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Abstract 

 

Regulatory T cells expressing the transcription factor Foxp3 have a critical role in the 

maintenance of tolerance to both self and innocuous exogenous antigens.  Humans and mice 

die from overwhelming autoimmunity in the absence of Foxp3
+
 Treg whilst administration 

of regulatory T cells has shown promise therapeutically in ameliorating autoimmunity in 

several animal models.  Regulatory T cells arise naturally in the thymus (nTreg) but may 

also be induced from naïve Foxp3
-
 cells in the presence of TGF-β (iTreg), both in vitro and 

in vivo.  This thesis focuses on in vitro generated mouse iTreg, testing the hypothesis that 

they are able to effect bystander suppression; iTreg activated by a given antigen are able to 

suppress other responding cells with different antigen reactivities. 

 

Chapter 3 details an in vitro assay system using iTreg and responder cells recognising 

different antigens (TCR transgenic cells).  Evidence for bystander suppression is presented 

and that did not require the presence of iTreg-relevant antigen but did require iTreg-relevant 

MHC Class II.  The kinetics of iTreg suppression are discussed, with evidence presented that 

iTreg exert their effects early in co-culture.  Chapter 4 identifies the production of three pro-

inflammatory cytokines by iTreg - IFN-γ, GM-CSF, and TNF.  These were not involved in 

the in vitro suppressive mechanism, but early abrogation of TGF-β signalling did inhibit 

suppression.  Chapter 5 describes the in vivo function of iTreg under various experimental 

protocols.  iTreg did not limit initial proliferation of naïve T cells in response to antigen but 

did limit the development of effector cells producing pro-inflammatory cytokines.  Exposure 

to a pro-inflammatory environment in vivo led to iTreg producing IFN-γ and TNF, but not 

GM-CSF.  This could be replicated in vitro by exposure to IL-6, IL-12 or IL-27.  Finally, 

evidence for bystander suppression by iTreg in vivo is presented, with a reduction in effector 

cells producing pro-inflammatory cytokines shown in an allergic airways diease model. 
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1 Introduction 

1.1 General Introduction 

In order to counteract the multitude of potential pathogens, an intricate immune system has 

evolved with both innate and adaptive arms.  Innate immunity includes physical barriers 

such as the skin, the enzymatic or anti-bacterial contents of bodily fluids, such as tears, 

sweat, and urine, the highly acidic pH encountered early within the gastro-intestinal tract, 

and indeed our own commensal micro-organisms competing for essential nutrients and 

‘living space’ on all surfaces of the body that may be exposed to external influence.   

If these early non-specific defences are breached then cellular immunity comes to the fore.  

Various cells are found at sites of potential intrusion acting in a non-antigen specific manner 

to prevent further colonization.  The monocyte-macrophage lineage is of particular note in 

phagocytosing foreign matter that may be detrimental.  Neutrophils, eosinophils, or 

basophils may be summoned according to the nature of the micro-organisms.  Natural killer 

(NK) cells, -T cells, and the more recently recognized innate lymphoid cells (iLC) are all 

relevant in an innate response.  Processing of foreign proteins within antigen presenting cells 

leads to presentation of antigen in conjunction with the major histocompatibility complex 

(MHC) that may then engage with T cells.  This may trigger activation of CD8
+
 cells and 

cell-mediated toxicity, or of CD4
+ 

T cells with subsequent expansion and B-cell recruitment 

ending in clonal expansion of B cells, antibody production, activation of the complement 

cascade, and the development of persisting memory cells, the hallmark of adaptive 

immunity. 

Not all foreign material is intrinsically harmful.  Life occurs within a miasma, in which 

deliberate ingestion of multiple antigens is necessary for nourishment and a bacteria and 

fomite-rich atmosphere is inhaled during breathing.  If immune and cellular responses were 

to be triggered for every antigenic encounter that occurs without discrimination, these 

systems would be almost immediately overwhelmed.   Provocation of an immune response 

must also be curtailed once the offending cause has been removed.  The various noxious 

molecules released during innate immunity are equally damaging to host tissues and a 

defensive system causing more damage than the initial offence is not conducive to survival.  

As such, various checks and balances within the immune system exist to ensure that immune 

responses are only triggered when the stimulus is potentially harmful, the inflammatory 

reactions are localized to the area of stimulation, and removal or resolution leads to a rapid 

termination of the ongoing immune activation.  Foremost are the concepts of regulation and 
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tolerance, either preventing an unwanted immune response or promoting a benign response 

to otherwise ‘foreign’ antigen.  Clearly, there is an absolute requirement for equilibrium 

between immunity against harmful ‘invaders’ and tolerance of benign ‘passers-by’ 

(Anderton, 2006).    

A major mediator of this balance is a cell population dedicated to suppression, rather than 

promotion, of the inflammatory response, regulatory T cells (Treg).  Various subsets exist 

(discussed in section 1.7.3) but they universally down-regulate effector functions, and 

deficiency in numbers or function can be associated with the development of abnormal 

responses to harmless antigen (Haas et al., 2005, Kukreja et al., 2002).   This can clinically 

manifest as allergy to respiratory antigens, food intolerances or colitis to ingested antigens, 

or autoimmunity in the case of self antigen reactivity.  Following their relatively recent 

identification, much effort has gone into exploring the fundamental biology and mechanisms 

behind these regulatory populations.  As ever, an understanding in health leads to an 

understanding in disease.   

A great deal of Treg biology remains to be unraveled, including the exact mechanisms by 

which they suppress (Vignali et al., 2008).  The existence of multiple subsets makes it highly 

probable that varying mechanisms are used by different cells, promoting redundancy within 

the immune system, and offering alternative means if one mechanism of suppression is 

ineffective.  That autoimmunity exists dictates that this is inadequate, but offers the prospect 

of restoration of the aberrant function leading to resolution of autoimmune disease in a much 

more ‘physiological’ sense than the current use of broad immunosuppressants (Riley et al., 

2009). 

One crucial phenomenon seen in Treg biology is the ability to effect bystander suppression.  

Once a Treg is activated, suppression affects all cells in the neighbouring response, not just 

the cells sharing antigen specificity with the Treg (Thornton et al., 2000).  This is analogous 

to a schoolteacher’s raised voice in a crowded classroom with one child misbehaving – the 

naughty child stops what they’re doing, but so do all the other ‘bystanding’ children.  

Bystander suppression offers both positive and negative aspects.  It extends beyond antigen 

specificity and so may offer use of Treg as a therapy in diseases where the exact auto-antigen 

is not yet identified, or multiple antigens are implicated without any clear 

immunodominance in the human setting (e.g. multiple sclerosis (MS)) (Fisson et al., 2006, 

Miller et al., 1993).  Conversely, the purpose of targeted cellular therapy would be to achieve 

specific immunosuppression of the pathogenic cells without impacting on the overall ability 

of the immune system to respond to pathogens (Soulillou et al., 2001).   
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How this bystander suppressive effect is mediated, and indeed whether it truly occurs, has 

been under investigation since it was first described.  This thesis will attempt to unravel 

some of the mechanisms behind this bystander suppression effect, to hopefully take another 

small step forward in its eventual application in the clinical setting. 

 

1.2 T cell biology 

A defining feature of the T-lymphocyte is the ability to recognise peptide bound to major 

histocompatibility complex (MHC) molecules found on the surface of antigen presenting 

cells (APC) (Marrack et al., 1986).  Binding to the T cell receptor (TCR), the peptide-MHC 

drives the downstream activation of the T cell that causes up-regulation of transcription 

factors (Weiss et al., 1994).  The ‘classical’ response of T cells to TCR stimulation is clonal 

expansion, with differentiation to effector phenotypes and cytokine release (notably IL-2) 

(Cantrell et al., 1984).  The exact nature of the phenotype differentiation and cytokine 

release depends on the intercellular milieu and nature of the signals received.  These events 

will now be considered in detail. 

 

1.2.1 The T cell receptor 

The T cell receptor is a heterodimeric receptor consisting of two polypeptide chains,  and, 

with a disulphide bond between the two.  Each chain has a variable amino-terminal region 

and a constant region, the latter of which has a short transmembrane domain (Acuto et al., 

1983).   The variable region of the TCR provides heterogeneity in T cell recognition of 

antigen, but each T cell expresses multiple copies of identical receptors.  The variable region 

is genetically determined through random rearrangements of the germline during T cell 

development within the thymus (Tonegawa, 1983).   The germline has multiple loci within 

the variable (V), diversity (D) and joining (J) segments (reviewed in Alt et al., 1992).  

Through random recombination, a single V locus is joined to a single J locus forming a new 

exon.  This then undergoes transcription together with the C
 
locus to form a complete  

chain region mRNA that is subsequently translated to the α-chain protein.  The β chain is 

similarly formed but consists of V, D and J loci, all of which recombine together prior to 

transcription and splicing to a Cβ chain.  The human germline contains over 70 Vα domains, 

61 Jα domains, 52 Vβ domains, and 13 Jβ domains (Rowen et al., 1996).  The structure and 

antigen specificity of the TCR is predominantly determined by the complementarity 
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determining region 3 (CDR3) (Gorski et al., 1994, Yao et al., 2007), which also undergoes 

the random insertion of non-germline-nucleotides at the V-D and D-J joining junctions 

(Raaphorst et al., 1994).  The potential combinations achievable through both this VDJ 

rearrangement and CDR3 variability is more than adequate to ensure response to potentially 

pathogenic antigens that may be encountered in combination with MHC molecules.  All of 

these reactions are catalysed by a group of enzymes encoded by recombination activation 

genes (RAGs) (Schatz et al., 1989, Wayne et al., 1994).  Absence of RAG leads to a 

deficiency in mature B and T cells within a mouse model (Mombaerts et al., 1992) and has 

been widely used to study adoptively transferred T cell responses in a lymphopenic host. 

1.2.1.1 CD4 and CD8 

Binding of the TCR with the MHC-peptide complex alone is insufficient to form a stable 

interaction between T cell and APC. Other co-receptors are required to stabilize the binding, 

notably CD4 or CD8.  CD4 binds to MHC class II molecules distantly from the peptide 

binding groove, such that the complex at the TCR is not disrupted, or remains open for TCR 

engagement to occur (Doyle et al., 1987).  Binding of CD4 to MHC leads to interaction of 

the intracellular portion of CD4 with the tyrosine kinase Lck (Artyomov et al., 2010).  

Binding of CD8 to MHC class I has a similar stabilizing effect.  Expression of CD4 or CD8 

on T cells determines their restriction, as CD4
+
 cells are unable to stabilize interactions with 

peptide-MHC Class I complexes, so will only undergo TCR stimulation by peptide presented 

in association with MHC Class II molecules (Gay et al., 1987).  Likewise, CD8
+
 T cells can 

only stably interact with the peptide-MHC class I complex and initiate their cytotoxic effects 

upon TCR signaling.  The cellular expression of MHC is therefore relevant to the type of 

response desired and likely pathogens the cells may encounter.   

 

1.2.2 The Major Histocompatibility Complex (MHC) 

1.2.2.1 MHC structure and expression 

MHC molecules may be Class I or II, dependent on their structure.  Class I molecules consist 

of a transmembrane α chain with three domains noncovalently bound to β2 microglobulin.  

The first and second domains fold such that a ‘groove’ is formed into which peptide 

processed within the cell can then be presented, forming a TCR ligand (reviewed in Madden, 

1995).  Class II molecules have two transmembrane glycoprotein chains, α and β, both with 

two domains, which form a similar folded structure to class I molecules.  The peptide 
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binding groove is formed between the α1 and β1 domains, which is notably shallower than 

that in class I.  The extensive polymorphism amongst MHC molecules is concentrated within 

the residues that form the peptide binding groove; this determines the repertoire of peptides 

with which an individual MHC molecule can form stable complexes.  Class I molecules can 

be identified at high expression in most lymphoid tissues and is also expressed on all other 

nucleated cells.  Expression of class II molecules is generally restricted to the myeloid cell 

lineage, primarily upon dendritic cells, B cells and thymic epithelia – all legitimate antigen 

presenting cells for T cells (Daar et al., 1984).  However class II expression can occur in 

non-APC mediated by IFN-γ or other stimuli (Steimle et al., 1994).  Class II expression has 

been identified in keratinocytes, endothelium, fibroblasts, mesenchymal stroma, and in 

pulmonary cells of non-haematopoietic lineage (Kreisel et al., 2010).  The role of class II 

molecules outwith APC may be more related to peripheral tolerance than disease states.   

1.2.2.2 Regulation of MHC class II expression 

Expression of MHC class II is regulated by MHC class II transactivator (CIITA), which 

itself has several isoforms with differential cellular expression (Reith et al., 2005).  Within 

immature dendritic cells (DCs), the type I CIITA promoter forms a complex with PU.1, 

interferon-regulatory factor 8 (IRF-8), nuclear factor-κβ (NF-κβ) and SP1.  This promotes 

CIITA transcription and subsequently class II transcription, leading to high levels of class II.  

Within mature DCs, CIITA transcription is inhibited by an alternative complex with BLIMP-

1 (Piskurich et al., 2000).  Further regulation of CIITA expression via transcriptional 

feedback mechanisms permits lineage-specific expression in health but up-regulation in 

other cells via chromatin modification and response to extracellular signaling including 

TGF-β during pro-inflammatory or other states (Reith et al., 2005).  

1.2.2.3 Altered peptide ligands 

The exquisitely sensitive nature of the MHC groove-peptide interaction can be appreciated 

when considering the effect of altered peptide ligands (APL).  One such example is the 

acetylated N-terminal nonamer of myelin basic protein, MBPAc1-9 (Anderton, 2001).  The 

strength of the MHC-peptide complex can be indirectly measured via the time taken for the 

complex to dissociate.  Normally, MBPAc1-9 has lysine as the fourth residue, the 

hydrophilic nature of which antagonizes the hydrophobic binding cleft, leading to a very low 

affinity (Fairchild et al., 1993).  Alteration of this residue to the much more hydrophobic 

tyrosine (MBPAc1-9 (4Tyr)) forms a peptide-MHC complex with much higher affinity, 
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readily appreciated in vitro by markedly increased proliferation of relevant T cells, and 

measurably several orders of magnitude higher in direct binding competition assays. 

 

1.2.3 Antigen processing and presentation by MHC 

The CD4
+
 T cell receptor forms a complex with peptide bound within the cleft of a class II 

MHC molecule.  This peptide may be derived from either foreign protein or self.  How does 

the antigen presenting cell turn an external protein into a loaded peptide?  Class I and II 

MHC molecules have different functions and different mechanisms.  As this thesis is 

primarily concerned with CD4
+
 cells and self-reactivity leading to autoimmunity, only class 

II processes will be discussed. 

Uptake of antigenic material by macrophages or dendritic cells is typically by phagocytosis 

from the extracellular environment (though intracellular pathogens may induce this process 

deliberately) (Trombetta et al., 2005).  The vesicles thus formed migrate through the cell and 

bind with intracellular lysosomes containing multiple proteases, of which the cathepsins are 

most studied, rendered inactive by the neutral pH within the endosome.  These are then 

acidified upon activation of the cell, leading to degradation of the proteins and formation of 

smaller peptide fragments (reviewed in Jensen et al, 2008).     

At synthesis, MHC molecules are translocated to the endoplasmic reticulum (ER).  The 

individual α and β chains remain trapped in the ER until heterodimerisation, a process 

enhanced by binding non-covalently to the MHC class II-associated invariant chain (Ii) 

(Busch et al., 2000).  This binding occurs in the peptide cleft, preventing binding of other 

newly manufactured proteins within the ER.  The chain complexes with chaperone proteins 

and enters a dedicated endosome – the MHC class II compartment (MIIC), that transports 

the complex through the cell (Cresswell, 1996).  

The MIIC fuses with early endosomes containing proteases and peptides. These peptides 

may be of pathogenic origin, but normal cell turnover also provides a rich supply of self-

peptide.  The fusion of MIIC and early endosomes permits cathepsins to degrade the Ii such 

that only a small fragment remains behind in the peptide groove – the class II associated Ii 

peptide (CLIP) (Tolosa et al., 2003).  CLIP is then exchanged for antigenic peptides within 

the MIIC.  If binding with peptides does not occur in the endosome, the MHC molecule is 

rapidly degraded. Once peptide is loaded, the MHC-peptide complex is then returned to the 
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outer membrane of the MIIC by undefined processes.  Whether peptide loading can occur 

without internal transport is unclear. 

Two atypical class II molecules are only identified intracellularly and regulate the peptide 

loading of MHC class II.  HLA-DM is found only within the MIIC, and does not have an 

open peptide groove.  Instead it binds to other MHC class II molecules, catalyzing the 

emptying of the peptide groove but also binding to peptide-MHC complexes (Kropshofer et 

al., 1996).  In this manner, HLA-DM competitively inhibits very weak binding, removing 

unstable complexes but being unable to dissociate a stronger peptide-MHC bond.   HLA-DO 

is another atypical class II molecule unable to bind and present peptide, instead binding and 

inhibiting the action of HLA-DM.  This prevents complete removal of the Ii rendering the 

MHC molecules unable to present or permitting only weakly binding peptides to engage 

with the MHC (Hornell et al., 2006).  This ultimately leads to far fewer effective MHC class 

II molecules on the cell surface.  IFN-γ causes increased expression of HLA-DM and 

reduced expression of HLA-DO such that within the pro-inflammatory environment, far 

more class II molecules with strong peptide-MHC complexes appear on the cell surface.   

Expression of HLA-DO is restricted to B cells and the thymic epithelia. 

Once the peptide-MHC complex is formed, this stabilizes the MHC molecule and prevents 

degradation (Sadegh-Nasseri et al., 1991).  The complex is rapidly transported through the 

cell via microtubule-based motors, dynein transporting inwardly and kinesins to the plasma 

membrane.  This transport is regulated within DCs by maturation signals.  

Lipopolysaccharide (LPS) causes formation of microtubules by the MIIC itself leading to 

rapid transport of MHC class II to the cell surface, depleting the intracellular pool (Cella et 

al., 1997).  Thus, maturation promotes a greater number of potential CD4
+ 

T cell 

interactions.  

Degradation of MHC class II is dependent on ubiquitylation via MARCH1, which is 

increased in the presence of IL-10 (Thibodeau et al., 2008).  DC maturation increases the 

lifespan of the MHC class II molecule, thought to be via expression of CD83, which inhibits 

this MARCH1 ubiquitylation (Tze et al., 2011).  Animal models without MHC class II 

ubiquitylation still have degradation of these molecules, so there are clearly other undefined 

processes involved as well (McGeehee et al., 2011).   

Though the classical notion of the MHC class II molecule as a ligand for T-cell receptors 

holds true, signaling also occurs in the other direction with the MHC molecule serving as 

receptor rather than ligand (Al-Daccak et al., 2004).  Lymphocyte activation gene 3 (LAG3) 
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appears to activate survival pathways to prevent cell death via signaling through MHC 

(Andreae et al., 2002), whilst conversely ligation of MHC on mature DCs induces caspase-

independent cell death (Bertho et al., 2002).  More relevant, engagement of T-cell receptors 

leads to a rapid up-regulation in microtubule formation and enhanced transport of MHC 

class II to the plasma membrane.  This suggests bidirectional signaling occurs, with TCR 

ligation providing a positive feedback loop that increases the likelihood of further T cell 

engagement.   

 

1.2.4 T Cell Signaling 

T cell-activation is a multi-stage process.  Binding of the TCR to the MHC-peptide complex 

provides ‘Signal 1’ but other co-stimulatory interactions are required to lead to full cell 

activation – ‘Signal 2’, (initially proposed for B-cells; Brestcher et al., 1970). Release of 

cytokines may then influence other surrounding cells, providing ‘Signal 3’.   

1.2.4.1 Signal 1 

Engagement of the T cell receptor with the peptide-MHC complex commences signaling 

through the TCR.  This is commonly referred to as ‘signal 1’.  The TCR complexes with 

CD3, initiating the tyrosine phosphorylation of the immunoreceptor tyrosine-based 

activation motifs (ITAMs) of four separate components of the complex (Straus et al., 1992).  

These phosphorylations lead to recruitment via the SH2 domain of ζ-associated protein of 

70kDA (ZAP-70) (Wange et al., 1993). ZAP-70 is a protein tyrosine kinase that, on 

activation, catalyses the phosphorylation of several major signaling molecules, such as linker 

for activation of T cells (LAT) (Zhang et al., 1998).  These reactions occurs rapidly on TCR 

engagement, leading to downstream activation of Grb2 family proteins, (Zhang et al., 2000), 

phospholipase C-γ1 (PLCγ1) (Yablonski et al., 1998), and SH2 domain-containing leukocyte 

phosphoprotein of 76kDa (SLP-76) (Clements et al., 1998).  The outcome of these 

activations is up-regulation of the transcription factors in the nuclear factor for activated T 

cells (NF-AT) (Peng et al., 2001), nuclear factor–κB (NF-κB) (Kane et al., 2001) and 

activator protein-1 (AP-1) pathways (Rincon et al., 1994).    

Signal 1 alone is inadequate to lead to full T cell activation - clonal expansion and IL-2 

production - as defined above.  In the absence of further signaling, T cell activation does not 

occur.  Indeed, the T cell is rendered anergic, and will not respond with full activation if both 
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signal 1 and 2 are subsequently provided (Jenkins et al., 1987).  Anergy is discussed further 

in section 1.7.2. 

1.2.4.2 Signal 2 

1.2.4.2.1 Co-stimulatory molecules 

Additional co-stimulatory molecule interactions are needed to provide ‘signal 2’.  The 

commonest interaction to provide this is between CD28 on the T cell, and CD80 or CD86 on 

the APC, and is mediated via cell survival signaling through bcl-XL (Boise et al., 1995) and 

phosphatidylinositol-3-kinase (PI3K) pathways (Pages et al., 1994).  CD28 is constitutively 

expressed on most CD4
+
 T cells and is further up-regulated on T cell activation (Turka et al., 

1990).  These signals enhance clonal expansion, cell survival, cytokine production and 

differentiation with effector functions (Lenschow et al., 1996).  Despite the nomenclature, 

the nature of ‘signal 2’ may be more relevant to how T-cells respond than signal 1 (Wells et 

al., 1997).   

Multiple other co-stimulatory molecules are recognised.  OX40 is expressed on activated T 

cells, and interacts with OX40L on APC (Gramaglia et al., 1998).  Prolonged expression of 

OX40 and OX40L is seen in autoimmunity, including mouse models (Weinberg et al., 1999, 

Stuber et al., 2000).  OX40 signaling promotes T cell proliferation and cytokine production, 

even in the absence of CD28 (Akiba et al., 1999), though it cannot replace CD28 in 

providing full co-stimulation.  Over- or under-expression of OX40 in mice predominantly 

affects CD4
+
 T cell proliferation (Murata et al., 2000). 

4-1BB is also expressed on activated T cells though, in contrast to OX40, appears more 

relevant to CD8
+ 

than CD4
+
 T cell responses (Taraban et al., 2002).  4-1BBL is expressed on 

activated DCs, B cells, and macrophages.  Interaction between 4-1BB and its ligand leads to 

T cell proliferation (Gramaglia et al., 2000). 

Glucocorticoid-induced T cell receptor (GITR) is up-regulated on activated T cells, and 

constitutively expressed on Treg (Shimizu et al., 2002), while the ligand (GITRL) undergoes 

transient up-regulation following TLR ligation by APC (Stephens et al., 2004).  

GITR/GITRL signaling promotes proliferation and cytokine production by T cells, including 

in the absence of CD28 (Shimizue et al., 2002), but also has a unique role in Treg, 

potentially maintaining peripheral Treg numbers (Stephens et al., 2004).  GITR signaling in 

effector T cells renders them relatively resistant to Treg-mediated suppression.   
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Other members of the TNF superfamily and their ligands may provide costimulation, 

including CD30, herpes virus entry mediator/LIGHT (lymphotoxin-like, exhibits inducible 

expression), CD27/CD70, and CD30/CD30L (Watts, 2005).  Other molecules may also 

provide co-stimulation such as CD46 (Astier et al., 2000) or CD55 (Capasso et al., 2006).   

1.2.4.2.2. Co-inhibitory molecules 

Not all signal 2 interactions provide stimulation.  Various co-inhibitory molecules have also 

been identified, and render T cells less responsive on interaction.  Cytotoxic T lymphocyte 

antigen-4 (CTLA-4) and Programmed Death-1 (PD-1) have both been shown to down-

regulate T cell activation and alter the signaling mechanisms activated.   

CTLA-4 is robustly confirmed as a co-inhibitory molecule rapidly up-regulated upon cell 

activation via CD28 (Walunas et al., 1994), an effect proportional to the TCR affinity for the 

antigen (Allison et al., 1998).  CTLA-4 binds to CD80 and CD86, directly competing with 

CD28 for signaling interactions (Walunas et al., 1996), leading to reduction in IL-2 

production, cell proliferation and down-regulation of TCR signaling (Chikuma et al., 2003).  

Other mechanisms are also suggested, including ligand-independent models (Chikuma et al., 

2003a).  CTLA-4 deficient mice show spontaneous lymphoproliferative disorders and death 

within one month of age (Waterhouse et al., 1995), signifying a role in establishing and 

maintaining peripheral tolerance.   CTLA-4 is also highly expressed on the surface of Treg 

(Tang et al., 2004) and contributes to regulation through APC interactions.  The relevance of 

CTLA-4 is shown by the success of the fusion protein therapy abatacept, discussed later 

(1.9.4). 

PD-1 is a member of the CD28 superfamily and up-regulated on activation in T cells, B cells 

and some myeloid cells (Agata et al., 1996).  PD-1 signaling inhibits IFN-γ production and T 

cell proliferation (Freeman et al., 2000).  Engagement of PD-1 can be via either PDL-1, 

expressed on T and B cells, DCs, macrophages, and several non-haematopoietic cell lineages 

(Yamazaki et al., 2002), or PDL-2 which is restricted to DCs and monocytes (Ishida et al., 

2002).  Both PDL-1 and PDL-2 are up-regulated in response to tissue inflammation (Liang et 

al., 2003).  The development of spontaneous autoimmunity in the PD-1 deficient mouse 

implies a role for this co-inhibitory molecule in peripheral tolerance (Nishimura et al., 1999), 

particularly in maintenance of tolerance once re-established (Keir et al., 2006), and appears 

to be primarily mediated through cell anergy (Fife et al., 2006).  Up-regulation of PDL-1 on 

inflamed tissue may prevent destruction of self (Kinter Jet al., 2008) and the expression of 
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both PD-1 and PDL-1 on Treg strongly suggests a role in regulation (Francisco et al., 2009).  

PDL-2 also appears relevant in oral tolerance (Zhang et al., 2006). 

 

1.3 CD4+ effector subsets 

Once antigen is processed by an APC and presented within the MHC Class II molecule, it 

serves as a ligand for the TCR of a CD4
+
 T cell.  Assuming the antigen is a novel entry into 

the immune repertoire, only naïve T cells will be available to recognize the peptide-MHC 

complex.  Appropriate TCR engagement and co-stimulatory signals from the APC then lead 

to activation of the T cell and differentiation.  The direction of this differentiation depends 

on the type of co-stimulatory signals, (Signals 1 and 2) but also the surrounding cytokine 

milieu (Signal 3).  Whilst initially this process was thought to be unidirectional and an 

either/or phenomenon, the potential fates for T cells have expanded whilst the concrete 

nature of this differentiation is now challenged. 

The first segregation of effector T cells came in 1986 when long-term CD4
+
 cell lines were 

divided into two groups by their cytokine production – Th1 cells producing IFN-γ and Th2 

cells producing IL-4 (Mossman et al., 1986).  These two lineages have very different in vivo 

functions, with Th1 cells being crucial for immunity to intracellular micro-organisms whilst 

Th2 cells co-ordinate immune responses to extracellular pathogens, including parasites (Paul 

et al., 1994). 

 

1.3.1 Th1 cells 

Th1 cells were initially defined by their cytokine profile, with the production of IFN-γ, IL-2, 

and lymphotoxin-α (LT-α).  The importance of IL-12 in inducing a Th1 phenotype was soon 

identified (Hsieh et al., 1993), with the relevance of IFN-γ providing a positive feedback 

loop to Th1 differentiation being appreciated later (Lighvani et al., 2001).  Up-regulation of 

the IL-12Rβ2 chain on TCR stimulation is maintained by surrounding IL-12 and IFN-γ, 

leading to enhanced responses to circulating IL-12 (Szabo et al., 1997), whilst IL-18 may 

have a synergistic effect (Robinson et al., 1997).  Th1 actions are via their cytokines.  IFN-γ 

stimulates macrophages, boosting microbial killing (Schroder et al., 2006), and IL-2 is 

needed for cellular expansion and memory cell establishment (Darrah et al., 2007).  LT-α has 



 12 

an, as yet, uncertain role though appears to reflect disease activity in autoimmunity (Selmaj 

et al., 1991).    

The Th1 lineage is associated with expression of the master transcription factor, T-box 

expressed in T cells - Tbet (Szabo et al., 2000).  IFN-γ signaling via signal transducer and 

activator of transcription (STAT)1 up-regulates Tbet expression (Lighvani et al., 2001) 

whilst STAT4 activation by IL-12 boosts Th1 responses, including the promotion of further 

Th1 differentiation via IFN-γ (Thierfelder et al., 1996).  Tbet-deficient mice are still capable 

of IFN-γ production via alternate transcription factors.  Eomesodermin (Eomes), an 

equivalent factor triggering IFN-γ in CD8
+
 T cells, is also up-regulated on Th1 cells (Pearce 

et al., 2003).  IL-21 inhibits the up-regulation of Eomes on Th1 cells but does not affect Tbet 

(Suto et al., 2006).  Other transcription factors highly expressed on Th1 cells are Runx3 

(Djuertic et al., 2007) and HIx (Mullen et al., 2002). 

Mutations in the IL-12R render individuals at higher risk of intracellular infection (de Jong 

et al., 1998), as do IFN-γ gene mutations (Newport et al., 1996). 

 

1.3.2 Th2 cells 

Th2 cells were the first to be more fully characterized, with the identification of the vital role 

of IL-4 in differentiation (Swain et al., 1990), and mediating B cell class switching (Kopf et 

al., 1993).   Other Th2 cytokines are IL-5, IL-9, IL-10, IL-13, and IL-25.  The actions of IL-

4, IL-5 and IL-13 are discussed later (section 1.4.2).  IL-9 is involved in allergy (Longphre et 

al., 1990) whilst IL-25 (also called IL-17E) amplifies Th2 responses (Fallon et al., 2006).  

Mirroring Th1 development, IL-4Rα is increased during Th2 differentiation to provide 

positive feedback to production.  CD25 and IL-33Rα are also up-regulated (Hwang et al., 

2002, Schmitz et al., 2005), potentially increasing survival via greater responsiveness to IL-

2.  IL-4 activates STAT6 (Kaplan et al., 1996) and induces the Th2 master transcription 

factor, GATA3 (Zhu et al., 2001).  GATA3 deficiency abrogates Th2 differentiation in vitro 

and in vivo (Zhu et al., 2004, Pai et al., 2004).  IL-2 signals via STAT5 (Cote-Sierra et al., 

2004) and is non-redundant for effective Th2 differentiation and expansion. 

Absence of GATA3 in humans leads to hyperparathyroidism, sensorineural deafness and 

renal dysplasia (HDR) syndrome (van Esch et al., 2000) with greatly reduced Th2 cells and 

IL-4, and diminished IgG4 due to ineffective class switching.  GATA3 polymorphisms are 

implicated in asthma and allergy (Pykalainen et al., 2005).  lL-4Rα mutations are also 
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associated with atopy, both dermatitis and asthma (Hershey et al., 1997, Mitsuyasu et al., 

1998).   

 

1.3.3 Th17 cells 

The dichotomy of Th1/Th2 differentiation was upset when a Th1 paradox was finally 

unraveled.  IFN-γ deficient mice are more susceptible to experimental autoimmune 

encephalitis (EAE) – at the time considered to be a prototypic Th1-mediated model.  IL-

12p40 deficient mice were, conversely, relatively protected.  How, then, was the absence of 

Th1 differentiation protective, but not the absence of the (assumed) key pathogenic 

cytokine?  IL-12, the main inducer of Th1, is composed of two sub-units, p35 and p40, but 

this latter is also a component of IL-23 – subsequently identified as being necessary for EAE 

development (Cua et al., 2003).  Shortly following the newly appreciated role for IL-23 was 

a new T cell lineage, identified by its expression of IL-17 in the presence of IL-23 – the 

Th17 cell (Aggarwal et al., 2003, Harrington et al., 2005). 

Induction of Th17 in vitro by TCR engagement in the presence of TGF-β and IL-6 

(Veldhoen et al., 2006) leads to production of IL-21 (Korn et al., 2007), recapitulating the 

positive feedback seen in the other two lineages.  TGF-β is critical for Th17 differentiation 

(Yang et al., 2008) whereas IL-6 can be replaced by IL-21.  IL-23 appears to be necessary 

for maintenance of the Th17 lineage (Nurieva et al., 2007).  Th17 cells express IL-23R, Il-

1R1 and IL-18Rα (Zhou et al., 2007).  The actions of Th17 cells are predominantly against 

extracellular bacteria and fungal pathogens (Weaver et al., 2006), mainly via the recruitment 

of neutrophils.  Activation of STAT3 by either IL-6 or IL-23 leads to IL-22 production by 

Th17 cells (Zheng et al., 2007), which appears to mediate IL-23 actions as well as having an 

immunoprotective role (Zenewicz et al., 2007). 

The main transcription factor for the Th17 lineage is the retinoic acid orphan receptor RORγt 

(Ivanov et al., 2006).  RORγt deficiency reduces IL-17 production and partly protects against 

EAE.   RORα is also up-regulated (Yang et al., 2008a) and, whilst dispensable in the 

presence of RORγt, appears to have a synergistic effect.   

Mutations in the STAT3 pathway prevent signaling through IL-6, IL-21 and IL-23 i.e. key 

Th17 cytokines.  This has been identified as the cause of hyper-IgE (Job) syndrome, leading 

to recurrent staphylococcal, streptococcal and fungal infection (Milner et al., 2008).  Altered 

Th17 homeostasis is now being investigated in a wide range of autoimmune disorders. 
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1.3.4 Other effector T cell subsets 

1.3.4.1 Th9 cells 

Th9 cells are characterized by induction with IL-4 and TGF-β (Dardalhon et al., 2008, Staudt 

et al., 2010), and an early and significant production of IL-9 and IL-10.  Via STAT6, TGF-β 

up-regulates expression of the transcription factor PU.1, which appears to be the master 

factor for Th9 cells (Chang et al., 2010).  GATA3 is also up-regulated via STAT6 and IL-4 

(Goswami et al., 2012), though not to the levels seen in Th2 cells, and may inhibit TGF-β 

mediated induction of Foxp3 (Mantel et al., 2007).   IL-9 promotes mast cell proliferation 

and stimulates chemokine release, whilst IL-10 is a major immunoprotective cytokine.  Th9 

cells appear to be pro-inflammatory in some autoimmune models (Dardalhon et al., 2008, 

Jager et al., 2009) and allergy (Bullens et al., 2011), but confusingly have protective or Treg-

beneficial effects in other reports (Elyaman et al., 2009).   Whether this is related to their 

convergent cytokine production, or is a result of experimental methodology, is one of many 

questions remaining unanswered on this relatively new subset. 

1.3.4.2 Th22 cells 

The most recently defined ‘distinct’ subset is the Th22 lineage (Eyerich et al., 2009).  They 

are induced in the presence of IL-6 and TNF by plasmacytoid dendritic cells (Duhen et al., 

2009), and secrete IL-22, IL-26 and IL-13, with IL-22 appearing to be most functionally 

significant.  These cells can be identified via  chemokine receptors, being CCR6
+
, CCR4

+
 

and CCR10
+
, and have up-regulation of the aryl hydrocarbon receptor (AHR) as their master 

transcription factor.  AHR agonism leads to direct production of IL-22 (Quintana et al., 

2008).  IL-22 signals through activation of several STAT pathways, including STAT1, 

STAT3, and STAT5 (Xie et al., 2000), and also directly induces the production of β-

defensins within the gastro-intestinal mucosa (Aujla et al., 2008).   IL-22 is a relatively pro-

inflammatory cytokine implicated in rheumatoid arthritis (Ikeuchi et al., 2005), Crohn’s 

disease (Sekikawa et al., 2010), and psoriasis (Wolk et al., 2009).  Th22 cells themselves 

show dysregulation in rheumatoid arthritis (Zhang et al., 2012) and skin disorders (Cavani et 

al., 2012). 
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1.4 Cytokines 

Dependent on the signals received and the surrounding environmental milieu, T cells are 

capable of producing a broad variety of cytokines.  Th1 cells classically produce IFN-γ, Th2 

cells produce IL-4, IL-5 and IL-13, Th17 cells produce IL-17, and the in vitro-generated 

‘Th-GM-CSF’ produce high quantities of GM-CSF.  Cytokines recognized as anti-

inflammatory include TGF-β and IL-10.  Each of these cytokines will be briefly discussed. 

 

1.4.1 IFN-γ 

All interferons are glycoproteins, with the nomenclature indicating they ‘interfere’ with viral 

replication, their classical function (Isaacs et al., 1957).  IFN-γ is the only recognized class II 

interferon, binding to the IFNG receptor found on many cell subtypes.  This receptor is 

formed by four chains; two IFNGR1 chains responsible for ligand binding, and two IFNGR2 

chains involved in signaling transduction (Bach et al., 1997).  Neither chain has intrinsic 

signaling mechanisms.  IFNGR1 has binding motifs for both Janus tyrosine kinase (Jak)1 

and STAT1.  IFNGR2 has a binding motif for Jak2.  IFN-γ binds to IFNGR1, then this 

complex interacts with IFNGR2, leading to full signaling (Kotenko et al., 1995).  The Jak-

STAT pathway is shared amongst many of the cytokine receptor superfamily, and so will be 

considered in more detail here (Subramaniam et al., 2001). 

Binding of IFN-γ leads to autophosphorylation and activation of Jak2 via IFNGR2.  

Phosphorylated Jak2 then transphosphorylates Jak1 leading to alteration in IFNGR1 that 

permits binding and subsequent phosphorylation of STAT1 (Igarashi et al., 1994).  

Dimerisation of phosphorylated STAT1 (typically homodimerisation with STAT1 but other 

STATs may be involved) leads to dissociation from the IFNGR-IFN-γ complex (Greenlund 

et al., 1995), translocation to the nucleus, and binding with promoter elements that then 

alters transcription of multiple genes, such as up-regulation of Immune Regulatory Factor 

(IRF-)1, and Tbet (Darnell Jr et al., 1994).  STAT1 phosphorylation is a key step in the IFN-

γ signaling pathway.  STAT1 deficient mice demonstrate a similar phenotype to IFNGR1 

deficient mice, in response to IFN-γ (Meraz et al., 1996).  STAT1 phosphorylation can also 

be induced via other stimuli, including LPS, IL-12, IL-2, and TNF, thus providing a means 

for other cellular responses to modulate IFN-γ production (Schroder et al., 2004).   

Production of IFN-γ by CD4
+ 

T cells is mainly associated with the classical Th1 phenotype 

(i.e. in defence against viral and intracellular infections) and is markedly enhanced in the 
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presence of IL-12 and IL-18 from APCs (Fukao et al., 2000). IFN-γ also provides positive 

feedback for its own production, as increased IFN-γ also stimulates further production by 

Th1 cells (Szabo et al., 2000).   IL-4, IL-10, and TGF-β all inhibit the synthesis of IFN- γ.  

Th17 cells also produce IFN-γ, either singly or in combination with IL-17 (Bettelli et al., 

2008).  This is seen in animal models frequently several days after initial T-cell activation, 

and it remains unclear whether IFN-γ production is a natural delayed effect of Th17 

stimulation, or if it represents functional plasticity, with re-differentiation to a Th1-like cell.  

CD8
+
 T cells and NK cells also produce significant amounts of IFN-γ.  B cells, NKT cells 

and APCs are all also capable of synthesis.   

IFN-γ has a multitude of effects.  Up-regulation of MHC class I is markedly increased, partly 

through induction of the ‘immunoproteosome’, enhancing the APC’s efficiency of peptide 

loading (Groettrup et al., 2001).  MHC class II is up-regulated in professional APCs but can 

also be induced in non-professional APCs.  MHC-peptide complexes are also increased in 

number via an increase in genes and proteins involved in peptide processing and loading, 

mainly via direct effects on CIITA (Mach et al., 1996).  IFN-γ promotes Th1 responses, and 

stimulates production of IL-12, also boosting cytotoxic effects via APCs (Yoshida et al., 

1994).  Th2 responses are inhibited via reduction in IL-4 secretion.  Macrophages are highly 

affected by IFN-γ (hence the original name, macrophage-activating factor), with prevention 

of apoptosis and growth arrest, increased pinocytosis and phagocytosis, and, most 

importantly, enhanced microbicidal activity.  B cells are stimulated to produce 

immunoglobulins, and undergo class switching to IgG2a.  NK cell activity is also enhanced. 

Absence of IFN-γ in the mouse does not lead to overt dysmorphology, but does cause 

increased susceptibility to multiple pathogens, including mycobacteria (Huang et al., 1993).  

Within autoimmunity models, absence of IFN-γ does not protect against EAE, which 

highlighted that it was not entirely Th1-mediated (Chu et al., 2000).  IFN-γ has been 

implicated in autoimmune nephritis models.  Within humans, IFNGR1 deficiency is a rare 

genetic disorder marked by high susceptibility to mycobacterial infection (Jouanguy et al., 

1997).  Naturally occurring mutations within STAT-1 have also been identified, which 

similarly present with impaired resistance to mycobacterial and viral infection.  Complete 

absence of IFN-γ in humans has not been reported, suggesting it is inherently lethal.  IFN-γ 

is implicated as a key pathogenic cytokine in many disorders, particularly those of 

autoimmune origin (SLE, type one diabetes mellitus), as might be expected. 
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1.4.2 ‘Th2’-associated cytokines – IL-4, IL-5, IL-13 

IL-4 is produced by CD4
+
 Th2 cells, basophils, mast cells, and NKT cells.  It has also been 

reported by γδ-T cells (Ferrick et al., 1995) and eosinophils (Zuany-Amorim et al., 1998).  

IL-4 and IFN-γ have antagonistic roles in CD4
+
 T cell differentiation.  IFN-γ promotes Th1 

responses and inhibits IL-4 production while, conversely, IL-4 inhibits IFN-γ production and 

stimulates up-regulation of GATA3 in naïve T cells, the master transcription factor for the 

Th2 phenotype (Zheng et al., 1997).  IL-4 is predominant in controlling B cell class 

switching to the production of IgE and either IgG4 (humans) or IgG1 (mice), and also leads 

to up-regulation of MHC class II, encourages further B cell growth and prevents B cell 

apoptosis (Nelms et al., 1999).  Eosinophil chemotaxis is partly reliant on IL-4. 

The IL-4 receptor is a heterodimeric receptor with wide tissue expression   It consists of an 

IL-4Rα chain (with strong IL-4 affinity), and the common γ chain (CD132) which activates 

signaling pathways (Letzelter et al., 1998).  Signaling occurs via the Jak-STAT mechanism 

as outlined for IFN-γ, but with Jak1, Jak3, and STAT6 as the main protagonists (Kaplan et 

al., 1996).   

The pathophysiology caused by dysfunctional IL-4 is mainly mediated downstream through 

IgE.  Inappropriate IL-4, and therefore IgE, in response to innocuous antigen is a key 

pathway leading to Th2-driven allergic airways disease and asthma (Steinke et al., 2001).    

The effects on B-cell growth are implicated in various lymphomas, including chronic 

lymphocytic leukaemia and Hodgkin’s lymphoma.  Naturally occurring mutations of the IL-

4Rα chain in humans are associated with allergy (Mitsuyasu et al., 1998).  IL4Rα deficient 

mice have undetectable IgE and clear intestinal nematodal infection less effectively (Barner 

et al., 1998). 

IL-5 is produced by Th2 cells and mast cells.  Eosinophil effects are most important, with 

IL-5 being a key factor in their development, regulating differentiation, proliferation and 

activation (Foster et al., 1996).  IL-5 also causes stimulation of B cell growth and production 

of immunoglobulins. 

The IL-5 receptor is a heterodimer of the IL5Rα chain (CD125) and the common β chain, 

and is also widely expressed.   Signaling through Jak1, Jak3 and STAT5 occurs and is 

considered the canonical pathway (Mui et al., 1995).  There is also activation of the Ras-

MAPK pathway.  Both have intertwined effects, with elements of crosstalk at several points 

in both pathways (Adachi et al., 1998). 
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IL-5 is implicated in allergic airways diseases, along with IL-4.  Its main role in eosinophilic 

development has made IL-5 a target for immunotherapy in disorders such as eosinophilic 

oesophagitis, and hereditary eosinophilia syndromes (Stein et al., 2006). 

IL-13 is produced mainly by Th2 cells and CD8
+ 

T cells.  The receptor is a heterodimer of 

the IL13Rα chain and the IL4Rα chain, and also signals via the Jak STAT pathway using 

STAT6.   Like IL-4 and IL-5, IL-13 promotes B cell growth and class switching.  It also 

down-regulates macrophage activity, and may have a more prominent role than IL-4 in the 

pathogenesis of asthma (reviewed by Wynn, 2003). 

 

1.4.3 IL-10 

IL-10 is a major immunosuppressive cytokine with powerful anti-inflammatory and 

regulatory effects.  Secreted by monocyte-macrophages, DCs, T and B cells, epithelial cells, 

mast cells and granulocytes, its actions include inhibition of the production of TNF, IL-1, IL-

6, and IL-12.  Th1 cytokine secretion is diminished, macrophages are deactivated, and 

multiple lineages of lymphoid cells are prevented from differentiating and proliferating.  

Production of IL-10 is particularly marked in two groups of regulatory T cells, the gut-

resident Foxp3
+
 natural Treg (nTreg) (Maynard et al., 2007) and the Type 1 regulatory cell 

(Tr1).  IL-10 is considered a key mechanism by which these two cell types effect 

suppression (Shevach et al., 2009, Roncarolo et al., 2001).  Th2 cells also produce significant 

quantities, IL-10 initially being considered a Th2 cytokine (Fiorentino et al., 1989), and this 

likely partly mediates the ability of Th2 cells to inhibit a Th1 response.   Th1 cells produce 

IL-10 in co-expression with IFN-γ and appear to self-regulate their own activation in this 

manner (Meyaard et al., 1996).  Th17 cells may also produce IL-10 in a TGF-β stimulated 

manner (Ghoreschi et al., 2010).   

Regulation of IL-10 transcription is predominantly via STAT3, leading to downstream 

induction of the transcription factor c-Maf, crucial for T-cell expression of IL-10.  The 

effects of TGF-β, ICOS and IL-27 are all via c-Maf induction.  C-Maf directly activates IL-

10 synthesis by binding to the IL-10 promoter at a Maf recognition element (MARE) motif.  

IL-21 is also stimulated by c-Maf, and permits expansion and maintenance of IL-10 

producing cells, especially Tr1 cells (Xu et al., 2009).  Originally considered a major player 

in Th2 cells (Kim et al., 1999), c-Maf now appears to be a master transcription factor for IL-

10.  Th2 production of IL-10 is regulated via STAT6 and requires the presence of GATA3.  
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IL-10 expression by Th1 cells may be induced by IL-12 signaling through STAT4, but 

continuous activation of STAT4 is required to maintain production.  

Notch and aryl hydrocarbon receptor (AhR) pathway signaling also increases IL-10 

secretion.  Up-regulation of AhR by IL-27 causes binding with c-Maf to promote the 

differentiation of Tr1 cells.  STAT4 may synergise with Notch, leading to marked increase in 

IL-10 production by Th1 cells as a means of self-regulation (Rutz et al., 2008).  More 

relevantly, Notch ligand Delta-like-4 is expressed on steady state plasmacytoid DCs but 

rapidly up-regulated on all DCs following toll-like receptor ligation, explaining the ability of 

DCs to modulate IL-10 production in T cells (Kassner et al., 2010).  TLR-2 stimulation in 

vitro strongly promotes IL-10 production by APCs (Agrawal et al., 2003) with correlates in 

vivo (Netea et al., 2004).  Other TLRs have also been implicated in innate cell IL-10 

production (Higgins et al., 2003, Fujita et al., 2006).   

