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CHAPTER 1. 

XNTROUUCflON. 

The process known as boiling may be employed for the 

of vapour, as in the steam generator, or as a means of rejecting 

heat from a surface, as in the case of nuclear reactors and rocket 

motors. In either case, this process can be a most effective 

method of heat transfer. Boiling usually occurs at a solid-liquid 

interface and this investigation is confined to bailing from a 

solid surface. 

This wont was undertaken to investigate the process of heat 

transfer by pool boiling of saturated water. A horizontally - 

mounted stainlesr'ste.l tube, 0.125 inch outer diameter, was used 

as the heating surface in this investigation. Therefore, the 

literature referred to in this thesis is generally connected with 

pool boiling of water from horizontal, flat or cylindrical metal 

surfaces. 

The characteristics of boiling heat transfer are most simply 

represented on a logarithmic plot of heat flux '. against the 

temperature difference between heated surface and saturation 

temperature of the bulk liquid Tw-Ts, as illustrated in Figure 1. 

An is the natural convection region. Equations have been 

derived which permit the prediction of heat transfer rate in this 

region, e.g. heat transfer rate by natural convection on the cuter 

surface of a horizontal tubs is given by flckdaa bJ, 
"4 

&4C do = tT 
(, cLk) - I 

,L. 

Number in parentheses refer to the list of references at the end 
of the thesis. 
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where -L. • lint transfer coefficient In natural convection. 

a Thermal conductivity of liquid. 

a Outer disaster of the beating tube. 

a Density of liquid. 

a Taperature coefficient of volumetric eçisaiicn. 

• C? • Specific thermal capacity of the liquid. 

Absolute viscosity of liquid. 

Ctwb a terature difference between heater wall and 

liquid (Tr.tb),X and Subscript ji dSotës that the pteperty values 

of fluid corresponds to sltthastic tea teeratre between tubs 

surface temperature and bulk fluid tespérsture. 

Nucleate boiling starts at j when the heater wall temperature 

is a felt degrees higher than the saturation temperature. For 

Initiation Of a bubble at atmospheric pressure, this teeratun 

difference amounts to loss than 10°, at suitable surface conditions 

A thin layer of superheated liquid is formed on the heating surface 

Bubbles nucleate at the heating surface and grew in the superheated 

layer. With increase in wall teçerature, the frequency of 

bubble formation at a particular nucleation site increases and the 

number of such active sites increases, heat transfer ate 

increases sharply along Qg. 
Various mechanisms have best suggested to account for the 

sharp increase in heat transfer rate. Gunther and treith (a) 
postulated, "Base fort of random micro-convection excited by bubble 

activity in the normally laminar sublayer. Forester and Grief C 
have suggested a "pu4ng" of the liquid by bubble action through 

the boundasy layer. Chang and Szedfl [4) have attributed this 

increase in beat transfer rate to Increase of effective thermal 
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conductivity- due to agitation effects of the bubble. 

Various mechanisms suggested to explain high heat transfer 

rates in boiling dependw priprily upon the maximum diameter of 

a bubble. It is, thereforeri necessary to derive an expression 

for predicting ,madmn diameter of a bubble.. 

For saturated. pool.boUbg of water, Various existing 

correlations for predicting bubble diameter at departure are 

summarised in. chapter. 5.1.. None of these correlations were found 

satisfactory when applied to conditions at .subatmospheric pressures. 

An, equation based on energy considerations is derived in 

chapter 5.1. which predicts departure diameter of  a bubble in 

saturated pool. boiling, of water at subatmospheric .pressures.. 

Cpcnparison of available experimental: data in the subatuospheric. 

region with analytical prediction is satiofactory. A second 

.corre3aflon, which depends upon the reduced pressure  
is derived, which predicts bubble, departure diameter for saturated 

PO4: boiling of water over the pressure range between 1.0 psia. 

and 39 200psia.,. . The conarison with available data is 

The relationship between beat transfer rate and teerature 

difference .(TrTs) in the nucleate boiling region can be as 
expressea .......................... 

for moderate boiling only. However, at laige heat fltSs near the 

critical region the, heat flux reaches a maximum. Various, values 

etx have' been suggested including a value of 2 by Rohsenow [sJ 

and a value .of.3.r.  Levy  €6j.  The value of,. obtained in,  this:  

investigation at , subatmospheric pressures lies between 4tónd 6. 
I. 
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As point Q is approached, the slope of the. heat transfer curve 

decreases and finally, at point , a further increase in van 

temperature is accompanied by & decrease in heat flux. 

Main- empirical correlations have been suggested in literature 
for predicting critical heat flux at point , The existing 

correlations are znnkrised in chapter 5.2. The theoretical 

approach to the problem of predicting critical heat flux has met 

with little success. 

Using a logical approach to the problem of heat transfer under 

critical conditions, supported by photographic evidence, an 

equation for predicting critical heat flux in saturated pool 

boiling is arrived at. Comparison of available experimental data 

over the entire pressure range, from 1.0 psia up to critical 

pressure, with predicted values is satisfactory. 

.0 is  the transition boiling region. Zn this region, an 

increase in the heater surface temperature results in a decrease 

in heat flux, until point ,9 is reached. In this investigation, 

examination beyond point .Q has not been carried out. 

At j, there is a thin continuous vapour film surrounding the 

heating surface. 15 is the film boiling region. 

The most effective regime, from a beat transfer standpoint, 

is nucleate boiling region .Q in Fig.l. The temperature difference 

between heater surface and saturation for critical conditions 

(tw-Ts)cr.is  law, Bernath LI) At atmospheric pressure, this 

critical temperature difference is less than 750p  for heat transfer 

rate of 5.2 x 10  B.t.u. per square feet per hour. To transfer 

heat at this rate in the film boiling region, a temperature 

difference in excess of l,000°, would probably be necessary. 
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If the heat input to the heating surface is constant, as in 

the case of electric and nuclear heating, than near point Q then 

is a tendency for excursion from nucleate boiling into the film 

boiling region M. This excursion sq ultimately result in a 

complete burnout of the heating surface. 

Therefore, a better understanding of the phenomenon of 

boiling is essential for & most effective use of the nucleate 

boiling regime in heat transfer problems. 

There is a lack of avimMlMm experimental data in heat transfer 

In the subatmospheric region. Also, there has been no work done 

previously on the nature of tapirature transients in the super-

heated layer associated with the bubble growth and departure. It 

was felt that an investigation into the nature of temperature 

transients may help in obtaining a better understanding of the 

mechanism of heat transfer in boiling at relatively low heat fluxes.. 

Three reasons for choosing subatmospheric pressure range for 

this investigation were: 

Departure diameter of bubbles is large, 
-r. 

Neater surface temperature 17w'*'  is large for low heat flumes. 

This may provide large temperature transients and, hence, a large 

measurable signal. 

temperatures are low and, hence, heat losses an low. 

The principal objectives of this investigation were as followsa-

i) Determination of critical heat flux in saturated pool boiling 

of water under stabilised condition. 

2) Investigation of the temperature gradient in the superheated 

layer near the heating surface and the thickness of the superheated 

layer. 
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Investigation of temperature transients in the superheated 

layer associated with bubble growth and departure. 

Analytical prediction of bubble diameter at departure and 

critical heat flux in nucleate !0ta  boiling of saturated liquids. 

While the order of presentation of this thesis is indicated 

fully in the list of contents, it is felt that some explanation 

for the chosen order should also be included. The phenomenon of 

boiling is complex and this work was aintd at uncovering only 

a few of the n-fleries of boiling hen transfer. The approach to 

this was primarily experimental and therefore this aspect has been 

dealt with first. Chapters 2, 3 and 4 respectively deal with 

description of the apparatus used in this investigation, the 

experimental procedure, and analysis of the information thus 

obtained. In chapter 5, after reviewing existing theories and 

expressions, an effort is made to predict departure diameter of a 

bubble and critical heat flux in saturated pool boiling of water. 

Chapter 6 summarises the results obtained in this Investigation. 

Despite the accent on the experimental nature of this work, 

it has not been possible to sunearise all the impressinne and 

experience which has been gained of the nucleate boiling heat 

transfer process - after hours of experimentation and hundreds of 

hours of examination of photographs and other experimental records. 
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CHAPTER 2. 

DESCRIPTION OF APPARATUS 

2.1 TESt SECTION. 

2.1.1 Form of heating element. 

If the prohient of surface geometry is assessed as a problem of 
. 

arranging a source of bubbles suitable for visual examination, a 

choice has to be made from three basic forts of heat source:.  

1) point source (flout-dimensional), 

z) line source (one—dimensional), 

3) flat surface (two—dimensional). 

A fiat surface was found unsuitable for two main reasons, 

Firstly1  from the point of view of high speed photography, it would 

have been impossible to measure the distance of the bubble wall 

from the thermocouple junction with horizontal camera alignment. 

The possibility of vertical camera alignment was discarded because 

disturbances on the water surface would have screened the heating 

surface. Secondly, it would have been extremely difficult to work 

In the region of critical heat flux due to danger of burnout. 

A point source geometry possessed a marginal advantage for 

an investigation such as this. the probability of recording & 

bubble on the high speed film, during brief exposure period of 0.8 

second, would have been higher. However, the disadvantages 

outweighed the advantages. Some of the disadvantages wares 

i) From an experimental point of view, feasible heating 

systems for a point source are either electric heating or the use 



of a LASER.. LASER energy sources were only under development 

at the beginning of this work and were not available commercially. 

At low pressures, the. bubbles are large and the bubble growth 

period is of:  the.  order 020— 30 ntifltseconds, Patten [sj. 

ES electric heating, blanketing of the point source by the 

vapour bubble for this duration would most probably result in an 

excursion intothe  film boiling region 'even at low heatfiuxos. 

The temperature fluctuations of the heating Surfacej. 

due to clete blanketing by the bubble, will be large 

. The 'value of voltage and current will be very Small 

and measurement of these quantities will be inaccurate. 

With apoint source, it is difficult to determine heat 

flux. . .. . . 

1. No suitable system could be devised which would overcome above 

difficulties. 

Something approximating to a'llne source was the final choice. 

Thiai.t wires provide good line sources and for work in the sub"

atmospheric region (when the bubble departure diameter Is large) 

thick wires or small tubes may be used. tubes were preferred 

because, as will be explained later, it is possible to experiment 

in the region of critical heat flux using a stabilizing system. 

The stabilizing system prevents an excursion into the film boiling 

region by removing excess heat from the heating surface. 

Mother decision to be made simultaneously with the form 

of heating surface is the origin of heat energy. It was decided 

to use electric heating in preference to steam heating for the 

following reasons.:.- 

1 



• the I  heat energy input is uniform ever the surface area, 

the Control of heat 
. flux is relatively ,  simple and high 

heat fluxeá can be obtained, 

measurement of thermal energy input to the heating 

surface is easy and accurate.. 

The tub . was mounted horizontally to ensure constant heat 

transfer ccoefficient along the length of the, tube and to prevent 

bubbles from, one section of the tube interfering, with the, other. 

2.1.2. .• mensions of. the ..heatftw tube. 

To be . consistent with a line source, the diameter of the tube 

was to; be as small as possible... A lower limit for .diameter was 

imposed by the magnitude of the pressure drop over the test length, 

for the stabilizing fluid f]owing. through the tube.. 

The maiituds of the current required to produce heat fluxes 

of the order of S.O.x 1O B.t.u.;  per hour per square feet sets a 

limit to the maxtu possible thickness of the. tube  

Minimum wall thickness was limited by two, factors:-

ii. problems of handling of the tube and of brazing it to. 

the. busbars, 
. . . . .. . . . 

z) effect of tube wall thickness on critical heat .flux.. . 

A polished stainless steel tube was chosen to prenut corrosion 

of the tube surface and to keep water free from contamination during 

boiling. No microscopic check was made on. the surface conditions 

of tim tube because it is known that critical heat flux is 

independent of surface conditions of. the heating surface, 

Sorenson and Bernard a°J• Also, none of the existing. 

correlations for predicting critical heat flux in saturated pool 
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boiling contain terms involving surface conditions of the heating 

clement. 

The final specifications for the test section were:- 

Length of the test section - 6 inches, 

Outside diameter of the test section a 0.125 inch. 

Wall thickness • 0.008 inch. 

M 48 

Figures 2 and 3, reproduced fran Ivey [2lJ,show the effect 

of the heater diameter and tube wall thickness on critical heat 

flux. It is clear from figure 2 that the diameter of 0.12$ inch. 

corresponds both to large diameter tubes and flat surfaces at 

atmospheric pressure. 

From experimental points plotted in Figure 3, it is clear 

that the value of critical heat flux for heater thickness of 

0.005 inch. is only 10 - 15% less than the corresponding value 

for very thick tubes. This difference is smaller than the 

scatter of esperirnental results for thickness of the order of 

0.005 inch. In the case of the experimental arrangement 

adopted here, however, the use of a stabilizing system is assumed 

to nullify any effect of heater wall thickness on the critical 

heat flux. The use of a stabilising fluid provides a source 

and sink of heat should the beater surface temperature fall or 

rise above the mean stabilizing fluid temperature. Large 

temperature fluctuations of the heater surface near rn4rna heat 

flux are, thus, damped significantly-. 

The natural frequency of vibration of the selected tube at 



first harmonics was estimated at 6.1 * 10 cycles per second. 

Wfl4 !t3iaa71Y7!aw!F 

The conductors were fabricated from f inch. diameter brass 

rod to give a negligible voltage drop at the estimated awdsum 

current of 150 Amperes. The conductors were Nickel-plated to 

Prevent contamination of water. The stainless steel boiling 

tube was brazed to these conductors using silver solder, Figure 4, 

2.1.4. Test tank. 

It was felt that success in the application of high speed 

photography was dependent upon maxima transmission of light to 

the heating surface and, therefore, a completely transparent tank 

was specified. Glass and perspex were both considered and 

perspex was finally chosen because of the ease with which it can 

be machined. Also, in the subatmospheric region, the msr(rmtm 

saturation temperature of water was 212°?. which was slightly less 

than the upper temperature limit for perspex. A thickness of 

0.625 inch was fixed on the basis of the deflection at the centre 

of the largest side which was approximately U inches x 12 inches. 

The final, dimensions for the test tank were:- 

length — 11.0 inches, 

breadth — 1.0 inches, 

height — 12.0 inches. 

The factors which determined tank length and breadth were:- 

1) dimensions to be much larger than the maxims bubble 

diameter so that tank site has no effect on the maximum bubble 

U. 
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disaster sad growth rate* 

a) water 1n4 to flu not no than 4 ish In duration of 

cm test of about 10 thmtsa. 

Tb. edges .f the perepsa aides were Joined using per,n 

oeist and the anethty we cured under an gtra-vigst lop. 

The front plate of the tack was belted to the tSt with a silicons 

rubber ga*et, 0.139 inch. dta...tsr, to provide a leak proof joint. 

This plate could be removed to allow access to the Interior of 

the taS, whenever necusany. awing the C4satfliathltg tests, 

this tank started leaking at the assented joints. It was dear 

that, under lowest pressure, s4ft010%t definton occurred at 

the cemented Joints to cause croaking. It as therefore 

i*cesss*y to redesign the to*. 

The fcO.iowing deign proved saUnfocteryt 

A brass tree was asS ton one inch square ban brand at 

the c.n.n. £11 outside face .f the frame tan asthined an 

grooved adtabiy to retain a 0.139 lush. dtnter silicate rubber 

ga*n. flgun 3. The perspex sides were screwed to the bras 

fr, the seal being formed by the rubber gl*et cm all sides. 

Accese to the interior of the tank was soldered tr roving 

the front plate. All dustiest esnecU one wars ends thrct# 

the top plate. 

The pnsasn range selected for this Investigation was ton 

1.0 pals to 14.7 pals. The reasons for choosing this rugs war# 

priasrily seriaentst, urdys- 
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i) the ;eiçerature difference between wall and saturation 

for initiation are large and a large measurable temperature 

transient can be expected. At 1.0 pus, initiation temperature 

difference for boiling on stainless steel, tube is.  about 35°?, 

z) bubbles are large at low pressures. The I  bubble. 

diameter of the order of 1.6 inches is obtained at a pressure of 

1,0 psia. 

3) temperatures are low and hence heat losses are low. 

In addition, the range of property value covered in 

2.4 fold variation in viscosity. 

2.1 told variation in Prandtt number, 

1.2 fold variation in surface. taision, 

12,5 fold titration in vapour density. 

The fdllsidng arrangement; provided a vefl'- steatbt vacuum control 

in the above pressure range. VigU$ &, shows. the ncutan system. 

A vacuum pump type ISC 30, manufactured by S Edwards High 

Vacuum Ltd. with displacement of about 1.10 cubic fat per nthmte, 

was used to produce a vacuum In the tadc • A water-tooled 

condenser between the tank and the pump ensures that most of 

the water vapour is removed before the air-vapour mixture reaches 

the pump. 

The vapour was extracted from the tank through a 2 inches 

bore connection. All connecting pipes from the tank to the 

vacuum pump were glass and of the standard sizes supplied by 

Q.V.F. LTD. The condensate collecting vessel was of S litre 

capacity and fitted with a drain-cock.. 
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To regulate and maintain low pressures in the teSt, a 

Cartesian Nanostat was tint fitted. During operation 

fluctuations in pressure of the order of ± 0.1 pounds per square 

inch occurred. This was considered unacceptable for low 

pressure work and, therefore, the }fanostat was replaced by an 

Wards air admittance valve type R.S.I. just upstream of the 

vacuum pump. In addition, a needle valve type V.S.I. was 

connected to the test tank. Then two valves provided excellent 

control over the vacuum in the tank which was measured by a 

mercury manometer. Atmospheric pressure was measured to within 

± 0.002 inch. of mercury using a Fortin barometer. 

tw tfl9li!yijl4 

Pff.R _j&cLaa4)QK. 

It was decided to use direct current to heat the test 

section for two main reasoner 

l) to avoid  any influence of 50 cycles per second current 

and voltage ripple on bubble growth rate. 

z) to avoid A.C. pick-up by 0.002 inch. diameter thermocouple 

situated near the belting surface. An A.C. pick-up by the 

thermocouples would have spoile4 azq recording of temperature 

transients in the superheated lq-er near the heating surface 

during bubble growth. 

For an assumed value of the critical heat flux in nucleate 

pool boiling of 5 x 10 B.t.u. per hour per square feet 



15 

at aosphedc presents, the poor requirsent was about 150 Amps. 

at 15 Vdts. It was decided to use a 20 yeats, 400 Amps. 

D.C. notorgesrator unit. Contisusoni current control Was 

available over the satire range. 

IM general arransisit is shown 1* Figure 7. 

£ trial run was made to estimate the .samt of A.C. in the 

D.C. Supply ft's the gm*ratcr. ?Us was done on the bats of 

A.C. picked up Lip' 0.002 inch. diameter thenocoq$ie placed ant 

the beating tube. The was of the order of 0.5 M14yAjt 

(E 22°0 for 6 tata across the heating tubs. This was 

considered 14gb 0r'ared with the mdame transient tssraturs 

of the order of 30F. 

• It was, therefore, n.cnasry to smooth the D.C. apply 

using condenare. The beat combinations  after trial and error, 

was found to be 6,000pF capacitance across the field and 6.0001K 

across the output from the generator, as shown. The negative 

I from the generator was earthed to give acceptable condition. 

pick-up was reduced to about t 0.04 ailinit. (c ± 20F.) 

this arrangement, the frsrpency of pick-up being 600 (Vs 

tied by 50 C/s S.C. siçp7. 

A standard resistance of 0.00025 ohm vat connected in 

with the output from the generator. The voltage drop 

the resistance provided the talus of current ftowing in 
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the circuit. Two stainless steel clips were fixed rigidly on 

to the test section at a measured distance between them. The 

clips had, sharp edges so that the distance between the clips 

could be measured accurately using a travelling microscope. 

Leads from the clips were connected through a 400/1 voltage ratio 

box to a potentiometer circuit to determine the voltage. 

The values of voltage, current, together with the dimensions 

of the tube and distance between stflinless, steel clips provided 

the heat flux values... 

