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Abstract

Ensemble learning is a promising direction of research ishime learning, in which an en-
semble classifier gives better predictive and more robusbipeance for classification prob-
lems by combining other learners. Meanwhile agent-basetesys provide frameworks to
share knowledge from multiple agents in an open contexts THesis combines multi-agent
knowledge sharing with ensemble methods to produce a nésvadtiearning system for open
environments.

We now are surrounded by masgnart objectsuch as wireless sensors, ambient communica-
tion devices, mobile medical devices and even informatigyped via other humans. When
we coordinate smart objects properly, we can produce a fdrooltective intelligence from
their collaboration. Traditional ensemble methods andhvegased systems have complement-
ary advantages and disadvantages in this context. Traditensemble methods show bet-
ter classification performance, while agent-based systaighkt not guarantee their perform-
ance for classification. Traditional ensemble methods vagrklosed and centralised systems
(so they cannot handle classifiers in an open context), vagént-based systems are natural
vehicles for classifiers in an open context.

We designed an open and social ensemble learning archigeamamed J-model, to merge the
conflicting benefits of the two research domains. The J-man#litecture is based on a ser-
vice choreography approach for coordinating classifieaar@ination protocols are defined by
interaction models that describe how classifiers will iateémwith one another in a peer-to-peer
manner. The peer ranking algorithm recommends more agptemlassifiers to participate in

an interaction model to boost the success rate of resulteofinteractions. Coordinated par-
ticipant classifiers who are recommended by the peer rardgayithm become an ensemble
classifier within J-model.

We evaluated J-model’s classification performance with €3 kdachine learning benchmark
data sets and a virtual screening problem as a realistisifitagion problem. J-model showed
better performance of accuracy, for 9 benchmark sets o8 défa sets, than 8 other represent-
ative traditional ensemble methods. J-model gave betselteeof specificity for 7 benchmark
sets. In the virtual screening problem, J-model gave betgrlts for 12 out of 16 bioassays
than already published results. We defined different icteoa models for each specific clas-
sification task and the peer ranking algorithm was used a@ibghe interaction models.

Our research contributions to knowledge are as followsstRive showed that service choreo-
graphy can be an effective ensemble coordination methodl&ssifiers in an open context.



Second, we used interaction models that implement taskfgpemordinations of classifiers to
solve a variety of representative classification problefisrd, we designed the peer ranking
algorithm which is generally and independently applicabline task of recommending appro-
priate member classifiers from a classifier pool based on an ppol of interaction models
and classifiers.
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Chapter 1

Introduction

1.1 Motivation

Machine learning [65], as studied in this thesis, is perfedrby algorithms that automatically
build a trained pattern from observed data. A trained paftea generalised rule that is able
to label new or unobserved data. Machine learning helps oisl &aving to extract patterns
manually from data and beyond that it can suggest patteaismd could not consider using

( Training examples )
l Training

Machine learning model

human abilities alone.

Testing

( Test examples )

Classification results

Figure 1.1: Machine learning process. A machine learning model trains training examples (ob-
served data) and the training process automatically makes a pattern in the model. For test
examples (unobserved data), the machine learning model can suggest class labels for each

example based on the constructed pattern.



In the history of development of machine learning, ensemidéhods|[70], 82] are a notable
direction driven by the need to incorporate diversity irrtaéag systems. Ensemble methods are
intended to produce better and more robust prediction paence through combining multiple
machine learning models. Using a divide-and-conquer epbplé approach for training over
large data sets, ensemble methods can manage large datathatt single machine learning
models.

( Training examples (T1) ) C Training examples (T2) )

Training Training

y Y

Machine learning model (M1) Machine learning model (M2)

Testing

( Test examples )

Classification results

Figure 1.2: lllustration of the ensemble learning process ensemble learning process. The ma-
chine learning models M1 and M2 train different training examples T1 and T2 respectively. Pre-

dictions from their suggested patterns are combined for testing test examples.

Ensemble methods have successfully been applied to seypgladation domains. For example,
remote sensing, person recognition and medical applitaice their well-applicable problem
domains|[71].
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Researchers

Machine intelligent agents

Figure 1.3: Astronomy research

Figure[1.3B illustrates what happens in Astronomy resed@gthlfitelligent agents that are hu-
mans or machin@scollect Astronomy data and information from several sosir@ources can

be telescopgsthat generates astronomical data, data-warehouses;alegagers and other re-
search colleagues. Intelligent agents compile data andmation and extract knowledge from
this process. Their knowledge is shared and provided fogldpment of Astronomy research.

Let us examine the dynamics of the Astronomy research froagant viewpoint. Agents have
the following properties.

e They are diverse. They research their own interests wiflereit backgrounds. There
can be conflicts between their opinions when analysing aedgreting data.

e An agent can change its interest. At one point, an agent mdgdusing on collecting
data from telescopes. Later it may be writing a paper usingfiag databases. A new
agent can join the research community and some may retimetfie community.

e They are distributed. They are scattered all over the world.

e They get together or split apart depending on their resgaughose.

lFor example, an artificial neural network - http://phdtBesivinformatics-maxplanckinstitute-
molecularplantphys.matthias-scholz.deNigPCAs bottleneckautoassociativautoencodeneuralnetwork thumb200.png
2The Mark Il Telescope - http://s0.geograph.org.uk/ph0@$7/03674Ga63d32e.jpg



They are in an open dynamic system, not a closed system. mdypgmic systems, different
agents interact with one another autonomously within a ésmark of social conventions and
freely join or leave the community. In contrast, in closedayic systems, agents’ interactions
are hard wired and a system is closed for other agents torjdhrei system.

When we need to get more valuable and integrated knowledget &stronomy, we can ask
advice to several experts on Astronomy (the intelligenniégje We can try to apply ensemble
methods for our purpose because ensemble methods provitled/&éameworks to combine

opinions from multiple experts as we introduced above.

We, however, encounter a critical problem. It is that endemtethods have been successful
under the closed dynamics of classifiers or trained models.edsemble method generates
base classifiers and combines their predictions for teshples. In this process, there are not
any interactions among base classifiers and the classifeefsxad. In other words, traditional
ensemble methods work under this assumption and are notadafited to open dynamics
problems.

We have another strong research heritage that handleptawdtients to get intelligence from
their collaboration in the artificial intelligence area. Mia Minsky’s research osociety of
mind [64] is the beginning. Multi-agent systems (MAS) [33] are fmilding distributed sys-
tems. Their computational components caligeéntsare autonomous to control their behaviour
for their own goals. Agents interact with one another. Imé¢renvironments such as service
oriented architectures (SOAS) |30] provide architectbeades for coordinating distributed and
interoperable agents. These systems suggest approratept and frameworks in which we
can handle an open dynamics of multiple agents to get soneeisspf global intelligence from
agents.

Agent-based systems also have a problem that is tricky t@sd\gent-based systems in an
open environment in which agents have autonomy are difficidontrol in order to give better
prediction performance than ensemble methods can pro¥ideain reason for this is that it
is challenging to select the best agents and coordinate fheprediction among agents in
an open environment. Ensemble methods work in a closedaammagnt (base classifiers have
a closed dynamics). Ensemble methods generate membeifietasasnd combine them for
prediction under tight control. Thus the advantages whidemble methods and agent-based
systems give are complementary for prediction under an epeimonment, but only if a means
to combine them can be found.
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Classification results

Figure 1.4: Service choreography system for coordinating agents. T is a training data and A is

an agent. Training data and agents in dotted boxes mean that they are absent at this point.

Figure[1.4 shows our proposed approach to solving the prabteat ensemble methods and
agent-based systems have for prediction. This is also aopeajpway to merge the advantages
of both sides. In the figure, part (A) is an environment in vahatassifier agents show their
open dynamics. We offered Figure 1.3 as an example of this epeironment. Part (B) is a
system that implements our approach. It takes classifiertages inputs and gives an ensemble
classifier as an output result. It selects and coordinateoppate agents for prediction. Co-
ordinated agents by the system become an ensemble clasSifierpart (C) is an ensemble
classifier of agents. We explain the architecture of theesysh Chapte4.

Interaction models

P

Service choreography system Reputation service

35

Figure 1.5: Service choreography system with interaction models and reputation service




A service choreography system [74] is a structure to supgpertelivery process from open
dynamic classifier agents to ensemble classifiers. Thisetutien for handling multiple clas-
sifiers in an open environment. Figlirel1.5 summarises th&eta operational components of
our approach. There are two components: interaction maaels reputation service for a ser-
vice choreography system. Interaction models are workfbegsgned for classification tasks.
Agents take roles in an interaction model and collaborapgdwuide predictions. An individual
interaction model filled with classifier agents becomes asegble classifier. The reputation
service recommends appropriate agents for predictioneovéce choreography system. These
task-oriented interaction models and the reputation sereonsequentially boost the predic-
tion performance of an ensemble classifier. We explain thetation service in Chaptet 5 and
interaction models for classification in Chagtér 6 respebti

1.2 Obijectives

The objectives of this thesis can be summarised by the faligiwo aims:

e To suggest an ensemble learning architecture that canicatecclassifiers in an open
context.

e To suggest a reputation mechanism that can recommend ajgpecpassifiers in an open
context for better classification performance.

The first objective will be realised by reconstructing enskmearning based on a service
choreography architecture. The second objective incltwlesub objectives. One is that the
reputation mechanism should be generally applied to varmordination models. The other
is that the mechanism should be robust to recommend forcgsrim an open context.

1.3 Research hypothesis

Our suggested ensemble learning architecture based owiaesehoreography paradigm is
named J-model. J-model delivers a comparative advantagié th a more appropriate work-
ing architecture for an open classifier environment thamipus traditional ensemble learning
methods. In this context, we need to evaluate a predictidiofmeance of J-model.

Research hypotheses which we set in this thesis are



1. J-model’s prediction performance approaches the peeoce of traditional ensemble
methods.

2. J-model’s prediction performance approaches the padnce of traditional ensemble
methods in practical time.

3. J-model is applicable to realistic learning problems.

4. Minimal parameterisation is required for J-model pradit

1.4 Thesis structure

Chapter 2 Background  In Chapter 2, we introduce 5 research areas. First, we dafopep
ties that services have in an open context. Second, we explat ensemble methods are and
their advantages as machine learning algorithms. Thirdyigiea service-oriented architec-
ture focusing on orchestration and choreography coordimapproaches. Fourth, we give an
explanation about OpenKnowledge framework. Generalactesn models described with the
lightweight coordination calculus are an essential pa®pénKnowledge framework. Last,
we survey social reputation that has features of netwodctffand power-law distributions.

Chapter 3 Architectural migration The main purpose of this chapter is to provide a smooth
architectural migration from traditional ensemble leaghsystems to an open and social en-
semble learning architecture. The chapter is composedre¢ ttiifferent sub migrations. In
Sectior 3.2, we migrate from classifiers in traditional eniske methods to Web services that
have the ability of classification. In Sectibn13.3, we intnod service choreography based co-
ordination instead of classifier aggregation. In Sedtidhwe show how to get better prediction
performance for open and social ensemble learning.

Chapter 4 J-model architecture We call our open and social ensemble learning architecture
J-model. In this chapter, we organise migrated parts show@haptef B into J-model and
explain the J-model architecture. J-model’s operationvisidd into three phases of discovery,
enactment and analysis. We explain the three phases of éirim&ection 4.3. J-model’s
operation also is analysed based on the traditional mad&daneing process of training and test
in Sectior 4.4.



Chapter 5 Peer ranking service ~ We explain a reputation service called the peer ranking
service. In Section 5.2, we show what the peer ranking serdaes to recommend more
appropriate classification services. In Section 5.3, wenddfie peer ranking algorithm. After
that, we give examples of peer ranking recommendation umatéra static classifier condition
and a dynamic classifier condition. Last, we provides twassof termination conditions on
service recommendation - the number of interactions andfarpgance metric.

Chapter 6 Interaction models for classification We firstly suggest interaction models in
which participating classifiers are fixed in design-timegeld interaction models). Next, we
show 6 examples of interaction models in which particiggtilassifiers are not fixed in design-
time but are chosen at run-time (open interaction modelg)enOnteraction models are for
classification services in an open context. Each examplesgyded to achieve a different
classification task.

Chapter 7 Experiments  The experiment chapter is composed of four independentriexpe
ments. In Section 713, we verify that more appropriate pgdassification services) for classi-
fication are separated from the broader peer pool by the peking algorithm. In Sectidn 7.4,
we confirm that separated peers converge to common optimnghiBpwe set a different initial
selection of peers repeatedly. Learning curves in Sectldgive a connection between chosen
peers by the peer ranking algorithm and their classificaperiormance. Learning curves
show changes of performance of chosen peers over intemactla Section 76, we measure
J-model’s classification performance with standard machearning benchmark data sets and
compare its performance with other representative t@uhli ensemble methods. In the last
section of 7.7, we apply J-model to a realistic classificapmblem: virtual screening.

Chapter 8 Discussion ~ We discuss a balance and a bias between exploration andtekipio
on peers for the results of the peer separation. We explayntiadre are big falls and cyclic
patterns in learning curves. For the virtual screeninglteswe pay attention to the quality of
a peer pool. Finally we discuss appropriate ensemble simépaameterisation of J-model.

Chapter 9 Related work  We expand research described in the background chapteruaind o
J-model research to the relevant research boundariesirigcas the topic of collaborative
learning in an open context. The topic includes distribaiesemble classification, agent-based



distributed data mining, multi-agent learning, open magent systems, distributed workflows,
ensemble selection and social recommendation systems.

Chapter 10 Conclusions ~ We check whether the hypothesis of this thesis is verifiedsiivie-
marise our contributions to knowledge from this work. Wegesj future work as extensions
of the work which had done in this thesis.



Chapter 2

Background

2.1 Services in open context

We categorise services in open context according to one o& ofdhe following features:
e Unspecific

Services are independently implemented by different desgy This entails that ser-
vices may give variable behaviours. The behaviours mighftlico with one another for
individual goals. Services can be buggy or even malicious.

e Join, leave and change

Services easily join or leave a system at their will at ruetifihey temporarily take or
release their roles. They obtain or lose resources.

¢ Distributed
Services are located on a distributed network, not only aigleslocation.
e Shared

Different service applications can share some of the samices. Services may be
reused.

10



2.2 Ensemble methods

2.2.1 Concept

Theorem 2.1. Condorcet’s jury theorem

Each voter has a probability p of being correct. If the prob#pof a majority of voters being
correctis M then:

p > 0.5 implies M> p. Also M approaches 1, for all p- 0.5 as the number of voters ap-
proaches infinity.

Here the votes are independent and there are only two p@ssiitomes.

Theorem 2.1[[24] supports that a correct decision probadybe obtained by simply combin-
ing the votes of a large enough jury that is composed of vatisse judgements are slightly
better than a random vote. The theorem is a theoretical frasssemble learning.

2.2.2 Algorithms

The first step to build an ensemble classifier is to generatgpietrained models. The models
are base classifiers. The training data upon which each kessafier trains is a differently ma-
nipulated data set from the original data set. The secopdste combine the base classifiers.
Their predictions are aggregated by an unweighted or weth¥te for a final prediction.

Algorithm 2.1 Bagging algorithm
Require: | (a base inducer); (number of iterations)$ (the original training set)) (the sample

size)

1:t«+1

2: repeat

3. § « asample oftinstances frons with replacement.
4.  Construct classifidvl; usingl with § as the training set
5 t«t+1

6:until t >T

Bagging (bootstrap aggregating) [11] in Algorithﬁ&js one of the most well-known en-
semble methods. In the Bagging algorithm, each memberifdaiss constructed from a dif-

1From [83]
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ferent training data set. Each training data set is gergetatesampling from an original data
set with uniformly random replacement.

Algorithm 2.2 Boosting algorithm
Require: | (a weak inducer)S (training set) andk (the sample size for the first classifier)

Ensure M1, Mo, M3

1: S < Randomly selecteld < minstances fronswithout replacement;

2: M1 1(S))

3: S + Randomly selected instances (without replacement) fBen$; such that half of them

are correctly classified biyl1.

4: My + ()

5: &3+ any instances i6— § — S that are classified differently iyl; andMo.
6: M3 + | ()

Boosting [35] in AlgorithnZE is another mostly well-known ensemble method. Similar to
bagging, base classifiers are generated by resamplingninggadata set. Boosting, however,
uses a different resampling mechanism. The mechanism saraptaining data set for a base
classifier to train incorrectly classified samples of thevjanes iteration. Boosting boosts pre-
diction performance of base classifiers through making thermore sensitive at incorrectly
classified instances.

2.2.3 Advantages

The advantages of ensemble methods can be summarisedoassfoll
¢ Classification performance

Ensemble methods should obtain better predictive perfoceavith individual predic-
tions combined appropriately. Each base classifier covdiffesient local search space.
The base classifiers (hypotheses) appear equally acc@atebining them gets a good
approximation of the unknown true hypothesis.

e Robustness

Covering different local search spaces helps ensembleitegio be robust for classific-
ation. It reduces the likelihood of an unfortunate selettd a poor classifier. It also
lessens the overfitting problem.

2From [83]

12



e Flexibility

Ensemble methods adaptively train to different classiicaproblems. For example,
boosting increasingly exposes incorrectly classifiedaimsts to each next base classifier
in its iteration process. Ensemble methods also can useahpfsbase classifier and
any combination of algorithms. These features makes erlsdea@yning more adaptable
to various classification applications.

e Too much and too little data

Ensemble methods can be used for learning from large datanglesmachine learner
cannot learn a large data easily. For ensemble learningge tata set can be divided
into smaller data sets. Each data set is used to train af@assiensemble learning. The
random subspace methad [45] is a representative algoriiimg this approach.

Ensemble methods can learn too little data. For exampletsbapping in bagging
method resamples data with replacement. The bootstrapgtadadquires independent
sample distribution. A base classifier learns a differemittwapped data. This brings a
more general learning pattern to a final classifier.

2.3 Service-oriented architecture

Having described the basics of ensemble learning, we nowlsattention to the environment
assumed by this thesis - a service oriented architecture.

2.3.1 Services

A service is a software component that encapsulates furectiaod data. A service is designed
for a business functionality. Services are loosely coupldey are accessible over a network.
They are combined and reused for different service appbiest Client services communicate
with server services through interface by passing data ieladefined and shared format.

2.3.2 Workflows

Multiple services are coordinated for a shared goal. A wovkiils a dynamic set of activities
in which services participate and interact to achieve aegshgoal. An executable workflow is

13



a committed coordination of services.

2.3.3 Orchestration and choreography coordinations

Multi-party
collabouration

Executable
process flow

Service orchestration Service choreography

Figure 2.1: Service orchestration and service choreography. Service orchestration executes
a process flow. Services in orchestration are subroutines on the flow. Service choreography
declares roles that services will take. A multi-party collaboration occurs among participating

services.

2.3.3.1 Service orchestration

Service orchestration [74] is the process of executing adination process for services based
on a central means of coordination.

Execution by a single orchestrator A single orchestrator specifies an execution process of
services. The orchestrator defines which service takes sutmaprocess. Services in orches-
tration are passive for coordination (they do not need tetsvunderstanding of the broader
coordination process).

. . A .
Orchestration languages ~ The Business Process Execution Language (WS-PQ?B] is
) [95]
and the XML Process Definition Language (XRI)[[87] are orchestration languages. These

a representative orchestration language. The Yet AnotleekMyw Language (YAW

are imperative paradigm languages.

3http://docs.oasis-open.org/wsbpel/2.0/wsbpel-vanl.h
“http://www.yawlfoundation.org/
Shttp://www.wfmc.org/xpdl.html

14



2.3.3.2 Service choreography

Service choreographies [74] describe required observatdeactions between services from

an external viewpoint.

Enactment  Service choreographies are not executed. They are engedces adopt and
perform the roles which are described in an interactionqmat Coordination happens from

their execution of roles.

A global perspective  The meaning of a global perspective in choreography coatidin is
that each participating service knows its role in coordoraaind they collaborate for coordin-
ation. There is no central engine leading their coordimatio

Choreography languages ~ The most well-known choreography languages are Web Service
the Choreography Description Language (WS-@HMQ], the Web Service Choreography In-
terface (WSC) [3] and the Ontology Web Language for Services (OWH){80]. The Light-
weight Coordination Calculus (LCC) [VB, [77] which J-modsks to describe its interaction

models is also a choreography language.

2.3.3.3 Advantages of choreography

1. Choreography is able to adapt to changing and uncertaiswarld classifiers by separ-
ating role definition from the choice of agents to partiogiateach role.

The performances of the classifiers unpredictably changetovie. They may even give
errors. The choreography system just defines high-levebpots that describe what
roles the classifiers take, what interactions they do and thibg interact with. The
actual classifiers are determined at run-time, not desiga-tSo the status of classifiers
can be adaptively reflected in the choreography system.

2. Choreography may handle more complex situations suckdianal classifiers parti-
cipating and missing classifiers.

Shttp://www.w3.0rg/TR/ws-cdI-10/
http://www.w3.org/TR/wsci/
8http://www.w3.0rg/Submission/OWL-S/
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When new classifiers are introduced, the orchestratioesysteds to explicitly contain

them in the system’s centralised combining process to wesa.tiWhen some classifiers
are missed, the orchestration system will experience £lrecause the system’s control
flow cannot proceed on run-time. An adaptive choreograpbtesy, however, has resi-
lience against these problems because other classifiersakayver the roles that the
missing ones had have vacated.

3. Choreography may scale better to open systems.

In open systems, agents are (arguably) less likely to silfesas a collective to central-
ised orchestration but choreography offersmke it or leave italternative to controlled
coordination that respects the autonomy of the individgaha.

A local prediction arises in each distributed classificaservice and a coordination of
their predictive abilities builds a global predictive atyil Service orchestration systems
preform this coordination work using a centralised cotgrolA centralised controller has
to contain every information for coordination and managefhe participating classi-
fiers. This feature of service orchestration systems is utdtsle for increasing number
of classifiers. Meanwhile, in service choreography systeansoordination of distrib-
uted classifiers occurs from an enactment of participatiagsdiers who take their roles
defined in a interaction protocol. Classifiers who satisfyctiéed roles work together
to be collaborative. Information for a coordination and dtfessifier management also
is also distributed at each classifier. This feature makescgechoreography systems
scalable to open systems.

2.4 OpenKnowledge framework

Web services are software components that are invokedghrmteraction protocols on the
Web. Interaction protocols are described using formalcsEdination languages. The Open-
Knowledge framework [80] is a fully distributed choreoghgmsystem based on a peer-to-peer
technology. Users publish interaction protocols call@draction model®n the OpenKnow-
ledge system. Programmers design and register Web sepndd® system. The OK system
provides a interaction-centred mechanism for sharing kedge from services by sharing in-
teraction models in a peer-to-peer environment.
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2.4.1 Service, participant and peer

We need to explicitly explain what services, participamid @eers are in different contexts.
Servicesare software components on a network as we explaifadicipantsare services that
take roles in workflows, coordination protocols or inteif@ctmodels in OpenKnowledge. We
call participantgpeerson a peer-to-peer system. The OpenKnowledge framework éeatp-
peer system. Services on the OpenKnowledge framework areftire called peers.

2.4.2 Interaction models

An interaction model is a coordination protocol describkmgpwledge for a specific task. It is
specified using the Lightweight Coordination Calculus (DT&hguage.

