world; that is, when the payoff in that world on every

branch at the node is higher than the minimax value of a MIN ancestor. For example,
consider world w3 in our example tree. At node 6, both the payoffs in this world are

higher than the minimax value of the tree (which is zero). The reduction of these

payoffs to this value is effectively the same as ignoring the world altogether, given

equally likely worlds.

However, payoff-reduce-mm still does not make all the inferences which are possible,



CHAPTER 7. IDENTIFYING THE BEST STRATEGY 161

since it is probable that MAX will not be able to achieve the actual minimax value of the
tree in all worlds simultaneously. When this is the case, it is possible that some MAX
node selections will be erroneously influenced by a payoff in some world which although
not higher than the minimax value of any MIN ancestor in that world, is higher than
the actual value which is achieved as a result of MAX's other branch selections. For

example, in the tree of Figure 7.1 on Page 146, payoff reduction has no effect, since
the minimax value of the tree under every world is 1. On this tree, then, the payoff-

reduce-mm algorithm selects the same (incorrect) strategy as the simple naive-mm

algorithm. Nevertheless, payoff-reduce-mm was the best general algorithm we were

able to find for tackling the effects of non-locality more efficiently than exhaustive

strategy minimisation.

7.3 Application to Bridge: The Interpreter Algorithm

So far we have looked at the difficulties of tackling non-locality in general game trees.

Now, we move on to consider how the problem can be dealt with in the game of Bridge.

In fact, we found that in Bridge, the use of high-level tactics to construct the tree of

possible moves in each suit allowed us to produce a simple heuristic to counter some of
the effects of non-locality. This heuristic allows certain responses to some tactics to be
discounted as plays which the defence should never make. Therefore, Finesse itself

does not make use of the doublethink or the payoff reduction ideas discussed above, but
instead uses a version of the qualitative naive minimaxing algorithm modified to take
account of these heuristic inferences. This algorithm forms the interpreter algorithm
first mentioned in the system picture given in the introductory chapter. The basic
function of the interpreter is to take the tree of legal play sequences produced by the

single-suit planner and identify the best branch selections at each MAX node. In

§7.4 we look at the qualitative representation language which makes it possible to do
this efficiently, and in §7.5 we discuss the heuristic for tackling non-locality. Below,
we begin by describing how the interpreter algorithm instantiates the basic naive-mm

framework.
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At each leaf node of the tree a term is generated which represents the possible payoffs

qualitatively. These payoff profiles are lists of pairs (which we conjoin by a > sign for
the sake of readability) of the general form

[Ti t> C1:T2 > C2,T3 > C3, • • ■] .

Here, the T) are distinct numbers of tricks, in ascending order, and the corresponding

Ci are terms which describe the possible worlds under which this number of tricks

will be taken. Since this uncertainty representation language is complex, we describe
it in §7.4, giving it a section of its own. Here, we concentrate on the details of the

interpreter algorithm itself.

7.3.2 Action at Internal Nodes

For any non-leaf node, let us say that its ith daughter is described by the payoff profile

Kp.

Hi = [Tn > Cn,Ti2 > C,2, T{3 > Ci3, • • •] . (7-7)

We can then define the max and rnin functions from the naive-mm algorithm to operate

on these profiles as follows.

MIN nodes

At any MIN node, MIN's ability to select different branches in different possible worlds

is modelled by defining min; If) to be the list of pairs of the form T>C, where T varies
over each possible value taken by the T,j and the corresponding C is the disjunction
of all the C'ij for which T,j = T.

If any world is described by more than one C in the resulting payoff profile, we assume

the defence will restrict MAX to the lowest possible number of tricks. To model this,

the initial profile constructed at the node is processed to remove any overlap in the C
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terms. To do this, we start with the smallest payoff, Ti >Ci, and make the set of worlds
that C\ describes as large as possible by removing any overlap with the remaining Cj.
This process is then repeated for the remaining entries in ascending order. An example
of this where there are just three possible payoffs is shown in Figure 7.13. We refer to
this process as subsumption, and it is described in more detail in §7.4.4.

Figure 7.13: The use of subsumption to model minimisation of the possible payoff

MAX nodes

At any MAX node, the basic payoff profiles are converted into probability profile by

finding the probabilities of each of the terms Ci (a technique for this probability gen¬

eration is described in §7.4.6). The general form of such a probability profile is

[Ti > Pi,T2 > p2,T3 > p3, ■ ■ ■] ,
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where the T) are again distinct numbers of tricks, in ascending order, but this time the

corresponding p{ are the probabilities of making each number of tricks. Given a set of

these probability profiles, there are obviously a number of possible criteria by which

a selection could be made. For example, the best expected value, the greatest chance

of making a certain number of tricks, or the maximum chance of making the highest
number of tricks all form possible bases for comparison. This is an issue which we will

return to in Chapter 8, when we consider the task of combining together multiple plans
from separate suits. For now, we will settle for the final option above of selecting the
branch with the maximum chance of making the highest number of tricks, as this is a

common goal when analysing single suits.

7.3.3 Lines of Play

When selecting a MAX branch, there may be more than one branch at which the
maximum evaluation is achieved (according to whatever criteria is being used). If
this is the case, and the payoff profiles of these branches are also identical, then all

these branches are marked as selected. This is because such 'equivalent' branches

typically differ just in the ordering of their actions, and retaining the ability to order
the actions involved in any way will be a useful asset when we consider the process

of forming global plans by combining together plans from individual suits. We use

the term line of play to describe the tree of MAX selections which is produced in

this way by the interpreter algorithm. It differs from the notion of strategy, in that a

pure strategy forces a single selection in any information set. However, despite having

multiple choices when following a line of play, the same payoff will always be achieved,

irrespective of the choices made.

Below, we describe the uncertainty representation language which makes this inter¬

preter algorithm possible by allowing efficient representation and manipulation of the

possible worlds. In §7.5, we then describe the domain-specific heuristic that tackles
the non-locality inherent in the nai've minimaxing approach.
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Here, we present Finesse's qualitative uncertainty language, concentrating on the
central issues of how terms in the language can be manipulated, and how they can be
used to support the generation of probabilities. Notice, however, that in addition to

allowing uncertainty to be represented efficiently, the use of a qualitative language offers
other benefits, such as the ability to generate textual explanations or to use information
deduced from the bidding phase to influence plan selection. Finesse has only recently
been coupled with a bidding system [Asher 93, Green 95] so it does not yet incorporate

bidding inferences. However, in Appendix B we describe an implemented procedure
for generating basic textual explanations (examples of the explanations generated by
Finesse can be found in Chapter 11 and in Appendix C).

7.4.1 Binary Strings

As we saw in Chapter 5, Finesse groups all outstanding cards into consecutive se¬

quences so that all the cards from any particular sequence can essentially be considered
as equivalent. In general, then, the type of facts we are interested in describing are

how many cards are held by one defender from any given outstanding sequence. To

efficiently represent the disjunction involved in this task, Finesse uses a representation

based on binary strings.

The most basic situation the system deals with is that where one of the defenders holds

0,1, • • •, n—1, or n cards from an outstanding sequence of length n. For example, there

may be an outstanding sequence in some suit consisting of the Ace, King and Queen.
For any one player, there are eight possible ways to place these cards in his hand, as

shown in Figure 7.14 on the following page, where we divide the possibilities into four

groups according to the number of cards they contain.

To represent the possibilities for a general sequence of length n, Finesse arbitrarily
selects the perspective of one of the defenders (always East) and constructs a binary

string of length n +1. Such strings can be utilised to represent a player's holding by

using each bit in the string to specify whether East may hold a particular number of
cards from the sequence. Specifically, Finesse sets the bit corresponding to the ith
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AKQ

Possible number of

cards held by player

AKQ void

Figure 7.14: One player's possible holdings from the sequence AKQ

power of 2 to 1 if East may hold i cards from the sequence, and 0 if he may not. For

instance, Figure 7.15 shows how such strings can be used to represent some possible

holdings from our example sequence AKQ.

Possible number of

cards held by East

Binary string

Decimal Value

"East holds all, none or one of the sequence"
AKQ

11

Possible number of

cards held by East

Binary string

Decimal Value

' East holds at least two of the sequence"
AKQ

12

Figure 7.15: Examples of binary strings representing possible holdings from the se¬
quence AKQ

The diagrams of Figure 7.14 and Figure 7.15 represent the disjunction of possible
situations pictorially using single-level trees. We will pursue this analogy as we consider
how compound expressions, describing multiple sequences of outstanding cards, are

manipulated. First, however, we give some actual examples of such expressions.
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When there is more than one sequence of outstanding cards, binary strings representing
East's possible holdings in each of the sequences are combined together to form a

composite term. We have already seen in Chapter 5 that for the sub-problems of

individual suits Finesse distinguishes between the sequences of outstanding cards
that are critical to the play of the suit and those which are not (the low cards). Thus,
the general task in any given suit will be to represent the possible distributions of p

sequences of outstanding critical cards and one sequence of low cards. To do this,
Finesse forms an expression containing p + 1 individual terms as follows:

east(Bin1,List1) A • • • A east(Binp, Listp) A east_low(Binp+1), (7.8)

where each Bin,- is a binary string describing the possible cards that can be held by
East from the corresponding card List,; (or from the low cards, if i = p + 1). Such a

term is referred to as a C-conjunction, since it consists of a series of conjuncts which
most often describe sequences of critical cards. By convention, a C-conjunction always

represents the card sequences in order from highest to lowest. (C-conjunctions can also
be extended to describe the situation in a complete deal, by conjoining four single-suit

C-conjunctions in the order spades, hearts, diamonds, clubs. However, this is not an

issue here, as the interpreter algorithm is only used to process plans for individual
suits. We will return to the issue of representing complete deals in Chapter 8.)

Any C-conjunction will describe a possible set of distributions of the outstanding cards
between the two defenders. For example, consider the situation of Figure 7.16, where
the King is the only critical card, and there are therefore five low cards. In Fig¬
ure 7.17 we arrange East's possible holdings at the leaves of a tree. Any of the dis¬
tributions in this tree can be simply represented using C-conjunctions. For example,
the left-most branch, where East holds all the cards becomes east(10, [king]) A

east_low( 100000). Notice also that a C-conjunction may describe a set of distribu¬
tions as well as just a single possibility. For example the term east(11, [king])
A east_low(001010) describes the distributions where either East or West holds the

King, and East has one or three low cards. These are the distributions which we have



CHAPTER 7. IDENTIFYING THE BEST STRATEGY 168

A Q

N
W E

S

X X X X X X

Figure 7.16: A simple card combination

represented with bold paths in the figure. Thus, ^-conjunctions can be thought of

as representing subtrees consisting of collections of paths through the original tree of

possibilities.

King

Figure 7.17: East's possible holdings of Kxxxxx

7.4.3 Redundancy

In the description of the interpreter algorithm in §7.3 we saw that as the possible

play sequences identified by the planning stage are examined, C-conjunctions are used
to build up a picture of the circumstances under which particular branch selections
will produce tricks. The procedure involved at MIN nodes in this algorithm involved

the step of disjoining multiple C-conjunctions. However, when two C-conjunctions are

combined in this way, the resulting expression usually requires some manipulation if

redundancy is to be avoided. For example, consider the situation where we are trying

to describe the possible worlds formed by three sequences of outstanding cards of length

2, 3, and 1, as shown in Figure 7.18 on the following page. Let us say that we are

given the task of representing the disjunction of the possible worlds represented by
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first sequence

second sequence

third sequence

Figure 7.18: The composite tree of possible holdings for three outstanding sequences
of lengths 2, 3 and 1

two separate C-conjunctions depicted in Figure 7.19. Neither of these C-conjunctions
makes any restriction on the cards that can be held in the final sequence, but one

C-conjunction, represented in bold, allows East to hold at least one card from the first

and second sequences, whereas the second, represented by dashed lines, allows at most

one card.
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Paths common to both subtrees

Figure 7.19: The paths allowed by the disjunction of two separate C-conjunctions

If we assume that the final sequence in our pictorial representation is describing the
low cards, and ignore for the moment the issue of the identity of the high cards, we
can describe these two C-conjunctions as

ci : east(llO) A east(lllO) A eastJLow(ll)

c2 : east(Oll) A east(OOll) A east_low(ll)

The disjunction of these two C-conjunctions could be represented by simply construct-
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ing a term such as cx v c2. However, it should be apparent that such an approach
introduces the possibility of redundancy, as some paths may be represented twice by

this expression. Indeed, in this example, there are two paths which are common to

both the C-conjunctions. In early versions of finesse, the language used to repres¬

ent uncertainty did not readily allow the rewriting of such disjunctive expressions,

leading to large expressions, sluggish performance and results which were non-trivial
to interpret. This redundancy also complicated the task of generating probabilities

or textual explanations from expressions — a feature which we describe later {e.g.,
see Appendix B). Finesse was therefore modified to manipulate any disjunction of

C-conjunctions into a form where every C-conjunction in the disjunction refers to a

completely disjoint set of paths. This is achieved by a process which we describe here

in terms of a recursive algorithm making a top-down pass over the trees represented

by two C-conjunctions.

An Algorithm for Removing Redundancy

Given two C-conjunctions to be disjoined together, we proceed as follows. Initially,
the possible paths at the root of the trees are compared. If there are no branches in

common, then the two trees are already disjoint and no modifications will be necessary.

However, if there are branches in common, any of the paths containing these branches

may be contained in both the trees, and a reformulation may therefore be necessary.

The first step in this reformulation is to identify and separate the subtrees with no

branches in common. These will be the subtrees which are rooted on branches which

only occur in one of the original trees. In general there may be 0, 1, or 2 of these

subtrees, depending on whether the trees have all their branches in common at the

root, just one tree has some unique branches, or they both have unique branches.

For the trees of Figure 7.19, there are two subtrees with no branches in common (see

Figure 7.20 on the following page).
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common paths to the root of the original tree

Figure 7.20: Steps involved in transforming overlapping subtrees into new subtrees
with no overlap

Once these subtrees have been identified, the process is repeated on the tree found by

descending one of the mutual branches (notice that any of the mutual paths may be
chosen at this point, since the branching pattern at each node on any given level of the
tree is the same). The subtrees produced when applying the modifications to this new

tree have the paths from the root added to them to preserve the original structure.
The two original trees in Figure 7.20, then, are transformed into a total of five new

trees by this operation. In terms of the string representation described earlier, this

process can be described as the algorithm of Figure 7.21 on the next page. This would
convert the disjunction of the original Ci and c2 into the expression of (7.9), which
has five disjuncts, each corresponding to one of the newly identified subtrees (here, in

left-to-right order):

east(100) A east(lllO) A east_low(ll) V

east(010) A east(llOO) A east_low(ll) V

east(010) A east(OOlO) A east_low(ll) V

east(010) A east(OOOl) A east_low(ll) V

east(OOl) A east(OOll) A eastJLow(ll) (7.9)
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To rewrite the term Ci Vc2 describing the disjunction of the C-conjunctions Ci and c2, call
the following algorithm and disjoin all the C-conjunctions it returns. If the algorithm
fails, the C-conjunctions already describe disjoint distributions and no rewriting is
necessary.

Makes use of the two operators:
a AND 6 bitwise 'and' operation on the binary strings a, b.
a XOR b bitwise 'exclusive or' operation on the binary strings a, b.

1. Split Cj into ri, the binary string representing the first outstanding sequence, and
cj, a term containing the remaining strings. Similarly split c2 into r2 and c'2.

2. Let m — ri AND r2.

3. If m is zero then the call to the algorithm fails (since the trees can have no paths
in common).

4. Let r[ = 7q XOR m (so that r[ identifies bits that are 'on' for rq but not for r2).
If r[ is not zero, combine r[ with the strings in c\ to form a new C-conjunction
and return this as a constituent of the final answer.

5. Let r2 = r2 XOR to (so that r'2 identifies bits that are 'on' for r2 but not for ri).
If r2 is not zero, combine the r2 with the strings in c'2 to form a new C-conjunction
and return this as a constituent of the final answer.

6. If to is not zero then call the algorithm on cj and c2, and combine to with the
results of this call before returning them as constituents of the final answer.

Figure 7.21: Algorithm for removing redundancy in disjoined C-conjunctions
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Recall from our introduction of the interpreter algorithm that subsumption is necessary
when a possible distribution is described by more than one Cj in a payoff profile

Pi > Ci,T2 > C2,T3 > C3, ■ • •] .

This is a similar situation to the redundancy we discussed above, where the constituent

C-conjunctions of a single term described overlapping distributions. Therefore, we

model the process by a simple adaptation of the algorithm of Figure 7.21.

Given a profile in which there is no redundancy, Finesse removes the first entry, Ti>Ci,
and uses it as the first entry in a new payoff profile. Each successive entry of the original

profile is then inserted into this new profile, after processing it to remove distributions
that are already described by Cj that are contained in the new profile. This process of
removing overlap is carried out by using the algorithm of Figure 7.21 and only retaining
the C-conjunctions that are unique to the second term being compared. For example,
consider again cx and c2 from Figure 7.19 on Page 169. The tree representations of
these C-conjunctions have two paths in common, so the profile

[1>C1,2oc2]

would require subsumption to remove the overlap. To do this, the pair l>Cx is inserted
into a new profile list, followed by 2 > c'2, where c'2 is the result of removing the paths
in c2 that are subsumed by C\. The value of c2 is found by applying the algorithm of

Figure 7.21 and just keeping the paths unique to c2, which produces:

c2 = east(OlO) A east(OOOl) A eastJLow(ll) V

east(OOl) A east(OOll) A east_low(ll).

The two disjuncts of this expression are the same as the final two C-conjunctions of

(7.9).
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7.4.5 Tidying up

The transformation processes for subsumption and removing redundancy described

above clearly increase the number of terms involved when disjoining C-conjunctions

together. For example, the two C-conjunctions of Figure 7.19 were transformed into

five after redundancy was removed. Finesse therefore uses two techniques to simplify

its results.

The first of these is to notice that in the final step of the recursion it is not necessary

to separate out the branches which are unique to one of the trees. Since the trees being
considered are only one level deep, it is trivial to transform two possibly overlapping
trees into one by just forming the union of all their branches. The result of the final

step of the recursion is therefore always just a single tree.

Secondly, a further rewriting procedure is used to shorten expressions by combining two

C-conjunctions which are slightly different into one. We call this a collect operation.

Its operation is simply to check any disjunction of C-conjunctions to identify any two

whose strings differ in just one of their terms. Any such pair of C-conjunctions can

be re-written as a single new C-conjunction which shares all the duplicated strings of
the original, but replaces the one where they differ with the result of carrying out a

bitwise 'or' operation on the two original strings. For example, in (7.9), the second
and third C-conjunctions differ only in the value of the middle string. Rewriting this

produces a new C-conjunction which again differs from the fourth C-conjunction only in
the value of the middle string. The original expression containing five C-conjunctions
can therefore be re-written into a disjunction of just three:

east(lOO) A east(lllO) A east_low(ll) V

east(OlO) A east(llll) A east_low(ll) V

east(OOl) A east(OOll) A east_low(ll).

7.4.6 Generating Probabilities

Since the interpreter algorithm uses probability profiles to make its selections at MAX

nodes, the procedure for actually calculating these profiles from the qualitative C-
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conjunctions is called upon many times. The overall performance of the interpreter

algorithm is therefore very sensitive to the efficiency with which these probabilities can

be generated.

In the earliest version of Finesse [Frank 91], probabilities were produced by simply

generating all the possible distributions of outstanding cards and then processing this
set to eliminate those which violated the constraints imposed by the C-conjunctions

being considered. This approach is clearly cumbersome and also negates the main

advantage of a qualitative representation language: that all the possible worlds need
not be dealt with explicitly.

Subsequent versions of the system [Frank et al 92] used a more efficient approach based
on the simplifying assumption that any outstanding card was equally likely to be held

by either defender. Under this assumption, the probability associated with the basic
form of C-conjunction presented in (7.8) could be calculated using the formula

p

JJpro6(Bin,-), (7.10)
i—1

where prob(Birii) summed the Binomial distribution probabilities of each of the possible

assignments of cards represented by the string Bin,. Since the C-conjunctions in the

profiles produced by the interpreter algorithm always describe disjoint sets of possible

distributions, the probability of any disjunction of C-conjunctions was then found by

applying the above analysis to each disjunct and summing the results.

However, the simplification of assuming that each card is equally likely to be with each
defender introduces an error: in reality, the probabilities of individual cards being in

each hand are not independent, since the outstanding cards must always be evenly
distributed between East and West. This means that when calculating the probability
of any given C-conjunction, the contributions of each binary string, Bin,-, cannot be
summed separately, due to the way in which assigning a number of cards to a defender's
hand affects the number of cards subsequently necessary to complete it.

In general, there will be a total of N outstanding cards, of which East must hold N'

(typically, N = 2 x N', unless we are considering a situation where one of the defenders
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has already led to a trick). If East holds j cards from an outstanding sequence of length

n,, the number of ways in which his hand can be completed is then the number of ways

of choosing N'—j cards from the remaining iV —n,- cards. Under this constraint, the

formula for the probability of East holding j out of n< cards is therefore:

niC N-n.iS~<
■ ,J""' ■

This constraint has the effect of making skewed distributions more unlikely, since if n{
is reasonably large, niCj and N~niCN'-j will both be far from their maximum values
when j is small or close to n{.

Counting the Possible Distributions

The current version of Finesse uses an algorithm which observes the constraint of

(7.11) by considering each east or east_low term in a C-conjunction as being true in
a particular subset of the set of total possible distributions between the two defenders.

Finding the probability associated with a C-conjunction is viewed as a problem in

identifying the intersection of the subsets in which all of the constituent terms are true.

The order of this set can then be divided by the total number of possible distributions

to produce a probability.

This process has similarities to the situation in incidence calculus, where propositions

are associated with incidences of possible world states in which they are true, rather

than with probabilities [Bundy 92]. However, we are in the fortunate position of being
able to generate (exhaustively, if necessary) the possible worlds in which any term

of a C-conjunction may be true, and hence do not at this stage need to make use of
the facility offered by incidence calculus of deriving upper and lower bounds on the

probability that an expression is true. In fact, the form of the expressions produced by

Finesse — a disjunction of C-conjunctions — is particularly convenient, since the dis¬

tributions represented by each individual C-conjunction are disjoint. This means that

producing the actual distributions represented by each C-conjunction in a disjunction
is optional, since the distributions described by each disjoined C-conjunction will have

empty intersections. We make use of this feature by simply counting the number of
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distributions allowed by an individual C-conjunction. The probability of a disjunction
of C-conjunctions can then be found by summing the number of distributions allowed

by each individual C-conjunction and then dividing by the total number of possibilities.

Example

Let us first consider what is involved in calculating the probability of a C-conjunction

by manually carrying out this process for a simple example. For this purpose, we will
return to the C-conjunction which we introduced in §7.4.2, and depicted in Figure 7.17

on Page 168:

east(ll, [king]) A east_low(001010). (7-12)

Recall that this C-conjunction describes the possible distributions of Kxxxxx where
either East or West hold the King and East holds one or three low cards.

In order to calculate the probability of these distributions we begin by calculating the
chances of the possible splits of the six outstanding cards between the two players

(e.g., 3— 3, 6— 0). Assuming that we are considering normal Bridge, we can find these

probabilities by substituting the values N = 26, N' = 13 and n, = 6, into (7.11) for
the possible different values of j = 0, • • •, 6. These probabilities are summarised in

Figure 7.22.

Split Probability Number of cases

0-6 0.007 1

1-5 0.073 6
2-4 0.242 15

3-3 0.355 20
4-2 0.242 15

5-1 0.073 6
o1to 0.007 1

Figure 7.22: The probabilities of the possible splits of 6 cards

Now let us consider how many distributions are actually described by the C-conjunction
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of (7.12). This is done using simple combinatorics, as shown in Figure 7.23. Combining

Split East's holding Number of cases

1-5 X 5C1 = 5
2-4 Kx 5Ci = 5
3-3 XXX 5C3 = 10
4-2 Kxxx 5C3 = 10

Figure 7.23: The number of distributions described by (7.12)

these two tables together, we can produce a probability for the truth of (7.12), as

shown in Figure 7.24. Thus, we produce the answer 0.481. Comparing this to the

Split Probability Total Cases Cases in (7.12) Total contribution

0-6 0.007 1 - 0

1-5 0.073 6 5 (5/6) x 0.073 = 0.061
2-4 0.242 15 5 (5/15) x 0.242 = 0.081
3-3 0.355 20 10 (10/20) x 0.355 = 0.178
4-2 0.242 15 10 (10/15) x 0.242 = 0.161
5-1 0.073 6 - 0

6-0 0.007 1 - 0 J
Total 0.481

Figure 7.24: Calculating the probability of the distributions described by (7.12)

result which would be generated by (7.10), we see that this equation would calculate
the value prob( 11) X pro6(001010). The first of these probabilities evaluates to one, as

it places no restrictions on the outstanding cards. The second is given by:

pro&(001010) = 5Ci Q) + 5C3 Q) = H ~ 0.469 .

Thus, ignoring the constraint that the defenders must equally share the outstanding
cards leads to incorrect results.
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The Shape-list Algorithm

179

In order to automate the probability generation we carried out manually above we use

an algorithm which processes any given C-conjunction to produce figures equivalent to
the third column of Figure 7.24. To do this, we arbitrarily choose East's perspective

(the situation is symmetrical) and construct a list of 14 numbers, in which the nth
number denotes how many distributions East may hold that contain n—1 cards. We

refer to this structure as a shape-list. For any C-conjunction, the corresponding shape-

list, list-out, can be found using the algorithm of Figure 7.25.

1. Set list_in to [1,0,0,0,0,0,0,0,0,0,0,0,0,0].
2. Set list_out to [0,0,0,0,0,0,0,0,0,0,0,0,0,0].

3. Select an unexamined term from the C-conjunction, with the string Bin,-. Let n,
be one less than the length of Bin*.

4. For all 0 < j < rip.

If the jth bit in Bin; is 1 then shift list_in to the right j places by inserting
j zeros, multiply each entry by LCj and add the result to list_out.

5. If there are unexamined terms remaining in the C-conjunction, set list_in to
equal list_out, set list_out to [0,0,0,0,0,0,0,0,0,0,0,0,0,0], and goto Step 3.

Figure 7.25: Algorithm to produce a shape-list for a single C-conjunction

Let us examine the operation of this algorithm by considering how it behaves on our

example C-conjunction. In Figure 7.26 on the following page we show how the values
of the variables used by the algorithm change during its execution. Entries are made
in the table whenever the value of a variable is set or updated.

First, list_in and list_out are initialised. Initially, before any terms have been

considered, the only possibility in list_in is that East has no cards. list_out is

initially composed entirely of zeros.

At Step 3 we assume that the string 001010 is selected (the order of selection is unim¬

portant). This string has two bits set to one, representing the possibilities of adding
either 1 or 3 low cards to East's hand. To add just one card, list_in is shifted one

place to the right, but this low card may be any one of the 5 available, so the resulting
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Step list_in list_out String i

1 [1,0,0,0,0,0,0,0,0,0,0,0,0,0]
2 [0,0,0,0,0,0,0,0,0,0,0,0,0,0]
3 001010
4 [0,5,0,0,0,0,0,0,0,0,0,0,0,0] 1

[0,5,0,10,0,0,0,0,0,0,0,0,0,0] 3
5 [0,5,0,10,0,0,0,0,0,0,0,0,0,0] [0,0,0,0,0,0,0,0,0,0,0,0,0,0]
3 11

4 [0,5,0,10,0,0,0,0,0,0,0,0,0,0] 0

[0,5,5,10,10,0,0,0,0,0,0,0,0,0] 1

Figure 7.26: Trace of the shape-list algorithm

list is also multiplied by 5. Similarly, adding three low cards is achieved by shifting
list_in to the right by three places and multiplying by 5C3 = 10. Thus, the lists

[0,5,0,0,0,0,0,0,0,0,0,0,0,0]

[0,0,0,10,0,0,0,0,0,0,0,0,0,0]

are added to list_out by a process of list addition, in which entries in corresponding

positions in the two lists are summed to produce the entries of the new list. Thus, we
have so far assigned either one or three cards to East's hand, and when we next arrive at

Step 3, the value of list_in reflects this (there are five possible distributions in which
East may hold 1 card and ten in which he holds 3). Step 4 then recalculates list_out
to take account of the cards represented by the binary string 11. Thus, the way in

which a single string can represent many distributions is accounted for by Step 4, and
the conjoining together of east/2 and east_low/l predicates into a C-conjunction is
accounted for by making the list_out of each successive loop the list_in of the next.

As we can see, the values of the final list_out correspond to the required numbers in

Figure 7.24. To produce a probability from a shape-fist, we then simply carry out a

procedure similar to that above. For the generic C-conjunction of 7.8, the shape-list
will have been produced by considering

p

71 = ni
1= 1

cards. If there is again a total of N outstanding cards, of which East must hold N',
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and the function ith.entry returns the ith entry of a shape-list, the probability that
the distributions represented by a given shape-list, List, will actually occur is given by
the following modified form of (7.11):

N'

E
1= 0

ith..entry(i, List) X N "C^'-i

7.5 Coping with Non-locality in Bridge

Besides constraining the search space, it transpires that our use of tactics to construct

the single-suit trees of possibilities in Bridge has another advantage; it allows us to

specify plays which the defence should never consider in response to a particular play

by the declarer. Let us return to our example illustrating non-locality from the previous

chapter, repeated in Figure 7.27.

9 4

J 8 7 6

A T 3 2

K Q 5

Figure 7.27: A Bridge example giving rise to non-locality, repeated

Recall that if the declarer does not know the actual distribution of the outstanding
cards in this situation, his best play is to lead the 6 from the North hand and play low
from the South hand unless East plays the 9 or one of the King or Queen (this play is

actually a Type 2 finesse of the 6).

Faced with the finesse of the 6, East's best option if he holds the cards shown is to play
low with the 5. If he does this, West will win the trick with the 9 and the declarer will

be restricted to just two tricks in the suit. Similarly, if East starts with Kx or Qx, the
best option will again be to play low. We found, however, that if East plays the King
and West plays the 4 the resulting situation (shown in Figure 7.28 on the following

page) is mis-analysed because of non-locality.

In fact, it is possible to use the high-level representation of tactics to help us in this
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J 8 7

N
W E

S

Outstanding:
Q 9 5

10 3 2

Figure 7.28: Second round situation (giving rise to non-locality)

situation. Specifically, when any finesse tactic is analysed by the interleaver, we can

make the following inferences:

• If the second player plays higher than the finesse card, then

either the finesse would have succeeded. That is, the second player holds all the

cards from the outstanding sequence immediately above the finesse card,

or the finesse would have failed, but the second player had no cards lower than

the finesse card.

To see how the inferences made by these rules would affect our example above, consider
what happens when the declarer tries to finesse the 6 in the initial situation. If East

plays the King, there are two possible inferences. Firstly, we could infer that the
finesse was going to succeed and that East therefore holds the 9 (the only card in the
first outstanding sequence above the finesse card). Alternatively, we could infer that
the finesse would have failed, and although West has the 9 East has no cards below
the finesse card. Both these inferences can be easily represented in the uncertainty

language of Finesse and carried as a disjunction by the interpreter algorithm.

The significance of these inferences can be seen by recalling the table describing the

possible worlds under which the finesse of the Jack and the finesse of the seven will
succeed in the second round situation (see Figure 7.29 on the next page).

If we examine the worlds to see which meet the constraints that East holds the 9, or

doesn't hold the 9 but has no cards lower than the 6, we find that we rule out just

two: the ones where East holds the Q5 or the singleton 5. These are exactly the two
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Possible worlds:
East holds

finesse of the 7 finesse of the J

Q95 • •

Q9 • •

Q5 •

95 • •

Q • •

9 • •

5 •

void •

Figure 7.29: Possible worlds under which second round tactics produce 2 tricks

which we identified in the previous chapter as giving rise to non-locality. Omitting
them results in the correct choice (the finesse of the 7) being made in this state.

With these heuristic inferences incorporated, Finesse correctly identifies the finesse
of the 6 as the best line of play in the original situation, with a probability of 0.4604
of making three tricks. This compares with the result of just the basic interpreter

algorithm which selects a line of play involving a Type 1 finesse of the ten, followed by
the cashing of the Ace, with a probability of success of 0.458.

The ability to make heuristic inferences about the finessing tactics significantly im¬

proved Finesse's performance, as demonstrated by the results of Appendix C. It is

important to note that these inferences are made by considering the type of play being
carried out, and not by analysing the tree of possibilities. Although they may appear

similar in nature to the inferences made during the doublethink algorithm, they are

only possible because of the high-level nature of the tactic representation.

7.6 Summary

We have examined possible techniques for coping with non-locality more efficiently than
exhaustive strategy minimisation. We identified the benefits that could be gained from

representing information qualitatively and by making inferences about the possible
worlds under which each internal node of a game tree could be reached.
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We applied some of these ideas to Bridge, describing in particular an algorithm that
selects lines of play by using qualitative information to represent all the possible worlds

efficiently, and a heuristic to cope with the effects of non-locality. We also showed how

our representation language supported the generation of probabilities, and mentioned

other benefits of describing information qualitatively, such as the ability to generate

textual explanations (which is implemented in Finesse) and the possibility of incor¬

porating inferences drawn from the bidding.

When considering probability generation, we noted the flaw in assuming that each
card was equally likely to be with either defender, and described an algorithm which,
without resorting to the generation of all the possible distributions of the outstanding

cards, respected the constraint that each player will usually hold half of the outstanding
cards.



Chapter 8

Interleaving Plans With
Dependencies

Wot — no quote?
— Alan Bundy

As we have seen, the overall Finesse architecture uses the common problem-solving

strategy of breaking a task down into a series of smaller subproblems, which are then
solved independently. The single-suit lines of play that have emerged from our dis¬
cussions in the previous three chapters are the first stage in this process, allowing the

subproblems of individual suits to be tackled. However, it is widely recognised that al¬

though such subproblems are easier to solve than the original task, their independently
derived solutions may not combine to produce a good overall solution. Some possible

complications are:

• The individual plans may contain dependencies which make it difficult or im¬

possible to execute them together.

• There may be domain actions that are overlooked because they result from con¬

sidering more than one goal simultaneously.

• The best solution to the overall problem may not be composed of the best solu¬
tions to each of the subgoals, but instead of sub-optimal solutions to some or all
of them.

The second and third of these issues are examined in Chapter 9 and Chapter 10,

185
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respectively. In this chapter, we tackle the first: that of combining, or interleaving,

together a number of independently derived plans that may have dependencies.

Since Bridge is a game with incomplete information, we know from Chapter 6 that

the task of selecting a strategy is doubly exponential in the number of MAX levels

in the game tree. However, the interleaving task offers a way around this complex¬

ity. For interleaving involves choosing an order for some given operators rather than

actually choosing which operators to include. We will therefore introduce a tractab-

ility refinement which assumes that it is possible to specify constraints that remove

all possible interactions between the plans being interleaved. If this is the case, we

will be able to simply consider the chance of success of a particular ordering obeying

the constraints, rather than all of them. This allows us to avoid non-locality because

when constructing this ordering it will be possible to consider as equal any choices at

points where there are multiple operators obeying the constraints. We therefore never

actually choose between operators with possibly different results, which is what could

give rise to non-locality. Of course, the cost of constructing even a single ordering is
still exponential in the length of the game, but this is an improvement over doubly

exponential complexity.

In fact, constructing a single ordering allows us to provide an informal justification
for the overall approach of tackling card play by breaking it down into single-suit sub-

problems. Both the original problem and these subproblems have doubly exponential

complexity in the number of MAX levels. However, the trees in the single-suit prob¬
lems typically involve many fewer levels than those of the complete game. Thus, the

approach of producing and then combining together solutions for single-suit problems
reduces the value of the exponent in the doubly exponential stage and subsequently
incurs an exponential, rather than doubly exponential, cost when interleaving.

8.1 The Problem

We should make it clear that, in this context, the word 'interleaving' does not refer

to any attempt at combining planning with execution, but describes the process of

establishing, pre-execution, the executability of a set of plans. When playing Bridge,
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this ability is clearly important since (unless the opponents are exceedingly generous)
the option of backtracking when actions fail to work out as expected is not available.

The main reason that interleaving turns out to be difficult (and interesting) is that
the number of possible interleavings allowed by even a relatively simple set of plans

precludes exhaustive analysis. Below, we will explore this, and set out the basis for a
solution that involves explicit reasoning about particular dependencies that plans may

contain.

8.1.1 Combinatorial Explosion

The single-suit lines of play produced by Finesse are trees, with the branches at any

node either corresponding to declarer tactics or to possible plays by the defenders.
These plans are 'deterministic' in the sense that, at each point where the declarer
controls the choice of which branch to follow, one (or more) options are indicated as

being superior to all the others. When trying to interleave such lines of play, we come

up against a number of potential sources of combinatorial explosion.

Ordering the Tactics

Within an individual line of play, any two tactics that could possibly be executed in

the same play of a game are strictly ordered. However, in trying to find an optimal

interleaving we could find ourselves having to consider all the possible ways of forming

legal play sequences for the entire game.

Even if we assume that the lines of play are linear (that is, there is only one possible re¬

sponse by the defence to each tactic), the number of possible orderings quickly becomes

very large. For example, for the simplified lines of play shown in Figure 8.1 (where
each MAX branch represents a tactic to which there is only one MIN response, and the

plans contain nx, n2, n3, n4 tactics respectively) the number of possible interleavings
is given by the formula:

(nx + n2 + n3 + n4)!
nx\n2\n3\n4\
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spades hearts diamonds clubs

A I A I A r A

y I y I V 1 v

□ □ □ □

Figure 8.1: Linear lines of play

For typical lines of play, this number quickly becomes very large. For example, if

ti1 = n2 — n3 = 4, and rc4 = 1 there will be 450450 possible interleavings.