Binding of dimerised IL-10 to a receptor, constituting two IL-10R1 chains and two IL-10R2 

chains, leads to activation of Jak1 and tyrosine kinase 2 (Tyk2), causing phosphorylation of 

IL-10R1.  This permits docking of STAT3, allowing phosphorylation and then nuclear 

translocation with up-regulation of the target genes.  Absence of STAT3 in in vivo models 

completely prevents IL-10 effects on macrophages and neutrophils (Takeda et al., 1999).   

Expression of IL-10R1 is virtually restricted to leucocytes whilst IL-10R2 is widely 

expressed.   

IL-10 is an evolutionarily early attempt by the immune system to limit detrimental effects 

from immune responses.  As such, pathogens have evolved means to abuse its 

immunosuppressive potential, either through stimulation of IL-10 production (Jang et al., 

2004, Sing et al., 2002, Gabrysova et al., 2009) or mimicry (Hsu et al., 1990).   Therapeutic 

blockade of IL-10 has been considered to assist in the clearance of chronic infection (Brooks 

et al., 2008).  As a key immunosuppressive molecule, the role of IL-10 in autoimmunity has 

been extensively studied.  IL-10 is vital in gastro-intestinal homeostasis and modulating 

immune reactions within the resident commensal population.  Loss-of-function mutations in 

either IL-10 (Kuhn et al., 1993) or IL-10R (Spencer et al., 1998) genes lead to a severe 

colitis in mice, and similar early-onset inflammatory bowel diseases (IBD) have now been 

identified as monogenic in humans as well. Genome-wide assocation studies identify IL-10 

as a susceptibility factor for more common forms of IBD (Franke et al., 2008).  IL-10 also 

has a protective role in murine models of hepatitis (Di Marco et al., 1999). 
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1.4.4 IL-17 

IL-17 was first identified in the mid-1990s (Yao et al., 1995) but was considered a minor 

player in immunology until the identification of Th17 cells (Aggarwal et al., 2002) and their 

potential pathogenicity upset the entire Th1/Th2 axis and forced the re-examination of much 

of the dogma, particularly relating to ‘Th1-mediated diseases’.   

IL-17 has two main isoforms, IL-17A and IL-17F, with the former considered the more 

potent (Ishigame et al., 2009).  It is produced by many different cells, including both 

adaptive cells (e.g. Th17) and cells of the innate system – γδ-T cells, NKT cells, and 

macrophages.  Actions of IL-17 are targeted towards structural cells such as stroma, 

epithelia, and endothelia, with up-regulation of genes important in the activation of 

neutrophils and the acute phase response, plus anti-microbial proteins.   

The genes for IL-17A and IL-17F lie closely together.  RORγt and RUNX1 bind upstream of 

the IL-17A promoter, with binding of RUNX1 acting to directly inhibit Foxp3 expression.  

The presence of IL-17-skewing cytokines, such as IL-6, IL-21, or IL-23, leads to activation 

and phosphorylation of STAT3, which then also interacts with the IL-17A promoter.  

STAT3 is countered by STAT5 binding (promoted by IL-2) (Laurence et al., 2007, Yang et 

al., 2011).  TGFβ is also beneficial for IL-17 production, as it suppresses eomesodermin via 

‘single mothers against decapentoplegic’ (SMAD), leading to up-regulation of both the 

IL17A promoter and RORγt. 

The IL-17 receptor is a heterodimer of IL-17RA and IL-17RC chains.  Binding of IL-17 to 

one chain increases affinity for the other chain, though there are species-specific differences.  

Human IL-17RA binds IL-17A with high affinity and IL-17F with very low affinity, whilst 

IL-17RC has the opposite pattern.  In mice, IL-17RC similarly binds IL-17F with high 

affinity and IL-17A with low affinity, but there is no discernible difference in affinity 

between the two isoforms for IL-17RA (Kuestner et al., 2007).  Signaling of IL-17 is rather 

different from other cytokines, mediated through Act1 (a U-box E3 ubiquitin ligase) (Qian et 

al., 2007), though the subsequent downstream targets are poorly defined.  TNFR-associated 

factor 6 (TRAF6) and the NF-κB pathway (Ruddy et al., 2004, Schwandner et al., 2000) can 

also both be activated through IL-17.  Thus, IL-17 has an effect upon pathways traditionally 

related to both innate and adaptive immunity.  IL-17 signaling rarely leads to drastic cellular 

changes alone, but synergistic action with IFN-γ, TNF and IL-1β have all been observed. 

Absence of IL-17 or a reduction in Th17 cells mainly leads to an increased susceptibility to 

fungal infections, and subsequently chronic mucocutaneous candidiasis (Puel et al., 2011).   



 21 

Mice deficient in IL-17 succumb to disseminated candidiasis (Huang et al., 2004).  IL-17 is 

highly relevant as a pathogenic cytokine, implicated in autoimmunity in multiple disorders 

previously considered Th1-mediated, such as rheumatoid arthritis and psoriasis.  The role of 

IL-17 and Th17 cells is not completely clear-cut.  In some models, e.g. EAE, the potential 

pathogenicity of Th17 cells is disputed, and may not be related to the production of IL-17 

itself. 

 

1.4.5 TGF-β 

TGF-β is a highly pleiotropic cytokine with multiple effects throughout the body on virtually 

every cell lineage.  First described as a fibroblast growth factor (de Larco et al., 1978), then 

in wound repair (Sporn et al., 1983), its vital role in immunology was amongst the last to be 

recognized (Kerhl et al., 1986).  Even within the immune system, it has directly contrasting 

effects.  Induction and maintenance of adaptive Treg requires the presence of TGF-β (Chen 

et al., 2003), and it is thus rightly considered a major player in immunosuppression.  

Conversely, TGF-β is also an important signal for the differentiation of Th17 cells 

(Veldhoen et al., 2006, Mangan et al., 2006), and so also pro-inflammatory.   

TGF-β is produced in an inactive form, pre-pro-TGF-β.  The pro-protein component is also 

known as latency-associated peptide (LAP) (Dubois et al., 1995).  The LAP-TGF-β pro-

protein complexes with latent TGF-β binding protein (LTBP) (Miyazono et al., 1991), and 

this large latent complex (LLC) is the substance released by cells (Rifkin, 2005).  Processing 

of LTBP-LAP-TGF-β to release the active TGF-β takes place outwith the cell, or using 

reactions at the cell membrane.  Only the TGF-β itself was initially considered active, though 

this is now being challenged (Peterson et al., 2012).  In vitro release of active TGF-β is 

typically by brief acidification of the sample (Lawrence et al., 1985).  In vivo 

metalloproteinases may act to release the complex from the tissue matrix (Dallas et al., 

2002), and then the remaining complex can be further processed to release free active TGF-

β. Notably, one such enzyme is plasmin, the active enzyme formed from plasminogen during 

platelet activation (Godar et al., 1999).  As such, serum can be anticipated to contain 

relatively large quantities of free TGF-β, making in vitro effects difficult to distinguish.   

Activation of TGF-β by cells remains incompletely understood, but a key interaction is via 

integrins expressed on the cell surface (Munger et al., 1999).  Binding of αvβ6 integrin with 

TGF-β-LAP is reported to be required for extracellular activation.  That these integrins are 

relevant immunologically is evident by the phenotype of autoimmunity and colitis seen in 
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mice with a conditional deficiency of αv (Lacy-Hulbert et al., 2007).  The αv-deficient mice 

developed a reduction in Treg numbers within the colon, presumably due to an inability to 

induce new Foxp3 expression in the absence of activated TGF-β. 

Two groups of TGF-β receptor exist, binding either with active TGF-β only, or with the 

LAP-TGF-β complex through LAP.  The active TGF-β receptors are further sub-classified 

into three types (Lin et al., 1992).  The type III receptors are not associated with any 

signaling mechanisms, and appear to be a means of controlling the concentration of free 

TGF-β available for use by the cells.  More importantly, these type III receptors can 

solubilise and compete for TGF-β with type II receptors, thus preventing its effects.  When 

bound to the cell surface, type III receptors assist in signaling, ‘handing over’ the TGF-β to 

the type II receptors.  Binding of TGF-β to a type II receptor leads to recruitment of type I 

receptors and a tetramer is formed of two of each type, each dimer binding to a chain of 

TGF-β (Massague, 2008).  The formation of this complex phosphorylates and activates the 

Type I receptor triggering the Smad pathway. 

Three different Smads may be activated; Smad 2 and Smad3 are receptor-associated whilst 

Smad4 is common to all.  Binding of TGF-β leads to phosphorylation of the Smad 2 or 3 

which then binds with Smad4 leading to translocation to the nucleus and subsequent genetic 

regulation (He et al., 2006).  Various other pathways have also been implicated but have not 

yet been fully delineated (Derynck et al., 2003).    

The alternate receptors bind to LAP ‘trapping’ the TGF-β in complex with the cell surface 

and allowing direct delivery to another cell, or indeed autocrine signaling (Chong et al., 

1999).  Activation and delivery of TGF-β by this means uses a soluble factor but requires 

cell contact for delivery, and has been suggested as one mechanism of regulatory T cell 

suppression (Chen et al., 2008).  TGF-β suppresses the production of IL-2 (Brabletz et al., 

1993), causing a direct anti-proliferative effect on most T cells.  There is also an effect on 

cell cycle transcription factors, such as down-regulation of c-myc (Polyak et al., 1994) and 

up-regulation of kinase inhibitors (Hannon et al., 1994), seen more profoundly on naïve than 

activated cells (Wolfraim et al., 2004).   TGF-β is also essential in the development and 

maturation of certain types of APC, particularly Langerhans cells within the dermis (Zhang 

et al., 1999), and assumes great importance in maintaining a tolerogenic phenotype in many 

DCs (Belladonna et al., 2008, Werner et al., 2000).  Suppression is also seen in other innate 

and adaptive cell lineages (Li et al., 2006). 
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One of the most notable features of TGF-β is the role alluded to earlier in T cell 

differentiation (1.3).  TGF-β inhibits both Th1 and Th2 differentiation via, respectively, 

down-regulation of Tbet (and hence IL-12 receptor expression) (Gorelik et al., 2002), and 

GATA3- and IL-4-triggered phosphorylation of STAT6 (Heath et al., 2000).  Suppression of 

both Th1 and Th2 cytokines will influence activated T cells towards a Th17 phenotype, as in 

the absence of both of these, IL-6 is sufficient to induce Th17 cells (Das et al., 2009).  TGF-

β clearly has a more direct role as it up-regulates the master transcription factor for Th17, 

RORγt (Icihyama et al., 2008).  TGF-β can also inhibit cytokine production from fully 

differentiated Th1 cells, though has no impact on Th2 cells (Ludviksson et al., 2000).   

TGF-β is vital in the induction of Foxp3, the master transcription factor for Treg.  

Stimulation of naïve T cells in the presence of TGF-β and IL-2 in vitro leads to up-regulation 

of Foxp3 and differentiation towards induced Treg (Chen et al., 2003).  Similarly, 

stimulation with DCs can lead to iTreg with proven immunosuppressive capability 

(Yamazaki et al., 2006).  The FOXP3 promoter contains three highly conserved non coding 

sequences, which have been selectively knocked out in murine models. This demonstrated 

that TGF-β signaling through NF-AT was redundant in the thymic development of nTreg but 

essential for the formation of gastro-intestinal resident Treg (Zheng et al., 2010).  Both 

Smad2 and Smad3 are needed to induce Treg (Takimoto et al., 2010), as is IL-2 through 

phosphorylation and activation of STAT5 (Davidson et al., 2007). 

Absence of TGF-β1 signaling in mice leads to lethal multi-organ autoimmunity within weeks 

of birth (Shull et al., 1992), whilst signaling blockade permits the development of 

autoimmunity in older mice (Gorelik et al., 2000).  Multiple mutations in either receptors or 

signaling pathways have been identified in human disease, particularly within various 

cancers.  Other mutations show a predilection for structural malformations with 

chondrodysplasia, craniosynostosis, and abnormal vasculature (Loeys et al., 2005).   

 

1.4.6 Tumour necrosis factor (TNF) 

In 1984, a soluble factor released from macrophages which had cytotoxic effects was 

identified and designated TNF-α to distinguish it from a partly homologous cytokine, 

lymphotoxin (TNF-β) (Aggarwal et al., 1985).  Many authorities now simply refer to the 

cytokine as ‘TNF’ and that is the nomenclature adopted herein (Clark et al., 2007).  Since the 

original identification, the TNF family has expanded to contain 19 different ligands, and 29 

different receptors.  They are predominantly pro-inflammatory but with wide-ranging 
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activity on many cells, particularly in proliferation, apoptosis and morphogenesis (reviewed 

in Aggarwal et al., 2011).  For the purposes of this thesis, the most relevant TNF superfamily 

(TNFSF) members are TNF, CD40L, FasL, OX40L, TNF-related apoptosis-inducing ligand 

(TRAIL), receptor activator of NF-κB ligand (RANKL), and GITR ligand.  Many of these 

ligand-receptor interactions are discussed later (section 1.7.1); here TNF will be the focus. 

TNF interacts with two of the 29 receptors, TNFR1 and TNFR2.  TNFR1 contains a death 

domain within its intracellular region, and is the main receptor to which trimerised TNF will 

bind.  TNFR1 is widely expressed on virtually every cell type, whilst TNFR2 is restricted to 

immune, endothelial, and nerve cells.  TNF may be in a soluble form or expressed as a 

transmembrane protein on the cell surface, with the effects of ligand binding partly 

dependent on how TNF is presented.  Reverse signaling has also been demonstrated, with 

transmembrane TNF signaling back into the host cell on binding with an antibody 

(Harashima et al., 2001).   

Binding of TNF with its receptor leads to activation of various pathways.  Common to all 

members of the TNFSF is usage of the NF-κB pathway.  TNF also signals via p38 mitogen-

activated protein kinase (p38MAPK), extracellular signal-regulated kinase (ERK), and c-Jun 

N-terminal kinase (JNK).  Apoptosis may be triggered by recruitment of the TNFR-

associated death domain stimulating (TRADD) on TNFR1 binding with the Fas-associated 

protein with death domain (FADD) and activation induced cell death (AICD) as discussed 

later (Section 1.7) (Hsu et al., 1996).   TNF also uses the intrinsic pathway for apoptosis, via 

mitochondrial activation and caspase-9/caspase-3 release.  Activation of the NF-κB pathway 

leads to a large number of mainly pro-inflammatory downstream effects, including the 

release of IL-6, IL-8, IL-18, cyclooxygenase-2, inducible nitric oxide synthase, and more 

TNF, as well as inducing cell proliferation.  This is also enhanced via up-regulation of AP-1, 

another transcription factor controlling cell cycle proteins (Natoli et al., 1997).   TNFR2 

lacks the death domain TRADD common to activation of all pathways by TNFR1-TNF 

interaction, but is able to bind directly to the downstream molecule TNFR-associated factor 

2 (TRAF2) and hence signal via both MAPK and NF-κB.  Unlike other TNFSF members, 

TNF activates NF-κB in a non-selective manner and is potently pro-inflammatory.  AICD is 

avoided as TNF alone is insufficient to causes apoptosis, though the mechanisms preventing 

this are ill-defined (Sugarman et al., 1985).   

Due to its promiscuous nature, TNF is widely implicated in many disease states, from 

Alzheimer’s disease (Swardfager et al., 2010) to heart failure (Feldman et al., 2000) to 

obesity (Tzanavari et al., 2010).  Relevant here is the well recognized role of TNF in 



 25 

autoimmunity.  Dysregulation of TNF is implicated in systemic lupus erythematosus (SLE), 

MS, arthritis, and IBD.  Indeed, the development of successful therapies utilizing anti-TNF 

biologics is a landmark in the treatment of several disorders (Lin et al., 2007). 

Given the universal impact of TNF, its absence in a knock-out mouse is curiously without 

morphological changes with only increased infective susceptibility a major part of the 

phenotype (Marino et al., 1997).  TNF mutations in humans have been implicated in cerebral 

infarction (Um et al., 2003), whilst receptor mutations are found in periodic fever syndromes 

(TNFR1-associated periodic syndrome (TRAPS)) (McDermott et al., 1999) and Crohn’s 

disease (Waschke et al., 2005).   

 

1.4.7 Granulocyte monocyte-colony stimulating factor (GM-CSF) 

As the name suggests, GM-CSF was first described in the context of granulocyte and 

monocyte maturation from bone marrow precursors (Burgess et al., 1980).  Later recognition 

in both innate and adaptive immunity consolidated GM-CSF as a relevant cytokine in health 

and disease.  More recently, GM-CSF has been implicated as the essential pathogenic 

cytokine in EAE, the murine model of MS, and may yet emerge to have a key role in other 

disorders (Codarri et al., 2011, El-Behi et al., 2011).   

GM-CSF is not plentiful in the steady state, but production by many cell lineages increases 

rapidly in association with stimulus.  The receptor is a heterodimer of a binding chain 

(CSFR2α) and a signaling chain (CSFR2β), and is expressed widely within the myeloid cell 

lineage, but is not expressed on T cells (Rosas et al., 2007).  The receptor complex for GM-

CSF is notably complicated – two GM-CSF molecules bind to two chains each of CSFR2α 

and CSFR2β forming a hexamer, but this is insufficient for full signaling.  Two of these 

hexamers then interact with one another, forming a dodecameric complex that permits 

signaling through the Jak-STAT pathway, MAPK pathway, and the PI3K pathway 

(Fleetwood et al., 2005).  Actions of GM-CSF include the maturation of dendritic cells (a 

well established in vitro phenomenon) (Inaba et al., 1992), activation and survival signals for 

macrophages, eosinophils and neutrophils, and differentiation for alveolar macrophages and 

invariant NK T cells.   

Given its pro-inflammatory nature, it is perhaps not surprising that elevated serum 

concentrations of GM-CSF have been identified in a number of autoimmune disorders.   A 

network model proposes that GM-CSF, and other CSFs, act as intermediates between 
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myeloid cells and activated T or B cells in chronic inflammation (Hamilton, 1993).  

Following this, GM-CSF blockade was proposed as a therapeutic modality for some chronic 

inflammatory disorders, supported by a murine model of collagen-induced arthritis 

(Campbell et al., 1998, Cook et al., 2001).  A clinical trial suggested benefit from blockade 

in Crohn’s disease (Korzenik et al., 2005) though this particular study was faulted due to 

undeclared competing interests in the study investigators.  The initial observation that GM-

CSF deficiency was protective in EAE (McQualter et al., 2001) was borne out by the 

discovery that GM-CSF production is non-redundant for the establishment of disease in that 

model (Codarri et al., 2011).  GM-CSF is also allocated a pathogenic role in experimental 

glomerulonephritis (Kitching et al., 2002), and allergic airways disease (Yamashita et al., 

2002).   GM-CSF deficient mice have specific defects in alveolar macrophages and invariant 

NK T cells, (Stanley et al., 1994, Bezbradica et al., 2006).  GM-CSF is widely used 

clinically post-radiotherapy to boost mobilization of granulocytes and monocytes and hasten 

immune reconstitution.  

 

1.5 Effector T cell plasticity 

The dichotomy proposed by Mossman et al of Th1 and Th2 has been blown apart by recent 

developments in the characterization of T cell subsets.  One key aspect initially proposed 

was that the Th1/Th2 decision was irreversible – cells terminally differentiated to one 

lineage or the other (reviewed in Zhou et al., 2009).  The plasticity of these cells is now 

being investigated.  Much evidence for plasticity arose in the context of Th17 and iTreg 

differentiation.  Both Foxp3 and RORγt are induced by TGF-β, but Foxp3 inhibits function 

of the latter (Zhou et al., 2008).  IL-6 prevents the induction of Foxp3 (Korn et al., 2008), 

leading to skewing towards Th17, while IL-2 and retinoic acid further promote towards 

iTreg (Benson et al., 2007).  Thus, the two subsets are intricately balanced and the final fate 

of the cell is likely to rely on multiple factors. Even the well-established Th1/Th2 paradigm 

is challenged by the presence of GATA3
+
Tbet

+
 Th2 cells secreting Th1 cytokines (Hegazy et 

al., 2010).   One proposed model suggests that some differentiated states are more ‘stable’ 

(Murphy et al., 2010) such that de-differentiation is more difficult to achieve.  ‘All T cell 

subsets are differentiated, but some are more differentiated than others’. 

Characterisation of T cell subsets was originally by cytokine profile, but has matured to a 

combination of cytokines released, inducing conditions, and transcription factors – each T 

cell subset originally appeared to have a uniquely highly expressed transcription factor.  
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There is a great deal of overlay with no cytokine being unique to a single subset, nor any 

transcription factor uniquely up-regulated in only one group.  For example, IL-10 was 

initially described as a Th2 cytokine, but is now known to be secreted by Th1, Tr1, Th17, 

and Treg, plus other non-CD4
+
 cells (Saraiva at al., 2010).  To complicate matters further, 

the cytokine profile of a cell may change over time e.g. Th17 cells classed by their IL-17 

production often acquire IFN-γ production (Hirota et al., 2011). Transcription factor 

expression is also not a useful discriminator. RORγt
+
 Th17 cells can also co-express either 

Tbet (Ghoreschi et al., 2010) or GATA3 (Wang et al., 2010).  Equivalent to this, loss of the 

defining transcription factor does not necessarily remove the associated traits of that subset. 

Absence of Tbet does not completely remove Th1 differentiation (Usui et al., 2006).  A 

similar degree of plasticity is also seen in Foxp3
+
 Treg (section 1.10.4.3.2). 

Epigenetic modifications, previously thought to cement the fate of a cell to a given lineage, 

have now emerged as contributing, rather than detracting, to plasticity, particularly in Th17 

cells (Lee et al., 2009).  The Tbx21 gene encoding Tbet, for example, has epigenetic 

modifications promoting expression in Th1 and repressing in Th2 and Th17.  The same 

promoting modification is also seen within the Th2 and Th17 cells suggesting that removal 

of the repressing influence could rapidly lead to up-regulation of Tbet (Wei et al., 2009).   

To conclude, CD4
+
 cells have been categorized into a number of effector subsets based on 

their expression of various cytokines and transcription factors, and their effects in vivo.  

Though initially a useful discriminator, the burgeoning number of subsets, and the inter-

relationships between them all, implies that a degree of functional plasticity is almost 

certainly present; T cells are more functionally fluid than previously acknowledged. 

 

1.6 Central tolerance 

There is no fundamental biology preventing the processing and presentation of proteins 

derived from self, and indeed cells reactive to self have been demonstrated for various 

antigens in healthy individuals (Yang et al., 2006).  The concept of ‘self’ and ‘non-self’ as 

distinct determinants requiring different immune reactions was first raised by Sir Frank 

Macfarlane Burnet in 1949 (Burnet et al., 1949). 

T cell development occurs in the thymus.  One crucial requirement is to efficiently prevent 

the export of self-reactive T cells capable of mounting an unwarranted immune reaction.  

This is the main principle behind central tolerance – deletion of self-reactive cells at their 
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point of origin.  Precursor T cells migrate from the bone marrow to the thymus as double 

negative CD4
-
 CD8

-
 cells.  Within the thymus, the majority develop α and β chains of the T 

cell receptor (a minority progressing to γδ lineage) (Washburn et al., 1997).  The TCR chains 

then undergo rearrangement along with up-regulation of both CD4 and CD8, so that the 

double positive cells have a functional heterodimeric TCR (Fehling et al., 1995).  Ongoing 

development and cell survival then requires signaling through this TCR via peptide-MHC 

complexes within the thymic cortex (Starr et al., 2003).  In the absence of a functional TCR 

or adequate signal strength, cells undergo apoptosis.  Those cells that are positively selected 

then migrate to the thymic medulla.    

Medullary thymic epithelial cells (mTECs) are notable for high gene expression of tissue-

specific genes and their high expression of the gene ‘Autoimmune Regulator’ (Aire) 

(Derbinski et al., 2001).  Though the exact mechanisms remain to be clarified, Aire regulates 

the transcription of multiple tissue-specific antigens (TSA), leading to their expression and 

presentation on mTECs (Anderson et al., 2002).  Indeed, there is a ‘dose-dependent’ 

relationship, with increased Aire activity enhancing negative selection of Aire-driven 

antigens.  These cells also express high levels of CD80 and MHC class I and II molecules, 

and may be responsible for antigen presentation to the developing T cell (Derbinski et al., 

2005).  Alternatively, mTECs may function as a large self-antigen reservoir for dendritic 

cells resident within the thymic medulla, which then undertake processing and antigen 

presentation (Koble et al., 2009).  These two mechanisms likely co-exist, with evidence that 

mTECs are superior in transcription but DCs present more effectively, suggesting a co-

operative and partly redundant approach to self-antigen presentation.  Irrespective of the 

presenting cell, should a developing T cell receive a strong TCR signal within the thymic 

medulla from a TSA-MHC complex, this indicates high potential for self-reactivity and the 

cell undergoes apoptosis (reviewed in Starr et al., 2003). 

Defects in either early positive selection or later negative selection can cause escape from 

central tolerance.  Proof of this is seen in mutations affecting TCR signaling.  Several ZAP-

70 mutations have been identified in models of spontaneous autoimmunity (Sakaguchi et al., 

2003).  If initial basal signaling during positive selection is defective, then a stronger self-

signal is needed for progression into the medulla.  These more strongly self-reactive T cells 

are still unable to respond sufficiently to self-antigen to then undergo apoptosis, and are 

released into the periphery.  There, the abundance of antigen overcomes TCR signal 

weakness and causes progression to autoimmunity (Hsu et al., 2009). 
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The mechanisms of negative selection and the crucial role of Aire were highlighted in 1997, 

when Aire was identified as the gene dysregulated in autoimmune polyglandular syndrome 

type 1 (APS1), the hallmarks of which are summarised in the alternate name, autoimmune 

polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) (Aaltonen et al., 1997).    

In the absence of Aire expression within the thymus, presentation of self-antigen is less 

effective leading to an escape from negative selection for self-reactive T cells, in particular 

those with reactivity to endocrine organs.    

Thymic development of T cells thus requires a two stage survival process, with sufficient 

positive signaling at the double positive stage within the cortex to survive to the medulla, 

then insufficient signaling as single positives to self-antigen MHC complexes, permitting 

escape from negative selection.  For this process to be entirely infallible, T cells with even 

weak self-reactivity would need to undergo deletion.  Such stringency would not permit an 

adequate T cell pool for response to pathogens, and so some self-reactive T cells do enter the 

periphery.  Identification of such potentially pathogenic cells in both humans and animal 

models confirms this is indeed the case and indicates the need for a second level of 

regulation – peripheral tolerance. 

 

1.7 Peripheral Tolerance 

Having taken a necessarily ‘relaxed’ approach to central tolerance to ensure sufficient 

promiscuity of the T cell receptor repertoire, additional mechanisms are needed to control 

self-reactive T cells when they exit the thymus.  This is the broad concept of peripheral 

tolerance, and may be loosely considered as three connected but disparate mechanisms; 

death, anergy, and regulation. 

 

1.7.1 Cell death 

1.7.1.1 Active cell death 

A key aspect of a self-reactive T cell is its ongoing exposure to the cognate antigen.  Unlike 

pathogen-responsive cells, which may spend their entire lifetime in ignorance of their 

antigen, an autoreactive cell is guaranteed to have a plentiful supply (unless the antigen is 

immunologically sequestered).  Constant signaling through the TCR in the absence of any 

associated danger signal may lead to activation of an alternate pathway.  The discovery of 



 30 

the Fs7-associated cell surface antigen (Fas) in 1989 (Yonehara et al., 1989) and 

subsequently its interaction with Fas ligand (FasL) opened up the mechanisms that lead to 

activation-induced cell death (AICD) (Brunner et al., 1995).  Binding of Fas with Fas-ligand 

leads to trimerisation of the Fas receptor, bringing together three death domains that can 

interact with Fas-associated death domain protein (FADD) (Kischkel et al., 1995).  Pro-

caspase-8 (also known as FLICE) is recruited and forms a complex with FADD and the Fas 

receptor – the death inducing signaling complex (DISC) cleaving pro-caspase 8 to caspase 8 

(Medema et al., 1997).  This then activates a multiple caspase pathway, ultimately leading to 

cell death (Lavrik et al., 2005).  A key cleavage at this point is of the BH3-only protein, Bid, 

to truncated Bid (tBid) (Korsmeyer et al., 2000).  This then translocates and inhibits the Bcl-

2 pathway in mitochondria, leading to up-regulation of kinases and formation of the 

apoptosome which serves to amplify the apoptotic signal to the cell.  In many cells 

(including lymphocytes), Fas-FasL signaling is sufficient, but amplification via the 

apoptosome is necessary for others e.g. pancreatic β cells, tumour lines (Scaffidi et al., 

1998).   

Regulation of AICD is predominantly through expression of FasL.  Both Fas and FasL are 

expressed on repetitively stimulated T cells such that AICD may be triggered amongst a 

relatively homogeneous population, or even on the same cell (Li-Weber et al., 2003).  

Transcription of FasL is initially promoted by activation of the NF-AT pathway, which is 

up-regulated on TCR stimulation (Li-Weber et al., 1998).  The NF-κB pathway also 

regulates FasL expression, with NF-κB inhibitors rendering cells more susceptible to AICD 

(Micheau et al., 2001).  Other factors also influence FasL expression.   Transcription factors 

c-myc (via TGFβ), IRF1 and IRF2 all have regulatory roles on FasL (Kavurma et al., 2003).   

Activation of STAT5 leads to up-regulation of FasL and down-regulation of FLICE/caspase-

8 inhibitory protein (FLIP), rendering cells more liable to AICD.  Multiple other signaling 

pathways also feed into the Fas-FasL pathway. 

The Fas–FasL pathway is not the only signaling trigger for apoptosis.  Other TNF family 

members are able to cause cell death through the alternative ligand, TRAIL, which is 

expressed on a variety of immune cells, including activated T cells (Martinez-Lorenzo et al., 

1998).  The signaling mechanism is similar to Fas-FasL, with binding of TRAIL to either 

TRAIL-R1 or TRAIL-R2, trimerisation of the receptor permitting binding of FADD and a 

subsequent DISC.   The TRAIL pathway is sensitive to pro-inflammatory signals with up-

regulation of TRAIL on various innate cells in the presence of LPS or IFN-γ (Griffith et al., 
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1999).  TRAIL interactions appear particularly relevant in the regulation of NK function 

upon tumour cells (Takeda et al., 2001). 

Though sharing a common outcome, Fas and TRAIL are preferentially used by different cell 

lineages.  On in vitro activation with anti-CD3, Th1 cells up-regulate Fas whereas Th2 cells 

up-regulate TRAIL (Zhang et al., 2003).  Despite this, Th1 cells are more sensitive to 

TRAIL-induced cell death and absence of TRAIL signaling in knock-out mice leads to a 

reduction in Th2-mediated allergic airways disease (Weckmann et al., 2007).       

Is activation-induced cell death relevant to autoimmunity?  Impairments in Fas-FasL 

signaling lead to lymphoproliferative disorders, specifically autoimmune 

lymphoproliferative syndrome (ALPS) in humans, with corollaries in mice (Rieux-Laucat et 

al., 2003).  More subtle defects have been identified in other autoimmune disorders.  

Reduced apoptosis of myelin-reactive T cells has been shown in MS patients (Zang et al., 

1999).  Conversely, up-regulation of inhibitors of the Fas-FasL such as FLIP has also been 

seen in MS patients (Semra et al., 2001) whilst forced overexpression led to widespread 

autoimmunity in a mouse model (Djerbi et al., 2003).  Absence of TRAIL or TRAILR in 

mice does not lead to overt autoimmunity though does appear to increase susceptibility.  

Absence of TRAIL in the EAE model of MS caused worsening of disease though apoptosis 

of the inflammatory cells was unaffected, whilst direct administration of a TRAIL blocking 

Fc into the central nervous system (CNS) had a protective effect by limiting neuronal 

apoptosis during ongoing inflammation (Cretney et al., 2005, Aktas et al., 2005).   Unlike 

Fas-FasL, TRAIL appears to have no role within the thymus in central tolerance. 

 

1.7.1.2 Death by neglect 

Death is not always an active process.  Cells may also undergo passive death through 

neglect, characteristically through the deprivation of growth factors such as IL-2.  This is a 

common mechanism used for early thymocytes that have failed to achieve a useful TCR 

rearrangement, and so do not receive adequate survival signals in the thymus (Von Boehmer, 

1994).  As opposed to the extrinsic signals required for AICD, passive cell death is 

considered an ‘intrinsic’ pathway, though there is interaction between the two (Igney et al., 

2002).   The default outcome for a cell is thought to be programmed cell death, with the 

provision of survival signals essential to prevent this from occurring.  Alternatively, the cell 

may be damaged by a variety of noxious stimuli, all of which lead to the loss of apoptotic 

suppression by bcl, as occurs in AICD.   
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That passive cell death centered on the mitchondria has been known for more than half a 

century (Ashwell et al., 1952).  The initial event in passive death is release of pro-apoptotic 

proteins from the mitochondria, via the mitochondrial permeability transition (MPT) pore. 

This pore is formed by oligomerisation of Bcl-2 family proteins, such as Bid and the related 

peptide Bax, within the outer mitochondrial membrane (Kuwana et al., 2002).  Bax may also 

complex with other ligands to form similarly large pores (Marzo et al., 1998).  The proteins 

thereby released include cytochrome c, endonuclease G, and apoptosis-inducing factor 

(AIF), Smac/DIABLO, HtrA2/Omi and others (Saelens et al., 2004). 

In conjunction with expression of apoptotic protease-activating factor-1 (Apaf-1), 

cytochrome c promotes the formation of the apoptosome that leads to a similar caspase 

cascade as occurs in AICD (Zou et al., 1997).  Cytochrome c binding to Apaf-1 allows 

association with deoxyadenosine-5-triphosphate (dATP), permitting oligomerisation and 

thence caspase 9 activation (Adrain et al., 1999).  Smac/DIABLO and HtrA2/Omi promote 

this by inhibiting ‘inhibitor of apoptosis proteins’.  The nucleases released contribute to cell 

death later in the process, contributing to nuclear degradation. 

Regulation of these mitochondrial events is predominantly through Bcl-2 family proteins, 

which may be either pro- or anti-apoptotic (Cory et al., 2002).  As might be anticipated, 

mutations within Bcl-2 proteins can have significant clinical consequences.  Dysregulation 

of passive cell death is a major mechanism leading to malignancy (Kerr et al., 1994).  

Insufficient passive cell death may lead to the survival of self-reactive T cells or the 

development of chronic autoimmunity.  This has been suggested in animal models, including 

EAE (Issazadeh et al., 2000).  Though most identified defects in cell death leading to human 

autoimmunity involve AICD, or common pathways, it is likely that intrinsic pathway defects 

cause similar pathology (Worth et al., 2006) 

Thus, activation-induced cell death via either FasL or TRAIL signaling occurs on repetitive 

stimulation by the same (self) antigen as a means of peripheral tolerance, whilst passive 

death occurs through neglect of cells.   Cell death is an expensive outcome and clearly just 

moving the site of AICD and neglect from the thymus to the periphery would not be a 

rational evolutionary decision.  Other regulatory mechanisms are also in play. 
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1.7.2 Anergy and adaptive tolerance 

First described in B cells as the absence of clonal proliferation, the ability of cross-linked 

APC to anergise T cells was reported in 1987 (Jenkins et al., 1987).  The strictest definition 

of anergy is the absence of clonal proliferation or IL-2 production in an in vitro system, and 

relates to the inactivation of T cells responding to cognate antigen in the absence of 

inflammatory or ‘danger’ signals.  In vivo, this is often termed adaptation. 

As discussed earlier (section 1.2.4.2), engagement of the TCR with its antigen is insufficient 

stimulus to cause full T cell activation, with a requirement for other co-stimulatory signals 

such as CD28 (Thompson et al., 1989).  Co-stimulation on initial TCR engagement leads to 

full activation of the phospholipase Cγ, Ras and protein kinase Cɸ pathways which, via 

various intracellular kinases, cause mobilisation of calcium and activation of the NF-AT, 

AP-1, CREB, and NF-κB systems, all involved in up-regulation of IL-2 transcription 

(Linsley et al., 1991).   In the absence of CD28 co-stimulation, activation of AP-1 does not 

occur, leading to uncoupling of NF-AT from AP-1 and activation of alternate NF-AT 

downstream signals (Macian et al., 2002).  This restricts IL-2 production and clonal 

expansion does not occur.  Importantly, these cells remain less responsive to further 

stimulation even when full co-stimulatory signals are subsequently provided (Harding et al., 

1992), through active repression of IL-2 expression (Telander et al., 1999).  This situation 

can be replicated by the addition of adenosine to the in vitro culture.  Stimulation through the 

A2a receptor leads to mobilisation of intracellular cyclic adenosine monophosphate (cAMP), 

antagonistic to the CD28 signaling pathways (Zarek et al., 2008).  Transcription and 

translation of IL-2 is a key element in avoiding anergy, as addition of IL-2 to in vitro 

cultures without CD28 co-stimulation will break anergy (Beverly et al., 1992), whilst IL-2 

neutralisation in the presence of both signals will still anergise the T cells.  IL-2 signals 

through the IL-2 receptor which downstream leads to activation of the mammalian target of 

rapamycin (mTOR) pathway, inhibition of which leads to anergy (Powell et al., 1999).  

Further factors are also required for the induction of anergy.  Inhibition of the PI3K pathway 

via PTEN (phosphatase and tensin homologue deleted on chromosome ten) (Buckler et al., 

2006), and downstream of mTOR via p27
kip1

, promotes anergy (Rowell et al., 2005).  TCR 

engagement without CD28 enhances expression of p27
kip1

 whilst CD28 signaling leads to its 

degradation (Boussiotis et al., 2000).   

The in vitro phenomenon of anergy does not fully reflect the processes in vivo in adaptive 

tolerance.  Significantly, transfer of in vivo tolerised T cells is able to restore reactivity i.e. 

the profound inability to be re-activated is lost if ongoing antigenic stimulation is removed 
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(Tanchot et al., 2001).  This implies that antigen must be frequently encountered, if not 

constantly presented, for adaptive tolerance to develop.  One proposed model (Grossman et 

al., 2001) is that T cells ‘tune’ their responsiveness according to the persistence of antigen 

(Singh et al., 2003).  If an antigen is always present, the cells slowly become desensitised 

and need greater levels of antigen presentation to evoke any response; somewhat analogous 

to the increasing dosage of opiates needed in those with drug dependency.  If the T cells then 

receive no stimulation (i.e. ‘cold turkey’), a much smaller subsequent exposure may elicit a 

strong response (Anderton et al., 2002).   

The specifics of adaptive tolerance are, in many ways, unclear.  The CD4
+
 T-cell response 

includes clonal proliferation but also differentiation, typically to a T-helper phenotype.  

Differentiation, and thus the ability to produce effector cytokines, may be maintained in a 

‘tolerant’ cell (Malvey et al., 1998), though in that report antigen was not persistent, but 

rather triggered signaling in the absence of inflammation.  Both CD8
+
 and CD4

+
 T cells have 

been tolerised using murine models of chronic lymphocytic choriomeningitis virus (LCMV) 

infection (Tanchot et al., 1998, Oxenius et al., 1998), though CD8
+
 cells retained their 

cytotoxic capabilities.  Transfer of naïve T cells into a T-cell deficient host transgenically 

expressing a foreign antigen led to tolerance in the transferred cells without clonal deletion 

or the development of a classically ‘regulatory’ phenotype (Singh et al., 2006). 

Thus, adaptive tolerance serves as another means to control self-reactive cells within the 

periphery, as these cells will have a ready supply of self-antigen.  

 

1.7.3 Regulation 

The third tenet of peripheral tolerance is the presence of cells dedicated to a regulatory, 

rather than effector, function.  Various subsets of regulatory cell are now known to exist.  

Regulatory T cells can be broadly categorised by the presence or absence of the master 

transcription factor, forkhead box protein 3 (Foxp3), constituting naturally occurring 

thymically derived regulatory T cells (nTreg) and those where Foxp3 has been induced in the 

periphery by antigenic stimulus under appropriate cytokine conditions (adaptive, aTreg).  

These are the main cells of interest for this thesis, and, as such, are discussed in much greater 

detail shortly (section 1.10). 



 35 

1.7.3.1 Tr1 cells 

Other regulatory cells are also present.  CD4
+
 Type 1 regulatory cells (Tr1) are defined by 

their cytokine production, particularly their high production of IL-10 (Groux et al., 1997).  

Differentiation towards Tr1 is stimulated by IL-10 (Levings et al., 2001), and can be 

enhanced in the presence of vitamin D (Vieira et al., 2004).  Suppression is mediated mainly 

via the local production of IL-10 and TGF-β (Bacchetta et al., 1994, Barrat et al., 2002).  

CD8
+
 Tr1-like cells also produce large quantities of IL-10 (Gilliet et al., 2002), and are 

similarly generated in an IL-10-dependent manner (Steinbrink et al., 1999).  Tr1 cells expand 

in the presence of IL-2 and IL-15 (Bacchetta et al., 2002) and are stimulated in an antigen-

specific manner via their TCR.  Once stimulated, the production of IL-10 and TGFβ likely 

accounts for their suppressive potential (Groux, 2003).  As they use soluble mediators, the 

effects of regulation are not targeted towards a single cell, so suppression of nearby 

uninvolved effectors, potentially reacting to a different antigen, may also occur.  Thus, these 

cells effect bystander suppression. 

1.7.3.2 Th3 cells 

Th3 cells are thought to play a pivotal role in the maintenance of tolerance towards oral 

antigens within the gastro-intestinal tract.  First identified in 1994 (Chen et al., 1994), 

experimentally they are induced by the administration of oral antigens, and suppress in a 

TGF-β dependent manner (Miller et al., 1992).  TGF-β within the gut is produced by 

epithelial cells, along with IL-10 (Weiner et al., 2001), and this combination of antigen 

exposure in an anti-inflammatory cytokine milieu promotes the formation both of Th3 cells 

and Foxp3
+
 Treg.  Th3 cells are particularly characterised by large quantities of latency-

associated peptide (LAP) complexed with TGF-β on the cell surface (Oida et al., 2003).  

These LAP
+
 cells are particularly inducible by oral anti-CD3 (Ochi et al., 2006) and have 

also been identified in human gut (Gandhi et al., 2010).  One model proposes that Th3 LAP
+
 

cells are the orchestrators of the entire gut immune response.  CD103
+
 dendritic cells seem 

relevant to the formation of gut Treg (Coombes et al., 2007), with the combined action of 

TGF-β and retinoic acid promoting a large localised population of Foxp3 cells (Mucida et 

al., 2009).  Oral antigen stimulates Th3 cells to produce TGF-β, which then inhibits effector 

T cell differentiation, sustains resident Treg, and induces adaptive Treg all within the gut 

(Weiner et al., 2011). 
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1.7.3.3 CD8+ regulatory T cells 

CD8
+
 T cells with a suppressive effect upon B cell help have been identified, and are 

restricted to a subset expressing a non-classical MHC Class I molecule, HLA-E (Qa-1 in 

mice) (Cantor et al., 1975, Noble et al., 1998).  A role for CD8 regulatory cells was 

suggested by early studies in which infusion of an irradiated T cell line specific for MBP 

attenuated EAE caused by that antigen,  but this effect was lost if the cell line was initially 

depleted of CD8
+
 cells (Koh et al., 1992, Jiang et al., 1992).  This effect was subsequently 

isolated to only those cells expressing Qa-1 (Hu et al., 2004).  Qa-1 deficient mice do not 

develop spontaneous autoimmunity but have excessive CD4
+ 

responses following relevant 

self-peptide immunisation or viral infection.  CD8
+ 

Treg appear to be more relevant later in 

the immune response, mirroring the cytolytic effects of CD8
+
 T cells, as it requires previous 

antigen encounter.  Similarly to Tr1 cells, CD8
+
 Treg have an absolute requirement for IL-15 

(Kim et al., 2010).  The exact role of CD8
+
 regulatory T cells is not yet fully determined.   

1.7.3.4 Regulatory B cells and miscellaneous 

Other cell lineages may also have dedicated regulatory equivalents.   IL-10 is produced by a 

subset of CD1d
high

 B cells that accumulate in the gastro-intestinal tract, and may be 

suppressive (Mizoguchi et al., 2002).  Potential evidence for regulatory B cells has been 

reported in models of arthritis (Mauri et al., 2003) and in EAE (Mann et al., 2007, Fillatreau 

et al., 2002, Matsushita et al., 2008), but to date no dedicated ‘Breg’ has been identified in 

vivo.   Regulatory NK cells (Deniz et al., 2008), and regulatory γδ T cells (Wu et al., 2004) 

have both been described. 

The periphery therefore has a wide range of cell lineages (almost as wide as the effector 

population), which are able to maintain tolerance and prevent excessive immune reactions 

using a number of mechanisms. 

 

1.8 Loss of tolerance 

In order to cope with the vast array of potential pathogens, T cells require a broad repertoire 

of receptor recognition to provide adequate coverage and initiation of an immune response.  

Equally, self-reactivity must be curbed to prevent overwhelming immunity.  Permissible 

release of ‘moderately’ self-reactive cells from the thymus to ensure maximal pathogenic 

coverage demands the systems of peripheral tolerance delineated above.  With the 
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triumvirate of activation-induced cell death, induction of adaptive tolerance (anergy), and 

dedicated regulatory populations, the immune system has evolved highly efficiently with 

virtually no pathogens going unrecognized, without every individual succumbing at some 

point in life to autoimmunity. 

That this system is imperfect is evidenced by the burden of autoimmune disease in the 

population.  With a prevalence of common autoimmune disease in the UK of 3% (Boelaert et 

al., 2010), a breakdown in tolerance is a common occurrence.  A small proportion of those 

affected will have monogenic disorders affecting the regulatory systems (e.g. the disorders 

listed in section 1.7).  However the vast majority have diseases with a multifactorial 

aetiology – insulin dependent diabetes mellitus, rheumatoid arthritis, IBD, etc.  Genetic 

associations abound, particularly with the major histocompatibility complex (e.g. HLA-DR3 

and HLA-DR4 in Caucasians with type I diabetes mellitus) (Weber et al., 2010) and the 

increasing use of genome-wide assays is likely to boost our knowledge of these risk factors.  

Environmental factors leading to breaks in tolerance are much more troublesome to 

investigate and prove, typically requiring large-scale epidemiological studies, with a variety 

of confounding factors.  The influence of cigarette smoking, associated with multiple 

examples both protective and detrimental, is virtually impossible to separate from social 

class, housing issues including overcrowding, diet, stress, etc.   

 

1.8.1 Goodpasture’s disease 

1.8.1.1 History and clinical presentation 

To consider breakdown in tolerance, an example of human autoimmunity – Goodpasture’s 

disease – will be discussed.  Goodpasture’s is a rare autoimmune disorder characterised by 

rapid onset glomerulonephritis and pulmonary haemorrhage associated with the detection of 

pathogenic auto-antibodies to the non-collagenous domain of the α3-chain of type IV 

collagen (α3(IV)NC1).  The clinical correlate of glomerulonephritis and pulmonary 

haemorrhage was first described by Ernest Goodpasture in a young solider in the WWI 

trenches (Goodpasture, 1919).  Forty years later, the combination was eponymously granted 

to him by Stanton and Tange describing the linkage (Stanton et al., 1958).  Early 

experiments demonstrated the pathogenicity of the auto-antibody, through elution of 

immunoglobulin from sick patients and administration of this serum causing an identical 

disease in previously healthy rhesus monkeys (Lerner et al., 1967).   
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Why does Goodpasture’s represent a good example of an autoimmune disease?  The disease 

itself is reasonably homogeneous and clinically definable (Phelps et al., 1999).  This ensures 

that patient studies are less encumbered with false positive or false negative cases being 

included.  Importantly, the natural history of the disorder is well defined.  Spontaneous 

emergence of auto-antibody causes the disease state, which is treated with broad 

immunosuppression and plasmapheresis to remove the pathogenic antibody.   What makes 

Goodpasture’s most relevant is that the autoimmunity spontaneously resolves (Wilson et al., 

1973).  The levels of auto-antibody decrease over time irrespective of whether this is 

hastened by therapeutic means.  It therefore demonstrates both loss and re-establishment of 

tolerance.   Understanding the mechanisms behind this re-emergence of tolerance has 

implications for both the pathogenesis of autoimmunity, and therapeutic manipulations that 

could lead to the long-term reversal of auto-immune disease rather than the current ‘fire-

fighting’ approach of immunosuppression and management of ensuing complications. 

