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Abstract

Varicella-zoster virus (VZV) is an alphaherpesvirus that causes childhood
chickenpox, becomes latent in dorsal root ganglia (DRG) after primary infection and
subsequently may reactivate to cause shingles (zoster). It is essential to understand
the molecular mechanisms governing VZV latency and reactivation because
approximately 20% of the human population will develop zoster and possibly
experience post-herpetic neuralgia (PHN), a debilitating pain syndrome associated
with zoster. Little is known about the pathogenesis of PHN mainly due to a previous
lack of a good animal model and the cell-associated nature of VZV in vitro. An in
vivo model of latent VZV in the adult rat was adapted. Foot reflex withdrawal
responses has been shown to persist for longer than 60 days post infection similar to
changes seen in PHN patients. The aim of this study was to further characterise this
model so that it could provide a useful and unique opportunity to study the host-virus
interaction involved in the pathogenesis ofPHN. Nested PCR was able to detect viral
DNA in the different lumbar DRG but the low level of latent gene expression gave
no direct correlation of the observed behavioural changes with the pattern of gene
expression in the infected DRG. Real-time PCR was developed, a quantitative assay,
to investigate the low abundance of the latent genes. Viral DNA could also be
detected in microdissected cells, which provide an alternative for investigating the
gene expression in each subneuronal population in the DRG. Time course study
showed that viral DNA was present in the infected DRG as early as 24 h post
infection and viremia was not detected from 1 to 3 days post infection. This
suggested that the spread of the virus is mainly through axonal pathway. Viral DNA
could not be detected in other tissues like spleen, spinal cord and brain suggested that
the latent virus was limited to the peripheral nervous system. RT-PCR was able to
detect viral transcripts in infected cells but not in the latently infected DRG due to
the low abundance of viral genome copy and limitation in detection of the assay.
Therefore, a global approach was taken to look at the transcriptional activity in the
latently infected neurones by carrying out a microarray experiment. The Rat
Expression Set 230A GeneChip was used in this study. Of the 15,866 known rat
genes represented on the RAE 230A, 5295 probe sets were not detected (33%). 9556
genes detected on both samples, of which 332 with altered expression and 57 of them
has an increase in expression. Of the 57 increased in expression, 32 met the cut-off of
50 and only 5 had a fold change of greater than 2. Due to the tissue heterogeneity,
only a small fraction of cells in the DRG harbours latent VZV. A small difference in
expression might give rise to a large difference on a whole ganglion basis. Of the ten
genes which were significantly regulated, prostaglandin D2 synthase was validated
by real time PCR and showed an upregulation of 2.7 fold corroborate with the results
from microarray. PGDt was reported recently to have neuroprotective role in the
nervous system. This study is in effect a pilot study giving a general overview of the
changes within the DRG and thus provide a source of further characterisation of this
model to understand the pathogenesis of the VZV induced allodynia.

IV



Contents
Declaration ii

Acknowledgements iii
Abstract iv
Table of Contents v

List of Figures ix
List of Tables xi
Abbreviations xii

Table of Contents

Chapter One: Introduction 1

1.1 Herpesviruses 2
1.1.1 Herpesviruses Classification 3
1.1.2 Alphaherpesviruses 3
1.1.3 Betaherpesviruses 3
1.1.4 Gammaherpesviruses 4
1.1.5 Herpesvirus Sequence Arrangements 4
1.1.6 Herpesvirus Genes 8
1.1.7 Herpesvirus Replication 8
1.1.8 Herpesvirus Latency 11

1.2 Varicella zoster virus 15
1.2.1 Morphology 16
1.2.2 Genome Organisation 19
1.2.3 VZV Replication 22
1.2.4 VZV Latency 32
1.2.5 Reactivation 41
1.2.6 Immune Evasion Mechanism of VZV 42

1.3 Clinical Manifestations of Varicella 47
1.3.1 Pathogenesis 48
1.3.2 Complications 51
1.3.3 Treatment 51

1.4 Clinical Manifestation of Herpes Zoster 52
1.4.1 Pathogenesis 54
1.4.2 Complications 55
1.4.3 Treatment 56

1.5 Post-herpetic neuralgia 58
1.5.1 Pathogenesis 59
1.5.2 Treatment 60

1.6 Animal Models of VZV 61
1.7 Project Aims 63

Chapter Two: Materials and Methods 65

2.1. Materials 66
2.1.1. Chemicals 66
2.1.2. Common Media, Buffers and Solutions 66

2.2. General Molecular Techniques 67
2.2.1. DNA Extraction from Animal Tissues 67
2.2.2. DNA Extraction from Animal Cells 68

v



2.2.3. DNA and Total RNA Extraction from Animal Cells or Tissue 68
2.2.4. DNA Extraction from Whole Non-nucleated Blood 70
2.2.5. Quantitation of Nucleic Acids 70
2.2.6. Agarose Gel Electrophoresis 71
2.2.7. Restriction Endonuclease Digestion 71
2.2.8. Ligation using the pGEM-T Easy Vector System 71
2.2.9. Sequencing 72
2.2.10. Southern Blot Analysis 72

2.3. Bacterial Work 75
2.3.1. Growth and Maintenance of Escherichia coli 75
2.3.2. Transformation of E.coli cells with Plasmid DNA 76
2.3.3. Small-scale Preparation of Plasmid DNA 76

2.4. RNA Work 77

2.4.1. RNA Stabilisation in Tissues 77
2.4.2. Total RNA Extraction from Animal Tissues 77
2.4.3. Total RNA Extraction from Mamalian Cells 78
2.4.4. Reverse-Transcriptase Polymerase Chain Reaction 79

2.5. Mammalian Cells and Viruses 80

2.5.1. Cells and Viruses 80
2.5.2. Long Term Storage of Cells and Viruses 80
2.5.3. Recovering Cells and Viruses from Liquid Nitrogen 80
2.5.4. Virus Propagation and Harvesting of Virus 81

2.6. Animals and Behavioural Testing 81
2.6.1. The Rat Model of VZV Latency 81
2.6.2. Source of Animals 85
2.6.3. Inoculations 85
2.6.4. Assessment of Allodynia 85
2.6.5. Tissue Collection and Preservation 86

2.7. Polymerase Chain Reaction 86
2.7.1. Nested-PCR Optimisation 89

2.8. Developing Real-time PCR Assay 89
2.8.1. Optimisation of Real time PCR Assay 89
2.8.2. Standard Curve Construction 89
2.8.3. Melting Curve Analysis 91

2.9. Laser Capture Microdissection 91
2.9.1. Preparation of Slide 91
2.9.2. Lifting of Single Cell 92

2.10. Microarray 93
2.10.1. RNA Preparation 93
2.10.2. Affymetrix Hybridisation and Staining 94
2.10.3. Affymetrix Microarray Data Analysis 94
2.10.4. Microarray Data Validation with Real-time PCR 95

Chapter Three: Results and Discussion 96

3.1. Introduction 97

3.2. Results 99
3.2.1. Development of nested-PCR for VZV Genes 63 and 10 99
3.2.2. Sensitivity of nested-PCR 102
3.2.3. Detection of VZV DNA in Whole DRG by nested-PCR 105
3.2.4. Southern Blot Confirmation of the Presence of VZV DNA 109
3.2.5. Detection of VZV DNA in Microdissected Cells 111

VI



3.2.6. Real-time PCR 113
3.2.6.1 MgCI2 Titration 114
3.2.6.2 SYBR Green I Concentration 114
3.2.6.3 Template Concentration 115
3.2.6.4 Primer Concentration 115

3.2.7. Construction of a Standard Curve 118
3.2.8. Quantitation of VZV DNA Viral Load with Real-time PCR 121
3.2.9. Detection of Viral Transcripts in Infected Cells 123
3.2.10. Detection ofViral Transcripts in Infected DRG 125
3.2.11. Detection of DNA and RNA Transcripts Simultaneously 125
3.2.12. RT-PCR Optimisation 126
3.2.13. Viral Spread in the Rat Model of VZV Latency 130

3.3. Discussion 134
3.3.1. Detection of VZV DNA in Infected Whole DRG 134
3.3.2. Viral Load in the Latently Infected DRG 135
3.3.3. Detection of VZV DNA in Microdissected Cells 137
3.3.4. Detection of VZV Transcripts in the Infected DRG 137
3.3.5. Viral Spread in the Rat Model 139

3.4. Conclusion 140

Chapter Four: Results and Discussion 142

4.1. Introduction 143

4.1.1. Affymetrix GeneChip Array 144
4.1.2. Rat Expression Set 230A 146

4.2. Results 148

4.2.1. Experimental Design 148
4.2.2. Preparation of Target Sample 148
4.2.3. Integrity and Quality of RNA 151
4.2.4. Microarray Data Analysis 154
4.2.5. Microarray Quality Control 155
4.2.6. Comparison of Uninfected and Infected Samples and Identification

of Differentially Expressed Genes 156
4.2.7. Identification of Significantly Regulated Genes 161
4.2.8. Sorting of Data based on Biological Functions 164
4.2.9. Grouping Genes into Related Pathways- Pathway Analysis 169

Validations of Selected Gene by Quantitative Real-Time RT-
4.2.10 PCR 172

4.3. Discussion 179

4.3.1. Changes in Host Gene Expression in Infected DRG 179
4.3.2. Significantly Regulated Genes and their Functions 183
4.3.3. Validation of Microarray Results 185
4.3.4. Prostaglandin D2 Synthase 186
4.3.5. Limitations of Microarray 189

4.4. Conclusion 190

Chapter Five: Results and Discussion 191

5.1. Introduction 192
5.1.1. In vivo Experiment 193

5.2. Results 196
5.2.1 Altered Behavioural Response in the Rats

vii



5.2.2. PCR analysis 198
5.3. Discussion 200

5.3.1. Effects of Different Strains of VZV in the Altered Behavioural 200

Changes in the Rat Model
5.4. Conclusion 202

Chapter Six: Overall Discussion 204

Appendices
Appendix 4.1
Appendix 4.2

Vlll



List of Figures

Figure 1.1 A schematic diagram of the sequence arrangements of Herpesviridae 7
Figure 1.2 General overview of herpesvirus replication, based on FISV 14
Figure 1.3 A schematic diagram of VZV 18
Figure 1.4 Organization of VZV genome 21
Figure 1.5 Regulation of IE62 function 40
Figure 1.6 Interference by VZV with IFN- induced up-regulation of MFIC class 46

II expression via Jak/Stat signal transduction pathway
Figure 1.7 Diagrammatic representation of the pathogenesis of chicken pox 50

infection based on mousepox
Figure 2.1 A diagram of the rat model 83
Figure 2.2 A diagram of the acclimatisation of rats in wire mesh cages and 84

von Frey filaments
Figure 3.1 Amplification of VZV genes 63 and 10 with nested PCR 101

Restriction enzyme analysis and PCR to confirm VZV63 positive
Figure 3.2 clones 103
Figure 3.3 Sensitivity of the nested PCR assay 104
Figure 3.4 An example of the VZV63 nested-PCR on lumbar DRG tissue from 107

an infected animal

Figure 3.5 Southern blot confirmation of nested PCR results 110
Figure 3.6 Single cell lifted by laser capture microdissection (LCM) and 112

PCR analysis
Figure 3.7 Effect of MgCI2 concentration 116
Figure 3.8 Effect of SyBr Green I 115
Figure 3.9 Effect of template concentration 117
Figure 3.10 Effect of primer concentration 116
Figure 3.11 An example of standard curve experiment in the Rotor Gene 3000 120
Figure 3.12 An example of viral load in the infected DRGs of an animal 122
Figure 3.13 RT-PCR assay of VZV infected cells in vitro 124
Figure 3.14 Detection of viral transcripts using primers specific for VZV63 127
Figure 3.15 Simultaneous isolation of DNA and total RNA from VZV infected cells 128
Figure 3.16 PCR and RT-PCR analysis of the DNA and total RNA 129

isolated simultaneously from the infected DRG
Figure 3.17 A schematic diagram of the viral spread in the rat model 133
Figure 4.1 The workflow of the microarray experiment is outlined 147
Figure 4.2 In vivo experiment 150
Figure 4.3 RNA quality and integrity check with the Agilent 2100 Bioanalyser 153
Figure 4.4 Representative scatter plot of overall expression level data from the 158

GeneChip Rat Expression Set 21 OA experiment with two different
normalisation methods

Figure 4.5 Box and whiskers plots show the distribution of the data before 159
and after normalisation

Figure 4.6 A diagram showing the distribution of genes found regulated by 160
MAS and RMA analyses

Figure 4.7 Significantly altered genes which have a fold change of > 2 163
Figure 4.8 Network 1 from Ingenuity pathways analysis 171
Figure 4.9 qRT-PCR of Ptgds 174
Figure 4.10 Restriction enzyme analysis to select for positive Ptgds clones 174
Figure 4.11 Real-time PCR assay set up for Prostaglandin D2 synthase (Ptgds) 177
Figure 4.12 Validation of prostaglandin D2 synthase (Ptgds) with real time PCR 178

ix



Figure 4.13 A schematic diagram of the prostaglandin metabolism pathway 188
Figure 5.1 Flow chart showing the experiment carried out to investigate the 195

effect of different strains of VZV in the rat model

Figure 5.2 Graph bars show the overall sensitivity of the animals when infected 197
with different strains of VZV

x



List of Tables

Table 1.1 Herpesvirus classifications and some common disease(s) 6

Table 2.1 Common Media, Buffers and Solutions 66
Table 2.2 Oligonucleotide Primers

Detection of VZV63 DNA in the VZV-infected DRG by nested
88

Table 3.1 PCR 108
Table 3.2 Detection of viral nucleic acids in the DRG at the early time point

of infection (24 h, 48 h, 72 h) in the rat model 132
Table 4.1 Functional analysis of the genes having signal intensity > 50 in

the microarray analysis
166

Table 5.1 Detection by PCR of VZV DNA in the rat DRG infected with
different VZV strains

199

xi



Abbreviations

AHV-1 Alcelaphine herpesvirus 1
ATP Adenosine triphosphate
bp Base pair
cDNA Complementary DNA
cRNA Complementary RNA
CSF Cerebrospinal fluid
Ct Cycle threshold
DIG-dUTP Digoxigenin-labelled dideoxyuridine-triphosphate
DMEM Dulbecco's modified Eagles medium
DMSO Dimethyl sulphoxide
DNA Deoxyribonucleic acid
dNTP Deoxynucleoside triphosphate
DRG Dorsal root ganglion
dsDNA Double stranded DNA
DTT Dithiothreitol
E.coli Escherichia coli
EBV Epstein-Barr virus
EDTA Ethylenediaminetriacetic acid
ER endoplasmic reticulum
EST Expressed sequence tag
FCS Foetal calf serum
HBV Hepatitis B virus
HCMV Human cytomegalovirus
HHV-6 Human herpesvirus 6
HSV-1 Herpes simplex virus 1
HSV-2 Herpes simplex virus 2
IE Immediate early
IPKB Ingenuity pathway knowledge base
IPTG Isopropyl-P-D-thiogalactopyranoside
IVT la vitro transcription
KSHV Kaposi's sarcoma herpesvirus
LAT Latency associated transcript
LB Luria Bertani
LCM Laser capture microdissection
M Molar
MHC Major histocompatibility complex
mM Milimolar
mRNA Messenger RNA
MW Molecular weight
Oligo dT Oligodeoxythymidine
ORF Open reading frame
PBS Phosphate buffered saline
PCR Polymerase chain reaction
PHN Post-herpetic neuralgia
PWT Paw withdrawal threshold

XII



RNA Ribonucleic acid
rRNA Ribosomal RNA
RT Reverse transcriptase
RT-PCR Reverse transcriptase PCR
SDS Sodium dodecyl sulphate
SLR Signal log ratio
SSC Standard saline citrate
TAE Tris acetate EDTA
TBS Tris buffered saline
TE Tris EDTA buffer
U Unit
uv Ultraviolet light
vol Volume
vzv Varicella zoster virus

X-gal 5-bromo-4-chloro-3-indoyl-P-D-galactoside

xiii



I,. i t-v )! >i .< I ;o\

CHAPTER ONE

INTRODUCTION

1



.11 ! 5 >' I )\

1.1 Herpesviruses

Herpesviruses are ubiquitous in nature. Well over a hundred herpesviruses have

been identified, infecting a range of vertebrates from humans to fish (Roizman et al.

1992) and at least one invertebrate, the Pacific oyster, Crassostrea gigas is host to a

herpesvirus (Minson et al. 2000). In nature, each is closely associated with a single host

species, and the most extensively studied hosts are infected by several distinct

herpesviruses. The host-specific occurrence of herpesviruses indicates that they have

evolved with their hosts over long periods of time and are exquisitely well adapted to

them.

Herpesviruses are among the largest and most complex of viruses (Davison 2002).

The virions are 200-250 nm in diameter, and consist of a linear double stranded DNA

genome of 125-245 kbp, containing from around 70 to 200 genes. The DNA genome is

packaged within an icosahedral capsid approximately 125 nm in diameter, embedded in

a matrix known as the tegument which contains many virus-encoded proteins, wrapped

in a lipid membrane containing several viral glycoproteins.

Most herpesviruses share four significant biologic properties (Roizman and Pellett

2001):

i) They encode enzymes for nucleic acid metabolism, DNA synthesis and

processing of proteins.

ii) Viral DNA synthesis and capsid assembly occurs in the nucleus.

iii) The production of infectious progeny is invariably accompanied by cell death.
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iv) All herpesviruses have a tendency to remain latent in their hosts.

1.1.1 Herpesviruses Classification

All herpesviruses are included in the family Herpesviridae based on their virion

architecture. The members of the family Herpesviridae are classified into three

subfamilies, the Alphaherpesvirinae, Betaherpesvirinae and Gammaherpesvirinae. The

subfamilies are further classified into genera based on DNA sequence homology and

similarities in genome sequence arrangement (see Table 1.1).

1.1.2 Alphaherpesviruses

Alphaherpesviruses as a group have a wide but variable host range with short

reproductive cycles that cause rapid cytopathic effect and cell lysis (Roizman 1996).

They have the ability to establish latent infections primarily but not exclusively in

sensory ganglia. This subfamily contains the genera Simplexvirus, Varicellovirus,

Marek's disease-like virus, and infectious laryngotracheitis-like virus.

1.1.3 Betaherpesviruses

Betaherpesviruses have a restricted host range, a long reproductive cycle and

infection progresses slowly in culture (Pass 2001). Infected cells frequently become

enlarged (cytomegalia) and carrier cultures are readily established. The virus can be
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maintained in a latent state in secretory glands, lymphoreticular cells, kidneys and other

tissues. This subfamily contains the genera Cytomegalovirus, Muromegalovirus and

Roseolovirus.

1.1.4 Gammaherpesviruses

Gammaherpesviruses have a narrow host range. They are distinguished by their

ability to establish latency in lymphocytes and are associated with malignancies, such as

various B-cell lymphomas (Cesarman et al. 1995) and Kaposi's sarcoma (Chang et al.

1994). This subfamily contains the genera Lymphocryptovirus and Rhadinovirus.

1.1.5 Herpesvirus Sequence Arrangements

Based on their genome structure, herpesviruses can be divided into six groups

arbitrarily classified A to F (Figure 1.1). In group A genomes, e.g. Channel catfish

herpesvirus, sequence from one terminus is directly repeated at the other terminus. In

group B genomes, such as herpesvirus saimiri, the terminal sequence is directly repeated

many times at both termini. For those herpesviruses which infect humans (group C,

group D and group E) unique structures are demonstratable. In the group C genomes, as

exemplified by Epstein-Barr virus and Kaposi's sarcoma herpesvirus, a number of

reiterations divide the genome into several well-delineated domains. The group D

genomes, such as Marek's disease virus, have sequences from one terminus repeated in

an inverted orientation internally. Thus, the DNA extracted from these virions consists

4
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of two equal molar populations. For group E viral genomes, such as herpes simplex

virus and cytomegalovirus, the genomes are divided into internal unique sequences

whereby both termini are repeated in an inverted orientation. Thus, the genomes can

form four equimolar populations, which differ in relative orientation of the two unique

segments. Repeat sequences have not been identified in group F exemplified by tupaia

herpesvirus.
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Table 1.1 Herpesvirus classifications and some common disease(s)

Virus Host Disease(s)
Alphaherpesvirinae
Simplexvirus

Herpes simplex virus type 1 (HSV-1)
Herpes simplex virus type 2 (HSV-2)

Human

Human

Cold sores, keratitis

Genital lesions

Varicellovirus
Varicella-zoster virus (VZV)
Simian varicella virus (SW)

Equine herpesvirus 1 (EHV-1)
Equine herpesvirus 4 (EHV-4)
Bovine herpesvirus 1 (BHV-1)

Human

African Green

monkey
Horse

Horse

Cow

Chicken pox, shingles
Varicella

Spontaneous abortion
Rhinopneumonitis
Infection of the upper respiratory tract

"Marek's disease-like viruses"
Marek's disease virus type 1 (MDV-1)
Marek's disease virus type 2 (MDV-2)
Herpesvirus of turkeys (HVT)

Chicken

Chicken

Turkey

Marek's disease

Betaherpesvirinae
Cytomegalovirus

Human cytomegalovirus (HCMV) Human Mononucleosis, Congenital deformities, Ocular Disease

Muromegalovirus
Murine cytomegalovirus (MCMV)
Rat cytomegalovirus (RCMV)

Mice

Rat

Roseolovirus
Human herpesvirus 6 (HHV-6)
Human herpesvirus 7 (HHV-7)

Human

Human

Fever, rash in infants

Gammaherpesvirinae
Lymphocryptovirus
Epstein-Barr virus (EBV) Human Burkitt's Lymphoma, Hodgkin's disease

Rhadinovirus

Herpesvirus saimiri (HSV)
Herpesvirus ateles (HVA)
Alcelaphine herpesvirus 1 (AHV-1)
Human herpesvirus 8 (HHV-8)
Rhesus rhadinovirus (RRV)

Murid herpesvirus 4 (MHV-4)
Bovine herpesvirus 4 (BHV-4)

Equine herpesvirus 2 (EHV-2)

Squirrel monkey
Spider monkey
Wildebeest

Human

Rhesus monkey

Mice

Cow

Horse

Lymphoproliferative in heterologous hosts

Malignant catarrhal fever
Karposi's Sarcoma

Lymphoproliferative disease in immunosuppressed
host

Lymphoma
Conjunctivitis
Respiratory illness
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Class Sequence Arrangement
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Figure 1.1 A schematic diagram of the sequence arrangements of Herpesviridae. The
genomes A, B, C, D, E and F are exemplified by the channel catfish herpesvirus, herpesvirus
siamiri, Epstein-Barr virus, Marek's disease virus, herpes simplex viruses, and tupaia
herpesvirus, respectively. The horizontal lines represent unique or quasi-unique regions. The
reiterated domains are shown as rectangles and are designated as left and right terminal
repeats (LTR and RTR) for group A, repeats R1 to R4 for internal repeats of group C, and
internal and terminal repeats (IR and TR) of group D. The termini of group E consist of two
elements. One terminus contains n copies of sequence 'a' next to a larger sequence designated
as 'b'. The other terminus has one directly repeated 'a' sequence next to a sequence designated
'c'. The terminal repeat 'ab' and 'ca' sequences are inserted in an inverted orientation (denoted
by primes) separating the unique sequences into a long (Ui) and short (Us) domains. Terminal
reiterations in the genome of group F have not been described (adapted from Roizman and
Pellett, 2001).
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1.1.6 Herpesvirus Genes

Most herpesvirus genes contain a promoter or regulatory sequence spanning 50

to 200 bp upstream of a TATA box, a transcription initiation site 20 to 25 bp

downstream of the TATA box, a 5' non-translated leader sequence of 30 to 300 bp, a

single major open reading frame (ORF) with a translation initiation codon that meets the

host requirements for efficient initiation, 10 to 30 bp of 3' non-translated sequence and a

canonical polyadenylation signal with standard flanking sequences (Roizman and Pellett

2001). Exceptions do exist, e.g. HSV-1 y134.5 gene has no TATA box and the promoter

regulatory sequences of HSV late genes may be located 3' to the TATA box. Gene

overlaps are common and ORFs can be expressed that are situated entirely antisense to

the each other (e.g. HSV-1 y134.5). A common feature of herpesvirus genomes is

clusters of 3' co-terminal transcripts, each designed to express a different ORF. Most

genes are transcribed by RNA polymerase II but EBERS of EBV, a set of small non-

polyadenylated RNAs are synthesised by RNA polymerase III (Howe and Shu 1993).

Most herpesvirus genes are not spliced. Nonetheless, every herpesvirus encodes at least

some spliced genes to which splicing enable differential regulation of a gene at distinct

parts of the virus life cycle. Herpesviruses also encode non-coding RNAs (e.g. latency-

associated transcripts of HSV and the EBERs ofEBV).

1.1.7 Herpesvirus Replication

As a prototype member of the Herpesviridae, observations made with HSV-l

can be applied to other members in the family in general, though details for individual
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viruses can vary substantially. Like all herpesviruses. HSV displays both lytic and latent

modes of interaction with its natural human host. Primary infection of epithelial cells

produces the lytic response where virus replication occurs followed by cell death.

Progeny virus particles then infect adjacent sensory neurons, establishing a lifelong

latent infection, where by the virus genome persists in the cell as an episome, with no

production of new virions and a restricted portion of the genome is transcribed.

Herpesvirus replication based on the HSV infection cycle can be divided into 8

stages, as illustrated in Figure 1.2. HSV entry into susceptible cells involves binding of

the viral glycoproteins gC and or gB to heparan sulphate chains on the cell surface,

followed by fusion of the viral envelope with a cell membrane (Spear et al. 2000). The

fusion step requires four glycoproteins (gD, gB, gH and gL) and a cellular receptor that

binds gD. Deletion of the genes for any one of these four glycoproteins is lethal and

results in production of virions that can bind to cells, provided gC is present but cannot

penetrate (Mettenleiter 2000). Binding of gD to one of these receptors triggers envelope-

fusion and release of the viral nucleocapsid and tegument into the cell cytoplasm. At

least four different membrane-bound molecules can serve as gD receptors (Spear and

Longnecker 2003): HVEM (herpesvirus entry mediator), a member of the tumor

necrosis factor receptor superfamily, nectin-1 and nectin-2, which are immunoglobulin

(Ig) superfamily members and specifc sites in heparan sulphate generated by certain 3-

O-sulfotransferases. After fusion of the envelope to the plasma membrane, some

tegument proteins remain in the cytoplasm whereas others are either transported to the

nucleus or remain associated with the capsid. The capsid with associated tegument

structures is then transported through the microtubular network to the nuclear pore.
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Upon entry into the nucleus, the viral DNA immediately circularises. Viral DNA

is transcribed throughout productive infection by host RNA polymerase II, but with the

participation of viral factors at all stages of infection. Viral gene expression is co-

ordinately regulated and sequentially ordered in a cascade fashion and three broad

classes of genes have been identified. These are the immediate early (IE or a), early (E

or P) and late (L or y). The IE genes, which do not need prior viral protein synthesis for

their expression, are the first to be expressed in the nucleus following viral entry.

Transcription of IE genes is activated by VP 16, a major component of the HSV

tegument (Campbell et al. 1984). VP16 acts through the target sequence TAATGARAT,

which is present in at least one copy in all HSV IE promoters. TAATGARAT is a

binding site for the cellular factor Oct 1, a member of a protein family initially

characterised by the ability to bind the 'octamer' sequence ATGCAAAT (Sturm et al.

1988). Upon release from the tegument, VP 16 binds to a cellular protein called host cell

factor (HCF), which carries VP 16 into the nucleus. The VP16-HCF complex binds to

Oct 1/TAATGARAT, forming the activator complex to promote the expression of the IE

genes.

Six HSV IE genes (ICPO, ICP4, ICP22, ICP27, ICP47 and Us1.5) are expressed

first, and five of these (ICPO, ICP4, ICP22, ICP27 and Us1.5) encode regulatory proteins

that stimulate expression of the E and L genes (Roizman and Sears 1995). The E genes

are activated next, giving rise to proteins required for replication of the viral genome.

Viral DNA replication then ensues, augmenting IE-dependent expression of the L genes

that encode the structural components of the virion (Roizman and Sears 1995). The bulk
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of viral DNA is synthesised by a rolling circle mechanism, yielding concatemers which,

are cleaved into monomers and packaged into capsids. Replication of HSV-1 DNA

requires seven virus gene products, comprising an origin binding protein, a single-

stranded DNA binding protein, a DNA polymerase composed of two subunits and a

helicase primase complex composed of three gene products. Homologues of all but the

origin binding protein have been identified in all three herpesvirus subfamilies.

Assembly occurs in stages; after packaging of DNA into preassembled capsids,

the virus matures and acquires infectivity by budding through the inner lamella of the

nuclear membrane. However, the transit of virions from the space between the inner and

outer nuclear membranes to the subcellular space is less well defined (Roizman and

Pellett 2001). It has been suggested that the virus may become de-enveloped by fusion

with the nuclear membrane and may then be re-enveloped in the Golgi compartment.

The alternative theory is that the virion buds through the outer nuclear membrane, with

the envelope intact and then enters the Golgi already enveloped. Whilst in the Golgi, the

oligosacharrides of the virion glycoproteins are processed by Golgi enzymes. The

enveloped virions are transported through the Golgi to the cell surface in vesicles, where

they are released from the cell.

1.1.8 Herpesvirus Latency

Latent infections can be characterised by three general properties: i) expression

of productive cycle viral genes is absent or inefficient; ii) immune detection of the cell

harbouring the latent genome is reduced or eliminated and iii) the viral genome itself
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persists intact so that at some later time a productive acute infection can be initiated to

ensure spread of its progeny to a new host (Flint et al. 2004). The latent genome can be

maintained as a non-replicating chromosome in non-dividing cells such as neurones e.g.

herpes simplex virus (HSV) and varicella zoster virus (VZV) or become an autonomous,

self-replicating chromosome in a diving cell e.g. Epstein-Barr virus (EBV) or be

integrated into a host chromosome e.g. adeno-associated virus.

Such a 'long term parking' of a viral genome in the latent infection is remarkable

for its stability. A balance among the regulators of viral and cellular gene expression

must be maintained. Generally, only a restricted set of viral gene products is made

(Millhouse and Wigdahl 2000). Viral proteins required for productive replication may

not be produced at all, a pattern exemplified by HSV. In contrast, some herpesviruses's

viral genome was not entirely quiescent during latency, as is the case for EBV. At least

nine viral proteins important for modulating the host immune responses are expressed in

latently infected cells (Crawford 2004).

Latent genomes retain the capacity to replicate and cause disease upon

reactivation. If latency is to have any value as a survival strategy, there must exist a

mechanism for reactivation so that infectious virions can spread to other hosts. The

precise molecular mechanisms that lead to reactivation from the latent state are not fully

understood and may differ from one virus to another. Reactivation may occur following

a variety of local or systemic stimuli such as physical or emotional stress, fever,

exposure to ultraviolet light, tissue damage and immune suppression. Although all

herpesviruses remain latent in a specific set of cells, the exact cell in which they remain

latent varies from one virus to another (Roizman and Pellett 2001). For example,
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whereas latent HSV has been detected only in neurons, latent EBV has been found

primarily in B lymphocytes.
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Figure 1.2 General overview of herpesvirus replication, based on HSV. 1: The virus initiates
infection by the fusion of the viral envelope with the plasma membrane following attachment to
the cell surface. 2: Fusion of the membranes releases two proteins from the virion: capsid and
tegument proteins: VHS shuts off protein synthesis while VP16, which activates transcription of
viral genome is transported to the nucleus. 3: The capsid is transported to the nucleus and
immediately circularises. VP16 interacts with the host transcriptional components to stimulate
transcription of the immediate-early genes. 4: A cascade of viral immediate-early (IE or a), early
(E or p) and late (L or y) transcripts and proteins are synthesised. 5: Viral DNA replication follows
a rolling circle mechanism, which yields head-to-tail concatemers of unit-length viral DNA. 6:
Nucleocapsids are assembled and package newly synthesised DNA. Controversy exists
regarding the mode of nucleocapsid egress from the nucleus, the site of envelopment and the
pathway leading to release of particles from the infected cell. Two general pathways of viral
egress, 7: The envelope fuses with the outer nuclear membrane, de-enveloping the capsid and
releasing it into the cytoplasm. The capsid buds into the Golgi apparatus, forming an enveloped
virion, which is transported to the surface by vesicular transport. Alternatively, 8: The virion
particle buds through the outer nuclear membrane and is transported by vesicular movement
through the Golgi apparatus to the exterior of the cells (adapted from Cohen and Straus, 2001).
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1.2 Varicella zoster virus

Varicella zoster virus (VZV) is a herpesvirus, classified in the subfamily

alphaherpesvirinae. This subfamily also contains the human herpes simplex virus types 1

and 2 (HSV-1, HSV-2), which are members of the genus simplexvirus and the animal

herpesviruses, pseudorabiesvirus (PRV), equine herpesvirus types 1 and 4 (EHV-I,

EHV-4) and simian varicella virus (SVV), which have been grouped with VZV into the

genus varicellovirus (Davison 2002). VZV is often compared to closely related and

better-studied herpesviruses for insights into its molecular biology, particularly HSV-1.

VZV is a ubiquitous human herpesvirus and is the causative agent of two diseases,

varicella (chicken pox) following primary infection and herpes zoster (shingles)

following reactivation from a latent infection in sensory ganglia of affected dermatomes

(Weller 1996). Primary VZV infection is associated with a cell-associated viremia and a

diffuse cutaneous rash. A variety of stimuli can induce this latent virus to reactivate,

travel back down the axons and produce a new round of productive infection at the site

of initial infection.

Herpes zoster is a pressing medical problem possibly because it may be followed

by severe neuropathic pain, post herpetic neuralgia (PHN), which is resistant to therapy

(Gann and Whitley 2002). The seriousness of VZV as a public health hazard has been

ameliorated by the development of an effective vaccine (Arvin and Gershon 1996).

Nevertheless, VZV persists as a problem because of the existence of a large pool of
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potentially infectious VZV in adults that could serve as a long-lasting reservoir from

which the sporadic reactivation of VZV provides a persistent source ofwild-type VZV.

1.2.1 Morphology

The VZV particle, like all other herpesviruses, is comprised of four major

elements: the core, the nucleocapsid, the tegument and the envelope (Figure 1.3).