Disjunction Caused by Uncertainty

Of course, the representation of Figure 8.1 is over-simplistic, as it ignores the different

possible responses open to the defenders when any single tactic is executed. This

disjunction (the defenders may only choose one of the available alternatives) makes
the task of examining the possible interleavings still harder, as the uncertainty over

the defenders' choice of cards means that we can now no longer be sure of the situation

reached after the execution of a tactic. This not only adds extra branching to the

process of looking at the possible orderings, but also complicates the task of deciding

whether preconditions are actually true at a given point in a plan, since many actions

will only be possible in a subset of the possible worlds (for example, East can only play
the A<|k if he actually holds the A4k).

Coping with the Opposition

Finally, the above ignores the possibility that we may not always have complete control
over the ordering of actions. In Bridge, for example, the defenders may be able to spoil
declarer's plans by guessing and then disrupting the order in which he wishes to carry

out particular actions. Ensuring that the defence are not given such opportunities can

be an important part of card play.
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This complicates matters since it forces us to consider, after any tactic which may

surrender the lead, every possible continuation that the defence could then choose.
This again adds to the search involved when forming a global plan, by introducing

disjunctive branching over which we have no control. In fact, the interleaving task in
the domain of Bridge can be viewed as a giant incomplete information search problem;
the tree of possibilities has MAX branches for each tactic that MAX can select from

the lines of play when it is his turn to lead, and MIN branches both for the possible

responses to these tactics and for the possible tactics that MIN may select when it is the

defence's turn to lead. The presence of incomplete information, of course, introduces
the complications of non-locality discussed in Chapter 6 and Chapter 7.

8.1.2 Reasoning about Dependencies: Resources

The most well-known example of conflict in independently derived sub-plans is the

Sussman anomaly, which we discussed in §3.2. In this problem, solving one subgoal
undoes the achievements of the plan for solving the other. It is therefore necessary to

interleave the plans for these goals, and also to constrain this interleaving to ensure

that any operator which may undo a goal condition occurs before the point where that

goal is established.

As we noted above, however, the disjunction caused by the incomplete information

in Bridge makes it difficult to decide whether any condition holds at a given point in
a set of plans. Further, existing systems for planning under uncertainty operate by

introducing separate branches for each possible world (or contingency) created by the
outcomes of the operators with uncertain effects. The number of possible worlds in

Bridge, however, clearly makes this approach prohibitively expensive. We therefore de¬

velop an alternative architecture which, without explicitly considering all the orderings
of the operators in a set of plans, explores the possible interleavings without having to

examine each contingency separately. This architecture will function by firstly identi¬

fying any dependencies which may cause conflicts, and then reasoning about how the

plans will have to be constrained in order for these dependencies not to cause a problem.

Some frameworks within which such constraints can be incorporated will be introduced
later in the chapter. First, however, we will examine how the possible dependencies
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may be formalised.

Domain Cliches

In Chapter 3 we introduced Chapman's intractability theorem for the truth criterion of

domain-independent planners involving extended representations (such as disjunction).
This clearly indicates that the task of constructing a completely general planner capable

of working in the Bridge domain is likely to be a vain pursuit. However, it does not

necessarily imply the converse — that a planner capable of working in the Bridge

domain must be completely dependent on domain-specific features. Chapman himself,

for example, suggests three ways in which the problem of an NP-hard truth criterion

for general planners might be overcome. Loosely, the first of these is simply to 'hope

for the best' and trust that the problems of combinatorial explosion do not prove too

serious. However, we have already seen that the combinatorial problems in Bridge

play are formidable. Further, Chapman's second suggestion — to relax the correctness

requirement, producing a heuristic planner whose plans would sometimes not quite

work — also seems ill-suited to a domain in which backtracking is not an option when

plans 'go wrong'. In discussing a third alternative, however, Chapman notes that it is
often easy to find an efficient truth criterion for specific domains. Although he concedes

that these criteria are often quite different, he conjectures that it may be possible to

build a system based on intermediate techniques, which are neither completely general,
nor completely domain-specific. He says:

I envision a cliche-based constraint-posting planner for extended action
representations which would have truth criteria specific to cliches that op¬
erators in the world might instantiate. A planner with a few dozen cliches
might well cover most interesting domains.

In this context, cliches are formal structures occurring in the domain. As an example

of a cliche, Chapman discusses resources:

An instance of a resource cliche consists of a state variable in the world
which holds a quantity in some total order, together with at least one con¬
sumer operator, which decreases, relative to the order, the value of the state
variable, and at least one dependent operator which has as a precondition
that the state variable have a value greater than some threshold. There may
also be producer operators that increase the value of the state operator.
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Below, we will develop this concept of a resource-based cliche, and show in particular
how the dependencies between single-suit lines of play in Bridge can be described in
terms of the consumption of a type of resource known as leads.

8.1.3 Resources in Bridge: Leads and Entries

One of the important features of Bridge declarer play is that the order in which the

players lay their cards can have a decisive effect on the outcome of a trick. Indeed, we

have already encountered manoeuvres like the finesse which will only succeed if played

in a certain way. Manipulating the lead (the player who must start the next trick) to be
in the right place at the right time is a key skill for all Bridge players. Ensuring that it
is possible to switch between hands at the necessary moments is known as establishing
communication.

A human declarer will typically try to establish good lines of communication between
his hand and dummy's hand, and may also attempt to disrupt the communication
between the defenders' hands. Finesse's single-suit planning algorithm, however, ig¬
nores this issue completely, so it is almost inevitable that the individual lines of play
will not be executable unless tactics from other suits are available at critical moments

to manipulate the lead.

Leads

It is possible to treat the position of the lead as an example of a resource cliche, with
Finesse's tactics playing the role of consumer and producer operators (since in general
their execution will require the lead to be in one of the North or South hands, and

will leave the lead with one of the four players). For example, cashing the Ace in
the situation of Figure 8.2 on the following page would require the lead to be in the
North hand and would leave the lead in the North hand after execution (assuming a

No Trumps situation).

The demands made by the individual tactics on this type of communication requirement
are relatively easy to specify. In Finesse, there are only three types of tactics that
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Figure 8.2: A simple cashing example

require the lead to be in a specific position in order to be executable. They are:

• Cash tactics, which require the lead to be manoeuvred into the hand containing

winners, if the opposite hand is void (as above).

• Sequence tactics, which also require the lead to be manoeuvred if the hand op¬

posite the sequence is void.

• Finesse tactics, which require the defender being finessed to be the second player

in the trick.

However, these requirements on the positions of the leads are at the level of individual

tactics, whereas the task we will be considering in this chapter is the interleaving of

complete lines of play. When describing the resource requirements of such composite

plans, we will use a slightly more advanced terminology.

Entries

Consider the situation of Figure 8.3 on the next page. Nine tricks can be won here with

a plan that involves playing sequence tactics until the defenders part with their Ace,

and then cashing the remaining winners. Each of these tactics requires the lead to be
in the North hand, so at first glance it may seem that the appropriate communication

requirements would be for the lead to manoeuvred into the North hand ten times.

However, this of course ignores the fact that each sequence and cash tactic (except the

sequence tactic that loses to the Ace) will also leave the lead in the North hand after
execution. The lead will therefore be in the correct place for each successive tactic and
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Figure 8.3: An almost solid suit

communication will only need to be established twice (once to initiate the plan, and a

second time to re-enter the North hand once the defenders have cashed their top Ace).
Human Bridge players tend to take these higher level considerations into account when

considering card combinations, with the result that they more commonly refer to the

entry requirements of lines of play than the positions of the lead required by individual
tactics. Thus, the example above would be described as requiring two entries into the
North hand in order to be tackled successfully.

We too will use entries as a resource cliche when describing the resource requirements
of lines of play. However, notice that the number of entries required by a line of play

may vary depending on the distribution of the outstanding cards, or even how the
defenders choose to play their cards. We will discuss this in more detail in §8.2.2. For

now let us just say that, given a line of play, and a particular set of responses by the

defenders, an entry is required for every tactic:

• that requires the lead to come from a specific hand, as described above, and

• for which the previous tactic in the line of play leaves the lead in some hand
other than that required.

Since the tactics within individual lines of play are strictly ordered with respect to

each other, such entry requirements would have to come from one of the other suits.

8.1.4 Coping with an Opposition

An algorithm based on an analysis of the entry requirements described above would
be capable of solving the kind of problem shown in Figure 8.4 on the following page
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where the contract is 6 No Trumps.
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Contract: South - 6 No Trumps
* K Q J 10 987654
9 A Q
0-
A 6

N
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S

* -

9 4 3 2

0 A K Q 3 2
* A K 4 3 2

Figure 8.4: A possible deal containing an almost solid suit

Against any lead, the declarer can only hope to make the contract if he can establish
the spade suit, and as we have already seen this requires two entries into the North
hand. A similar analysis of the entries produced by the heart suit would reveal that

the lead will be left in the North hand twice under the condition that West holds the

K9. Therefore, there is a global plan which will lead to 12 tricks whenever the K9 is

with West, but only six tricks otherwise.

One problem that would not be foreseen by such resource reasoning, however, is that
even when it is possible to construct a plan capable of returning the required number

of tricks, the plan may not be executable if the defenders can first take enough tricks

to break the contract. Under these circumstances, declarer would be forced to throw

away cards that were earmarked as winners in his original plan. For example, playing
to make 6 No Trumps against a diamond lead in the situation of Figure 8.5, declarer

might get carried away and rather than settling for cashing his top tricks to make the

contract, he may go for an overtrick with the club finesse. Unfortunately, if this finesse
was to fail the contract would almost certainly be defeated, as the defender winning

with the K* would surely continue with another diamond if he held one. Preventing

this from happening in an automated planner calls for the ability to reason about the

options open to the defenders if they are given the lead.
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Contract: South - 6 No Trumps
Lead: 7<^ 4 A K Q .J 10

3 2

0 6 5 4 3
* 5 4
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*32
0 A K Q J 10
0 A 2
* A Q 3 2

Figure 8.5: A deal where the defenders must not be allowed to have the lead

8.1.5 Problem Summary

We have examined the problems that may be caused by dependencies in sub-plans —

the first of the three problems described on Page 185 — with particular reference to

Bridge lines of play. We clarified the specific issues we will be addressing, and outlined
how our results will be relevant to planning research in general. We have seen that
the number of possible interleavings calls for high-level reasoning, and have identified a

generic type of resource cliche which can be used for this purpose. We also made it clear
that the presence of an opposition introduces complications, as it will not always be

possible to have full control over the order in which operators are chosen for execution.
The remainder of this chapter describes how these problems can be tackled. In §8.2
we show how the resources required and produced by lines of play can be represented

by resource profiles. We then show how interleaving can be cast within the refinement
search plan-space planning formalisation first introduced in Chapter 3: in §8.3 we

review refinement search and give a basic outline for an interleaving architecture; in

§8.4 we show how resource profiles can be used to select goal and establisher steps; in

§8.5 we describe how book-keeping and the posting of constraints can be handled; and
in §8.6 we describe the design of a solution constructor function for Bridge.
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Reasoning about the resource analyses of lines of play first requires some way of identi¬

fying what these analyses are. This section presents a discussion of how such inform¬

ation can be produced.

8.2.1 Context-dependency

We have seen already that the resources consumed by tactics may depend on the

actual world pertaining when the tactic is applied. In Bridge, this dependency is

determined by the cards played by the defenders, and therefore has the consequence

that any resource production and consumption is likely to be context-dependent. For

example, a finesse tactic in the simple card combination where North-South hold the

AQ* opposite the 2<(k would require an external entry into the South hand, and leave

the lead in either East's or North's hand depending on the position of the King.

For the same reasons that FINESSE deduces the effects of its tactics according to the

context in which they are applied rather than attempting to exhaustively specify all

the possible postconditions, it would be impractical to attempt to incorporate resource

information into the actual representation of tactics.

Instead, we incorporate information on the position of the lead into the game state (it
was not necessary to include this until now, since the single-suit planning algorithm

ignores this detail) and, when selecting lines of play, determine not only how many

tricks can be produced from them but also the corresponding resource analysis.

Bottom-up Analysis

We have already seen that two entries are required in order to establish and win nine

tricks in the situation of Figure 8.3, repeated in Figure 8.6 for ease of reference. Given
that the resource analysis of a line of play may differ for different sequences ofmoves by

the defenders, let us initially examine just the case where the Ace is played by West on

the first round of the suit, and move on to the more general situation later. Figure 8.7
on Page 198 shows a rendering of the line of play for this situation which represents the
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Figure 8.6: An almost solid suit, repeated

resources consumed and produced by each individual tactic with lead/1 predicates.

Summing up all the entries in the 'consume' and 'produce' columns would tell us

that ten entries into the North hand are required, and nine leads in the North hand
are generated, so by simply 'matching' the production to the consumption we could
conclude that one entry into the North hand would be required by this line of play.

Unfortunately, as we have seen, this conclusion is wrong. In fact, the suit requires
two entries to establish; one to play the sequence tactic, and another to subsequently
re-enter the North hand to cash the established winners. The flaw in simply matching

up the consumption and production is that the quantities being treated as resources

are generated and consumed over time, whilst the simple idea of summing their values
does not respect this dependency. In our example, for instance, the final lead produced
cannot be used to supply the initial entry requirement. However, this constraint is

easily accommodated when we incorporate the analysis of resources into the interpreter

algorithm from the previous chapter. This algorithm makes a bottom-up pass of the

tree, so the only effects it is possible to see when examining any node are those created

by tactics which have already been applied. This allows us to safely determine whether
the conditions on entries we specified in §8.1.3 are present. For complete lines of play,
we will represent entry consumption by the term entry (Hand ,N), where Hand is the
hand into which entries are required and N is the total quantity. Figure 8.8 on Page 199
shows how a resource analysis using such terms can be built up. Notice that in effect
resource supply is 'cancelled' with resource production as we move up the tree, with

any unused supply being left over and available to supply tactics in lines of play from
other suits (or resulting in leads by the defence).

The resource analysis for the plan is constructed from the bottom up, so the first tactic
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Consume Produce

entry(n) lead(w)

entry(n) lead(n)

entry(n) lead(n)

entry(n) lead(n)

entry(n) lead(n)

Figure 8.7: Resource consumption and production of tactics in a single line of play

to be considered is the final cash tactic, which in isolation would both require and leave

the lead in the North hand. However, the tactic immediately prior to this also leaves

the lead in the North hand, so the conditions for requiring an entry are not present,

and the resource analysis is therefore just that the lead will be left in the North hand

once. This cancelling effect continues up the tree until the first cash tactic is reached.

This tactic does require an entry, since the previous trick was won by West's Ace.

Similarly, the initial sequence tactic has an un-supplied entry requirement since it is

not possible to make assumptions about where the lead will be on the first trick. The

number of entries required in the final analysis therefore goes up to two, with the lead

being left in both the North hand and the West hand once.
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produce: lead(n,1)

produce: lead(n,1)

produce: lead(n,1)

produce: lead(n,1)

Figure 8.8: Producing the resource analysis of a line of play bottom-up

8.2.2 Considering all Possible Worlds

The above example is obviously a simplification, since it assumes that the outstanding
cards will be played in just one particular way. In general, a line of play will have
MIN nodes with more than one branch, so we will have to cope with uncertainty

over the opponents' choices. Fortunately, though, as well as naturally respecting the

temporal nature of resource consumption and production, the bottom-up nature of the

process outlined above also enables us to incorporate the resource analysis step into

the interpreter algorithm described in the previous chapter.

Recall that at any MIN node, the defenders can restrict MAX to the minimum possible

payoff in each world. To model this, we have seen how the interpreter algorithm uses

the notion of subsumption: first the basic payoff profile is generated, and then, starting
with the smallest payoff and gradually working up, any overlap is gradually removed
from the remaining terms.
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To produce a profile based on resources, rather than the numbers of tricks we initially
used in our definition of a payoff profile, we need to update our notion of 'payoff'
so that it takes into account the possibility of differences in resource production and

consumption.

Payoff -tuples

In Finesse, there are in fact seven different possible resources that can be consumed

or produced, as summarised in Figure 8.9.

entry(n)
entry(s)

(a)

Figure 8.9: Possible resources that can be (a) Required, and (b) Produced

With the exception of the lead(ew) term, the meanings all of these terms should be
clear from our earlier discussion of resources in §8.1.3. The additional ew possibility is

included to cope with a possible consequence of the duck tactic.

Recall that ducking involves the declarer playing a low card from both his hand and
from dummy in an attempt to improve his chances in a suit. An example situation

where the declarer could well consider ducking is shown in Figure 8.10. There are

five cards outstanding in this suit, so if the Ace and King are cashed immediately at

least one defender will still have cards remaining. Without any entries supplied by

other suits, then, the declarer would be unable to win with any of the low cards in the

North hand. To improve his chances, declarer could instead duck one round in the suit

before cashing the masters. This will allow three of the low cards in the North hand
to win tricks whenever the outstanding cards split 3-2 between the defenders (under
our assumption that there are no trumps).

Among the MIN branches of a duck tactic applied in this situation will be one which

represents the case where both defenders play low cards ('x's). Since the declarer also

lead(n)
lead(s)
lead(e)
lead(w)
lead(ew)

(b)
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Figure 8.10: A ducking example

ducks by playing his two lowest cards, all four cards played on this trick will appear

to have the same value. This makes it difficult to decide who has won the trick.

Finesse resolves this problem by assuming firstly that the defenders will not be kind

enough to let the declarer win a trick with an x card. (This is justified, since Finesse

only ever ducks with cards that can be beaten by outstanding x cards). The winner,

then, must be one of the defenders. However, there is no way of knowing which. Since
there is no way of expressing this disjunction within Finesse's uncertainty represent¬

ation language, an extra type of resource describing a 'lead in either the East or West
hand' is introduced.

Finesse therefore re-defines payoffs as follows:

Definition 8.1 A line ofplay is said to have a payoff it : (T, En, Es, Ln, Ls, Le, Lw, Lew),
under some possible world, if against best defence it leads to T tricks, requires En

entries into the North hand, Es entries into the South hand, generates Ln, Ls, Le, Lw

leads in the North, South, East, and West hands, and an additional Lew leads in either

East's or West's hand.

Augmenting the Interpreter Algorithm

To incorporate the above change into the interpreter algorithm, the following modific¬
ations are necessary:

• Partition the set of possible worlds at each node according to the payoff 8-tuple
that describes the line of play beneath that node, rather than just the number
of tricks generated by the line of play.
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• Define a binary relation on the new payoff 8-tuple that can be used to determine

which of any two given profiles is the 'worse'.

• Modify the subsumption process so that it starts with the lowest payoff (according
to the new relation), maximises the number of worlds assigned to it, and then

repeats this for the other payoffs, in ascending order.

There are clearly many ways in which the payoff of a single-suit Bridge problem can be

assessed. As well as the obvious goal of restricting the number of tricks that the declarer
can take, the defenders may be interested in limiting his ability to generate entries into

either or both of his hands, or in gaining as many tricks as possible themselves. The

declarer in turn may be interested just in the number of tricks or may actually be

willing to give up tricks in one suit in order to generate entries that can be used to

reach more promising suits. We will return to this issue in Chapter 10, when we discuss
the overall system architecture in more detail. For now, however, we will assume as a

default that the players' behaviour is described by the relation given below.

A Relation Between Payoffs

For any given payoff, we will be interested in three features: the number of tricks
won by the declarer, the total number of entries required to establish these tricks,

and the total number of leads given to the defence in the course of achieving this.

Given a payoff, 7r = (T, En, Es, Ln, Ls, Le, Lw, Lew), let us represent these quantities by

tricks{7r) = T, entries(7r) = En + Es, and concede^7r) = Le + Lw + Lew. The relation
below then captures the notion that one payoff is worse than another if it leads to fewer

tricks, or if it leads to the same number of tricks in a way that requires the declarer to

establish more entries, or give away the lead more often.

Definition 8.2 For any two payoffs, ^rx and x2, 7Ti < n2 if:

tricks(iTi) < tricks(ir2) or
tricks(TTi) = tricks{n2) A entries(wi) > entries(ir2) or
tricks(ni) = tricks(n2) A entries(iri) = entries^f) A concede^f) > concede^ir2)

With this definition in hand, modifying the interpreter algorithm in the way described

above enables us to generate a new form of payoff profile in which the set of possible
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worlds is partitioned into sets (described by C-conjunctions) that produce different
payoff 8-tuples:

[tTi > Ci, 7T2 > C2, ft3 ^ C*3, • * "] .

From these, it is a simple matter to generate profiles describing tricks by collecting

together, for each possible number, n of tricks that can be won, all the C, for which

tricks(fti) — n, and rewriting them as a new term. Similarly, for each of the resources

that can be consumed/produced, the same process can be used to generate a profile of
the possible worlds under which each amount of the resource will be required/generated.

These are the resource profiles which will form the basis for our higher-level reasoning
about how individual lines of play will interleave. Now that we are able to generate

them, we can go on to look at how they can be utilised in the interleaving process.

8.3 Refinement Search

In Chapter 3 we introduced refinement search as a unifying framework for comparing
and contrasting partial order plan-space planning systems. We now return to this
framework and use it to examine the possible architectures capable of carrying out the
task of interleaving.

8.3.1 Review

Recall that refinement search is essentially a particular view of the generate-and-test

paradigm. Rather than employing a search process that involves the gradual construc¬
tion of a solution, refinement search starts with the complete set of possible sequences

of operators, and then gradually subdivides it into smaller subsets by a process of

repeated splitting (or branching, or refinement).

Kambhampati's generalised plan-space refinement algorithm is reproduced again in

Figure 8.11 on the following page. By starting with a null set of constraints, the
initial node describes (implicitly) the entire set of all the plans that can possibly be
constructed. As constraints are added by successive calls to Refine-plan, the number
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Algorithm Refine-Plan((V: (T,0,B,ST,C),A))
Parameters: sol, the solution constructor function

G, the set of goals of the problem.
pick-prec, routine for picking preconditions from the plan

agenda for establishment,
interacts?, routine used by pre-ordering to check if a pair of steps interact,
conflict-resolve, routine for resolving monotonic auxiliary constraint conflicts.

0 Termination check. If sol(V,G) returns a solution, return it, and terminate.
If it returns *fail*, fail. Otherwise continue.

1 Refinement. Refinements fall into two broad classes:

• Establishment Refinement. Refine the plan by selecting a goal, choosing
a way of establishing that goal and optionally remembering the establish¬
ment decision:

1.1 Goal Selection. Using the pick-prec function, pick from V a goal
(c, s) to work on. Not a backtrack point.

1.2 Goal Establishment. Non-deterministically select a new or existing
establisher step s' for (c,s). Introduce enough ordering and binding
constraints, and secondary preconditions to the plan such that (i) s'
precedes s (ii) s' will have an effect c, and (in) c will persist until
s (i.e., c is preserved by all the steps intervening between s' and s).
Backtrack point; all establishment possibilities need to be considered.

1.3 Book Keeping (Optional). Add auxiliary constraints noting the es¬
tablishment decisions, to ensure that these decisions are protected by
any later refinements. This in turn reduces the redundancy in the search
space. The protection strategies may be one of goal protection, interval
protection, and contributor protection. The auxiliary constraints may
be one of point truth constraints or interval preservation constraints.

• Tractability Refinements (Optional). Help in making the plan-handling
and consistency check tractable. Use either one or both:
1.4 Pre-ordering: Impose additional orderings between every pair of steps

of the partial plan that possibly interact, according to the static inter¬
action metric interacts?. Backtrack point; all interaction orderings
need to be considered.

1.5 Conflict Resolution: Add orderings, bindings and/or secondary (pre¬
servation) preconditions to resolve conflicts between the steps of the
plan, and the plan's auxiliary candidate constraints. Backtrack point;
all possible conflict resolution constraints need to be considered.

2 Consistency Check (Optional). If the partial plan is inconsistent (i.e., it has
no safe ground linearisations), fail. Else continue.

3 Recursive Invocation. Call Refine-Plan on the refined plan.

Figure 8.11: Generalised plan-space planning algorithm (repeated)
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of solution candidates at each node is reduced until sol can return an answer. The

exact behaviour of the algorithm is determined by the particular way in which the

steps of goal selection and establishment, book-keeping, and tractability refinements
are specified. We have already seen how Kambhampati describes existing plan-space

planners as the results of particular instantiations of these slots: we now look at how
we can cast interleaving in the same framework.

8.3.2 Interleaving as Refinement Search

The overall task of interleaving is to take a set of lines of play for individual suits and

produce a line of play for an entire game. Here, we interpret this as a problem in

finding the appropriate constraints on the allowable orderings between the operators

in each line of play.

Initially, with no constraints, any possible ordering of the constituent operators is
allowed. The aim of interleaving is to reduce this number of possible combinations to

the point where the success or otherwise of the interleaving can be determined.

Here, we will informally characterise Finesse's interleaving algorithm in terms of re¬
finement search. In the following sections we then give substance to this basic outline.
The basic instantiation made by interleaving of the refinement framework is as follows:

• Solution candidates. Lines of play for an entire game.

• Agenda. The only operators to be considered are those contained in the lines

of play to be interleaved, and the overall aim is to determine whether this inter¬

leaving is possible. The agenda therefore contains any resource requirements of
the operators that have yet to be satisfied.

• Goal Selection. Selection of an unsatisfied resource from the agenda, based on

a likelihood heuristic (detailed in §8.4)

• Goal Establishment. We assume that no extra operators can be added (i.e.,
we assume that we are interleaving given hues of play), establishment consists
of introducing ordering constraints on the suppliers to ensure they occur in the
correct position. (See §8.5.)
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• Book-keeping. Contributor protection via the posting of auxiliary constraints.

(See §8.6.)

• Tractability refinements. Assume a total ordering. The number of possible

orderings of the operators within the input plans may not be greatly reduced by

the imposition of resource-based constraints, and the number of combinations is

typically too large to examine explicitly. A total ordering refinement is therefore

used to enable the solution constructor function to treat all allowable orderings
as equal and to tackle the problem of non-locality. (See §8.6.)

• Consistency check. Plans with un-suppliable resources are pruned.

As we suggested in the introductory section, the main source of refinement will be
resource-based reasoning. Exactly how this reasoning will function is described in the

following sections. Before beginning this development, however, let us first present in

Figure 8.12 a simplified form of the generic planning loop of Figure 8.11.

If sol cannot determine whether an interleaving will succeed, and there are goals
(resource requirements) left unsatisfied:

• Select a goal to be established. Not a backtrack point.

• Non-deterministically select a new or existing establisher step to achieve selected
goal. Backtrack point.

• Impose appropriate constraints, carry out appropriate book-keeping, tractability
refinements, consistency checks.

Figure 8.12: A simplified refinement planning algorithm applied to interleaving

This figure provides a simple basis upon which we will elaborate as we explore the
details of the algorithms which instantiate each slot. Over the next few sections we

will examine the details of goal selection, goal establishment, the posting of auxiliary

constraints, and the solution constructor function, until we have an overall view of how

the interleaving process as a whole functions.
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8.4 Goal Selection and Establisher Selection

In the above outline of an interleaving architecture, the first tasks that are encountered
are goal selection and establisher selection. Here we detail how the resource profiles
described earlier in this chapter can be used to implement this.

8.4.1 Finding a Solution vs Finding the Best Solution

According to the simple planning loop of Figure 8.12, once all the goals in an interleav¬

ing task have been satisfied, the solution will consist of a set of constraints determining
a (not necessarily unique) ordering on the operators of the interleaved plans. However,
in a domain with uncertainty, this approach faces the difficulty that in general it may
not be possible to produce an interleaving where all the goals are completely satisfied.

Rather, each goal may be satisfied only under some subset of the possible worlds, so

that the global plan has a probability of success between 1 and 0. This means that
unless we find a plan which always succeeds, there is no longer any easily identifiable
termination criterion: we may have to examine all the possible establishment possibil¬
ities before we can be sure that we have found the best. Clearly, this is potentially very

inefficient, and in Chapter 10 we shall see that when the desire is to select between

different sets of plans, rather than just finding the best possible interleaving of any
one of them, it may be wasteful to consider all the possible interleavings of any one

set. For example, it may be possible to establish that all the interleavings of one set

are inferior to those of another set. Finesse therefore uses a heuristic to determine

the choice of the goal selection and establisher steps, in an attempt to generate the

'good' interleavings first. This heuristic is based on the probabilities associated with
the resource consumption and production of the plans being interleaved.

8.4.2 Using Probabilities

In §8.2.2, we saw how Finesse's interpreter and subsumption algorithm could be used
to produce resource profiles of a line of play. In particular, for any particular resource
we saw that it was possible to form a resource profile detailing either its consumption
or production as a list of pairs of the form
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[N1>C1,N2>C2,N3>C3,---\ , (8.1)

where the IVj are distinct integers greater than zero in ascending order and the C, are
terms describing disjoint possible worlds. For a given line of play, each type of resource
consumed can be described by a profile in which the N{ represent possible amounts of

consumption and the corresponding C, describe the worlds under which each amount

of the resource is required. Similarly, the resources supplied are described by profiles

which describe the worlds under which each possible amount of supply is generated.

Given a collection of profiles describing the resource analysis of some lines of play that
are to be interleaved, it is possible to rank the resource suppliers and consumers ac¬

cording to how likely they are to produce or consume their resources. For example, the

probability that the resource profile of (8.1) describes the consumption (or production)
of at least one unit of resource is prob(Ci VC2 V • • •), which, since all the C, are disjoint
and all the N{ are greater than zero, can be written as:

^prob(Q).
j

One way to modify the planning loop of Figure 8.12 on Page 206, then, is to replace

the random selection of goals and establishers by an algorithm which selects the most

likely (in terms of probability) consumer and supplier at each stage. The output of the
first loop of this planning algorithm will clearly not in general be the best amongst all
the possibilities, but in Chapter 10 we will argue that it is a useful way of identifying
which plan set from amongst a number of alternatives warrants further consideration.

Before discussing how the resource profiles can be maintained when using such a heur¬

istic, we should point out that we will be exploiting the feature that the operators to

be interleaved are all known in advance, by virtue of being present in the lines of play

being interleaved. In other situations, a different algorithm may well be more appro¬

priate. For example, in problems where further operators (with attendant resource

requirements) may be introduced at a later stage, a least commitment strategy on the
resource suppliers may be preferable, so that operators introduced to the plan at later

stages would have the maximum possible chance of being suppliable.
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8.4.3 Maintaining the Profiles
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Let us assume that we have chosen (based on the probabilities) the most likely consumer

and producer of a given resource, and that their respective profiles for this resource

are:

consumer: [Ni > Pi, N2 > P2, N3 > P3, ■ ■ ■]

producer: [M1 > Qx, M2 > Q2, M3 \>Q3, ■ ■ •] . (8.2)

If the probabilities associated with each of these profiles is 1 (i.e., there is always at

least one resource), then the act of assigning a single unit of resource from the supplier
to the consumer would reduce both supply and demand in any possible world by one.

Thus, the new profiles would be

consumer: [(Nx - 1) > PU(N2 - 1) > P2,(N3 - 1) > P3, ■ ■ •]

producer: [(Mx - 1) > Qx, (M2 - 1) > Q2, (M3 - 1) > Q3, • ■ •] . (8.3)

However, it may be that the resource production is conditional, i.e., that prob(Qi V

Qi V Q3 ■ ■ ■) < 1. To examine how this circumstance would affect the consumer, let us
examine a single entry, N, > Pi, say, of its profile. If the resource supply is successful —

i.e., if both (Qi V Q2 V Q3 • ■ ■) and Pt are true — then only (N, — 1) further resources
will be required. Thus, the original term from the consumer profile should be replaced
with:

(N{- 1)> Pi A (Qt V <22 V Q3 • • •) •

However, there is now also the chance that the resource supply will be unsuccessful.
In this case, N{ resources will still be required. Thus, the following term should also

appear in the updated resource profile:

Ni > Pi A -.(Qi V Q2 V Q3 ■ ■ ■).
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The general form of the updated consumer profile when supplying one unit of resource
under conditions Q — Qi V Q2 V Q3 ■ • ■ is therefore:

consumer: [(Ai — 1) > A Q, Ni > Pi A -<Q,

(N2 — 1) > P2 A N2 > P2 A ~>Q,

(N3 — 1) > P3 A Q, N3 > P3 A "'Q,

]• (8-4)

A similar situation arises when considering the effect on the resource supplier's profile
when the resource consumption is conditional. Again there are two possible situations:

one where the resource is utilised and one where it is not. If we consider a single entry

of the supplier profile, Mt>Qi, the cases are similar to those for the resource consumer.

{Mi - 1) > Qt A (P, V P2 V P3 • • •)

Mi > Qi A -(A V P2 V P3 ■ ■ •). (8.5)

This suggests the new planning loop detailed in Figure 8.13, where both resources

and consumers are chosen according to likelihood, and the resource lists maintained as

above.

8.4.4 The Effects of Ordering

We have not yet discussed the exact form of the constraints that will ensure that

resource suppliers occur in the desired positions (this will be the subject of §8.5).

However, we do need to be aware that the presence of such constraints between parts

of a plan set may affect the assignment of resource suppliers.

For example, the simple situation of Figure 8.14 depicts a set of plans with just three

components: a, b, and c. One of these, b, is constrained to come after a, whilst c has no

ordering constraints. We will assume that there is just one resource in the domain, of
which both a and b consume one unit and c produces one unit. However, the resource
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1. Make a list of profiles for each resource required, and order by probability. Do
the same for resource production.

2. While there is still outstanding (i.e., probability greater than 0) resource con¬
sumption:

• Select the most likely resource consumer. Not a backtrack point.
• Non-deterministically select an establisher step, starting with the most
likely. Backtrack point.

• Maintain the consumer profile by applying (8.4), and the supplier profile by
applying (8.5).

• Impose appropriate constraints, carry out appropriate book-keeping, tract-
ability refinements, consistency checks.

3. Run sol to find probability of successful interleaving.

Figure 8.13: A revised algorithm for resource-based interleaving

supply and consumption is conditional: a is a consumer under some condition P, b is

a consumer under condition Q, and c is a producer under condition R.

consumes: 1 > P consumes: 1 > Q

C

produces: 1 > R

Figure 8.14: A plan set with resource requirements and an imposed ordering

It is fairly easily demonstrated that the different legal orderings of a, b and c will have
different chances of success. For instance, if we order c to come last, the plan will

only be executable if it transpires that neither a nor b require resource supply (i.e.,
if ->P A -iQ is true). Alternatively, the plan's chances of success can be increased by

constraining the resource supply of c to be available for one of a or b. For instance, if
we attempt to supply b, then a will only be executable if its resource is not required

(i.e., if ->P), and b will be executable both when it requires no resource (~>Q) or when
it consumes a resource from c (Q A R). Thus, the plan set will be executable under
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the conditions

-iP A (~iQ V (Q A R)). (8.6)

If, on the other hand, we supply a, then a will be executable under the conditions

-iP V (PA R), and b will be executable whenever it requires no resource (i.e., if ->Q)
or whenever a did not consume c's resource supply. Thus, this ordering is successful
under the conditions

It is a simple matter to show that the formula of (8.7) implies that of (8.6) and that
the reverse is not the case. Thus, the option of supplying a is superior to that of

supplying b, since it gives a better probability of success. The generalisation of this is

that, given a choice of (conditional) goals to establish, it is best to begin with those
that have already been constrained to occur towards the front of the plan, since any

unused supply will then be available for succeeding operators. Also, given a choice of

suppliers with which to supply a goal, it is best to choose those which have already
been constrained to occur towards the start of the plan, since this will leave other

suppliers free for the later operators.

Before incorporating this into our planning loop, however, let us stop to consider the

possible implications of ordering constraints on our resource profiles. When dedicating

one unit of supply from a supplier to a specific consumer, the supplier's resource profile

is modified as in (8.5). If it transpires that the consumer does not make use of this

supply, then we may indeed be able to make use of it somewhere else in the plan.

However, as we have seen above, this will only be possible if the new position we

choose for the supplier is after the original position. Thus, the type of modification to

the profile of the resource supplier suggested by (8.5) will over-estimate the resource

suppliable to operators which are in front of the resource consumer. Since this may

lead to unsoundness (the planning loop may believe that resources have been supplied
to all consumers when in fact this supply may be dependent on an implicit ordering)
it is best to modify the supplier profiles with the more simple (8.3) which ignores
the possibility that an assigned resource can be utilised at a later point in the global

(->P V (P A R)) A (-.Q V (Q A R A -nP)). (8.7)
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plan if its consumer does not utilise the supply. This approach will ensure that the
available resource supply will always be either exactly measured or under-estimated,
and is therefore a more sound, conservative basis for our heuristic.

Taking into account the above arguments, then, we can re-write our planning loop as

in Figure 8.15.

1. Make a list of profiles for each resource required, and order by probability. Do
the same for resource production.

2. While there is still outstanding resource consumption:

• Select the consumer occurring nearest the front of the plan. If this is not
unique, resolve ties based on likelihood of consumption. Not a backtrack
point.

• Non-deterministically select a supplier, starting with the those nearest the
front of the plan, and again resolving ties on the basis of likelihood. Back¬
track point.

• Maintain the consumer profile by applying (8.4), and the supplier profile by
applying (8.3).

