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A novel, biophysically realistic model for early-stage, acetylcholine-mediated retinal waves is presented. In this model, neural excitability
is regulated through a slow after-hyperpolarization (sAHP) operating on two different temporal scales. As a result, the simulated network
exhibits competition between a desynchronizing effect of spontaneous, cell-intrinsic bursts, and the synchronizing effect of synaptic
transmission during retinal waves. Cell-intrinsic bursts decouple the retinal network through activation of the sAHP current, and we
show that the network is capable of operating at a transition point between purely local and global functional connectedness, which
corresponds to a percolation phase transition. Multielectrode array recordings show that, at this point, the properties of retinal waves are
reliably predicted by the model. These results indicate that early spontaneous activity in the developing retina is regulated according to
a very specific principle, which maximizes randomness and variability in the resulting activity patterns.
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Introduction
Retinal waves are a well studied example of spontaneous, pat-
terned activity during CNS development and have been charac-
terized in many vertebrate species (Wong, 1999). They appear
before the retina is capable of responding to light and are ob-
served as rhythmic bursts of action potentials in retinal ganglion
cells (RGCs) that propagate in wave-like events across the surface
of the retina. An involvement of retinal waves in visual system
development has long been hypothesized, and recent studies
demonstrate that manipulating wave activity can indeed affect
the maturation of the projections of RGC axons (Firth et al.,
2005) and the development of the retinal circuitry (Sernagor and
Grzywacz, 1996; Sernagor et al., 2001; Mehta and Sernagor,
2006). It is also increasingly clear that in some cases specific prop-
erties of retinal waves are required for normal development
(Muir-Robinson et al., 2002; McLaughlin et al., 2003; Cang et al.,
2008; Shah and Crair, 2008; Sun et al., 2008). This suggests that

the adequate regulation of spontaneous retinal activity is an im-
portant prerequisite for normal visual system development.

Important questions remain unresolved in terms of under-
standing the physiological processes underlying the typical spa-
tiotemporal properties of retinal waves and how they are main-
tained and regulated during development. Although some wave
features, such as their frequency of occurrence or propagation
velocity, are highly variable across species, there are also impor-
tant commonalities. In particular, in all species investigated so
far, retinal waves display a high degree of randomness. Successive
retinal waves occur at variable intervals, and exhibit a high degree
of variability and randomness in terms of initiation point, size
and trajectory (Feller et al., 1997; Stellwagen et al., 1999). Similar
forms of spontaneous activity have also been found in other de-
veloping neural structures including the hippocampus and spinal
cord (Feller, 1999; O’Donovan, 1999).

Here, by combining biophysical modeling and multielectrode
array (MEA) recordings, we show that retinal waves arise at a very
specific network state which can be interpreted in terms of a
percolation model (Essam, 1980), a classical model in statistical
mechanics. In particular, we demonstrate that a slow after-
hyperpolarization (sAHP) current that has recently been charac-
terized in starburst amacrine cells (SACs) (Zheng et al., 2006) acts
on two different time scales, providing a mechanism to desyn-
chronize neurons and dynamically regulate the network con-
nectedness. A mean field approximation shows that this net-
work can undergo a percolation phase transition, separating
the states of purely local and global functional connectedness.
A comparison of simulated activity with experimental MEA
recordings shows that retinal waves emerge close to this tran-
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sition point, which is manifested as power-law distributions of
wave sizes and durations.

Materials and Methods
Computational model. The model implements a regular, two-
dimensional, hexagonal lattice of starburst amacrine cells. Starburst am-
acrine cells were modeled using the membrane equation, with a mem-
brane capacity C � 160 pF, resistance R � 180 M� and resting potential
Vr � �65 mV. Synaptic inputs and membrane channels have conduc-
tances gi(t) and associated reversal potentials Er

i . A fast voltage-
dependent calcium current was modeled using an adiabatic approxima-
tion of its fast dynamics (Morris and Lecar, 1981):

gCa�t� � 0.5gm
Ca�1 � tanh

V�t� � VHCa

2VSCa
�. (1)

The half-activation point was set to VHca � �20 mV, the slope VSCa � 10
mV, the peak conductance gm

Ca � 10 nS, and the reversal potential Er
Ca �

50 mV. An sAHP current was modeled as a calcium-dependent potas-
sium conductance with four gating particles r(t), similar to IsAHP in cor-
tical neurons (Abel et al., 2004). This current depends on the intracellular
calcium concentration [Ca(t)], and a second, slower calcium-dependent
process s(t):

gsAHP(t) � gm
sAHPr�t�4, (2)

�r

dr�t�

dt
� ���Ca�t�� � s�t���1 � r�t�� � r�t�, (3)

�s

ds�t�

dt
� �

�Ca�t��4

� � �Ca�t��4 � s�t�. (4)

The peak conductance was gm
sAHP � 30 nS, the reversal potential Er

sAHP �
�90 mV, the activation constant � � 2400, and the decay time �r � 5 s.
A cooperative activation of the slow calcium-dependent process was as-
sumed, with an activation constant � � 30, Michaelis constant � � 10 �8

and decay time �s � 50 s. The calcium concentration was calculated as
follows:

�Ca

d�Ca�t��

dt
� � �Ca�t�� � �ICa�t�, (5)

with scaling factor � � 10 8 and decay time �Ca � 50 ms. Neurons have an
intrinsic source of noise, which was implemented as filtered shot noise:

�n

dIn

dt
� �P�t,	�V���V�t� � Er

n)�In, (6)

where P(t,r( V)) is a Poisson process with a voltage-dependent rate r( V),
event size � � 200 pS and reversal potential Er

n � 50 mV. The source of
cell-intrinsic noise in SACs is not known at present, and may be the result
of stochastic ion channel gating, so a voltage-dependent rate-modulated
Poisson process was used with 	(t) � k0p( V)(1 � p( V)), where p( V) was
the calcium channel activation function in Equation 1, and k0 � 1400/s.
These activation variables were chosen as simulations suggest that low
calcium channel densities in small, distal SAC dendrites can induce spon-
taneous firing in SACs (M. H. Hennig, unpublished data). Simulations
have, however, also shown that the same results are obtained with other
noise models, such as an unmodulated Poisson process (data not shown).