Existing data regarding VZV structure and morphology are consistent with the models

developed for FISV. Recent advances in electron-cryomicroscopy and three-dimensional

image reconstruction techniques have led to many studies that have greatly extended our

knowledge of herpesvirus architecture (Butcher et al. 1998), (Trus et al. 1999). These

studies reveal a high degree of conservation in overall herpesvirus capsid structure. All

herpesvirus capsids studied to date are organised in a T=16 icosahedral lattices

composed of 150 hexamers and 12 pentamers. Heterotrimeric structures known as

triplexes are located between these hexamer/pentamer structures at local 3-fold

symmetry axes. Whereas HSV nucleocapsids have electron-dense cores, VZV

nucleocapsids obtained from virus grown in cell culture often lack dense cores, perhaps

reflecting the low infectivity of VZV released from cultured cells. The tegument, which

has long been considered an amorphous mass of proteins, has been shown to have an

ordered structure and forms an asymmetric cap in mature HSV-1 virions (Grunewald et

al. 2003). The product of VZVORF10 was found in its tegument together with IE

proteins encoded by VZVORFs 4, 62 and 63 (Kinchington et al. 1992). The enveloped

particle has a pleomorphic to spherical shape with a diameter of 180-200 nm. Spikes
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interspersing the envelope are made up of glycoproteins, which are approximately 8 nm.

The VZV particle is fragile, its lipid envelope renders VZV susceptible to disinfection

by organic solvents and the particle is subject to degradation by physical and chemical

treatments (Cohen and Straus 2001).
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Figure legend
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Figure 1.3 A schematic diagram of VZV. The VZV virion consists of a nucleocapsid
surrounding a core that contains the linear double-stranded DNA genome. A protein tegument
separates the capsid from the lipid envelope, which incorporates the major viral glycoproteins
presumed to mediate cell entry.
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1.2.2 Genome Organisation

The complete DNA sequence of the VZV Dumas strain was first reported in

1986 (Davison and Scott 1986). The VZV genome is a linear double-stranded DNA of

about 124 884 bp with an average G + C content of 46%. The VZV genome organisation

shows distinct similarities and sequence homology with HSV DNA but there is a

substantial variation in the extent of this homology, most notably in the almost complete

loss of the repeats around the long unique sequence in VZV. The VZV genome is

arranged into two unique sequences UL (ca. 100 kbp) and Us (ca. 5200 bp), surrounded

by small inverted repeats 1RL/TRL (88bp) and large inverted repeats 1RS/TRS (ca. 7300

bp), respectively as shown in Figure l .4.

The genomic organisation of the virion DNA contains two major and two minor

arrangements with different orientations of the Ul and Us segments. The Us segment

exists equally in its two orientations. In contrast, one orientation of the Ul segment

predominates in approximately 95% of molecules and the other in only 5%. The VZV

genome contains approximately 70 unique open reading frames (ORFs) and three genes

that are duplicated in the repeats (ORFs 62/71, 63/70, 64/69) (Ruyechan and Flay 2000).

The VZV genome also has five regions in which a series of nucleotides is repeated,

which are designated R1 (ORF 11), R2 (ORF 14), R3 (ORF 22), R4 (Us repeat regions,

2 copies) and R5 (within an intragenic region ofUl).

VZV is considered to be genetically stable around the world not until the

unexpected isolation of two VZV strains with a D150N missense mutation within the gE

glycoprotein in North America in 1998 (Santos et al. 1998) and 2002 (Tipples et al.
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2002). The mutant viruses reveal a reduction in affinity to the 3B3 monoclonal antibody,

which is commonly used in diagnostic immunostaining. It appears to spread rapidly in

tissue culture and in the SCID-hu mouse model. The complete DNA sequences of the

two mutant viruses revealed that the increased cell spread phenotype was dependent

substantially on the single D150N polymorphism in glycoprotein gE (Grose et al. 2004).

Recently, the DNA sequence of the varicella vaccine virus (vOka) and its

parental virus (pOka) were completed (Gomi et al. 2002). Comparison of the sequences

revealed 42 base substitutions, which led to 20 amino acid conversions and length

differences in tandem repeat regions (Rl, R3 and R4) and in an origin of DNA

replication. Amino acid substitutions existed in 12 ORFs (6, 9A. 10, 21, 31, 39, 50, 52,

55, 59, 62, 64) of which 15 base substitutions, leading to eight amino acid substitutions,

were in the gene 62 region alone.
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Figure1.4OrganisationofVZVgenome.Thelineardouble-strandedDNAgenomeconsistsoflongunique(UL)andshortunique(Us)sections,eachofwhichisflankedbyterminal repeats(TRL/TRS)andinvertedrepeatregions(IRL/IRS).TRLandIRLare88bp,TRsandIRSare7300bplong(adaptedfromCohrsetai.,2003a).



1.2.3 VZV Replication

VZV replication is highly cell-associated and very few viruses are released at

any phase of replication in cell culture (Grose and Ng 1992). VZV readily infects human

fetal diploid cells and melanoma cells and also replicates in Vero cells and primary

African green monkey kidney cells. Replication is associated with expression of viral

proteins within 4 to 10 h and formation of multinucleated giant cells and other

cytopathic changes within 2 to 7 days. EM studies show that most VZV virions are

enclosed in cytoplasmic vacuoles; defective particles are numerous and virions appear to

disintegrate in the cytoplasm before reaching extracellular spaces. Degradation appears

to occur as a result of virus entry into acidic prelysosomal vacuoles in the cytoplasm

(Gershon et al. 1994). VZV is highly temperature sensitive, with inactivation occurring

at 56°C to 60°C and it is not infectious if the virion envelope is disrupted.

1.2.3.1 Attachment, Entry and Uncoating

Precise analysis of VZV replication kinetics is hampered due to the highly cell-

associated nature of VZV when grown in vitro and only few infectious virions are

released. However, the kinetics of replication of VZV is presumed to follow the cascade

of alpha, beta and gamma gene activation that characterises HSV replication as shown in

Figure 1.2. Previous studies have revealed that oligosaccharides derived from

glycoproteins of the VZV envelope contain mannose 6-phosphate (Man-6-P) (Gabel et

al. 1989). At least four viral glycoproteins (gB, gE, gH and gl) contain N-linked

complex oligosaccharides with Man-6-P groups and thus are ligands for the large cation-
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independent Man-6-P receptor (MPRCl). Man-6-P and other phosphorylated

monosaccharides protect cells from the cytopathic effect (CPE) of VZV with an order of

potency that parallels their affinity for binding to the MPRCi. Treatment of cells with

chloroquine, which reduces the expression of MPRtl at cell surfaces, also protects

against infection by VZV. Electron microscopic immunocytochemical observations have

revealed that enveloped virions are associated with MPRCl at the cell surface and that

newly enveloped virions are incorporated into MPRC' containing vesicles in the trans-

Golgi network (TGN) (Gershon et al. 1994). These observations are compatible with the

hypothesis that an interaction of viral glycoproteins with a MPR0 is important in viral

entry. MPRCl also plays a role in the diversion of VZV to late endosome (Chen et al.

2004), where virions are inactivated prior to exocytosis. Biopsies from VZV-infected

human skin supported the idea that because MPRCl expression is naturally lost in

maturing superficial epidermal cells when epidermal cells mature to form squames,

these cells do not divert VZV to endosomes and constitutively secrete infectious VZV

(Chen et al. 2004).

Since VZV does not possess a gD homolog, the virus may not utilise any of the

known herpesvirus entry mediators. Following the interaction of gD with its receptor,

HSV gB, gH and gL are required for fusion of the viral envelope with the cell

membrane. VZV possesses homologues of all three of these glycoproteins, however,

their roles in fusion of the viral envelope and subsequent penetration of the nucleocapsid

into the cell are unproven. It is plausible that the uptake of VZV, like that of HSV,

involves more than a single step and more than one type of receptor. The adsorption of

VZV is mediated by heparan sulfate proteoglycan (Zhu et al. 1995) and that a receptor
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for which Man-6-P is a ligand plays a subsequent role in viral entry. Once penetration

has occurred, the nucleocapsid is transported to the nuclear surface, through which it

penetrates and releases its genomic contents. It is not known whether cellular

cytoskeletal elements facilitate centripetal movement to the nucleus or in what form the

viral core arrives there (Cohen and Straus 2001).

1.2.3.2 Viral Gene Expression

While it has been assumed that each VZV gene is temporally regulated in the

same transcriptional group as HSV-l homolog, this may not be the case, particularly for

IE gene expression. VZV contains homolog to four of the five HSV-l IE genes (VZV

ORFs 4. 61. 62. 63). However, the VZV genome is more homologous to PRV and EHV-

1 than to that of HSV-l and these animal herpesviruses only express a single IE gene,

the respective homolog of VZVORF62 (Kinchington et al. 2000). Activation of VZV IE

gene expression also appears to differ from the mechanisms used by HSV-l. PRV and

EHV-1. In the latter viruses, all IE genes contain an upstream TAATGARAT sequence

motifs, through which a virion transactivator protein (homologous to VZV ORF10)

activates transcription. Only VZVORF62 promoter contains such an element, the VZV

IE genes ORF4 and ORF63 do not (Moriuchi et al. 1994b). Maybe, the latter genes are

activated directly by other transactivators in the virion, such as VZVORF62 protein.
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1.2.3.3 The Immediate Early Phase

The initiation of the VZV replicative cycle leads to transcription of a genes by

cellular RNA polymerase II. The transcripts are transported to the cytoplasm where they

are translated and give rise to IE proteins. The latter migrate back to the nucleus where

they regulate further gene expression. Due to their homology with HSV a genes ICP

27, 0, 4 and 22, respectively, VZV proteins encoded by ORFs 4, 61, 62 and 63 are

considered as IE proteins, although this has only been demonstrated for ORFs 4

(Defechereux et al. 1997), 62 (Forghani et al. 1990) and 63 (Debrus et al. 1995).

ORF62

ORF 62 is a diploid gene, which encodes a 140 kDa protein of 13 10 amino acids

which, is expressed as a nuclear IE phosphoprotein (Forghani et al. 1990) and is also a

major component of the virus tegument (Kinchington et al. 1992). 1E62 is a functional

homologue of HSV-1 ICP4 as demonstrated by its ability to complement ICP4 mutants

(Disney and Everett 1990). HSV-1 ICP4 is essential for replication, it is required for

transcriptional activation of (3 and y genes and for repression of a genes (Dixon and

Schaffer 1980). IE62 could stimulate the transcription of all VZV genes studied to date

in transient transfection assays (Perera et al. 1992), (Moriuchi et al. 1994b). IE62 can

also repress its own transcription (Disney and Everett 1990), although in neural cells

IE62 can enhance transcription from its own promoter (Perera et al. 1992). IE62

probably does not act on its own, but in synergy with other IE proteins or even with

cellular proteins. Immunofluorescence analyses have shown that IE62 can mediate the
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nuclear localisation of IE4, another IE protein that also possesses regulatory functions

(Spengler, et al. 2000). Coprecipitation experiments suggest that 1E62 may also interact

with, and be phosphorylated by, the ORF47 protein kinase in vitro (Kinchington et al.

2001). IE62 also cooperates with the cellular transcription factor USF to activate the

promoters of ORF28, ORF29 (Meier and Straus 1995), and ORF4 (Michael et al. 1998).

Only ORF62 has an upstream TAATGARAT sequence homologous to the HSV-1

TAATGARAT elements known to be essential for stimulation by VP16 (McKee et al.

1990). The upstream region of VZVORF62 contains three TAATGARAT elements

important for transactivation of the ORF62 promoter by the VZVORF10 protein in the

tegument (Moriuchi et al. 1995). The ORF10 protein forms a complex with two of the

TAATGARAT elements in the ORF62 promoter that lack an overlapping octamer-

binding motif. Two cellular proteins, Oct 1 and host cell factor (HCF) form a complex

with the ORF10 protein and at least one of the TAATGARAT elements on the ORF62

promoter.

ORF4

VZV ORF4 encodes a 51 kDa phosphoprotein present largely in the viral

tegument (Kinchington et al. 1995). Its localisation is mostly cytoplasmic and produced

very early on in infected cells, however, when coexpressed with ORF62. ORF4 protein

is primarily located in the nucleus (Defechereux et al. 1996). Although it has a high

homology with HSV-1 ICP27, in the carboxy-terminal region, IE4 appears to be

functionally distinct from its F1SV-1 homolog (Perera et al. 1994). VZV ORF4 deletion

mutant could not be complemented in cells expressing HSV-1 1CP 27 (Cohen et al.
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2005). In transient expression assays, IE4 transactivates VZV promoters, either on its

own or in synergy with IE62 (Defechereux et al. 1993) but has no demonstrable

transrepressing activity (Perera et al. 1994). For example, ORF4 does not transactivate

expression of the ORF63 IE or ORF28 putative early gene promoter. In transient

expression assays, VZV ORF4 synergises with VZVORF62 to transactivate expression

of putative IE, E and L promoters. It has been shown to be effective both at

transcriptional and posttranscriptional levels. Transcriptional activation requires

dimerisation of the ORF4 protein. It acts as a transactivator when brought close to DNA

but transactivation probably requires the simultaneous presence of other functional

proteins interacting with the transcription complex, such as the TATA-binding protein,

the transcriptional factor 11B or the nuclear factor kB (Spengler et al. 2000).

ORF63

ORF63 is a diploid gene, encodes an IE protein of 45 kDa (Sadzot-Delvaux and

Rentier 2001) and is present in the virion tegument. This protein is encoded by VZV

ORFs 63 and 70 and is the putative homologue of HSV ICP22. IE63 is strongly

expressed during lytic infection in cell culture as well as in skin lesions (Debrus et al.

1995). IE63 is abundantly produced at the first stage of infection and is essential for

VZV replication (Sommer et al. 2001). Its activity as a potential transcription factor is

subject to controversy. It has been shown that ORF63 protein upregulates the VZV

thymidine kinase promoter and downregulates the IE62 promoter in transient

transfection assays (Jackers et al. 1992). Nevertheless, IE63 has recently been shown in
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transient transfection assay to downregulate the expression of the VZV UNA

polymerase gene (Bontems et al. 2002). More recently, the same laboratory has also

reported that IE63 is a transcriptional repressor of some VZV and cellular promoters and

its activity is directed towards the assembly of transcription pre-initiation complex (Di

Valentin et al. 2005). An interesting feature of the VZV 1E63 protein is its cellular

localization during the different phases of VZV infection. Indeed, at the first stage of

infection. IE63 is predominantly present in the nucleus (Debrus et al. 1995), along with

products of other latency associated genes, namely 1E4, ORF21, ORF29 and IE62 while

during latency, the protein exhibits an exclusive cytoplasmic localization (Lungu et al.

1998, Grinfeld and Kennedy 2004). These genes can be found both in the cytoplasm and

the nucleus when reactivation occurs. The presence of 1E63 protein and its cellular

localization modification might reflect an important role in the latency process. ORF63

protein has been detected in animal (Debrus et al. 1995), (Sadzot-Delvaux et al. 1995),

(Fleetwood-Walker et al. 1999) and human ganglia (Mahalingam et al. 1996),

suggesting a role in latency. Kennedy et al., (2001) has reported that expression of VZV

gene 63 appears to be the single most consistent feature ofVZV latency.

ORF61

ORF61 encodes a 62-65 kDa phosphoprotein that localises to the nucleus of

infected cells. Unlike the other VZV IE genes, ORF61 is not present in the viral

tegument (Kinchington et al. 1995). VZV ORF61 is homologous to HSV ICP0 and can

functionally complement an HSV-1 ICP0 deletion mutant. VZVORF61 protein

transactivates putative VZV IE, E and L promoters in transient expression assays
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(Moriuchi et al. 1993a). Depending on its cellular concentration and on host cell lines,

IE61 can either repress or transactivate the functions of 1E4 and 1E62 on VZV gene

promoters (Moriuchi et al. 1993a). The amino terminus of ORF61 contains a RING

finger domain that binds zinc and is required for the transactivating activity of the full

length protein (Moriuchi et al. 1994a). Deletion mutants of VZVORF61 can replicate,

but they are impaired for syncytia formation and growth in cell culture (Cohen and

Nguyen 1998). Cells infected with these mutants show reduce expression of gE but

normal levels of ORF62 protein. HSV-1 1CP0, the homolog of ORF61 shows different

patterns of activities in transient expression assays. Whereas ICPO activates the HSV-1

TK promoter in transient expression assays, ICPO does not activate the VZVORF36

promoter (Inchauspe and Ostrove 1989). Unlike ORF61, ICPO does not show repressing

activity in transient expression assays.

1.2.3.4 The Early Phase

Once the IE proteins have been synthesised and transported to the nucleus, they

allow the expression of p genes that are only expressed at very low levels in their

absence. VZV has a homologue for each of the seven core proteins involved in origin-

dependent DNA replication of HSV (Wu et al. 1988). These are encoded by VZV

ORF28 (DNA polymerase), ORF29 (single-stranded DNA binding protein). ORF16

(polymerase accessory protein), ORF51 (origin-binding protein) and ORFs 6, 52 and 55

(helicase/primase complex). The VZV origins of replication are located within the short

repeat regions of the genome, between ORF62 and ORF63 (and ORFs70 and 71).
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1.2.3.5 The Late Phase

After VZV genome replication, L proteins are assembled into nucleocapsids and

the viral genome is wrapped inside. VZV ORFIO encodes a 410 amino acid protein

incorporated into the virion tegument. This protein is the homolog of a-TIF, the HSV-l

virion-associated transactivator (VP 16) directly involved in the induction of IE gene

expression. VZV ORFIO transactivates the VZV ORF62 but not the putative IE ORF61

and ORF4 promoters (Moriuchi et al. 1993b). Surprisingly, ORFIO is dispensable for

VZV replication in cell culture (Cohen and Seidel 1994), while its HSV counterpart

VP 16 is essential for HSV replication and assembly of virus. However, cell lines

expressing ORFIO protein complement an HSV-l VP 16 mutant that lacks

transactivating activity.

The VZV major nucleocapsid component is a 155 kDa protein encoded by ORF

40, homologous to the HSV-l UL19. It is detected in the nucleus of infected cells where

the capsids are assembled. VZV nucleocapsids also contain a complex made of a 32 kDa

phosphoprotein and a 36 kDa nonphosphorylated protein possibly encoded by ORFs 33

and 33.5. The VZV genome encodes at least eight glycoproteins named gE, gB, gH, gl,

gC, gL, gK and gM encoded by ORFs68, 31, 37, 67, 14, 60, 5 and 50, respectively. Viral

glycoproteins are involved in interactions with target cells and play a crucial role in

eliciting the host's immune response.

30



1.2.3.6 Assembly and Egress

At the end of the replicative cycle, expression of the three classes of viral genes

has occurred and assembly of large amount of nucleocapsid is observed in VZV-infected

nuclei. Two similar models of VZV replication have been suggested. One model

stipulates that nucleocapsids are enveloped as they exit and traverse the nuclear

membrane and then become incorporated into large cytoplasmic vesicles (Harson and

Grose 1995). The nucleocapsid passes through the inner nuclear membrane and acquires

its initial envelope. The enveloped particle travels through the perinuclear space where it

is engulfed within a vacuole. A vacuole containing one or more viral particles is pinched

off and resides within the cytoplasm. Viral glycoproteins are released from the trans-

Golgi network (TGN) in microvesicles and fuse with the cytoplasmic vesicles containing

viral particles. Virion laden vesicles fuse with one another to form a larger vacuole.

These vesicles migrate to the cell surface where fully enveloped virions with functional

glycoproteins are released by exocytosis.

Gershon, et al., (1994) proposed a slightly different scenario for VZV maturation

and release. In their views, nucleocapsids first acquire and then lose their envelopes as

they traverse the nuclear membrane. Nucleocapsids assemble in the nuclei of infected

cells, acquire an envelope from the inner nuclear membrane as they bud into the

perinuclear cisterna and fuse with the RER (rough endoplasmic reticulum) to release

nucleocapsids into the cytosol. Viral glycoproteins are synthesised in the RER

independently of the nucleocapsids and are targeted to the TGN (Zhu et al. 1995).

Within the TGN, vacuoles form 'envelopment' sacs with concave and convex faces.

Viral and cellular glycoproteins are separated in the envelopment sacs of the TGN so



that viral glycoproteins sort to the concave face, while cellular proteins, including the

mannose 6-phosphate receptor (MPRC1), sort to the convex face. The concave face

becomes coated with tegument, envelopment sacs encircle nucleocapsids and ultimately

fuse to enclose them with trapped tegument (Wang et al. 2001). The original concave

face becomes the viral envelope, while the convex face becomes a transport vesicle. The

vesicles that contain newly enveloped VZV transfer virions to late endosomes where

VZV is degraded and released to the external medium by exocytosis.

1.2.4 VZV Latency

The study of VZV latency is fraught with obstacles. Little information exists on

the molecular mechanisms leading to latency and to reactivation of VZV. Based on the

Fenner mousepox model, VZV is thought to access sensory nerve tissues and establish

latency via two mechanisms: i) direct hematogenous spread to sensory ganglia; ii)

retrograde axonal transport from infected epidermal and dermal tissues. The concept of

viremia is supported by the finding that PBMC are productively infected during varicella

and the number of cells latently infected in the ganglion (Ozaki et al.. 1994). In support

of this hypothesis also, simian varicella virus (SVV) DNA can be detected in ganglia of

experimentally infected monkeys on day 6 before the onset of rash and also in ganglia of

monkeys that never develop rash (Kennedy et al. 1998).

On the other hand, retrograde transport along neuronal pathways was supported

by evidence that the sites of zoster manifestations resembles the distribution of varicella

lesions (Hope-Simpson. 1965). Also, longitudinal clinical trials revealed that episodes of
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vaccine-associated zoster often occur at or near the prior site of inoculation, suggesting

latency had been established preferentially within the sensory ganglion serving that

single dermatome. If VZV spread to ganglia solely by a hematogenous route, then other

body sites should have been well represented among the post vaccination zoster cases

(Gershon et al., 1996). Further support of the latter mechanism is shown by the recent

guinea pig enteric ganglia model (Chen et al. 2003). Latent VZV infection of isolated

enteric neurons was established when culture mainly consist of neurons and exposed to

cell free virus.

The mechanism by which HSV establishes and maintains latency is different

from that of VZV. The differences are readily evident when considering the clinical

patterns of infection with each of these viruses. Three features of zoster suggest an

unusual mechanism of VZV latency and reactivation. First, the restricted geography of

zoster, which is scattered in grape-like clusters but limited to a single dermatome,

suggests that the peripheral lesions originate from multiple nerve endings rather than

from one or a few focal sites of peripheral infection. This implicates an extensive

neurone to neurone spread of VZV at the site of latency upon reactivation (Croen and

Straus 1991), (Meier et al. 1993). For comparison, reactivated HSV-1 lesions tend to be

small and focal, suggesting that few neurones become involved and reactivation of latent

HSV-1 in the latent neurone is all that is required for peripheral access.

A second unusual feature is zoster-associated pain that often complicates clinical

zoster. PHN is the most common complication manifestation of zoster and may last for

weeks, months or even years following resolution of clinical disease (Gilden et al.

1992), (Rowbotham and Fields 1996). The mechanism of PHN is unknown but it is
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likely a result of necrosis and inflammatory responses to demyelination and cell damage

during ganglionic replication. For comparison, such a long-term pain is not usually

experienced with reactivated HSV-1 and pain associated with lesions normally resolves

3-4 days after their appearance.

Finally, the frequency of zoster is unusual in that some 80% of VZV seropositive

individuals never show clinical evidence of reactivation. This suggests that either entry

into latency or reactivation from it are highly inefficient processes or, alternatively, that

reactivations of VZV are more frequent but are well controlled by the immune

surveillance mechanisms prior to the development of peripheral disease. With HSV-1

infection, reactivation can occur multiple times in the presence of active and fully

functional immunity and asymptomatic reactivation often occurs. Moreover, while HSV-

1 incidence decreases with age, zoster incidence increases dramatically, suggesting

triggers for reactivation are quite different for these two viruses.

No viral proteins have been detected in HSV latently infected cells and the only

transcripts detected are the latency-associated transcripts (LATs) (Wagner and Bloom

1997). There is no evidence that these RNAs representing stable introns are translated

into protein and their precise role in the life cycle of HSV remains controversial. LATs

are present as several non-polyadenylated collinear RNAs, including a major 2-kb LAT

and a 1,5-kb splice variant (Farrell et al. 1994). The 2-kb LAT is believed to be a stable

intron spliced from a low-abundance 8.3-kb primary transcript. It has been suggested

that the LAT plays a crucial role in viral reactivation. LAT mutant viruses show reduced

ability to reactivate in the mouse model (Sawtell and Thompson 1992) and have

decreased spontaneous and induced reactivation frequencies in the rabbit model (Perng
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et al. 1994). The LAT also has an important role in promoting the establishment and

maintenance of the latency (Maggioncalda et al. 1996), (Sawtell 1997) even though

earlier studies found no evidence to support this idea (Sederati et al. 1989). It has been

observed that LAT mutant viruses express viral productive cycle genes in greater

numbers in mouse neurons (Garber et al. 1997) and establish latent infection in fewer

neuronal cells than parental viruses (Sawtell 1997). It has been proposed that the LAT

may repress viral replication in neuronal cells by reducing IE gene mRNA levels and

facilitate the establishment of HSV-1 latency in neuronal cells (Mador et al. 1998). In

addition, the LAT may promote neuronal survival through an anti-apoptotic mechanism

(Ahmed et al. 2002), (Branco and Fraser 2005).

Far less is known about the nature and mechanisms regulating VZV latency but

what is known suggests a process that is very different from HSV latency. Current major

issues involving VZV latency have been the cell-type localisation of latent VZV, the

frequency with which VZV establishes latency and the nature and extent of VZV gene

expression during latency (Kennedy 2002), (Cohrs et al. 2004). Each will be discussed

individually in the following sections.

1.2.4.1 Cell Type Localisation of Latent VZV

Identification of the cell type harbouring latent VZV is important since the

pathogenesis of initial infection and reactivation may depend on the number and type of

cells initially infected (Steiner 1996), (Kennedy and Steiner 1994). Initially, in situ

hybridisation (ISH) revealed that VZV was latent exclusively in neurons (Flyman et al.

1983), (Gilden et al. 1987). These findings were later disputed by the apparent detection
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of VZV in non-neuronal satellite cells (Croen et al. 1988), (Meier et al. 1993) and by a

single report that found VZV in many neurons and non-neuronal cells (Lungu et al.

1995). However, ISH results of autopsy samples containing low amounts of latent virus

DNA are unpredictable and prone to misinterpretation (Mahalingam et al. 1999).

Improvements in ISH that incorporated polymerase chain reaction (PCR) and amplified

low copy number latent virus DNA revealed VZV DNA predominantly, if not

exclusively, in neurons (Dueland et al. 1995), (Kennedy et al. 1998), (Kennedy et al.

1999), (Kennedy 2000), (Kennedy et al. 2001). A similar finding was also reported by

Levin et al., (2003) and they found that latent VZV DNA is present primarily in large

neurones.

1.2.4.2 The Burden of Latent VZV DNA

Analysis of an animal model of HSV-1 latency suggests that latent genome copy

number may be an important parameter for subsequent induced reactivation in vivo

(Sawtell et al. 1998). Latent VZV DNA is present in low copy number as routine

Southern and northern blot hybridisation analyses did not succeed in detecting them in

extracts of human ganglia (Meier et al. 1993). Semi-quantitative PCR showed that 103-

103 copies of latent VZV DNA were present in 103 ganglionic cells (Clarke et al. 1995)

which is similar to the amount of latent HSV-1 found in human ganglia by Southern

analysis (Efstathiou et al. 1986). However, Mahalingam et al., (1993) only detected 6-31

copies of VZV genome per 103 cells. LaGuardia et al., (1999), reported 5.5 copies of

VZV DNA per 103 ganglionic cells, assuming 100 non-neuronal cells per neuron. Real¬

time quantitative PCR analysis detected 258 ± 38 copies of VZV DNA per 103
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ganglionic cells (Pevenstein et al. 2000). Recently, quantitative competitive PCR

detected an average of 4.7 copies ofVZV DNA per latently infected neuron (Levin et al.

2003). The large variation in the virus load in these studies might reflect the differences

in the natural history of the infection in the individuals from whom the samples were

obtained or discrepancies in the techniques used to estimate copy numbers.

1.2.4.3 Latent VZV Gene Expression

There have been several published studies of latent VZV gene expression using a

variety of different techniques on pooled and individual human ganglia, including

northern blot analysis, in situ hybridisation (1SH) and cDNA library construction

(Kennedy 2002). Most studies have reported the presence of RNA for VZV genes 21,

29, 62 and 63 (Cohrs et al. 1994), (Cohrs et al. 1995), (Cohrs et al. 1996), (Kennedy

2002) with conflicting results for the presence of RNA for gene 4, which has been

reported by some workers (Croen et al. 1988), (Kennedy 2000) but not others (Meier et

al. 1993). However, a more recent work has shown that ORF4 is indeed important for

establishment of latency, besides ORF63 (Cohen et al. 2005). Analysis of latently

infected human trigeminal ganglia by reverse transcriptase-dependent nested PCR, in

situ hybridisation, and immunohistochemistry, revealed that VZVORF66 to be a

previously unrecognised latently expressed virus gene (Cohrs et al. 2003a). IE 62 is a

major transcriptional activator, which can drive transcription from all kinetic classes of

virus genes and enhances the infectivity of transfected VZV DNA (Moriuchi et al.

1994b). To maintain latency, the effect of 1E62 on subsequent virus gene expression
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must be controlled. Cohrs et al.. 2004 suggested three models of the control of IE62

function as illustrated in Figure 1.5.

The first model of modulating IE62 activity is based on cellular location (Figure

1.5A). 1E62 localises to the nucleus early in virus infection and later accumulates in the

cytoplasm (Kinchington and Turse 1998). Interestingly, this protein has been shown to

localise predominantly in the cytoplasm during latency (Lungu et al. 1998). Later, it was

found that the protein kinase encoded by VZVORF66 (VZV66pk) phosphorylates IE62,

resulting in cytoplasmic accummulation of 1E62 (Kinchington et al. 2000), (Kinchington

et al. 2001). While the phosphorylation of 1E62 late in VZV lytic infection appears to be

a mechanism by which IE62 is incorporated into progeny virions, the cytoplasmic

location of IE62 during latency that results perhaps from VZV66pk phosphorylation

mitigates IE62 dependent gene transactivation (Cohrs et al. 2003a). Thus, this

mechanism allows IE62 remains within a cell without stimulating gene transcription.

A second mechanism of regulating IE62 activity is through the control at the

promoter level (Figure 1.5B). Consistent with this hypothesis is the finding that the

protein encoded by VZV gene 29 binds to a 40 bp region on the glycoprotein I promoter

(He et al. 2001). This protein was found to increase IE62 induced gl expression in

permissive cells and reduce IE62 transactivation in non-permissive cells (Ito et al. 2003).

VZV gene 29 and 21 proteins were tested to find out if they have the same function as

their HSV-1 homologues which can form a DNA binding complex in the nucleus of

virus infected cells (Shelton et al. 1994) and modulate 1E62 functions (McNamee et al.

2000). However, it was reported that VZV gene 29 and 21 proteins had no significant
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effect on IE62-induced activation of gene 20. 21. 28 or 29 promoters in tissue culture

system (Cohrs et al. 2002).

A third mechanism ofmodulating IE62 activity is through transcriptional control

(Figure 1.5C). The HSV-1 homologue of the VZV gene 63 protein (ICP22) has been

shown to alter phosphorylation of cellular RNA polymerase II, thereby reprogramming

the cellular transcription apparatus to more readily transcribe viral genes. By analogy,

VZV gene 63 protein might modify gene expression by interacting with transcription

factors but conclusive evidence is lacking. However, VZV gene 63 protein can complex

with IE62 and phosphorylated forms of VZV gene 63 protein reduce lE62-induced

promoter activation. Since the effect of ICP22 on RNA polymerase II is dependent on its

phosphorylation, the possibility exists that phosphorylated forms of VZV gene 63

protein can alter cellular transcription to reduce the effect of IE62 on virus gene

activation.
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A

C

Figure 1.5 Regulation of IE62 function. Model A: regulation by location. Cytoplasmic VZV IE62
is translocated into the nucleus where gene activation in trans is initiated. Phosphorylation of
IE62 by VZVORF66pk halts IE62 nuclear import, IE62 is restricted to the cytoplasm and gene
activation does not occur. Model B: regulation at the promoter. Nuclear IE62 is associated with
at least 3 virus proteins encoded by open reading frames 4, 9 and 63. The complex binds to VZV
gene promoters either through cellular transcription factors, in this case the previously identified
upstream stimulating factor (USF), or directly to the promoter itself. The IE62 complex further
associates with cellular RNA pol II and its associated transcription factors. However, RNA
transcription is blocked by downstream binding of VZV gene 29 protein. Model C: regulation by
transcription factor modification. As in Model B, nuclear IE62 and the associated VZV and
cellular proteins bind to gene promoters. However, transcription is blocked by modification of the
cellular RNA pol II complex. In this model either free or bound VZV gene 63 protein alters the
phosphorylation pattern of the C-terminal domain of cellular RNA pol II, resulting in
transcriptional control (adapted from Cohrs et al. 2004).
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1.2.5 Reactivation

VZV reactivation is associated with activation of transcription of all kinetic

classes of viral genes (Lungu et al. 1995). It is still not clear how alphaherpesviruses

move, assemble, and spread in the nervous system. Recent work by Tomishima and

Enquist (2002) suggested that viral egress can occur sporadically along the length of

infected axons and is not confined solely to axon terminals. They also reported that

extracellular particles are not involved in nonneuronal cell infections. Lungu et al.

(1998) have reported that five VZV encoded proteins (ORFs 4, 21, 29, 62, 63) exhibit

cytoplasmic localisation during latent infection and a nuclear and cytoplasmic

localisation during reactivation.

The guinea pig enteric ganglia model has demonstrated that presence of non¬

neuronal cells is a critical determinant of whether VZV would establish a latent or lytic

infection of cultured enteric neurons (Chen et al. 2003). The nature of the influence of

non-neuronal cells is not understood. It is hypothesised that they amplify VZV and that

the determination of whether infection will be latent or lytic depends on the number of

VZV to which the neurons are exposed. This might happen when VZV infected cells

fuse with neurons and introduce VZV gene products that are not present in the virion.