• Impose appropriate constraints, carry out appropriate book-keeping, tract-
ability refinements, consistency checks.

3. Run sol to find probability of successful interleaving.

Figure 8.15: A final algorithm for resource-based interleaving

8.5 Auxiliary Constraints and Book-keeping

The steps of'Imposing appropriate constraints...' and 'Running sol...' in the updated

planning loop of Figure 8.15 have not yet been described. The remainder of this

chapter will therefore address these issues, starting here with a discussion of how
to post the appropriate constraints. This will take us back to look at the partial

plan representations first introduced in Chapter 3 during our review of the planning
literature.
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8.5.1 Partial Order Plan-space Representation
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We have seen that in an action-ordering representation the operators of a plan are

represented as nodes, and the ordering relations between them as arcs joining the
nodes. Further, we have seen that partial order plans do not require the orderings
between the operators to be fully specified and that this can allow a large set of plans
to represented without explicitly presenting each one separately.

Figure 8.16 shows how the simplified lines of play which we introduced in Figure 8.1 on

Page 188, could be represented using the type of partial plan representation introduced

in Chapter 3. As it stands, this network constrains all the operators in the individual

lines of play to occur in sequence, but allows all possible orderings of the actions

between the lines of play. The aim of posting auxiliary constraints is to guarantee that
the possible orderings will be executable.

Figure 8.16: Combining lines of play in a network

Recall that the type of linear line of play illustrated here is an over-simplification of the

general structure, which usually contains disjunction over which we have no control.
This complication has led us in this chapter to describe the possible dependencies

between individual lines of play in terms of the resources they consume or produce. We

therefore treat individual lines of play abstractly as individual entities described purely
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by their resource profiles. The nodes in our partial plan representation will therefore
not represent individual operators, but lines of play composed of these operators.

For example, consider the deal of Figure 8.17 where the contract is 3 No Trumps and
West's lead is the 109.

Contract: South - 3 No Trumps
Lead: West - 109

N
W E

S

♦ A 6
9 A 4 2

0 A K Q J 10
A J 10 9

Figure 8.17: An example Bridge deal

The first action of a human declarer faced with this situation would typically be to

count the top tricks. In Finesse, this effect is achieved by restricting the interpreter

algorithm to consider only the cash and sequence tactics when looking at each suit,

resulting in the following plans, which (assuming they can be interleaved) produce a

total of eight certain tricks:

Suit Brief Summary of Plan
A cash South's Ace.
9 cash the Ace and King.
0 cash South's five top tricks.

Rather than look at how these simple lines of play might be interleaved, let us examine
the more interesting case where one of them is improved in an attempt to supply the
extra trick needed to make the contract. Since the spade suit can be made to supply a

certain extra winner by cashing the Ace and then forcing out the King by playing the

Queen, we will replace the original line of play in this suit by this improved version.

A Q J 5
9 K 8

0 7 6 2
A 8 7 6 5 4
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The resource analyses of these lines of play can then be found as described in §8.2.2,

producing the information contained in the following table:

Suit Resources Required Resources Produced

*

0

entry(n,l) lead(n,l), lead(s,l), lead(e,l) >P, lead(w,l) >Q
lead(n,l), lead(s,l)
lead(s,3)

where P and Q describe the condition that East or West, respectively, holds the K<|b.
Rather than representing each line of play in its entirety, we choose to simply create a

node in our partial plan representation for each one. This may be represented using a

network as follows:

As it stands, this network allows all orderings of the tactics in the lines of play, with the

proviso that the temporal constraints implied by the tree structure of each individual
line of play itself is adhered to. It is, of course, not true that all these orderings
are valid, since we have already seen that the spade suit has an unsatisfied resource

requirement. The planning loop of Figure 8.15 will select this consumer (as it is the

only one) and attempt to supply it. The only outside suit which is capable of supplying
the resource is the heart suit, so we will wish to modify the partial plan to ensure that

(the resource-supplying part of) the line of play in hearts will always be available to

satisfy the resource requirement of the spade suit. Below, we consider how this can be
done.

8.5.2 To Split or Not to Split?

When constraining resource supply, it turns out that it is important to be able to

identify not only which nodes produce resources, but also which parts of the plans that
the node represent are responsible for the production. For instance, in the example

above, it is possible to imagine splitting the 9 node into two portions: one supplying the

entry required by the node, and the second representing the 'remaining' operators.
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In this particular case, we can identify the cashing of the K'v' as the operator in the line
of play for the heart suit which generates the required resource. However, in general it
is not always so easy to split away a resource supplying portion of a line of play from
its remainder. This is because typically, the resource supplying portion may only be
executable at certain points within the line of play, and the tree-like structure makes
it difficult to be specific about the way the line of play will behave when split. For

instance, consider the simple fine of play in Figure 8.19 on the next page (recall that
a line of play is generated in a state-based manner, so it is the arcs in this figure that

correspond to operators).

Imagine that this figure represents a line of play in which there are two possible courses

of action (we will ignore for the moment the issue of whether it is MAX or MIN that
controls this branching). If we wish to use the operators in this line of play to supply
a resource x, what is the resource analysis of the 'remainder' of the plan which is not

involved in the resource supply? The correct answer to this question involves looking
at each possible branch of the plan separately. If the left-hand path is followed, there
will be one operator left after the supplier, and that operator will consume resource y.

However, along the other branch this operator will have to come before the supplier.

Another effect of this possible branching is that the resource analyses of the new nodes

when a supplier is split may depend on the way in which the split is carried out. For

example, consider again the task of supplying the resource x, but this time from the
new plan of Figure 8.19 on the following page. Here, if the left-hand path is followed,
the supplier of x will be followed by an operator that supplies resource y. However,

along the other branch this operator will also have a resource consumption (of the

consumes (y) produces (x)

Figure 8.18: Branching in a line of play
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resource z), which on the first branch was consumed by the supplier of x.

consumes (z]
produces (x)

produces (y)

produces (x)

consumes (z)
produces (y)

Figure 8.19: Another example of branching in a line of play

In general, then, when splitting a node being used as a supplier, each possible branch
within the supplier will decompose into an operator responsible for the supply of the

resource concerned, possibly accompanied by the head of the plan which precedes the

supplier along that branch, and the tail which follows it.

supplier -

J)

supplier:head supplier:resource supplier:tail

Since a line of play may contain a large number of branches, there will be many ways in

which a supplier node may be split. Rather than one network describing the result of

splitting a node then, we are faced with the possibility of having to work with multiple

networks; one for each of the (perhaps large) number of ways in which each supplier
node might be split.

To avoid this likelihood of dealing with many possible sets of constraints in the planning

loop, we retain the notion of representing each line of play by a single node, without

conducting any splitting. To add a constraint into the network, we simply insert a

term of the form:

interleave(Consumer, Supplier, Resource)

in the links of both the Consumer and the Supplier concerned. The actual examination

of the possible ways in which the supplier may split is then carried out by the solution
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constructor function, which uses the interleave constraints to ensure that resource

consumers occur in the correct positions.

Checking Orderings

Finesse carries out a consistency check when adding constraints to a partial plan,
to ensure that it is not imposing an impossible ordering on a supplier's actions. For

instance, in Figure 8.19 it is possible to generate the resource x followed by the resource

y, but not y then x. If, for example, we are already using the line of play to supply the
resource x, then, we cannot use it again to supply y to an operator that occurs before
the consumer of x. A check is therefore carried out when posting any constraint that
the ordering in which the supplier is required to generate resources is at least present
on one of the branches within the structure of its line of play.

8.5.3 The Effect of an Opposition

In the domain of Bridge, there are almost always points during the play of a hand at

which the opposition will control the next action. This gives rise to a major problem
which we have not yet tackled: despite constructing a network constraining the ordering
of suppliers and consumers, we may not be able to ensure that these constraints will be

followed; the opposition may be able to break the constraints when it is their turn to

dictate the play. For example, consider the situation of Figure 8.20 on the next page,

where it appears to be possible for the resource requirements of the left-most line of

play to be satisfied by the resource productions of the other two.

As it stands, constraining the production of the resources x and y to interleave with
the execution of the first line of play will indeed guarantee a successful interleaving.

However, consider the situation where the first operator of the left-most line of play

(which currently has no resource consumption or production) has the effect of giving the
control over the next action to the opposition. If the defenders play to the best of their

ability, they will be able to prevent the interleaving from succeeding by immediately

forcing the next action to come from the right-most line of play. This will result in
the resource y being produced too soon to be utilised by the operator for which it was
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consumes (x)

consumes (y)

produces (x)

produces (y)

Figure 8.20: Lines of play fragments that can be interleaved

intended, thus making it impossible to execute the global plan.

In general, there may be more than one portion of an interleaving which the opponents

can disrupt in this way. This means that an attempt to simply 'protect' a portion of

an interleaving by using further suppliers to 'over-supply' its consumption will not be

guaranteed to succeed, because the defenders will be able instead to disrupt another

portion of the interleaving which would have been executable if protected by the same

over-supply. Each time the opposition may possibly be given the lead, then, we should
be considering the best way to assign any over-supply to each particular disruption that

the defenders may have made. So, this problem introduces further possible disjunction

and calls for more separate sets of constraints to deal with each of the possible ways

in which the world might turn out.

Rather than explicitly creating separate sets of constraints for each disjunctive possib¬

ility, we resort to pushing the burden of examining all the possibilities into the solution
constructor function. We examine this in the following section.

8.6 A Solution Constructor Function for Bridge

In this section we present an algorithm which can use the constraints described above
to determine which tactics to select when executing a global plan. This algorithm

will therefore be able to answer the question of how well a set of lines of play will fit

together, given a particular assignment of producers to consumers.
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As we have mentioned already, Finesse uses a total ordering tractability refinement
when interleaving given lines of play. This assumes that all the possible tactic orderings
that meet the constraints are equal, or equivalently that the constraints specify all the

possible interactions between the fines of play being interleaved. This refinement both
releases us from the need to examine all the possible tactic orderings that meet the

constraints, and also means that the effects of non-locality will not arise, since we never

choose between tactics with possibly different results.

Below, we describe Finesse's actual solution constructor function. First we assume the

presence of a method for selecting a single tactic that meets the interleaving constraints
at any point, and describe how actual fines of play composed of these tactics can be

constructed. The actual algorithm used by Finesse for this task is rather complicated,
so to help in understanding it, we describe its features incrementally, building gradually
from the simplest conceivable architecture by making successive, efficiency-motivated
modifications. After this development, we show how a network of constraints can in

fact be used to determine a unique tactic to select at each point.

8.6.1 A Naive Approach

Given a method for selecting tactics which obey the interleaving constraints, the most

immediately obvious way to determine the chances of success of an interleaving is first
to fix attention on one particular world. From the initial state in this world it is

possible to construct a fine of play explicitly by selecting a tactic, generating all the

possible MIN responses, and then repeating the process for the resulting states, either
until no further tactics are applicable or until thirteen tricks have been played. The
number of tricks that can be expected against best defence in that world is then simply
the minimum of the number of tricks gained at the leaf nodes of the tree. By repeating
this procedure in each of the possible worlds a profile can be produced. Figure 8.21

depicts a version of this type of search for a domain with possible worlds w1? w2,- • -,w„.

It should be clear that in any domain with a large number of possible worlds, this

approach is not going to be very efficient. In our particular case there are 26Ci3 « 107

possible worlds to examine. In each of these, the tree of possibilities is 13 tricks

deep and rather bushy, since the basic branching factor is 26 for the first defenders'
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Figure 8.21: An interleaving strategy involving constructing a line of play for each
possible world

play, 25 for the second, and so on. Clearly, the requirements of legal play will reduce
this branching factor somewhat, and a further efficiency improvement can be made

by utilising the single-suit planner's specification of cards into critical and low card

sequences to further restrict the branching factor. However, this does not address
the basic problem that the large number of possible worlds will make any interleaving

procedure following this approach intolerably slow.

8.6.2 Utilising an Uncertainty Representation Language

In the previous chapter we described an uncertainty language capable of representing

the uncertainty in the Bridge domain compactly, and an efficient technique for manip¬

ulating terms in this language. As in the case of single-suit planning, where using this

language to represent information qualitatively resulted in efficiency improvements,
we can reduce the search required by the naive algorithm described above by repres¬

enting multiple possible worlds with single expressions. A simple way to incorporate
this technique into the algorithm already described is to first of all form a single term

to represent all the possible ways in which the cards may be distributed between the
defenders at the beginning of the play. A single search tree can then be construe-
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ted by generating branches that represent possible plays which take into account this

uncertainty (i.e., rather than fixing the state of the world and generating plays from
the defenders' known hands, each defender may play any legal outstanding critical or
low card). Clearly, it will not be possible to follow each branch of the search space

under each possible world, so as the search progresses, the initial set of possibilities is

gradually subdivided into smaller sets. Figure 8.22 illustrates this process pictorially
for an interior node of the search space. Note that in general, each possible world at

the original node will also be present in at least one of the daughter nodes.

efficiency

The number of tricks won by the declarer at each leaf node of the space becomes a

possible result of the interleaving under each of the possible worlds under which the
leaf node can be reached. The minimisation step is now replaced by a subsumption
check where for each world we assume that MIN will direct play to one of the leaf
nodes where the declarer's return is smallest in that world.

8.6.3 Redistributing the Search Burden

It is sometimes possible to improve the performance of search algorithms by moving
some of the search from inefficient to efficient areas. In our case, we have already seen

that manipulation of uncertainty terms is more efficient than repeatedly generating
similar search trees. A further improvement using this same principle can be made,
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this time by removing some branches of the search space into the uncertainty terms.

The single-suit lines of play are composed of single-suit tactics. When considering the

possible replies by the defence to such a tactic in the interleaving stage, we can utilise

the same approach as the single-suit planners to reducing the branching factor. That

is, all the cases where one defender shows out in the suit can be represented by the

single case of that defender being void. Clearly, this is a slight over-simplification, as

eventually it will be necessary to separate out the cases in which the defenders win

tricks by ruffing. However, as a developmental modification it will prove to be a useful

tool.

The result of this modification is that the actual search space is kept more compact,

but at the cost of larger uncertainty expressions. However, the manipulation of these

expressions is relatively efficient.

8.6.4 A State-based Search Alternative

One final improvement can be made by realising that there is an alternative to main¬

taining uncertainty terms as the search tree is generated. Rather than start the search
with a term describing the complete set of worlds, we can instead start with a rep¬

resentation of the initial state detailing the cards which are remaining. With this

representation, descending a branch will simply involve the removal of the appropriate
cards from the current state, rather than the updating of an uncertainty expression.

When the leaf nodes of the search are reached, it is assumed that any of the pos¬

sible distributions of the remaining cards could be true (unless one defender is already
known to be void) and an uncertainty term constructed accordingly. This term is then

passed back up through the tree, updating it as necessary to take account of the cards

played by each defender.

Clearly, this approach is very similar to the original one of gradually subdividing the

original worlds, and indeed in the single-suit case there is very little performance differ¬
ence between them. Finesse actually uses the state-based approach in the single-suit

case since the expressions it forms at the leaf nodes of the tree have to describe only
a subset of the outstanding cards and are therefore small. They will increase in size
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as they are passed back up through the tree and incorporate gradually more plays of

cards, but whilst they are smaller in the lower regions of the search space, processing

time is saved.

However, in the case of interleaving there is a more significant benefit to be gained by

using a state-based approach. This is mostly due to the redistribution of the search
burden described in the previous section. By allowing branches which are essentially
variables in the search space we saw that the branching factor could be reduced at the
cost of extra work being carried out to maintain the uncertainty expressions. However,

these branches are not true variables, since every possible instantiation of them is

considered when generating the daughter uncertainty terms of each node. With a

state-based approach, however, it is possible to treat these branches as true variables
whose values are left unknown. Rather than trying to consider which cards a defender

may have chosen when he has no cards in the suit led, a flag is simply set indicating
that he is void. Along any path of the search space in which a defender is flagged as

being void in some suit, the uncertainty terms generated at the leaf node only describe
worlds where the remaining cards in that suit are held by the other defender. In
this way the actual cards played by the defender who was void are never explicitly

considered, significantly increasing the efficiency of the algorithm.

8.6.5 Using a Network of Constraints to Guide Interleaving

Given the above approach of a state-based search over the possible worlds, what re¬

mains is the ability to use a partial plan containing a set of constraints to select a

tactic at each point. There are clearly a number of obvious properties which must be

checked, such as whether a node's preconditions are met and whether a node is actually

at the front of the net. However, there are also some more subtle features which are

introduced individually below.

Node Preference

Since a partial plan may in general contain actions which are unordered with respect

to each other, we may often be faced with arbitrary choices. However, we have already
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seen that to avoid having to consider all the possible orderings and to side-step the

problem of non-locality, we wish to interpret a network as imposing a single ordering

on the plan execution (i.e., that all constraints have been explicitly represented).

Thus, we have a different situation to that of single-suit planning, where we allowed
the planner to consider all the possible different orderings of applicable tactics and

then select the best. The single-suit planner was able to use this ability to discover

for itself the situations where, for example, it was best to order a finesse before a

cash, or a cash before a finesse. Our tractability refinement for interleaving, however,

means that the interleaving architecture will not have the opportunity to 'discover'
whether some orderings are superior by testing them. It is therefore necessary to have

a technique for explicitly representing some hitherto implicit Bridge constraints, such
as the desirability of drawing trumps as soon as possible in a suit contract.

In the case of drawing trumps, it would not be desirable to simply constrain the trump

suit node to come before all the other nodes, as this may make it impossible to satisfy

the resource requirements of the network. Instead we require some notion of preference

which is less important than actual network ordering, but allows us to prefer some nodes

over others within the constraints imposed by the resource reasoning.

In Finesse, this is achieved by assigning each node a numerical preference greater than

zero. Decisions at points where multiple nodes may be selected are then resolved by

simply choosing the nodes in order of preference.

Choosing the order in which to execute the branches of split nodes could be informed

by a number of factors. For example, wherever possible in a suit contract, the trump

suit should be as uncommitted to interleaving duties as possible, to enable trumps to

be drawn quickly. Also, there are a number of general playing practices which humans

identify as 'making good sense':

• If the declarer has no means of preventing the defence from taking enough top

tricks to break the contract, control should not be surrendered until the contract

is made.

• Playing in a suit in which declarer or dummy is void (thus forcing a discard)
may weaken declarer's control in the discarded suit. It therefore may be best
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to position such tactics after any other plays that may surrender control to the
defence.

• Similarly, the cashing of declarer's winners in a suit may have the side-effect of

establishing masters for the defence. If this is the case, these tactics should also
be delayed until plays that surrender control to the defence have been made.

For instance, in our example of Figure 8.17, playing on the diamond suit will not
establish any winners for the defence, but it will force the declarer to find discards

from the North hand (probably in the club suit). Since the line of play for the spade
suit involves giving the lead to the defence, we should therefore consider executing the
tactics in this branch before those in the <C> node. Also, the K9 is the stop card that

prevents the defence from taking enough heart tricks to break the contract, so the lead
should not be surrendered once it has been played.

Ensuring Resource Supply

The semantics of the interleave constraints are that not only should the resource be
constrained to occur during the execution of the consumer, but it should also occur

at the correct time. Since in general the resource consumer may have actions at its
head which may not preserve a supplied resource, the supplier should not be used to

generate its supply until the consumer actually requires it. When selecting a resource

supplier for execution, therefore, we must either check that it has spare, uncommitted

supply, or that at least one of the consumers to which its supply is dedicated requires

the resource immediately. (Note that it is not possible to control this process by

'only picking resource consumer nodes' for execution, because consumers can also be

suppliers for other nodes.)

Bookkeeping

After an operator is selected, various bookkeeping measures can be taken. For example,
if the tactic was the final step in a compound action, the empty node remaining can be
deleted from the network of constraints. Also, any links which constrain other actions
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to come after the (now empty) node can be removed.

In addition to such optional steps, however, there are some situations, such as the

execution of a resource supplier, in which bookkeeping steps must be taken. If the

intention of executing a supplier tactic is to supply a resource for a particular con¬

sumer, and this tactic actually results in the successful supply of this resource, the

supply must be protected so that the intended consumer can utilise it. The protec¬

tion is therefore signalled, constraining all subsequent actions to conserve the resource

until the consumer is executed. This is done by posting a constraint of the form

protect (Consumer, Supplier, Resource). This constraint is only removed when
the Consumer utilises the supplied resource. Whilst it is in force, no other operator

may delete or supply the Resource. Thus, this is a form of contributor protection.

Notice that here it is actually important to distinguish whether the supply of a resource
is intentional or not. To see this, consider the following situation

where are two nodes, a, and b, and node b supplies four units of resource. If node a has

the higher preference it will always be selected over node b, until it requires its resource

consumption, which node b will then be called upon to supply. If, however, it is node b

that has the higher preference, we will want to execute tactics from the front of it until
there is only one unit of resource remaining, which must then be kept until the execution
of tactics from node a reaches the point at which the resource is required. Thus, there

are situations, when the producer contains uncommitted supply, in which the generation
of a resource will not mean the subsequent execution of its consumer. It is therefore

important to record the context in which actions are selected. Finesse does this

by imposing an interleaving constraint of the form protect (Consumer, Supplier,

Resource) only when Supplier has successfully supplied a resource for the explicit

consumption of Consumer.

This scenario can be extended to include more than two nodes. For example, in the

example below there are now two resources xi and x2. In order to execute node a, we

consumes: x

produces: x, 4
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will have to use the resource supplier in node b, which in turn requires the execution
of node c. When selecting c, then, we need to remember not only that its resource will
be used by b but also that when b's resource is produced it will be consumed by a. In

Finesse, this is done by maintaining a context which records the resource protections
and also the nodes (if any) which may consume any subsequent resource supply.

Schematic Representation

The flow chart of Figure 8.23 on the following page depicts pictorially how the above
considerations affect the use of a network to interleave compound actions. Here, the
three rectangular boxes represent decision procedures capable of generating backtrack

points until a choice which is successful is found. If no executable tactic obeying the
constraints of the network is found, it may be possible to continue with the execution

by supplying a resource that was unused (and therefore now left free) by a previously

completed consumer, but this is not represented in the figure.

Notice that those nodes which lie at the front of the network must be executed before

any nodes which lie after them can be reached. However, a node which has no others

explicitly constrained to come after it and a low preference will exhibit the behaviour of

being checked every time an action is picked. This is a useful feature for implementing
inter-suit tactics (described in the next chapter), since they are typically executed at

some indeterminate point when their preconditions become true.

Ensuring Continued Executability of Suppliers

One final point which is not addressed above is the way in which the resource analysis
of a supplier may hide the fact that a resource may be utilised by the succeeding tactics
in the node. For a Bridge example of this, consider the situation of Figure 8.24 on

Page 231.

consumes: x2

consumes: xx produces: x2

interleave(b,c,xx)
[c| produces: xx
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Figure 8.23: Using a network to order plan actions
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A K Q J

N

W E
S
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Figure 8.24: A simple Bridge example

A plan to cash four tricks in this suit will generate one entry (resource) into the North
hand. However, if this entry is immediately used by an action from another suit, a

further entry will be required in order to cash the remaining tricks. We therefore
include the extra constraint that when a protect (Consumer, Supplier, Resource)

protection is in effect, any Supplier action that preserves the supply (and also does
not waste resources by re-supplying the same resource again) must be executed before

moving to the Consumer.

8.7 Summary

We have looked at how the single-suit lines of play produced by Finesse can be in¬

terleaved together into a global plan. One important step that allowed this to be
achieved was the identification of resource profiles for individual lines of play. These

profiles were used as the basis for the refinement strategy in a partial-order plan-space

system for describing the possible interleavings. Another important feature was the
total ordering tractability refinement. We showed that this not only relieved us from

having to consider all the possible orderings of a particular set of lines of play, but also

side-stepped the problem of non-locality. Since this refinement removed the ability to

compare different orderings of actions, we also described how other important features
such as the desire to draw trumps could be represented explicitly using the notion of
node preference.

Experimental results produced by Finesse using this architecture can be found in

Chapter 11. The implementation of the interleave!- module provides support for the
cliche-based approach of identifying formal structures describing the nature of a do-
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main, and in particular demonstrates the feasibility of using resource-based reasoning

to constrain the ordering of actions with disjunctive effects. The plans formed by the

system are sound with respect to the resource-based profiles, in that if the notion of
resources actually describes all the possible interactions between a set of lines of play

and the interleaver succeeds in interleaving them, the lines of play will be executable

together. However, since the system uses a heuristic ordering to assign suppliers to con¬

sumers and evaluates remaining resource supply on a conservative basis, it is possible
that it will miss interleavings.



Chapter 9

Re-introducing Neglected
Actions

No play carries more prestige than the squeeze. It is widely regarded as
the expert's hallmark.

— Terence Reese and David Bird

Bridge, the Modern Game

At the beginning of the previous chapter we identified three difficulties with the tech¬

nique of solving a problem by breaking it down into smaller sub-problems which are

solved independently. We then introduced an interleaving architecture which addressed
the first of these: that of coping with possible dependencies when trying to combine

together separate plans formed for the subgoals. Here, we address the second prob¬
lem: the possibility that some domain actions will be overlooked when splitting up the
overall task.

We examine this problem in the context of Bridge by considering a specific type of play
called a squeeze play. We give examples of such plays that show how they can only be
described by reasoning about multiple suits simultaneously. We show that although
the basic Finesse system will not discover such plays, it is possible to explicitly re¬

introduce them into the interleaving architecture as a special form of inter-suit tactic

that describes possible plays involving cards from more than one suit. This is an

important development since it suggests for the first time the feasibility of planning

squeeze plays automatically. To date, the depth of lookahead required to identify

possible squeeze situations has placed the task well beyond the reach of any computer

system: the best that has been achieved is Nygate's python system (described in

233
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Chapter 2), which can identify existing squeeze positions, but cannot determine the

order in which cards should be played in order to reach a squeeze position. We are

able, however, to show how a formalisation similar to that used by Nygate could be

used to plan such plays automatically.

In §9.1 we describe the basics of squeeze play. §9.2 then describes an implemented ex¬

ample of Finesse successfully incorporating a specific instantiation of a squeeze tactic

into a global plan. This section also discusses some possibilities, not yet implemen¬

ted, for extending this mechanism and making it more general, and suggests that our

architecture is well-suited to supporting such reasoning. Finally, §9.3 examines the per¬

formance of other computer Bridge-playing software on such problems, and summarises

the advantages of our approach.

9.1 The Simple Squeeze

According to [Reese & Bird 83, Page 185], 'perhaps 90 per cent of all squeezes are

variants of the so-called simple squeeze'. This is a play which occurs when declarer has

the chance to make an extra trick in one of two suits. If one defender protects both of

these suits, it may be possible to force him to discard a crucial card (i.e., squeeze him)

by cashing a winner in a third suit. If this can be achieved, declarer can then win an

easy extra trick in the suit in which the defence had to relinquish its protection. To
understand this better, consider the example of Figure 9.1 on the following page.

Playing in 7 No Trumps on the lead of the J<|k, declarer has twelve top tricks and an

easy thirteenth if either of the spades or the hearts break 3 — 3. If declarer simply

tests each of these suits in turn, however, he will be disappointed. The suits do not

break. If, on the other hand, he tests just one suit, say the hearts, and then cashes his

winners, he will arrive at the position of Figure 9.2 on Page 236.

Now, when declarer plays the AJfr, West is forced to make a choice in which he cannot

win. Whatever card he throws away, declarer will make an extra trick, since if he plays

the J1!? declarer will win an extra trick with the 89?, and if he plays a spade, declarer

will cash the A* and win an extra trick with the 7d(k.

This play is an example of a simple squeeze. It has the following three major com-
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Contract: South - 7 No Trumps
Lead: West - J4 * A 7 6 3

C K Q 2
<> A Q 6
* K Q 4

A J 10 9 4

C J 10 7 6

0 10 7 4
* 8 3

N
W E

S

*85
V 9 3

<C> J 9 5 3
* J 10 9 5 2

* K Q 2
V A 8 5 4

0 K 8 2
* A 7 6

Figure 9.1: A Bridge deal allowing a simple squeeze ([Reese Sz Bird 83, Page 185])

ponents, which according to [Reese & Bird 83] are necessary for every simple squeeze,

except for 'a few rare and artificial positions':

1. A single menace. A card which can be beaten by only one of the outstanding
cards remaining in the same suit. The outstanding card which prevents the single
menace from becoming a winner is termed the guard. In our example the single
menace is the 8C and the defenders' guard is the JC.

2. A two-card menace. A winner accompanied by a card that can be beaten by one

or two of the outstanding cards remaining in the same suit. In our example the
two-card menace is the A7A. and the guards for this are the 10* and the 9*.

3. A squeeze card. A master that can force one of the defenders to abandon one of

his guards (referred to as unguarding).

Notice that this simple squeeze is still successful if we switch East and West's cards in

the original hand, as in Figure 9.3 on Page 237.

East, like West in the original example, cannot guard both the spades and the hearts
when the A* is played. This type of squeeze, which succeeds when either of the
defenders holds the guards, is therefore known as an automatic squeeze. Compare this
to the positional or one-way squeeze situation, of Figure 9.4 on Page 238.
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* 10 9
9 J

0-
♦ —

A A 7

9 —

❖ —

*4

* 2
9 8

0-
X A

9 Immaterial

❖
*

Figure 9.2: Situation when squeeze is actually applied

Here, the declarer again plays in 7 No Trumps and has 12 top tricks. He wins the

QX lead and tests the heart suit, finding that West holds four. Rather than relying

on a 3-3 break in the spades he can now cash his top winners to reach the position of

Figure 9.5 on Page 239.

When the squeeze card (10<C>) is played, the declarer can determine which card to

discard from dummy by looking at the discard selected by West. If West discards the

J9, declarer can afford to throw a low spade, and then win two tricks with the Q<(k

and the 69. If West discards the J<(k or 10<|k, declarer parts with the 69 and wins two

tricks with the Q4*. Unlike in the simple squeeze situation, however, this squeeze is

not successful if the defenders' cards are switched. If East holds the two guards, he

will know which of the two to give up when he sees dummy's play.

9.2 Re-introducing Squeeze Plays Into the Interleaver

To show the feasibility of incorporating squeeze plays in our interleaving architecture,

we took our original example of Figure 9.1, designed a tactic to represent the (specific)

situation, and added extra functionality to the interleaver algorithm so that it was able
to cope with the tactic. Below, we describe the details of this extension.
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* A 7
9 —

❖ -
* 4

*
7? Immaterial N

W E
S

* J 10
V J

❖ -
*-

0
*

* 2
9 8

0-
X A

Figure 9.3: Squeeze situation with defenders' cards swapped

9.2.1 The Need For a Squeeze Tactic

We saw in the previous chapter that when the defenders do not follow suit, Finesse's

solution constructor function generally avoids considering the actual cards they might
have played, and instead just represents their play as 'discarding'. This simplification
enables the solution constructor function to restrict the line of play it constructs to

a manageable size. Such an architecture, however, will not 'discover' squeeze plays,
since their execution involves observing the actual identities of the cards thrown away

by the defenders, deciding which threat cards have become established, and then pro¬

ceeding to cash any extra tricks that have been created. Thus, in order to incorporate

squeeze plays into the interleaving architecture, we design a special tactic which, when

incorporated into the tree of tactics generated by the solution constructor function,

pays special attention to the plays of some specific cards by the defence.

9.2.2 A Tailor-made Tactic

We represent the squeeze play of Figure 9.1 as an inter-suit tactic. Like the single-
suit tactics we have already considered, this inter-suit tactic is a compound operator

that represents multiple domain actions. However, rather than representing actions
that form a single trick, our squeeze tactic represents the cards played over the entire
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Contract: South - 7 No Trumps
Lead: West - Q* * A K Q 4

9 A K Q 6
0 6 4
*752

* Q J 10

* J 10 9 5
0 J 10 8 2

0 7 2

N
W E

S

*76
9 9 3

0 9 8 5 3
* K 9 8 4 3

*832
9 7 5 4

0 A K Q J 10
* A 6

Figure 9.4: A Bridge deal allowing a positional squeeze

squeeze, beginning with the play of the squeeze card and ending with the cashing of any
extra winners generated. The tactic used for this task, represented as a Prolog list with
six entries, is shown in Figure 9.6 on Page 240. Below, we describe the constituents of
this tactic one by one.

• The name. This identifies the type of squeeze (in this case a simple, automatic

squeeze in spades and hearts).

• The initial tactic. The (single-suit) tactic that initiates the squeeze play.

• The interleaving preconditions. If these conditions become true in any state

reached by the solution constructor function, the next tactic selected will be the
initial tactic of the squeeze play.

• The resource requirement. The squeeze play must be initiated from the

South hand. By imposing the resource requirement of a lead into the South

hand, the constraint posting mechanism of the interleave!- will assign a supplier
to the squeeze tactic which leaves the lead in the correct place.

• The branches generated. In a squeeze situation, the important cards to con¬

sider are the defenders' guards. If either defender guards both the squeeze suits,

the squeeze will succeed. The tactic therefore causes an extra MIN branch to
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* J 10
9 J

0-
*

4 Q4
9 6

0 —

*

* 8
9 —

0 10
* 6

* -
—

❖ -
X K 8 4

Figure 9.5: Situation when positional squeeze is actually applied

be added to the solution constructor function's search space which explicitly
caters for this possibility. In the following section we will show how the solution
constructor function interprets this branch.

• The interleaving constraints. These are the constraints which must be obeyed

by the solution constructor function if the squeeze tactic is to succeed. Each time

a tactic is selected at a MAX node, these constraints will be checked. In this

case, the constraints are that the AJfr and the AX must not be cashed.

Notice that there is no entry for the postconditions of the tactic. This is because, as

with single-suit tactics, the possible MIN responses to a tactic (and hence the possible

postconditions of a tactic) depend on the actual state of the world when the tactic is

applied. We therefore calculate the postconditions of a squeeze tactic with the use of
domain rules like those used to determine the effects of single-suit tactics.

Notice also that the actual card-plays that MAX would have to make in order to carry

out the squeeze play are not specified. This may seem strange, but recall that the
task of the solution constructor function is only to produce a profile of a given set of
lines of play, inter-suit tactics and constraints. As long as the postconditions of each
tactic can be calculated, this process does not require a knowledge of the tactics' in¬
ternal compositions. Where such knowledge is needed is in the plan execution module.
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Tactic = [
'/.name
simple.squeeze(simple, automatic, s, h),

'/,initial tactic
cash(14,c),

'/.interleaving preconditions
[losers = 1, winners(c,d) = 1],

'/.resource requirement
entry(s,1)

'/.branches generated
[squeeze(automatic, s, h)]

'/.interleaving constraints
[protect(cash(14,c)), protect(cash(14,s))]

] -

Figure 9.6: A squeeze tactic

However, for a squeeze play, this execution can be carried out entirely deterministically,

basing each choice of play purely on the cards played by the defenders on the previous
trick. [Nygate 84] has written on this subject, and demonstrated that a simple set of
rules is sufficient to guide the execution of a squeeze play, given the particular type of

squeeze being attempted and a specification of the threat cards. We see no theoretical
difficulties with the eventual incorporation of such rules into a plan execution module

for Finesse.

9.2.3 Carrying Out The Interleaving

In our example, a successfully interleaved simple squeeze tactic can be regarded as a

single compound entity covering three rounds of play and gaining three tricks for the
declarer. However, when attempting to produce an interleaving it is also important

to consider the possibility that the attempted squeeze may fail. Figure 9.7 depicts

Finesse's solution to this problem.

When the solution constructor function reaches a state in which the preconditions of
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Node at which preconditions
of squeeze tactic hold

squeeze(simple. automatic, s, h)

Subtree generated by regular interleaving of cash tacic

Figure 9.7: The interleaving of a squeeze play

the squeeze tactic succeed, it first searches the space that would result if the play of
the initial squeeze tactic (in our example, the cashing of the Aft) were incorporated
as a normal tactic. As we have already pointed out, this process will not realise
that extra tricks are available, as it pays no attention to the particular cards played

by the defenders when they are discarding. Nevertheless, this subtree is analysed in
the normal way, and some profile P, produced. Once the analysis of this sub-tree is

complete, an extra branch representing the three rounds of defenders' plays which will
lead to an extra trick is added to the initial MIN node. This branch is then examined

to determine the worlds, C, under which it would succeed (which are exactly the worlds
in which the guards are held by a single defender) and the number of tricks, T, this
would produce.

The way to view these branches is that the squeeze branch will be followed in any

world in which the squeeze succeeds, and the remaining branches followed otherwise.
The worlds in which the squeeze branch can be followed therefore subsume the possible

worlds under which the remaining branches can be followed. Thus, the pair T > C is

added to the original profile, P, after carrying out subsumption.
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9.2.4 Constructing a General Method for Simple Squeezes

Although our tactic of Figure 9.6 is tailored to suit the particular game we are consider¬

ing, it serves the purpose of demonstrating that squeeze plays can be incorporated into

Finesse's interleaving architecture and demonstrates the general feasibility of using
inter-suit tactics. The task of determining which particular instantiation of a squeeze

tactic should be applied in any given situation would properly be the job of a squeeze

method, or methods. Finesse currently has no such methods, which would need to be

able to examine a deal and suggest what type of squeeze play (if any) may be applic¬
able. However, we suggest that for the particular problem of squeeze plays, the major

obstacle to their incorporation in an automated Bridge system lies not in this area,

but in the task of actually projecting the play forward far enough to be able to test

such hypotheses in reasonable time. We have shown above that at least in principle

Finesse can tackle this problem.