SACs receive excitatory input from all neighboring cells j within in a
circular region of a radius of three cells with a Gaussian distance-
dependent synaptic weight with SD 
w � 1. The threshold for transmit-
ter release was VT � �60 mV, and synaptic currents were low-pass
filtered with a time constant �syn � 0.2 s to account for the slow cholin-
ergic transmission in immature SACs (Zheng et al., 2004). The total
synaptic conductance is then gsyn � gsyn

max�jgsyn
j with gsyn

max � 320 nS. A
forward Euler scheme was used for integration, with a time step of 1 ms.
Unless stated otherwise, statistical measures were obtained from 4000 s
simulated activity on a lattice of 56 � 56 SACs, where the central 50 � 50
neurons were used for analysis to reduce boundary effects. The simula-

tion software was implemented in C		. The source code is available
upon request.

MEA recordings. This study was done using C57b1/6 neonatal mice
and turtle embryos from the species Pseudemys Scripta Elegans. All ani-
mal procedures were conducted under the United Kingdom Home Of-
fice, Animals (Scientific procedures) Act 1986. Mouse pups were killed
by cervical dislocation and enucleated before retinal isolation. Turtle
embryonic ages were determined according to specific staging criteria
(Yntema, 1968). The embryos were anesthetized by hypothermia, decap-
itated and enucleated before retinal isolation. The isolated retina was
then transferred to the experimental chamber and placed, RGC layer
facing down, onto MEAs consisting of 60 titanium nitride electrodes (30
�m diameter, 200 �m spacing) arranged in an 8 � 8 grid on indium tin
oxide substrate (Multi Channel Systems). Better coupling between the
tissue and the electrodes was achieved by placing a small piece of polyes-
ter membrane filter (5 �m pores) (Sterlitech) on the retina followed by a
slice anchor holder (Warner Instruments). For mice, the retina was kept
at 32°C and continuously perfused (2–5 ml/min) with artificial CSF con-
taining the following (in mM):118 NaCl, 25 NaHCO3, 1 NaH2PO4, 3 KCl,
1 MgCl2, 2 CaCl2, and 10 glucose, equilibrated with 95% O2 and 5% CO2.
For turtles, the retina was kept at 29°C and perfused with Ringer’s solu-
tion containing the following (in mM): 96.5 NaCl, 2.6 KCl, 2 MgCl2, 31.5
NaHCO3, 10 glucose, 10 HEPES and 4 CaCl2, equilibrated with 95% O2

and 5% CO2. Signals were amplified (gain 1200) and acquired using a
128-channel analog to digital converter (Multi Channel Systems
MC_Card). Signals were digitized at 25 kHz and acquired without filter-
ing using the software MC_Rack (Multi Channel Systems). The time of
occurrence of spontaneous spikes was threshold-detected with MC_Rack
(the typical threshold was at signal amplitude that is 3� below the base-
line noise). Hence, the firing rate on each electrode reflects the overall
activity level generated by all RGCs on that same electrode (typically 4 –5
cells). Using the software MC_Data Tools (Multi Channel Systems), the
times of spike occurrence were converted into text files for further anal-
ysis. Retinal waves were then detected using custom software written in
Matlab (Version 7.21; Mathworks).

Analysis of MEA recordings. Spike trains of MEA recordings of retinal
waves typically show occasional bursts of spikes at high rates, which are
embedded in low-frequency background activity. For a precise and reli-
able burst detection, first the ranks R(t) for the interspike intervals and
the probability distribution P(Cs) for the spike count in a fixed time
window were obtained (mouse, 1 s; turtle, 4 – 6 s; these values reflect the
typical burst duration). Then, each spike train was analyzed spike by
spike, and bursts were detected using a combination of two threshold
criteria based on the mean firing rate on each electrode. Specifically, the
onset of a burst was defined as an event where R(t) 
 �r, where the rank
threshold �r was manually adjusted (typical value for mouse data were �r

� 0.2 and for turtle data �r � 0.1), and where the spike count Cs in the
fixed window beginning at the current spike exceeded a threshold. The
threshold was taken as the value of Cs where P(Cs) � �s (mouse, �s �
0.05; turtle, �s � 0.3), and calculated individually for each electrode. The
end of a burst was determined as the time of the spike where the spike
count first dropped below half of the onset threshold. This method was
insensitive to the large differences in average and peak firing rates be-
tween different electrodes.

Waves were detected as temporally overlapping groups of bursts. The
neighborhood relationship between electrodes was not taken into ac-
count, as occasionally multiple waves can be initiated at the same time on
the area covered by the MEA (compare Fig. 4 A). To avoid the overlap of
temporally separated waves, a maximum duration was imposed on
bursts (2.5 s or longer). This value was chosen because activity propaga-
tion between neighboring electrodes (with a distance of 200 �m, or 280
�m for the diagonal) is expected to take 2 s or less, since typical wave
propagation velocities are �100 �m/s (Wong et al., 1993; Feller et al.,
1997). Visual inspection confirmed that this method was suitable for
detection of coherent wave events, while shorter maximal burst dura-
tions could lead to splitting of waves. Not imposing a maximal duration
had only minor effects for the mouse data, but was necessary for the turtle
recordings, where bursts often lasted 10 s or longer.