1sf- STABILIZING CXR(flhlt 

2.4.1 Process of stabilisatiat. 

The use of stabilizing fluid for determining heat transfer 

coefficients in nucleate boiling in the region of critical heat 

flux was first suggested by Poleta*in 6' o*thsrg Ci.. 

The boiling curve for water at 1 - atmospheric pressure was 

first published by Nukiyama C1 and has since been confirmed 

by many research workers, at various pressures. Figure 1. shows 

the form of this curve which generally applies for many different 

liquids and many different w:perimental arrangements. Heat 

flux co is plotted against the temperature difference between 

heating surface and saturation temperature Tw-Ts on a log—log 

scale. 

Over most of the boiling range, at any fixed value of heat 

flux, there may be three different wall temperatures. These 

three wail temperatures correspond to the three boiling regimes, 
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viz. nucleate boiling, transition boiling and film boiling. In 

the vicinity of point C. there is a tendency for an excursion 

into the film boiling regime resulting in eventual "burnout" of 

the heating surface. Investigation of nucleate bailing at 

critical heat flux is made difficult by the possibility of 

instability. It is essential, if reproducable experiments are 

to be made, to provide some method to prevent the change of 

operating conditions from C to E. Such an excursion into the 

film boiling region is prevented by the use of a stabilizing fluid. 

Consider a constant heat flux line xx in Figure 1. In 

nucleate boiling, the heat flux Gfr corresponds to tube wall 

temperature ?wr• at point F. The tube inner surface temperature 

is ?ir Under steady state Conditions, with stabilizing fluid 

flowing through the tube, if inlet Stabilizing fluid temperature 

Ta. is equal to TTF then the outlet stabilizing fluid temperature 

T is also equal. to ?.p. No heat transfer takes place between 

the stabilizing fluid and the tube. All the electric heat input 

to the tube is dissipated by boiling on the outer surface of the 

tube. 

If, due to instability, the operating point Jumps from P to H, 

both tube outer and inner surface temperatures acquire a new 

value, say Two and T, respectively. Some heat energy 

proportional to ?ni - ?ic will then be transferred to the 

stabilizing fluid. As a direct result, the operating point on 

the curve will, come down along RD. 

In principle, tube failure can be avoided if the stabilizing 

fluid can remove heat input equivalent to j) *PIG . 



• For atmospheric pressure, and an assumed value of (%-%) 

of 4.7 x 10 B.t.u. per hour per square feet, the required heat 

capacity of stabilizing fluid, for tube diameter of 0.125 inch, is 

7660 B.t.u. per hour. 

2.4.2 Qioice of stabilhsinf fluid. 

Calculations were carried out for water and two other 

coercial heat transfer liquids, fls. Shell Yoluta 45 and 

Hobilthenn 600, to decide upon the beat stabilizing fluid suitable 

for this investigation, 

It was clear Inn calculations, appendix t, that for the 

required stabilizing capacity, the pressure drop across the heating 

section was least for water, iris, less than 1.0 psi for water 

compared with 67 psi for Mobilthens 600 and 94 pat for Shell 

Vi*luta 43. 

This experimental investigation was restricted primarily to 

subatmospheric pressures. Under these conditions, wall 

tenperatures are low (soo°r at atmospheric pressure). Using 

water as the stabilizing fluid, the pressure in the stabilizing tank 

need not therefore exceed 120 psig. 

Because there are no decomposition products, as may occur 

with the other liquids, it was ,  decided to use water as the 

stabilizing fluid. 

2.4.3 StabilizIng system. 

To reduce. costs, a mild steel tank was designed for use as a 
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stabilizing fluid tank. To reduce corrosion to a nininiun, the 

tank was coated on the inside with Araldite type 18. The internal 

dimensions of the tank were 12 inches diameter x 18 inches high. 

Standard spiral electric heating elements enclosed in pyrex glass 

tubes were installed inside the tank for heating the stabilizing 

fluid. Two such 1,000 vatts.heaten, connected in parallel, 

were supported from the top of the stabilizing fluid tank. A 

temperature controller was installed and connected to the heaters 

through a variac. the vir'iac in conjunction with temperature 

controller proflded control over stabilizing fluid temperature 

to within ± 0.101P. over a period of ten minutes. The mild steel 

tank was insulated with one inch thick glass wool insulation. 

To avoid boiling in the stabilizing system with test section 

inner wall temperatures of up to 300?, it was necessary to raise 

the pressure, and hence the saturation temperature, in the 

stabilizing system. A nitrogen supply, a pressure gauge, a 

safety nAn and control valves were installed to obtain and 

maintain 5147 desired pressure in the stabilizing system up to 

120 psig. 

A circulating pump type KRFB, manufactured by Sigmund pump 

specially modified to withstand temperatures up to 300°? and 

pressures up to 130 psig, was installed finally after unsuccessful 

attempts to modify a type 10 Stuart Turner pump. A Fischer and 

Porter flovrator was included in the circuit to measure flowrates 

between 1.0 igph and 15.0 Xgph. A by-pan valve enabled 

adjustments of the flowrate through the test section. The 

general arrangement is shown in figur'd S. 



811034, Jaralated, nickel-al'sln4uWflit*4-cbrcaita alloy 

thermocouples were used to measure the temperature of  the 

stabilising fluid at inlet to and outlet from the test section.. 

The thentocaiple assembly is as sham in Figure 4. 

Each thermocouple was iscated in and kept in position by * 

set of •  two ceramic holders. The csreaie holders were separated 

by s.flsiuless steel rod. 

The position of theratocaiples was It inch upstream of the 

entry and 14 inch downstream of the edt of the actual test.  section. 

An air gap in the approach tubes was provided to prevent local 

boiling of the liquid in the test tank. 

WWtThi rnnasr .wjW-wxni 

Meng various methods of measuring tube wall tsieraturc 

two costonly used ant- 

measuring the electrical resistance of the heating element. 

using a thermocouple welded to the aurfacs of the beating 

elesmnt. 

Thom are difficulties in measuring tale surface telçstatun 

using either of the above two methods. Since the surface 

teeperature fluctuates that to the bubble growth and departure, the 

current drawn by the heating element fluctuates for the is 

applied voltage. Also, terature ucoefficient for stainless 

steel is nay nail. Method cue was, therefore, considered 

inaccurate. Method two was discarded at following grounds:- 

difficulties of aiding £ thermocouple to the tube surface. 

necessity of calibration for D.C. voltage pick-up, 
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• 3) welding to the tube surface will change the surface 

conditions at the point and, hence, temperature measured will not be 

an average surface temperature. 

the thermocouple junction could only he welded at one 

point. the rest of the surface area of the junction will eerie in 

Contact with liquid and vapour. This will introduce error. 

pressncó of thermocouple will influence nucleation 

conditions locally- at the thermocouple. 

In the present investigation, the above difficulties were 

overcome by measuring stabilizing fluid temperature. The tube wail 

temperature was derived from stabilizing fluid temperature, as in 

Appendix XI. 

Since the stabilizing fluid temperature at inlet and outlet 

was not measured at exactly the beginning and end of the test 

section, but at a distance of it inch, an error is introduced. 

The error is mainly due to heat lost fran the stabilizing fluid 

by conduction and convection in the approach tubes and conductors. 

The extent of these losses is of the order of 313 B.t.u. per hour 

per degree F temperature difference between the stabilizing fluid 

and the bulk in the test tank. The extent of these losses was 

determined as in appendix III  and correction applied to all results. 

At critical heat flux in nucleate boiling at 1.0 psia, this 

correction amounted to about 10%. 

To apply correction, a temperature difference between inlet 

and outlet of stabilizing fluid, equivalent to losses, was 

maintained during actual experiments. 

In determining losses, (appendix iii), it was assumed thAt 
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the losses at entry and at exit are equal. The tube inside wall 

temperature was, therefore,.. obtained as the aflthmatic mean of 

stabilizing fluid temperature at inlet and outlet, 

t 

Outside wall tenipeflture (iv) was determined from tube 

inside wall temperature (T-r) as in appendix U. 

The sensitivity of the Stabilizing System was determined 

as shown in appendix IV. 

pwp'w 

2.5.1 Manufacture. 

T & t1 base metal (nickel-4undniuWnickel—ghroiniurn), 

uninsulated,- thennocouple wires of 0.002 Snot' diameter wore used in 

this project for recording temperature transients in the superheated 

layer and for measuringthe temperature gradient In the superheated 

layer. An electric, discharge welder, Figure 91  produced a butt 

welded joint between the two wires., 

By a system of trial  and 0rr0r1 the working values of. 

voltage and capacitance, forL welding of %002 inch diameter 

wires, was found to be, 

voltage • 47 volts on the output side, 

capacitance a 16 rr 

The arrangement used for holding and aligning the wires is 

show in figure 10.: 



A two feet length of each wire was táen. The ends of the 

wire were out with a sharp rasor blade to obtain a cut 

to the, axis of the wire. A* inch length of each wire projected 

outwards from the instrument clips. A butt-welded joint was 

obtained with the ads of both wires lying in the sae straight 

line. A very- well pressure was maintained between the butt-ends 

before passing the discharge, Absence of vibrations was 

necessary for alignment. 
, 

A ow resolving ( *50), binocular type, microscope was 

used for alignment of the wires and examination of the junction. 

A thermocouple was only accepted if it satisfied the following 

conditions: 

junction must be cylindrical in shape and of diameter 

not greater or less than 0.002 inch, as seen through the 

microscope. Any appreciable'• amount of discontinuity at the 

junction disqualified the thermocouple. 

The junction must stand 3- 4 mild jerks. About one 

razor cut in 15 produced a cut perpendicular to the axis of the 

win.. Only one discharge in 20 produced an acceptable 

thermocouple. 

Kach thermocouple was first calibrated at ice point and 

boiling point of water to test if the junction gins a steady 

output. The thermocouples were next calibrated at intervals 

of 30?. between 100°? and 300°F. Only those thermocouples with 

deviations not eeeding tr (S 0%a°v)  up to 300SF, were 

accepted. The calibration value was 44.20F per milivolt of 

thermocouple output. 

23. 
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A yoke-shaped stainless steel carrier was manufactured for 

rigid thermocouple mounting. Two different yoke types were tried. 

The first one is shown in Figure 11*. The stainless steel 

carrier had a groove  i  inch wide and Iinch deep to retain a=all 

spring. The carrier also had a small penpex piece at either end, 

joined to it by Araldite typo 1$. The perspex pieces were grooved 

with a spacing of 0.006 inch between each V-shaped groove. Croons 

on both legs were in a line perpendicular to the vertical axis 

of the stainless steel canter, 

the thermocouples were fixed and tightened in a special jig, 

.Figure 12), Be that the junctions of all the thermocouples were in 

line with the vertical axis of the carrier. A small amount of 

.Araldite?lo. 18 was applied on each end of the yoke and the 

ass emhiy left to dry for 48 hours and then cured at 800C. for 

2 hours. Six thermocouples were mounted with 0.006 inch spacings 

between them to cover the whole superheated layer of an assumed 

Sickness of about 0.03 inch. 

A spring was fitted in the yoke groove after curing to keep 

the thermocouples wires taut. The distance between adjacent 

thermocouple Junctions was measured accurately using a Vickers 

projection microscope. With a magnification of 138.7 t. 0.6%, 

distances were measured to an accuracy of better than 1 x 10 

Figure 13 shows photograph of the thermocouple junctions. 

While working at pressures of 7.0 and 14.7 psia, sagging 

was observed in the thermocouples. It was felt that this might 
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be due to softening of perspex. It was, therefore, decided to 

adopt another ythe type carrier as shown in Figure Ub. 

The second carrier had no groove for spring and no perspex 

pieces. Both lefl of the carrier were thoroughly cleaned and 

dried. A sm.*11  amount of cold cure Araldite was applied to 

each leg and allowed to set and cure. Excess Araldite was milled 

out. The Araldite was than levelled and finally grooved with a 

spacing of 0.008 inch between the Yshaped grooves. 

Thermocouples were find and tightened as before. A small 

amount of Araldits was applied and the assembly was cured for 

72 hours at room temperature • the distance between the thenno— 

scouples was measured to an accuracy of 2 * inch. using a 

high power microscope. The cold cure Araldite held the 

thermocouples flatLy in position for pressures up to atmospheric 

without sagging. 

Response time of the 0.002 inch diameter thermocouple was 

estimated to be about 0.2% millisecond, appendix!. 

TANK A$S&4BLT. 

The current carrying conductors were bolted to the top plate 

of the tank through silicone rubber gasket lot rings, care was taken 

to ensure that the 0.125 inch diameter halo in each conductor was 

in the sane straight lime. The gaskets were squeezed against the 

conductor and perspex plate to provide a leak—proof joint. 

A stainless steel tube specimen was selected with care to 

ensure that there were no kinks, discontinuity or bends on the 

tube as observed with the naked eye. The tube surface was then 
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observed under a microscope with a magnification of shout x 50. 

A few sisan tattles were observed • on the surface while the rest of 

the tube surface was generally smooth but no special selection. 

process was carried out. 

The stainless steel tube was inserted between the conductors 

and then silver, soldered. The test, length of the section between 

the conductors was 6 inches.: The perspex plate was kept in 

water to . ensure that the heat conducted along the brass conductors 

did not soften the perspex plate during soldering. 

The tube surface was polished with "Brasso" to, remove the 

oxide layer formed on the tube surface .during soldering. The 

surface was then cleaned several 
, 
times with. carbon tetrachloride 

to remove Brasso, 'and traces of dirt, oil: and grease. The tube 

was further cleaned with acetone and finally washed with hot, 

distilled and do-ionized water. 

The top plate of the tsidc was then ,screwed .to the nickel- 

plated brass frame, the seal being formed by 0.139 inch diameter 

silicone rubber gaScet. The left and right hand side perspex 

plates were similarly screwed to the frame. The stainless steel 

approach tubes (to cany stabilizing fluid) were inserted and 

screwed to the conductor using a washer and a thin P.T.F.L ribbon 

provide a leak-proof joint. Silicone rubber 0  rings were used 

to provide leak-proof seals between the approach tubes and the 

perspex sides. The bottom, back and front perspex plates were 

screwed to the tank and the tank was tested to ensure that it 

was leak-proof. 

Stainless steel voltage taps were fixed on the heating tube. 
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The distance between clips was tenured to an accuracy of 

± 0.005 Inch. using a travelling microscope. 

G].asrenclosed spiral resistance heaters for the bulk liquid 

were then fixed in the tank and electrically connected. A 

calibrated thermocouple No. 34, manufactured from nickel-

aluminiuWnickelchrcmium alloy wires, was located in line with 

the heating tube and at a horizontal distance of 2 inches away 

from it, to insure the mean bulk temperature of the test liquid. 

The thermocouples measuring the stabilizing fluid temperature 

were also fixed in position as shown in Figure 4. 

After the tea assity, it was thoroughly cleaned with 

tissue paper dipped in acetone and finally with distilled and 

do-ionized water. The tank was placed in position and connected 

to the vacuum, stabilizing and power circuits. Al]. thermocouple 

circuits were completed and checked. 

2J. Q(OIC Of ZRANSUNT RECORDING STSTDli 

2.7.1. :Rtnuittents of the system. 

From Patton çsJ , Figure 40  bubble radial growth rate in the 

initial, stages of growth was taken as 10 feet per second. 

Atdumtngtke thickness of the superheated layer to be of the order 

of 0.03 Inch, the maximum frequency of teeratufl transient was 

estimated to be 2,000 cycles per second, for a bubble growing 

on the heating surface immediately below the thermocouple junction. 

The maxtnma possible transient amplitude was estimated at 40 •  

corresponding to temperature difference between tube wall and bulk 

liquid for moderate boiling at 1.0 psia. 

-t 



To check the amplitude and frequency of temperature 

transient associated with bubble growth, a prototype tank was 

used. This tank was that used In previous work referred to in 

Ui). A Ni-chrome wire, 0.01$ inch. diameter, was fixed, 

between two current-carrying conductors approximately 6 inches 

apart. Power was obtained from a 12 Volts D.C. accumulator. 

A nickel-alwniniudnjdcel-chromium alloy, 0.002 inch diameter, 

uninsulated thermocouple was mounted on an adjustable perspex 

support which was moved in, such a way that the therstocoupie 

junction was brought in contact with the wire by manipulation 

from outside. A vertical movement of the support was also 

possible and this helped in accurate alignment of the junction 

near the centre of the win. 

The thermocouple was connected to  a Nagard type 103 

oscilloscope with internal D.C. amplifier type 104/3 of continuous 

gain up to 1001000, and also to[Kàlvin-Hughes paper recorder 

type MKS through a recorder D.C. amplifier. The bulk water in 

the tail was heated by glass-enclosed spin], heaters situated 

inside the tank. Vacuum in the tank was produced and 

maintained by a vacuum pump and Cartesian Manostat. 

Under boiling conditions, the 0.002 inch. diameter 

thermocouple was brought close to the wire surface and the 

transients were observed on the oscilloscope. When the transient 

amplitude appeared to be a maztnvm the recorder was run at the 

maximum paper speed of 4 inches per second. The response on 

the recording paper was flat for frequencies up to 100 cycles per 

second only. This limit of recorder frequency prevented 
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an adequate recording of fast transients. 

A rough chuck was mats on the oscilloscope by cosparing 

the transients against a standard 2 1(C/s signal displayed on the 

second oscilloscope chsnnsl. The asrina  frequency- did not 

exceed 2 KWs on visual examination of the oscilloscope 

screen. 

Mother .attempt was made to record these transients using a 

drum camera. The transients and a standard 2 K C/s signal was 

displayed on the scope and a recording was made using Southern 

Instruments Oscilloscope drum camera type MIS at a speed of 

700 Inches pe*econd.  the circumference of the drum of 

20 inches restricted the actual exposure to 30 siliseconds. The 

email number of high frequency transients made it necessary,  to 

try,  yet another method of photographing the oscilloscope screen. 

A single shot Shacksan 35 M. oscilloscope camera was tried 

and proved successful as a check and such less expensive. Prints 

of successfully exposed frames were mile and analysis of prints 

confirmed the calculations that the main transient frequency 

was of the order of 2 KC/s. Temperatures as high as 250F. 

were recorded in transients for moderate boiling, Figure 14. 

This experience showed that neither of these methods was 

really suitable and the final choice rested on the &tra'violet 

recorder type 1185, manufactured by Honeywell Control Ltd. 

)lathm*m paper speed on the recorder was 120 inches per second. 

A possible resolution of 0.QIO inch provided a madras accuracy 

for time measurement of just under 0.1. nasa. This is less than 

the interval between successive frames in high speed mm records 
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at 6,000 frames per. second. 

In selecting a 80t of suitable galvanometers, it was noted 

that galvanometers with high natural frequency had low sensitivity. 

The msñnun transient frequency- of 2 Kq/s required at least & 

natural frequency of 3 tWa for the galvanometer to get response 

fiat to within. 5%upto2KQS. BRA 3,000 with natural 

frequency of 3 xQa were, therefore, found suitable for this 

investigationj Sensitivity, of the type BM 3,000 galvanometer 

was 1.22 volts ± 25% ptr inch deflection depending upon the 

position of galvanometer in the magnetic block. )flninnim 

sensitivity was, therefore, 1.53 "Its per inch deflection on 

the recording paper. 

A D.C. pre-amplifier was required to raise the input level 

of the theztoàoupls signal to a value which could gin a measurable 

deflection on the' recorder. The maximum 'transient amplitude 

was 1 rnflhivolt (equivalent to 44 F.), therefore an amplification 

of * 2000 was required. The D.C. decade amplifier type AAØOO, 

manufactured by Stüirtron flectronic Group Ltd., was selected. 

The gain on this amplifier can be selected between it 20 and x 2000 

with continuous variation. The use of this D.C. amplifier 

increased the nthiinnm sensitivity of thermocouple circuit of 

1.53 volts per inch to 1.31 inches per mi4vcu.t.of  thermocouple 

output. 

Airing actual calibration of: the thermocoup1epre-amp1ifier - 

UV-recorder combination, the minimum deflection was 1.6 inches 
1 

per n4ivelt thermocouple output. For a resolution of 0.010 inch, 



the possible accuraw , of 0.3SF. of temperature difference was 

obtained on the recording paper. 
. 

tthms permissible short di*r*tion current output from the 
1, • .  