Definition 2.1. Example of interaction model: researcher and om'm@

a(researcher, A) ::
null <- get_query(Query) then
a(researcher(Query, I Ds, Resul ts), A) <- getPeers(omcs_lab,|Ds) then
null <- visualise(Results)

a(researcher (Query, I Ds, Results),C) ::

(

query(Query,ID) => a(omcs_lab,_ ) <- IDs = [IDRIDs] then
answer (Result) <= a(omcs_lab, ) <- Results = [Result|RR] then
a(researcher(Query, RIDs, RR), C)

)

or
null < IDs =[]

a(omcs_lab, L) ::

query(Query, D) <= a(researcher,_) then

answer (Result) => a(researcher, ) <- find_hit(Query,ID, Result) then

a(omcs_| ab, L)
Definition[2.1 is an example of interaction model in the onmasearch of the OpenKnowledge
projec@ [1]. There are two roles afesear cher (A) andom cs_| ab (L).resear cher (C) takes
delegation fromA for querying message selects a query and gets omics labs to whom the
qguery will be sentC queries to omics labs and collects their answen®ceives a query from

Cand sends a hit answer backQA finally visualises the results.

9From [1]
LOhttp://www.openk.org
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2.4.3 Lightweight coordination calculus

We explain the syntax of LCC in this section. Figlrel 2.2 defithe syntax used in this thesis.

M ={ dause, ..}

C ause ;= Role :: Def

Rol e c= a( Type, 1d)

Def := Role | Message | Def then Def | Def or Def | null <- C
Message =M= Role | M=>Role <- C| M<= Role | C<- M<= Role
C ;= Term| not C| Cand C| Cor C

Type := Term

I d := Constant | Variable

M ;= Term

Term := Constant | Variable | P( Term .. )

Const ant .= lower case character sequence or nunber

Vari abl e .= upper case character sequence or nunber

null: an event which does not involve message passing
<-, not, and, or: the normal |ogical connectives for inplication, negation,

conjunction and disjunction

Figure 2.2: The syntax of lightweight coordination calculus

Shared interaction models are enacted by participantgdcpeers. The peers play roles on
interaction models. Interaction models are written in thghtweight Coordination Calculus
(LCC). The LCC is a lightweight and executable choreogralaimguage for specifying co-
ordination among multiple participants based on procelssiice.

An LCC interaction model is a set of clauses. Each clause &fiaitlon of a role. Message
passing is the only means to transfer information betwetssrdSending a message may be
conditional on satisfying a constraint and receiving a ragesnay imply constraints on the role
to accept it. Those message sending and receiving are thebamis operations. More com-
plex operations are obtained using the connectivesn and or) for sequence and choices
respectively.
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Variables, Constants, Terms, Ids and Roles

Variables must start with an upper case letter. The scopewvafiable is local to a clause.
When it is unnecessary to give a specific name to a variablecgn use an underscoreas
the variable name. Constants must start with a lower cass.|l®umbers also are constants.
Terms are either constants, variables or have the forRf oferm .. ) where P is a non-
numerical constant. Ids are unique identifiers for peergliriust be non-numerical constants.
Roles are terms that describe the types of roles played bg pegiven interactions.

Message

There are two types of messages clauses. Outgoing messageshave the form of =>
Rol e. Incoming message clauses have the formM @& Rol e. M is the content of the message.
The implication operator dominates the message operdter Rol e <- Cis scoped ag M
=> Role ) <- CandC <- M <= Role is scoped a€ <- ( M <= Role ). Constraint ¢)
can be attached to both incoming and outgoing forms of messiagises. More details of C
are described in the constraints section below.

Constraints

Constraints associate message passing events with corsdéstablished by the peer. Con-
straints also may be associated with the special null eveithwepresents an event that is not
associated with a specific message. This is frequently useetursive role definition where
the role termination depends on a parameter to the rolesrrétthn a specific message passing
event.

List operations

List operations are a common basis of the recursion tecksiguailable in the LCC. The bar
() operation delineates the first element of a list (H, the héan the rest of the list (T, the
tail). ThatisL = [ H | T ]. In the case that H has some value, the constraigt of = |

H | T ] appends the value of H to the first slot of the list L. In the cthse H is not set, the
constraintof- L = [ H | T ] extracts H, the value of the first element, from the list L. If
L is empty, no value of H is determined and the constraint faill Repeated extraction of H
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from L and the condition that H has no value realises recarsitne constraintof- L = []
is used to test whether L is empty or not.

Logical operators

Constraints can be connected by the logical operatatsandor . C1 and C2 succeeds if both
constraints succee@@l or C2 succeeds if at least one of the constraints succeeds.

Sequence and choice

Sequencet(en) and choice ¢r) operations determine the sequence of message clauses in a
clause. Sequence is writtenkls t hen E2. This sequence is completed when both E1 and E2
are completed. Choice is written B or E2. This sequence is completed when either E1 or
E2 is completed.

Comments

The double slash comment,, will make the interpreter ignore the rest of the line. Treskt
star comment will ignore everything until it meets the ndatisslash.

2.5 Social reputation

2.5.1 Network effects

There are situations in which opinions or behaviours of peeape affected by other people’s
opinions or behaviours. This can be for one of two reasonst,Ehe opinion or behaviours

are dependent on others’. Second, other people may givalug®ghions or behaviours for

decision making. This can derive a different decision froeeisions made by independent
individuals.

This network effect forms popularity or reputation amongiuduals. The degree of reputation
among them can be extremely imbalanced. The Web is the mpst@ate example domain
showing the network effect. Reputation of a Web page can kesured with the number of
in-links to the Web page.
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2.5.2 Power laws

When we measure the distribution of in-links on the Web, wicedhat the distribution is dif-
ferent from a normal or Gaussian distribution. Web pagetshtigek in-links is approximately
proportional to Yk? [14]. They follows a power-law distribution. If the disttiion of the Web
follows the normal distribution, the number of Web pageswiin-links should decrease ex-
ponentially ak grows large. In the power-law distribution/k decreases much more slowly
ask increases. So we can expect that Web pages having a largéenoirin-links commonly
exist on the power-law distribution than on the normal dsiion. This power-law distribution
gives a quantitative form to explain why reputation amondp\Wages is extremely imbalanced.

2.5.3 Rich-get-richer dynamics

Normal distributions may arise from many independent ramdi@cisions of individuals. A
power-law distribution often arises from feedback by clated decisions across individuals:
a network effect. Here we look into what occurs at the indiailddecision-making level for a
network effect.

Let us go back to the example of Web pages. The foIIo@mga simple model of creating
links among Web pages.

1. Web pages are created in order and named 1,\, ..,

2. When pagg is created, the page hangs a link to an earlier Web page acgdalthe
following probabilistic rule. Probability is between 0 and 1.

(a) With probabilityp, pagej chooses a pageuniformly at random among all pages
except itself and hangs a link to the page

(b) With probability 1— p, pagej chooses a pageuniformly at random among all
pages except itself and hangs a link to the page to which ipaaegs.

Pagej can hang multiple links to other pages through repeatingtbeess of hanging a
link.

(b) is the key part. In (b), paggfollows pagei’s opinion about which pages the pagevill
link to. This opinion copying makes a rich page (having imk8 comparatively) get richer
(to have more in-links). The degree of getting richer is ptipnal to the current number of

LFrom [28]
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in-links. After it runs for many pages, the fraction of pagéth k in-links will be distributed
approximately according to a power lawkt, where the value of depends on the choice pf

2.5.4 Pareto principle and the long tail for reputation

The Pareto principle (also known as the 80-20 rule) [67] diess that roughly 80% of the
effects come from 20% of the causes. The Pareto principleesod the instances of a power

law effect.

The long tail [2] states that a larger population rests wii tail of a probability distribution
than observed under a normal distribution. The long taibssoved in power-law distributions.
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Chapter 3

Architectural migration

3.1 Introduction

This chapter provides a smooth architectural migratiomftaditional ensemble learning sys-
tems to an open and social ensemble learning architecture.

3.2 Classifier to classification service

We begin the discussion of migration by explaining how imndinal classifiers in ensemble
systems migrate to classification services in the J-modéitacture.
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3.2.1 Classifier

3.2.1.1 Structure

Ensemble system

Classifier

Machine learning

. algorithm

Sampled
training data set

Figure 3.1: A classifier in a traditional ensemble system

To generate a base classifier, an ensemble system selectded n#o model is one of the
machine learning algorithms. The selected model is used tihel training with a sampled
training data set. A sampled data set may be different fon satected model. The ensemble
system repeatedly generates a number of base classifiecd) bdcome the members of an
ensemble classifier.

c=<mT> (3.1)

A classifier in traditional ensemble learning can be represkas the tuple given in expression
(3.3).cis a classifiermis a model and is a sampled training data.

3.2.1.2 Properties

In traditional ensemble learning, the members of the entehdve the following properties:
e Homogeneousy = mp wherec; # ¢

Classifiers share the same model as their default machirmarigaalgorithm. Diversity
and accuracy among classifiers has a trade-off relatiomst@psemble learning. Pursu-
ing accuracy is normally better for performance in tragiibensemble systems because
pursuing diversity may drive an ensemble to poor classifingierformance.
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e Staticc — cover time

A classifier does not change over time. It maintains the sdassification performance
during an ensemble process. New classifiers are not gederatare existing classifiers
removed during an ensemble process after an initial geoprat classifiers.

e Passive

A classifier does not have ability to communicate with theeemsle system or other
member classifiers. A classifier only reacts to requestseaafiption from the centrailsed
ensemble systent@ll in Figure3.1). Its generation process also is completahjgrotied
by the ensemble systerBélectandTrain in Figure[3.1).

e Local

A typical traditional ensemble system is not designed fois&ributed environment that
classifiers are located in different physical places.

3.2.2 Classification service

3.2.2.1 Structure

Classification service A

Request prediction
for example

Answer for the example

Classification service B

Figure 3.2: A classification service and another classification service

In our open and social ensemble learning approach, classiie already present before we
apply any coordination method to them. A classifier makedfitvailable in the form of a
service. It has two interfaces: for accepting messages &ondtsending messages to other
classification services. The messages are to request fooadiand to give answers for reques-
ted predictions as shown in Figure3.2. Classification ses/have ability to classify (or are
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already trained) regardless of how they got. We considethmadearning classifiers, small
reactive devices or even humans as potential classificationces.

c=<mT,i,o> (3.2)

A classification service can be represented as a tuple equeti(3.2). c is a classification
service.mis a modelT: a training datai: an input interfaceg: an output interface.

3.2.2.2 Properties
A classification service has completely nothing to do witloatmlling ensemble system. So it
has the following properties that are different from thepamies of a traditional classifier.

e Heterogeneousy = mp or m; % mp wherec; # ¢,

An individual classifier might have a different model fromhets. The classification
services available in a given environment are not chosedvarece to suit the ensemble
system.

e Dynamicc — ¢’ over time

A classification service can change over time. There aresocafspining, dismissing,
pausing and updating of classification services during aemible process.

e Active

As we mentioned above, a classification service trains aataself and actively com-
municates with other classification services using message

e Distributed

A classification service operates on a distributed networdan be on a local machine.
Message passing between services can be either over therketmwvithin a local ma-
chine.
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3.3 Classifier aggregation to service coordination

3.3.1 Classifier aggregation
3.3.1.1 Features on aggregation

3.3.1.1.1 Aggregating all the base classifiers A traditional ensemble method uses all its
generated classifiers as members of an ensemble classiiemé&mbers are generated under
the supervision of the ensemble method. So it is possibleing bhe best performance when
using all the classifiers as member classifiers.

C={c1,c,..,Cn} (3.3)

Cis a set ofN generated classifiers.

M=C (3.4)

In a traditional ensemble learning, a set of member classNes identical toC.

3.3.1.1.2 Simple and flat aggregation
N

. N 35
v(C) i:1,2,.).(,|-n:1 ™ .

Equation[(3.5) represents majority voting that a tradai@nsemble normally uses to aggregate
predictions from member classifiers.

Cn,i is 1 or 0 depending on whether the classifigchooses the class labar not respectively.
The ensemble then chooses a class that receives the largésote inL classes.

3.3.1.2 Centralised paradigm

A centralised system means that there is only a single dperatocess for a task. There is no
interaction with other systems. The system freely useeitgpperal units. The units are easily
maintained.
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A traditional ensemble system is a centralised system. negges member classifiers. The
member classifiers do their roles as sub functions in thesysiThe system gathers and ag-
gregates predictions from the member classifiers. Thenybie® gives a final prediction
answer.

3.3.1.3 UML activity diagram

£ X X X

Ensemble system Classifier 1 Classifier 2 Classifier 3

( Role: aggregate ) ( Role: predict ’ ( Role: predict ) ( Role: predict )

Query

»

Answer

Query

\

Answer

Query

\

Answer

Figure 3.3: UML activity diagram of traditional ensemble aggregation

Figure[3.8 is an example of a UML activity diagram that ddsesia typical traditional ensemble
aggregation process. The ensemble system actor takagdiegaterole. All of the classifier
actors take theredictrole. The ensemble system actor and the classifier actorraon
the beginning to the end of an aggregation process. The déhseaystem actor sends query
messages to the classifier actors and gets answer messagebdém serially. The ensemble
system actor controls this process centrally.

3.3.2 Service coordination

Service coordination is a means to weave predictions frassdication services in our open
and social ensemble learning. Protocols coordinate thersobf classification services.
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3.3.2.1 Service coordination and its elements

Service coordinations impose constraints on the intemastbetween services for particular
applications. When services are being coordinated, a cwatrdn context propagates to the
services and by committing to participate in the interactiescribed by the protocol they also
accept the constraints it imposes on their roles in the pobtoCoordination context flows
by message exchange among services. We introduce the étenfieervice coordination and
what each element means in our classification service auatidn.

e Participant
When a service is enacted in a coordination, a service isccalparticipant. In classific-
ation service coordination, classification services aratdioators are participants.

e Role
A classification service can take a role of predicting querny st examples. A coordin-
ator boots a coordination process and gives a final predietswer from predictions of
classification services.

e Activity
Participants communicate with one another through messagpange. Message sending
and accepting are activities.

e Message
Messages in classification service coordination are reég/imredictions and prediction

answers.

e Coordinator
A coordinator is needed to ensure that the protocols seldntgarticipants are made
available to the relevant participants and that the roles@ed by each participant are
discharged according to the protocol. Coordinators neetieoentralised - they may be
distributed across the services or, in the most extreme desdgbuted with the messages
passed between services.

e Protocol
A protocol defines roles and activities. A traditional enb&rsystem conceptually can
be mapped to a protocol. We script protocols with lightweigbordination language
(LCC), a service choreography language explained in Se2t.3 for our classification
service coordination. We call a protocol as iateraction modein our classification
service coordination. We show multiple actual interactwadels for classification in
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Chaptef®.

A protocol

Participant 1 Participant 2
(coordinator) (a classification service)

= A particular application

Participant 4
(a classification service)

Participant 3
(a classification service)

. Role O Activity —) Message

Figure 3.4: Classification service coordination and its elements

Figure[3.4 presents a visual organisation of the servicedaoation elements.

3.3.2.2 Choreography paradigm

Our classification service coordination is based on semtcgeography paradigm. No parti-
cipant controls the protocol centrally. Once an interactiwodel is published to participants,
participants take their roles individually and exchangesages one another as defined in the
interaction model. When message exchange is completedethiee playing the role of co-
ordinator gives the final prediction.
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3.3.2.3 UML activity diagram

N NN N

Coordinator Classification service 1 Classification service 2 Classification service 3 Classification service 4 Classification service 5

‘ Role: coordinate ’

\
I
|
I
Query (1) L

\ \ \
I I I
I | |
I I I
I I I
> | | |
I I I
Query (2) | | !
>
L > |
I ! ! I
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, C Role: predict ) ‘ : |
J_ Answer (3) ! | |
L I |
Query (4 | ! !
i | - (| |
Answer (5) ! Role: predict ! !
< ! I I
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i | |
| I |
Answer (6) \ ) ‘ \
- | | | |

|
I I I

I
I | I

|

Figure 3.5: UML activity diagram of classification service coordination

Figure[3.5 is a simple example of a UML activity diagram thegiresents classification service
coordination. The coordinator actor takes to®rdinaterole and classification service actors
take thepredictrole. Actors only run while they send or receive messagesshige exchange
is asynchronous. In the example, some classification ssyalassification services 2 and 5)
do not take any role. This might be because they cannotgé#tisfrequired roles or that all of
the roles of the interaction model have already be taken.

3.3.2.4 Representation and features

Our open and social ensemble learning method considersisting classification services as
potential participants for coordination.

C= {Cl,Cz,..,CN} (3.6)

Cis a set ofN existing classification services.

MCC (3.7)

Participating classification servicés is the same a€ or is a subset of. This is determined
according to how many classification services satisfy rdefsed in a coordination protocol
or how many roles a coordination protocol defines.

31



E=<IM,M> (3.8)

An ensemble classification service can be represented aspleeof expression (3.8E is an
ensemble classification service amdl is an interaction model. An ensemble is an interaction
model supported by participating classification servides

We can freely define interaction models to coordinate l@arimtean ensemble using the LCC
service choreography language. This allows complex anftgpsrdomain specific interactions
to be implemented as well as the standard protocols fortibadi ensemble learning. It is
then the responsibility of the service enactment systenmsore, as reliably as is reasonably
possible, that the right learners adopt appropriate rolése coordinated ensemble - leaving
engineers with the task of defining coordination rather thefming specific ensembles each
time.

3.4 Performance boosting strategies

There are two main approaches to boost performance of améleselassifier in ensemble
learning. One is to prepare better base classifiers. The sthe coordinate base classifiers
better.

3.4.1 In traditional ensemble learning

In traditional ensemble learning, boosting performancacisieved by preparing better base
classifiers through generating more diverse classifiersname accurate classifiers. Krogh
and Vedelsby [53] have formally shown why a better ensemlakesdier can be obtained from

more diverse and more accurate base classifiers. As we showlegl previous section 3.3, a

traditional ensemble method does not support complex auatrdns for classifiers.

3.4.1.1 More diverse classifiers

Bagging is a representative ensemble method to build amdieelassifier through generating
diverse base classifiers. We show the Bagging algorithm 8entior 2.2 here again to explain
how it generate diverse base classifiers.
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Algorithm 3.1 More diverse classifiers in Bagging
Require: | (a base inducer); (number of iterations)$ (the original training set)) (the sample

size)

Lt 1

2: repeat

3. § + asample oftinstances fronEwith replacement.
4: Construct classifidvl; usingl with § as the training set
5 t+t+1

6:until t >T

In line 3, a sampled data s& is made from the original s with replacement. Then a
classifierM; trains the sampled data s&t From those steps, diverse base classifiers can be
generated.

3.4.1.2 More accurate classifiers

Algorithm 3.2 More accurate classifiers in Boosting
Require: | (a weak inducer)S (training set) andk (the sample size for the first classifier)

Ensure: M1, M>, M3

1: S + Randomly selecteld < minstances frons without replacement;

2: M1 1(S)

3: S + Randomly selected instances (without replacement) fBen$; such that half of them

are correctly classified biyl1.

4: My + ()

5: §3 « any instances iB— $ — S that are classified differently dyl; andMo.
6: M3+ | (S3)

Boosting is an example of a method for making more accurate blassifiers. We also show
the Boosting algorithm of Sectidn 2.2 here again to desdrnibe it generates accurate base
classifiers.

In line 1, a sampled s&; is made through a random instance selection. In line 2, adeshp
classifieM is generated fror®;. In the 3rd and 4th lines, is a weighted set for misclassified
instances and another temporal classifleris generated frons,. In line 5, a more weighted

set for misclassified instanc&g is prepared. From those steps, more accurate base classifier
are generated.
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3.4.2 In J-model

3.4.2.1 Recommendation of services

The first approach for boosting classification performanckemodel is to use more appropriate
classification services for classification among existilaggification services. This is imple-
mented by a recommendation mechanism called the peer taalgorithm [79] 57] that we
describe in Chaptér 5 in detail.

M; CC (3.9)

M; is a set of classification services as members of an ensemakkfer at the current inter-
actiont.

Ei =< IM,M; > (3.10)

E; is an ensemble classifier supportedMyat thetth interaction. IfE gives good perform-
ance,M; gets a higher reputation for classification. Bf gives bad performancé; gets a
lower reputation for classification. For each subsequdstaationM; is composed of classi-
fiers chosen to have the highest reputation. As this proteisges, we expect better member
classifiers to be identified, thus reinforcing the qualitglafssification overall.

3.4.2.2 Interaction model design

The other approach for boosting performance is to coordinember classification services
better. This is implemented by programming a better desigmeraction model for an indi-
vidual classification task.

The aggregation of a traditional ensemble learning is tmgkast form of coordination. Mean-
while we can design various effective interaction modelsdiéferent specific classification
purposes in J-model such as getting better specificityesulg higher true positive rate and
reducing classification time cost. Of course we can programmore complex interaction mod-
els for a general performance measure sucacasracyreflecting the features of a classifica-
tion data set. So interaction models are plural, not singlemodel. We suggest examples of
specifically designed interaction models in Chapier 6.
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IM € {IM1,IMp, .} (3.11)

An interaction model to be used for a tagki() is an instance of a source interaction model
from the se{IM1,IMp,..}.
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Chapter 4

J-model architecture

4.1 Introduction

In the previous chapter, we explained the relationship betwtraditional ensemble methods
and the J-model approach. We now describe the J-model ectlnié in more detail, based on
the architectural migration shown in Chagtéer 3.

4.2 Organisation of J-model

Open and P2P environment

Unbounded set of peers
Interaction S
.

processes
8)0 .......
_____

Unbounded
set of
data

Service
choreography
system

Reputation
mechanism

Figure 4.1: J-model architecture

36



Figurel4.1 illustrates the J-model architecture and itspmments. J-model is a service choreo-
graphy system for coordination of services (peers in thedjpwho exist in open environments.

Interaction processes defines protocols in which peersaciten a peer-to-peer manner. Repu-
tation mechanism recommends adequate peers who will jparticin the choreographies. We

explain each J-model component in detail in the followinlg-sections.

4.2.1 Service choreography system

The service choreography system supplies the infrasteiatpon which the other parts of
interaction processes, set of peers and data and reputagicimanism work together.

The service choreography system is not executed. It is etiaét chosen interaction process
or interaction modefor a specific task is published (introduced in Secfion J.3Reers or
classification servicetake roles and exchange message with a peer to peer appnodbh o
interaction model (explained in Section 312.2). A repatatinechanism such ése peer rank-
ing algorithmgiven in this thesis evaluates the participating peers hed tecommends more
appropriate peers for the interaction model (introduceSaatiorf 3.4.2).

4.2.2 Interaction processes

What is usually called an interaction process in servicenbed architectures is anteraction
modelin J-model. An interaction model (IM) defines roles for clfisation services and what
messages they will exchange. An interaction model is shameoing classification services.
In J-model, interaction models are specified in the lighgweicoordination calculus (LCC)
language. We show definitions of interaction models for erige classification in Chapter 6.

4.2.3 Set of peers and data

Peers oclassification serviceare services that have the ability to perform classificatidrey
are not engaged with the service choreography system umititaraction model is published
among them. When an interaction model is published, eassi@ization service takes a role in
the interaction model. Classification services may not yéNze machine learners. Classifiers
may include small and reactive devices or even humans.
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Data that classification services train are also distirmehftheir classifiers. Data may be chan-
ging over time. Also different classification services catdime engaged with the service
choreography system over time.