Only certain VZV proteins that are produced by infected cells are incorporated into viral

particles. However, all viral proteins in the cytosol of infected cells will enter a target

cell by diffusing through the fusion pore, whether or not these proteins are incorporated

into virions. Such proteins might play a role in lytic infection. If this were to be the case,

then latent infection would be established in neurons when they become infected by free
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extracellular particles, but lytic infection would result when neurons become infected by

fusion with VZV infected cells.

1.2.6 Immune Evasion Mechanism of VZV

Both cell-mediated and humoral immunity are elicited during the course of

primary VZV infection. The early host responses to VZV are non-specific and involve

natural killer (NK) cells and interferons (IFN) that function to restrict virus replication

and spread (Arvin, 1996). VZV specific T cell recognition is critical for host recovery

from varicella and both major histocompatibility complex (MHC) class 1 restricted CD8*

T cells and MHC class II restricted CDC T cells are sensitised during primary VZV

infection (Sharp et al. 1992).

MHC I molecules are heterodimers consisting of a membrane bound heavy chain

(aC) and a light chain p? microglobulin (Pirn) which present peptides derived from

cytosolic proteins to CD8+ T lymphocytes. Antigenic peptides generated by cytosolic

proteases are transported into the endoplasmic reticulum (ER) by the ATP-dependent

transporter associated with antigen processing (TAP), where they associate with MHC I

heterodimers. The resulting trimolecular complex is transported from the ER through the

Golgi compartment to the cell surface where it presents the peptide to cytotoxic T

lymphocytes (Lehner and Trowsdale 1998). Each step in the MHC I biosynthesis and

assembly pathway has been shown to be a potential target for viral interference and the

subsequent modulation ofMHC I expression on cell surfaces.
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VZV was found to down-regulate cell-surface MHC 1 expression on infected

human fibroblasts and T lymphocytes (Abendroth et al. 2000) by impairing the transport

of MHC I molecules from the Golgi compartment to the cell surface. This effect may

enable the virus to evade CD8~ T-cell immune recognition during VZV pathogenesis,

including the critical phase of T-lymphocyte-associated viremia. Inhibition of late viral

gene expression by treatment of infected fibroblasts with phosphonoacetic acid (PAA)

did not influence the modulation ofMHC I expression, nor did transfection of cells with

plasmids expressing immediate early viral proteins. However, cells transfected with a

plasmid carrying the early gene VZVORF66 did result in a significant down-regulation

of MHC I expression, suggesting that this gene encodes a protein with an

immunomodulatory function.

CD4^ T cells that recognise VZV are almost exclusively of the Thl type, and

IFN-y is a major cytokine product of these memory T cells. The ability of VZV to inhibit

MHC class II expression in most infected cells, despite exposure to high concentrations

of IFN-y, provides a mechanism by which the virus can limit the antiviral activity of

CD4+ T cells. MHC class II are polymorphic heterodimers with a and p chains which

present exogenous peptides to CD4"1" T lymphocytes. The a and p chains form a

heterodimer in the ER. This complex associates with the invariant chain (Ii) and is

transported through the Golgi and trans-Golgi reticulum to endosomes in the cytoplasm.

The li chain is degraded in these endosomes, allowing antigenic peptides, which are

produced by proteolysis of endocytosed proteins, to bind to the a/b heterodimer. The

peptide-MHC II complex then presented on the cell surface (Pieters. 1997). In contrast
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to MHC class I, MHC class II proteins are expressed constitutively only on B cells,

monocytes, dendritic cells and thymic epithelium. IFN-y has an important function in

CD4T T cell recognition of infected cells because it is a potent inducer of MHC class 11

expression on many cell types.

The ability of VZV to inhibit MHC class II expression in most infected human

fibroblasts, despite exposure to high concentrations of IFN-y, provides a mechanism by

which the virus can limit the consequences of immune surveillance by CD4+ cells

(Abendroth et al. 2000). VZV inhibits MHC class II expression by interfering with the

Jak/Stat signal transduction pathway by reducing steady-state Jak2 and Statla but not

Jakl protein expression in IFN-y treated cells as shown in Figure 1.6. Statla is a

component of the Jak/Stat signal transduction pathway, which includes Jakl and Jak2.

CIITA and IRF1 expression is induced after IFN-y treatment by Statla. The failure to

detect CIITA and IRF-1 RNA in VZV infected IFN-y treated cells suggested that these

cells may have a disruption of the Jak/Stat pathway.

A third immune evasion mechanism for VZV was reported whereby the virus is

able to productively infect mature dendritic cells (DCs) (Gavin et al. 2003). Dendritic

cells (DCs) are potent antigen-presenting cells critical for the initiation of a successful

antiviral immune response through the stimulation of immunologically naive T

lymphocytes (Banchereau and Steinman 1998). DCs located in the periphery exist as

immature cells, expressing low levels of MHC class I and MHC class II molecules and

costimulatory molecules such as CD80 and CD86. Immature DCs readily take up

antigen and are induced to migrate to the secondary lymphoid organs, where they
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undergo maturation and present processed antigens to antigen-specific T lymphocytes.

VZV interference with mature DC function resulted in a selective downregulation of cell

surface expression ofMHC class I, CD80, CD83, and CD86 but did not alter MHC class

II expression (Gavin et al. 2003). More importantly, VZV infection of mature DCs

significantly reduced their ability to stimulate the proliferation of allogeneic T

lymphocytes.
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Cell surface IFN-y

Figure 1.6 Interference by VZV with IFN-y induced up-regulation of MHC class II
expression via Jak/Stat signal transduction pathway. CIITA and IRF-1 expression is induced
after IFN-y treatment by Statla, which includes Jak1 and Jak2. The various proteins that are
affected in VZV-infected cells are crossed out (adapted from Abendroth et al. 2000).
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1.3 Clinical Manifestations of Varicella

A primary infection with VZV causes varicella, or chickenpox, a highly

contagious disease of childhood (Arvin 1996). Virus is spread by the airborne route from

the skin lesions and oropharynx of infected individuals to susceptible contacts. The first

symptoms of varicella are often a prodrome consisting of fever, malaise, headache and

abdominal pain typically begin about 24-48 h before rash (Arvin 1999). Each lesion

evolves within a few hours from an erythematous macule to the formation of a vesicle

surrounded by erythema, the classic 'dew drop on a rose petal'. The vesicle fluid

becomes cloudy and may develop an umbilicated appearance as the lesion begins to

crust. As the initial lesions progress through these stages, crops of new lesions continue

to form, usually in a 'centrifugal' pattern, i.e., from the face and trunk to the extremities.

Hypopigmentation of the underlying skin may be seen as the crusts resolve, but

extensive scarring is unusual unless secondary bacterial infection occurs. Skin lesions

appear on the trunk, face, scalp and extremities, with the greatest concentration on the

trunk. A hallmark of varicella is the presence of lesions in all stages of development at

the same time (LaRussa 2000). Healthy children develop an average of approximately

300 lesions. The average duration of lesion formation is three to five days in the normal

child, however, it is usually longer in adolescents and adults and certainly in the

immunocompromised. Fever often accompanies the rash. Body temperature usually

parallels the severity of rash and may range from normal to greater than 105°F. As the

appearance of new lesions slows, fever begins to decline. Other common symptoms

47



include pruritus that may be severe when skin lesions are extensive, headache, malaise

and anorexia (Arvin 1999).

1.3.1 Pathogenesis

Primary VZV infection is presumed to be initiated by inoculation of the mucous

membranes of the respiratory tract with infectious virus transferred in respiratory

droplets or by contact with infectious vesicular fluid from an infected individual (Arvin

et al. 1996). In the absence of experimental data, early events in VZV pathogenesis have

been compared to mousepox (Grose 1981). (Grose et al. 2000) as shown in Figure 1.7.

According to this model, VZV is presumed to infect mononuclear cells in regional

lymph nodes after inoculation of mucous membranes, causing a primary viremia that

carries the virus to reticuloendothelial organs such as the liver and spleen for a phase of

virus replication. A secondary lymphocyte mediated viremia delivers systemically to the

cutaneous epithelial cells, where replication causes deep necrotic lesions of the

epidermis and dermis. The incubation period is usually 14-16 days, with a range of 10-

21 days.

A recent experiment in severe combined immunodeficiency mice with human

skin grafts (SCIDhu mice) supported the concept that infected T cells have the potential

to mediate VZV transfer to skin immediately after entering the circulation during the

primary viremia (Ku et al. 2004). It was suggested that the prolonged interval between

exposure and the appearance of varicella skin lesions reflects the time required for VZV
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to overcome previously unrecognised but potent innate immune barriers, especially

alpha interferon production, mounted directly by epidermal cells in vivo (Ku et al. 2004).
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Infection of conjunctivae and or mucosa of upper
respiratory tract

Virus replication in regional lymph nodes

I
Primary viremia

1
Virus replication in liver, spleen and (?) other organs

Secondary viremia

I

Infection of skin and appearance of vesicular rash

Figure 1.7 Diagrammatic representation of the pathogenesis of chicken pox infection
based on mousepox. There are two viremias during the 14 days incubation period. The first
viremia occurs after local replication at the site of infection. At the end of the second viremia, the
typical chicken pox rash appears (adapted from Grose, 1981).

50



1.3.2 Complications

While chicken pox in the normal child is usually a benign illness, this infection

in the adult or immunocompromised individual is of increased severity, as evidenced by

enhanced morbidity and mortality. For example, in children receiving cancer

chemotherapy, nearly one third have progressive involvement of multiple organs,

including lungs, liver and the central nervous system (LaRussa 2000). The overall

mortality of chicken pox in the immunocompromised host has been reported to be 8 to

10%. The most serious complication of varicella is pneumonitis, which is characterised

by progressive tachypnea and cough (Choo et al. 1995). Secondary bacterial infection of

the skin, which is usually caused by Streptococcus pyogenes or Staphylococcus aureus is

also a common infectious complication of varicella (Peterson et al. 1996). These can

range in severity from impetiginised lesions and bullous impetigo to cellulites and

erysipelas. The common neurologic complications of varicella are meningoencephalitis

and cerebellar ataxia (Arvin 1999).
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1.3.3 Treatment

A live attenuated varicella zoster virus vaccine was developed in Japan at the

beginning of the 1970s (Takahashi et al. 1975) and was introduced into the routine infant

immunisation schedule of the United States in 1995. The vaccine virus was generated by

serial passage of a clinical VZV isolate, the parent Oka (pOka) virus, in human and

guinea pig embryo fibroblasts. Varicella vaccine virus (vOka) is attenuated and

immunogenic in susceptible healthy children (Krause and Klinman 1995). Concerns

have been raised about a potential age shift with the effects of varicella vaccination, i.e.

an increase in the number of varicella cases in older age groups, which generally results

in a more severe disease outcome (Wagenpfeil et al. 2004). A further concern is the

potential initial increase in herpes zoster incidence resulting from a decrease in the

spread of wild-type VZV following vaccination. Recently, Oxman et al., (2005) have

reported that the live attenuated Oka/Merck VZV vaccine markedly reduced morbidity

from herpes zoster and postherpetic neuralgia.

Medical management of chicken pox in the normal host is directed toward

prevention of avoidable complications. Meticulous care and good hygiene can avoid

secondary bacterial infection of the skin. Antiviral therapy was first shown to be

efficacious for the management of varicella in the late 1970s and early 1980s using the

non-specific inhibitors of viral replication, vidarabine and interferon (Whitley 2000).

Acyclovir, a synthetic acyclic purine nucleoside analogue which is a selective inhibitor

of VZV replication was then proven useful and has become the drug of choice.

Additionally, foscarnet, a pyrophosphate analogue, is available for intravenous therapy
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of varicella infections in high-risk immunocompromised hosts who are presumed to

have an infection caused by an acyclovir or penciclovir resistant virus (Enright and

Prober 2003).

1.4 Clinical Manifestation of Herpes Zoster

Herpes zoster (HZ or shingles) is a common disease caused by reactivation of

latent VZV that has an estimated annual incidence of 2 to 3 cases per 1000 persons

(Portenoy et al. 1986), rising with age and a lifetime prevalence as high as 20% (Stankus

et al. 2000). The age-specific incidence of HZ was shown by a rapid increase during

infancy and adolescent from 0.79/1000/annum to reach about 2.2 and remain around that

rate from 20 to 50 years of age (Hope Simpson 2001). Thereafter, the incidence rate

increases as steeply as in the first 20 years of life, to reach 12.2/1000 in octogenarians, a

15 fold that in those under 10 years old and 5.5 times that of persons between 20 and 50

years old (Hope Simpson 2001). It was found that the severity of the disease increased

with age but the condition did not occur in epidemics and there was no characteristic

seasonal variation.

HZ is a localised disease characterised by unilateral radicular pain and vesicular

eruption that is generally limited to the dermatome innervated by a single spinal or

cranial nerve (Ragozzino et al. 1982). Thoracic and lumbar dermatomes are most

commonly involved. HZ may involve the eyelids when the first or second branch of the

fifth cranial nerve is affected but keratitis heralds a sight threatening condition, herpes

zoster ophthalmicus. Early in the disease course, erythematous, macropapular lesions
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appear that rapidly evolve into a vesicular rash. Vesicles may coalesce to form bullous

lesions. In the normal host, these lesions continue to form over a period of 3 to 5 days,

with the total duration of disease being 10 to 15 days (Whitley 2001). Unusual cutaneous

manifestations of herpes zoster, in addition to ophthalmic disease, include the

involvement of the maxillary or mandibular branch of the trigeminal nerve, which

results in intraoral involvement with lesions on the palate, tonsillar fossa, floor of the

mouth and tongue. Neuromuscular disorders associated with HZ include the Guillain-

Barre syndrome, transverse myelitis and myositis.

The prodomal symptoms of HZ are usually acute segmental neuralgia with pain

and paresthesia in the involved dermatome (Wood et al. 1996). This generally precedes

the eruption by several days, occasionally by a week or more and it varies from

superficial itching, tingling, or burning to severe deep boring or sharp, stabbing,

lancinating pain (Oxman et al. 2000).

1.4.1 Pathogenesis

Hope-Simpson proposed that immunity to VZV plays a pivotal role in the

pathogenesis of herpes zoster (Hope-Simpson 1965) and subsequent observations

support the hypothesis that cell-mediated immunity to VZV is a major determinant of

the risk and severity of herpes zoster (Kost and Straus 1996). Whereas levels of antibody

to VZV remain relatively constant with increasing age, the increased incidence and

severity of herpes zoster and PHN among older adults are closely linked to a progressive

age related decline in cell-mediated immunity to VZV. The concept that VZV takes
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advantage of waning immunity to ensure its persistence in the population by causing

herpes zoster is supported by correlations between age and a diminished capacity of

peripheral blood T cells from persons who are immune and therefore latently infected, to

proliferate and produce interferon-y when stimulated with VZV antigens in vitro (Arvin

2005). VZV specific T cell immunity is elicited by primary VZV infection and is

required for the resolution of varicella. Memory CD4+ and CD8+ T cells that recognise

VZV proteins remain readily detectable in younger adults, in whom herpes zoster is

relatively rare. Robust memory T cell immunity to VZV may reflect either the extent of

the initial expansion of VZV-specific T cells elicited during primary infection or

periodic boosting on exposure to varicella or on abortive, subclinical reactivation. Loss

of VZV-specific T cell responses also defines periods of susceptibility to herpes zoster

in immunocompromised patients. In contrast, anti-VZV IgG antibodies persist and

persons who are at risk for herpes zoster because of declining T cell responses continue

to be protected from varicella. Functionally, VZV-specific memory T cells probably

control the later stages of reactivation that produce the typical signs of herpes zoster,

rather than preventing latent VZV genomes in the ganglia from beginning to replicate.

Over time, waning VZV-specific T cell immunity may place a person in a 'danger zone'

for symptomatic VZV reactivation. Recurrences of herpes zoster are uncommon among

immunocompetent persons, presumably because an episode of herpes zoster boosts

immunity to VZV, effectively immunising against a subsequent episode (Oxman et al.

2005).
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1.4.2 Complications

Complications of HZ have different manifestations and reflect different

pathogenic mechanisms such as direct viral invasion, sensory or motor neuropathies and

vasculopathy (Gilden et al. 2000). These complications depend on the localisation and

include ocular, neurologic, visceral (pneumonitis, esophagitis, enterocolitis, myocarditis,

pancreatitis) and other complications such as myositis and cystitis. HZ starts and ends

with pain of varying degrees. During its course different stages of pain can be

distinguished: the acute pain before and during the skin lesions and the chronic pain

after the rash has healed (Arvin 1999). Today, both the acute and chronic pain of HZ are

termed zoster-associated pain (ZAP) by the International Herpes Management Forum.

The most common complication of HZ is postherpetic neuralgia, a chronic ZAP, which

will be discussed in more detail in a separate section. HZ in the trigeminal ganglion is

associated most often with clinical manifestations in the first division of trigeminal

nerve, i.e. the ophthalmic branch (Arvin 1999). Clinical manifestations of this infection

among others include conjunctivitis, dendritic keratitis and optic neuritis. Other

complications of HZ involving cranial nerves include facial palsy, herpes zoster oticus

and Ramsey-Hunt syndrome. Motor paralysis due to inflammation and necrosis in the

anterior horn cells is also reported in HZ patients.

1.4.3 Treatment

The localised skin rash is not a serious problem but the prodromal pain associated

with herpes zoster is a sign of the active infection of sensory ganglia. The syndrome of
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zoster sine herpete also suggests direct involvement of the ganglia and autopsy studies

have suggested the destruction of neurons and satellite cells during VZV reactivation

(Gilden et al. 2000). As a consequence of this pathogenic process, the benefit of antiviral

therapy with acyclovir and related agents is limited in patients with herpes zoster.

Neurologic damage begins before the characteristic dermatomal rash appears and PHN

can be prolonged and intractable despite early antiviral therapy and aggressive pain

management.

Over the last 20 years, a series of effective and well-tolerated antiviral compounds

have been licensed for treatment of HZ (Balfour 1999). Three oral antiviral drugs

(acyclovir, valaciclovir, and famciclovir) are currently approved in the United States and

United Kingdom for treatment of HZ in immunocompetent host. Acyclovir was the first

oral antiviral compound marketed for treatment of HZ (Whitley 2001). While widely

and successfully prescribed, the efficacy of acyclovir for HZ is somewhat limited by its

poor oral bioavailability. Valaciclovir the prodrug of acyclovir has been developed to

provide an orally administered drug with an improved efficacy. Famciclovir, a prodrug

of penciclovir was also developed as the oral formulation because penciclovir is poorly

absorbed (Wood 2002). In double-blind placebo controlled trials, acyclovir reduces the

overall duration of pain and the incidence of PHN, defined as pain at 3 or 6 months after

enrolment (Wood et al. 1996). Famciclovir reduces the duration of PHN, defined either

as pain beyond rash healing or as pain beyond 30 days or 3 months from enrolment

(Tyring et al. 1995). In a comparative study of acyclovir and valaciclovir, valaciclovir

reduced the overall duration of pain considered as a continuum. Besides antiviral

therapy, steroids e.g. corticosteroids were shown to be beneficial to reduce acute zoster

57



pain (Wood 2002). Nerve blocks, analgesics and antidepressants also have some efficacy

towards relieving acute pain.

1.5 Post-herpetic neuralgia

Zoster in immunocompetent patients most often resolves without sequelae.

However, many elderly patients have prolonged, often debilitating pain, known as post¬

herpetic neuralgia (PHN). PHN has been defined as severe pain occurring l month after

rash onset or that persists for greater than 3 months (Dworkin 1996). PHN is classed as a

neuropathic pain that is associated with mechanical allodynia (Watson 1989).

Increasing age is the most important predictor of PHN, where older age has been

consistently associated with an increase risk of developing PHN in patients with herpes

zoster. Hope-Simpson (Hope-Simpson 1975) reported that the incidence of PHN was 3-

4% in the 30-49 age group but rose to 29% in those 70-79 and 34% in the over 80 year

old age group. In addition to age, 4 risk factors for PHN have been identified which are

greater acute pain severity, greater rash severity, sensory dysfunction in the affected

dermatome during acute herpes zoster and the presence of painful prodrome preceding

the rash (Dworkin 1996). Patients with prolonged PHN often have ongoing disturbances

in physical and psychosocial functioning. In severe cases, PHN can lead to drug

dependency, depression, and even suicide (Chidiac et al. 2001).

A complete history and physical examination continue to be the standard for

making the diagnosis of PHN. Pain is typically localised to the dermatome affected by

the rash and most often described as burning, throbbing, or sharp and shooting in nature
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(Kanazi et al. 2000). Allodynia, the presence of pain in response to a normally

innocuous stimulus, is common in PHN and often causes patients great distress.

1.5.1 Pathogenesis

The pathogenesis of PHN remains unknown. Clinical virological correlations

suggest that virus persistence in ganglia, which produces a chronic ganglionitis, is the

cause. VZV specific DNA (Mahalingam et al. 1995) and VZV specific late

glycoproteins (Vafai et al. 1988) have been found in blood MNCs of PHN patients 1-8

years after zoster. In zoster patients who did not develop PHN, VZV DNA was only

found in MNCs up to 38 days, or not at all, after disappearance of zoster pain (Gilden et

al. 1988). Further evidence that the longstanding radicular pain of PHN reflects a

chronic ganglionitis has come from the detection of VZV DNA in blood MNCs and

cerebrospinal fluid (CSF) of two patients with zoster sine herpete (pain without rash)

(Gilden et al. 1994). It was reported that the pain disappeared after both patients were

treated with intravenous acyclovir. However, PHN is resistant to opioid and non¬

steroidal anti-inflammatory drugs (NSAIDS), which are the mainstay of treatments for

acute and inflammatory pain states. This suggests that inflammatory responses alone are

not sufficient to induce PHN. Neuropathic pain such as PHN is characterised by

neuronal hyperexcitability in damaged areas of the nervous system (Rowbotham 2001).

This hyperexcitability is due to molecular changes (e.g. abnormal expression of sodium

channels, changes in y-aminobutyric acid (GABA) inhibition at the level of the
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peripheral nociceptor, in the DRG. The mechanism in which latent VZV infection

interacts with the neurone to induce such molecular changes is unclear.

1.5.2 Treatment

Like zoster, PHN has no universally accepted treatment. Furthermore, PHN often

does not respond well to medications that are used to treat nociceptive pain, including

acetaminophen (APAP), nonsteroidal anti-inflammatory drugs (NSAIDs) and opioids

(Kost and Straus 1996). In the US, only Lidoderm (topical lidocaine) and Neurontin

(gabapentin) have been approved by the US Food and Drug Administration for the

treatment of PHN (Stankus et al. 2000). Current antiviral agents such as acyclovir,

valaciclovir or famciclovir have been shown to reduce pain resulting from VZV and the

overall duration of pain (Whitley 2001) providing treatment is given within 72 h after

onset of the rash. Oral steriods may add to the benefit of antiviral therapy for reducing

the acute pain of herpes zoster but have no effect on the development of PHN (Stankus

et al. 2000). Tricyclic antidepressants e.g. amitriptyline, nortriptyline and desipramine

remain an important treatment for patients with PHN because they have an analgesic

effect in chronic pain that is independent of their antidepressant effect (Johnson 2002).

Anticonvulsants like gabapentin has been shown to reduce pain severity by 66% in PHN

patients in a randomised double-blind study (Berry et al. 2005). Opioids such as

morphine, oxycodone and methadone are in routine use for PHN in which they help in

pain relief and reduction in allodynia and disability (Watson et al. 1998). Although

sympathetic nerve blocks maybe effective in relieving pain during acute zoster, these
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blocks do not appear to provide prolonged relief in patients with long standing PHN

(Watson et al. 1998). Topical capsaicin treatment is licensed for the treatment of PHN

and was more efficacious than placebo in two of three small studies (Volmink et al.

1996). However, many patients experience local stinging and burning. Two small

placebo controlled studies have indicated a beneficial effect of lidocaine patches in PHN

(Rowbotham et al. 1996), (Galer et al. 1999).

1.6 Animal Models of VZV

The predominant obstacle to immunopathological studies of VZV is the lack of an

animal model that could mimic the clinical events observed during human infection.

Both in vitro and in vivo, VZV is remarkably species-specific to its primary host,

humans. In addition to its cell-associated characteristic in tissue culture, it has been

difficult to achieve sufficiently high titers of virus for use as inocula in the experimental

animal and to manipulate in vitro to enhance the susceptibility of other species.

Non-human primates can be infected but usually remain asymptomatic, with the

exception of gorillas and chimpanzees (Myers and Conelly 1992), (Cohen et al. 1996).

When African green monkeys, Eiythrocebus patas, and pygmy marmosets were infected

with VZV, no infectious virus was recovered but VZV IgG antibodies were induced.

Other models that have been used include the guinea pig (Myers et al. 1985), (Myers et

al. 1991), common marmoset (Provost et al. 1987), rat (Sadzot-Delvaux et al. 1990),

(Sadzot-Delvaux et al. 1995), mouse (Wroblewska et al. 1993) and rabbit (Dunkel et al.

1995).
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The guinea pig model reproduces some critical events in VZV pathogenesis,

including viremia and ganglion infection, and can be used to evaluate the host response

to viral antigens (Myers and Conelly 1992), (Lowry et al. 1992), (Sabella et al. 1993).

Animals remain asymptomatic, although some hairless weanling animals developed a

very short-term exanthematous rash (Myers et al. 1991).

The common marmoset appears to be similar in many aspects to the guinea pig, in

that infection leads to short-lived viremia, shedding of virus and seroconversion but with

few clinical signs of disease (Provost et al. 1987). The ocular model in the rabbit eye

was considered at one time as a potential model for herpes zoster ophthalmicus, but

some highly variable parameters renders its acceptance (Dunkel et al. 1995). Ocular

inoculation in mice resulted in detection of viral DNA but no viral protein found

(Wroblewska et al. 1993).

Adult rats inoculated subcutaneously into the footpad with VZV caused a long-

term persistence of virus in DRG where both RNA and protein could be detected

(Sadzot-Delvaux et al. 1995). Fleetwood-Walker et al., (1999) have previously reported

adaptation of this model and described the development of allodynia and hyperalgesia in

infected rats up to day 35 post-infection. This model was further characterised and

showed that infected rats develop chronic mechanical allodynia, which remains for

longer than 60 days post infection and resolves by 100 days post infection (Dalziel et al.

2004). Although ganglionic infection can be established in this model after peripheral

inoculation of VZV but the drawbacks of the rat model as a model of VZV latency in

humans are that VZV does not reactivate, non-ganglionic tissues have not been shown to

be free of VZV and VZV in rats is not restricted to ganglionic neurons (Cohrs et al.
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2004). Since PHN is caused by a reactivation of VZV and no reactivation has been

shown in the rats, there is concern of this model as a model of PHN in humans.

However, ganglia of PHN patients cannot be studies during life, therefore, the rat model

is so far the best studied model that could mimic the clinical situation of PHN in human.

VZV tropism for certain human cell types can be examined in the SCID-hu mouse

model (Ito et al. 2005), (Baiker et al. 2004). These animals have allografts of human

thymus/liver, containing CD4+, CD8+ and dual positive T cells or human skin implants

that can be inoculated with VZV. The closely related simian varicella virus (SVV) of

primates might also be a model to which human VZV latency can be compared due to

their similarities at the level of antigenic similarity, genome organisation and DNA

sequence (White et al. 1997), (Gray et al. 2004).

1.7 Project Aims

Investigating the molecular mechanisms of VZV pathogenesis has been difficult

because of VZV's restricted infectivity for non-human species in vivo and the highly

cell-associated nature of VZV replication in vitro. VZV latency also remains poorly

understood partly due to the previous lack of a good animal model system. These

obstacles have been addressed by the development of a rat model of VZV latency

(Sadzot-Delvaux et al. 1990). This model was further adapted and able to demonstrate

striking changes in behavioural reflex responses similar to changes seen in PHN patients

(Fleetwood-Walker et al. 1999). Thus, the model provides an excellent system to study
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the interactions of VZV with both the immune and nervous systems during a latent

infection.

Using the rat model, we would like to test the hypothesis that presence of some or

all of the genes found expressed in VZV latently infected neurones, results in an

increased sensitivity to noxious stimulus. It may affect the physiological function of that

neurone by either directly via a change in the nociceptive pathways and transcriptional

activity of the neurone or in response to a chronic immune response directed to these

proteins. The virus-host interactions that lead to development of the sensory changes

similar to PHN could be measured by well-established tests of mechanical allodynia.

The objectives of this study are:

i) to correlate between the observed altered sensory behaviour with the pattern of

gene expression in infected DRG

ii) to study the viral spread in the rat model

iii) to investigate which components of the virus are responsible for eliciting

allodynia

The development and further characterisation of this model could serve as a useful and

unique opportunity to study the host-virus interactions involved in the pathogenesis of

PHN. Ultimately, by exploiting the rat model, a better insight into understanding the

virus and cellular factor, which govern VZV latency and how the latent virus interacts

with the sensory neurone harbouring it could be gained. This is essential if advances

towards a treatment for PHN are to be made.
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CHAPTER TWO

MATERIALS AND METHODS
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2.1. Materials

2.1.1. Chemicals

All chemicals purchased were of molecular grade and obtained from Sigma

(Sigma-Aldrich Ltd., UK) unless otherwise stated.

2.1.2. Common Media, Buffers and Solutions

The media, buffers and standard solutions used in this study are listed in Table

2.1. Broth was stored at room temperature and all agar plates were kept at 4°C. Broth

and plates were used within 1 month or 2 weeks if antibiotics were added.

Table 2.1 Common Media, Buffers and Solutions

Media, Buffers, Solutions Recipes, per litre

Luria-Bertani (LB) Bacto-tryptone (10 g), Bacto-yeast extract (5 g), NaCl (5 g)

LB agar LB broth, bacto-agar (15 g)

lx PBS NaCl (0.1 M), KC1 (2.7 mM), Na2HP04 (4 mM), KH2P04 (1.8 mM)

lOx TAE Tris-acetate (40 mM), EDTA (1 mM; pH 8.0)

TBS Tris-HCl (50 mM; pH 7.5), NaCl (150 mM)

20x SSC NaCl (3 M), Sodium citrate (0.3 M), adjust to pH 7.0 with NaOH

TE Tris-Cl (10 mM; pH 8.0), EDTA (1 mM)
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2.2. General Molecular Techniques

2.2.1. DNA Extraction from Animal Tissues

DNeasy Tissue kit (QIAGEN) was used to extract DNA from tissues. Small

tissue pieces (~ 25 mg) were placed in a microcentrifuge tube with Buffer ATL (180 pi).

Proteinase K (20 mg/ml; 20 pi) was added and the reaction incubated at 55°C for 3 h or

overnight until the tissue was completely lysed. The sample was vortexed for 15 s and

Buffer AL (200 pi) was added, mixed thoroughly and incubated at 70°C for 10 min.

Ethanol (96-100%; 200 pi) was added to the sample and mixed. The mixture was

transferred to the DNeasy spin column and centrifuged for 1 min at 6000 x g and the

flow-through discarded. The DNeasy spin column was placed in a new collection tube (2

ml). Buffer AW1 (500 pi) was added and centrifuged as described above. The process

was repeated with Buffer AW2 (500 pi) but with centrifugation for 3 min at 13,000 x g

to dry the DNeasy membrane. For elution, the DNeasy spin column was placed in a

clean microcentrifuge tube (1.5 ml) and Buffer AE (100 pi) was pipetted directly onto

the membrane. The column was incubated for 1 min at room temperature before being

centrifuged for another minute at 6000 x g. The elution was repeated with the first

eluate. The DNA was kept at -20°C until use.
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2.2.2. DNA Extraction from Animal Cells

An appropriate number of cells (5 x 106) were trypsinised and centrifuged for 5

min at 300 x g. The pellet was resuspended in PBS (200 pi). Proteinase K (20 mg/ml; 20

pi) and Buffer AL (200 pi) was added to the sample, mixed thoroughly and incubated at

70°C for 10 min. The remainder of the protocol was similar to DNA extraction from

animal tissues (section 2.2.1).

2.2.3. DNA and Total RNA Extraction from Animal Cells or Tissue

Simultaneous isolation of DNA and total RNA from animal cells or tissues could

be performed in QIAGEN RNA/DNA kit according to the manufacturer's instruction. A

T175 flask of virus infected cells were trypsinised and collected as a cell pellet prior to

lysis. In order to trypsinised cells, medium was removed and cells were washed with

PBS. PBS was removed and cells were trypsinised with 0.1-0.25% trypsin in PBS. After

cells were detached from the flask, medium was added and cells were transferred to a

polypropylene centrifuge tube and centrifuged at 300 x g for 5 min. Supernatant was

removed, cell pellet was loosen by flicking the tube and lysis Buffer QRL1 with pre-

mixed (3-mercapthoethanol (1:100) were added. Buffer QRV1 (0.5 ml) was added,

mixed and centrifuged at 15,000 x g for 20 min at 4°C. The supernatant was carefully

transferred into an RNase-free 2 ml collection tube. Ice-cold isopropanol (0.8 ml) was

added and the tube was incubated on ice for 5 min followed by centrifugation at 15,000

x g for 30 min at 4°C. In the meantime, the QIAGEN-tip was equilibrated with Buffer
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QRE (1 ml) by allowing the buffer to enter the column by gravity flow. The supernatant

was discarded after the centrifugation and Buffer QRL1 (0.15 ml) was added. The

nucleic acid pellet was dissolved by heating the tube for 3 min at 60°C followed by

vortexing for 5 s and flicking sharply the tube. This step was repeated at least twice.

Buffer QRV2 was added (1.35 ml), mixed thoroughly by vortexing and centrifuged at

5000 x g for 5 min at 4°C. Sample was then applied to the equilibrated QIAGEN-tip and

allowed to enter the resin by gravity flow. Flow-through was collected for subsequent

DNA isolation and placed at room temperature. Buffer QRW (2 ml) was pipetted onto

the QIAGEN-tip and allowed to enter the resin by gravity flow. Buffer QRU (1 ml) pre¬

heated to 45°C was added onto the QIAGEN-tip and the RNA was eluted by gravity

flow into a 2 ml collection tube. Ice-cold isopropanol (1 ml) was added to the eluate,

mixed and placed on ice.

