

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

• This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

• A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

• This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

• The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

• When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

J-model: an Open and Social Ensemble Learning

Architecture for Classification

Jinhan Kim

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Centre for Intelligent Systems and their Applications

School of Informatics

University of Edinburgh

2012

Abstract
Ensemble learning is a promising direction of research in machine learning, in which an en-

semble classifier gives better predictive and more robust performance for classification prob-

lems by combining other learners. Meanwhile agent-based systems provide frameworks to

share knowledge from multiple agents in an open context. This thesis combines multi-agent

knowledge sharing with ensemble methods to produce a new style of learning system for open

environments.

We now are surrounded by manysmart objectssuch as wireless sensors, ambient communica-

tion devices, mobile medical devices and even information supplied via other humans. When

we coordinate smart objects properly, we can produce a form of collective intelligence from

their collaboration. Traditional ensemble methods and agent-based systems have complement-

ary advantages and disadvantages in this context. Traditional ensemble methods show bet-

ter classification performance, while agent-based systemsmight not guarantee their perform-

ance for classification. Traditional ensemble methods workas closed and centralised systems

(so they cannot handle classifiers in an open context), whileagent-based systems are natural

vehicles for classifiers in an open context.

We designed an open and social ensemble learning architecture, named J-model, to merge the

conflicting benefits of the two research domains. The J-modelarchitecture is based on a ser-

vice choreography approach for coordinating classifiers. Coordination protocols are defined by

interaction models that describe how classifiers will interact with one another in a peer-to-peer

manner. The peer ranking algorithm recommends more appropriate classifiers to participate in

an interaction model to boost the success rate of results of their interactions. Coordinated par-

ticipant classifiers who are recommended by the peer rankingalgorithm become an ensemble

classifier within J-model.

We evaluated J-model’s classification performance with 13 UCI machine learning benchmark

data sets and a virtual screening problem as a realistic classification problem. J-model showed

better performance of accuracy, for 9 benchmark sets out of 13 data sets, than 8 other represent-

ative traditional ensemble methods. J-model gave better results of specificity for 7 benchmark

sets. In the virtual screening problem, J-model gave betterresults for 12 out of 16 bioassays

than already published results. We defined different interaction models for each specific clas-

sification task and the peer ranking algorithm was used across all the interaction models.

Our research contributions to knowledge are as follows. First, we showed that service choreo-

graphy can be an effective ensemble coordination method forclassifiers in an open context.

i

Second, we used interaction models that implement task specific coordinations of classifiers to

solve a variety of representative classification problems.Third, we designed the peer ranking

algorithm which is generally and independently applicableto the task of recommending appro-

priate member classifiers from a classifier pool based on an open pool of interaction models

and classifiers.

ii

Acknowledgements
I pay my tribute of praise to my wife1. She gave me everything of her. Thank you.

Father2, I love you.

Thank you all for your friendship and discussion with me. They are Xi3, Shariar4, Gaya5,

Tommy6, Omar7 and Siu-wai8.

To my family, thank you for your support. They are my mother9, my mother-in-law10 and my

son11.

Paolo12 is my friend and the secondary supervisor. Thank you and see you after the restoration

of your health.

Dear Dave13, I always say “really thank you”. You are one of the best and the wisest men

whom I have ever met. You have guided me very well and given me invaluableknowledgeand

wisdom. You yourself have stood as myrole model.

1Youn Jin Choi
2Choong Kyu Kim
3Xi Bai
4Shahriar Bijani
5Gayathri Nadarajan
6Thomas French
7Omar Montano Rivas
8Siu-wai Leung
9Chun Ja Jang

10Book Hee Nam
11Jaeyoun Kim
12Paolo Besana
13Dave Robertson, my primary supervisor

iii

Declaration
I declare that this thesis was composed by myself, that the work contained herein is my own

except where explicitly stated otherwise in the text, and that this work has not been submitted

for any other degree or professional qualification except asspecified.