1.8.1.2 Loss of tolerance in Goodpasture’s 

Examining the specifics of the development of Goodpasture’s can contribute to knowledge 

of how tolerance is lost.   Epitope mapping has suggested that the 71-90 and 131-150 regions 

are able to stimulate T cells in the peripheral blood, responsive T cells being identified in 

100% of patients in one study (Cairns et al., 2003).  Both of these epitopes are degraded 

early in peptide processing by cathepsins, suggesting that they may not be presented by 

APCs (Zou et al., 2007).  This may contribute to the break from tolerance.    

How is peripheral tolerance subverted?  Various strands of evidence point to a role for 

environmental pollutants in the development of the disease, particularly cases with 

pulmonary involvement.  Reports have associated cigarette smoking and hydrocarbons, and 

clustering of cases has occurred (Kalluri et al., 2000).  The disease also has a very strong 

genetic component, particularly HLADRB.  Individuals with DRB*1501 have a greater 

susceptibility to development of Goodpasture’s (indeed, 80% of patients in one study were 

DRB*1501 positive) whilst DRB*0701 and DRB*0101 are protective (Phelps et al., 1999).  

Molecular binding studies have shown that these MHC class II variations impact on the 

formation of the peptide-MHC complex, but the protective alleles form a stronger affinity 

complex than the detrimental ones.  This mirrors the effects seen with altered peptide 

ligands, whereby a greater binding affinity is associated with induction of tolerance rather 

than disease (Anderton, 2001). 
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One report has suggested that the re-establishment of tolerance is associated with a change in 

T cell populations.  By limiting dilutional analysis, patients showing spontaneous remission 

all demonstrated an increase in the number of IL-10
+
 T cells and a reduction in IFN-γ

+
 T 

cells (Cairns et al., 2003).   Flow cytometry showed that the number of CD25
+
 T cells also 

increases as the disease resolves.  Depletion of these regulatory cells in in vitro cultures led 

to a re-emergence of IFN-γ
+
 cells (Salama et al., 2003).   

Thus, Goodpasture’s serves as a model to show how tolerance may be broken.  Central 

tolerance is avoided due to early processing of the key antigenic residues preventing their 

presentation on thymic epithelia.  Thus self-reactive T-cells are not negatively selected for.  

Due to some environmental or infective process, not yet elucidated, the antigen is then 

differently processed in such a way that presentation to T-cells does occur, thereby triggering 

activation with B-cell recruitment and antibody production.  That T-cells are vital is seen in 

mice deficient in immunoglobulin, which still develop the model correlate, experimental 

autoimmune glomerulonephritis (Dean et al., 2005).  Blockade of T-cell co-stimulatory 

molecules in rat models is protective for the disease (Reynolds et al., 2000). 

How do these mechanisms correlate with other autoimmune diseases?  Loss of central 

tolerance but maintenance of peripheral tolerance suggests that autoreactive T cells to 

various antigens should persist in the peripheral blood.  This is indeed the case for 

Goodpasture antigen (Zou et al., 2008).  Glutamic acid decarboxylase 65 (GAD-65) 

associated with type one diabetes mellitus, melanocyte differentiation antigen tyrosinase, and 

the tumour antigen NY-EOS-1 were all found to stimulate human peripheral blood 

mononuclear cells (PBMCs) (identified via tetramer staining) that had been depleted of their 

regulatory population (Danke et al., 2004).    

 

1.8.2 EAE as a model of autoimmunity 

Animal models have contributed significantly to our knowledge of Treg biology.  Proof of 

concept that Treg may be useful therapeutically is available in several disease models.  Pre-

clinical models have shown promise in inflammatory bowel disease (Mottet et al., 2003) and 

in a humanised mouse model of skin graft tolerance (Sagoo et al., 2011). Several references 

have already been made to a long-established mouse model, EAE. This model is used to 

mimic the demyelinating lesions seen in multiple sclerosis through the administration of a 

central nervous system auto-antigen together with adjuvant, leading to an ascending 

paralysis (McGeachy et al., 2005).   The outcome of this paralysis is partly strain-dependent 
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and may resolve completely, follow a relapsing-remitting pattern, or persist.  In this way, the 

model serves to emulate the different clinical presentations of MS.  Several antigens are used 

to initiate EAE.  The dominant epitope in myelin oligodendrocyte glycoprotein (MOG) is 

found within residues 35-55 (pMOG35-55) in mice on the C57BL/6 background (i.e. I-A
b
 

restricted).  2D2 mice with TCR specificity for pMOG have been developed (Bettelli et al., 

2003).  MBP is also used to initiate EAE, with the acetylated nonameric N-terminus Ac1-9 

being the dominant epitope in I-A
u
 restricted mice.  Tg4 mice have TCR specificity for 

MBPAc1-9 (Liu et al., 1995).  Both transgenic strains are used extensively in this thesis.  

Other encephalitogenic proteins such as proteolipid protein (PLP) may contain several 

immunodominant epitopes, partly accounting for the phenomenon of epitope spreading.   

The regulatory equivalent of epitope spreading is linked suppression, also seen within the 

EAE model (Anderton et al., 1998).  Tolerance to PLP139-151 was able to promote tolerance to 

MBPAc1-9 and MBP89-101 in that report.  Whether that linked suppression represents 

bystander suppression by Treg is open for debate and may be dependent on the initial 

stimulating antigen.  Reports that antigen-specific iTreg are unable to suppress responses 

caused by other antigens (Zhang et al., 2010) are counterbalanced by multiple accounts of 

bystander suppression in other models (Homann et al., 1999, Weiner et al., 1994 Bayrak et 

al., 1998, Nicholson et al., 1997, Karim et al., 2005) 

 

1.9 Treatment of autoimmunity 

1.9.1 Corticosteroids 

For many years, the mainstay of therapy was not to restore or induce tolerance, but simply to 

limit the inflammatory process.  This was achieved most frequently through the use of 

systemic corticosteroids, particularly prednisolone. Corticosteroid was first used successfully 

in 1948 in a patient with rheumatoid arthritis by Hench, who shared the Nobel Prize in 

Physiology or Medicine in 1950 for the work on corticosteroids.  Prednisolone entered 

clinical usage in 1955.  The combined anti-inflammatory and immunosuppressive effects had 

profound results upon previously progressive conditions, and steroid usage rapidly gained 

acceptance (British Medical Journal, 1969).  How corticosteroids exert their 

immunomodulatory effects is still under investigation over half a century later (Xu et al., 

2009).  The adverse effect profile of long-term steroid usage, plus the almost inevitable 

relapse on stopping therapy, renders them unsuitable for life-long use.  The search for 

superior medications continued.   
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1.9.2 Chemotherapy agents 

Following corticosteroids, immunologists’ attention was diverted to the world of oncology.  

The broad anti-proliferative effects of 6-mercaptopurine (6-MP) and its derivative, 

azathioprine was then superceded by the use of cyclosporine A – a calcineurin inhibitor 

which blocks the NF-AT pathway (though of course this was not appreciated at the time!). 

Treatment of type one diabetes mellitus was a success regards extending the honeymoon 

period of persisting β-cell function (Assan et al., 1985) but adverse effects, particularly 

nephrotoxicity, limited usage.  Drug withdrawal led to immediate relapse proving that the 

break in tolerance was held in check, but not resolved.  Use of cyclosporine A and the newer 

equivalent, tacrolimus (FK506) remains ongoing for immunosuppression for organ 

transplantation.  The propensity for FK506 to cause autoimmune diabetes has limited its use 

within autoimmunity (Lohmann et al., 2000) but cyclosporine remains in use for several 

autoimmune disorders (O’Grady et al.,  2011, Manno et al., 2010). 

Alkylkating agents, such as cyclophosphamide, are also used to block DNA synthesis.  

Intriguingly, the mechanism of action of cyclophosphamide is antagonistic to formation of 

the enzyme retinaldehyde dehydrogenase 1 (ALDH1A1) (Duester et al., 2011) that converts 

retinaldehyde to retinoic acid (Jones et al., 1995).  Cells with high levels of ALDH1A1, such 

as haematopoietic stem cells, are relatively resistant whilst lymphocytes are more 

susceptible.  Targeting a pathway that involves reduction in retinoic acid may also have 

specific effects upon the induction of Treg, though limited studies show conflicting effects 

(Audia et al., 2007, Ghiringhelli et al., 2007). High dosage cyclophosphamide is used 

successfully in several severe autoimmunities, including aplastic anaemia (Baran et al., 

1976), SLE (Dolff et al., 2010), and as second-line therapy in MS (Gladstone et al., 2006).   

Ultimately corticosteroids, 6-MP and derivatives, the calcineurin inhibitors and alkylating 

agents all share the common pathway of limiting proliferation by immune cells in a 

relatively non-selective manner.  Targeting the pathogenic cells or molecules whilst sparing 

the irrelevant aspects of the immune system would limit adverse effects and permit more 

efficacious eradication.   This has led to the use of molecular-targeted therapies known 

collectively as ‘biologics’ that are typically specific for a single molecule, be that soluble 

cytokine, cell surface receptor, or intracellular signaling pathway. 
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1.9.3 OKT3 and derivatives 

The first biologic to specifically deplete T cells was the murine monoclonal antibody to 

human CD3ε, OKT3 (Cosimi et al., 1981).  Targeting CD3 effectively depletes all T cells, 

allowing a ‘reset’ of the immune system.  Reconstitution of the immune system occurs with 

a higher proportion of regulatory cells initially.  The ability of the murine anti-CD3 to 

activate T cells also led to massive cytokine release (a cytokine storm) with the potential for 

fatality (Charpentier et al., 1992).  Modifications of OKT3 to limit its ability to activate (by 

preventing FcR-binding) lead to the newer anti-CD3 biologics such as teplizumab and 

otelixizumab.  These are less effective at depleting the entire T cell population at equivalent 

dosage, but show more specificity for pathogenic cells via multiple effects including the 

induction of anergy (Smith et al., 1997), blockade of antigen recognition (Herold et al., 

2005), and selective sparing of regulatory cells (Chatenoud et al., 2007).   Importantly, the 

problematic cytokine storm is also ameliorated, making these biologics more appealing for 

clinical use.  Clinical trials for anti-CD3 show potential promise (Utset et al., 2002, Friend et 

al., 1999, Bresson et al., 2006).   

 

1.9.4 Alemtuzumab 

Alemtuzumab (Campath-1H) is another depleting agent, being a monoclonal antibody 

directed against CD52, found on the cell surface of mature lymphocytes.  Administration of 

alemtuzumab leads to rapid depletion of CD52
+
 cells via activation induced cell death (Coles 

et al., 2008).  Co-stimulation through CD52 also appears to preferentially induce Treg 

(Watanabe et al., 2006).  Alemtuzumab has been used successfully in multiple sclerosis for 

over 20 years (Moreau et al., 1994), particularly in relapsing-remitting MS, with effects 

above and beyond those expected from CD52 depletion alone (Jones et al., 2010).  The most 

notable adverse effect is the development of other autoimmune disease, particularly 

thyroiditis in up to 30% of patients (Jones et al., 2009), but also immune thrombocytopenic 

purpura, Goodpasture’s disease, and several other autoantibody-mediated diseases.  The 

causes for these novel autoimmunities to arise in the context of relative immunosuppression 

remain under investigation (Jones et al., 2009a).   
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1.9.5 CTLA-4 and abatacept 

Targeting other signaling molecules does not lead to depletion but may permit a more 

specific effect.  The CD28-related CTLA-4 is expressed on activated cells, competitively 

inhibits CD80/CD86-CD28 interaction, and thereby prevents further TCR signaling.  The 

extracellular part of CTLA-4 and human constant domain IgG1 are fused to create the 

biologic, abatacept.  This has proven efficacy in rheumatoid arthritis (Kremer et al., 2008), 

and importantly may have direct effects on the pathology itself (Choy, 2009).  A Phase I trial 

in MS was successful in reducing in vitro parameters but had no impact on clinical disease 

(Viglietta, 2008).  It is not efficacious in inflammatory bowel disease (Sandborn et al., 

2012).  Post-transplant lymphoproliferative disease has been reported following treatment 

with abatacept (Vincenti et al., 2008).  Why there should be such discrepancy amongst 

autoimmune diseases is likely related to the mechanisms causing the initial loss of tolerance. 

 

1.9.6 Lymphocyte trafficking manipulation 

Fingolimod (FTY720) is analogous to sphingosine-1-phosphate, a molecule that promotes 

the exit of lymphocytes from the thymus and lymphoid organs into the peripheral circulation.  

Binding of fingolimod to the receptor prevents lymphocyte trafficking (Mandala et al., 2002) 

leading to a marked reduction in peripheral white cell counts (Brinkmann et al., 2001).  

Aside from physically preventing egress, fingolimod binding also promotes Treg activity 

whilst inhibiting Th1 activity (Daniel et al., 2007, Mehling et al., 2008).  Through these 

actions, fingolimod has proven efficacy both in transplantation and MS (Kappos et al., 

2006).   

Preventing lymphocyte accumulation in the area of pathology can be achieved by alternate 

means.  Rather than trapping them within the lymphoid system, affecting adhesion markers 

can render lymphocytes unable to leave the periphery.  Natalizumab is a monoclonal directed 

against α4 integrin, thereby preventing interactions by CD49d and LPAM-1 – both 

containing α4 chains and crucial in adherence to the vascular endothelium.  Both Th1 and 

Th17 cells express CD49d but LPAM-1 appears specific to Th17 cells. (Cox et al., 2008).  

Efficacious in disease (Lanzillo et al., 2012, Kane et al., 2012), serious adverse effects have 

dogged use of natalizumab.  An association with progressive multifocal 

leucoencephalopathy (PML) following reactivation of latent JC viral infection (Tur et al., 

2012) led to initial withdrawal.  Since reintroduction, several lymphomas have been reported 

(Matzke et al., 2012, Schowinsky et al., 2012).  More concerning, withdrawal of the drug is 
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associated with an immune reconstitution inflammatory syndrome that may have equally 

devastating effects (Gheuens et al., 2012).  PML has been associated with a number of 

biologics including rituximab (anti CD20 monoclonal) and efalizumab (Tavazzi et al., 2011) 

(anti-CD11a, now withdrawn).   

 

1.9.7 TNF blockade 

Given that much of the pathogenesis of disease is attributable to cytokines, blocking the 

receptors or incapacitating the molecules themselves appears a logical step.  Herein is one of 

the true success stories of the last 20 years.  Blockade of TNF with anti-TNF (infliximab, 

adalimumab) or ‘mopping up’ with a non-signaling soluble receptor fusion protein 

(etanercept) has become a regular therapy in rheumatoid arthritis (Thalayasingam et al., 

2011), IBD (Nattiv et al., 2012), and latterly severe psoriasis (Brezinski et al., 2012).  Other 

therapeutic applications are under consideration (Catanoso et al., 2011), including some very 

different pathological processes (Austin et al., 2012).  Part of the success of TNF blockade is 

related to the profound symptomatic improvement seen in patients, but it is also partly 

attributable to the safety profile.  First used in 1998, more than a million patient experiences 

(Lin et al., 2008) in the first decade reassured that complications were mainly related to 

infections, hardly unique to TNF blockade.  Since then, the recognition that hepatosplenic T 

cell lymphoma is increased in IBD patients on TNF blockade has led to greater caution, 

particularly where multiple immunomodulatory therapies are in use (Parakkal et al., 2011).   

 

1.9.8 Antigen-specific therapy 

1.9.8.1 Peptide therapy 

Attempts to induce tolerance through the administration of peptides have been ongoing for 

over a century (Noon, 1911).  Provision of the immunodominant epitopes to T cells, in the 

absence of danger signals, leads to the establishment of tolerance to that antigen.  This was 

demonstrated in mouse models, using peptides relevant to EAE (Bitar et al., 1988) and 

arthritis (Nagler-Anderson et al., 1986).  Oral administration provoked regulatory 

populations capable of bystander suppression.  One group reported efficacy of an MBP 

epitope in preventing the development of EAE in rats initiated by a different MBP epitope 

(MBP21-40 and MBP71-90 respectively (Miller et al., 1993).  The mechanisms at this time were 

felt related to TGF-β production (Chen et al., 1994).  This successful establishment of 
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tolerance was repeated in several different animal models of autoimmunity (Weiner et al., 

1994). 

Oral tolerance is partly mediated through the induction of Treg.  CD103
+
 gut DCs, in the 

presence of retinoic acid (which they also produce), are highly efficient at generating Foxp3
+
 

iTreg (Coombes et al., 2007), though all recognised subsets of Treg have been identified as 

relevant in oral tolerance (Weiner et al., 2011).  High doses of oral antigen lead to T cell 

anergy, with one report demonstrating this was due to an inability to stabilise APC 

interactions (Ise et al., 2005).  Other interactions are clearly crucial, as oral tolerance is not 

possible in CTLA-4-deficient mice (Samoilova et al., 1998). 

Despite an increased understanding of the mechanisms used and the success of animal 

models, full translation of peptide therapy into clinical use has not yet occurred beyond 

phase II trials (Weiner et al., 2011).  Most promising was use of oral insulin that appeared to 

delay progression to clinically evident diabetes mellitus in a subgroup analysis of a larger 

trial (Skyler et al., 2005).  Thus far, peptide therapy remains a work in progress. 

1.9.8.2 Other antigen-specific therapies 

A recent phase I trial evaluated the use of a recombinant TCR ligand (RTL) consisting of the 

α1 and β1 chains of MHC Class II molecule DR2, covalently bound to the dominant 

antigenic epitope, pMOG35-55 (Offner et al., 2011).  Mouse models demonstrated partial 

agonism of the TCR (Wang et al., 2003) with either protection from, or resolution of, EAE 

(Huan et al., 2004, Vandenbark et al., 2003).  RTL therapy was also able to ameliorate 

disease caused by a cocktail of multiple antigens provided pMOG35-55 was included, 

suggesting bystander suppression and providing a therapeutic modality that could counter 

epitope spreading.  Completion of the phase I trial in human MS patients demonstrated no 

adverse effects within a reasonable dose range equivalent to that used in murine models.  

There was a suggestion of a reduction in contrast-enhancing cerebral lesions, which was 

dose-dependent. 

Various other biologics exist and to discuss them all would not enlighten any further.  The 

vast majority of the biologics have one vital drawback shared with the use of prednisolone - 

the underlying defect in tolerance persists and withdrawal of therapy leads to disease relapse, 

requiring lifelong therapy with attendant risks. 

What then is the solution?   An ideal therapy would target only those cells actively causing 

inflammation, have minimal adverse effects, and, most importantly, would lead to 
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restoration of tolerance so that patients could resume a normal drug-free life.  Obviously, this 

is the ideal outcome for any therapeutic intervention for any chronic disease – but are 

immunologists closer than most?  The presence of autoreactive cells in healthy individuals 

controlled by peripheral tolerance signifies that there are natural mechanisms to restore 

tolerance.  Harnessing the cells responsible for this regulation could prove the answer. 

 

1.10 Foxp3+ regulatory T cells 

1.10.1 Natural Treg 

The existence of cells that suppressed immune responses, rather than stimulated them, was 

first postulated in the 1970s as suppressor T cells (Gershon, 1975) residing within the CD8
+
 

population.  Subsequent experimentation failed to convincingly demonstrate existence of this 

lineage and the concept was largely abandoned.  Some groups persisted, however, given the 

undeniable suppressive effect of T cell transfer in some animal models (Penhale et al., 1976).  

Identification of CD4
+
 T cells with suppressive function was made in two overlapping 

populations.  Sakaguchi’s lab made the vitally important finding in 1995 that depletion of a 

CD4
+
CD25

+
 population in mice led to autoimmunity, and reconstitution of that population 

after neonatal thymectomy prevented it (Sakaguchi et al., 1995).  At a similar time, a second 

report demonstrated the ability of CD4
+
CD45RB

hi 
cells to induce colitis, whereas co-transfer 

with CD4
+
CD45RB

low
 cells prevented this (Powrie et al, 1993).  Finer discrimination using 

CD4
+
CD45RB

low
CD25

high
 identified a highly suppressive cell population, able to prevent 

colitis when co-transferred at 1:8 with effector cells (Read et al., 2000).   Further 

characterization confirmed that this sub-population of CD4
+
CD25

+
 cells had regulatory 

properties and were defined by the master transcription factor forkhead box protein 3 

(Foxp3) (Fontenot et al., 2003).  The importance of Foxp3 is evidenced by the severe and 

spontaneous autoimmunity seen in its absence, both in the scurfy mouse (Brunkow et al., 

2001), and in the human syndrome immune dysregulation, polyendocrinopathy, 

enterocolitis, X-linked (IPEX) (Bennett et al., 2001, Wildin et al., 2001).  Similarly, forced 

expression of Foxp3 on T cells through viral transduction confers a regulatory phenotype 

(Hori et al., 2003) whilst suppressing IL-2 production.  The Foxp3 transcription factor 

directly interacts with NF-κB and NF-AT leading to suppression of IL-2, IL-4 and IFN-γ 

transcription (Bettelli et al., 2005).  Foxp3 complexes with NF-AT (Wu et al., 2006), leading 

to up-regulation of both the IL-2 receptor α chain (CD25) and CTLA-4, whilst interactions 

with Runx provide a positive feedback loop to maintain Foxp3 expression (Rudra et al., 
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2009).  Genome-wide assays have identified hundreds of molecules either up- or down-

regulated by Foxp3, earning its status as a ‘master’ transcription factor.   

Foxp3
+
 cells can be broadly grouped into two populations.  Natural Treg (nTreg) are 

thymically-derived and enter the peripheral circulation as mature nTreg (Sakaguchi et al., 

2005).  Expression of Foxp3 in the thymic developing cells is seen at the double positive 

CD4
+
 CD8

+
 stage (Liston et al., 2008).  These nTreg are traditionally anergic, with 

suppressive capacity in vitro though highly proliferative in vivo (Fisson et al., 2003).  The 

TCR repertoire of nTreg can be considered as broad as that of naïve cells with a greater 

affinity for self (Hsieh et al., 2006). 

The human Foxp3 population can be further characterised by the expression of CD45RA 

(Miyara et al., 2009), into three groups.  As CD25 is typically up-regulated on activated cells 

whilst CD45RA is down-regulated, high expression of both suggests a Treg.  These were 

classed as ‘resting’ Treg with relatively low Foxp3 expression.  CD45RA
-
Foxp3

high 
Treg 

(‘activated’ Treg) were more liable to lose Foxp3 expression on repeated in vitro stimulation, 

though both groups were suppressive in vitro.  Finally, CD45RA
-
Foxp3

low 
Treg were 

identified as producing cytokines but were non-suppressive. 

 

1.10.2 Induced Treg 

Adaptive, or induced, Treg develop in the periphery from naïve T cells on TCR stimulation 

in the presence of IL-2 and TGF-β (Chen et al., 2003).  This induction is antagonized and 

dominated by IL-6, leading to differentiation of Th17 cells instead (Bettelli et al., 2006, 

Veldhoen et al., 2006, Korn et al., 2008).  Development of Foxp3
+
 cells from naïve 

precursors seems particularly relevant in the gastro-intestinal tract with retinoic acid (RA), a 

vitamin A metabolite, promoting the induction of Treg (Sun et al., 2007) and inhibiting the 

actions of IL-6 (Mucida et al., 2009).  Indeed, RA appears to be able to replace IL-2 in the 

generation of Treg (Coombes et al., 2007).  The ability of human iTreg to suppress remains 

partly equivocal (Tran et al, 2007) but, certainly in mice in vitro and in vivo, is now well 

established (O’Connor et al., 2010).  The stability of the iTreg phenotype has been 

questioned, with apparent conversion to effector cells reported (Yang et al., 2008a, Deknuydt 

et al., 2009, Koenen et al., 2008, Zhou et al., 2009a).   Stability of iTreg has been related to 

epigenetic modification at the Foxp3 locus, the Treg specific demethylated region (TSDR).  

This region is fully demethylated in nTreg whilst the methylation status of iTreg is more 

variable (Baron et al., 2007, Floess et al., 2007).  iTreg and nTreg are also functionally 
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different (Horwitz et al., 2004).  Generation of iTreg requires co-stimulation partly through 

low levels of CD28, but also CTLA-4, as TGF-β cannot induce Treg in CTLA-4 deficient 

mice (Kretschmer et al., 2005, Zheng et al., 2006).  Induced Treg are less susceptible to IL-6 

mediated blockade of suppression (Zheng et al., 2008), and are more likely to have a foreign 

antigen TCR.   

Treg are partly characterized by having a high requirement for IL-2.  The up-regulated 

expression of CD25 identifies them as having high affinity for this cytokine (Furtado et al., 

2002).  Treg numbers are reduced in mice deficient in IL-2 (Fontenot et al., 2005) whilst IL-

2 blockade replicates the phenotype of Treg depletion (Setoguchi et al., 2005, Suzuki et al., 

1995).  Administration of exogenous IL-2 to patients induces Treg proliferation and Foxp3 

expression via STAT3 and STAT5 (Zorn et al., 2006). 

Aside from policing immune self-tolerance, Treg are also important in controlling responses 

to allergens (Chatila, 2005), allogeneic transplants (Battaglia et al., 2006), and maintaining 

fetomaternal tolerance in pregnancy (Zenclussen, 2006). 

 

1.10.3 Suppression by Treg 

Treg are able to suppress both CD4
+ 

and CD8
+
 T cells (Piccirillo et al., 2001), B cell 

proliferation, class switching and immunoglobulin synthesis (Lim et al., 2005), NK and NKT 

cytotoxicity (Azuma et al., 2003), and maturation of dendritic cells (Misra et al., 2004).  

Suppression of T cells is not restricted to the naïve cell pool as both effectors and memory 

cells are also susceptible to the machinations of Treg (Levings et al., 2001a).  Suppression by 

nTreg in vitro appears to be contact-dependent as experiments using transwell systems 

demonstrated the abolition of any regulatory effect (Takahashi et al., 1998).   

A major aspect of nTreg suppression is that they exert bystander suppression.  Once 

activated by their cognate antigen, nTreg are able to suppress T cells responding to different 

antigens (Thornton et al., 2000).  The bystander suppression phenomenon has been 

demonstrated in a number of instances, and will be discussed in greater detail in Chapter 3. 

How is suppression mediated?  The classical view is that natural Treg suppress in a contact-

dependent manner whilst adaptive Treg suppress in a contact-independent means via the 

production of immunoregulatory cytokines such as IL-10, TGF-β and IL-35.  The seminal 

demonstration of in vitro suppression by Shevach (Thornton et al., 1998) proposed this is via 

deprivation of IL-2, an essential survival cytokine.  The high expression of CD25 on Treg 
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supported this model, as do the in vitro effects of further depriving IL-2 (Pandiyan et al., 

2007).  Given the essential requirement for IL-2 by Treg, this mechanism would also serve 

as a balance to limit the regulatory response.  Curiously though, IL-2 receptor deficient Treg 

suppress equally efficiently in vitro (de la Rosa et al., 2004).   

It is not just IL-2 that may be scavenged.  Adenosine triphosphate (ATP) promotes 

inflammation on its release from damaged cells (Yip et al., 2009), partly via TCR-mediated 

NF-AT activation and promotion of IL-2.  Treg express both CD39 and CD73 on their 

surface (Deaglio et al., 2007), which degrades ATP to AMP, and AMP to nucleosides 

respectively, thereby depriving inflammatory cells of this additional stimulus. 

Full signaling through the peptide-MHC complex and the TCR requires engagement over 

several hours.  In vivo, two-photon microscopy has demonstrated fleeting interactions 

between APC and irrelevant T cells, which become enduring with an antigen-specific cell 

(Tang et al., 2006).  This stable interaction is inhibited in the presence of Treg, which are 

able to engage with APC even more rapidly than the memory cell population (Onishi et al., 

2008).  This strong reaction is mediated partly through the high expression by Treg of 

several molecules, including ICAM-1, neuropillin-1 (Sarris et al., 2008), and LAG-3 (Huang 

et al., 2004a, Liang et al., 2008).  Thus Treg may physically prevent any stable interaction 

between naïve/effector cells and APC.   

Other ‘inhibitory’ molecules are expressed on the surface of nTreg which may account for 

the contact dependence of suppression, including CTLA-4 and glucocorticoid-induced 

TNFR (GITR).  CTLA-4 is constitutively expressed on nTreg (Takahashi et al., 2000), and 

up-regulated even further on TCR engagement.  CTLA-4 interaction with DCs leads to 

induction of indoleamine 2,3-dioxygenase (IDO), which catalyses tryptophan into 

immunosuppressive cytotoxic metabolites (Fallarino et al., 2006), including kynurenine 

which acts to induce further Treg (Mezrich et al., 2010).  IDO may also directly influence 

DCs towards a tolerogenic phenotype (Pallotta et al., 2011). Competition between Treg 

CTLA-4 (which has greater affinity) and naïve/effector cell CD28 may further limit T cell 

activation (Yokosuka et al., 2010), whilst binding of Treg to CD80 or CD86 on effector cells 

may lead to a direct regulatory effect (Paust et al., 2004).  Treg have been shown to remove 

CD80 and CD86 from the APC surface by trans-endocytosis and degradation, preventing 

APCs from providing co-stimulatory signals to other naïve T cells (Qureshi et al., 2011).  

This may partly explain why mature DCs expressing high levels of CD80 and CD86 are able 

to overcome suppression (Zheng et al., 2004).  Absence of CTLA-4 does not remove the 

suppressive capacity of Treg in vitro (Tang et al., 2004), entailing other mechanisms. In 
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contrast, depletion of CTLA-4 using monoclonal antibodies leads to similar autoimmune 

defects to mice undergoing Treg depletion, and prevents protection in colitis (Read et al., 

2000). 

Suppression by secretion of cytokines is well recognized.  IL-10 blockade accelerates 

allogeneic skin graft loss in mice (Kingsley et al., 2002), prevents tolerance induction in a 

model of liver injury (Erhardt et al., 2007), and prevents regulation of Th17 responses 

leading to colitis (Chaudhry et al., 2011),  whilst IL-10 deficient Treg cannot control colitis 

or lymphoproliferation in a Rag-deficient model (Annacker et al., 2001), though they remain 

competent in suppressing other autoimmune disease (Suri-Payer et al., 2001).  IL-10 

secretion by Treg is seen in inflamed tissues (McGeachy et al., 2005, Uhlig et al., 2006) and 

contributes to disease resolution.  IL-10 induces a tolerogenic phenotype in DCs and 

differentiation towards Tr1 cells by naïve T cells (Steinbrink et al., 1997, Groux et al., 1997).  

TGF-β is evident both as a soluble cytokine and in its membrane-bound form on Treg 

(Nakamura et al., 2004), enabled partly by their high expression of GARP (Tran et al., 

2009).  TGF-β may partly act in Treg via the activation of the Notch pathway (Ostroukhova 

et al., 2006), but nTreg lacking TGF-β (from knockout mice) still display suppressive 

capacity both in vitro (Piccirillo JEM 2002) and in vivo (Fahlen et al., 2005).  The crucial 

role of TGF-β in induction of Treg will contribute to an overall suppressive milieu.  IL-35 

(Niedbala et al., 2007) appears to be mainly produced by Treg (Collison et al., 2007), and 

contributes to efficacy against allergy (Whitehead et al., 2012) and colitis (Wirtz et al., 

2011).  Production of IL-35 by human Treg appears non-redundant for contact-independent 

suppression, unlike both IL-10 and TGF-β (Chaturvedi et al., 2011), and mediates further 

induction of Treg (Collison et al., 2010). 

Treg may have direct cytotoxic effects as they have been shown to be capable of perforin 

and granzyme release (Gondek et al., 2005, Grossman et al., 2004).  This is unlikely to be a 

major mechanism given the demonstrations of induction of anergy.  A role for galectin 

proteins has been suggested (Kubach et al., 2007).  Cyclic AMP has a detrimental effect on 

T cell proliferation via activation of the inducible cAMP early repressor (ICER) (Bodor et 

al., 2001), with one group proposing Treg are able to transfer cAMP directly into effector 

cells via gap junctions (Bopp et al., 2007).  Clearly Treg have multiple mechanisms at their 

disposal, with a degree of redundancy and flexibility that may be dependent on the 

inflammatory context. 

Given that Treg constitute 5-10% of CD4
+
 cells in a mouse and an even smaller 1-3% in 

human subjects (Baecher-Allan et al., 2001), how does this minority population regulate the 
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much vaster population of potential effectors?  Treg require stimulation via the TCR to effect 

regulation but once activated, these suppressive mechanisms are not antigen-specific 

(Thornton et al., 2000) and this permits bystander suppression to occur (Karim et al., 2005).  

More importantly, one effect of Treg is to induce a suppressive phenotype in surrounding 

cells as a means of infectious tolerance (Dieckmann et al., 2002, Jonuleit et al., 2002). 

The regulators themselves require regulation.  An uncontrolled Treg response would prevent 

effective pathogen clearance or destruction of aberrant self cells.  Indeed, limiting the Treg 

population is now a major therapeutic focus in oncology in the hope that instilling immunity 

to the semi-foreign malignant tissue will be far less toxic than current chemotherapeutic 

regimens (Baechar-Allan et al., 2006).  Strong co-stimulatory signals through the TCR 

(Takahashi et al., 1998), or provision of exogenous IL-2, TNF (Valencia et al., 2006), or IL-

6 (Pasare et al., 2003) all render responding cells more resistant to suppression.  Treg also 

express toll-like receptors (TLRs) 2 and 8 (Sutmuller et al., 2006, Peng et al., 2005), 

suggesting a mechanism by which pathogens may directly suppress Treg responses. 

 

1.10.4 Therapeutic application of Treg 

The presence of a pool of cells dedicated to down-regulating inflammatory responses has 

obvious implications for therapy.  As all autoimmunity can be considered a break in 

tolerance due to an ineffective regulatory response, restoring the balance through the 

administration of Treg makes theoretical and physiological sense.  There are complicating 

factors, however.  Aside from the stringent requirements that any cell-based therapy must 

meet, and the likely heavy financial costs (more than compensated for if a therapy is curative 

rather than merely delaying), the nature of Treg themselves causes issues.  Overwhelming 

the immune system with Treg would equate to immunosuppression whilst dysregulated Treg 

are implicated in many malignancies.  Identification of a ‘pure’ Treg population remains 

impossible in the clinical setting, due to the overlap of cell surface markers with other 

activated cells.  Infusing effector cells into a patient would be unlikely to achieve optimal 

outcome!  There is also the issue of antigen specificity, as antigen-specific Treg are able to 

suppress more effectively than polyclonal Treg (Tang et al., 2004).  nTreg are at low 

numbers in the peripheral circulation and though protocols for expansion of these cells have 

now been generated (Peters et al., 2008), selecting for antigen specificity may limit the 

practicality of this approach significantly.  The much larger pool of naïve cells offers the use 

of iTreg – removing the patient’s own naïve cells and converting them to a regulatory 
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phenotype would avoid any allogeneic reactions.  However, the stability of iTreg cannot be 

assured, with the attendant danger that de-differentiation into effector cells with pathogenic 

antigen specificity could well be clinically devastating.  Despite these caveats, Treg remain 

an appealing option, and attempts to translate them into a feasible therapy are well 

underway.   

1.10.4.1 Diabetes mellitus  

Type I diabetes mellitus offers a highly appealing prospect for Treg therapy.  As a disease it 

is relatively common, auto-antibodies can be detected before clinical disease in susceptible 

people, clinical onset occurs while there is still functioning tissue, and patients are frequently 

free of other diseases (Bach et al., 2011).  Several antigens are identified as relevant and the 

financial burden of lifelong treatment of both diabetes and its sequelae greatly exceeds the 

presumed cost of any cell-based therapy, were it to prove curative or simply delay the onset 

by several years.  A phase one trial using polyclonal ex vivo expanded CD4
+
CD25

+
CD127

low
 

nTreg (using the methods of (Putnam et al., 2009)) is currently recruiting (study end date 

2016) [NCT01210664].  Animal models have demonstrated an ability to both prevent 

disease onset (a non-obese diabetogenic mouse) but also reverse established disease (Tang et 

al., 2004) with a more marked effect from treatment with antigen-specific Treg than 

polyclonal. 

1.10.4.2 Graft versus host disease 

Another area of interest is in the prevention of graft versus host disease (GVHD).  Infusion 

of donor Treg after bone marrow transplantation prevented the development of GVHD 

whilst maintaining graft versus leukaemia effects in a murine system (Edinger et al., 2003).  

There are now several reports in the literature of the usage of Treg as a modality in human 

GVHD.  A phase I trial using umbilical cord blood (UCB)-derived Treg in patients with 

advanced haematologic malignancy receiving a double UCB transplant demonstrated no 

safety concerns and showed a positive, if modest, reduction in the incidence of serious 

GVHD (Brunstein et al., 2011).  A second phase I trial infusing polyclonal Treg after 

completion of GVHD prophylaxis also demonstrated no safety or feasibility issues, with no 

incidence of GVHD in the treated group (Edinger et al., 2011).  Another group used 

expanded polyclonal Treg as therapy for established GVHD with efficacy in chronic, but not 

acute, onset GVHD (Trzonkowskin et al., 2009, 2011).  Finally, a very brave approach was 

taken in administering Treg as the sole immunosuppressive therapy in patients receiving a 

haploidentical stem cell graft.  The Treg expanded in vivo and only a small number of 
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patients developed any significant GVHD, suggesting a high efficacy of the Treg therapy 

compared to controls (Di Ianni et al., 2011). 

Another application in transplantation is in solid organ transplants.  An intriguing trial is 

evaluating subcutaneous infusion of expanded polyclonal Treg shortly following living-

related donor kidney transplant in paediatric patients [NCT01446484].  A much larger 

consortium of institutions is also commencing a trial evaluating the use of Treg in renal 

transplantation, though the exact details of patient selection and cellular therapy are not yet 

finalised (the ONE study).  

1.10.4.3 Therapeutic hurdles 

1.10.4.3.1 Identifying ‘pure’ Treg 

Foxp3 is not a perfect marker for human Treg.  As a nuclear transcription factor, its 

intracellular location renders it unsuitable for cell isolation by flow cytometry.  The Foxp3 

promoter gene contains binding sites for both NF-AT and AP-1, both of which are up-

regulated on TCR stimulation (Mantel et al., 2006), leading to transient expression of Foxp3 

on T cell activation which does not equate to regulatory status (Miyara et al., 2009).  Other 

markers such as low expression of the IL7-Rα (CD127) (Liu et al., 2006) and high 

glycoproteins A repetitions predominant (GARP) expression (Stockis et al., 2009) have 

allowed more specific identification but a unique marker has yet to be identified. 

In the stem cell transplant setting, transfer of a small number of non-Treg is likely to be 

positively beneficial in mediating the graft versus leukaemia effect (Edinger et al., 2003).  

As therapy for autoimmunity, as alluded to above, a pure Treg population would likely be 

essential.  Various manipulations have been attempted to derive a ‘pure’ Treg yield. 

Most promising is the addition of the mTOR inhibitor, rapamycin, which inhibits cell 

proliferation in most cells but permits the proliferation of Treg through their ability to 

activate an alternative pathway (Battaglia et al., 2005).  Rapamycin is particularly appealing 

as a therapeutic agent already licensed for use in the transplant setting.  Clinician familiarity 

can be a major advantage in acceptance of a new indication for an agent.  Rapamycin also 

induces Foxp3 expression in naïve T cells, while inhibiting the expression of other lineage 

transcription factors (Long et al., 2008, Delgoffe et al., 2009).  This may be considered a 

positive as it would skew contaminating cells to the regulatory phenotype but the stability of 

these cells once transferred in vivo cannot be guaranteed.  One might expect, however, that 
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the ratio of Treg to effector cells would be sufficient to prevent an escalating inflammatory 

response. 

1.10.4.3.2 Plasticity of Treg 

A major concern for Treg therapy is that Treg will display a similar plasticity to that seen by 

effectors (section 1.5), particularly in the pro-inflammatory environment found in vivo in 

ongoing disease, and revert to an effector phenotype with obvious therapeutic disadvantage.  

That this could feasibly occur was lent weight by demonstrations that nTreg could lose 

expression of Foxp3 following TLR2 stimulation and MyD88 signaling (Lal et al., 2011).    

Confirmation that Foxp3 expression was not irreversible is provided by one report showing 

loss of Foxp3 in approximately 20% of cells previously having expression (Zhou et al, 

2009a).   In contrast, a similarly designed study showed nTreg to have high stability of 

Foxp3 expression, even when infection promoted an inflammatory milieu (Rubstov et al., 

2010).  A recent report confirmed a subgroup of ‘Foxp3
+
’ cells which had only transient 

expression, but also that true Treg were again remarkably stable (Miyao et al., 2012).   Loss 

of Foxp3 expression by Treg has been observed in other more specialized circumstances, 

including within the gut (Tsuji et al., 2009), and lymphopenia (Duarte et al., 2009). Similar 

plasticity of nTreg has been seen in the context of human autoimmunity, with acquisition of 

Th1-like characteristics (Dominguez-Villar et al., 2011). 

In contrast, iTreg are known to rapidly lose expression of Foxp3 in vitro (Selvaraj et al, 

2007) and in vivo on antigen stimulation, though this can be stabilised by IL-2 (Chen et al., 

2011).  Foxp3 expression is also maintained in iTreg by exogenous TGF-β (Marie et al., 

2005).  Loss of Foxp3 expression does not necessarily equate to a loss of regulatory 

function, however (O’Connor et al., 2010, Lin et al., 2007). 

Plasticity of Treg extends beyond de-differentiation. Numerous reports have proposed that 

Treg mature to resemble the nearby effectors i.e. in Th1 conditions, Treg will develop Th1-

like characteristics.  This has been demonstrated for Th1 (Oldenhove et al., 2009, O’Connor 

et al., 2010), Th2 (Zheng et al., 2009) and Th17 (Voo et al., 2009) phenotypes.  In vitro 

exposure to IL-6 was reported to skew both nTreg and iTreg towards a Th17-like phenotype 

with production of IL-17 (Yang et al., 2008a), which confirmed previous reports that nTreg 

could develop IL-17 production (Xu et al., 2007).  Foxp3
+
 Treg have been demonstrated to 

co-express Tbet (Koch et al., 2009), GATA3 (Wang et al., 2011), RORγt (Voo et al., 2009), 

and Bcl6 (Chung et al., 2011), with one model proposing that Treg up-regulate the relevant 
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transcription factors to match the targets of regulation. In silico modeling has also suggested 

there is a high degree of plasticity amongst Foxp3
+ 

Treg (Naldi et al., 2010). 

Many reports suggested that iTreg were less stable than nTreg, and related the stability to the 

methylation status of the TSDR (Zhou et al., 2009a).  This was supported by the apparent 

finding that loss of Foxp3 on adoptively transfer was greater in iTreg than nTreg (Selvaraj et 

al., 2007).  Subsequent reports, however, have demonstrated that iTreg are less susceptible to 

IL-17 production following exposure to IL-6 (Zheng et al., 2008) and that iTreg may indeed 

represent a superior therapy to nTreg (Huter et al., 2008). 

Thus, iTreg represent a potential therapy for autoimmunity.  The exact mechanisms of 

suppression by both nTreg and iTreg remain under investigation, but the bulk of the 

literature has centred on nTreg. 

 

1.11 Hypothesis and aims 

The central tenet of this thesis is that in vitro and in vivo iTreg are able to suppress in a 

bystander fashion.  This is achieved via a soluble factor released upon their activation, which 

may affect the effector cell population, the antigen-presenting cells, or both. 

Through the course of this thesis, I aim to:- 

 Demonstrate that iTreg effect bystander both in vitro and in vivo, and show the 

requirement for MHC class II in vitro 

 Clarify the kinetics of the in vitro suppression assay in a peptide-stimulated model 

 Clarify the soluble cytokines produced by in vitro generated iTreg 

 Determine which, if any, of the above are non-redundant in effecting suppression 
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2 Materials and Methods 

 

2.1 Mice 

C57BL/6 (I-A
b
), B10.PL (I-A

u
), C57BL/6xB10.PL, Tg4 (Liu et al., 1995) (I-A

u
, CD90.1 or 

CD45.1), Tg4xFoxp3LuciDTR-4 (CD45.1) (O’Connor et al., 2010), 2D2 (I-A
b
 , CD90.1 or 

CD90.2) (Bettelli et al., 2003), OT-II (I-A
b
, CD45.1) (Barnden et al., 1998), and Foxp3GFP 

(I-A
b
) (Fontenot et al., 2005a) mice were bred under specific pathogen-free conditions at the 

University of Edinburgh (Edinburgh, U.K.).  The 2D2 founder mice were a generous gift 

from Dr V.K. Kuchroo (Harvard University, Boston, MA) and the Foxp3gfp mice were 

originally provided by Dr A. Rudensky (University of Washington, Seattle, WA).  Tg4 

CD45.1 IFN-γKO were generated at the University of Edinburgh (Edinburgh, U.K.) by 

crossing IFN-γKO mice (Dalton et al., 1993) with Tg4 CD45.1 mice and backcrossing for 

ten generations.  All mice were age and sex matched for experiments and used between the 

ages of 6-16 weeks.  Experiments received University of Edinburgh ethical approval and 

were performed under U.K. legislation.   

 

2.2 Peptides 

Myelin oligodendrocyte glycoprotein peptide 35-55 (pMOG35-55 

MEVGWYRSPFSRVVHLYRNGK) and myelin basic protein acetylated peptide 1-9 

(MBPAc1-9 (4Lys); ASQKRPSQR and MBPAc1-9 (4Tyr); ASQYRPSQR) were 

synthesized by Cambridge Research Biomedicals (Cambridge, U.K).  Ovalbumin peptide 

323-339 (pOVA323-339; ISQAVHAAHAEINEAGR) was synthesised by PepLogic, Essex, 

UK.  Chromatographically purified chicken ovalbumin (Wothington Biochemical 

Corporation, Lakewood, USA) was used for intratracheal airway challenges (section 2.5.3).  

All commercially available peptides were provided by the manufacturer at purities 

consistently greater than 95%.   Recombinant myelin oligodendrocyte glycoprotein (rMOG) 

was synthesised at the University of Edinburgh by Claire Sweenie.  Lipopolysaccharide 

contamination was assessed using the limulus amoebocyte lysate reaction (Neun et al., 

2011).  Though the solubility of all peptides was not formally evaluated, all were readily 

soluble in either phosphate-buffered saline or the culture medium used at the required 

concentrations.  



 57 

2.3 General reagents 

2.3.1 Wash buffer 

RPMI 1640 medium containing 25mM Hepes (Gibco, Life Technologies, Paisley, U.K.).  

2.3.2 RPMI-10 

RPMI 1640 medium containing 25mM Hepes (Gibco) supplemented with 10% heat-

inactivated fetal calf serum (FCS; Sigma-Aldrich, Poole, U.K.), 2mM L-glutamine (PAA 

Laboratories Ltd, Somerset, UK), 100U/ml penicillin (PAA), 100μg/ml streptomycin (PAA) 

and 50 μM 2-β-mercaptoethanol (Gibco). 

2.3.3 MACS buffer 

Hanks Balanced Salt Solution (PAA) supplemented with 2% heat-inactivated FCS (Sigma). 

2.3.4 FACS buffer 

Phosphate-buffered saline (PBS, PAA) supplemented with 2% heat-inactivated FCS (Sigma) 

and 0.1% sodium azide (Sigma).  

 

2.4 T cell purification 

2.4.1. Preparation of single cell suspensions from spleen and lymph nodes 

Spleens and peripheral lymph nodes were harvested from mice and disaggregated 

mechanically through gauze (Sefar, Heiden, Switzerland) to obtain a single cell suspension.  