It is also a curious fact that although squeeze plays are a relatively advanced concept in

the game of Bridge, they are described by a reasonably clear theory. Certainly, there is
extensive literature on how to recognise squeeze plays. [Love 59], for example, identifies
explicit conditions that must hold for a squeeze to be applicable, and demonstrates how

to check for these conditions. This was the work used by [Nygate 84] to design the
Python expert system for recognising squeeze plays. Python, however, was only
able to recognise when squeeze situations were immediately applicable. We anticipate
that the adaptation of theories like those of [Love 59] will enable Finesse to actually

plan for the play of such actions from the start of the game.

9.3 Performance & Discussion

Despite having to project play through to the end of the game, Finesse manages

to interleave the squeeze play in our example without being unacceptably slow. It

requires approximately twenty seconds to solve the problem, in which time it plans
and interprets the individual suits, interleaves a line of play without the squeeze tactic

(producing 13 tricks if either the spades or the hearts split 3-3), and interleaves a line
of play including the simple squeeze. As we have pointed out already, once Finesse's
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planning is over and the best plan has been selected, execution of the squeeze play
should require no extra thinking time, since it can be governed by a simple set of rules.

To demonstrate that the planning of squeeze plays is a hard problem we gave our

example deal to two commercial Bridge systems, and found that both of them were

unable to find the correct play.

First, we tested Micro Bridge Companion (see §A.15), which contains the 'Bridge
Baron' playing algorithm that has won the Bridge contest at two Computer Games

Olympiads. We set the program to its top difficulty setting, in both duplicate and
rubber Bridge modes, but each time it followed the same course of action, winning the
Jlead with the K*, then cashing three rounds of hearts followed by the Qdjk and the

A<|k. Typical thinking time for each card play was of the order of 3 or 4 seconds. MBC
also had problems with the bidding, stopping in 3 No Trumps. We suspected that this

may have been the reason for its failure to look for a squeeze during the play phase,
but the program chose exactly the same line of play when the contract was manually
set to 7 No Trumps.

Our second test program was Grand Slam Bridge (see §A.ll). This system was able
to bid to 6 No Trumps, but during the play phase it then appeared to proceed cash its
winners in a pseudo-random fashion. In five attempts, it once got to within one trick
of a squeeze situation before erroneously cashing the winner from its two-card menace.

Thus, Finesse was the only system to recognise the possibility of a squeeze, and it was
also able to incorporate this play into its plan from the start of the game. Of course,
Finesse was deliberately given the specific tactic necessary to cope with the situation,
so its success is maybe not surprising. However, the comparative results highlight
the difficulty of planning squeeze plays, and we have shown that the architecture of
Finesse at least has the potential to support the automatic recognition of squeeze
situations.

Finesse also has the potential to explain why it is playing the tricks in a given order,
since it reasons about its actions at a level that would make sense to a human Bridge

player. Further, it has the necessary information to explain the chances of success of
its actions within the terms forming its uncertainty language. Currently, Finesse can
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only generate probabilities from its uncertainty terms that describe complete games

(although we show in Appendix B how textual explanations can be produced for C-

conjunctions describing single suits). However, the actual term produced by Finesse
to describe the chance of winning 13 tricks in our simple squeeze example is:

[[eastJ.ow(lllllll)], [east_low(0001000)], [eastJ.ow(llllllll)], [eastJ.ow(llllllll)]]
V [[east_low(0001000)j, [east_low(1110111)], [east-low(llllllll)], [eastJ.ow(llllllll)]]
V [[east JLow(OOOOlOO)], [east_low(0000100)], [eastJ.ow(llllllll)], [east-low(llllllll)]]
V [[east J.ow(0010000)], [east_low(0010000)], [east JLow( 11111111)], [east_low(ll 111111)]]

Each disjunct in this term represents disjoint sets of distributions, and contains one

east_low term describing the low cards in each of the suits spades, hearts, diamonds

and clubs, respectively (there are no critical cards in this situation). From top to

bottom, these disjuncts represent the following situations: 'The hearts are split 3-3

(and maybe the spades are also split 3-3)', 'The spades are split 3-3, but not the

hearts', 'West holds four hearts and four spades', 'East holds four hearts and four

spades'. The first two of these are the situations under which simply cashing the top

cards would produce 13 tricks. The second two describe the extra distributions under

which the squeeze tactic would succeed.

9.4 Summary

We presented the simple squeeze play as a Bridge example of how some optimal solu¬
tions may be overlooked when splitting a task into a number of sub-problems. We
showed that correctly understanding squeezes required reasoning about the situations

in more than one suit simultaneously.

We demonstrated that although the single-suit decomposition in Finesse results in

such plays being overlooked, it is possible for them to be re-introduced into the in-

terleaver algorithm via the use of a specially-designed inter-suit tactic. We gave an

example of an actual interleaving of such a tactic to demonstrate the feasibility of this

approach and also showed that other leading Bridge programs were unable to identify
this squeeze situation.

Finally, we speculated that the specification of squeeze tactics as methods would allow
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Finesse to identify potential squeeze situations automatically, and also that the rep¬

resentation used by the system could be utilised to generate high-level explanations of
its actions in such situations.



Chapter 10

Overall Architecture

He became aware, very slowly, very gradually, that he held some impossibly
complex model of the contest in his head, unknowably dense, multifariously
planed.

— Iain M Banks

The Player of Games

You're about to get what you've always wanted — but is it as good as you

originally thought? It's never too late for a change of plan.
— Author's horoscope

TV Quick magazine, May 16 1992

In the previous chapters we have discussed the problems involved in producing a Bridge

planning system, studying separately the issues of:

• generating the legal play sequences for single-suit Bridge play problems (Chapter 5),

• selecting the most promising lines of play from amongst these sequences (Chapter 6
& Chapter 7),

• identifying the constraints which are necessary in order to combine more than
one such line of play into a global plan (Chapter 8), and

• re-introducing neglected actions with inter-suit tactics (Chapter 9).

In this chapter, we draw together these developments into a single architecture capable
of producing plans for the game of Bridge. This architecture addresses the final prob¬
lem we identified at the beginning of Chapter 8: that when solving a given problem

246
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by splitting it into subgoals, the best solution may not simply be composed of a com¬

bination of the best solutions to these subgoals, but could instead involve sub-optimal
solutions to some or all of them. Although Finesse currently only uses this architec¬
ture to produce plans for No Trumps contracts, the potential to deal with situations

involving a trump suit is retained by the ability to incorporate inter-suit tactics.

We begin in §10.1 by outlining a simple planning framework. We then show how the

plan profiles described in previous chapters can be utilised within this framework; in

§10.2, we define a partial ordering on probability profiles, and in §10.3 we look at how

profiles can be used to make efficiency improvements. §10.4 then describes the system

architecture incorporating these enhancements, and §10.5 gives a summary.

10.1 A Simple Planning Loop

We begin by giving a simple planning loop which draws together the developments we

have described in the previous chapters (see Figure 10.1). This loop returns a set of

plan objects, which for any global plan we define as being:

1. the lines of play to be interleaved,

2. the inter-suit tactics introduced by the inter-suit methods,

3. the ordering constraints introduced by the interleaver, and

4. a global profile of the interleaving, produced by the solution constructor function.

An important feature of this planning loop is the step which 'selects lines of play'.

Currently, Finesse tackles this problem by initially counting the top tricks. These are

the tricks which can be won by simply cashing winners — something which Finesse
models by analysing the minimax trees for each suit with a restricted version of the

interpreter algorithm that only considers cash tactics. Interleaving the lines of play

produced by this restricted interpreter algorithm results in the 'worst best' global plan
of cashing all the masters. This plan can then be improved upon either by adding

inter-suit tactics, or by improving the line of play in one or more suits. Note that
the practice of beginning by counting the top tricks is common among human Bridge
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Figure 10.1: Simple planning loop for an anytime architecture

players, at least when playing in No Trumps, and is often explicitly recommended in

Bridge books, e.g., [Reese & Dormer 91, Page 29].

The current version of Finesse uses the very simple control structure of trying only

the 'best' line of play (as identified by the interpreter algorithm) or the top tricks line
of play in each suit. Simple backtracking is used to try all sixteen possible combina¬

tions of these lines of play (plus inter-suit tactics), if planning time permits. Ideally,
information from the failure of the interleaving step, or from the result of interpreter

step would also be utilised in the control loop. This would allow lines of play different
from the 'best' in each suit to be identified by altering the definition of the partial or¬

dering on payoff profiles introduced in §8.2.2. Such a modification would enable goals
such as 'developing entries in a suit' or 'keeping one defender away from the lead' to
be pursued. However, even without such a control structure, finesse is able to solve
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difficult problems, as we shall see in Chapter 11.

The reason for the check on planning time is that any Bridge program called upon

to actually compete in some kind of tournament would presumably be under some

kind of constraint on 'thinking time' within which to make its moves. This constraint
calls for an algorithm that can be interrupted at any point during computation to

return a result, in a manner similar to the anytime algorithms for time-dependent

planning developed by [Dean & Boddy 88, Boddy & Dean 89]. By starting with the

top tricks lines of play in each suit and gradually upgrading them, Finesse is more

likely to at least produce some result after a small amount of planning time, whereas the
alternative of starting with 'best' lines of play for each suit and then backtracking, say,

may use a lot of planning time before finding any successful interleavings. Fortunately
for Finesse, the key to success in many Bridge situations typically lies in concentrating
on just one or two suits whilst using the others for communication, or to stop the
defenders from taking tricks in their long suits. Thus, the best overall plan is often
a combination of one or two 'best' lines of play with the cashing of top tricks in the
other suits, which can quickly be found by Finesse's planning loop.

The overall result of this planning loop is generally a set of plan objects. Before any

actions can be carried out, then, it is necessary to select a single member of this set. In
the following section, we examine how the probability profiles produced by the solution
constructor function can be used to achieve this.

10.2 A Partial Ordering on Profiles

It is often difficult to make an absolute judgement about whether one profile represents

a 'more promising plan' than another. For instance, consider the profiles depicted in

Figure 10.2 (recall that any profile contains a set of non-zero probabilities, p,:, ofmaking

exactly T, tricks.)

On the basis of an expected value computation, we would prefer the first profile.

However, this is by no means the only criterion we may choose. For example, we

may be interested in restricting our losses to a minimum, in which case the second

profile would be the most promising. Other possible criteria might be to prefer the
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Expected Values

Probability 0.1 0.4 0.5
1 1 1 ! 1 9-4

Tricks 7 8 9 10 11

Probability 1.0
1 1 1 1 1 9"°

Tricks 7 8 9 10 11

Probability 0.6 0.4
1 1 1 1 ! 86

Tricks 7 8 9 10 11

Probability 0.3 0.1 0.6
1 1 1 1 1 93

Tricks 7 8 9 10 11

Figure 10.2: Schematic representation of four plan profiles

profile with the highest chance of making the largest number of tricks (the third, in

Figure 10.2), or the profile with the largest chance of making at least a certain number
of tricks (the last, if we look for 10 tricks).

Each of these criteria forms a feasible basis for comparing profiles, and yet since each
would lead to a different profile being preferred from the set in Figure 10.2, we can

see that they are mutually incompatible. In Finesse, we wanted to have the ability to

change the selection criterion used by the system. However, we also wanted to be able
to identify profiles that were clearly inferior under any 'reasonable' criterion. Rather

than the total orderings imposed by the criteria discussed above, then, Finesse uses a

partial order, to enable a set of solutions to be retained as 'best' candidates. The first

step in defining this partial order is the introduction of the following shift operation:

Definition 10.1 (Shift Operation on Profiles) To shift a given profile [Ti>pi,To>

p2, ■ ■ ■, Ti > pi\ (to the right), for some 1 < i < I a value 0 < p < p, is selected and the

profile rewritten as [T1>p1,---, Ti > (p* - p), Ti+1 > (pf+1 + p), ■ ■ ■, T) > p(\ if Ti+1 is one

greater than Tit or [Ti > p1? • • •, 7) > (pi — p), (T, + 1) t> p, • ■ ■, T) c> p,] otherwise.

Effectively, modifying a profile in this way increases by one trick our anticipated pay-
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off for some of the conditions under which 7) tricks were previously being expected.

Clearly, any 'reasonable' selection criterion should regard a profile modified in this

way as better than the original. Based on this operation, then, we can define a bin¬

ary relation > on profiles, similar to the weak dominance of classical game theory

[Fudenberg & Tirole 95], as follows:

Definition 10.2 For any two profiles <j>x and <f>2, 4>i > </>2 if and only if by zero or

more applications of the shift operation, can be made identical to <f>x.

It is a simple matter to check that this relation defines a partial ordering on the set of all

possible profiles (he, that it satisfies the reflexive, antisymmetric, and transitive laws).
This partial ordering allows us to retain a set of potential solutions, different members
of which may be regarded as the 'best' by criteria that impose a total ordering. Let us

define such a set as follows:

Definition 10.3 (Irredundancy) A set of profiles, d>, is irredundant if it contains
no two elements fix and such that > <f>2.

Returning to the profiles of Figure 10.2 it is a simple matter to check that none of
these profiles can be transformed into any of the others, and that the set of profiles is
therefore irredundant. Adding the further profile

[7 >0.6,9 >0.4]

to the set, however, would result in it losing the property of irredundancy as this profile
can be transformed into any of the profiles of Figure 10.2 by applications of the shift

operator. The profile

[8 > 0.1, 9 > 0.1,10 > 0.8] ,

on the other hand, cannot be transformed into any of the profiles in the figure. Rather,
the first and last profiles can be transformed into this one. Therefore, if this profile
is added to the set, the first and last profiles would have to be removed to maintain

irredundancy.
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10.2.1 A Modified Planning Loop
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We can make use of the notion of irredundant profile sets to decide which set of plan

objects to return as possible solutions to a given problem. Given a planning loop which
has already generated a series of plan objects, the profiles of which form an irredundant

set <f>, a further candidate plan object with profile 4>\ is retained as a possible 'best'

solution if there is no element <j)2 of $ such that 4>2 > <t>i- If this is the case, the new

plan object is added to the original set, and the new set of profiles $ U <f>i is made

irredundant by removing any plan objects which have profiles, <p2, for which </>x > (f)2.

A planning loop based on this principle is shown in Figure 10.3.

Figure 10.3: Simple planning loop for an any-time architecture

This is clearly a useful way to define the 'solution' to a Bridge problem, since the type of
behaviour demonstrated by the system can be modified by changing the (total ordering)
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criterion by which the 'best' profile is selected from amongst the final, irredundant set.
For example, an aggressive approach of always attempting to maximise overtricks or

a cautious approach of always optimising the chance of making the contract can both
result from the same planning system. The actual choice of criterion for selecting the

plans will probably depend on the type of game being played. For example in rubber

Bridge, the most important goal is to make a specified contract. In duplicate contests

(where many teams of two players play the same cards), it is typically more profitable
to attempt to make overtricks where possible. It is even possible to envisage a higher-
level routine which switches between a variety of total ordering criteria depending on

the current state of the play (e.g., the current scores, or the vulnerability of each side).

Finesse currently implements four styles of play which it terms expected, conservative

aggressive, and make_contract. These correspond to the four criteria (discussed at

the beginning of §10.2) of expected value computation, the smallest chance of win¬

ning the lowest number of tricks, the highest chance of winning the largest number of

tricks, and the highest chance of making at least enough tricks to make a contract.

However, Finesse has no mechanism for choosing between these styles; this choice
must currently be made by the user.

In addition to supplying a useful way to compare profiles we can use the above devel¬

opments on analysing profiles to make an efficiency improvement to the planning loop.
This is discussed in the next section.

10.3 Forming 'Best-Case' Profiles

The interleaving step of our planning loop is expensive, since it involves a call to the
solution constructor function. However, in previous chapters we have already seen that

as well as being able to produce global profiles, Finesse is also capable of describing
the results of single-suit lines of play with probability profiles. We now examine how
such profiles can be used to produce an estimate of the profile that would result from
the interleaving of some given fines of play. We then show that this estimate can be
used to 'prune' unpromising interleavings.
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Let us say that we are considering interleaving four arbitrary lines of play. Finesse's

interpreter algorithm can be used to produce four probability profiles of these lines of

play, of the form

Li = [Til > Pn,Ti2 > Pi2,Ti3> Pi3, • • •] 5 (10-1)

where p,j is the probability of obtaining T,j tricks by following the given line of play
for suit i (i = 1,2,3,4).

The simplest conceivable way of using these profiles to estimate the number of tricks

that would be produced when executing all four lines of play together would be to

combine the pt] as follows:

h h I3

Pr(T tricks in total) = ^^^^Pu x Pij X p3k X p4i, (10.2)
1=1j = 1 k= l 1=1

Tu+T2j+T3k+T4l=T

where /, is the length of the list Li. However, the probabilities we are dealing with
here are not independent. For example, there could be an i, j, k, and I for which they

each describe the probability of one of the defenders being void — feasible individually

but impossible in conjunction. Fortunately, the qualitative nature of the uncertainty

representation language used by Finesse allows us to reason about such possible de¬

pendencies by replacing the probabilities in (10.1) by the terms, C,j, (disjunctions of

C-conjunctions) from which they were originally derived:

Li = [Tn ^ C;i? T,2 > Ciii Lis Ct3:'' •] • (10.3)

With this representation, we can now examine the actual distributions represented

by the uncertainty language, and determine a probability by considering only those
distributions which are valid.
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h h h U

Pr(T tricks in total) = EEEE Pr°b(CH A C2j A C3k A CM) (10.4)
i=i j=1 fc=i ;=i

Tu+T2j+T3k+Ti,=T

To implement the prob(- • •) notation here, we return to the shape-list algorithm from

§7.4.6. Recall that this algorithm constructs lists of 14 entries in which the number of
distributions where East holds n cards is represented by the (n — l)th element of the
list. The algorithm for producing a shape-list for an isolated term, C1, first requires the
initialisation of the variable list_in to the list [1,0,0,0,0,0,0,0,0,0,0,0,0,0] (to

represent the fact that East has not yet been assigned any cards), and then processes

C\ to produce an answer list_out. To use this algorithm to produce a shape-list for
a conjunction of terms, C\ A C2 A • • •, we simply use the list_out resulting from the

processing of C\ as the list_in for the processing of C2, and so on. If there are N
cards outstanding, and we know that East holds N' of them, the probability that the
conditions described by the terms C\ A C2 A • • • hold is found by taking the (fV+l)th
element of the final shape-list, and dividing this by the total number of ways in which
to distribute the remaining cards between the two defenders, which is N\/N'\(N—N')\.
We thus have a way, based on the shape-list algorithm and the profiles of (10.3) of

respecting the inherent dependencies when combining together some lines of play.

10.3.2 Don't Count Your Chickens...

Unfortunately, (10.4) does not capture all the complications that are present in Bridge.
For instance, it may occur that the promising potential shown by a line of play being
interleaved is the result of the strength deriving from a particularly long suit in either
declarer's or dummy's hand. When such a plan is executed, the declarer will have
to find discards from the hand which is short in the suit, since one card must be
contributed from each hand to each trick. This may then affect the number of tricks
available in the other suits. As an example, consider the deal of Figure 10.4.

According to Finesse, the best possible plans for each of the suits in this deal offer a
maximum of three tricks in the spade suit (if the K4 is singleton), two tricks in the
heart suit, five tricks in the diamond suit, and four tricks in the club suit. Since the
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* Q J 5
9 K 8

^762
* K J 10 9 6
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A A 6

A 4 2

0 A K Q J 10
A 8 4 3

Figure 10.4: An example Bridge deal

conditions under which each of these numbers of tricks may be successfully returned

are not mutually exclusive, (10.4) will therefore assign a non-zero possibility to the
chance of obtaining 14 tricks!

Although at first the solution may sound ad hoc, this problem can be easily solved

by simply restricting the number of tricks to be at most the same as the maximum

number of cards held in the declarer's or dummy's hand. For instance, consider the

North hand in Figure 10.4. When hoping to win three tricks in the spade suit and two

tricks in the heart suit, all North's cards in these suits will have to be played. However,

in the diamond suit North only has three cards, whereas five tricks are planned. Two

cards from another suit will therefore have to be thrown away. In the club suit there

is one 'spare' card, since the best possible result is four tricks and North holds five

cards. However, this still means that one card, which had previously been assessed as

a winner must be thrown away.

In the general case, let us number the suits i — 1,2, 3,4 and say that we are examining

the possible worlds in which we expect our lines of play to achieve T) tricks in each

suit (i — 1,2,3,4). If we use the function numcards(P, i) to represent the number
of cards held by the player P in suit i, then for suit i the number of 'spare' cards
— that is, those not committed to winning a trick — in North's hand is given by



CHAPTER 10. OVERALL ARCHITECTURE 257

numcards(noTth, 1) — 2\. The total number of spare cards in North's hand is therefore

y, (numcards(north, i) — T<)
2= 1

4 4

= y numcards(north, ?')
2=1 2=1

= Jv-Zr,,
2= 1

where iV is the total number of cards in North's hand. Now if N — £2i=i is ^ess
than 0 it describes the number of winners which must be lost by throwing North's
contribution to the winning trick away as a spare card. I.e., if Ya=i > N, then the
number of tricks available is

j2Ti + (N-J2Ti) = N.
2= 1 2= 1

The same argument holds for South's cards, so the maximum number of tricks that
can be taken by the declarer is the maximum length of the North or the South hand.
With this restriction, we can now rewrite (10.4) as

h h 13 14

Pr(T tricks in total) = prob(C*ii A Coj A A C41), (10.5)
2= 1 j= 1 k= 1 1=1

mm(T\i+T2j+T3k-{-T4i ,M)=T

where M is the maximum of the number of cards held in the North hand and the South

hand. For the situation of Figure 10.4, (10.5) reduces the maximum possible number
of tricks from 14 to 13. However, even this still overlooks one issue: the problem of
losers.

10.3.3 Losers

It is very common that, in order for the declarer to take his tricks in any one suit,

some tricks will inevitably have to be conceded to the defence. For instance, in our

example deal of Figure 10.4 it is inconceivable that the declarer could make four tricks
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in the club suit without conceding at least one to the defenders, who hold the Ace.

Thus, as well as requiring knowledge of the actual conditions under which each number

of tricks is won rather than just the bare probabilities, it is also necessary to know

how many losers may be incurred, and the conditions under which these losses will be

made. Fortunately, this information is also readily available from Finesse's interpreter

algorithm, which can be simply extended to generate modified profiles of the following
form

L, — [(Tci, Un) > Cn, (T„, U12) > Ci2, (Ti3, U13) > C,-3, • • •] , (10.6)

where Uij represents the number of times that the defence will be given the lead when
making Ttj tricks, and all the pairs (, Uij) are distinct. This profile is produced by

processing the original profiles containing payoff 8-tuples, 7r,j, to collect together the

possible worlds Cij for which tricks(iTij) and concede^itij) are identical (see Defini¬
tion 8.2 on Page 202). The are therefore a lower bound on the number of losers,
as the lines of play never allow the defenders to control the lead, and therefore never

allow for the possibility of the defenders using such control to cash further tricks in

their strong suits. Using this information, then, we can finally construct a profile for
the interleaving of four lines of play using the formula

h I3 U

Pr(T tricks in total) = ii A C2j A C'3k A C41). (10.7)
i—1 j = l a;= l /=1

min(Tii+T2j-\-T^k-\-T^i ,M —Un —U2j —U3k —U4k)=T

In the deal of Figure 10.4, any attempt to attack the club suit will always incur one

loser,1 so the maximum number of tricks will never rise above 12. In general, the

profile produced by (10.7) will represent an 'upper bound' (with relation to the shift

operator) on the best-case profile that can result from the interleaving of the lines of

play, since no attempt has been made to reason about the conflicts which may have
1 Note that the (To, P'j) Pairs are produced under an assumption of best defence. For example, given
a choice between the declarer winning four tricks whilst losing none or winning four tricks whilst
losing one, the defenders are assumed to choose the latter. In this particular example deal, then,
although it possible to win four tricks in the club suit without the defence taking any tricks, the
best defence assumption has the effect of ignoring all the defenders' lines of play that do not include
the cashing of the Ace.
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arisen due to the false assumption of independence when decomposing the original task
into four sub-goals. These dependencies may conspire to reduce the chances of making
certain numbers of tricks, for example due to a lack of entries or to the defenders

establishing their own tricks before the declarer can cash his winners.

10.4 An Improved Overall Architecture

The practical use of best-case profiles in Finesse is in improving the efficiency of the

planning loop. For, if the loop has already generated a set of plan objects whose profiles
form an irredundant set $, we can use the best-case profile, <f>i, of a new set of lines
of play to disregard unpromising combinations before attempting to interleave them.
This is done by checking that there are no elements, <f>2, of $ for which (j>2 > <f>i, and

only calling the interleaver algorithm if this is found to be true.

Figure 10.5 shows an improved planning loop which incorporates this step. Clearly, if
the cost of generating best-case profiles is cheap compared to the cost of interleaving a

set of plans, this will be a useful efficiency measure. In Finesse, the best-case profiles
are very simply produced, as all the information required is present in the lines of play

produced by the interpreter algorithm.

We can now finally come full circle and return to the figure depicting the system

architecture first presented in Chapter 1. All the stages in this architecture have now

been described, with the exception of plan execution portion of the play module, which
has yet to be implemented. We therefore repeat the system architecture in Figure 10.6,

expanding slightly on a few details. Notice that the entire system is encapsulated in

an interface module. We have seen some screen captures from this interface already in

Chapter 5. Further examples of the system's appearance can be found in Chapter 11

and Appendix C.

10.5 Summary

We have presented the overall architecture of the Finesse system, drawing together
the developments of the previous chapters into a single, modular, anytime planning
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Figure 10.5: Planning loop modified for efficiency

system. In particular, we discussed the notion of global profiles, introducing a partial

ordering for comparing such objects and defining the notion of an irredundant set of

profiles. We noted how different styles of play could be produced by using different
criteria to select between the profiles in such a set.

We also showed how a best-case profile for the interleaving of four lines of play could be

produced from independent analyses of the individual lines of play. This development

was then utilised in the overall planning loop to improve the system's performance.
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Figure 10.6: The six modules of the Finesse system
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Results

There may be programs which can beat anyone at chess, but they will not
be exclusively chess players. They will be programs of general intelligence,
and they will be just as temperamental as people. 'Do you want to play
chess?' 'No, I am bored with chess. Let's talk about poetry.' That may
be the kind of dialogue you could have with a program that could beat
everyone.

— Douglas Hofstadter

Godel, Escher, Bach

Victory goes to the player who makes the next-to-last mistake.
— Chessmaster Savielly Grigorievitch Tartakower

In this chapter, we attempt to give a flavour of the kind of results that Finesse is

capable of producing. We present and describe examples of plans formed for single-

suit problems (§11.1) and for global problems (§11.2). A more extensive suite of test
results using problems drawn from the Bridge Encyclopedia [ACBL 94] is given in

Appendix C.

All the plans presented in this chapter are simply produced using Finesse's top-level

interface, shown in Figure 11.1 on the following page.

11.1 Single-suit Plans

We begin by describing Finesse's solutions to a number of sample card combinations.
These illustrate the way in which the best lines of play are selected by the system and
also demonstrate the reduction in search produced by the restriction to tactics. We
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also give some examples of tlie textual explanations Finesse produces to describe the

chances of success of the optimal lines of play.

11.1.1 Basic Performance

9 A K Q

Critical cards : none

Leaf nodes in plan: 1
Applicable tactics: cash(a,h)

Figure 11.2: Simple card combination with no losers

In the simple example of Figure 11.2, declarer has three masters, so he is sure of

winning three tricks. Since his longest hand only contains three cards, it should also
be obvious that there are also no losers in the suit. This means that the only applicable

tactic is the cash tactic, and that the defenders' plays are immaterial (assuming no

trump suit). The tree produced for this plan is therefore completely linear, whereas

the actual number of legal play sequences1 is 1,451,520.

The interpreter's analysis of the payoff offered by the cash tactic in this situation is
that 'This leads to 3 tricks under any distribution of the outstanding cards'. Note

that if an extra low card is added to one of the declarer's hands, however, Finesse

'discovers' for itself that it can gain an extra trick when the outstanding cards are split

3—3. The plan generated for such a situation is shown in Figure 11.3 on the next page

(note that in this figure, Aces are represented as the number 14, Kings as the number

13, and so on). The path on the far right-hand side of this tree corresponds to a play

sequence in which the defenders play low cards each time the declarer cashes a master,

so that eventually the declarer's last card (in this case, the 8) can win a trick. The

interpreter algorithm describes this line of play with the explanation 'This leads to 4

tricks if the remaining six low cards are split evenly between East and West', and gives

it the correct probability of 0.355.

1 The general formula for the minimum size of the search space when declarer has »i cards in one
hand and «2 cards in the other, with the defence holding d cards in the suit is n\\ri2\{d + 1)!.

N

W E
S

9 4 3 2
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Figure 11.3: Plan which discovers chance of winning extra trick

The example combination of Figure 11.4 is a variation of the finessing theme we dis¬
cussed in detail in Chapter 5 with the situation of the AQ<|k opposite the 2<(k. This

time, however, the declarer has additional low cards and the Queen is also opposite

the Ace. Whereas before Finesse would select the finesse tactic, this time it selects

the cash, as this produces two tricks not only when East has the King (a finesse is
executed on the succeeding trick), but also when West has the singleton King. The

6 A 6 4

A Q 7 5

Critical card : King
Leaf nodes in plan: 75
Applicable tactics: cash(a,s)

finesse(3,east,q,s)
duck(s)

Figure 11.4: Card combination allowing finessing
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interpreter algorithm evaluates the probability of success for this line of play to be

0.505, and gives the following explanation:

This leads to three tricks if East holds the King, or if West holds the
singleton King.

Finesse also copes well with positions in which a choice of finesses is available. For

example, in the situation of Figure 11.5, Finesse 'discovers' by itself the 'principle'

that when it is possible to finesse more than one card in the opposite hand, the best

chance of winning most tricks is by finessing the lower card first.

Critical cards : Ace, Jack
Leaf nodes in plan: 285
Applicable tactics: cash(a,s)

finesse(l,west,j,s)
finesse(l,west,10,s)

Figure 11.5: Card combination offering a choice between finesses

Finesse correctly chooses to finesse the Jack, evaluating the probability of success to

be exactly .24, giving the explanation:

This leads to 3 tricks if West holds the King and West holds the Jack.

Note that Finesse also produces correct analyses in situations where declarer holds so

many cards in a suit that the 'principle' of finessing the lowest honour does not apply.

11.1.2 Comparison Against Bridge Encyclopedia

Although there are many books on Bridge card play, relatively few authors commit

themselves to specifying actual probabilities for the lines of play they discuss. However,

one source which does give such probabilities is the Bridge Encyclopedia [ACBL 94].
As we mentioned in Chapter 6, this is also an example of a text which (implicitly)

analyses lines of play under the assumptions of the best defence model of a game.

It therefore supplies a good source of examples for comparison with the output of
Finesse's single-suit planner.

♦ A Q 10

*4 3
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In Appendix C we give a detailed summary of Finesse's performance on the problems
from the Bridge Encyclopedia. Note that the default operation of Finesse's interpreter

algorithm is to find lines of play with the highest chance of making the maximum
number of tricks in a suit (since this is the effect of the relationship we defined over

profiles in Chapter 8). This differs slightly from the Bridge Encyclopedia which, whilst
usually specifying such lines of play, sometimes also includes extra variations which are

optimal if the goal is to make some number of tricks which is less than the maximum.
In our comparison, we concentrated on Finesse's basic performance, considering just
the lines of play for achieving the maximum number of tricks. The main result of
this comparison was that if the entire problem set was to be played with randomly

distributed outstanding cards, the expected number of cases where Finesse would fail
to obtain the maximum number of tricks would be 11 (approximately 1.7%). However,
a surprising amount of non-locality was revealed, with finesse selecting a sub-optimal
line of play in 161 cases — a figure which includes the 57 problems which were corrected

by the non-locality heuristic described in Chapter 7. On average, sub-optimal lines of

play miss the maximum number of tricks with a probability of 0.07.

A good illustrative example of Finesse performing correctly is the situation of Fig¬
ure 11.6. The best line of play for making 5 tricks with this card combination is

A K Q 10 9

N
W E

S

x

Figure 11.6: A card combination from the Bridge Encyclopedia

described in the Encyclopedia as follows:

Play off the top honours (36%). This is fractionally better than the imme¬
diate finesse.

Finesse's analysis agrees with this assessment, giving a probability of 0.363 to the
chance of making five tricks by playing the honours, and 0.359 to the probability of
success with the finesse.
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A further example in which the aim is to make five tricks is shown in Figure 11.7. For

A K 10 x x

N
W E

S

Q x

Figure 11.7: A second card combination from the Bridge Encyclopedia

this combination, the Encyclopedia gives the best line of play as being 'play off the

top honours (52%)'. Finesse agrees with this percentage chance of success but in fact

distinguishes between the playing of the Ace and the playing of the Queen. To see why

this is so, consider the profiles of the two lines of play:

cash the Ace [3 > 0.136,41> 0.347,5 > 0.517]

cash the Queen [3 > 0.129,4 > 0.355,5 > 0.517]

Whilst both have equal chances of making five tricks, the line of play beginning with
the Queen actually has a higher chance of making four tricks. Thus Finesse prefers
to start with the Queen rather than the Ace in this situation.

11.1.3 Discovery of Errors

Finesse also discovered an error in the Encyclopedia, arising from the situation de¬

picted in Figure 11.8 (Problem 26 in the Encyclopedia).

A K Q 9

N
W E

S

XXX

Figure 11.8: Card combination number 26 from the Bridge Encyclopedia

The obvious line of cashing the top masters in this situation produces 4 tricks with a
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probability of 0.419, as shown in Figure 11.9. There is a modification to this basic line

Split Probability of split Distributions Cases Total Prob

6-0 .007 JTxxx-v 1/1 .007

5-1 .076
Jxxxx-T

2/6 .025
Txxxx-J

4-2 .242 xxxx-JT 1/15 .016

3-3 .355 ah 20/20 .355

2-4 .242 JT-xxxx 1/15 .016

1-5 .076 — — 0

0-6 .007 — — 0

Total 0.419

Figure 11.9: Distributions allowing four tricks to be taken, and their probabilities

of play, though, in which the nine is finessed if East plays an honour on the Ace or

King. This new line of play is superior to the original whenever East starts with Tx
or Jx. However, it wins one less trick in the cases where East holds JTx. Thus, the

probability of winning four tricks with this line of play differs from the probability of

winning four tricks when simply cashing masters by:

profr(Jxxx-Tx) + pro6(Txxx-Jx) — p?"of)(xxx-JTx) =

4/15 X .242 + 4/15 X .242 - 4/20 X .355 = 0.058.

This second line of play therefore has a probability of 0.48 of making four tricks, and
is correctly identified as the optimal choice by both Finesse and the Encyclopedia.

The Encyclopedia, however, also gives the similar problem of Figure 11.10 (Problem
number 31 in the Encyclopedia) which it claims has the same analysis. In this example,

A 9 x x

N
W E

S

K Q x

Figure 11.10: A card combination analysed incorrectly in the Bridge Encyclopedia

however, it is no longer possible to take 4 tricks in the case where West has all the
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outstanding cards. The chances of making four tricks in this situation is therefore 0.47,

and not 0.48, as listed in the Encyclopedia.

Finesse also discovered the following error (first reported in [Frank 91]) in another

expert text, arising from the situations of Figure 11.11.

A J 9 Q 10 2

N N
W E W E

S S

7 6 4 8 5 3

Figure 11.11: Card combinations analysed incorrectly in an expert text

In [Reese & Dormer 91, Page 20] these situations are analysed as follows:

As usual, declarer begins by finessing the lowest card of the combination.
In the first example he finesses the 9, and if this brings forth the King or

Queen there is a good chance that a finesse of the jack will win on the
next round. In the second example, the chances of making just one trick
by leading up to the 10 first are similar. In each case success depends on
the combination of an even chance with a three to one on chance — 37|
per cent.

When Finesse is given these situations, however, the selected line of play is the same,

but the probability of success is different — 0.377. The original version of Finesse
found this discrepancy because the ordering of the methods in its database produced
this line of play first, and the probability of success subsequently calculated for it was

found to be different to that given by Reese. The current version, however, actually
searches the entire meta-level space and then selects this line of play as the best option.

Furthermore, the current version also produces the following explanation for its choice:

This leads to 2 tricks if West holds at least one of the King and Queen and
West holds the ten, or if West holds the doubleton King, Queen.

This explanation makes it an easy matter to check that it is Reese who has produced
the incorrect analysis, having overlooked the final case of the doubleton King, Queen.
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11.1.4 Relaxing the Best Defence Model

271

One interesting observation to emerge from the comparison with the Bridge Encyclo¬

pedia's solutions was that occasionally the Encyclopedia would discuss the possibility
of using the cards played by the defenders to make inferences about the actual state
of the world. For example, in the situation of Figure 11.12, the best line of play under
the assumptions of best defence is found by FINESSE and by the Bridge Encyclopedia
to be playing off the masters. However, the Encyclopedia adds that 'against defenders
who would not false-card from the JlOx, cash the Ace and finesse the nine if an honour

appears from East'. This modified line of play has an approximately 2% better line of

success than simply cashing the winners.