D.C. amplifier. AA900 was 3$ mUl-amperes. The galvancteter 

resistance was 100 ohm. This set a limit of 34 volts across 

the galvanatner and at x 2000 amplification, an upper limit of 
1. 

1.8 mL4vdts on the thermocouple output. 

jP.4WjW.Ij7W,T-) V s 
1 

To ensure that thi upper limit of 1.8mii.vult of 

thermacouple output mentioned above was not exceeded, the odd 

Junction was necessarily at a steatb' temperature nick higher than 

32°F. to reduce the D.C.level to the UV-reOordsr. It was 

decided to limit the D.C. component of the signal to less than 
1 

0.5 mi]Livdt.  The cold junction was, therefore, maintained at 

about 20°F. below the bulk liquid tempentáre in the test tank. 

To avoid conftisioñ, this junction will be termed as "the controlled 

junction". 

A 9 inches diameter * 12 inches high insulated gins tank 

was used as the controlled Junction tank. A steady temperature 

was maintained with the help of a circulation pump and a glass 

enclosed spiral heater,. A variac was connected across this heater 

to provide fine control. 

The temperature of the controlled junction tank was measured 

by a thermocouple. 

The cold junction ends of the thermocouples measuring bulk 

temperature in the test tank, stabilizing fluid inlet and 
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outlet temperatures, and iLl 0.002 inch diameter thermocouples 

measuring transients near the tube surface were enclosed in 

paraffin-filled glass tubes which were supported in the controlled 

junction tank. 

During experiments in which heat transfer coefficients were 

determined, the controlled junction tank was not heated. 

H ((j 

2.8.1 no  Camera. 

For high speed photography, a: Pastas camera was used. The 

marinim film speed obtainable with, this camera is 80000 TI'S. 

Fill capacity of the camera is 100 feet x 1$ nit.. 

Since bubble nucleation was randat both in time and apace, 

therefore, the choice of both of area of field of 'view and 

rate of boiling had to be a coirprcmise. Too wall a field of 

view, or too low a rate of boiling resulted In wastage of film 

stock and experimental time if a bubble failed to develop during 

the brief (0.8 second) recording period. Too high a rate of 

boiling had also to be avoided since relating the temperature 

transients to a specific bubble would have been impossible. 

For pressures 1.0 and 3.0 psia, the actual field of via 

recorded was 3 inches wide. Vito stainless steel needles 0.163 

apart located in the tank beneath the test length and within the 

field of view acted as fiducial marks. For pressures 7.0 and 

14.1 psia, the field of view was reduced to one inch and the 

needles were 0.706 inch apart. 
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The lighting system consisted of four 750 watts, 115 Volts 

reflector lamps. two lamps, with diffused light, lighted the 

front of the tank and two lamps were placed behind the tank to 

provide edge lighting; óare was taken to prevent flare in the 

camera lens. A black velvet cloth was placed behind the tank 

to increase contrast. The lights were set up, both front and 

back, about as. foot from the tank surface and at an angle of 45°  

to the camera aide. 

To filter infra-red radiation from the light source, penp.z 

filter tanks j inch. deep and fill. 4 with 10% copper sulphate 

solution were placed between the lamps and the tank. This 

arrangement reduced the intensity of heat from light sources at the 

tank face to less than 5% of un-attenuated value. 

Brightness values at perspex surface were i- 

Front 1 * 10' ft. - candles. 

Back 6 a 10 ft. - candles. 

For photographic purposes using Uford UPS film stock, an 

aperture of £3.6 was required with standard 1$ an. aperture alit, 

for film speed of 6,000 1)s. Figures 152  1* and 17 are general 

stereoscopic views of the set up. Figure 15 shows Dexio% tripod, 

front lighting and infra-red filters. Figure 36 shows close-up 

of test tank and front lighting arrangement. Figure 17 shows an 

oblique view of the relationship between camera and oscilloscope. 

Cardboard tube connecting oscilloscope and camera was made in 

.two units sliding inside each other to facilitate removal of film. 

33. 



A clove—up of the test tar* is shown in Figure iS ia which 

can be identified current-carrying conductors, stabilizing fluid 

carrying tubes, test sàctiaz, voltage measuring clips, the 

thermocouple bridge and the fiducial marks. 

The easiest way to examine these pictures in three 

dimensions is to use a standard stereoscopic viewer. Hold the 

viewer close to the eye and move the picture backward and 

forward to obtain focus. When in focus it may be helpful to 

rotate the picture slightly to obtain fusion. Alternatively*  

a piece of cardboard held between the eyes, such that one eye 

can see only one picture, can provide a three dimensional view 

with no magnification,  The distance between the pictures and 

eye should be adjusted by trial and error. 

rawlijiTIt3ia,ec  

Two systems were tried for synchronisation, the second of 

which proved more reliable. 

In the first silts, the available channel of the Fastax 

camera was used, for marking 1. KC/s tin base on the edge of the 

film. The operation of the camera circuit also operated a 

double julie solenoid which ibd a synchronising marker to the 

UT- recorder and to a Cossar double beam oscilloscope. The 

UT-recorder also had a time base of 100 CVs throughout the 

reading period at a paper speed of 120 inches per second. 

The high speed niltichannel UT-recorder received signals 

from three thermocouples while one, fed in parallel the second 

34. 
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channel of the: oscilloscope. The display on both oscilloscope 

channels was imaged on the optical channel of the Fastax camera 

as shown in Figure 37. Thus, both film and recording paper were 

muted both with a time base throughout the recording period and 

a synchronising event signal Common to both. The purpose of 

oscilloscope and double recorded thermocouple recording was to 

ease the problem of correlating the film and paper record together 

n analysis. •. 

However, due to excessive load taken by the, centers and 

lights, at the moment of switching at, this system proved 

erratic and unreliable and it was decided to modify- the camera 

circuit. 

The Canal system included a spark timer unit which provided 

two time marking channels on the camera, one on either edge of the 

Ma. Figure 19 shows the final synchronising circuit. it 

was thus no longer necessary to use an oscilloscope. 
which. 

The "Goose" controY initiated both camera and lights, 

was switched on manually- an instant after the Ut-recorder 

was switched on. the operation of camera circuit also operated 

relays A and B. Rely B provided a 1 KCZ/s  tinting marker 

throughout the film on one edge and relay A provided a 

synchronizing nit on the other edge, 0.4 second alter switching 

on the camera. Relay A, Figure 20, also provided the 

synchronizing mark to the recorder. 

The total recording time was approximately one second for the 

film and about 1.5 second for the UV-recorder which was switched 

off manually at the end of the film run. 



CHAPTER 3. 

OPERATING PROCEDURE 

• Preiaratioa of tank and heating surface. 

At the beginning of each series of tests, the test taák, 

glass enclosed heaters and the stainleSs steel ' heating' tube were 

thoroughly cleaned with acetone to remove traces of dirt, oil 

etc.. Final washing is done by distilled and deionized water. 

The overall duration of a test series was never more than 8 hours. 

AZ PreDaatien of water. 

ordinary tap water was singly distilled in a pyrex still. 

it was then deionized in an ion-exchange deionize!. The 

purity,  of this deionized water was tested by measuring the 

electrical resistivity which was found to be greater than 

I x lO ohms-cm. Water with resistivity less than or 

equal to 1 x 10 ohms-cm. was never used in these nperbnents. 

Distilled water was stored in polythene bottles and, at 

the beginning of each series of tests, this water was freshly 

ionized to ensure SJ1UIUm electrical conductivity and, hence, 

mashmim purity. 

S. 

The selection of woi4cing pressures within the range 1.0 psia 

to 14.7 pda in this investigation was based upon the vapour 

36. 
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density of water. The vapour density of water for the selected 

pressured was in a geomotric progression with a common ratio of 

approximately 2. The selected pressures were 1.0,. 3.01  7.0 

and 14.7 psia. 

The test tank was filled with freshly distilled and 

.ddoatzed water to a. level of 4 inches ahnve the heating tube. 

This water was next heated bybulkwater heaters to a temperature 

4 -. C• above the saturation temperature corresponding to half 

thó test pressure. The pressure in the test tank was then reduced 

gradually to half the test pressure, thus causing. bulk boiling. 

Water was then boiled on the heating tube surface for about 

half an hour under saturated conditions to minimize the quantity 

of gas absorbed on the heating tube surface and contained in the 

bulk liquid. After this pre—treatment, vacuum in the test tank 

was broken completely. This was done so that the bulk temoerature 

could be raised to the saturation temperature for the test 

pressure quickly by increasing the voltage across the glass 

enclosed heaters. 

M— i-NLAIIT-IT 

As explained in chapter 2.4.4, the location of thermocouples 

1.25 inch distant from the entrance to and exit from the test 

section introduces an error in heat flux measurements, if the 

inlet and cutlet stabilizing fluid temperatures,, Ti and T a 

are maintained equal during experiments. 

A simple test was devised to estimate the extent of these 

losses in conductors and tubes, the main source of error, during 



experimenta in boiling.... ... .. . 

With atmospheric pressure in the test tank, stabilizing 

fluid was passed through the test section. at a steady measured 

flowrate. The temperature of the stabilithtg fluid was 

maintained, at a higher temperature than the bUlk in the test 

tank, for, different values, of. bulk temperature in the test 

tank. . Under steady state, values', of stabilizing fluid flowrate, 

Ti, To and Tb were measured. ... . 

The extent, of losses, and necessary correction to be applied 

• url.ng, experiments, was, determined as in Appendix III. 

JA fletnmjnption of nucieate boUint. heat tranSfer rate pM 

It was decided to determine heat transfer rates with the 

temperature difference between tube inner wail and saturation 

increasing or decreasing in steps of approximately 50F. A 

piedetifluined value of stabilizing fluid temperature for the 

'test pressure was first chosen and the temperature controller 

and variac were set to provide this value. A fully charged 

2 volt accusilatór was connected to the potentiometer at least 

4 hours prior, to the beginning of a test. 

The stabilizing fluid pump, D.C. Generator and the 

vacuum pump were switched on for at least 30 minutes helen' the 

start of the test. The output 
. 
current from the D.C. Generator 

was less than 20 Amperes. The voltage on the stabilizing fluid 

heaters was adjusted by the vari.ac to maintain the required steady 

state temperature of the stabilizing fluid at inlet to the test 

38. 
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section. The flovrate of the stabilizing fluid was adj usti4 e~ 

using the by-pass vain. 

The water in the test tank was heated up to saturation 

temperature for the test, pressure.. The pressure in the test 

tank was reduced to the required test talus with the help of 

511 airleak.  valve and fintly adjusted with the help of the 

needle valve. Power input to the heating tube was gradually-

increased to obtain a temperature difference in the stabilizing 

fluid between inlet and outlet equivalent to, losses in 

conductors and tubes, Figure 21. To be able to apply the 

correction fran Figure 21, the mass flow rate of stabilizing fluid 

was maintained constant for the whole duration of. each experiment. 

When steady state conditions were reached, the following 

quantities were measured in the given order* 

ti.et  and outlet témperatureof the stabilizing fluid, 

bulk temperature of water in the test' tank, controlled junction 

temperature, voltage drop across the voltage taps, voltage drop 

across the standard resistance, cold junction temperature., vacuum 

in the test tank., pressure in the stabilizing fluid tank, 

stabilizing fluid fiowrate and barometric pressure. 

The height of water level abate the tube surface was recorded 

both at the beginning and at the end of the test whereas roan 

temperatures was measured at the end of the test. 

After the completion-  of one test, the temperature controller 

and variac were adjusted to correspond to a new value of 

stabilizing fluid temperature. Power output from the generator 

was reduced to about 20 Amperes and vacuum in the test tank was 

I 
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partially broken. This was done to prevent unnecessary 

evaporation of water from the tank during the period which the 

stabilizing fluid will take to attain a new value. 

Heat transfer rates were determined from initiation of 

nuclàte boiling up to critics], heat flux for pressures of about 

1.01 3.0, 7.0 and 14.7 psia. The critical heat flux at point C, 

Figure 1, was identified by negligible increase of heat flux for 

further increase of stabilizing fluid temperature. High speed 

films of boiling at critical heat flux were taken at 6,000 frames 

per second, using the Fastax camera for pressures of approximately 

1.00  3.0, 7.0 and 14.7 pain. 

C 

A nickel-aluminiunv'nidtelthnmium alloy thermocouple)  :0.002 

inch diameter butt-welded, was mounted mi, a yoke shaped stainless 

steel carrier as described, in chapter 2.5.2. The thermocouple was 

connected to the potentiometer and the distase of the •  thermocouple 

junction above the tube was adjusted... The carrier was raised 
-3 

or lowered, as necessary., in steps of 1.25* 10 inch in such a 

way that the thermocouple junction always remained on the vertical 

centre line of the tube. The mtcronte~--dc arrangement is shown 

in Figure 22. 

Stca4 state conditions were reached as in chapter 3.5, 

for initiation conditions, point B on Figure 1. The initiation 

temperature was obtained from the experiments described in 

chapter 3.5. 

The thermocouple junction was taken a distance of 0.1 inch 
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above the tube and first reading was taken. The distance of the 

thermocouple junction from the tube was measured by a travelling 

microscope. It was necessary to damp the galvanometer since 

the drift due to convection currents was large. The thermocouple 

junction was lowered towards the tuba in steps of 0.003 inch 

and the temperature in the layer was measured by the potentiometer. 

Shorter steps of 0.0025 inch were taken nearer the tube surface. 

The nearest position of 0.002 inch. diameter thermocouple 

junction was 0.001 inch at which distance the junction touched 

the heating tube surface. The thermocouple junction—heating 

tube contact was determined optically by a telescope/microscope 

of magnification x 50. Since the outside surface of the junction 

was slightly oxidized, it was difficult to ascertain electhcal 

contact. 

The tençeratun gradient in the superheated layer was 

measured at or slightly below the initiation temperature for 

pressures of about 1.0, 3.0, 7.0 and 14.7 psia. 

fl Recording of ten,eratzre transients. 

The yoke carrying one 0.002 Inch diameter thermocouple 

described in chapter 3.6 was removed and replaced by the 

stainless steel yoke carrying six thermocouples. This was 

fixed in position inside the tank and adjusted to ensure that 

the junctions were in line with the centre line of the heating 

tube. The and of these 0.002 inch. diameter thermocouples were 

soldered to extension wires of the same material, 34 SliD, which 

connected with the controlled junction tank via the top plate 
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of the test tank, the thermocouple output leads were connected 

to the D.C. Amplifere and UT-recorder. 

The D.C. Amplifiers and UY'record.r were switched on at 

the same time as the stabilising fluid pump and vacuum pump, 

i.e. 30 minutes before the start of the actual test. Steady 

state conditions were attained for moderate boiling and the 

same quantities len measured as in chapter 3.5. 

The amplification an the D.C. Amplifiers was increased to 

x 2000. The thermocouple carrier was lowered until the 

thermocouple Output from the three (or two) chosen thermocouples 

displayed large temperature transients on the screen of the 

ULtra-flet recorder. A r4fllnim of 0.006 inch. distance was 

maintained between the top of the be And the centre of the 

nearest thermocouple junction. 

Glass enclosed heaters in the test tank and controlled 

junction tank were disconnected an instant before the actual 

transient recording. This was necessary to reduce the A.C. 

signal picked up by the 0.002 inch. diameter thermocouples to a 

mininum. The recording on film and UV-sensitive paper was 

completed in about one second, at the and of which the UV-recorder 

was switched off manually. 

The generator and the stabilising fluid pump were switched 

off to stop boiling and convection currents in the water near the 

tube surface. The distance between the thermocouple nearest 

to the heating tube and the top of the heating tube was measured 

by determining the vertical displacement neceesafl for the 

thermocouple to contact the heating tub.. The accuracy of 
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CHAPTER 4. 

RESULTS AND DISCUSSION OF RESULTS. 

Heat transfer rate and critical heat flux. 

4.1.1 Heat transfer rates. 

Heat transfer rates were determined for nucleate pool 

boiling of water under saturation conditions for pressures of 

approximately 1.00  3.0, 7.0 and 14.7 pain, from the natural 

convection region,, AS on figure 1, up to and including the 

critical heat flux. As has been explained in Chapter 2, the 

use of a stabilising system permits determination of critical heat 

flux without danger of burnout. The experimental results are 

presented in table 1 to table 12 and in figures 23 to 27 which 

are log - log plot of heat flux 'v temperature difference between 

tube outer wall and saturation. Three different series of 

teats were carried Out for each of the four pressures. In the 

tint series, the temperature difference between wall and 

saturation (Tv-2s) was increased in steps of approximately 5? 

The second series was carried out for decreasing wall temperatures 

starting at the critical heat flux. The third series was a 

repetition of the first series. By comparing the results of 

the three series for any one pressure, it is observed that the 

results are consistent and reproducible within limits of a  2%. 

The experimental results for the three series at an 

average pressure of 1.03 pain are plotted in figure 23. The 

experimental results of Braunlich [14] at 1.3 psis, Ozyder and 

flnalborgo [isJ at 0.6 psis, and 2.16 psia, Van Stralen oJ. at 



1.93 psia and Patten [ij at 0.938 psia are also plotted in 

figure 23 for comparison. 

The exper4sntsl results for the three series at an 

average pressure of 2.97 psis, are plotted in figure 24. The 

experimental results of Braunlich [i4J at 2.25 psia, 0ydr 

and Finalborgo [iiJ at 2.16 and 4.3 psia, and Van Strain [16] 

at 1.93 psia and 3.87 psia are also plotted in figure 24 for 

comparison. 

The experimental results for the three series at an 

average pressure of 7.01 paSs are plotted in figure 25. The 

experimental results of Braunlich [14] at 6.0 psia and 

8.13 pain, 0i-der and Finalborgo [2.-51 at 8.8 psis, NislWcawa 

and Urakawa [ii] at 6.03 and 9.96 psis, and Van Stralen  
at 8.13 pals are also plotted for comparison in the same figure. 

The experimental results of the three series at an 

average pressure of 14.7 pals are plotted in figure 26. 

The experimental results of Braunlich fl.41,Crfler and 

Finalborgo t!5J,van Stralen [WJ and Nishikawa and Urakawa [113  

are also plotted, for a pressure of 14.7 paLs in each case, 

in figure 26 for comparison. 

The experimental values of heat flux obtained in 

this investigation at pressures of approximately 1.09  3.01  7.0 

and 14.7 pain are plotted in figure 27 against temperature 

difference between tube outer wall and saturation. For a 

fixed temperature difference (Tirts), the beat transfer rate 

increases with increase in pressure. This observation is in 

agreement with the wo* of other authors, Braunlich [14J, 

Cryder and Finalborgo [isJvan Stralen fllCj,Nishikawa and 

45. 
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Urakawa Bonilla and Perry [isj and Cichefli and Bonilla 

In figure 23, the experimental results of Patten Loll! 
for a pressure of 0.935 psia fall slightly on the right of the 

experimental values obtained in this work at a pressure of 

1.03 psia and, therefore, conform to the general pattern.. The  

stainless steel tube used in this investigation was polished 

and, therefore, the surface of the tube had fewer nucleation 

sites. Large temperature differences (Tv-Ts) for moderate 

boiling are to be expected for such a heating surface, 

Kurihara and Myers fj93 The experimental points are, 

therefore, on the right of those obtained by Cryder and Finalborgo. 

The same observation is made from figures 24, 25 and 26. 

From established boiling up to about 80% critical heat 

flux the heat transfer rate cV may be related to the, temperature 

difference Tv-Ts by an empirical relationship of the type, 

X 
'%,oC (TV-TS) 

where x is a constant. 

The values of x for 1.0, 3.00  7.0 and 14.7 psia 

are 5.9, 5.4, 5.5 and 46 respectively. These values of x 

say be compared with values, at higher pressures obtained by 

other authors. Rohsenow [fl has suggested a value of,27 ? 

and Levy [63 a value of 3. Higher values of x at sub-atmospheric 

pressures were expected since the ratio of heating tube 

diameter to maximum bubble diameter was low. Effect of each 

bubble on heat flux will be large for large bubble diameters. 