(Jinhan Kim)

iv

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 6

1.3 Research hypothesis .. . 6

1.4 Thesis structure .. 7

2 Background 10

2.1 Services in open context .. . 10

2.2 Ensemble methods . 11

2.2.1 Concept . 11

2.2.2 Algorithms . 11

2.2.3 Advantages . 12

2.3 Service-oriented architecture 13

2.3.1 Services . 13

2.3.2 Workflows . 13

2.3.3 Orchestration and choreography coordinations 14

2.4 OpenKnowledge framework .. 16

2.4.1 Service, participant and peer 17

2.4.2 Interaction models . 17

2.4.3 Lightweight coordination calculus 18

2.5 Social reputation .. 20

2.5.1 Network effects . 20

2.5.2 Power laws . 21

2.5.3 Rich-get-richer dynamics .. . 21

2.5.4 Pareto principle and the long tail for reputation 22

3 Architectural migration 23

v

3.1 Introduction .23

3.2 Classifier to classification service 23

3.2.1 Classifier . 24

3.2.2 Classification service .. 25

3.3 Classifier aggregation to service coordination 27

3.3.1 Classifier aggregation .. 27

3.3.2 Service coordination .28

3.4 Performance boosting strategies 32

3.4.1 In traditional ensemble learning 32

3.4.2 In J-model . 34

4 J-model architecture 36

4.1 Introduction .36

4.2 Organisation of J-model 36

4.2.1 Service choreography system .. 37

4.2.2 Interaction processes .. 37

4.2.3 Set of peers and data . 37

4.2.4 Reputation mechanism . 38

4.3 Discovery-enactment-analysis cycle 39

4.4 Training, query and test layers 40

4.4.1 Training layer . 41

4.4.2 Query layer . 41

4.4.3 Test layer . 42

5 Peer ranking service 43

5.1 Introduction .43

5.2 Recommendation-evaluation-update cycle 43

5.2.1 Recommendation phase . 44

5.2.2 Evaluation phase . 44

5.2.3 Update phase . 45

5.3 Peer ranking algorithm .. . 45

5.4 Examples . 46

5.4.1 Under static conditions .. 47

5.4.2 Under dynamic conditions .47

5.5 Termination condition 48

vi

5.5.1 Number of interactions .48

5.5.2 Performance metric criterion 48

6 Interaction models for classification 49

6.1 Introduction .49

6.2 Open interaction models .. . 52

6.2.1 Simple model (IM1) . 52

6.2.2 Complex model (IM2) . 54

6.2.3 Another complex model (IM3) .55

6.2.4 Model for specificity metric (IM4) 55

6.2.5 Model for high true positive rate and low false positive rate metrics (IM5) 56

6.2.6 Model with time constraint (IM6) 56

6.3 Summary . 57

7 Experiments 58

7.1 General methodology .. 58

7.1.1 Binary class data . 58

7.1.2 Training, query and test examples 58

7.1.3 Base classifiers for pool preparation 58

7.1.4 Static and dynamic conditions .. . 59

7.2 System implementation for experiments 59

7.3 Peer separation from the pool 61

7.3.1 Introduction . 61

7.3.2 Experimental setup . 61

7.3.3 Results under static conditions 62

7.3.4 Results under dynamic conditions 68

7.4 Peer convergence to optima 73

7.4.1 Introduction . 73

7.4.2 Experimental setup . 73

7.4.3 Results under static conditions 74

7.4.4 Results under dynamic conditions 76

7.4.5 Conclusion . 77

7.5 Learning curves .77

7.5.1 Introduction . 77

7.5.2 Experimental setup and methods 78

vii

7.5.3 Results . 78

7.5.4 Conclusion . 81

7.6 Benchmark comparisons .. 82

7.6.1 Introduction . 82

7.6.2 Experimental setup . 82

7.6.3 Results . 84

7.6.4 Conclusion . 88

7.7 Realistic problem - virtual screening 89

7.7.1 Introduction . 89

7.7.2 Experimental setup . 91

7.7.3 Results . 94

7.7.4 Conclusion . 97

8 Discussion 99

8.1 Balance between exploration and exploitation 99

8.2 More exploration on less accurate ensembles and more exploitation on more

accurate ensembles . 103

8.2.1 More frequent moving on less accurate ensembles 103

8.2.2 More opportunities to be confident on more accurate ensembles 104

8.2.3 Under dynamic condition .104

8.3 Big falls in learning curves 105

8.4 Cyclic curves in learning curves 105

8.5 Accuracy of the pool in J-model 106

8.6 Appropriate ensemble size 106

8.7 Minimal parameterisation 107

8.8 Conclusion . 107

9 Related work 108

9.1 Distributed ensemble classification 108

9.1.1 Distributed data mining .. 108

9.1.2 Distributed classification 109

9.2 Agent-based distributed data mining 110

9.2.1 Introduction . 110

9.2.2 Benefits from agents for DDM . 110

9.2.3 Learning strategy for agent-based DDM 111

viii