4.2.4 Reputation mechanism

A reputation mechanism is an algorithm to recommend moreogpiate peers to the service
choreography system. An interaction model can achievasis better with the recommended
peers. In J-model, we use as a reputation mechattisnpeer ranking algorithndefined in
Chaptef.
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4.3 Discovery-enactment-analysis cycle
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Interaction _ Published
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Subscript Peer 1

Published

Peer 4

interaction

model

Peer 2

‘| Peer3

Peer 5

Analysis

Peer 1

Report

Peer pool

Peer 1

Peer 4

Peer 2

Peer 3

Peer 5

Update

Peer 1

/

Peer 2
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(The coordinator)

Y

Peer ranking service

lommitment

Figure 4.2: Discovery-enactment-analysis cycle in J-model architecture

We analyse the J-model architecture from an operationalpoet (so we us@haseas a term

for individual processes in J-model). This can be dividagehphases; discovery, enactment

and analysis. These operate cyclically because the peldngaservice in the analysis phase

updates the rank information for the peers.

We describes this discovery-enactment-analysis cycle aviseudocode as follows.
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Require: ims(a set of interaction modelspeers(a pool of peers)ensemblesize(the size of
ensemble classifier) amd(the number of interactions)
/l Discovery phase
Selectim In ims
Publishim To peers
/l Enactment phase
Select RandomlyparticipantsSize Ofensemblesizeln peers
n Times Do
For Eachrole In (rolesDefined Inim) Do
SelectparticipantFor role In participants
participant Subscript role
End
result+ Commit participants
I/l Analysis phase
Report result To peerrankingservice
peerrankingserviceRecommendparticipants
End

4.4 Training, query and test layers
We can analyse J-model based on a typical machine learnieg$s that includes training and

testing steps. We udayer for the individual steps instead phaseas we illustrate J-model

from an architectural viewpoint.
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Figure 4.3: Training, query and test layers in J-model architecture

4.4.1 Training layer

In a typical machine learning process, the training stepames training examples and build a
model (hypothesis) that trains the training examples. dditional ensemble learning, two or

more training sets and models are generated.

In J-model, peers are already trained classification sesviegardless of how and on what they
were trained. To discover peers is the training layer fromaditional viewpoint.

4.4.2 Query layer

The query layer is a unique part that is found only in J-moddiis layer is mapped to the
enactment and analysis phases in Figure 4.2.

In a typical machine learning process, an original datassepilit into training and test data
sets. J-model additionally needs a query data set. A quamypbe is used to evaluate particip-
ating peers in a current interaction model. If the evaluatsoa success (the interaction model
achieved its goal. e.g. giving a correct prediction for theny example), reputation of the
peers rises. We show later how the reputation distributopé&ers converges through repeated
evaluation with query examples.
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4.4.3 Test layer

In the test layer, top-ranked peers of the ensemble sizentbatet become members of an
ensemble classifier. They vote to predict answers for tesheles using majority voting.
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Chapter 5

Peer ranking service

5.1 Introduction

A peer ranking service recommends those classificationcgsvor an interaction model that
have higher success rate. This allows J-model to improw#assification performance.

5.2 Recommendation-evaluation-update cycle

We now describe peer recommendation in J-model focusindi@ndle of the peer ranking
service and the messages from and to the service.
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Figure 5.1: Recommendation-evaluation-update cycle on peer ranking service

5.2.1 Recommendation phase

The peer ranking service recommends top-ranked peers bagbd rank distribution of peers
that the service maintains on their roles in interaction el®@aith which they have previously
engaged. In Figurie 5.1, Peexsb andc in a peer pool was recommended by the peer ranking
service.

5.2.2 Evaluation phase

Recommended peers interact with one another on a intemavtdlel for a query example. The
resultis a success or failure. A success is that the interaathieves its defined goal. We show
examples of interaction models for classification inclgdineir various goals in Chaptelr 6.
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5.2.3 Update phase

The coordinator peer reports the interaction result to #e panking service. The peer ranking
service updates the ranking scores of the current recomedgrekers. The rank distribution of
peers is then re-calculated for the next recommendatiosepha

5.3 Peer ranking algorithm

The peer ranking algorithm recommends peers that will talesrnn an interaction model. For
query interactions, the peer ranking algorithm needs tomegend peers more exploratively
to avoid becoming stuck in a local optimum. For a test intéoac¢ the algorithm needs to
recommend peers reflecting all the history of scores thasgeeve individually. This guides
that the peer ranking algorithm can suggest a global optimuat least a better local optimum
for tests.

Algorithm 5.1 The peer ranking algorithm for query interactions
Require: P (a peer pool)T (the number of interactions)M (interaction model)N (the en-

semble size)Q (a set of query examples)

01:C(p,©) « 0 for each peepin P

(C(p,©) is the count of minus that has.)

02:t«+1

03: repeat

04: M; «+ Pick the highest rankel peers inP based on the query rank calculatiBp
(Ro(p) =C(p,©). Alower value ofRg(p) means thap obtains a higher rank.)

05: E +—<IM,M; >

06: A; < Evaluatek; with a randomly chosen query example fr@n
07: if Ax = success

08: Increase the count of plus that eaghhas wheran € M

09: else if A = failure

10: Increase the count of minus that eagtas wherem;, € M;

11: end if

12: t—t+1

13:until t >T

A € {successfailure}
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Algorithm[5.1 is for recommending peers for query interacs. The algorithm evaluates an
ensemble composed of recommended peers with a query exahgaeh interaction round.

Algorithm 5.2 The peer ranking algorithm for test interaction
Require: P (a peer pool)IM (interaction model)N (the ensemble size$,(a test example)

01: M « Pick the highest rankeN peers inP based on the test rank calculatiBn

(Rr(p) =C(p,2)/C(p,®). C(p,®) is the count of plus thap has. A lower value oRy (p) means thap obtains
a higher rank.)

02:E +<IM,M >

03: A < EvaluateE with s

A € {successfailure}

Algorithm 5.2 is for recommending peers for a test inteatti An ensemble composed of
recommended peers is used to predict test examples.

5.4 Examples

We show how the peer ranking algorithm works with two exarspl&€he examples follows
changes of the rank distribution of peers. One example igusi@tic conditions. The other
is under dynamic conditions. Under static conditions,lal peers permanently exist and their
learning status does not change while the peer rankingittigpapplies to the peers. In con-
trast to static conditions, peers can attend, dismiss anchbeged for their learning status
under dynamic conditions.
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5.4.1 Under static conditions

Table 5.1: Peer ranking example under static conditions

# of interactions ~ Recommended peers  Result of completion o P p1 P2
Initial status - - <0, 0> (1) <0, 0> (1) <0,0> (1)
1 Po, P1 Success <1,0>(1) <1,0>(1) <0,0> (1)
2 p1, P2 Failure <1,0> (1) <1,1>(2) <1,1>(2)
3 Po, P2 Success <2,0>(1) <1,1>(2) <2,1>(2)
4 Po, P1 Success <3,0> (1) <2,1>(2) <2,1>(2)
5 Po, P2 Failure <3,1>(1) <2,1>(1) <2,2>(2)
6 Po, P1 Success <4,1> (1) <3,1>(1) <2,2>(2)
7 Po, P1 Failure <4,2> (1) <3,2>(1) <2,2>(1)
8 Po, P1 Failure <4,3>(1) <3,3>(2) <2,2>(1)
9 P2, 1 Success <4,3>(2) <4,3>(2) <3,2>(1)
10 . Po Success <5,3>(2) <4,3>(2) <4,2> (1)
For test B, Po - 3/5=06(2) 3/4=075(3) 2/4=05(1)

In this example, 10 interactions are applied for three petps, p1 and p. The first element
of a tuple is the number of pluses that a specific peer has. 8¢wnd element of a tuple is the
number of minuses that a specific peer has. The rank of a sppeér is in parentheses.

Recommended peers on each interaction are selected badédionurrent rankings. For
example, after the 6th interaction finisheg,gmd p are recommended for the next interaction
because they are the higher ranked peers.

After all the interactions finish,jmand p are recommended for test.

5.4.2 Under dynamic conditions

Table 5.2: Peer ranking example under dynamic conditions

# of interactions ~ Recommended peers  Result of completion o P p1 P2
Initial status - - <0, 0> (1) <0, 0> (1) <0,0> (1)
1 Po, P1 Success <1,0>(1) <01 <0,0> (1)
2 Po, P2 Success <2761 <1,0> (1) <1,0> (1)
3 p1, P2 Failure <2,0> (1) <1,1>(2) <2
4 Po, P1 Success <3,0> (1) <2,1>(2) <=2
5 Po, P1 Failure <+ <2,2>(2) <1,1> (1)
6 P2, P1 Success <3,1>(1) <3,2>(2) <21
7 Po, P1 Success <4,1> (1) <4,2>(2) <21
8 Po, P1 Failure <422 <4,3> (3) <2,1> (1)
9 P, Success <4,2>(2) <5,3>(3) <3+
10 . P1 Failure <4,3>(2) <5,4>(3) <3,1>(1)
For test B, Po 3/4=075(2) 4/5=08(3) 1/3=0.33(1)
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In this example, 10 interactions are also applied for threerpof g, pr and p. We inten-
tionally made one the three peers be unavailable randon@gct interaction (represented as
strikethrough on a peer).

For the 6th interaction,and p are recommended although pas a higher ranking than p
because gis unavailable. Absence of a peer at each interaction sftbet rank distribution
of peers. Different peers from the static example (Tabl$ fBrnhlly can be members of an
ensemble.

5.5 Termination condition

Typically we can set when an interaction needs to finish or sy interactions are needed
to get a good ensemble with the following two methods.

5.5.1 Number of interactions

To set the number of interactions is a static approach. Ceattipn is terminated after the fixed
number of interactions. We can stop the convergence at tiné we want. J-model, however,
might not be sufficiently converged at that point.

5.5.2 Performance metric criterion

We can set an expected performance value on a performande.riet example, if we expect

that J-model should give 80% accuracy, we wait until J-megekdiction converges to 80%

accuracy over an appropriate number of interactions. Wineengemble at each interaction
reaches the expected value, interaction finishes. We mathgeixpected performance with
this method, but if the expected value is too strict then dehanight never converge.
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Chapter 6

Interaction models for classification

6.1 Introduction

This chapter describes how lightweight coordination dals L CC) scripts interaction models
(IMs) for an open environment and shows examples for diffeif@ms of classification.

Definition 6.1. Closed simple interaction model

a( ensemble_classifier( TestExanmple, Peers, Result ), E) ::
a( coordinator( TestExanple, Peers, Answers ), R) then
null <- vote( Answers, Result )

a( coordinator( TestExanple, Peers, Answers ), R) ::

(

ask( TestExanple ) => a( classifier, C) <- Peers =[ C| RestPeers ] then

answer ( Answer ) <= a( classifier, C) then

a( coordinator( TestExanple, RestPeers, Answers ), R) <- Answers = [ Answer | RestAnswers ]

)

or
null <- Peers =[]

a( classifier, C) ::

ask( TestExanple ) <= a( coordinator( TestExanple, Peers, Answers ), R) then

answer ( Answer ) => a( coordinator( TestExanple, Peers, Answers ), R) <-

predi ct( TestExanple, Answer )

Definition[6.1 is a very simple form of interaction model farsemble classification. The IM
has three rolesensenbl e_cl assi fier (E), coordi nat or (R) andcl assifier (C). The en-
semble classifier gets prediction answeyss(wer s) for a test exampleTest Exanpl e) from
the coordinator and calculates the voted ans\es|( t ) from the prediction answers. The

coordinator recursively asks classifiePedr s) to get predicted answers for the test example
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from them. A classifier takes a message that is a request ticpen answer from the co-
ordinator. Thepredi ct constraint predicts an answer on the peer acting as clasaifiethe
classifier sends back the answer message to the coordimaisrinteraction model is written
using LCC, considers the classifiers as services and ruse #sdecentralised processes. This
interaction model, however, is actually the same as a toaudit ensemble method as far as its
behaviour is concerned. Participating classifiers are faatlall the predicted answers from
them are just simply aggregated for the ensembile.

Definition 6.2. Closed complex interaction model

a( ensemble_classifier( TestExanple, Peers, S, T, Result ), E) ::
a( meta_coordinator( TestExanple, S, T, Peers, Answers ), M) then
null <- vote( Answers, Result )

a( meta_coordinator( TestExanple, S, T, Peers, Answers ), M) then

(
a( coordinator( TestExanple, PPeers, PAnswers ), R) <-

( S>0 and pick_peers( T, Peers, PPeers, RestPeers ) ) then
a( meta_coordinator( TestExanple, S1, T, RestPeers, Answers ), M) <-
Slis S- 1 and vote( PAnswers, Result ) and Answers = [ Result | RestAnswers ]

)
or
null <- S=0

a( coordinator( TestExanple, Peers, Answers ), R) ::

(

ask( TestExanple ) => a( classifier, C) <- Peers = [ C| RestPeers ] then

answer ( Answer ) <= a( classifier, C) then

a( coordinator( TestExanple, RestPeers, Answers ), R) <- Answers = [ Answer | RestAnswers ]

)

or
null <- Peers =[]

a( classifier, C) ::
ask( TestExanple ) <= a( coordinator(TestExanple, Peers, Answers ), R) then
answer ( Answer ) => a( coordinator( TestExanple, Peers, Answers ), R) <-
predi ct( TestExanple, Answer )
We can design a more complex coordination interaction toctbsed simple IM of Defini-
tion[6.1. LCC can programme complex interaction modelsdhatuned at specific coordina-
tion strategies or for particular problem domains. Defimib.2 shows an example of a more

complex interaction model.

The IM defines four rolesE, net a_coor di nat or (M, RandC. The ensemble classifier role
here is a slightly modified version of E in the closed simpledkdmple. The meta coordinator
which is now introduced is for more complex coordination laissifiers.R andC are the same
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ones as in the closed simple IM example.

The ensemble classifier passes the sequence to the metanatmrdret a_coor di nat or (
TestExanple, S, T, Peers, Answers ), M)) instead of passing it to the coordinat&r.
is a parameter to set the number of voters. Each voter aggeedgassifier’s predictions inde-
pendently.T is the number of classifiers that give back prediction ansuea voter. Theot e
constraint of the ensemble classifier aggregates the votgeas of the voters dfl

The meta coordinator picks classifiers ¢k_peers( T, Peers, PPeers, RestPeers ))
and passes the sequence to the coordinagtmswer s in the meta coordinator is the collec-
tion of voted answers from the coordinator with the pickeasslfiers.

<Simple IM> <Complex IM>

Peers Peers

Meta
Coordinator coordinator Coordinator
al
) G

Figure 6.1: Simple and complex interaction models

Figure[6.1 describes how the simple IM and the complex IM divate classifiers. In the
simple IM, the coordinator gets answers from all the peedsvartes the answers. In the com-
plex IM, the coordinator gets answers franpicked peers and votes the answetsnes. The
meta coordinator geSvoted answers. In the figur€js 2 andSis 2. [p1, p2] is a set of picked
peers andps, p4] is the other set of picked peers. One voted ansagri$ from [p1, pz] and
the other &) is from [ps, p4].

Here we need to pay attention to those two IMs. They fix thaitigipating classifiersReer s)
when they are deployed at design time. This means that whaskitiers will participate for the
ensemble has already been pre-determined. These IMs aelosed classifier environment.
Instead we need other forms of interaction model that camdooate classifiers in an open
environment. In the following section, we suggest intecactnodels for an open environments.
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6.2 Open interaction models

6.2.1 Simple model (IM1)

In the open classifier environment, participating classifage not fixed. So we cannot determ-
ine which classifiers participate for ensemble when an IMeployed. We can only set the
number of classifiers which will be the members of an enserolalesifier. Actual member
classifiers are determined as they interact in the IM at et

Definition 6.3. ensemblelassifier role and choospeers constraint

a( ensemble_classifier( TestExample, N, Result, Peers ), E) ::
a( coordinator( TestExanple, Peers, Answers ), R) <- choose_peers( N, Peers ) then
null <- vote( Answers, Result )

The ensenbl e_cl assi fier role in Definition[6.8 takes only the number of classifiek (
as its parameter instead of the member classifiers thenss@eer s in the closed interac-

tion models). Actual peers are determined for their rolesH®g/choose peer s constraint.
choose_peer s recommends N peers to the coordinator.

Definition 6.4. Open simple interaction model without peer ranking

a( ensemble_classifier( TestExample, N, Result, Peers ), E) ::
a( coordinator( TestExanple, Peers, Answers ), R) <- choose_peers( N, Peers ) then
null <- vote( Answers, Result )

a( coordinator( TestExanple, Peers, Answers ), R) ::

(
ask( TestExanple ) => a( classifier, C) <- Peers =[ C| RestPeers ] then

answer ( Answer ) <= a( classifier, C) then
a( coordinator( TestExanple, RestPeers, Answers ), R) <- Answers = [ Answer | RestAnswers ]

)

or
null <- Peers =[]

a( classifier, C) ::
ask( TestExanple ) <= a( coordinator( TestExanple, Peers, Answers ), R) then
answer ( Answer ) => a( coordinator( TestExanple, Peers, Answers ), R) <-
predi ct( TestExanple, Answer )
Definition[6.4 is an open interaction model example. It idelsensenbl e_cl assi fi er role of
Definition[6.3. The coordinator and classifier roles are #imesas with the closed interaction

models.

Definition 6.5. peerranker role
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a( peer_ranker( QueryExanple, Qdass, N), K) ::

a( ensenbl e_classifier( QueryExanple, N, Result, Peers ), E) then

null < update( Result, QClass, Peers )
We have designed an open interaction model that, throudigheameter, selecipeers using
thechoose _peer s constraint. This selection, however, does not guarantgehh chosen peers
are appropriate members for the ensemble. The ensembéifielaBom the chosen classifiers
may not give adequate classification performance beczlusese _peers does not have any
criterion upon which peers to choose. Therefore we need te®rizoose peers get peers
based on the recommendation of the peer ranking service eAswe shown in Chapter 5, the
peer ranking algorithm iteratively assigns a measure aftegjpn to members of the ensemble.

Thepeer _ranker role in Definition 6.5 reports the prediction results of entty chosen peers
to the peer ranking service. A query exampQeer yExanpl e) is a query for which each
chosen peer answers with a prediction of its class laf@lass is the actual or correct class
label for the queryN is the number of peers to be chosen as memlgars: r anker passes
its sequence tensenbl e_cl assi fi er with Quer yExanpl e and gets a voted answeétegul t )
and the chosen peerBegr s). updat e constraint compares the predicted answreis(l t)
with the correct classQCl ass) and reports the comparison results to the peer rankingcserv
peer _ranker is an evaluator that evaluates the prediction from the ehkeabassifier. Iterat-
ive calling of peer _r anker updates the reputation of the classifiers in the open envieon.
Consequentlghoose_peer s can recommend more appropriate peers.

Definition 6.6. Open simple interaction model with peer ranking (IM1)

a( ensemble_classifier( TestExample, N, Result, Peers ), E) ::
a( coordinator( TestExanple, Peers, Answers ), R) <- choose_peers( N, Peers ) then
null <- vote( Answers, Result )

a( coordinator( TestExanple, Peers, Answers ), R) ::

(

ask( TestExanple ) => a( classifier, C) <- Peers = [ C| RestPeers ] then
answer ( Answer ) <= a( classifier, C) then
a( coordinator( TestExanple, RestPeers, Answers ), R) <- Answers = [ Answer | RestAnswers ]

)

or
null <- Peers =[]

a( classifier, C) ::
ask( TestExanple ) <= a( coordinator( TestExanple, Peers, Answers ), R) then
answer ( Answer ) => a( coordinator( TestExanple, Peers, Answers ), R) <-

predi ct( TestExanple, Answer )

a( peer_ranker( QueryExanple, Qdass, N), K) ::
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a( ensenble_classifier( QueryExample, N, Result, Peers ), E) then
null <- update( Result, QO ass, Peers )

Definition[6.6 shows all the roles that we introduced in tlgist®n in one place.

6.2.2 Complex model (IM2)

We do not need to be limited to a simple model. We can desigeroattteraction models
that are tuned to diverse coordination strategies or paaticdomains in the open classifier
environment.

Definition 6.7. Open complex interaction model 1 (IM2)

a( ensenmble_classifier( TestExample, N, S, T, Result, Peers ), E) ::
a( meta_coordinator( TestExanple, S, T, Peers, Answers ), M) <- choose_peers( N, Peers ) then
null <- vote( Answers, Result )

a( meta_coordinator( TestExanple, S, T, Peers, Answers ), M) then
(
a( coordinator( TestExanple, PPeers, PAnswers ), R) <-
( S>0 and pick_peers( T, Peers, PPeers, RestPeers ) ) then
a( nmeta_coordinator( TestExanple, S1, T, RestPeers, Answers ), M) <-
S1is S- 1 and vote( PAnswers, Result ) and Answers = [ Result | RestAnswers ]
)
or
null <- S=0

a( coordinator( TestExanple, Peers, Answers ), R) ::
(
ask( TestExanple ) => a( classifier, C) <- Peers =[ C| RestPeers ] then
answer ( Answer ) <= a( classifier, C) then
a( coordinator( TestExanple, RestPeers, Answers ), R) <- Answers = [ Answer | RestAnswers ]
)
or
null <- Peers =[]

a( classifier, C) ::
ask( TestExanple ) <= a( coordinator( TestExanple, Peers, Answers ), R) then
answer ( Answer ) => a( coordinator( TestExanple, Peers, Answers ), R) <-
predi ct( TestExanple, Answer )

a( peer_ranker( QueryExanple, Qass, N), K) ::

a( ensenble_classifier( QueryExanple, N, Result, Peers ), E) then

null <- update( Result, Qdass, Peers )
Definition[6.7 is an example of open complex IM. It has adopkedret a_coor di nat or role
andS andT parameters from the open simple IM in the same way that treedlcomplex IM

adopted those elements. The detailsetfa_coor di nat or, S andT are the same as with the
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closed complex IM’s.

6.2.3 Another complex model (IM3)

Definition 6.8. Open complex interaction model 2 (IM3)

a( ensemble_classifier( TestExample, N, Ts, Result, Peers ), E) ::
a( nmeta_coordinator( TestExanple, Ts, Peers, Answers ), M) <- choose_peers( N, Peers ) then
null <- vote( Answers, Result )

a( meta_coordinator( TestExanple, Ts, Peers, Answers ), M) then

(
a( coordinator( TestExanple, PPeers, PAnswers ), R) <-

((Ts =[ T| RestTs ] and pick_peers( T, Peers, PPeers, RestPeers ) ) then
a( meta_coordinator( TestExanple, RestTs, RestPeers, Answers ), M) <-
vote( PAnswers, Result ) and Answers = [ Result | RestAnswers ]

)

or
null < Ts =[]

Definition[6.8 is another example of an open complex IM ol#dithrough modification of
IM2. Ts is a list of numbers. Each number indicates how many classifvdl be picked by
pi ck_peers. The coordinator gets answers from different number ofsii@ss from theTs
set. This gives a different weight to each classifier's priain.