Bonilla and Perry [it] have proposed a relationship 

which correlates the temperature difference (Tv-Ts) to pressure, 
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for a constant heat flux. The relationship is, 

(AT)p a (t p4 (2) 

where 

and 

(AT) - (Tw-Ts) at atmospheric pressure and 

a specified heat flux. in boning. 

(AT)p. a (TrTs) at ,a pressure.of p in 

atmospheres for the same heat flux. 

For a constant heat flux, the ratio T)D for 

pressures of 1.O3.0 and 7.0 jsia,fz'cs equation (2), is 

1.95, 1.5 and 1.2 respectively. The corresponding experimental 

values from figure 27 are 1.6, 1.4 and 1.34. Equation (z) 

fits the experimental data of Add onis; from [iJ, at higher 

pressures tap to 2500 psia satisfactorily. It may be that the 

ratio of temperature differences may also be dependent on 

nucleation characteristics of the heating surface or liquid 

properties which become significant only at low temperatures 

and pressures. 

The experimental talues of critical heat flux in 

Saturated pool bolting of water in the range 1.0 pain and 

14.7 psia an plotted in figure 28. Other experimental values 

available in literature,, in this pressure ranse,  are those of 

Patten (8] for boiling on a wire of 0.018 inch diameter, 

Uraunlich (141 , Van StraIn [16] for a wire of 0.02 inch diameter, 

and Lienhard and Schrock [211 for a wire of ).02 inch diameter. 

The values of critical heat flux for water from these references 

are also plotted in figure 28 for comparison. The lower values 
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of critical heat flux obtained by other authors is expected. 

It is shown in chapter 3 that for boiling on wires or smelt 

diameter tubes, at a pressure where the maximum bubble diameter 

Is larger than 4 times the heater surface diameter, the critical 

heat flux depends upon the diameter of the heating tube or wire 

and may,  be assumed as, 

oC do 0.156 (3) 
or 

From equation (a), the ratio of critical heat fluxes 

for a tube of 0.125 inéb diameter and a wire of 0.02 inch 

diameter, when the bubbles surround the heating surface completely 

At low pressures, is 1.36, i.e. an increase of 36%, in the value 

of critical heat flux, over the values for wires of 0.02 inch dianst 

can be expected in this investigation. The results from literature 

are modified using equation (a) to Correspond to a tubs of 0.125 

inch diameter and plotted in figure 29. Comparison is satisfactory 

A. mazinam deviation of jt 24% is obtained between the results of 

Patten Lienbard and Schrock and the values obtained in this 

investigation. 

Reference may be made to the curve due to Bernath [7] 

at atmospheric pressure, figure 2. From this curve, for & heater 

diameter of 0.03 inch or less,, 

tcr cC do1  

which does not agree with equation (3).. According to Bentath' s 

curve, for heater diameters of more than 0.03 inch, the effect 

of diameter on critical heat flux reduces gradually until cc4ia-vnetev 

about 0.06 inch, after which the critical heat flux is independent 
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of heater diameter. As shown in chapter 5, the heater site 

of 0.03 inch corresponds to a ma$nam bubble diameter of 0.12 inch, 

for no effect of heater diameter on critical heat flux. At 

atmospheric pressuz*a the maximum bubble diameter obtained in 

this work is between 0.10 inch and 0.19 inch. 

For reasons stated in chapter 5, provided that the 

bubble departure diameter is small compared to heater diameter, 

the heater site should have no effect on the critical heat flux, 

at higher pressures. 

From experimental results in figure 28, it is noted 

that the critical heat flux increases with increase in pressure. 

Also, the critical temperature difference (tirts) cr. decreases 

with increase in pressure, figure 27. The value of critical 

temperature difference at 1.0 pals is about 80.84°lr. compared wtttv 

a value of OF. at.14.l pain.  . 

4.1.2 Acturacyof measurement., 

1.1.a1 Heat flux  

Voltage measurement, 

The error in voltage measurement due to voltage 

fluctuations from the power supply, and due to limits of accuracy 

of the potentiometer, was less than ,j 0.15%. 

xrrent measurement. 

Error due to change in current drawn by the heating 

tube because of fluctuations of voltage across the heating tube 

and average temperature of the tube, was less than l% in the 

worst case of boiling at&t maximum heat flux. This was 
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detonnlned by measuring the Sninvm and maximum values of 

voltage drop across the standard resistance over a period of 

ate minute during the test. 

Surface area of tube. 

The diameter of the stainless steal tube, 0.125 inch, 

was assumed constant over the test length. The marliasm 

variation was less than 1 0.0001 inch along the length of the 

tube. Error due to edge thickness of voltage taps and 

measuring error in distance between voltage tape was ins than 

S 0.3%. 

Error Is measurement of heat ),osses in conductors and tubes. 

Accuracy of the natural convection equation is 

30%. Maxinum possible error in determination of heat losses 

due to the use of natural convection equation was less than 

209  since the heat energy dissipated by losses in tubes 

and conductors was larger than the heat dissipated by natural 

convection, appendix Ut. 

For the worst case, in the pressure range from 1.0 psia 

to 14.7 psia, at 1.0 psia (largest (Tw-Ts) or. for smallest S'cr.) 

these losses amount to 10% of the  critical heat fLux values. 

Therefore, maximum error In heat flux measurement due to error 

in estimation, of losses s 2.5%. 

If cv, ci, ea and es denote the percentage errors 

in voltage, current, surface area of heating tube and estimation 

of heat losses measurements, then error in heat flux measurement 

(e ,V  is obtained by, Wilson jI2], 
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frárn whiàh, a value df'miithin peräentae error In heat flax 

measurements is calculated as 1 2.7%. 

4.1.2.2. Outer' tübe.wail tqëratu ('.,)• 

Error in tube inner wail temperature due to error in 

temperature measurement of the stabilising fluid a± 0.120F. 

(Appendix Iv). 

?laxinni possible error in thermocouple calibration - , 
0.350F. 

Maximum possible errot"in Inténnediate 'junction' 

temperature , . 
, 

0.059F. 

Maximum possible 'error in old Junction temperature ajt o.o?r. 

Therefore, niaxiniurn possible error in average wail 

temperature (TO a ±0.570F. 

4,1.24  H Bulk ten' er urc measurement (Tb). 

Ma4nim possible error in calibration • s 

Maximum possible error in measurement • 0.1°F. 

Maximum possible error in intermediate junction 

temperature - ± 0.05°F. 

maximum possible error in cold junction temperature -, 0.050?. 

Therefore, sadnaun possible error in bulk temperature  

measurement (Tb) s 0.55°!. 

"•O 
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4.1.3 Analysis of high speed film recoit at critical heat flux. 

One ftha of 100 feet length was taken at a maximum 

speed of 6000 fps, at critical, heat flux in saturated pool 

boiling, for each of the four pressures, 1.0, 3.01  7.0 and 

14.7 psia. 

The total surface area of the tube available for 

boiling was 2.36 square inches. 1.39 square inches of this 

surface area was recorded on the, high speed flints at critical. 

heat, flux. Since the heating surface was cylindrical, only 

half of this 1.59 square inches was actually visible in the. 

films. Grids were set up on the projected area to correspond 

to equal arcag of the tube surface. The total number of grids 

was 462 over the actual area: of the tube of 0.793 square inch, 

visible on the films. Pflms taken at 1.0. and 3.0 psia, were 

analysed frame by frame for percentage of heater surface area 

in contact with liquid. 

The value of critical heat flux for the film at 

1.0 psia is 2.6 x 10 B.t.u6 per square foot per hour at a 

temperature difference (Trts) of 84.8°?. The percentage of 

surface area in contact with liquid for this pressur* is plotted 

in figure 30. The time average percentage area of heating 

tube surface in contact with water is 16.4: 1.6%.. The 

maximum value of percentage area of heating surface in contact 

with liquid was 52% and the minimum value was 0% which did not 

last for more than 4 milliseconds, figure 30. 

The critical heat flux value for the film at 3.0 psia 

is 3.06 x 10 D.t.u. per square foot pet hour at a temperature 
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difference of 82.16p The percentage of surface area in 

contact with liquid is plotted in figure 31. The time average 

percentage area of heating tube - water contact is 7.1 t 0.7%, 

the maximum value was 22% and the minimum was 0% which did not 

last for more than 9 milliseconds. 

Figures 320, 33, 34 and 35, which are reproduced fran 

the high speed films taken under critical conditions at 1.0, 

3.09  7.0 and 14.7 psia respectitely, show clearly that liquid - 

solid contact exists under critical conditions. A short length 

of the film from each of the above four films is included as 

a supplement to this thesis. From a visual examination of the 

films taken at an four pressures, it is clear that some liquid— 

solid contact always existed under critical conditions in 

saturated pod boiling in these tests, ignoring a short spell 

of 4 milliseconds out of 660 miilisecondsat 1.0 psia and 

another of 9 milliseconds duration out of 510 milliseconds at 

30 psia when there was no liquid - solid contact. If a larger 

heating tube area were considered, these short durations will 

alSo show some liquid - solid contact. 

These short durations of zero liquid Solid contact, 

which exist due to a small size of the heating surface used in 

experiments, could account for departure from stable conditions 

in a non—stabilized heating surface. 

It is also noted that bubbles are spherical in early 

stages of their growth and that bubble departure equivalent 

diameter reaches a value very nearly equal to the bubble departure 

diameter at low heat fluxes. Actual measurements of maximum 



bubble diameter at critical, heat flux are made and discussed 

later in this chapter. This observation is contrary to the 

23] that a change in diameter by as much suggestion by Zuber [  

as ten times may occur between boiling at critical heat flux 

and boiling at low heat fluxes. 

It is observed from these films that the behaviour of 

bubbles is chaotic both in time and space. After initiation 

of a bubble and for a fraction Of its total groith period, 

bubble is spherical. For most part of the growth period 

afterwards, the bubble is distorted to an unrecognizable shape 

and is surrounded by other bubbles. Bubbles touch and 

coalesce with other bubbles either originating from the same site 

or from thaLneighbouring Site. Not all bubbles grow to the 

same maximum site under these conditions. Some bubbles touch 

and coalesce with other bubbles in early stages of their 

growth and do not develop to *Iiá same maximum site. 

It is also noted that the  removal of the vapour bubbleS 

from the surface is limited due to; the limiting velocity of the 

vapour phase away from the heating tubs. In other words, if 

bubbles could be removed falter from the heating surface, there 

will be more area available for heat transfer between solid 

and liquid and higher heat fluxes will result. This evidence 

suggests. that the critical heat flux is United by the average 

vapour velocity away from the heating surface. The average 

vapour velocity will depend upon the buoyancy forces and drag 

forces on the bubble. 

A further increase in surface temperature of the 

heater will reduce the minimum necessary duration of liquid - solid 

S4. 



contact for nucleation and, hence, more blanketing of the 

heating surface taken place. The heat transfer rate 

accordingly begins to fall. 

Therefore, a maximum limit to the critical heat flux 

is set due to hydrodynamic forces only, i.e. burnout is 

believed to be primarily * hydrodynamic phenenon.  The 

possibility of.a thermodynamic Instability is discarded on 

grounds that various authors [,l0,2fl have observed that 

critical heat flux is independent of (Tv-Ts) Cr. 

Approximate meximun bubble diameters were measured 

under critical conditions, just before coalescence, by the 

method of counting squares on the projected image of the bubble. 

From this area was then deduced the diameter of an equivalent 

circle, this diameter being taken as the maximum bubble diameter 

at departure. These bubble diameters are compared in table 13 

with maximum bubble diameters obtained at low heat fluxes in 

this investigation. From conçarisat, it is noted that the 

bubble departure diameter vary little between boiling at low 

heat fluxes and critical heat flux. The diameter of a fully 

developed bubble at critical heat flux was never less than 

50% the diameter at low heat fluxes. This is not unexpected 

since, as assumed in chapter 5, the departure diameter only 

depends upon the energy available in the superheated layer. 

Figures 36, 37, 38 and 39 show one such developed bubble 

under critical conditions at pressures of 1.0, 3.00  7.0 and 

14.1 pain respectively. 

Measurement;. of liquid - solid contact area under 

critical conditions was not carried out for pressures of 7.0 
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and 14.7 pain. Since the mains bubble diameters for these 

higher pressures were small, and the bubbles did not envelop 

the heating surface àoneplátdy, those bubbles which formed on 

the underside of the horizontally mounted tube were found to 

"climb" up slang the tube periphery and thin to leave the 

surface. For small maximum bubble diameters, the avenge 

frequency of bubble formation and total 'number Of bubbles per 

unit area were large. Under these conditions, it was too 

difficult to determine the projected liquid - solid contact area. 

fJ Temperature gradient in the superheated layer  above the 

heated cylindrical surface. 

Figures 40, 41, 42, 43 and 44 show the temperature 

gradient in the superheated layer measured above the horizontal 

heated tubs. The thickness of the superheated layer, assuming 

steady state conduction only, is given by a broken line on 

each of these figures. Figures 400  41 and 42 show the 

temperature gradient in the superheated layer in the natural 

convection region, ABon figure 1. Figures 43 and 44 show 

the temperature gradient in the superheated layer at initiation. 

These figures show that the thickness of the superheated 

layer on top of the horizontal tube is three to five tines the 

thickness given by the conduction equation for steak' state 

conditions. This Is not unexpected because of the convection 

currents above the heated surface. 

Jakob [261] has presented temperature distribution 

for a similar geometry. Photographs show the temperature 



distribution around a. hot horizontal cylinder In air, using 

Schlieren and Interferonstric technique. From figure 27.12 

of the above reference, it is observed that the thermal layer 

thickness at the sides SI bottom of the cylinder is much less 

than the top of the cylinder. This is due to convection 

currents set up in hot air above the cylinder.  

Figure 27.5 of the above reference shows that the 

heat flux at the side and bottom of the cylinder is higher 

than the top of the cylinder. Since the thickness of the 

layer is larger at the top, the heat transfer rate will, be 

smaller.  

If the average thickness of the superheated layer 

around the tube is considered, the thickness will, obviously, 

be less than shown by measurements for the top of the tube, 

in figures 40, 41 and 42. 

In the established boiling region, however, these 

convection currents are very insignificant since the superheated 

layer is constantly broken by the bubbles growing and departing 

from the heating tube. The time average thickness of the 

superheated layer at any position around the circumference of 

the heating tube my be assumed to be constant if measured 

under boiling conditions., In other words, heat transfer rate 

may be assumed to be constant around the periphery of the tube. 

Figures 43 and 44 show the temperature gradient in 

the superheated layer at initiation, point B on figure 1. 

It is observed that the thickness of the superheated layer is 

twice that given by conduction equation, compared to three to 

give times in figures 40, 41 and 42. This is not unexpected 

57. 
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nQstUVCLl 
because as explained Oove,Lcainction currents are significantly 

less in boiling. 

Examination of the experimental points in figures 

40 to 44 suggest that a linear temperature gradient may be 

assumed to represent the taperature gradient in the superheated 

layer. 

Consider a semi-Infinite slab of thickness b, 

fabricated from material of thereat conductivity k. If the 

temperature at its two faces Lis  maintained at Tv and Tb, 

then the amount 'of heat transferred across the slab is given by, 

OV 
It (Tw$b) 

4 
b, 

In boiling, of 1ipiidz, the superheated layer is 

• being constantly agitated by bubbles growing and departing 

from the heating surface. This to this constant agitation 

of the superheated layer, heat transfer rate in convection will 

be higher than in pure conduction. For the same value of 

k, Tv-Tb and hi, the value of heat flux q, will be higher in 

convection than in conduction. Alternatively, if the heat 

fluxes in convection and conduction are considered to be the 

sante, then the thickness of the superheated layer will be 

larger in convection due to agitation effects. Therefore, 

for convection when steady state has reached after the 

departure of a bubble, 
k (Tw'Tb) (s) 

b. 'V 

where X • constant. 

and b • thickness of superheated layer in 

convection. 



Coiarison of the experimental points and conduction 

equation in figures 43 and 44 gin a value of * equal to 

2.0 j 0.05. In, other woMB, it may be assumed that, in 

boiling, the thickness of the superheated layer at bubble 

initiation is equal to twice the equivalent thickness in case 

of putt conduction. 

4.3 Analysis of bubble growth rate and maximum bubble  

diameter data at low, heat fluxes. 

Twenty films, each one hundred feet long, were 

analysed for growth rate and departure diameter of bubbles. 

These tUrns were produced at 6,000 fps. Frame by frame 

analysis was made on a LYTEX fl-16 analysing projector, 

figure 45. The overall magnification on the projector screen 

was 1.99 times the original dimensions for films taken at 

pressures 1.0 and 3.0 psi... The error in measuring diameters 

at these two pressures was never more than j 0.02 inch. 

Bubbles which were spherical during growth were measured 

over the whole growth period. Bubbles which either joined 

other bubbles in early stages of their growth or were distorted 

for some other reason were ignored during bubble dirneter 

measurements. The bubble diameter fair- any,  one bubble was 

measured from initiation up to its maxinum site at departure. 

These diameters were measured in two planes perpendicular 

to each other and the arithmetic sea was assumed to be the 

characteristic diameter of the bubble at any instant of time-

Farther, the bubble was assumed spherical and the volume 



of the bubble was calculated from this disaster. The volume 

of the tube covered by the bubble was subtracted from this 

volume to arrive at the true volume of the vapour in the 'vapour 
r4'L 

bubble. Regression lines, assMng v = Ait, wire obtained 

for thuse corrected volumes sspsntel7 for each bubble using 

a Ferranti STRXUS computer. Also, the diameter of an equivalent 

ben was calculated from the corrected valuate. 

The overall mRgbificatit on the projector sonat 

of the analysing projector was 4.21 times the original 

dimensions for tilt taken at pressures of 7.0 and 34.1 pita. 

the error in measuring diameters at thise pressures was never 

more than s 0.01 inch. Since babbles at 7.0 and 14.7 pita 

did not envelop the tabs, correction for tube ectuS was not 

applied at these two pr#8xUr9a# Regression lines for bubble 

volumes at 7.0 and 14.1 pits were also obtained for each 

individual bubble using the SIRIUS progress. 

The presents range covered in this analysis 13 0.95 

to 14.7 pita. Bubble diameters, volumes and regression lines 

for bubble volumes are plotted against time in figures 46 to 73. 

Bubble diameters  time for 16 bubbles an plotted to 

a linear scale in figures 46 and 41 for pressures ranging 

between 0.95 and 1.06 pta. The corrected valises for these 

bubbles an Plotted on a log - log field in figures 48, 40 and $0, 

and regression lines for volumes are Plotted  in figure 51. 

The exponent of t for regression lines in figure 51 for 

appraidste3y 1.0 psia 'lanes between 1.91 and 3.4$ with an 

arithmetic average of 2.25. U the disaster of the bubble 

sQ - . 
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at axW time is written as a function of time in the forms  

D • Mt 
*2. 

(6) 

then the arithmetic, average values of )"tand X2 for 1.0 psise 

are 2.24 and 0.75 respectively. D and t are measured in feet 

and seconds respectively. 

Bubble diameter v time for 11 bubbles are plotted 

to a linear scale in figures 52, 53 and 54 for pressures between 

3.03 and 3.08 pain. The corrected bubble volumes for those 

bubbles are platted on * be - log field In figures 55, 56 and 57, 

and regression lines for volumes are flatted in figure 58. 

The exponent of t for regression lines • plotted in figure 58 

for approximately 30 psii varies between 0.925 and 2.225 with 

an arithmetic avenge of 1.41t from equation (6), the arithmetic 

avenge values of A2. and * are 0.51 and 0.47 respectively. 

Bubble diameter v time for 18 bubbles at a pressure 

of 7.0 psis, are plotted to a linear scale in figures 590  60 and 

61. Bubble volumes for these bubbles are plotted on  log - log 

field in figures 62, 63 and 64, and regression lines foi volumes 

are plotted in figure 65. The exponent of t for regression 

lines plotted in figure 65 for 7.0 psia varies between 1.075 

and 1.576 with an arithmetic avenge of 1.33. From equation (6), 

the arithmetic average values of ),- and x,. are 0.30 and 0.44 

respectively. 