9.3 Collaborative multi-agent learning 113

9.3.1 Multi-agent learning .113

9.3.2 Collaborative multi-agent learning 113

9.3.3 Research on collaborative multi-agent learning 114

9.4 Open multi-agent systems 115

9.4.1 Introduction . 115

9.4.2 Research on open multi-agent systems 115

9.5 Service choreography workflows 116

9.5.1 Introduction . 116

9.5.2 Service orchestration and service choreography 116

9.5.3 Choreography languages .117

9.6 Ensemble selection .. 118

9.6.1 Introduction . 118

9.6.2 Ensemble selection algorithms 119

9.7 Social reputation mechanisms 121

9.7.1 Introduction . 121

9.7.2 Mechanisms based on global reputation 122

10 Conclusions 124

10.1 Hypothesis confirmation 124

10.2 Contributions to knowledge 125

10.3 Weaknesses on our work .. 126

10.4 Future work . 127

10.4.1 Adaptive parameterisation 127

10.4.2 General peer ranking algorithm 127

10.4.3 Regression, clustering and reinforcement learning. 127

10.4.4 Mathematical analysis .. 128

Bibliography 129

ix

List of Figures

1.1 Machine learning process 1

1.2 Illustration of the ensemble learning process 2

1.3 Astronomy research .. 3

1.4 Service choreography system for coordinating agents 5

1.5 Service choreography system with interaction models and reputation service . . 5

2.1 Service orchestration and service choreography 14

2.2 The syntax of lightweight coordination calculus 18

3.1 A classifier in a traditional ensemble system 24

3.2 A classification service and another classification service 25

3.3 UML activity diagram of traditional ensemble aggregation 28

3.4 Classification service coordination and its elements 30

3.5 UML activity diagram of classification service coordination 31

4.1 J-model architecture 36

4.2 Discovery-enactment-analysis cycle in J-model architecture 39

4.3 Training, query and test layers in J-model architecture. 41

5.1 Recommendation-evaluation-update cycle on peer ranking service 44

6.1 Simple and complex interaction models 51

7.1 A system implementation for query interaction 59

7.2 A system implementation for test interaction 60

7.3 Number of peers being selected over interactions with breast-cancer under

static conditions . 62

7.4 Number of peers being selected over interactions with kr-vs-kp under static

conditions . 63

x

7.5 Number of peers being selected over interactions with labor under static condi-

tions . 63

7.6 Score over interactions with breast-cancer under static conditions 64

7.7 Score over interactions with kr-vs-kp under static conditions 65

7.8 Score over interactions with labor under static conditions 65

7.9 Average scores interactions with breast-cancer under static conditions 66

7.10 Average scores interactions with kr-vs-kp under static conditions 66

7.11 Average scores interactions with labor under static conditions 67

7.12 Number of peers being selected over interactions with breast-cancer under dy-

namic conditions . 68

7.13 Number of peers being selected over interactions with kr-vs-kp under dynamic

conditions . 68

7.14 Number of peers being selected over interactions with labor under dynamic

conditions . 69

7.15 Score over interactions with breast-cancer under dynamic conditions 70

7.16 Score over interactions with kr-vs-kp under dynamic conditions 70

7.17 Score over interactions with labor under dynamic conditions 71

7.18 Average scores interactions with breast-cancer underdynamic conditions . . . 71

7.19 Average scores interactions with kr-vs-kp under dynamic conditions 72

7.20 Average scores interactions with labor under dynamic conditions 72

7.21 Number of peers being converged at 200 interactions with breast-cancer under

static conditions . 74

7.22 Number of peers being converged at 200 interactions with kr-vs-kp under static

conditions . 74

7.23 Number of peers being converged at 200 interactions with labor under static

conditions . 75

7.24 Number of peers being converged at 200 interactions with breast-cancer under

dynamic conditions . 76

7.25 Number of peers being converged at 200 interactions with kr-vs-kp under dy-

namic conditions . 76

7.26 Number of peers being converged at 200 interactions with labor under dynamic

conditions . 77

7.27 Learning curves of breast-cancer 79

7.28 Learning curves of kr-vs-kp 80