Estimation of power-law exponents. To obtain reliable estimates of the
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parameters of the power-law distributions of wave sizes and lifetimes,
and to test the quality of these fits, we used the methods outlined in detail
by Clauset et al. (2007). In the following, we provide a brief summary of
the way these techniques were applied here. A power-law probability
distribution has the form

p� x� � Cx��, (7)

with x 
 xm � 0 for all x and � � 1. xm is the lower bound for the
power-law distribution and C the normalization constant. For real-
valued x, we have C � (� � 1)xm

� � 1, and if x is discrete valued, C � � (�,
xm) �1, where � (�, xm) is the generalized zeta function.

To estimate the power-law exponents for the distributions of retinal
wave sizes and lifetimes, we used a combination of minimization of the
Kolmogorov–Smirnov (KS) statistic to estimate the lower bound xm and
a maximum likelihood estimator (MLE) to estimate the exponent. For
the discrete-valued wave-size distributions with n data points, � was
estimated by maximizing the log-likelihood function:

L��� � � nln�(�,xm)���
i�1

n

lnxi. (8)

For the continuous lifetime distributions, a closed-form estimator for the
exponent � is given by the following:

� � 1 � n��
i�1

n

ln
xi

xm
�. (9)

Since the lower end of the distributions of the simulated and experimen-
tal data are affected by aliasing, we estimated power-law exponents and
calculated the KS statistic for different values of xm up to a prespecified
limit xm

	. The value of xm which minimized the KS statistic, and the
corresponding exponent, were then taken as the best estimates. The fixed
upper limits for the experimental data were xm

	 � 6 for the wave-size
distributions and xm

	 � 5 s for the lifetime distributions, to prevent spu-
rious effects due to the small sample sizes.

The goodness-of-fit was estimated by comparing the KS statistic for
the real data to that obtained from synthetic data sampled from power-
law distributions with the same parameters. To this end, 2000 synthetic
data sets, each with the same number of data points as in the original set,
and sampled from a power-law distribution with the same parameters,
were generated, and their parameters were estimated. Then, the KS sta-
tistic was calculated for each data set, and the p value was determined as
the fraction of times the KS statistic for the synthetic data sets exceeded
that for the original data. For experimental data sets, the estimates for the
exponents and xm were obtained as specified above. To reduce the time
needed to compute the p values for the discrete simulated wave-size
distributions, which typically contained �1000 events, a continuous ap-
proximation for the MLE was used:

�sim�1	n��
i�1

n

ln
xi

xm�1/2�. (10)

Results
Characterization of simulated SAC activity
Retinal waves early in development depend on cholinergic syn-
aptic transmission between SACs (Feller et al., 1996; Zhou and
Zhao, 2000), spontaneous, calcium-channel mediated bursts in
SACs, and a sAHP conductance which regulates their intrinsic
excitability (Zheng et al., 2006). These mechanisms have been
implemented with a recurrent network of conductance-based
model neurons, which reproduce the physiological properties of
immature SACs.

An isolated simulated SAC produces infrequent, spontaneous
bursts caused by cell-intrinsic noise (Fig. 1A, black traces). Cal-
cium influx during a burst activates the sAHP current, which

induces a strong, long-lasting hyperpolarization preventing fur-
ther spontaneous bursts. Experimental manipulations have
shown that longer or more intensive depolarizations increase the
sAHP duration (Zheng et al., 2006). This was modeled by com-
bining direct, calcium-dependent current activation with an ad-
ditional slow, presumably second-messenger mediated process.
The relaxation time of the current then depends on the amount of
calcium influx and is longer after stronger or more intensive
depolarization. This is illustrated in Figure 1A, which compares
the effects of brief current injections with that of spontaneous
bursts. In either case, calcium influx activates the sAHP current,
which leads to a temporary dampening in cellular excitability and
suppression of subsequent spontaneous bursts. Increasing the
current intensity leads to a stronger activation of the slow com-
ponent of the sAHP current, which in turn results in a longer
suppression of spontaneous bursts. Therefore, the average la-
tency of the first spontaneous burst after a current injection in-
creases monotonously with the current magnitude, until it satu-
rates at a value determined by the decay time of the slow sAHP
component (Fig. 1B).

This differential activation of the sAHP current becomes im-
portant when SACs are synaptically coupled. Spontaneous bursts
can then occur in isolation (Fig. 1C, asterisks), and coincident
spontaneous bursts in nearby neurons trigger propagating waves
of activity (Fig. 1C, diamonds). During a wave, strong synaptic
drive from multiple, simultaneously active SACs leads to a stron-
ger depolarization than intrinsic bursts, which in turn causes a
longer-lasting reduction in excitability of the participating SACs.
Since waves uniformly reduce the excitability of participating
neurons, wave boundaries are determined by recently active ret-
inal areas, as shown in previous studies (Feller et al., 1996, 1997).

Intrinsic bursts also temporarily reduce the excitability of sin-
gle SACs, which can prevent their participation in a subsequent
wave (Fig. 1C, arrow). Since the sAHP current induced by intrin-
sic bursts decays faster than following waves, this results in com-
petition between a desynchronizing effect of intrinsic bursting,
and the synchronizing effect of synaptic transmission. This re-
quires that synaptic connections between SACs are sufficiently
weak, such that an isolated intrinsic burst cannot trigger a prop-
agating wave (Fig. 1C, asterisks). Under these conditions, propa-
gating activity patterns emerge, exhibiting a mixture of random-
ness and spatial coherence as in experimentally recorded retinal
waves. Two examples of simulated waves are shown in Figure 2, A
and B, illustrating that a wave only recruits neurons that are
sufficiently depolarized to generate bursting activity, but stops when
it encounters neurons with a reduced excitability due to recent ac-
tivity (supplemental Movie, available at www.jneurosci.org as sup-
plemental material).