Cells were washed by resuspending in wash buffer (10-15ml) and centrifuging at 300g for 

five minutes.  Red blood cells (RBC) were lysed using two ml Red Blood Cell Lysis buffer 

(Sigma) for two minutes at room temperature.  Cells were then washed with RPMI-10 and 

the number of live cells determined by trypan blue (Sigma) exclusion.  Samples were then 

used for flow cytometric analysis or were further purified as outlined below. 

2.4.2 CD4+ T cell isolation: Positive selection by magnetic separation 

Following RBC lysis and counting, cells were resuspended in 45μl MACS buffer per 10
7
 

cells and 5μl CD4 (L3T4) Microbeads (Miltenyi-Biotec, Bergisch Gladbach, Germany) per 

10
7
 cells.  Cells were incubated at 4°C for 15 minutes, and then washed in MACS buffer.  

Where cells were intended for subsequent purification by fluorescence activated cell sorting 
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(FACS), 0.5μl of anti-CD4-efluor450 (eBioscience, Hatfield, U.K., table 2.1) or anti-CD4-

AlexaFluor700 (BD Pharmingen, Oxford, U.K.) per 10
7
 cells were added for the final ten 

minutes of incubation. Cells were resuspended in 500μl MACS buffer per 10
8
 cells then 

positively selected using an AutoMACS Pro (Miltenyi) as per the manufacturer’s 

instructions.  Following positive selection, cells were washed and resuspended in MACS 

buffer and counted.  The post-sort purity of CD4
+ 

cells (analysed by flow cytometry) was 

routinely 95% ± 5%. 

2.4.3 CD4+ T cell isolation: Negative selection by magnetic separation 

Cells were prepared as in 2.4.1, then resuspended in 40μl MACS buffer per 10
7
 cells and 

10μl CD4
+
 T Cell Biotin-Antibody Cocktail II (Miltenyi) (containing biotin-conjugated 

antibodies against CD8a, CD45R, CD49b, CD11b, and Ter-119) per 10
7
 cells.  Cells were 

incubated at 4°C for 10 minutes.  A further 30μl MACS buffer per 10
7 

cells was then added 

to cells, plus 20μl Anti-Biotin Microbeads (Miltenyi) (also including antibodies directed 

against CD25 and TCRγ/δ) per 10
7
 cells.  Cells were incubated at 4°C for 15 minutes and 

then washed in MACS buffer.  Cells were resuspended in 500μl MACS buffer per 10
8 

cells 

and CD4
+
 T cells were isolated by negative selection using an autoMACS Pro.   

2.4.4 Isolation of CD4+ CD62Lhigh cells by magnetic separation 

CD4
+
 T cells were isolated as in 2.4.3 and then washed and resuspended in 80μl MACS 

buffer and 20μl CD62L (L-selectin) Microbeads (Miltenyi) per 10
7
 cells.  Cells were 

incubated at 4°C for 15 minutes then washed in MACS buffer, and resuspended in 500μl 

MACS buffer per 10
8
 cells. CD4

+
CD62L

high
 cells were then isolated using positive selection 

on an AutoMACS Pro.  Purity was routinely >90%. 

2.4.5 Isolation of CD4+ Foxp3gfp- cells from mice with the Foxp3gfp reporter 

Foxp3gfp and Tg4xFoxp3LuciDTR-4 mice both express gfp in association with Foxp3.  

FACS can therefore be used to isolate Foxp3
+ 

cells without a need for cell permeabilisation.  

CD4
+
 cells were isolated as per 2.4.2.  These cells were subsequently resuspended in MACS 

buffer at 3x10
7
 cells per ml and filtered through a CellTrics 50μM filter (Partec, Münster, 

Germany).  CD4
+
Foxp3

-
 cells were purified using a FACS Aria II (BD Biosciences, Franklin 

Lakes, NJ).  Purity of the CD4
+
Foxp3

-
 population was routinely >99%.  
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2.4.6. Isolation of CD4+CD62LhighVα3.2+ cells from 2D2 mice 

Cells were positively selected for CD4
+ 

as above (2.4.2).  During CD4
+
 T cell isolation, cells 

were incubated with anti-CD4-efluor 450, anti-CD62L-PE, and anti-Vα3.2-FITC (Table 

2.1).   After CD4
+
 T cells were isolated, cells were washed and resuspended in MACS buffer 

at 3x10
7
 per ml and filtered. The CD4

+
CD62L

high
Vα3.2

+
 population was then sorted on the 

FACS Aria II.  Purity was >99%. 

2.4.7 CFSE labeling of CD4+ T cells 

CD4
+
 cells were isolated as in 2.4.2, then washed and resuspended in wash buffer at 5x10

7
 

cells per ml.   5μM carboxyfluorescein succinimidyl ester (CFSE) was added to the cells 

which were then incubated at 37°C for 7 minutes.  Cold RPMI-10 was added to halt the 

reaction, and the cells were washed twice in RPMI-10.  A small aliquot of cells was taken 

for confirmation of CFSE staining using flow cytometry and the remaining cells were 

counted. 

 

2.5 Generation and purification of iTreg 

2.5.1 iTreg generation 

Using Tg4xFoxp3LuciDTR-4 or Foxp3gfp mice, naïve CD4
+
 T cell populations were 

isolated as in 2.4.2 and purified as in 2.4.5.  Alternatively, for mice without the Foxp3gfp 

reporter, naïve CD4
+
 T cells were isolated as per 2.4.3 and 2.4.4, with additional purification 

as described in 2.4.6 for 2D2 mice.  Once obtained, these naïve CD4
+
 T cells were 

resuspended in RPMI-10 at 4x10
5
/ml.  24 well plates were coated with anti-mouse-CD3e 

(clone 145.2C11, eBioscience) and anti-mouse-CD28 (clone 37.51, eBioscience), both at 

2μg/ml in PBS (PAA).  Plates were incubated at 37°C for ≥ two hours then washed three 

times in wash buffer.  Cells were added to wells at a final concentration of 4x10
5
 per well, in 

the presence of IL-2 100U/ml (purified from the X63-IL-2 hybridoma, a kind gift from 

David Gray, University of Edinburgh) and recombinant human TGF-β1 (R&D Systems, 

Minneapolis, MN) 5ng/ml.  Plates were incubated for five days at 37°C in 5% CO2.  This 

protocol was derived from that reported by Davidson (Davidson et al., 2007), with reagent 

concentration optimization performed by Dr Richard O’Connor to maximize induction of 

Foxp3 expression and cell survival.  Shorter incubation times did not permit as much cell 
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proliferation, whilst longer times led to excess cell death.  Cell numbers were typically 

expanded 4-10 fold.   

2.5.2 Purification of iTreg cells 

At the end of five days iTreg generation culture, cells were washed in MACS buffer and 

resuspended after counting in MACS buffer at 3x10
7
 cells per ml.  Where iTreg were 

generated from Foxp3gfp reporter mice, cells were filtered through 50μM CellTrics filters 

then the Foxp3
+
 population was purified according to Foxp3gfp expression on the FACS 

Aria II.  When iTreg were generated from mice lacking the Foxp3gfp reporter, cells were 

washed in MACS buffer and resuspended, after counting, in 200μl MACS buffer and 2μl 

anti-CD25-PE (eBioscience) per 10
7
 cells.  Cells were incubated at 4°C for 15 minutes and 

washed in MACS buffer.  After filtering, the CD25
+
 population was purified using the FACS 

Aria II.  Post-sort purities were consistently >95%.   

 

2.6 In vitro manipulations 

2.6.1. Depletion of iTreg 

After generation (2.5.1) and sorting for purity (2.5.2), Tg4xFoxp3LuciDTR-4 iTreg were 

resuspended in RPMI-10 at 1x10
6
/ml and cultured in 24 well plates in two ml per well.  

Diphtheria toxin (Sigma) was added at varying final concentrations from 0-1500ng/ml.  

Cells were counted daily by trypan blue exclusion and analysed by flow cytometry for Foxp3 

expression. 

2.6.2 iTreg response to antigen 

A top concentration of 100μM MBP Ac1-9 (4Lys) was diluted twofold across a 96 well 

round-bottomed plate in RPMI-10, with the final wells left without antigenic stimulation.  

iTreg were generated as per 2.5.1, purified as in 2.5.2, and resuspended in RPMI-10 at 4x10
5
 

cells/ml.  2x10
4
 cells were added per well to the plate.  To provide APC, Tg4 CD90.1 CD4

-
 

cells were irradiated at 30Gray using a source of 
137

Cesium (University of Edinburgh, U.K.).  

These irradiated cells were resuspended at 2x10
6
 cells/ml in RPMI-10 and 1x10

5
 added to 

each well to a final volume of 200μl RPMI-10. Plates were incubated for 48 hours at 37°C in 

5% CO2, then supernatants were taken for analysis by ELISA.   
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2.6.3 Re-stimulation of iTreg 

48 well plates were coated with anti-CD3 and anti-CD28 (both 2μg/ml) diluted in PBS and 

incubated for ≥ two hours at 37°C.  Plates were then washed three times in wash buffer.  

iTreg were purified as in 2.5.2 and resuspended in RPMI-10 at 1x10
6 
per ml, then 1x10

6 
cells 

were added per well.  The following cytokines were added individually to triplicate wells, as 

described in chapter 5: IL-12 25ng/ml (R&D), IL-27 10ng/ml (R&D), IL-6 30ng/ml 

(Miltenyi), IL-23 30ng/ml (R&D), IL-1β 10ng/ml (R&D), IFN-γ 100ng/ml (BD), anti-IFN-γ 

10μg/ml (clone XMG1.2, Bioxcell), TGF-β 10ng/ml (R&D), IL-2 100U/ml.  Cells were 

cultured for 72 hours at 37°C in 5% CO2 and subsequently analysed by flow cytometry 

(section 2.8).  

2.6.4 Suppression assays 

iTreg were purified as in 2.5.2 and resuspended at 4x10
5
 cells/ml in RPMI-10 then 2x10

4
 

cells were added to several wells of a round-bottomed 96 well plate.  iTreg were then diluted 

twofold along the plate in RPMI-10. Naïve CD4
+
 cells were prepared from Tg4 CD90.1, 

2D2 CD90.1, or OT-II CD45.1 mice as described (2.4.1-4, 2.4.6). These naïve CD4
+
 cells 

were resuspended in RPMI-10 at 4x10
5
 cells/ml then added to each well at a final 

concentration of 2x10
4
 cells per well.  To provide APC, CD4

- 
cells from magnetic 

separations (2.4.2) or whole splenocyte populations from C57BL/6xB10.PL (for experiments 

assessing bystander suppression) were irradiated as in 2.6.2. Irradiated cells were 

resuspended at 4x10
6
/ml in RPMI-10 and 2x10

5
 cells added to each well of the round-

bottomed 96 well plate.  For experiments investigating antibody blockade of MHC, 

irradiated APC were incubated with 10μg/ml of anti-I-A
u 

(clone OX-6, BD), or isotype 

(IgG1, κ), for three hours at 37°C and washed twice in wash buffer before being added to co-

culture. 

Cells were stimulated with 10μM MBP Ac1-9 (4Lys), 10μM pMOG35-55, or 8μM pOVA323-

339 as indicated.  As controls, naïve CD4
+
 T cells were cultured in the absence of iTreg, iTreg 

cells were cultured in the absence of naïve CD4
+
 T cells, and both naïve and iTreg cells were 

co-cultured without the addition of antigen.  All experiments were performed with triplicate 

wells. 

Plates were incubated at 37°C in 5% CO2.  After 48 hours of culture, supernatants from 

replicate plates were taken for subsequent analysis by enzyme-linked immunosorbent assays 

(ELISA) for production of IL-2 and GM-CSF.  Similarly, after 72 hours of culture, 

supernatants from replicate plates were taken for subsequent analysis by ELISA for 
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production of GM-CSF, IFN-γ, and TNF.  After 80 hours of culture (unless otherwise 

specifically indicated), 0.5μCi of [
3
H] thymidine ribose (Amersham Biosciences, Amersham, 

U.K.) was added to each well.  Sixteen hours later, plates were harvested and incorporation 

of 
3
H-thymidine was measured using a β-scintillation counter (Wallac, Turku, Finland).  

2.6.4.1 Additions to suppression assays 

Additional cytokines and antibodies were added in various experiments at the onset of the 

assay culture, unless otherwise specifically indicated in the text.  The following were used: 

 Rat Anti-mouse GM-CSF (clone MP1-22E9, BD Pharmingen) at 10μg/ml. 

 Recombinant GM-CSF (BD Pharmingen) at 0,5, 10, 25, 50 ng/ml. 

 Rat Anti-mouse TNF (clone G281-2626, BD Pharmingen) at 10μg/ml. 

 Rat Anti-mouse IL-10 (clone JES5-2A5, BD Pharmingen) at 10μg/ml. 

 Recombinant IFN-γ (BD) at 100ng/ml 

 Mouse Anti-IFNγ (clone XMG1.2, Bioxcell, West Lebanon, NH) at 10μg/ml. 

 Diphtheria toxin (Sigma) at 300ng/ml. 

 SB431542 (Sigma) at 10μM. 

2.6.4.2 Quantification of suppression 

The efficacy of suppression of 
3
H-thymidine by iTreg was quantified using the calculation 

below.  The reduction in IL-2 concentration was similarly quantified, using ‘[IL-2] pg/ml’ in 

place of ‘mean cpm’. 

100*(Mean cpm of naïve cells alone – (Mean cpm of naïve cells + iTreg at indicated ratio)) 

Mean cpm of naïve cells alone 

 

2.6.5 T cell polarisations 

Single cell suspensions were isolated from Tg4 CD90.1 mice as in 2.4.1. Cells were 

resuspended in RPMI-10 at 4x10
6
 per ml and cultured in six or 24 well plates in the presence 

of MBP Ac1-9 (4Lys) 10μg/ml.  Cells were polarised towards a Th1 phenotype by the 

addition of 25ng/ml rIL-12 (R&D), 25ng/ml rIL-18 (MBL, Nagayo, Japan), and 10U/ml rIL-

2.  After 48 hours, the concentration of rIL-2 was increased to 20U/ml for the final 24 hours 

of culture.  For polarisation towards the Th2 phenotype, cells were cultured in the presence 

of 4ng/ml rIL-4 (Peprotech), 5μg/ml anti-IL-12 (clone C17.8, BioXcell), 5μg/ml anti-IFN-γ 

(clone XMG1.2, BioXcell), and 40U/ml IL-2.  Th2 cells were cultured for a total of 4-5 
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days, with all cytokines and antibodies being replenished at day three.  Cells were polarised 

to a Th17 phenotype by the addition of 20ng/ml rIL-6 (Miltenyi), 10ng/ml rIL-1β (R&D), 

20ng/ml rIL-23 (R&D), and 3ng/ml rhTGF-β1 (R&D) being cultured for three days in total.  

Finally ‘ThGM-CSF’ polarisation was achieved with the addition of 10μg/ml anti-IL-12, 

10μg/ml anti-IFN-γ, and 3μg/ml soluble anti-CD28 (clone 37.51 eBioscience) for three days 

of culture.  In all cases, cultures were incubated at 37°C in 5% CO2. 

The polarisation of T cells was assessed by detection of cytokine production using flow 

cytometric analysis and ELISA of supernatant. For subsequent use in in vitro assays, 

polarised cells were purified for CD4
+
 expression as described in 2.4.2. 

 

2.7 In vivo manipulations 

2.7.1 Immunisations 

Mice were immunized with 10μg MBP Ac1-9 (4Tyr) emulsified in complete Freund’s 

adjuvant (CFA), containing 50μg heat-killed Mycobacterium tuberculosis H37Ra, (Sigma) at 

a final volume of 100μl.  50μl was injected subcutaneously (s.c.) into each hind leg.  Where 

indicated, MBP Ac1-9 (4Tyr) was resuspended in PBS rather than CFA, as a control lacking 

pro-inflammatory signals.  

2.7.2 Cell transfer 

Cells were polarised towards the Th2 phenotype (2.6.5) or towards iTreg (2.5.1).   Polarised 

or naïve cells were sorted for CD4
+ 

as in 2.4.2, iTreg were purified as in 2.5.2.  Cells were 

washed three times in serum free PBS (PAA) and resuspended in sterile PBS at stated 

concentrations.  Cells were then transferred intravenously (i.v.) via the tail vein in a total 

volume of 200μl PBS per mouse. 

2.7.3 Intratracheal airway challenge 

Mice were anaesthetised with intraperitoneal (i.p.) medetomidine hydrochloride 1μg per 

gram body weight (Pfizer Ltd, Surrey, U.K.) and ketamine (Fort Dodge Animal Health Ltd, 

Hampshire, U.K.) 75μg/g body weight.  Mice were supported by a frame with the mouth 

held open.  Visualisation of the glottis and vocal cords was aided using a cold lamp near the 

neck.  Antigen (50μg OVA and/or 50μg recombinant MOG) was introduced directly into the 

trachea via a blunt needle attached to a syringe.  Reversal of anaesthesia was achieved with 
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atipamezole hydrochloride (Pfizer Ltd, Surrey, UK) 20μg/g body weight.  All airway 

challenges were performed by Dr Karen Mackenzie or Dominika Nowakowska. 

 

2.8 Flow cytometry 

2.8.1 Antibodies 

Antibodies used were from eBioscience unless otherwise indicated.  Table 2.1 provides a 

summary of antibody clones, conjugates, and concentrations used. 

2.8.2 Live/dead staining 

Cells were washed twice in serum free PBS and resuspended in 500μl PBS per 10
7 

cells 

containing fixable viability dye (efluor780, eBioscience) at 1μl/ml.   Cells were incubated for 

30 minutes at 4°C in the dark and then washed twice in FACS buffer.   

2.8.3 Surface staining 

Cell samples containing 1-10x10
6
 cells were washed in FACS buffer and resuspended in 

25μl FACS buffer containing the relevant antibody cocktail.  Cells were incubated for 10-15 

minutes at 4°C in the dark and subsequently washed in FACS buffer.  Cells were 

resuspended in 300μl FACS buffer for immediate analysis, or in 300μl 1% 

paraformaldehyde (PFA, Sigma) for storage at 4°C until analysis was possible. 

2.8.4 Intracellular cytokine staining (ICCS) 

For the final four hours of culture, cells were incubated at 37°C in the presence of 50ng/ml 

phorbol 12-myristate 13-acetate (PMA), 1μg/ml ionomycin (Sigma), and 3μg/ml brefeldin A 

(eBioscience).  Cells were washed in FACS buffer and live/dead staining and surface 

staining carried out as above (2.8.2, 2.83).  After surface staining, cells were resuspended in 

250μl Fixation/Permeabilisation Solution (BD) per sample and incubated at 4°C for 20 

minutes.  Samples were washed twice in Perm/Wash buffer (BD, diluted 1:10 with distilled 

water) and resuspended in 50μl Perm/Wash buffer containing the appropriate anti-cytokine 

antibody cocktail, or isotype controls. Staining of transcription factors (i.e. Foxp3) was also 

conducted simultaneously where indicated.  Samples were incubated with the antibody mix 

for 30 minutes at 4°C in the dark then washed twice in Perm/Wash buffer.  Samples were 

resuspended in 300μl FACS buffer and stored at 4°C until they could be acquired as soon as 

practical.   
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2.8.5 Transcription factor staining in the absence of ICCS 

Cells were washed in FACS buffer and surface stained as per 2.8.3.  Samples were 

resuspended in 400μl Fixation/Permeabilisation Buffer (eBioscience) and incubated 

overnight at 4°C in the dark.  Cells were washed twice in Permeabilisation Buffer (diluted 

1:10 with distilled water, eBioscience) then resuspended in 50μl Permeabilisation Buffer 

containing anti-transcription factor antibodies or appropriate isotype controls.  Samples were 

incubated for 30 minutes at 4°C in the dark, and washed twice in Permeabilisation Buffer.  

Cells were resuspended in 300μl 2% PFA and stored at 4°C until acquisition.   There was no 

difference in the proportion of cells staining Foxp3
+
 when the BD and eBioscience protocols 

were compared on identical samples [data not shown].   

 

2.9 Flow cytometric data analysis 

Samples were acquired using an LSR Fortessa II (BD Biosciences).  Gates for ICCS and 

transcription factor staining were determined using isotype controls.  Gating strategies used 

are illustrated in the relevant results.  Following acquisition, analysis was performed using 

FlowJo software (Treestar version 3.2.1).   

 

2.10 Cytokine quantification by enzyme-linked immunosorbent assay 

The presence of IL-2, IL-17, IL-5, IL-13 and IFN-γ in the supernatant of cultures was 

determined using an enzyme-linked immunosorbent assay (ELISA).  Maxisorp microtiter 

plates (Nunc International, NY) were coated with 50μl of the appropriate cytokine-capture 

antibody in bicarbonate buffer and incubated overnight at 4°C.   Antibodies used are listed in 

Table 2.2 and ELISA reagents are listed in Table 2.3.  Plates were washed twice in PBS-

0.1% Tween (Sigma) (PBS-T) then 200μl of 1% bovine serum albumin (BSA, Sigma) in 

PBS (1% BSA/PBS) was added to each well and incubated for one hour at 37°C.  Plates 

were washed four times in PBS-T then a doubling dilution of cytokine standards was set up 

at the top of each plate.  100μl of supernatants from the relevant cultures were added in 

duplicate or triplicate, and incubated at room temperature for two hours.  Plates were washed 

six times in PBS-T and 100μl of the relevant biotinylated detection antibody (table 2.2) was 

added to each well and incubated for a further hour at room temperature.  Plates were 

washed eight times in PBS-T and100μl of extravadin peroxidase (Sigma) diluted 1:1000 in 
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1% BSA/PBS was added to each well followed by 30 minutes incubation at room 

temperature.  After a final eight washes with PBS-T, the ELISA was developed by adding 

100μl of TMB solution (table 2.3) per well for 5-15 minutes then 100μl 2M H2SO4 was 

added to terminate the reaction.  Plates were read at 450nM using an ‘Anthos HT’ plate 

reader and Stingray (v1.5, Dazdaq Ltd.). 

The presence of GM-CSF and TNF in supernatants was quantified using ELISA kits (Ready-

SET-Go! ELISA kits, eBioscience), performed according to the manufacturer’s instructions. 

Maxisorp plates were used with the supplied reagents.   

 

2.11 Assessment of disease following allergic airways inflammation  

(kindly performed by Dr Karen Mackenzie and Dominika Nowakowska) 

2.11.1 Bronchoalveolar lavage (BAL) 

Mice were culled and the trachea exposed.  The lungs were lavaged with 1ml sterile PBS via 

a tracheal cannula.   BAL cells were counted and cytospins prepared with a Shandon 

Cytospin 3 centrifuge at 300rpm for three minutes.  Slides were left to air dry for 60 minutes 

then fixed in 100% methanol for 20 minutes.  Slides were stained with Quick-Diff red stain 

for 90 seconds followed by Quick-Diff blue stain for 15 seconds (both Gamidor Technical 

Services, U.K.).  Slides were rinsed in non-sterile water and air dried.  Differential cell 

counts were performed by light microscopy by researchers blinded to the experimental 

conditions.  Three hundred cells were counted per cytospin. 

2.11.2 Isolation of cells from lung 

Following perfusion, the left lung was removed and placed into sterile PBS.  The tissue was 

finely chopped and incubated in collagenase (Type I-AS Sigma) solution (0.23mg/ml 

collagenase) for 45-60 minutes at 37°C.  Tissue was flushed through a 20G needle to prepare 

a single cell suspension and washed twice in PBS by centrifugation at 300g for five minutes.  

RBC lysis was performed as in 2.4.1 with a further wash in PBS following this.  Cells were 

then resuspended in PBS and filtered through a 40μM strainer (BD) prior to counting. 
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2.12 Statistical analyses 

Data was analysed using GraphPad Prism (v.4.0a for Macintosh).  For comparisons between 

replicate wells in suppression assays, a two-tailed unpaired t test with Welch’s correction 

was used.  For comparisons between groups of mice in in vivo experiments, data were 

treated as non-parametric non-normally distributed and analysed using Mann-Whitney U 

tests.  The Kruskal-Wallis test with Dunn’s multiple comparison post-test was used when 

comparing three or more groups.  Statistical advice was provided by Dr Margo Chase-

Topping, who kindly performed a meta-analysis of the iTreg cytokine production data from 

the in vivo experiments.  P<0.05 was considered significant for all tests. 
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Table 1: Antibodies used in flow cytometry 

Antibody Conjugate Clone Dilution Concentration 

CD4 -eF450 

-AF700 (BD) 

RM4-5 1:100 

1:100 

0.5mg/ml 

0.2mg/ml 

CD44 -FITC IM7 1:100 0.5mg/ml 

CD62L -PE Mel-14 1:100 0.5mg/ml 

CD25 PE 

PerCPCy5.5 

(Biolegend) 

PC61.5 

3C7 

1:100 

1:100 

0.2mg/ml 

0.2mg/ml 

CD90.1 -APC 

-FITC 

HIS51 1:100 0.2mg/ml 

CD45.1 -PerCPCy5.5 A20 1:100 0.2mg/ml 

CD126 -PE D7715A7 1:200 0.2mg/ml 

gp130 -APC KGP130 1:200 0.2mg/ml 

Foxp3 -eF450 

-FITC 

-APC 

FJK-16s 1:100 0.2mg/ml 

IFN-γ -FITC 

-APC 

XMG1.2 1:100 0.2mg/ml 

GM-CSF -PE (BD) MP1-22E9 1:25 0.2mg/ml 

TNF -eF450 MP6-XT22 1:100 0.2mg/ml 

IL-17 -PercpCy5.5 eBio17B7 1:100 0.2mg/ml 

IL-5 -PE (BD) TRFK5 1:100 0.2mg/ml 

IL-13 -AF647 eBio13A 1:100 0.2mg/ml 

CD11b -eF450 M1/70 1:100 0.2mg/ml 

Vα3.2 -FITC (BD) RR3-16 1:100 0.5mg/ml 

CD3 -PerCPCy5.5 145-2C11 1:200 0.2mg/ml 

IgG1 isotype -FITC 

-eF450 

-APC 

-PE 

-AF647 (BD) 

eBRG1 

 

 

 

R3-34 

1:100 

 

 

 

1:100 

0.2mg/ml 

 

 

 

0.2mg/ml 

IgG2a isotype -PE (BD) 

-eF450 

-APC 

-FITC 

-PerCPCy5.5 

(Biolegend) 

R35-95 

eBR2a 

 

eBM2a 

MOPC-173 

1:100 

1:100 

 

1:100 

1:100 

0.2mg/ml 

0.2mg/ml 

 

0.2mg/ml 

0.2mg/ml 

IgG2b isotype
 

-APC eB149/10H5 1:100 0.2mg/ml 

 

All antibodies manufactured by ebioscience, unless otherwise indicated. 
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Table 2: Antibodies used in ELISAs 

Cytokine Capture antibody Maximum 

concentration 

Detection antibody  

Concentration Clone Concentration Clone 

IL-2 2μg/ml JES6-

1A12 

5ng/ml 0.5μg/ml JES6-5H4 

IL-4 2μg/ml 11B11 5ng/ml 0.5μg/ml BVD6-24G2 

IL-13 1μg/ml eBio13A 10ng/ml 5μg/ml eBio1316H 

IL-17 2μg/ml TC11-

18H10 

10ng/ml 0.25μg/ml TC11-8H4.1 

IFN-γ 0.5μg/ml R4-6A2 100ng/ml 0.5μg/ml XMG1.2 

 

Table 3: – Reagents used in ELISAs 

10x bicarbonate buffer 6.36g Na2CO3 

11.72g NaHCO3 

400ml distilled H2O   pH 9.6 

Phosphate citrate buffer 25.7 ml 0.2M Na2HPO4 

24.3 ml 0.1M citrate (anhydrous) 

Made up to 100ml with dH2) pH 5.0 

TMB solution 100μl TMB 

9.9ml phosphate citrate buffer 

3μl H2O2 
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3 In vitro bystander suppression by iTreg 

3.1 Introduction 

Early in the rediscovery of the regulatory T cell populations, in vitro experiments 

demonstrated that nTreg (CD4
+ 

CD25
+ 

T cells) were able to effect suppression of responding 

cells in a non-antigen specific manner, once stimulated by their antigen (Thornton et al., 

2000).  Bystander suppression is thus a feature of nTreg function.   The first demonstration 

of this in vitro suppressive effect used a simple co-culture assay, with a diluting effect seen 

when nTreg were added at lower ratios to responding cells (Thornton et al., 1998).  The 

initial conclusions were that nTreg suppressed via a contact-dependent APC-independent 

manner but the outcome was antigen non-specific.  Subsequent experiments used expanded 

nTreg from a TCR transgenic mouse (specific for an immunogenic epitope of myelin 

proteolipid protein, PLP139-151) in an in vivo EAE model (Yu et al., 2005).  Those expanded 

nTreg were able to suppress disease caused by a CNS homogenate (containing a mix of self 

antigens) and disease caused by immunization with PLP139-151 which nTreg responded to.  

EAE induced by other antigens was not suppressed by the nTreg, unless they had been pre-

activated in vitro by PLP139-151. This suggested linked but not bystander suppression. 

Linked suppression may also refer to a proposed mechanism of suppression in which both 

the Treg and effector T cell are directly interacting with the same APC.  iTreg-APC 

interaction then influences the signaling between APC and the effector cell (Frasca et al., 

1997).  This was demonstrated in a model of GVH disease in mice, using OVA-specific 

iTreg to effectively suppress GVHD caused by polyclonal effectors in OVA
+ 

recipients, 

whilst in OVA
- 
recipients, no suppressive effect was seen (Semple et al., 2011). 

In contrast to the EAE model reported above, a different group expanded myelin-responsive 

Tg4 nTreg and demonstrated that administration of nTreg at the time of initiation of EAE 

with the antigen PLP139-151 led to a less severe and briefer disease course, though the initial 

onset of disease was not affected (Stephens et al., 2009).  Further evidence for the bystander 

suppressive effect of nTreg has emerged in various models (Homann et al., 1999, Jun et al., 

2012). 

Given the multiple differences between nTreg and TGF-β induced Treg (iTreg) (Horwitz et 

al., 2008), and the relative ease of generating iTreg for therapeutic use, determining whether 

they also exhibit bystander suppression is of great interest.   



 71 

A recent study of iTreg failed to demonstrate bystander suppression in the EAE model using 

immunogenic epitopes associated with the induction of EAE (Zhang et al., 2010).  PLP139-151 

specific iTreg were able to suppress EAE and delayed-type hypersensitivity induced with 

PLP139-151, but had no impact upon responsiveness to unrelated antigens (MOG or ovalbumin 

epitopes), nor even upon response to a distinct epitope within the same protein (PLP178-191).    

  

3.1.1 Experimental aims 

The experiments described in this chapter were designed to determine whether iTreg 

generated from one TCR transgenic mouse were able to suppress effector cells from a 

different TCR transgenic i.e. to test the ability of iTreg to effect bystander suppression.  

Subsequent experiments aimed to identify essential requirements for bystander suppression 

to occur in vitro. 

 

3.1.2 Experimental approach 

The ability of iTreg to suppress naïve T cells that respond to a different antigen was 

investigated using TCR transgenic mice.  The Tg4 strain has a TCR that recognizes the 

nonameric immunodominant epitope MBPAc1-9 and is restricted to I-A
u
.  The 2D2 strain 

has a TCR repertoire limited mainly to pMOG35-55 and is on the C57BL/6 background 

restricted to I-A
b
.  F1 mice from B10.PL crossed with C57BL/6 were used as antigen 

presenting cells, being able to present both A
u
 and A

b
 peptide complexes.  Thus, Tg4 iTreg 

could be generated and co-cultured with naïve 2D2 cells in the presence of F1 APC, or vice 

versa 2D2 iTreg co-cultured with naïve Tg4 cells.   
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3.2 Results 

3.2.1 Cross-reactivity does not occur between peptides 

To test bystander suppression, both peptides needed to be added to co-culture.  It was 

therefore necessary to ensure that cross-reactivity did not occur, nor was there an 

‘interfering’ element whereby the presence of the alternative peptide would somehow limit 

presentation to the responding naïve cells.  Culture of naïve 2D2 CD4
+
 cells with F1 APC 

and either pMOG35-55, MBPAc1-9, or both antigens, was performed and incorporation of 
3
H-

thymidine measured at 72 hours (Fig 3.1A).  Naïve 2D2 CD4
+
 cells responded robustly to 

pMOG35-55 and this response was unaffected by the presence of MBPAc1-9 (Fig 3.1B).  No 

response was seen by 2D2 CD4
+ 

cells to MBPAc1-9 alone.  Naïve Tg4 CD4
+ 

cells were 

cultured in the same manner (Fig 3.1C).  Similarly, incorporation of 
3
H-thymidine by Tg4 

CD4
+
 cells was unaffected by the presence of pMOG35-55, nor did the Tg4 cells respond to 

pMOG35-55 alone (Fig 3.1D).  Thus, there was no cross-reactivity by transgenic TCR cells to 

the alternative peptide used in bystander suppression assays, nor was there any influence of 

the alternate peptide on presentation of the cognate antigen.   

 

3.2.2 Generation of iTreg 

iTreg were generated from TCR transgenic mice as described in Materials and Methods 

(Davidson et al., 2007).  Where mice expressing a Foxp3-gfp reporter were available, CD4
+
 

cells were isolated by autoMACS then further sorted using flow cytometry for the absence of 

gfp expression (Fig 3.2A,B).  After five days culture with plate-bound anti-CD3 and anti-

CD28 (both at 2μg/ml) in the presence of 100U/ml IL-2 and 5ng/ml TGF-β, cells were 

further sorted for the presence of Foxp3 by gfp expression (Fig 3.2C).  Where mice lacked a 

Foxp3 reporter, CD4
+
 cells were initially sorted by autoMACS using negative selection, 

followed by further magnetic positive selection for CD62L
high

 (Fig 3.2D).    Representative 

flow cytometry plots are shown (Fig 3.2E).  At the end of the iTreg culture in conditions 

identical to those above, these iTreg were immediately used in experiments without further 

sorting.  Induction of Foxp3 was consistently greater than 85% of live cells (Fig 3.2F).   
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3.2.3 The generated iTreg are suppressive in vitro 

The conventional assay first designed by Shevachs’ group (Thornton et al., 1998) entails co-

culture of iTreg at varying ratios with a fixed number of naïve CD4
+
 T cells, in the presence 

of irradiated splenocytes and soluble anti-CD3.  This demonstrated suppression of 

incorporation of 
3
H-thymidine at high ratios of Treg:naïve T cells, but loss of the suppressive 

effect as iTreg were diluted out.  In order to investigate bystander suppression, the ability to 

stimulate the naïve T cells without further stimulating the iTreg was crucial.  Thus, assays 

were performed using irradiated APC and peptide rather than anti-CD3 (Fig 3.3A).  

Similarly to the pattern seen in other reports, incorporation of 
3
H-thymidine at 96 hours 

showed a suppressive effect at high ratios of iTreg:naïve T cells with a gradient of effect as 

numbers of iTreg diminished (Fig 3.3B).  The suppressive ‘capacity’ of iTreg can then be 

demonstrated, as calculated in Materials and Methods (Section 2.6.4.2) (Fig 3.3C) (Collison 

et al., 2011).   

Assuming that greater than 50% suppression represents a substantial impact, it can be seen in 

the experiment represented that iTreg were effective down to ratio of 1:8 with loss of 

suppressive capacity beyond this (Fig 3.3C).  

The assay is very sensitive and can be performed with a small number of cells though 

problems with it have been highlighted (Collison et al., 2011).  One such issue is the 

insensitivity of 
3
H-thymidine and high degree of variability, even between replicate wells.  A 

superior alternative would be CFSE staining of naïve T cells but due to the high 

experimental turnover, this was not feasible.  T cell activation leads to both clonal expansion 

and production of IL-2.  Whilst incorporation of 
3
H-thymidine gives an indirect estimate of 

expansion, IL-2 can be measured by ELISA analysis of assay supernatants.  IL-2 production 

was assayed at 48 hours of culture and demonstrated a similar pattern of effect to 
3
H-

thymidine incorporation (Fig 3.3D).    An equivalent calculation of the reduction in IL-2 was 

also performed (Fig 3.3E).  It is notable that the reduction in IL-2 was often more 

pronounced than the effect on 
3
H-thymidine incorporation, with suppressive effects 

maintained to lower ratios of Treg:naïve T cells.  Whether IL-2 production was arrested in 

the naïve T cells, or if IL-2 produced was rapidly scavenged and used by the iTreg cannot be 

determined from this experimental set-up.   
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3.2.4 Bystander Suppression by iTreg 

3.2.4.1 iTreg can suppress the response of naïve cells to a different antigen 

iTreg generated from 2D2 cells were cultured with naïve CD4
+
-sorted Tg4 T cells and 

irradiated C57BL/6xB10.PL splenocytes (hereafter referred to as F1 APC) with exogenously 

added MBPAc1-9 and pMOG35-55, both at 10μM (Fig 3.4A).  Proliferation was estimated by 

the incorporation of 
3
H-thymidine at 96 hours.   Naïve T cells cultured without iTreg had a 

robust response (Fig 3.4B) whilst iTreg cultured without naïve T cells had virtually no 

incorporation of 
3
H-thymidine.  Co-culture of both iTreg and naïve T cells in the absence of 

antigen (labeled as ‘Unstim’) also gave very little response.  
3
H-thymidine incorporation by 

naïve T cells was suppressed in the presence of iTreg effectively (greater than 50% 

suppression) maintained down to a Treg:naïve T cell ratio of 1:8, similar to the effect seen 

with homologous suppression (Fig 3.4C). IL-2 was also similarly reduced in the presence of 

iTreg, with loss of the inhibitory effect seen at a similar ratio of Treg:naive (Fig 3.4D,E).  

The iTreg were able to suppress in a bystander fashion in this tightly controlled in vitro 

system.  The ensuing experiments were designed to elucidate what features of the in vitro 

assay contributed to bystander suppression – APC interaction, the need for MHC, and both 

antigens.   

3.2.4.2 Linked suppression 

One postulated mechanism of iTreg action is that of linked suppression.  Peptide is presented 

on the surface of APC such that a single APC may interact with both Treg and responding 

naïve T cells.  It has been suggested (Walsh et al., 2004) that Treg may mediate their effects 

via the APC as it interacts with both Treg and naïve T cells i.e. the APC is acting as a 

conduit for suppressive signals between Treg and responding cells.  This would explain the 

necessity for cell contact seen in Treg cultures.     

This hypothesis can be tested relatively easily using the above suppression assay.  Replacing 

F1 APC with the CD4
-
 fraction of the two strains (which have different MHC restrictions) 

meant it was not possible for the Treg to form a stable peptide-MHC complex with the APC 

stimulating the naïve T cells.  Tg4 iTreg were co-cultured with the naïve CD4
+ 

2D2 cells and 

either F1 APC or a combination of the CD4
-
 fractions of both Tg4 and 2D2 sorts.  These 

fractions were mixed equally so there was not a preponderance of one MHC (Fig 3.5A).   

Comparing the ability of iTreg to suppress naïve T cells stimulated by either mixed APC or 

F1 APC, suppression of 
3
H-thymidine incorporation was seen in both circumstances (Fig 

3.5B) and was no more readily suppressed in the cultures with F1 APC than in mixed APC 
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cultures.  The reduction in IL-2 also appeared equivalent between cultures.  Thus, interaction 

between iTreg and naïve T cells on the same APC is not a requirement for suppression in 

this in vitro system.  

3.2.4.3 Preventing iTreg interaction with APC 

Whether iTreg need to interact with APC via the peptide-MHC complex to effect 

suppression can be tested using two approaches. Antibodies against I-A
u
 will prevent any 

stable interaction between the APC and a T cell (either iTreg or naïve). To confirm this 

effect, Tg4 CD4
- 
cells used as APC were incubated for 3 hours in the presence of 10ng/ml 

anti-I-A
u
. These cells were then washed to remove any excess antibody.  Naïve Tg4 CD4

+
 

cells were cultured with 10μM MBPAc1-9 with either the treated or untreated APC. 

Incorporation of 
3
H-thymidine by naïve T cells with antigen presented by ‘blocked’ APC 

was significantly reduced compared to unblocked APC (Fig 3.6A).  ‘Blocked’ Tg4 CD4
-
 

cells were then mixed with the CD4
- 
2D2 cells in a bystander suppression assay as described 

above in the presence of both MBPAc1-9 and pMOG35-55 (Fig 3.6B).  Binding of I-A
u
 with 

antibody resulted in abolition  of suppression of 
3
H-thymidine incorporation (Fig 3.6C,D). 

The second approach removed iTreg ‘parental’ APC completely.  Tg4 iTreg were co-

cultured with naïve 2D2 CD4
+ 

cells and pMOG35-55 in the presence of irradiated CD4
-
 2D2 

cells (Fig 3.7A).    Suppression of the incorporation of 
3
H-thymidine was again not evident at 

all in these cultures (Fig 3.7B), with no difference between naïve T cells alone or those 

cultured with iTreg..  Thus, some form of interaction with APC and the MHC restriction 

element is clearly required in this in vitro system.   

3.2.4.4 iTreg can effect bystander suppression in the absence of cognate 

antigen 

A defining feature of nTreg bystander suppression is that once activated, they are able to 

effectively suppress regardless of the surrounding antigenic stimuli (Thornton et al., 2000).  

As the generation of iTreg requires TCR stimulation via anti-CD3 and anti-CD28, these cells 

are inherently activated.  Was the persistence of their antigen necessary for their suppressive 

effects? 

2D2 iTreg were co-cultured with naïve Tg4 CD4
+
 T cells with irradiated F1 APC and 10μM 

MBPAc1-9 only (Fig 3.8A).  Suppression of 
3
H-thymidine incorporation was seen at high 

ratios of Treg:naïve T cells though it was generally less effective than in the presence of both 

antigens (Fig 3.8B, C).  IL-2 production was similarly reduced almost equivalently in the 
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presence or absence of iTreg cognate antigen (Fig 3.8D,E).  The IL-2 data suggest that in the 

absence of cognate antigen, iTreg are able to suppress, but less efficiently, with twice as 

many iTreg required to exert the same suppressive effect as when both antigens were present 

in co-culture. 

The converse experiment was also performed.  Tg4 iTreg were co-cultured with naïve 2D2 

CD4
+
 T cells with irradiated F1 APC and either both antigens, or pMOG35-55 alone (Fig 

3.9A).  In this experiment, suppression of 
3
H-thymidine incorporation was maintained in the 

presence of both antigens down to low numbers of iTreg, still being evident at 1:64 (Fig 

3.9B, C).  In the presence of pMOG35-55 alone, suppression was maintained down to a 

Treg:naïve T cell ratio of 1:8. Similarly, IL-2 production was inhibited at ratios of 

Treg:naïve of 1:16 (Fig 3.9D, E), though the overall production of IL-2 from the naïve 2D2 

T cells was much lower than from Tg4 cells (Fig 3.8D).  Whether the quantity of IL-2 

produced represents a property of the transgenic cells used is unclear.   

These experiments demonstrated that, similar to the situation described for nTreg, iTreg 

were able to suppress 
3
H-thymidine incorporation, possibly via effects on IL-2, in the 

absence of ongoing stimulatory signals through their TCR.  This suppressive effect can be 

seen even at low proportions of iTreg, in some experiments being evident even when iTreg 

form less than 2% of the in vitro population. 

3.2.4.5 Stronger peptide-MHC interactions cannot overcome suppression by 

iTreg 

If the strength of the peptide-MHC interaction is relevant, this is open to investigation using 

the altered peptide ligand, MBPAc1-9 (4Tyr).  The MBPAc1-9 (4Lys)–A
u
 complex is 

notable for a very poor binding affinity.  Though the complex is formed, it is very weak and 

rapidly dissociates (Mason et al., 1995).  It is a curiosity that such a poorly bound peptide is 

able to stimulate disease in in vivo systems (Anderton et al., 2001).  Alteration of the fourth 

residue from lysine to tyrosine increases the binding affinity such that a highly stable 

peptide-MHC complex is formed.   Returning to the simple ‘homologous’ suppression assay 

and culturing Tg4 iTreg with naïve Tg4 CD4
+
 T cells, co-culture with soluble MBPAc1-

9(4Tyr) (Fig 3.10A) led to greater 
3
H-thymidine incorporation by the naïve T cells but the 

efficacy of iTreg in suppressing this was equivalent (Fig 3.10B,C).  Furthermore examining 

IL-2 production, use of MBPAc1-9 (4Tyr) greatly increased IL-2 production by naïve T cells 

(Fig 3.10D).  The proportionate reduction in IL-2 was maintained similarly between cultures 

stimulated with MBPAc1-9 (4Lys) or (4Tyr) (Fig 3.10E). This implies that the magnitude of 
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the IL-2 production by naïve T cells does not affect the ability of the iTreg to effect 

suppression.  Importantly, this suggests that iTreg do not simply act by consuming all IL-2 in 

the culture, as it might then be expected that in the presence of 5000pg/ml of IL-2, 

suppression by this mechanism alone would be broken.  For comparison, iTreg are generated 

in cultures containing 400pg/ml IL-2, an order of magnitude lower than in this experiment.  

Thus, the affinity of MBPAc1-9 for the MHC does not affect suppression.  This contrasts 

with previous reports suggesting a quantitative effect of nTreg with peptide concentration 

(Stephens et al., 2005) but may be related to differences between nTreg and iTreg.  

A curiosity of the cells stimulated by MBPAc1-9 (4Tyr) is the production by the iTreg group 

alone of a small but definite quantity of IL-2.  The iTreg were sorted for Foxp3gfp 

expression at the end of primary culture, with a purity of >98%.  Thus the number of 

contaminating non-Foxp3
+
 cells within the wells would be fewer than 400 cells.  This 

suggests that iTreg may be capable of IL-2 production themselves, possibly related to the 

strength of antigenic stimulus. 

 

3.2.5 Kinetics of Suppression 

The exact nature of suppressive mechanisms used by iTreg remains elusive.  It is likely that 

both nTreg and iTreg use a number of mechanisms with multiple compensatory pathways.  

One clue to the mechanisms involved may be in the kinetics of the response.  An interaction 

between iTreg and naïve T cells occurring within several hours of cell culture might suggest 

direct cell-mediated cytotoxicity for example, whereas if the suppressive effect was only 

seen after 2-3 days this might imply transcriptional/translational changes in at least one cell 

type within the co-culture.  As the following experiments concern fundamental features of 

iTreg suppression, all experiments were conducted with a ‘homologous’ in vitro suppression 

system i.e. Tg4 iTreg suppressing naïve Tg4 CD4
+
 T cells. 

3.2.5.1 Assessment of proliferation by 3H-thymidine 

To assess the kinetics of suppression, highly pure Tg4xFoxp3LuciDTR-4 iTreg were 

generated and sorted for Foxp3gfp expression, then co-cultured with naïve Tg4 CD4
+
 T cells 

with the irradiated CD4
- 
fraction in the presence of 10μM MBPAc1-9 (4Lys).  

3
H-thymidine 

was then added to cultures at the onset, or after 24, 48, or 72 hours.  Plates were harvested 

16-18 hours following the addition of 
3
H-thymidine.   
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The ongoing activation status of iTreg was clearly evident in this experiment as 

demonstrated by their high incorporation of 
3
H-thymidine within 24 hours of culture, 

including the cells cultured in the absence of antigen (Fig 3.11A).  The incorporation of 
3
H-

thymidine by iTreg diminished over time with the lowest counts recorded at 96 hours.   This 

may be related to death of the iTreg prior to harvesting of the cultures, though this was not 

ascertained from this experiment. 

The naïve T cells alone showed a predictable course of increasing 
3
H-thymidine 

incorporation from a low level at 24 hours of culture to a maximum at 96 hours, with the 

caveat that cultures were not extended beyond this point.  Thus much of the 
3
H-thymidine 

incorporation in the first 72 hours in the co-culture wells can be readily attributed to either 

iTreg or naïve T cells.  The high counts of 
3
H-thymidine incorporation at 1:1 (and lesser 

ratios) after 72 hours of culture suggests both cell populations are proliferating together.  The 

final timepoint of 96 hours shows a dramatic reversal in the incorporation of 
3
H-thymidine 

by naïve T cells in the presence of iTreg with the previously seen suppressive picture 

emerging. Analysis of the kinetics at different ratios of Treg:naïve T cells in parallel showed 

a clear divergence at higher iTreg proportions occurred between 72 and 96 hours (Fig 

3.11B). 