7.29 Learning curves of labor 81

xi

7.30 Selection of compounds against a biological target in virtual screening 90

8.1 Number of peers being selected over interactions with breast-cancer using rank

calculation (8.2) . 100

8.2 Number of peers being selected over interactions with kr-vs-kp using rank cal-

culation (8.2) . 100

8.3 Number of peers being selected over interactions with labor using rank calcu-

lation (8.2) . 101

8.4 Score over interactions with breast-cancer using rank calculation (8.2) 102

8.5 Score over interactions with kr-vs-kp using rank calculation (8.2) 102

8.6 Score over interactions with labor using rank calculation (8.2) 103

xii

List of Tables

5.1 Peer ranking example under static conditions 47

5.2 Peer ranking example under dynamic conditions 47

7.2 breast-cancer, kr-vs-kp and labor data sets 61

7.3 Benchmark data sets .82

7.4 Benchmark comparison results 84

7.5 Standing of J-model (IM1) out of 9 ensemble classifiers on13 data sets 87

7.6 Standing of J-model (IM4) out of 9 ensemble classifiers for specificity 88

7.7 PubChem bioassay data sets .. . 91

7.8 Misclassification costs for false negatives of J-model 92

7.9 Misclassification costs for false negatives of the otherCSC classifiers 93

7.10 Virtual screening results 94

7.1 Base classifier templates for pool generation 98

xiii

Chapter 1

Introduction

1.1 Motivation

Machine learning [65], as studied in this thesis, is performed by algorithms that automatically

build a trained pattern from observed data. A trained pattern is a generalised rule that is able

to label new or unobserved data. Machine learning helps us avoid having to extract patterns

manually from data and beyond that it can suggest patterns that we could not consider using

human abilities alone.

Training examples

Machine learning model

Test examples

Classification results

Training

Testing

Figure 1.1: Machine learning process. A machine learning model trains training examples (ob-

served data) and the training process automatically makes a pattern in the model. For test

examples (unobserved data), the machine learning model can suggest class labels for each

example based on the constructed pattern.

1

In the history of development of machine learning, ensemblemethods [70, 82] are a notable

direction driven by the need to incorporate diversity in learning systems. Ensemble methods are

intended to produce better and more robust prediction performance through combining multiple

machine learning models. Using a divide-and-conquer applicable approach for training over

large data sets, ensemble methods can manage large data better than single machine learning

models.

Training examples (T1)

Machine learning model (M1)

Classification results

Training

Training examples (T2)

Machine learning model (M2)

Training

Testing

Test examples

Figure 1.2: Illustration of the ensemble learning process ensemble learning process. The ma-

chine learning models M1 and M2 train different training examples T1 and T2 respectively. Pre-

dictions from their suggested patterns are combined for testing test examples.

Ensemble methods have successfully been applied to severalapplication domains. For example,

remote sensing, person recognition and medical applications are their well-applicable problem

domains [71].

2

Existing databases

Researchers

Telescopes

Reseach papers

Human intelligent agents

Machine intelligent agents

Figure 1.3: Astronomy research

Figure 1.3 illustrates what happens in Astronomy research [8]. Intelligent agents that are hu-

mans or machines1 collect Astronomy data and information from several sources. Sources can

be telescopes2 that generates astronomical data, data-warehouses, research papers and other re-

search colleagues. Intelligent agents compile data and information and extract knowledge from

this process. Their knowledge is shared and provided for development of Astronomy research.

Let us examine the dynamics of the Astronomy research from anagent viewpoint. Agents have

the following properties.

• They are diverse. They research their own interests with different backgrounds. There

can be conflicts between their opinions when analysing and interpreting data.