6.2.4 Model for specificity metric (IM4)

Definition 6.9. peerranker role for specificity metric (IM4)

a( peer_ranker( QueryExanple, QCass, N), K) ::
a( ensenble_classifier( QueryExanple, N, Result, Peers ), E) then
(

/1 case of true negative

null <- QCass = false and Result = false then
null <- update( false, false, Peers)

)

or

(

Il case of false positive

null <- QCass = false and Result = true then
null <- update( false, true, Peers)

)
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Definition[6.9 is a specified interaction model for the parfance metric of specificity. The
specificity metric is defined in the sectionof 7.612.4.

peer ranker reflects the prediction result froemsenbl e cl assi fi er differently based on
the predicted clasQC ass) and the actual clas®4sul t). In the case of true negatives, it
updates the result positively. In the case of false posfivteupdates the result negatively.
For other cases, it does not report the results to the pekingaeervice because the value of
specificity is determined only by the number of true negateved false positives following its
definition.

6.2.5 Model for high true positive rate and low false positiv e rate metrics

(IM5)

Definition 6.10. peerranker role for high TPR and low FPR metrics (IM5)

a( peer_ranker( QueryExanple, Qdass, N), K) ::
a( ensenble_classifier( QueryExanple, N, Result, Peers ), E) then
(

/1 case of true positive
null <- QCass =true and Result = true then
null <- update( true, true, Peers )

)

or

(

/1l case of false positive
null <- QC ass = false and Result = true then
null <- update( false, true, Peers )
)
Definition[6.10 is for the higher true positive rate (TPR) #mellower false positive rate (FPR).

In the sectio 7.7.214, TPR and FPR are defined.

peer _ranker updates the prediction result froemsenbl e_cl assi fi er positively when the
actual class is the positive and the predicted class is Als@ositive (true positives). On
the other hand, it updates the result negatively when theahctass is the negative and the
predicted class is the positive (false positives). Foriothses, it does not reflect the prediction
results.

6.2.6 Model with time constraint (IM6)
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Definition 6.11. peerranker role for time cost (IM6)

a( peer_ranker( QueryExanple, QClass, Time, N), K) ::
null <- get_time( T1) then
a( ensenble_classifier( QueryExanple, N, Result, Peers ), E) then
null <- get_time( T2 ) then

(
null < T2 - T1 =< Tine then

null <- update( Result, QO ass, Peers )

)

or

null <- update( true, false, Peers)
Prediction performance is the most fundamental evaluatietric on machine learning includ-
ing ensemble learning. In addition to this, time cost is alsseful performance criterion.

Definition[6.11 is an open interaction model for time cost &ywriting thepeer _r anker role.

Ti ne is the expected time in which we want amsenbl e _cl assi fi er to give a prediction an-
swer. If the actual time cost of aansenbl e_cl assi fi er is higher than the expected cost,
peer ranker always updates the reputation Béer s negatively. When the actual cost is
lower,peer ranker applies the same constraintugpfdat e( Result, QCl ass, Peers ) that

is used in all the other IMs abovéesul t is a voted answer from the chosen pedez( s)
andQC ass is the actual class.

6.3 Summary
All the open IMs shown so far are only some of the examples lwban be written using LCC.

IMs can be freely built by modifying existing roles, addingwroles, changing parameters,
implementing other constraints or the other language elésrad LCC.
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Chapter 7

Experiments

7.1 General methodology

7.1.1 Binary class data

We only consider binary class data sets for our experimeBisary class data is easier to
measure and analyse than data for multi-class problemsddii@n, some machine learning
algorithms such as SVM [23] and boosting cannot easily admeulti-class problems.

7.1.2 Training, query and test examples

We split each data set into three sets of examples for ti@imjoery and test. Training and
test examples have the same role as in traditional machameihg). Query examples are for
the peer ranking interaction that allows each peer to askes®putation of other peers. In
machine learning experiments, training and test examplkedypically split by about a 9:1
ratio. Learners are trained sufficiently before testing.e@uexamples also have the same
relationship for splitting. Learners needs to be traindfiGgently in querying. We separated
each whole data set into training, query and test exampl®sh:0.5 ratio respectively.

7.1.3 Base classifiers for pool preparation

We used 8 machine learning algorithms as templates for geéngmpool members (Table T.1).
Each pool member needs to have a different training statusidersity. We achieved this by
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setting different initial points on learning with randommber seeds. The 8 learner templates
are all ensemble learning algorithms. We set the number $¥ bkassifiers as one for all of
them (original default: 10). The templates are then no lorgesemble methods (they are
simple learners as J-model takes the responsibility fordinating the ensemble).

Through the two modifications, we can fairly compare J-msdsrformance with other en-
semble methods. Detailed learning parameters are alsoiltsdén Tabld 7.11. Weka [44], a
machine learning framework, was used for pool preparation.

7.1.4 Static and dynamic conditions

J-model can do its interaction both under static and dynaericice conditions. Under static
conditions, the classifier pool status does not change glumteractions. Dynamic conditions
permit several statuses such as classifier attending,nmgissiupdating. We set 25% randomly
selected classifiers from the pool to miss in every inteoactor our experiments. Making a
portion of classifiers miss is easier for conducting expenta under a controlled condition
than taking attendance or update of classifiers. In additiossing classifiers can give a more
direct effect for dynamicity of classifiers. The portion &% was estimated as a reasonable
level of this effect (this being a reasonably challenginghber of missing classifiers that we
would hope not to exceed in practice).

7.2 System implementation for experiments

We explain how our entire implemented system is assembggethier for experiments from a
classifier pool to an LCC interpreter.

Peer ranking algorithm
for query interaction

A result

generate_peer_pool()

4
Y
Weka Controller LCC
references_for_peers .
framework - interpreter

references_to_supporting_peers
interaction_model

query_example

Figure 7.1: A system implementation for query interaction
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Figure 7.1 shows the system implementation. The systenmpaosed of three components; the
Weka machine learning framework, a controller and an LCErpreter. The Weka framework
is being developed at the University of Waikato and an LC@rmteter named Llﬂ]is being
developed by Nikolaos Chatzinikolaou. Both of the compas@ne implemented with Java
programming language. We implemented a controller to obttie learning process and wrap
the two other components and JRuby programming languageusess to call Java classes
natively. The peer ranking algorithm is an object in the coligr component.

For query interactions, initially, the controller calls W#&eto make Weka to generate a pool
of classifiers. Weka returns references to generated pedhe tthe peer ranking algorithm

through the controller. The controller calls the LCC intetpr with parameters of references
to supporting peers (recommended peers), the definitiom afitaraction model and a query
example. The LCC interpreter returns a prediction resuth&controller and the controller

applies the result to the peer ranking algorithm. Calling tlCC interpreter occurs multiple

times according to the number of interactions we set.

Peer ranking algorithm
for test interaction

result

ﬁ

Controller LcC
interpreter

A A A

references_to_supporting_peers

interaction_model

test_example

Figure 7.2: A system implementation for test interaction

Figure[7.2 shows how the system works for a test interactieor. tests, the controller and
the LCC interpreter are used. The controller calls the LC@rpreter with parameters of
references to recommended peers, the definition of an atienamodel and a test example.
The LCC interpreter gives a prediction result. We calls ti@&CLinterpreter multiple times
according to the number of test examples we have.

http://sourceforge.net/projects/lij/
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7.3 Peer separation from the pool

7.3.1 Introduction

We wish to know the extent to which better peers are sepafededthe other peers in the
pool by interactions. Better peers are more appropriate érespecific interaction results.
The experiment of peer separation was accomplished widethub experiments. First, we
traced how many selections each peer get over interactiaieisection 7.3.3.1. Second, we
confirmed that more selected peers are higher ranked onée isettion 7.3.312. The peer
ranking algorithm is designed to give more weight to betessrp. Third, we investigated how
much the gap is between higher ranked ones of 20% and lowkedaones of 80% in the
sectior 7.3.3]3. Experiments are executed under the statititions and dynamic conditions
described in Sectidn 7.1.4.

7.3.2 Experimental setup

7.3.2.1 Data sets

Table 7.2: breast-cancer, kr-vs-kp and labor data sets

Name Instances  Attributes  Categorical Numerical Missing Classes Class ratio (majority
(symbolic) attributes values class %)
attributes
breast-cancer 286 9 9 0 Yes 2 201:85 (70.28)
kr-vs-kp 3196 36 36 0 No 2 1669:1527 (55.22)
labor 57 16 8 8 Yes 2 20:37 (64.91)

We showed the result with the three standard data sets ie[fabl Each data set varies from
the other standard benchmark data sets according to theriggpgiven in the table.

7.3.2.2 Pool size and ensemble size

We experimented with pool sizes of 8, 16 and 32 (these beimgsentative of the range of
pool sizes we might expect to find in practice). Ensemblessaze determined following the
usual ratio of higher ranked peers which is up to 20%. So tiserable size of 2 in the pool
size of 8; 2 and 3in 16; 2, 3 and 6 in 32 were chosen.
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7.3.2.3 Choice of IM

Interaction model 1 (Definition 6.6) was used.

7.3.2.4 Number of interactions

We ran each experiment for 300 interactions (this provigthgt we assumed to be a reasonable
length of time in which to construct ensembles via inteagti

7.3.3 Results under static conditions

7.3.3.1 Number of peers being selected over interactions

<Pool size 16, Ensemble size 2> <Pool size 16, Ensemble size 3>

<Pool size 8, Ensemble size 2>

# of being selected

Figure 7.3: Number of peers being selected over interactions with breast-cancer under static

conditions
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<Pool size 8, Ensemble size 2> <Pool size 16, Ensemble size 2> <Pool size 16, Ensemble size 3>

#0f being selected
#0f being selected

#of being selected
#0f being selected

Figure 7.4: Number of peers being selected over interactions with kr-vs-kp under static condi-

tions

<Pool size 8, Ensemble size 2> <Pool size 16, Ensemble size 2> <Pool size 16, Ensemble size 3>

#0f being selected
#0f being selected

<Pool size 32, Ensembe size 2> <Pool size 32, Ensemble size 3> <Pool size 32, Ensemble size 6>

# of being selected

Figure 7.5: Number of peers being selected over interactions with labor under static conditions

Figured 7Z.B " 7]4 arld 7.5 show the change of peers on how mawpatk selected by the peer
ranking algorithm over interactions under static condisio Different coloured lines in these
graphs are different peers. Each data set showed somewfeatidi separation behaviours.

In breast-cancer, the amount of separation between pe#he garly stage remains relatively
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constant with gaps between the peers becoming gradualfjebmyer more interactions. kr-
vs-kp showed a weeding-out of peers. While the interactrongeds, some peers are cut from
the selection (these are the horizontal lines in the graplagpr showed an extreme case of
separation. More selected peers in the early stage supdréiss other peers. This means that
only the more selected ones are selected continually arathlee ones do not have a chance to
be selected. This separation among the peers is fixed at @ &dyystage.

7.3.3.2 Score over interactions

In the previous sectidn 7.3.3.1, we gave the total numbeeefgbeing selected on each peer
without considering plus-scored and minus-scored cowegarstely. In this section, we con-
sider these values separately by calculating valugdus counts— minuscounts

Figure 7.6: Score over interactions with breast-cancer under static conditions
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<Pool size 8, Ensemble size 2> <Pool size 16, Ensemble size 2>

<Pool size 16, Ensemble size 3>

Figure 7.7: Score over interactions with kr-vs-kp under static conditions

<Pool size 8, Ensemble size 2> <Pool size 16, Ensemble size 2> <Pool size 16, Ensemble size 3>

Figure 7.8: Score over interactions with labor under static conditions

The results in all the data sets above show that more frelyusziected peers have more plus
scores than the others. The ranking order of each peer inghee§ here completely matchs
with the orders in Figurie 71.B, 7.4 and17.5 above. This conftrasmore selected peers actually
get higher ranking.
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7.3.3.3 Average scores of higher 20% and lower 80% scored pee  rs over interactions

This experiment explores how much the gap changes betwegberscored peers and lower
scored peers over interactions.

<Pool size 8, Ensemble size 2> <Pool size 16, Ensemble size 2> <Pool size 16, Ensemble size 3>

o 50 100 150 200 250 300 o 50 100 150 200 250 300 o 50 100 150 200 250 300
Iteractions Iteractions Iteractions
——  Higher scored peers ——  Lower scored peers ——  Difference between averages

Figure 7.9: Average scores interactions with breast-cancer under static conditions

<Pool size 8, Ensemble size 2> <Pool size 16, Ensembe size 2> <Pool size 16, Ensemble size 3>

Average score
Average score

Average score

——  Higher scored peers ——  Lower scored peers ——  Difference between averages

Figure 7.10: Average scores interactions with kr-vs-kp under static conditions
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——  Higher scored peers ——  Lower scored peers ——  Difference between averages

Figure 7.11: Average scores interactions with labor under static conditions

In breast-cancer, the blue line (the average score of 20%ehignked peers) and the red line
(the average score of 80% lower ranked peers) ascend witbasiog interactions. The gap
between them gradually increases at the same time. We cdhatdbe green line (difference
between averages) ascends over interactions. The gradigxet green line, however, becomes
flatter after some point during interaction. In kr-vs-kpe thlue and red lines also ascend with
increasing interactions. However the gradient of the bhuelbecomes steeper after some point
while the red line becomes flatter. The gap becomes biggerioteractions. labor showed
an extreme case. 80% lower scored peers hardly got any s@i¥#shigher scored peers got

almost all scores.
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7.3.4 Results under dynamic conditions

7.3.4.1 Number of peers being selected over interactions

<Pool size 8, Ensemble size 2> <Pool size 16, Ensemble size 2> <Pool size 16, Ensemble size 3>

#of being selected
[

1

1

1

[
#of being selected

8
\\LL[
#of being selected

#of being selected

Figure 7.12: Number of peers being selected over interactions with breast-cancer under dynamic

conditions

<Pool size 8, Ensemble size 2> <Pool size 16, Ensemble size 2> <Pool size 16, Ensemble size 3>

#0f being selected
#0f being selected

# of being selected

# of being selected

Figure 7.13: Number of peers being selected over interactions with kr-vs-kp under dynamic

conditions
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Figure 7.14: Number of peers being selected over interactions with labor under dynamic condi-

tions

Satisfactory peer separation occurred all over the daseasekvarious pool/ensemble sizes like
the separation under the static condition. It means thabdeis robust for peer separation
under dynamic conditions.

Additionally, there is a difference compared with the réswlf the static conditions. As re-
marked in the cases of kr-vs-kp and labor, the lower scoretsghat were certainly suppressed
under static conditions shown in Figlre]7.4 7.5 (theyrhiach lower scores than the higher
scored peers had) are less suppressed under dynamic coaditiey have more opportunity to
get scores). This shows that the higher scored peers havepesrtunity to get scores under

dynamic conditions as well.
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7.3.4.2 Score over interactions

<Pool size 8, Ensemble size 2> <Pool size 16, Ensemble size 2>

<Pool size 16, Ensemble size 3>

score
Score
Score

150
Interactions

150 150
Interactions. Interactions.

<Pool size 32, Ensemble size 2> <Pool size 32, Ensemble size 3> <Pool size 32, Ensemble size 6>

score
Score
&

score

150 150 150
Iteractions Interactions. Iteractions

Figure 7.15: Score over interactions with breast-cancer under dynamic conditions

<Pool size 8, Ensemble size 2> <Pool size 16, Ensemble size 2> <Pool size 16, Ensemble size 3>

Score
score
Score

200 250 300 o 50 100 150 200 250 300
Interactions.

150 150
Ineractions. Iteractions.

<Pool size 32, Ensemble size 2> <Pool size 32, Ensemble size 3>

<Pool size 32, Ensemble size 6>

score
Score
Score

200 250 300 (] 50 100 200 250 300 (] 50 100 200 250 300

150
Iteractions.

150
Ineractions

150
Ineractions

Figure 7.16: Score over interactions with kr-vs-kp under dynamic conditions

70



<Pool size 8, Ensemble size 2> <Pool size 16, Ensemble size 2> <Pool size 16, Ensemble size 3>

Figure 7.17: Score over interactions with labor under dynamic conditions

The ranking orders matched with the peer orders shown ind®eé£i3.4.1.

7.3.4.3 Average scores of higher 20% and lower 80% scored pee rs over interactions

<Pool size 8, Ensemble size 2> <Pool size 16, Ensemble size 2> <Pool size 16, Ensemble size 3>

——  Higher scored peers ——  Lower scored peers ——  Difference between averages

Figure 7.18: Average scores interactions with breast-cancer under dynamic conditions
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<Pool size 8, Ensemble size 2> <Pool size 16, Ensemble size 2> <Pool size 16, Ensemble size 3>

Average score
AN

Average score
N

&0

150 150 150
Ineractions Interactions. Ineractions

<Pool size 32, Ensemble size 2> <Pool size 32, Ensemble size 3> <Pool size 32, Ensemble size 6>

Average score
Average

150 150 150
Interactions Interactions Ineractions

——  Higher scored peers ——  Lower scored peers ——  Difference between averages

Figure 7.19: Average scores interactions with kr-vs-kp under dynamic conditions

<Pool size 8, Ensemble size 2> <Pool size 16, Ensemble size 2> <Pool size 16, Ensemble size 3>
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<Pool size 32, Ensemble size 2> <Poal size 32, Ensemble size 3 <Pool size 32, Ensemble size 6>

Average score
Average score
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150 150
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——  Higher scored peers ——  Lower scored peers ——  Difference between averages

Figure 7.20: Average scores interactions with labor under dynamic conditions

Overall, the gradients of increase are less sharp than #uiemts of the static results. The
difference gaps, however, increased.
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7.4 Peer convergence to optima

7.4.1 Introduction

We showed that the participating peers are separated bagbéeioscores over interactions in
Section 7.B. The higher scored ones compose the ensembiieis section, we investigated
how common higher scored peers would be selected aftertegptals using different initial
selections of peers. This confirms that converged peer gr@apal or global optimas) can be
obtained from different starting points.

7.4.2 Experimental setup

We fixed the number of interactions at 200 (which we expeaduktenough for convergence).
This value is based on the results of the number of peers lsalegted and score over in-
teractions in Sectioh_7.3. In those results, the separditgmome mature at least after 200

interactions.

We set 20, 40, 60, 80 and 100 trials for repetition. Each stiafts from different peers which
were randomly chosen.
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7.4.3 Results under static conditions

<Pool size 8, Ensemble size 2>

<Pool size 16, Ensemble size 2> <Pool size 16, Ensemble size 3>
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Figure 7.21: Number of peers being converged at 200 interactions with breast-cancer under

static conditions

<Pool size 8, Ensemble size 2>
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Figure 7.22: Number of peers being converged at 200 interactions with kr-vs-kp under static

conditions
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Figure 7.23: Number of peers being converged at 200 interactions with labor under static con-

ditions

Each peer had a different frequency of being converged. ¥ample, in the results of breast-
cancer; pool size 8; ensemble size 2, peers 2, 3, 4, 6 and 7maeefrequently converged
than the other peers on 20 trials. On 100 trials, peers 3, @ &indlly got almost all selections.

The results showed two features of the convergence of peers.

e Fixation - The peers who have greater frequency on a smalbeuwf trials relatively
match with the peers who have greater frequency on a largabeuof trials. This
means that more frequently converged peers on a small nuofibeals might also be
more frequently converged ones on a larger number of tir@sexample, in Figurle 7.23,
peer 5 and 7 show this tendency.

e Acceleration - The number being converged is acceleratddmaore trials. Those peers
that have more frequency get more frequency.
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7.4.4 Results under dynamic conditions

<Pool size 8, Ensemble size 2>

<Pool size 16, Ensemble size 2> <Pool size 16, Ensemble size 3>
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Figure 7.24: Number of peers being converged at 200 interactions with breast-cancer under

dynamic conditions
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Figure 7.25: Number of peers being converged at 200 interactions with kr-vs-kp under dynamic

conditions
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8, Ensemble size 2> <Pool size 16, Ensemble size 2> <Pool size 16, Ensemble size 3>

% s} 1
I
1 15k R 20l 1
| L L
. . e . AL . J el bl L, 1

[l 20trals [l 40trials [ 60trials [0 8otrials [0 100 trials

Figure 7.26: Number of peers being converged at 200 interactions with labor under dynamic

conditions

Under dynamic conditions, the results of convergence sdhe same features as the results
under static conditions.

7.45 Conclusion

The experiment on the peer separation showed that J-mauilades peers which provide the
higher success rate than the other peers from the peer paul taking roles in the interac-

tion model of of Definitior 6.6. The other experiment on peanvergence showed that the
separated peers persistently converge to optima on séexials

7.5 Learning curves

7.5.1 Introduction

Learning curves help our understanding of a connectiondmtvan ensemble of selected peers
and its ability for classification. A learning curve desesbwhat classification performance
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an ensemble gives over interactions. Through performamaege in a learning curve, we can
trace the classification ability of an ensemble.

7.5.2 Experimental setup and methods

We composed an ensemble classifier of highly scored peensticg to each ensemble size.

We traced the classification ability of an ensemble over 6@6ractions. 600 interactions
are sufficient to enable J-model to get to a stable phase. Vésured values in every 10
interactions.

We showed the results about 10 sub-data sets for each exgerifsub data set is one of the
10 folded data sets of the original data set.

We performed these experiments of getting learning curmelgiustatic conditions. As shown
in the previous experiments in Section|7.3, peers in a pooéweparated well into higher
scored and lower scored peers under both of static and dgr@mnditions and higher scored
peers also converged to global optimas under both of theitbomslin Sectior 74. For this
reason, experiments under static conditions remove the foeextra experiments under dy-
namic conditions.

We showed representative results with three data sets aktecancer, kr-vs-kp and labor.
Among different 13 benchmark data sets, breast-cancess-kp and labor gave patterns of
a learning curve respectively.

7.5.3 Results

The results can be analysed according to several viewpointse sequences of interactions:
the initial status, the early steps, the middle and latepsand the change through them.
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7.5.3.1 breast-cancer

Accuracy (%)

Accuracy (%)

Figure 7.27: Learning curves of breast-cancer

¢ Initial - The experiment starts from random points.
e Early - There is fluctuation.

e Middle and latter - The change becomes more stable althdwegh temains fluctuation.
The fluctuation is less serious and frequent than it is in &y esteps.

e Change - It is difficult to say precisely how the accuracy éases over interactions.
There are, however, some ensembles that maintain theiehagituracies.
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7.5.3.2 kr-vs-kp

Accuracy (%)
Accuracy (%)
Accuracy (%)

Accuracy (%)
Accuracy (%)
Accuracy (%)

Figure 7.28: Learning curves of kr-vs-kp

Initial - The experiment starts from random points.

Early - There is serious fluctuation.

Middle and latter - The change becomes stable.