For isolation of genomic DNA, the flow-through from above was pipetted onto

the same QIAGEN-tip and was allowed to enter the resin by gravity flow and this

process was repeated with the same flow-through. Buffer QC (3 ml) were added to the

QIAGEN-tip and was allowed to enter the resin by gravity flow. The genomic DNA was

eluted with preheated Buffer QF (1 ml). Isopropanol (0.7 vol) at room temperature was

added to the eluate, mixed and incubated for 10 min at room temperature. The

isopropanol precipitated RNA and DNA were centrifuged at 15,000 x g for 30 min at

4°C and the supernatant was carefully removed. Ice-cold 70% ethanol was added,

vortexed briefly and centrifuged at 15,000 x g for 20 min at 4°C. The supernatant was

removed and this step was repeated once. The RNA and DNA pellets were air-dried
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approximately 10 min at room temperature with the tubes resting upside down on a

paper towel. The DNA and RIMA were dissolved in TE buffer (100 pi) and RNase-free

water (20 pi), respectively, by heating the tube for 3 min at 60°C, followed by vortexing

for 5 s and flicking sharply the tube and repeated at least twice. The DNA was then

stored at -20°C and the RNA was kept at -80°C until use.

The isolation method used for animal tissues was the same except in the starting

material where approximately 20 mg of tissues were used.

2.2.4. DNA Extraction from Whole Non-nucleated Blood

Proteinase K (20 mg/ml; 20 pi) followed by anti-coagulated blood (100 pi) was

added to a microcentrifuge tube (1.5 ml) and the volume was adjusted to 220 pi with

PBS. Buffer AL (200 pi) was added and mixed thoroughly. The reaction was incubated

at 70°C for 10 min. The rest of the protocol was similar to DNA extraction from tissues

(section 2.2.1).

2.2.5. Quantitation of Nucleic Acids

DNA and RNA concentrations were determined by the measuring of their

absorbance at 260 nm in a spectrophotometer (Cecil). An A260 of 1 corresponds to 50 pg

DNA and 40 pg RNA per ml water.
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2.2.6. Agarose Gel Electrophoresis

PCR products were resolved by electrophoresis in 2% (w/v) agarose gel

containing ethidium bromide (0.5 pg/ml). 15 pi of the PCR products were added with

Blue/Orange 6x loading dye [Promega, 15% (w/v) Ficoll 400, 0.03% (w/v)

Bromophenol blue, 0.03% (w/v) Xylene Cynol, 0.4% (w/v) Orange G, Tris-Cl (10 mM,

pH 7.5), EDTA (50 mM); 3 pi]. The electrophoresis was carried out at constant voltage

(13 cm x 15 cm gels at 110 V) for 60 min in a horizontal gel apparatus (Bio-Rad) with

lx TAE buffer. Fragments were sized using a 100 bp DNA ladder (Invitrogen). DNA

was visualised on a UV transilluminator and the gel photographed with a UVP camera.

2.2.7. Restriction Endonuclease Digestion

Restriction enzymes were purchased from New England Biolabs. Reactions were

carried out in a volume of 10-20 pi with 1 U enzyme per pg DNA and incubated at the

optimum temperature with the appropriate buffers following the manufacturer's

instruction.

2.2.8. Ligation using the pGEM-T Easy Vector System

Ligation reactions containing 2x Rapid Ligation buffer [Tris-Cl (60 mM, pH

7.8), MgCL (20 mM), DTT (20 mM), ATP (2 mM), 10% (w/v) polyethylene glycol

(MW8000); 5 pi], pGEM-T Easy vector (50 ng; 1 pi, Promega), T4 DNA ligase (3 W; 1
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pi, Promega) and PCR products were set up in a total volume of 10 pi, mixed and

incubated at 4°C overnight.

2.2.9. Sequencing

All plasmid inserts into pGEM-T Easy vector were identified and confirmed by

sequencing which was carried out by Mr. Ian Bennet using an automated LI-COR DNA

sequencer model 4000L (MWG-Biotech). Primers used were Ml3 reverse sequencing

primer (5'-GGA TTA CAA TTT CAC ACA GG-3') and M13 universal primer (5'-GTA

AAA CGA CGG CCA GT-3').

2.2.10. Southern Blot Analysis

Southern blot analysis was carried out in this study to confirm the identity of the

nested-PCR products. A 20-mer oligonucleotide (5'-CGT GCT GGG AGG AAT TGT

TA-3') specific to VZV gene 63 was synthesised to be used as a probe in Southern blot.

The oligonucleotide was ezymatically labelled at the 3' end by incorporation of a single

digoxigenin-labelled dideoxyuridine-triphosphate (DIG-dUTP) terminal transferase. 100

pmol of the oligonucleotide was added to 20 pi reaction mixtures containing 5x reaction

buffer [Potassium cacodylate (1 M), Tris-HCl (0.125 M), bovine serum albumin (1.25

mg/ml), pH 6.6; 4 pi], CoCl2 solution (25 mM; 4 pi), DIG-dUTP (1 mM; 1 pi), dATP

(10 mM; 1 pi) and terminal transferase (400 U; 1 pi). The reaction was mixed, incubated
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at 37°C for 15 min and placed on ice for 5 min. The reaction was terminated by adding

EDTA (0.25 M; 1 pi). The probe was stored at -20°C until use.

PCR products were electrophoresed in a 2% (w/v) agarose gel with DIG labelled

DNA molecular weight marker VIII (Roche) and a photograph of the gel was taken. A

small triangular piece was cut from the bottom left-hand corner of the gel to simplify

orientation during the succeeding operations. The gel was then incubated in denaturation

buffer (0.5 M NaOH, 1.5 M NaCl) twice for 20 min with gentle agitation and rinsed

briefly with dH20. The gel was transferred to neutralisation buffer (1 M Tris-Cl, 1.5 M

NaCl) for 20 min and repeated twice.

A support larger than the gel was placed in a tray containing lOx SSC and

covered with a Plexiglas plate. Two lengths of Whatman 3 MM paper wider than the gel

and long enough to reach the bottom of the dish on either side were placed on the glass

plate. When the blotting paper on top of the support was thoroughly wet, air bubbles

were removed by rolling with a pipette. Two sheets of blotting papers and a positively

charge nylon membrane (Roche) were cut 1 mm larger than the gel in each dimension.

The membrane was first wet in dH20 and then in 10x SSC for 5 min. The gel was placed

up-side down on the platform and any air bubbles removed. The gel was surrounded

with parafilm to ensure the buffer moved only through the gel and not around it. The

pre-cut membrane was then placed on top of the gel so that the cut corners were aligned.

A pipette was rolled across the surface of the membrane to remove any air bubbles. Two

sheets of Whatman 3MM papers were briefly wet in 10x SSC and placed on top of the

nylon membrane. A stack of paper towels (10-15 cm) were cut just smaller than the
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blotting papers were put on top of the papers. A second Plexiglas plate was placed on

top of the paper towels and weighed down with a 1 kg weight. The transfer of DNA was

allowed to proceed overnight.

The next morning, paper towels and blotting papers above the gel were removed.

The gel and the attached membrane were turned over, gel side up on a dry sheet of

blotting paper. The positions of the gel slots were marked with a soft lead pencil. The

gel was peeled from the membrane and discarded. The membrane was put into a UV

stratalinker to crosslink the DNA to the membrane.

The membrane was prehybridised in prewarmed hybridisation buffer (DIG Easy

Hyb, Roche) at 50°C for 30 min with gentle agitation. The hybridisation buffer was

discarded and new prewarmed hybridisation buffer containing DIG labelled probe

(0.002 pmol) was added. The hybridisation process was continued overnight at 50°C

with gentle agitation. The membrane was washed twice for 5 min each in 2x SSC 0.1%

(w/v) SDS at room temperature under constant agitation. The membrane was washed

twice more stringently for 15 min in 0.1 x SSC, 0.1% (w/v) SDS at 50°C.

The DIG Luminescent Detection kit (Roche) was used to detect the DIG-labelled

oligonucleotides using anti-digoxigenin, alkaline phosphatase conjugates and visualised

with chemiluminescence substrate CSPD (Disodium 3-{4-methoxyspirofl, 2-dioxetane-

3,2'- [5'-chloro] tricyclo [3.3.1.13,7] decan] 4-yl} phenyl phosphate). All incubations

were performed at room temperature with agitation. Following post hybridisation

washes, the membrane was rinsed briefly in washing buffer [0.1 M Maleic acid, 0.15 M

NaCl, 0.3% (v/v) Tween 20, pH 7.5]. The membrane was incubated for 30 min in lOx
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blocking solution [10% (w/v) propriety blocking reagent in Maleic acid buffer {Maleic

acid (0.1 M), NaCl (0.15 M), pH 7.5}] and then for another 30 min in antibody solution

(anti-DIG-AP conjugate diluted 1:10,000 in lx blocking solution). The membrane was

washed twice in washing buffer, 15 min each and equilibrated in detection buffer (0.1 M

Tris-Cl, 0.1 M NaCl, pH 9.5) for 5 min. The membrane was placed on a development

folder, DNA side facing up and 2 ml of diluted CSPD solution were applied. The

membrane was covered immediately with the second sheet of folder to spread the

substrate evenly and without air bubbles and incubated for 5 min. Excess liquid was

squeezed out and the edges of the development folder was sealed. The damp membrane

was incubated for 15 min at 37°C to enhance the reaction. The membrane was exposed

to Lumi-film (18 x 24 cm, Roche) for 3 h or longer if required.

2.3. Bacterial Work

2.3.1. Growth and Maintenance of Escherichia coli

Bacterial cultures for plasmid preparation were grown from a single colony

picked from a freshly streaked ampicillin (100 pg/ml) plate. A single colony was

inoculated into LB medium (5 ml) containing ampicillin (100 pg/ml), and grown with

vigorous shaking at 225 rpm at 37°C for 12-16 h.
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2.3.2. Transformation of E.coli cells with Plasmid DNA

The ligation reactions were centrifuged briefly and placed on ice. One vial of

One Shot Topi OF' competent cells was thawed for each ligation. Transformation was

carried out by adding the ligation mixture (5 pi) directly to the competent cells and mix

gently by tapping. The cells were incubated on ice for 30 min and then 30 s at 42°C and

quickly placed them on ice for 5 min. Pre-warmed SOC medium (250 pi) was added to

each vial and incubated at 37°C for 1 h with shaking at 225 rpm. Different volumes of

transformation mixtures (50 pi, 100 pi and 150 pi) were spread on separate LB agar

plates containing ampicillin (100 pg/ml), X-gal (80 pg/ml) and IPTG (0.5 mM). The

plates were inverted and incubated at 37°C overnight. Single white colonies were

selected for further analysis by plasmid isolation, PCR, restriction enzyme digestion or

sequencing.

2.3.3. Small-scale Preparation of Plasmid DNA

Small-scale extraction of plasmid DNA was carried out using QIAprep Miniprep kit

(QIAGEN) following the manufacturer's instruction. Overnight cultures (1.5 ml) were

centrifuged at 12,000 x g for 10 min and the supernatant removed. The bacterial cells

pellet were resuspended in ice-cold Buffer PI [Tris-Cl (50 mM, pH 8.0), EDTA (10

mM), RNase A (100 pg/ml); 250 pi]. Buffer P2 [NaOH (200 mM), 1% (w/v) SDS; 250

pi] was added and the tube was inverted gently 4-6 times to mix. Buffer N3 [KAc (3 M,

pH 5.5); 350 pi] was added and the tube was inverted gently 4-6 times. The suspension

was centrifuged for 10 min at 12,000 x g in a microcentrifuge. The supernatant was then
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applied to the QIAprep Spin Column and centrifuged for 1 min. The flow-through was

discarded. The QIAprep Spin Column was washed by addition of Buffer PE (750 pi)

and centrifuged for 1 min. The flow-through was discarded and the column was

centrifuged for an additional 1 min to remove residual wash buffer. The QIAprep Spin

Column was put in a clean 1.5 ml centrifuge tube. Buffer EB [Tris-Cl (10 mM, pH 8.5);

50 pi] was added to the centre of each column and centrifuged for 1 min to elute DNA.

Recombinant plasmids were screened by PCR, restriction enzyme digestion and

sequencing.

2.4. RNA Work

2.4.1. RNA Stabilisation in Tissues

Fresh tissue samples less than 0.5 cm thick were immersed in 10 volumes of

RNAlater RNA Stabilisation Reagent (Ambion).

2.4.2. Total RNA Extraction from Animal Tissues

Total RNA extraction from tissue was performed using the RNeasy Mini kit

(QIAGEN). Stabilised tissues were removed from RNAlater. Approximately 30 mg of

tissue was placed into 1.5 ml microcentrifuge tubes and disrupted in Buffer RLT with |3-

Mercaptoethanol (500 pi) using a disposable pestle (Sigma). The lysate was then

homogenised immediately in a QIAshredder spin column (QIAGEN) at 12,000 x g for 2
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min. The supernatant was transferred to a new microcentrifuge tube and 70% (v/v)

ethanol (500 pi) was added and mixed. The samples were then applied to RNeasy mini

columns and centrifuged for 15 s at 12,000 x g. The flow-through was discarded and

Buffer RW1 (350 pi) added. The columns were centrifuged for 15 s at 12,000 x g and

the flow-through discarded. DNase I (2.727 Kunitz; 10 pi) were added to Buffer RDD

(70 pi) and gently inverted to mix. The DNase I solution was applied directly onto the

RNeasy silica-gel membrane, and incubated for 15 min at room temperature. Buffer

RW1 (350 pi) was added to the column and centrifuged for 15 s at 12,000 x g and the

flow-through discarded. Buffer RPE (500 pi) was added and the columns centrifuged at

12,000 x g for 15 s. Another aliquot of Buffer RPE (500 pi) was added to the columns

and centrifuged at 12,000 x g for 2 min to dry the RNeasy silica-gel membrane. The

columns were transferred to new 1.5 ml microcentrifuge tubes for elution. RNase-free

water (30 pi) was placed directly on the membrane and centrifuged for 1 min at 12,000 x

g. A second elution was performed with the first eluate to obtain a higher total RNA

concentration. The RNA was then reverse-transcribed immediately (section 2.4.4) or

kept at-80°C.

2.4.3. Total RNA Extraction from Mamalian Cells

Cells grown in a monolayer in cell-culture vessels were trypsinised and collected

as a pellet prior to lysis. Medium from the flask was aspirated and cells washed with

PBS. PBS was decanted and 0.25% (v/v) trypsin was added. After cells were detached
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from the flask, medium containing serum was added to inactivate the trypsin. Cells were

transferred to polypropylene centrifuge tubes and pelleted by centrifugation at 1000 x g

for 5 min. The supernatant was completely aspirated and disruption of the cells was

followed by addition of Buffer RLT. The remaining of the extraction steps were the

same as the protocol used for total RNA extraction from animal tissues (section 2.4.2).

2.4.4. Reverse-Transcriptase Polymerase Chain Reaction

Template RNA was thawed on ice. Up to 2 pg of RNA was used with the

Omniscript Reverse Transcription kit (QIAGEN). A master mix containing lOx Buffer

RT (2 pi), dNTP mix (2 pi; 0.5 mM each dNTP), Oligo-dT primer (2 pi; 1 pM), RNase

inhibitor (1 pi; 10 U), Omniscript Reverse Transcriptase (1 pi; 4 U) and RNAse-free

water in a total volume of 20 pi for one reaction was prepared. The reaction was mixed

thoroughly and centrifuged briefly to collect residual liquid from the wall of the tube.

The appropriate volume of master mix was distributed into individual tubes and kept on

ice. Template RNA was added into tubes containing the master mix and mixed. The

reaction was incubated at 37°C for 1 h. An aliquot (2-4 pi of the RT product) of the

finished reverse-transcription reaction was added to the PCR mix for RT-PCR.
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2.5. Mammalian Cells and Viruses

2.5.1. Cells and Viruses

CV-1 (Monkey African Green Kidney Fibroblast) cells were grown and

maintained in Dulbecco's modified Eagles medium (DMEM; Gibco) supplemented with

L-glutamine (2 mM) and 10% (v/v) foetal calf serum (FCS) in a 5% CO2 incubator at

37°C. VZV strain Ellen (VR-568 mycoplasma free strain from ATCC, VA, USA), VZV

parental Oka (pOka) strain and VZV vaccine Oka (vOka) strain were all propagated on

CV-1 cells. VZV strain Dumas was propagated on Mewo cells. POka, vOka and Mewo

cells were kind gifts from Dr. Marvin Sommer and Professor Ann Arvin of Stanford

University.

2.5.2. Long Term Storage of Cells and Viruses

For long term storage, cells and viruses were frozen down in freezing mix [90%

(v/v) FCS, 10% (v/v) DMSO] and kept in liquid nitrogen.

2.5.3. Recovering Cells and Viruses from Liquid Nitrogen

Vials of cells or viruses from the liquid nitrogen were thawed quickly in a 37°C

water bath. A few drops of pre-warmed media were added carefully to the vials to

equilibrate the osmotic pressure slowly. The cell were then aspirated into universal tubes

containing 20 ml prewarmed media and centrifuged at 1000 x g for 5 min at room

80



» < M i! K !'■)'> ^ \i > \ i E , '•()i )S

temperature. The cell pellet was resuspended in 5 ml of media and put into a T25 flask.

The flask was incubated overnight at 37°C in a 5% CO2 incubator and growth was

checked the next day. If cells were growing well, they were split into fresh medium and

moved into the next sized flask.

2.5.4. Virus Propagation and Harvesting of Virus

Early log phase CV-1 cells were always used for VZV infection. A vial of virus was

recovered from liquid nitrogen as mentioned in section 2.5.3 but the cell pellet was

resuspended in 10 ml of pre-warmed media. The virus suspension was added to the flask

containing cells where the media has been aspirated and incubated at 37°C. After an

hour, 2% (v/v) DMEM was added (40 ml) to the flask. The virus was harvested when

cells showed 80% cytopathic effect. The cells were then scraped from the flask using a

cell scraper and centrifuged at 1000 x g for 10 min. The pellet was mixed well until no

sign of cell clumps were visible, and the suspension of virus was used to infect new

batches of log phase cells.

2.6. Animals and Behavioural Testing

2.6.1. The Rat Model of VZV Latency

In this project, all tissues used for study were obtained from rats infected with

VZV and tested for allodynia. Briefly, the model is as follow: VZV was propagated in
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CV-1 cells and harvested when cells exhibited approximately 80% cytopathic effect.

Male Han Wistar rats were anaesthetised and injected subcutaneously in the left

(ipsilateral) glabrous footpad with approximately 4 x 106 infected cells per animal in 50

pi medium. Behavioural test was carried out at specific days post infection to test for the

development of allodynia with a calibrated set of von Frey filaments. Figure 2.1 shows a

simplified diagram of the rat model. During testing, rats were removed from their cages

and placed in lidded wire mesh cages that allowed full access to the paws. The rats were

left to acclimatise for 10-15 min until they were quite settled and had all paws flat on the

wire mesh cage (Figure 2.2A). Care was taken during the testing procedure to ensure

that the animals were not putting their weight on the hind paws. Animals showed no

obvious signs of discomfort and phenotypic changes only evident on formal testing.

Details of assessment of allodynia with a set of von Frey filaments (Figure 2.2B) are

described in section 2.6.4.
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Figure 2.1 A diagram of the rat model. Male Han Wistar rats were injected subcutaneously
with 4 x 106 infected (or mock infected) CV-1 cells in 50 ^l medium into the left hind paw.
Animals were tested on specific days post infection for development of allodynia.
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Von Frey hair
applied to the
plantar surface
of foot pad

Wire mesh cages

Figure 2.2 A diagram of the acclimatisation of rats in wire mesh cages and von Frey
filaments. A) Acclimatisation of animals in wire mesh cages before testing. B) Von Frey
filaments with different target forces (g) (note the difference thickness of the hair, 0.6 g is the
lowest force and 60 g is the highest force) when applying to the footpad of rats during
behavioural testing.
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2.6.2. Source of Animals

Male Wistar rats (150-200 g; Harlan) were housed under standard light

conditions and food and water allowed ad libitum. All animal experiments were carried

out under the provision of Home Office project license (60/2760) and personal license

(60/8842).

2.6.3. Inoculations

Animals were anaesthetised with Halothane prior to footpad injections. The

glabrous skin of the left footpad was injected subcutaneously with approximately 4-8 x

106 VZV infected cells following previous experience (Dalziel et al, 2004) that on

average these amount of cells were present in a near confluent T175 flask. Control rats

were injected with uninfected cells and housed separately from the virus infected

animals.

2.6.4. Assessment of Allodynia

Behavioural tests were carried out prior to infection and at the specified times

post infection. Animals were randomised into groups according to their weight and mean

paw withdrawal threshold (PWT) based on the readings from pre-testing sessions. The

rats were placed in wire mash cages which allowed full access to the paws and were

allowed to acclimatise prior to testing for about 10 to 15 min. PWT were measured using

an ascending series of von Frey filaments. These hairs were applied manually to the
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middle region of the left hind paw plantar surface. The hairs were applied with sufficient

force to cause buckling of the filaments. Vertical elevation of the paw was considered as

a positive withdrawal response. Whenever two positive responses out of five

applications of the same hair were recorded, the next smaller von Frey hair was applied.

Whenever a negative response occurred, the next higher force was applied. Triplicates of

the ascending series were performed and the average was recorded.

2.6.5. Tissue Collection and Preservation

At the end of a study, animals were euthanised in a C02 chamber. Autopsy was

performed whereby lumbar L1-L6 DRGs ipsilateral and contralateral to the site of

injection were removed. Other tissues removed included foot pads, sciatic nerves,

spleen, spinal cord, brain and blood. The tissues were either snap frozen in cooled

isopentene bath kept in dry ice for DNA extraction (section 2.2.1) or immersed directly

into RNAlater for RNA extraction (section 2.4.2).

2.7. Polymerase Chain Reaction

DNA was extracted from VZV infected CV-1 cells (section 2.2.2) as a template or

positive control in polymerase chain reaction (PCR). Routinely, a nested or hemi-nested

PCR was carried out in a total volume of 50 pi in a Hybaid PCR Sprint thermal cycler.

A master mix was prepared which contained all the components needed for PCR

except the template DNA. The primary (1°) reaction mixtures composed of
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deoxynucleotide mix (10 mM each dNTP; 1 pi), lOx PCR reaction buffer with MgC^

[100 mM Tris-HCl, 15 mM MgC^, 500 mM KC1, pH 8.3; 5 ml], sense primer (100 ng; 1

pi), anti-sense primer (100 ng; 1 pi), HotStarTaq DNA polymerase (QIAGEN, 2.5 U;

0.25 pi) and dHiO. 100-500 ng of genomic DNA or equivalent volume of sterile

nuclease-free water (Sigma) as negative control was added finally to the individual tubes

containing the master mix.

A 15 min initial incubation at 95°C was required to activate the HotStarTaq DNA

polymerase followed by 35 PCR cycles (94°C, 30 s; 55°C, 30 s; 72°C, 60 s) and a final

elongation at 72°C, 10 min. Nested or hemi-nested PCR (2°) mixtures and conditions

were identical to the 1° reaction except an aliquot of 1-2 pi of the 1° amplification

product was used as the template and different sets of internal primers (P2 + P4 or P2 +

P3). All oligonucleotides were synthesised by MWG-Biotech and their details are listed

in Table 2.2.
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Table 2.2 Oligonucleotide Primers

Gene Name Sequence (5' to 3') Location
*ORF-63 VZV63P1

VZV63P2
VZV63P3
VZV63P4

GCG AGA TTC ACG AAG ATT GCG
TTA TCT AAT GGG TCG CAC C
TCA ATT ACA TCC GAT GGC G
GCT ATC GTC TTC ACC ACC

110817a
1108563
111092b
111058b

*ORF-10 VZV10P1
VZV10P2
VZV10P3
VZV10P4

GAT ATT ATC GTG AGG TGG
TTT CCT GGC GTT TGT ACG
CTT TTG CGT AAG GAT GAT CCG
CTTG AGG ATG TTT GAC CGC

12821a
12884a
13249b
13213b

*ORF-21 VZV21P1
VZV21P2
VZV21P3

ACA AGG CAG CAG TTT CAT TCG
CCG ACG CTG ATA ATA GGA CAA
GGT CAC TCC CAC TTG TAT TCC

33589a
33771a
33872b

ORF-62 VZV62P1
VZV62P2
VZV62P3

CCG AGG ATT CGT AAG ACC AA
GCG CCA GAG ACA GAA ATC A
GCT CTC ACA GCC TCA TCC TC

122033a
122074a
122262b

(3-actin ActinPl
ActinP2
ActinP3
ActinP4

GGC ACC ACA CTT TCT ACA
CTG TGT TGT CCC TGT ATG
GAG GTC TTT ACG GAT GTC
AAG GAA GGC TGG AAG AGA

257c
413C
798d
879d

a

Sense, same (5' to 3') direction as the ORF following VZV Dumas strain sequence (Davison
and Scott, 1986)
b
Antisense, opposite (5' to 3') direction from that of the ORF following VZV Dumas strain

sequence (Davison and Scott, 1986).
c Location of 5' nucleotide with respect to the rat (3-actin sequence (Nudel et al., 1983)
d Antisense location of 5' nucleotide with respect to the rat P-actin sequence (Nudel et
al., 1983)
* Oligonucleotide sequences adapted from Cohrs et al. 1996
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2.7.1. Nested-PCR Optimisation

Optimisation of the annealing temperature was performed for every set of primers to

obtain the best amplification of the target with the least unspecific products. PCR was

carried out as mentioned in section 2.7 but instead of DNA being added to each

individual tubes, it could be added to the master mix preparation and distributed evenly

to each microcentrifuge tubes. The PCR was performed in a gradient thermal cycler with

temperature ranging from 42°C to 64°C with a step of 2°C (Robocycler, Stratagene).

2.8. Developing Real-time PCR Assay

2.8.1. Optimisation of Real time PCR Assay

Optimisation of the reagents used to perform PCR is critical for reliable and

reproducible results. The following criteria were optimised: magnesium chloride

concentration, primer concentration, template concentration and SYBR Green I

concentration.

2.8.2. Standard Curve Construction

Assays were performed with 10-fold serial dilutions from 1 to 108 copy numbers

of a plasmid containing a 294 bp insert of the IE63 gene. For plasmid construction, the

corresponding sequence of the IE 63 region was amplified using primers VZV63P1 and

VZV63P3 (Table 2.2) and ligated into pGEM-T Easy vector (Promega, section 2.2.8),

89



I i ' r I M .M li 1 I K i.fV-

according to the manufacturer's instructions. Plasmid was extracted from selected

positive clones, its concentration was determined (section 2.2.5) and the corresponding

copy number was calculated using the formula below:

6.02 x 1023 (copies/mol) x concentration (g/pl)
= Amount (copies/pl)

MW (g/ mol)

MW = Molecular weight (g/mol)
9 "J

1 mol = 6.02 x 10" molecules (copies)

Average MW of dsDNA = (number of base pairs) x (660 Daltons/base pairs)

Example:

For pGEM-T Easy-63 plasmid that has a concentration of 215 ng/pl = 2.15 x 10"7 g/pl

and a total size of 3309 bp:

MW = 3309 (bp) x 660 (Daltons/bp) - 2.18 x 106 Daltons

1 mol = 2.18 x 106 g

Also 1 mol = 6.02 x 10 molecules (=copies)

6.02 x 1023 (copies/mol) x 2.15 x 10"7 (g/pl)
= 5.9 x 1010 (copies/pl)

2.18 x 106 (g/mol)
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The standard curve was plotted with fluorescence threshold (Ct) versus template

concentration and concentrations of the samples were determined by interpolation.

2.8.3. Melting Curve Analysis

Melting curve analysis must be carried out at the end of the PCR amplification when

using SYBR Green I format to identify specific PCR products from artefacts.

Temperature dependent fluorescence measurements were made whilst slowly increasing

the temperature of the reaction products from 65°C to 95°C. A graph of the first negative

differential of the fluorescence signal with respect to temperature was plotted against

temperature.

2.9. Laser Capture Microdissection

2.9.1. Preparation of Slide

Cryostat sections of snap frozen tissues were prepared on non-coated slides by

Ms. Deborah Hall at the Department of Pathology, Easter Bush Veterinary Centre. The

sections were stained with haematoxylin-eosin for better visualisation of the tissue

architecture.
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2.9.2. Lifting of Single Cell

LCM was carried out using a PixCell LCM system (Arcturus Engineering, Santa

Clara, CA). A haematoxylin-eosin stained slide was examined under the microscope and

area of interest was selected using a joystick to move the slide easily until the cells of

interest were in the centre of the optical field. A thermoplastic polymer coating, ethylene

vinyl acetate (EVA), attached to a rigid support was placed in contact with the tissue

section with a transport arm. Then, with the simple push of a button, an infra red laser,

focused to the size of the desired target, was pulsed which melts the film directly above

the targeted cells. The focally melted polymer expanded and impregnated the voids in

the targeted tissue and then solidified as it rapidly cooled. At this point, the tissue-

containing polymer had become a mechanically strong, 5 pm thick, solid composite

bonded onto the surface of the pure polymer film. In this manner, multiple identical cells

was separately targeted and bonded to the polymer film. When the film and the cap were

lifted off the tissue section, the tissue sheared at the edges of the polymer/tissue

composite, leaving all the untargeted and unimpregnated tissue still attached to the glass

slide. Only the selected cells that were targeted by the laser and captured by the polymer

film transferred with it, while the rest of the tissue remained intact and ready for further

dissection. The LCM process was repeated over and over on the same section until

sufficient cells were collected. The cells on the cap were lysed in Buffer ATL (100 pi)

containing Proteinase K (10 mg/ml) at 55°C overnight. DNA was extracted from

approximately 30-40 cells using the DNeasy Tissue Kit (Qiagen) following the protocol
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described in section 2.2.2. Nested-PCR was performed using primers specific for VZV

63 (VZV63P1 + VZV63P3; VZV63P2 + VZV63P4, Table 2.2).

2.10. Microarray

2.10.1. RNA Preparation

Tissues from 9 DRGs spanning lumbar segment L4, L5 and L6 ipsilateral to the

site of injection were pooled from 3 VZV infected rats. Only animals showing the

highest allodynia response were selected in this study. Animals were also mock-infected

with CV-1 cells to serve as control in the study. Total RNA was extracted with RNeasy

Mini kit (QIAGEN, section 2.4.2). The RNA was eluted with 30 pi RNase-free water,

quantitated by UV spectrophotometer (Cecil) and quality checked with an Agilent 2100

Bioanalyser (Agilent Technologies) according to the manufacturer's instruction. Briefly,

1.0 pi of RNA was heat denatured at 70°C for 2 min and cooled on ice for at least 5 min

in order to minimise secondary structure. Meanwhile, the RNA Agilent chip was

prepared by loading gel and markers as per manufacturer's instructions. Each chip was

loaded with up to twelve 1 pi samples of total RNA. Concentrations were determined by

comparison to RNA ladder (150 ng) and integrity determined with visualisation of 18S

and 28S ribosomal peaks and lack of small, degraded RNA fragments.
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2.10.2. Affymetrix Hybridisation and Staining

GeneChip hybridisation and staining were carried out by Dr. Kevin Robertson at

the Scottish Centre for Genomic Technology and Informatics (GTI) following the

standard Affymetrix protocol. In brief, double-stranded cDNA was synthesised from the

total RNA using the T7-01igo (dT) Promoter Primer Kit. An in vitro transcription (IVT)

reaction was performed to produce biotin-labelled cRNA from the cDNA. The cRNA

was cleaned up and fragmented before hybridisation to the array. Following

hybridisation, the probe array underwent an automated washing and staining protocol on

the fluidics station. The probe array was then scanned with the Affymetrix GeneChip

Scanner controlled by the Affymetrix Microarray Suite software. The software defines

the probe cells and computes intensity for each cell.

2.10.3. Affymetrix Microarray Data Analysis

Pairwise comparative analysis were carried out using the Affymetrix Microarray

Suite 5.1. During the comparison analysis, each probe set on one array (i.e. uninfected)

was compared with its counterpart (i.e. infected) on the other array. A Wilcoxon's

signed rank test was used to generate a p-value (probability that the two probe sets are

different). From this p-value, threshold values have been set which define whether the

level of a transcript has increased or decreased or unchanged.
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2.10.4. Microarray Data Validation with Real-time PCR

Due to time limitation, validation was only performed on prostaglandin D2

synthase (Ptgds) that showed to be the most highly up regulated gene from the

microarray data. Primers Ptgds_for (5'-GGAGAAATTCATCACCTTTAGC-3') and

Ptgds rev (5'-CCACATCACCATGTGTTACCTG-3') were designed to amplify a 136

bp fragment of the Ptgds transcripts. After reverse-transcription, the Ptgds cDNA was

cloned into pGEM-T Easy vector (section 2.2.8) and sequence confirmed to serve as a

positive control in real-time PCR. Total RNA was extracted from infected and control

animals using RNeasy Mini kit (QIAGEN) as detailed in section 2.4.2. RT-PCR,

quantitation and melting curve analysis was performed on a Rotorgene 3000 machine

(Corbett Research). Standard curves for Ptgds and beta actin were established to

quantify the experimental samples. The cycling conditions were as followed: 10 min at

95°C, 20 s at 94°C, 20 s at 57°C and 20 s at 72°C repeated 40 times. Melting curve

analysis was performed wherein the annealing temperature was decreased by 0.5°C

during each step. Each sample was compared to the standard curve in order to determine

the original starting amount of a particular transcript and to a melting curve to ensure the

production of a specific product.
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CHAPTER THREE

RESULTS AND DISCUSSION
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3.1. Introduction

Little information exists on the molecular mechanisms involved in VZV latency and

reactivation. This has indirectly hampered the knowledge of the mechanisms of post

herpetic neuralgia (PHN) that often follows viral reactivation. Although the latent virus

can be detected in human dorsal root ganglion (DRG), the difficulties encountered in

obtaining ganglia from autopsy explain the slow progression of knowledge (Kennedy

2002). To circumvent this limitation, it is necessary to reproduce experimentally the

events observed during human latency, a difficult endeavour when working with a virus

known to be species-specific and to remain cell-associated in vitro. Many attempts have

been made to induce VZV latency either in vitro by infection of dissociated DRG cells

from human or non-human origin or in vivo, using mice, rats or guinea pigs (Sadzot-

Delvaux and Rentier 2000). Even though none of the animal models described so far is

satisfactory to evaluate all aspects of VZV pathophysiology in humans, many of them

are useful to investigate acute infection, the immune response or latency. Different

models help to answer different questions.