This represents one of the major disadvantages of this in vitro system, in that a reduction in 

the incorporation of 
3
H-thymidine when iTreg and responding T cells were co-cultured may 

reflect either reduced proliferation of  responding T cells, or increased cell death, potentially 

of both cell populations.  Distinguishing between these is not possible using 
3
H-thymidine 

alone.   

This showed that the reduction in 
3
H-thymidine incorporation by naïve T cells appeared to 

occur late in the in vitro cultures.  This could be attributable to consumption of cell survival 

factors within the medium being used up by the iTreg simply as a function of being activated 

cells.  To ensure suppression was indeed a true effect, naïve Tg4 CD4
+ 

T cells were cultured 

for five days in the presence of anti-CD3 and anti-CD28, then used in co-culture with fresh 

naïve Tg4 CD4
+ 

T cells in a suppression assay.   Again, incorporation of 
3
H-thymidine was 

assessed at 24, 48, 72, and 96 hours.  The pattern of incorporation was very similar for the 

first 72 hours of co-culture, but no suppression of naïve T cell incorporation of 
3
H-thymidine 

was seen at the 96 hour time point (Fig 3.11C).  Thus, iTreg may have a specific suppressive 

function, rather than simply consuming cell growth factors in the medium.  However, an 

alternative explanation may be that activated cells are simply more robust than iTreg, and 

that the 
3
H-thymidine incorporation seen at 1:1 ratios represents continued incorporation by 
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the activated cells as well as the responding cells.  If this were the case, the ‘suppression’ 

seen with iTreg would indeed simply represent consumption of essential growth factos early 

in co-culture, leading to cell death at 96 hours of both cell types. 

In summary, early in this in vitro system, proliferation by naïve T cells accelerated over time 

(as estimated by 
3
H-thymidine incorporation) as might be expected (though there was some 

impact of co-culture at the earlier points). Thus, the impact of iTreg suppression was not 

seen until a late time point in this in vitro system, nor was it simply a function of iTreg being 

activated cells, though clarification of the viability of iTreg versus activated cells would be 

necessary to consolidate this finding. 

3.2.5.2 Assessment by CFSE dilution 

That incorporation of 
3
H-thymidine by the naïve T cells was not immediately inhibited can 

also be shown through the use of cell labeling.  Naïve Tg4 CD4
+
 T cells were labeled with 

CFSE and co-cultured with iTreg in the same in vitro system as above.  At 72 hours, some 

effect of iTreg was evident, though most cells appeared to have diluted CFSE (Fig 3.12A).  

At 96 hours, virtually all CFSE-labeling had been lost in all stimulated conditions except at 

1:1 (Fig 3.12B), implying that suppression of proliferation is not an early effect (correlating 

with the 
3
H-thymidine data shown above).  This contrasts with much literature reporting 

inhibition of CFSE dilution (and hence proliferation) in the presence of Treg.  One important 

distinction was that only live CD4
+
 cells were assessed for CFSE dilution here.  If all CD4

+
 

cells were then analysed, a stronger peak of CFSE was seen in all conditions (only a single 

example is shown for clarity, Fig 3.12C). 

If proliferation is occurring early in culture, and suppression is not seen until after 4 days, do 

iTreg need this long to exert their effects? 

 

3.2.6 Depletion of iTreg 

The low incorporation of 
3
H-thymidine by the iTreg after 96 hours of culture might imply 

that a large proportion of iTreg had died at the point when suppression was assessed.  This 

was confirmed by viability staining of iTreg after 72 hours of re-stimulation (discussed 

further in Chapter 4).  What then would be the effect of removing Treg earlier in this culture 

system?  This can be achieved taking advantage of the Tg4xFoxp3LuciDTR-4 transgenic in 

which expression of the diphtheria toxin receptor (DTR) is under the Foxp3 promoter 

(Suffner et al., 2010, O’Connor et al., 2010). 
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3.2.6.1 Diphtheria toxin can deplete iTreg in vitro 

Validation of the ability of diphtheria toxin (DTX) to remove iTreg in vitro was performed.  

Tg4xFoxp3LuciDTR-4 iTreg were generated as previously with a five day culture in the 

presence of IL-2 and TGF-β, then sorted for Foxp3gfp expression and re-cultured in the 

presence of DTX at increasing concentrations over three days.  This demonstrated that iTreg 

could be effectively depleted to negligible numbers of cells within 24 hours at an in vitro 

DTX concentration of 300ng/ml (Fig 3.13A,B).  This provided a useful adjunct to this in 

vitro system, in which iTreg can be co-cultured with naïve cells and then removed from the 

culture without impacting on the naïve cell/APC interactions. 

3.2.6.2 Depletion of iTreg in suppression 

The need for cell contact has been demonstrated previously using transwell inserts in various 

systems (Kong et al., 2012, Gondek et al., 2005), but whether this contact must be 

maintained is unknown.  The ability to deplete iTreg within 24 hours of co-culture was used 

to determine whether persistence of the cells was necessary to exert their suppressive effect.   

Sorted Tg4xFoxp3LuciDTR-4 iTreg were co-cultured with naïve Tg4 CD90.1 CD4
+
 T cells 

(which do not express the diphtheria toxin receptor) with irradiated APC and 10μM 

MBPAc1-9 (4Lys).  DTX was added at the onset of culture or after 48 hours.  Plates were 

then pulsed with 
3
H-thymidine at 80 hours of culture and harvested at 96 hours.  

Depletion of iTreg at the onset of culture (i.e. addition of DTX at the beginning leading to 

complete depletion of iTreg within 24 hours) completely prevented suppression whilst 

depletion at the 48 hour time point did not affect the suppression of incorporation of 
3
H-

thymidine at all (Fig 3.13C).  Repeating the experiment with addition of DTX at 24 hours 

also had minimal impact on the ability of iTreg to suppress.  This implied that the effects of 

iTreg in this in vitro system were within the first 24-48 hours and that persistence of the 

iTreg thereafter was not required.   

3.2.6.3 Diphtheria toxin is not intrinsically cytotoxic 

Though unlikely, it was possible that DTX had a direct cytotoxic effect upon iTreg 

regardless of their receptor expression.  To eliminate this possibility, iTreg were generated 

from either Tg4xFoxp3LuciDTR-4 mice or Tg4 CD45.1 mice.  These iTreg were then co-

cultured with naïve Tg4 CD90.1 CD4
+
 T cells with DTX added at the onset of culture.  As 

expected, depletion of the Tg4xFoxp3LuciDTR-4 iTreg led to the abrogation of suppression 

while the Tg4 CD45.1 iTreg were unaffected and suppressed normally (Fig 3.13D).  
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These experiments demonstrated that the physical presence of iTreg was required at the 

onset of co-culture, but that whatever effects are mediated do not require the ongoing 

persistence of iTreg.  As addition of DTX at 24 hours maintained suppression, this effect 

must occur early in the in vitro system, even though the subsequent impact on naïve cells 

was not seen until the 96 hour time point. 
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3.3 Discussion 

3.3.1 Generation of iTreg 

The low number of nTreg occurring in the peripheral bloodstream and ongoing difficulties in 

identifying a truly ‘pure’ marker for human nTreg have complicated extension of Treg 

therapy into human trials, though newer protocols for nTreg expansion have led to recent 

advances in this area (Pahwa et al., 2010).  The improved efficacy of antigen-specific Treg 

therapy over polyclonal therapy, now confirmed in several models (Tang et al., 2004, 

Stephens et al., 2009, Huter et al., 2008), combined with the much greater pool of ‘potential’ 

iTreg obtainable from a patient make iTreg an appealing therapeutic prospect. However, 

most mechanistic research into Treg has concentrated on nTreg, predominantly due to 

concerns over the plasticity of iTreg and potential to differentiate into effector cells (Zhou et 

al., 2009b). 

Generation of iTreg is now long established as being a TGF-β dependent process (Chen et 

al., 2003) with high levels of IL-2 necessary to promote Treg proliferation.  In vitro the 

combination of IL-2 and TGF-β leads to an efficient conversion of CD4
+ 

CD25
- 
cells into 

CD4
+ 

CD25
+ 

Foxp3
+ 

cells.  Within the gastro-intestinal tract, the conversion of cells into 

iTreg is enhanced by the presence of retinoic acid (RA), and this has also been reported to 

‘boost’ conversion to iTreg in vitro (Mucida et al., 2009).  Using the protocol established 

within the laboratory, conversion of naïve cells to Foxp3
+ 

iTreg was highly efficient with 

purities consistently of >85% and in some experiments greater than 95% Foxp3
+ 

prior to 

sorting (Figure 3.2).  The exact specifics of iTreg generation have considerable variation in 

the concentrations of cytokines and strength of stimulation used across different reports.  

Notably, the high conversion here is greater than that seen by many other groups.  The 

addition of retinoic acid had no further beneficial effect on the conversion rate to iTreg [data 

not shown]. The ability to sort on the basis of Foxp3gfp expression gave highly pure iTreg 

populations.  In experiments where cells were sorted based on naïve markers alone, final 

Foxp3 expression at the end of the five day iTreg culture was always greater than 85%. 

 

3.3.2 Bystander suppression in vitro 

In this chapter, an in vitro system has been developed with cells derived from two different 

TCR transgenic mouse strains.  The Tg4 T cells respond particularly robustly to MBPAc1-9, 

whilst 2D2 T cells respond to pMOG35-55.  That this holds true is seen in figure 3.1, in which 
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no incorporation of 
3
H-thymidine was evident from naïve CD4

+ 
T cells of either strain 

cultured in the presence of the alternative peptide (Fig 3.1B,D).  Importantly, there was also 

no evidence of a mixed lymphocyte reaction in any of the in vitro cultures of Tg4 and 2D2 

cells together.   

Previous experiments by Dr Sarju Patel (Patel, 2008) demonstrated an inability of transferred 

2D2 cells to persist in a F1 mouse.  This was presumed due to deletion of the 2D2 cells by the 

host immune system, potentially due to the absence of H-2
u
 encoded MHC molecules on the 

2D2 cell surface.  Attempts were made to cross the 2D2 strain onto the B10.PL background 

to then permit co-transfer of both 2D2 and Tg4 cells into a F1 mouse, and allow a true test of 

in vivo bystander suppression using the EAE model (e.g. naïve Tg4 cells and 2D2 iTreg in 

EAE induced by MBPAc1-9). Crossing of the 2D2 strain with the B10.PL line led to the 

unexpected complication that cells inheriting the pMOG35-55 TCR, identifiable as Vα3.2
+ 

cells, were deleted at the double negative stage of T cell development in the thymus [data not 

shown].  In adult mice with a normal CD4
+ 

complement, persistence of the pMOG35-55 TCR 

was almost absent.  In mice with a significant number of Vα3.2
+ 

cells, a marked reduction in 

CD4
+

 count was apparent.  As the purpose of these mice was to provide TCR transgenic cells 

for subsequent experiments after sufficient cross-breeding and the effect of the relative 

lymphopenia was unclear, these breeding efforts were abandoned.  Thus 2D2 and Tg4 cells 

could not be used in the same in vivo host. 

This chapter shows that iTreg are able to suppress proliferative responses and reduce the IL-

2 content of co-cultures with naïve CD4
+
 T cells recognizing either the same antigen 

(‘homologous’ suppression) or a completely different antigen (bystander suppression). iTreg 

were able to effect bystander suppression in vitro in the presence or absence of their cognate 

antigen (Figs 3.4, 3.8, 3.9).  This is consistent with the similar bystander effects seen using 

nTreg in vitro.  That nTreg suppress in an antigen-non-specific manner following activation 

is well established in vitro (Thornton et al., 2000).  As the iTreg receive TCR stimulation 

during their initial generation, they begin the co-culture in an activated state.  The ability of 

both nTreg and iTreg to effect bystander suppression in vivo remains controversial. 

A recent paper (Oh et al., 2012) reported that administration of TCR-transgenic nTreg with 

specificity for the PR8 haemagglutinin of influenza (HA) was unable to prevent spontaneous 

development of arthritis in an in vivo model whereby the host mouse normally develops 

inflammatory arthritis due to expression of the PR8 HA as a self antigen i.e. antigen-specific 

nTreg were unable to prevent disease development presumably initiated by that antigen.  

Polyclonal nTreg modulated disease onset, however, by preventing a Th17 response within 
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the relevant lymph nodes.  The failure of the antigen-specific Treg was not related to their 

ability to suppress proliferation or IFN-γ production, nor was it differentiation to an effector 

phenotype, but rather an inability to suppress the non-clonotypic population of responding 

CD4
+ 

T cells magnifying the inflammatory response.  In this model using nTreg, direct but 

not bystander suppression was observed.   

In contrast, a different paper showed that nTreg expanded for antigen-specificity to HA111-119 

or HA126-138 in the presence of CD8
+ 

dendritic cells were able to effectively suppress the 

development of diabetes in a novel transgenic mouse expressing HA under the control of the 

insulin promoter (Ins-HA mice).  Importantly, the HA126-138 expanded nTreg were able to 

prevent disease onset from HA111-119 conventional cells, even though no effect was seen in in 

vitro culture (Fisson et al., 2006).  This suggests that bystander suppression can occur in 

expanded nTreg, though the two epitopes were very closely related.   

Closely related to this thesis was the use of iTreg specific for myelin proteolipid protein 

(PLP)139-151 in in vivo models of EAE triggered by various peptides (Zhang et al., 2010).  

Adoptively-transferred expanded antigen-specific iTreg were able to effectively prevent the 

development of EAE following immunization with the same antigen in adjuvant.  However 

those PLP139-151 iTreg were unable to modulate disease caused by PLP178-191 or a combination 

of both peptides.  This was further extended into a model of delayed type hypersensitivity in 

which the PLP139-151 -specific iTreg could only suppress a response to the same peptide, but 

not to one of several other peptides, even when PLP139-151 was included in the original 

sensitizing mix.  Notably the same PLP139-151 iTreg were able to effectively suppress 

proliferation of pMOG35-55 specific naïve cells in in vitro culture.  Is the bystander 

suppression effect then just a curiosity of in vitro methodology?  Certainly the behaviour of 

Treg is known to differ greatly between in vitro and in vivo systems (Klein et al., 2003). 

Examples of successful bystander suppression in vivo by nTreg are present within the 

literature.  CD4
+
CD25

+
CD62L

high
 T cells were expanded from Tg4 mice using CD3/CD28-

coated beads in the presence of high dose IL-2 (Stephens et al., 2009).  Those expanded pre-

activated MBP-responsive nTreg were then transferred into B10.PLxSJL F1 mice, in which 

EAE can be induced using either MBPAc1-9 or PLP139-151.  The nTreg were protective 

against EAE induced with MBPAc1-9, with a very delayed onset of disease and much less 

severe clinical course.  Though the same nTreg had no impact on the onset of EAE caused 

by administration of PLP139-151, or both MBPAc1-9 and PLP139-151, the subsequent disease 

course was less severe with more rapid resolution and fewer relapses.  Thus, those expanded 
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MBPAc1-9 responsive nTreg were able to limit the disease caused by host T cells 

responding to PLP139-151. 

Bystander suppression has also been demonstrated in other models.  Antigen-specific nTreg 

directed towards an islet autoantigen were able to effectively prevent the development of 

diabetes upon transfer of polyclonal effector cells and even to reverse established diabetes in 

vivo (Tang et al., 2004). 

Examining the ability of iTreg to suppress GVHD, pOVA323-339 specific iTreg were 

generated from OT-II mice and adoptively transferred into either OVA
+
 or OVA

-
 recipients.  

Those mice on a B6 background received B6 x bm12 marrow, causing activation of donor 

CD4
+
 cells due to mismatch in MHC class II H2. Subsequent transfer of polyclonal effector 

cells led to GVHD in the OVA
-
 recipients but not where the iTreg had exposure to their 

cognate antigen (Semple et al., 2011).  As OVA in this context served as a self antigen, 

GVHD developed due to donor effectors proliferating and responding to the host antigen 

(i.e. alloantigen H2
bm12

).  Thus, OVA-specific iTreg were suppressing a disease process 

stimulated by a different antigen in vivo, albeit in a highly manufactured system.   

Other more circumstantial evidence for bystander suppression exists.  Recent papers suggest 

that iTreg may be of more benefit in established disease rather than at onset.  In a direct 

comparison of nTreg and iTreg (of polyclonal specificities), iTreg were superior in 

ameliorating histological changes in a mouse model of arthritis (Kong et al., 2012) with the 

added tolerising effect of skewing responding cells within the local lymph nodes to a Treg-

predominant population.  Treatment of rats with a nasal bystander epitope lessened the 

severity of subsequent experimental arthritis, an effect that was transferable via CD4
+
 T cells 

(Zonneveld-Juijssoon et al., 2011).  Generation of antigen-specific iTreg and administration 

during acute viral infection was able to reduce the severity of subsequent lesions in models 

of herpetic stromal keratitis (Sehrawat et al., 2008).  Given this was infection with whole 

virus rather than relevant epitopes, it is plausible that bystander suppression would play a 

role in this protection.   

 

3.3.3 Kinetics of suppression 

These experiments have demonstrated that iTreg are able to exert their suppressive effect 

within 24 hours of culture onset but the effects upon naïve cell incorporation of 
3
H-

thymidine are not appreciable until at least 96 hours of culture (Fig 3.11, 3.12).  Persistence 
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of the iTreg is also not required for this suppressive effect to be maintained (Fig 3.13).  

There are two broad theories that could account for this.   

3.3.3.1 IL-2 deprivation 

Early reports of apoptosis caused by growth factor deprivation identified IL-2 as a key 

cytokine, the absence of which is able to cause apoptosis (Duke et al., 1986).  This process 

occurs over 24-48 hours following removal of IL-2, and fits well with the timescale offered 

above.  IL-2 deprivation mediated apoptosis was suggested as a mechanism of Treg function 

in mouse models of colitis (Pandiyan et al., 2007), though the concept of ‘mopping up’ 

excess IL-2 appeared much earlier (Thornton et al., 1998).  Further evidence for this is that 

the addition of IL-2 to suppression assays is able to wholly break the iTreg suppressive 

effect (Takahashi et al., 1998).  All Treg cells are obligate users of IL-2, hence the high 

expression of the IL-2Rα.   Experiments depleting IL-2 may therefore lead to Treg cell 

death, rendering any subsequent suppression or lack thereof difficult to interpret.  Clearly 

then, IL-2 deprivation is likely to be a major mechanism used by these cells in this in vitro 

model.  Indeed, IL-2 deprivation has been proposed to be the major non-redundant 

mechanism of Treg suppression (Wang et al., 2010a).    

How achievable is IL-2 deprivation in vivo? An in vitro system with a limited number of 

cells and a defined timespan is a very different beast to an inflammatory process in disease, 

during which there is ongoing recruitment of new cells to the process, and a multitude of 

sources of IL-2.  Can all of the effects of iTreg be explained as due to this alone?  Certainly 

administration of a monoclonal anti-IL-2 antibody may have a profound immunosuppressive 

effect (Kelley et al., 1986, Kirkman et al., 1985).  Conversely, IL-2 deprivation has been 

suggested as a means of initially suppressing the regulatory response during an initial 

infection (Benson et al., 2012).  How plausible is it that Treg are both regulated and regulate 

by exactly the same mechanism?  The development of autoimmunity in IL-2 deficient mice 

supports the absolute requirement for IL-2 for persistence of Treg, with comparison between 

IL-2 deficient and CD25 deficient adoptively transferred CD4
+ 

cells in protection from EAE 

demonstrating that IL-2 signaling is most vital to Treg function (Furtado et al., 2002).  

Opposing this, scurfy mice with a complete absence of Treg suffer mortality typically within 

4 weeks of birth due to overwhelming autoimmunity.  Scurfy mice that are also IL-2 

deficient survive longer with inflammation predominantly in the colon, rather than the skin 

and lung seen in IL-2 sufficient mice (Zheng et al., 2007).  Thus IL-2 has a crucial role in 

both survival of the regulatory population, but also in effector cell proliferation within 

autoimmunity.   
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3.3.3.2 Effects on APC 

The need for cell contact and the requirement for Treg only at the onset of culture but not 

when the effects of suppression are evident may suggest that regulation is mediated through 

another cell population, the most obvious candidate of which is the APC.  Whether 

interaction with the APC is non-redundant remains unclear, but clearly in the presence of an 

APC that permits interaction, suppression is more effectively performed.   

Suppression assays have been reported in the absence of APC, using anti-CD3 and anti-

CD28 in vitro.  Stimulation of Vβ8
+ 

effector cells using anti-Vβ8-coated microbeads did not 

alter the ability of nTreg to suppress in one report (Szymczak-Workman et al., 2009).  That 

group also found that MHC restriction was irrelevant to suppression, in contrast to the data 

shown here, and that TCR stimulation of Treg was not necessary for suppression to occur i.e. 

Treg had a constitutive suppressive effect.  Investigation of the roles of IL-35 and IL-10 

using in vitro suppression assays also stimulated both Treg and conventional cells with anti-

CD3 and anti-CD28 (Collison et al., 2009).  In that report, contact with conventional cells 

was found to enhance the suppressive capacity of Treg, but the Treg could then effect 

suppression of proliferation of other cells across a semi-permeable membrane through the 

actions of IL-35 and IL-10.  As this differs somewhat from other reports, it is plausible, 

indeed highly likely, that Treg suppress with a variety of redundant mechanisms, which may 

be influenced by the presence or absence of APC in co-culture.  Thus Treg may have an 

APC-independent mechanism of suppression (such as IL-35, IL-10 production) that is down-

regulated in the presence of APC.  This may explain the discrepancy between that report and 

the absence of suppression seen when APC interaction with iTreg is prohibited through the 

peptide-MHC complex (Fig 3.6, 3.7), as the APC are still present within the culture and may 

be influencing iTreg through soluble factors as well.  This merits further study, though 

cannot be determined from the data presented. 

The ability of Treg to affect APC is documented however.  Using a murine model of 

autoimmune gastritis, antigen-specific iTreg responding to an immunodominant peptide in 

the H
+
/K

+
 ATPase were demonstrated to prevent the onset of disease (Di Paolo et al., 2007).   

Following culture with iTreg, dendritic cells were less able to stimulate antigen-responsive 

naïve T cells and had reduced co-stimulatory markers, CD80 and CD86, suggesting that 

iTreg rendered the DC less able to prime the immune response.   

Down-regulation of CD80 and CD86 on APC by Treg was reported to be mediated through 

CTLA-4 expression, via the process of trans-endocytosis (Qureshi et al., 2011).  Indeed, 
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CTLA-4 expression was demonstrated to confer suppressive function, rather than expression 

of Foxp3.  In that system, suppression was antigen-dependent.  Whether the bystander 

suppression in the absence of cognate antigen by the iTreg generated here is dependent upon 

CTLA-4 expression would merit further investigation.  Certainly, there is increasing 

evidence that CTLA-4 plays a crucial role in Treg function (Sansom et al., 2006). 

Various reports of Treg influencing APC through other mechanisms exist, suggesting that 

nTreg are able to limit APC interactions with responding cells (Tadokoro et al., 2006), affect 

their maturation (Misra et al., 2004, Veldhoen et al., 2006), or molecular expression of co-

stimulatory and inhibitory molecules (Cederbom et al., 2000, Kryczek et al., 2006).  

However all of this evidence relates to nTreg rather than iTreg.   

3.3.3.3 Alternative mechanisms 

Other mechanisms may also be at play.  The role of the responding effector cells on the Treg 

initially was investigated in the report already alluded to above (Collison et al., 2009) 

examining cytokine production by nTreg (defined as CD
+
CD25

+
CD45RB

low
) and found that 

IL-10 and IL-35 secretion was potentiated in the presence of conventional cells.  More 

relevantly in a transwell system, nTreg alone in an upper well were unable to suppress 

conventional cells in the bottom well.  When conventional T cells were also added to the 

upper transwell, suppression of the cells in the lower half was also seen – suggesting that the 

cell contact required for suppression is an initiating factor but not required for suppression of 

all cells.  The need for interaction between Treg and the effector cells has been supported by 

similar reports from other groups (Grinberg-Bleyer et al., 2010).   

Another proposed mechanism of suppression is via expression of co-inhibitory molecules on 

the surface of Treg, e.g. CTLA-4.  In vivo, nTreg (identified as CD4
+
 CD25

+ 
CD45RB

low
) 

were able to inhibit the development of colitis in mice when co-transferred with CD45RB
high

 

cells, but this protective effect was lost in mice receiving anti-CTLA-4 monoclonal antibody 

treatment (Read et al., 2000).   This was contradicted by in vitro data showing Treg from 

CTLA-4 deficient mice demonstrate full suppressive potential (Read et al., 2006).  However 

this was potentially explained by the compensatory up-regulation in TGF-β seen in CTLA-4 

deficient Treg compared to CTLA-4 sufficient Treg (Tang et al., 2004).  Thus a further 

mechanism of Treg action may be via co-inhibitory signals, which would require cell 

contact, certainly in the early stages of naïve cell activation.  In concert with many other 

aspects of Treg biology, most studies of CTLA-4 have concentrated on nTreg rather than 

iTreg.  CTLA-4 appears essential for iTreg generation, with a lack of adaptive Treg in 
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CTLA-4 deficient mice (Zheng et al., 2006), and has even been suggested as a more potent 

marker of suppressive activity than Foxp3 in humans (Zheng et al., 2008a).   

The need for Treg to have contact with cells they are suppressing can be harmonized with 

the depletion data shown here (Fig 3.13).  If the early effects of co-culturing Treg with naïve 

cells triggered the suppressive effects, further cell contact may be unnecessary, and 

suppression may subsequently occur regardless of the need for ongoing cell contact.  An 

important caveat is that much of the reported literature examines nTreg rather than iTreg, 

and these are increasingly recognized as disparate cell populations with differing 

mechanisms (Horwitz et al., 2008).   

Investigation of the requirement of iTreg for contact with APC could feasibly be performed 

using transwell systems.  Having demonstrated that iTreg do not need presentation of their 

cognate peptide to effect suppression, a vital experiment to perform would be in vitro 

transwell culture with iTreg separated from naïve T cells, with APC either present or absent 

in the iTreg section of the transwell (obviously APC are non-redundant in the naïve T cell 

compartment, as peptide presentation is required to effect proliferation).  This may 

conceivably provide a definitive answer as to whether APC are a crucial requirement for the 

suppression of 
3
H-thymidine incorporation within naïve T cells by iTreg, or they may 

enhance suppressive function.  Parallels can be drawn to the transwell experiments 

demonstrating greater suppressive function when iTreg are co-cultured with some naïve T 

cells (Grinberg-Bleyer et al., 2010).  Unfortunately, transwell experiements were not 

performed during the course of this thesis, due to financial limitations.  They represent an 

obvious next step in clarifying the role of APC and the need for MHC interaction. 

How exactly are the iTreg exerting their effects? It is highly likely that no one single 

mechanism will account for the suppressive potential of Treg in different in vitro and in vivo 

systems.  Indeed, the up-regulation of TGF-β in the absence of CTLA-4 implies multiple 

compensatory mechanisms that can be directly influenced by the experimental system used.  

The fact that the physical presence of iTreg is not required at the time that suppression of 
3
H-

thymidine incorporation occurs suggests there may be a soluble factor released during early 

co-culture having a later influence.  Investigation of the cytokines released by iTreg thus 

became the next focus.  

3.3.3.4 Experimental Caveats 

The crude nature of the 
3
H-thymidine incorporation assay has already been alluded to 

(section 3.2.3) and the disadvantages of the system are well-recognised (Collison et al., 
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2011).  Absence of 
3
H-thymidine incorporation may represent either an absence of 

proliferation, or cell death occurring earlier than the timepoint interrogated.  The ‘non-

proliferative’ nature of iTreg is shown not to be evident until 96 hours (Fig 3.11A) strongly 

suggesting that it is cell death responsible for the absence of 
3
H-thymidine incorporation, 

rather than a truly anergic response.  Similarly, the co-cultured wells cannot distinguish 

between iTreg exerting a suppressive effect on naïve T cells, or actively causing cell death. 

Congenic markers are available to distinguish between iTreg and naïve T cells, so co-

cultured wells could be interrogated by flow cytometry to confirm the viability of cells at the 

end of co-culture.  Usage of CFSE-dilution by naïve T cells could also clarify whether naïve 

T cell proliferation is truly suppressed, or if cell death plays a significant role.  Given the 

demonstration above that the patterns of CFSE-dilution is partly influenced by cell viability 

(Fig 3.12), a thorough investigation of the kinetics of this reponse would also be required.    

3.3.4 Concluding remarks 

iTreg are able to suppress naïve cell proliferation in response to an unrelated antigen, in the 

absence of ongoing stimulation themselves.  This effect appears partly mediated via the 

APC, in particular through MHC interaction though peptide is not required.  The suppressive 

effect is not on an individual APC interacting with both iTreg and naïve T cells, nor is it 

wholly related to the APC alone.  A proposed requirement for cognate MHC is shown 

(Figure 3.14).  Suppression of 
3
H-thymidine incorporation is not seen until late in the culture 

but at this point there is no requirement for the iTreg to still be present.    
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cells
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+/- pMOG35-55

3H-thymidine 

incorporation  at 72 

hours

Figure 3.1 Cross-reactivity of antigens does not occur, nor is there any effect of the

alternate peptide on the cognate response.
A) Experimental scheme. Naïve 2D2 cells were cultured with F1 APC and pMOG35-55 at varying

concentrations, with or without 10μM MBPAc1-9. B) Incorporation of 3H-thymidine after 72 hours

is shown. C) Experimental scheme. The same approach was used for Tg4 cells. D) 3H-thymidine

incorporation after 72 hours of culture is shown. Data are shown from a single experiment.
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Figure 3.2 Generation of induced Treg (iTreg)
A) Protocol for iTreg generation from Foxp3gfp reporter mice. Splenocytes and lymph node

tissues from mice expressing gfp on the Foxp3 promoter were sorted by positive selection using

magnetic beads for the expression of CD4. The CD4+ fraction was then sorted by flow cytometry

for the absence of gfp expression, yielding a highly pure CD4+ Foxp3gfp- population. These cells

were cultured with plate-bound anti-CD3 and anti-CD28 (both at 2μg/ml) with 100U/ml IL-2 and

5ng/ml TGF-β for 5 days. B) Representative flow plots of Foxp3gfp expression, gated on all cells,

are shown pre- and post-sorting at the beginning of iTreg culture. Numbers represent the

percentage of CD4+ Foxp3gfp+ cells. C) Representative flow plots of Foxp3 expression pre- and

post-sorting at the end of iTreg culture. Plots are gated on live cells. Numbers represent

percentage of Foxp3gfp+ cells. D) Protocol for iTreg generation from mice without the Foxp3gfp

reporter. Cells were negatively selected for CD4 expression using magnetic beads then further

magnetic positive selection for CD62Lhigh expression. CD4+CD62Lhigh cells were cultured as in A).

E) Representative flow plots gated on all cells before iTreg culture. Numbers represent percentage

of CD4+ CD62Lhigh cells. F) Representative flow plot of Foxp3 expression gated on live cells at the

end of iTreg culture. Numbers indicate percentage of CD4+Foxp3+ cells. Data are from one of

>five experiments giving consistent results.
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Figure 3.3 iTreg suppress 3H-thymidine incorporation and IL-2 is reduced in vitro.
A) Experimental scheme. Tg4xFoxp3LuciDTR-4 iTreg were co-cultured with naïve Tg4 CD90.1

CD4+ T cells, irradiated APC and 10μM MBPAc1-9 at varying ratios of Treg:naïve cells. Duplicate

supernatants were frozen at 48 hours for subsequent analysis by ELISA. 3H-thymidine was added

for the final 16-18 hours of culture and then plates were harvested. iTreg and naïve cells were also

cultured in isolation with APC and antigen, as controls. B) Proliferation was estimated by the

incorporation of 3H-thymidine at 96 hours of culture. C) Quantification of the ability to suppress

was calculated (as described in Chapter 2) comparing incorporation of 3H-thymidine of naïve cells

co-cultured with decreasing numbers of iTreg to that of naïve cells alone. D) IL-2 production was

measured at 48 hours of culture by ELISA. E) Reduction in IL-2 concentration was similarly

quantified. Data are from one of >five experiments giving consistent results.
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Figure 3.4 2D2 iTreg suppress naïve Tg4 cells in the presence of both antigens.
A) Experimental scheme. 2D2 iTreg were co-cultured with naïve Tg4 CD4+ cells in the presence of

F1 APC and both 10μM MBPAc1-9 and 10μM pMOG35-55. B) Incorporation of 3H-thymidine at

96hours. C) Quantification of suppression. D) IL-2 production was measured at 48 hours by

ELISA. E) Quantification of the effect on IL-2. Data are from one of three experiments giving

consistent results..
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Figure 3.5 Co-presentation of antigens on a single APC is not required for

suppression.
A) Experimental scheme. Tg4 iTreg were co-cultured with naïve 2D2 cells with both MBPAc1-9 and

pMOG35-55 with either F1 APC or mixed Tg4 and 2D2 CD4- fractions, giving the same total number

of APC in each group. B) Incorporation of 3H-thymidine at 96 hours of culture is shown. C)

Quantification of suppression is shown. D) Production of IL-2 at 48 hours measured by ELISA. E)

Quantification of the reduction in IL-2. Data are from one of three experiments giving consistent

results.
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Fig 3.6. Binding of MHC I-Au with exogenous antibody reduces the efficacy of

suppression.
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scheme. Mixed APC were pre-incubated with antibody directed to I-Au for 3 hours then washed

prior to use in a suppression assay. C) Incorporation of 3H-thymidine at 96 hours. D)

Quantification of suppression. Data are from one of two experiments giving consistent results.
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Fig 3.7. Absence of ‘parental’ APC prevents suppression
A) Experimental scheme. Naïve 2D2 CD4+ cells were cultured with Tg4xFoxp3LuciDTR-4 iTreg in

the presence of MBPAc1-9, pMOG35-55 and irradiated 2D2 CD4- cells but not Tg4 APC. B) The

incorporation of 3H-thymidine was measured at 96 hours. Data are from one of four experiments

giving consistent results..
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Figure 3.8 2D2 iTreg do not require their cognate antigen to effect bystander

suppression.
A) Experimental scheme. 2D2 iTreg were cultured with naïve Tg4 CD4+ cells, F1 APC and both

10μM MBPAc1-9 and pMOG35-55, or 10μM MBPAc1-9 alone. B) Proliferation was measured at 96

hours by 3H-thymidine incorporation. C) Quantification of suppression. D) Measurement of IL-2 by

ELISA at 48 hours of culture. E) Quantification of IL-2 reduction. Data are from one of two

experiments giving consistent results.
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Figure 3.9 Tg4 iTreg are also able to suppress in the absence of cognate antigen
A) Experimental scheme. Tg4 iTreg were co-cultured with naïve 2D2 cells with F1 APC and both

10μM MBPAc1-9 and pMOG35-55 or 10μM pMOG35-55 alone. B) Proliferation as assessed by

incorporation of 3H-thymidine. C) Summary of proliferation data. D) IL-2 production at 48 hours as

measured by ELISA. E) Summary of IL-2 data. Data are from one of three experiments giving

consistent results.
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Figure 3.10 Peptide affinity for MHC does not affect iTreg suppression
A) Experimental scheme. Tg4 iTreg were cultured with naïve Tg4 CD4+ cells with F1 APC and

either wild-type MBPAc1-9 (4Lys) or the altered peptide ligand, MBPAc1-9 (4Tyr). B) Proliferation

at 96 hours as measured by 3H-thymidine incorporation. C) Quantification of suppression. D) IL-2

production measured at 48 hours by ELISA. E) Quantification of the reduction in IL-2. Data are

shown from a single experiment.
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Figure 3.11 The suppressive effect of iTreg is only evident at 96 hours of co-culture.
A) Tg4xFoxp3LuciDTR-4 iTreg were cultured with naïve Tg4 CD4+ cells, irradiated CD4- cells as

APC, and 10μM MBPAc1-9. 3H-thymidine was added immediately, or after one, two, or three days

of culture. Plates were then harvested 16-18 hours after thymidine addition. B) Plots

demonstrating kinetics of cell proliferation at varying ratios of Treg:naïve cells. C) Naïve CD4+ cells

were activated for 5 days with anti-CD3 and anti-CD28, then co-cultured with fresh naïve CD4+

cells . 3H-thymidine was added immediately, or after one, two, or three days of culture. Plates were

then harvested 16-18 hours after 3H-thymidine addition. AC = activated cells. Data are shown from

a single experiment.
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Fig 3.12 iTreg suppress proliferation by some naïve cells; many ‘non-proliferating’

naïve cells are not viable.
Naïve CD4+ cells were labelled with CFSE and co-cultured with iTreg and 10 μM MBPAc1-9 at the

indicated ratios for A) 72 and B) 96 hours. CFSE profiles are shown gated on live CD4+ cells, with

numbers indicating the percentage of cells with no reduction in CFSE dilution compared to

unstimulated cells. B) CFSE profiles from stimulated naïve cells at a 1:1 ratio with iTreg at 96

hours, gated on all CD4+ cells or just live CD4+ cells. Data are shown from a single experiment.
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Figure 3.13  iTreg can be depleted in vitro.  Suppression does not require 

persistence of iTreg
A) Tg4xFoxp3LuciDTR-4 iTreg were generated over 5 days then resuspended in medium

containing 0-600ng/ml of diphtheria toxin. Representative flow cytometry plots gated on CD4+

cells after 24 and 48 hours in medium containing DTX at the indicated concentrations. B) Cells

were counted and analysed by flow cytometry for Foxp3 expression. C) Tg4xFoxp3LuciDTR-4

iTreg were cultured with naïve Tg4 cells and 10μM MBPAc1-9 with the addition of DTX at the

onset of culture, or after 24 or 48 hours. Quantitative results of suppression of proliferation are

shown. Representative of four experiments. D) Naïve Tg4 CD4+ cells were cultured with either

Tg4 Foxp3LuciDTR-4 iTreg or Tg4Ly5.1 iTreg, with the addition of DTX at the onset of culture.

Quantitative results of suppression are shown. Data are shown from a single experiment.
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Figure 3.14 Hypothetical model of iTreg suppression
A) The ‘traditional’ view ofiTreg suppression is that signaling through the TCR-MHC-peptide complex 

leads to suppression via Treg through a variety of mechanisms.  Data presented in this chapter show 

that iTreg suppression is dependent on a low-affinity interaction with the appropriate MHC on an APC.  

B) Whilst peptide presentation by the MHC leads to TCR stimulation and iTreg activation remains a 

prerequisite for iTreg induction, activated cells may form brief unstable complexes with the empty 

MHC.  Bidrectional signaling may then occur, triggering either release of suppressive cytokines (from 

either the APC or the iTreg themselves), or altering the conformation of the APC such that it is less 

likely to trigger a pro-inflammatory response e.g. removal of CD80/CD86, or interaction with CTLA-4.  

C)  If this weak interaction is prevented from occurring, or cannot occur due to MHC restriction, APC’s 

remain pro-inflammatory, and suppression does not take place.
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4 iTreg produce pro-inflammatory cytokines but this does not 

impact upon in vitro suppression 

 

4.1 Introduction 

 

A major hurdle for the future use of iTreg as a cellular therapy is their potential to lose 

expression of Foxp3 and convert to effector cells under the influence of pro-inflammatory 

cytokines.  If antigen-specific iTreg were infused into a patient, the possibility these could all 

rapidly convert to pathogenic effector cells and worsen disease would render this therapy a 

highly risky strategy, consigning it to ‘last-ditch’ therapeutic efforts rather than a mainstay of 

treatment.  How plausible is this ‘conversion’ to an effector phenotype? 

 

The defining feature of the iTreg used in this thesis is the presence of Foxp3 expression at 

the end of five days of culture in iTreg-generating conditions.  The expression of Foxp3 in 

murine T cells confers regulatory ability (Hori et al., 2003).  The loss of Foxp3 from iTreg 

has been noted previously (O’Connor et al., 2010) with factors influencing Foxp3 stability 

under ongoing investigation (Marie et al., 2005, Chen et al., 2011).  Cytokines released by 

iTreg may be used to mediate effects on target cells distant to the responding iTreg but may 

also have an autocrine effect and alter the iTreg itself.  Arguably the most important aspect 

of an iTreg is its expression of Foxp3.  Do iTreg maintain their own regulatory status when 

re-stimulated? 

 

An important paper addressing this issue (O’Connor et al., 2010) demonstrated that iTreg 

produce IFN-γ with an associated upregulation of Tbet.  Despite this, those iTreg remained 

suppressive both in vitro and in vivo in limiting the development of EAE, even when “re-

conditioned” with IL-12 to maximize IFN-γ production.  Transfer of high numbers of those 

IL-12-conditioned iTreg alone caused only mild short-lived disease.  This reduction in 

pathogenicity despite IFN-γ production was then potentially explicable by the revelation 

that, in EAE, the primary pathogenic cytokine causing disease appears to be GM-CSF 

(Codarri et al., 2011). 

 

Is the cytokine profile of iTreg relevant?  One of the proposed differences between nTreg 

and iTreg is that of the mechanism of action.  nTreg have been demonstrated to suppress via 

cell-cell contact (Thornton et al., 1998, Nakamura et al., 2001) with a potential pivotal role 
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for CTLA-4 (Sakaguchi et al., 2004).  Other reports have postulated roles for soluble 

mediators such as IL-10 (Annacker et al., 2001), IL-35 (Collison et al., 2007) and TGF-β 

(Huber et al., 2004). The mechanisms of iTreg suppression are similarly ill-defined.  Though 

a majority view is that iTreg exert their suppression (at least in vivo) mainly through the 

action of soluble cytokines, especially IL-10 (Nguyen et al., 2011), the exact mechanisms are 

controversial (Yamagiwa et al., 2001).  Some groups have demonstrated that cell contact is 

not necessary for iTreg action (Maganto-Garcia et al., 2011), whilst others have shown a 

requirement for this for iTreg suppression (Chen et al., 2003, Zhang et al., 2009).  Thus the 

role of soluble mediators is not yet established. 

 

One explanation for some of these conflicting results is the role of TGF-β, which has been 

implicated in suppression by both nTreg (Peng et al., 2004) and iTreg (Li et al., 2006a).  The 

difficulty in distinguishing between the effects of membrane-bound and free TGF-β has 

complicated investigation, but may explain how cell contact is necessary to exert 

suppression via what might be considered a soluble factor.  The ability of Treg to release 

large amounts of TGF-β, or indeed to signal via TGF-β which remains membrane-bound, is 

still a subject of debate (Piccirillo et al., 2002, Nakamura et al., 2001).    

 

The previous chapter demonstrated that, in vitro, the ongoing presence of iTreg was not 

required beyond 24 hours, but the effects of suppression were not seen until 72 hours or 

greater.  Interaction with APC appeared necessary and this appeared to be MHC-restricted.  

The influence of a soluble factor may be responsible for these effects. 

 

 

4.1.1 Experimental aims 

 

This chapter thus concentrates on determining the nature of cytokines that are produced by 

iTreg, and how these may be influenced by the surrounding cytokine milieu.  Further 

experiments aimed to establish the impact of these cytokines on the ability of iTreg to 

suppress in vitro.  
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4.1.2 Experimental approach 

 

Following iTreg generation, cells were sorted by FACS on the basis of Foxp3gfp expression 

to ensure highly pure iTreg populations (routinely >99%).  These iTreg were then re-

stimulated in vitro, either using plate-bound anti-CD3 and anti-CD28 where Foxp3gfp mice 

were used, or MBPAc1-9 and irradiated APC in those experiments using cells from 

Tg4xFoxp3LuciDTR-4 mice.  Cytokine production by iTreg was initially screened using 

cytokine bead arrays then the cytokines of interest were further analysed via a combination 

of ELISA and intracellular cytokine staining. 
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4.2 Results 

 

4.2.1 Foxp3 expression by iTreg is not stable 

 

Whilst performing the suppression assays detailed in chapter 3, flow cytometry of cells at the 

end of the assay had demonstrated very few Foxp3
+
 cells, implying either death of the iTreg 

or loss of Foxp3 [data not shown].  Though a considerable number of cells seemed non-

viable on trypan blue exclusion, there was still an appreciable proportion surviving that did 

not express Foxp3.  In order to investigate the relative stability of the iTreg generated, cells 

were re-sorted at the end of iTreg culture on the basis of Foxp3gfp expression to ensure a 

pure population of Foxp3
+
 iTreg and then re-stimulated with plate-bound anti-CD3 and anti-

CD28 for 72 hours (Fig 4.1.A).  Viability of cells could be assessed using a fixable live/dead 

stain as described in Chapter 2 (2.8.2).  Cells were then permeabilised and stained for Foxp3.   

 

4.2.1.1 TGF-β improves iTreg stability and survival 

 

To assess the contribution of cytokines relevant to the initial generation of iTreg, 100U/ml 

IL-2 with or without 5ng/ml TGF-β was also added to some wells at the time of re-

stimulation.  The survival of the iTreg on re-stimulation was generally poor.  Only 6% of 

cells were alive after re-stimulation in medium alone, whilst more than ⅔ of the surviving 

CD4
+
 iTreg had lost Foxp3 expression within 72 hours (Fig 4.1B).  The addition of 100U/ml 

IL-2 did not affect the stability of Foxp3 in these stimulated iTreg (in contrast to previous 

reports in vivo (Chen et al., 2011)), nor did it affect survival.  In contrast, the addition of 

TGF-β to the re-stimulation culture had a marked effect both on the maintenance of Foxp3 

expression but also on the survival of these cells (Fig 4.1C) with the cumulative effect that 

the number of Foxp3
+
 cells remaining at the end of culture was greatly enhanced.   The 

combination of IL-2 and TGF-β was significantly more effective in promoting cell survival 

compared to medium alone, consistent with the absolute requirement that Treg have for IL-2.  

TGF-β is well recognised as being essential for the initial development of iTreg (Chen et al., 

2003).  In the in vivo setting it is unlikely that iTreg would develop or be maintained without 

sufficient TGF-β in the surrounding milieu. 
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4.2.2 Cytokine production by iTreg 

 

So the cytokine milieu is able to influence Foxp3 expression and iTreg survival.  How do the 

iTreg themselves contribute to this mix?  The demonstration that iTreg produced IFN-γ 

proved they were capable of production of cytokines traditionally considered pro-

inflammatory.  Occurring at the time of these experiments was the recognition that GM-CSF 

was a major pro-inflammatory influence in the development of EAE and therefore had a 

pathogenic role as well (Codarri et al., 2011).   

 

In order to determine what other cytokines were produced by iTreg, supernatants from a 

standard suppression assay of iTreg, naïve CD4
+
 cells, and the two together at a 1:1 ratio 

were interrogated by flow cytokine bead arrays [kindly performed by Dr Richard O’Connor] 

(Fig 4.2A).   This confirmed the production of IFN-γ, but also identified GM-CSF as being 

produced by iTreg.   Subsequent bead arrays of iTreg supernatant also identified TNF 

production [data not shown].  Previous assays performed within the laboratory had 

confirmed that nTreg produced neither GM-CSF nor TNF in appreciable quantities.   

 

4.2.2.1 iTreg produce IFN-γ, GM-CSF and TNF 

 

The cytokine bead arrays were performed on supernatants from suppression assays.  The 

culture conditions included irradiated cells as APC that could feasibly be the source of the 

pro-inflammatory cytokines.  To ensure that cytokine detection was truly from iTreg, 

Foxp3gfp mice were used to generate iTreg.  At the end of iTreg culture, cells were sorted 

by FACS for Foxp3gfp
+
 expression to a high purity (Fig 4.2B).  These highly pure iTreg 

were re-stimulated using plate-bound anti-CD3 and anti-CD28 at 2μg/ml in medium alone 

(Fig 4.2B). After three days in culture, cells were further stimulated with PMA and 

ionomycin in the presence of brefeldin A for a further four hours to ensure maximal cytokine 

production, as described (2.8.4).  Cells were then permeabilised and stained for Foxp3 

expression and intracellular cytokine production. 