Change - The accuracy increases over interactions and aith@ensembles keep their
higher accuracies.
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7.5.3.3 labor

Figure 7.29: Learning curves of labor

¢ Initial - The experiment starts from random points.
e Early - There is fluctuation.
e Middle and latter - The change becomes stable or circulating

e Change - Many ensembles keep their higher accuracies anelesssembles show cycle
changes.
7.5.4 Conclusion

The accuracy changes showed somewhat different aspedliféoent data sets. But they have
common features. First, they become more stable over ctiens. Second, they retain their
higher accuracies over interactions.
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7.6 Benchmark comparisons

7.6.1 Introduction

We compared J-model’s classification performance withrotberesentative ensemble meth-

ods including AdaBoost, Bagging, Decoratel[63], LogitBof3$], RandomCommittee [58],

RandomForest[12], RandomSubSpace and RotationForgst [81

7.6.2 Experimental setup

7.6.2.1 Benchmark data sets

Table 7.3: Benchmark data sets

Index Name Instances  Attributes  Categorical Numerical Missing Classes Class ratio (majority

(symbolic) attributes values class %)
attributes

1 breast-cancer 286 9 9 0 Yes 2 201:85 (70.28)

2 breast-w 699 9 9 Yes 2 458:241 (65.52)

3 credit-a 690 15 9 6 Yes 2 307:383 (55.51)

4 credit-g 1000 20 13 7 No 2 700:300 (70.00)

5 diabetes 768 8 8 No 2 500:268 (65.10)

6 heart-statlog 270 13 0 13 No 2 150:120 (55.56)

7 hepatitis 155 19 13 6 Yes 2 32:123 (79.35)

8 ionosphere 351 34 34 0 No 2 126:225 (64.10)

9 kr-vs-kp 3196 36 36 0 No 2 1669:1527 (55.22)

10 labor 57 16 8 8 Yes 2 20:37 (64.91)

11 mushroom 8124 22 22 0 Yes 2 4208:3916 (51.80)

12 sonar 208 60 0 60 No 2 97:111 (53.37)

13 vote 435 16 16 0 Yes 267:168 (61.38)

The 13 benchmark data sets [34] were selected based on tle¢ywair their properties and

considering the size. All data sets are binary class proflem

7.6.2.2 J-model settings

Pool preparation

e Base classifiers - We generated members of the pool usintpibsfeer templates defined

in Table[7.1.
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e Pool size - We set the pool size as 64 for comparison expetgnen
Ensemble size  We set the ensemble size as 10. 10 is about 20% of the pool&ize 6

Interaction models  We used the interaction models of IM1, IM2, IM3, IM4 and IM&ided
in Chaptef®.

Number of interactions We fixed the number of interactions as 200.

7.6.2.3 The other representative algorithms

We compared J-model’s performance with other 8 traditienaemble methods including Ada-
Boost, Bagging, Decorate, LogitBoost, RandomCommittemd®@mForest, RandomSubSpace
and RotationForest. All the ensemble methods used 10 foreghsemble sizes.

7.6.2.4 Evaluation technique

10-fold cross validation We used 10-fold cross validation to generalise the anatgsiglts
to independent data sets.

Performance metrics
e Accuracy(ACC) - (TP+TN)/(P+N)
e Sensitivity or recall TP/P=TP/(TP+FN)
e Specificity -TN/N =TN/(FP+TN)

e F-measure - X %m. F-measure is a weighted average of the precision and

recall.
e Area under curve (AUC) - AUC is the area under the ROC curve.

e Time - Time cost for training and testing. Time for traininggams how much time a
model needs to be trained with a training data set. Time &ritelicates how much time
a trained model requires to classify test examples.
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P: the positives, N: the negatives

TP: true positives, FP: false positives, TN: true negatit# false negatives

Precision: TP/(TP+ FP). Precision is the fraction of retrieved instances that atevant
while recall is the fraction of relevant instances that ateeved.

ROC: receiver operating characteristic. ROC curve is algcap plot of the true positive rate
(sensitivity) vs false positive rate (1 - specificity) for m#éry classifier. ROC analysis provides
tools to select possibly optimal models and is related inectiand natural way to const/benefit
analysis of diagnostic decision making.

7.6.3 Results

Table[ 7.4 shows the comparison results for all the benchuotetik sets.

Table 7.4: Benchmark comparison results

Data set Ensemble algorithm Performance metrics
Accuracy (%) Sensitivity Specificity F-measure AUC Time fi@ining; time for test (seconds)
breast-cancer J-model (IM1) 72.095 (11.158) 0.721(0.112) 0.499 (0.151) 0.686 (0.123) .689(0.169) 6.611;0.078
J-model (IM2) 70.714 (11.901) 0.707 (0.119) 0.483 (0.162) 0.668 (0.135) .68%(0.206) -
J-model (IM3) 67.905 (11.903) 0.679 (0.119) 0.436 (0.136) 0.641 (0.121) .68D(0.158)
J-model (IM4) 67.952 (12.566) 0.679 (0.126) 0.450 (0.151) 0.642 (0.131) .63®(0.182) -
J-model (IM6) 68.048 (9.415) 0.680 (0.094) 0.425 (0.156) 0.626 (0.119) 656(0.190) 6.624;0.015
AdaBoostM1 70.283 (9.165) 0.703 (0.092) 0.544 (0.135) 0.688 (0.091) 71®(0.117) 0.218; 0.005
Bagging 68.879 (6.733) 0.689 (0.067) 0.386 (0.079) 0.634 (0.072) 649(0.119) 0.540; 0.006
Decorate 73.461 (7.370) 0.735 (0.074) 0.535 (0.108) 0.715 (0.080) 654(0.120) 1.204; 0.002
LogitBoost 72.401 (8.031) 0.724 (0.080) 0.518 (0.117) 0.700 (0.089) 694(0.119) 0.341; 0.006
RandomCommittee | 67.562 (7.770) 0.676 (0.078) 0.452 (0.102) 0.651 (0.079) 633(0.129) 0.248; 0.007
RandomSubSpace | 70.998 (3.993) 0.710 (0.040) 0.367 (0.078) 0.630 (0.058) 663(0.110) 0.184;0.016
RotationForest 73.485 (7.432) 0.735 (0.074) 0.470 (0.106) 0.694 (0.086) 669(0.120) 2.668; 0.051
RandomForest 69.286 (6.325) 0.693 (0.063) 0.486 (0.098) 0.672 (0.067) 654(0.093) 0.090; 0.002
breast-w J-model (IM1) 96.572 (3.790) 0.966 (0.038) 0.962 (0.057) 0.966 (0.038) 999(0.008) 3.859; 0.031
J-model (IM2) 96.572 (3.332) 0.966 (0.033) 0.958 (0.056) 0.965 (0.034) 99)(0.004) -
J-model (IM3) 96.286 (4.247) 0.963 (0.042) 0.953 (0.066) 0.963 (0.043) 999)(0.007)
J-model (IM4) 96.857 (3.928) 0.968 (0.039) 0.960 (0.056) 0.968 (0.040) 99(0.006) -
J-model (IM6) 95.714 (4.651) 0.957 (0.046) 0.945 (0.066) 0.957 (0.047) 993(0.012) 4.378; 0.000
AdaBoost 94.849 (2.943) 0.948 (0.029) 0.936 (0.046) 0.948 (0.030) 989(0.009) 0.232;0.001
Bagging 95.563 (2.963) 0.956 (0.030) 0.953 (0.041) 0.956 (0.030) 98®(0.011) 0.319; 0.002
Decorate 95.704 (3.733) 0.957 (0.037) 0.946 (0.050) 0.957 (0.038) 99®(0.010) 3.195; 0.001
LogitBoost 95.708 (2.020) 0.957 (0.020) 0.946 (0.026) 0.957 (0.020) 99D(0.007) 0.345; 0.000
RandomCommittee |  95.994 (2.540) 0.960 (0.025) 0.951 (0.047) 0.960 (0.026) 98®(0.013) 0.268; 0.004
RandomSubSpace | 94.849 (2.727) 0.948 (0.027) 0.947 (0.043) 0.949 (0.027) 98D(0.020) 0.249; 0.007
RotationForest 97.137 (1.696) 0.971(0.017)  0.975(0.016)  0.972 (0.017) 98®(0.012) 1.519; 0.064
RandomForest 96.137 (2.219) 0.961 (0.022) 0.958 (0.027) 0.961 (0.022) 98D(0.014) 0.281; 0.004
credit-a J-model (IM1) 88.000 (4.572) 0.880 (0.046) 0.879 (0.046) 0.880 (0.046) 93®(0.035) 8.397;0.031
J-model (IM2) 87.714 (3.626) 0.877 (0.036) 0.876 (0.035) 0.877 (0.036) 93®(0.035) -
J-model (IM3) 87.714 (3.393) 0.877 (0.034) 0.875 (0.035) 0.875 (0.035) 93M(0.036)
J-model (IM4) 89.429 (3.143) 0.894 (0.031) 0.891 (0.030) 0.894 (0.031) 93D(0.032) -
J-model (IM6) 87.143 (3.441) 0.871 (0.034) 0.874 (0.034) 0.871 (0.034) 93®(0.028) 8.630; 0.015
AdaBoost 84.638 (2.913) 0.846 (0.029) 0.844 (0.025) 0.846 (0.029) 93D(0.022) 0.185; 0.000
Bagging 84.928 (4.546) 0.849 (0.045) 0.851 (0.045) 0.850 (0.045) 914(0.031) 0.570; 0.000
Decorate 85.942 (3.433) 0.859 (0.034) 0.855 (0.038) 0.859 (0.034) 919(0.025) 3.906; 0.004
LogitBoost 84.928 (3.562) 0.849 (0.036) 0.852 (0.032) 0.849 (0.035) 93®(0.022) 0.273; 0.000
RandomCommittee | 83.478 (3.502) 0.835 (0.035) 0.830 (0.042) 0.834 (0.036) 899(0.035) 0.379; 0.005
RandomSubSpace | 86.522 (4.895) 0.865 (0.049) 0.856 (0.052) 0.864 (0.049) 919(0.034) 0.490; 0.004
RotationForest 85.652 (3.333) 0.857 (0.033) 0.855 (0.032) 0.856 (0.033) 91®(0.030) 6.605; 0.125
RandomForest 85.072 (3.726) 0.851 (0.037) 0.849 (0.036) 0.851 (0.037) 91D(0.031) 0.333;0.003
credit-g J-model (IM1) 73.200 (5.154) 0.732 (0.052) 0.531 (0.080) 0.712 (0.056) 769(0.071) 19.358; 0.000
J-model (IM2) 73.200 (4.833) 0.732 (0.048) 0.550 (0.080) 0.716 (0.051) 75&(0.077) -

84



J-model (IM3) 71.600 (6.248)  0.716 (0.062)  0.520(0.094)  0.697 (0.066) 748(0.080) -
J-model (IM4) 74.400 (6.800)  0.744(0.068)  0.566(0.089)  0.730 (0.069) 749(0.089) -
J-model (IM6) 71.800 (5.618)  0.718 (0.056)  0.510(0.081)  0.696 (0.057) 73D(0.088) 19.982; 0.015

AdaBoost 69.500 (2.655)  0.695(0.027)  0.452(0.068)  0.662 (0.042) 728(0.049) 0.316; 0.000
Bagging 74.900 (4.826)  0.749(0.048)  0571(0.077)  0.734(0.051) 77®(0.058) 1.054; 0.001
Decorate 72,900 (3.673)  0.729(0.037)  0.562(0.063)  0.717 (0.039) 73D(0.032) 6.838; 0.006
LogitBoost 70.800 (4.045)  0.708(0.040)  0.484(0.057)  0.683 (0.042) 73D(0.054) 0.394; 0.001
RandomCommittee | 73.900 (4.784)  0.739(0.048)  0.555(0.078)  0.723 (0.053) 762(0.068) 0.516; 0.009
RandomSubSpace | 73.800 (3.059)  0.738 (0.031)  0.440(0.053)  0.685 (0.040) 75®(0.054) 0.787; 0.007
RotationForest 74.900 (3.300)  0.749(0.033)  0.580(0.052)  0.736 (0.034) 77®(0.058) 17.996; 0.277
RandomForest 72.500 (2.500)  0.725(0.025)  0.526(0.060)  0.705 (0.034) 749(0.043) 0.443; 0.005
diabetes J-model (IM1) 74723 (6.747)  0.747(0.068)  0.660(0.111)  0.737 (0.075) 799(0.063) 6.195; 0.016
J-model (IM2) 74730 (5.648)  0.747 (0.057)  0.661(0.091)  0.739 (0.063) 799(0.083) -
J-model (IM3) 74210 (6.035)  0.742(0.061)  0.673(0.108)  0.735(0.069) 80D(0.071) -
J-model (IM4) 73434 (7.448)  0.734(0.074)  0.663(0.124)  0.727 (0.083) 79®(0.076) -
J-model (IM6) 73.441(4.807) 0734 (0.048)  0.628(0.081)  0.721(0.055) 778(0.081) 7.157; 0.000
AdaBoost 74.351(4.490)  0.744 (0.045)  0.654(0.083)  0.735(0.050) 80®(0.058) 0.206; 0.001
Bagging 74481 (3.126)  0.745(0.031)  0.661(0.060)  0.738 (0.034) 822(0.045) 0.844; 0.002
Decorate 73.833(5.944)  0.738(0.059)  0.653(0.079)  0.732(0.061) 803(0.054) 2.860; 0.002
LogitBoost 74.086 (2.714)  0.741(0.027)  0.649(0.053)  0.734(0.030) 813(0.039) 0.272; 0.001
RandomCommittee | 73.973(4.199)  0.740 (0.042)  0.652(0.059)  0.733(0.042) 78®(0.046) 0.875; 0.009
RandomSubSpace | 74.614 (4.811)  0.746 (0.048)  0.626 (0.068)  0.732 (0.050) 812(0.040) 0.517; 0.004
RotationForest 76177 (5.178)  0.762(0.052)  0.662(0.062)  0.753 (0.052) 82D(0.045) 2.440; 0.060
RandomForest 73.841 (4.259)  0.738(0.043)  0.640(0.063)  0.729 (0.044) 77®(0.039) 0.797; 0.003

heart-statlog J-model (IM1) 80.714 (7.178)  0.807(0.072)  0.793(0.100)  0.800 (0.080) 854€(0.098) 2.919; 0.000
J-model (IM2) 81428 (7.284)  0.814(0.073)  0.802(0.090)  0.810 (0.076) 862(0.083) -
J-model (IM3) 81.428 (8.571)  0.814 (0.086)  0.811(0.094)  0.811(0.087) 84®(0.098) -
J-model (IM4) 82.143 (12.877)  0.821(0.129)  0.804(0.127)  0.814 (0.133) .88D(0.062) -
J-model (IM6) 80.714 (11.974)  0.807 (0.120)  0.801(0.124)  0.803 (0.121) .84®(0.103) 3.308; 0.000

AdaBoost 80.000 (4.743)  0.800 (0.047)  0.795(0.067)  0.796 (0.052) 888(0.055) 0.081; 0.001
Bagging 78.889 (8.772)  0.789(0.088)  0.779(0.088)  0.786 (0.089) 88®(0.050) 0.255; 0.001
Decorate 75.185(6.839)  0.752(0.068)  0.746 (0.073)  0.748 (0.071) 843(0.074) 1.594; 0.001
LogitBoost 82.222(7.182)  0.822(0.072)  0.814(0.086)  0.819 (0.077) 88®(0.054) 0.122; 0.001
RandomCommittee | 80.370(7.417)  0.804 (0.074)  0.793(0.080)  0.800 (0.079) 87®(0.064) 0.180; 0.001
RandomSubSpace | 82.963 (4.743)  0.830(0.047)  0.814(0.060)  0.825 (0.051) 90®(0.050) 0.195; 0.001
RotationForest 84.074 (7.417)  0.841(0.074)  0.838(0.079)  0.838 (0.078) 89D(0.041) 1.413; 0.043
RandomForest 78148 (5.092)  0.781(0.051)  0.772(0.056)  0.779 (0.052) 86D(0.054) 0.162; 0.002
hepatitis J-model (IM1) 83.750 (11.250)  0.838(0.113)  0.515(0.353)  0.803 (0.140) .818)(0.205) 2.041; 0.000
J-model (IM2) 81.250 (10.078)  0.813(0.101)  0.357(0.280)  0.761 (0.126) .83%(0.151) -
J-model (IM3) 80.000 (12.748)  0.800(0.127)  0.488(0.313)  0.765 (0.147) .81((0.243) -
J-model (IM4) 81.250 (12.809)  0.812(0.128)  0.442(0.329)  0.771(0.148) .798)(0.214) -
J-model (IM6) 82.500 (10.000)  0.825(0.100)  0.446(0.279)  0.785 (0.119) .849(0.151) 2.383; 0.000
AdaBoost 82542 (5.850)  0.825(0.058)  0.618(0.161)  0.818 (0.057) 878(0.076) 0.057; 0.000
Bagging 83.167 (5.320)  0.832(0.053)  0.393(0.183)  0.785(0.076) 82%(0.120) 0.134; 0.000
Decorate 84.500 (8.656)  0.845(0.087)  0.682(0.150)  0.844 (0.081) 84(0.101) 0.968; 0.001
LogitBoost 81.917 (6.186)  0.819 (0.062)  0.558(0.182)  0.805 (0.071) 84D(0.098) 0.058; 0.000
RandomCommittee | 84.583 (6.308)  0.846 (0.063)  0.589 (0.163)  0.834 (0.059) 853(0.093) 0.088; 0.001
RandomSubSpace | 80.667 (2.669)  0.807 (0.027)  0.293(0.123)  0.743 (0.040) 804)(0.159) 0.112; 0.001
RotationForest 81.917 (6.788)  0.819 (0.068)  0.600(0.178)  0.814 (0.066) 83®(0.125) 0.970; 0.032
RandomForest 82.583 (5.836)  0.826(0.058)  0.441(0.223)  0.788 (0.076) 8270(0.100) 0.081; 0.000

ionosphere J-model (IM1) 93.333(4.157)  0.933(0.041)  0.886 (0.074)  0.931 (0.044) 98D(0.013) 9.080; 0.000
J-model (IM2) 93.889 (6.310)  0.939(0.063)  0.905(0.081)  0.938 (0.064) 97®(0.035) -
J-model (IM3) 93.889(2.992)  0.939(0.030)  0.897 (0.051)  0.938 (0.031) 96®(0.046) -
J-model (IM4) 94444 (2.484)  0.944(0.025) 0917 (0.037)  0.944 (0.025) 96@(0.049) -
J-model (IM6) 93.333(5.984)  0.933(0.060)  0.909 (0.084)  0.932 (0.061) 969(0.051) 10.043; 0.000

AdaBoost 90.897 (3.950)  0.909 (0.040)  0.847 (0.063)  0.906 (0.042) 953(0.040) 0.508; 0.001
Bagging 90.897 (4.152)  0.909(0.042)  0.876(0.067)  0.907 (0.043) 93®(0.052) 1.039; 0.001
Decorate 90.603 (2.548)  0.906(0.025)  0.878(0.035)  0.905 (0.025) 94(0.043) 8.462; 0.002
LogitBoost 91.175(4.491)  0.912(0.045)  0.884(0.061)  0.911 (0.045) 95D(0.041) 0.464; 0.000
RandomCommittee | 92.603 (3.625)  0.926 (0.036)  0.905(0.044)  0.926 (0.036) 97®(0.017) 0.494; 0.000
RandomSubSpace | 92.881(2.622)  0.929(0.026)  0.887 (0.035)  0.927 (0.027) 969(0.031) 0.719; 0.003
RotationForest 94.603 (2.294)  0.946 (0.023)  0.924(0.036)  0.946 (0.023) 97D(0.023) 4.837,0.119
RandomForest 92.889 (3.634)  0.929(0.036)  0.914(0.042)  0.929 (0.036) 952(0.029) 0.440; 0.000
kr-vs-kp J-model (IM1) 99.375(0.484)  0.994 (0.005)  0.993 (0.005)  0.994 (0.005) 999(0.002) 40.541; 0.000
J-model (IM2) 99.250 (0.673)  0.993(0.007)  0.992(0.007)  0.993 (0.007) 999(0.001) -
J-model (IM3) 99.438(0.438)  0.995(0.004)  0.994(0.005)  0.995 (0.004) 998(0.004) -
J-model (IM4) 99.437 (0.710)  0.994 (0.007)  0.994 (0.007)  0.994 (0.007) 998(0.003) -
J-model (IM6) 99.437 (0.337)  0.994(0.003)  0.994(0.004)  0.994 (0.003) 00Q(0.001) 42.797; 0.000
AdaBoost 93.836(1.341)  0.938(0.013)  0.936(0.013)  0.938 (0.013) 95%(0.009) 0.904; 0.003
Bagging 99.124 (0.460)  0.991(0.005)  0.991(0.005)  0.991 (0.005) 999(0.000) 4.050; 0.008
Decorate 99.312(0.590)  0.993(0.006)  0.993 (0.006)  0.993 (0.006) 998(0.002) 36.469; 0.012
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LogitBoost 93.805(1.347)  0.938(0.013)  0.935(0.013)  0.938 (0.013) 97®(0.008) 0.939; 0.008
RandomCommittee | 98.936 (0.659)  0.989 (0.007)  0.989 (0.007)  0.989 (0.007) 998®(0.002) 1.255; 0.021
RandomSubSpace | 96.059 (2.007)  0.961(0.020)  0.959(0.021)  0.960 (0.020) 99®(0.005) 4.525;0.024

RotationForest 99.219 (0.864)  0.992 (0.009)  0.992(0.009)  0.992 (0.009) 998(0.002) 36.417; 0.962
RandomForest 98.811(0.501)  0.988(0.005)  0.987 (0.005)  0.988 (0.005) 999(0.002) 0.995; 0.014
labor J-model (IM1) 86.667 (16.330)  0.867 (0.163)  0.783(0.299)  0.827 (0.216) .80®(0.332) 0.994; 0.000
J-model (IM2) 86.667 (16.330)  0.867 (0.163)  0.783(0.299)  0.827 (0.216) .95@(0.150) -
J-model (IM3) 86.667 (16.330)  0.867 (0.163)  0.783(0.299)  0.827 (0.216) .85((0.320) -
J-model (IM4) 90.000 (15.275)  0.900 (0.153)  0.850(0.263)  0.873 (0.197) .90®(0.300) -
J-model (IM6) 86.667 (22.111)  0.867 (0.221)  0.833(0.269)  0.823 (0.286) .85M(0.320) 1.072; 0.000

AdaBoost 87.333(16.180)  0.873(0.162)  0.843(0.225)  0.858 (0.183) .913(0.142) 0.017; 0.000

Bagging 86.333 (16.428)  0.863(0.164)  0.812(0.216)  0.840 (0.193) .919(0.168) 0.041; 0.000

Decorate 88.000 (10.873)  0.880 (0.109)  0.862(0.139)  0.875(0.111) .95((0.083) 0.280; 0.001

LogitBoost 89.667 (13.536)  0.897 (0.135)  0.853(0.214)  0.880 (0.163) .988(0.037) 0.023; 0.001
RandomCommittee | 89.667 (11.299)  0.897 (0.113)  0.853(0.154)  0.889 (0.118) .979(0.075) 0.035; 0.001
RandomSubSpace | 79.333(21.333)  0.793(0.213)  0.757 (0.264)  0.762 (0.244) .892(0.146) 0.045; 0.000