The rat model of VZV latency has been used to study many aspects VZV latency

such as modelling latency establishment (Sadzot-Delvaux et al. 1990), (Sadzot-Delvaux

et al. 1995) and viral gene expression during latency (Kennedy et al., 2001), (Grinfeld et

al. 2004). The adaptation of this rat model and the ability to show striking changes in

behavioural reflex responses represents a useful and unique experimental setting to

investigate the cellular and molecular mechanisms involved in the establishment of PHN

(Fleetwood-Walker et al. 1999), (Dalziel et al. 2004).
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To date, transcripts encoding VZV open reading frames (ORFs) 4, 21, 29, 62, 63, 66

have been detected in human ganglia (Cohrs et al. 2003a), (Kennedy et al. 2000), (Cohrs

et al. 2000). All but one of these viral transcripts i.e. ORF66 have also been detected in

the rat model of VZV latency (Kennedy et al. 2001), (Sadzot-Delvaux et al. 1995).

ORF21 and ORF66 have been shown to be dispensable for the establishment of latency

(Xia et al. 2003), (Sato et al. 2003) while ORF4 and ORF63 are important for latent

infection (Cohen et al. 2005), (Cohen et al. 2004). There have been fewer studies of

VZV gene translation, although expression of VZV gene 63-encoded protein is well

established in both human and rat (Kennedy et al. 2000), (Kennedy et al. 2001). One

report, published by Lungu et al. (1998) described the localisation of proteins encoded

by VZV genes 4, 21, 29, 62 and 63 in the cytoplasm of latently infected neurones in

DRG of human subjects who had died without clinical evidence of herpes zoster. This

observation has been confirmed by a recent report by Grinfeld and Kennedy (2004).

The aim of this work was tried to correlate the altered behavioural changes in the

rats, i.e. showing allodynia, with gene expression in the infected DRG. The approaches

taken to achieve this objective included:

• Analysis of gene expression in infected whole DRG by nested-PCR and real-time

PCR.

• Analysis of purified populations of neurones as an alternative approach to whole

DRG.
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• Utilisation ofmicroarray technology to investigate the global gene expression in

DRG of infected and uninfected rats. Details of this experiment will be discussed

in Chapter 4.

3.2. Results

3.2.1. Development of nested-PCR for VZV Genes 63 and 10

A nested-PCR involving two rounds of amplification reactions was established for

the identification of VZV DNA in the latently infected DRG. The first round of PCR

was performed with a pair of external primers specific to VZV genes 63 and 10

(VZV63P1 + VZV63P3, VZVIOPI + VZV10P3 (Cohrs et al. 1996); Table 2.2).

Subsequently, an aliquot (l ql) of the first round of PCR product was subjected to a

second round of PCR. The second round of PCR was performed with two new primers

(VZV63P2 + VZV63P4, VZV10P2 + VZV10P4 (Cohrs et al. 1996), Table 2.2) that

hybridised to sequences internal to the first round primer-target sequences. In this way,

only specific first round PCR products will be amplified in the second round. Gene 63

was chosen due to its frequent expression during latency in both human and rat

(Kennedy et al. 2001) and it was intended that this PCR would be adopted to analyse

mRNA expression. Likewise, gene 10, which is a late gene would serve as a control for

productive viral gene transcription, as it has not been shown to be expressed in latently

infected cells.
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CHAPTER 3 RESL LTS AND DISCI SSION

In order to confirm that the primer pairs worked, they were first tested with DNA

extracted from VZV infected cells (section 2.2.2). The nested-PCR was performed with

100 ng of the template DNA as described (section 2.7). Figure 3.1 shows a nested-PCR

amplification of genes 63 and 10 in VZV infected cells. Single distinct bands were

obtained from each primer pair, indicating that the primers were specific.

100



PI

VZV63/10
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VZV63/10

VZV63/10
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VZV10P1+P3 (459 bp)
VZV10P2+P4 (347 bp) VZV63P1+P3 (294 bp)

VZV63P2+P4 (220 bp)

Figure 3.1 Amplification of VZV genes 63 and 10 with nested PCR. Amplified PCR products
were analysed by electrophoresis in an 1.5% (w/v) agarose gel. Lanes 1, nested PCR product of
VZV10P2+VZV10P4; 2, primary amplification with VZV10P1+VZV10P3; 3, negative control
without template; M, 100 bp marker; 4, negative control without template; 5, primary PCR
product of VZV63P1+VZV63P3; 6, nested PCR product of VZV63P2+VZV63P4.
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3.2.2. Sensitivity of nested-PCR

In order to test the sensitivity of the nested PCR assay, a plasmid control was

constructed. The corresponding sequence of the VZV63 region was amplified using

primers VZV63P1 + VZV63P3 (Table 2.2) and ligated into the pGEM-T Easy vector

(Promega), according to the manufacturer's instructions (section 2.2.8). Positive

recombinants were confirmed by restriction enzyme analysis with EcoR 1 (section 2.2.7)

at 37°C with 1 pg of the plasmid in 10 pi reaction mixtures as shown in Figure 3.2A.

PCR was also performed with primers VZV63P1 + VZV63P3 (Figure 3.2B). One of the

positive clones was further confirmed by sequencing and named pGEM-T Easy-63.

The concentration of pGEM-T Easy-63 was determined with a spectrophotometer

(section 2.2.5). Serial 10-fold dilutions of pGEM-T Easy-63 containing 10"' to 10 copies

were prepared. 2 pi of each dilution was used and 100 ng of CV-1 DNA was added into

each 50 pi reaction mixture. Nested-PCR was carried out as described in section 2.7. 1

pi of the primary PCR product was used as a template for the secondary amplification.

Figure 3.3 shows the sensitivity of the nested-PCR assay with VZV63 primers. Primary

PCR could only detect down to 100 copies per 100 ng DNA. however the sensitivity of

detection was improved to below 10 copies per 100 ng DNA after a second round of

PCR. The results from this experiment showed that the detection limit of the VZV63

nested-PCR assay was below 10 copies per 100 ng DNA.
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Restriction

enzyme analysis

insert ►

VZV63

Figure 3.2 Restriction enzyme analysis and PCR to confirm VZV63 positive clones. (A)
Recombinant plasmids were digested with EcoR\ to confirm the presence of insert (full arrow).
(B) PCR was performed with VZV63P1 + VZV63P3 on the positive clones and gene 63 products
of the right size were detected (dotted arrow).
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VZV63P2+VZV63P4

Figure 3.3 Sensitivity of the nested PCR assay. A) Primary PCR with serial 10-fold dilutions of
the plasmid containing 109 to 10 copies of gene 63. B) 1 pi of the primary PCR reaction was used
in the secondary PCR. Sensitivity of PCR was 100 copies and below 10 copies per 100 ng DNA
for primary and secondary PCR, respectively.
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3.2.3. Detection of VZV DNA in Whole DRG by nested-PCR

In order to maximise efficient use of animal resources, tissues for the preliminary

PCR analysis were taken from animals tested previously and stored in the tissue bank of

the laboratory. DNA was extracted individually from LI to L6 lumbar DRG from both

ipsilateral and contralateral to the side of injection (section 2.2.1). 100 ng of DNA was

used in the PCR amplification following the conditions used for gene 63 in order to

investigate the presence of VZV DNA in the DRG. No products were seen on the

agarose gel for the DRG samples after the first round of 35 cycles of PCR despite a band

for the positive control (DNA from VZV infected cells). It was speculated that the copy

number of the latent viral genome in the DRG was very low since in VZV infected cells

viral DNA could be detected after one round of PCR. Therefore, a nested PCR would

have to be performed. Indeed. PCR products with the correct size were seen after the

nested-PCR. Figure 3.4 shows an example of a nested-PCR of infected DRGs positive

for VZV DNA.

Due to a limitation in detection, the concentration of the starting DNA template was

increased to 500 ng. With this cut-off concentration, a '+' in the nested-PCR indicated

the presence of VZV DNA and a meant that it is not detected. During the PCR

analyses, contamination of the negative controls (FLO or AHV-1 DNA) occurred

frequently and thus made the results unreliable and had to be repeated. Steps taken to

overcome this contamination problem included preparing the PCR reaction mixtures in a

separate PCR room where no access of any form of DNA was allowed. All the PCR

components including primers were aliquoted into small volumes. QIAGEN HotStarTaq
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DNA polymerase was used to minimise hands-on time and the likelihood of introducing

contaminants into the reaction mixtures when hot start method was performed. Another

advantage of using QIAGEN HotStarTaq DNA polymerase was that the modified

recombinant Tuq polymerase could be added together into the PCR master mix but it

will not be activated at temperature below 95°C, therefore preventing the formation of

mis-primed products and primer-dimers at low temperatures. Separate sets of pipettes

with hydrophobic filtered tips were also used.

Table 3.1 shows the nested-PCR analysis of DRG from infected animals analysed

with the VZV63 primers. Shown are results for ten animals euthanised at different time

points post infection with a mean of 30 days and with different paw withdrawal

thresholds. VZV DNA could be detected in most of the animals especially those with

high to marginal response to allodynia. No virus was found in animals, which had

resolved to the baseline, e.g. 1267 and 1794. Viral DNA could be detected not only on

the ipsilateral but also on the contralateral side to the injection. As there was no control

uninfected tissues available at the time of this experiment being carried out, non-specific

control DNA (A11V-1) and water were used as negative controls in the PCR. Both

negative controls did not show any VZV63 specific amplification in the DRG samples

tested. However, no correlation has been found as to which DRG along the lumbar

segment harbours the viral DNA. The finding of VZV DNA in a particular DRG

segment is probably affected by the individual viral load and the efficiency of viral

spread to the DRG.
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Ipsilateral Contralateral

Figure 3.4 An example of the VZV63 nested-PCR on lumbar DRG tissue from an infected
animal. A nested PCR was performed and products at the right size for VZV63 were detected in
some of the DRGs. Negative controls with H20 and AHV-1 DNA showed no specific VZV63
amplification. DNA from VZV infected cells was positive. L1-L6 = lumbar DRG.
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3.2.4. Southern Blot Confirmation of the Presence of VZV DNA

In order to confirm the results from the nested PCR, an oligonucleotide specific

to gene 63 was synthesised and labelled with DIG-dUTP at the 3' end to be used as a

probe in Southern blot analysis. Figure 3.5 shows that positive results in nested PCR are

confirmed by Southern blot with a band at the correct size for the gene 63 amplified

products. Negative results were confirmed to be true negatives, indicating that Southern

blot was no more sensitive than nested PCR and the results from nested-PCR were

reliable within the detection limit. Beta actin was positive for all the negative samples

tested indicating that the DNA was intact.

109



Nested-PCR

Positive samples Negative samples

Ipsilateral Contralateralc 6—^ w ^
H;0 - M + LI L2 L3 L4 L5 L6 LI L2 L3 L4 L5

D
r

Ipsilateral
"V

Contralateral

M H?0 LI L2 L3 L4 L5 L6 LI L2 L3 L4 L5 L6 +

Actin

Southern blot

M H,0 - + 1234567 H;0 - M + LI L2 L3 L4 L5 L6 LI L2 L3 L4 L5

Figure 3.5 Southern blot confirmation of nested PCR results. Samples positive for gene 63
in nested PCR (A) was confirmed with corresponding positive bands in Southern blot (B). (C)
Samples negative for gene 63 in nested PCR. (D) Beta actin was detected in all negative
samples. (E) Southern blot confirmed the negative samples in nested PCR were true negatives.
+ = positive control with VZV DNA from infected cells; - = negative controls with AHV-1 DNA; M
= marker.
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3.2.5. Detection of VZV DNA in Microdissected Cells

An alternative approach was attempted to investigate the presence of VZV DNA in

the DRG by looking at a single population of neurones. Laser capture microdissection

(LCM) is a method used to select and isolate cell clusters from tissue sections (Emmert-

Buck et al. 1996), (Suarez-Quian et al. 1999). Once captured, the cell clusters can be

analysed with respect to their DNA. RNA or protein content.

Details of the LCM protocol were described in section 2.9. After dissection, the cap

containing the targeted cells was removed using a transport arm and automatically

placed on to a microcentrifuge tube that contains the extraction buffer. DNA was

extracted from approximately 30 to 40 neurones and analysed by nested PCR with

primers specific for VZV63. However, since no quantitative method was used to

determine the viral load in these microdissected cells, the results shown here was

qualitative and not able to compare with other reports on VZV burden in the ganglion.

Figures 3.6A and B show photos of tissue pre- and post-microdissection, respectively.

Figure 3.6C shows that viral DNA could be detected and beta actin was positive in all

samples tested. The PCR samples were processed in duplicate but due to the sensitivity

of detection, one of the two replicates (L4C and L5I) did not show the same results.

These results proved that LCM could be used to isolate single population of cells in the

DRG in which viral DNA could be retrieved for further study.



Before After

Beta-Actin VZV63

L4I L4.C L5I L5C t
M L4I L4C L5I L5C + r-^—^ rS

Figure 3.6 Single cell lifted by laser capture microdissection (LCM) and PCR analysis. A)
Two single neurons are highlighted (arrows) before LCM; B) the same section after LCM where
the two cells were being lifted; C) PCK analysis ot the UNA extracted from microdissected cells
with VZV63. Approximately 30 microdissected neurones were lifted and lysed in the microfuge
tube for DNA extraction. L4I, L5I, L4C, L5C = lumbar DRG L4, L5 ipsilateral (I) or contralateral
(C).
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3.2.6. Real-time PCR

In order to overcome the sensitivity problem in nested-PCR, a quantitative and

more robust assay was developed. Real-time PCR (qRT-PCR) has become one of the

most powerful analytical tools for quantification of defined nucleic acid sequences.

Since only minute amounts of template are required, applications include the evaluation

of gene copy number and mRNA expression and the diagnosis of pathogens and

mutations. The principle of qRT-PCR is that the recurring measurement of a fluorescent

signal is proportional to the amount of amplification product. Several detection systems

are now available and are either based on hybridisation probes such as Taqman probes

(Holland. 1991), Molecular Beacons (Tyagi and Kramer 1996) and Scorpions

(Whitcombe, 1999) or on intercalation by fluorescent dyes, such as the dsDNA binding

dye SYBR Green 1 (Wittwer, 1997). While hybridisation probes offer the advantage of

target sequence specificity, a specific probe is required. Given that the synthesis of

fluorescence-labeled probes is still a major cost factor, the availability of a general

detection method is of great benefit to those studies that aim at the quantification of a

high number of genes.

Optimisation prior to carrying out the qRT-PCR assay with experimental

samples will generate data that reflect on the quality of the assay design and produce

valuable information to indicate where problems may lie. By using the minimum primer

and probe concentration to give the best assay conditions, it is often possible to reduce

the concentration of oligonucleotides included in the assays and so increase the

specificity of the assay as well as saving costs. The template chosen for the optimisation
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process can be derived from any convenient source where there is an excess supply. The

most common sources include: cDNA, synthetic single stranded DNA amplicon,

purified PCR fragment and cloned fragment within a plasmid. For purpose of

optimisation here, the pGEM-T Easy-63 plasmid was used as a template with VZV63P1

+ VZV63P3 primers (Table 2.2). The following parameters were optimised: magnesium

chloride (MgCE), SYBR Green 1. template and primer concentration. Melting curve

analysis was carried out to check for product specificity.

3.2.6.1 MgCI2 Titration

The PCR reaction was carried out in the presence of different MgCE

concentration ranging from 1-5 mM. The optimal MgCE concentration is the one which

has the lowest threshold cycle (Ct), the highest fluorescent intensity and the steepest

curve slope. Ct value is the number of the first cycle at which the measured fluorescent

signal exceeds the threshold limit. Therefore, in the example shown in Figure 3.7A, the

optimum MgCE concentration is 3 mM. The melting curve shows that primer-dimer

only formed in the no template control (in the presence of 5 mM MgCE). At 1-5 mM

MgCE. a specific product was shown by a sharp melting curve (Figure 3.7B)

3.2.6.2 SYBR Green I Concentration

Different dilutions (1: 1000 to 1: 40000) of SYBR Green I (Biogene) was

prepared from the stock solution following the manufacturer's instructions. The SYBR
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Green I dilutions were used to optimise the PCR reaction mixtures in order to get the

best fluorescent intensity and amplification. As shown in Figure 3.8A. only a dilution of

1:1000 gives amplification and a specific product (shown by melting curve, Figure

3.8B).

3.2.6.3 Template Concentration

The template concentration tested was at 100 ng and 10 ng. The Ct for DNA

working template dilutions should be 10-30. Higher dilutions are used if initial Ct < 10

or higher concentrations if initial Ct > 30. A high template concentration can lead to an

early reaction plateau and results that are difficult to interpret. Figure 3.9 shows that

template concentration indeed makes a difference in the Ct value. A higher concentration

leads to earlier Ct and a lower concentration has a delayed Ct.

3.2.6.4 Primer Concentration

A matrix of different concentration of the forward and reverse primers

encompassing the range from 0.05 pM to 0.9 pM was tested. As shown in Figure 3.10

the optimal primer concentration was 0.3 pM for forward and reverse primers given their

lowest Ct and a specific product in the melting curve analysis.
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A B

Figure 3.7 Effect of MgCI2 concentration. (A) Different concentrations of MgCI2 ranging from
1-5 mM were used to optimise the real-time PCR reaction. 3 mM of MgCI2 gives the highest
fluorescence and best amplification. (B) Melting curve showed a specific product and primer
dimer only appeared in no template control at 5 mM MgCI2.
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Figure 3.8 Effect of SYBR Green I. (A) The concentration of SYBR Green I did make a
difference in the fluorescence intensity of the assay. Only dilution at 1: 1000 gave a specific
product as shown in the melting curve analysis (B).
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Figure 3.9 Effect of template concentration. Different concentrations of template did affect
the C, of the assay. Higher concentration (100 ng) resulted in an earlier C, while lower
concentration (10 ng) resulted in a later C,

Figure 3.10 Effect of primer concentration. Concentration of 0.3 pM for both forward and
reverse primers gave the best amplification and specificity of all the other combinations tried in
the primer optimisation matrix set up.
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3.2.7. Construction of a Standard Curve

Having chosen the optimum concentration for the primers, SYBR Green I and

MgCE, it is important to determine the efficiency of the qRT-PCR reaction. A standard

curve is a useful tool for examining the quality of the overall qRT-PCR assay and it

should encompass as large a dynamic range as possible of a 10-fold dilution series over

5 to 7 logs. A miniprep of pGEM-T Easy-63 plasmid was prepared (section 2.3.3). The

plasmid was linearised with Nco\ and its concentration determined (section 2.2.5) in

order to calculate the corresponding copy number using the formula given (section

2.8.2). A standard curve was constructed by preparing ten-fold serial dilutions of

plasmid containing from 1 to 10s copies of VZV63. Uninfected rat dorsal root ganglion

tissue DNA (500 ng) was added to the plasmid standard to compensate for the potential

inhibition of amplication reactions by the added DNA. Each standard was run in

triplicate using the optimised conditions as outlined below. The optimised PCR reaction

mixtures contained H2O (1 1.7 pi), 10 x PCR buffer without Mg (2 pi), Mg (3 mM; 2.4

pi), dNTP mix (10 mM each dNTP; 0.4 pi), forward primer (0.3 pM; 0.4 pi), reverse

primer (0.3 pM; 0.4 pi), FastStart Taq (2 U, 0.2 pi), SyBr Green 1 (1:1000; 0.5 pi) and

template DNA (2 pi) in a 20 pi reaction. Figure 3.1 1 shows an amplification plot with a

o
>

large dynamic range of the measurement from 10 to 1 copy of the plasmid and the

specificity of the assay were shown by a sharp melting peak in the melting curve

analysis. The post real time PCR products could be analysed on an agarose gel for the

correct size when there were doubts about the identity of the specific product, but often
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it was unnecessary if the melting curve analysis showed a single melt curve consistently

with the positive control.
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Figure 3.11 An example of a standard curve experiment in the Rotorgene 3000 machine.
(A) The dynamic range of the assay was shown in the amplification plot. (B) The melting curve
showed a specific product. (C) The standard curve showed that there was a linear correlation
between the plasmid concentration and the threshold cycle (C,). (D) The post real time PCR
products of serial dilutions of plasmid copy numbers were analysed on an agarose gel showing
products of the right size.
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3.2.8. Quantitation of VZV DNA Viral Load with Real-time PCR

The viral load in the infected DRG could now be quantitated with the established

standard curve constructed for VZV63. DRG samples were run in triplicate and

quantitation was only considered valid if their values were within the linear range of the

standard. Figure 3.12 shows the viral load in 12 DRGs from single animal. The viral

load in the DRG ranged from 42 ± 24 (standard error of the mean) to 795 ± 459 copies

per pg DNA.

The calculations for equivalent number of cells containing VZV genome were as

follow:

The size of a haploid rat genome which contains the number of nucleotide pairs in one
set of 23 chromosomes is ~ 2.75 x 109 bp

Therefore, a diploid genome contains ~ 5.5 x 10Q bp

Ignoring the differences in AT vs GC composition, the average base pair weighs
~ 660 Dalton (660 g /mol)

So, the weight of one mole of diploid genome:

5.5 x 109 bp x 660 bp = 3.63 x 1012 g

And 1 mole = 6.02 x 1023 copies = 3.63 x 1012 g

Therefore, a diploid genome will contain 3.63 x 1012g/6.02 x 1023= 6.0x 10"12g
= 6 pg DNA per cell

Assuming there is 6 pg DNA per cell.

1 pg DNA ~ 1.7 x 103 cell equivalents

Therefore, it was estimated that there were between 42 ± 24 to 795 ± 459 VZV genomes
per 1.7 x 10^ cell equivalents.
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Figure 3.12 An example of viral load in the infected DRGs of an animal. Viral load in the
different lumbar DRG was quantitated by real-time PCR. This animal was euthanized 10 days
post infection and had developed a high degree of allodynia. Each bar represents the mean viral
load ± SEM. L1I-L6I = ipsilateral lumbar DRG; L1C-L6C = contralateral lumbar DRG.
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3.2.9. Detection of Viral Transcripts in Infected Cells

The detection of VZV DNA in the DRG suggests that the virus is present in the

DRG of infected animals. The next step taken to gain a better understanding of the viral

transcription was to study gene expression in the DRG. In order to study the gene

expression in the DRG. reverse-transcriptase PCR (RT-PCR) assay was first optimised

in an in vitro system due to the abundant expression of all classes of viral transcripts.

RNA was extracted from VZV infected cells (section 2.4.3) and reversed transcribed

(section 2.4.4). 2 pi of the reversed transcription reaction was used in PCR. A nested

RT-PCR was performed with 35 cycles for each round of amplification. Transcripts for

gene 63 and 10 were readily detected in the first round of RT-PCR. Beta actin was

positive in all the samples tested. Negative controls with TDO and without reverse

transcriptase (-RT) were also negative, these confirmed that there was no genomic DNA

contamination.
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Figure 3.13 RT-PCR assay of VZV infected cells in vitro. 1 pg of the RNA was reverse-
transcribed and 2 pi of the reverse transcription reaction were used to perform RT-PCR. Lane 1,
100 bp marker; 2, negative control (H20) without template; 3, -RT reaction (omitting reverse
transcriptase enzyme); 4, RT-PCR with beta actin primers; 5, positive control for beta actin; 6, -

RT reaction; 7, RT-PCR with VZV63 primers; 8, positive control for VZV63; 9, RT-PCR with
VZV10 primers; 10, positive control for VZV10.
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3.2.10. Detection of Viral Transcripts in Infected DRG

After establishing the RT-PCR assay in the in vitro system, the next step was to

try to use the assay to detect latent viral transcripts in the infected DRG. Figure 3.14

shows that no transcript of VZV63 could be detected in any infected DRG even after a

nested RT-PCR. Southern blot was carried out on these samples and they were proved to

be true negatives. The RT step was working since the beta actin gene was amplified and

there was no specific amplification for -RT reactions. RT-PCR of individual ganglia or

pooling several DRGs did not result in detection of transcripts.

3.2.11. Detection of DNA and RNA Transcripts Simultaneously
in the infected DRG

One way to ensure that the difficulty in detecting the viral transcript was not

caused by the virus not getting to the DRG was to be able to analyse the same samples

for their DNA and RNA content. A different method of isolating DNA and total RNA

from the same sample was used here. The details of this protocol are described in section

2.2.3. This method allows the simultaneous isolation of genomic DNA and total RNA

from animal cells or tissue samples with the QIAGEN RNA/DNA kit. The principle of

the QIAGEN RNA/DNA kit is based on selective purification of RNA and genomic

DNA by anion exchange on QIAGEN resin in a QIAGEN-tip. Figure 3.15 shows that

both DNA and total RNA could be successfully isolated from VZV infected cells. PCR

and RT-PCR were able to amplify specific regions of the VZV62 and VZV63
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sequences. RNA obtained from this isolation method had to be DNase treated with care

to remove all traces of genomic DNA.

When this method was repeated by pooling a group of six DRGs, both DNA and

total RNA were obtained (Figure 3.16). However, when RT-PCR was performed on

these samples, the viral transcripts could not be detected and only bands for beta actin

were seen. VZV62 and VZV63 DNA were amplified in these samples. Therefore, these

results proved that the non-detection of RNA transcripts in the samples was not a matter

of the virus not getting to the DRG but instead it was likely due to a very low expression

below the detection limit of the RT-PCR assay.

3.2.12. RT-PCR Optimisation

Many approaches have been tried to detect the transcripts in the infected DRG by

optimising the RT-PCR assay. A different cDNA priming method using gene specific

primers was tried as it has been reported that this method synthesised the most specific

cDNA and provided the most sensitive method of quantification (Lekanne Deprez et al.

2002). Different RT systems were tried, annealing temperature and MgCf concentration

for the PCR were optimised. None of this worked even the pooling of more DRGs. The

cDNA samples were also analysed by real-time PCR using the optimised VZV63 PCR

conditions. However, there was no specific amplification seen in the melting curve

analysis. Since the viral load has been found to be presence in low copy numbers in the

DRG, it might suggest that the mRNA expression would also be low, resulting in the

transcripts not being detected in the RT-PCR and real-time PCR assays.
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Figure 3.14 Detection of viral transcripts using primers specific for VZV63 VZV63
transcripts were not detected in the infected DRGs but beta actin was positive for all these
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Figure 3.15 Simultaneous isolation of DNA and total RNA from VZV infected cells. A) PCR
and RT-PCR analyses of DNA and RNA with primers specific for VZV62 and beta actin. B) PCR
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3.2.13. Viral Spread in the Rat Model of VZV Latency

In order to investigate how the virus spread in the rat model after VZV injection into

the footpad, an experiment was carried out to analyse the viral load in DRGs and other

tissues at early time points (24 h. 48 h and 72 h) post infection. Two animals were

studied at each time point and tissues analysed were DRG. footpad, sciatic nerve, spinal

cord, brain, spleen and blood.

Table 3.2 shows the presence of VZV63 DNA by nested-PCR at 24 h, 48 h and 72 h.

Viral DNA could be detected as early as 24 h after the infection in both ipsilateral and

contralateral DRG to the side of injection. As expected, viral DNA could be detected at

the ipsilateral footpad, which is the initial route of infection but not on the contralateral

footpad. Both ipsilateral and contralateral sciatic nerves contained viral DNA at all the

time points investigated. In order to check if there was a haematogenous dissemination

of the virus in the rats, blood specimens from these animals were analysed. No viral

DNA was detected in the blood of any of the animals at 24 h to 72 h. There was also no

VZV DNA found in the spinal cord (whole cord analysis) and brain at any of the time

points studied. This result suggests that latency is limited to the peripheral nervous

system as is the case in humans.

Figure 3.17 shows a schematic diagram of viral spread in the rat model. VZV

injected into the left footpad is predicted to travel via axonal transport to the DRG along

the sciatic nerve which is the main nerve innervating the leg. This hypothesis is

supported by the finding of viral DNA in the sciatic nerve. The virus then reaches the

DRG, the site for VZV latency. We have show that the virus does spread to the
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contralateral DRG and in the contralateral sciatic nerve, the mechanism by which this

occurs is not clear. However, the results suggest that the hematogenous route is not

likely.
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Table 3.2 Detection of viral nucleic acids in the DRG at the early time point of infection
(24 h, 48 h, 72 h) in the rat model. Two animals were studied at each time point. '+' denotes
presence of viral gene 63; denotes viral gene 63 not detected. L1I-L6I = lumbar DRG
ipsilateral to the side of injection; L1C-L6C = lumbar DRG contralateral to the side of injection.

Tissues
Time post
infection (h)

24 48 72

LI 1 + - +

L2I + - +

L31 + - +

L41 - - +

L51 - + +

L61 - - +

L1C + + +

L2C + - -

L3C - + -

L4C - - -

L5C + + +

L6C - - -

Footpad I + + +

Footpad C - - -

Sciatic I + + +

Sciatic C + + +

Blood - - -

Spinal cord - - -

Brain - - -

Spleen - - -
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Figure 3.17 A schematic diagram of the viral spread in the rat model. VZV was injected
subcutaneously into the left footpad of the rat. Viral DNA was found in the footpad (I), sciatic
nerve (I and C) and in the lumbar DRG, L1-L6. Tissues found positive for VZV63 were in red.
VZV63 was not detected in brain, spinal cord, L4C, L6C, spleen and the right footpad. The
central nervous system is coloured in purple.
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3.3. Discussion

In this study, the distribution and viral load of VZV DNA in the latently infected

dorsal root ganglion (DRG) obtained from animals developing allodynia were studied

with nested-PCR and real-time PCR. An alternative approach of isolating single

populations of neurons was also investigated. A viral spread experiment was carried out

to provide a better insight of the viral dissemination in the rat model.

3.3.1. Detection of VZV DNA in Infected Whole DRG

The nested PCR for VZV63 developed in this study has the ability to detect

down to 10 copies of plasmid DNA. When fewer than 10 copies of plasmid DNA was

analysed, the nested-PCR detected the samples infrequently and therefore replicates had

to be included. A similar sensitivity of detection was also reported in a recent study

comparing a TaqMan real-time PCR assays with nested PCR assays to detect HSV-1,

HSV-2 and VZV in clinical samples (Weidmann et al. 2003).

In order to investigate the gene expression in the infected DRG and to correlate it

with the altered behavioural changes in the rats, the first thing was to confirm the

presence of viral gene in the DRG. VZV63 DNA was detected in the ipsilateral DRG of

infected rats with the nested PCR system. Others have reported on the detection of VZV

gene expression in the DRG in a similar rat model (Kennedy et al. 2001), (Grinfeld et

al. 2004) with in situ hybridisation and in situ PCR techniques, respectively. However,

in this study, virus was not only found in the ipsilateral DRG but also in the contralateral

DRG concurrent to a 'contralateral effect' seen in some of the rats following infection of
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only one footpad. This bilateral allodynia was reported by Dalziel et al., (2004). They

proposed that the altered bilateral effects were related to the dose of VZV injected into

the hindpaw and hypothesised that virus spread to the contralateral side was the cause of

the allodynia. Animal studies of neuropathic pain states following unilateral nerve

constriction have also reported bilateral effects (Attal et al. 1990), (Colvin et al. 1996).

The contralateral effect could also be explained by an alternative hypothesis that pain is

not only generated by the injured nerve fibres themselves but also by intact nerve fibres

in the vicinity of injured nerve fibers (Schaible and Richter 2004). It has been shown

that after an experimental lesion is introduced in the L5 DRG, spontaneous action

potential discharges are observed in C-fibres in the uninjured L4 DRG. These fibres

might have been affected by the Wallerian degeneration (Wu et al. 2001). Nevertheless,

the finding of VZV DNA in the contralateral DRG suggested that the presence of virus

indeed has contributed to the 'bilateral effect', however this possibility has to be further

investigated.

3.3.2. Viral Load in the Latently Infected DRG

Even though nested PGR was sensitive to the point whereby viral DNA could be

detected within its detection limit in the DRG, however it was still a qualitative assay. In

order to quantitate the viral load in the DRG, a real-time PGR assay was developed. It

has been shown that in some animal experiments, the latent viral genome levels in the

sensory ganglia influence the reactivation frequency of HSV-1 and HSV-2, suggesting

that the quantity of latent viral genome copies per ganglion (or latent viral load) may be
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a significant determinant of herpesvirus reactivation from the nervous system (Sawtell et

al. 1998), (Sawtell 1998).

Within the sensitivity of the real-time PCR assay, it was estimated that there

were 42 ± 24 to 795 ± 459 copies of VZV genome per lCf cell equivalents. This means

that there are only 0.02% to 0.5% of cells in the rat DRG containing VZV genome. This

low abundance of viral DNA in the DRG could imply a low level of mRNA transcripts

and this could have explained the difficulties in the detection of the viral transcripts in

the DRG. Latently infected rabbits were found to contain on average 16.8 copies of

HSV-1 DNA per 100 cells equivalents (Hill et al. 1996) while latently infected mice

contained on average 50 copies of virus per 100 cell equivalents (Katz et al. 1990). At

the single cell level, the HSV-1 DNA burden was shown to range from 10 to 1000

copies per individual latently infected mouse neuron (Sawtell et al. 1998). The amount

of VZV DNA present in human ganglia was determined to be 557 to 55543 per 105

ganglion cell equivalents (Cohrs et al. 2000). At the single cell level, VZV DNA was

found at a rate of two to five copies per 100 neuronal cells (LaGuardia et al. 1999). A

recent report using LCM and real-time PCR to estimate the copy numbers of HSV-1 gG

and VZV gene 62 from human trigeminal ganglion has reported 6.9 VZV genomes per

positive cell (Wang et al. 2005). The estimated number of latent genomes per ganglion

reported in the literature varies widely, in part depending on the method used to

calculate that number and also different tissues used.
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3.3.3. Detection of VZV DNA in Microdissected Cells

Laser capture microdissection (LCM) technique has proved to be a useful tool to

isolate single cells from a mixed population in the DRG. The ability to detect VZV DNA

in the microdissected cells will allow the study of gene expression in subpopulation of

neurones in which VZV polypeptides are being expressed. It is important to study the

neuronal subtypes as it has been shown that there is differential gene expression within

DRG neurons (Luo et al. 1999). In the DRG, there is small-, medium- and large-sized

neurons. Within the small neurons itself for example, there is heterogeneity in gene

expression, which, presumably reflects, at least in part, the different sensory modalities

transmitted. However, the LCM technique developed in this work could be refined

further by integrating immunocytochemistry with LCM in order to approach the

complicated heterogeneity. For example, cells could be stained for specific VZV

markers so that cluster of cells of interest could be selected and captured. These cells

could then be used for similar studies discussed here or in Chapter 4.