K Q 9 x x x

N
W E

S

A x

Figure 11.12: Combination where relaxing A-II can improve chance of success

In the true best defence model of a game, MIN chooses a strategy after MAX (as¬

sumption A-II). Thus, such inferences will never gain an advantage for the declarer: if
he builds a strategy based on the expectation of the defenders not false-carding, they
will false-card. For instance, in the above example declarer would lose a trick if he
chose a finesse based on the incorrect assumption that a Jack played from the JlOx

by East was not a false-card. However, against defenders who are predictable in some

situations it can be possible to gain an advantage by learning their tendencies. The
fact that sometimes human players make use of such inferences (as demonstrated by
the examples from the Bridge Encyclopedia) indicates that their incorporation may be
a useful addition to a computer Bridge system.

Note that the Encyclopedia also occasionally includes solutions which involve a relax¬
ation of assumption A-I that the defenders have perfect information. For example, it

describes the solution to the situation of Figure 11.13 (Problem number 330 in the
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Encyclopedia) as 'Lead small from the ace-queen, in case East has the singleton king;
then finesse the queen [50%] (and if East panics into playing the King from Kx [54%]).'

A Q x

N
W E

S

XXX

Figure 11.13: Combination where relaxing A-I can improve chance of success

We have already discussed a situation similar to this in Chapter 5 (Figure 5.9), where
we saw that Finesse uses the duck tactic to represent the best play. Finesse, though,

only assesses the probability of success for this line of play as 0.505, since East would

clearly not make the mistake of playing the King from Kx under the assumptions

of best defence. Incorporating the ability to reason about possible mistakes by the

defenders, however, would be a useful step towards selecting between lines of play on

the basis of which is hardest to defend against, as we discuss in §12.2.11.

11.2 Global Plans

FINESSE has successfully produced solutions to numbers of global problems. In Chapter 9
we have already discussed a successful interleaving of a squeeze situation. Here we give

some further examples.

We begin with the very simple situation of Figure 11.14 on the next page. Faced with
this problem, Finesse's planning loop begins by finding the top tricks lines of play and
the best lines of play for each suit. In fact, each suit's top tricks and best lines of play

are the same for this deal, so there will only be four lines of play that are distinct. The

only suit in which there is any resource requirement is the heart suit, so Finesse selects
a supplier (it picks the club suit) and constrains it to be interleaved with the heart
suit. This constraint enables the solution constructor to produce a solution which

guarantees 13 tricks. Figure 11.15 on Page 274 reproduces the top portion of the

interleaving produced by the solution constructor for this global plan. This shows how
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Contract: South - 7 No Trumps
Lead: West - 6Q A A J T 9

Q K Q J
0 A Q 6
* K Q 4

N
W E

S

* K Q 2
C A 8 5 4

0 K 8 2
A A 7 6

Figure 11.14: A deal with a certain plan for making the contract

the system begins by selecting tactics from the heart suit until only the AC remains

(note that the option of cashing the AC before any of the King, Queen or Jack is not
considered because it is found to be an inferior option by the interpreter algorithm

and is therefore not marked as selected in the single-suit line of play). Continuing
with the heart suit now requires manipulating the lead into the South hand, so tactics
are now selected from the club suit, which has been constrained to supply this entry.

Eventually, the AJjt is cashed and the AC can then be played. The remaining tactics
have no resource consumptions, so the interleaving can be completed by selecting them
in any order.

The global line of play represented by this interleaving has a profile of [13 > 1.0], which
will always be > than the best-case profiles of all the remaining combinations of plans
that are suggested by Finesse's top-level backtracking loop. The solution constructor

is therefore not called again, and only a single plan object is returned as the solution
to the problem.

A more complicated situation is that of Figure 11.16, first introduced in Figure 8.17

on Page 215. Here, declarer has eight top tricks, and therefore needs to develop one

extra trick in order to make the contract of 3 No Trumps. Finesse again begins by

planning and generating the top tricks and the 'best' lines of play for each suit. It

then successfully interleaves the four top tricks lines of play, which have no resource
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Intermediate interleaving. Interleaving is paused until this window is closed a
|Max-lead]

cash(13,h)

[Mini

[any(v),any(x)l

:-lead[

cash<12,h)

[Mini

[any<v),any<x>]

|Max~lead|

cash(ll,h)

[Mini

[any(v),any(x>]

lead|

cash(13,c)

[HiTTl

[any(v),any(x)]

ax-Ieadj

cash<12,c)

[Mini

[any(v),any(x)l

| Max-lead|

cash<14,c)

[Min

[any(w),any(x)l

|Max- lead|

cash<14,h)

[Min[

[any(v>,any(x>]

Figure 11.15: Top portion of a solution constructor interleaving for Figure 11.14
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Contract: South - 3 No Trumps
* Q J 5
T K 8

0 7 6 2
X 8 7 6 5 4

N
W E

S

6 A 6
9 A 4 2

0 A K Q J 10
X J 10 9

Figure 11.16: An example Bridge deal, repeated

consumption, producing a 'worst best' global plan with a profile of [8>0.996,10 > 0.004]

(there are eight masters in total and if the I\<|k is singleton, two extra tricks will be
won by cashing the Q4> and the J4k).

Finesse next tries to improve on this plan by interleaving the best line of play for the

spade suit (as determined by the interpreter algorithm) with the top tricks fines of play
for the remaining suits. As we saw in Chapter 8, this improved plan for the spade suit

guarantees an extra trick but requires an entry into the North hand. Finesse correctly

constrains the heart suit to supply this resource, enabling the solution constructor to

construct the fine of play partially depicted in Figure 11.17. From this figure, it can

be seen that initially the A<|k is cashed, followed by the Q<|k and J<|k, if the King drops
under the Ace. If the King doesn't drop, a low card is led towards the (the

sequence(12,s) tactic) followed by the cashing of the K9 to re-enter the North hand.
The profile of this interleaving is [9 > 0.996,10 t> 0.004], and since this is > than the

profile already produced, this interleaving is retained as the sole best solution so far.

(Note that Finesse does not currently take account of an opening lead in a contract,

but the presence of the interleaving constraints on the K'v' would cause the opening

trick to be won with the A's?, and not the KT, if hearts was the suit chosen by the

defence at trick one.)
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Figure 11.17: Top portion of a solution constructor interleaving for Figure 11.16

Finesse now backtracks to try other combinations of lines of play. The plan sets where

just the heart or diamond suits are improved are not interleaved because their best-case

profiles are found to worse than the interleaved profile already generated. This is not

the case when it comes to improving the club suit, however, in which two extra tricks
can be won by playing cards until the Ace, King and Queen have been cashed by the
defence. Indeed, the best-case profile for the set of plans containing this improved line

of play for the club suit is that ten tricks will be won with a probability of 1. However,
when the solution constructor attempts to interleave a global line of play from this plan

set, it discovers that the clubs cannot be developed without giving the defenders the

opportunity to take extra tricks by attacking the heart suit. The overall plan which is

finally selected, then, is the one which uses the spade suit to develop an extra trick.

The way in which a simple plan is initially produced and then gradually improved

upon is further illustrated by the example of Figure 11.18 (first presented in Figure 8.4

on Page 194). As we saw in Chapter 8, the best line of play in this situation is to use

the finesse of the Q9 and the subsequent cashing of the A^? to supply the two entries

that are needed to establish the spade suit. This plan produces 12 tricks if the K<\?

is with West, and six tricks otherwise. Before generating this optimal plan, however,
Finesse starts with the top tricks line of play for each suit. The profile produced by

the solution constructor when interleaving these lines of play is [6 > 0.996, 7 > 0.004].
This is because there are six top masters which will always take a trick (1 in the heart

suit, 3 in diamonds, and 2 in clubs), and an extra trick will be developed whenever the



CHAPTER 11. RESULTS 277

K9 is singleton. The almost solid spade suit actually makes no contribution to this

interleaving, since it has no masters which can be cashed.

When the best line of play replaces the top tricks line of play for the spade suit, however,
the suit can be attacked using sequence tactics. This is the plan set which is examined
next by Finesse, producing the profile [6>0.996,12t>0.004], since if the K9 is singleton
two entries will be available into the North hand to supply the resource requirement

of the improved line of play for the spade suit. A screen capture of the initial levels
of the solution constructor tree for this interleaving is given in Figure 11.19, showing
how the A9 is first cashed and then the is played.

Contract: South - 6 No Trumps
* K Q J 10 987654
9 A Q
❖ -

* 6

N
W E

S

X -

9 4 3 2

0 A K Q 3 2
X A K 4 3 2

Figure 11.18: A possible deal containing an almost solid suit

The next combination of plans examined by Finesse consists of the top tricks line of

play in all the suits except the heart suit. Since the best single-suit solution in hearts
is to finesse the Queen, this interleaving has the profile [6 > 0.5, 71> 0.5]. Finesse then
continues to examine other combinations of top tricks and best lines of play but finds
their best-case profiles are inferior to the profiles of the plan objects generated already
until the optimal combination (consisting of the improved lines of play for the spades
and hearts suits together with the top tricks lines of play for diamonds and clubs) is
encountered.

To give an impression of the size of the trees that the solution constructor can produce
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Figure 11.19: Top portion of a solution constructor interleaving for Figure 11.18

we also reproduce in Figure 11.20 a portion of the interleaving of the squeeze tactic
discussed in Chapter 9. This screen capture shows a number of the leaf nodes that can

be reached under a global plan which first tests the heart suit and then (if necessary)

attempts a squeeze. Notice that three nodes can be seen where a squeeze tactic is

applicable. In the left-most cases, an extra trick cannot be won if the squeeze fails. In
the right-most case, however, some of the possible worlds under which the node can be
reached will produce an extra trick even when the squeeze conditions are not satisfied:
that is, the spade suit may still break 3-3. The three branches visible on the far right

represent plays of the game in which the squeeze is not necessary because the heart
suit was found to break 3-3 (there are also branches where a squeeze cannot be played
because opposite defenders show out in spades or hearts, but none of these branches

are visible in the figure).

Finally, note that Finesse's node preference reasoning allows it to solve situations

such as that of Figure 11.21. Here, needing to make nine tricks, declarer has eight top
tricks and two possible sources for the ninth. If the missing diamonds are split 3 — 3,

then the first three rounds of diamonds will force them all to be played and the fourth

diamond in North's hand will provide an extra trick. Alternatively, a trick could be

won with the Queen of spades if the King is with East.
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Figure11.20:Portionofsolutionconstructorinterleavingincludingasqueeze
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Contract: South - 3 No Trumps
Lead: West - K9 *952

9 8 7 2

0 A K 5 3
* K Q 2

N
W E

S

* A Q 4 3
9 A 5

0 Q 6 2
* A 7 3

Figure 11.21: An example deal from [Berlin 85]

In order to form a plan for this hand, it is necessary to realise that it is possible to play

the diamond suit before the spades, but not the other way around. For if the spade

finesse were tried first, and were to lose, there would be a danger of the defenders

taking four or more heart tricks and breaking the contract.

[Berlin 85] proposes a general agenda-based planning system which he claims could
deal with this kind of situation. The two plans are placed on an agenda together with

a task to select between them. The procedure associated with this task first attempts

to order the alternatives so that if one branch fails, the other can still be tried. In this

particular case, it is easily found that if the diamonds are tried first and don't split, the

spade finesse can still be attempted. Finesse, on the other hand, realises that control
must not be surrendered to the defence and therefore increases the preference of lines

of play whose resource analyses do not involve giving the lead away to the defence. The
number of leads given to the defence can be found by examining the resource profiles
of the lines of play, and thus the diamond suit is selected ahead of the spade finesse.

11.3 Summary

Finesse has proved to be a capable Bridge system. In single-suit situations it consist¬

ently identifies a best line of play that matches or is close to the recommended lines of
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play found in the Bridge literature. Also, the system is fully capable of finding plans
that are optimal in complete deals. Moreover, Finesse can justify the selection of any
line of play with a probability profile describing its chances of success, and also with
a textual explanation — abilities which have led us to find errors in the analyses of

human experts.
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Conclusions

I believe cards will continue to thrive because they relate so closely to the
human condition... so long as anyone is left to wield a card there will always
be intelligent games reflecting the basis set-up of life, which starts us all off
from unplanned and unequal opening positions, and itself is nothing if not
the ultimate game of 'imperfect information'.

— David Parlett
A History of Card Games

True luck consists not in holding the best of the cards at the table:
Luckiest he who knows just when to rise and leave.

— John Milton Hay

Distichs, no. 15

We hope we have shown, in the foregoing pages, that there are real lessons to be
learned from the study of games with incomplete information, and in particular from
the study of Bridge. Now, as our time to rise and leave approaches, we conclude by

summarising our main contributions, and by signposting some possible directions for
further research, which we hope may both help and encourage those after us who are

tempted to try their luck at the table.

12.1 Contributions

Mirroring the breakdown given in Chapter 1, we can categorise our contributions into
the four general areas of search, planning, proof-planning, and Bridge.

282
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12.1.1 Search

283

We considered in detail the problem of search algorithms in domains with incomplete
information and an opposition. By formalising a best defence model of two-player

games we showed that adaptations ofminimax-like algorithms could not be guaranteed
to produce optimal strategies in such domains. In particular, we examined double-

dummy Bridge architectures and found that they suffered from the problems of strategy
fusion and non-locality.

Non-locality, being a problem that occurs when competing agents in a domain have
different beliefs about the state of the world, affects any algorithm which attempts to

make choices without reasoning about the possible worlds under which a particular

position may be reached. We identified an exhaustive strategy minimisation algorithm

capable of identifying optimal strategies in two-player games, but saw that its com¬

plexity was doubly exponential in the number of a player's moves in the game. We

were able to identify some general algorithms with lower complexity that dealt with
some of the effects of non-locality, but their results were not guaranteed to be optimal.

In the game of Bridge, we showed that the best defence model of a game corresponded
to the form typically analysed in expert texts, and saw that non-locality was a real

problem that occurred in actual Bridge situations. We also showed how it was possible
to tackle the effects of non-locality with domain-specific heuristics which, thanks to

the high-level representation of the possible plays afforded by tactics, allowed possible
worlds to be ruled out in certain situations.

12.1.2 Planning

We took Kambhampati's recent formalisation of plan-space planning as refinement
search and used it as a framework to describe an architecture for interleaving lines of

play. The implementation of this system provides support for the cliche-based approach

of identifying formal structures describing the nature of a domain, and in particular
demonstrates the feasibility of using resource-based reasoning to constrain the ordering
of actions with disjunctive effects.

Also, we showed how the tractability refinement of using a total ordering could be
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instrumental in tackling the problem of non-locality. Interleaving involves choosing an

order for some given operators rather than actually choosing the operators themselves.

Thus, by assuming that the auxiliary constraints specified all the possible interactions,

we were able to simply consider the chance of success of a particular ordering obeying
the auxiliary constraints. Non-locality is avoided since no operators are actually chosen
within the solution constructor function, although the cost of constructing the solution

constructor's tree is still exponential in the length of the game.

We pointed out that the above argument also provides a justification for the approach

of splitting the global task of planning Bridge play into the subproblems of forming

lines of play in individual suits. Given that exhaustive strategy minimisation is the

only optimal solution we know of for incomplete information games under best defence,
both the global problem of Bridge card play and the subproblems of single-suit play
involve complexities that are doubly exponential in the number of a player's moves. It

therefore makes sense to reduce the exponent by considering the shorter-length play

sequences involved in single suits, and then just incur a cost which is exponential in
the length of the game when interleaving.

By casting our planning algorithm within the classical plan-space planning paradigm
we have shown how our techniques differ from, yet may be incorporated into, existing

planning architectures. Domains in which we would expect our ideas to be most useful
would be those with a sufficient degree of incomplete information to make examination
of all the possible states impractical, yet in which the uncertainty could be quantified

and expressed in some formal representation language.

12.1.3 Proof-planning

From a proof-planning perspective, the Finesse system has provided us with some

valuable insights. To date, in addition to finding proofs for mathematical theorems,

proof-planning ideas have been successfully applied to computer system configuration

[Lowe 91], and to program verification [Bundy et al 90a], In implementing Finesse,
we have tackled many new problems including the need to cope with an opposition, and

the need to represent and reason about domain actions with disjunctive effects. Besides
the general contribution of demonstrating the applicability of proof-planning ideas in
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a hard domain, we also drew lessons from the modifications which were necessary. In

particular, we found that we were forced to change the representation of methods to

allow the effects of operators to be inferred by domain rules.

The introduction of inter-suit tactics also showed the feasibility of a two-stage applic¬

ation of the proof-planning paradigm: one stage in which subproblems are tackled

by specifying the possible operators as tactics, and a further stage where operators

neglected by the original problem breakdown are re-introduced.

12.1.4 Bridge

In terms of the game of Bridge itself, we produced new lower bounds on the size
of the search space involved in declarer play. These lower bounds were tighter than

those produced by previous authors, providing, together with the formalisation of the

phenomenon of non-locality, an explanation for the poor performance of computer

Bridge programs to date.

Also, the act of specifying Finesse's methods brought us to a better understanding
of the game of Bridge itself. We saw in Chapter 5, for instance, that the Bridge
literature typically 'explains' standard concepts such as finessing and ducking largely

by the use of examples. The preconditions of the methods in Finesse make explicit

the 'knowledge' contained in numerous examples from the Bridge literature.

Finesse proved to be a capable system, identifying global fines of play for No Trumps
situations that concurred with those given in expert texts, and in the single-suit case

even revealing errors in the analyses of some authors. The implementation of the

system also addressed some of the problems that other authors have identified with

automating Bridge card play. For example, [Stanier 75, Page 375] fists a number of
reasons why a tree-searching approach is less suited to Bridge than to other games such
as chess. Perhaps a good way to summarise some of Finesse's features is to briefly

outline how it addresses each of Stanier's objections:

• Stanier argues that any Bridge-playing program should not ignore the body of

knowledge gained by Bridge-players in the past decades: Finesse incorporates

this knowledge in the declaratively encoded preconditions of its methods.
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• Stanier is concerned that the probabilistic results returned by an evaluation func¬

tion would make minimaxing a complex task: by building up a qualitative picture

of the distributions that would lead to the success of each line of play in a suit,

Finesse avoids the loss of information inherent in a probabilistic approach.

• The use of the proof-planning paradigm controls search in a way that avoids

unpleasantness such as the 'horizon effect' (there is no horizon, since the whole
tree is searched).

• Stanier argues that a successful Bridge-playing program will need to have con¬

cepts such as 'finesse the Queen of clubs': these are exactly what is represented

by the tactics in Finesse.

12.2 Further Work

As it stands, Finesse is clearly a long way from threatening to relieve Zia Mahmood of

six-figure sums ofmoney. We therefore conclude by highlighting some of the unresolved
research issues which have been raised by our work, in approximate increasing order

of difficulty.

12.2.1 Play Module

Since the output of Finesse corresponds to a complete line of play with a profile

describing its chances of success, a play module was not necessary in order to judge
the system's performance. However, in order to compare it directly with other Bridge

programs, which do not have this ability to generate complete plans at the start of a

game, a play module will be required.

12.2.2 Incorporating Information From the Bidding

The qualitative nature of the uncertainty representation used in Finesse makes it fully

capable of utilising information inferred from the bidding stage of the game, or from the

opening lead. For instance, any possible worlds which are found to be incompatible
with the bidding history of a game could be removed, using subsumption, from all
the C-conjunctions generated by the interpreter or interleaver algorithms. A basic
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bidding system has been incorporated into the Finesse architecture [Asher 93] and
the ability to make inferences about any player's bids also added [Green 95]. However,
the language in which these inferences are made is different from the C-conjunctions
used by Finesse, so to make use of them a translation algorithm will be necessary.

12.2.3 A Bridge Tutoring System

The high-level nature of Finesse's plans, combined with the ability to produce textual

explanations, makes the system a promising basis for an automated Bridge tutor. Such
a system would allow a user to test and develop their card-play ability by comparing
the user's line of play with the best line of play selected by Finesse, and critiquing

the user's moves either as they are made or at the end of a play problem.

The exact design of a tutoring system would depend on the consideration of a number
of alternative interface issues. For example, for each card-play the user could either be

presented with a list of sensible possibilities, or be allowed a free choice. The list of

possible plays could also be in the form of tactics or in the form of individual card plays.

Further, comments could be made about each of the user's moves, or alternatively only

when they deviate from the optimal line of play. Other useful features would be to

check the user's estimation of the chances of the success of their line of play against
that produced by Finesse, and to help beginners by describing their chosen card-plays
in the higher level language of tactics. Explanations of some of the basic rules and

concepts of Bridge such as following suit and the notion of finessing, might also be

profitably incorporated.

The utility of a tutoring system would be further enhanced by improving Finesse's

ability to justify its choice of best plan. Finesse can already produce textual explana¬

tions of why a particular line of play is selected, such as 'Finesse the Queen: this leads
to two tricks when the King is with West,' but in a tutoring system, it would be useful
to allow the user to query such explanations with the simple question 'Why?' (e.g.,

by clicking on a button). The system should then use the plans generated by Finesse
to demonstrate why the chosen line of play is optimal. For example, the explanation
above would be illustrated by generating one situation where the King is with West
and one where the King is with East, and allowing the user to examine the subsequent
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play with all four hands visible. The cards which are of no consequence to the outcome

of the play should be replaced with 'x's to concentrate attention on the significant
features. An important part of this extension would be the automatic generation of

card distributions between the defenders to be used as exemplars when explaining the

plan.

12.2.4 Extension to Suit Play

In the interleaving architecture discussed in Chapter 8, the possible effects of a trump

suit were largely ignored. In particular, the possibility that a tactic could lose to a

trump played by a defender was ignored. Including this possibility will increase the

cost of running the solution constructor function, as the number of branches required

to describe the possible plays by the defence in any state will increase. However, the

principle of the solution embodied by the solution constructor function will remain the

same.

12.2.5 Adding Inter-suit Methods and Tactics

In Chapter 9 we demonstrated the feasibility of squeeze tactics by giving an example

tactic and interleaving. Extending the repertoire of inter-suit tactics to account for
other possible plays involving more than one suit would be an important direction for
further research. One obvious example of such a tactic missing from the No Trumps

Finesse system is ruffing. The incorporation of any inter-suit tactics into the planning
architecture will require the specification of methods to identify the situations in which

they will be applicable.

12.2.6 Improving the Top-level Control Structure

We noted in Chapter 10 that the control over backtracking in Finesse's top-level

planning loop was rather primitive. Although in many situations the best global line
of play is composed of a combination of the 'best' lines of play and the 'top tricks'
line of play from the individual suits, this is not always so. The planning loop should
therefore be able to assess the trees of tactics in each suit using different relations to

evaluate the possible payoffs when it requires to pursue goals such as developing extra
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entries into a particular hand, or preventing a specific defender from obtaining the
lead.

12.2.7 Making Inferences Based on Opponents' Play Styles

We saw in Chapter 11 that sometimes it can be possible to use knowledge of an

opponent's style of play to make inferences about the actual state of the world. Also,
if we assume that the opponents are intelligent, and have reasons for playing the way

they do, we can try to hypothesise their reasons and thus gain more information about
the actual state of the world. We pointed out that such inferences break the best

defence assumptions that MIN chooses his strategy after MAX, but even so, the fact
that sometimes human players make use of such inferences (as demonstrated by the

examples from the Bridge Encyclopedia) indicates that their incorporation may be a

useful addition to a computer Bridge system.

12.2.8 Identifying More General Algorithms to Deal with Non-locality

We pointed out in our discussion of non-locality that we know of no algorithm which

identifies guaranteed optimal strategies more efficiently than exhaustive strategy min¬
imisation. Establishing a lower bound on the complexity of this problem, or better still

producing a more efficient algorithm, remain open problems for the design of programs
which operate in domains like that of Bridge card play.

12.2.9 Planning to Discover Information

Our interleaving architecture produces plan objects that represent a single line of play
for a complete game. Since we assume that the resource-based constraints impose a

total ordering, these lines of play never contain choice points where two operators with
different results can be selected between. This is how the problem of non-locality is

avoided. However, some plans are difficult to generate in such an architecture. For

example, we have encountered situations where, in order to increase the chance of

making a correct decision (e.g., between finessing or cashing), it is best to first play
out winners in all the other suits to gain clues as to the position of the remaining cards.
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Finesse would currently have to represent such situations by creating two global lines
of play, and monitoring plan execution to ensure that the one with the greater prob¬

ability of success did not change. Whilst a more natural approach would be to allow a

disjunctive goal to be passed to the interleaver, to do this would re-introduce the prob¬

lem of non-locality. Some actual play situations do appear to be solved by humans by

discovering information, however, and indeed Finesse itself introduces some inferences

about card positions which it always knows to be true when dealing with non-locality

in single suits. Investigating how such choices based on gained information could be

incorporated without re-introducing non-locality is an interesting research area.

12.2.10 Extension to Mixed Strategies

In discussing non-locality and giving our solution of exhaustive strategy minimisation

we noted that the main limitation of our model was the restriction to pure strategies.

In Bridge, this limitation was found not to be serious since many expert texts also

give solutions to declarer play problems in the form of pure strategies. However, we

pointed out that the most general solution would be in the form of a mixed strategy, to

afford some protection against the opponents 'finding out' your intentions. Using the

pure strategies generated by Finesse as building blocks for generating mixed strategies
would allow these more general solutions to be produced.

12.2.11 Choosing the Hardest Line of Play to Defend Against

Two lines of play with the same chances of success against best defence may actually

be distinguishable: defending correctly against one may be significantly harder than

defending against the other. This type of situation was encountered in the Chinook

checkers-playing program (discussed in Chapter 2), which in one of its games against
Marion Tinsley was able to use deep search to announce the game drawn on move 5!
The contest, of course, proceeded in case the human would make a mistake and lose.

However, [Schaeffer et al 93a, Page 56] explains that:

In this situation, the program should choose between drawing lines, trying
to maximise the probability of the opponent making a mistake.
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12.2.12 Extension to Defender Play
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As a final extension, we should point out that a system capable of winning Zia Mah-
mood's million pounds would have to be able not just to play the cards as declarer,
but also to take the role of a defender.

In a sense, there is a kind of 'chicken-and-egg' situation here: skillful declarer play

requires an understanding of how defenders play, whereas good defence necessitates

reasoning about what actions the declarer is likely to be taking. In forming plans
for declarer play, we used the increased information resulting from having two hands
visible and under our control to allow us to form plans under the assumption of best

possible play in each possible world by the defenders. We saw that this type of analysis
is also common in expert texts on Bridge. In defender play, however, two hands are

still visible but only one can be controlled. This lack of control makes it difficult to
reduce the number of possible actions using tactics. Instead, the goal of increasing the

defending side's knowledge of each other's hands to the point where they can actually
determine what tactics may be applicable becomes significant. We have seen, though,
that once we start to reason about the beliefs of the other players, the cycle of reasoning

becomes hard to stop.
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An Overview of Commercial

Computer Bridge Systems

I think there is a world market for maybe five computers.
— Thomas Watson

Chairman of IBM, 1943

Software developers, perhaps hoping to cash in on the market of 100 million Bridge

players worldwide, have managed to produce a large number of commercial systems

capable of playing the game. Here we list and describe some of these products, with the

aim of enabling the better packages to be more easily identified. Figure A.l summarises
the various computer Bridge systems of which we are aware, showing the platforms on

which they operate, whether they contain algorithms for defender play and declarer

play, and whether a demonstration copy is available. Most of the systems cope with

the entire course of the play of a hand, but we have also included some programs whose

only concern is with the bidding phase.

The following sections present a brief overview of many of these programs, based on

reviews published in Bridge or computer magazines, on our own personal experiences

with the programs, or on a combination of both. These overviews concentrate wherever

possible on the playing strength of the systems, although some information on the

overall presentation and packaging is also often included. Clearly, there are too many

systems for us to individually examine and play-test each one, so many of the overviews
draw extensively on magazine reviews, especially those from Canadian Master Point

[Lee 94], In these cases, direct quotations are identified in the normal way, using either
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in-line single quotes or an indented paragraph.

Wherever possible, details on availability and price have been included. (For readers
in the UK, many of the programs can be obtained from Chess and Bridge Limited, 369
Euston Road, London NW1 3AR, Tel: 0171-388 2404, Fax: 0171-388 2407.)

A.l BBC Bridge Companion

Price £199.99

This is a 'tutorial' system, and does not play random deals. During the bidding it can

point out any mistakes and suggest alternatives. During the card play it lets you take

the role of declarer, but stops you if you reach a position where the contract cannot be

made, taking you back to the error. According to Forrester [Forrester & Dimbleby 95]
it only allows 'one or two lines of play', and the display is rendered using 'very basic—

almost retro—Ceefax-style graphics'. Forrester's summary is that the program provides
a 'decent basic tutorial', but that it 'is never going to explain even the basic subtleties
of the game', and that 'you would get much more, much more cheaply, from a book'.

A.2 Bidding

Producer Platon M. Beletzky.
Address L. Pervomaiskogo st. 3, 13, Kiev, Ukraine, 252023.
Tel +7 (044) 2212794.
Email pmbel%gst.kiev.ua@relay.ussr.eu.net.
Price Shareware. Registration fee $9.95.

This program allows the user to practise their bidding on randomly generated hands.

During the bidding, the computer can be asked to present a summary of all the infer¬
ences that can be drawn from the bids made so far. However, the computer appears

not to be capable of making hints about the correct bid—if you want the computer

to suggest bids, control of the auction has to be passed over to it, and it retains this

control, bidding for all players, until the auction is finished. One problem with this pro¬

gram is that it appears to come without documentation, making it difficult to interpret
the computer's bids with certainty, although it appears to adhere to a basic Standard
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American system. Also, there is no scope in the system for competitive auctions.

A.3 Bridge Buff

Producer BridgeWare.
Address Toronto, ON, Canada.
Tel (416) 463-2689.
Price $125 (Can).

A review of version 1.0 of Bridge Buff in Canadian Master Point magazine (June 1992)
was rather unflattering, finding the interface to be 'just not user-friendly' and the
mechanics of bidding 'cumbersome'. Another major problem was that the program

could not be used to 'actually play bridge'—it could defend against your declarer play,
but not play the role of declarer itself.

The 'solid recommendation' received by version 2.0 in CMP's May 1994 review, there¬

fore, represented a large improvement, attributable to an upgrading of almost every
area of the program. For example, the basic 2/1 bidding system of the original was

augmented to include what CMP described as a 'list of different conventions and treat¬

ments... long enough to give you a good selection of ideas you might want to try out

on the computer before using them in a real game'. The new version also featured a

declarer play module, and the graphics were also now 'clean and attractive, especially
if you have VGA available.' CMP describes the standard of play of version 2.0 as

follows:

Bridge Buff... will bid and play against you at least as well as any of its
competitors. It makes mistakes, but our testing did not catch it out in any
of the wildly ludicrous kind of errors to which many bridge programs are

occasionally prone.

One issue that is not addressed by CMP's review is whether the new version of Bridge
Buff improves its play by 'peeking' at the other hands. This approach helped the earlier
version to defend 'well above the standard of other programs', but was an integral part
of the algorithm which could not be 'turned off'. The downside of this increase in the

computer's knowledge is that subtle deceptive plays become pointless. Such practices

also make a comparison of the program's playing strength against other Bridge systems

rather unfair. Manley's review [Manley 94] reports that the new version does still peek,
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and that this helps it to play at a level slightly stronger than most other programs,
with the possible exception of Positronic Bridge.

A.4 Bridge Champion with Omar Sharif

Producer Oxford Softworks
Address Stonefield House, 198 The Hill, Burford, Oxfordshire, England 0X8 4HX
Price £39.99

Many options for bidding including Acol, Standard American, or 5 Card Majors, at

either beginner or advanced level, which can then be adapted according to taste from

a wide range of conventions. However, Forrester [Forrester & Dimbleby 95] describes
the level of bidding as 'not good', and Christina Erskine of PC Review magazine com¬

ments that 'it's very willing to bid itself into high-level sacrifices in which it goes down

massively'. Card play is described as 'reasonable' in [Counsell 94], and by Forrester as

'passable most of the time, occasionally terrible'. However, this was the only Bridge

program which Forrester could bring himself to recommend anyone to buy, with the

proviso that any prospective purchaser should be made 'fully aware of the limitations'.

A.5 Bridge for Windows

Producer Full Circle Computing.
Address 15 Greenridge Avenue, Suite 19, White Plains, NY 10605-1248.
Tel/FAX 914 997-1774.
Price $49 + $4 s& h ($15 outside US/Canada).
Note An evaluation copy is also available for $6.

This program describes itself as being 'designed to provide relaxation'. It uses weak

two-bids with two clubs as the only forcing bid, but during card play can only take

the role of the defenders. To increase the chances of the user becoming declarer the

best hand is given to South (the user) and North (user's partner). During the bidding,
East and West's bids, as well as North's, are automatically generated.

The following extract from the program's readme file seems to indicate that Bridge
For Windows is an expert-system type application with a collection of rules designed
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to recognise varying situations.

An attempt was made to deal with all combinations which may arise,
however, there may well be situations, especially in bidding and respond¬
ing, which may not be dealt with correctly. When you find such situations,
please communicate this information to Full Circle Computing...

A.6 Bridge Master

Producer Fred Gitelman, Bridge-Base Inc.
Address 15 Lillian Street, Toronto, Ontario, Canada M4S 2H7
Tel (416) 322-8316
Price US $59.95. Additional disks of 30 deals: $14.95.

Bridge Master is an educational tool to instruct and improve the user's declarer play.
It received a glowing review from Eric Rodwell in the November 1992 issue of the
Canadian Master point magazine, along with further positive reviews elsewhere by
Alan Truscott and Brent Manley.

The system is based on a collection of pre-made deals ranging in difficulty from 1 (for

novices) to 5 ('extremely challenging even for expert players'), which the user plays in
an attempt to make a pre-defined contract. If the line of play selected is not optimal,
the computer will always ensure that the defenders' cards fall 'unluckily', thus defeating
the contract. For example, if it is possible to guard against a 5-1 break in a side suit,
the program will make sure that it breaks 5-1.

When the play of a hand is over, there is the option to view a screen presenting
the correct line of play, and the rationale behind it. This portion of the program

particularly impressed Rodwell:

As you read through the write-up, the hand diagram on the screen will
change to reflect what you are reading about. For example if part of the
text says 'If East has four trumps to the jack', then as you read through
that part of the text, the East/West hands will change so that East now
does have 4 trumps to the Jack. It is like watching a movie, or reading a
bridge book without having to worry about crossing out cards or flipping
pages. This is an excellent medium for bridge instruction.

However, Tony Forrester, writing in the Daily Telegraph, was not so enthusiastic. He

gave the program a score of just one out of a maximum five, and commented, 'The
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hands are too abstract to be of practical value. They are like crossword puzzles: fun to

do but they are not going to improve your bridge and won't win you any tournaments.

If it cost a tenner it might be worth it, but at this price you would be better off buying
a book'.

Two versions are available, each with 90 hands: the Basic/Intermediate version with

30 hands from each of the levels 1, 2 and 3, and the Intermediate/Expert version with
30 hands from levels 3, 4, and 5. Extra disks of 30 hands from a particular level can

also be purchased, and several well-known Bridge authors have apparently 'shown an

interest in putting their books on disks to be used with the Bridge Master program'.

A.7 Bridge Master

Producer Capstone

Confusingly, Capstone also produce a program which bears the name 'Bridge Master',
but this namesake offers the more familiar functionality of allowing the user to play

random hands against the computer, and runs on the Apple Macintosh rather than the
IBM. Capstone's Bridge Master has reasonably attractive features, such as support for

play over a modem or network (with the computer filling up to three of the empty seats)
and bidding options that include weak or strong 2 opening bids, Gerber or Blackwood,

preemptive bids, Stayman, take-out doubles and transfer bids. Unfortunately, however,
it is let down by its playing strength, which has led to very unflattering reviews.

A.8 BridgeMate

Producer B. Richardson.
Address 8845 42nd Ave. S.W., Seattle, WA 98136.
Price Shareware. Registration $49.
Email brmate@hebron.connected.com.

BridgeMate offers a wide variety of bidding options, allowing users to fill out their own
convention cards based on Standard American, 2/1, Kaplan-Scheinwold, or Precision.
Conventions include a weak or strong No Trumps which can be varied by points count,
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seat, or vulnerability, Jacoby, Texas, Smolen, Lebensohl, and other systems over No

Trumps openings, New Minor Force, Ogust, Fourth Suit Forcing, and many more.

However, during the play of the hand, BridgeMate 'peeks' at the other players' cards.
This is a 'feature, not a bug' in the program, and is of course intended to make the

computer a more challenging opponent. However, as we remarked earlier, this makes

any comparison with other systems which do not have this advantage rather unfair,
and also negates the purpose of any deceptive plays.

The demo version of BridgeMate is restricted to playing one of 50 pre-set hands, but
with the full version you can deal random or pattern hands or enter your own custom

hands.

A.9 Bridge Olympiad

Producer QQP Software.
Price US$49.95.

The appeal of Bridge Olympiad is the context it can provide for its bridge play: it
allows the user to choose a partner from a pool of available players and go to the
World Championships, where they play a complete round-robin of 8-board matches

against seven other teams which include Italy, USA and China. According to a review
in Canadian Master Point [Lee 94] 'you won't likely be a winner first time out... and

you will keep coming back until you do win'.

However, the actual play of the system is not given a very a flattering review. Its

bidding treatment is described as 'very limited' and 'capable of generating extremely
bizarre auctions', and its card play is described as making 'horrendous errors in play
and defence'. Specific play deficiencies highlighted are 'diabolical' opening leads such
as unsupported honours 'especially from a short suit against 3 No Trumps (K from Kxx
for example)', and 'a spade from three small against 6 No Trumps, instead of cashing
its AK'. Apparently, when playing the role of declarer it also looks at the defenders'

hands, leading to such strangeness as playing AKQIOxx opposite J7x by leading low
to the 7.
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In summary then, Bridge Olympiad, may be a good Bridge game, but it appears not

to be a good Bridge player.