Bubble diameter v time for 1$ bubbles at pressures 

of 14.23 and 14.8 pals are plotted to a linear scale in 

figures 66, 67 and 68. bubble volume for these bubbles are 

plotted on a log - bog field in figures 69, 70 and 71, and 
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regression lines for volumes are plotted in figure 72. The 

exponent of t for regression lines in figure 72 for pressures 

of 14.23 and 14.8 psia varies between 0.527 and 1.607 with an 

arithmetic average of 0.975. From equation (6), the aritatotic 

aflr&e values of A1 and Sa are 0.041 and 0.325 respectively. 

The msrinnim, minimum and average values of x2.  

and average values of A 2 for various pressures are tabulated 

in table 14 for easy comparison. 

The growth rate of bubbles for saturated boiling at 

atmospheric pressure were also obtained by Zfna [zij. The 

exponent of t varied between 0.25 and 0.44 compared to the 

values obtained in this work between 0.176 and 0.53. 

• Such large variations in growth rate of a bubble among 

various bubbles at the same pressure confirm the non—steady 

nature of the conditions existing in the superheated layer when 

a bubble .nucleates. This factor of uncertainty precludes 

the fonazlation of an exact physical model. Analytical 

expressions for bubble growth rates cannot, therefore, account 

for such wide variations. 

The average value • fza in equation (6) is found 

to decrease with an increase in pressure, in these experiments. 

For low pressures, and high initiation temperatures, the total 

amount of energy of the superheated layer per unit area is 

larger than higher pressures. The required high initiation 

temperatures and high vapour specific volume w, perhaps, 

explain large growth rates in boiling at 10! pressures. 

The distance of centre of gravity,  of the bubble from 

the top of the heating tube is plotted in figures 73, 74, 75 and 
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76. Time reference for all bubbles at a pressure of 1.06 psia, 

plotted in figures 73, 74 and 15, is taken at the time of bubble 

nucleation. When the bubble has cospleted its growth and is 

about to leave the heating tube, the position of its 0G. is 

plotted v time to a linear scale. In figure 76, time reference 

is taken when the bubble is about to leave the heating tube, 

at i.Cs pus. This was done because it was not possible to 

ascertain the exact time of initiation of the bubble. In 

figure 7, for a pressure of 7.0 putt, the distance of top of 

the bubble from top of the heating tube is plotted. This was 

considered necessary since, as explained earlier, the bubbles 

were found to •1ditI  along the tube periphery while departing. 

From all the eleven bubbles plotted in five figures, 

the slope of the distance of C.G. of the babble with time is 

linear, just before the bubble leaves the heating tube. In 

other words, the bubble reaches a constant velocity before it 

leaves the heating tube. This bubble departure velocity will 

depend upon the buoyancy and drag forces on the 'vapour bubble. 

To check this, the buoyancy force was equated to the drag on 

the vapour bubble and the drag coefficient was determined for 

bubbles at each of the three pressures, vii. 1.0, 3.0 and 

LO p4*. These experimental values of drag coefficients 

were compared with the drag coefficients for freely rising 

vapour bubbles, given by Cole BzJ. For 1.0 psia, the drag 

coefficient agrees with the experimental value for the'bubble 

sphericity of 0.89. Similarly, the value of G4, for 3.0 and 

1.0 pita corresponds to aphericities of 0.90 and 0.96 
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respectively given by Cole [4J These values show agreement 

with theory. .. 

4.4 Temperature transients in the liquid near the heating tube. 

The temperature transients in the liquid near the 

heating tube associated with bubble growth and departure v time 

are plotted to a linear, scale. in figures 78 to 90. The distance 

of the bubble wall from thermocouple junction is also plotted in 

each ease and is shown by heavy lines..  

The transient recording thermocouple picked up & 

certain amount of D.C. from the D.C. field in water during 

experiments in boiling. This could not he avoided, without 

increasing the A.C, pick up to a high level. The extent of 

D.C. pick up varied from experiment to eqethncnt depending 

upon the electrical conductivity,  of water in that experiment 

and the voltage across the busbars. However, during the filming 

and recording period of about one second during a testy it 

was assumed that the electrical conductivity of water and 

voltage across the busbars remained constant. 

In an effort to determine the change in D.C. fLiEd: 

pick up when a bubble covered, the thermocouples,- a nickel-alumtnium 

wire, 0.002 in diameter, was mounted instead of the thermocouples 

and connected to the recorder through the D.C. amplifier 

Water which had been used in previous tests, and remained in. 

the test tank for more than three weeks, was used for this test. 

Under similar boiling tonditlons as the:tests for; tenç,óratzre 

transient recordings, change in D.C. field pick up. of less than 

0.12 inch vertical displacement on the recording paper,  took place 
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at 1.00 psia when a. bubble enveloped the thermocouple bridge 

completely. . this was equivalent to less than 3.0°?. 

Very pure water was used in actual experiments and, 

therefore, D.C. pick up and change in D.C. pick up should be 

even smaller. However, this, change in the amount of D.O. 

pick up did not effect the results since .teaflrature measurements 

an the recording paper were discontinued,  after the bubble 

surrounded the thermocouple J witticti. Temperature transients 

of direct interest only occurred when the Junctions were 

covered in liquid, And. therefore, measurements of transients 

does not include an error due to change in D.C. field pick up. 

The datum on transient., records was fixed at saturation 

temperature for that pressure. The position of the signal 

on the recording paper to correspond with saturation temperature 

was decided as fciliows: 

The synchronizing marker on the . high speed film and 

recording paper synchronized one particular frame to a fixed 

position on the recording paper. A 1KC/s time mazcer on the 

film and a 100 Wa time marker across the !eC0'di1%  paper 

throughout the recording period made it easy to relate any,  

particular freini on the 11Th to the corresponding position on 

the recording paper. I  

During bubble growth, the bubble wall covered the 

thermocouple junctions when the bubble was growing in the vicInity,  

of the junction.. The frame in which the bubble wall, has 

completely covered the thermocouple junctions was taken as the 

frame corresponding to saturation te.nperature on the recording 

papet. The corresponding position of the temperature signal 



on the recording paper was then determined by synchronizing 

marker. This temperature signal was assumed to correspond to 

saturation temperature and, hence, the datum. 

The error, therefore, in temperature position in 

transient measurement was chiefly due to calibration of 

thermocouple - amplifier - recorder combination, besides the 

error in ascertaining the exact position of saturation 

temperature datum on the recording paper. 

, The maximum possible error was calculated as follows: 

Maximum possible error due to A.C. pick up - 0.03 inch. 

Maximum possible error in calibration of the thermocouple - 

amplifier - recorder combination a 0.02 inch in 1.5 inches. 

Measuring accuracy of signal on paper record - 0.02 inch. 

Overall accuracy - 0.07 inch 

1.75°?. 

Error in synhrc*4sation of time. 

Error in synchronization of time a s 0.01 inch. 

Measuring error in time base 

Overall error in time a ± 0.02 " 

0.16 millisecond. 

Figure 78 shows the temperature variations associated 

with a bubble initiating at a. distance of 1.02 inch from the 

thermocouple Junction, zero millisecond corresponding to 

initiation as time reference. The thermocouple nearest to the 

tubs, at 0.019 inch, records a maximum temperature of 390F.  at 

18 milliseconds after the initiation of the bubble, when the 

66 
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bubble vail is 0.3 inch away from the thermocouple junction. 

?4axtnu,t possible transient is equal to 44.5°F. corresponding to 

Tv—Tb. A second *axtaum is recorded when the bubble wall 

is very close to the thermocouple junction. All the three 

thermocouples recorded rather similar temperature transients but 

are leparated on the time base. The thérmotouple farthest away 

from the top of the tube recorded the temperature maximum after 

the other two thermocouples. 

Since there was no other bubble on the 3 inch length 

of the tube photographed iii the test, it is safe to assume that 

the temperature transient was caused by the bubble 0781 only. 

• The recording of a peak temperature long before the bubble wall 

reaches the thermocouple suggests that at the initiation and 

early growth of a bubble, a disturbance is transmitted throughout 

the liquid. This , • disturbs the superheated 

layer and consequently- hot liquid is pushed away from the heating 

surface in the font of a temperature "fin" travelling along the 

heating tube. 

When the pressure pulse roaches the superheated layer 

just below the thermocouples, the layer travels away from the 

heating tube at a finite velocity and will take a certain finite 

time to travel from one thermocouple to the next. Therefore, 

the temperature transients will be separated at the time base. 

In figure 78, at any temperature, the separation of 

transients recorded by the thermocouples at 0.019 inch and 

0.043 inch above the heating tube is 5 to 6 milliseconds, to 

record the same temperature. If the temperature gradient in 
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the layer, the thickness of the layer and the, velocity of the 

layer perpendicular to the heating tube are assumed constant 

during the time the layer travels from one thermocouple to 

the next, then the vertical velocity of the superheated layer is 

between 4.0 and .5.0, inches per second. This velocity will 

depend upon the velocity of the pressure pulse travelling radially 

in all directions. . . 
. 

At 17 milliseconds from the datum, the temperatures recorded 

by thermocouples 1, 2 and 3 are 36.41, 18j7 and 0.4°?.  at 

distances of 0.019, 0.031 and 0.043 inch from the tube surface 

respectively. The recorded temperature difference between 

thermocouples 1 and 2 is 17.70?. and between thermocouples 

2 and 3 is 18.30F, both for the sane distance of 0.012 inch 

bttween them. Allowing, for errors in ntasutezrnts, the 

temperature gradient in the superheated layer is approximately 

linear. 

If the pressure pulse is assumed to initiate at the 

same time as . a bubble, then time taken by the pulse to travel 

a distance of 1.02 Inch is equal to 10 milliseconds. 1... a 

pulse velocity of 8.3 FPS along the tube. Radial growth velocity 

of the bubble 0781 when first visible is about 6.6 FPS. . Actual 

growth velocity at initiation will be higher than 6.6 FPS, and, 

perhaps may be of the order of B - 9 FPS. 

At an average pressure of 1.0 psia, the growth rate 

of the bubbles in the visible region, after initiation, for 9 

different bubbles, growing at distances between 0.14 inch and 

1.7 inch from the thermocouple ,junction,was compared with the 
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pressure pulse velocity.. The temperature transients 

associated with the bubbles so measured are plotted in figures 

18 to 85 and the growth rates at initiatioá, and pressure pulse 

velocities for theac, bubbles are presented in table IS. By 

comparison between the pressure pulse veloâity and bubble growth 

rate at initiation, it is found that the two values are Of the 

same order. ... 

The growth rate at initiation also measured at 

3.0 psia for six bubbles and cbmpaxed with the pressure pulse 

velocity in table IS. The comparison is similar to results 

at 1.0 psa. The temperature transients fàrtbrée typical 

bubbles at 3..0 pain are plotted v time to  linCár scale in 

figures 86 0  87 and $8.  

The recording of second maxima on figure 78 is due 

to bubble:  wail pushing the superheated liquid from the heating 

surface over the thermocouple junctions. The presence of 

second maxima Is also shown in. figures 80, 81 and 86. 

Temperature transients in the superheated layer after 

the bubble has left the heating surface are recorded in figures 

89 and 90. 

The departing bubble produces eddy  currents In the 

liquid resulting in an upward "lift" of the superheated layer. 

Turbulence in the superheated layer after the departure of a 

bubble, figure 90, is of low frequency compared to the 

turbulence created in the superheated layer by the growing 

bubble. The temperature records show that the overall effect 

of turbulence is greater after bubble has left than the growth 
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As shown earlier, the layer haS a finite vertical 

velàcity düó to the distu'bance created by the growing bubble. 

If the Spàtb: in adjacent 'theuaccOules were increased, the 

effect on,  temperature transients records will be two bide 

:Fi*147. the :separation of transients on the time base will' 

be large as recorded by various thermocouples and, seCondly, 

the peak temperatures recorded in these tra*isients will 

differ greatly , for various thermocouples. 

To determine the temperature variation in the liquid 

around a growing bubble, the thermocouple bridge carrying one 

thermocouple was positioned at 0.208 inch above the tube. 

These 'eqedSnts were limited to pressürës of 1.0 and 3.0 psia 

since at higher pressures the thermocouple pick up due to 

A.C. and D.C. field in water was large. 

Daring the film am lasting for about 0.8 second, it 

was noted that, at 1.0 psiá, only two 'nudleation sites were 

active near the therrtcoupli junction, at ,&Twb of 550?. which 

produced bubbles with their wall touching the the nocouple 

junctions at some stage during their growth. One of thise sites 

produced bubbles which touched the thermocouple junction when 

the bubble diameter was 0.61 inch and the other, when the 

bubble diameter was'1.48 inches. With temperature difference 

between tube wail and btilk, ATwb, equal to 55°Lmaxinun 

temperature in the liquid around the bubble was 3.70F. above 

bulk at 0.61 inch bubble diameter. The thickness of the 

superheated layer was of the order of 0.05 inch under these 

conditions. For bubbles from the secOnd active site touching 
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the thermocouples at a diameter of 1.48 inch, the maximum 

temperature recorded was 1.80F. above bulk and the thickness 

of the superheated layer was of the order of 0.08 Inch. 

There was only one active site which was favourably 

siçuated in relation to the thermocouple junction at 3.0 psia. 

The bubble wail, unfortunately, touched the thermocouple only 

after the bubble has developed to a diameter of 0.9 inch. This 

value Is iezy near the rnazinvm bubble size of 1.05 inch at 

this pressure. rorATwb equal to 42.70?, maximum teweraturein 

superheated layer around the bubble was measured for five 

different bubbles. Two bubbles gave maximum temperatures of 

about 1.00F. above the bulk fluid, while the other three 

bubbles gave values of 1.8 0  3.5 and 5.3°?. above bulk temperature. 

The thickness of the layer around the bubble was estimated at 

about 0.08 Inch under these conditions. 

Assuming that these temperature gradients in the 
the 

superheated layer near the bubble wall areLsame  around the 

bubble, the model of bubble growth assumed by Bankoff and 

Ifikesoll L31fl  is nearer the true model than the model of 

Griffith [aJ, chapter 5. 

This method of recording temperature transients 

using one or more thermocouples could be used to indicate the 

existance of bubbles when heating surface is not visible or 

high speed Camera not available. This method is largely useflul 

when discrete bubbles an present, e.g. at initiation of nucleate 

boiling regime in the case of water at low pressures. 

Confirmation of velocity of propagation of disturbance would 



also permit location of nucleus to be deduced without the use 

f high speed film records. 

4.5 Mechanism of heat transfer in boiling 

In chapter 5.1, based on energy balance, it is 

shown that the latent heat of the bubble may account for all the 

energy available in the supOrheated layer over an area covered 

by the flunctumni diameter Of the bubble. Based on above 

observations, the following nwchanièm. is proposed for .heat 

transfer in the nucleate b01lih8 region for poel boiling of 

saturated liquids.. The mechanism applies to all forms of 

heating surfaces. 
. 

With saturated liquids, at nucleation, a bubble is 

formed which produces a disturbance or pressure pulse travelling 

radially in all directions. The velocity of the pressure 

pulse Is approximately equal to the radial, growth velocity of the 

bubble at initiation. The pressure pulse creates a disturbance 

in the superheated layer which pushes some of the süperheated 

iser, near the heating tube, into the bulk liquid. The 

amplitude of the disturbance decreases as the distance from its 

source increases. 

The bubble at departure has absorbed all the superheat 

energy available in the superheated layer over the surface area 

covered by the tuaximuja diameter of the bubble, as assumed in 

chapter 5.1. Outside the heater surface area occupied. by the 

maximum diameter of the bubble, the magnitude of disturbance 

in the superheated layer is maxi=m just outside the bubble 

wall. The slope of heat flux v temperature difference curve 

730  
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rises steeply6 t increase in the nwnbor of bubbles per unit 

area has an additive effect on heat transfer, at first. 

With further increase of temperature of the heating 

surface, a point is reached when the areas of influence of 

bubbles interfere with each other. The net result will be 

that the, proportional increase in heat transfer due to each 

bubble decreases with an increase in the number of bubbles. 

This suggesti outs In approximate, agreement with the 

observations of Gaertner and Westwater [S] who proposed the 

relationship, 

0.47 
a 1400 Y (7) 

where ry w Number of nucleation sites per unit area. 

According to equatIon (7), the amount of heat 

energy transfer attributed to each site becomes less as the 

population of active sites increases. 

The increase in bubble population also reduces the 

average liquid - solid contact area and consequently an 

increase in heating surface temperature will not increase heat 

transfer 'rates as fast as in earlier stages. The slope of 

c y b 1! decreases. At further increases of superheat, 

most of the heat transferred from solid to liquid will be used 

for the generation of bubbles. 

Thus, the rate of bubble generation per unit area 

will detennine the heat flux for high heat fluxes. The 

frequency of bubble generation from each site and the number of 

sites per unit area, both, have limits. These limits mark 

the conditions of peak heat flux in boiling. ' The frequency 
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of bubble generation from anudeation site is limited by the 

ma,dimua possible velocity of vapour depending upon the buoyancy 

and drag forces, as mentioned in chapter 4.1., The number of 

sites per unit area is limited by the maximum possible number 

of bubbles per unit area. 

The peak heat flux may, therefore, be evaluated 

from the latent heat. transpo. The latent heat transported 

by the bubbles does not depend on the temperature difference, 

AT, but depends entirely upon the size of the bubble, number 

of bubbles per unit area, frequency of bubbles and the 

propetiós of vapour at saturation temperature.. Based on these 

assumptions, an! onpiS.cal correlation for predicting critical 

heat flux IA saturated pool bailing is derived in chapter 5.2. 
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CHAPTER S. 

THEORZFZL - ANALYSIS 

Jacob [63 proposed that Increase in heat transfer rate 
thc. 

in nucleate boiling was due toagitati, by detaching bubbles, of 

the liquid near the wall. Ounthet and Kreith \z] explained this 

increase by, "some form of random micro-convection excited by-

bubble activity in the normally laminar sutiiayer0. Forster and 

Greif [3] have proposed a 'vapour-llcfld exchange mechanism by 

which a bubble pushed hot liquid awq from the heated surface.. 

Deissler [41J and Rohzenotq and Griffith assumed that, 

at critical, heat flux, all the heat transferred can be accounted 

for as latent heat of the bubbles. 

The only visible difference between heat transfer by 

natural convection and by boiling is the presence of bubbles in the 
tLe 

latter. TheI4e!Ore,Lsudden increase in heat transfer rate when 

bubbles appear on the heating surface mast be due to the presence 

of bubbles only. No matter which mechanism rof heat transfer in 

boiling is accepted to account for high heat transfer rates, the 

bubble growth rate and riazintun bubble Also must play an important 

part in it. It was, therefore, felt necessary to derive a suitable 

relationship which may predict the maximum bubble diameter in pool 

boiling. 

cEaYtt't 

5.1 Prediction of deartureLof  bubble sfor nucleate P0?1  boiling 

of water, 

5.1.1 Previous West. 

Fritz [zj proposed an empirical relationship to predict 
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maximum bubble diameter which wal obtained from static mechanical 

equilibrium of a bubble attached, to a flat  surface, and expressed 

in the form,. 

51 ,fl) 
where 

D Maxim= diameter of - the bubble., 

s Surface tension.. 

..Deneity. (t.t'liquids  v - vapour). 

and 4'i.Mgleofcontact. 

Griffith DOJ.  considered heat • transfer rate. to be the 

determining factor in bubble departure diameter. Be formulated a 

mathematical model of bubble growth on a flat heated surface. The 

following assumptions were made concerning the asymptotic stages 

of bubble growth."  

The growth of the bubble is primarily dependent on the 

heat transfer from the liquid to the bubble wail. 

The fluid flow field around the bubble is laminar. 

a) Latent heat of vapour is large compared to superheat 

enthalpy. 

4) Bubble growth rate takes place at constant internal pressu4e. 

The growth is a result of evaporation at the bubble wail 

and the heat to produce .vaporization is conducted from the 

liquid. . 

e) The bubble, is hemispherical during growth. 

From assumption (b), the equation expressing the heat 

transfer is the general conduction equation, 
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(9) 

Rate of evaporation and rate of growth of bubble were 

related to obtain an expression for the velocity of the bubble wail. 