3.3.4. Detection of VZV Transcripts in the Infected DRG

Precise estimates of the number of VZV transcripts in human ganglia do not

exist. That routine RT-PCR assays on unselected total RNA from human ganglia have

not been reported to be positive suggests that the number of viral transcripts in latently

infected tissues is low (Silverstein and Straus 2000). This contrasts with the data

regarding HSV-encoded LATs, which are estimated at 100 or more copies for every

latent viral genome (Ramakrishnan et al. 1994). Thus, the quantity of VZV RNA in
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latently infected human ganglia must be substantially below this level, since HSV LATs

are readily detected by Northern blot hybridisation and RT-PCR assays (Stevens et al.

1987), (Croen et al. 1988).

Since the viral DNA load in the DRG is very low, this suggests that not many

copies ofVZV genome are present in the DRG. Therefore, this may also reflect a limited

mRNA expression, which hampers the detection of these RNA transcripts in the RT-

PCR. Due to the limitation in sensitivity of the RT-PCR assay, a method of simultaneous

isolation of the DNA and RNA from the same sample was adopted. This method has

allowed the study of the DNA and gene expression in the same sample. However, results

shown that RNA transcripts were not detected even in samples where the viral genome

was found to be present. This again has suggested that a low level of RNA transcription

due to the low abundance of VZV DNA in the DRG. The viral transcripts could not also

be quantitated by real-time PCR has indicated that the level of expression of the latent

virus was very low in the infected DRG and it was beyond the sensitivity of detection of

the assay.

Due to the fact that SYBR Green I binds to any double-stranded DNA, the assay

used might not be as specific as the probe based system. A sequence-specific probe was

reported to provide better sensitivity for low copy number detection without the need to

worry about unspecific products or primer dimers (Wittwer et al. 1997). A different

nested real time PCR approach claimed to be able to overcome the limitation in

sensitivity in order to quantitate Hepatitis B virus (HBV) DNA in serum (Brechtbuehl et

al. 2001). The nested assay was sensitive to the level of a single HBV genome in the
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PCR reaction. This approach might be applicable in future in order to quantitate the viral

gene expression in the DRG.

3.3.5. Viral Spread in the Rat Model

This experiment was carried out with the aim of investigating the virus

dissemination in the rat model after VZV infection. The finding of VZV DNA in the

DRGs as early as 24 h post infection had suggested that the virus reaches the DRG

possibly via the sensory nerve terminals present in the richly innervated glabrous skin of

the footpad. The virus was predicted to ascend the neuronal pathway to the DRG, the

site ofVZV latency. However, the mechanism of spread of virus from the ipsilateral side

to the contralateral side was not clear.

The finding of VZV DNA in DRG contralateral to the side of inoculation suggests

that there might be another route apart from axonal transport where the virus travels in

the rat model. The simplest explanation for this finding is that these animals develop

viremia but in this study viremia was not detected in the VZV-infected rats from 24 h to

72 h. A similar finding was reported by Annunziato et al., (1998) where they could not

detect viremia by PCR in the VZV infected rats two weeks after inoculation into the

footpad with cell-free virus, however these rats developed antibody to VZV. Since virus

inoculation is expected to elicit an immune response to viral antigens, they concluded

that virus replication did not occur. They also suggested the likelihood that the blood

samples were not obtained at the appropriate time point to detect VZV viremia in the rat

model since in the guinea pig model, viremia occurs 2-5 days after inoculation (Lowry et
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al. 1993). It may also be that viremia occurred but at a level below the level of detection

of the PCR assay. Another alternative explanation for the finding of VZV infection

contralateral to the inoculation sites is that virus spreads via the cerebrospinal fluid

(CSF). VZV has been found in human CSF in the absence of clinical indications of

encephalitis or meningitis (Annunziato et al. 1998).

No viral DNA was detected in the spleen, brain and spinal cord (taken from the

cervical enlargement region) at all time points studied in this experiment. A similar

finding was reported by Grinfeld et al., (2004), where they found no peripheral tissues

(spleen, liver, lung and kidney) were positive for VZV genes 62 and 63 in VZV infected

rats. This and our finding suggest that VZV infection in the rats mainly restricted to the

peripheral nervous system.

3.4. Conclusion

In agreement with previous findings, rats inoculated subcutaneously with VZV into

the footpad harbour the VZV DNA in their DRG. However, due to only a small fraction

of cells in the DRG harbours latent VZV and due to the low-level expression of the viral

transcripts, they were beyond the level of detection of the RT-PCR and real-time PCR

assays developed. It is not possible to draw any correlation between the altered

behavioural changes with the gene expression in the DRG from the results as there is no

clear pattern observed. VZV DNA was also detected in DRG contralateral to the site of

inoculation but viremia was not able to be demonstrated. The viral spread experiment
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CHAPTER 3 RESU LTS AND DISCUSSION

has confirmed that VZV injected into the footpad of rats primarily used a retrograde

axonal route to reach the DRG where it remained latent.
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4.1. Introduction

The ability to study thousands of genes simultaneously at one time was impractical

until microarray technology was introduced in the mid 1990s (Brown and Botstein

1999), (Dhiman et al. 2002). Many studies have used microarray analysis to examine the

host response to infection with herpesviruses, including HHV-6 infection of transformed

T cells (Mayne et al. 2001), Epstein-Barr virus (EBV) infection of transformed B cells

(Carter et al. 2002), human cytomegalovirus (HCMV) infection of primary human

fibroblasts (Browne et al. 2001), Kaposi's sarcoma-associated herpesvirus (KSHV)

infection of dermal microvascular endothelial cells (Moses et al. 2002), HSV-1 infection

of mouse trigeminal ganglia (Kramer et al. 2003) and VZV infection in human T cells,

fibroblasts and SClDhu skin xenografts (Jones and Arvin 2003). Viral gene transcription

has also been investigated by microarray analysis in BSC-1 cells infected with VZV

(Cohrs et al. 2003) and viral and cellular gene transcription in fibroblasts infected with

small plaque mutants of VZV (Jones and Arvin 2005). These studies have demonstrated

many commonalities in host cell responses to herpesviruses. For example, interferon

response genes were modulated by all herpesviruses that have been evaluated by

microarray analysis. Herpesvirus infections tend to affect the regulation of other immune

system genes as well, including interleukins and other cytokines. Genes involved in

basic cellular processes such as cell cycle control, transcription and translation also tend

to be altered by herpesvirus infection.

The study presented here was designed to investigate changes in host cell gene

transcription in dorsal root ganglion following VZV-induced allodynia. The hypothesis
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we wished to address was the presence of VZV proteins in latently infected or

reactivating neurons results in an increased sensitivity to noxious stimulus via a change

in the transcriptional activity of the neurone.

Two forms ofmicroarray currently in wide use are the cDNA array format (Pease et

al. 1994) and the oligonucleotide array format (Schena et al. 1995). cDNA arrays are

commonly developed using protocols introduced in the Brown laboratory at Stanford

University (http://cmgm.standford.edu/pbrown/mguide/index.html). cDNA arrays are

made by robotic deposition of DNA spots 50-150 jam in diameter onto a coated glass

surface. These moderate sized DNA arrays typically have around 10,000 spots on an

area of 3.6 cm". This technology allows the comparison of fluorescently labelled cDNA

populations from control and experimental samples in dual colours requiring less than

600 ng of mRNA per sample for a 10,000 spot DNA chip. High-density oligonucleotide

arrays are readily available from a number of commercial supplier included for example

from Affymetrix, Santa Clara, CA (www.affymetrix.com) and Agilent Technologies

(www.chem.agilent.com) (Lipshutz et ai. 1999).

4.1.1. Affymetrix GeneChip Array

The Affymetrix GeneChip technology platform consists of high-density

microarrays and tools to help process and analyse those arrays. The advantages of

Affymetrix GeneChips included high specificity and sensitivity. It is possible to get

rapid results, it has the capability to monitor the expression of a large number of genes in

the genome and it is the most widely used commercial microarray platform. However,
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the disadvantages are that it is significantly more expensive than custom microarrays,

demands stringent quality control and Affymetrix only makes GeneChip arrays for

common experimental animals.

Affymetrix combines oligonucleotide synthesis and photolithography to produce

DNA arrays that contain 65,000-400,000 DNA oligonucleotides on a 1.6 cm2 glass

surface (Ramsay 1998), (Lockhart et al. 1996). In DNA photolithography, ultraviolet

light shines through holes in masks in order to direct parallel and stepwise synthesis of

oligonucleotides. At each step in the synthesis, oligonucleotides are deprotected by light

at the appropriate positions by the mask. The chip is then flooded with activated

nucleotides, which couple to the deprotected positions. Uncoupled residues are then

washed away, another mask is applied and the deprotection steps are carried out with the

next nucleotide. Repetition of the cycle approximately 70 times, with 70 different masks,

allows synthesis of the complete array of thousands of 25-mer oligonucleotides in

parallel.

Once fabricated the gene chip probe arrays are ready for hybridisation. The

nucleic acid to be analysed is isolated, amplified and labelled with a fluorescent reporter

group and incubated with the array. The array is read on a scanner and the patterns of

hybridisation are detected including measure of fluorescence intensity. This approach to

gene expression monitoring is advantages because it allows the user to avoid genes that

are repetitive or homologous to other known genes. Typically 20 pairs of

oligonucleotides are arrayed to represent each gene, which improves the quantification,

specificity and reliability of gene expression data (Lockhart et al. 1996).
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4.1.2. Rat Expression Set 230A

In this study, Affymetrix Rat Expression Set 230A GeneChip arrays were used to

analyse gene expression in mock (non-infected) and VZV infected DRG tissue. This

array contains oligonucleotide probes specific for around 15,866 known rat genes

present in the mouse unigene database. The array also contains probes representing

around 10,400 Expressed Sequenced Tags (ESTs) sequences. ESTs are single pass

sequence from either end of a cDNA clone. Figure 4.1 shows the overall workflow for

the microarray experiment.
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Biological question
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Experimental design
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Selection of array format
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Figure 4.1 The workflow of the microarray experiment is outlined. Shown here are the
standard steps involved in the workflow processes.
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4.2. Results

4.2.1. Experimental Design

Experiments were undertaken in which DRG were obtained from VZV infected

rats, which showed altered behavioural changes after infection. The experimental

procedure was as described in section 2.6. Control animals were injected with non-

infected CV-1 cells and following testing showed no significant changes in behavioural

response compare to paw withdrawal threshold (PWT) from pre-inoculation testing.

Figure 4.2A shows the VZV-induced altered behavioural changes in the infected and

control rats. A drop in PWT was observed at day 3 for both infected and uninfected

groups. This is commonly observed and may be attributed to an injection trauma at the

site of injection (Fleetwood-Walker et al. 1999). It is notable that the PWT of the

infected animals remained low compared to the control group, which returned almost to

the baseline values at day 7. The experiment was terminated at day 10 when the infected

animals were still sensitive but the control animals were back to the baseline (p<0.05).

Only individual animals that showed allodynia (PWT less than 15 g) were used for

tissue collection on post infection day 10 (Figure 4.2B).

4.2.2. Preparation of Target Sample

The extraction of high quality RNA for labelling and subsequent microarray

hybridisation was essential in this study to ensure the success of reverse transcription

and further verification analysis. Lumbar L4-L6 DRG, ipsilateral and contralateral to the
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site of injection, were dissected from the animals and immersed immediately in

RNAlater (Ambion) to prevent degradation of the RNA in the tissues prior to RNA

extraction. In the microarray experiment only DRG from the ipsilateral side were used. 9

DRGs from the three animals showing the highest allodynia response (average PWT at

0.8 g, 1 g and 1.4 g) were pooled, disrupted and lysed in lysis buffer followed by

homogenisation in a QIAshredder spin column to obtain a clear lysate (section 2.4.2).

Total RNA extraction was carried out with the RNeasy Mini kit (QIAGEN) and the

RNA was eluted with 30 pi of RNase-free water. The elution was repeated with the first

eluate in order to increase the yield of the RNA. For this study, due to the limitation of

the labelling process, at least 5 pg of total RNA was needed for labelling and

hybridisation.
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Figure 4.2 In vivo experiment. (A) Graph shows VZV-induced allodynia in animals to be used
in the microarray experiment. Animals were injected in the left hindpaw on day 0 with either 4 x
106 VZV infected CV-1 cells (VZV, n=6) or uninfected CV-1 cells (control, n=6). The mean
withdrawal thresholds in grams for ipsilateral paws were determined and plotted against time
post infection in days for each group and SEM shown. Statistically significant differences
between injected and non-injected hind paws (*P < 0.05, Mann-Whitney U test, n=6). Mock-
infected control animals did not show significant behavioural changes before and after VZV
infection. (B) Individual animals were shown. Tissues from the 3 animals showing the highest
allodynia response (in red box) were pooled for RNA extraction.
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4.2.3. Integrity and Quality of RNA

Messenger RNA (mRNA) typically comprises only 1-3% of total RNA samples

and it is not easily visualised even with the most sensitive of methods. In contrast,

ribosomal RNA, makes up > 80% of total RNA samples, with the majority of that

comprised by the 28S and 18S rRNA species in mamalian systems. Traditionally,

mRNA quality has been assessed by denaturing agarose gel electrophoresis of total RNA

followed by staining with ethidium bromide. This method relies on the assumption that

rRNA quality and quantity reflect that of the underlying mRNA population. If the 28S

and 18S rRNA bands are discrete with no significant smearing and the 28S rRNA band

is approximately twice as intense as the I8S rRNA band, then the mRNA in the sample

is of good quality. The primary drawback to this method is that microgram amounts of

RNA must be sacrificed.

In recent years, successful attempts have been made to improve on this approach

and in this study an Agilent 2100 Bioanalyser and RNA6000 Nano LabChip Kit were

used to measure nanogram quantities of total RNA. The bioanalyser fractionates RNA

molecules according to size and the amounts of I8S and 28S rRNA are automatically

calculated. Theoretically, intact RNA will have a 28S:18S rRNA ratio of 1.7-2.0.

However, in practice, this ratio is rarely obtained with samples extracted from animal

tissue and variation from source to source is observed (Robertson, K., personal

communication).

Figure 4.3 shows an example of the electropherograms of the purified RNA

samples extracted from the mock and infected tissues. The RNA was intact as shown by
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relatively low number of small peaks in the profile and a ratio of 28S:18S of

approximately 1.0 for both samples. In this study, once the RNA samples quality had

been confirmed, samples were labelled and hybridised to the Affymetrix gene chip

following the standard protocols which were carried out by Dr. Kevin Robertson at the

Scottish Centre for Genomic Technology and Informatics.
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Figure 4.3 RNA quality and integrity check with the Agilent 2100 Bioanalyser Panel A and
B show gel-like images and electropherograms of RNA samples from control and VZV infected
animals, respectively. RNA from these samples was of good quality as seen by very few small
peaks and a good 28S:18S ratio.
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4.2.4. Microarray Data Analysis

After hybridisation of the biotin labelled cDNA, arrays were washed and stained

with streptavidin-phycoerythrin as outlined in the Affymetrix expression analysis

technical manual. The arrays were then scanned using the Affymetrix GeneChip scanner

2500 and image analysis and quantitation were undertaken using Affymetrix MAS 5.1

software according to standard Affymetrix protocols. In brief, each transcript on the

array is represented by a set of 13 to 20 probe pairs (depending on the array). A probe

pair consists of a 25-mer "perfect match' (PM) oligonucleotide derived from a 3' region

of the original coding strand of the gene. This is accompanied in an adjacent microarray

feature by a 25-mer "mismatch' (MM) sequence, which has a nucleotide change at

position 13 of the sequence. A "signal" value representing transcript abundance is

derived for each probe set via a process involving: background subtraction, noise

correction and a comparison of the hybridisation signal for the PM and MM probes. The

latter comparison enables the analysis algorithm to account for cross hybridisation and

stray signal, which may affect quantitation of the transcript. During this process, a

detection algorithm calculates a detection p-value and generates a "present", "marginal'

or "absent" (P. M or A) value for each transcript.

Before comparing two arrays, data were normalised to correct for technical

variations between arrays. In this study, all arrays were normalised by scaling the overall

intensity of the arrays to an arbitrary value of 100. This method assumes that the overall

intensity of the arrays is identical and the majority of genes do not change in expression.
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After normalisation, scaling factors for all the arrays were within an acceptable range

(i.e. within 3 fold of each other) (Robertson. K.. personal communication).

4.2.5. Microarray Quality Control

In the Rat Expression Set 230 a set of 'housekeeping' genes (e.g. GAPDH. beta

actin. hexokinase 1) are included on the array. These genes are represented by probe sets

derived from the 3'. middle and 5' regions of the gene. By calculating a 375' signal

ratio, the user is able to assess whether full-length cDNA transcripts have been produced

during the reverse transcription step of the labelling process. Optimal cDNA synthesis

will produce a ratio value of around 1. To assess the sensitivity of the hybridisation,

signal and detection values for Affymetrix spiked transcripts (i.e. bioB. bioC, bioD and

ere) were noted. For all arrays, the spike transcript at lowest concentration (bioB,

concentration 1.5 pM) was detected indicating that the hybridisation, washing, staining

and scanning were optimal.

The performance of the arrays was further assessed prior to data analysis, which

was being carried out with the help of Dr. Kevin Robertson. A scatter plot comparing the

two arrays using the default expression measure provided by Affymetrix Microarray

Suite 5.1 (MAS) was produced using S-PLUS software (Insightful Corporation), which

allows exploratory data analysis and statistical modelling. Result is shown in Figure

4.4A. I he scatter plot confirmed that the data had a symmetrical 'flared' distribution and

showed a dynamic uninterrupted range of expression values from low to high signal

values. The flared distribution occurs as a result of variation increasing as signal levels
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decrease and is entirely typical of data normalised in the manner described above. Most

of the variation between the two groups exists at the lower end of the gene expression

levels. This suggests that the variability is in part due to array sensitivity and

consequently, differences in low intensity genes may be unreliable.

To further investigate the signal distribution across the arrays, a 'box-and-

whiskers' representation of the data was produced in S-PLUS (Figure 4.5). This figure

confirmed that after normalisation the data was symmetrical and the decision was made

to proceed with the data analysis.

4.2.6. Comparison of Uninfected and Infected Samples and
Identification of Differentially Expressed Genes

In this study, control and infected samples were hybridised to two independent

Affymetrix GeneChip Rat Expression Set 230A arrays. In order to detect and quantify

changes in gene expression, a pair-wise comparison was undertaken in MAS 5.1. In this

analysis, one array was designated as the baseline (uninfected) and the other as the

experimental sample of interest (infected).

The Affymetrix MAS comparison algorithm was used to compare the difference

values (PM-MM) for each probe pair on the baseline array with its corresponding probe

pair on the experimental array. This process generates a change p-value which indicates

the probability that there was a difference in transcript expression between the two

samples. The process also produces a change value (up, down or unchanged). A second
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algorithm is used by the software to produce a 'Signal Log Ratio' (SLR) value, which

indicates the magnitude of change. In this system, the log scale used is base 2, which

ensures that the output of the analysis is intuitive. A SLR of 1.0 indicates a 2-fold

increase in transcript expression and a SLR of -1.0 indicates a 2-fold decrease in

expression. A SLR of zero would indicate no change. In this analysis, data were sorted

and filtered using a combination of the output values described above. To increase the

likelihood that genes identified in this analysis were valid, an arbitrary signal threshold

value of 50 was selected.

During the course of this study, an expression measure motivated by a log scale

linear additive model was reported to provide more consistent estimates of fold change

and improvement in detecting differentially expressed genes compared to the MAS

algorithm (Irizarry et al. 2003). This summary statistic is referred to as the log scale

robust multi-array analysis (RMA). In order to validate the methods described above,

this method of analysis was also adopted in the study. As can be seen in Figure 4.4B. the

data seemed to be less variable at low levels of expression. Figure 4.6 shows a diagram

of the comparison of genes obtained from MAS and RMA. Since RMA provides more

consistent estimates of fold change and significantly reduce variation at low level of

expression, only 7 genes were found to be significantly regulated by the two methods

and they were shown in Figure 4.7.
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A

Figure 4.4 Representative scatter plot of overall expression level data from the GeneChip
Rat Expression Set 21 OA experiment with two different normalisation methods. The
control (uninfected) is plotted on the x-axis while the experiment (infected) is plotted on the y-
axis. (A) Note the tight clustering of most data about y=x but a 'flare' distribution is obvious as
the signal intensity decreases when data were analysed with MAS. A cut-off of 50 for the signal
intensity was applied to the dataset in order to increase the stringency of the selection of probe
sets for further analysis. (B) Data analysed with RMA, showing a better precision for lower
expression values.
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Figure 4.5 Box and whiskers plots show the distribution of the data before and after
normalisation. Data was symmetrical after normalisation. The median value is represented by
the central line inside the box. Above this line are data in the third quartile and below this line are
data in the first quartile. The upper and lower quartiles are the 75th and 25th percentiles,
respectively.
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Figure 4.6 A comparison of genes found regulated by MAS and RMA analyses. There are
a total of 15866 transcripts represented on the RAE230A GeneChip. Out of this figure, 894 and
881 genes were found to be up and down regulated more than 2 fold by MAS, respectively. Only
8 genes were expressed more than two fold either up or down regulated by RMA. There were 5
genes found to be up regulated and 2 genes down regulated more than 2 fold by both methods.
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4.2.7. Identification of Significantly Regulated Genes

Individual control and infected samples were analysed on an array. Each gene

was given a present (P), absent (A) or marginal (M) call and a value of signal intensity

after an array analysis using the MAS 5.1 software. This study is based on a mixed

population of cells with less than 100% of cells infected, therefore a small fold change in

the expression might represent a large change in the real biological system.

Of the 15866 probe sets represented on the RAE 230A GeneChip. 5295 probe

sets were not detected (33%) on either array (A to A) and were removed from the

analysis. 9556 genes were detected in both samples (P to P), of which 332 had altered

expression with 57 of them showing an increase in expression. Of the 57 increased in

expression, there were 32 with a signal of > 50. which is the cut-off value selected for

filtering and only 5 had a fold change of greater than 2. From the pool of P to P genes,

there were 260 genes decreased in expression and only 2 were significantly down

regulated.

There were 320 genes found to go from absent to present (A to P) after infection

of which only 3 met the cut-off of 50 and were up regulated 2 fold or more. 692 genes

went from present to absent (P to A) after infection and 2 of them met the cut-off of 50

and were down regulated more than 2 fold.

Figure 4.7 shows significantly regulated genes, which have a fold change of

greater than 2 (SLR>1). These genes included prostaglandin D2 synthase (Ptgds), SI00

calcium-binding protein A9 (S100a9), cholinergic receptor (Chrna6), vitronectin (Vtn),
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transthyretin (Ttr), phosphatidilinositol-3 kinase (Pik3r 1) and heat shock 70 kD protein

1A (Hspala).
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A
Probe Set

ID Control Infected *SLR Fold Change Gene Title

1367851..at 362.9 1143.7 1.5 3.151556903 prostaglandin D2 synthase (Ptgds)
1387125..at 19.8 67.7 1.2 3.419191919 S100 calcium-binding protein A9 (S100a9)
1367598 .at 23.3 53.7 1.2 2.30472103 transthyretin (Ttr)
1369845..at 51.3 105.8 1 2.062378168 cholinergic receptor, alpha polypeptide 6 (Chrna6)

ocoCOcoCOCO at 25.8 56.7 1 2.197674419 vitronectin (Vtn)
1371776..at 272.6 54.4 -2.4 -5.011029412 phosphatidylinositol 3-kinase (Pik3r1)
1368247 at 127.9 65.4 -1 -1.955657492 heat shock 70kD protein 1A (Hspala)

* Signal log ratio (SLR) was determined by comparison of the signal intensities for the baseline
(control) and the experimental (infected) array. This is computed using a one-step Tukey's
Biweight method by taking a mean of the log ratios of probe pair intensities across the two
arrays.
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Figure 4.7 Significantly altered genes which have a fold change of > 2. Significantly
regulated genes (A) which met the filtering criteria of having signal intensity greater than 50 and
SLR >1 are shown in the graph (B).
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4.2.8. Sorting of Data based on Biological Functions

In order to identify biologically novel and interesting differentially expressed

transcripts, genes were assigned into various functional groups. The functional

categories included cell-cell communication and signalling, inflammation and immune,

growth, transcription factors, ion channel, neuropeptide, synapse and genes involved in

tissue maintenance. Table 4.1 shows genes having signal of > 50 categorised into

different functional groups.

Genes that may indirectly regulate the excitability of sensory neurones include

ion transporters, neuropeptides, receptors, signalling molecules and proteins with

synaptic functions. Multiple ion channel genes that may directly contribute to alter

excitabilities of ipsilateral sensory neurons were observed to be regulated in the

ipsilateral DRG. Down regulated ion channels include potassium channel (Kv9.3) and

voltage-gated sodium channel (Sen 11a). There were a number of genes known to be

expressed in neurons. Many of the genes whose expression was altered play a definite

role in neuronal physiology. These included genes encoding neurotransmitter receptors

such as G protein-coupled receptor 56 and cholinergic receptor and proteins involved in

signalling, including neuregulin which is essential for neuronal development by

regulating the composition of neurotransmitter receptor in maturing synapses. Down

regulation of synaptic proteins was also observed e.g. vesicle-associated membrane

protein 2. Several genes involved in cell growth and development were down regulated

such as insulin-like growth factor 2. Viral regulation of these genes may be important for

viral replication and growth. Genes important in transcription are mostly down regulated
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i.e. activating transcription factor 5 and transcription factor 8. Other genes that are

regulated can be broadly categorised as genes that are important for tissue maintenance,

remodelling and plasticity. For example, solute carrier family 7, member 1, which is

involved in amino acid transport activity is down regulated. However, genes involved in

neuroinflammation and immune activation were found to be up regulated e.g.,

prostaglandin D2 synthase and CD74 antigen.

Due to the mixed heterogeneity of the sample, it was also important to look at

those genes with low signal intensity. Genes from 'Present1 to 'Absent' or vice versa

with signal less than 50 in different functional groups are shown in Appendix 4.1 and

4.2. As there were too many from the 'Present1 to 'Present1 list with signal less than 50

and many of them were ESTs, therefore they were not analysed further. There were too

many genes in each list to be discussed within the scope of this study. Even though most

of them have low signal, it is more important to look at the magnitude of changes in

expression before and after infection rather than to focus on the simple fold change. The

low signal in these genes potentially limit the confidence with which one can interpret

the data as true but when factors of heterogeneity of the samples were taken into account

and the fact that not all cells were infected, then the small changes in expression might

be important. These genes might be interesting to look at in the future.
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Table4.1FunctionalAnalysisoftheGeneshavingSignalIntensity>50intheMicroarrayAnalysis ProbeSetID
Gene

Control
Infected

SLR

FoldCha

Inflammation,cytokine,immune 1367679_at
CD74antigen(invariantpolpypeptideofMHCIIantigen-associated)
123.3

222.9

0.7

1.8

1388138_at
thrombospondin4

151.7

114.3

-0.5

-1.3

1370234_at
fibronectn1

178.4

132.2

-0.7

-1.3

1371776_at
phospha:idylinositol3-kinase,regulatorysubunit,polypeptide1

272.6

54.4

-2.4

-5

1367851_at
prostaglandinD2synthase

362.9

1143.7

1.5

3.2

1367568_at
matrixGlaprotein

510.7

776.6

0.6

1.5

Growth 1367598_at
transthyretin

23.3

53.7

1.2

2.3

1367631_at
connectivetissuegrowthfactor

31

67

0.4

2.2

1367571_at
insulin-likegrowthfactor2

49.2

64.3

0.7

1.3

1388469_at
Ratinsulin-likegrowthfactorImRNA,3'endofmRNA
72

46.1

-0.5

-1.6

1371527_at
epitheliamembraneprotein1

93.7

65.6

-0.4

-1.4

1387306_at
earlygrcwthresponse2

98.5

69

-0.5

-1.4

1368005_at
inositol1,4,5-triphosphatereceptor3

100.1

86.4

-0.3

-1.2

1370607_at
neureguin1

121.3

233.6

0.8

1.9

1368359_at
VGFnervegrowthfactorinducible

160.6

121.3

-0.4

-1.3

1377821_at
avianerythroblastosisoncogeneB3

184.7

124.5

-0.4

-1.5

1368391_at
solutecarrierfamily7,member1

186.1

130.1

-0.4

-1.4

1369001_at
cholinergicreceptor,nicotinic,alphapolypeptide3

263.5

212.2

-0.2

-1.2

1370290_at
tubulin,beta5

314.2

287.4

-0.2

-1.1

1373812_at
cyclin-dependentkinaseinhibitor1B

363.2

329

-0.3

-1.1

1371245_at
Rathemoglobinbeta-chainmRNA

368.1

192.8

-0.5

-1.9

1367882_at
microtubule-associatedprotein1A

371.5

316.2

-0.3

-1.2

1370057_at
cysteineandglycine-richprotein1

381

322.4

-0.2

-1.2

1367846_at
S100calcium-bindingproteinA4

611.7

547.2

-0.5

-1.1

1389533at
fibulin2

724.4

576.2

-0.3

-1.3
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1370541
at

nuclearreceptorsubfamily1,groupD,member2
88.9

72.6

-0.3

-1.2

1387306^
at

earlyg'owthresponse2

98.5

69

-0.5

-1.4

1370965_
at

transcriptionfactor8

103.9

63

-0.7

-1.6

1368175_
at

zinc-fingersandhomeoboxes1

112

92.3

-0.2

-1.2

1372601_
at

activatingtranscriptionfactor5

132.5

118.1

-0.3

-1.1

1371979_
at

sterolregulatoryelementbindingprotein2

196.6

148.6

-0.4

-1.3

Ionchannel 1369845_
at

choline'gicreceptor,nicotinic,alphapolypeptide6
51.3

105.8

1

2.1

00

CO

CD

CD

D

CO

at

eukaryoticelongationfactor-2kinase

90.7

61.2

-0.6

-1.5

ID

O

O

00

D

CO

at

inositol1,4,5-triphosphatereceptor3

100.1

86.4

-0.3

-1.2

1370555_
at

voltagegatedchannellike1(Vgcnll)

139.3

110

-0.2

-1.3

1371979
at

sterolregulatoryelementbindingprotein2

196.6

148.6

-0.4

-1.3

1369001
at

cholinergicreceptor,nicotinic,alphapolypeptide3
263.5

212.2

-0.2

-1.2

1368751_
a:

Shab-relateddelayeti-rectifierK+channel(Kv9.3)
335.7

453.3

0.4

1.4

i

00

D

CO

CD

CO

at

sodiumchannel,voltage-gated,typel1,alphapolypeptide(Scn11a)
487.2

418.6

-0.2

-1.2

Maintenance 1367598_at
transthyretin

23.3

53.7

1.2

2.3

1367571_at
insulin-lkegrowthfactor2

49.2

64.3

0.7

1.3

1371527_at
epithelialmembraneprotein1

93.7

65.6

-0.4

-1.4

1368005_at
inositol1,4,5-triphosphatereceptor3

100.1

86.4

-0.3

-1.2

1368391_at
solutecarrierfamily7,member1

186.1

130.1

-0.4

-1.4

1369001_at
cholinergicreceptor,nicotinic,alphapolypeptide3

263.5

212.2

-0.2

-1.2

1370290_at
tubulin,oeta5

314.2

287.4

-0.2

-1.1

1368751_at
Shab-relateddelayed-rectifierK+channel(Kv9.3)

335.7

453.3

0.4

1.4

1367851_at
prostaglandinD2synthase

362.9

1143.7

1.5

3.2



ProbeSetIDGene 1373812_atcyclin-dependentkinaseinhibitor1B 1371245_atRathemoglobinbeta-chainmRNA 1367882_atmicrotubule-associatedprotein1A 1370057_atcysteineandglycine-richproten1 1387040_atmyelinandlymphocyteprotein Neuralfactor 1371696_atGprotein-coupledreceptor56 1368359_atVGFnervegrowthfactorinducible 1373098_atband83 1369001_atcholinergicreceptor,nicotinic,alphapolypeptide3 1369845_atcholinergicreceptor,nicotinic,alphapolypeptide6 1388644_atmonoglyceridelipase 1369974_atvesicle-associatedmembraneprotein2 1387040_atmyelinandlymphocyteprotein

Control
Infected

SLR

FoldChange

363.2

329

-0.3

-1.1

368.1

192.8

-0.5

-1.9

371.5

316.2

-0.3

-1.2

381

322.4

-0.2

-1.2

412.7

299.8

-0.5

-1.4

350.2

262.5

-0.3

-1.3

160.6

121.3

-0.4

-1.3

246.7

165.8

-0.3

-1.5

263.5

212.2

-0.2

-1.2

51.3

105.8

1

2.1

159.1

129.3

-0.3

-1.2

247.9

164.2

-0.4

-1.5

412.7

299.8

-0.5

-1.4



4.2.9. Grouping Genes into Related Pathways- Pathway Analysis

It is recognised that genes and gene-products rarely, if ever, function in isolation

within a biological system. Most commonly, they function as components within a

cascade of networks. As a result, it is important to analyse microarray data in the context

of signalling pathways and gene networks which it is hoped will lead to a higher level of

understanding of the system. Ingenuity pathway analysis is an application that utilises

the Ingenuity Pathways Knowledge Base (1PKB) to computationally analyse

experimentally derived genomic or proteomic datasets to identify gene or protein

networks of interest. IPKB is the world's largest curated database of biological networks

created from millions of individually modelled relationships between proteins, genes,

complexes, cells, tissues, drugs, and diseases. It can be used to concurrently analyse

multiple datasets across different experimentation platforms and identify key functions

and pathways that distinguish biological states.

To learn more about the biological function of genes changing in expression in

response to infection, transcripts with a signal of greater than 50 in one or both of the

samples were imported into Ingenuity Pathway Analysis software (Ingenuity Systems,

Mountain View, CA). This filtering step was employed to exclude genes on or below an

arbitrary level of detection in both groups and enable a focussed analysis of genes which

have reliably detected by the array. The Ingenuity Pathway Analysis program uses the

IPKB to relate gene products with each other, based on their interaction and function.