RotationForest | 89.667 (13.536)  0.897 (0.135)  0.853(0.214)  0.880 (0.163) .93D(0.144) 0.452;0.138
RandomForest | 88.000(13.182)  0.880(0.132)  0.820(0.215)  0.861 (0.159) .908)(0.187) 0.033; 0.000
mushroom J-model (IM1) 100.000 (0.000)  1.000 (0.000)  1.000 (0.000)  1.000 (0.000) .00CL(0.000) 121.649; 0.000
J-model (IM2) 100.000 (0.000)  1.000 (0.000)  1.000 (0.000)  1.000 (0.000) .00QL(0.000) -
J-model (IM3) 100.000 (0.000) ~ 1.000 (0.000)  1.000 (0.000)  1.000 (0.000) .00Q(0.000) -
J-model (IM4) 100.000 (0.000)  1.000 (0.000)  1.000 (0.000)  1.000 (0.000) .00QL(0.000) -
J-model (IM6) 99.975(0.074)  1.000(0.001)  1.000(0.001)  1.000 (0.001) 00Q(0.000) 120.344; 0.000

AdaBoost 96.197 (0.564)  0.962(0.006)  0.963 (0.006)  0.962 (0.006) 99%(0.001) 1.861; 0.011

Bagging 100.000 (0.000)  1.000 (0.000)  1.000 (0.000)  1.000 (0.000) .00QL(0.000) 3.683; 0.009

Decorate 100.000 (0.000)  1.000 (0.000)  1.000 (0.000)  1.000 (0.000) .00QL(0.000) 32.022; 0.036

LogitBoost 98.227 (0.427)  0.982(0.004)  0.983(0.004)  0.982 (0.004) 998(0.001) 1.806; 0.011
RandomCommittee | 100.000 (0.000)  1.000 (0.000) ~ 1.000 (0.000)  1.000 (0.000) .00QL(0.000) 0.754; 0.016
RandomSubSpace | 100.000 (0.000)  1.000 (0.000)  1.000(0.000)  1.000 (0.000) .000(0.000) 2.927;0.051

RotationForest | 100.000 (0.000) ~ 1.000 (0.000)  1.000 (0.000)  1.000 (0.000) .000L(0.000) 142.115; 3.062
RandomForest | 100.000(0.000)  1.000(0.000)  1.000 (0.000)  1.000 (0.000) .00QL(0.000) 0.782; 0.013
sonar J-model (IM1) 84.364 (12.141)  0.843(0.122)  0.850(0.124)  0.842 (0.123) .899(0.097) 9.346; 0.015
J-model (IM2) 81.364 (15.626)  0.814 (0.156)  0.816(0.156)  0.811 (0.160) .912(0.100) -
J-model (IM3) 77.636 (12.755) 0776 (0.128)  0.777(0.137)  0.776 (0.128) .88%(0.096) -
J-model (IM4) 78.727 (13.967)  0.787(0.140)  0.786(0.141)  0.784 (0.144) .898(0.097) -
J-model (IM6) 79.545(10.002)  0.795(0.100)  0.794(0.100)  0.795 (0.100) .887(0.095) 9.261; 0.000

AdaBoost 71.667(10.315) 0717 (0.103)  0.713(0.100)  0.708 (0.110) .86D(0.075) 0.492; 0.000

Bagging 77.833(10.164)  0.778(0.102)  0.769(0.103)  0.774 (0.103) .884(0.063) 1.134; 0.000

Decorate 78.333(7.957)  0.783(0.080)  0.781(0.084)  0.781(0.080) 90D(0.045) 7.366; 0.002

LogitBoost 79.286 (9.417)  0.793(0.094)  0.792(0.094)  0.790 (0.097) 88D(0.070) 0.507; 0.001
RandomCommittee | 84.095(7.211)  0.841(0.072)  0.839(0.074)  0.839 (0.074) 92®(0.040) 0.288; 0.000
RandomSubSpace | 77.952(7.893)  0.780(0.079)  0.773(0.073)  0.776 (0.081) 86®(0.074) 0.667; 0.000

RotationForest 80.810 (7.917)  0.808 (0.079)  0.800(0.080)  0.804 (0.082) 903(0.071) 4.713;0.228
RandomForest 80.738 (7.156)  0.807(0.072)  0.815(0.075)  0.807 (0.072) 91D(0.054) 0.248; 0.000
vote J-model (IM1) 95.909 (3.776)  0.959(0.038)  0.959(0.042)  0.959 (0.038) 984(0.029) 2.579; 0.000
J-model (IM2) 95455 (4.545)  0.955(0.045)  0.956 (0.046)  0.955 (0.045) 99®(0.017) -
J-model (IM3) 95455 (3.521)  0.955(0.035)  0.951(0.041)  0.955 (0.035) 98%(0.028) -
J-model (IM4) 95.000 (4.288)  0.950(0.043)  0.943(0.053)  0.950 (0.043) 98D(0.030) -
J-model (IM6) 95455 (4.545)  0.955(0.045)  0.956 (0.046)  0.955 (0.045) 989(0.018) 2.529; 0.000

AdaBoost 95407 (3.233)  0.954(0.032)  0.953(0.033)  0.954 (0.032) 99(0.009) 0.055; 0.002

Bagging 95.872(3.349)  0.959(0.033)  0.956 (0.034)  0.959 (0.033) 984(0.020) 0.187; 0.001

Decorate 94.704 (2.731)  0.947(0.027)  0.947 (0.026)  0.947 (0.027) 98®(0.015) 1.204; 0.001

LogitBoost 95412 (3.058)  0.954(0.031)  0.956(0.034)  0.954 (0.030) 992(0.008) 0.073; 0.003
RandomCommittee | 96.321(2.345)  0.963 (0.023)  0.957 (0.027)  0.963 (0.023) 98®(0.013) 0.147; 0.002
RandomSubSpace | 95.867 (2.667)  0.959(0.027)  0.961(0.029)  0.959 (0.027) 989(0.008) 0.158; 0.001

RotationForest 96.094 (3.091)  0.961(0.031)  0.956 (0.034)  0.961 (0.031) 99D(0.007) 1.459;0.071
RandomForest 95.867 (2.863)  0.959(0.029)  0.950(0.035)  0.959 (0.029) 98®(0.014) 0.126; 0.002

We only measure time cost for J-model (IM1), J-model(IM6) #me other ensemble methods
as we focus on the decreased test time cost of J-model (IM6).
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7.6.3.1 Interaction model 1

Table 7.5: Standing of J-model (IM1) out of 9 ensemble classifiers on 13 data sets

Data set Performance metrics
Accuracy  Sensitivity  Specificity F-measure  AUC
breast-cancer| 4th 4th 4th 5th 3rek
breast-w 2nd* 2ndx 2ndx 2ndx 1stx
credit-a 1stx 1stx 1stx 1stx 3rd*
credit-g 5th 5th 5th 5th 3rek
diabetes 2nd* 2ndx 3rd* 3rd 7th
heart-statlog | 4th 4th 5th 4th 8th
hepatitis 3rd * 3rd 6th 6th 8th
ionosphere | 2ndx 2ndx 5th 2ndx 1stx
kr-vs-kp 1stx 1stx 1stx 1stx 1stx
labor 7th 7th 8th 8th 9th
mushroom | 1stx 1stx 1stx 1stx 1stx
sonar 1stx 1stx 1stx 1stx 5th
vote 3rd x 3rd 2ndx 3rd 8th

Table[ 7.5 summarise the standing of J-model when comparitigtiae 8 traditional ensemble
methods. The stars besides the rankings are marked onhgfdst, the 2nd or the 3rd standing.

J-model got 9 starts out of 13 data sets &curacy When we notice the 1st and the 2nd
standings, J-model got 7 starts. J-model got 9 stars foitsetys(7 starts of the 1st and the
2nd); 7 (6) for specificity; 8 (6) for F-measure and 7 (4) for@uU

7.6.3.2 Interaction model 2

The prediction performance is generally equivalent withmarse than J-model(IM1). We,
however, noticed that J-model(IM2) shows better perforreahan J-model(IM1) for AUC.

7.6.3.3 Interaction model 3

J-model(IM3) showed that it is not better than J-model(IMtall. J-model(IM3) turned out to
be an ineffective strategy for classification.

7.6.3.4 Interaction model 4 for higher specificity

IM4 is a specially designed interaction model for specificitmodel(IM4) is better on credit-a,
credit-g, diabetes, heart-statlog, ionosphere, labola(é dets); equivalent on breast-w, kr-vs-
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kp, mushroom (3 data sets); worse on breast-cancer, hispatihar, vote (4 data sets) when
comparing with J-model(IM1) for specificity.

Table 7.6: Standing of J-model (IM4) out of 9 ensemble classifiers for specificity

Data set Specificity

breast-cancer| 7th
breast-w 2ndx
credit-a 1stx
credit-g 3rd *
diabetes Istx
heart-statlog | 4th
hepatitis 6th
ionosphere | 2ndx
kr-vs-kp 1st*
labor 5th
mushroom | 1stx
sonar 5th
vote 9th

Table[ 7.6 shows the standing of J-model(IM4) compared \hi¢ghather 8 traditional ensemble
methods. Stars are also marked for the 1st, the 2nd or thee8rdisg.

7.6.3.5 Interaction model 6 for lower test time cost

Interaction model 6 was designed to reduce the test time bo$able[ 7.4, the test time costs
of J-model(IM1) and J-model(IM6) are compared. In J-mdd#d), the test time was dramat-

ically reduced than J-model(IM1) although J-model(IM&)swhat sacrificed its performance
on the other performance metrics. The observation errobeagnored if it is less than 0.015

seconds because the JRuby implementation orf@n@sre ' 2 Duo CPU 2.67 GHz could not

measure the time difference within 0.015 seconds. When adngpwith the other ensemble

methods, J-model(IM6) could not provide lower test timetsod his is because the test time
costs of the other ensemble methods are already very small.

7.6.4 Conclusion

We applied several interaction models on J-model to bendhdeata sets and compared their
classification performance with other traditional and espntative ensemble methods.
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The results of IM1 showed that J-model(IM1) has better mtémh performance than the others
even though J-model uses non boosted classifiers from thie gde traditional ensemble
methods boost their performance through special mechansget better accuracy and more
diversity among the base classifiers.

IM2 showed better performance for a specific metric, AUC. IM&s not designed for AUC
intentionally, but it worked well for AUC. IM3 also was not signed for a specific metric.
IM3, however, did not work well for any of the metrics. IM4 wdssigned intentionally for the
specificity metric. It showed better results for specifititgn IM1 gave and than the traditional
ensemble methods did. IM6 is for reducing the time cost.sb alorked for its purpose.

7.7 Realistic problem - virtual screening

7.7.1 Introduction

The experiments so far are on benchmark problems. We al$iedgpmodel to solve a realistic
problem. The virtual screening problem that we chose aslstiegproblem has many more
instances and attributes than the benchmark data sets oiurhe virtual screening data set
has highly imbalanced classes.
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Virtual screening of bioassay data
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Figure 7.30: Selection of compounds against a biological target in virtual screening

Virtual screening [98] is the computational screening aroical compounds. It complements
the high-throughput screening (HTS) process and is useid thaselection of compounds.

Highly-imbalanced data

The major challenge that we contact when we use machineihgarechniques for bioassay
virtual screening is that the data is highly-imbalanced.e Tata has a low ratio dctive
compounds tinactivecompounds. The ratio is 1 active compound to 1000 inactivgoaunds
on average [10]. Standard techniques are not very effeativeilding predictive models in this
situation. We aim to find a robust and versatile classifierrfdyalanced bioassay data.
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7.7.2 Experimental setup

7.7.2.1 The PubChem bioassay data sets

Table 7.7: PubChem bioassay data sets

Index Assay Screening type Compounds  Attributes  Actieeiive  Minority (active) class %
1 AID362 Primary 4279 144 60:4219 1.40
2 AID604 Primary 59788 154 212:59576 0.35
3 AID456 Primary 9982 153 27:9955 0.27
4 AID688 Primary 27198 154 248:26941 0.91
5 AID373 Primary 59788 154 62:59726 0.10
6 AID746 Primary 59788 154 366:59422 0.61
7 AID687 Primary 33067 153 94:32973 0.28
8 AID746&AID1284  Primary and confirmatory 59784 154 57:5972 0.10
9 AID604&AID644 Primary and confirmatory 59782 154 67:59715 0.11

10  AID373&AID439 Primary and confirmatory 59795 154 13:5978 0.02

11  AID687&AID721 Primary and confirmatory 33046 153 21:3804 0.06

12 AID1608 Confirmatory 1033 154 68:965 6.58
13 AlID644 Confirmatory 206 100 67:139 32.52
14 AlID1284 Confirmatory 362 103 57:305 15.75
15 AID439 Confirmatory 69 81 13:56 18.84
16 AID721 Confirmatory 94 87 21:73 22.34

The PubChem bioassay data seis [7] are highly-imbalanced$ay data from different types
of screening using high-throughput screening (HTS) teldgyo The data sets are 16 small to
medium size ones. They have varying sizes and active clagabE 7.7 shows a summary of
the data sets used for study.

7.7.2.2 J-model settings
7.7.2.2.1 Pool preparation
7.7.2.2.1.1 Base classifier

e For non cost-sensitive version - RandomForest using thiegeflue in Tablé 7]1.

e For cost-sensitive version - RandomForest using the gettifue in Tablé 7]1. We set
cost matrices for it using the misclassification costs fsdaegatives in Table 7.8.
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Table 7.8: Misclassification costs for false negatives of J-model

Assay J-model
AID362 3000
AID604 50000
AID456 100000
AID688 8000
AID373 600000
AID746 18000
AID687 60000

AID746&A1D1284 600000
AID604&AID644 900000
AID373&AID439 None

AID687&AID721 500000

AID1608 150
AlD644 None
AlD1284 8
AID439 None
AID721 None

7.7.2.2.1.2 Misclassification costs We set the misclassification cost of the cost-sensitive
J-model when its FPR reaches about 20%. 20% FPR is an apgeptop of permission. We
did not set any cost for the assays indicatedNlmpe On those assays, J-model shows results
of under 20% FPR without cost setting.

7.7.2.2.1.3 Poolsize We set the pool size of 64.

7.7.2.2.2 Ensemble size We set the ensemble size of 10

7.7.2.2.3 Choice of IM The bioassay classification should handle the problem dilyg
imbalanced ratio of active and inactive classes. We used dMBefinition[6.10 to achieve
higher TPR and lower FPR.

7.7.2.2.4 Number of interactions

e For non cost-sensitive version - We set 10000 interactidings very high number was
because active classes have very much smaller numbersrhetivée ones. Enough
interactions gives an opportunity to an ensemble to comvengre toward the active
classes. The more the ensemble takes active classes tipetite more it becomes
sensitive to the active classes.
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e For cost-sensitive version - 200 interactions. Becausetiod is composed with cost-
sensitive RandomForests, we can set a much smaller numbrgetctions.

7.7.2.3 The other algorithms

7.7.2.3.1 Algorithms  We re-used cost-sensitive Naive Bayes, cost-sensitivdétarfrorest,
cost-sensitive SVM and cost-sensitive C4.5 whose resligady have published in [86] for
comparison with J-model. We also showed results of normatiBin Forest.

Table 7.9: Misclassification costs for false negatives of the other CSC classifiers

Assay Naive Bayes Random Forest SMO J48
AID362 40 3000 150 285
AID604 40 Out of memory 250 650
AlD456 18 100000 200 1000
AID688 34 Out of memory 78 220
AID373 20 Out of memory 2000 3000
AID746 25 Out of memory 100 450
AID687 50 Out of memory 250 680

AID746&A1D1284 100 Out of memory 1000 1900
AID604&AID644 70 Out of memory 750 1500
AID373&AID439 70 Out of memory 9000 9500
AID687&AID721 700 Out of memory 6702 1900

AID1608 2 75 5 25
AID644 None None None None
AID1284 None 8 2.7 2
AID439 None None None None
AID721 None None None None

7.7.2.3.2 Misclassification costs Classifiers give large variability following what misclas-
sification costs are set. Talﬂ_e__Hshows the setting values of misclassification costs for the
false negatives order to achieve the maximum numbertafe positivewith a false positive
rate of fewer than 20% for each classifier. Random Foressifilas require larger memory
than the other classifiers. It utilises the bagging techaidn our results tablegut of memory
indicates that Random Forest could not be used for the erpats.

2From [86]
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7.7.2.4 Evaluation technique

7.7.2.4.1 Splitinto train and test examples We split a assay data set to the train examples
and test examples. The ratio is 80% (train) and 20% (test)eofdtal examples.

7.7.2.4.2 Performance metrics
e True Positives (TP) - In the bioassay case, active comporordsctly classified as active.
e False Positives (FP) - Inactive compounds incorrectlysifesl as active.
e False Negatives (FN) - Active compounds incorrectly ckessias inactive.
e True Negatives (TN) - Inactive compounds correctly clasdifis inactive.

e True Positive Rate (TPR)FPR=TP/P =TP/(TP+FN). P is the positive (active)
classes. The higher TPR value is preferred.

e False Positive Rate (FPRFPR=FP/N =FP/(FP+TN). N is the negative (inactive)
classes. The lower FPR value is preferred.

e Accuracy(ACC) - Accuracyis not a major performance metric for this sort of classifica-
tion. We, however, include the resultsaxfcuracyfor reference.

7.7.3 Results
Table 7.10: Virtual screening results
Assay Algorithm Performance metrics

TP FN FP TN TPR (%) FPR (%) Accuracy (%)

AID362 CSC Naive Bayes 9 3 161 683 75.00 19.08 80.84
CSC Random Forest 10 2 159 685 83.33 18.84 81.19

CSC sMO 9 3 126 718 75.00 14.93 84.93

MetaCost J48 9 3 124 720 75.00 14.69 85.16

Random Forest 1 11 1 843 8.33 0.12 98.60

J-model (Non-CS,IM5,10000)| 3 3 0 422 50.00 0.00 99.30

J-model (CS,IM5,200) * 5 1 82 340 83.33 19.43 80.61
AID604 CSC Naive Bayes 23 19 2202 9713 54.76 18.48 81.43

CSC Random Forest - - - - - -

CSC sMO 27 15 2453 9462 64.29 20.59 79.36
MetaCost J48 21 21 2401 9514 50.00 20.15 79.74

Random Forest 4 38 3 11912 9.52 0.03 99.66

J-model (Non-CS,IM5,10000)| O 21 0 5958 0.00 0.00 99.65

J-model (CS,IM5,200) * 15 6 1214 4744 71.43 20.38 79.60

AID456 CSC Naive Bayes 3 2 296 1695 60.00 14.87 85.07
CSC Random Forest 2 3 370 1621 40.00 18.58 81.31

CSC sMO 3 2 133 1858 60.00 6.68 93.24

MetaCost J48 2 3 312 1679 40.00 15.67 84.22

Random Forest 0 5 0 1991 0.00 0.00 99.75

J-model (Non-CS,IM5,10000)| O 2 0 996 0.00 0.00 99.80

J-model (CS,IM5,200) * 2 0 217 779 100.00 21.79 78.26
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AID688 CSC Naive Bayes 15 35 1048 4340 30.00 19.45 80.08
CSC Random Forest - - - - - - -
CSC SMO 12 38 1094 4294 24.00 20.30 79.18
MetaCost J48 8 42 1104 4284 16.00 20.49 78.93
Random Forest 0 50 0 5388 0.00 0.00 99.08
J-model (Non-CS,IM5,10000)( 0 25 2 2692 0.00 0.07 99.01
J-model (CS,IM5,200) 6 19 551 2143 24.00 20.45 79.04
AID373 CSC Naive Bayes 9 3 2146 9799 75.00 17.97 82.03
CSC Random Forest - - - - - - -
CSC SMO 9 3 1966 9979 75.00 16.46 83.53
MetaCost J48 9 3 1732 10213 75.00 14.50 85.49
Random Forest 0 12 0 11945 0.00 0.00 99.90
J-model (Non-CS,IM5,10000)[ 1 5 1 5972 16.67 0.02 99.90
J-model (CS,IM5,200) * 5 1 1200 4773 83.33 20.09 79.91
AID746 CSC Naive Bayes 31 42 2462 9422 42.47 20.72 79.06
CSC Random Forest - - - - - - -
CSC SMO 39 34 2085 9799 53.42 17.54 82.28
MetaCost J48 46 27 2412 9472 63.01 20.30 79.60
Random Forest 11 62 6 11878 15.07 0.05 99.43
J-model (Non-CS,IM5,10000)| 5 32 1 5941 13.51 0.02 99.45
J-model (CS,IM5,200) * 32 5 1221 4721 86.49 20.55 79.49
AID687 CSC Naive Bayes 8 10 1251 5344 44.44 18.97 80.93
CSC Random Forest - - - - - - -
CSC SMO 6 12 1213 5382 33.33 18.39 81.48
MetaCost J48 5 13 1298 5297 27.78 19.68 80.18
Random Forest 0 18 1 6594 0.00 0.02 99.71
J-model (Non-CS,IM5,10000)[ 0 9 0 3298 0.00 0.00 99.73
J-model (CS,IM5,200) * 4 5 585 2713 44.44 17.74 82.16
AID746&A1D1284 CSC Naive Bayes 31 42 2462 9422 42.47 20.72 79.06
CSC Random Forest - - - - - - -
CSC SMO 39 34 2085 9799 53.42 17.54 82.28
MetaCost J48 46 27 2412 9472 63.01 20.30 79.60
Random Forest 1 10 1 11944 9.09 0.01 99.91
J-model (Non-CS,IM5,10000)( 1 5 1 5971 16.67 0.02 99.90
J-model (CS,IM5,200) * 4 2 1031 4941 66.67 17.26 82.72
AID604&AID644 CSC Naive Bayes 6 7 1542 10401 46.15 12.91 87.04
CSC Random Forest - - - - - - -
CSC SMO 10 3 1422 10521 76.92 11.91 88.08
MetaCost J48 7 6 1453 10490 53.85 12.17 87.80
Random Forest 1 12 0 11943 7.69 0.00 99.90
J-model (Non-CS,IM5,10000)( 0 6 0 5972 0.00 0.00 99.90
J-model (CS,IM5,200) * 4 2 1302 4670 66.67 21.80 78.19
AID373&AID439 CSC Naive Bayes 1 1 279 11678 50.00 2.33 97.66
CSC Random Forest - - - - - - -
CSC SMO 1 1 1059 10898 50.00 8.86 91.14
MetaCost J48 2 0 2111 9846 100.00 17.65 82.35
Random Forest 1 1 0 11957 50.00 0.00 99.99
J-model (Non-CS,IM5,10000)( 0 1 0 5979 0.00 0.00 99.98
J-model (CS,IM5,200) 0 1 0 5979 0.00 0.00 99.98
AID687&AID721 CSC Naive Bayes 2 2 959 5650 50.00 14.51 85.47
CSC Random Forest - - - - - - -
CSC SMO 2 2 1484 5125 50.00 22.45 77.53
MetaCost J48 2 2 625 5984 50.00 9.46 90.52
Random Forest 0 4 0 6609 0.00 0.00 99.94
J-model (Non-CS,IM5,10000)[ 0 2 0 3305 0.00 0.00 99.94
J-model (CS,IM5,200) * 1 1 218 3087 50.00 6.60 93.38
AID1608 CSC Naive Bayes 3 10 37 156 23.08 19.17 77.18
CSC Random Forest 4 9 16 177 30.77 8.29 87.86
CSC SMO 4 9 17 176 30.77 8.81 87.38
MetaCost J48 2 11 39 154 15.38 20.21 75.73
Random Forest 0 13 1 192 0.00 0.52 93.20
J-model (Non-CS,IM5,10000)[ 0 6 0 97 0.00 0.00 94.17
J-model (CS,IM5,200) 1 5 17 80 16.67 17.53 78.64
AlD644 CSC Naive Bayes 5 8 11 17 38.46 39.29 53.66
CSC Random Forest 3 10 2 26 23.08 7.14 70.73
CSC SMO 3 10 5 23 23.08 17.86 63.41
MetaCost J48 5 8 8 20 38.46 28.57 60.98
Random Forest 3 10 2 26 23.08 7.14 70.73
J-model (Non-CS,IM5,10000)( 3 4 1 13 42.86 7.14 76.19
J-model (CS*,IM5,200) * 3 4 0 14 42.86 0.00 80.95
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AlD1284 CSC Naive Bayes 3 8 16 45 27.27 26.23 66.67
CSC Random Forest 5 6 11 50 45.45 18.03 76.39

CSC sMO 4 7 8 53 36.36 13.11 79.17

MetaCost J48 6 5 8 53 54.55 13.11 81.94

Random Forest 3 8 2 59 27.27 3.28 86.11

J-model (Non-CS,IM5,10000)| 3 3 2 28 50.00 6.67 86.11

J-model (CS,IM5,200) * 4 2 5 25 66.67 16.67 80.56

AID439 CSC Naive Bayes 2 0 3 8 100.00 27.27 76.92
CSC Random Forest 1 1 2 9 50.00 18.18 76.92

CSC SMO 1 1 1 10 50.00 9.09 84.62

MetaCost J48 1 1 2 9 50.00 18.18 76.92

Random Forest 1 1 2 9 50.00 18.18 76.92

J-model (Non-CS,IM5,10000)| 1 0 1 5 100.00 16.67 85.71

J-model (CS*,IM5,200) * 1 0 1 5 100.00 16.67 85.71

AID721 CSC Naive Bayes 0 4 4 10 0.00 28.57 55.56
CSC Random Forest 0 4 3 11 0.00 21.43 61.11

CSC SMO 0 4 2 12 0.00 14.29 66.67

MetaCost J48 0 4 2 12 0.00 14.29 66.67

Random Forest 0 4 3 11 0.00 21.43 61.11

J-model (Non-CS,IM5,10000)[ 0 2 2 5 0.00 28.57 55.56

J-model (CS*,IM5,200) 0 2 2 5 0.00 28.57 55.56

The values of TP, FN, FP and TN on J-models can be considered alf that of the other
algorithms. The reason is that J-model splits the origestiset into the query set and J-model’s
test set.