Simulated retinal waves
An important prerequisite for the appearance of the characteris-
tic random, noncyclic activity patterns of retinal waves is there-
fore the coexistence of synchronizing, propagating activity and
desynchronizing, intrinsic bursting in the network. This condi-
tion is met for a range of physiologically plausible parameter
combinations in the model. To determine when the typical prop-
erties of retinal waves are best reproduced, we investigated the
properties of simulated waves for different intensities of the cell-
intrinsic noise (parameter k0 in Eq. 6; note that this parameter
reflects the peak noise rate, and that the actual rate is typically
much lower as it also depends on the membrane potential).
Changing the noise intensity directly affects the rate of spontane-
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ous, intrinsic bursting, and is hence best
suited to determine its role in network ac-
tivity desynchronization.

The simulations show that a gradual in-
crease in noise intensity causes a transition
between two qualitatively different types
of spatio-temporal network activity (see
alsosupplementalFig.S1,availableatwww.
jneurosci.org as supplemental material).
For weak noise, the network produces a
mixture of large and small waves at a low
frequency, and the distributions of wave
sizes and lifetimes have a bimodal form
(Fig. 2C–E, blue curves). This reflects
strongly correlated network activity, as ev-
ident in the slow decay of the spatial cor-
relations (Fig. 2F, left), and occurs because
SACs produce few intrinsic bursts that
hinder the propagation of activity. The
low-wave frequency is due to the low
probability of simultaneous bursting of
nearby neurons, which is required for
wave initiation.

Increasing the noise intensity leads to
the appearance of more frequent waves of
intermediate size and duration (Fig. 2C–E,
red curves). At a certain noise intensity (k0

�1.4 kHz; medium noise), the wave-size
distribution changes from a bimodal to a
monotonously decreasing function, and
follows a power law with an exponent of
� � 1.5. Rescaling the lattice of SACs by
combining multiple neurons, and declar-
ing each group of neurons as active only
when more than half of the neurons are
active (majority rule) yields the same
power-law distributions (supplemental
Fig. S2, available at www.jneurosci.org as
supplemental material), confirming that
the activity indeed has scale-free proper-
ties. At the same time, the wave lifetime
distribution takes the form of an exponen-
tially truncated power law with an expo-
nent of � � 2, which is also preserved after
rescaling. In this case, the stronger desyn-
chronizing effect of the more frequent in-
trinsic bursting activity leads to a faster de-
cay of the spatial correlations than at low
noise intensities (Fig. 2F, middle).

At noise intensities above this point,
waves become even more frequent, but the
largest waves are no longer observed, and
the wave-size and lifetime distributions now have the form of
exponentially truncated power-law functions (Fig, 2C–E, green
curves). The correlations now decay rapidly, consistent with
strong desynchronization of the network activity through very
frequent intrinsic bursting (Fig. 2F, right). These simulated waves
strongly resemble the patchy, nonpropagating activity observed in
more mature animals (Sernagor et al., 2003; Syed et al., 2004).

These observations show that this network undergoes a tran-
sition from a highly synchronized to a strongly desynchronized
state, and produces activity patterns clearly different from oscil-
latory, phased-locked behavior, where more compact event size

and interval distributions are expected. The observed noncyc-
lic behavior also manifest itself through the random, unbiased
distribution of wave initiation points (Fig. 2G), a central fea-
ture of retinal waves (Feller et al., 1996). Yet, subsequent wave
trajectories are not entirely random (Fig. 2 H) but consistent
with a history-dependent regulation of the neural excitability
(Feller et al., 1997).

Simulated of pharmacological manipulations
So far, the transition from the synchronized to the desynchro-
nized network state has been characterized by varying the noise

Figure 1. Activity-dependent activation of the sAHP conductance in simulated SACs. A, Membrane potential (top) and sAHP
conductance (bottom) of an isolated SAC. The cell either produced noise-driven, intrinsic bursts (black traces), or depolarized in
response to a current injection of 100 pA (blue) or 200 pA (purple) lasting 0.5 s (arrow). Increasingly stronger depolarizations
during current injections cause a slower decay of the sAHP conductance than intrinsic bursts. The inset shows a comparison of a
single intrinsic burst and of events evoked by the current injections. In all simulations, the same noise current was applied. B,
Average latency of the first spontaneous, intrinsic burst after different amounts of injected current (0.5 s; error bars indicate 
1
SD). C, Membrane potential (top), sAHP current (sAHP conductance multiplied by the driving force, middle) and synaptic conduc-
tance (bottom) of three neighboring SACs (different colors, see inset) during network activity. Asterisks indicate spontaneous
intrinsic events; diamonds indicate activity during a wave. The arrow indicates a cell receiving strong synaptic input but not
bursting in response due to reduced excitability after a previous intrinsic burst.
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intensity, but the same behavior can also
be observed by systematically changing
other, experimentally more accessible, pa-
rameters. In particular, certain pharmaco-
logical manipulations can either increase
or decrease synchronization, and hence
induce transitions between the two regi-
mens. To directly reproduce and interpret
these effects with the model, we initially
choose parameters such that power-law
distributions are obtained to reproduce
normal retinal waves (see below), and then
simulated experimental manipulations by
changing appropriate parameters. First,
we investigate the effects of partially block-
ing cholinergic synaptic transmission,
which has been shown to reduce wave fre-
quency and spatial (Bansal et al., 2000; Ser-
nagor et al., 2000, 2003). To simulate this,
the peak synaptic conductance was uni-
formly reduced in the model. Consistent
with the experimental results, this leads to
a decrease in mean wave frequency and
wave size as well as duration (Fig. 3A).
These effects occur because more coinci-
dent bursts are required to trigger a wave
when synapses are weak. This causes not
only a decrease in wave frequency, but also
a relative increase of the rate of intrinsic,
desynchronizing bursts. As a result, the
network enters a more desynchronized
state, which leads to the disappearance of
the largest waves (Fig. 3A, left). The oppo-
site effect, an increase of wave size, dura-
tion and frequency, is observed when the
synaptic strength is increased in the model.
This mimics the experimentally observed
increased frequency of calcium transients
in the chick retina during blockade of ACh
breakdown (Catsicas et al., 1998). How-
ever, a general elevation of the synaptic
drive with nicotinic ACh receptor
(nAChR) agonists abolishes wave activity
(Zhou and Zhao, 2000), perhaps due to
receptor desensitization, ion channel inac-
tivation or permanent activation of potas-
sium conductances.