The expression for velocity, the conduction equation and boundary 

conditions specifr the mathematical problem. The results are 

expressed in terms of dijiensionless parameters of radius, time and 

velocity. the final solution require substitution of an empirical 

constant. The author suggested that this relationship only holds 

good for moderate, pressures since the asstwtions are not valid at 

low and high pressures. The results fit data for bubble growth 

rates at atmospheric pressure. 

•Bankoff and Mikeseli EaCI assumed a model of bubble growth 

rate in which the bubble originates entirely within the superheated 

liquid into the bulk. Irrotatinal radial flow describes the 

motion of the fluid surrounding the bubble. "Equilibrium-between 

the vapour phase in, the bubble and liquid bubble wall is assumedo 

Starting with the conduction equation.. (9) and several boundary 

conditiOns, . Lagrangi an coordinates are introduced to facilitate 

the solution of the equations. Solutions were found for two 

temperature distributions, ,a linear and an exponential distribution. 

It was also assumed that liquid remained at a 'constant temperature 

everywhere except in a thin layer, surrounding the. bubble. Thus 

the volume of fluid experiencing the temperature gradient is small 

compared to the volume of the bubble. The volume of the bubble 

boundary layer parameter was obtained empirically from actual 

bubble growth rate data. Bubble growth rates for saturated boiling 
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were predicted successfully at atmospheric pressure, but not for 

subeoded boiling. 

Zuber 1]2,  33J considered the Taylor instability of a. 

liquid -. vapour Interface in nucleate pool boiling under critical 

The liquid - vapour interface was treated as a wave 

which can be Stable or unstable according to whether the wavelength 

is shorter or longer than the critical value. This critical wavel 

is given ,by, . . . . 

r.c 
wavelength  

Vapour,  "slugs" are approximated by spheres of radius equal to a 

quarter of the aelength, and under critical conditions, the 

for diameter of bubbles are given by,. 

I IZ- 

lv b - . 

() 

Stanisewskt [3s  proposed the following relationship 

between bubble diameter and bubble growth rate, based on expethne 

observations. He observed that bubbles with higher growth rate, 

the seine. pressute, grew to a larger maxtnvm diameter, Viz. 

A t 0.00 
j-+ 

ci 
o3S

at I 

Nishikava and tirakawa 71 proposed a relationship for 

bubble departure diameter an a function of system pressure only, 

B 0.672 p 0•575• 
(13) 
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whore diameter and pressure are measured in inch and pounds per 

inch respectively. This relationship successfully correlated the 

experimental value of departure diameter of bubbles, obtained by the 
flat plate 

authors, for boiling on a - 1 1 TiANN between pressures of 

6.0 and 147 psia. 

Chang [353 derived a relationship very similar to that of 

Zuber, viz, 

D 4 E J (14) 

where Cs and C& are coefficients of surface tension and buoyancy 

forces respectively, and are constants. 

Semeria [34] correlated experimental data for pressures 

between 2.0 and .2'OatmosphereS absolute using a relationship similar 

in font to that of Niahikawa and Urakawa. For boiling on a wire of 

diameter 0.0315 inch, he obtained 

1) - 0.242 p4  

where I) is in inches and p in psia. 

Samaria [SSJ later correlated experimental data for 

pressures between 150 psia  and 2000 pals using a similar relationshij 

of the type, equation (is). The exponent of p, however, was 

—1.53 instead of —0.5 0  and the 'value of the numerical constant was 

37.6 instead of 0.242. 

Correlating equations (8), (ii) and (14) differ from each 

other only by the value of the constant. For an angle of contact i 

45, equation (8) is tabulated in table 13 for comparison with 

experimental data. A change in maximum bubble diameter by only 7% 

is predicted, from these three equations, between pressures of 1.0 
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• and 14.1 psia. Equation (8) is plotted in figure 91 for comparison 

with experimental data. According to these results, therefore, 

these equations do not account for major features width determine 

maxinun bubble diameter. 

Solutions in the form of dimensionless 

equations given by Griffith [J and Bankoff and Mikeseil [a] reqüiri 

empirical constants before a solution can be obtained. Equation (i 

was proposed to account for different values of maximum bubble 

diameter, obtained in Stanissewski' s experiments at 14.7, 28 and 

40 psia, at the same pressure. This equation, however, does not 

predict the effect of pressure on maximum diameter of the bubble any 

better than equations (Ic), (U) and (14). 

Equations (13) and (is) indicate a simpler type of 

correlation which might be used in predicting bubble diameter at 

break-off, since pressure of the system takes into account the 

property,  value changes for liquid and vapour, under saturation 

conditions. However, as shown in figure 91, equations (13) and 

(is), themselves, did not fit, the experimental values presented here. 

5.1.2 Prediction of babble departure diameter. 

For pool boiling under saturated conditions, the latent 

heat energy of the vapour bubble at departure cannot exceed the 

total superheat energy,  available in the superheated layer, since 

there is no. other source of energy near the heting  surface, if the 

amount of heat conducted from the heating surface to vapour is 

assumed to be negligible. This assumption is justified since the 

thermal conductivity of water vapour is less than 4% the thermal 

conductivity of liquid water. The temperature difference Tv-Ts is 
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low and, hence, the radiation effects are also negligible. 

The following assumptions are made which are considered 

reason lei 

i) Meat conducted or radiated into the bubble from the heatin 

surface is negligible. 

2) total latent heat enerc of the bubble at departure is 

• , equal to the, thermal enetj, above saturation temperatu: 

of the volume of supetheated liquid displaced by the bu 

With these two asmnTtions.and the, results obtained., in 

chapter 4.2, the maximum diameter of the vapour bubble is predicted 

for two surface forms. 

5.1.2.1 flat heating Surface. 

Promequatlon (s), the thickness of the superheated layer 

is assumed to be, 

• b k(Tm) 

91 

where )'.t is an empirical constant deduced from experiments. 

Also, from chapter 4.2, the temperature gradient in the 

superheated layer is apprortately linear. thermal energy of the 

superheated liquid above the datuM of saturation temperature is, thejefore, 

liquid - 1E.D. (16) 

where D.  - Maximum bubble diameter from a flat surface. 

Assuming the bubble to be perfectly spherical, the latent heat 

of the bubble is given by-, 

Q bubble . ]. 1)ç.LY- (17) 
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From equations (16) and (i?), 

N 1(k(c)  

The value of >i obtained from experiments on cylindrical 

surfaces chapter 4.2, is 2. Assuming that the value of N, for fla 

surfaces and cylindrical surfaces to be the same, 

then, D.f a 
(ccf (19) 

5,1.2.2. 4indric4ttbe, or wire. 
I 
 

if the bubble surrounds the tube completely, the thermal 

energy of the liquid displaced. is given by, 

liquid - -ffA, (20) 

if it is assumed that the thicknews of the superheated layer is 

compared to the diameter of the heating tube or wire ,where. 

do • Outer diameter of the belting tube or wire. 

and. .D.. Maximura of, the bubble from tube or wire. 

For a spherical bubble, latent heat energy is given by 

qtzation (17). From equations (17) and (20), 

= 
(21) 

Using, as previously, a value of 2 for. A chapter 4.28  

Ct 
DT (22) 

5.1.2.3 .Coiriaonof predicted results with experiment 

Equations (19) and (22) are compared with experimental 
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of bubble diameter obtained in this work and from Patton [21J in 

table 13. Calunt 4 of table 13 presents experimental values of 

bubble diameter obtained from a wire of 0.018 inch diameter [2fl,. 

and from the .0.123 inch diameter tube used in this Investigation. 

Coiwim $ shows the predicted values of bubble diameter fran equati 

(22) where the bubble surrounds the heating tube or wire. Column 

shows the diameter of a bubble from a flat surface obtained from 

equation (19). Comparison of experimental results with the 

predicted values is satisfactory. The maximum error in predicted 

values never exceeded 22%. 

Equation (19) is apliàab1e to flat surfaces only while 

equation (22) refers to tubes and wires when the bubble completely 

surrounds the, heating tube or wire. Equation (22) predicts that, if 

the heating tube or wire diameter is increased, the departure 

diameter of the bubble will also increase. This is in agreement 4 

experimental values. Patten E25] obtained a talue of maximum bubbi 

diameter of 0.70 inch at 0.93$ plia, from a heating wire of  0.018 

diameter. In this work, the: maximum bubble diameter of about 1.8 

is obtained at a pressure of 0.9$ psii from .à tube of diameter 0.125 inch. 

At 'some value of beating tube diameter, for a particular 

pressure, the bubble, will not surround the tube completely and 

equation (zz) will not be valid above this heating tube diameter. 

Assuming that the heating tube surface can be approximated to a flat 

surface above this heater diameter,. equation (19) will then apply. 

From thi assuqflion, the maximum bubble diameter from a flat surface 

will be equal to the maximum bubble diameter from a cylindrical surf 

for a particular value of the cylindrical surface diameter. This 



value of tube diameter will correspond to the point where equation 

(19) becçmes valid instead of equation (zz). 1  to determine the 

relationship between the bubble diameter and heating tube diameter 

when equation (19) replaces equation (22), the two equations are 

compared under similar conditions of pressure, temperature and heat 

flux togive 

P1 - (23) 

From equation (23) 0  the diameter of the heating tube 

the bubble diameters from flat and cylindrical heating surfaces are 

equal is obtained by replacing D by D1  

. (24) 

From preceding assumption  and equation (24), it appears 

that the bubble does not surround the heating tube completely when 

the maximum bubble diameter is equal to 4 tines the heating tube 

diameter. At this point, equation (ìø) may be used to predict 

maximum bubble diameter instead of equation (22). 

From a 'visual examination of high speed films, the 

jarinsim bubble diameter of 0.5 inch at 7,0 psia did not surround 

0.12$ inch diameter tube completely confirming the assumption made 

above. 

If the maximum diameter of the bubble from a tube or wire 

and the diameter of the tube or wire is known,, then, from equation 

(23), it is a simple matter to predict maximum bubble diameter from 

a flat surface under similar experimental conditions.. 

Also, H two tubes or wires of different diain.ten are  

used for pool boiling under similar conditions, the diameter ratio 
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of the bubbles is given by, 

33 

 

3Jth. (zs) 

where d, and dz are the outer diameters of heating sutfades and 

Di-' and On their corresponding zn3xntum bubble diameters for a 

given set of expe4mentzi]. conditions. 

The maximum bubble diameter values from wires and tubes 

modified to correspond to a net surface using equation (23) and 

tabulated in Cum B of table 13. Celunth 8 shows that the derived 

maximum bubble diameters for a flat surface from experimental value's 

of Fatten [z] for a wire of 0.018 inch diameter, and this %90z4 for 

a tube of 0.125 inch diameter agree satisfactorily. unfortunately, 

there are no experimental values of bubble diameters available for 

flat surfaces at low pressures and a direct cóqm4son cannot be mad 

These correlations for maximum bubble diameters given by 

equations (19) and (22) depend upaü the ixpziSntt values of heat 

flat and temperature difference between tall and saturation. From 

table 131, it is noted that the experimental and predicted values of 

maximum bubble diameter at criticsl heat flux agree well and are 

only slightly loss than the diameter of bubbles at low heat fluxes. 

It will, therefore, be reasonable to assume that the nuudznum bubble 

diameter Is approximately constant in the boiling region. 

5.1.3 Second correlation for bubble departure diameter. 

A correlation has been found which does not require 

experimental values of heat flux and temperature difference. 

Available experimental results are satisfactorily correlated by an 
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equation of the type (14)!  modified by a tern (p/per.). This 

equation is, 
A 

D C  

and in this form it refers to flat surfaces only althâugh i t can 

obviously be modified by constants in equations (23) and (24) to 

apply to wires and tubes. !!  ! ! . ! 
•! !! ! 

The acceleration due to gravity tern is assumed to have 

no effect on the maximum babble diameter. This assumption is 

reasonable since, it was assumed in detLoping equations (19) and (22 

that the maximum bubble diameter only. depends upon the :e11erD' 

available in the superheated layer., Hoer, the gravity tern will 

have, to be, considered in detendring the bubble velocity at departure 

From experimental values of maximum bubble diameters obtain 

in this investigation, suitable  values for )'4and x3  are 9.l'z 

and —1 respectively. The resulting equation Is, 

D 0. 0091 )LccL-cvj . () 

The values of surface tension, were obtained from 

experimental results of Volyik [37] in the temperature range from. 

20°Q. to 374°0 . 

Experimental results of Samaria [69 Staniszewski 1)41 

and modified results of Patten' [4] and this work to correspond to 

flat surfaces are p].ottad in figures 91 and 92. Equations (8) 9  (13) 

(15) and (26) are also plotted for conarIson in figure 91 and 

equation (26) in figure 92. Equation (26) is also tabulated in 

colturn 7 of table 13. 
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Comparison of equation (2€) with experimental results is 

more satisfactory than existing correlations in the pressure range 

between 1.0 psia and 2000 psia. 

5.2 Prediction of critical heat flux in saturated pool boiling. 

S. 2.1 Previous Work. 

Addoms jjaj derived a correlation 17 dimensional ana1sis 

in which the average volumetric vapour disengaging rate per unit 

of heating surface is a function of buoyancy tern and the liquid 

thermal diffusivity. The correlation is expressed as, 
s 

Xs. Lv ki H 
(27) 

Kutateladze considered the kydroctyna4c motion of .a. 

non-viscous two phase flow in terms of equations of motion of both 

phases. By dimensional analysis, the author arrived at the 

following correlation, 

± . I/k 

= (on_rot4) L? 3c ()1\ (28) 

where lo r Conversion factor. 

and .0.13 and 0.16 are empirical constants. 

Bortshanakii [4UJ considered the stability of a liquid jet 

surrounded co-axially by the vapour phase moving in opposite directi' 

The effect of viscosity was included and similarity criterion derive 

from dimensional analysis. The effect of viscosity was found to he 

small. The expressions derived were, 

• Nc. (29)  
Lit 
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alt 
• ftc

00) 

and . n 0.13 + 4f04  .. 

fleissler 4IJ usttiI that sit the hen energy in boiling 

used to foam vapour and that the critical heat flux conditions 

occurred when successive bubbles leaving the surface touched and 

coalesced. The velocity,  of tour bubbles was detendned by 

equating buoyancy and drag' forces an the vapour bubble. Using the 

Frits relationship for departure diameter of a bubble, the foilowing 

espktssion was obtained,,  
£ 

c = xlL?;[r1cc2- )] 
(+)t 

2) 

where CD Drag coefficient and 4 • Angle of contact. 

It itaa asmmS that the drag coefficient 

C3ø. . (33) 

where mv Viscosity of vapour 

Vs a Velocity of bubble. 

The value of D in equation (33). was obtained fraa equation 

(a). The velocity Of the bubble Yb was detentitned by equating the 

buoyancy forces on the bubble to viscous drag, 

lb •[  '&•i 
°tut-cv 

. . (34) 
5,', 

From equations (32), (33) aül (34), 

(35) 

Ly  

Vb 



896  

Robsenow and  Griffith [433 also assumed that all the heat 

transferred under critical conditions is used in forming vapour. 

The product of bubble frequency and bubble diameter was taken as a 

constant and a buoyancy tent was introduced to account for the 

vapour velocity. The relationship derived is, 

Tv 

The value of constants 143 and 0.6 for the buoyancy term 

were obtained from experimental values. It was noted by Ivey [a] 

that this relation does not contain an acceleration term whereas the 

magnitude of the acceleration due to gravity does effect the 

critical heat flux significantly. 

Züber (z, 33, 44] derived the following relationship for 

critical heat flux in pool boiling, 
3- 

2-4 

 £ 12- 
V I IL I 

= 2Lt.y ['oc(rt?v)3 LTL+?j (37) 

The analysis was based on the Taylor instability of a liquid -. 

interface which requires no solid - liquid contact. Various authors 

have found liquid - solid contact under critical conditions [js, 4]. 

Stein 73 has shown that Zuber' s model is not compatible with the 

Taylor requirements for instability. 

Chang and Snyder [4] considered the equation of motion of 

bubble. The model used under critical conditions is shown in 

figure 93. It was assumed that wheb one bubble detaches from one 

site a new bubble initiates at the neighbouring site. Mass 

acceleration of the bubble was equated to its buoyancy force and the 

equation integrated to determine the time t in which the bubble will 
the 

travel a distance of ZD,L assumed distance between successive bubbles. 



7% 

rhç analysis was similar to that of Dejssler. and gave, 

OT  
r -1'V (38) 

The! value of t was obtained from, 

a I ! ! 39 
4 '(jt- i) 

and the value of diameter was obtained from equation (8). Using 

publj shed data for contact axg).e, the final oxpression takes the ton 

4- 4- 

IcIr.  a (0.17 - 0.23) L (40) 

Chang and Snyder, loc.cit. also considered capillary waves 

which were postulated to occur at the interface of the bubble and 

liquid due to the relative motion of the bubble. For two non-viscid 

liquids flowing in parallel vertical streams, the interface becomes 

unstable when their relative velocity is [4J, 

I V4 

w ! 
(41) 

Vapour velocity is deduced from the bubble geometry shown in figure 

93 as,. 
• 

! (42) VV 
L8. 

from equations (s), (38) and, (39), the relationship is, 

¶n L?Vv 

i eye Vy c Vapour bubblevelocity. 

From equations (41), (42) and (43), 
4- 

1- 4. 

9k,- = 0145 L& Lcj (44) 



cltanj 1A4] later suggested the following correlation for 

saturated pool boiling, neglecting viscous forces, 

t ci (4$) 

erenson [4i1 postulated a model of contraftowing columns. 

of vapour and liquid. The following eqn'ession is obtained by 

minimizing kinetic energy per unit time At a hôr±zokttal surface. 

t Xg  LC)][ +(t(p)T*(Ii)I\ (46) 

The analytical model is similar to Chang and Snyder. 

It has been shown conclusively in chapter 3.1 that the!  

Fritz equation (s) which does not take into account the 

does not fit the experimental data In the sub—atmospheric 

region, ,and at pressures above atmospheric. 

• In Deisslerjs 'correlating equation (as), the Fritz 

relationship has been used for diameter of a bubble. Therefore, 

this correlation is, of little value. Rohsenow and Griffith's 

correlation, equation (36) 0, does not contain an acceleration term 

which Ivey [ii] has proved as an essential feature of critical heat 

flux. Therefore, this equation is  open to question. 

Zuberts correlation, equation (37)., depends upon the 

Taylor' s instability which require no liquid - said contact. It 

has been shown In chapter 4 that such contact definitely edsts 

under critical conditions. Hence, the derivation of a correlation 

based on an unsound model is also of dubious value. 

The model used by .Chang and Snyder to arrive qt equation 

(40) and (45) and by Berenson to deduce equation (46) are not 
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compatible with the observations on high spud film taken at critic 

heat flux. Photographic evidence at critical heat flux indicates 

a chaotic behaviour of the two phases, therefore, the postulated 

bubble geometry cannot be valid and the resulting equations are opt 

to question. 

The correlations which have no apparent invalid asswitioj 

are those of Kutateladse and $orishanskii, equjtiona (28), (29) and 

(30), arrived at through dimensional analysis. Assuming the 

viscosity effects to be negligible, the equations of Kutatel ate and 

liorishanakii are the same. The value of critical heat flux from 

equation (28) is, therefore, plotted in figures 29 and 94 against 

pressure. Experimental values of critical heat flux in the sub-

atmospheric region, obtained by Patten and Lienhard and Sebrock, 

are modified to correspond to a heater diainetár of * inch using 

equation (3), as shown later in this chapter, and plotted in figure 

29 along with the experimental values obtained in this investigation. 

The experimental nines of critical heat flux obtained by Kazakon 

and Morosov [] are also plotted in flgun 94. 

• From figure 29, it is noted that the correlation (28) does 

not fit the experimental data. At 1.0 psia, the experimental value 

of critical heat flux is about 90% higher than predicted by equation 

(28). It is, therefore, considered necessary to derive a more 

suitable relationship which may predict the critical heat flux 

values over the entire pressure range. 

5.2.2 Critical heat flux In saturated potit boiling of water. 

It has been observed, chapter 4, that the process of heat 

transfer under critical conditions Is apparently chaotic both in tinH 
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and in space. However, there are certain outstanding features 

noticable even under critical conditions which can be generalized. 