7.7.3.1 Results of Random Forest

Random Forest showed extremely low performance on the $ayatata sets. It nearly cannot
give the correct answers about true positives. Random Figreseless as a classifier for the
bioassay problem. This non cost-sensitive Random Foresir{ginal Random Forest labelled
Random Forest in Table ) can be viewed as a baseline for peaifuze compared with the results
of non-CS and CS J-models. This is because both of non-CS &ne@Sions of J-model filled
their classifier pools with the Random Forest template dlass

7.7.3.2 Results of non-CS J-model

We applied J-model of the interaction model 5. The pool wasmmsed with classifiers trained
without cost sensitivity. We set the number of interactiass10000 to give J-model great
opportunity of exploration for true positives.

The performance became higher than the performance of RaRdoest. But the performance
was much lower than the other cost-sensitive algorithmsS€ Glaive Bayes, CSC Random
Forest, CSC SMO and MetaCost J48.
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7.7.3.3 Results of CS J-model

We set just 200 interactions for J-model of IM5 because wedfilh the pool with cost-sensitive
classifiers. J-model got the 1st standing for three fourth@fssays (12 times out of 16 assays)
among 5 cost-sensitive algorithms. J-model got 2nd for A®&nd AID604&AID644; 4th
for AID1608; the last for AID373&AID439.

7.7.4 Conclusion

The issue that is how to deal with highly imbalanced data isagomchallenge in machine
learning research [19, 104]. The issue arises in many reddwlomains where the target
examples are rare in the data.

Cost-sensitive J-model showed very good performance éginbalanced data. The pool mem-
bers which J-model used were just cost-sensitive classiflérey are not boosted classifiers by
the traditional ensemble algorithms.

Cost-sensitive J-model interacted just 200 times. With allsnumber of interactions, J-model
could achieve good performance.

As we can see in the case of cost-sensitive Random Foress@asitive Random Forest could
not give results because it ran out of memory. J-model diguid¢r from this space complexity
problem as J-model does not need extra memory space for seenbie.
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Table 7.1: Base classifier templates for pool generation

Classifier template | Options of classifier template [setting value] Filter opsof classifier template [setting value] Base classifieheftemplate Options of base classifier [setting value]
AdaBoostM1 - Percentage of weight mass to base training on [100] DecisionStump
Bagging - Size of each bag, as a percentage of the training set size REPTree - Set minimum number of instances per leaf [2]
[100] - Set minimum numeric class variance proportion of train
variance for split [0.0010]
- Number of folds for reduced error pruning [3]
- Maximum tree depth [1]
Decorate - Desired size of ensemble [1] J48 - Set confidence threshold for pruning [0.25]
- Factor that determines number of artificial examples to - Set minimum number of instances per leaf [2]
generate. Specified proportional to training set size [1.0]
LogitBoost - Percentage of weight mass to base training on [100] DecisionStump

- Number of folds for internal cross-validation [0]

- Number of runs for internal cross-validation [1]
Threshold on the improvement of the likelihood

[1.7976931348623157E308]

- Shrinkage parameter [1.0]

RandomCommittee RandomTree - Number of attributes to randomly investigate [0]
- Set minimum number of instances per leaf [1.0]
RandomForest - Number of features to consider [0]
RandomSubSpace| - Size of each subspace [0.5] REPTree Same with REPTree for Bagging
RotationForest - Minimum size of a group of attributes [3] Filter specification [PrincipalComponents] Ja8 Same with REPTree for Decorate
- Maximum size of a group of attributes [3] - Retain enough PC attributes to account for this proportion
- Percentage of instances to be removed [50] of variance in the original data [1.0]

- Maximum number of attributes to include in transformed
attribute names [5]
- Maximum number of PC attributes to retain [1]




Chapter 8

Discussion

8.1 Balance between exploration and exploitation

We defined the rank calculation for query interaction in Algon[5.1. The peer ranking ser-
vice recommends supporting peers based on this rank catcufar query interactions. The
definition that we set is the following.

Ra(p) =C(p,©) (8.1)

This definition [8.1) was designed to promote exploratioroaghpeers and exploitation of
higher scored peers. It is sensitive to the number of minokeach peer.

Ro(p) = 1—(C(p,®) —C(p,0)) (8.2)

We can try to apply another definition of rank calculationdaery interaction instead df (8.1).
The definition [(8.2) considers both the number of pluses aindses of each peer to calculate
rank. It looks reasonable because it reflects both sideoés¢plus and minus). When a peer
gets more pluses for queries, the peer has the higher rank.

There is, however, a serious defect when this definifior) (8.28pplied to the ranking process.
Figure[8.1[ 8.2 and 8.3 show the results of the number of peiaglselected over interactions

when we apply[(8]2).
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Number of peers being selected over interactions with kr-vs-kp using rank calculation

100



Figure 8.3: Number of peers being selected over interactions with labor using rank calculation

@.2)

In each figure above, always, the same peers are repeatégtiyeseover interactions except
in very early steps. The other peers cannot be selected aftadre is no exploration among
peers, only exploitation for the specific peers.

The reason why the other peers cannot be selected is thaitesof the specific peers (higher
scored peers) are never under the scores of the lower sceeesl fror example, peer 1 (having
70% accuracy) and peer 2 (having 70% accuracy) on averagé gases and 3 minuses for
queries for the first 10 interactions. They continually ge& on 10 interactions;8 on the
next 10 interactions and so on. They always are selectedeosatik calculation because they
always have the highest scores and repeated selectiof@reeithis. The lower scored peers
have no chance to be selected. The following graphs o 8#a®d[8.6 show this problem
more apparently.
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Figure 8.5: Score over interactions with kr-vs-kp using rank calculation (8.2)
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Figure 8.6: Score over interactions with labor using rank calculation (8.2)

Therefore we need to refine rank calculation to allow mordaation. That definition must

address several defects that a simple ranking for more extma might have. One of the

defects is that a definition always explores all peers bubésdnot maintain exploitation for

higher scored peers. Another defect is that a new definitiaypmeed more time to finish a peer
separation than a reasonable time. Last, we might have tegglence about higher scored
peers because the ability of the peers has not been repeatefied with enough queries. The
most extreme definition of this sort of a simple explorati®nisiting all of peers randomly.

In the next section, we discuss better techniques of exg@eers and exploiting higher scored
peers as realised in our initial definition of rank calcuatof (8.1).

8.2 More exploration on less accurate ensembles and more

exploitation on more accurate ensembles

8.2.1 More frequent moving on less accurate ensembles

According to the rank calculation for query interaction itgérithm[5.1, the peer ranking
algorithm recommends supporting peers. Current supgppéers might be changed if the
previous supporting peers predicted a wrong answer.
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Let us assume that the potential accuracy value of a cumaeteble is 0.3. This ensemble clas-
sifier is a less accurate ensemble classifier. Based on tkeaszulation for query interaction,
the chance that the ensemble is selected again on the nesddtibn round is small because
the ensemble has less possibility to give a correct predidtr a current query example.

This means that the ensemble selection might move from atEsgate ensemble to another
ensemble rapidly. This feature makes J-model explore nesedccurate ensembles.

8.2.2 More opportunities to be confident on more accurate ens embles

Let us assume that the potential accuracy value of a curresgneble is 0.7. This ensemble
classifier is a more accurate ensemble classifier. Basedeorafttk calculation for query in-

teraction, the chance that the ensemble is selected agdimearext interaction round is large
because the ensemble has more possibility to give a conredicgion for a current query ex-

ample.

This means that the ensemble selection might stay with themuensemble for the next in-
teraction round. A more accurate ensemble still has greatdrability over interactions. It
means that J-model has more opportunities to be confidehegfdrformance of the ensemble
because the ensemble is frequently confirmed with queries.

8.2.3 Under dynamic condition

We experimented the peer separation under dynamic conslitioSectio 7.3]4. The separa-
tion process in the figures looked more noisy than the prasedsr static conditions.

The dynamic condition we set in Section 711.4 makes 25% mrahdselected classifiers from
the pool miss in every interaction. When this is applied ghler scored peers, they become to
be confirmed with queries less frequently (so there is leptodation). When this condition
is applied to lower scored peers, the selection which woaletlbeen on them moves to other
peers more rapidly (so there is more exploration). Thoseténdencies made the separation
under dynamic conditions more noisy.
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8.3 Big falls in learning curves

On the learning curve experiment of kr-vs-kp (Figure 7.28) can see that some of the learning
curves have big falls. The big falls only occur in early iatgtons.

We might guess that the reason is that the test examplescesentl. Accuracyis calculated as
how many corrections there are out of the total tests. Thdl sima makes big gaps among the
values foraccuracy However, that reasoning is not applicable on the case vfHp. First,
kr-vs-kp has enough instances (3196 instances). Secoadighfalls appear only in early
interactions and the gaps of falls decrease after that dveang removed.

We suggest more likely reasons. First, in the early intesagthase, historical verification on
current higher scored peers with queries is not firmly eshbt. So a discontinuous move
from the current group of higher scored peers to a new groujifigfrent higher scored peers
might result in a sudden and big fall of accuracy in a learrdagre. Second, especially in
kr-vs-kp, the big falls look dramatic because the averageiracy of prediction in kr-vs-kp
is very high (it is over 97%). So this makes the big falls lockreme on small changes of
performance.

8.4 Cyclic curves in learning curves

We could see several cyclic curves in the labor experimdagti(E[Z.29). The reason that they
occur can be explained as follows.

The size of the query data set for labor is very small. Totstinces are just 57. J-model adapts
to this very small number of queries for an ensemble with Hraesqueries frequently being
used for validating an ensemble. If the ensenfbigves an wrong answer, another ensentble
is recommended by the peer ranking algorithnB Hives an wrong answer, recommendation
then moves td\ cyclically. This is definitely a bad thing under static carahs (so we should
avoid this sort of circulating) but it might sometimes befusander dynamic conditions (eg.
if the learners might independently improve performandaben steps in the cycle).
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8.5 Accuracy of the pool in J-model

J-model separates optimal peers for better classificatton & peer pool. A peer pool is com-
posed of diverse classification services. We showed thatdehgives better performance in
the benchmark experiments of the section 7.6. Its perfoce@from non-boosted (not inten-
tionally tuned to training examples) member classifiers.

However, in the experiment of a realistic classificationgpeon in Sectior_7]7, the pool that
was composed of only non-tuned peers (non-CS J-model ofo8€Li7.3.2) could not give a
good performance even though we set the enough number adétitens as high as 10000.

We could confirm that diversity in a pool is essential for periance but minimal quality
among classifiers in the pool is also needed for boostingppeence. So we needed cost-
sensitive classification services as pool members and gaulal good performance from them.

8.6 Appropriate ensemble size

We used 20% of a pool size as an ensemble size for the benclamérke realistic classific-
ation problems. Our choice of ensemble size is based on tteoRarinciple. The principle

states that roughly 80% of the effects come from 20% of thesesdor many events. This
effect sometimes is identified in multi-agent systems, f@maple in SugarScape [29] which
simulated wealth distribution.

However, it is interesting to consider what happens if wg ae ratio of ensemble to pool size.
Let us see what happens if the ensemble size is too small digo¥Vhen the size is small, the
search space will be large. This means that J-model is likelysit many candidate ensembles
in a pool. So its search space in this respect is larger. Rearation and its convergence to an
optima in J-model are based on the history of getting scdrpsers. In a big search space, we
will need more interactions to get enough scoring history.

If the ensemble size is big, the search space will be smalls ifteans that the number of
candidate ensembles is small. So J-model needs less tinearichsbut the size of ensembles
obscures differences between peers. In this case, thengdoistory on peers may not be
distributed properly to discriminate the peers.
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8.7 Minimal parameterisation

Learning parameters influence the performance and eféaatss of machine learning. These
parameters make the individual machine learning systeiastad the particulars of a training
set. Tuning parameters, however, is an expensive and cantgsle.

The parameters that J-model has are the ensemble size amaihtiher of interactions. A pool

is given as an environment and an interaction model defiresytstem of agent coordination
upon which J-model works. The ensemble size is determingtidyareto principle. So we
have one parameter that needs to be tuned, the number @iatoers.

We set the number of interactions as 200 when we experimevitedl-model for the bench-
mark and realistic classification problems in Chapier 7. Vidlee was determined based on the
results of Sectioh 713. Higher scored peers were sepanateddther peers and they normally
kept their dominance over the other peers after at leastr#@@actions had been done. This,
however, is a heuristic approach to determining the propenber of interactions. It would
be useful to have an automatic method for predicting the rmurobinteractions needed for
stability.

We suspect that a general and effective basis for this willdomeasure change of the gap
between average scores of the higher scored peers and tee doared peers as shown in
Section7.3.3]3 anld 7.3.4.3, since this gives us an indimeasure of their performance. |If
we use performance as a measure for the termination comditie number of interactions is
automatically determined when J-model gets to an expe@#ddrmance.

8.8 Conclusion

In this chapter, we have discussed issues being categooisiecte groups. First, we suggested
discussions about what features on a reputation mechahsatdsbe required in our architec-
ture in Sectior 8]1 and 8.2. Second, we explained why big &aild cyclic curves appear in
learning curves and the meaning of those in Sedtioh 8.3 ahdL&st, we discussed for how
J-model can give better prediction results on the qualittagsifier pool, appropriate ensemble
sizes and setting the number of interactions in Sectiorig8band 8.17.
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Chapter 9

Related work

9.1 Distributed ensemble classification

Distributed ensemble classification is a research sub-gioimesolving classification problems
in distributed data mining. Distributed ensemble clasaiion is implemented by applying
traditional ensemble methods straightforwardly to distted environments or building smarter
versions of ensemble methods for distributed environments

9.1.1 Distributed data mining

The development of information and communication techgiel® has brought us a large num-
ber of different and distributed computing devices and datarces. The Internet, geograph-
ically distributed information systems such as the eartbeoling system of NASA sensor
networks grids are examples of such distributed environments.

When we apply a traditional (centralised) knowledge digcpyprocess to distributed environ-
ments, it requires us to gather all the distributed souradsma central repository for central
processing. This is neither effective nor feasible for seveasons: storage cost, communic-
ation cost, computational cost, and private and sensita ssues. Distributed data mining
(DDM) includes algorithms, methods and systems that effitiediscover knowledge in dis-

tributed environments.

In DDM, discovering knowledge takes place in each local stritiuted site and then global

http://eos.gsfc.nasa.gov/
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knowledge is integrated from the local knowledge at a gltdadl. There are two different ap-

proaches to synchronising global knowledge among locas siDne approach is that a global
site sends global knowledge back to local sites, so thatahewypdated with the global know-

ledge. The other approach is that local knowledge is braadoaall other local sites, so that
they share global knowledge which we hope will converge tives.

9.1.2 Distributed classification

Approaches for distributed classification are mostly irsgifrom ensemble methods such as
Stacking [103], Voting([50, 54] and Boosting. Some appreacto apply ensemble methods

to distributed environments are straightforward. The o#pproaches use smarter methods to
reduce communication and coordination costs.

Chan and Stolfd [18] applied Stacking ensemble method to DBErElUgh adopting their meta-

learning technique. Their meta-learning technique is testoict a meta-level training data set
through combining distributed training examples. Theitmeology showed better perform-

ance for a number of domains. Knowledge Probing [40] usesd@pendent data set called
the probing set on the meta-learning technique of Chan amltbSiThe probing set is used to

select an appropriate ensemble model for a problem.

Several techniques have been suggested for building aesthagsifier from local classifiers
which have been trained on an individual distributed setll, inawla and Bowyer [42, 43]
suggested a technique of assembling a decision tree witfibdi®d sub decision trees repres-
ented as rule sets. Each sub decision trees learns disg@tTthe rule combination continually
takes the union of the distributed rule sets resolving amylicts.

Fan, Stolfo and Zhang [32] introduced d-sampling AdaBodsittvis an extended version of
AdaBoost for DDM. At each boosting round, an individual wdea&rner in a distributed site
trains its local data set. Then a distribution of weigbtsis calculated from the results of
the current round anB is applied to all the distributed data sets. Experimentsvskothat
their DDM version of AdaBoost gives comparable or bettefqgrenance than a single machine
learning algorithm trained with the union of distributedal&n most cases. However it gave
comparable performance to a single classical boostingidtgo only in limited cases. Laz-
arevic and Obradovic [55] presented a distributed boosdlggrithm in which weak learners
of distributed sites learns in parallel at each round. Weaknrers share their loc8ks by
broadcasting the local values one another. Their expetsrsowed that the algorithm brings
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comparable or slightly better classification performar@anta single boosting algorithm with
the union of distributed data sets.

9.2 Agent-based distributed data mining

Agent-based distributed data mining research started fhenmotivation for bringing benefits
such as abilities to solve autonomy and scalability prolslémat the agent technology can give
to distributed data mining.

9.2.1 Introduction

Distributed data mining research has taught us that cotper@among distributed data mining
processes may give effective mining results without usengralised data mining approaches.
This naturally led us to adopting the agent technology ferdévelopment of cooperative DDM
called agent-based DDM. Agent-based DDM provides the mtiteieature of agents of being
autonomous and adaptive. These features are intended/®adgbnomy and scalability prob-
lems of DDM. Agents perform various mining operations iast®f humans and computing
devices that are operated by humans and collaborate widr atjents. Agent-based DDM
systems aim to cope with data mining tasks in distributetierogeneous and massive data
environments.

9.2.2 Benefits from agents for DDM

The following items are benefits that data mining agents ([ehds) give for DDM.

e Autonomy of data source
A DM agent is a modular process in a data management systenM Adent accesses
data sources and gathers knowledge from the data sources gimdn constraints with
autonomy.

e Scalable DDM
For massive distributed data, a DDM system can let DM agekeseach distributed data
set and perform data mining in their local sites. Then theired data are merged in the
original DDM system.
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e Multi-strategy DDM
There are cases where we wish to obtain greater effectigdoesomplex data mining
tasks by combining DM agents using different strategiesridividual complex tasks
instead of applying a single strategy.

e Collaborative DDM
There may be conflicting combinations among DM agents whméshtheir local data
independently. Collaborative DM agents have ability tootege their own opinions
with each other and may give a collaborated global opinion.

e Dynamicity in open distributed data environments
Open distributed data environments in which the availgbdf data sites must be con-
sidered and their content may change at any time have isbhew/®o discover and select
relevant data sources for performing DM tasks. DM agentdeamsed under these con-
ditions. DM agents adaptively select data sources baseleangelection criteria such
as availability, quality, form and network load of data sms.

9.2.3 Learning strategy for agent-based DDM

Several systems have been suggested for agent-based datg.nihese systems can be cat-
egorised according to their learning strategy into thrgesyof central learning, meta learning
and hybrid learning. Meta-learning and hybrid-learning By$tems are more appropriate for
distributed data mining because central-learning systgtiger data at a central site and build
a single model.

9.2.3.1 Meta-learning strategy

Meta-learning methods have been used particularly fosiflaation and regression tasks [96,
9]. For classification tasks, a meta-learning method hasethrain steps. In the first step, it
generates classifiers at each site using machine learrgogthims for classification. Next, it

gathers the generated classifiers at a central site. In shati@p, it builds the final classifier
(meta-classifier) through combining the gathered classifie

One of the most well known agent-based meta-learning appesais the METAL proje@t
This project is for helping users to gain a ranking of suitgbamong DM algorithms through

2http://www.metal-kdd.org
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an on-line advisory system. AgentDiscover, a multi-aggsatesm for knowledge discovery and
data mining (KDD) [75], was introduced. It uses task-basadoning for problem solving.

The most mature agent-based meta-learning systems aredABI@DHI. Both of the systems
are intended for data classification.

JAM [89] is a Java-implemented multi-agent system desidreestd on meta-learning DDM.

JAM agents learn heterogeneous databases using diffeeshiine learning algorithms such as
Ripper, CART, ID3, C4.5, Bayes and WEPBLS. JAM agents mayesedent in a single site

or imported agents from other peer sites in the system. JAbtoA group of meta-learning

agents which combines multiple classifier agents at diffiesgtes into a meta-classifier. In

many cases. these meta-classifiers give improved preel@tiouracy.

BODHI [48] is a framework for performing collective DM tasks heterogeneous data such
as supervised inductive distributed function learning memtession. BODHI guarantees to get
a correct local and global data model with low network comioation load. The framework
provides message exchange and runtime environments fateragents running at each local
site. The mining process is distributed to the local sitesagents move between the sites on
demand. Each agent transports its state, data and knowl@dggntral facilitator agent has a
responsibility of initialising and coordinating the commication and control flow among the
agents.