 

After 72 hours of culture, iTreg had lost Foxp3 expression in the majority of cells, as seen 

previously (Fig 4.1B, 4.2C).  The intracellular staining confirmed the cytokine bead array 

data.  IFN-γ was produced by approximately 30-40% of cells by both Foxp3
+ 

and Foxp3
-
 

cells.  Staining was of a greater intensity within the Foxp3
-
 population however.  GM-CSF 

was produced in a very similar fashion with both Foxp3
+ 

and Foxp3
-
 cells contributing but 



 110 

again with a higher number and greater intensity of staining seen in Foxp3
-
 cells.  TNF 

production was extremely marked with almost all cells showing some expression.  Very little 

difference between Foxp3
+ 

and Foxp3
-
 cells was evident in the proportion producing TNF.  

lL-17 production could not be detected, consistent with previous reports [data not shown] 

(O’Connor et al., 2010).   Though production of TNF was seen in virtually all cells, 

production of GM-CSF and IFN-γ was more restricted.  Of the iTreg producing GM-CSF, 

approximately half of them were also producing IFN-γ (Fig 4.2D).  Thus, approximately 

25% of the cells were producing all three cytokines following stimulation with PMA and 

ionomcyin. 

 

Therefore, these iTreg with proven suppressive capacity in in vitro culture (Fig 3.2) were 

producing three cytokines that are all considered to be pro-inflammatory.   

 

4.2.2.2 Pro-inflammatory cytokines are produced during primary iTreg 

generation 

 

In the experiments above, most cytokine expression was by the Foxp3
-
 cells (with the 

exception of TNF).  It was conceivable that iTreg do not produce any of these cytokines 

whilst expressing Foxp3
 
and that it was only on re-stimulation - with the associated loss of 

Foxp3 expression - that this occurs.  To clarify, cytokine production by iTreg was 

investigated during their generation. 

 

Foxp3gfp
-
 CD4

+ 
cells were cultured for five days with plate-bound anti-CD3, anti-CD28, IL-

2, and TGF-β, in standard iTreg conditions.  On each day, cells were permeabilised and 

stained for Foxp3 expression.  At the same timepoints, supernatants were sampled for 

quantification of TNF, GM-CSF and IFN-γ by ELISA.   

 

Upregulation of Foxp3 expression occurred rapidly, with almost 30% of cells expressing 

Foxp3 after only 48 hours in culture (Fig 4.3A). By 72-96 hours, almost full conversion to an 

iTreg phenotype had occurred but importantly this was also maintained at a high level to the 

end of the culture at day five.  This implies that any cytokine production between these 

timepoints was from cells expressing Foxp3. 

 

The production of all three cytokines measured followed an upward trend from day three 

onwards (Fig 4.3B) when nearly all cells were Foxp3
+
, strongly suggesting it was the iTreg 
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responsible for production.  Thus iTreg were producing a variety of pro-inflammatory 

cytokines whilst co-expressing Foxp3.  To further confirm this, cells were taken at the end of 

iTreg culture (day five) and stained for intracellular cytokines.  Production of IFN-γ, GM-

CSF and TNF was evident from the Foxp3
+
 population (Fig 4.3C). 

 

4.2.2.3 Cytokine production by iTreg during secondary stimulation 

 

Whilst demonstration of cytokine expression by flow cytometry confirms the production by 

the iTreg population, it cannot quantify the levels being produced, or whether they are 

related to T cell stimulation.  To clarify the above, sorted Tg4xFoxp3LuciDTR-4 Foxp3
+ 

iTreg were cultured with irradiated splenocytes in the presence of varying concentrations of 

MBPAc1-9 from 100μM to 0.3μM.  After 48 hours, supernatants were then analysed by 

ELISA for the production of IFN-γ, GM-CSF, and TNF.   

 

iTreg responded to peptide stimulation with the production of all three cytokines analysed 

(Fig 4.4).  Production of IFN-γ was in the 1-10ng/ml range across experiments.  Far more 

potent stimulation using the altered peptide ligand, MBPAc1-9 (4Tyr), at a range of 

concentrations did not lead to greater quantities detectable of IFN-γ [data not shown].  

Conversely GM-CSF was strongly produced at low levels of antigen stimulation such that 

10μM was sufficient to reach the upper limit of detection by ELISA, 500pg/ml.  TNF 

production also demonstrated a clear dose response with no evidence of a maximal amount 

reached, even at very high levels of stimulation (100μM).   

 

Thus iTreg are capable of producing these pro-inflammatory cytokines on encounter with 

antigen in vitro.   

 

4.2.3 Cytokine production by iTreg in in vitro suppression assays 

 

Having established that the iTreg do produce IFN-γ, GM-CSF and TNF, the next logical step 

was to determine whether the cytokine profile of iTreg had any influence on their ability to 

suppress naïve T cell responses to peptide stimulation.  Utilising the in vitro suppression 

assays first visited in Chapter 3, the production of cytokines was assessed by ELISA.  The 

relative contribution of naïve T cells and iTreg to the cytokine production was discerned 

using conditions with either naïve T cells or iTreg alone.  Further extending the use of the in 

vitro system from chapter 3, utilizing the two transgenic strains with different TCR 
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reactivities allowed the TCR of naïve T cells to be stimulated without further stimulation of 

the iTreg.  In this manner, it was possible to distinguish the relative contributions of naïve T 

cells and iTreg by comparing the cytokine production between assays where both cell types 

were stimulated, or just the naïve T cells.  

 

4.2.3.1 IFN-γ is produced by iTreg 

 

IFN-γ was produced by iTreg in the 0.5-1ng/ml range in the in vitro suppression assays.  The 

reduction in IFN-γ concentration as the proportion of iTreg was decreased strongly 

suggested that the iTreg were the main source (Fig 4.5A).  Naïve T cells alone produced 

undetectable levels of IFN-γ.  This may relate to the low level of cells (2x10
4
 cells per well) 

or that at 72 hours, production was only just commencing from naïve T cells.   

 

4.2.3.2 TNF production is not specific to iTreg 

 

TNF production was also analysed at 72 hours.  Consistent with the intracellular cytokine 

staining data, iTreg and naïve T cells produced roughly equivalent amounts of TNF when 

cultured alone or in co-culture, with no evidence of an increase or decrease in concentration 

as iTreg numbers dwindled (Fig 4.5B). 

 

4.2.3.3 GM-CSF production by iTreg occurs early in in vitro suppression 

 

Given the recent importance attached to GM-CSF as a key pro-inflammatory cytokine in 

EAE (El-Behi et al., 2011), GM-CSF production was investigated in greater detail.  Sorted 

Tg4xFoxp3LuciDTR-4 iTreg were co-cultured with naïve Tg4 CD4
+
 cells with irradiated 

APC and 10μM MBPAc1-9.  After 24, 48, 72, and 96 hours of culture, levels of GM-CSF 

were analysed by ELISA. At 48 hours, iTreg were producing greater quantities of GM-CSF 

than naïve T cells, an effect borne out by the reduction in concentration seen as iTreg were 

diluted out of the co-culture (Fig 4.5C).  After 72 hours of culture, the situation was 

reversed; naïve T cells were now producing greater quantities of GM-CSF than iTreg, with 

no distinguishable impact of co-culture at any ratio of iTreg (Fig 4.5D). Production of GM-

CSF thus appeared to ‘switch’ from iTreg at the beginning of culture to the naive T cells at 

the later time points.  Levels of GM-CSF at 24 hours were very similar to 48 hours, whilst 

levels at 96 hours were similar to 72 hours [data not shown]. 
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4.2.3.4 IFN-γ production by iTreg was independent of ongoing TCR stimulation 

 

Naïve 2D2 CD4
+
 cells were co-cultured with Tg4 iTreg and stimulated with pMOG35-55 with, 

or without, Tg4 iTreg cognate antigen (MBPAc1-9).  The absence of iTreg stimulation did 

not particularly impact upon the pattern of production (Fig 4.6A,B).  Notably, production of 

IFN-γ by either iTreg alone and unstimulated cells was similar regardless of whether one or 

both antigens were present.  This suggests that the IFN-γ production was not related to 

ongoing stimulation by iTreg antigen (where present), but rather that it was a residual 

response to the initial TCR stimulation required for iTreg generation. 

 

4.2.3.5 GM-CSF production by iTreg required ongoing TCR stimulation 

 

To compare the need for ongoing TCR stimulaton for IFN-γ production with GM-CSF 

production, Tg4xFoxp3LuciDTR-4 iTreg were co-cultured with naïve OT-II CD4
+
 cells in 

the presence of both MBPAc1-9 and pOVA323-339 or with pOVA323-339 alone.   iTreg alone 

produced similar quantities of GM-CSF after 48 hours to that seen in the direct suppression 

assay (Fig 4.6C) whilst naïve OT-II T cells had undetectable production.  Again, the level of 

GM-CSF in co-culture reduced with fewer iTreg.  Culture in the absence of MBPAc1-9 

completely removed GM-CSF production within the range detectable (lower limit of ELISA 

4pg/ml) (Fig 4.6D).  Why GM-CSF production was absent from naïve OT-II T cells but 

present when naïve Tg4 T cells were used is unclear, and cannot be ascertained from the data 

available.  Thus GM-CSF was produced by iTreg only when they received ongoing TCR 

stimulation, in contrast to IFN-γ production. 

 

Neither IL-10 nor TGF-β could be detected using commercially available ELISA kits [data 

not shown].  Further attempts to assess TGF-β using cytokine bead arrays were also 

unsuccessful [data not shown].    There is not yet a commercially available means to reliably 

distinguish IL-35 production, either by ELISA or by flow cytometry, and so this cytokine 

was not investigated. 
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4.2.4 Cytokines and suppression 

 

4.2.4.1 IFN-γ and suppression 

 

Production of IFN-γ by iTreg regardless of the presence of ongoing TCR stimulation (Fig 

4.6B) may suggest a role for IFN-γ in suppression.  To assess this, three approaches were 

taken: supplementation with, or blockade of, IFN-γ, and the use of IFNγ
-/-

 iTreg.  

Tg4Foxp3LuciDTR-4 iTreg were co-cultured with naïve Tg4 CD4
+ 

cells.  The addition of 

100ng/ml IFN-γ to the culture medium appeared to reduce 
3
H-thymidine incorporation of 

naïve cells (Fig 4.7A) but after this effect was taken into account, no significant effect on 

suppressive activity was evident (Fig 4.7B).  Addition of anti-IFN-γ at 10ng/ml to 

suppression assays did not significantly alter the 
3
H-thymidine incorporation in naïve cells 

(Fig 4.7C) and the suppressive capacity of iTreg was again unaffected (Fig 4.7D).  

Furthermore, Tg4 IFN-γ 
-/-

 iTreg were able to suppress as efficiently as Tg4 IFN-γ 
+/+

 iTreg 

(Fig 4.7E, F).  There was therefore no apparent role for IFN-γ in this model of in vitro 

suppression.  

 

4.2.4.2 GM-CSF and suppression 

 

The presence of GM-CSF boosted the incorporation of 
3
H-thymidine by naïve cells 

significantly (Fig 4.8A), whereas anti-GM-CSF had the reverse effect (Fig 4.8C).  However, 

naïve cells were equally suppressed regardless of the presence of additional GM-CSF (Fig 

4.8B), or anti-GM-CSF (Fig 4.8D) demonstrating that not only is GM-CSF production 

unlikely to mediate suppression, but also that more responsive cells are not more resistant to 

suppression (as previously investigated in 3.2.3.5).  Various concentrations of GM-CSF were 

tested to assess whether there was a dose-response effect but suppressive capacity was 

equivalent across all concentrations tested [data not shown].  So despite the evident 

production of GM-CSF by iTreg on re-stimulation, there did not appear to be any evidence 

of effect in in vitro suppression.   

 

4.2.4.3 TNF and suppression 

 

Given the approximately equal production of TNF by iTreg and naïve cells as measured by 

ELISA, it was unlikely that TNF would contribute significantly to suppression.  Addition of 

anti-TNF at 1μg/ml to suppression assays had no impact on 
3
H-thymidine incorporation by 
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either iTreg or naïve cells (Fig 4.9A), nor was there an effect on suppressive capacity (Fig 

4.9B). 

 

4.2.4.4 IL-10 and TGF-β and suppression 

 

Despite the production of the pro-inflammatory cytokines IFN-γ, GM-CSF, and TNF, iTreg 

remained suppressive and neutralization of these cytokines did not impact at all upon 

suppression in vitro.  Though unable to detect either IL-10 or TGF-β by ELISA, these 

cytokines could be contributing to suppressive function. 

 

To determine the effect of IL-10 potentially produced by the iTreg, suppression assays were 

performed in the presence or absence of 25μg/ml anti-IL-10R.  No effect on the 

incorporation of 
3
H-thymidine by either iTreg or naïve cells was evident (Fig 4.10A) nor was 

there any significant difference between the two groups (Fig 4.10B).  

 

TGF-β can be either free or membrane bound (Miyazono et al., 1993), so using neutralizing 

anti-TGF-β may not prevent signaling through the TGF-β receptors where cell contact is 

required.  As an alternative, TGF-β signaling can be blocked by inhibiting activin receptor-

like kinase (ALK)5 (a domain of the Type I TGF-β receptor) (Callahan et al., 2002).  To 

confirm the functionality of the ALK5 inhibitor, SB431542 (Imman et al., 2002), naïve 

Tg4xFoxp3LuciDTR-4 CD4
+ 

Foxp3gfp
-
 cells were cultured in IL-2 and TGF-β as per the 

standard iTreg generation protocol.  After two days, Foxp3
+
 expression was over 40% in the 

control wells containing vehicle (DMSO), but effective inhibition of Foxp3 expression was 

apparent using 10μM of SB431542 (Fig 4.11A).  At the end of the iTreg culture, nearly all 

cells were Foxp3
+
 in the absence of the inhibitor, whilst only a small proportion (<10%) had 

any degree of Foxp3 staining in the treated wells.  Thus, SB431542 effectively prevented 

functional TGF-β signaling from generating iTreg. 

 

Suppression assays were then carried out with the addition of either DMSO (as a vehicle 

control) or 10μM SB431542 to all wells.  No effect on the incorporation of 
3
H-thymidine by 

either naïve cells or iTreg alone was seen (Fig 4.11B), but suppression was less effective in 

the ALK5 inhibited group, with loss of a suppressive effect at a higher ratio of iTreg:naïve 

cells (Fig 4.11C).  Measurement of IL-2 showed that production of IL-2 was greater by naïve 

cells in the treated wells (Fig 4.11D) with the reduction in IL-2 concentration mirroring the 

suppressive pattern (Fig 4.11E).  The reduced efficacy of suppression may be due to the 
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greater production of IL-2 by naïve cells, implying that there may be no direct requirement 

for iTreg-derived TGF-β other than its effect on IL-2. 

 

To further clarify the role of TGF-β, the inhibitor was added at the onset of the suppression 

assay, or at 24 and 48 hours.  Inhibition of TGF-β signaling from the onset of culture 

reduced the ability of iTreg to suppress the incorporation of 
3
H-thymidine as seen previously 

(Fig 4.11B, Fig 4.12A).  This effect was lost if addition of SB431542 was delayed until 24 

hours into the co-culture, when suppression by iTreg was as effective as in cultures without 

the inhibitor (Fig 4.12B).  This kinetic is similar to that seen in Chapter 3 with the depletion 

of iTreg using diphtheria toxin (Fig 3.13) and implies that, whilst TGF-β signaling by iTreg 

is very important early in in vitro suppression, both are dispensable beyond 24 hours.  This 

hints at an immediate effect in the co-culture system that persists beyond the removal of the 

iTreg or the signaling mechanism that initiated this change.   

 

4.2.5 In vitro suppression of effector T cells by iTreg 

 

Having demonstrated that iTreg are efficient at suppressing naïve cells (
3
H-thymidine 

incorporation and IL-2 production), it was essential to determine whether this was also true 

for cells already differentiated towards an effector phenotype (as described in 2.6.5).  Naïve 

CD4
+
 Tg4 cells were cultured in vitro for 3-5 days in appropriate cytokine cocktails to 

polarise them towards a Th1, Th2, or Th17 phenotype, or towards GM-CSF secreting T cells 

(so-called ‘ThGM-CSF’, (Codarri et al., 2011).  The production of IFN-γ, IL-17 and GM-

CSF by Th1, Th17 and ThGM-CSF was assessed by intracellular staining for flow 

cytometry, and ELISA of supernatants.  The production of IL-4 and IL-13 by Th2 cells was 

assessed by ELISA alone.  Polarised cells were then co-cultured with iTreg at the same 

proportions as naïve cells and 
3
H-thymidine incorporation assessed at 96 hours (Fig 4.13A).  

Suppression of the incorporation of 
3
H-thymidine was evident for naïve cells as seen 

previously.  Th1, Th2, and Th17 polarisation did not affect the absolute ability of iTreg to 

suppress though in all cases this was less efficient at lower ratios of Treg:responder cell than 

with naïve responders (Fig 4.13B).  Incorporation of 
3
H-thymidine by ‘ThGM-CSF’ cells 

was unaffected by the presence of iTreg, even at a high Treg:ThGMCSF ratio.   

 

As one of the hallmarks of effector T cell differentiation is the production of certain 

‘signature’ cytokines, the ability of iTreg to impact on these was also investigated.  

Supernatants from suppression assays at 72 hours were analysed by ELISA (Fig 4.14).  The 
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production of IFN-γ by Th1 cells was not suppressed (Fig 4.14A), nor was the production of 

IL-17 by Th17 cells (Fig 4.14B) or GM-CSF by ThGM-CSF (Fig 4.14D).  IL-13 production 

by Th2 cells was also unaffected.  The only cytokine obviously suppressed by iTreg was IL-

4 production by Th2 cells (Fig 4.14C).  This has potential implications for the optimal usage 

of iTreg in therapeutic applications.  One important caveat is that in both the IFN-γ and GM-

CSF ELISA, multiple wells contained cytokine concentrations in excess of the maximum 

detectable.  The production of IFN-γ by naïve cells alone fell within the range detectable in 

some wells, so it is likely that the absence of suppression of IFN-γ is a true finding.  The 

production of GM-CSF by naïve cells alone exceeded the level detectable except where 

Treg:ThGMCSF was 1:1.  It is feasible that a suppressive pattern may have been seen if the 

true concentrations could be determined.  The observed absence of suppression of 
3
H-

thymidine incorporation by ThGM-CSF makes this less likely.  
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4.3 Discussion 

 

4.3.1 iTreg stability and cytokine influence 

 

This chapter begins by examining the stability of the Foxp3
+
 iTreg generated in this thesis.  

These iTreg were shown to rapidly lose Foxp3 expression on TCR re-stimulation with anti-

CD3 and anti-CD28, but this effect was reduced in the presence of TGF-β.  Importantly, cell 

survival was also enhanced in the presence of TGF-β such that the overall number of Foxp3
+
 

cells was markedly increased (Fig 4.1C).   This stabilizing effect of TGF-β has been 

described (Selvaraj et al., 2007, Marie et al., 2005) though the beneficial effect on cell 

survival was not highlighted.  Re-stimulation with antigen has also been shown to hasten 

loss of Foxp3 expression in vivo though IL-2 signaling was proposed to influence Foxp3 

stability (Chen et al., 2011).  In these in vitro experiments, IL-2 alone was insufficient to 

maintain Foxp3 expression when cells were re-stimulated, showing no demonstrable 

improvement over unsupplemented medium.  The loss in Foxp3 expression was rapid with 

only 30% of sorted iTreg remaining Foxp3
+
 after 72 hours of culture, unless TGF-β was 

present.   

 

Epigenetic modifications have a significant effect on the stability of Foxp3 expression.  

Notably the Treg-specific demethylation region (TSDR) is completely demethylated in 

nTreg but has variable methylation in iTreg.  In iTreg generated in the presence of TGF-β 

and anti-CD3 (i.e. a similar protocol to the one used here), the TSDR was almost fully 

methylated (Lal et al., 2009).  An alternate means of iTreg generation in the absence of any 

pro-inflammatory signals showed almost complete demethylation and much greater stability 

of Foxp3 expression (Polansky et al., 2008).  The epigenetic modifications of the iTreg 

generated in this thesis were not analysed, but this is an area currently undergoing 

investigation.   

 

One group found that iTreg rapidly lost Foxp3 expression in an in vivo model of GVHD 

(Beres et al., 2010).  Those iTreg were generated using a three day protocol with 60-70% 

Foxp3 expression at the end of culture, but the iTreg produced no IFN-γ at the end of 

primary generation.  The infused iTreg did not persist in vivo beyond 14 days but did convert 

to a Foxp3
-
 IFN-γ

+
 phenotype.  Despite describing these cells as pro-inflammatory, they 

were unable to provoke GVH disease when infused alone.  That same group also 

investigated the role of retinoic acid in iTreg generation and found no positive effect on the 
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maintenance of Foxp3 expression in vivo, or impact on conversion to IFN-γ production.  The 

absence of effect in that model was presumed due to the magnitude of inflammation caused 

by total body irradiation. IL-6 was suggested as a factor reducing Foxp3 stability, and the 

addition of anti-IL-6 appeared to promote iTreg induction in vivo.  

 

A second group also demonstrated rapid loss of Foxp3 expression and inability to prevent 

murine GVHD (Koenecke et al., 2009) though the iTreg generation protocol used a novel 

method of ‘cluster disrupted’ dendritic cells, with Foxp3 expression in only 12% of CD4
+
 T 

cells at the end of six days culture.  Given the low yield and long culture (despite the 

presence of RA as well), it is questionable how similar those ‘iTreg’ are to these generated 

herein. 

 

The inability of iTreg to persist in vivo suggested a relatively short lifespan (Selvaraj et al., 

2007) though a subset of those iTreg persisted, maintained their Foxp3 expression, and 

appeared to migrate to the bone marrow.  On investigating the iTreg generated in this thesis, 

donor Treg accounted for 2-3% of the CD4
+
 population within the bone marrow though 

Foxp3 expression was not analysed [data not shown].  This implies that there are functional 

similarities between these iTreg and those described by other researchers. 

 

In any iTreg investigation, the protocol used to induce expression of Foxp3 is likely to 

highly influence the cells that are subsequently produced.  Though it is generally accepted 

that sub-optimal co-stimulation through the TCR in the presence of IL-2 and TGF-β leads to 

iTreg generation, the exact concentrations used vary between almost every laboratory.  This 

is an important caveat when comparing the behaviour of the iTreg generated here to those of 

other groups.  The very high induction level of Foxp3 after as little as 72 hours compares 

favourably to that reported in the original description of the protocol used (Davidson et al.  

2007), but the rapid loss of Foxp3 following the removal of TGF-β suggests this may be at 

the expense of stability.  

 

4.3.2 Cytokine Production by iTreg 

 

The ability of iTreg to produce pro-inflammatory cytokines obviously has significant 

therapeutic implications.  The assumption is that a cell producing such mediators must 

therefore contribute to the ongoing pathology.  That this is not always true can be seen in 
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some clinical scenarios e.g. the worsening of MS in a subset of patients on anti-TNF 

medication (Lenercept MS Study Group, 1999).  

 

4.3.2.1 The role of IFN-γ in suppression 

  

The iTreg generated here were capable of IFN-γ production, which was evident during their 

primary generation (Fig 4.3B).  Re-stimulation with antigen produced IFN-γ in the 5-

20ng/ml range (Fig 4.4) whilst production appeared to be completely dispensable in the 

suppression of 
3
H-thymidine incorporation and reduction in IL-2 concentration.  IFN-γ 

-/-
 

iTreg were functionally equivalent to IFN-γ replete iTreg in vitro. 

 

That iTreg were capable of pro-inflammatory cytokine production as IFN-γ was 

demonstrated initially on in vitro secondary stimulation of iTreg (O’Connor et al., 2010), and 

subsequently confirmed as occurring during initial iTreg generation as well.   The production 

of IFN-γ was associated with upregulation of Tbet, though this did not occur in IFN-γ 

deficient iTreg unless an additional source of IFN-γ was provided.   Despite their production 

of IFN-γ, those iTreg were still suppressive in in vitro co-culture with naïve T cells, and in 

an in vivo model of EAE involving the transfer of naïve myelin-responsive Tg4 cells (though 

they could not suppress a passive model of EAE whereby transfer of polarised Tg4 Th1 cells 

caused disease).   Importantly, the iTreg were not as pathogenic as effector cells in the same 

model when transferred alone, requiring much higher numbers and producing only mild 

disease.  The lack of pathogenicity of the IFN-γ producing ‘Treg’ has now been shown in 

several reports.  Indeed, a necessity for IFN-γ to exert suppressive function has also been 

reported (Sawitzki et al., 2005) with anti-IFN-γ treatment leading to a rapid rejection of skin 

grafts in tolerised mice with circulating alloantigen specific Treg.  A similar graft loss was 

seen using IFN-γ deficient mice implying that IFN-γ production plays a vital role in 

maintaining graft tolerance.    

 

Other evidence for an anti-inflammatory role for IFN-γ has been suggested by an 

immunoregulatory effect at low concentration (Flaishon et al., 2002) and the impact of 

STAT1 deficiency (through which IFN-γ signals) in reducing the nTreg population 

(Nishibori et al., 2004).  A different group demonstrated that the development of iTreg (or 

adaptive Treg) was enhanced in the absence of IFN-γ, particularly if autocrine secretion was 

abrogated (Chang et al., 2009).  The induction of Treg in wild-type mice was very poor 
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there, however (only 8%).  Those same authors did not demonstrate the abnormality in the 

nTreg population.   

 

IFN-γ
+ 

Treg have also been reported in the clinical setting, and related to regulatory function 

(Daniel et al., 2008) as higher numbers were identified in post-renal transplant patients with 

good graft function than in those with poor graft function.  Similarly, suppressive IFN-γ
+
 

Treg have been identified in patients with autoimmune diabetes mellitus (McClymont et al., 

2011) and identified as adaptive Treg. 

 

Thus, the production of IFN-γ by Treg is not in doubt, though whether it is crucial for 

suppression seems controversial.  The data presented here confirm the production of IFN-γ 

both during initial iTreg generation (Fig 4.3) and on re-stimulation (Fig 4.4).  The quantities 

of IFN-γ produced on re-stimulation are an order of magnitude lower than produced by 

polarised Th1 cells (Fig 4.14A) and may influence the regulatory effect of ‘low-dose’ IFN-γ 

(Flaishon et al., 2002).  However, in the in vitro system examined, the effects of IFN-γ did 

not appear relevant.   Supplementing the low concentration of IFN-γ to 100ng/ml had no 

effect on the suppression of 
3
H-thymidine incorporation, nor did neutralization of IFN-γ 

through the use of antibodies (Fig 4.7).  More convincingly, iTreg generated from IFN-γ 
-/-

 

mice were as suppressive as iTreg from IFN-γ replete mice.  Clearly IFN-γ is dispensable in 

this assay tested, but may have a relevance in other models.   

 

4.3.2.2 The role of TNF in suppression 

 

The production of TNF by iTreg has also convincingly been shown.  Stimulation in vitro 

with PMA and ionomycin led to over 80% of cells staining positive for TNF (Fig 4.2C).  

Production was shown in primary generation (Fig 4.3B) while re-stimulation with cognate 

antigen also demonstrated TNF production (Fig 4.4) with no evidence of a maximal 

concentration even with high doses of antigen (up to 100μM).  Neutralisation of this TNF 

did not impact on the suppression of the incorporation of 
3
H-thymidine, nor did there appear 

to be any effect on the production of TNF by naïve T cells (Fig 4.5B, 4.9).  What reported 

role, if any, does TNF have in suppression by Treg? 

 

Production of TNF has been reported in the context of human Foxp3
+ 

cells producing pro-

inflammatory cytokines in patients with Chagas disease (de Araujo et al., 2012) though it is 

notable that those ‘Treg’ produced a wide variety of other cytokines, including IL-6.  A role 
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for TNF production by Treg has not been identified nor has it been extensively investigated, 

but multiple examples of Treg being influenced by TNF appear in the literature. 

 

As discussed in the introduction (section 1.4.6), TNF signals through two receptors, with 

expression of TNFR2 limited to lymphoid cells.  Expression of TNFR2 has been related to 

suppressive function (Chen et al., 2008).  Release of the TNFR2 receptor by nTreg has been 

suggested as a mechanism of suppression through binding free TNF and thereby limiting its 

pro-inflammatory potential (van Mierlo et al., 2008).  TNF has also been proposed as the 

mechanism by which the presence of effector cells is paradoxically beneficial to Treg 

function (Grinberg-Bleyer et al., 2010). 

 

Using TNFR2-deficient mice, TNF was shown to be necessary for in vivo suppression by 

nTreg of the development of colitis in RAG
-/-

 mice receiving wild-type effector cells 

(Housley et al., 2011).  In contrast, iTreg from TNFR2-deficient mice were able to suppress 

colitis as efficiently as wild type iTreg, implying that TNF signaling was redundant for this 

effect.  Of note, stimulation of the TNFR2 deficient nTreg in the presence of TGF-β (i.e. 

partially replicating the conditions needed for iTreg generation) restored their ability to 

suppress colitis.   

 

The converse has been suggested in humans, with TNF inhibiting in vitro nTreg (Valencia et 

al., 2006) and anti-TNF therapy leading to an increase in in vivo generated Treg (Nadkarni et 

al., 2007).  Treg from patients treated with anti-TNF antibody appeared to be more effective 

in suppressing Th17 responses through IL-6 inhibition than Treg from untreated patients (or 

healthy controls) (McGovern et al., 2012) though no effect was seen on Th1 responses, or in 

patients treated with the TNF receptor blocker, etanercept.  All of these reports are tempered 

by the difficulty in identifying and isolating human Treg, in which Foxp3 is not a definitive 

marker. 

 

Thus, TNF has a definite impact on Treg function, though its influence appears both positive 

and detrimental, depending on the circumstance and outcome measure.  The presence of 

TNFR2 on Treg implies that TNF would have a stimulatory function, whilst observed 

differences between nTreg and iTreg may reflect the different in vivo localizations of these 

cells.  Some of the conflicts in reports have been attributed to the quantity of TNF used in 

assays.  Removal of suppression by Treg was not seen at 5ng/ml but was present at 50ng/ml 

TNF (Ehrenstein et al., 2004).  In the re-stimulation experiments here (Fig 4.4), up to 
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300pg/ml of TNF were produced, suggesting the production of TNF by iTreg would have no 

impact on suppression.   

 

That TNF boosts and promotes nTreg in the murine system (Chen et al., 2007) may imply 

that the production of TNF by the generated iTreg is a means of promoting nTreg, thereby 

expanding the regulatory population at the site of inflammation. The absence of any 

differential effect between Foxp3
+ 

and Foxp3
-
 cells may simply reflect activation of the cells, 

with expression of Foxp3 per se not influencing TNF production.  

 

The above findings may also explain the lack of effect of anti-TNF in the in vitro 

suppression assay.  If the beneficial effect of TNF in vivo is to enhance the nTreg population, 

then the addition of antibody to an in vitro system lacking nTreg would be expected to show 

no effect.  Clearly, in these assays, nTreg play no role in the mediation of suppression but 

this is unlikely to be the case in vivo.  

  

Finally, TNF can be either soluble or in a transmembrane form (Black et al., 1997).  One 

study involving tolerogenic DC-driven Treg demonstrated that Treg responded to the 

transmembrane form but not soluble TNF (Kleijwegt et al., 2010).  This would further imply 

that the secretion of TNF by iTreg has no autocrine effect.  Whether nTreg would still show 

an expansion remains unknown.  Similarly, the very high secretion of TNF by iTreg may be 

sufficient to provoke the same response in the absence of the transmembrane form, as the 

TNFR2 binds with a lower affinity.   Investigating the presence of transmembrane TNF on 

iTreg and modulating the quantities of TNF in nTreg assays may clarify the role, if any, 

played by TNF in iTreg-mediated suppression. 

 

4.3.2.3 The role of GM-CSF in suppression 

 

The recent identification of GM-CSF as potentially the key pathogenic T-cell derived 

cytokine in EAE (Codarri et al., 2011) led to extensive investigation of the significance of 

GM-CSF in the in vitro iTreg suppression assay.  Initial experiments were designed to assess 

whether iTreg suppressed GM-CSF production by naïve T cells.  Instead they demonstrated 

that not only was suppression of GM-CSF absent (Fig 4.5C,D) but iTreg preceded naïve T 

cells in their GM-CSF production, with appreciable quantities after 48 hours of stimulation.  

Clarifying this, intracellular staining confirmed the production of GM-CSF by iTreg (Fig 

4.2), as did ELISA analysis during primary and secondary stimulation (Fig 4.3, 4.4).   
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Addition of GM-CSF to suppression assays had a significant impact on the initial 

proliferation of naïve T cells, possibly mediated via an effect on the APC used in the 

cultures, whilst the addition of anti-GMCSF had the opposite effect.  No impact was seen of 

supplementation or blockade of GM-CSF on the ability of iTreg to suppress either 
3
H-

thymidine incorporation or IL-2 (Fig 4.8).   Thus the absolute level of GM-CSF in culture 

did not appear relevant to either readout of iTreg suppression.  This further supports the 

findings in Chapter 3 (Fig 3.10) that the ability of iTreg to suppress is not diminished if the 

responding T cells are proliferating at a high level.   The production of GM-CSF by iTreg 

appears to be a short-lived phenomenon, occurring early during re-stimulation of these cells 

and diminishing within 72 hours (Fig4.5C, D), with no clear impact on the suppressive 

capacity of iTreg certainly in vitro.  What contribution might the presence of GM-CSF make 

otherwise? 

 

As discussed in the introduction (section 1.4.7) GM-CSF is a relatively pleiotropic cytokine 

with multiple actions on different cell lineages.  Two of these actions are of particular 

relevance here – the description of GM-CSF as the vital pro-inflammatory cytokine in EAE 

(Codarri et al., 2011) and its role in the maturation and activation status of DCs.  This latter 

is of crucial importance in considering how iTreg may influence the pro-inflammatory 

response, and themselves be influenced by APC. 

 

In vitro-generated mature bone marrow-derived DCs have been demonstrated to reverse 

nTreg suppression in assays similar to those performed here, with TLR-activation of the DCs 

prior to the assay also causing proliferation within the nTreg (Kubo et al., 2004). Notably, 

the established in vitro protocol for maturation of the DC uses GM-CSF (Lutz et al., 1999).  

A simple role for iTreg produced GM-CSF could be in the maturation of DC.  However the 

last decade or so has witnessed a burgeoning in the classification of sub-types of DCs, 

identifiable by various markers.  Multiple subsets are now recognized, broadly classed as 

resident, migratory, and monocyte-derived (Zhan et al., 2012).  Within these, multiple 

different types of DC can be recognized.  For the sake of brevity, only a few examples of the 

influence of GM-CSF will be considered. 

 

GM-CSF likely has an impact on the ability of CD8
+
 DC to co-present antigen on both MHC 

Class I and II (Sathe et al., 2011), with cross-presentation greatly reduced in GM-CSF 

deficient mice.  Again, this is partly related to GM-CSF having a maturation role for DC.  
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Using a murine model of myasthenia gravis, one group demonstrated that GM-CSF-treated 

mice had a reduced production of TNF, IL-1β and IL-12 by splenic DC, and an expansion of 

Foxp3
+
 cells within the spleens of treated animals (Sheng et al., 2008).   Conversely, GM-

CSF production by Th17 cells was associated with pro-inflammatory DC (Campbell et al., 

2011). 

 

Similarly to the paradox of IFN-γ, GM-CSF may have a ‘dose effect’.  High concentrations 

of GM-CSF in in vitro DC culture generate pro-inflammatory mature DCs whilst lower 

concentrations may lead to an immature DC phenotype with regulatory properties (Lutz et 

al., 2000).  Thus the low-level production of GM-CSF by iTreg may permit development of 

this immature and more tolerogenic DC phenotype. 

 

The proposed model, then, is that Foxp3
+
 cells are induced from naïve cells in the presence 

of TCR stimulation (via antigen) and TGF-β, in the presence of tolerogenic DCs.  The low 

level production of both IFN-γ and GM-CSF then maintain these DCs with a tolerogenic 

phenotype.  This situation can be disturbed by antigen presentation in the context of ‘danger 

signals’ (i.e. pathogen associated molecular patterns, PAMPs) leading to differentiation of 

naïve T cells into effectors and a subsequent shift in the concentrations of these pro-

inflammatory cytokines.  This leads to maturation of other DCs ‘breaking’ the tolerogenic 

phenotype and triggering a full inflammatory response.  The short-lived nature of the iTreg 

cytokine production may prevent high pro-inflammatory concentrations from being reached 

in the absence of further pathogenic signaling.  This could feasibly be modeled in vitro with 

supplementation of exogenous cytokines to DC cultures in the presence or absence of Treg, 

and the subsequent ability of those DC to stimulate naïve or effector cells. 

 

4.3.2.4 The role of ‘regulatory’ cytokines in suppression 

 

Investigation of the regulatory cytokines produced by iTreg was more complex.  Very little 

IL-10 was detected on intracellular cytokine staining [data not shown] neither was a cytokine 

bead array for IL-10 convincing of any production (Fig 4.2A).  Similar problems were 

encountered in trying to analyse the production of TGF-β.  Both ELISA and cytokine bead 

arrays were unsuccessful in identifying TGF-β above quantities found in unsupplemented 

medium.  Antibodies for detecting IL-35 are not yet available and so detection of this by 

flow cytometry was also impossible. 
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With regards effects in the suppression assays, IL-35 was not analysed for its effects in this 

in vitro model for the same reasons as outlined above.  This would be an obvious and 

essential experiment to perform if IL-35 neutralisation becomes available.   Neutralisation of 

IL-10 had no effect. 

 

As discussed above, TGF-β is a source of many conflicting reports, with no clear consensus 

on whether it is dispensable for Treg function.  Using an inhibitor of TGF-β signaling 

pathways in the in vitro suppression assay indicated that TGF-β signaling was not absolutely 

required at a Treg:naïve ratio of 1:1 (Fig 4.11).  However the suppressive capacity of the 

iTreg was greatly reduced with loss of suppression at Treg:naïve T cell ratios as high as 1:2.   

It appears that here, TGF-β plays either a major supporting, or amplifying role for 

suppression by the iTreg. 

 

One of the unexpected results from the addition of the inhibitor SB431542 to the suppression 

assays was the observation that naïve CD4
+
 cells produced more IL-2.  As one of the 

proposed mechanisms of Treg function is via the high affinity IL-2 receptor, CD25, 

‘mopping up’ IL-2 and thus preventing its use by clonally expanding cells, any additional 

factors that influence IL-2 production could impact upon suppression.  This observation that 

ALK5 inhibition enhances IL-2 could partly explain the ‘soluble mediator’ experiments in 

which TGF-β was considered to be the key element.  Against this as a mechanism is the 

absence of impact upon suppression when IL-2 production was much greater (section 

3.2.3.5).  The demonstration using CFSE staining that naïve T cells still initially proliferate 

(section 3.2.4.2) but then die may actually support the IL-2 theory.  If the production of IL-2 

occurs early, and so does scavenging of this IL-2 by iTreg, naïve T cells would initially 

proliferate but then be deprived and subsequently die.  Though increases in IL-2 production 

by naïve T cells may not overcome the consumption by iTreg, interfering with TGF-β 

signaling could feasibly also impact on the ability of iTreg to utilize IL-2 given the highly 

pleiotropic nature of the cytokine.  Teasing apart these differing effects would be another 

point meriting further study. 

 

It is noteworthy that the in vitro assay is very time-sensitive to the addition of the ALK5 

inhibitor.  Preventing signaling through TGF-β had no impact on the assay if it was delayed 

by as little as twenty-four hours (Fig 4.12).  The parallel with the limited need for iTreg to be 

physically resident within the co-culture demonstrated in depletion experiments (Fig 3.13) 

implies that iTreg have their effect early in culture, likely to require TGF-β signaling.   
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4.3.3 In vitro suppression of polarised effector T cells 

 

To be of true therapeutic utility, Treg must be able to suppress ongoing inflammation from 

fully differentiated effector cells, rather than naïve T cells undergoing primary TCR 

stimulation as the iTreg are re-stimulated.  The ability of the iTreg to suppress different 

effector cells was investigated using the same suppression assay as previously.  

Incorporation of 
3
H-thymidine was suppressed in Th1, Th2, Th17 and naïve T cells.  Cells 

polarised towards the production of GM-CSF, so-called ‘Th-GM-CSF’ were more resistant 

to suppression.  Given the production of pro-inflammatory cytokines by the iTreg, and the 

signature cytokines known for the various effector sub-types, the reduction in signature 

cytokine was then measured for each cell type.  As iTreg also secrete IFN-γ even without 

further antigen stimulation (Fig 4.5), suppression of IFN-γ production by Th1 cells seemed 

unlikely and this was indeed the case (Fig 4.14A).  IL-17 production by Th17 cells was not 

notably reduced at even the higher concentrations of iTreg, while GM-CSF secretion by 

‘ThGM-CSF’ cells was only affected at a 1:1 ratio.  Of all the effector-specific cytokines, a 

pattern of suppression was only seen in the production of IL-4 by Th2 cells, whilst IL-13 

production was unaffected.  Thus the only pro-inflammatory effector cytokine in which 

iTreg had a clear and suppressive effect was IL-4.  Given the production of IFN-γ by these 

iTreg, they display a ‘Th1-like’ cytokine profile and so might be expected to be more 

proficient against Th2 cells.  Indeed, previous reports have demonstrated superiority of Treg 

against Th2-mediated disease (Josefowicz et al., 2012).  This pattern fits with the theory that 

nTreg are directed towards self-antigen (by definition as they arise in the thymus with self-

reactive TCR) whereas iTreg can arise in response to foreign innocent antigens i.e. allergens.  

The low concentrations of IFN-γ and TNF produced by iTreg would be unlikely to promote 

a true ‘Th1 response’ but may be sufficient to inhibit Th2 differentiation by responding naïve 

T cells. 
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4.3.4 Concluding remarks 

 

The stability of Foxp3 expression by iTreg is dependent on the surrounding cytokine 

environment (Fig 4.15).  The persistence of TGF-β is required to maintain Foxp3 at high 

levels.  iTreg produced the pro-inflammatory cytokines IFN-γ, GM-CSF and TNF.  IFN-γ 

and GM-CSF were reduced on secondary stimulation if the re-stimulation medium contained 

TGF-β.  Despite production of these cytokines, iTreg remained suppressive of 
3
H-thymidine 

incorporation and reduced IL-2 in in vitro cultures with both naïve and effector T cells.  

Surplus or neutralization of any of the pro-inflammatory cytokines has no effect on 

suppression, nor did neutralization of IL-10.  Inhibiting TGF-β signaling through the ALK5 

inhibitor, SB431532, did reduce suppressive capacity though did not abrogate it completely.  

This effect only occurred if inhibition was in the first 24 hours of culture.  Together with the 

data from chapter 3 depleting iTreg with diphtheria toxin, this suggests iTreg have an almost 

immediate effect dependent upon TGF-β signaling in the co-culture assay, though the exact 

target of this effect has not yet been identified. 
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Figure 4.1 Maintenance of Foxp3 expression in iTreg is improved in the presence of

TGF-β.
A) Experimental scheme. iTreg were generated as previously described in Materials and Methods.

iTreg were then recultured at 0.5 x 106 cells/well with plate-bound anti-CD3 and anti-CD28 at

2μg/ml for 72 hours. Cells were cultured in medium alone or with additional IL-2 (100U/ml) and/or

TGF-β (5ng/ml) as indicated. B) Representative flow cytometry plots showing the proportion of live

cells (numbers indicate live cells as a percentage of total cells), then Foxp3 expression gated on

CD4+ cells (numbers indicate percentage of cells expressing Foxp3). C) Number of cells in the

indicated culture conditions. Data are from one of four experiments giving consistent results.

*=p<0.05 by Mann-Whitney U test.
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Figure 4.2 iTreg produce IFN-γ, GM-CSF and TNF.
A) A cytokine bead array was performed (by Dr R O’Connor) on supernatants from a standard

suppression assay as described in Chapter 3. Numbers indicate the cytokine concentration in

pg/ml. Data are from a single experiment. B) iTreg were sorted for Foxp3gfp expression at the end

of generation (>99% purity). The flow cytometry plot is gated on all cells. The iTreg were re-

stimulated with plate-bound anti-CD3 and CD28 for 72 hours. Brefeldin A, PMA and ionomycin

were added for the final 4 hours of culture, then samples were stained for intracellular cytokines.

C) Representative flow cytometry plots gated on live CD4+ cells demonstrating the production of

GM-CSF, IFN-γ, and TNF in relation to Foxp3 expression. D) Flow cytometry plot gated on live

CD4+ cells demonstrating co-production of GM-CSF and IFN-γ. Data are from one of three

experiments giving consistent results.
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Figure 4.3 IFN-γ, GM-CSF and TNF are produced during iTreg generation.
Naïve Tg4xFoxp3LuciDTR-4 CD4+ cells were cultured for five days in IL-2 and TGF-β with plate-

bound anti-CD3 and anti-CD28. Supernatants were removed on a daily basis and frozen at -20 C.

Foxp3 expression was analysed by intracellular staining and flow cytometry. A) Proportion of cells

expressing Foxp3 determined by flow cytometry. B) Supernatants were analysed by ELISA for

GM-CSF, IFN-γ and TNF. Data are from one of three experiments giving consistent results. C)

Intracellular staining at the end of iTreg culture showing Foxp3 expression and cytokine production,

gated on live CD4+ cells. Data are shown from a single experiment.
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Figure 4.4 iTreg produce IFN-γ, GM-CSF and TNF on re-stimulation.
Tg4xFoxp3LuciDTR-4 Foxp3+ iTreg (sorted to >98% purity) were re-stimulated for 48 hours with

various concentrations of MBPAc1-9. Supernatants were then analysed by ELISA. Data are from

one of three experiments giving consistent results.
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Figure 4.5 IFN-γ, GM-CSF and TNF are produced by iTreg co-cultured with naïve

CD4+ T cells but no suppressive effect is seen.
Tg4xFoxp3LuciDTR-4 iTreg were co-cultured with naïve Tg4 CD4+ cells, irradiated APC, and 10μM

MBPAc1-9. A) IFN-γ production was measured by ELISA at 72 hours. Data are from one of three

experiments giving consistent results. B) TNF production was measured at 72 hours. Data are

from one of two experiments giving consistent results. GM-CSF production was measured by
ELISA at C) 48 and D) 72 hours. Data are from one of four experiments giving consistent results.
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Figure 4.6 IFN-γ production is independent of ongoing stimulation, while GM-CSF

production requires ongoing antigenic stimulation of iTreg.
A) Tg4xFoxp3LuciDTR-4 iTreg were co-cultured with naïve 2D2 CD4+ cells and 10μM MBPAc1-9

and 10μM pMOG35-55 or B) with 10μM pMOG35-55 alone. IFN-γ production at 72 hours was

measured by ELISA. Data are from one of two experiments giving consistent results. C)

Tg4xFoxp3LuciDTR iTreg were co-cultured with naïve OT-II CD4+ cells with 10μM MBPAc1-9 and

8μM pOVA323-339 or D) with 8μM pOVA3323-339 alone. GM-CSF production was measured at 48

hours. Data are from one of two experiments giving consistent results.
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Figure 4.7 IFN-γ does not affect in vitro suppression.
A) IFN-γ (100ng/ml) was added at the onset of culture to suppression assays. Proliferation was

measured at 96 hours by the incorporation of 3H-thymidine. B) Quantification of suppression. C)

Anti-IFN-γ (10ng/ml) was added at onset to suppression assays. Incorporation of 3H-thymidine at

96 hours is shown. D) Quantification of suppression. E) iTreg generated from Tg4 IFN-γ deficient

mice were compared with iTreg from Tg4 CD90.1 IFN-γ sufficient mice. 3H-thymidine incorporation

was measured at 96 hours. F) Quantification of suppression. Data are from one of two experiments

giving consistent results.
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Figure 4.8 GM-CSF does not affect in vitro suppression.
Recombinant GM-CSF (5ng/ml) was added at onset to suppression assays. A) Proliferation was

measured at 96 hours by the incorporation of 3H-thymidine. B) Quantification of suppression. C)

Anti-GM-CSF was added at 10ng/ml at onset of culture. Incorporation of 3H-thymidine was

measured at 96 hours. D) Quantification of suppression. Data are from one of two experiments

giving consistent results. p=<0.05 (by unpaired t-test with Welch’s correction).
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Figure 4.9 TNF neutralisation does not affect in vitro suppression.
Anti-TNF (1μg/ml) was added at onset of culture to suppression assays. A) Proliferation was

measured at 96 hours by the incorporation of 3H-thymidine. B) Quantification of suppression. Data

are shown from a single experiment.
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Figure 4.10 IL-10 neutralisation does not affect in vitro suppression.
Anti-IL-10R (25μg/ml) was added to suppression assays at the onset of culture. A) Proliferation was

measured at 96 hours by incorporation of 3H-thymidine. B) Quantification of suppression. Data are

from one of two experiments giving consistent results.