Second, an increase of cAMP levels,
which reduces the strength and affect the
kinetics of the sAHP current in SACs
(Zheng et al., 2006), has been shown to
increase wave size and frequency (Stellwa-
gen et al., 1999). This could be reproduced
by reducing either the sAHP peak conduc-
tance (Fig. 3B), or the activation variable
of the slow activation component of the
sAHP current (Fig. 3C). Both manipula-
tions cause the cellular excitability to be
restored more quickly after activity, and
lead to more frequent waves. Additionally,
the desynchronizing effect of intrinsic
bursts, mediated by the sAHP current, is
reduced. This increase the relative fre-

Figure 2. Characterization of simulated retinal waves. A, B, Two examples of a simulated retinal wave. Panels show the
color-coded membrane potential (top), the synaptic conductance (middle), and the sAHP current (bottom). Color bars are the
same in A and B. C–E, Probability distributions and average values (insets) of the wave size (C), the wave duration (D) and wave
interval (E) as a function of the cell-intrinsic noise intensity (low, k0 �1000 Hz; medium, k0 �1400 Hz; high, k0 �1800 Hz). Lines
show power-law functions with exponents � ��1.5 (C) and � ��2 (D). F, Pairwise correlations of the membrane potential
at three different noise intensities. G, Wave initiation points and their color-coded density. H, Areas occupied by 20 successive
waves at three different noise intensities. The relative time of each wave is color coded, and areas of overlap are shown in white.
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quency of the largest waves, and results in
bimodal wave-size distributions as has
been observed in calcium-imaging experi-
ments (Stellwagen et al., 1999). Enhancing
the sAHP current or the slow activation
component, however, causes the opposite
effect, with a decrease in average wave size,
duration and frequency. This manipulation
has not been tested experimentally so far.

Collectively, these results show that
qualitatively different manipulations of
synaptic efficacy, cellular excitability or in-
trinsic noise intensity (compare Fig.
2C–E) all have similar effects on the syn-
chronization of the activity of the network.
Each of these variables can be used to in-
duce transitions between the synchronized
and desynchronized network state.

Analysis of MEA recordings
Our results raise the question which of
these two network states can best repro-
duce retinal waves. Calcium-imaging
studies indicate that wave-size distribu-
tions are decreasing, highly skewed func-
tions (Feller et al., 1997; Stellwagen et al.,
1999; Bansal et al., 2000), similar to the
power-law distributions predicted by the
model at the transition point between the
synchronized and desynchronized state.
To test this experimentally, MEA record-
ings from mouse and turtle retinas were
performed at early developmental stages,
where waves primarily depend on cholin-
ergic synaptic transmission (Feller et al.,
1996; Sernagor and Grzywacz, 1999; Ser-
nagor et al., 2003; Syed et al., 2004). If a
behavior similar to that found in imaging
experiments is observed with MEA record-
ings covering larger retinal areas, this
would provide strong support for power-
law distributions since only a power-law
function retains its shape during spatial
rescaling. However, due to the spacing be-
tween electrodes, MEA recordings also un-
dersample the RGC mosaic, which will af-
fect the measurement of wave sizes.
Simulations show that spatial undersam-
pling distorts power-law distributions in related models (Priese-
mann et al., 2007; V. Priesemann, M. H. J. Munk, and M. Wibral,
unpublished observations), and increases the estimated power-
law exponents in our simulations (supplemental Fig. S3, available
at www.jneurosci.org as supplemental material). Hence, we
would generally expect to find more rapidly decaying functions
than predicted by the model.

Waves were detected as single or multiple coincident bursts of
spikes on multiple electrodes (Fig. 4A) (see Materials and Meth-
ods). The normalized histograms in Figure 4, B and C, shows that
the wave-size and lifetime distributions can, with one exception
(Fig. 4E), be fitted by power functions (see Materials and Meth-
ods for details on the fitting procedure). The estimated exponents
are close to, but always larger that the predicted � � 1.5 for wave
sizes and � � 2 for lifetimes (ranges: � � 1.55–1.93; � � 2.32–

2.84). These deviations are expected for a moderate undersam-
pling of the RGC mosaics (supplemental Fig. S3, available at
www.jneurosci.org as supplemental material). We also estimated
the goodness-of-fit by comparing the Kolmogorov–Smirnov sta-
tistic with that of synthetic data sets, which yields p values to
quantify the support for a power-law hypothesis (see Materials
and Methods). However, simulations show that spatial under-
sampling also affects these p values, in particular for the wave-size
distributions (data not shown). Still, in one case, weak support
for a power-law was found for the wave-size distribution (Fig.
4D, P2 mouse), and in four cases, this test supports the power-
law hypothesis for the lifetime distributions (Fig. 4B–D,G). The
analysis of two additional shorter dataset from postnatal day 5
(P5) mouse retinas produced similar results (data not illustrated;
retina 1: 700 s activity, 34 waves, � � 1.78, p� � 0.23, � � 2.43, p�

Figure 3. Summary of effects of changing different model parameters and their relation to experimental manipulations. Each
part shows the distributions of wave sizes, durations and wave intervals and their mean values as a function of the manipulated
parameter (insets). Lines indicate power-law functions with exponents �� 1.5 in the wave-size histograms and �� 2.0 in the
wave duration histograms. A, Effects of increasing or decreasing the peak synaptic conductance (default gsyn

max � 320 nS). B, C,
Effects of changing the sAHP peak conductance (B, default gm

sAHP � 30 nS), or its the slow activation constant (C, default �� 30).