9.2.3.2 Hybrid-learning strategy

A hybrid-learning method combines local and remote leayfian building a model([94]. Pa-
pyrus [5] is an example of hybrid-learning systems. Papigasspecialised DDM system for
clusters of heterogeneous data sites and meta-clustesappbrts several sorts of predictive
models including C4.5. In contrast to JAM and BODHI, Papycas not only move models
from site to site, but can also move data when a suggestadgtreequires. Each cluster has
one primary node with which agents access and control chistEhe overall clustering task
is coordinated in a central root site or across a distribnegd/ork of cluster access points in
a peer-to-peer manner. Papyrus supports various modelicatidn methods and a special
markup language is used to describe the meta-descriptialataf models and intermediate
results.
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9.3 Collaborative multi-agent learning

Multi-agent learning is a technique to build complex malgjent systems in a dynamic en-
vironment. Collaborative multi-agent learning is a spetyae of multi-agent learning. In
collaborative multi-agent learning, agents work toget®ern group to improve their accuracy
at a given learning task.

9.3.1 Multi-agent learning

Multi-agent learning has been defined as learning throughrtteraction between multiple
intelligent agents [47]. This multi-agent learning was @leped from our attempt to build
complex multi-agent systems that operate in dynamic enuents. It is extremely difficult to
design complex multi-agent systems with robustness inramiaThis difficulty naturally led

us to develop multi-agent systems that adapt and learndghrexiperience.

Multi-agent learning is different from standard machinarieng. Standard machine learning
methods work under assumption that a single learner or dgenall relevant knowledge loc-

ally. In multi-agent systems, this assumption is not aldéa Relevant knowledge such as
training experience and background information is disteld among agents in a multi-agent
systems. Also domain constraints such as privacy and costeqaire a multi-agent approach.

9.3.2 Collaborative multi-agent learning

Collaborative multi-agent learning is a special type of tihagjent learning, in which agents
work together as a group or team to improve their accuracygaten learning task. Agents
actively communicate or interact with one another during lgarning process in order to be
collaborative. The main issue in the interaction is how #gkyarn accurately without exposing
their knowledge to a central agent.

Collaborative multi-agent leaning is basically differéram ensemble learning such as bag-
ging and boosting. Ensemble learning methods combine #digtions fromN independent
learners through voting schemes. Variance across leahnegrs to improve overall accuracy.
This ensemble learning approach, however, will not worlpprty when a target problem can-
not be learnt by individual member classifiers. Meanwhil@|aborative learning allows a
group of learners to learn those sorts of target problemsollaborative learning, a distributed
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situation is assumed.

9.3.3 Research on collaborative multi-agent learning

Weil3 and Dillenbourg [101] express an important opiniort tha true potential for multi-
agent learning is obtained through dynamic forms of intirég. This opinion offers a general
perspective across the multi-agent learning research idloma

Many existing works of collaborative learning were perfedhon collective versions of rein-
forcement learning. WeilR [100] and Tan [91] independentiynfed that collaborative learning
can be improved through information exchange between agsh{Tan additionally sugges-
ted social adaptation of agents for the improvement. Whadhand Ballard [102] provided a
learning architecture based on mutual observation.

A large number of other works have suggested collaboragvsiens of Q learning since the
works of Weiss, Tan and Whitehead. Clouse [22] showed thiglmrative improvement can
be achieved through letting agents ask for help with onelemotChalkiadakis and Boutilier
[17] suggested a collaborative model to explore the spaselafions. Szer and Charpillét [90]
defined an algorithm to broadcast intermediate learningteeand investigated effects that the
circulation of different quantities of information makedu, Powers and Shoharn [97] studied
agent coordination. Their results explore the minimum lewd performance in each agent
needed for their collaboration.

There is a notable work on collaborative multi-agent leagrihat is not based on reinforcement
learning. Prasad [76] redesigned collaborative multirddgarning as a parametric problem.
A group of agents cooperatively searches a composite sspacte. To goal is to find globally
optimal solutions. Agents share their local data with onetla@r when conflicts arise. This
information is reused during search rounds.

Some researchers studied collaborative multi-agent ilggthrough linking with other ma-
chine learning techniques. Modi and Shen| [66] suggestedtahiited collaborative learning
algorithm for classification in situations where some of th®rmation is privately closed.
Ontafibn and Plaza [69] proposed cooperation techniquesbe-based reasoning. Nunes and
Oliveira [68] provided an advice exchange system where iticelation of information occurs
among agents having different learning algorithms. Graga Gaspar [39] gave the results
of the performance of opportunistic non-learning agen#s taceive information from learn-
ing agents. They concluded that agents having differekistaad roles can improve global
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performance.

9.4 Open multi-agent systems

Researches on open multi-agent systems are for provididiiragent systems working with
open, dynamic and heterogeneous agents.

9.4.1 Introduction

In recent years, open multi-agent systems (OMASSs) haveedamportance in the study of
distributed Al. Agents participating in OMAS may proactiv@in and leave the system at any
time and they may independently have been implemented terelift designers.

A main problem in OMAS is how to coordinate the ability of teespen, dynamic and het-
erogeneous agents. Additionally, the agent coordinatiag not possible to be designed at
design time. This coordination has a intrinsic feature ahtparranged at runtime. According
to characteristics of systems, two different sorts of cowtion approaches are applicable re-
spectively. First, methods to prescribe and enforce belbawf each agent are applicable if a
system has an explicit global goal to achieve and theresaistauthority enabling to enforce
the prescribed behaviour. Second, societal structurebeapplied if a system does not have
any global goal or an authority. In such systems, agentsactevith one another and a more
efficient behaviour can be obtained through their coordbnatf interactions for a global goal.
This brings the difficult task of how to decide which agentsagant interacts with.

9.4.2 Research on open multi-agent systems

Most work has used prescriptive structures in order to lg@UWMAS. Artikis [4] introduced an
infrastructure for dynamic protocol specifications whespacification may change at runtime
by agents participating in an OMAS.

Notable works based on structural adaptation have beerestegy Kota, Gibbins and Jennings
[52] provided a decentralised approach for structural tedemm. Their method realised an
implicit adaptation of agents for their structural relasbip by which task allocation processes
improve.
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There exist many works by which a MAS changes its organisatioing execution. Deloach,
Oyenan and Matson [25] provided a framework in which a MASaoigation re-organise at
runtime. Dignum, Dignum and Sonenbergl[26] and Wang, Liantyzhao [99] also presented
re-organisation of organisation structures.

Hubner, Vercounter and Boissiér [46] suggested a collegrocess reputation for trust man-
agement by coordination artifacts publishing and prowgdatjective evaluations that agent
calculate.

9.5 Service choreography workflows

We now provide an overview of workflow technology for coorating distributed services. We
focus on a choreography approach because it is more adapiivecalable for changing and
uncertain services.

9.5.1 Introduction

Workflow technology is one of the major approaches for cowtiing distributed services as a
group. In service-oriented architectures, services argdly coupled and independent from one
another and accordingly they offer a greater degree of fléyiand scalability for evolving ap-
plications. Coordination of services is appropriate whehared goal can be achieved through
collaboration of the services.

9.5.2 Service orchestration and service choreography

There are two main architectural approaches in which wonldlare executed; service orches-
tration and service choreography. This criterion specifiasther workflow is executed in a
centralised (orchestration) or a distributed (choreodgyamanner.

In service orchestration, a single process (the processae controller) executes the activities
and the other passive processes (services) are called intie process. Service orchestration
workflows are defined through orchestration languages ssig¥&BPEL, YAWL and XPDL.

In service choreography, the activities are executed byeggarticipating services that commu-
nicate or interact via messages with one another. Emerg#aboration among them naturally
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arises. Service choreography workflows are described giwohoreography languages such
as WS-CDL, WSCI and OWL-S.

9.5.3 Choreography languages

WS-CDL, WSCI and OWL-S are XML-based languages and theympNSDLH [21,120]
which is the founded standard to describe Web services.

9.5.3.1 WS-CDL

The Web Service Choreography Description Language (WS)QIekcribes peer-to-peer col-
laborations of Web services. This description defines tmengon behaviour of participating
services and the ordered message interchanges. In WS-G®kptlaboration between Web
services arises by the ordering and constraint rules wiibiwséervices agree. The elements in
WS-CDL are as follows.

e Role - A role enumerates a potential behaviour of a partitipathin an interaction.

e Channel - A channel specifies where and how information betwgarticipants is ex-
changed.

¢ Relationship - A relationship identifies the mutual obligas that have to be implemen-
ted to succeed.

9.5.3.2 WSCI

The Web Service Choreography Interface (WSCI) describedriterface of a Web service
in a choreographed interaction. This interface declaresfldw of messages exchanged by
the Web service. One WSCI interface defines the observablavimeir of one Web service.
Temporal and logical dependencies in the flow of messagessept this behaviour. A WSCI
choreography consists of a set of interfaces.

Shttp://www.w3.org/TR/wsdl
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9.5.3.3 OWL-S

The Ontology Web Language for Services (OWL-S) was develdpesupport the concept
of Semantic Web from the DARPA Agent Markup Language (DANLThe purpose of this
ontology language is to automate the discovery, invocattomposition, interoperation and
monitoring of Web services. The ontology proposed by OWIs-8asigned to provide three

essential sorts of information about services.
e Service profile - what the service provides (for being disred)
e Service process model - how the service is used (for being) use

e Service grounding - how to access the service (for being)used

9.6 Ensemble selection

Ensemble selection aims to reduce ensemble sizes prioassifter combination. Ensemble
selection decreases computational overhead from a largbenof member classifiers and may
acquire better predictive performance from classifiergritavarious predictive performance

levels.

9.6.1 Introduction

Ensemble methods typically have two phases for learnirgg#neration of multiple classifi-
ers and their combination. Ensemble selection is an additioatermediate phase to reduce the
ensemble size prior to combination. Ensemble selectioasgins two benefits: efficiency and
predictive performance. Managing a large number of memlbssifiers in an ensemble brings
computational overhead such as large memory requiremedtscmputational cost. Ensemble
selection can reduce this computational overhead. Meniassitiers might be composed of
both high and low predictive performance models but low mtee performance models can
badly affect the performance of an ensemble. Ensembleteeleemoves these low perform-
ing models.

“http://mwww.daml.org/
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9.6.2 Ensemble selection algorithms

Ensemble selection methods that have been proposed sanféaeazategorised into four cat-
egories: search-based, clustering-based, ranking-laaskedther methods.

9.6.2.1 Search-based methods

Search-based methods are the most direct approach for blesestection. They heuristically
select different classifier subsets in the classifier sespelce based on some metric and each
candidate is evaluated. Search-based methods can bedlividgeedy search and stochastic
search based on the search paradigm.

Greedy search  The greedy search paradigm is the most popular categoryseindnie se-
lection. Greedy search tries to find a globally best clagssfibset by searching the classifier
subset space.

In the research of Faet al. [31], Martinez-Muiioz and Suarez [61], Caruaatal. [16] and the
Reduce-Error Pruning with Backfitting method [62], forwalection was used for searching
the classifier subset space[[59].

Backward elimination was used in the AID thinning and conency thinning algorithms [6].

Stochastic search ~ Stochastic search gives a chance to select a random ensesnblielate
for a next round. This helps ensemble selection processid getting stuck in local optima.

The GASEN-b algorithm [107] applied a genetic algorithm (G@ perform stochastic search

in the space of classifier subsets. A bit string represengnhaamble. One bit indicates a clas-
sifier. Corresponding bits determine which classifiers bemembers of an ensemble. The
operations of GP such as crossover and mutation are applieasembles. The performance
of an ensemble is evaluated as the fitness value.

Partalaset al. [72] employed Q-learning for stochastic search. In Q-leaynselectingn
classifiers for an ensemble is transformed into letting amalgarn an optimal policy of taking
n actions of including or excluding classifiers.
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9.6.2.2 Clustering-based methods

Clustering-based methods have two-step stages. The @psisstio apply a clustering algorithm
to discover sets of classifiers that look giving similar pcédns. The second step is to prune
each cluster separately.

Giacinto, Roli and Fumera [38] applied Hierarchical Aggkmattive Clustering (HAC). It was
required to define a distance metric between classifiersddhis clustering algorithm. They
defined this metric as the probability of the coincident elegel between classifiers and used
a validation set to calculate the error levels. In pruninthimia cluster, a single representative
cluster is selected. The selected classifier has the maxaweahge distance from all other
clusters. For making an ensemble from the selected clasgfiened in the individual clusters,
all the combinations of the selected classifiers are evaduasing a validation set based on
majority voting as the combination method. The combinatitat has achieved the highest
classification accuracy becomes the final ensemble.

Lazarevic and Obradovic [56] used tkaneans algorithm to make clusters of classifiers. In
this method, to determine the valuelofthe number of clusters) is an issue. They continually
increased the number of clusters until diversity amongtehssegan to decrease to solve the
given problem. They then pruned classifiers of each clusteed on a pre-defined threshold of
classification accuracy.

Fu, Hu and Zhad [37] also used tkaneans algorithm for clustering classifiers. They pruned
each cluster by selecting a single classifier that has theebtglassification accuracy as Giacinto,
Roli and Fumera did and determined the number of clusteraaarevic and Obradovic did.

9.6.2.3 Ranking-based methods

Ranking-based methods give an order to classifiers in améseaccording to some evalu-
ation metric and select classifiers based on the order.

In the Orientation Ordering algorithnm_[62], classifiers gle¢ir orders based on the angle
between their signature vector and reference vector. Tdreagire vector of a classifieris
a|D|-dimensional vector. Each element has the vataef c(x) =y; and—1 if ¢(x) # yi. Xis
a validation exampley is an actual class value ands an index of an example in a validation
set. The reference vector is a vertical vector of an ensesigpt@ture vector which is an aver-
age signature value of all classifiers in an ensemble. Glassivhose angle is less thawi2
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become the members of a final ensemble.

9.6.2.4 Other methods

Two sorts of approaches that do not belong to the three aa¢sgabove have been introduced.
The first approach_[93, 92] is based on statistical procedfoedirectly selecting a subset
of classifiers. The other approach [106] is based on semiteefirogramming (SDP), more

specifically quadratic integer programming.

9.7 Social reputation mechanisms

Social reputation mechanisms are used to improve the ililyadnd performance of electronic
societies through rating reputation of the members.

9.7.1 Introduction

The research on computational reputation mechanisms segpline that has gained significant
attention in recent years. Its aim is to increase the reitgl@and performance of introduced
electronic communities.

There are two sorts of social evaluations; local (subjegtreputation and global reputation.
In local reputation, reputation inferences are performechfthe perspective of another agent
and thus each agent in the network may have multiple repuatailues. Local reputation
is subjective by nature. Mechanisms such as ReCrell [85]A&=H84], Sierra-Debenham
model [88], AFRAS[[15] and FIRE [27] are based on local repata In global reputation, the
reputation of each agent is computed from the perspectitteeoivhole network and thus each
agent is associated to a single reputation value. An indalidgent has a public reputation in
the community. Examples that follow global reputation anére auctions such as eBagnd
Amazon Auctior@, laboratory models such as Sporas [105], and Web relateditigs such
as PageRank [13], HITS [51] and TrustRank/[41].

Shttp://www.eBay.com
Shttp://auctions.amazon.com
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9.7.2 Mechanisms based on global reputation
9.7.2.1 Online reputation mechanisms

eBay and Amazon Auctions are representative examples ofeomarketplaces using reputa-
tion mechanisms. On eBay, the reputation mechanism is b@séde ratings that users add
after the completion of a transaction. The user can chooseobthe three possible values:
positive (1), negative{1) or neutral (0). The reputation value is calculated as tine af those
ratings in the last six months. Amazon Auctions use a mearevas the reputation value.

9.7.2.2 Sporas

Sporas is an evolved version of the online reputation mashem Sporas has two main fea-
tures for handling reputation. First, only the most recexting between two users is used
for computing the reputation value. Second, users havingrahigh reputation are likely to
maintain their ratings while users having a low reputatibtam big rating changes. Sporas
measures the reliability of the users’ reputation basecherstandard deviation of reputation
values. Sporas is more robust to changes of the user behavidahe reliability measure helps
the reputation value more usable.

9.7.2.3 Link-based algorithms

There are many link-based algorithms for finding authavigatinfluential, central and reput-
able nodes on a network. These algorithms can generallygiedpo any sort of network.

9.7.2.3.1 PageRank The PageRank algorithm is inspired from how the number atioihs
determine the relevance of a paper in the scientific commuRégeRank conceptually maps a
link from a PageA to a pageB into a vote of the pagA for the pageB. The formula to calculate
the PageRank value of the page is the foIIO\@ing

—d
PR(pi) = —— +d

(9.1)

’From http://en.wikipedia.org/wiki/PageRank
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pis a Web pageN is the total number of pagel(p;) is the set of pages that link . L(P;)
is the number of outbound links on pagg d is a damping factor.

9.7.2.3.2 HITS The HITS algorithm also considers the relevance of a Web paged on its
links, like PageRank. However, this algorithm only use asgtilof pages instead of using any
page that links to the target pag&uthority pages andhub pages are the selected pages to be
used. The Web page authors provide an algorithm to deteramaathoritypage that is linked
from many good pages. Authors also definbud page that has links to many authoritative
pages.
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Chapter 10

Conclusions

We live in an environment in which things are being generategteater numbers and are con-
necting one another much more frequently, faster and bralhde before. Things are autonom-
ous, adaptive and communicative with sensing and proaes@éia can call thesemart objects
Examples of smart objects are wireless sensors, ambieninaooiation devices, household
appliances and mobile medical devices.

We know that a higher degree sinartnes€an be derived from interoperation of those smart
objects. The higher degree of smartness is obtained threhaled knowledge.

Our J-model architecture provides a practical platfornhere one form of valuable knowledge
among smart objects that perform classification.

10.1 Hypothesis confirmation

We now return to our original hypotheses in the introductitbapter and check whether the
research hypotheses of this thesis have been confirmed.

The hypotheses, which we introduced in Sectioh 1.3, are

1. J-model’s prediction performance approaches the prence of traditional ensemble
methods.

2. J-model’s prediction performance approaches the pwdnce of traditional ensemble
methods in practical time.

3. J-model is applicable to realistic learning problems.
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4. Minimal parameterisation is required for J-model pradit
Each hypothesis has been confirmed as follows.

1. In the experiments of the sectibn]7.6, we compared J-risopieddiction performance
with other representative ensemble methods on the mefrmscaracy, sensitivity, spe-
cificity, F-measure and the area under curve (AUC) usingdstahmachine learning
benchmark data sets. The results showed that J-modelsrpenfice is comparable to
the performances of the other traditional ensemble methods

2. In the benchmark comparisons in Secfiod 7.6, we commail2®@0 as the number of
interactions. The number of interactions we set was detexthbased on the peer sep-
aration experiments of Section I7.3. After 200 interactjgers were reliably separated
from each other and their score orders became stable. 28@atibns finishes within
one second of physical time in the benchmarks. This is aipeddtme for us to get
classification results.

Formally, J-model’s time complexity for coordination@N?). As shown in a pseudo-

code representing an ensemble coordination process ofléinmoSection 4.3, J-model’s
coordination process has two loops of an outer and an inres.ofhe outer loop is for

the number of interactions and the inner loop is for the sfzneensemble (the number
of roles defined in an interaction model is the same as theafiaea ensemble as each
member of an ensemble takes its corresponding role). Timis tomplexity analysis

supports that J-model’s coordination process is competiti

3. We applied J-model to virtual screening classificatiosbfgm in Section_717. The res-
ults for true positive rates on these highly imbalanced data was remarkably success-
ful. The results was obtained by using 200 interactions.odlehdid not suffer from a
memory space problem for these large size data sets. Tleisisethat J-model is applic-
able to realistic learning problems.

4. We discussed the parameterisation issue of J-model itio8é8.7 of the discussion
chapter. J-model required only the number of interactiana parameter and the value
of the interaction parameter might be able to be determinézhaatically.

10.2 Contributions to knowledge

The key contributions of this thesis are as follows:
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e First, we showed that service choreography coordinationbeaan effective ensemble
learning process for classifiers in an open context. In exjastts, its classification res-
ults are better than the results from traditional ensemidthods and they are given in
practical time.

e Second, we gave more attention to task-oriented machineitggas distinct from pre-
vious passive learning techniques. Learning tasks areemm@hted by designing interac-
tion models.

e Third, we designed a reputation mechanism showing netwibekte and a power-law
distribution for machine learning. The mechanism reconusenore appropriate classi-
fiers from a classifier pool. Formally, we defined the peeriragnklgorithm suitable for
general machine learning classification. It is robust fassification services in an open
context and decides reputation of services based on th# ofsateraction. The peer
ranking mechanism is general and independent of the desigrdiwidual interaction
models or classifiers.

10.3 Weaknesses on our work

Despite of contributions of our work, there remains weaknfgbn our achievements as fol-
lows:

e We chose a heuristic selection approach for the numberefdotions.

As we discussed this problem in Section| 8.7, we need an atitomathod that adapt-
ively determines the appropriate number of interactiomsrdime. This issue is essential
because the number of interactions determines the degceewérgence of an ensemble.
If the convergence is premature, a less verified ensembletrbegselected as a final en-
semble classifier. Meanwhile, if the convergence is too mneattith an excess number of
interactions, a selected ensemble might be over-fitted éoygexamples.

e A single peer ranking service might not be appropriate fongeclassifier pool.

We used a single peer ranking service to calculate ranksss§p&he single peer ranking
service might encounter a problem if it should give ranksddruge number of peers
because requirements of the service for memory and time raay liottleneck in our
architecture.
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This problem can be solved by using multiple peer rankingises. Each service takes
one of the peer clusters. A global rank can be calculated bgingelocal ranks that
individual peer ranking services calculated for their peasters.

10.4 Future work

10.4.1 Adaptive parameterisation

We discussed J-model’'s parameterisation issues in thesdism chapter (Sectidn 8.7). In the
section, we suggested that the number of interactions whinkeded for enough peer separ-
ation can be determined based on the size of query exampleshanges of the gap between
average scores of the higher scored peer and the lower spgeees. J-model could be made
more sensitive to what happens during its interactionsexample by adjusting the selection
balance among peers. That is, we have a plan to make J-medglatjust its parameters

adaptively and automatically at run-time.

10.4.2 General peer ranking algorithm

We evaluated J-model with standard machine learning beadhdata sets in Sectign 7.6 and
a realistic classification problem of virtual screening gcon[7.Y. The results showed that
J-model gives good prediction performance. We will evauaimodel with other realistic prob-
lems. The peer ranking algorithm of J-model is generallyliagple at least for the problems
that we used in this thesis. We would like to measure how virelgeer ranking algorithm
works for further realistic problems. If the ranking algbm does not show sufficient perform-
ance for a broader range of problems, we need to adjust tkégaalgorithm (for example
by adaptive parameterisation) so that the ranking algorgives balanced exploration and ex-
ploitation and network effects and a power-law distribatior peers across many classification
problems.

10.4.3 Regression, clustering and reinforcement learning

We utilised J-model for classification problems. We explkat tve can expand the application
of J-model to other sorts of machine learning such as reigressid clustering problems and
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reinforcement learning. J-model is a general ensemblailggmarchitecture. So we expect
that J-model can be applied to such learning problems sithpbyigh preparing an appropriate
classifier pool and specified interaction models withouhgirag any architectural components
of J-model or re-defining the peer ranking algorithm.

10.4.4 Mathematical analysis

We would like to deepen our understanding of J-model’s iegrprocess by the peer rank-

ing algorithm through the development of a more extensiwtrabt study of its mathematical

properties. We think that random process theory can be otieahost appropriate candidates
for this purpose. Through analysing J-model learning nradteally, we can understand its
learning process at a precise and fundamental level andnitherstanding may help us to be
able to design better J-model learning.
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