• An agent can change its interest. At one point, an agent may befocusing on collecting

data from telescopes. Later it may be writing a paper using existing databases. A new

agent can join the research community and some may retire from the community.

• They are distributed. They are scattered all over the world.

• They get together or split apart depending on their researchpurpose.

1For example, an artificial neural network - http://phdthesis-bioinformatics-maxplanckinstitute-
molecularplantphys.matthias-scholz.de/figNLPCAs bottleneckautoassociativeautoencoderneuralnetwork thumb200.png

2The Mark II Telescope - http://s0.geograph.org.uk/photos/03/67/036740fa63d32e.jpg

3

They are in an open dynamic system, not a closed system. In open dynamic systems, different

agents interact with one another autonomously within a framework of social conventions and

freely join or leave the community. In contrast, in closed dynamic systems, agents’ interactions

are hard wired and a system is closed for other agents to join in the system.

When we need to get more valuable and integrated knowledge about Astronomy, we can ask

advice to several experts on Astronomy (the intelligent agents). We can try to apply ensemble

methods for our purpose because ensemble methods provide verified frameworks to combine

opinions from multiple experts as we introduced above.

We, however, encounter a critical problem. It is that ensemble methods have been successful

under the closed dynamics of classifiers or trained models. An ensemble method generates

base classifiers and combines their predictions for test examples. In this process, there are not

any interactions among base classifiers and the classifiers are fixed. In other words, traditional

ensemble methods work under this assumption and are not welladapted to open dynamics

problems.

We have another strong research heritage that handles multiple agents to get intelligence from

their collaboration in the artificial intelligence area. Marvin Minsky’s research onsociety of

mind [64] is the beginning. Multi-agent systems (MAS) [33] are for building distributed sys-

tems. Their computational components calledagentsare autonomous to control their behaviour

for their own goals. Agents interact with one another. Internet environments such as service

oriented architectures (SOAs) [30] provide architecturalbases for coordinating distributed and

interoperable agents. These systems suggest appropriate concept and frameworks in which we

can handle an open dynamics of multiple agents to get some aspects of global intelligence from

agents.

Agent-based systems also have a problem that is tricky to solve. Agent-based systems in an

open environment in which agents have autonomy are difficultto control in order to give better

prediction performance than ensemble methods can provide.A main reason for this is that it

is challenging to select the best agents and coordinate themfor prediction among agents in

an open environment. Ensemble methods work in a closed environment (base classifiers have

a closed dynamics). Ensemble methods generate member classifiers and combine them for

prediction under tight control. Thus the advantages which ensemble methods and agent-based

systems give are complementary for prediction under an openenvironment, but only if a means

to combine them can be found.

4

T1

A1

T2

T3

T4

T5

A2

A3
A4

A5

Training

A1 A3

Classification results

Testing

Test examples

(A)

(B)

(C)

Service choreography system
for coordination

Figure 1.4: Service choreography system for coordinating agents. T is a training data and A is

an agent. Training data and agents in dotted boxes mean that they are absent at this point.

Figure 1.4 shows our proposed approach to solving the problems that ensemble methods and

agent-based systems have for prediction. This is also a proposed way to merge the advantages

of both sides. In the figure, part (A) is an environment in which classifier agents show their

open dynamics. We offered Figure 1.3 as an example of this open environment. Part (B) is a

system that implements our approach. It takes classifier agents as inputs and gives an ensemble

classifier as an output result. It selects and coordinates appropriate agents for prediction. Co-

ordinated agents by the system become an ensemble classifier. The part (C) is an ensemble

classifier of agents. We explain the architecture of the system in Chapter 4.

Service choreography system Reputation service

Interaction models

Figure 1.5: Service choreography system with interaction models and reputation service

5

A service choreography system [74] is a structure to supportthe delivery process from open

dynamic classifier agents to ensemble classifiers. This is a solution for handling multiple clas-

sifiers in an open environment. Figure 1.5 summarises the top-level operational components of

our approach. There are two components: interaction modelsand a reputation service for a ser-

vice choreography system. Interaction models are workflowsdesigned for classification tasks.