1082 • J. Neurosci., January 28, 2009 • 29(4):1077–1086 Hennig et al. • Retinal Wave Dynamics



� 0.11; retina 2: 750 s activity, 25 waves, � � 1.73, p� � 0.0,� �
2.25, p� � 0.08; here, the small sample size may, however, intro-
duced a bias). Together, these results are consistent with the
model prediction that retinal waves exhibit statistical properties
best described by power-law functions.

One retina from a P5 mouse did show bimodal size and life-
time distributions (Fig. 4E), and similar results were obtained in
older animals (data not shown). Experimental observations sug-
gest that around day P5 in mouse, GABAergic transmission be-
gins to influence RGC spiking, increases spatial correlations and
has subtle effects on wave spatial extent and frequency (Wang et
al., 2007; E. Sernagor, unpublished data).GABA has a depolariz-
ing effect at this developmental stage due to elevated [Cl�]i, so it
is possible that maturation of the GABAergic drive causes an
effective synaptic strengthening. In this case, the models predicts,
as observed, bimodal distributions and increased spatial correla-
tions (compare Fig. 3A).

Percolation in the retinal network
Power-law event size distributions are also called scale-free dis-
tributions, because their shape is unaffected by spatial scaling,
such as a multiplication by a constant factor. Then, waves of all
possible sizes are produced by the retina, ranging from very fre-
quent waves involving just a few SACs to the very rare events of
waves covering the whole retina. In other words, at this point, the
properties of the desynchronized and the synchronized network

states, characterized by small and large waves respectively, coex-
ist. In a more abstract sense, this constitutes the typical signature
of a continuous phase transition between an ordered and disor-
dered network state. Similar phase transitions have been previ-
ously studied in related lattice models (Bak et al., 1987; Hopfield
and Herz, 1995; Vespignani and Zapperi, 1998), and were sug-
gested as an explanation for power-law event size distributions
measured in cortical slices and cultures (Beggs and Plenz, 2003).

As outlined above, the sAHP-mediated desynchronization is a
key mechanism to control the network state. It is activated by
neural activity and temporally reduces the neural excitability. The
size of a wave is, therefore, always determined by the number of
excitable SACs available in the network, which in turn depends
on the rate of waves and intrinsic bursting in SACs, and the size of
previous waves. Therefore, on average, the central parameter that
determines the wave properties is the density of excitable neu-
rons. A system with these properties can be analyzed with meth-
ods from percolation theory, which was developed to describe the
spreading of activity through a medium, where motion is solely
determined by the stochastic properties of the medium (Essam,
1980). The corresponding mechanisms in our model are the
propagation of neural activity through synapses, where the state
of the neurons, excitable or refractory, dictates where activity can
spread and where it cannot.

Importantly, percolation models display a continuous phase
transition. When the density of excitable neurons is low, activity

Figure 4. MEA recordings of early-stage retinal waves show power-law size and lifetime distributions. A, Spatio-temporal activity patterns of 12 individual waves (top, a color change from red
to blue indicates the activation sequence) and bursting patterns (bottom; individual waves have different colors, and bursts assigned to the same wave have the same color) recorded from a mouse
retina at day P5. B–G, Normalized histograms of wave sizes and lifetimes from six different retinas. Estimated exponents for the power laws are given in each graph, and p values are given when p �
0 (hence indicating support for the power law hypothesis). Blue lines show power-law functions with the estimated exponents. B, Mouse retina at day P5, 50 min, as shown in A: 106 waves, mean
interburst interval (IBI) 141 
 75 s. C, Thirty minutes from a P1 mouse: 154 waves, mean IBI 107 
 63 s. D, Sixteen minutes from a P2 mouse: 87 waves, mean IBI 112 
 61 s. E, One and a half hours
of activity from the second retina of the animal shown in A and B: 140 waves, mean IBI 131 
 73 s. These distributions cannot be fitted with a power law but have a bimodal character. F, One hour
from an S22 turtle retina: 435 waves, mean IBI 51 
 27 s. G, Thirty minutes from an S24 turtle retina: 163 waves, mean IBI 72 
 61 s.
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cannot spread far and waves are small. In-
creasing the density then also increases the
mean wave size. At a particular density
(the percolation threshold), the system
undergoes a transition from a state of
purely local connectedness to a state,
where connections between neurons
across the whole network can exist. This
point is characterized by a diverging char-
acteristic length scale, and as a result, the
mean size of the clusters of connected neu-
rons diverges. Then, propagating activity
will assume power-law distributions. In
particular, as observed here, the expected
mean field exponents are � � 1.5 for wave
sizes and � � 2 for their lifetimes (Muñoz
et al., 1999).