A. 10 Bridge Pal

Producer WR Software.
Address P. 0. Box 4819, Walnut Creek, CA 94596.
Price Shareware. Registration $9.95.

The card play of this program is rudimentary at best. For example, in a suit contract

with the Q987 of trumps in dummy, a computer defender holding the Jx (the only
other trumps remaining in any hand) will duck the lead of the 9! This program also
scores rather poorly in the user-friendliness stakes, as it offers no hints during card

play, and allows no backtracking over 'mistakes'. Hints are offered during the bidding

stage, but must be accepted once requested.

The interface as a whole is also rather visually unappealing and awkwardly constructed

(with, for example, the user being queried about changing the program speed setting
on repeated occasions during a single session). It also uses different commands to start

up in EGA or CGA mode, despite the visual appearance of each mode being wholly
identical. It is possible, however, that some of these problems may have been rectified

in later releases (our copy dates from 1986).

The original Grand Slam Bridge has now been superseded by the release of Grand
Slam Bridge II. Unfortunately, however, it appears that it is the cosmetic features

(such as enhanced graphics and extra options) that have benefited from this revision,
and not the play component itself. Many users have complained about the speed of

GSBII, with, for example, the reviewer in Canadian Match Point Magazine (March

1993) reporting that it ran 'so slowly that it was unplayable on my 25 Mhz 386, and

A. 11 Grand Slam

Producers Electronic Arts.

Address

Tel
P.O. Box 7578, San Mateo, California, CA.
94403-7578.
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I had to borrow my son's 486 to examine the program. Even on the 486 it was much
slower than the older version'.

Disappointingly, it appears that the playing algorithms do not benefit from this in¬

crease in 'thinking time'. Indeed, the CMP review states that 'the new version does
not play or bid any better than the original'. We can speculate that this may be due to

way in which the original version was based on a large library of flow charts (the cover

blurb on the packaging describes the designers as 'devouring the literature, translating
the information they found into flow chart after flow chart'). Resolving the conflicts
between the rule-sets resulting from such large collections of flow-charts becomes more

difficult as the number grows, and maintenance and development become correspond¬

ingly more complicated. The significant reduction in speed of the new version also

strongly suggests a look-ahead search algorithm, which may have been introduced to

enhance the performance of the original code, or perhaps even as a complete replace¬
ment of the play algorithms.

Some play features, such as the bidding, were enhanced by the upgrade, with the
addition of Jacoby transfers, gambling 3 No Trumps and unusual 2 No Trumps to the

original Standard American bidding options of cue bids, strong or weak 2 bids, and
4 or 5 card majors. The general consensus, however, is that the original version is

equally as good as its successor.

A.12 Meadowlark Bridge

Producers Meadowlark Software Co.

According to a review in Canadian Master Point Magazine (Jan 1994), Meadowlark
Bridge 'plays at about the level of a. bright beginner, so most players will find it
an aggravating partner, and an unchallenging opponent'. This view is supported in

[Manley 94], where Bob Sweeney reports that the 'play of the cards and defence are

prone to inexplainable lapses', and the overall playing skill is given a poor rating

compared to other systems.

The package as a whole, however, fares rather better. The CMP review likes the user
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interface ('second to none'), the 'extensive list' of bidding conventions, and the hand

generator, which is 'very easy to use'. Meadowlark requires Windows to run, but

according to the CMP review, makes full use of the potential of this environment to

gain its recommendation as 'one of the best bridge packages available'. A demo version

can be downloaded from ftp . rrnet. com.

A. 13 Microbridge

Producer J. M. MacLeod.
Address 11 St. Aubyn's Avenue, London SW19 7BL.
Tel 081-947-9755.

Microbridge is essentially an educational tool which helps users to practise and improve
their bidding skills. It has two play modes: lesson and practice, the first concentrating
on specific aspects of bidding, and the second allowing the user to bid random hands
and then to play the resulting contract.

For beginners, the lesson mode will be the most useful. With it, they will be able
to build up their bidding from scratch by following the progression of sixteen lessons

contained in the 70-page manual. Each of these lessons focuses on a particular aspect
of bidding, such as opening, strong two bids, fit-finding, or slam bidding. The user first
reads through the explanations in the manual and then uses the program to access a set

of deals tailored to practise the knowledge that has been newly acquired. Correct bids
are accepted without question, but incorrect bids are queried by the program, which

presents a list of features of the user's hand which do not agree with the interpretation
of the bid. As the bidding progresses, valid inferences about the cards held by North
and South are presented and maintained on the screen.

More experienced players will probably prefer to use the practice mode, which allows

play on random deals, but retains the options of displaying the facts inferable from
each bid, and of signalling when there is a discrepancy between the interpretation of
their input bid and their actual hand. This time, when the bidding is complete, the
user has the option of playing the contract, although hints are no longer available, and
the card play is not particularly strong (the manual claims that 'although this part of
the system can so to speak be regarded as being "for amusement only", you should
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find that your computer opponents will give you a good game').

In addition to not actually being able to play a game of Bridge against the computer

(which, after all, is a forgivable fault in a system which sets out its stall as a bidding

tutor), there are a few other minor drawbacks to this package. Firstly, there is the lack
of diversity in the conventions, with only standard Acol (supplemented by Stayman
and Blackwood) on offer, and the only option being a choice between weak or strong

No Trumps. Also, there is no provision for competitive bidding. On the interface side,
the graphics, although adequate, are only CGA, and the key-disk copy protection is
bound to deter some.

However, the blurb on the back of the manual includes recommendations from the

Times Higher Education Supplement ('A teaching aid of real value'), and from BRIDGE
International ('A highly original and effective bridge tutor').

A. 14 Micro Bridge

Producers Tomio Uchida and Yumiko Uchida.
Address 2-1-7 Mizonuma Asaka-shi, Saitama 351, Japan.
Email uchida@rkmath.rikkyo.ac.jp
Price $60 or 8000 yen.

This is a DOS program with VGA graphics that can function in duplicate mode, pair
match mode, or allow two human players to play against the PC at the same time via
a serial link. It allows a choice of bidding systems and apparently is reasonably fast,

although it is reputed to be weak at slam bidding.

A.15 Micro Bridge Companion

Producers T. Throop, Great Game Products.
Address 8804 Chalon Drive, Bethesda, Maryland.
Phone (301) 365-3297.
Email BRIDGEBARON@mcimail.com.
Price $59.95.

Version IV of Micro Bridge Companion was reviewed in the January 1992 edition of

Canadian Master Point magazine. This review gave the following reasonably positive
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Micro Bridge Companion does not play bridge as well as most club duplicate
players, but it does play bridge well enough to be enjoyable, most of the
time.

However, it also pointed out some deficiencies with the standard of play and the bid¬

ding. For example:

It is prone to inviting to game and then going to slam when you accept
the invitation... Perhaps the most frustrating moments occur when you are

defending with the computer; you can feel very helpless when the computer
won't cash the setting trick. You learn never to give up as declarer and I
have found some bizarre ways to make impossible contracts.

Version V of the program was released later in 1992, and included a longer list of

bidding conventions, such as negative doubles and a forcing response to 5-card majors,

where before the only real selections had been weak two bids and the type of jump

overcall. This new version was also reviewed by CMP magazine, this time in January

1993. Despite acknowledging that the program could 'make fairly elementary errors in

play and defence... even on its highest level setting', this review's overall evaluation was

that Micro Bridge Companion was 'probably the best bridge playing package available'.
From the perspective of the strength of its play, at least, this assessment is borne out by
the facts, since the program contains the code from 'Bridge Baron' — the winner of the

Bridge section of several computer Olympiads, and also of a recent three-way contest

in America. In the comparative review of the magazine of the American Contract

Bridge League [Manley 94], MBC was one of only three programs to score over ten out

of 20 for playing skill. Even so, the July issue of Bridge World tested the program to

see whether it 'bids, plays or defends better than a beginner'. Their conclusion: 'It
doesn't'.

Many of CMP's positive comments about Micro Bridge Companion are directed at the

interface and the play options available, which include a library feature for saving and

annotating your own games, the ability to play duplicate (with the computer playing all
four hands in the 'other room'), and a number of instructive hands taken from Bridge

World, which can be played through a card at a time to practise particular problems.

There is also a monthly 'Bridge $ Competition' which can be entered by playing 16
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boards against the computer and sending your result to Great Games Products. Access
to a list of these monthly scores would be very interesting, since a downward trend
would provide an indication of whether revisions of the play algorithms were producing
an increase in performance.

A. 16 Omar Sharif's Bridge

Producers CP Software.
Price £39.99
Tel 0993 823463.

The general opinion of Omar Sharif's Bridge is not too flattering. A review in the July
1992 issue of PC Review [Erskine 92], for instance, described the computer players as

'transparently software generated', and the program's card-play as 'frustrating'. Tony
Forrester [Forrester &; Dimbleby 95] was also not impressed:

...a lot of the play of the hand focuses around playing trumps because it
is an easy thing to program. If it can't think of what to do it will lead
a trump. If you have a queen doubleton don't bother trying to hold your
cards up, it will always lead Ace, King straight out.

The program has also been witnessed to pass on jump shifts, leave the bidding in five
card fits when there is a nine card fit in another suit, and lead its four card suit against
a No Trumps contract, despite the opposition bidding the suit.

For bidding, the computer uses either standard Acol or 5 card majors, but this choice
must be made when the program is started. Stayman and Blackwood are the only
other conventions. There is a fine in the manual which reads, 'the computer uses many

complex bidding strategies and it may deviate from the rules... in certain situations'.

Unfortunately, there is no hint as to what these situations might be, although the
reviewer in PC Review claims to have 'detected the odd take-out double and cue bid'.

On the plus side, the package does boast a visually impressive interface. It also utilises
Soundblaster support to provide digitised comments from Omar Sharif such as, 'The
contract is, Four, Hearts, by, North. East, commences play'. Unfortunately, however,

many users quickly tire of hearing 'That was good play', and 'Odd luck, try again',

every time they win or lose a trick.
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Price £49.95

Forrester [Forrester & Dimbleby 95] gives this program a score of one out of a maximum
of five, and says 'I wouldn't advise anybody to buy this'. As examples of its poor play

he claims that the program will not even double if the user bids wildly to game when
the computer holds all the cards, and that during card play 'if it has eight top tricks

left and that is its contract, it doesn't go for over tricks even if they are blatant; it just
cashes the eight top tricks'. Forrester also complains that 'the graphics are not clear,
with information clustered in corners and a lot of space unused'.

A. 18 Positronic Bridge

Producers Positronic Software Inc.

Address 1318 Main Street, Dartmouth, Nova Scotia, Canada B2W 5N7.
Price Competitor: US$99.95, Expert: US$199.95, + $5 s&h.
Email mlantz@fox.nstn.ns.ca.
Tel (902) 434-6444, or 1-800-565-4005.
FAX (902) 435-6792.
Distributor Readysoft of Canada (416) 731-4175.

Positronic Bridge comes in two flavours: competitor and expert. Both these versions

have the same play routines, but the expert version incorporates a GA-based algorithm

which allows the user to 'teach' the software to bid in the way that they want it to.

The GA component was developed by Dr. David Lever, Ph.D., Dalhousie University,

but unfortunately, since the program is commercial, there are no papers describing his

approach. Positronic Bridge was reviewed in June 93 Bulletin of the ACBL by Brent

Manley, and in the November 1993 Canadian Master Point (CMP) Magazine by Ray
Lee. This latter review summarised the program as follows:

As a bridge partner or opponent, it is no worse than the competition... in
other words it plays at an intelligent novice level. It defends mechanically,
and does not play the hand very well, although according to the manual,
the learning routines should enable it to improve in both these areas over
a period of time.
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As the review points out, this ability to learn may not be of particular benefit to non¬

expert users, since the improvements are gleaned from analysing games played against
the user. It also seems curious that the standard of play is not initially rather stronger:
if the learning algorithms were truly effective it might be expected that the developers
would have invested some time in playing the system against expert players in order to

produce a higher level of performance. In [Manley 94], where the program was tested

by Life Masters, the program's playing skill was indeed rated higher than any other

program, but not significantly so.

Both versions of the program feature a wide collection of bidding conventions based on

Standard American and including, for example, cue bids, splinters, forcing and non-

forcing Stayman, Lebensohl and Roman Key Card Blackwood. In addition, the Expert

version allows you to enter 'teaching' mode which brings up a display of a complete
deal and allows you to 'correct' the computer's bids for each hand until they begin

to reflect your personal preferences. This aspect of Bridge is clearly the best suited
to a learning algorithm since it bypasses the 'credit assignment' problem (of deciding
which move(s) from a long sequence are responsible for good or bad performance) by

requiring the user to assess each individual bid. The CMP review, however, found the

learning to be 'painfully slow', with, for example, an attempt to teach the program to

open 1 No Trumps on 15-17 point hands taking four or five hours of work to produce
the correct bid 'most of the time, but still not on every hand'. Although the magazine
later received an updated version of the program that 'seemed to learn much more

quickly', they still suggest that it will 'require a heavy time investment to teach it
an entire system'. Many of the complaints about this program have been directed at

the copy protection—a now old-fashioned disk-lock scheme which requires the master

diskette to be present in the drive throughout play. This aside, however, the interface
is reportedly user-friendly and 'attractive'.

The competitor version can be upgraded to the expert version by the purchase of an

upgrade module, and there is a 30-day money back guarantee.



APPENDIX A. COMMERCIAL BRIDGE SYSTEMS

A. 19 Saitek Industries

308

Producers Saitek Industries Ltd.
Address 4 Bridge Studios 318-3*26, Wandsworth, Bridge Road, London SW6 "2TZ.
Tel 071-736-7596.
Fax 071-731-7684.

Address Suite 101, 2291 W 205th St. Torrance, CA.
Tel 213 212-5412.

Price Pro Bridge 510: £200, upgrade chip: £50.

Saitek make three dedicated Bridge computers. The Bridge Shadow is a hand-held

product about six inches long, three inches wide and an inch tall. It has an LCD

screen and runs off AAA batteries. It bids Standard American 5-card majors, strong

No Trumps, strong two-bids, Stayman and Blackwood.

The features of the Bridge Shadow are built upon by the Pro Bridge 310, which plays

ACOL in addition to Standard American, but the top end of Saitek's Bridge computer

range is the Pro Bridge 510. This is also battery-operated, but is no longer small

enough to be hand-held, being closer in size to a lap-top computer. The Pro Bridge 510

was reviewed in the magazine of the Scottish Bridge Union [Sime 92], which although

acknowledging that it was 'reckoned to be the best dedicated (i.e., solely Bridge) Bridge

computer on the market' identified numerous shortcomings:

...things which it won't do are:-

• Refuse a trick, except in straightforward hold-up situations.
• Take any notice of your signals or discards.
• Play a false-card or be taken in by one.

• Be squeezed or end-played (it prefers to take evasive action by dis¬
carding foolishly).

Tony Forrester [Forrester & Dimbleby 95] was also not impressed, writing that 'The

play is poor. In defence, it played clubs round to king, jack, dummy, rather than in

spades where dummy had a void'. Forrester also found the screen hard to concentrate

on, comparing it to 'early hand-held Gameboys, with minuscule liquid crystal icons'.

The 510 model increases the variety of bidding systems over the 310, this time including

Precision. However, Forrester describes the bidding as 'basic' and the SBU review
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claims that the computer has a disconcerting tendency to pass forcing bids and also

reports that 'in the doubling zone it is fairly eccentric. If it doubles it usually means

there is a play for the contract'.

There is a 'computer peeks' option which helps to improve both the bidding and the

play. However, setting this option is described as improving the program's defence
'from abysmal to poor' — a weakness for which it 'compensates, and prevents over¬

bidding, by arranging for most finesses to fail'.

There is an upgrade chip available which may address some of the idiosyncrasies de¬

scribed above. The machine also has many extra features and optional extras, including
an 'add-on' screen that allows another human to play as your partner.



Appendix B

Generating Explanations

Tell me more.

— ELIZA
The program

This appendix looks at the way textual explanations are generated from expressions

in Finesse's uncertainty representation language. §B.2 describes the basic approach,
whilst §B.3 outlines a number of ways in which the results can be improved, and

proposes a more effective procedure derived from genuine natural language systems.

B.l Review

Recall that Finesse uses the interpreter algorithm of Chapter 7 to identify promising

lines of play in single suits. Rather than using bare probabilities to describe the pos¬

sible returns from each branch, this algorithm utilises an uncertainty representation

language: disjunctions of terms we call C-conjunctions are used to represent the con¬

ditions under which various numbers of tricks will be produced. For a suit in which

there are p sequences of outstanding critical cards and one sequence of low cards, a

C-conjunction will be of the form:

east(Bin!, Listi) A • • • A east(Binp, Listp) A east_low(Binp+1), (B.l)

where each Bin, is a binary string describing the possible cards that can be held by
East from the corresponding card List; (or from the low cards, if i = p + 1).

310
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Finesse's basic approach to generating explanations for such expressions is to produce
a single piece of text for each east or east JLow term. Examples of such explanations
are 'East holds the King', or 'West holds any 3 of the remaining 7 low cards'. The

explanations for complete C-conjunctions are then formed by linking such individual

explanations into phrases by appropriate use of the word 'and', and then forming
sentences by using the word 'or' to connect these phrases together.

We first describe the basic pattern matching process for generating these explanations,
and then in §B.3 discuss ways in which the output of this basic procedure can be made

slightly more natural.

B.2.1 Pattern Matching

The textual explanation describing the distribution of a single sequence of outstand¬

ing cards (i.e., the distribution represented by the binary string of a single east or

east_low term) consists of four components, each based on one of the following factors:

• Viewpoint. The purpose of any explanation will be to describe how the cards
concerned may be shared between the two defenders. Clearly, since the cards
held by one cannot be held by the other, it is wasteful to describe both defenders
allocations. A 'viewpoint' is therefore selected and the sequence described with
a phrase beginning 'East holds ...' or 'West holds ...'.

• Quantity. Once a viewpoint has been selected, some text is required to describe
how many cards the chosen player's hand contains in the sequence. Here, atten¬

tion is given to special cases, such as the use of 'both' in explaining sequences of

just two cards.

• The actual cards. The actual cards represented by the sequence also have to be
described. For example the sequence may consist of the 'Ace, King and Queen'
or simply represent the 'remaining low cards'.

• Other. The system's output can be made slightly more natural by checking for
the special case where a sequence of cards is split evenly between both defenders.
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When this is the case, the components describing the viewpoint and quantity of

the cards held by each player are replaced by a component which describes the

sequence as being 'split evenly between East and West'.

Figure B.l shows how these four components can be formed into a phrase. Any com¬

bination of selections from the first three columns forms an allowable explanation.

Selecting a component from the final column is only allowed if no component is selec¬

ted from the first two columns.

Viewpoint Quantity

East

West

Either East or West

Cards Other

holds both

holds

holds any n of
holds at least n of

holds n1 n2 ,...or n. of

the Card1 _ Card2and Card.
the remaining low cards

are split evenly between East and West

Figure B.l: Canned text for describing C-conjunctions

Given a term of the form east(Bin, List) or east_low(Bin), the first task is to select
the defender from whose viewpoint to generate the explanation. This choice would

ideally take into account information such as the danger hand, or the perspective from

which other sequences in the same sentence were being explained. FINESSE, however,

simply chooses a new viewpoint for each east and east_low term in isolation, selecting
each time the player whose longest possible holding from the sequence concerned is

greatest (since this player's holding is assumed to be the more 'important'). If West is
the player selected, the value ofBin is then modified to reverse its binary representation.

(Recall that bit i in the binary string represented by Bin is set to 1 if East may hold
i cards in the given sequence. In this situation, West must hold the remaining N — i

cards, so West's possible holdings can be found by simply reversing the string describing

East's cards. §B.4.1 describes the procedure used to reverse binary strings.) The text

describing the quantity of cards held is then determined by matching Bin against the

possible patterns of Figure B.2 on the following page
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Binary String Text generated
string length 3, only first bit set to 1 (i.e., 100)
string with only first bit set to 1
string with just one bit (bit n) set to one

string with all 1 bits occurring consecutively at start1
string with i bits (bits nl5 n2, ..., and n{) set to 1

holds both
holds

holds any n of
holds at least n of

holds iii, n2,... or n, of

Figure B.2: Patterns matching canned text for quantity of cards held

The component describing the outstanding cards is easy to produce by simply inserting
an 'and' between the names of each card in an outstanding sequence of high cards, or

by just describing low cards as 'the remaining low cards'. Finally, the component 'are

split evenly between East and West' is only used for values of Bin that are of odd

length and have just the middle bit set to one.

As an example, Figure B.3 gives the explanations generated by Finesse for all the

possible values of Bin in the term east(Bin, [ace, king]), whilst Figure B.4 shows the

possible results for a term describing a sequence of three low cards. Note that in the
cases where Bin represents a complete string of Is, no text is produced, since such
terms make no restrictions on the positions of the cards they describe.

Binary string Explanation generated
001 West holds both the Ace and King
010 the Ace and King are split evenly between East and West
011 West holds at least one of the Ace and King
100 East holds both the Ace and King
101 either East or West holds both the Ace and King
110 East holds at least one of the Ace and King
111 -

Figure B.3: Possible explanations for an outstanding sequence of Ace and King

1 §B.4.2 describes how a check for such an occurrence is easily made.
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Binary string Explanation generated
0001 West holds the remaining three low cards
0010 West holds any two of the remaining three low cards
0011 West holds at least two of the remaining three low cards
0100 East holds any two of the remaining three low cards
0101 West holds one or three of the remaining three low cards
0110 either East or West holds any two of the remaining three cards
0111 West holds at least one of the remaining three low cards
1000 East holds the remaining three low cards
1001 either East or West holds the remaining three low cards
1010 East holds one or three of the remaining three low cards
1011 West holds zero, two, or three of the remaining three low cards
1100 East holds at least two of the remaining three low cards
1101 East holds zero, two, or three of the remaining three cards
1110 East holds at least one of the remaining three low cards
1111 -

Figure B.4: Possible explanations for an outstanding sequence of 3 low cards

B.3 Further Improvements

By itself, the scheme outlined above has the tendency to produce rather lengthy ex¬

planations which, although readily understandable, are rather unlike the explanations

typically offered by human players. This is mostly due to the way in which explanations
are generated by considering each east and east_low term separately. The quality of
the explanations can be quickly improved by recognising and explaining more naturally
a number of patterns which occur on a larger scale either within single C-conjunctions
or between multiple C-conjunctions. This section describes a few of these special cases
which Finesse can recognise.

B.3.1 Voids, Singletons and Doubletons

Special terminology is often attached to situations in which one defender holds all the

outstanding low cards in a suit. This is because in such situations it is usually easier
to describe the possible distributions by simply stating how many high cards are held

by the other defender. A simple example of this is when one defender holds all the

remaining high cards as well as the low cards. Rather than describing this situation
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by stating what all these cards are, it is obviously more economical to simply explain
that the other defender is void (i.e., has no cards) in the suit.

Other commonly used expressions are the terms singleton and doubleton. Respectively,
these describe situations where a player has a total of exactly one or exactly two cards
in their hand. For example, a player holding just a King and no low cards would be
described as having a 'singleton King', and a holding of just an Ace and a Jack would
be described as a 'doubleton Ace, Jack'.

Finesse uses these terms to simplify its explanations, by treating specially the cases

where one player holds no low cards and none of the outstanding sequences of high
cards are split between the two defenders. This situation can be simply explained

without the use of disjunction. For example, Finesse translates east(000, [fc, q]) A
east_low( 100000) to 'West holds the doubleton King, Queen', whereas east(010, [k, g])A

eastJow( 100000) would have to be translated to 'West holds the singleton King or

Queen'. The latter of these expressions could be produced as a special case, but re¬

lying on a series of ad hoc modifications would make the language component hard
to maintain. In §B.3.4 we will examine a better technique for generating explanations
which handles such cases more naturally.

B.3.2 Symmetry Between C-conjunctions

There are two cases in which checking for possible symmetry in a formula can lead to

improved explanations. The first of these is when separate C-conjunctions disjoined

together in an expression describe distributions which are the opposites of each other

(i.e., swapping East's and West's cards in the situations described by the first C-

conjunction produces the situations described by the second). Rather than producing
an explanation for one disjunct of the form 'East holds ..., and East holds..., and West

holds...', and then another of the form 'West holds ..., and West holds..., and East

holds...' Finesse produces the more natural rendition of 'Either East or West holds

..., and ..., whilst the other defender holds ...'.
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The second case where symmetry can be utilised is when all the binary strings in a

single conjunct are symmetrical about the centre. For example, the explanation of the

C-conjunction

east(010, [ace, king]) A east JLow(lOOOOl)

would be rendered by the pattern-matching of the previous section as 'If the King

and Queen are split evenly between East and West, and either East or West holds

the remaining live low cards'. In fact, this situation is a more elaborate version of
the special case in §B.3.1 in which either player has a singleton, and the following

explanation is equivalent and more compact: 'Either East or West holds the singleton

King or Queen'. A simple check for these situations is to look for C-conjunctions in

which each binary string is equal to its reflection. Such C-conjunctions are explained

from the perspective of just one defender and the explanation attributed to 'either

East or West'.

B.3.4 Intermediate Logical Forms

The way in which Finesse produces its explanations by directly producing a piece of
text for each term in a C-conjunction is essentially incompatible with the need to check

for the special cases listed above. Handling such cases correctly would require a global

analysis and modification of the entire original expression and of each constituent C-

conjunction before passing the expression to the pattern matcher.

In genuine natural language systems, more flexibility is produced by the introduction
of intermediate logical forms. These are stages of representation through which an

expression will pass as it is processed from the internal logical language into the surface
structure from which the textual explanation can be directly produced.

An example of this is provided by Davey's Proteus system [Davey 78], which produces
a commentary on a game of noughts and crosses. Proteus takes as input a list in
which each element is a pair describing the player and the square taken by that player.
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For example, the first three moves in a game between PROTEUS and a user, ACD,

might be:

[ [<Proteus> 7] [<ACD> 5] [<Proteus> 3] ] .

proteus transforms its input into an intermediate representation, using the signi¬

ficance of each move to judge the number of moves to describe in one sentence, and

incorporating information required for building the sentence (e.g., punctuations and

conjunctions). The above example is transformed by Proteus into the following form:

[ [<Proteus> <square 7> start <game> take <square 7>],

[<ACD> <square 5> take < square 5>], and

[<Proteus> <square 3> take <square 3>]] .

The first part of this sentence is then realised as:

I started the game by taking the corner...

Although Davey's concerns centre on natural language problems which are not an issue
in our system (such as generating pronominal and non-pronominal referring expres¬

sions), it would still be possible to learn from this use of intermediate representations
in the Finesse system.

For example, rather than converting each east term and east_low term directly into
text as described in §B.2, we could instead generate an intermediate term of the form

text(Player, Bin, Cards). Here, Player would be the player from whose viewpoint
we wish to explain the constraint (i.e., east, west, or east/west), Cards would be
either the list of critical cards being described or the atom low, and Bin would be the

original binary string. A typical disjunction of C-conjunctions would be converted by
this process into a list of the form:

[ [text(Player, Bin, Cards), text(Player, Bin, Cards), ...] ,

[text(Player, Bin, Cards), text(Player, Bin, Cards), ...] ] ,
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where each entry would correspond to one of the original C-conjunctions.

The special cases of the preceding three sections could now be accounted for by pro¬

cessing this list. For example, checking for voids, singletons and doubletons could be

achieved by examining each entry of the list, searching for cases where one Player only

holds complete sequences of critical cards. Thus, an entry in which one term is of the

form text (Player, 2", List), and the remaining terms allocate all the cards to the

other defender could be translated into a term of the form [text(Player.only(n) .List)] .

Extending this modification to cover cases where the only cards held by a player come

from more than one outstanding sequence is trivial, and with a little more effort it

should also be possible to incorporate the cases involving disjunction in this way. The

special cases from §B.3.3 can also be incorporated by extending the above modification

to search for matches on text terms with Player set to east/west.

Finally, the entire expression could be analysed to look for special cases of the type in

§B.3.2. Any two entries whose text/3 terms differ in just their Player assignments

could be combined into a single term in which the Players are either east/west or

west/east.

The final explanation would be produced by pattern matching each of the entries in

the final list (e.g., using same form of information as depicted in Figure B.l).

B.4 Technical Supplement

This section gives some detail on the techniques used to manipulate binary strings

within the Finesse system. It is included to make otherwise obscure pieces of code

more understandable.

When considering a group of N outstanding (critical or low) cards, the binary string
that describes how many of the cards East may hold will be of length (N +1) bits.
The two procedures described here deal with methods of manipulating and interpreting

these ranges.
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B.4.1 Reversing a Binary String
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We have already seen that the string represented by Bin may need to be reversed if
an explanation of the form 'West holds...' is to be given. Rather than examining each
bit in turn and making IV+ 1 recursive steps through the string, we use the scheme
outlined in Figure B.5. The middle bit (if one exists) will always remain the same,

and the left and right substrings are reversed recursively before being shifted to the

right or left respectively. This procedure often results in an efficiency improvement, as

substrings consisting of all l's or all O's require no recursive sub-calls to process.

B.4.2 When a Defender Holds 'at least n cards'

After deciding on the defender from whose perspective to explain the distribution, a

check is carried out for the case where the string represented by Bin allows the player
to hold 'at least n' of the cards concerned.

In such a situation, the binary string represented by Bin would be of the form 111 • • • 000

(i.e., an unbroken sequence of l's followed by an unbroken sequence of O's). In order
to detect this situation, we therefore look for some i such that:

CD
lOOH 1111

CD
reverse

Figure B.5: Scheme for reversing a binary string

Bin = 2N + 2N~1 + 2n~2 + ■ ■ ■ + 2N~i+1

(by formula for the sum of a GP)

The rather obscure looking piece of code which checks for this situation is therefore

attempting to find the lowest value of i for which Bin/2;v+1 is equal to (2' - l)/2!. If
this equality can be satisfied, then the player from whose perspective we are explaining
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the holding must have at least N — i + 1 of the cards concerned.
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B.5 Summary

We have demonstrated that the uncertainty representation language used by FINESSE

is capable of supporting the generation of realistic explanations, and described both

the current mechanism for producing such explanations, as well as suggestions for
further improvements. We envisage that this capability could eventually be used by

Finesse to explain the rationale behind its choice of actions at any stage of the play
of a contract.



Appendix C

Further Examples

How can I lose to such an idiot?
— Chessmaster Aaron Nimzovich

Shouted at the end of a match

This appendix presents some more detailed and extensive examples of Finesse solving
further problems. Specifically, we compare the output of the system against the set of
solutions to single-suit card combinations found in the Bridge Encyclopedia [ACBL 94].
§C.l gives a summary of the system's overall performance on this data set, and §C.2
then presents a series of detailed individual examples.

C.l Summary of Performance

The Bridge Encyclopedia contains a 55-page section presenting optimal lines of play for
a selection of 664 single-suit problems. Of these, a total of 650 examples give solutions
which are effectively pure strategies for the maximum number of possible tricks.1 The
fourteen examples which do not give such solutions split into three categories: six

problems which give no line of play for the maximum number of tricks, four problems

involving the assumption of a mixed strategy defence, and three for which the solution
relies on assumptions about the defenders not false-carding.

Finesse's ability to produce optimal lines of play was tested against the basic 650

problems of the Bridge Encyclopedia, omitting the extra 14 examples which are not

1 Optimal lines of play for guaranteeing a number of tricks less than the maximum are also often
included.

321
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comparable. In each case, Finesse's line of play for the maximum possible number of

tricks was compared to that of the Encyclopedia, producing the results summarised in

Figure C.l.

With non-locality heuristic Without non-locality heuristic

Correctly analysed 489 (75.2%) 432 (66.4%)

Incorrectly analysed 161 (24.8%) 218 (35.6%)

Figure C.l: Overall Finesse performance on Bridge Encyclopedia problems

These results reveal a significant amount of non-locality, and also demonstrate the

utility of the non-locality heuristic introduced in Chapter 7. This heuristic corrected

the analysis of 57 problems whilst not disturbing the analysis of any of those which
were already correct. Of the remaining incorrect problems, Finesse either selects (due
to non-locality) a line of play with a sub-optimal chance of producing the maximum
number of tricks (149 cases), or a line of play which cannot produce the maximum
number of tricks under any circumstances (1'2 cases). On average, the sub-optimal
lines of play miss the maximum number of tricks with a probability of 0.07. Thus,
if the entire problem set were to be played with randomly distributed outstanding

cards, the expected number of cases where Finesse would fail to obtain the maximum

number of tricks would be 11 (approximately 1.7%).

In terms of speed, the current version of Finesse is rather slow on this problem set,

requiring on average 11.1 seconds to form a plan, and then a further 93.3 seconds to

identify the best line of play within that plan (timings produced on a SPARCstation

ELC). However, there are two explanations for this. Firstly, the problem set is a rather
hard one, since it is designed as an expert reference: there are no trivial problems (e.g.,
where declarer has only winners, or where no tricks can be won) so that all the prob¬

lems at least allow the opportunity for some element of manoeuvre. Second, and more

importantly, the main slowdown occurs in the interpreter algorithm, which has yet
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to be optimised for speed because it is a relatively recent, development version that

incorporates the non-locality heuristic. Previous versions of the interpreter algorithm
have operated at almost exactly the same speed as the planning algorithm itself, and
we envisage no theoretical problems in returning the current algorithm to this level of

performance, largely because its present poor performance is mostly due to the ineffi¬

cient memory management that results from producing an annotated plan that fails to
maintain the original plan's construction of using pointers to repeated substructures.

C.2 Individual Examples

The following pages present a series of examples of Finesse's performance on selected

problems from the Bridge Encyclopedia. It is hoped that these examples will enable
even those without the resources to run Finesse directly to gain an understanding of
the system's abilities.
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Problem 1

A K Q J 9

N

W E
S

2

Finesse Explanation: Encyclopedia Explanation:
Cash the Ace. This leads to 5 tricks if Cash top honors in the hope of drop-
either East or West holds the ten and ping the ten
the other defender holds at least three
of the remaining six low cards.

Comments

The comparison between Finesse and the Bridge Encyclopedia solution on this, the

Encyclopedia's first problem, is fairly typical. The line of play selected by Finesse
is the same as that of the Encyclopedia, but this equivalence is not made completely

transparent by Finesse's explanation.

Some of the differences between Finesse's and the Encyclopedia's explanations are

trivial. For instance, the Bridge Encyclopedia typically gives probabilities only to

two decimal places (unless very small chances are being considered), whereas Finesse
works with Prolog's floating point arithmetic. Also, Finesse's explanation generation

facility can already be seen to be a little cumbersome. A more compact equivalent to
Finesse's attempt might be 'This leads to five tricks if either East or West holds the ten
and at most three low cards'. We noted in Appendix B that the best way to improve

Finesse's explanations would be to replace the current pattern-matching algorithm
with an alternative that first translates the basic C-conjunctions into an intermediate

logical form. Such a system should significantly improve on the explanations found in
this appendix.

A slightly more significant difference is Finesse's current inability to explain its entire
line of play. Instead, it simply describes its intentions by naming the first selected tactic

(Solutions agree)

Encylopedia No. 1

Maximum tricks 5

Critical cards Ten

Applicable tactics Type 1 finesse of 9 against West
Cash Ace

Finesse prob 0.719

Encyclopedia prob 0.72
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in its search space (in this case, the cashing of the Ace). The remainder of Finesse's
line of play can only currently be examined using the graphical interface, which for
the current problem produces the tree shown below. An interesting avenue for further
work on the system would be to add the ability to collapse any given line of play into a

tree containing just the distinct possible orderings of its constituent tactics, and then
further adding the ability to describe this tree succinctly. In the current example, it
should be relatively easy to generate a phrase such as 'Cash the top honours', but in

other situations, where different tactics are used in response to different card plays by
the defenders, more care would be needed.

IS une of play: AKQJ9-Z f "T' i ,,'JMir. i i 'n'T TTT7 Si KB ,0

finesse<l,uest,9,:

S Jte! 8S ®»i

nszn
* AKQJ9 out * T876543

crits [[1,10]]
voide no

voidu no

losers 1

any no
* 2 lead unknown
consumes []
produces lead(n,l>-[east_low<127,6>,east<3,[1,10])]
tricks 4-[east_lou(7,6>,east<l,[1,10]>]

[east_low(112,6>,east(2,[l,10]>]
5-[east_low(15,6),east(2,[1,10])]
[east_lou(120,6>,east<l,[1,103>]

probs [4-0.2813664596273292,5-0.71863354037287083
label Max
tactics [finesse(l,west,9,s>,cash(14,s>]

14,s>
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Problem 2 (Solutions agree)

Encylopedia No. 9

Maximum tricks 5

Critical cards Jack

Applicable tactics Type 1 finesse of 9 against West
Cash Ace

Finesse prob 0.363

Encyclopedia prob 0.36

Finesse Explanation:
Cash the Ace. This leads to 5 tricks

if either East or West holds the Jack
and the other defender holds at least
four of the remaining six low cards.

Encyclopedia Explanation:
Play off the top honors. This is
fractionally better than the immediate
finesse.

Comments

This example highlights the amount of qualitative information contained in Finesse's

plans. In the screen capture below we have opened pop-up windows at two nodes.
The upper (right-hand) window describes the optimal line of play of cashing the top

masters, hoping for the Jack to drop. The lower window describes the alternative line
of finessing the nine, which can be seen to have the slightly lower probability of 0.359.