50

100

0

+ anti-IL-10R

- anti IL-10R

B

%
 s

u
p

p
re

s
s
io

n

+ anti-IL-10R

- anti IL-10R

20

40

60

0

A

P
ro

lif
e

ra
ti
o

n
 [
c
p

m
] 

x
 1

0
 3

1
:1

1
:2

1
:4

1
:8

1
:1

6

T
re

g

N
a
ïv

e
 

N
o
 s

ti
m

1
:1

1
:2

1
:4

1
:8

1
:1

6

1
:3

2

1
:6

4

1
:1

2
8

1
:2

5
6

iTreg:naiveiTreg:naive



 139 

0 10
2

10
3

10
4

10
5

0

10
2

10
3

10
4

10
5

0 10
2

10
3

10
4

10
5

0

102

103

104

10
5

0 10
2

10
3

10
4

10
5

0

10
2

10
3

10
4

10
5

0 10
2

10
3

10
4

10
5

0

10
2

10
3

10
4

10
5

Figure 4.11 Inhibition of TGF-β signalling reduces the efficacy of suppression by

iTreg in vitro.
A) Naïve Tg4xFoxp3LuciDTR-4 CD4+ cells were cultured in IL-2 and TGF-β, with or without the

addition of the ALK5 inhibitor, SB431542 at 10μM. After 5 days of culture, Foxp3 expression was

assessed by flow cytometry. Foxp3 expression gated on CD4+ cells is shown. B) 10μM SB431542

or vehicle control (DMSO) was added at the onset of culture to suppression assays. Proliferation

was measured at 96 hours by the incorporation of 3H-thymidine. C) Quantification of suppression.

D) Measurement of IL-2 at 48 hours by ELISA. E) Quantification of reduction in IL-2. Data are from

one of four experiments giving consistent results.
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Figure 4.12 Inhibition of TGF-β signalling only affects suppression by iTreg early in

co-culture.
A) Tg4xFoxp3LuciDTR-4 iTreg were co-cultured with naïve Tg4 CD4+ cells in a standard

suppression assay. 10μM SB431542 was added at the onset of culture, after 24 hours, or not at

all. Proliferation was assessed by the incorporation of 3H-thymidine at 96 hours. B) Quantification

of suppression. Data are shown from a single experiment.
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Figure 4.13 iTreg can suppress effector cells polarised to Th1, Th2, and Th17 but not

‘ThGM-CSF’.
Tg4xFoxp3LuciDTR-4 iTreg were co-cultured with Tg4 CD90.1 CD4+ cells polarised towards Th1,

Th2, Th17, or ‘Th-GM-CSF’ phenotypes. A) Proliferation was measured at 96 hours via the

incorporation of 3H-thymidine. B) Quantification of suppression. Data are from one of three

experiments giving consistent results.
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Figure 4.14 iTreg do not suppress cytokine production by effector cells, except for

IL-4 by Th2 cells.
‘Signature’ cytokine production was analysed by ELISA of supernatants taken from the suppression

assays featured in Fig 4.13, at 72 hours. A) IFN-γ production by Th1 cells. B) Production of IL-17

by Th17 cells. C) Production of IL-4 and IL-13 by Th2 cells D) Production of GM-CSF by ThGM-

CSF. Graphs on the right represent quantification of suppression of the indicated cytokine. Data

are shown from a single experiment.
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Figure 4.15 Hypothetical model for maintenance of steady state by iTreg and loss of 

Foxp3 in pro-inflammatory states.
A) In the steady state, innocuous antigen is presented by APC in the absence of danger signals, in a 

TGF-β-rich environment.  This promotes induction of Foxp3 in naïve cells, leading to a high number of 

‘resident’ iTreg.  High TGF-β concentrations maintain Foxp3 expression.  Low-level production of IFN-

γ, GM-CSF and TNF promote an immature tolerogenic state in APC, such that ongoing antigen 

presentation promotes more regulation, and prevents a pro-inflammatory response by other naïve T 

cells.  B) Presentation of harmful antigen with concomitant danger signals leads to differentiation of 

naïve T cells to effector phenoytypes, with production of high concentrations of cytokines.  This alters 

the milieu, promoting maturation of APCs to a pro-inflammatory state, and promoting further effector T 

cell polarisation.  The relative reduction in TGF-β leads to loss of Foxp3 and reduces the induction of 

new iTreg.  Foxp3- iTreg may not be able to influence APC, but retain suppressive function and so are 

able to contribute to resolution of the inflammatory state.
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5 Direct and bystander suppression by iTreg in vivo 

5.1 Introduction 

The in vivo efficacy of both nTreg and iTreg in either preventing onset or ameliorating 

ongoing disease has been established in several models, including EAE (Stephens et al., 

2009, Kohm et al., 2002, Selvaraj et al., 2008), diabetes (Tang et al., 2004, Weber et al., 

2006), and colitis (Liu et al., 2003, Fantini et al., 2006).  The exact mechanisms of action of 

Treg remain unclear though the assumption often made was that proliferation of effector 

cells was inhibited (Thornton et al., 1998, Piccirillo et al., 2001).  Given that this did not 

appear to be the case in vitro (section 3.2.4), the impact of iTreg on proliferation of naïve T 

cells (as measured by CFSE dilution) deserved study.  Similarly, the pathogenic nature of 

effector T cells is thought related to cytokine production (Dardalhon et al., 2008a) so 

analyzing the cytokines produced by naïve T cells following in vivo stimulation in the 

presence or absence of iTreg may elucidate a further mechanism able to limit disease 

progression. 

The behaviour of Treg in vivo is known to be different to that in vitro.  For example, the 

‘anergic’ nature of nTreg in vitro contrasts with their rapid proliferation in vivo (Walker et 

al., 2003).  iTreg are known to lose Foxp3 expression in vivo, which is countered in the 

presence of additional IL-2 (Chen et al., 2011) unlike in vitro where IL-2 has no effect (Fig 

4.1).  Having demonstrated the pro-inflammatory cytokine profile of iTreg on in vitro 

stimulation, the impact of stimulating iTreg in an in vivo environment merited investigation. 

Chapter 4 established that iTreg produce the pro-inflammatory cytokines, IFN-γ, GM-CSF 

and TNF, with an associated loss of Foxp3 expression over time unless TGF-β was 

maintained in in vitro culture.  The potential for iTreg to convert to an effector-like 

phenotype has complicated translation into the therapeutic setting (Zhou et al., 2009a).   

Identification of Th17 cells as a source of pathology (Stockinger et al., 2007) and the 

similarity between Th17 and iTreg differentiation (Bettelli et al., 2006) magnified these 

concerns.  Though established iTreg appear to be stable in the face of conditions favouring 

Th17 polarisation (Zheng et al., 2008), the effects of other pro-inflammatory cytokines are 

unclear.  IL-12-conditioned iTreg were shown to maintain efficacy even with loss of Foxp3 

expression (O’Connor et al., 2010) and to have very limited pathogenic potential despite 

IFN-γ production.  The impact of other cytokines relevant to effector cell polarisation has 

been less studied. 
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The effect of TGF-β on the maintenance of Foxp3 and iTreg survival was demonstrated in 

Chapter 4 (Fig 4.1).  TGF-β is known to be a highly pleiotropic cytokine (Tran, 2012).  That 

its effect on cells is dependent on the surrounding milieu is clearly demonstrated in the 

dichotomy of polarisation by naïve T cells towards either Th17 or Treg, influenced by the 

presence of IL-6 (Bettelli et al., 2006, Korn et al., 2008).  How other polarizing cytokines 

may alter the stabilizing effect of TGF-β has been poorly studied. 

 

5.1.1 Experimental aims 

The first aim of this chapter was to ascertain whether iTreg were suppressive in vivo, and 

whether this impacted on cytokine production by naïve T cells, followed by assessment of 

the proinflammatory environment on the cytokine profile of iTreg.  Secondly, various 

cytokines were investigated for their influence on the stability of Foxp3 expression and the 

iTreg cytokine profile in vitro, to determine if the in vivo situation could be replicated.   

Finally, a model of allergic airways inflammation was used to investigate whether bystander 

suppression by iTreg could be demonstrated in vivo. 

 

5.1.2. Experimental approach 

Previous studies have demonstrated superior efficacy of antigen-specific Treg compared to 

polyclonal Treg (Tang et al., 2004, Stephens et al., 2009).  Myelin-responsive Tg4 iTreg 

were therefore utilized for most in vivo experiments.  The functional impact of these iTreg 

was assessed by co-administering CFSE-labelled naïve Tg4 CD4
+
 cells at the same time as 

the iTreg to host mice.  These mice were then primed with MBPAc1-9 (4Tyr) emulsified in 

CFA (s.c. into the hind legs) to initiate an inflammatory response. In some experiments, an 

alternate priming using MBPAc1-9 (4Tyr) in PBS was used to distinguish the effect of pro-

inflammatory signaling.  Cells were subsequently analysed using flow cytometry.  In 

subsequent experiments, mice were infused with iTreg alone, followed by priming with 

MPBAc1-9 (4Tyr), then changes in iTreg cytokine profile were analysed by intracellular 

staining. 

In vitro experiments were used to test individual cytokines known to be relevant in the in 

vitro polarization of naïve T cells to either Th1 or Th17 phenotypes i.e. cytokines likely to be 

present early in an inflammatory process.  In all cases, iTreg were generated from Foxp3gfp 
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or Tg4xFoxp3LuciDTR-4 reporter mice and subsequently sorted for Foxp3gfp
+
 expression 

to provide highly pure iTreg for investigation. 

Finally, a model of allergic airways inflammation was used to assess bystander suppression 

in vivo.  Mice were administered 2D2 iTreg and OT-II Th2 cells, then received an airway 

antigen challenge with rMOG and OVA over several days.  The ability of the 2D2 iTreg to 

effect bystander suppression was assessed by examining the number of donor Th2 cells in 

spleen, mediastinal lymph nodes, and the lungs, with intracellular cytokine staining of Th2 

cells, and using cytospins and histology to assess the degree of allergic airways 

inflammation. 
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5.2 Results 

5.2.1 iTreg suppress naïve T cells in vivo 

That iTreg have potential applicability in a clinical setting is supported by various successes 

in animal models of disease, including EAE and diabetes (Selvaraj et al., 2008, Tonkin et al., 

2008).  However, the iTreg generated here could produce three pro-inflammatory cytokines.  

Despite this, they could suppress in vitro. Were these iTreg able to effect suppression of 

naïve T cells stimulated in vivo? 

Naïve Tg4 CD90.1 CD4
+
 cells were administered to C57BL/6xB10.PL F1 mice, either alone 

or in equal numbers with Tg4xFoxp3LuciDTR-4 iTreg.  One day following infusion of cells, 

mice received a subcutaneous injection of MBPAc1-9 (4Tyr) emulsified in CFA (Fig 5.1A).  

After one week, mice were culled, spleens and inguinal lymph nodes harvested, and cells 

analysed by flow cytometry.  Donor naïve T cells could be distinguished by expression of 

the congenic marker CD90.1, whilst donor iTreg expressed CD45.1.  For measurement of 

intracellular cytokines, cells were additionally stimulated with PMA and ionomycin in the 

presence of brefeldin A (Fig 5.1A,B).   

5.2.1.1 iTreg reduce the persistence of naïve T cells in vivo 

An effect of co-administration of iTreg was immediately apparent upon harvesting the mice.  

The spleens of mice receiving both iTreg and naïve T cells (i.e. double the number of donor 

cells in total) were significantly smaller than the spleens from mice receiving naïve T cells 

alone (Fig 5.1C).  The proportion of donor naïve T cells within the CD4
+
 population was 

also reduced in those mice receiving iTreg, leading to a significant reduction in the total 

number of donor naïve T cells (Fig 5.1D).  The same pattern was seen within the lymph 

nodes (though the difference in total cellularity was not statistically significant) (Fig 5.1E).  

Thus, the presence of iTreg led to a reduction in the detectable number of donor naïve T cells 

capable of responding to the antigen.   

5.2.1.2 iTreg do not affect the proliferation of naïve T cells in vivo 

Data presented in chapter 3 demonstrated that iTreg give the appearance of suppressing 

incorporation of 
3
H-thymidine at 96 hours in vitro, but both CFSE and earlier kinetic data 

demonstrated that the majority of naïve T cells in the assay had already proliferated (Fig 

3.11,3.12).  The lower number of naïve T cells seen in vivo (Fig 5.1D) could be accounted 
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for by suppression of proliferation, or increased death of those cells.  Proliferation of the 

naïve T cells was therefore assessed using CFSE-labelling. 

As previously, naïve Tg4 CD90.1 CD4
+
 cells were administered to F1 mice with or without 

Tg4xFoxp3LuciDTR-4 iTreg. The naïve T cells were labeled with CFSE prior to 

administration.  One day following cell administration, mice received MBPAc1-9 (4Tyr) 

emulsified in CFA, or in PBS, subcutaneously.  One week later, spleens and inguinal lymph 

nodes were harvested and analysed by flow cytometry (Fig 5.2A). 

Dilution of CFSE staining was evident in all groups in both spleen and lymph nodes (Fig 

5.2B).  In those mice receiving only naïve T cells and MBPAc1-9 (4Tyr) in PBS, 

approximately 50% of cells had retained CFSE stain within the spleen, and 80% within the 

lymph node.  Loss of CFSE in this group is attributed to the presence of the antigen in the 

absence of the pro-inflammatory signals.  The addition of CFA led to CFSE staining being 

completely lost, implying robust proliferation of all stained T naïve cells.  Mirroring the 

situation in vitro, dilution of CFSE occurred regardless of the presence of iTreg.  A tiny 

number of cells retaining CFSE staining (accounting for less than 5% of the total) could be 

identified when iTreg were co-transferred, but the majority of the donor naïve T cells lost 

CFSE expression completely.  This implies that the reduction in numbers is not related to 

inhibition of proliferation of the naïve T cells. 

5.2.1.3 iTreg suppress IFN-γ by naïve T cells in the lymph nodes in vivo, but 

not GM-CSF or TNF 

Following PMA and ionomycin stimulation, cells were assessed for the production of IFN-γ, 

GM-CSF, and TNF.  Staining for all cytokines was evident from the donor naïve T cells in 

both spleen and lymph nodes, confirming that the cells had undergone some activation.  No 

difference was seen in the spleen in production of any of the cytokines investigated in the 

presence of iTreg (Fig 5.3A).  Within the lymph nodes, cytokine production was similarly 

unaffected except for IFN-γ where a significant reduction was seen when iTreg were co-

administered (Fig 5.3B).  On meta-analysis of all experiments, IFN-γ production by naïve T 

cells was significantly reduced in the presence of Treg in the inguinal lymph nodes, but 

neither GM-CSF nor TNF production was significantly altered. 

Thus, iTreg reduce the number of donor naïve T cells present in the spleen and lymph nodes, 

but the remaining cells are still potentially pathogenic given their production of IFN-γ, GM-

CSF and TNF.  The total number of donor cells producing cytokines is very small however, 

being less than 1000 cells in all cases.  Proliferation of the naïve T cells was unaffected, 
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suggesting that iTreg prevent survival of the donor cells, rather than limiting expansion.  

Whether this is mediated through active cytotoxicity or passive processes cannot be 

determined from these data.    

 

5.2.2 Effects of a pro-inflammatory environment on iTreg in vivo 

Given that iTreg clearly have a suppressive effect overall in vivo, does the more complex 

inflammatory environment caused by CFA alter the stability of Foxp3 expression, and 

cytokine production by iTreg compared to that seen in vitro?   

5.2.2.1 iTreg survive but lose Foxp3 expression in vivo 

Tg4xFoxp3LuciDTR-4 iTreg (2x10
6
 cells) were transferred into B10.PL mice, followed one 

day later by a subcutaneous injection of 10μg MBPAc1-9 (4Tyr) emulsified in CFA, or in 

PBS.  After 48 hours spleen and inguinal lymph nodes were harvested then cultured 

overnight with 10μM MBPAc1-9 (4Lys) followed by PMA, ionomycin and brefeldin A for 

the final four hours.  Cells were then stained for surface markers and intracellular cytokines 

(Fig 5.4A), with donor iTreg identifiable by the expression of the congenic marker, CD45.1 

(Fig 5.4B).   

No difference in overall total cellularity of the organs was seen between mice receiving CFA 

or PBS (Fig 5.4C and Fig 5.5A).  Donor iTreg accounted for a higher percentage of the 

CD4
+ 

population in the spleen (Fig 5.4D) in those mice receiving pro-inflammatory signals 

via CFA, though this did not reach significance.  Only very small numbers of donor iTreg 

were identifiable in the mice receiving Ac1-9 (4Tyr) in PBS.  Donor iTreg numbers 

appeared higher in the mice receiving Ac1-9 (4Tyr) emulsified in CFA (though this did not 

reach statistical significance) with approximately 15x10
4
 iTreg detectable in the spleen, and 

1x10
4
 within the lymph nodes (Fig 5.4D, 5.5B).  Approaching 10% of the injected iTreg 

could therefore be recovered from these two organs 48 hours after antigen administration. 

Foxp3 expression was poorly preserved, with less than 10% of the cells remaining Foxp3
+
 

after only 48 hours in the mice receiving antigen in CFA.   In contrast, maintenance of 

Foxp3 expression was significantly higher in the mice that received Ac1-9 (4Tyr) in PBS, at 

50-60% in both spleen and LN (Fig 5.4E and Fig 5.5C).  The greater persistence of Foxp3 in 

the Ac1-9 (4Tyr)/PBS group led to numbers of Foxp3
+
 donor iTreg being similar between 

the Ac1-9 (4Tyr)/CFA and Ac1-9 (4Tyr)/PBS treated mice within the spleen (Fig 5.4E, Fig 

5.5C).   



 150 

Foxp3 expression was >99% prior to administration to mice.  Thus, following administration 

of antigen, iTreg lost some Foxp3 expression (down to 50-60% in the PBS group) but this 

was exacerbated in the presence of inflammatory signals caused by CFA.  Total donor cell 

numbers were also greater in mice receiving antigen in CFA, leading to an increase in 

Foxp3
-
 donor cells. This suggests that pro-inflammatory signals from CFA contribute to a 

loss of Foxp3 expression in iTreg.    

5.2.2.2 iTreg produce IFN-γ and TNF but very little GM-CSF ex vivo 

What effect was seen on the iTreg cytokine profile in vivo?  Assessing the production of 

cytokines by intracellular staining following additional stimulation with PMA and 

ionomycin, no difference was seen in the proportions of cytokines produced between donor 

iTreg cells from spleen or lymph nodes.  IFN-γ production was seen in approximately 20% 

of cells and TNF production in 60% (Fig 5.6A).  The major difference from the in vitro 

setting was the absence of any GM-CSF production by donor iTreg, which was 

indistinguishable from isotype.  There was no difference between mice treated with Ac1-9 

(4Tyr) in CFA, and those treated with Ac1-9 (4Tyr) in PBS (Fig 5.6B).  In comparison, 

production of the same cytokines by host CD4
+
 cells (following PMA and ionomycin 

stimulation) demonstrated that host Foxp3
+ 

cells make no GM-CSF either, or IFN-γ, but 

again appreciable staining of TNF
+ 

cells was seen (Fig 5.7).  Host Foxp3
-
 cell production of 

GM-CSF confirmed that the absence of iTreg GM-CSF staining was not due to technical 

issues with the assay.  The donor iTreg cytokine profile did not differ between mice treated 

with CFA or PBS.  Insufficient donor iTreg were detectable in lymph nodes in mice treated 

with PBS to allow meaningful comparisons of cytokine production with donor iTreg from 

lymph nodes in CFA-treated mice. 

5.2.3 The effects of polarising cytokines on iTreg in vitro 

Thus, after exposure to antigen in an inflammatory environment (CFA immunization), iTreg 

maintained their ability to make IFN-γ and TNF but their capacity to produce GM-CSF 

seemed to be lost.  To be of utility therapeutically, iTreg would be administered into such a 

pro-inflammatory environment.  Thus, cytokines known to be relevant to the development of 

either Th1 or Th17 cells following CFA immunization were investigated for their effects on 

iTreg in vitro i.e. IL-12, IL-6, IL-23, IL-1β, and IL-27.  Similar to the approach in chapter 4 

(4.2.1.1), iTreg were re-stimulated using plate-bound anti-CD3 and anti-CD28 (both at 

2μg/ml) with the exogenous addition of each individual cytokine to the culture medium (Fig 

5.8A).  Cytokines were added at the following concentrations: IL-27 (10ng/ml), IL-12 
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(25ng/ml), IL-6 (30ng/ml), IL-1β (10ng/ml), and IL-23 (30ng/ml). To further assess the role 

of IFN-γ, additional IFN-γ (100ng/ml) was also added to these cultures, as was a neutralizing 

antibody to IFN-γ (10ng/ml). 

 

5.2.3.1 IL-27, IL-12 and IL-6 exacerbate the loss of Foxp3 expression by iTreg 

The most profound effects were seen with the addition of IL-12. Though cell survival was 

increased on live/dead staining (Fig 5.8B) there was no significant difference in total cell 

numbers compared to medium (Fig 5.8D).  IL-12 did, however, lead to a notable reduction in 

the expression of Foxp3 compared to medium alone (Fig 5.8C).  IL-27 and IL-6 had similar 

though less marked effects on the proportion of cells staining with the live/dead marker, and 

on the loss of Foxp3 expression. These cytokines thus increased the number of Foxp3
-
 cells 

with the potential to reverse any regulatory effect.  As both IL-12 and IL-27 are relevant in 

Th1 differentiation, the possibility of conversion to effector status must be considered. The 

increased proportion of cells identified on flow cytometry as alive in the presence of IL-12 

or IL-27 did translate to a greater number of cells counted, though this did not reach 

statistical significance (Fig 5.8.D). 

 

The other cytokines investigated had minimal effects on both cell survival and Foxp3 

expression.  IL-1β (Fig5.8B-D), IL-23, IFN-γ, and anti-IFN-γ (Appendix 1) all had no 

impact on Foxp3 expression or cell viability.  

 

5.2.3.2 IL-27, IL-12 and IL-6 reduce the proportion of GM-CSF+ iTreg on in vitro 

restimulation 

 

As with Foxp3 expression, the most notable effects on cytokine production by iTreg were 

seen with IL-27, and IL-12, and less markedly with IL-6.  Cells staining positive for GM-

CSF production were reduced in the presence of IL-27, IL-12, or IL-6 (Fig 5.9A,B).  IL-12 

had a particularly marked effect on cells staining positive for IFN-γ, with a lesser effect of 

IL-27 whilst IL-6 had virtually no effect on the proportions of cells that were IFN-γ
+
. TNF 

production was also somewhat reduced by any of IL-27, IL-12 or IL-6 (Fig 6.2B) though 

none reached statistical significance.  IL-1β had no impact on IFN-γ or GM-CSF production 

compared to medium alone, in contrast to its reported effects of boosting GM-CSF 

production by naïve cells (Lukens et al., 2012). The other cytokines investigated – IL-23, 

IFN-γ and anti-IFNγ – did not affect the iTreg cytokine profile (Appendix 1). 
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5.2.3.3 iTreg express IL-6 receptor chains CD126 and gp130 

 

The ability of IL-6 to influence Foxp3 expression, iTreg survival and cytokine production is 

at odds with other reports in the literature. iTreg are reported to be resistant to conversion to 

a Th17 phenotype (Zheng et al., 2008) due to very low expression of IL-6Rα (CD126), and 

nTreg recovered from the inflamed CNS do not produce IL-17 when isolated from an 

inflammatory environment (O’Connor et al., 2012), suggesting both nTreg and iTreg lose the 

ability to respond to IL-6 in the face of pro-inflammatory signals, with loss of CD126 in 

each case.  The data shown here suggest that iTreg can still respond to IL-6, albeit in a 

limited fashion.  Flow cytometry of freshly generated iTreg for the IL-6 receptor α-chain 

(CD126, specific to IL-6) and gp130, a signaling chain common to several cytokines 

including IL-6 and IL-27, demonstrated that iTreg express CD126 at lower levels than naïve 

CD4
+
 T cells, but expression was still apparent (Fig 5.10).  Staining of gp130 was also 

higher than isotype, and of a similar intensity to naïve T cells.  This implies that the iTreg 

used here were able to respond to IL-6, most likely through direct interaction with the IL-6R, 

although trans-signaling through soluble IL-6R and gp130 also remained possible.   

 

Thus, the presence of several cytokines relevant to the differentiation of Th1 and Th17 cells 

are able to exacerbate the loss of Foxp3 expression from iTreg. Some pro-inflammatory 

cytokines - IL-6, IL-12, and IL-27 - exacerbate the loss of Foxp3 expression and this was 

associated with an increase in the proportion of iTreg producing IFN-γ, but a reduction in the 

number of GM-CSF
+
 cells.  TNF production was somewhat reduced by these cytokine 

manipulations, though no clear discriminative effect could be seen between Foxp3
+ 

and 

Foxp3
-
 cells. 

 

5.2.3.4 TGF-β has a dominant effect on Foxp3 expression and iTreg survival 

 

Chapter 4 described the stabilizing effect of TGF-β on iTreg Foxp3 expression (Fig 4.1).  

This was in the absence of other cytokines that may skew iTreg towards a different 

phenotype.  Though the inability of IL-6 to ‘convert’ iTreg to Th17 cells in the presence of 

TGF-β is well documented (Zheng et al., 2008), the effect of other polarising cytokines is 

less clear.  In the above report, though TGF-β is considered as essential for Th17 

polarisation, in this circumstance it appeared to be stabilizing Foxp3 expression. This 

suggested that TGF-β could also maintain Foxp3 expression in the presence of other 

cytokines.  To investigate this further, iTreg were again re-stimulated in vitro as above with 
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anti-CD3, anti-CD28, and exogenous cytokines as previously.  In addition, each culture 

condition was supplemented either with extra IL-2 (100U/ml), or extra IL-2 (100U/ml) and 

TGF-β (5ng/ml).  

Provision of additional IL-2 did not affect the cytokine profile with any of the other 

cytokines, nor did it alter the proportion of cells staining with the live/dead marker. Trypan 

blue exclusion demonstrated no change in viable cell number between wells with, or without 

IL-2, in addition to the individual cytokines (Fig 5.11A).  In contrast, addition of TGF-β with 

the IL-2 had a notable effect in all circumstances.  Cell counts were increased in all 

circumstances where TGF-β was included within the culture medium, suggesting a survival 

benefit (Fig 5.11A), with a significant effect seen with IL-6 and IL-1β.  Addition of TGF-β 

alone was previously demonstrated to improve survival of iTreg (Fig 4.1) but this effect was 

enhanced in the presence of exogenous IL-2.  The exact mechanism by which TGF-β 

improves survival of the re-stimulated iTreg is not clear, but may relate to the maintenance 

of Foxp3 and CD25, providing survival signals in the presence of the exogenous IL-2. 

Intriguingly, addition of IL-2 and TGF-β with the other polarizing cytokines had a stabilizing 

influence on the production of pro-inflammatory cytokines by iTreg.    IL-6, IL-12 and IL-27 

all had the overall effect of reducing the proportion of iTreg being GM-CSF
+
, with an 

increase in IFN-γ
+
 cells with IL-12 (and, less so, with IL-27) (Fig 5.11B).  The addition of 

IL-2 and TGF-β led to an increase in the proportion of iTreg producing GM-CSF and a 

reduction in IFN-γ
+
 iTreg re-stimulated in the presence of IL-12 or IL-27.  The effect of IL-2 

and TGF-β on iTreg re-stimulated in the presence of IL-6 was very minor.  TNF production 

was broadly unaffected. 

Also notable was the impact of TGF-β addition in the cultures with IL-1β.  IL-1β has been 

reported to increase GM-CSF production by naïve T cells (Lukens et al., 2012).  Not only 

was no significant rise in the proportion of GM-CSF
+
 iTreg seen with the addition of IL-1β 

(compared to iTreg re-stimulated in medium alone), but the addition of IL-2 and TGF-β 

reduced the proportion of iTreg staining GM-CSF
+
 rather than increasing it.   

Thus, TGF-β appeared to have a dominant effect on the cytokine profile of re-stimulated 

iTreg.  Addition of TGF-β reduced the proportion of cells producing GM-CSF by an 

unknown mechanism, but the addition of other cytokines that had a similar effect (i.e. IL-27, 

IL-12) did not reduce the proportion of cells staining GM-CSF
+
 further.  Conversely, 

cytokines such as IL-1β are not able to ‘restore’ the proportion of cells producing GM-CSF 

back to that seen in medium.  This suggests that TGF-β has an antagonistic effect to the other 
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cytokines, preventing them from influencing iTreg further.  In these experiments, TGF-β was 

added in conjunction with IL-2 so a combined effect cannot be disregarded.  However the 

addition of IL-2 alone did not alter the effects of other exogenous cytokines (Fig 5.11B).  If 

the presumptive model has the induction of Treg in an environment with high levels of TGF-

β, then clearly continuation of this is necessary for iTreg to maintain both Foxp3 expression 

and their cytokine profile.   

 

Thus, TGF-β plays a crucial role in all aspects of iTreg.  It is needed for induction (Chen et 

al., 2003), and maintenance of Foxp3 (Selvaraj et al., 2007).  Persistence of TGF-β is 

required to prevent iTreg from altering their cytokine productions in the presence of other 

cytokines.  Finally, TGF-β signaling appears vital for some aspects of iTreg suppression, 

certainly in vitro (Fig 4.11). The pattern of cytokine production by iTreg in vivo closely 

resembles the cytokine profile seen in vitro by iTreg cultured in the presence of IL-6, IL-12 

or IL-27, suggesting that in vivo these cytokines may predominate. 

 

5.2.4 Bystander suppression by iTreg in vivo 

The efficacy of the iTreg in effecting bystander suppression of naïve cells in vitro was 

shown in Chapter 3 (Fig 3.4), and their ability to directly suppress polarised effectors in 

chapter 4 (Fig 4.13).  That iTreg can suppress naïve cells in vivo has been shown here, and 

previous reports have demonstrated the potential for iTreg to suppress either disease onset 

(Selvaraj et al., 2008) or ameliorate ongoing disease (Tang et al., 2004).   The initial 

experimental plan was to utilize the well-established EAE model, using Tg4 iTreg to 

suppress MOG-driven disease by 2D2 cells, or 2D2 iTreg to suppress MBP-driven disease 

by Tg4 cells.  As discussed in chapter 3 (section 3.3.2), this was not feasible due to an 

inability of the donor cells to persist in the C57BL/6xB10.PL mouse. 

Work done by Dr Karen Mackenzie and Dominika Nowakowska has established a model of 

short-term allergic airways inflammation, entailing administration of Th2-polarised effectors 

followed by three separate intra-tracheal airway challenges with the relevant antigen.  This 

model has been successful in causing disease using OT-II Th2 cells and ovalbumin (OVA) 

as the initiating antigen, or 2D2 Th2 cells with recombinant MOG (rMOG) as the antigen.  

Direct suppression of disease, using 2D2 iTreg co-administered with 2D2 Th2 cells, has 

been demonstrated by Dominika Nowakowska (PhD thesis in preparation).   This model 

provides a means to assess bystander suppression – are 2D2 iTreg capable of suppressing 

allergic airways inflammation initiated by OT-II cells? 
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The following work was done in collaboration with Dominika Nowakowska and Karen 

Mackenzie.  2D2 iTreg were generated from FACS sorted CD4
+
CD25

-
Vα3.2

+
 cells as 

described in Chapter 2, then sorted as CD25
high

 at the end of culture.  Naïve OT-II CD4
+
 

cells were polarised towards the Th2 phenotype.  C57BL/6 mice received 4x10
6
 2D2 iTreg, 

then 24 hours later 2.5x10
6
 OT-II Th2 cells.  Mice were then challenged one, four, and seven 

days following Th2 administration, with intratracheal rMOG and OVA (both 50μg) (Fig 

5.12A).  Two days after the last airway challenge, mice were culled.  The lungs underwent 

bronchoalveolar lavage (BAL) as described in Section 2.11.1, and then spleen, mediastinal 

lymph nodes and lungs were harvested.  One lung was processed for histological analysis, 

the other lung provided cells for flow cytometry analysis.   

The experiment also included a group of mice that received 2D2 iTreg and OT-II Th2 cells, 

with airway challenges using OVA only.  In that group, no differences were distinguishable 

in any end-point from mice that did not receive iTreg.  On flow cytometry, very few iTreg 

were identifiable in spleen, lymph nodes, or lung from the mice receiving OVA 

intratracheally only, whilst mice receiving OVA and rMOG had significantly higher 

numbers of iTreg in all three organs (Fig 5.12B).  For clarity, the data from the mice 

receiving OVA alone has not been included. 

5.2.4.1 iTreg reduce the number of eosinophils in BAL fluid 

Analysis of the BAL fluid used cytospins, and was calculated per ml of fluid in order to 

standardise the results between individual mice.  The total number of cells in the BAL fluid 

was significantly reduced in the mice receiving 2D2 iTreg, suggesting either less severe 

disease, or more rapid resolution (Fig 5.12C).  On classifying cell type within the BAL fluid, 

no difference was seen between PBS-treated and iTreg-treated mice in the numbers of 

macrophages or lymphocytes.  The number of eosinophils was significantly reduced in the 

mice receiving iTreg, however (Fig 5.12C).  Given this was a model of Th2-mediated 

disease, with eosinophils expected to be the main inflammatory cell type responsible for 

clinical disease, this reduction might be expected to translate to a disease-relevant difference 

in a clinical setting. 

5.2.4.2 iTreg do not affect the number of donor OT-II cells in spleen, lymph 

nodes, or lungs 

Following harvest, cells from each organ were analysed by flow cytometry for the 

proportions of donor OT-II cells.  There was no difference in overall cellularity of the spleen 

(Fig 5.13A), mediastinal lymph nodes (Fig 5.13B), or lungs (Fig 5.13C), following 
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administration of OT-II Th2 cells and 2D2 iTreg, compared to mice receiving OT-II Th2 

cells alone.  Similarly, no difference was seen in the proportion of CD4
+
 cells within each 

organ that were donor OT-II Th2 cells in the presence or absence of iTreg, implying no 

survival disadvantage for the donor cells in the presence of iTreg.  Notably, a high 

proportion of CD4
+
 cells within the lung were donor OT-II Th2 cells, both confirming the 

ability of the donor Th2 cells to traffic to the lung and also demonstrating their potential 

pathogenicity.  Given the absence of difference between total numbers and proportions of 

donor cells, unsurprisingly there was no difference in the calculated total number of donor 

OT-II Th2 cells in each organ.  Thus, 2D2 iTreg were not able to alter the total number of 

donor OT-II cells in any of the sites investigated, in contrast to the effect on naïve T cells 

seen previously (Fig 5.1).  Importantly, work by Dominika Nowakowska had also 

demonstrated a significant reduction in the number of effector Th2 cells within the lung 

when ‘direct’ suppression was investigated i.e. 2D2 iTreg suppressing 2D2 Th2 cells 

(manuscript in preparation). 

5.2.4.3 iTreg reduce the proportion of cells producing IL-5 and IL-13 in both 

the spleen and mediastinal lymph nodes 

Cells from spleen and mediastinal lymph nodes were stimulated overnight in the presence of 

20μg/ml rMOG and OVA.  Brefeldin A was added for the final four hours of culture, then 

cells were stained for intracellular cytokine production.  Insufficient cells were recovered 

from the lungs to permit meaningful comparisons between mice.  Cells were stained for 

production of IFN-γ, TNF, IL-5, and IL-13 (Fig 5.14A). 

No difference was seen in the proportion of donor OT-II Th2 cells producing either IFN-γ or 

TNF in the presence or absence of iTreg in either the spleen (Fig 5.14B) or the mediastinal 

lymph nodes (Fig 5.14C).  The proportion of cells producing IL-5 in the spleen was also not 

significantly different between the two groups, though there were fewer IL-5
+ 

donor Th2 

cells in the mice receiving 2D2 iTreg as well.  In contrast, the proportion of IL-13
+
 donor 

Th2 cells in the spleen was significantly reduced in the mice that had iTreg co-administered.  

Within the mediastinal lymph nodes, significant reductions in the proportion of both IL-5
+ 

and IL-13
+
 donor OT-II Th2 cells were seen in the presence of 2D2 iTreg.   

Thus, 2D2 iTreg had a definable effect upon OT-II Th2 cells within a C57BL/6 host in the 

presence of both relevant antigens.  Though no difference in the number of donor Th2 cells 

was observed, there were fewer eosinophils/ml in the BAL fluid, and fewer donor Th2 cells 

were IL-5
+
 and IL-13

+
 in the mice that had also received iTreg.  Histology did not 



 157 

demonstrate any difference in disease severity between the groups.  This may be related to 

the timing of assessment as resolution occurs rapidly in this model regardless of any 

additional interventions.  The disease induced by OT-II cells in the presence of OVA is also 

more severe than that by 2D2 cells with rMOG (Dominika Nowakowska, personal 

communication).  Thus, any histological difference may be too mild to be recognised. 
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5.3 Discussion 

5.3.1 Suppression by iTreg in vivo 

Efficacy of iTreg in preventing the onset of disease has been shown in numerous models, 

including EAE.  One report using polyclonal iTreg generated from Foxp3gfp reporter mice 

demonstrated marked reduction in the development of EAE if given prior to immunization 

(Selvaraj et al., 2008).  That same report also demonstrated an effect of iTreg given four 

days following priming, implying that iTreg could exert an impact on T cells already 

responding.  Reduced numbers of effector cells were identified in the CNS, with a greater 

proportion of CD4
+
 cells being Foxp3

+
, a well-characterized finding (O’Connor et al., 2007).  

Selvaraj et al suggested the reduction in effector cell number was due to the induction of 

anergy and infectious tolerance.  Analysis of lymph node tissue revealed loss of Foxp3 

expression in the donor iTreg (recapitulating the data presented here), but when depleted of 

donor iTreg, those same lymph node cells were then protective for EAE when transferred 

into new host mice.  Anergy was proposed because the response of host T cells to pMOG35-55 

was markedly reduced in mice receiving iTreg, but this response was restored in the 

presence of exogenous IL-2.  The data presented here showed an overall reduction in donor 

effector number, which would account for the protective effect of iTreg.  However the donor 

naïve T cells recovered here were able to produce IFN-γ, TNF and GM-CSF in response to 

subsequent PMA and ionomycin stimulation.  As IL-2 production and proliferation were not 

assessed on donor naïve T cells recovered from either spleen or lymph nodes, anergy cannot 

be confirmed as a mechanism but the production of the other cytokines render this possibility 

less likely.  The loss of CFSE staining would suggest however that if anergy is indeed 

induced, this may not occur immediately, but only after several cell cycle divisions have 

already taken place.   

Suppression of proliferation as measured by CFSE dilution has been demonstrated 

previously.  Use of PLP139-151-specific iTreg in an EAE model with SJL mice limited dilution 

of CFSE in naïve CD4
+
 T cells primed with PLP139-151, but not of control 2D2 CD4

+
 T cells 

primed with pMOG35-55 within the same mouse (Zhang et al., 2010).   In those experiments, 

CFSE dilution was assessed at three time points  - days 1, 3 and 6.  Of note, suppression of 

CFSE dilution was seen at day three, but extensive proliferation following immunization led 

to limited analysis at day six.  Thus, rather than contradicting the data presented here, that 

report supports the finding that naïve T cell proliferation at a later time point (day six in that 

report, day seven in this thesis) is not prevented in the presence of iTreg.  That report 

suggests that iTreg can suppress proliferation only in the first few days following 
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administration.  That delay in proliferation, rather than complete suppression, may be 

sufficient to effect the delayed onset of EAE reported in the mice receiving iTreg. 

In a different model, H
+
/K

+ 
ATPase specific iTreg were able to suppress the development of 

autoimmune gastritis (AIG) (DiPaolo et al., 2007).  The model used transfer of TCR 

transgenic thymocytes (recognizing a peptide of the H
+
/K

+
/ATPase autoantigen) which leads 

to AIG in host mice.  Mice receiving iTreg together with transferred donor thymocytes had 

reduced cellularity of the gastric lymph nodes, and very few donor thymocytes detectable. In 

that report, Foxp3 expression by gastric lymph node resident iTreg was stable in vivo (97% 

Foxp3
+
 after 7 days).  There, CFSE dilution was assessed five days after cell transfer, 

representing an intermediate time between the report by Zhang et al. and the data shown 

here.  As might be predicted, CFSE dilution was affected in the presence of iTreg with 14% 

of donor thymocytes not having undergone division at that time point.  This compares to 

36% undivided cells in the EAE model at 3 days and less than 1% in the data here.  That 

study, thus, further supported that iTreg delay the proliferation of naïve T cells, rather than 

suppressing it completely.  The proposed mechanism was that iTreg prevent stimulation of 

thymocytes by the gastric lymph node DC, partly through downregulation of expression of 

the co-stimulatory molecules CD80 and CD86. 

How the iTreg mediate the reduction in donor effector number was suggested by an early 

study using TGF-β-generated ‘Treg’ in non-obese diabetogenic mice (Weber et al., 2006).  

Those iTreg were able to suppress the development of diabetes and greatly reduced the 

number of effector Th1 cells in the pancreatic lymph nodes.  In vitro assays suggested direct 

cytotoxicity by iTreg may be responsible for the loss of effector Th1 cells.  This was 

supported by in vivo blockade of Fas-FasL interactions at the time of administration of donor 

Th1 cells restoring the number of effector cells detectable in the lymph nodes two days later.   

Thus, the data presented here concord with much of the published literature.  The ability of 

iTreg to reduce the number of recoverable cells (both naïve cells and Th1 polarised 

effectors) after only a short time in vivo is witnessed in several models, and has been 

suggested to be a direct cytotoxic effect of the iTreg, or related to changes in the phenotype 

of the priming DCs.   

5.3.1.1 Survival by iTreg in vivo  

The recovery of iTreg from mice receiving antigen and CFA was approximately 15% of 

infused cells within the spleen and LN (Fig 5.4D, 5.5B) though the vast majority of these 

cells no longer expressed Foxp3 (Fig 5.4E, 5.5C).  The fate of the remaining infused iTreg is 
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unclear.  Previous reports have demonstrated migration of Treg to the bone marrow (Selvaraj 

et al., 2007) and examination of the bone marrow of mice receiving iTreg with congenic 

markers confirmed that 2-3% of the CD4
+
 population within the marrow were donor iTreg 

[data not shown].  Though isolation of the marrow involved multiple wash steps prior to 

extraction, contamination with peripheral blood cannot be wholly excluded.   Thus, iTreg 

also migrated to an organ not regularly assessed in the majority of experiments.  The 

subsequent allergic airway inflammation model demonstrated that iTreg were also able to 

migrate to the lung, though this was highly dependent on the presence of cognate antigen 

(Fig 5.12B).  Similarly, migration of nTreg to the CNS is recognized in EAE models 

(O’Connor et al., 2007).  Other organs, such as the liver and skin, may also serve as 

migratory targets for iTreg, but none were specifically examined in the in vivo experiments 

described here.  Clarifying the chemokine markers on the iTreg may elucidate potential 

organ targets, as may multi-organ harvests of mice receiving iTreg.  In the absence of 

antigen, however, it is likely that the majority would remain within the haematogenous and 

lymphatic compartments. 

The reduced numbers of recoverable iTreg may also reflect their survival in vivo.  It is near 

impossible to determine whether the absent iTreg are resident elsewhere or have not 

survived.  However, the survival in vitro of these iTreg is very limited, with poor viability on 

re-stimulation as described in Chapter 4.  Other reports similarly demonstrate a very limited 

lifespan when transferred in vivo (Selvaraj et al., 2007) though this is contrasted by others 

who have reported persistence of iTreg several weeks post-transfer (Chen et al., 2011) 

admittedly with experimental manipulation to enhance survival.   Kinetic experiments may 

have utility here, if the number of recoverable iTreg is shown to diminish rapidly over 

several days in vivo.  Such an experiment would also require harvesting of multiple organs to 

ensure that diminuition of iTreg was not due to migration elsewhere. 

The loss of Foxp3 expression also occurs rapidly, and is consistent with previous 

descriptions of Treg kinetics (Selvaraj et al., 2007).  Again, this partly replicates the situation 

seen in vitro in the absence of high concentrations of TGF-β.  It is notable that mice that did 

not receive pro-inflammatory signals via CFA had a higher expression of Foxp3 though 

overall iTreg recovery was lower (Fig 5.4E, 5.5C).  This may imply that TCR stimulation in 

the presence of pro-inflammatory signalling enhances loss of Foxp3 expression but also 

promotes cell survival.  An alternative explanation is that there is expansion of 

contaminating Foxp3
-
 cells.  However the high yield of Foxp3

+
 cells at the end of iTreg 

primary culture, followed by subsequent FACS prior to infusion to purities consistently 
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greater than 99% make this possibility unlikely.  Additionally, other experimental models 

within the laboratory have utilized highly pure iTreg sorted by flow cytometry to 100% with 

similar loss of Foxp3 expression when then recovered ex vivo (Richard O’Connor, personal 

communication).  Importantly, despite the loss of Foxp3 expression and limited survival in 

vivo, the suppressive effect of these iTreg is maintained when interrogating the number of 

naïve T cells recoverable (Fig 5.1) and their cytokine production (Fig 5.3). 

 

5.3.2 iTreg and cytokine production 

The production of IFN-γ and TNF by the transferred naïve T cells was not affected within 

the spleen, though IFN-γ
+ 

donor naïve T cells were significantly lower in inguinal lymph 

nodes on meta-analysis of all experiments.  GM-CSF
+
 donor naïve T cells were consistently 

found at a lower frequency in mice receiving both naïve and iTreg cells, though this effect 

did not reach significance.  An alteration in cytokine production by these naïve T cells may 

indicate a change in their differentiation towards an effector phenotype.  This has been 

proposed as a mechanism of action of nTreg (Sarween et al., 2004).  Indeed, nTreg may alter 

the cytokine profile of CD8
+
 T cells without changing the differentiation program (Mempel 

et al., 2006).  This has also been suggested to occur in CD4
+
 T cells, for example a reduction 

in IFN-γ production by Th1 cells without influencing Tbet expression (Sojka et al., 2011).  

Less literature exists on the influence of iTreg on cytokine production by effector cells. 

In the reports examining the in vivo efficacy of iTreg, the polyclonal iTreg used in EAE 

appeared to alter the cytokine profile of the pMOG35-55 primed T cells subsequently obtained 

from the lymph nodes, with a reduction in IFN-γ and IL-17 plus an increase in IL-10 

(Selvaraj et al., 2008).  In the model of autoimmune gastritis, iTreg treatment reduced the 

secretion by the gastric mucosal cells of IFN-γ and IL-17, again with a concomitant increase 

in IL-10 production (Nguyen et al., 2011).  The ability of Treg to suppress GM-CSF 

production by naïve or effector T cells has not been reported to date.  Most literature 

surrounding GM-CSF is in relation to the maturation effect on dendritic cells and promotion 

of the pro-inflammatory state.  If iTreg do indeed reduce the proportion of effector T cells 

secreting GM-CSF, this would support another mechanism by which they can both prevent 

the onset of inflammation, and limit ongoing disease.   