To describe our model in terms of a
percolation model, we define three activity
states of SACs: stable (S) for a refractory
neurons, critical (C) for a nonrefractory
neuron, and active (A) for a bursting neu-
ron, with associated densities �s and �c.
The following state transitions are possible
(Fig. 5A): Stable to critical with a probabil-
ity p (S: p3C), and critical to active either with probability f�c, if
the neuron participates in a wave, or with probability r in isola-
tion, if it produces an intrinsic burst (C: f�c3 A and C: r3 A).
Each firing event is always followed by a transition into the stable
state, and firing events are brief and rare ( p 

 1); hence, we can
write C: f�c3 S and C: r3 S. Assuming local homogeneity and
ignoring higher orders in �a, the temporal evolution of �c is then
given by the following:

�̇c�p�s��c(f�c	r), (11)

with �s 	 �c � 1. Here, p is not necessarily a fixed quantity and
may depend on the previous activity. This allows for an estima-
tion of the density of excitable neurons (the critical state density)
through quantities that can be measured in simulations. To this
end, we consider what happens after a burstor wave has occurred.
Then, we obtain �c

	w � �c � f� c
2 after a wave, and �c

	b � �c � r�c

after an intrinsic burst. Assuming stationarity, i.e., �c
	w � �c

	b,

yields the estimate �c
	 �

r

f
. In other words, the mean density of

critical states, after activity has occurred in the network, can be
approximated as the ratio of the probabilities of isolated firing
and firing during waves.

The estimated density of excitable neurons �c
	 as a function of

the noise intensity is shown in Figure 5B. For weak noise, �c
	 is

small, indicating that most cells simultaneously become refrac-
tory due to the predominantly very large waves. �c

	 increases with
increasing noise strength, consistent with a higher rate of intrin-
sic bursting and a more variable wave size. At the points where the
wave-size distribution best approximates a power law with an
exponent of � � 1.5 (Fig. 5C), the density of critical states is �c

	 �
0.7. This value is very close to the threshold for site percolation on
a hexagonal lattice (pc � 0.6970) (Suding and Ziff, 1999). Hence,
wave-size power-law distributions are found at the point where
our approximation predicts a percolation phase transition. When
the noise intensity is further increased, �c

	 also increased and
eventually exceeds unity. Then, the approximation is invalid be-

cause the strong noise causes bursting in refractory neurons that
cannot participate in waves.

In conclusion, these results show that the predicted and ex-
perimentally observed power-law statistics are consistent with a
network state close to a percolation phase transition. Here, the
dynamic regulation of the network excitability maintains a state
at the boundary between a purely local and global connectedness
of the SAC network.

Discussion
Returning to the issues raised at the beginning of this study, our
results show that early-stage retinal waves indeed reflect a very
specific network state characterized by highly variable spatio-
temporal patterns, the absence of cyclic behavior, and power-law
distributed wave sizes and lifetimes. Theoretical arguments show
that these properties result from a dynamic regulation of the
neural excitability, which maintain the SAC network close of a
percolation phase transition. At this point, the network is at the
transition point between a state of purely local and global func-
tional connectedness. Local functional connectedness yields
strongly desynchronized activity and small waves, and in the glo-
bally connected state, activity is highly synchronous with propor-
tionally more large waves events. At the transition point, the
neural activity simultaneously reflects both states, and therefore
exhibits maximal variability with respect to wave sizes and dura-
tions. This is a defining feature of retinal waves (Feller et al.,
1997), and we confirm the predicted power-law behavior with
MEA recordings of retinal waves. Moreover, we demonstrate
with the model how different pharmacological interventions can
specifically shift the network away from this state.

Developmental significance
There are at least two reasons why such activity patterns may be
relevance to neural development. The first is based on the con-
sideration of what may constitute a stable state in the highly
recurrent network in the immature retina and how it can be
maintained and controlled by activity-dependent mechanisms.
In particular, there may be two competing demands. On the one

Figure 5. The simulated network exhibits a percolation phase transition. A, State diagram of the mean field model (top) and an
illustration of the different states (bottom, see Results, Percolation in the retinal network for details). B, Estimated density �c

	 of
neurons in the critical state as a function of the noise intensity. The dashed line indicates the percolation threshold for site
percolation on a hexagonal lattice ( pc � 0.6970). C, Estimated p values from a Monte Carlo test for the presence of a power-law
wave-size distribution with exponent of � � �1.5. The shaded region in both graphs indicates that there is strong support for
power-law wave-size distributions when �c

	 is close to the hexagonal lattice percolation threshold.
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hand, the network has to maintain a certain level of activity, to
ensure neural survival, to form and stabilize synapses, and to
trigger cell-intrinsic activity-dependent developmental molecu-
lar pathways. Then, the synchronized, globally connected phase
appears to be a suitable regimen. Yet, high synchrony also renders
the network very unstable to small perturbations and leads to
epileptiform activity. Therefore, it is at the same time necessary to
limit the amount of synchrony. These two requirements are ex-
actly balanced at the point of the phase transition. A similar effect
has also been demonstrated recently in a randomly driven net-
work model, where the stability and sensitivity to input was max-
imized at a transition from a quiescent regimen to a state with
propagating, self-sustained activity (Ribeiro and Copelli, 2008).
Since such behavior is also seen in cultured networks (see below),
this may be a state which neural networks without an external
drive generally adopt during development.

Second, it is now well established that spontaneous neural
activity during development plays an important role in sculpting
out the mature neural circuitry in various neural systems (Moody
and Bosma, 2005). Here, we show that early-stage retinal waves
exhibit maximal variability and containevents on all length scales
due to their scale-free character. This randomness ensures that
activity patterns are not biased toward a typical scale or sequence
of events. This may be a general advantage while the retinal cir-
cuitry develops and retinal projections are established in visual
centers of the brain. Indeed, the different correlation structure in
early-stage waves in mice lacking the �2AChR subunit (Sun et al.,
2008), for example, may cause a sustained lack of refinement of
retinocollicular projections (McLaughlin et al., 2003) and pre-
vent the development of eye-specific thalamic layers (Muir-
Robinson et al., 2002). Since our results suggest that early-stage
retinal waves reflect a rather precisely regulated network state, it
would be interesting to assess how sensitive higher visual system
development is to modest changes of the spatio-temporal wave
properties. In this context, it is interesting to note that the spatial
frequency content in natural images also decays with a power law
(Field, 1987), so retinal waves might present the visual system
with an early opportunity to adapt to such patterns.