Thus the knowledge base consists of associations extracted from literature, lists of

canonical pathways and functions for individual genes. The Ingenuity Pathway Analysis
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suite identifies dynamically generated biological networks, global canonical pathways

and global functions. Highly regulated biological networks are dynamically identified

using association rules among focus genes in a particular experiment. Each of these

networks are ranked by a score based on negative log of/>value computed using a right-

tailed Fisher's exact test that tests for the proportion of regulated genes in a particular

network over competing networks. The score is the probability that a collection of genes

equal to or greater than the number in a network could be achieved by chance alone. A

score of 3 indicates that there is a 1/1000 chance that the focus genes are in a network

due to random chance. Therefore, scores of 3 or higher have 99.9% confidence level of

not being generated by random chance alone. This score was used as the cut-off for

identifying gene networks.

There were four groups of networks found after the analysis but only one showed

a high possibility that it was true with a score of 14 as illustrated in Figure 4.8. Network

1 has a group of 7 focus genes involving in cancer, cellular movement and reproductive

system disease. Focus genes (shown in bold) are the genes designated as being

differentially expressed in this study and which directly interact with other genes or gene

products in the IPKB. Genes included in this network were insulin-like growth factor 2

(lgf2), vitronectin (Vtn), calcium/calmodulin-dependent protein kinase II alpha subunit

(Camk2a), phosphatidylinositol 3-kinase (Pik3rl), cholinergic receptor (Chrna6), heat

shock 70kD protein (Hspala) and creatine kinase (Ckm). Interactions between the focus

genes and other genes in the network were not clearly related but the focus genes will be

discussed further in section 4.3.2.
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4.2.10. Validations of Selected Gene by Quantitative Real-Time
RT-PCR

After candidate genes were identified in a microarray experiment, independent

confirmation experiment using real time PCR or other techniques should be performed.

Due to time constraints, only prostaglandin D2 synthase (Ptgds) was validated here using

quantitative real time PCR because of its striking difference in expression after infection

and separate immunohistochemical studies within the group which had also showed that

related proteins in the prostaglandin pathway, Cox-2 and PGE2 were upregulated (Grant,

D. and Dalziel, RG, personal communication). Beta actin was chosen as a housekeeping

gene to correct for sample to sample variations in RT-PCR efficiency and errors in

sample quantitation.

4.2.10.1. Construction of a Ptgds Clone

A cDNA clone containing Ptgds was constructed to be used as positive control in

real-time PCR. Since Ptgds is localised in the central nervous system and male genital

organs of various mammals (Urade and Hayaishi 2000), rat brain was used to extract

RNA with a RNeasy Mini kit. RT-PCR was carried out as outlined in section 2.4.4. The

amplified products were analysed on an agarose gel as shown in Figure 4.9. A clear

distinct band of 136 bp was seen on the gel showing that the primers are specific and

beta actin confirmed the integrity of the template and RT reaction.

After confirming the size was correct, the PCR product was purified and cloned

into pGEM-T Easy vector as described in section 2.2.8. Four white colonies were
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selected and grown overnight in 5 ml of culture containing ampicillin. Plasmids were

extracted from the cultures and digested with EcoR\ in order to check for positive

recombinants. Figure 4.10 shows all four clones selected containing the insert with the

right size after restriction digest with EcoRl. One of the positive clones was also

sequenced and was used for further experiments.
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Ptgds (136 bp)

Figure 4.9 RT-PCR of Ptgds. Lane 1, 100 bp marker; 2, negative control without reverse
transcriptase; 3, positive control for beta actin; 4, RT-PCR with beta actin primers; 5, 6, 7, RT-
PCR with Ptgds primers.

Figure 4.10 Restriction enzyme analysis to select for positive Ptgds clones. Plasmids
were digested with EcoRI to check if they contained the Ptgds insert. Lane 1, 100 bp marker;
lanes 2, 4, 6, 8, undigested plasmid; lanes 3, 5, 7, 9 digested plasmid.
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4.2.10.2. Construction of Standard Curve

A standard curve for Ptgds was generated by preparing 10-fold serial dilutions of

Ptgds plasmid from 104 to 1 copy (Figure 4.11A). The real-time PCR amplification of

the Ptgds standard was linear over the range from 104 to 1 copy (r2=0.9956).

Optimised PCR reaction mixtures used contained FFO (11.7 pi). 10x PCR buffer

without Mg (2 pi), Mg (3 mM; 2.4 pi), dNTP mix (10 mM each dNTP; 0.4 pi), forward

primer (0.3 pM; 0.4 pi), reverse primer (0.3 pM; 0.4 pi), FastStart Taq (2 U, 0.2 pi),

SYBR Green 1(1:1000; 0.5 pi) and template DNA (2 pi) in a 20 pi reaction. A 40 cycles

programme was used in a real-time PCR machine (Rotorgene 3000) with conditions as

follow: 10 min at 95°C, 20 s at 94°C, 20 s at 57°C and 20 s at 72°C. Melting curve

analysis was performed to ensure the production of a specific product. Figure 4.1 IB

shows a specific product for Ptgds and further verification on an agarose gel shows the

right size (Figure 4.11C).

A relative qRT-PCR quantitation was performed where Ptgds transcripts were

normalised to cellular beta actin transcripts in the same cDNA preparation in control and

infected DRG. Beta actin was shown in the microarray experiment to have a constant

expression in the control and infected DRG. It was suggested that three or more

housekeeping genes should be used for normalisation, as no one housekeeping gene is

the best (Vandesompele et al. 2002). However, due to time limitation, the transcripts

expression was only normalised against beta actin. Replicates of each sample were

included and repeated with different priming methods, i.e. oligo dT and gene specific

primers (GSP). The fold change difference from both methods was comparable.
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indicating a high reproducibility of the results. Although the absolute qRT-PCR values

were not identical to the microarray data due to the intrinsic differences between the two

techniques, the results from qRT-PCR showed the same relative regulation of

transcription and therefore corroborate the microarray data (Figure 4.12). The finding

that prostaglandin D? synthase was upregulated in the infected DRG in microarray was

confirmed by qRT-PCR with a fold change of 2.5-3.
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Figure 4.11 Real-time PCR assay set up for Prostaglandin D2 synthase (Ptgds). (A)
Standard curve for Ptgds. (B) Melting curve analysis shows a single distinct peak. (C) Post real¬
time PCR analysis of the Ptgds genes to confirm the correct size. Lane 1, 100 bp marker; 2-6,
samples with Ptgds primers; lanes 7-8, positive controls for Ptgds. Beta actin was expressed in
all samples tested.
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Figure 4.12 Validation of prostaglandin D2 synthase (Ptgds) with real time PCR. Fold
change differences of transcripts from two different priming methods (oligo dT and gene specific
primer, GSP). Ptgds is shown to be upreguiated in VZV infected DRG compare to control tissue
corroborating to the result from microarray.
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4.3. Discussion

This work represents a global analysis of the transcriptional responses of host cells

following VZV-induced allodynia in a rat model. Affymetrix Rat Expression Set 230A

oligonucleotide arrays were used to screen for changes in gene expression in DRG

following development of allodynia in the VZV infected and mock-infected rats. The

microarray data reflect changes in gene expression in the entire infected DRG, which is

a heterogeneous tissue, composed of many different types of cells, such as neurons, glia,

and connective tissue cells. It is important to note that since neurons are only -10% of

the ganglion cell population (Stevens 1989) and only a small fraction of cells in the

DRG harbour latent VZV, even large differences in gene expression in individual

infected cells might give rise to very small differences in expression on a whole

ganglion basis.

4.3.1. Changes in Host Gene Expression in Infected DRG

Of the changes observed, more genes were down regulated than up regulated in the

different functional groups. Many genes encoding ion channels and receptors, cell-cell

communication and signalling pathways and proteins related to neurotransmission

showed decreased, rather than increased expression after infection. This may be

indicative of overall suppression of gene expression in injured DRG neurons. However,

genes associated with inflammation and immune markers were shown to be up

regulated.
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The alterations in expression of neuron-specific genes observed in this study could

represent a direct effect of VZV on cellular gene expression in the DRG. Alternatively,

the virus may act indirectly on cellular gene expression e.g., by inducing neuronal injury

which would then alter host gene expression. The expression of several genes with

known roles in neurotransmission and signalling is altered in the infected DRG, some of

this genes including G protein-coupled receptor 56 and potassium voltage-gated channel,

affect neuronal excitability in an interconnected manner (Massengill et al. 1997), (Davis

et al. 2002), (Kramer et al. 2003). This may suggest that presence of VZV in the DRG

could lead to changes in neuronal physiology and could alter sensation consistent with

the altered behavioural changes in the rat model after VZV infection.

A number of ion channels whose expression was altered in the infected DRG were

also identified. These include the down regulation of potassium channel (Kv9.3) and

voltage-gated sodium channel (Scnl la) consistent with findings from other array studies

of neuropathic pain models (Wang et al. 2002), (Valder et al. 2003).

Electrophysiological recordings have previously demonstrated that C-fibers and A fibers

develop abnormal excitability following peripheral nerve injury, a phenomenon which

implicates changes in gene and protein expression of ion channels. Post-injury changes

in the distribution and activity of sodium channels within the DRG and the site of injury

has the ability to regulate a state of hyperexcitability (Cummins et al. 2000).

Comparison of the global lists of regulated genes between this study and other

reports are complicated by the different experimental conditions, biological system and

variable criteria used to identify regulated genes in the different studies. However, there

were similarities in gene regulation identified in this study to other separate array studies
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looking at the effects of peripheral nerve injury on DRG gene expression in different

neuropathic pain models (Wang et al. 2002), (Costigan et al. 2002), (Valder et al. 2003).

Wang et al., (2002) reported on regulation of immediate early genes, ion channels and

signalling molecules that contributed to the excitability of neurones and genes involved

in neuroinflammation in a spinal nerve ligation model of neuropathic pain. A similar

trend of gene regulation was also found in this study. Costigan and workers found

reorganisation of cell structural components, activation of genes expressed by immune

and inflammatory cells and downregulation of genes involved in neurotransmission in a

model of sciatic nerve transection. Similar regulation of injury-responsive genes

identified in injured DRG were reported by Valder et al., (2003) and they also

demonstrated that injury-induced changes occurred not only in neurons but also in non-

neuronal cells.

There are several reports on the global analysis of the transcriptional response of

host cells to VZV infection (Cohrs et al. 2003b), (Jones and Arvin 2003), (Jones and

Arvin 2005), (Kennedy et al. 2005). Studies by Cohrs, et al., (2003b) and Kennedy, et

al., (2005) were investigating the gene expression profile of VZV lytic infection in tissue

culture. Jeremy and Arvin (2003) reported a study on transcriptional changes in cellular

genes after VZV infection of human T cells and fibroblasts in vitro and human skin

xenografts in SCIDhu mice in vivo. They found no significant differences in gene

regulation between pOka (VZV parental Oka strain) and vOka (VZV vaccine strain) in

any of the cell types. However, significant changes in cellular gene regulation were

observed between the three differentiated human cell types, suggesting specific

differences in the biological consequences of VZV infection related to the target cell.
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The classification of genes that were affected included those involved in immune and

stress responses, cell adhesion, cell structure, signal transduction, cell cycle, apoptosis

and other cell functions. Interferon response was found markedly induced in T cells.

More recently, Jones and Arvin (2005) had investigated on the viral and cellular gene

transcription in fibroblasts infected with VZV small plaque mutants using 42K human

cDNA microarrays. They found that infection of fibroblasts with wild type or small

plaque VZV mutants was associated with down regulation of NF-kB and interferon

responsive genes, down regulation of TGF-P responsive genes accompanied by reduced

amounts of fibrotic or wound healing response genes, activation of cellular proliferation

genes, alteration of neuronal growth markers and cellular genes encoding proteins

important in protein and vesicle trafficking. In the study reported in this thesis, not many

interferon responsive genes were found significantly regulated either because the change

is small or gene expression occurs in a small number of cells, which are below the level

of sensitivity of this assay. Thrombospondin 4, which is a major activator of LTGF-p

(latent form of TGF-p), was found to be down regulated in this study (Table 4.1).

Transforming growth factor-beta (TGF-P) signalling pathway controls multiple cell

processes including fibrotic or wound healing responses and it must be activated from its

latent form (Jones and Arvin 2005). Down regulation of thrombospondin 4 reflected that

the signalling through this pathway might be inhibited. Since TGF-P inhibits cell cycle

progression, blocking this inhibition should enhance viral replication. Limiting the

wound healing response could enhance the spread of the virus by inhibiting the repair of

damaged cells.
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4.3.2. Significantly Regulated Genes and their Functions

The microarray results presented in this present study do not include an

exhaustive list of differentially expressed genes affected by VZV-induced allodynia in

the rat model. This is mainly due to the different biological system used, i.e. most of the

studies reported had been carried out in a tissue culture system where 100% infection

could be assured while this study involved a complex tissue with mixed heterogeneity.

Seven genes were found to be significantly regulated in this study.

Phosphoinositide 3-Kinases (PI3K.s) are proteins coupled to a variety of cell

surface receptors and play a key role in signal transduction cascade regulating

fundamental cellular functions such as transcription, proliferation, and survival (Maurel

and Salzer 2000). PI3Ks also are important in disease processes such as inflammation

and cancer.

Transthyretin, a plasma protein that functions as a transporter of thyroxine and

retinol. mainly synthesised by the liver and choroid plexus of the brain. Altered

transthyretin level in the cerebrospinal fluid has been linked to neuronal dysfunction

such as Alzheimer's disease (Nunes et al. 2005).

SI00 calcium-binding protein A9 or calgranulin B is a small calcium-binding

protein that is highly expressed in neutrophil and monocyte cytosol and is found at high

levels in the extracellular milieu during inflammatory conditions. It has been reported as

a potent inducer of neutrophils and involved in neutrophil migration to inflammatory

sites (Ryckman et al. 2003).
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Heat shock proteins (HSP) are essential for the repair or removal of defective

proteins as a result of various mechanical or chemical stresses, including oxidative free

radicals and toxic metals, and plays major role during normal growth and differentiation

of mammalian cells (Linquist 1986). HSP is also associated with the immune response,

i.e. it helps the endogenous antigen process that guides the antigenic peptides to

immunorecognition (Suto and Srivastava 1995).

Vitronectin, also called serum spreading factor or complement S-protein, is a 75-

kD glycoprotein in plasma and tissue. A multifunctional protein, it promotes attachment

and spreading of animal cells in vitro, inhibits cytolysis by the complement C5b-9

complex, and modulates antithrombin Ill-thrombin action in blood coagulation (Fink et

al. 1992).

Nicotinic acetylcholine receptors are a family of ligand-gated, pentameric ion

channels. The main function of this receptor family is to transmit signals for the

neurotransmitter acetylcholine at neuromuscular junctions and in the central and

peripheral nervous systems (Marubio and Changeux 2000).

Due to time constraint, only prostaglandin D2 synthase was chosen to be

validated and this gene will be discussed in detail in section 4.3.4.
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4.3.3. Validation of Microarray Results

Genes identified by a single microarray experiment as having a more than 2-fold

expression difference cannot be generally accepted as true without a repetition of the

experiment or by validation and genes identified with differences less than 2-fold should

not be eliminated as false positives without repetition or powerful validation (Rajeevan

et al. 2001).

Validation of expression differences is accomplished with alternate methods such

as Northern blot hybridisation or RNase protection assay. However, these assays are

time-consuming, labour intensive and require large amounts ofRNA (>5 pg total RNA).

Conventional RT-PCR can be done with smaller amounts of RNA (20-40 ng) but

quantification is difficult and relies on endpoint analysis of the PCR product. These

limitations can be largely overcome by incorporating high throughput real-time PCR

into the study. qRT-PCR is well suited to validate and confirm microarray results

because it is rapid, fully quantitative and require less than 1000 fold RNA than the

microarray experiment. For verification a relative quantification strategy was applied,

which is based on the expression levels of a target gene versus a reference gene and is

adequate for investigation of physiological changes in gene expression levels.

Housekeeping genes are present in all nucleated cell types since they are necessary for

basic cell survival. Mostly mRNA synthesis of these genes is considered to be stable in

various tissues. Here, prostaglandin D2 synthase (Ptgds) was validated and found to be

upregulated, corroborating to the microarray analysis.
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4.3.4. Prostaglandin D2 Synthase

Prostaglandins (PGs) are the major arachidonic acid metabolite released from

phospholipid membranes by phospholipase A2. Different molecular species are produced

by different synthetases after conversion to prostaglandin H2 by two isoforms of the

cyclooxygenase (Cox) enzyme, namely Cox-1 and Cox-2 (Larsen and Henson 1983),

(Goodwin 1989). The actions of prostaglandin D2, prostaglandin E2, prostaglandin F2a,

prostaglandin I2 and thromboxane A2 are mediated by stimulation of prostanoid DP, EPi_

4, FP, IP and TP receptors, respectively (Coleman et al. 1994). PGD2 is formed from the

product of Cox activity, PGH2, by two distinct PGD synthases, the lipocalin-type

synthase (L-Ptgds) and the glutathione-dependent hematopoietic PGD synthase (H-

Ptgds). Figure 4.13 shows the prostaglandin metabolism pathway and the genes that

have been either found to be regulated in microarray or immunohistochemisty.

PGD2 is the most abundant PG in brain and regulates sleep, temperature and

nociception (Urade and Hayaishi 2000). It signals through two distinct G protein-

coupled receptors, DPI and DP2 that have opposing effects on cyclic AMP (cAMP)

production. Activation of DPI receptor, which is positively coupled to cAMP, resulted

in protection of neurones whereas activation of the DP2 receptor, which is negatively

coupled to cAMP induced toxicity (Sawyer et al. 2002). Recent work has shown that the

DPI receptor of PGD2 mediates neuronal protection in in vitro neuronal cultures (Liang

et al. 2005). The unexpected finding that PGD2 confers neuroprotection is similar in

effect with PGE2 EP2 and EP3 receptors. The dependence on cAMP-mediated signaling

for this neuroprotective effect suggests that other PG receptors that are similarly couple
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to cAMP may also protect neurones. These data could support an emerging new

hypothesis that prostaglandin may have a neuroprotective role and may present a novel

potential new therapeutic strategies that target specific PG receptors pathway.

Previous work in the lab has shown that Cox-2 and PGE2 was upregulated in the

infected DRG by immunohistochemistry. These observations coupled with the

upregulation of Ptgds in the microarray experiment and real-time PCR, may suggest that

the PG synthesis pathway is activated in the VZV-induced allodynic rats. There is a

likelihood that Ptgds might play a similar neuroprotective role in the neurons, preventing

damage incurred by VZV in the rat model. Cox-2 inhibitor such as Celebrex has been

tested in the rat model and showed to alleviate allodynia (Dalziel, R.G., personal

communication). Further studies will be interesting to look at the involvement of

prostaglandins in modulation of pain and its function in conferring protection.
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pgh2

Figure 4.13 A schematic diagram of the prostaglandin metabolism pathway. Arachidonic
acid, the most abundant precursor of prostaglandins in mammals, is transformed into PGH2 by
the action of Cox-1 and Cox-2. Further enzymatic conversion of PGH2 by prostacylin synthase,
various isomerases and thromboxane synthase leads to the prostanoids, i.e. the functionally
important prostaglandins and thromboxanes. Red arrow shows genes found upregulated in
microarray and blue arrow shows genes and products upregulated using immunohistochemistry.
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4.3.5. Limitations of Microarray

The great value of microarrays lies in the large number of transcripts that can be

assayed simultaneously. However, microarrays can have several limitations. Microarrays

require more RNA than quantitative real-time PCR (qRT-PCR). Errors in identification

of regulated transcripts (false positive or false negative) depend on the threshold to

identify a transcript as regulated as well as on the complexity of the tissue source.

One of the limitations at the time when the microarray data analysis is carried out is

that our knowledge of the rat genome is limited and the functions of the identified gene

are incomplete. Although the RAE 230A GeneChip contains 15866 probe sets, it has an

abundance of expressed sequence tags (EST). Not all of these probe sets can be

definitively mapped to a physiologic pathway and therefore their assessment in MAS is

limited. Given the rapidity with which genomics is expanding, it is only a matter of time

before more complete data are available. However, this limited knowledge impeded a

true representation of the physiologic pathways changed in the infected neurones.

Another problem with oligonucleotide arrays is sensitivity. Some group of

transcripts that are expressed in the DRG might fall below the microarray detection

threshold. Lack of sensitivity may result from technical issues such as poor probe

performance or low copy number transcripts. Tissue heterogeneity and neuronal

subpopulation restricted gene expression, may lower the concentration of a transcript in

the total RNA sample to below detection threshold (Mimics et al. 2001). Finally, the

cost of the effort involved in microarray assays introduces practical constraints in the
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number of RNA samples that can be analysed, thereby reducing the number of replicate

experiments and the statistical power of the results (Wurmbach et al. 2002).

4.4. Conclusion

The microarray results presented here do not include an exhaustive list of genes

affected by VZV infection, however genes associated with inflammation, immune and

cytokine tended to be up-regulated, whereas genes involved in membrane excitability

(ion channels) or neurotransmission (neurotransmitters and vesicle trafficking genes)

tended to be down-regulated. The facts that infection might not be 100% following VZV

inoculation into the rats and that DRG is a complex tissue represented in a mixed

population of cells has reduced the number of significant genes being detected. As there

are no array replicates in this experiment, all array values should only be considered as

indicative of a real biologically relevant alteration in transcript level unless further

validation has been done. Elucidating the specific role of genes regulated in sensory

neurons after VZV infection will provide insight into many major biological issues

including cell survival, growth, intercellular communication and the factors contribute to

sensory abnormalities as in PHN. Microarray technology provides a powerful tool for

beginning this analysis in a high throughput mode by revealing the extent of change in

neuronal gene expression. In effect, this pilot study has proved that the Affymetrix array

could be used to study the differential expression of genes in the pathogenesis of VZV-

induced allodynia.
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CHAPTER FIVE

RESULTS AND DISCUSSION
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5.1. Introduction

After 15 years of clinical trials, a live attenuated VZV vaccine (Oka-Merck;

VARIVAX) was licensed in the United States in 1995 (Krause and Klinman, 1995).

The live attenuated varicella vaccine, the Oka strain (vOka) was originally a wild-

type VZV isolate referred to as the parent Oka (pOka). POka was isolated from a

child with varicella and passaged 6 times in human foreskin fibroblasts and stored at

-70°C (Takahashi et al. 1974). The varicella vaccine was generated by passaging

pOka 11 times in human embryonic lung cells, 12 times in guinea pig embryo

fibroblasts, once in WI-38 cells and 9 times in MRC-5 cells (Takahashi et al. 1974).

This procedure resulted in attenuation when susceptible children were inoculated

with vOka (Johnson et al. 1997). While most healthy children and adults who are

given the varicella vaccine develop immunity without experiencing any signs of

disease, the virologic basis for this clinical attenuation of vOka however is not

known.

The virulence of vOka in human skin xenografts in SCID mouse skin has been

shown to be diminished as measured by a reduced yield of infectious virus,

decreased viral protein synthesis, failure to invade the dermis and a slower

destruction of epidermal cells compared to pOka (Moffat et al. 1998). This provided

the first evidence of virologic basis of the clinical attenuation of vOka. Sequencing

of the pOka and vOka genomes indicates variations in many of the ORFs, some of

which are predicted to alter viral proteins, precluding a simple genetic explanation

for the attenuation of vOka (Gomi et al. 2001), (Gomi et al. 2002).

In order to investigate the role in PHN of the latently expressed VZV genes in the

DRG, it will be necessary to construct viruses that lack these genes and analyse their
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phenotype in the rat model. Due to the difficulties in obtaining VZV virion DNA for

transfection and in obtaining cell-free virus to plaque purify VZV mutants from wild-

type virus, one way of generate recombinant VZV genomes has been using cosmid

DNA (Cohen and Seidel 1994). The cosmid system based on the Oka strains has

proved useful for studying the role of the viral gene in in vitro experiments. The aims

of this experiment were:

• To investigate if there was any changes in the behavioural response in the rat

model caused by pOka, vOka and VZV Ellen strains. VZV Ellen is a standard

laboratory strain used to infect rats during the course of this work.

• To investigate the possibility of using the Oka strains to generate mutant

viruses using cosmid DNAs. If the Oka viruses cause allodynia in the rats

then mutant viruses could be constructed and tested to see if there is any

effect of the deleted gene(s) in the rat model.

An outline of this experiment is shown in Figure 5.1.

5.1.1. In vivo Experiment

VZV Ellen, pOka and vOka were propagated in CV-1 cells as described in

section 2.5.4. Cells and virus-infected cells were checked for their growth on a

regular basis. Viruses were harvested when cells showed 80% cytopathic effect

(CPE). Each T175 flask of virus-infected cells were harvested and resuspended in

150 pi ofmedium. Six animals were used for each group of virus strain.

Pre-testing and randomisation of animals was as described in section 2.6.4.

Each animal was injected subcutaneously into the left hind paw with 50 pi of the

suspension containing approximately 4 x 106 VZV infected cells or control non-
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infected CV-1 cells. Animals were then tested at days 3, 7 and 10 post infection for

the development of allodynia (section 2.6.4). Lumbar DRGs LI to L6 ipsilateral and

contralateral to the side of injection were obtained for PCR analysis.
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Figure 5.1 Flow chart showing the experiment carried out to investigate the effect of
different strains of VZV in the rat model. Three groups of six rats were injected with VZV
Ellen, pOka and vOka, respectively. Animals were tested for allodynia at specific days post
infection. At the end of the study, tissues from these animals were collected for PCR
analysis.
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5.2. Results

5.2.1 Altered Behavioural Response in the Rats

Figure 5.2 shows the comparison of the development of allodynia in rats

following infection with different VZV strains. The graphs show a summary of two

independent experiments, which were carried out as described in section 5.1.1. The

results of these experiments were represented as percentage of positive and negative

responses to allodynia. A positive response is defined as paw withdrawal threshold

(PWT) equal to or less than 15 g and a negative response is defined as PWT of

greater than 15 g. 15 g was chosen as a cut-off point based on previous observations

(Dalziel et al. 2004).

From these experiments, 67% of rats infected with VZV Ellen were found to

develop allodynia at days 3, 7 and 10 post infection. Flowever, in the pOka and vOka

groups, the figure drops to 50% and 17%, respectively. The difference in the

percentage of rats developing allodynia suggests that pOka and vOka do not induce

allodynia as readily as VZV Ellen. This may indicate that there is a decrease in

'pathogenicity' of pOka and vOka in the rat model. The failure of vOka and pOka to

reproducibly produce long term allodynia in the rats may be due to the genetic

differences between these strains and VZV Ellen or could reflect a lack of spread to

the DRG.
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Figure 5.2 Graph bars show the overall sensitivity of the animals when infected with
different strains of VZV. Three groups of six rats each were injected with either VZV Ellen,
pOka or vOka. The animals were tested at 3, 7 and 10 days post infection for development
of allodynia. Shown are animals with a positive response (PWT =< 15 g).
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5.2.2 PCR analysis

In order to investigate if the changes in the behavioural responses in the rats

infected with the different strains of VZV were related to the presence of VZV

genome, PCR analysis were carried out on the lumbar DRG of these animals. Only

tissues from one study were analysed here. The design and development of the

nested-PCR assay using VZV63 primers were as described as in section 3.2.1. Table

5.1 shows that VZV DNA could be detected in rats developing allodynia (with a

PWT =< 15 g) after infected with Ellen. No viral DNA was detected in pOka

infected rats, which did not develop allodynia. A single rat in the vOka group

developed allodynia and this animal was positive for the presence of VZV DNA in

the DRG. The results here show that when animals did not develop allodynia, there is

no viral genome being detected in the DRG. Presence ofVZV DNA in vOka infected

rats suggested that the virus was able to reach the DRG.
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Table 5.1 Detection by PCR of VZV DNA in the rat DRG infected with different VZV
strains. PCR analysis was carried out with primers specific for gene 63. PWT = paw
withdrawal threshold; + = positive; - = negative.

Animal Virus strain Ipsilateral PWT (g) VZV Gene 63

932 Ellen 15 +

1781 Ellen 60

1277 Ellen 11.7 +

1740 vOka 60

1742 vOka 11.7 +

1703 pOka 60

1705 pOka 60
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5.3 Discussion

This study has provided some early information on the ability of the different

strains ofVZV to cause allodynia in the rat model. The results show that the standard

laboratory strain, VZV Ellen is more capable of inducing allodynia in rats than are

pOka and vOka. The Oka viruses were less 'pathogenic' in this model compared to

the VZV Ellen strain and the duration of allodynia in vOka infected rats was less

than in either pOka or Ellen infected rats during the 10 days of the study.

5.3.1 Effects of Different Strains of VZV in the Altered

Behavioural Changes in the Rat Model

Both VZV Oka viruses have been shown in this study to cause the development

of allodynia in the rat model, however, the percentage of vOka rats developing

allodynia were more than two fold less than the number of pOka rats. This might be

due to the genetic variation in the genomes of these viruses rather than their ability to

replicate in vitro since it has been shown that pOka and vOka have similar growth

effects in tissue culture (Moffat et al. 1998), (Zerboni et al. 2005). Comparison of the

complete DNA sequences of vOka and pOka reveals that as many as 15 base

substitutions, representing 8 amino acid differences were found in the gene 62 region

alone (Gomi et al. 2002). An infectious centre assay of a plaque-purified clone (S7-

01) of vOka containing 8 amino acid substitutions in ORF62 showed smaller plaque

formation and less efficient virus spreading activity than did pOka in human

embryonic lung cells (Gomi et al. 2002). Another clone (S-13) with only 5

substitutions in ORF62 spread slightly faster than S7-01 but not as effectively as

pOka. Transient luciferase assays in 293 cells showed that transactivational activities
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of the IE62 products of S7-01 and S7-13 were lower than that of pOka. Based on

these results, it appears that amino acid substitutions in ORF62 are implicated in

virus growth and spread from infected to uninfected cells. The IE62 product of vOka,

which contained all eight amino acid substitutions, had less activity than the parental

IE62 in activating all three kinetic classes of VZV promoters in CV-1 cells (Gomi et

al. 2001). This data might also suggest that the substitutions in 1E62, which is a

major transactivator, play an important role in the differences in the replication and

the attenuation ofVZV.

VZV Ellen had been passaged more than 100 times since its isolation in 1964

(Straus et al. 1981). Prolonged passage in tissue culture cells appear to induce

changes that have a significant impact on VZV virulence for human epidermal and

dermal cells in vivo, since only the low passage clinical isolates like pOka were

shown to be fully virulent in skin implants (Moffat et al. 1998). Both Ellen and vOka

have been found to replicate to lower titres in SCIDhu mice with epithelial implants

(Moffat et al. 1998). In contrast, the results shown in the present study suggested that

VZV Ellen caused allodynia more readily than pOka or vOka in the rats. This might

be caused by the lab adapted strain, VZV Ellen replicate more efficiently in tissue

culture and produce more infectious virus. However, in this experiment, the viral

titres were not determined for each virus before inoculation, therefore further work

has to be done to investigate this possibility.

Recently, the attenuation of vOka in skin xenografts in the SCIDhu mouse model

was investigated by using chimeric pOka and vOka recombinant viruses generated

from cosmid DNAs (Zerboni et al. 2005). These workers have shown that vOka

attenuation is multi-factorial and can be produced by genes from different regions of
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the vOka genome. Others studies using recombinants made from cosmids in the

SCIDhu model have demonstrated that VZV infectivity in skin can be diminished

even by a single amino acid substitution, such as disrupting ORF47 kinase function

in the mutant or altering C-terminal residues in gE (Besser et al. 2003), (Moffat et al.

2004). These findings indicate that VZV attenuation in skin can be achieved by very

restricted alterations in the genome sequence.

The PCR analyses of the DRG infected with the different VZV strains in this

study shows that viral DNA could be detected in the infected DRG in VZV Ellen

infected rats which developed allodynia. Presence of vOka genome in the DRG could

also be detected, indicating that this virus has reached the DRG. However it is

difficult to draw any conclusion here due to the limited availability of rats developing

allodynia in these groups. Therefore, in this study, it is speculated that besides the

genetic variations, the less efficient viral spreading to the DRG might have caused

the Oka strains to be less pathogenic in the development of allodynia compare to

Ellen strain in the rat model.

5.4 Conclusion

VZV Ellen induced allodynia more readily than the Oka vaccine strain or its

parental virus. The reasons for these observations were not clearly understood but the

difference in the pathogenicity of vOka and pOka might be due to the multiple

nucleotide differences between them that are predicted to change amino acid

residues. These changes have been identified that could affect all three putative

kinetic classes of VZV proteins, including immediate early regulatory proteins, early

proteins and the late glycoproteins. The lack of viral spread to the DRG might be
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CHAPTER 5 RESULTS AND DISCUSSION

another possible explanation for these viruses to be less capable of inducing

allodynia in the rats. These experiments shows that the approach of using the Oka

viruses to generate mutant viruses in a cosmid system which, could then be tested on

the rat model might not be feasible if the Oka viruses did not induce allodynia in the

rats readily.
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The mechanism that leads to post-herpetic neuralgia (PHN) is not clearly

understood. Until recently, research has been hampered by the lack of suitable animal

models due to the species-specific nature of the virus. The introduction of a rat model of

VZV persistent infection (Sadzot-Delvaux et al. 1990) with striking changes in

behavioural responses (Fleetwood-Walker et al. 1999) which mimic the human situation

has allowed the use of this model to study the mechanisms underlying PHN. The rat

model is characterised by a limited expression of immediate early and early genes while

late genes remain silent, mimicking the situation seen in human latency in terms of

restricted viral gene expression (Grinfeld et al. 2004).

This study was intended to determine if the changes in the behavioural responses

in the rats correlated with gene expression in the DRG. In agreement with previous

findings, rats inoculated subcutaneously with VZV in the footpad harbour VZV DNA in

their DRG (Sadzot-Delvaux et al. 1995), (Kennedy et al. 2001), (Grinfeld et al. 2004).