Whilst various reports exist of the need for TNF in regulatory responses by Treg (discussed 

in chapter 4.3.2.2), no impact on TNF production by effector cells has been reported, 

consistent with the data shown here.   
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Thus, the alteration in the cytokine profile of antigen-stimulated naive T cells seen in these 

in vivo experiments is consistent with the literature, showing that IFN-γ production by either 

naïve or effector T cells is reduced in the presence of iTreg.  This is intriguing given the 

production of IFN-γ by the iTreg themselves, and the recognised phenomenon that IFN-γ 

promotes its own production by effector T cells (O’Connor et al., 2010).  This suggests that, 

whilst iTreg may influence differentiation by responding cells, the predominant effect in vivo 

is to reduce the number of potentially pathogenic cells. 

5.3.2.1 IL-6 

IL-6 hastened loss of Foxp3 expression in the in vitro restimulation experiments (Fig 5.8C), 

as did IL-27 and IL-12.  The IL-6/TGF-β combination plays a crucial role in the generation 

of Th17 cells (Veldhoen et al., 2006).  Thus, IL-6 is a key cytokine driving naïve cell 

differentiation when TGF-β is already present, preventing induction of the iTreg phenotype 

and promoting Th17 differentiation (Bettelli et al., 2006).  The data presented here suggest 

that IL-6 can have similar effects on Foxp3 expression if introduced later into the milieu.  

IL-17 production was not seen (data not shown), replicating other reports (O’Connor et al., 

2010).  A change to IL-17 production has been previously described in iTreg (Xu et al., 

2007, Osorio et al., 2008) and indeed in nTreg (Yang et al., 2008a) though iTreg production 

of IL-17 has been contradicted by other reports (Zheng et al., 2008).  Notably, IL-17 

production is not seen in cells isolated from the CNS in an EAE model, suggesting organ-

specificity may play a role (O’Connor et al., 2012).  Thus, IL-6 is likely to promote loss of 

Foxp3 expression though cannot complete ‘conversion’ to a Th17-like cell.  This is 

supported by the increase in Foxp3
+ 

Treg populations seen in mice unable to respond to IL-6 

due to T-cell restricted deletion of gp130 (Korn et al., 2008).   

 

That this can feasibly occur is confirmed by the presence of both IL-6 receptor chains on 

iTreg, including persistence of the gp130 signaling subunit at levels similar to naïve T cells 

(Fig 5.10).  This implies that iTreg can respond to IL-6 through trans-signaling as well as 

conventional IL-6 signals. IL-6 is able to bind to the soluble IL6Rα (CD126) and then 

interact directly with gp130 on the cell, negating the need for surface expression of CD126.  

Trans-signaling by IL-6 in naïve cells at the initiation of the inflammatory response has been 

demonstrated to prevent the development of iTreg in vivo (Dominitzki et al., 2007).  

Downregulation of both gp130 and CD126 occurs with TCR stimulation (Betz et al., 1998) 

in all CD4
+
 cells.  Though expression of both CD126 and gp130 is often closely correlated, 

differential expression has been reported in human nTreg which are CD126
+
 but with 
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minimal gp130 detectable (Oberg et al., 2006).  That same report also suggested that nTreg 

have more stable CD126 expression, relatively resistant to down-regulation on TCR 

stimulation.  Given that Foxp3 expression is induced in naïve T cells by TCR stimulation, 

reduced expression of both CD126 and gp130 would be the expected outcome.  Contrasting 

murine nTreg and iTreg, the different response to IL-6 was attributed to receptor expression 

in one report (Zheng et al., 2008).  There, iTreg re-stimulated in the presence of IL-6 

maintained Foxp3 expression at high levels (over 80%) in contrast to the rapid loss of Foxp3 

seen in the experiments performed here.  The differential response to IL-6 between nTreg 

and iTreg also correlated with suppressive function; IL-6 re-conditioned iTreg remained 

suppressive in both in vitro and in vivo models.  Of note, gp130 expression by iTreg was not 

included in that report, and CD126 expression was still evident (albeit at a low level) in 21% 

of the iTreg generated there.  The data here support the assertion of that paper that CD126 

expression is lower following TCR stimulation in the presence of IL-2 and TGF-β, but 

conversely also shows that gp130 expression is maintained on iTreg.  Thus IL-6 responses 

may still occur through trans-signaling and are evident through effects of IL-6 addition in 

vitro on GM-CSF production by iTreg. 

 

IL-6 has received most attention within the literature due to its role in the dichotomous 

differentiation of iTreg or Th17.  What of the other cytokines recognized to be relevant in 

Th1 and Th17 differentiation?  

 

5.3.2.2 IL-12 

 

IL-12 is primarily important in Th1 differentiation, and promotes production of IFN-γ.  The 

presence of IL-12 in the iTreg re-stimulation cultures led to an increased loss of Foxp3 

expression, a reduction in GM-CSF
+
 and an increase in IFN-γ

+
 cells (Fig5.8B, C, 5.9A, B).  

Other reports examining IL-12 in Treg stability have had similar results.  A role for 

conversion of Treg to IFN-γ producing cells in an in vivo colitis model demonstrated the 

importance of intestinal IL-12 (Feng et al., 2011) though not all of those cells lost Foxp3 

expression or suppressive potential.  The same report confirmed an effect of IL-12 on Foxp3 

expression in vitro though to a far less impressive extent than seen in the data presented here.  

Those iTreg also retained Foxp3 expression when cultured in medium alone, compared to 

the 40% of iTreg maintaining Foxp3 expression shown here (Fig 5.8B).  This may suggest 

that the protocol used by those investigators (antigen-pulsed APC and TGF-β though not 
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exogenous IL-2) may lead to a more stable Foxp3 phenotype, though this cannot be 

confirmed from the published report.   

 

IL-12 was also implicated in conversion of Treg to IFN-γ
+
 cells in a model of Toxoplasma 

gondii infection (Oldenhove et al., 2009).  There, nTreg were shown to express Tbet and 

produce IFN-γ in response to APC from T.gondii infected mice, with a similar effect on 

iTreg when IL-12 was added to primary cultures.  There was no investigation of the effect of 

IL-12 on iTreg after generation in that report.  

 

Finally, and highly relevant to the data presented here, re-stimulating iTreg in the presence 

of IL-12 led to loss of Foxp3 expression but those “ex-iTreg” were still able to inhibit 

proliferation (as measured by CFSE dilution) of naïve T cells in co-culture (O’Connor et al., 

2010).  In a model of EAE, IL-12 conditioned iTreg reduced both the incidence and the 

severity of the disease that developed, even with almost undetectable Foxp3 expression.  

Those IL-12 conditioned iTreg were also able to produce clinically detectable EAE when 

administered alone, though much higher cell numbers were needed, and the disease was both 

brief and mild.  The data presented here provides one plausible mechanism for this, as IL-12 

exposure to these iTreg leads to a reduction in GM-CSF production (Fig 5.9) and GM-CSF is 

reported to be a key encephalitogenic cytokine in EAE (Codarri et al, 2011).   

 

Curiously, given the major role of IL-12 in Th1 differentiation, very little other literature on 

the effect of IL-12 on Treg is identifiable. Given the presumed plasticity of iTreg, IL-12 here 

appears to promote loss of Foxp3 expression and the production of IFN-γ (Fig 5.8C, 5.9A), 

corroborating the reports above. 

 

5.3.2.3 IL-27 

 

In the data presented here, IL-27 had a similar effect to IL-12 on both Foxp3 expression and 

cytokine production by iTreg on restimulation (Fig 5.8, Fig 5.9).  IL-27 is a more recently 

described member of the IL-12 family (and equally has similarities to IL-6) (Hunter et al., 

2005), and was first thought to promote Th1 responses.  Subsequently, reports have 

demonstrated a protective role in models of EAE (Stumhofer et al., 2006) through the 

inhibition of Th17 development, partly through antagonism of the effects of IL-6.  IL-27 is 

not required for nTreg function, nor do IL-27 deficient mice have an abnormal nTreg 

population (Batten et al., 2006).  IL-27 does promote the generation of Tr1 cells, however, 
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leading to an increase in IL-10 and thus has an anti-inflammatory role (Pot et al., 2009).  In 

support of the data shown here, IL-27 is reported to limit iTreg generation when present 

initially (Neufert et al., 2007), mainly through effects via the STAT3 pathway (Huber et al., 

2008), and may affect iTreg survival through effects on IL-2 (Tait Wojno et al., 2011).  IL-

27 is not reported to antagonize Foxp3 expression of already differentiated iTreg, however 

(in contrast to IL-6), so the direct effect presented here on re-stimulation is a novel finding.  

This may relate to preferential survival of non-Foxp3
+
 cells in the presence of IL-2, though 

supplementing additional IL-2 in these re-stimulation cultures did not affect the loss of 

Foxp3 (data not shown).   The effect of IL-27 on the cytokine production by iTreg has not 

been previously reported.  A recent paper demonstrated that IL-27 suppressed GM-CSF 

production by naïve CD4
+ 

and CD8
+
 T cells and cells polarized towards the Th1 phenotype, 

in both mice and humans (Young et al., 2012).  These data support that report, implying that 

IL-27 may have a broader remit in suppressing GM-CSF from a variety of different cellular 

sources. 

 

5.3.2.4 TGF-β 

 

The crucial role of TGF-β in the maintenance of iTreg is again reiterated.  In the presence of 

ongoing TGF-β, Foxp3 expression was consistently higher after 72 hours of re-stimulation, 

as seen in chapter 4 (Fig 4.1).  The presence of exogenous TGF-β in culture medium also 

had the same effect on cell survival (as indicated by cell counts using trypan blue exclusion) 

as reported in chapter 4.  Where the other cytokines of interest were being investigated, 

TGF-β had a clearly dominant role in promoting both cell survival (Fig 5.11A), an effect not 

seen when IL-2 was the only exogenous addition, and Foxp3 expression. 

In one report, the impact of TGF-β on the survival of re-stimulated iTreg was attributed to a 

differential use of cell death pathways by iTreg (Tischner et al., 2012).  There, iTreg were 

resistant to Fas/FasL mediated killing due to downregulation of Fas and FasL but were 

highly susceptible to activated cell autonomous death (ACAD) in the absence of IL-2.  TGF-

β in restimulated iTreg upregulated components of the BH3 signaling pathway used in 

ACAD, suggesting that TGF-β actually enhanced cell death in iTreg.  A balance between IL-

2 and TGF-β was identified in that paper, whereby the presence of IL-2 counteracted the 

BH3 pathway in iTreg, and TGF-β counteracted the Fas/FasL upregulation that occurred 

when iTreg were re-stimulated.  Thus, in the presence of both IL-2 and TGF-β, iTreg had 

maximal survival.     
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That report further confirms the findings of this thesis that Foxp3 expression is lost from 

iTreg on secondary TCR stimulation, with the addition of IL-2 and TGF-β partially rescuing 

expression.   

The influence of TGF-β on cytokine production by iTreg has been scarcely investigated.  

Much of the literature concentrates on the IL-6/TGF-β axis for iTreg/Th17 differentiation, 

whilst the influence of TGF-β on already-established iTreg is relatively neglected.  The 

impact of TGF-β on pro-inflammatory cytokines by iTreg has not been reported.  One group 

demonstrated that nTreg increased IL-6 production by mast cells via membrane-bound TGF-

β signaling through SMAD2/3 pathways (Ganeshan et al., 2012).    

Cytokine production by these re-stimulated iTreg was also stabilized in the presence of TGF-

β.  In all cases, the provision of TGF-β in addition to the other exogenous cytokine led to the 

proportion of GM-CSF
+
 cells being similar to that of TGF-β alone. TGF-β thus appeared to 

have a dominant effect on the GM-CSF production by iTreg. 

 

5.3.2.5. GM-CSF production by iTreg was affected by other cytokines 

GM-CSF production by iTreg appeared most susceptible to cytokine manipulations, 

compared to production of IFN-γ or TNF.  In the presence of additional TGF-β and 

maintenance of Foxp3 expression, iTreg production of both IFN-γ and GM-CSF was 

reduced (Fig 5.11B).  Conversely, in the presence of Th1-relevant cytokines, IL-12, IL-27, 

and the Th17-relevant cytokine, IL-6, GM-CSF production was the only cytokine reduced in 

production (Fig 5.9). This pattern of cytokine production by iTreg is similar to that seen 

when donor iTreg were stimulated in vivo (Fig 5.6), in which pro-inflammatory cytokines 

might be expected to predominate in the presence of antigen with CFA.  Despite the finding 

by others that the production of GM-CSF by Th17 cells is promoted by IL-23 (El-Behi et al., 

2011) and IL-1β (Lukens et al., 2012), addition of either cytokine alone to re-stimulation 

cultures did not alter the production of GM-CSF (Fig 5.9, Appendix 1), most likely due to 

the absence of the relevant receptors (certainly the case for IL-23) (Zhou et al., 2007).  

Combined with the absence of IL-17 production in response to these various cytokine 

manipulations, this may suggest that upregulation of Foxp3 expression renders cells less 

sensitive to environments promoting a ‘Th17-like’ response, the correlate of that reported for 

Th17 cells in a regulatory milieu (Korn et al., 2008). 
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5.3.3 Bystander suppression by iTreg in vivo 

 

As previously discussed in chapter 3, the evidence for bystander suppression in vivo is 

conflicting.  In this chapter, a model of allergic airways inflammation (AAI) was used to 

assess whether iTreg could suppress in a bystander fashion.  A different model of AAI 

demonstrated that nTreg (defined as CD4
+ 

CD25
+
 cells) were able to reduce the number of 

lung-resident effectors, as well as the proportion of cells producing IL-5 and IL-13 (Kearley 

et al., 2005).  In that report, the suppression was dependent upon IL-10.  This has been 

postulated to contribute to the effect of nTreg in AAI in suppressing the differentiation of 

cells towards the Th2 phenotype (Jaffar et al., 2004).  A role for TGF-β has also been 

proposed (Joetham et al., 2007).  The use of ‘iTreg’ in AAI was demonstrated to be effective 

in a model utilising cockroach antigen to cause airway hyperresponsiveness, though these 

were Tr1 cells subsequently expressing Foxp3, rather than TGF-β-induced iTreg (McGee et 

al., 2009).  An important role for iTreg generated in vivo in controlling allergic airways 

inflammation was suggested (de LaFaille et al., 2008).  

Most directly applicable to the experiments performed here is a report demonstrating that the 

administration of 5x10
6
 polyclonal TGF-β-induced iTreg was able to reduce the 

development of AAI, and reduce both IL-5 and IL-13 production, in an OVA-sensitised 

model (Xu et al., 2012).  Given the well-established superiority of antigen-specific iTreg 

over polyclonal iTreg in Th1/Th17 mediated disease (Weber et al., 2006) one might expect 

even more impressive results had OVA-specific iTreg been used.  Importantly, that report 

also demonstrated an impact of iTreg administered during airway challenges, though this 

was less effective than iTreg given prior to challenge.  This has particular relevance to a 

clinical setting, when therapy prior to disease onset is much less feasible. 

Here, 2D2 iTreg have been shown to have a significant impact on the development of 

eosinophilia within the BAL fluid, and reduce the proportion of donor Th2 cells producing 

IL-5 and IL-13.  No impact was seen on disease histology, however.  Thus, bystander 

suppression has been seen in vivo in a model of AAI, but appeared less effective than ‘direct’ 

suppression.  What might account for this? 

2D2 iTreg were able to effectively suppress disease by donor 2D2 Th2 cells (work by D 

Nowakowksa, manuscript in preparation).  The severity of disease caused using 2D2 Th2 

and rMOG was notably less than that caused by OT-II Th2 and OVA.  Thus, the disease 

baseline for this bystander suppression was greater.  Though iTreg are able to impact on 

ongoing disease, this may have affected the ability of the experimental model to demonstrate 
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statistically significant differences.  Secondly, the iTreg were sorted at the end of initial 

culture by expression of CD25.  The fluorochrome-antibody combination used for this was 

antiCD25-PE, clone PC61.5 – which may have had a depleting or functional effect on the 

iTreg themselves.   Finally, bystander suppression may simply be less effective than direct 

suppression, though the reasoning for this requires a fuller understanding of the exact 

suppressive mechanisms used.   

Further experiments could increase the number of iTreg administered or reduce the number 

of donor Th2 cells infused, though this may then impact on development of a disease 

readout.  Alternatively, the protocol could be reversed, using OT-II iTreg to suppress 2D2-

Th2-mediated inflammation.  However the level of inflammation caused by 2D2 Th2 with 

rMOG is much milder such that demonstrating significant improvement with Treg may be 

problematic. 

Importantly, the data presented here offer the first demonstration of iTreg suppressing in a 

bystander fashion in a model of AAI.  As the antigens responsible for clinical disease are 

often multitude, these experiments provide proof of principle that iTreg could influence the 

development of disease in an antigen-non-specific manner without causing generalised 

immunosuppression.  How then do iTreg exert their suppressive effects in vivo?  The data 

presented herein suggest it is not via inhibiting proliferation of responding Th2 cells, nor is it 

consistently via an effect on cytokine production by responders.  The production of pro-

inflammatory cytokines by iTreg may be altered in an inflammatory milieu, but this does not 

appear to affect the subsequent suppression of naïve T cells.  The in vitro data from Chapter 

4 demonstrate no significant role for any of the three cytokines identified in suppression.  

The in vivo data here cannot contribute directly to refuting any role for these cytokines in 

iTreg function, but the maintenance of IFN-γ and TNF ex vivo in the face of effective 

suppression strongly implies they do not have a detrimental impact.  Conversely, the loss of 

GM-CSF production in the presence of inflammatory signals may well have functional 

significance, and this merits further study. 

 

A recent report proposed that iTreg may be more efficient in controlling Th2 responses than 

Th1 responses, and this may be partly attributable to their production of IFN-ɣ.  The 

presence of IFN-ɣ is known to inhibit polarization towards a Th2 phenotype (as discussed in 

section 1.4.1) and promotes Th1 polarisation.  Thus, production of IFN-γ by iTreg may be 

relevant in suppressing Th2-mediated disease.  This is clearly not the only means of 

suppression however, as iTreg generated from IFN-γ deplete mice were equally suppressive 
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in vitro (Fig 4.7E, F) and also suppressed the persistence of naïve T cells in vivo, in identical 

experiments to those described in Fig 5.1 [data not shown].  It is likely that iTreg utilize a 

variety of mechanisms to suppress, but a further informative experiment would entail using 

iTreg generated from IFN-γ-deplete mice in the allergic airways inflammation model.  If 

IFN-γ production is relevant to suppression of Th2-mediated disease, one may expect a 

reduction in the efficacy of suppression in that scenario.  Similarly, it may be anticipated that 

iTreg would be more effective in the suppression of polarization of responding T cells 

towards a Th2 phenotype, rather than in suppressing the differentiated Th2 cells used here.   

As suggested earlier, it is likely that iTreg, much like nTreg, have a variety of 

immunosuppressive mechanisms available to them, and utilization of any given means of 

suppression may be determined by a variety of factors, including the stimuli and cytokine 

environment leading to Treg induction, whether the target of suppression is a naïve or 

already differentiated cell and the nature of that differentiation, the presence or absence of 

ongoing pro-inflammatory signals, and indeed where suppression is actively mediated, 

whether in the draining lymph nodes as seems to be the case for transferred naïve T cells, or 

the inflamed organ itself as may be suggested in the AAI model.  Clearly, a great deal of 

work remains in elucidating the very basic nature of iTreg suppression. 

Clarification of the role of the various cytokines produced by iTreg could be provided by 

using various transgenic models (GM-CSF-deplete mice are available), or the in vivo 

administration of antibodies directed to those cytokines.  Further in vivo depletion 

experiments could also partly determine the kinetics of the in vivo response – are iTreg 

required to physically persist to prevent organ-specific inflammation, or is their effect early 

in the inflammatory process, mirroring the findings in the in vitro assay?  Another necessary 

experiment would be to replicate the AAI data in mice that had been depleted of their own 

nTreg population.  An absence of effect may indicate that iTreg ‘recruit’ nTreg to assist in 

suppression, or indeed that nTreg were wholly responsible for suppression with the presence 

of iTreg being an incidental finding.  Depletion experiments with subsequent restoration of 

nTreg would therefore expand upon these data. 

 

 

5.3.4 Concluding remarks  

 

iTreg are functional in vivo by reducing the number of transferred naïve T cells able to 

respond in a pro-inflammatory manner.  Antigen stimulation of iTreg in vivo hastens loss of 
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Foxp3 expression but this does not appear to impact on their suppressive potential.  Cytokine 

production by iTreg is altered in vivo, and can be replicated in vitro by the addition of either 

IL-27, IL-12, or to a lesser extent, IL-6 to in vitro restimulation cultures.  Bystander 

suppression by iTreg occurs in vivo though is less efficacious than direct suppression, and 

appears to predominantly affect cytokine production by effector Th2 cells, rather than 

effector cell number.  These findings have implications for translation of iTreg therapy into 

the clinical setting, both positive – bystander suppression does not require foreknowledge of 

the disease initiating antigen – and negative – proof that these iTreg do not become 

pathogenic in the in vivo pro-inflammatory environment is now even more crucial. 
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Figure 5.1 iTreg reduce persistence of co-transferred naïve cells in the spleen and

lymph nodes (LN).
A) Experimental scheme. Either 2x106 Tg4xFoxp3LuciDTR-4 iTreg and 2x106 naïve CD4+ Tg4

CD90.1 cells, or 2x106 naïve cells alone were transferred into C57BL/6xB10.PL hosts. One day

later, 10μg MBPAc1-9 (4Tyr) emulsified in CFA was injected subcutaneously. After one week,

mice were culled, spleens and inguinal lymph nodes harvested and analysed by flow cytometry.

B) Gating strategy. C) Total cellularity of spleens and lymph nodes, assessed by trypan blue

exclusion. D) Percentage and total number of donor naïve cells within the CD4+ population in both

spleen and lymph nodes. Data are from one of three experiments giving consistent results.

*=p<0.05 as determined by Mann-Whitney U test. ns= not significant
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Figure 5.2 iTreg do not suppress proliferation by naïve cells in vivo.
A) Experimental scheme. Either 2 x 106 Tg4xFoxp3LuciDTR-4 iTreg and 2 x 106 naïve CD4+ Tg4

CD90.1 cells, or naïve cells alone were transferred into C57BL/6xB10.PL hosts. One day later,

10μg MBPAc1-9 (4Tyr) emulsified in CFA, or in PBS, was injected subcutaneously. After one

week, mice were culled, spleens and inguinal lymph nodes harvested, and analysed by flow

cytometry. B) Cells were gated on live CD4+ cells. Representative histograms of CFSE from mice

receiving 10μg MBPAc1-9 (4Tyr) in either CFA or PBS, in the presence of absence of iTreg. Plots

from spleen and inguinal lymph nodes are shown. Data are from one of two experiments giving

consistent results.

0 10
2

10
3

10
4

10
5

0

100

200

300

400

500

Naïve cells only

MBPAc1-9 (4Tyr)/PBS

Naïve cells only

MBPAc1-9 (4Tyr)/CFA
Naïve + iTreg

MBPAc1-9 (4Tyr)/CFA

N
u
m

b
e

r 
o

f 
c
e

lls

CFSE

0 10
2

10
3

10
4

10
5

0

2

4

6

8

10

0 10
2

10
3

10
4

10
5

0

20

40

60

S
p

le
e

n
L
y
m

p
h

 N
o
d

e

0 10
2

10
3

10
4

10
5

0

5

10

15

20

0 10
2

10
3

10
4

10
5

0

50

100

150

200

250

0 10
2

10
3

10
4

10
5

0

20

40

60

D-1

Naïve CFSE-labelled CD4+ cells 

OR

Naïve CFSE-labelled CD4+ cells + 

iTreg

D0

MBPAc1-9 (4Tyr)/CFA

MBPAc1-9 (4Tyr)/PBS 

D7
Harvest spleen + lymph nodes

Flow cytometry

A

B



 173 

0

10

20

%
 c

e
ll
s
 I
F

N
-γ

+

Naïve 

only
Naïve + 

iTreg
Naïve 

only

Naïve + 

iTreg

%
 c

e
ll
s
 G

M
-C

S
F

+

%
 c

e
ll
s
 T

N
F

+

Naïve 

only

Naïve + 

iTreg

0

5

10

15

20

0

10

20

30

40

50

Figure 5.3 iTreg reduce the proportion of naïve donor cells producing IFN-γ in LN,

but not GM-CSF or TNF.
As detailed in Fig 5.1, mice received naïve cells with or without iTreg, then MBPAc1-9 (4Tyr)

emulsified in CFA, then were culled one week later. Cells were stimulated overnight with 10μM

MBPAc1-9 (4Lys) then for a final four hours with PMA and ionomycin in the presence of brefeldin

A. Intracellular cytokine staining of the donor naïve cells gated on CD4+ CD90.1+ cells is shown

from spleen (A) and LN (B). Calculated numbers of cells producing each cytokine are shown from

spleen (C) and LN (D). Data are from one of three experiments giving consistent results. *=p<0.05

as determined by meta-analysis of all experiments. ns=not significant.
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Figure 5.4 CFA-derived inflammatory signals enhance iTreg numbers in the spleen, 

but Foxp3 expression is reduced.
A) Experimental scheme. B10.PL mice intravenously received 2x106 Foxp3gfp+

Tg4xFoxp3LuciDTR-4 iTreg (FACS sorted for purity, >99% Foxp3gfp+), then 24 hours later 10μg

MBPAc1-9 (4Tyr) subcutaneously in either CFA or PBS. 48 hours later, mice were culled, spleens

(shown above) and inguinal lymph nodes (shown in Fig 5.5) were harvested, and stained for

surface and intracellular markers. B) Gating strategy for flow cytometry. C) Summary data

combined from three experiments are shown. Total cellularity of spleens of mice treated with

MBPAc1-9 in either CFA or PBS. D) Percentage and total number of donor iTreg in spleen. E)

Percentage and total number of donor iTreg retaining Foxp3 expression in the spleen. *=p<0.05 as

determined by Mann-Whitney U test. ns= not significant.
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Figure 5.5 CFA-derived Inflammatory signals enhance iTreg numbers in the inguinal

LN but Foxp3 expression is reduced.
Summary data from two experiments of donor iTreg within the lymph nodes from the experiment

outlined in Fig 5.4 A) Total cellularity of lymph nodes. B) Percentage and total number of donor

iTreg in lymph nodes. C) Percentage and total number of iTreg retaining Foxp3 expression.

*=p<0.05 as determined by Mann-Whitney U test. ns=not significant.

T
o

ta
l 
c
e

ll
u

la
ri

ty
  
x
 1

0
 6

4Tyr

CFA

4Tyr

PBS

8

6

4

2

0 0

2

4

D
o
n

o
r 

 c
e

ll
s
 a

s
 %

 o
f 

C
D

4
+

c
e

ll
s

4Tyr

CFA

4Tyr

PBS

4Tyr

CFA

4Tyr

PBS

0

20

40

60

%
 d

o
n

o
rs

 F
o

x
p

3
+

4Tyr

PBS

4Tyr

CFA

F
o

x
p

3
+

iT
re

g
x
 1

0
3

0

2

4Tyr

PBS

4Tyr

CFA

D
o
n

o
r 

iT
re

g
x
 1

0
4

0

1

20

A B

C

*

*

ns ns

ns

10

1.5

4



 176 

Figure 5.6 Ex vivo, iTreg produce IFN-γ and TNF but very little GM-CSF.
As detailed in Fig 5.4, mice received iTreg then, 24 hours later, sucbcutaneous MBPAc1-9 (4Tyr)

emulsified in CFA. After one week, mice were culled and splenocytes were re-stimulated

overnight with 10μM MBPAc1-9 (4Lys), then for the final four hours of culture with PMA and

ionomycin in the presence of brefeldin A. Cells were stained for intracellular cytokines – IFN-γ,

GM-CSF, and TNF - and Foxp3 expression. A) Representative flow cytometry plots gated on

CD4+ CD45.1+ donor iTreg showing intracellular cytokine staining. B) Summary data of cytokine

staining. Data are from one of three experiments giving consistent results.
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Figure 5.7 Host Foxp3+ cells within the spleen do not produce GM-CSF or IFN-γ following

PMA and ionomycin stimulation.

The flow cytometry data from the experiment detailed in Fig 5.6 were also gated on host CD4+

cells from the spleen (i.e. CD45.1- cells). Staining of all three cytokines is shown. Data are from

one of three experiments giving consistent results.
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Figure 5.8 IL-27, IL-21 and IL-6 exacerbate Foxp3 loss from re-stimulated iTreg in

vitro.
A) Experimental scheme. Foxp3GFP iTreg sorted by FACS for Foxp3gfp+ (99% purity) were re-

stimulated with plate-bound anti-CD3 and anti-CD28 (both 2μg/ml) for 72 hours with the addition of

IL-12 (25ng/ml), IL-27 (10ng/ml), IL-6 (30ng/ml), or IL-1β (10ng/ml). B) Flow cytometry plots show

the proportion of cells staining with live dead marker. Numbers indicate percentage of surviving

cells. C) Representative plots of Foxp3 expression gated on CD4+ cells. Numbers indicate

percentage of Foxp3+ cells. D) Total cell numbers (viability assessed by trypan blue exclusion) in

each condition after 72 hours of culture. Data are from one of four experiments giving consistent

results.
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Figure 5.9 IL-27, IL-12 and IL-6 reduce GM-CSF and increase the proportion of iTreg

producing IFN-γ.
iTreg, re-stimulated as described in Fig 5.8, were further stimulated with PMA and ionomycin in the 

presence of brefeldin A for the final 4 hours of culture.  Cytokine production was then assessed by 

intracellular staining.   A) Representative flow cytometry plots gated on live CD4+ cells are shown.  

B) Summary data of triplicate wells. Data are from one of three experiments giving consistent 

results.
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Figure 5.10 iTreg express gp130 and CD126.
Tg4xFoxp3LuciDTR-4 iTreg were sorted for Foxp3gfp+ expression then stained for CD126 and

gp130. Naïve Tg4 CD4+ cells were similarly stained. Histograms of gp130 and CD126

expression compared to isotype are shown, gated on CD4+ cells. Data are shown from a single

experiment.
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Figure 5.11 TGF-β has a dominant effect on iTreg survival and production of GM-

CSF.
1x106 Foxp3GFP iTreg were re-stimulated as previously in the presence of IL-6,IL-27, IL-12, or IL-

1β, plus either IL-2 (100U/ml) or IL-2 and TGF-β (5ng/ml). Cells were stained as previously. A)

Effect of IL-2 and TGF-β on cell numbers after culture in the cytokine indicated after 72 hours. B)

Summary data of staining of iTreg for IFN-γ, GM-CSF, and TNF after culture for 72 hours with the

indicated cytokine in the presence or absence of IL-2 (100U/ml) and TGF-β (5ng/ml). Data are

from one of three experiments giving consistent results. *=p<0.05 as determined by Mann-Whitney

U test. ns=not significant.
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Figure 5.12 iTreg reduce lung eosinophils in airway inflammation induced by

effectors responding to a different antigen.
A) Experimental scheme. C57BL/6 mice received 4x106 2D2 iTreg (sorted for CD25high) or PBS

control, then one day later 2.5x106 OT-II Th2 cells. 50μg rMOG and 50μg OVA were instilled in

combination intratracheally (IT) one, four, and seven days later. Two days following the final

airway challenge, mice were culled, lungs, spleen and lymph nodes harvested. Lungs were

lavaged prior to harvesting. B) The number of all cells, and subtypes in the bronchoalveolar

lavage were quantified from cytospins. Data are shown from a single experiment. *=p<0.05.

**=p<0.01 as determined by Mann-Whitney U tests. ns=not significant.
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Figure 5.13 2D2 iTreg do not affect the survival of donor OT-II Th2 cells 
As detailed in Fig 5.12, spleen, mediastinal lymph nodes, and lungs were harvested. Cells were

counted by trypan blue exclusion, and proportions of donor Th2 cells and iTreg assessed by flow

cytometry. Summary data from all mice are shown for total cell number, the percentage of CD4+

cells that were donor Th2, and calculated numbers of donor Th2 cells in the A) spleen B) lymph

nodes and C) lung. Data are shown from a single experiment. Groups were conpared using the

Mann-Whitney U test. ns=not signficant.
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Fig 5.14 2D2 iTreg reduce the percentage of donor OT-II cells producing IL-13 and

IL-5 in the spleen and LN.
As detailed in Fig 5.12, lymph nodes and spleens were harvested. Cells were then stimulated

overnight in the presence of rMOG and OVA with brefeldin A for the final four hours. Cells were

then stained for intracellular cytokines: IFN-γ, TNF, IL-13, and IL-5. A) Representative flow

cytometry plots gated on live CD4+ cells. Numbers indicate percentage of cytokine+ cells. B)

Summary data for cytokine staining of donor Th2 cells in the spleen. C) Summary data for cytokine

staining of donor Th2 cells in the mediastinal lymph nodes. Data are shown from a single

experiment. *=p<0.05. **=p<0.01 as determined by Mann-Whitney U tests. ns=not significant.

%
 d

o
n

o
r 

T
h

2
 I
L

-1
3

+

Th2

rMOG/OVA

Th2+iTreg

rMOG/OVA

0

10

20

%
 d

o
n
o

r 
T

h
2

 I
F

N
-γ

+

B

%
 d

o
n

o
r 

T
h

2
 T

N
F

+

0

10

20

30

%
 d

o
n
o

r 
T

h
2

 I
L

-5
+

0

10

20

30

40

%
 d

o
n

o
r 

T
h

2
 I
L

-1
3

+

Th2

rMOG/OVA

Th2+iTreg

rMOG/OVA

**

0

25

50

C

%
 d

o
n
o

r 
T

h
2

 I
F

N
-γ

+

0

3

6

9

%
 d

o
n

o
r 

T
h

2
 T

N
F

+

0

5

10

15

%
 d

o
n

o
r 

T
h

2
 I
L

-5
+

**

0

10

20

30

**

0

25

50

SPLEEN LYMPH NODE

IFN-γ

TNF

IL-13

IL-5

0 10
2

10
3

10
4

10
5

0

10
2

10
3

10
4

10
5

6.22

0 10
2

10
3

10
4

10
5

0

10
2

10
3

10
4

10
5

19.5

0 10
2

10
3

10
4

10
5

0

10
2

10
3

10
4

10
5

19.5

C
D

4

A

0 10
2

10
3

10
4

10
5

0

10
2

10
3

10
4

10
5

7.05

ns

ns

ns ns

ns



 185 

6 Discussion 

 

6.1 Pro-inflammatory cytokine production by iTreg 

An important finding of the work presented herein is the identification of pro-inflammatory 

cytokine production by iTreg, namely IFN-γ, GM-CSF, and TNF.  The production of GM-

CSF by iTreg is a novel finding, not previously reported.  Though none of these cytokines 

appeared relevant in in vitro suppression assays, the cytokine profile of iTreg changed in 

vivo, most notably with a reduction in the number of cells producing GM-CSF.  This profile 

could be emulated in vitro by re-stimulating iTreg in the presence of IL-6, IL-27, or IL-12.  

This suggests that cytokines produced in the inflammatory environment can directly 

influence the cytokine output of iTreg, and this may be relevant to how they exert their 

effects in vivo. 

The production of IFN-γ and IL-17 has been reported in human nTreg subpopulations. 

Production of IL-17 by nTreg in the presence of IL-6 (Xu et al., 2007) showed that this 

lineage is susceptible to plasticity.  Culture of nTreg in Th1 polarising conditions led to 

upregulation of Tbet and IFN-γ production (Zeng et al., 2009).  Using 

CD4
+
CD45RO

+
CD25

+
CD127

low
 to identify human memory Treg, subtypes were shown 

expressing either RORγt or Tbet, associated with production of IL-17 and IFN-γ with co-

production of IL-10 (Duhen et al., 2012). However, this may be dependent upon the location 

of the nTreg, as a report from O’Connor et al. demonstrated that nTreg isolated from the 

CNS during EAE (i.e. Treg resident within the target organ of inflammation) were resistant 

to IL-6 and did not produce IL-17 (O’Connor et al., 2012).   

The production of IFN-γ, but resistance to IL-17 production, by iTreg in cytokine conditions 

promoting Th17 development further emphasized that nTreg and iTreg are not equivalent 

(O’Connor et al., 2010).  IFN-γ production by iTreg was found in that report to occur on 

secondary TCR stimulation regardless of additional exogenous cytokines, though was 

markedly increased in the presence of additional IL-12.  Further stimulating the iTreg in IL-

12 to create ‘IL-12 conditioned Treg’ led to loss of Foxp3 expression and increased IFN-γ 

production, but did not affect the ability of these cells to suppress proliferation by naïve T 

cells both in vitro and in vivo.  Those iTreg were mildly pathogenic when transferred into 

mice at high numbers, and were unable to prevent disease caused by already-activated Th1 
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cells.  The production of IFN-γ by iTreg may actually be relevant to their suppressive 

function (Willenborg et al., 1996).   

Other reports show no production of these cytokines by iTreg.  Using CD4
+
CD8

- 
CD25

- 

thymocytes as precursors in almost identical iTreg generation conditions, one group reported 

minimal production of IFN-γ and only 18% iTreg producing TNF on anti-CD3/anti-CD28 

re-stimulation (Di Paolo et al., 2007).  This may relate to using thymic cells rather than naive 

T cells derived from spleen and lymph nodes.  A second group generated iTreg using 

splenocytes and demonstrated no IFN-γ production on re-stimulation for 24 hours with islet 

cells as antigen (Tonkin et al., 2008).  That group included anti-IFN-γ in initial iTreg 

generating conditions however, which was very likely to have influenced their subsequent 

cytokine production.  It is well recognized that the presence of IFN-γ stimulates further IFN-

γ production by other cells (O’Connor et al., 2010). 

To summarise, this thesis has demonstrated that iTreg generated using a well established in 

vitro protocol (Davidson et al., 2007) are capable of producing IFN-γ, GM-CSF and TNF. 

The in vivo environment reduces production of GM-CSF compared to iTreg re-stimulated in 

vitro. Though other groups have demonstrated an absence of IFN-γ from iTreg, those were 

always generated in a different manner. What might the relevance of the cytokine production 

by these cells be?  Though all three cytokines have been implicated in pathogenesis, 

protective effects have also been attributed to them all as well.  The increased severity of 

various autoimmune models in mice lacking IFN-γ, including EAE (Chu et al., 2000) and 

experimental glomerulonephritis (Kitching et al., 2004), highlights that IFN-γ clearly has an 

immunoprotective role in some circumstances. Similarly, administration of recombinant 

TNF is protective in mouse models of lupus (Gordon et al., 1989) and diabetes (Satoh et al, 

1989).  Anti-TNF therapy has been associated in patients with worsening/development of 

MS (Sicotte et al., 2001) and lupus (Lin et al., 2008).   

The wide-ranging effects of GM-CSF in multiple cell systems renders it more difficult to 

ascribe a positive or negative immunomodulatory effect, though its role in promoting 

autoimmunity has been recognized for many years (Campbell et al., 1998).  The 

immunoprotective effects of GM-CSF have been best described in the context of immune 

evasion by malignant cells (Graner et al., 2000). 

Attributing either a pro- or anti- inflammatory characteristic to any given cytokine therefore 

appears somewhat simplistic and misleading, as clearly the response to cytokines depends 

upon a multitude of other factors, including the other components of the inflammatory 
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milieu, the types of cells responding, and potentially the pathogenic stage of the disease 

under investigation. 

How does this relate to iTreg production of these cytokines?  It is highly likely, indeed 

almost certain, that iTreg will only be generated in vivo in the context of high quantities of 

TGF-β.  The interplay between this and the other cytokines is therefore a crucial one to 

investigate.   Does TGF-β influence the signaling pathways triggered by IFN-γ, or impair the 

maturation of DCs in the presence of GM-CSF?  These questions remain unanswered, 

though merit further study. 

For an individual cell, cytokine production is a relatively expensive task, requiring energy-

demanding processes.  It is unlikely that the production of these cytokines has no relevance 

at all to the function of the iTreg, even though this appears to be suggested by the absence of 

effect in in vitro suppression assays (Chapter 4).  Some reports have indicated that Treg have 

a more important role in diseases where Th2 cells are the primary protagonists (Josefowicz 

et al., 2012), correlating with the suppression of ‘signature’ cytokines presented in Fig 4.14.  

Given the reciprocal inhibition of Th1 and Th2 differentiation, partly mediated by the 

relative cytokines, it is plausible that production of IFN-γ by iTreg is relevant in their 

suppression of Th2-mediated processes, perhaps by interrupting the positive feedback effect 

on trafficking naïve T cells towards the area of inflammation.   

Another area worthy of investigation is whether the initial generating conditions influence 

the subsequent cytokine production by iTreg.  The absence of IFN-γ production by iTreg 

generated in identical circumstances to the protocol used here and by others (O’Connor et 

al., 2010), with the exception of the addition of anti-IFN-γ, implies iTreg may be influenced 

by the environment in which they are generated.  Much of the data presented in chapter 5 

shows that the cytokine environment can influence production of cytokines by iTreg after 

generation, but this may be subject to manipulation during primary generation as well. 

The alteration in cytokine profile ex vivo in the presence of inflammatory signals also 

suggests that iTreg can modulate their cytokine production according to the environment in 

which they are resident.  In the healthy steady state where iTreg are generated in the absence 

of inflammation e.g. at the gut mucosal level with foreign antigens derived from food, the 

low production of these cytokines may maintain the gut-resident DCs in their tolerogenic 

state.  Conversely, the presence of inflammatory signals may alter the iTreg cytokine profile.  

The presence of IL-6 reduced GM-CSF and increased IFN-γ; this may lead to iTreg having a 

differing effect on the DCs.  Alternately, though in most circumstances IFN-γ promotes 
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production of IFN-γ by other cells, perhaps a negative feedback loop exists within iTreg, 

with increasing IFN-γ concentrations stimulating a reduction in other pro-inflammatory 

cytokines.  These hypotheses could be tested utilizing the well-established models of colitis 

and assessing the cytokine production of iTreg in these circumstances, compared to those 

within a healthy gut.   

 

6.2 Bystander suppression 

This thesis has presented data demonstrating the ability of iTreg to suppress in a bystander 

fashion, using two different transgenic mouse strains to clearly show that persistence of the 

iTreg cognate antigen is not required, but that interaction with the MHC is necessary for 

suppression to occur.   Depletion experiments led to the unexpected finding that iTreg do not 

need to physically persist in in vitro culture beyond 24 hours for suppression to occur.  This 

in vitro bystander suppression model was partially reliant on TGF-β signaling, as inhibition 

of ALK5 reduced the efficacy of iTreg. 

Two different patterns of suppression were seen using iTreg in vivo.  Where naïve T cells 

sharing the same transgenic TCR were transferred and stimulated with antigen in the 

presence of CFA, iTreg reduced the total number of naïve T cells surviving in both the 

spleen and the lymph nodes, with a significant reduction in the production of IFN-γ by naive 

T cells in the LN also evident.  Thus, these iTreg were able to reduce the number of potential 

effector cells. 

In the in vivo bystander suppression experiments, a different pattern of suppression was seen.  

In experiments of ‘direct’ suppression with 2D2 iTreg administered to mice receiving 2D2 

Th2 cells and rMOG-induced AAI, the total number of effector cells in the lung was 

reduced, as was production of IL-13 (work by Dominika Nowakowska).  In the bystander 

suppression experiments presented here, administration of 2D2 iTreg was unable to reduce 

the number of OT-II Th2 cells present in the lung following challenge with either OVA, or 

both rMOG and OVA.  The numerical difference in effectors following iTreg administration 

was lost.  Cytokine production was significantly affected however, with a reduction in OT-II 

Th2 cell production of IL-5 and IL-13 evident within the spleen and LN.  How this related to 

the site of inflammation remains to be investigated.  Thus, in vivo, two potential mechanisms 

by which iTreg may ameliorate disease have been demonstrated.  A reduction in the number 

of donor cells (either naïve or Th2) would limit the pool of potential effectors, and they had 

demonstrably lower production of IFN-γ, or IL-13 and IL-5 respectively.  Bystander 
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suppression by iTreg was less effective in reducing the number of effector cells, but cytokine 

production by Th2 cells was still affected. 

These differing effects may be related to the type of cell undergoing suppression.  The initial 

in vivo experiments used naïve T cells and CFA immunization whereas the bystander 

suppression experiment involved polarised Th2 cells.  Not only are iTreg able to suppress 

polarised effectors in vitro (Fig 4.13), they are also efficacious in treating established disease 

as well as preventing its onset (Nguyen et al., 2011), and appear to be more efficient than 

nTreg in several disease models (Kong et al., 2012).  Previous groups have failed to 

demonstrate any evidence for bystander suppression in vivo, including a convincing absence 

of effect in EAE (Zhang et al., 2010).  This may relate to the models used or the end-points 

chosen.  The data presented in Chapter 5 imply that iTreg can exert a bystander suppressive 

effect but in the model used this was predominantly on cytokine production rather than the 

total number of effectors.  If a longer-term Th1/Th17-mediated disease model is used, the 

iTreg generated by current protocols may be less efficient (particularly given their intrinsic 

production of IFN-γ and GM-CSF) than if a Th2-mediated model is examined.   Against this 

is the consistent finding that iTreg generated following an identical protocol are able to 

ameliorate EAE induced by immunisation with antigen/CFA and transfer of naïve cells 

(O’Connor et al., 2010).  The already-differentiated effector status of the pathogenic cells 

may thus also be relevant. 

In the bystander suppression experiments here, the reduction in the proportion of cells 

producing IL-5 and IL-13 is the main finding.  This provides proof of principle that iTreg are 

able to exert a suppressive effect on effector cells responding to a different antigen in vivo as 

well as in vitro. Though no effect was seen on the number of effectors present in the lung in 

the bystander model, there was an effect when Th2 and iTreg shared the same cognate 

antigen.  This could be related to the milder severity of disease, but may also be related to 

the signals permitting trafficking of the iTreg to the lungs.  That the iTreg do traffic there is 

clearly evident, but could this be less efficient in a bystander suppression model?  To 

determine whether the effect of iTreg was simply delayed, a longer model of AAI could be 

employed. In the model used, the resolution of the airways inflammation occurs rapidly (K 

Mackenzie, personal communication).  A further experimental question, permitted by the 

rapid resolution of inflammation, is the potential for re-challenge with both antigens once 

inflammation has resolved.  The ability of Treg to form a ‘memory’ population has been 

suggested (Rosenblum et al., 2011).  Whether iTreg are able to contribute to this regulatory 
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memory is unclear, but could feasibly be tested using the model above.  Unknowns include 

the lifespan of iTreg within the mice. 

If the bystander suppression effect is limited to an effect on cytokine production, but not cell 

number, this may actually increase the utility of iTreg therapeutically.  Many of the concerns 

regarding bystander effects were that that the adverse effects would replicate those of 

generalized immunosuppression, removing the benefits of an antigen-specific therapy.  The 

results above may also suggest that iTreg would be of most utility in those diseases where 

Th2 cells are the protagonists. 

 

6.3 Concluding remarks 

This thesis has presented data showing the ability of iTreg to produce pro-inflammatory 

cytokines, and effect bystander suppression both in vitro – when cognate antigen is 

unnecessary but MHC interaction is required – and in vivo.  The ability of these iTreg to 

suppress regardless of their cytokine profile implies that some concerns re the plasticity of 

iTreg may be unfounded, as they remain suppressive despite the production of pro-

inflammatory cytokines and loss of their ‘master’ transcription factor, Foxp3.  How the 

cytokine production of iTreg is altered in different disease models is unknown, and deserves 

additional study.  Conversely, deliberately altering the cytokine profile of iTreg through the 

use of exogenous cytokines during generation or re-stimulation may provide new insights 

into their suppressive mechanisms. Further investigation of the efficacy in vivo of iTreg in 

Th2-mediated disease is also warranted. 
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IFN-γ, anti-IFN-γ, or IL-23 have no effects on cytokine production by re-

stimulated iTreg in vitro
Sorted iTreg were re-stimulated as described in Fig 5.8.  Medium was supplemented with 

IFN-γ (100ng/ml) , anti-IFN-γ (10μg/ml),  or IL-23 (30ng/ml).  After 72 hours of culture, cells 

were analysed by flow cytometry for viability, expression of Foxp3, and production of the 

indicated cytokines.  Data are shown from single experiments.  Numbers indicate the 

percentage of cells within the gate.  
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