Clearly, this network state is not maintained during develop-
ment. Changes toward a stronger emphasis on feedforward pro-
cessing, as in the mature retina, might begin as soon as GABAer-
gic synapses first appear, where we observed first deviations from
the power-law behavior. At later stages, when glutamatergic
transmission drives retinal waves, waves are small and patchy
(Zhou and Zhao, 2000; Sernagor et al., 2003), which in our model
would correspond to a state well below the percolation threshold
for lateral activity propagation.

Relations to other systems and previous models
Power-law distributed event sizes and lifetimes with the same
exponents (� � 1.5 and � � 2) were also found in cortical slices
and cultures (Beggs and Plenz, 2003, 2004), and recently in the
developing cortex in vivo (Gireesh and Plenz, 2008). These stud-
ies have proposed that this phenomenon could be explained in
terms of a branching process, where a critical state exists when
each spike in one neuron causes on average exactly one spike in
another neuron. A critical branching process predicts power-law
event size and lifetime distributions with the observed exponents,
and is directly related to a large class of models that display the
same type of phase transition (Zapperi et al., 1995). In models of
neural networks, the same behavior has been observed in slowly
driven recurrent network with nonleaky or nonrefractory neu-
rons (Hopfield and Herz, 1995; Eurich et al., 2002; Buice and

Cowan, 2007), but theoretical work also shows that it may be
difficult to reconcile this behavior with the biophysical properties
of neurons (Dickman et al., 2000) (but see Levina et al., 2007).
Here, we have identified a biologically plausible model that re-
produces these properties. It is worth noting that the models
mentioned above are generally different to the one presented
here. Mathematical analysis has shown that the lattice all belong
to the class of directed percolation models, where activity prop-
agates forward in time (Vespignani and Zapperi, 1998; Buice and
Cowan, 2007). In the present model, in contrast, the refractory
mechanism prevents spreading of activity into previously active
regions, and it is therefore related to dynamic isotropic
percolation.

A refractory mechanism as the basis for the regulation of the
spatio-temporal properties of retinal waves was first suggested in
a model by Feller et al. (1997) and recently confirmed experimen-
tally (Zheng et al., 2006). As in the present study, Feller et al.
(1997) concluded that wave trajectories depend on the density of
nonrefractory amacrine cells, which is determined by their acti-
vation history due to previous waves. This earlier model, how-
ever, required an additional filtering of amacrine cell activity
through spatio-temporal integration and thresholding in RGCs
to obtain compact waves. Here, we show that, in line with recent
experimental and theoretical results (Zheng et al., 2006; Godfrey
and Swindale, 2007), the properties of retinal waves are already
present at the level of the SAC network. In addition, the model by
Feller et al. (1997) required a certain degree of variability in the
decay times of the refractory mechanism to prevent synchroniza-
tion (Butts et al., 1999). A similar solution was recently suggested
in a modeling study by Godfrey and Swindale (2007), where a
highly nonlinear mechanism was used to amplify difference in
refractory times between cells in the center and near the borders
of waves. In this lattice model, the resulting network exhibits
chaotic behavior, which may be a consequence of these severe
nonlinearities.

Here, we reconcile and extend these previous approaches by
suggesting a physiologically plausible mechanism for network
desynchronization, which is based on differences between intrin-
sic bursting and depolarizations in SACs (Zheng et al., 2006), and
allows us to provide a general theoretical framework to explain
the origins of retinal waves. Given its generality, this principle
might also apply to other development neural systems.

References
Abel HJ, Lee JC, Callaway JC, Foehring RC (2004) Relationships between

intracellular calcium and after hyperpolarizations in neocortical pyrami-
dal neurons. J Neurophysiol 91:324 –335.

Bak P, Tang C, Wiesenfeld K (1987) Self-organized critically: an explanation
of the 1/f noise. Phys Rev Lett 59:381–384.

Bansal A, Singer JH, Hwang BJ, Xu W, Beaudet A, Feller MB (2000) Mice
lacking specific nicotinic acetylcholine receptor subunits exhibits dramat-
ically altered spontaneous activity patterns and reveal a limited role for
retinal waves in forming on and off circuits in the inner retina. J Neurosci
20:7672–7681.

Beggs JM, Plenz D (2003) Neuronal avalanches in neocortical circuits.
J Neurosci 23:11167–11177.

Beggs JM, Plenz D (2004) Neuronal avalanches are diverse and precise ac-
tivity patterns that are stable for many hours in cortical slice cultures.
J Neurosci 24:5216 –5229.

Buice MA, Cowan JD (2007) Field-theoretic approach to fluctuation effects
in neural networks. Phys Rev E Stat Nonlin Soft Matter Phys 75:051919.

Butts DA, Feller MB, Shatz CJ, Rokhsar DS (1999) Retinal waves are gov-
erned by collective network properties. J Neurosci 19:3580 –3593.

Cang J, Niell CM, Liu X, Pfeiffenberger C, Feldheim DA, Stryker MP (2008)
Selective disruption of one cartesian axis of cortical maps and receptive

Hennig et al. • Retinal Wave Dynamics J. Neurosci., January 28, 2009 • 29(4):1077–1086 • 1085



fields by deficiency in ephrin-as and structured activity. Neuron
57:511–523.

Catsicas M, Bonness V, Becker D, Mobbs P (1998) Spontaneous Ca2	 tran-
sients and their transmission in the developing chick retina. Curr Biol
8:283–286.

Clauset A, Shalizi CR, Newman MEJ (2007) Power-law distributions in em-
pirical data. arXiv/0706.1062.
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