Thus, we can quickly demonstrate the Encyclopedia's claim that cashing is 'fractionally
better than the immediate finesse'.

(•] Line of play: AKQT9-2 0

finessed,west,9,

interp i(4,resources(northd,l>,southd,0),eastd>,west<0),
i<4,resources<north<0,l>,southd,0>,east<0>,west<0>,
i<5,resources<north(0,1>,southd,0),east<0>,west<0>,

tricks 4-[east_loud27,6>,east(2,[l,ll]>]
[east_low<7,6>,eastd,[l,ll]>]

5-[east_low<120,6),east(l,[l,ll])]
probs [4-0.6406832298136647,5-0.3593167701863354]
label Min
select no

branches [[v,[l,ll]],[v,x],[[l,ll],v],[[l,ll],x],[x,v],[x,[l.

Ittnrl
AKQT9 out * J876543

crits [[1,11]]
voide no

voidw no

losers 1

any no
* 2 lead unknown
consumes entry<n,l>-[east_low(15,8),east<l,[l,ll]>]

[east_low<120,6>,east<2,[1,11]>]
produces lead(n,l)-[east_low(127,6),east<3,[i,ll]>]

lead(w,l)-[east_low<15,G>,east(l,[l,ll]>]
lead(e,l>-[east_low(120,6),east<2,[1,11])]
4-[east_lou(15,B),east(l,[l,ll]>]
[east_low<120,B>,east<2,[1,11]>]

5-[east_low<7,6>,east<2,[l,ll]>]
[east_lowdl2,6> ,eastd, [1,11] > ]

[4-0.6368459627329193,5-0.36335403726708076]
Max

tricks

probs
label
tactics [finesse(l,west,9,s),cash(14,s>]

mc



APPENDIX C. FURTHER EXAMPLES 327

Problem 3

A K Q 10 x

N
W E

S

x

Finesse Explanation: Encyclopedia Explanation:
Finesse the ten (Type 1). This leads Finesse the ten.
to 5 tricks if West holds the Jack and
East holds three or four of the remain¬
ing six low cards.

Comments

Replacing North's nine with an arbitrary low card in the previous example results
in the best line of play switching from the cash to the finesse. Finesse correctly
identifies this, preferring the finesse tactic over the cash tactic (which has a probability
of 0.266 of producing 5 tricks). Notice from the screen capture that when more than
two tactics are applicable in the initial state, the overall plan may become too large
to fit comfortably into a single window. When this is the case, the entire tree can

still be examined using the interface's ability to scroll the display window, to limit the

drawing of trees to just a small number of levels (the examples in this appendix just

display the first three levels), and to select different nodes as the root for the display.

(Solutions agree)

Encylopedia No. 10

Maximum tricks 5

Critical cards Jack

Applicable tactics Type 1 finesse of ten against West
Cash Ace
Duck a round

Finesse prob 0.311

Encyclopedia prob 0.31
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Problem 4 (Solutions agree)

Encylopedia No. 12

Maximum tricks 4

Critical cards Jack, Ten
Applicable tactics Type 1 finesse of 9 against West

Cash Ace
Finesse prob 0.24

Encyclopedia prob 0.24

Finesse Explanation:
Finesse the nine (Type 1). This leads
to 4 tricks if West holds both the Jack
and ten.

Encyclopedia Explanation:
Finesse the nine; hope that West has
both the jack and ten.

Comments

Note the close correlation between Finesse's and the Encyclopedia's explanations

for this problem. Note also that this problem was an example of a situation whose

solution was corrected by the incorporation of the non-locality heuristic. Without the

heuristic, Finesse calculates that the finesse of the nine has a probability of just 0.054

of producing four tricks. This results in the cash tactic being selected ahead of the

finesse, since this has apparently more favourable probability of 0.061. We will give a

more detailed example of non-locality in the following problem.

@ Line of play: AKQ9-32

finessed,west,9,c>

[Max!
out * JT87654
crits [[2,11,101]
voide no

voidw no

losers 1

any no
* 32 lead unknown
consumes entry(n,l)-[east_low(30,5),east<2,[2,ll,10])]

entry(s,2>-[east_low(62,5>,east<2,(2,11,10]>)
[east_low(63,5),east(l,[2,ll,10]>]

entry(s,l)-[east_low<l,5),east<2,[2,11,10])]
Ceast_low(63,5),east<4,[2,ll,10])]

produces lead(n,2>-[east_low<62,5),east<2,[2,ll,10])l
Ceast_low(32,5),east<4,[2,11,10])]
[east.low<B3,5),east(l,[2,11,10])]

lead(e,l)-[east_low(31,5),east(6,[2,ll,10])]
lead(n,l)-[east_low(l,5),east(2,[2,ll,10])]

[east.low<31,5),east(4,[2,11,10])]
tricks 3-[east.low<63,5),east(6,[2,11,10])]

4- [east_low<63,5) ,eastd, [2,11,10])]
probs [3-0.76,4-0.24]
label Max
tactics [finessed,west,9,c),cash<14,c)]

•••' / \ "•••
iBss m fe iSSJi
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Problem 5

A K Q 9 x

N
W E

S

x x

finesse Explanation: Encyclopedia Explanation:
Cash the Ace. This leads to 5 tricks Play off the top honors, hoping that the
if the Jack and ten are split evenly jack and ten drop in three rounds,
between East and West and the re¬

maining four low cards are split evenly
between East and West, or if West
holds both the Jack and ten and East
holds at least three of the remaining
four low cards.

Comments

This example gives a flavour of the types of non-locality that can arise. If we approach
this combination by cashing the Ace (the correct play) and see East play the Jack,
what is the best continuation? The table below shows the possible worlds under which

finessing the 9 or cashing the King would produce five tricks.

Split Worlds in which finesse succeeds Worlds in which cash succeeds

6-0 — —

5-1 — —

4-2 Txxx-Jx, Jxxx-Tx —

3-3 Jxx-Txx, Txx-Jxx Jxx-Txx, Txx-Jxx, xxx-JTx
2-4 Jx-Txxx, Tx-Jxxx Jx-Txx, Tx-Jxxx
1-5 — —

0-6 — —

The probabilities of these distributions actually occurring for the finesse and the cash

respectively are 0.472 and 0.430. However, the actual best line of play is the cash
— the probability of success for the finesse is inflated by including the distributions

(Finesse is incorrect)

Encylopedia No. 19

Maximum tricks 5

Critical cards Jack, Ten
Applicable tactics Type 1 finesse of 9 against West

Cash Ace
Duck a round

Finesse prob 0.300

Encyclopedia prob 0.39
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where East holds a doubleton Tx or Jx. In an actual game, East would not contribute

a critical card from such a holding if he thought that declarer's strategy was to play
the finesse on the next round. Since the best defence model of a game assumes that

MIN chooses his strategy after MAX, these world states should therefore be ruled out

if we select the finesse. Finesse does not make this inference and therefore makes

the wrong selection at this internal node. It is the removal of these worlds by the

process of subsumption at a higher node (simulating the best defence concept that the
defenders would direct the play down a different branch in these worlds) that results
in a probability lower than the correct answer.

Note that the play of the Jack from Jx cannot be characterised as a 'bad play' in

general, so it cannot be ruled out in all cases. Attempts to do so result in sub-optimal
solutions to other situations.
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Problem 6 (Solutions agree)

Encylopedia No. 21

Maximum tricks 5

Critical cards Jack

Applicable tactics Type 1 finesse of 10 against West
Cash Ace
Cash Queen
Duck a round

Finesse prob 0.517

Encyclopedia prob 0.52

Finesse Explanation: Encyclopedia Explanation:
Cash the Queen. This leads to 5 tricks Play off the top honors
if either East or West holds the Jack
and the other defender holds three or

four of the remaining five low cards.

Comments

In this example, previously discussed in Chapter 11, Finesse produces two distinct

lines of play for playing off the top honours: one beginning with the cashing of the

Queen and the other beginning with the cashing of the Ace. Screen captures of pop-up
windows describing these lines of play are shown below (with the line of play starting
with the Queen on the left). These lines both have the same chance of producing 5

tricks, but Finesse chooses to start with the Queen because it has a higher probability
of producing four tricks if the attempt to win five fails. This is because if East shows

* AKT43 out * J98765
crits [[1,11]]
voide no

voidw no

losers 2
any no

♦ Q2 lead unknown
consumes entry(n,l)-[east_lou(4,5),east(l,[l,ll]>]

[east_low(8,5),east(2,[1,11]>]
produces lead<n,l)-[east_low(63,5),east(3,[l,ll]>]

lead(s,l>-[east_low(63,5>,east(3,(l,ll]>]
lead(e,l)-[east_low(56,5),east(2,[l,U]>]
lead(u,l>-(east_low(B,5>,east(l,[l,ll])]

tricks 3-[east_lou(48,5>,east<2,[l,ll]>]
[east_lou(2,5>,east(l,[l,ll])]

4-[east_lou<9,5),east<2,[l,ll]>]
[east.low(37,5>,east<l,[l,U]>]

5-[east_low(6,5),east<2,[l,ll]>]
[east_low(24,5),east<l,[l,ll]>]

probs [3-0.12857142857142856,4-0.3546583850931677,5-0.5167701863354037]
label lax
tactics [finesse<l,west,10,s>,cash<14,s>,cash(12,s>,duck(l,s>]

interp K3,resources<north<l,2>,south(0,l>,east(0),west<l>,eu<0>>>-
i<3,resources<north(l,2>,south<0,i>,east<l>,west{0>,e«(0>))-
i<4,resources<north<2,2>,south<0,l>,east<0>,west<l>,ew<0>>>-
l<4,resources(north<2,2>,south<0,l>,east(l>,west<0>,ew<0>>>-
t<4,resources<north<l,2),south<0,l>,east<0>,west<0>,ew<0>»-

i<5,resource5(north<l,2>,south(0,l>,east(0),west(0>,eM(0»H

tricks 3-[east_low(3,5>,east<l,[l,U])]
[east_low<40,5>,east<2,[l,UJ>]

4-[east_low(9,5>,east<2,[l,ll])]
[east_lou<36,5),east(l,[l,ll]>]

5-[east_low<6,5>,east<2,(l,ll]>]
[east.lou<24,5>,east(1,(1,11]>]

probs [3-0.1360248447204969,4-0.34720496894409936,5-0.5167701863354037]
label Hln
select no

branches C[v,tl,ll]].[v,xl,[[1,113,v],[[1,11],x],[x,v].[x,[l,ll]],[x,x]]

east_low<3,5),east<l,[l,ll]>]
east_low<48,5),east(2,[l,ll])]
east_low(4,5>,east(l.(1,113)]
east_low<8,5),east<2,[l,lll>]
east_lou(l,5),east<2,[l,lll>]
east_low<32,5>,east<l,[l,ll)>]
east_low<6,5),east(2,[l,ll]>]
east_low(24,5>,east<l.Cl,113>]
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out when the Queen is cashed, a finesse of the ten can still be carried out on the second

round. The chance of East being void is 0.07, which is the discrepancy between the

probabilities of gaining four tricks in the profiles of the two lines of play. Note that
the Encyclopedia does not make this distinction.
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Problem 7

A K Q 10

N
W E

S

XXX

(Solutions agree)

Encylopedia No. 25

Maximum tricks 4

Critical cards Jack

Applicable tactics Type 1 finesse of ten against West
Cash Ace

Finesse prob 0.609

Encyclopedia prob 0.61

Finesse Explanation:
Cash the Ace. This leads to 4 tricks
if East holds the Jack and West holds
at least three of the remaining five low
cards, or if West holds the Jack and
East holds zero, one, three, four, or

five of the remaining five low cards.

Encyclopedia Explanation:
Cash the King and Queen; if both fol¬
low, play the Ace. This is 2% better
than a third round finesse.

Comments

This problem demonstrates that Finesse can correctly produce lines of play which

specify different actions for different possible responses by the defenders (the Ace,

King and Queen are all equivalent, so Finesse's line of cashing the Ace, King and
then the Queen is equivalent to that suggested by the Encyclopedia). Note that earlier
versions of Finesse failed to solve such problems correctly because whilst analysing
the game tree bottom-up, at each node they only considered the worlds that were

possible from that point. This results in any nodes with identical states having the
same analysis, irrespective of the play history up to that point.

g] Line of play: AKQT-432 f~ " a
n

IHJWI

finessed,west,10,
• AKQT out * J98765

crlts 111,11]]
| volde no

14,s>

IRinf ~ voidu no

losers 1

8ET" tffiT jjfcf; iwkj ;R

any no
♦ 432 lead unknown
consumes entry<s,1)-[east. lou<3,5),eastd, [1,11])]
produces lead(n,3>-[east.low(63,5>,east<3,[l,ll]>]
tricks 3-[east_lou<4,5),east(l,[l,ll]>]

[esst_low(56,5>,east<2,(l,ll]>]
4-[east_lou(7,5>,east<2,(l,ll])]
[east.low<59,5>,east<l,[1,11])]

probs [3-0.3909937888198758,4-0.6090062111801242]
label Hax
tactics [finessed,west,10,s>,cash(14,s)]

'

5
i K>
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Problem 8

A K Q 9

(Solutions agree)

Encylopedia No. 26

Maximum tricks 4

Critical cards Jack, Ten
Applicable tactics Type 1 finesse of the 9 against West

Cash Ace
Finesse prob 0.477

Encyclopedia prob 0.48

Finesse Explanation:
Cash the Ace. This leads to f tricks
if East holds the doubleton Jack, ten,
or if the Jack and ten are split evenly
between East and West and West holds
at least two of the remaining four low
cards, or if West holds both the Jack
and ten and East holds zero, three, or
four of the remaining four low cards.

Encyclopedia Explanation:
Cash the Queen and King; if an honor
drops from East, finesse the nine next.
This 6% better than cashing the three
top honors regardless.

yj2

finessed,west,9, h:

Bif" L«£f as£i' isa !«i

out J T 8 7 G 5
crits [[2,11,10]]
voide no

voidu no

losers 1
any no

O 432 lead unknown
consumes entry<n,l)-[east_lou(2,4>,east(4,[2,11,10])]

entry (s,l>-[east. low(6,4), east<4, [2,11,10] > ]
[east_lou<7,4),east(2,[2,ll,10]>]

entry(s,2)-[east_lou(l,4),east(l,[2,ll,10])]
produces lead<n,3>-[east_low(31,4>,east<7,[2,11,10])]

lead<e,l>-[east_low<2,4>,east<4,[2,11,10]>]
3-[east_low<30,4),east<4,[2,11,10])]
[east_lou(24,4),east(2,[2,ll,10])]
[east_low(6,4),eastd, [2,11,10])]

4-[east_low(7,4),east<2,[2,11,10])]
[east_low<l,4),east<4,[2,11,10])]
[east_low<25,4),east(l, [2,11,10])]

[3-0.5226086958521739,4-0.47739130434782606]
Max

[finessed,west,9,h),cash(14,h)]

tricks

probs
label
tactics

Comments

This problem has already been discussed in Chapter 11. Finesse's line of play concurs

with that of the Encyclopedia, but on a similar problem, which we present on the

following page, Finesse reveals an error in the Encyclopedia's analysis.
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Problem 9

A 9 x x

N
W E

S

K Q x

(Encyclopedia is incorrect)

Encylopedia No. 31

Maximum tricks 4

Critical cards Jack, Ten
Applicable tactics Type 1 finesse of 9 against West

Cash Ace
Cash King

Finesse prob 0.470

Encyclopedia prob 0.48

Finesse Explanation:
Cash the King. This leads to 4 tricks
if East holds the doubleton Jack, ten,
or if the Jack and ten are split evenly
between East and West and West holds
at least two of the remaining four low
cards, or if West holds both the Jack
and ten and East holds at least three

of the remaining four low cards.

Encyclopedia Explanation:
Cash the Queen and King; if an honor
drops from East, finesse the nine next.
This 6% better than cashing the three
top honors regardless.

Comments

This problem, which demonstrates an error in the Encyclopedia, has already been

discussed in Chapter 11. The Encyclopedia claims that the analysis for this problem is

the same as that of problem number 26, which we saw on the previous page. It should
be clear that the only difference between Finesse's explanations for these problems

@ Line of play: A943-KQ2 |

lite t®§] s

IIUyI
out O J T 8 7 6 5
crits [12,11,10]]
voide no

voidui no

losers 1
any no

O KQ2 lead unknoun
consumes entry<n,l)-[east_low(2,4),east<4,[2,ll,10])]
produces lead(n,l)-[east_low(31,4),east<7,[2,ll,10])]

lead(s,i)-[east_low<7,4),east(3,[2,ll,10])]
Ceast_lou<G,4),east<4,[2,ll,10]>]

lead<e,l>-[east_lou(2,4),east<4,t2,ll,10]>]
lead(s,2)-[east_low<25,4),east<4,[2,U,10])]

[east_low<30,4),east(2,[2,ll,10])]
[east_low(28,4),east<l,[2,U,10))]

tricks 3-[east_low(30,4),east<4,[2,11,10])]
[east.low(24,4),east<2,[2,11,10])]
[east_lou<7,4),eastd, [2,11,10])]

4-[east_lou(l,4),east(4,[2,11,10])]
[east_low<7,4),east<2,[2,11,10])]
[east_low(24,4),east<l,[2,ll,10])]

probs [3-0.5300821118012423,4-0.4699378881987577]
label Max
tactics [finessed,west,9,d),cash<14,d),cash<13,d)]
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is in the last line: the current problem excludes the distribution where 'West holds

the Jack and ten and East holds zero... of the remaining four low cards' (i.e., when
East is void). It is easily checked that it is indeed impossible to take four tricks in this
circumstance since only one finesse against the Jack and ten can be carried out after

discovering the break. This discrepancy accounts for the difference in probabilities
between FINESSE and the Encyclopedia.



APPENDIX C. FURTHER EXAMPLES 337

Problem 10

A K 9x

N
W E

S

Q 8 x x

(Finesse is incorrect)

Encylopedia No. 39

Maximum tricks 4

Critical cards Jack, Ten
Applicable tactics Type 1 finesse of 9 against West

Type 1 finesse of 8 against East
Type 2 finesse of 9 against East
Type 2 finesse of 8 against West
Cash Ace
Cash Queen

Finesse prob 0.754

Encyclopedia prob 0.79

Finesse Explanation:
Cash the Queen. This leads to f tricks
if East holds both the Jack and ten and
West holds at least two of the remain¬
ing three low cards, or if the Jack and
ten are split evenly between East and
West and West holds at least one of
the remaining three low cards, or if
West holds both the Jack and ten and
East holds zero, two, or three of the
remaining three low cards.

Encyclopedia Explanation:
Cash the Ace. If an honor appears,
cash the next top honor from the hand
on the left of the J or 10.

Comments

This is the second Encyclopedia problem which is mis-analysed by finesse because of

non-locality (the first is problem number 5 in this appendix). To understand it, we will
examine the line of play recommended by the Encyclopedia, considering in particular
what happens when the Ace is cashed and East plays low, with West contributing
either the Jack or the Ten. This leads to the following intermediate position.

K 9 x

Outstanding:
T x x

N

W E
S

Q 8 x
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From here, Finesse opts to cash the Queen, rather than the King, as recommended

by the Encyclopedia. The reasons for this error can be seen by examining the table
of distributions below. This table shows, for each of the possible distributions of the

original outstanding cards from which West can play a critical card and East a low

card, whether the cashing of the Queen or King in the intermediate position will lead to

a total of four tricks. Notably, cashing the Queen succeeds when East starts with just

one low card, because East's void will be revealed when the Queen is played, allowing
West to be finessed twice. On the other hand, cashing the King succeeds when West
starts with just the singleton Jack or Ten, because it will then be possible to finesse

East twice.

Distributions Cash Queen Cash King
JTxx-x •

JTx-xx • •

JT-xxx • •

Txx-Jx • •

Tx-Jxx • •

T-Jxxx •

Jxx-Tx • •

Jx-Txx • •

J-Txxx •

finesse mistakenly selects the cashing of the Queen because it is more likely to find
East with just one low card than to find West with a singleton Jack or Ten. However,
this apparent advantage turns out to be illusory, since ifWest starts with JTxx he can

produce a better result by not contributing a critical card when declarer cashes his

Ace. Thus, the distributions represented by the first row of the table should in fact

be ignored in the intermediate position, because a competent defence would direct the

play to a different portion of the search space in this circumstance. Removing them

from consideration would result in Finesse producing the correct line of play.

An important feature of this example is that it demonstrates that non-locality can be

produced without the presence of finesse tactics: the only MAX action prior to the

intermediate position we discussed above is the cashing of the Ace.
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Problem 11

A K 10 x x x

N
W E

S

Q 9 x

(Solutions agree)

Encylopedia No. 43

Maximum tricks 6

Critical cards Jack

Applicable tactics Type 1 finesse of 10 against West
Type 1 finesse of 9 against East
Type 2 finesse of Ten against East
Type 2 finesse of 9 against West
Cash Ace
Cash Queen

Finesse prob 1

Encyclopedia prob 1

Finesse Explanation:
Cash the Ace. This leads to 6 tricks
under any distribution of the outstand¬
ing cards.

Encyclopedia Explanation:
Lead the Ace first in case either oppon¬
ent is void.

Comments

This is an example of a plan with a unity
is important to start by cashing the Ace,
will only lead to 5 tricks if West is void,

on the next page.

probability of success. However, note that it

and not the Queen, since cashing the Queen

Also, compare this situation to the problem

>1 Line of play: AKT432-Q95 p HJ

0 AKT432 out 0 J876
crits [11,11]]
voide no

voidw no

losers 1

r*avfV4 _d)

10 Q95
any no
lead unknown _—

•'Maxj [Ma
consumes entry(n,l)-[east_lowd4,3>,eastd,[l,ll]>] 'M—i nrT^"^FTi

[east_lou<15,3),east(2,[l,ll]>] iMaxj |Max| |Max|
produces lead(n,2>-[east_low(7,3>,east(2,[l,ll]>]

[east_low(15,3),east(l,[l,ll]>]
lead<s,2)-[east_low<14,3),east<l,[l,ll]>]

[east.lou<15,3>,east(2,[1,11]>]
lead<n,3>-[east_low<6,3),east(3,[l,ll]>]
lead(s,l)-[east_low(6,3>,east(3,[l,ll]>]
lead<n,l)-[east_low(8,3>,east(2,[l,ll])]

tricks G-[east_low(15,3),east(3,[l,ll]>]
probs [6-1.0]
label Max
tactics [finessed,west,10,d>,finessed,east,9,d),finesse<2,east,10,d),finesse<2,west,9,d),cash<14,d>,cash<12,d>] y

I * : A : a lo
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Problem 12

A K 9 x x x

N
W E

S

Q x x

(Solutions agree)

Encylopedia No. 44

Maximum tricks 6

Critical cards Jack, Ten
Applicable tactics Type 1 finesse of 9 against West

Cash Ace
Cash Queen

Finesse prob 0.952

Encyclopedia prob 0.95

Finesse Explanation:
Cash the Queen. This leads to 6 tricks
if West holds at least one of the Jack
and ten, or if East holds both the Jack
and ten and West holds at least one of
the remaining two low cards.

Encyclopedia Explanation:
Play queen first, in case East is void

Comments

Finesse correctly decides to cash the Queen ahead of the Ace. Compare this to the
similar situation on the previous page, where the correct play is to cash the Ace ahead

of the Queen.

0 Line of play: AK9432-Q65
IMax I

* AK9432 out * JT87
crits [[2,11,10]]
voide no

uoidu no

losers 1

any no
lead unknown

consumes entry<n,l>-[east.low<4,2>,east<4,[2,11,10])]
entry(s,l>-[east_low(l,2>,east(l,[2,ll,10]>]

produces lead(n,2>-[east.low(7,2),east(7,[2,11,10]>]
lead<s,l)-[east_lou(7,2),east<S,[2,ll,10]>]

[east_low<G,2>,east(l,[2,11,10]>]
lead<e,l)-[east_lou<4,2>,east(4,[2,ll,10]>]
5-[east_low(4,2>,east(4,[2,11,10])]
6-[east.low(7,2),east(3,[2,11,10])]
[east_low(3,2),east<4,[2,il,10])]

[5-0.04782608695652174,6-0.9521739130434783]
(lax
[finessed,west,9,c),cash(14,c),cash(12,c)]

* Q65

tricks

probs
label
tactics
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Problem 13 (Solutions agree)

Encylopedia No. 52

Maximum tricks 4

Critical cards Queen, Ten
Applicable tactics Type 1 finesse of 8 against West

Type 2 finesse of 8 against East
Type 3 finesse of Jack against East
Type 4 finesse of Jack against West
Cash Ace

Finesse prob 0.057

Encyclopedia prob 0.06

FINESSE Explanation:
Finesse the Jack (Type 4)- This leads
to 4 tricks if West holds the Queen,
West holds the ten, and East holds
at least four of the remaining five low
cards, or if East holds the singleton
ten.

Encyclopedia Explanation:
Run the jack; if it is covered, finesse
the nine next. West must have Q10,
QlOx or Qxxxxx.

Comments

This is an example of a Type 4 finesse being chosen as the best initial tactic. In this

context, this is the equivalent of the Encyclopedia's direction to 'run the jack'. The
second round finesse which is set up by the Type 4 finesse is a Type 1 finesse of the
nine.

Note the correlation between Finesse's explanation and that of the Encyclopedia. The
distributions where 'West holds the Queen, West holds the ten, and East holds at least
four of the remaining five low cards' are Q10 and QlOx, and when 'East holds the

singleton ten', West holds Qxxxxx.
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Problem 14 (Solutions agree)

Encylopedia No. 53

Maximum tricks 3

Critical cards Queen, Ten
Applicable tactics Type 1 finesse of nine against West

Type 3 finesse of Jack against East
Type 4 finesse of Jack against West
Cash Ace
Duck a round

Finesse prob 0.745

Encyclopedia prob 0.74

Finesse Explanation:
Finesse the Jack (Type 3). This leads
to 3 tricks if West holds the ten, or

if East holds the singleton ten, or if
East holds the Queen and East holds
the ten.

Encyclopedia Explanation:
Lead small to the jack. If this loses,
finesse the nine

Comments

Changing North's 8 in the previous example into a low card results in the best play

becoming a Type 3 finesse of the Jack: rather than leading the Jack itself, a low card
is led towards it.

1 Line of play: AK92-J3 [

tinesse(3,cast,ll,s

out * QT87654
crits [[1,12],CI,101]
voide no

voidw no

losers 2

any no
* J 3 lead unknown
consumes entry(n,2>-[east_low(30,5>,east(l,[l,12]>,east(2,[l,10]>]

[east.low<63,5>,east<2,[1,121),east<2,[1,10])]
[east.low(31,5>,east(2,[1,12]>,east<l,[1,10]>]

entry(s,l)-[east_low(62,5),east<l,[l,12]>,east(2,[l,10]>]
[east_low(G3,5>,east<l,[1,12]>,east<l,[1,10]>]

entry(n,l>-[east_low(G3,5>,east(l,[l,12]),east(l,[l,10]>]
[east.lou<32,5>,east(2,Cl,121>,east<l,[1,10])]
[east_low(33,5>,east(l,[l,12)>,east<2,[l,10]>]

produces lead<n,l)-[east_low<63,5),east<3,[l,12]>,east(3,[l,10]>]
lead<e,l>-[east_low<63,5>,east<2,[l,12]>,east(3,[l,10]>]

[east.low<30,5>,eest(l,[l,12]),east<2,[1,10])]
lead(w,l)-[east_low<63,5>,east(l,(l,12]),east<3,[l,10]>]
lead<s,1>-[east.low<63,5),east(2,[1,12]),east(2,[1,10])]

[east_low(31,5),east<2,[l,12]),east<l,[l,10])l
tricks 2-[east.low<62,5),east(l,[l,12]),east(2,[l,10]>]

3-[east_low<63,5),east<3,[l,12]>,east(l,[l,10]>]
[east.low(l,5),east<l,[1,12]),east(2,[1,10])]
(east.low(63,5),east(2,[1,12]),east(2,[1,10])]

[2-0.25515527950310557,3-0.7448447204968944]probs
label Max
tactics [finesse<l,west,9,s),flnesse<3,east,ll,s),flnesse<4,west,ll,s),cash(14,s>,duck<l,s>)

iF&l



APPENDIX C. FURTHER EXAMPLES 343

Problem 15 (Solutions agree)

Encylopedia No. 63

Maximum tricks 5

Critical cards Queen, Ten
Applicable tactics Type 1 finesse of 9 against West

Type 3 finesse of Jack against East
Type 4 finesse of Jack against West
Cash Ace
Duck a round

Finesse prob 0.071

Encyclopedia prob 0.07

Finesse Explanation:
Finesse the nine (Type 1). This leads
to 5 tricks if West holds the Queen,
West holds the ten, and East holds any
three of the remaining four low cards.

Encyclopedia Explanation:
Run the jack or lead small to the nine.
West must hold QlOx

Comments

In this example, Finesse again sees a definite distinction between two lines of play that
are treated equally by the Encyclopedia. To see why this is so, consider the profiles of
the following two lines of play:

Type 1 finesse of nine [2 > 0.080,31> 0.322,4 > 0.526,5 > 0.071]

Type 4 finesse of Jack [2 > 0.080,3 > 0.371,4 > 0.478,5 > 0.071]

Whilst both have equal chances of making five tricks, Finesse prefers the finesse of
the nine because it has a better chance of producing four tricks in the event that five
tricks cannot be taken.

This problem is also a further example of how even Finesse's basic explanation system

can produce results that are similar to those found in the Encyclopedia.



APPENDIX C. FURTHER EXAMPLES 344

Problem 16

A K 9 8

N

W E
S

J x x

(Finesse is incorrect)

Encylopedia No. 69

Maximum tricks 4

Critical cards Queen, Ten
Applicable tactics Type 1 finesse of 8 against West

Type 2 finesse of 8 against East
Type 3 finesse of Jack against East
Type 4 finesse of Jack against West
Cash Ace

Finesse prob 0.240

Encyclopedia prob 0.25

Finesse Explanation:
Finesse the 8 (Type 1). This leads to
4 tricks if West holds the Queen and
West holds the ten.

Encyclopedia Explanation:
Run the jack; if this is covered, finesse
the nine.

Comments

In this example, non-locality results in a serious under-estimate of the probability of
success for the line of play recommended in the Encyclopedia: 0.107 instead of 0.25.

Finesse therefore selects a different line of play with the slightly inferior probability

of 0.240 for producing four tricks (missing only the case where East starts with the

singleton Ten).

To understand the circumstances behind Finesse's mis-calculation, we need to consider

what happens when both defenders contribute a low card on the finesse of the Jack,

leading to the following intermediate position:

Outstanding:
Q T x x

From here, Finesse has a choice between finessing the nine (Type 1) and cashing the
Ace. The distributions of the original outstanding cards under which these tactics

would succeed in producing four tricks are shown in the table on the following page.

A K 9

N
W E

S

x x
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Distributions Finesse of 9 Cash Ace

Qxxx-Tx •

Qxx-Txx •

QTxxx-x •

QTxx-xx •

QTx-xxx • •

Based on this, the probabilities of the finesse and the cash are 0.216 and 0.242 as

shown by the pop-up windows in the screen capture below (with the right-hand window

describing the cash tactic). The cash appears to be the better alternative because with
2 outstanding critical cards it is more likely that they will drop than both be held

by West. However, at any node where a defender contributes a critical card rather

than a low card, the finesse will appear to be the better option. It is this combination

of circumstances that causes Finesse to mis-analyse the problem: considering these
situations locally produces a set of choices that work very badly in combination. In

particular, when West holds Qxxx or Qxx, he should contribute the Q when declarer

begins with the finesse of the Jack, to ensure that the declarer then takes a failing finesse
on the second round. Thus, the first two rows of the table above represent distributions

under which the defenders should never both play low when declarer starts with he

finesse of the Jack. Ignoring these distributions results in the best choice at this node

becoming the finesse, which is better than the cash under the splits QTxxx-x and

QTxx-xx. The probabilities of these splits is (4/6 X 0.0727) + (6/15 X 0.2422) = 0.145.
This figure is the same as the discrepancy between the Encyclopedia's and Finesse's
assessments of the success of running the Jack.

SI Line of play: AK98-J32 |

finessed,west,9, s >

interp i(3,resources<northd,2>,south<2,0),eastd),west(0),ew<0>>>-

i(3,resources<north(0,2>,south<2,0>,east(0),west<0>,ew<0>>)-

i(3,resources(north(0,l),southd,0),eastd),west(0),e«(0)))-

i <3,resources<north(0,2> ,southd,0) ,east(0> ,west(0> ,ew(0) )>■
i<4,resources(north(0,2>,south(2,0),east<0>,west(0>,ew<0>)>-
3-[east_lowd4,4),east<2,[l,12]>,east(3,[l,10]>]
[east_low<14,4),east<l,Cl,12]>,east<2,Cl,10]>]

4-[east_low<14,4),east(l,tl,12]),east(l,[l,101>]
[3-0.6879503105590062,4-0.21639751552795031

[east_low<4,4>,east(l,[1,12]>,east(2,[1,10])
[east_low<4,4>,east(2,[l,12]),east<l,[l,10]>
[east_low(8,4),east(l,[l,12]),east<2,Cl,10])
[east_low(8,4>,east(2,[l,12]),eastd,[l,10]>
[east.low(2,4),east(2,[l,12]),east(l,[l,10]>
[east_low<6,4),east<2,[l,12]>,east(2,[l,10]>
[east_lo«<2,4>,east(l,[1,12]>,east<2,[1,10]>
[east_low<8,4>,east<2,[1,12]>,east<2,(1,10)>
[east_low(14,4>,east(l,[l,12]>,east(l,[l,10]

* HK j out * QT76
[[1,12],[1,101)

1 | voide no

voidw no

1 losers 1

any no

« 32 lead south
tricks 3-[east. lowd2,4),east<2, [1,12] ),eastd, [1,101 >]

[east. low(14,4),east(2,[l,12]>,east<2,[l,10]>]
[east. low<8,4),east<l,[l,12)>,east<2,[l,10)>]
[east. low<6,4),eastd,[l,12)>,eastd,[l,10)>)

4-[east. lou(6,4>,eastd, (1,12)),east (2, [1,10])]
[east. low<8,4),eastd,[l,12) >,eastd, [1,10]>)

probs [3-0.5975155279503106,4-0.2422360248447205]
label Max
tactics [finesse<l,west,9,s),cash<14,s>]

probs
label Min
select no

branches [[v,(l,12)],[v,[l,10]),[v,x],[[l,12],v],[[1,12),[1,10]],[[l,12],x],[[l,10],v],[[1,10],[1,12]],([l,10],x),[x,v],[x,(l,12]],[x,[l,10]],[x,x]]
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Problem 17

A K x x

N
W E

S

J 9 x

(Finesse is incorrect)

Encylopedia No. 73

Maximum tricks 4

Critical cards Queen, Ten
Applicable tactics Type 1 Finesse of 9 against East

Type 2 finesse of Jack against West
Type 3 finesse of Jack against East
Cash the Ace
Duck a round

Finesse prob 0.783 (3 tricks only)
Encyclopedia prob 0.01

Finesse Explanation:
Cash the Ace. This leads to 3 tricks if
East holds the Queen, or if West holds
the Queen, West holds the ten, and
East holds at least three of the remain¬
ing four low cards, or if West holds the
Queen, East holds the ten, and West
holds zero, two, three, or four of the
remaining four low cards.

Encyclopedia Explanation:
Play the Ace, hoping that West has the
singleton queen.

Comments

This is the fourth Encyclopedia problem on which non-locality results in finesse

making an error, and the first (of a total of 12) in which this error results in a line
of play which is incapable of taking the maximum possible number of tricks. These

examples all have the common form that the correct solution caters for one or maybe

two splits of the outstanding cards, such as singleton Kings, doubleton King-Tens, or

tripleton Ace-King-Jacks. In the current problem, the situation when four tricks can

be taken is when West holds the singleton Queen.

Finesse misses the optimal line of play despite starting with the correct initial tactic:

the cashing of the Ace. When West plays the Queen and East plays low on the first

round, however, Finesse proceeds by cashing the Jack. Locally, this appears to be

a good continuation since there is only one critical card remaining with the declarer

holding two masters above it. In the table overleaf we show the splits of the original
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outstanding cards under which a Type 1 finesse of the 9 (the correct continuation) and
the cashing of the Jack lead to four tricks. The probabilities of these distributions are

0.248 and 0.258, so it is the cash that is selected by Finesse.

Distributions Finesse of 9 Cash Jack

Qxxx-Tx • •

Qxx-Txx • •

Qx-Txxx •

Q-Txxxx •

QTx-xxx •

QT-xxxx •

However, consider the situation which is reached when both defenders contribute a low

card to the first trick, or when West plays the Ten and East plays low. The best choice
from this new state is a Type 3 finesse of the Jack. This (non-local) information has
an effect on the above table. Specifically, in any distribution where West holds the

Queen but can avoid playing it on the first trick, he should do so (since the finesse of
the Jack will then lose on the second round). Thus, the only distribution which should

actually be considered in the table is that where West holds the singleton Queen. The
finesse of the nine is therefore revealed as the best play at this node, but only after an
examination of the tactics selected at other points in the search space.
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Problem 18

A Q 5 4 3

(Solutions agree)

Encylopedia No. 153

Maximum tricks 4

Critical cards King
Applicable tactics Type 1 finesse of Queen against West

Type 2 finesse of Jack against West
Type 3 finesse of Jack against East
Cash Ace
Duck a round

Finesse prob 0.436

Encyclopedia prob 0.44

FINESSE Explanation:
Finesse the Jack (Type 3). This leads
to f tricks if West holds the King and
East holds any three of the remaining
five low cards, or if East holds the King
and West holds three or four of the re¬

maining five low cards.