Agents take roles in an interaction model and collaborate toprovide predictions. An individual

interaction model filled with classifier agents becomes an ensemble classifier. The reputation

service recommends appropriate agents for prediction to a service choreography system. These

task-oriented interaction models and the reputation service consequentially boost the predic-

tion performance of an ensemble classifier. We explain the reputation service in Chapter 5 and

interaction models for classification in Chapter 6 respectively.

1.2 Objectives

The objectives of this thesis can be summarised by the following two aims:

• To suggest an ensemble learning architecture that can coordinate classifiers in an open

context.

• To suggest a reputation mechanism that can recommend appropriate classifiers in an open

context for better classification performance.

The first objective will be realised by reconstructing ensemble learning based on a service

choreography architecture. The second objective includestwo sub objectives. One is that the

reputation mechanism should be generally applied to various coordination models. The other

is that the mechanism should be robust to recommend for services in an open context.

1.3 Research hypothesis

Our suggested ensemble learning architecture based on a service choreography paradigm is

named J-model. J-model delivers a comparative advantage that it is a more appropriate work-

ing architecture for an open classifier environment than previous traditional ensemble learning

methods. In this context, we need to evaluate a prediction performance of J-model.

Research hypotheses which we set in this thesis are

6

1. J-model’s prediction performance approaches the performance of traditional ensemble

methods.

2. J-model’s prediction performance approaches the performance of traditional ensemble

methods in practical time.

3. J-model is applicable to realistic learning problems.

4. Minimal parameterisation is required for J-model prediction.

1.4 Thesis structure

Chapter 2 Background In Chapter 2, we introduce 5 research areas. First, we define proper-

ties that services have in an open context. Second, we explain what ensemble methods are and

their advantages as machine learning algorithms. Third, wevisit a service-oriented architec-

ture focusing on orchestration and choreography coordination approaches. Fourth, we give an

explanation about OpenKnowledge framework. General interaction models described with the

lightweight coordination calculus are an essential part ofOpenKnowledge framework. Last,

we survey social reputation that has features of network effects and power-law distributions.

Chapter 3 Architectural migration The main purpose of this chapter is to provide a smooth

architectural migration from traditional ensemble learning systems to an open and social en-

semble learning architecture. The chapter is composed of three different sub migrations. In

Section 3.2, we migrate from classifiers in traditional ensemble methods to Web services that

have the ability of classification. In Section 3.3, we introduce service choreography based co-

ordination instead of classifier aggregation. In Section 3.4, we show how to get better prediction

performance for open and social ensemble learning.

Chapter 4 J-model architecture We call our open and social ensemble learning architecture

J-model. In this chapter, we organise migrated parts shown in Chapter 3 into J-model and

explain the J-model architecture. J-model’s operation is divided into three phases of discovery,

enactment and analysis. We explain the three phases of J-model in Section 4.3. J-model’s

operation also is analysed based on the traditional machinelearning process of training and test

in Section 4.4.

7

Chapter 5 Peer ranking service We explain a reputation service called the peer ranking

service. In Section 5.2, we show what the peer ranking service does to recommend more

appropriate classification services. In Section 5.3, we define the peer ranking algorithm. After

that, we give examples of peer ranking recommendation underboth a static classifier condition

and a dynamic classifier condition. Last, we provides two sorts of termination conditions on

service recommendation - the number of interactions and a performance metric.

Chapter 6 Interaction models for classification We firstly suggest interaction models in

which participating classifiers are fixed in design-time (closed interaction models). Next, we

show 6 examples of interaction models in which participating classifiers are not fixed in design-

time but are chosen at run-time (open interaction models). Open interaction models are for

classification services in an open context. Each example is designed to achieve a different

classification task.

Chapter 7 Experiments The experiment chapter is composed of four independent experi-

ments. In Section 7.3, we verify that more appropriate peers(classification services) for classi-

fication are separated from the broader peer pool by the peer ranking algorithm. In Section 7.4,

we confirm that separated peers converge to common optima. For this, we set a different initial

selection of peers repeatedly. Learning curves in Section 7.5 give a connection between chosen

peers by the peer ranking algorithm and their classificationperformance. Learning curves

show changes of performance of chosen peers over interactions. In Section 7.6, we measure

J-model’s classification performance with standard machine learning benchmark data sets and

compare its performance with other representative traditional ensemble methods. In the last

section of 7.7, we apply J-model to a realistic classification problem: virtual screening.