However, it is difficult to draw any correlation between findings of viral DNA in

specific DRG with the development of allodynia in the rats since there is no clear pattern

of the distribution of VZV DNA in the lumbar DRG. VZV DNA could be found in the

DRG of most rats developing allodynia. This suggests that the behavioural changes in

the infected rats may be due to the presence of VZV in the DRG but the extent of gene

expression could not be determined due to the low level of viral transcripts. Replicating

virus has not been demonstrated in this model and so the observed allodynia is unlikely

to be associated with ongoing virus replication as would be seen in the acute phase of

herpes zoster (Sadzot-Delvaux et al. 1990), (Sadzot-Delvaux et al. 1995), (Fleetwood-

Walker et al. 1999). This hypothesis is supported by the report that treatment of VZV-
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infected rats with valaciclovir, an antiviral drug, does not block the development of

allodynia (Dalziel et al. 2004), suggesting that continued lytic virus replication is not

required for induction of allodynia by VZV.

When the viral load of the DRG was quantified, there was difference in the viral

burden in each ganglion. This could suggest a variable susceptibility of diverse neuronal

populations to viral infection and difference in the efficiency of viral spread in the DRG.

However, further studies would need to be conducted to address this hypothesis. A study

carried out to quantitate HSV viral load in human cranial nerve ganglia has found no

significant correlation among ganglia from the same individual (Vrabec and Alford

2004). Their results supported the hypothesis that neuronal subpopulations have variable

susceptibility to HSV infection.

Following peripheral nerve injury, it has been reported that phenotypic changes

occur in peptide expression in DRG that may contribute to sensory sensitisation and

chronic pain (Hokfelt et al. 1994), (Cummins et al. 2000), (Woolf and Salter 2000).

Dramatic changes in gene expression of ion channels and signaling molecules that

directly affect the excitability of neurons in the DRG and the spinal cord have been

reported (Wang et al. 2002). Upregulation of neuropeptides such as NPY and galanin in

the DRG of VZV infected rats has also been reported (Garry et al. 2005). Although the

underlying pathophysiological mechanisms may be similar to other forms of neuropathic

pain, it is unclear how latent VZV infection interacts with the nervous system to induce

these changes. The question of whether VZV-induced allodynia affects neuronal gene

expression was addressed by using microarray transcript profiling of host gene

expression in ganglia from latently infected versus mock infected rat DRG.
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Results from the microarray analyses have shown that many genes encoding ion

channels and receptors, cell-cell communication and signalling pathways and proteins

related to neurotransmission were down regulated after VZV infection, indicating an

overall suppression of gene expression in injured DRG neurons. Genes associated with

inflammation and immune markers were shown to be up regulated. It is expected that the

markers for inflammation are up regulated in the DRG, since DRG axons are the

primary infection site where cells of monocyte origin can be recruited. Among the

significantly regulated genes, prostaglandin D2 synthase was found to be highly up

regulated and this observation was validated by real time PCR. A new hypothesis has

suggested a neuroprotective role of prostaglandins in the central nervous system (Liang

et al. 2005).

The patterns of changes in gene expression reported in this study are in

consistent with the literature. Some genes that have been found to be regulated in the

DRG in neuropathic pain models are not among those reported here because either the

regulation is small or gene expression changes were not detected. Analysis of gene

expression in infected DRG using microarray technology can be complicated greatly by

cellular heterogeneity. Latent VZV genomes reside in the nuclei of neuron cell bodies in

the DRG. However, DRG comprise not only clusters of sensory neurons and their nerve

fibers but also nerve fibers derived from cells located outside the DRG that pass through

or terminate within the ganglion and small glial cells called satellite cells that completely

envelop the neuronal cell bodies (Lazarov 2002). Also contained in DRG are Schwann

cells, endothelial cells of the microvasculature, blood cells and motor neurons. The level

of change of any transcript in the RNA samples from a complex tissue is likely to be
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much lower than that observed in a homogenous tissue. Any particular gene of interest

may only be expressed in a small subset of cells, leading to a signal for that gene on the

array that is difficult to measure reliability. These limitations are referred to as 'dilution

effects' (Wurmbach et al. 2002).

One way to dissect the tissue heterogeneity problem might be to use a simple

biological system, such as a cell line or purified cell populations. Sampling from simple

systems is more likely to represent the expression level for the particular cell i.e.

infected neurons in our study as compare to a complex system where there is a diversity

of cellular substructures and mixed cellularity. Subdissection techniques, such as, laser

capture microdissection of individual cells or tissue substructures are being increasingly

adopted to provide specificity to sampling from complex systems. These approaches

have enormous potential to improve resolution in microarray studies but generally only

limited amount of RNA are obtained from these microdissected samples which are often

too little for conventional labelling strategies.

Recent developments in mRNA amplification techniques are also providing a

solution to this problem (Klur et al. 2004). Reports have shown that neuronal subtypes

could be isolated by combining LCM and gene profiling with cDNA microarray (Luo et

al. 1999) (Wang et al. 2005). It might be a good approach to integrate the technologies

of laser capture microdissection and T7-based RNA amplification with DNA

microarrays. This approach not only could minimise the 'dilution effect' but could

generate information on the viral burden in single VZV infected cells since the ability to

quantify viral load at the level of single cells is essential for understanding many aspects

of latency and reactivation (Sawtell 1997). Individual cell types in the DRG could be
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then studied, as there are differentially expressed genes in the different cell types e.g.,

small versus large neurones or neuronal versus non-neuronal cells. RNA could be

linearly amplified an estimated 106 fold using T7 RNA polymerase which is sufficient

for probe labelling if micorarray experiment is to be carried out.

Some other possible approaches could be implemented to the experimental

design of the microarray study if it would be taken further in the future. Studying the

time dependent changes in transcription after VZV-induced allodynia in the rats might

generate important data since it has been reported that genes show diverse patterns of

regulation in response to nerve injury in neuropathic pain models (Costigan et al. 2002).

If cost permits, replication of the microarray experiment is desirable to obtain the

variation in the gene expression for statistics calculation. It has been suggested that each

microarray experiment should be performed in triplicate to increase data reliability (Lee

et al. 2000).

In order to investigate the functions of latent VZV genes in the development of

allodynia in the rat model, it is necessary to be able to generate mutant viruses that could

be tested in vivo. Although the idea of generating mutant viruses with cosmid DNA

derived from the Oka viruses might not be workable due to their reduced pathogenicity

in the rat model, cloning the VZV genome into a bacterial artificial chromosome (BAC)

might be another alternative to study the function of VZV-encoded genes by

mutagenesis. The genomes of a number of herpesviruses have been cloned into a BAC

(Borst et al. 1999), (Adler et al. 2000), (Zhou et al. 2002). Recently, the complete

genome of VZV pOka strain has been cloned as a BAC and successful reconstitution of

recombinant virus from the full-length VZV BAC genome (Nagaike et al. 2004). This
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bacterial genetics method allows the stable maintenance of the viral genome in

Escherichia coli and the introduction of mutations into the genome. This method will

considerably speed up the construction of VZV mutants and allow studies on the

functional role of VZV genes in host-virus interactions. This approach might be adapted

but with cloning of a different VZV strain such as Ellen since this virus was able to

cause the development of allodynia in the rat model.

The work presented in this thesis has provided some insights into the molecular

mechanism that underlie the changes in the behavioural responses in the rat model.

Further work has to be done so that advance in the study of pathogenesis of PHN could

be achieved.
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Appendix 4.1 Present to Absent Gene List in Different Functional Groups

Mock Infected Fold Change Gene Title

Cell adhesion and structure

3.1 2.9 -1.068965517 procollagen, type XI, alpha 1
9.4 4.7 -2 Pleckstrin homology domain containing
10.8 9.4 -1.14893617 protocadherin 3
13 8.8 -1.477272727 Opioid-binding protein/cell adhesion molecule-like
14.5 9.6 -1.510416667 kinesin family member 6
14.5 7.7 -1.883116883 tenascin R

18.1 9.1 -1.989010989 vitamin D receptor
18.9 8.8 -2.147727273 inhibin beta-A

23.7 25 -0.948 inhibin alpha
25.9 21.9 -1.182648402 keratin complex 2, basic, gene 5
27.7 17.2 -1.610465116 slit homolog 1 (Drosophila)
30.4 26.3 -1.155893536 Kinesin light chain 3
40.7 25.2 -1.615079365 procollagen, type II, alpha 1
40.9 55.8 -0.73297491 AE binding protein 1 (predicted)
52.5 42.6 -1.232394366 sushi-repeat-containing protein

Cell cvcle. apoptosis. development
5.8 5.7 -1.01754386 angiotensin II receptor, type 2
7.6 10.4 -0.730769231 Fas-associated factor 1

9.8 9.4 -1.042553191 checkpoint kinase 1 homolog (S. pombe)
10.5 5.3 -1.981132075 Roundabout homolog 1 (Drosophila)
11.3 10.8 -1.046296296 tumor-associated calcium signal transducer 1
11.4 10.7 -1.065420561 Similar to DNA polymerase alpha catalytic subunit
13 9.7 -1.340206186 myosin 5B
14.9 6.7 -2.223880597 B-cell leukemia/lymphoma 2 related protein A1
16.9 15.7 -1.076433121 glypican 2 (cerebroglycan)
19 19.1 -0.994764398 Unc-5 homolog B (C. elegans)
19.4 7 -2.771428571 paraoxonase 1
20.5 15.9 -1.289308176 large (Drosophila) homolog-associated protein 1
24.1 20.5 -1.175609756 Polymerase (DNA-directed), delta 3
25.1 16.8 -1.494047619 polymerase (DNA directed), gamma
27.5 31.2 -0.881410256 G0/G1 switch gene 2 (predicted)
49.8 61.1 -0.815057283 plexin domain containing 2 (predicted)
70 38.3 -1.82767624 calcium/caimodulin-dependent protein kinase II alpha subunit

Siqnal transduction: receptors, kinases, phosphatases. G-proteins
8.3 11.3 -0.734513274 taste receptor, type 2, member 16
8.6 13.3 -0.646616541 wingless-type MMTV integration site 5A
8.6 6.4 -1.34375 angiotensin II type-1 receptor
9 8.5 -1.058823529 protein tyrosine phosphatase, receptor type, Q
9 8.5 -1.058823529 protein tyrosine phosphatase, receptor type, Q
10.2 5.2 -1.961538462 protein phosphatase 1
10.6 17.4 -0.609195402 tensin like C1 domain containing phosphatase
10.9 5 -2.18 thyroid stimulating hormone, beta subunit
11.2 3.3 -3.393939394 membrane-spanning 4-domains, subfamily A
11.5 6.7 -1.71641791 insulin receptor substrate 1
12 12.5 -0.96 Rho guanine nucleotide exchange factor 7
13.8 13.4 -1.029850746 olfactory receptor 1278
14.3 16.7 -0.856287425 growth factor receptor bound protein 7
14.4 12.4 -1.161290323 lectin, galactoside-binding, soluble, 4 (galectin 4)



15.3 10.9 -1.403669725 MAS-related G protein-coupled receptor, member B4
15.6 19.4 -0.804123711 olfactory receptor 1500
15.7 8.4 -1.869047619 membrane-spanning 4-domains
18.5 11.4 -1.622807018 arginine vasopressin receptor 2
19.8 28.5 -0.694736842 thyrotropin releasing hormone receptor
20.6 22.5 -0.915555556 phosphodiesterase 4D
20.6 18.1 -1.138121547 corticotropin releasing hormone receptor 2
23.6 18.4 -1.282608696 apelin, AGTRL1 ligand
26.6 22.2 -1.198198198 protein phosphatase 1
32.9 17.1 -1.923976608 Suppressor of variegation 4-20 homolog 1
37.9 34.6 -1.095375723 gap junction membrane channel protein alpha 4
50 35.9 -1.39275766 Plexin B1 (predicted)
54.1 29.5 -1.833898305 somatostatin receptor 3
65.5 90 -0.727777778 similar to cornichon-like protein (predicted)
74.9 91.9 -0.815016322 preproenkephalin, related sequence

Neural factor

11.5 6.8 -1.691176471 loop tail associated protein (predicted)
21.3 15.7 -1.356687898 synaptonemal complex protein SC65
24.4 15 -1.626666667 solute carrier family 1
61.5 51.5 -1.194174757 huntingtin-associated protein 1
107.5 93 -1.155913978 internexin, alpha

Immune, inflammatory and stress

6.2 1.4 -4.428571429 prostaglandin-endoperoxide synthase 2
12.5 20.5 -0.609756098 interleukin 18

13.5 12.4 -1.088709677 prostaglandin-endoperoxide synthase 1
16.8 15.6 -1.076923077 complement component 3
20.7 28.8 -0.71875 interleukin 2 receptor, beta chain
25.3 33.9 -0.746312684 sequestosome 1
26.5 21.7 -1.221198157 interleukin 2 receptor, gamma
29.4 14.8 -1.986486486 carbonic anhydrase 3
45.6 29 -1.572413793 Lymphocyte antigen 68

Cell cvle
12.4 13.9 -0.892086331 hemogen
12.8 11.6 -1.103448276 epiregulin
15.8 16 -0.9875 cell division cycle 20 homolog (S. cerevisiae)
20.4 5.4 -3.777777778 fibroblast growth factor 7
22.8 33 -0.690909091 myelocytomatosis viral oncogene homolog (avian)
23.6 31.9 -0.739811912 murine thymoma viral (v-akt) oncogene homolog 2
25.9 17.2 -1.505813953 wee 1 homolog (S. pombe) (predicted)
26.4 17.8 -1.483146067 betacellulin

28.2 25.7 -1.097276265 RAD50 homolog (S. cerevisiae)
37.1 32.1 -1.15576324 v-ets erythroblastosis virus E26 oncogene homolog 1
37.5 32.7 -1.146788991 CCA2 protein
40.8 36.2 -1.127071823 brain expressed myelocytomatosis oncogene

Replication, transcription, protein modification, deqradation machinery
7.1 7.3 -0.97260274 AI K-binding cassette, sub-family B (MDR/TAP)
7.6 4.8 -1.583333333 MAD homolog 7 (Drosophila)
9.2 7.4 -1.243243243 epidermal growth factor
9.2 6.6 -1.393939394 paternally expressed 3 (predicted)
9.2 1.3 -7.076923077 similar to KIAA1074 protein (predicted)
9.6 7.5 -1.28 spermatogenesis associated 9 (predicted)



10.9 19.9 -0.547738693 RAR-related orphan receptor alpha (predicted)
11 ' 11 -1 Isoleucine-tRNA synthetase (predicted)
11.1 15.6 -0.711538462 matrix metallopeptidase 3
11.4 13.8 -0.826086957 Double-stranded RNA-binding protein p74
11.9 9.9 -1.202020202 peptidylglycine alpha-amidating monooxygenase
12.1 9.6 -1.260416667 Ubiquitin specific protease 25 (predicted)
13.1 12.3 -1.06504065 Ring finger protein 149 (predicted)
13.2 14.6 -0.904109589 meprin 1 alpha
13.5 17.8 -0.758426966 transcription factor 12
14 9.7 -1.443298969 nuclear receptor subfamily 1, group D, member 2
14.4 21.9 -0.657534247 WD repeat domain 10 (predicted)
14.4 13 -1.107692308 serum amyloid P-component
14.6 16.8 -0.869047619 receptor-interacting serine-threonine kinase 3
14.7 9.2 -1.597826087 Upstream transcription factor 2
15.4 14.8 -1.040540541 DnaJ (Hsp40) homolog, subfamily C
16.5 9.3 -1.774193548 similar to 1500031N24Rik protein (predicted)
16.6 10.5 -1.580952381 thyroid hormone responsive protein
17.4 11.4 -1.526315789 Sp1 transcription factor
17.4 6.1 -2.852459016 Protocadherin 1 (cadherin-like 1) (predicted)
17.9 16.2 -1.104938272 carboxypeptidase X 1 (M14 family) (predicted)
18.9 19.6 -0.964285714 GATA binding protein 4
19.5 8.5 -2.294117647 protein tyrosine phosphatase, non-receptor type 6
19.6 17.2 -1.139534884 ankyrin repeat and SOCS box-containing protein 2
19.6 15.8 -1.240506329 discs, large homolog 4 (Drosophila)
19.8 11.5 -1.72173913 caspase 1
20 10.7 -1.869158879 a disintegrin and metalloprotease domain 2
21.2 24.6 -0.861788618 protein serine kinase H1 (predicted)
21.4 13.7 -1.562043796 Glycogen synthase kinase 3 alpha
21.9 24 -0.9125 mannan-binding lectin serine peptidase 1
22.3 21.4 -1.042056075 amyloid beta (A4) precursor protein-binding
22.6 23.5 -0.961702128 early growth response 3
22.8 22.7 -1.004405286 putative regulation protein GS3
23 16.7 -1.377245509 endothelin 1

23.2 18.7 -1.240641711 upstream binding transcription factor
23.3 21.4 -1.088785047 RNA polymerase 1-2
23.5 27.6 -0.851449275 Rab geranylgeranyl transferase, a subunit
23.5 21.3 -1.103286385 serine/threonine kinase 38 (predicted)
23.7 26 -0.911538462 Ubiquitin-conjugating enzyme E2Q (putative)
24.5 11 -2.227272727 POU domain, class 2, transcription factor 3
25.8 9 -2.866666667 nuclear receptor subfamily 4, group A, member 2
26.2 21.3 -1.230046948 potassium voltage-gated channel
26.8 20.4 -1.31372549 T-box 2 (predicted)
26.8 17.8 -1.505617978 tripartite motif protein 47 (predicted)
29 21.4 -1.355140187 Similar to E430002G05Rik protein (predicted)
29.2 25.1 -1.163346614 signal transducer and activator of transcription 5B
29.5 23.7 -1.244725738 SNF1-like kinase

29.7 40.1 -0.740648379 Copine V (predicted)
30.4 21.6 -1.407407407 peptidyl arginine deiminase, type I
32.8 28 -1.171428571 myeloid/lymphoid or mixed-lineage leukemia
39 38.5 -1.012987013 TAP binding protein
40.3 34.5 -1.168115942 a disintegrin-like and metalloprotease
42.4 33.7 -1.258160237 protein kinase C binding protein 1 (predicted)
43.9 56.8 -0.772887324 signal transducer and activator of transcription 5A
46.6 41.9 -1.112171838 Forkhead box K2 (predicted)
47.7 28.2 -1.691489362 membrane metallo endopeptidase



56.3 36.1 -1.559556787 similar to RIKEN cDNA 1110020A23 (predicted)
56.4 26.8 -2.104477612 ankyrin repeat domain 10 (predicted)
61.1 53.5 -1.142056075 Transcription elongation factor B (Sill)
75.7 73.5 -1.029931973 dual specificity phosphatase 14 (predicted)
80.9 71.1 -1.137834037 tissue specific transplantation antigen P35B
85.3 103.8 -0.82177264 general transcription factor III C 1

Synthesis, transport, biochemical Dathwav
2.8 4.4 -0.636363636 ATPase, Na+/K+ transporting, beta 3 polypeptide
7.1 1.4 -5.071428571 Similar to hypothetical protein CL25084 (predicted)
9.9 5.9 -1.677966102 Solute carrier family 6
11.1 6 -1.85 ATP-binding cassette
11.4 1.4 -8.142857143 solute carrier family 9, member 4
11.7 10.3 -1.13592233 gamma-aminobutyric acid receptor, subunit beta 2
11.9 13.8 -0.862318841 Tetratricopeptide repeat domain 8 (predicted)
12.5 8.5 -1.470588235 gap junction membrane channel protein alpha 1
12.7 8.6 -1.476744186 ataxia, cerebellar, Cayman type (caytaxin)
13.3 6.4 -2.078125 solute carrier family 4
13.5

.
12.8 -1.0546875 Sorting nexin associated golgi protein 1 (predicted)

14 14.2 -0.985915493 solute carrier family 9, member 3
14.4 8.6 -1.674418605 solute carrier family 7
14.7 9 -1.633333333 potassium voltage gated channel
16 13.4 -1.194029851 potassium channel, subfamily K, member 15
16.9 9.6 -1.760416667 ATP-binding cassette
17.5 17.1 -1.023391813 chloride channel 2

17.5 9.4 -1.861702128 sorting nexin associated golgi protein 1 (predicted)
17.8 25.8 -0.689922481 solute carrier family 12
18.4 17.1 -1.076023392 solute carrier family 26 (sulfate transporter)
20.1 9.6 -2.09375 ATP-binding cassette, sub-family C (CFTR/MRP)
20.3 29.1 -0.697594502 ATPase, Ca++ transporting, plasma membrane 2
22.7 13.4 -1.694029851 potassium inwardly-rectifying channel
23.7 18.5 -1.281081081 potassium inwardly-rectifying channel
25.1 12 -2.091666667 glutamate receptor, ionotropic, kainate 2
27.1 22.9 -1.183406114 potassium inwardly-rectifying channel
28.1 21.3 -1.319248826 cadherin 17

30 22.4 -1.339285714 potassium intermediate/small conductance calcium-activated channel
34.2 26.5 -1.290566038 activin A receptor, type 1
34.2 24 -1.425 glutamate receptor, ionotropic, kainate 5
35.4 52.8 -0.670454545 potassium inwardly-rectifying channel
40.1 27 -1.485185185 potassium inwardly-rectifying channel
56.7 46.8 -1.211538462 insulin-like growth factor 2 receptor
58.1 50.3 -1.155069583 potassium voltage gated channel

Miscellaneous

3.5 2 -1.75 glutamate oxaloacetate transaminase 2
6.2 7.4 -0.837837838 dimethylglycine dehydrogenase precursor
7.8 8.1 -0.962962963 Cytochrome P450 IIA1
8.4 9.6 -0.875 leptin receptor
8.5 3.4 -2.5 arylacetamide deacetylase (esterase)
9.2 7.4 -1.243243243 epidermal growth factor
9.3 9.9 -0.939393939 Similar to helicase-like protein NHL isoform 2
9.5 10.6 -0.896226415 FMS-like tyrosine kinase 1
9.8 9 -1.088888889 solute carrier family 2 (facilitated glucose transporter)
10.2 11.7 -0.871794872 Similar to KIAA1161 protein (predicted)
10.4 15.2 -0.684210526 hematopoietically expressed homeobox



10.7 13.9 -0.769784173 similar to RIKEN cDNA 1700073K01 (predicted)
11.5 5.9 -1.949152542 solute carrier family 6 (neurotransmitter transporter)
12.5 9.5 -1.315789474 paired box gene 6
12.6 22.5 -0.56 desmin

12.8 12.3 -1.040650407 troponin T3, skeletal, fast
12.9 4.5 -2.866666667 cytochrome P450, family 2, subfamily c, polypeptide 7
13.5 11.7 -1.153846154 Coagulation factor XIII, A1 subunit
13.6 13 -1.046153846 KH-type splicing regulatory protein
13.8 8.1 -1.703703704 solute carrier family 34 (sodium phosphate)
14.2 9.8 -1.448979592 20 alpha-hydroxysteroid dehydrogenase
14.4 10.6 -1.358490566 triadin

14.5 1.9 -7.631578947 nucleoporin 133 (predicted)
15.9 14.8 -1.074324324 dopa decarboxylase
16 13.2 -1.212121212 cytochrome P450, family 4
16.7 12.9 -1.294573643 regenerating islet-derived 3 alpha
16.8 17.7 -0.949152542 neuraminidase 3

16.8 4.5 -3.733333333 zinc finger, FYVE domain containing 20 (predicted)
17.2 17.7 -0.971751412 thyroglobulin
17.5 23 -0.760869565 tropomodulin 4 (predicted)
18.7 9.1 -2.054945055 phosphoribosyl pyrophosphate synthetase 2
18.8 15.7 -1.197452229 Similar to flavoprotein oxidoreductase MICAL2
19.2 21.5 -0.893023256 exostoses (multiple)-like 3
20.6 32.3 -0.637770898 polycystic kidney disease 1 homolog
21.1 15.6 -1.352564103 fructose-1,6-bisphosphatase 2
21.3 22.9 -0.930131004 ATP-binding cassette, sub-family B (MDR/TAP)
21.7 19.4 -1.118556701 cytosolic acyl-CoA thioesterase 1
22.2 15.3 -1.450980392 Similar to PS1D protein
22.8 7.3 r3.123287671 insulin receptor
24.8 14.3 -1.734265734 kynureninase (L-kynurenine hydrolase)
27.6 28.1 -0.982206406 3-hydroxybutyrate dehydrogenase
27.6 10.9 -2.532110092 phospholipase A2, group X
30.5 16.6 -1.837349398 similar to 2610033H07Rik protein (predicted)
32.1 24.9 -1.289156627 CUG triplet repeat,RNA-binding protein 2
32.2 23.1 -1.393939394 intersectin 1

32.3 33.3 -0.96996997 SH3-domain GRB2-like 1

34.3 24.1 -1.423236515 Synaptonemal complex protein 3
35.1 20.2 -1.737623762 activating transcription factor 3
36.9 23.2 -1.590517241 RNA binding motif protein 7 (predicted)
37.1 40 -0.9275 similar to RIKEN cDNA 0610042E07 (predicted)
37.7 45.5 -0.828571429 spermatogenesis associated 2
37.8 29.6 -1.277027027 N-deacetylase/N-sulfotransferase
38.2 22.1 -1.728506787 B7 homlog 3
38.5 37.5 -1.026666667 UDP-Gal:betaGlcNAc beta 1,4- galactosyltransferase
39.6 34.4 -1.151162791 Cdc42 guanine nucleotide exchange factor (GEF) 9
40 30.5 -1.31147541 phosphorylase kinase alpha 1
40.2 50.3 -0.799204771 phosphoenolpyruvate carboxykinase 2
42.9 18 -2.383333333 folate receptor 1 (adult)
43.4 35.7 -1.215686275 SECIS binding protein 2
43.8 41.8 -1.04784689 Best5 protein
44.9 30.5 -1.472131148 trimethyllysine hydroxylase, epsilon
45.2 44.5 -1.015730337 protein phosphatase 1
48.3 47.8 -1.010460251 dynein, axonemal, light chain 4 (predicted)
48.4 36.9 -1.311653117 cystathionine beta synthase
50.1 48.7 -1.028747433 low density lipoprotein receptor-related protein 1
58.2 36.9 -1.577235772 creatine kinase, muscle



68 41 -1.658536585 ABO blood group (transferase A)
81.3 62.9 -1.292527822 Lysosomal phospholipase A2
91 51.1 -1.780821918 dentatorubral pallidoluysian atrophy



Appendix 4.2 Absent to Present Gene List in Different Functional Groups

Mock Infect Fold Change Gene Title

Cell adhesion and structure

3.9 9 2.307692308

13.5 11.9 0.881481481

26.8 42 1.567164179

28.7 35 1.219512195

29.4 44.8 1.523809524

31.9 32.6 1.021943574

50.5 41.4 0.81980198

54.6 62 1.135531136

nephrosis 1 homolog, nephrin (human)
keratin complex 1, acidic, gene 19
dynein, cytoplasmic, light intermediate chain 1
epithelial V-like antigen (predicted)
opioid-binding protein
LOC498010

scavenger receptor class B, member 1
breast cancer anti-estrogen resistance 1

Signal transduction: receptors, kinases, phosphatases. G-proteins
5.3 13.1 2.471698113 glutamate receptor, metabotropic 8
9.4 15.8 1.680851064 rhodopsin
9.9 12.6 1.272727273 phosphodiesterase 11A
12.6 10.9 0.865079365 gastrin releasing peptide receptor
13.1 15.7 1.198473282 olfactory receptor 857 (predicted)
15.1 20.4 1.350993377 somatostatin receptor 5
15.3 18.4 1.202614379 angiotensin II receptor, type 1 (AT1A)
19.8 22.6 1.141414141 5-hydroxytryptamine (serotonin) receptor 4
21 17 0.80952381 prostaglandin F receptor
21.7 23 1.059907834 inositol 1,4,5-trisphosphate 3-kinase A
22.1 24 1.085972851 smoothened homolog (Drosophila)
33.8 22.4 0.662721893 regulator of G-protein signaling 12
41.2 54.8 1.330097087 protein tyrosine phosphatase
41.8 50.4 1.205741627 guanine nucleotide binding protein
103.8 129.4 1.246628131 phosphatidylinositol 3-kinase

Immune and stress response

7.3 10.8 1.479452055

11.6 10.9 0.939655172

18.8 20.4 1.085106383

25.8 56.7 2.197674419

phospholipid scramblase 1
inducible T-cell co-stimulator

Fc receptor, IgG, low affinity II
vitronectin

Neural factor

6.2 9 1.451612903

8.4 10.7 1.273809524

19.1 13.7 0.717277487

synaptosomal-associated protein 29
gamma-aminobutyric acid (GABA) receptor
Lactalbumin, alpha

Cell cycle, development, apoptosis. transcription factors
7.7 15.4 2 RAS guanyl releasing protein 2
8.4 21.5 2.55952381 aurora kinase B

10.1 12.3 1.217821782 Bcl2-like 1

13.2 13.9 1.053030303 pro-platelet basic protein
14 13 0.928571429 protein kinase, cGMP-dependent, type II
20.5 28.4 1.385365854 phosphatidylinositol 3-kinase
25.1 30.9 1.231075697 cell division cycle 20 homolog
25.2 34 1 349206349 biregional cell adhesion molecule-related
27.6 37.8 1.369565217 TNFRSFIA-associated via death domain

36.1 51 1.412742382 histone deacetylase 7
37.2 46 1.23655914 Murine thymoma viral (v-akt) oncogene



Replication, transcription, protein modification
5 13.4 2.68 clock homolog (mouse)
5.1 8.6 1.68627451 SMAD, mothers against DPP homolog 5
6.1 17.4 2.852459016 forkhead box E1
6.3 13.8 2.19047619 PHD finger protein 7 (predicted)
7.6 23.7 3.118421053 zinc finger protein 535 (predicted)
8.5 13.3 1.564705882 camello-like 3
8.8 12.9 1.465909091 Similar to Myosin light chain kinase 2
10.5 16.6 1.580952381 Actin related protein 2/3 complex
11.1 12 1.081081081 nuclear receptor subfamily 0, group B
11.9 13 1.092436975 transcription factor 7, T-cell specific
12.5 13.5 1.08 Ribophorin II
12.6 12.1 0.96031746 transient receptor protein 6
12.8 16.7 1.3046875 calcium/calmodulin-dependent protein kinase IV
15.9 26.2 1.647798742 Janus kinase 3

18 25.7 1.427777778 protein phosphatase 1F
18.1 18.8 1.038674033 polymerase (DNA directed), alpha 2
19.8 19.7 0.994949495 cell division cycle 34 homolog
20.8 22.9 1.100961538 protein tyrosine phosphatase
22.5 18.5 0.822222222 Mitogen activated protein kinase 2
27.2 31.7 1.165441176 transcription elongation factor A (Sll)
29.6 26.6 0.898648649 secreted frizzled-related protein 4
30.4 31 1.019736842 ATPase family, AAA domain containing 3A
34.7 46.8 1.34870317 Leucyl-tRNA synthetase, mitochondrial
35.2 51.2 1.454545455 transmembrane 4 superfamily member 7
36 47.6 1.322222222 Fas death domain-associated protein
39.5 53.1 1.344303797 nucleoporin 54
41.6 54.9 1.319711538 heparanase
42.8 34.1 0.796728972 forkhead box D4

49.5 44.9 0.907070707 protein tyrosine phosphatase
49.6 37 0.745967742 TATA element modulatory factor 1
62.8 68.4 1.089171975 myeloid ecotropic viral integration site-related gene 2
68.2 42.3 0.620234604 glucocorticoid modulatory element binding protein 2
68.2 42.3 0.620234604 glucocorticoid modulatory element binding protein 2

Synthesis, transport and biochemical pathways

5.2 10.2 1.961538462 cation channel, sperm associated 2
5.5 13.8 2.509090909 KH-type splicing regulatory protein
5.7 5.9 1.035087719 potassium voltage gated channel
11.3 16.4 1.451327434 hephaestin
12.7 12.3 0.968503937 potassium voltage gated channel
13 20.1 1.546153846 gamma-aminobutyric acid (GABA-A) receptor
13.8 10.4 0.753623188 syntaxin 17
15.6 12.5 0.801282051 glutamate receptor, ionotropic
16.8 17.2 1.023809524 aquaporin 6
19.9 29.4 1.477386935 Solute carrier family 14 (urea transporter)
23.6 36.6 1.550847458 Solute carrier family 6
23.7 34.9 1.47257384 potassium channel, subfamily K
23.8 28 1.176470588 solute carrier family 31 (copper transporters)
33.3 34.3 1.03003003 Solute carrier family 22
33.8 26.1 0.772189349 glutamate receptor, ionotropic, 2
38.8 38.5 0.992268041 ATP-binding cassette
51.3 105.8 2.062378168 cholinergic receptor, nicotinic



Miscellaneous
2.8 46 16.42857143

5.5 7.2 1.309090909

5.7 8.2 1.438596491
6.7 15 2.23880597

7 14.6 2.085714286
7.4 13 1.756756757

7.8 9.1 1.166666667

8.1 18.2 2.24691358

9.1 8.3 0.912087912

10.4 12.7 1.221153846

11.4 20.4 1.789473684

14.5 15.6 1.075862069

14.8 9.7 0.655405405

16.1 23.4 1.453416149

16.3 20.9 1.282208589

17.6 30.5 1.732954545

17.7 22.3 1.259887006

19.4 32.6 1.680412371

21.3 26.8 1.258215962

22.3 16.2 0.726457399

22.3 25.6 1.147982063

30.1 31.9 1.059800664

30.9 45.9 1.485436893

37.2 28.1 0.755376344

40.8 39.1 0.958333333
51 47.7 0.935294118

65.7 77.5 1.179604262

68.4 61.3 0.89619883

96 79.9 0.832291667

ubiquitin-activating enzyme E1-domain
lipase, hepatic
3-alpha-hydroxysteroid dehydrogenase
SNM1-like

acyl-Coenzyme A oxidase 2
homeo box A2
cd36 antigen
alpha-2-HS-glycoprotein
surfactant, pulmonary-associated protein A1
cytochrome P450, subfamily 2G
phosphorylase kinase gamma 1
enolase 3, beta
Similar to RN49018 (predicted)
FtsJ homolog 2 (E. coli) (predicted)
growth hormone receptor
RAS-related C3 botulinum substrate 2

cytochrome b-245, beta polypeptide
fibromodulin

peroxisomal biogenesis factor 6
elastin

beta-1,3-glucuronyltransferase 1
stanniocalcin 1

thioredoxin reductase 2
Hexosaminidase B (predicted)
cytochrome P450 4F6
THO complex 3 (predicted)
fatty acid desaturase 2
RNA, U3 small nucleolar interacting protein 2
carnitine palmitoyltransferase 2