Encyclopedia Explanation:
Lead small to the Jack, hoping that the
suit divides 3-3 or that East has Kx.

Comments

This is a further example of the correct initial tactic being a Type 3 finesse. Note

that the Encyclopedia's previous problem (number 152) is identical apart from the

replacement of South's low card by the nine. The optimal line of play for this modified
situation is to start with a Type 1 finesse of the nine (described as 'lead small to the
nine' in the Encyclopedia), and is also correctly identified by Finesse.
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Problem 19 (Solutions agree)

K Q J 9 4 3

N
W E

S

2

Encylopedia No. 281

Maximum tricks 5

Critical cards Ace, Ten
Applicable tactics Type 1 finesse of 9 against West

Type 3 finesse of Jack against West
Duck a round

Finesse prob 0.517

Encyclopedia prob 0.52

Finesse Explanation:
Finesse the Jack (Type 3). This leads
to 5 tricks if either East or West holds
the Ace, holds the ten, and the other
defender holds at least three of the re¬

maining four low cards, or if either
East or West holds the Ace, the other
defender holds the ten, and holds two
or three of the remaining four low
cards.

Encyclopedia Explanation:
Lead to the King; then play the queen
and jack.

Comments

Note that in this situation Finesse's selection of the finesse of the Jack is equivalent
to the Encyclopedia's 'lead to the king', since the declarer holds the sequence King,

Queen, and Jack.

The Encyclopedia contains variations on this problem, which Finesse also solves cor¬

rectly. For example, moving one of North's low cards to the South hand results in a

decrease in the maximum number of tricks to 4, attainable with a probability of 0.58.

Giving North's Jack to South, on the other hand, makes the optimal fine of play (again,
for 4 tricks) a lead to the Jack followed by a lead to the King (with a probability of
success of 0.54). Also, moving North's Jack and nine to the South hand, and South's

low card to the North hand requires the 9 to be finessed first, giving a probability of
0.42 of producing 4 tricks. Finesse solves all these examples correctly.
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Problem 20 (Solutions agree)

K Q x x x x x
Encylopedia No. 436

Maximum tricks 5

Critical cards Ace

Applicable tactics Duck a round

Sequence: King
Finesse prob 0.355

Encyclopedia prob 0.36

Finesse Explanation:
Duck a round. This leads to 5 tricks if
either East or West holds the Ace and
the other defender holds any three of
the remaining five low cards.

Encyclopedia Explanation:
Duck one round, and then play the
king (best), or lead the King.

Comments

This example illustrates an instance of the duck tactic being selected as the best initial
choice. Note that this is an occasion when the Encyclopedia differentiates between

two lines of play even though they have the same chance of producing 5 tricks. The
screen capture below explains this: the profile of the sequence tactic (in the right-hand

pop-up window) has a lower chance of making four tricks, if five tricks cannot be taken.

I Une of play: KQ65432-

i<

1(5

resources(north(2,l>,south<0,0>,east(0),west(5>,ew<0>>>-
resources(north<2,l),south(0,0>,east(5>,west<0>,ew<0))>-
resources(north<4,l),south(0,0>,east(0>,uest(3>,e«<l>>>-
resources(north(4,l),south(0,0>,east<3>,west(0>,e«(l>>>-
resources(north<3,l>,south<0,0>,east(l>,west(2>,ey<0>>>-
resources(north<3,l>,south(0,0>,east(2>,west<0>,ew(l)>>-
resources(north(3,l),south<0,0),east(0),west<2),ew(l))>-
resources(north(3,2),south<0,0>,east(0>,west(2>,ew(l))>-
resources(north<3,2>,south(0,0),east(2>,west<0),e«<l)))-
r©sources(north<3,1),south(0,0>,east(l),west(l),ew(l))>-

resources(north(3,l>,south(0,0),east(2),west(l>,ew(0>>>-
resources<north<2,1>,south<0,0>,east(1>,west(0),ew<1>>> •

resources<north<2,1>,south<0,0),east(0),west(1>,eu<1>>>-
resources(north(2,2>,south(0,0),east(0),west(l>,ew(l)>>-
.resources(north(2,2>,south(0,0>,east<l>,west(0>,ew(l>)>-

tricks 2-[east_low(l,5),east(l,[l,14])3
[east_low(32,5),east(2,[l,14]>]

3-Ceast_lou(2,5>,east(l,[l,14])]
[east_lou(16,5),east(2,[l,14]>]

4-(east_low<ll,5>,east(2,[l,14]>]
[east_low(52,5>,east<l,(l,14]>]

5-[east_low(8,5),east(l,[l,14]>3
Ceast_low<4,5),east<2,Cl,14]>]

probs [2-0.014906832298136646,3-0.12111801242236025,4-0.508695652173913,5-0.3552795031055901]
label Hin
select yes
branches [[v,[l,14]],[w,x),[[l,14],v],[[l,14],x],[x,v],[x,[l,14]],[x,x]]

_sequence(13,c>
""

rbrr.

interp i(2,resources<north(6,l>,south(0,0>,east(0>,uest(5>,eu(0)>>-
i(2,resources<north(6,l>,south<0,0>,east(5),uest(0>,eu<0))>-
i(3,resources(north(5,l),south(0,0),east(l>,uest(3),e«(0>))-
i(3,resources(north<5,l>,south<0,0),east<3>,yest(l),eu<0>)>-
i(3,resources(north(5,l>,south<0,0>,east(0>,uest(4>,ew(0>))-
i(3,resources<north(5,l>,south(0,0>,east(4),west<0>,ew<0))>-
i<4,resources<north<4,l>,south<0,0>,east<l>,uest(2>,eu<0)>>
i(4,resources(north(4,l>,south(0,0),east(2>,uest(l),eu(0>))-
i(4,resources(north(4,l),south<0,0),east(0>,uest<3),ew<0>>>-
i(4,resources(north(4,l>,south(0,0),east(3>,west(0>,ew(0>>>-
l(5,resources(north<3,l>,south<0,0>,east(l>,west(0>,eu<l>>>-
i(5,resources(north(3,l),south(0,0),east(0),uest(l>,ew<l))>-l

tricks 2-[east, loud,5>,east(l, tl,14]>]
[east_lou(32,5>,east(2,[l,14]>]

3-[east_low(34,5),east(l,[l,14]>]
[east_low(17,5),east<2,(l,14]>]

4-[east.lou(20,5>,east<1,[1,14]>]
(east_lou<10,5>,east(2,[1,14]>]

5-[east.lou(4,5),east(2,[l,14]>]
[east_lou(8,5),east(l,[l,14]>]

probs [2-0.014906832298136646,3-0.1453416149068323,4-0.484472049689441,
label Win
select no

branches [[v,(l,14]J,[v,x],[[l,14],v],[[l,14],x],[x,v],[x,(l,14]],[x,x]]

lou(l,5),east(l,[l,14]>]
lou<32,5),east(2,[l,14]>]
lou(l,5),east(2,[l,14]>]
low<32,5),east(l,[l,14]>]
lou(2,5>,east<l,[l,14]>]
low(16,5),east(2,[l,14])]
low(2,5),east(2,(l,14])]
lou(16,5),east<l,[l,14]>]
lou(4,5>,east<1,[1,14]>]
low(8,5),east(2,[l,14]>]
lou(4,5),east<2,[l,14]>]
.low(8,5),east(l,[l,14]>]

.5-0.3552795031055901]
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Problem 21

J X X X X

N
W E

S

T x x

(Solutions agree)

Encylopedia No. 654

Maximum tricks 2

Critical cards Ace, King, Queen
Applicable tactics Type 3 finesse of Jack against West

Type 3 finesse of 10 against East
Duck a round

Finesse prob 0.876

Encyclopedia prob 0.88

Finesse Explanation:
Finesse the Ten (Type 3). This leads
to 2 tricks if East holds at least two of
the Ace, King, and Queen and West
holds at least one of the remaining two
low cards, or if West holds any two of
the Ace, King, and Queen, or if West
holds the Ace, King, and Queen and
East holds at least one of the remain¬
ing two low cards.

Encyclopedia Explanation:
Lead small to the ten. If it loses to
West, lead small to the Jack.

Comments

In this example, the top three cards are held by the defence. However, it is still possible
to produce two tricks, and Finesse finds the optimal line of play for doing so.

I Line of play: J7654-T32 |

finesse<3,west,ll,h>_„

[Mix]
I
*ine

ifiaxl to,' Sffl

Jflncssc(3,east,10,h)
interp i<l,resources<north<3,l),south<l,0>,east(3),westd),ew<0>>)-

id,resources(north<2,l>,south(2,0),east(0),west(3>,ew(0))>-
i<l,resources<north(3,l>,south<0,0>,east<3>,west<0>,ew<0>>>-
i<2,resources<north<3,l),south<l,0>,east(l),west<2),ew<0>>>-
l(2,resources(north(3,2),south<l,0),east(0),west<3),ew<0))>-
i<2,resources<north<2,l>,south<2,0),east<0>,west<3>,ew(0>>>-
i(2,resources(north(4,l),south(0,l),east<l),west(2>,ew(0))>-
i<2,resources<north<4,l>,south(0,l>,east<3>,west(0),ew<0)>>-
i<2,resources<north<3,l>,south<0,0>,east<2>,yest<l>,ew(0>>)-
i(2,resources<north<2,l>,south<l,0>,east(2>,west(l),ew(0>>)-
1<2,resources(north(2,l),south(1,0),east(0),west(3),ew(0)>>-
I<2,resources<north<2,l>,south(l,0>,east(l),west(2),ew<0)>>-
i<2,resources<north<3,l),south<0,0),east(3>,west(0),ew<0>>>-
I<2,resources(north(3,l>,south<0,0>,east(l>,west(2>,ew<0>>>-

tricks l-[east_low(4,2),east<12,[3,14,13,12]>]
[east_low<l,2),east<l,C3,14,13,12]>]

2-[east.low<3,2>,east<12,C3,14,13,12])]
[east_low(7,2),east<2,[3,14,13,12])]
[east_low<6,2),east<l,[3,14,13,12]>]

probs [1-0.12391304347826086,2-0.8760869565217391]
label Hin
select yes
branches [[v,[3,14,13,12]],[v,x],[[3,14,13,12),v],[[3,14,13,12],[2,14,13,121],[[3,14,13,12],x],Cx,v],[x,[3,14,13,12]],[x,x]]

_low(4,
east.lowd,
east.low<4,
east.lowd,
east.lowd,
east.lowd,
east.lowd,
east.lowd,
east_lou<3,
east_lo«(2,
east_low<4,

.10*1(6,
_low(l,

east.lowd,

2>,east(4,
2),east<l,
2>,east<8,
2>,east(2,
2>,east(l,
2>,east(l,
2),east(2,
2>,east(8,
2),east(4,
2),east(4,
2>,east(l,
2>,east<2,
2>,east(8,
2>,east<2,

[3,14,13,12])]
[3,14,13,12])]
[3,14,13,12])]
[3,14,13,12]))
[3,14,13,12])]
[3,14,13,12]))
[3,14,13,12])]
(3,14,13,121)]
[3,14,13,12])]
[3,14,13,12])]
[3,14,13,12])]
[3,14,13,12])]
[3,14,13,12])]
[3,14,13,12))]

SffTnj

ifiax]
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Problem 22

J T x x

N

W E
S

x x x x

(Solutions agree)

Encylopedia No. 655

Maximum tricks 1

Critical cards Ace, King, Queen
Applicable tactics Type 3 finesse of Ten against West

Duck a round

Finesse prob 0.839

Encyclopedia prob 0.84

Finesse Explanation:
Finesse the Ten (Type 3). This leads
to 1 trick if West holds at least two
of the Ace, King, and Queen, or if
East holds just the Ace, King, and
Queen, or if East holds any two of the
Ace, King, and Queen and West holds
at least one of the remaining two low
cards.

Encyclopedia Explanation:
Lead small to the jack and then small
to the ten.

Comments

Declarer's longest hand now only has four cards, so with three outstanding masters

only one trick can be taken.

I Une of play: JT76-5432 | I a
"A

fir>csse(3,west,10.

probs
label
tactics

m
O AKQ98

crits [[3,14,13,1231
voide no

voidw no

loser

lead unknown
entra<s,2>-[east.low(6,2),east<3,[3,14,13,123>]

[east_low(3,2),east<8,[3,14,13,123)3
[east.low(7,2>,east<4,[3,14,13,123>3

entry<s,l)-[east_low(4,2),east<8,[3,14,13,123>3
entry(s,3>-[east_low(l,2),east(3,[3,14,13,123>3
lead(e,4>-[east_low<6,2>,east<8,[3,14,13,123>3
lead(e,3>-[east.low(4,2>,east(4,[3,14,13,123>3

[east_low(l,2),east(8,[3,14,13,123>]
lead<w,l>-[east_low<7,2),east(4,[3,14,13,123>3
lead(n,l)-[east_low(7,2),east(3,[3,14,13,123>3

[east.low(l,2>,east(8,(3,14,13,123)3
[east.low(3,2),east(4,[3,14,13,123)3

lead<u,3>-[east_low<7,2),east<l,[3,14,13,123>3
lead(e,l)-[east_low<7,2>,east(2,[3,14,13,123)3
lead(w,2)-[east_low<7,2>,east<2,[3,14,13,123>3
lead(e,2)-[east_low(3,2),east(4,[3,14,13,123)3
0-[east.low(4,2),east<4,[3,14,13,123)3
[east_low(6,2),east(8,[3,14,13,123)3

1-[east_low(7,2),east<3,(3,14,13,123)3
[east_low<l,2),east<8,[3,14,13,123)3
[east_low<3,2),east<4,[3,14,13,123)3

[0-0.16086956521739132.1-0.83913043478260873
Max
[finesse(3,west,10,d),duck(l,d)3

Hirv

s& ifei 'fee te"
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Problem 23 (Solutions agree)

J x x x

T x x x

Encylopedia No. 656

Maximum tricks 1

Critical cards Ace, King, Queen
Applicable tactics Type 3 finesse of Jack against West

Type 3 finesse of 10 against East
Duck a round

Finesse prob 0.915

Encyclopedia prob 0.92

Finesse Explanation:
Finesse the Ten (Type 3). This leads
to 1 trick if West holds zero, two, or
three of the Ace, King, and Queen, or
if East holds any two of the Ace, King,
and Queen and West holds at least one
of the remaining two low cards.

Encyclopedia Explanation:
Lead small to the jack (or ten). If it
loses, lead small to the other honor.

Comments

With the Jack and ten in different hands, Finesse correctly finds that it has a higher

probability of winning one trick than in the previous problem. The differences between
the analysis of this and the previous two problems illustrate the power of a qualitative

reasoning system to distinguish the actual distributions under which any line of play
will succeed.

IS Line of play: J765-T432 1

{fUnf"

iH«i Iter; jftaxj [Rax] [Haxl

* J7G5 out * AKQ98
crits [[3,14,13,12]]

□ voidw no

losers 4

any
* T432 lead unknown
consumes entry<n,l>-[east.low<6,2),east<6,(3,14,13,12])]

[east_low(7,2>,east(l,[3,14,13,12]>]
entry(s,l>-[east.low(7,2>,east<2,[3,14,13,12])]

[east_low(6,2),east<4,[3,14,13,12])]
(east_lo«(4,2),east(l,[3,14,13,12])]

entry(s,2>-[east.low<3,2),east(l,[3,14,13,12])]
entry(n,2>-[east_low(3,2>,east(6,[3,14,13,12])]

(east_low<7,2),east(8,[3,14,13,12])]
produces lead<e,3)-[east_low(4,2>,east<4,[3,14,13,12]>]

[east_low(7,2>,east(8,[3,14,13,12]>]
lead<w,l)-[east_low(7,2),east<4,[3,14,13,12])]
lead(n,l>-[east.low<7,2),east(3,[3,14,13,12])]

[east_low<G,2),east<8,[3,14,13,12]>]
[east.low(2,2),east<4,[3,14,13,12])]

lead<w,3)-[east.low(7,2),east<l,[3,14,13,12])]
lead<e,l)-[east_low<7,2),east<2,[3,14,13,12]>]
lead<u,2)-[east_low(7,2),east<2,[3,14,13,12]>]
lead<s,l)-[east_low(7,2),east(8,[3,14,13,12])]

[east_low(l,2),east(4,[3,14,13,12])]
lead<e,2)-[east_low(3,2),east<4,[3,14,13,12])]

tricks 0-[east.low<4,2),east<4,[3,14,13,12])]
l-[east_low(7,2),east(U, [3,14,13,12))]
[east_low(3,2),east<4,[3,14,13,12]>)

[0-0.08478260889585217,1-0.9152173913043478]probs
label Max

[Rax] {Ffixj (Rwj

tactics [finesse<3,west,ll,c),finesse<3,east,10,c),duck<l,c>]

Jjuckd,c)

[Minj



Appendix D

User Manual

When all else fails, read the manual.
— Anon

This appendix summarises the user-level predicates provided by the actual implement¬

ation of finesse. To begin with, §D.l gives a basic overview of the design and §D.2

gives instructions for starting the system. §D.3, §D.4, and §D.5 then describe the pre¬

dicates for setting up games, for altering and displaying the state of a game, and for

interfacing to the planning algorithms. Since the distribution version of Finesse also
includes an automated bidding system written by David Asher, a description of the

interface predicates to this package is given in §D.6. Finally, some notes on the actual

implementation and on the form of the saved game files are included in §D.7 and §D.8.

D.l Implementation Overview

Finesse modifies the top-level environment of Prolog to support the basic manipula¬

tion of a data structure that represents a Bridge game. The implementation of this
environment can be seen as an extension of Prolog by an abstract data type. Simple

predicates are provided to change the state of this data structure, and to save or load

the current state to or from a file. Finesse's planning predicates take their information

on the current state of the game from the value of this data structure.

The design of this interface was based on the Oyster [Bundy et al 90b] theorem-

proving environment developed at Edinburgh University. However, whereas in Oyster

354



APPENDIX D. USER MANUAL 355

the theorem-proving domain naturally leads to the generation of proof trees, the record
of a game of Bridge is more like a sequence of states. Every time a card is played, a
new situation is created, but the previous state is also retained. Any state from the

sequence that records the play of a game is recoverable from the entries stored in
the database. The state which is viewed as the 'current' state within the sequence is

determined by the value of the focus, which can be modified by the user. Backtracking
to previous states of play will of course not be possible for a Bridge-playing program,

but human users may find it useful to revise the play of a game, or to inspect the
decisions made by the planners or bidding system.

D.2 Initialising the System

Once the code has been properly installed (see Appendix E), the system can be started

by changing to the top-level Finesse directory, running SICStus Prolog (a version later
than 2.1.5, if the graphical interface is to be used), and consulting the file init.pl.

Finesse has a default initialisation file, .xf inrc, which resides in the top-level Finesse

directory. Individual users wishing to customise the program, however, can create a

copy of this file and place it in their home directories. When init .pi is consulted, the
.xfinrc file in the user's home directory will be read instead of the generic original.

Currently, the main use of this feature is to add extra directories to the search path
for saved games. This enables users to create libraries of saved games in their own file

space and still access the saved games that are part of the original distribution.

D.3 Setting up Play Situations

The following predicates allow users to save or load games to or from files. Also
included are predicates allowing the user to input game states by typing each players'

cards, and for generating random game states.

• save_game(+FileName) / load_game(+FileName)

Save/load the sequence of stored sates to/from the file with local name FileName.
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• lib_save(+FileName) / lib_load(+Filename)

Perform the same saving or loading operations, but this time using the directories
indicated by the setting of the saved_gameJile_path environment variable in the

initialisation file (.xfinrc).

• Is

List the contents of the current library directories.

• enter_hands

Starts a simple text input loop to enable the user to type in a specific deal of cards.

• startjrand

Generates a random deal, with West as the dealer.

• startjrand(+Dealer)

Generates a random deal with Dealer as the dealer (may be n, e, s, or w).

• randomise

Allows the user to select a new random number seed.

D.4 Basic Interface

The top-level environment supplies the following predicates:

• help

A basic, text-based help system summarising the main system functions and com¬

mands.

• first

Moves the focus to the start of the game, before any bidding or card play.
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• last

Moves the focus up to the last state in the stored sequence.

• middle

Moves the focus to the state where the first card play is made (i.e., between the

bidding and the play phases of the game). Fails if no contract has been specified.

• forward

Moves the current focus one position forward. Fails if this move would result in going

past the end of the sequence of stored states.

• forward(+N)

Moves the focus forward through N states, or up to the end of the sequence of states,
whichever occurs first.

• back

Moves the current focus one position backwards. Fails if the current focus is at the

start of the game.

• back(+N)

Moves the focus backwards through N states, or up to the beginning of the sequence

of states, whichever occurs first.

• play(+Card, +Suit)

Behaves like a deterministic Prolog predicate with the side-effect of updating the
stored sequence of game states. Its effects include removing the specified card from
the current player's hand (the predicate fails if this cannot be done), keeping track of
the trick count, and moving the focus forward to the next state. These side-effects are

not undone under backtracking.
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• set_contract(+Bid, +Player)

Deletes all the previous play and bidding history, moves the focus to the start of play,

and sets the declarer to be Player (either n, e, s or w) and the contract to be Bid —

a Prolog term of the form Number - Suit, where Number is an integer between 1 and

7, and Suit is either s, h, d, c or nt. (Notice that doubled and redoubled contracts

cannot currently be set.)

• display

Produces a text-based display of the current game state (as determined by the current

focus).

• display_trick(+N)

Produces a display of all the cards played in the specified trick. If the current focus

falls within the trick it is indicated by a beneath the current player's symbol. Fails

if the start of trick N lies beyond the limit of the sequence of stored states.

• display-bidding

Produces a display of the entire bidding history. If the current focus lies in the bidding

phase, it is indicated by a beneath the current player's symbol.

D.5 Interface Predicates to Planners

The following predicates interface to the planning system. These predicates all de¬
termine the 'current' state of the game by examining the value of the focus.

• ic(+Suit)

Interface to the pre-planner: writes the list of critical cards in Suit to stdout.

• ics

Writes the list of critical cards in all four suits to stdout.
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• app(+Suit)

Query the method set. All the tactics applicable to the current state in the given Suit

are written to stdout.

• apps

The applicable tactics in each suit of the current game state are written to stdout.

• xplan(+Suit, +Type)

Interface to the planner: causes a plan for Suit (either s, h, d or c) to be produced
and displayed as a tree in a gm window. The algorithm used for planning is determined

by Type, which should be one of the following atoms:

old Old version of planner
trace Trace while planning
history Keep a history for efficiency
interpret Keep a history and interpret results
top Keep a history, but only interpret cash tactics

• enc(+Num)

Provided the library directory containing problems from the Bridge Encyclopedia is

present (this is the default), this predicate loads the file containing problem number

Num, forms a plan, interprets the results and then displays the output in a graphical
window.

• play_game

Interface to the interleaver: causes each suit to be planned and interpreted, and the

resulting plans to be interleaved. The solution constructor trees resulting from each

interleaving stage are displayed in windows, provided the gm process is running.

• play_style(+Style)

Sets the playing style to Style. Finesse currently has four styles which choose
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between global plans on the basis of the following criteria:
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expected
conservative

Highest expected value
Smallest chance of making lowest number of tricks

aggressive Highest chance of winning the largest number of tricks
make_contract Highest chance of making at least enough tricks for contract

• play_style

Reports the current playing style setting to stdout.

• non-locality

Toggles Finesse's non-locality heuristic on or off.

• xf in

Start a top-level graphical interface which provides buttons for invoking each of the

five types of planning operation, planning of the game state, loading games, and a help

window.

D.6 Interface Predicates to Bidding System

A prototype bidding system was added to the Finesse environment by David Asher

[Asher 93]. Asher's system uses a set of bidding rules based on the ACOL bidding

system, but is designed primarily for auctions with no competition. The following pre¬

dicates allow bids to be made and the reasons behind bidding decisions to be examined.

• context

Displays the context of the next bid to be made by the current player (the rules in

the bidding database are divided into groups according to the context for which they
are designed).

• rules

Displays the bidding rules applicable for the next bid of the current player.
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• bid

Makes an automatic bid for the current player (East and West are always assumed to

pass).

• bid(+Bid)

Makes the specified Bid for the current player, where Bid may be pass, dbl, redbl,

or a term of the form N-Suit, where N is a number from 1 to 7, and Suit is either s,

h, d, c or nt.

• all

Bid for all players, from the current game position until a contract has been reached.

• infer

Display inferences about the last bid.

• inferences

Display all inferences that can be made about all previous bids.

D.7 Notes on Implementation

The properties which define the state of a Bridge game are stored in Prolog's data¬

base, from where they are accessed or updated by the infix operators ==> and <==

respectively. The effects of these operators are:

• K<==V stores value V under the key K. The entry is further indexed by the value
of the current focus. It is this indexing that enables any state passed through

during the play of a game to be recalled. The keys epos and limit and last_bid
are exempt from this indexing, essentially being used as global variables.

• K==>V binds V to the 'most recent' entry stored under the key K. The phrase
'most recent' indicates that any entry stored under an index which represents a

later game state than the current focus is not considered.



APPENDIX D. USER MANUAL 362

Figure D.l gives a complete list of the keys currently utilised. However, should extra

functionality be desired (for example, the storing of inferences drawn from the bidding)
further keys can be added with minimal disruption.

Key Information Updated at
dealer dealer start only
lead player on lead each trick
southwards South's hand each play by South
northwards North's hand each play by North
outwards combined holding of East and West each play by E/W
northward North's card on the current trick each play by North
eastward East's card on the current trick each play by East
southward South's card on the current trick each play by South
westward West's card on the current trick each play by West
tricksTor number of tricks won by declarer end of each trick

strongest .player strongest player in current trick each play
strongestward strongest card in current trick each play
player next player to bid or play each action

north-bid North's bid on current round each bid by North
east_bid East's bid on current round each bid by East
south_bid South's bid on current round each bid by South
west.bid West's bid on current round each bid by West
consecutive.passes number of consecutive passes each bid

strongest _bid strongest bid so far each bid

bid_status is bid doubled or redoubled? each bid

epos current focus each action

limit end of sequence of States each action

last.bid end of sequence of bids each bid

Figure D.l: Database keys used to store state of game

Six further database keys, shown in Figure D.'2 on the next page, are used by Finesse

to record the current state of the user's interaction with the system. These, however,

are not considered part of the basic data structure (and are thus not saved or reset

when new games are loaded or saved).

D.8 Saved Games

A template file for entering saved games is listed at the end of this section. The min¬
imum information that must be specified is the dealer and the cards held by North and
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Key Purpose
gm_interfacedn_use Yes/no flag for graphics manager (gm) interface
gm_view.window_key Dummy number for generating unique gm window identifiers
trace Records whether planning trace is switched on

creep Records whether creep is switched on

play .style Criterion used to select the best global plan
non_locality Records whether non-locality heuristic is being used

Figure D.'2: Additional database keys used by FINESSE

South. If the outstanding cards are not specified they will be calculated automatically,
but end-game situations can also be entered by specifying the outstanding cards as

well as those of North and South. Another way to create end-game situations is to

enter the initial deal for the hand (either using the template file or the enter_hands/0

predicate) and then specify the cards played on each known trick of the game using
the play/2 predicate at the interface top-level.

Note that the operator used to separate key-value pairs in saved game files is actually
<— and not <==. This is because the <== operator indexes data by the value of the
current focus. In saved game files generated by the system, however, each item of data
will already have an index, which should not be changed when the game is loaded.
The <-- operator therefore stores data whilst preserving its original index, or if there
is no index present (such as in the template file), by assuming that the data should be
indexed with the start position of the game.

•/.
'/. File: template.pl

Author: Ian Frank

*/. Date: Hay 21st 1991
'/. Purpose: template for entering games of bridge.
'/. Modified: 25 June 1993 to meet spec of new automaton

dealer <— west. '/. Must set a dealer (west/east/south/north)

/*************************************************************************
* The cards for each player are stored as four terms of the form: *
* suit(Length, SuitName, Cards) *
* Aces are represented as 14, Kings as 13, etc.... *
* EXAMPLE: *

* suit(4, s, [13 ,11, 9, 3]) represents a holding *
* of the King, Jack 9 and 3 of spades. *
*************************************************************************/
north.cards <— [ suit(0, s,[]),
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suit(0, h, []),
suit (0, d, []) ,

suit (0, c, [] ) ] .

south_cards <— [ suit (0, s, [] ) ,

suit(0, h, [] ) ,

suit(0, d, []),
suit(0, c, [] ) ] .

/ft************************************************************************
* Specifying 'out_cards' is optional (tuiless you want to specify a game *
* which doesn't start from the first trick - e.g, an end-game position) *
ft*****##***************#*#***********************************************/
*/.out_cards <— [ suite, s,[]),
*/. suit(, h, []) ,

'/. suit(, d, [] ),
*/. suit e, c, [] ) ] .

end.
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Code

'Well, though it seems

Beyond our dreams,'
Said Littell to Scott,
'We've really got
To the very end.'

— Thomas Hardy

Littell and Scott

The original plan was to end by listing the code for the Finesse system in this ap¬

pendix. Then we found out that, even excluding the portions for the graphical inter¬

faces, this would take over 130 pages. Since the world state we find ourselves in doesn't
have the resources to cope with this, we fall back on the alternative plan of making the
code available for anonymous download. Instructions for retrieving the appropriate
files are given below.

E.l Ftp Instructions

The code is available by anonymous ftp from the ftp site of the Mathematical Reasoning

Group at Edinburgh University (dream.dai.ed.ac.uk [192.41.111.169]) in the directory

pub/misc.

E.l.l Step by Step Instructions

To retrieve a copy of the code from the ftp server please follow this example.
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I ftp dream.dai.ed.ac.uk
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(or ftp 192.41.111.169)

220 achtriochtan FTP server (SunOS 4.1) ready.

Name : anonymous

Password: (please enter your e-mail address)

(it is not seen on the screen )

ftp> cd pub/misc

ftp> binary

ftp> get Finessel.0.0.tar.Z (or latest numbered version )

ftp> quit

'/, uncompress Finessel. 0 .0. tar. Z

You now have a tar file Finessel.0.0 .tar which can be extracted into the code

for the system. If you do not have 'uncompress' or 'tar' please contact your system

administrator.

E.2 Getting Started

The tar file itself comes with instructions on how to use the system. For a quick start,

change to the directory containing the code, edit the path names in the file .xfinrc

to reflect your system, run SICStus Prolog (a version later than 2.1.5 will be necessary

if you wish to make use of the graphical interfaces), and consult the file init.pl.



Glossary

'And now we need as it were a tompion to protect the contents of this flask
from invading bacteria. I presume you know what a tompion is, Cornelius?'
'I can't say I do, sir', I said.
'Can anyone give me a definition of that common English noun?' A. R.
Woresley said.
Nobody could ...

'Oh, come on, sir', someone said. 'Tell us what it means.'
'A tompion', A. R. Woresley said, 'is a small pellet made out of mud and
saliva which a bear inserts into its anus before hibernating for the winter,
to stop the ants getting in.'

— Roald Dahl

My Uncle Oswald

Agent
Any entity (e.g., a robot, a person, or an adversary) that is situated in a domain
that it reacts to and acts upon.

Action

An event that happens in a domain, usually carried out by one of the agents in
that domain, and probably resulting in a change in the state of the domain.

Behavioural Strategy
Whereas a pure strategy specifies exactly one action for each situation that
could possibly arise during the course of a game, a behavioural strategy can
specify multiple possible actions for each situation. In order to choose between
these multiple actions, a behavioural strategy also specifies the probability that
each action will be selected in each possible situation.

Best Defence Model

The best defence model of a two-player game restricts MAX to a pure strategy
which he must choose before MIN. The outcome of every move in the game

(including chance moves) is also known to MIN as soon as it happens. The
best defence model of Bridge is often (implicitly) assumed in Bridge books when
describing the best lines of play in given situations.
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Card Combination

The cards held in one suit by one of the sides in a Bridge game. Bridge books
sometimes discuss how particular card combinations should be tackled to produce
the best results (since ignoring the situation in the other suits makes the task
much simpler).

Cash

The playing of a master in some suit. In situations where there is no trump
suit, the master will always win the trick.

Cracked

A game is cracked when a computer program is capable of always achieving
the best possible theoretical results in the game, whatever opposition it faces.
Compare with solved.

Critical Card

In a single suit, any outstanding card whose position may affect the chances of
winning tricks in the suit.

Discard

The play of a card from a different suit to the one that started the trick. This
play always loses (assuming the card played is not a trump), so discards tend
to be low cards.

Duck

Contributing a low card to a trick when your hand contains other cards that may
be capable of winning it.

Duplicate Bridge
A form of Bridge where many players or teams have their performance compared
on the same sets of cards. Unlike in rubber Bridge, making overtricks wherever
possible is usually critical in order to do well.

Eight Puzzle
A toy puzzle featuring eight sliding tiles in a little 3x3 grid. Seems to appear in
everything you've ever read about AI. Including this thesis, now.

Extended Operator Representation
An operator representation of actions that are more complex than the simple
blocks world type actions. Actions which call for such representations include
those with context-dependent effects (i.e., their effects cannot be represented
by some universal lists of domain properties which they alter), or those whose
outcomes depend on unknown or uncertain information.
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Finesse

An attempt to develop extra tricks in a suit by winning with cards that are not
masters. Finesses rely on the elementary principle of card play that the best
results can be obtained by forcing an opponent to play ahead of you.

Information Set

The set of possible game situations which are consistent with the play so far. In
many games, (for example, noughts and crosses or chess) any player's information
set will contain only one member: the current state of the game. However, in
games where the outcome of some moves can be hidden, the information set of a
player may contain more than member: one for each of the sequences of moves
which appears possible to the player.

Inter-suit Tactic

A Bridge tactic that describes useful actions involving cards from more than
one suit.

Interpreter Algorithm
Algorithm used by Finesse to identify promising lines of play in the trees of
tactics produced by the single-suit planner.

Legal Play Sequence (lps)
Any sequence of moves which forms a complete play of a game, without breaking
any of the game's rules.

Line of Play
A modified version of a strategy. Rather than specifying a single choice for each
possible position that may arise, multiple choices can be allowed, providing they
lead to the same payoff under every possible world.

Losers

Either in a single suit or a complete hand, the difference between the number of
cards held and the number of tricks that can be won by playing masters.

Master

Any card which is higher than all the opponents' cards in the same suit.

Method

A heuristic specification of the pre-conditions of a tactic. Such specifications are

typically used by a planning algorithm to decide when the corresponding tactics
can be applied.
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Mixed Strategy
A player using a mixed strategy for some game must first specify some number
of pure strategies for the game, and also a probability vector describing the
chance that he will use each of these pure strategies when the game is actually
played. This type of probabilistic strategy prevents the opponents from using
their knowledge of a player's strategy to improve their own chances.

Non-locality
Phenomenon caused by differing information between players in games with in¬
complete information. For such games, the best choice of move at any node in
the tree of possibilities is not simply a function of the subtree of that node, but
also of all the other nodes in the tree.

Operator
Any internal representation of a domain action. May be either simple (repres¬
enting single domain actions) or compound (representing multiple actions).

Payoff
The value that a player attaches to the play of a game.

Proof-planning
A technique for finding proofs for mathematical theorems. The possible operat¬
ors available at any stage of planning are restricted to a set of tactics, whose
preconditions are specified as methods.

Pure Strategy
A pure strategy determines a course of action for a single player in a game by
specifying exactly one action for each situation that could possibly arise during
the course of the game.

Rubber Bridge
A form of Bridge where winning largely depends on scoring enough points to
win two 'games' of 100 points. Points can only be earned towards these games

by making contracts. Other bonuses are available, but typically the main aim
during card play is to maximise the chances of succeeding in whatever contract
was bid.

Ruffing
The playing of a card from the trump suit on a trick which was started by a
card from a different suit. The player playing the highest trump card on the trick
is the winner.
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Sequence Tactic
A play carried out in Bridge when the declarer has no masters in a suit but
his highest sequence of cards is longer than the highest outstanding sequence of
cards in the suit.

Solved

A game is solved when the best strategy can be explained in human terms.
Compare with cracked.

Squeeze
A play in Bridge which involves forcing one defender to discard one of the two
cards he holds that are stopping the declarer winning a trick.

Strategy
A course of action for a single player in a game, specifying the move to be
made by that player in any situation that could possibly arise during the course
of the game. Possible types of strategy include pure strategies and mixed
strategies.

Tactic

A specific operator (simple or compound) that has been identified as being
either useful or sensible in a particular situation.

Top Tricks
The tricks which can be won by simply cashing cards which are masters.

Truth Criterion

An algorithm for determining whether any given proposition is true at some point
of a plan.

Trump Suit
A suit which is stronger than all the others. When any trumps are played on a
trick, the highest will be the winner, irrespective of the values of the other cards,
or which card started the trick.

Void

A player with no cards in a particular suit is said to be void in that suit.

Vulnerability
In rubber Bridge one side is vulnerable if they have won one game. A side
which is vulnerable suffers greater penalties if they fall short of a contract which
they bid.
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Worlds

In a game with chance moves, each possible (pure) strategy for the chance player
determines a possible world in which the play may take place.
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