From these features, a model of heat transfer under critical coudF 

is proposed. An empirical correlation, based on the model, is 

derived and the value of various constants is obtained from 

experimental results. 

As assumed in chapter 4, the critical heat flux is 

limited by the finite velocity of the vapour bubble away from the 

heating surface. Bubbles font on the heating surface when space 

provided by departing bubbles. therefore, the rate of formation 

bubbles is equal to the rate at which they can be removed from the 

heating surface. The velocity of the vapour bubble will depend 

tzj,on the buoyancy force and drag on the bubble. As Asuined in 

chapter 5.1.2, the bubble latent heat energy accounts for all the 

energy available In the superheated layer displaced by the bubble. 

Therefore, it is assumed that, under critical conditions, all the 

heat transferred from the heating surface is used in the production 

of vapour. 

cBj 
(47: 

where , • Number of bubbles per unit area. 

and f • Average frequency of bubbles. 

As discussed in chapter 40  under critical conditions, a 

maximum limit is reached for no. of bubbles fanning per site and 

the total no. of such active sites. Madnia possible no. of bubb14 

will occur when bubbles touch other bubbles in both planes and 

coalescence occurs between bubbles from the same site. Therefore, 



under ideal conditions, 

oç .. (48) 

V (49) 
• and f cC D 

where,  V AvOxage velocity of vapour away from the 

-. 
heating surface. 

Boiling conditions are chaotic and bubbles do not retain 

spherical shape In later states of growth. Also, all bubbles are it 

of the same size and they do  not necessarily touch other bubbles on 

sides, all the time. A constant factor is introduced to account 

for this deviation from ideal conditions, 

>'3 
I n S jz. 50 

and f 
x%V 

UI) 

Front equation (47)0  (sc) and (51)j, 

I. X3 L V (52) 

As plotted In figures 73, 74, 75, 76 and 77 and discussed 

in chapter 4, the vapour bubble velocity reaches a constant value 

before the bubbles leave the heating tube. Thereforei to detent 

the velocity of the bubble, buoyancy force is equated to drag forces 

to give, 

S 2. £ 
? 

-z 
. Vb D CD. . 

] 
(53) 

CD 

 

Tv J 
() 

where Wa - Velocity of the bubble at departurd. 



The use of in determining the bubble departure 

has been suggested by Dëissler [41J. The experimental results 

obtained in this work support 4Am Beisaler' S view that, under critic 

conditions, bubbles are mostly surrounded by other vapour bubbles on 

all sides. therefore, vapour density is used in determining drag 

the vapour bubble. 

The bubble velocity as obtained from equation (54) can  be 

used in equation (52) only if the bubbles were perfectly spherical 

and All bubbles were of the same site.. Since no such regularity was 

observed! in size And , shape of bubbles ! undei critical conditions, it 

will be reasonable to asstime that actual average velocity of the 

vapour slug is some function of bubble velocity. Assuming that the 

drag coefficient s constant over the pressure range, equation (54) 

may be written 

!![ 
! 

(55) 

From equations (26), (52) and (55), 

I_± 
(56) 

en4'trico-1 
TheLvalues of Amend X-*viz.. 2.44 and 0.313, are obtained 

from experimental data of this investigation. 
o ,313 

r. rc -i •  oa uuJv)T1 
= 2r A4 

L 
 

Equation (57) is plotted on figures 290  94 and. 95 for 

comparison with experiS tel data. The comparison is satisfactory 

if It can be assumed that some very low critical heat flux values 
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obtained by Kaakova [çJ could be due to premature burnout. 

This was possible since no stabilizing system was used in 

determining critical heat fluxes. 

5.2.3 Eff4tI at heater diameter on critical heat flux. 

Front equation (57), critical heat flux is related to the bubble 

diameter by the. relationship, for fixed pressure conditions, 

..• 
. . 

• For cylindrical surfaces when the bubble envelops the 

heating surface completely, . from equ4t16n (22),, 

j cC . (59) 

From equations (5$) and (59), 
I . 

(3) 

From equation (3), it is clear that critical heat flux 

will decrease with a decrease in, heating wire or tube diameter at 

pressures where the maximum bubble diameter surrounds the heating 

surface conpletely. Assuming this to be true., the ecperimental 

values of critical heat flux obtained by Patton 18.1 and Lienhard 

and Schrock L2 %] may be modified to correspond to 0.125 inch. diameter 

tube, used in this work.  

These modified values of critical, heat flux are plotted in 

figure 29 for comparison with predicted values from. equations (26) 

and (si). In figures 29, 94 and 95, the predicted values from 

equation (57) compare favourably with experimental data. Maximum 

deviation of experimental values from predicted values was less 

than s30%. 



CHAPTER 6 

CONCLUSIONS 

These studies are confined to nucleate boiling of water in 

the saturated state from an electrically heated stainless steel 

Nucleate boiling heat transfer rates up to and including critical 

heat flux have been determined for saturated pool, boiling of 

deiadzed water between pressures of 1.0 and 14.7 psia. A stabLES 

fluid flowing through the 0.125 inch diameter stainless-steel tube 

prevented excursion into the film boiling region during these tests. 

Heat transfer rates are presented for pressures of 1.02  3.0, 7.0 and 

14.7 psia. 

High speed films taken at 6000 PPS using a 11astex camera 

showed that, at critical heat flux in pool boiling, liquid-solid 

Contact existed throughout except for infrequent extremely short 

intervals. The presence of these extremely short intervals may be 

due to the small heating surface area considered for these measunnei 

These short intervals may disappear if a larger heating surface were 

considered for measurements of this nature. . This could account for 

departure frow stable conditions on a non-stabilized heating star 

Under critical conditions, bubble. behaviour is chaotit 

in time and in space. No model can correctly account for the 

bubble behaviour during bubble growth and departure under critical 

conditions. 

Maximum bubble diameter under critical conditions is only 

slightly less than maximum bubble diameter at low heat fluxes, 

to the observations of Gaertner and Westwater t283 and the pre 

of Zuber [23]. 

Values of bubble growth rate and maximum bubble diameter 



presented for moderate heat fluxes over the same pressure range. 

The diameter of a bubble at any time during its growth may be re 

to time by an equation of the type, 

B a (6) 

where the values of ln. and xtvaiy between various bubbles. The 

value of x,  in equation (6) was found to vary among bubbles at the 

same pressure. The highest value of xtat atmospheric pressure was 

as high as three times the lowest value.Oneezialytical model for 

bubble growth rate cannot account for such large variations in g 

rate under similar experimental conditions. 

The temperature gradient in the superheated layer at the 

time of initiation is approximately linear. .  The thickness of this 

layer at initiation of the bubble is very nearly twice the thickness 

corresponding to pure conduction under similar temperature and heat 

flux conditions.. 

Existing correlations for maximum bubble diameter do not 

satisfactorily predict the maximum bubble size. However, the. 

diameter of the bubble at departure can be predicted fairly well by 

an energy balance of the vapour and the superheated liquid displaced 

by the vapour bubble. An average maximum bubble diameter in pool 

boiling of water may be obtained from the following equation: 

D s 0.001)b1 (26) 

Equation (26) correlates all the available data between 

pressures of 1.0 and 2000 psia satisfactorily. In the case of 

cylindrical heating surfaces, the maximum diameter of the bubble is 

/•. 
proportional to the square root of the heating element diameter 
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when the bubble envelopes the heating element completely. This 

maximum bubble diameter from a cylindrical surface can also be 

derived by combining equation (26) with equations (23) and (24). 

The velocity of the bubble at the time of its departure 

from the heating surface is constant. This bubble velocity can be 

obtained bycquating buoyancy and drag forces on the vapour bubble. 

The hydrodynamic disturbance associated with the bubble 

growth rate causes disturbance in the superheated layer well away 

from the origin of disturbance. This disturbance travels at 

approximately the initial growth velocity of the bubble in all 

directions. Such an occurrence may well explain sudden change of 

slope on the heat transfer curve,, figure I t  when boiling commences. 

The bubble at departure produces eddy currents in the liquid 

resulting in an upward "lift" of the superheated layer. The 

relative turbulence in the superheated layer after the departure 

of the bubble is larger than the turbulence during growth, fig 90. 

Experiments of this type also confirmed the presence of a thin 

layer of supelteated liquid adjacent to the interface of the 

growing bubble. 

The method of recording temperature transients in the 

supetheated layer using smell thermocouples inaycle use&1  

indicate the existence of bubbles when the heating surface is not 

visible or high speed camera not available. This method is 

particularly useful to indicate initiation of the nucleate boiling 

regime. 

Based on the assumption that, under critical conditions, 

all the superheat energy present in the superheated layer is. 

transferred in the toxin of latent heat of vapour, a correlation is 
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developed which predicts the critical heat flux in pod boiling of 

water. Comparison with all the available data in the pressure rang 

0.6 psia to critical pressure is satisfactory. Two enflrical. 

constants were required to complete this equation which were found 

experimentally. The resulting equation is' 

t313 

i. 2.44)b'\ t(53±9 (st) 

t has also been proposed that for cylindrical heating, 

surfaces, at pressures where the bubble envelops the heating surface 

completely, the critical heat flux increases with anincreasein 

diameter of the heating element. The proposed relationship is,, 

40 

 0.156 
(3) 
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APP'a,nU x. 

•Condition, gtnening the øidce of a stabilizim fluid. 
— r 

For the atàbflSsicg wstS to fimctlt flSaU7, it was 

neaasa' to onsute a boa abeorbticu Cap*city for the system of 

76I0 ht.u. per hixjr1  aq iientthtzUd An chapter M. Ai, boiling 

in the stttUi$ng sy%taft ad depodtim Df descosS.ttaii pseducta 

of oil had to be avoWed for uonnal f%*netioning.. To date3vdne the 

nicessar' stabilizing fluid £lowrate and pressure nqpitett*nt9 In.  

the stAbiltming wjatc, tb* ftaloving equations vete Considered.  

• The hnt trnazsSor equation for the atni1i*g fluid is t 

Mttv4s - Uotilter oçuatian {t], 

h4 0.023 Pt (6) 

(61) 

and Q is. c;.(7e-fl) (62) 

Tr*wt sn*tions (60) sad 

a 0.023 • A. ATTf&
11  +41  (63) 

di 

• T-T - (Ti• !Q! (64) 

From eqationa (63) wtd (64), 

a 0.023 i A.  
t. 0•B p 0.4 

- (63) 

kt 

Also* Q •. We. A.&ttc 
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Q itt ( ?VO (To-T.0 (66) 

or aX1+ (7) 2 iv 

From equations (65) and 61 and rean'anging, 

a Ws (TT - Ti ) Pr°4 , 
ilk Re02  Pf06  • di. 

From equation (68), the velocity of' stabilizing fluid 032 

be calculated if the value of T, is known. The value of the inner 

:ijfla4e temperature of the tube, TT , was assumed to correspond to 

point I) on figurtul. The value of Ti was taken for the worst case 

boiling at 14.7 psia under critical conditions. This value of Ti 

corresponds to point C on the boiling curve. 

$ . Inserting thenlue of velocity in equation (66), ottt1t 

temperatuze of the stabilizing fluid can be calculated. 

Pressure drop across the heating tube. 
........................ 

Frictional pressure drop in the tube is given by., 

S. . () 
9- di 

From ref. t150 , !0.079 x Re . (10) 

Pressure drop due to sudden expansion and contraction at 

exit from and entry to the test section. was calculated from the 

following equations. 

a ICe (71) 
at 

a ICc (Ia) 
2) 



where No and ICc are coefficients for sudden expansion and contrac 

respectively and and A\?c  the corresp pressure drops. 

For a diameter ratio: of pdlfi 0.23, 
0.5 

Ke = 0.44; Ke ..0.898 

For extreme conditions at 14.7 pail, 

TD= 465°F.; Ti a 275°F.; V z 2.07 xlo4ft/ht. 

The value of total presrS drop and £lowráte for three 

liquids were as follows:- 

Pressure drop flcwrate 

(rL). 

Water Watr •0.6 9.5 

Moblitheflu 600 67.0 104 

Shell Yoluta 45 94.0 124 

It was decided to use water because of low frictional 

pressure drop, high thermal capacity and freedom from dec'nnpoa1 

products. 
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APPENDIX  11 

Determination of temperature drop across the tube nfl. 

The dimensions of the stainless steel tube used In this 

investigation were, 

Outside diameter - 0.125 inch. 

Average thickness - 0.0048 inch £ 0.0002. 

Length. n 6 inches. 

The thickness of the tube wall was less than 0.005 inch 

and the maximum temperature drop across the tube wall never exceeded 

i00P. under limiting conditions of critical heat flux at atmospheric 

pressure. It was, therefore, assumed that the properties of the 

tube material were constant under these conditions, Leppert and 

costei.io.f3i, ' 

H a Constant heat generation rate per unit volume of matori*$I. 

For steady state conditions, assuming no heat flux at innj 

surface and radial, heat flow only, at any radius 

H.iVL 
(tft 

) _ar9- 4q-1 (13) 



or 
2kT (\ : ) 

cit - (74) 

Integrating between limits of Ti and Ia; and. TT  and Two  

T1 —Tq 41C  D 

Assuming that all the heat generated in the tube wail 

flows out to the liquid, as was the case in actual experiments, 

where '5-i  s Volume of tube material. 

I 'Co 
or ifs 

çç_tc ) 
Fran equations (75) and (77) 0  

(t1 —TV) a 
- 

k 

For aetnal values of ro and 

 

 

(7$) 

vt-lw * 2.03x10
-4 (79) 

where k-1  a Thermal conductivity of tube material. Since the 

temperature drop across the tube wall is small,, an arithmetic averagi 

value of t1. and 1w is used to fix the thermal cen4uctivity of the 

material. The values of thermal conduct.vjty of the stainless a 

tube at two different temperatures were supplied by the manufacturer 

of the tube. The value of kt at 20°C. was 9.192 B.t.U. per hour. 

ft-3  °t., and the temperature coefficient was + 6.51 x 10 per 

degree centigrade Else of temperature. 



APPENDIX in. 

Estimation of heat losses In conductors and tubes. 

The location of theunocouples 1.23 inch away from US 

entrance to and exit,, from the actual test section introduced 

an error in heat flux xneasurertnts, because, of heat losses in 

conductors and tubes mainly due to conduction and convection. 

A ample test was devised to estimate the extent at 

losses in conductors and tubes, during experiments in boiling. 

The following assuapt.ons are made. 

i) Since the losses, in conductors and tubes are by 

conduction and convection.,, the losses depend primarily on the 

temperature difference between stabilizIng fluid and bulk fluid in 

the test tart. 

Temperatures measured by the thermocouples are the mean 

temperatures of the stabilizing fluid flowing past them. 

The temperature drop in the stabilizing fluid at .entry 

and exit due to losses are equal, . . . 

i.e. (Ti - ? ) a 03  - to) 

where t and Ts are the temperatures of the stabilizing fluid 
{rotn 

at ently to and ezitkof  the test section. 

It Tf}, is the mean temperature difference between 

stabilizing fluid and bulk in the test tank, then as a first 

approximation cray,. 

s, -_! ffL°.. - TO 

('ii— m) 

ar (To — Tb) 



lot' 

The heat transfer coefficient from the tube outer 

surface to bulk liquid in the tank was calculated from recommended 

natural convection equation for horizontal cylindirs, McAdam .] 

Lag. do. 0 53 (1) 

Heat transfer coefficients for forced convection from 

stabilizing fluid to the heater tube inner surface is calculated 

from the eójaat±on, 

k4 . a .J_4r—..l. • 0.023 Re 0.8 p O•4 (si) 

Overall heat transfer coefficient between stabilizing 

fluid and bulk fluid In the test tank is,.thus, (based on inner 

surface), 
.. . . .. 

+ 2t 4d4 + ($2) __ U wd0  lc ., (do~di) 

Total amount of heat transferred in the test section is.., 

QC U. b Tfb Al . (83) 

Total heat lost by the stabillziàg'fluid is given by 

Qitotél - (y'Jc ) (Ti — To) . ($4) 

Neat 'losSes in conductors and tubes is, therefore, 

QL QTotal— Qc . 
(as) 

If AT,is the temperature drop in the stabilizing fluid due to 

losses QL only,. then 

(86) 

From assumption (3), this loss can be detided equally 

at inlet and outlet. 



TZ bT1J2 . 

• ¼ T3  . To + 

A first approximation to stabilizing fluid temperatures 

at actual inlet to and outlet from the test section has, thus, 

been achieved; It is now necessary to recalculate atçj, from 

equation (80) by replacing Ti and To by T and T 3  respectively. 

Equations (si) to (86) have also to be recalculated for this new 

value of hb. 

The value of bTwb in equation (i) was assumed a few. 

degrees less than %Th, This assumed tame of ATwbhas to be 

checked, thus 

Qc 

A. A 
(87 

In figure at, the thermocouple emf equivalent to losses 

is plotted against the thermocouple emf equivalent to NTpb, for a 

constant stabilizing fluid flowrate of 140 lbs per hour. In actual 

experiments. j  a constant fiowrate of 140 lbs per hour was maintained. 

The required emf equivalent of temperature drop. In the stabilizing 

fluid between inlet and outlet was then obtained from figure 22. 

sample calculation for water is given here. 

Ti = 

16600,01P. 

I . . 
I Tb 92.850  F. 

From equation (so), At = 

'Ass&mSLe value of tsT 6  - 68.0?. 

Mean liquid temperature near the heating tube, 

TM = a + 92.85 a 125.85°F. 

A 



MU 

At 1270F. 

kin a 0.3172 8.t.u./br,°P.ft. 

a 61.5 lbs/ft3. 

277zl0 ..S 

a .:;:225 lbsihr.ft. 

- 1.0035 .B.t.u./lb.°P. 

do a 1.041*10.2 ft. 

Ao a 1.636 zc2  ft2  

A - 1.505 xi&'2  it2  

From equation (i), tnc. . . £6 B.t.u./ft.2hr. °p. 

n it ($1)0  4"çc 3640 8.t.u./ft.2  hr.9 e 

ft 
. (sz), U ......B.t.u./ft.2  br. 0F. 

. a 353.5. B.t.u./h14. 

($4),. QTotAla 162 B.t.u./1W. 

From equation 

it ft 

Recalculating, 

0- 

(809, bTt  

and T3  

a 408.5 B.t.u./hr. 

2. 

170.06°?. 

a 167.49°F. 

From equation (so), ATcb a 75.40F. 

a 0 (83)9 . 

35350 

it 0 (85) 0 QL • 410. B.t.u./hr. 

(86), AT a 3.0°F. 

(si), ATuk. • 68.1°F.1  compared with an 

assusd value of 680?., hence satisfactory. 
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APPENDIX IV. 

Sensitivity of the stabilizing fluid system. 

Ovens I}J defines the sensitivity of the stabilizing system as the 

ratio of change  in stabilizing fluid temperature to the difference 

between test section wall and the stabilizing fluid as this  

approaches zero. 

i.e. Sensitivity . Limit  
aD 

whir. hTsç . temperature change in the stabilizing fluid..bulk 

within the heated length of the test section, 

and fl,-4  - temperature difference between tube ins1de wall and 

mean stabilizing fluid bulk. 

From a heat balance over the test section, 
I, 

AN Tsf  c (89) 
Cq 

AsSuntñg, Sat the inner tube diameter :andl th heat 

transfer coefficient do not very along the length, from equation (8 
4. 

= 
a (90) 

• ... 9l 

where &T-rç çATtc..c(t (92). 

H . 

Sensitivity 
• 

• 

4k (93) 
w. 

• where St • Stanton number - 
W 4 
4 

Stanton number for turbulent flow may be obtained from Dittus — 

Boelter equation (60), 

. d4fevertce 

sp 



M 

St 0.03 

Re 0 Pr  

Sensitivity a 4L * 
___

0.023 
______ 

£zperimental value for water. I  

Volume Low - 14 Xgph • 2.245 t 3/hour. 

938 E1O 3 ft* 

2 A1 a 7.21 x 1075  ft. 

• Velocity V 3.115 x 10 ft./hour. 

Re a, 2.6 * 10. (for pressure of 14.7 pail) 

. •.. • 1.754 

Sensitivity n 0.432. 

i.e, a temperature difference of 0.4320F. between inlet and outlet 

temperatures of stabilizing fluid will be observed for every 10Y. 

difference of temperature between tube Inner wall and bulk stabilisi 

fluid. 

Accuracy of stabilizing fluid temperature measurement j 0.003 

as 0.05°?. 

Accuracy of derived average inner wqil temperature 

jt O.12F. 
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APPENDIX.  V. 

Response time of the 0.002 inch die-meter thermocouple. 

The problem of determining the response time is a complex one. 

In the arrangement used in this investigation, a thermocouple 

in the superheated layer near the heating tube will have a temperati 

gradient across its diameter and along its length. 

However, Carbon at al [sdj have studied the problem careThily 

and shown by experiments that the heat conducted along the 

thermocouple wire and heat radiated by the thennocóuple junction 

can be neglected comparedLwe convective heat transfer between the 

thermocouple and the fluid flowing past it. The authors 

equation to determine temperature change in the thermocouple with 

time may be written in the font, 

(L,.-Tb) - (TL —Th)\ Q- 
j (96) 

where Nu. ()tc  (97) 

where T4 a Temperature indicated by the thermocouple t hours 

after the change occurs in the liquid by a. temperature (Ti. - TO 

d = Diameter of the thermocouple wire. 

ç to Density of the thermocouple wire. 

Cte - specific thermal capacity of the thermocouple wire 
K 

and h Coefficient of heat transfer. 

The value of a suitable coefficient of heat transfer, for 

water, may be obtained from, MeAdam [i], 
033 

IT 
0.42 + 0.57 (98 

where k f  a Thermal conductivity of liquid. 



The temperature 11 was determined as follows, 

Tf (go) 

For boiling at 1.0 psia,4th an assunc1 (t - TO of 40°?, 

tS 1420F 

lb a 102°F. - 

128.9°F, for 673% of total change in temperature. 

ç tc • 534 lbs/ft3. 

0.10$ &t.u./Lb.°F'. 

- 1.67 * 1074 ft. 

From equation (go), Tf 1320F. 

For liquid velocity past the thermocouple of 10 feet per second,, 

equal to maximum bubble radial velocity, 

V = 10*3600 FPII 

- 62.0 lbafft3  

p. • 1.25 lbs/hr.ft., 

0.376 B.t.u./hr.ft.0F. 

From equation (98), Ii 3.42*104 N.t.u./ft br.°?. 

From equation (97)0 Ma - 6.9 a 10 8  hour. 

From equation (96) 0 t a 7.6$ x 1O hour. 

- 0.276 millisecond. 
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PP121n11 VI. 

Use of LASER in boiling experiments. 

Advantage was taken oft demonstration by a technical 

representative of Hughes Aircraft Company to experiment on the use 

of a LASER as an energy source for providing nucleation at a point. 

LASER model 200 with power supply model 250 was used to 

provide a coherent source of light. The specification of the ruby 

crystal was 

Composition r, 0.04% Dr., 03  inAL 0 

Sin a 0.375 inch diameter x 1.3 Inches long. 

Diameter of beam at 

point of focus 1 0.315 inch. 

optical axis 90°  with respect to rod axis. 

Details of the LASER. source were as follows: 

Focal length of the lens rn 0.75 Inch. 

Peak power a 10 1W. 

Power input duration - 1 miiiäecohd 

Power input to LASER 700Joü1es. 

Power: output from LASER 1.4 Smiles approximately. 

Input Voltagi 13.50 volts. 

Wavelength of light source 6943 A. 

A small glasé tank with inside dimensions 2 inches S  11 

a 2* inch high was used as the boiling tank. A silicone rubber 

gasket provided a seal between the perspex top and the sides of the 

tank. A stainless steel rod Yu inch diameter was sharpened to a 

needle point and blackened at the needle point by oxidation. The 

rod was fixed to the perspex top with its needle point located 
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0.75 inch above the bottom of the tank. The tank was filled with 

hot water,  and connected to a. vacuum Pump through, a vacuum break vali 

The LASER was located 2 ems away from the  stainless steel 

neede. Pressure in the tank' was reduced until the bulk of the 

liquid started bottling!  When steady state was reached, a pulse of 

one millisecond duration wihmhuthium: energy input of 10 KW over an 

area of 0.11 squth'e'inch was passed. In one 8u2111seccá4 duration, 

two or three bubbles formed at the tip of the stainless steel 

The advantages of a point source with controlled instant 

of bubble formation are numerous. The first one is saving in timet. 

effort and expense aasociated with high speed photography if a' 

bubble fails to develop in the short recording period. Secondly, 

the thermocouple bridge can be lobated at any desired distance away 

front the source ofbnbbles. 'This t.rotLd solve the problem of 

riljing on the chance formation of a bubble in the vicinity of the 

thermocouple. The disadvantages of a point source have already 

been pointed out at the beginning of chapter 2. 

The LASER source of energy provide just the means of 

creating bubbles at a desired position. However., the power input 

from the available LASER source  is neitket constant with time nor 

over the area. The problem of measurement of heat flux and 

temperature difference TO would remaiu with such an arrangement. 

The additional problem of detext&ldftg the absorption Coefficient for 

a metal boiling surface is Introduced if a L&SER source is used. 
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Heat transfer rate. measurement 3. 

Apjrinste prdssuré 1.Opsia 
• . .q1.,,4n0  1 

,aata a 

Pressure Tenenthre diffezence Beat Flux 

p TV-Ts Ts-Tb 
(j,siO (or). . (°v) (Ltaz./fl.2hr.) 

1.02 
. . 26. . .. 2.6 6.65 * 10 

31.0 . 2.0 3.60 *  lo 
1.01 38.5 . 1.9 2.60 * IO 
1.60 46.8 1.40 3.01. x 10 
1.02 . 

49.3 2.8 9.20 x  104 

1.00 54.6 2.4 16.82 x 10 
1.00 59.0 . . 

2.3 . 18.90 x 104 
. 

1.02 . 65.5 3.6 22.40 z  104 

1.01 71.8 2.5 24.20x104  
LOX 76.6 2.2 25.25 x  104 

1.00 81.2. 3.9 .. 24.90 1 l 
1.00 86.3 2.3 25.0 riO4  
1.00 . 81.8 

• 
. 2.2 . 28.4 x 10 

. 

1.01 83.5 2.1 25.0 x  104 

1.02 81.8.. .2.5 25,4 x .164 



IiLll 

H T4$4L. 2.. 

ut:tasfer•. ratorneasuSnits., 

1.03 73.4 2.2 24.5 x 104  
1.02 70.4 2.4 4 23.5 z 10 
1.05 68.0 1.9 22.9 x104  

2.1 20.0 io 
1.04 63.8 1.6 20.9 z I0 
1.02 58.1 2.1 19.5.x 10 
1.03 56.5 1.0 16.210 
1.05 50.0 1.9 11.410 
1.04 42.2 1.8 4.5 ,z 10 
1.04 35.5 0.0 9.4 x 10 
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TM3L! . 3. 

Heat, transfer rate measurements. 

Apprmate pressure s 1.0psia. 

Seas 3 

Pressure ?eterature difference' Hat Flux 

Tv-fl Ts—Tb 
Or 

,. 

(B.t.u./Pt2a,r.) 
1.06 36.7 0.9 LA x 16 

4.3 LI 3.82s  164 

12.90 * 104  
Lo:' 15.70x 10 

1.05 56.2 2.0 . 1$.55 *  104  

1.07 60.7 3.0 21.0 X.  
66.7 1.6 22.85 * 10 

1.03H 9.5 23 24.4  x 164 

14.0 1.6: . 25;8 x 16 
1.62 , 1.3 25.9 x104  
1.03 . 8206 . LU 25.5 x 16 
1.03 84.8 -0.3 ' 26..2 
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TABLE 4.' 

ant, ttansfet rate rernnts' 

4prUirnte pre8mi*o 3.0 pStá, 

Sei4ea.. I 

Pzesstate" T.èërátufl' cUffflESj Heat :a 

frTS• Ts4b: 9, 

(psia) (°F ) OF,  ) (B.t.u./Ft2.hr.) 
3.0.. 13.15' -0.1. 2.0'x10 
2395 18.3 -0.1 5.3*10 
2,96 20.5 -0.45' 9.2 x  163  
2.94 261• 0.2 1.09* 104  
2.98 31.4c 0.9$ 1.58 flU4  
2.97 358 0.65 2.31x104 . 
2.98 39i2 0S 5.5 s 16 
2.97 42.8 0.9' j.07 .z 10 
2.95 46.1 1.05 1.47 K  10 5 
2.94 5L2 0.8 1,50z105  
2.98 53.0 1.3 2010 * 10 
2.96 57a2 1.1 2.32 1O 
2.94 62.3 0.7 2.68x105  
294 67.4 3.25 2.78 * 10 

2.93 71.5 1.15 2.91 * 10 

2.97 76.8 1.45 3.02 x 10 
2.96 80.8 1.6 2.95 ziG5  
2.91 8L9 1.15 2.89 * 10 



TABLE S. 

Heat transfer rate measurements. 

Approximate pressure a 3.0 psia. 

Series 2 

Pressure Temperature difference Heat flux 

P . trts U-Tb  .91 

.(psia) (0F) :(i? ) (B.t.n./Ft2.hr.) 
2.88 '• 78.8 ' 0.8 2.93 * 10 
2.93 '69.2 0.5 2E92x105  
2.98 61.8 1.3 2.72x 10. 
2.98 55.4 1.0 2.09:z10 
2.96 ) 46.0 0.75 1.46x 10 

• 2.99 40.83 025 . 7.61 * 10 
298 '35.6 0.0 
2.94 29.4 0.2 1.54.x  104 

2.93 • 24.8 0.7 1.02 x  104 

3.01 • . 20.9 1.1 •$.66 * 
3.01 • '18.4 . .0.0 .5.3 x: 103 
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TA84 6. 

!oat transfer rate measurements. 

Approximate pressure a 3.0 psia. 

Series 3 

Pressure Inerature difference Neat flux 

P TrTs Ts-Tb 9' 
(p9) (°t ) OF ) (a.t.u./n2aw.) 
3.00 26.6 . . 1.3. 1.74z10 
3.00 32.9 1.5 . 2.85 x  104 

3.02 38.2 2.1 5.53 a 10 
3.00 43.3 1.2 11.65 a  164 

3.00 48.8 1.3 17.3 x104  
2.98 34.8 1.2 20.9 *  104 

2.98 .60.0 . 1.6 24.65 a 10 
2.97 66.9 1.2 27.1 a  104 

2.9 11.2 1.4. 28.0 a  104 

3.0 15.0 2.0 30.0 x 10 
2.98 79.2 2.3. 30.6 a 10 
2.98 83.2 1.3. 30.6 x 10 
2.98 82.1 1.2 30.6 s  104 
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TABLE  7 

Heat transfer rate measurements. 

Approximate pressure .. 7.0psis. 

Series t 

Pressure Temperature .difference Heat flux 

P ?w-Ts Ts-lb  Ov 

(psia) (°r ) (Lt.u./tt2.hr.) 
7.20 17.7 0.45 4.0x 103  

7.16 22.3, 0.8 8.36x103 . 
7.14 27.35 0.75 1.67..x io 
7.07 32.55 0.4 243 z 104  
7.04 37.35 0.41 3.42 * 10' 
7.04 41.2 0.7. 6.6 a 104 . 
7.02 44.4 0.6: 1.64 x  105  

7.01 48.1.. O.S.. 2.17.x105 . 

6.97 . 52.2  0.2 2.56 a 10 
7.01 $81.11 0.85 3.02 x io 
7.01 €1.8 0.65 3.18 x 10 
4.98 70.81  3.43 x 10 
6.98 . 73.5 -0.2. 3.22 a 10 



TABLE 8 

Heat transfer rate IflOts2reTfltfltL 

Approximate pressure.=7o O psia. 

Series. 2 

Pressure !,erature dlffercuce Beat flux 

p 1w-Ts 1s-Tb IV ... 

,(psia) ;ttFH1  (8.t.u./Ft%ir.) 
6.97 69.3 0.4 3.24 x id 
694 66.2 . 0.6 3.23x1O 
6.97 

. :60.4 0.1 3.09 x 10  51 

6.94 . 55.4 
. 

1.2 2.86 x I? 
7.94.  48.0 0.4 2.27x 10 
7.97 44.2 03 1.70 x  109  
7.03 .40.4 0.2 9.9 x it 
7.04 0.2 3.93 x  104  
6.98 29.5 .0.8 2.3 x 104  
6.92 :24.5  1.1 8.42 x.103  
6.98 .20.0 0.51 6.54x103  
6.93 15.2 1.1 3.96x103 
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TABLE 9 

Beat transfer rate measurements. 

3.24 

Approximate pressure n 7.0 psia. 

8e4c5,3 

Temperature difference  

• b-Ta Ts-Tb 
(°F) 

21.8 1.75 
• 27.0 LI 

• 
•. 37.9 . 1.9 
.44.0 . tO 
48.8 0.35 

62.6 -0.45 
68.0 

• 
. t0.45 

72.8 tO.75 
72.5 -0.60 
75.3 • -0.90 
69.1 

• 
-1.10 

73,8 . 0.05 
69.7 . 3.1 

Pressure 

p 
(psi a) 
6.99 
6.98 
6.93  
6.95 
7.10 
6,99 
6.99 
6.97 

,6,96 
• 7.03 
1.02 
7.00 
6.99 
1.00 

Beat flux 

cv 
(Lt.u./ft.2.hr.) 
•75 X10 
1.31 x 1(0 
3.4 x 1(0 
9.14 *  104  
2.43. z 10 
2.88 x 1015  
3.04 x 10 
3.13 * 10 
3.10 s 11 
3.22 z i0 
3.21. x 10 
3.17 x 10 
3.12 x .10 
3.25 x.10 



• TABU 10. . 

Heat transfer rate ntasurtents. 

Appromate press ure 1.4.4 psia 

125 

Series 3. 

Pressure Temperature difference 

p Tv-Ts tr?b 
(pals) OF ) 
14.3 . 5,75 . LOS 
143 . 7.4 
14.3 10.15 .0.05 

14.3 15o3 '0.2$ 
14.3 19.05 -0.45 
14.3 24.6 -.0.45 
14.3 29.3  
14.3 32.6 0.35 
14.3 33.55 -025 
14.3 42.0 -0.25 
14.3 4.4 . o.ós 
14.41 48.0 -0.05 
14.46 51.25 .0.0 
14.46 ss.4 
14.45 60.6 -0.1 
14.44 63.3 -0.2 
14.43 65.9 -0.3 
14.48 67.2 -0.2 
14.47 66.0 -0.25 
14.46 68.8 -0.4 
14.44 70.9 -0.6 

Heat flat 

(ILi.u./Ft2.br.). 
* o 31 

6.±à 'c lo 
9.25 a 10. 
1.22 1 10.,,  
1.85 
2.ztx 
.a .j ia4 , 

2.0 z105 . 
3.0 aid.. 
3.95 a 105 . 
4.4 x 16  
4.9 
5.2 a 10 

5.3 •* 10 
5.• 3 *10k  
5.0 X, 105  

49.6 * bO •  
49•5 x 
494 a 10 
48.9  x 104 

48.8  x 104 



TABLE 11 

Heat transfer,:  rate measurements. 

Approkthatepressur . a 14.45 psia 

Series 2 

Pressute temperature difference Heat flux 

p Tw'Ti Ti-Tb 
(psia) (°F)  
14,4 44 646 QoS. 5..x 1O 
14.46 5517 -0.8. 3.18 x. ,1O 
14.46 4714 —0,9. 4.17 x105  
446 4041 -0.?.. 3.59z,1O. 

14.45 3517 0.3 266 x105  
14.45 30.1 . —0.3. 1 6x1O5  
I&45 24.7 3.96 x164  
14,64 16.9 1.44 
14.64 0.2 6.27 
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TABLE 12 

eat tr sfer rate measurements. 

Approximate pressure a•14.6 pala 

Seiles . 

Pressure Xenweratur difference Heat flux 

-Tb 
(°r) (0,1 (a.t.ü./F't2.  hr* ) 

14.61 23.65 -0.35 2.22 x 10' 
14.61 304 to.45 7.14 x  104, 

14.62 33.5 -0.15 2.09 z 10 
14.62 38.3 -0.15 2.84 * 10 
14.62 43.3 -0.1 3.97 x 10 
14.59 47.3 '0.55 4.90 x 
1448 52.8 -0.7 5.24 *i0 
14.58 57.2 -0.5 £26 rio5  
14.60 61.6 -0.9 5.4 * 10 
14.58 63.3 -0.1 5.3 x  10  



TABLE 13. 

Madnuat djaiter of bubbles in saturated pool boiling. 

ssun Heat flux Temperature Diameter of Diameter of Diameter of 'Diameter of Experimental Iladaim Referezu 
Difference Bubble bubble from bubble from bubble from value of dia- bubble for exp 

Tv-Ts D tube, flat surface flat surface :motors for diameter imental 
(Experi- .. EQNa.22, . , ' tulesialified EQL(8) values 
mental). t)corflspofld diametei 

da B.t.uJrt br.. °p M 0. IN. IL IN. IN. 
to a flatsur- 
:face. IN. IN. 

181 1.47 a IO 65.8 Mp 0.87 4-Z 0.66 - S  10C 
0.122 Patten f] 

35 1.47 a 10 . 60.5 I3 0.4 0'3' 0.44 - 3.45 3.34 0.120 
1.74 a 10  60.0 46  0.2E O-i.i- 0.26 - 0.91 0.94 0.115 

_______ • ô_ôz 
________________ ________________ ________________ _________________ 

5.6 x XO 44.0 ...- 1.6 1 0.2Ib 1.51 4.5 3.4 4.8 0.118 This woi 
2.4 x105  84.01!. l.3.t 0.101k 1.30 3.3 3.4 3.4 0.118 N 

6.68 x iO 39.0 t 1.05 1 .053 0.78 1.0 LOS 1.9 0.115 " 
3.1 rb 80.OV-ç 0.9 s0.2SY 0.76 l.QI 1.06 1.9 0.115 ft  

3.5 x 1Q 29.0 1c4 0.45- - 0.55 0.41 -. 0.113 
61 x iO 305 lao 0.50 - 0.363 0.41 - 0.113 

I 3.3 a 10-1 70.0 133 0.35 + 0.1 - 0.354 0.41 - 0.113 

7 4.8 a 104 31, 5' 24.0 0.1 -i.0.19 0% - 0.142 0.19 - .. 0.11 
7 5.2 riO5  60.0 - - 0.096 0.19 - 0.11 

?oftMi 'r • 



TABLE 34 

D Az. (6) 

(paSa) (Average) 
Prepanre  

(Max.) (Miii.) (Average) 

1.0 2.24 0.64 0.15 

3A. 0.51 0.742 
F 

0.308 0.47 

70 0.30 0.525 0.358 044 

14.7 0.041 0.536 or1 0.325 
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TABLE 15 

Pressure Bubble Position Rad14, .Velocity Distance 
Reference of Bubble of of the 

No* injtiatian growth disturb- theme - 
rate at. se couple 

initiation from tube 
LLIJIJX uua 

face., 

(a) (fl/see) (Ft/see) (IN.) 

1.02 0781 1.02 6,6 8.5 0.019 
141 

. 
1282 1.09 8.1 5.9 0.014 

1.01 1283 1.17 9.6 7.9 0.014 
1.01 . 1286 0.615 5.8 5.7 0.014 
0.98 1684 . 0.835 :  4.6 6.1 0.006 
0.98 1606 1.16 5.5 6.0 0.006 
1.06 

. 
2583 

. 
1.71 6.9 2.8 0.046 

1.06 2585 1.25 3.8 1.5 0.046. 

1.06 2682 . . 0.855 - . 4.5 5.1 0.046 
3.08 1781 0.65 7.0 .- 3.80 . 0.006 
3.08 1784 . 0.65 . 9.6 . 6.3 . 0.006 

3.08 1785 0.65 3.7 5.4 0.006 
3.08 1786 0.65 8.0 5.4 0.006 
3.08 1787 0.835 7.25 - 7.2 0.006 
3.08 1788 0.65 - 11.6 7.2 0.006 
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