Chapter 8 Discussion We discuss a balance and a bias between exploration and exploitation

on peers for the results of the peer separation. We explain why there are big falls and cyclic

patterns in learning curves. For the virtual screening results, we pay attention to the quality of

a peer pool. Finally we discuss appropriate ensemble sizes and parameterisation of J-model.

Chapter 9 Related work We expand research described in the background chapter and our

J-model research to the relevant research boundaries focusing on the topic of collaborative

learning in an open context. The topic includes distributedensemble classification, agent-based

8

distributed data mining, multi-agent learning, open multi-agent systems, distributed workflows,

ensemble selection and social recommendation systems.

Chapter 10 Conclusions We check whether the hypothesis of this thesis is verified. Wesum-

marise our contributions to knowledge from this work. We suggest future work as extensions

of the work which had done in this thesis.

9

Chapter 2

Background

2.1 Services in open context

We categorise services in open context according to one or more of the following features:

• Unspecific

Services are independently implemented by different designers. This entails that ser-

vices may give variable behaviours. The behaviours might conflict with one another for

individual goals. Services can be buggy or even malicious.

• Join, leave and change

Services easily join or leave a system at their will at runtime. They temporarily take or

release their roles. They obtain or lose resources.

• Distributed

Services are located on a distributed network, not only at a single location.

• Shared

Different service applications can share some of the same services. Services may be

reused.

10

2.2 Ensemble methods

2.2.1 Concept

Theorem 2.1.Condorcet’s jury theorem

Each voter has a probability p of being correct. If the probability of a majority of voters being

correct is M then:

p > 0.5 implies M> p. Also M approaches 1, for all p> 0.5 as the number of voters ap-

proaches infinity.

Here the votes are independent and there are only two possible outcomes.

Theorem 2.1 [24] supports that a correct decision probably can be obtained by simply combin-

ing the votes of a large enough jury that is composed of voterswhose judgements are slightly

better than a random vote. The theorem is a theoretical basisfor ensemble learning.

2.2.2 Algorithms

The first step to build an ensemble classifier is to generate multiple trained models. The models

are base classifiers. The training data upon which each base classifier trains is a differently ma-

nipulated data set from the original data set. The second step is to combine the base classifiers.

Their predictions are aggregated by an unweighted or weighted vote for a final prediction.

Algorithm 2.1 Bagging algorithm
Require: I (a base inducer),T (number of iterations),S(the original training set),µ (the sample

size)

1: t ← 1

2: repeat

3: St ← a sample ofµ instances fromSwith replacement.

4: Construct classifierMt usingI with St as the training set

5: t ← t + 1

6: until t > T

Bagging (bootstrap aggregating) [11] in Algorithm 2.11 is one of the most well-known en-

semble methods. In the Bagging algorithm, each member classifier is constructed from a dif-

1From [83]

11

ferent training data set. Each training data set is generated by sampling from an original data

set with uniformly random replacement.

Algorithm 2.2 Boosting algorithm
Require: I (a weak inducer),S(training set) andk (the sample size for the first classifier)

Ensure: M1,M2,M3

1: S1← Randomly selectedk< m instances fromSwithout replacement;

2: M1← I(S1)

3: S2← Randomly selected instances (without replacement) fromS−S1 such that half of them

are correctly classified byM1.

4: M2← I(S2)

5: S3← any instances inS−S1−S2 that are classified differently byM1 andM2.

6: M3← I(S3)

Boosting [35] in Algorithm 2.22 is another mostly well-known ensemble method. Similar to

bagging, base classifiers are generated by resampling a training data set. Boosting, however,

uses a different resampling mechanism. The mechanism samples a training data set for a base

classifier to train incorrectly classified samples of the previous iteration. Boosting boosts pre-

diction performance of base classifiers through making thembe more sensitive at incorrectly

classified instances.

2.2.3 Advantages

The advantages of ensemble methods can be summarised as follows:

• Classification performance

Ensemble methods should obtain better predictive performance with individual predic-

tions combined appropriately. Each base classifier covers adifferent local search space.

The base classifiers (hypotheses) appear equally accurate.Combining them gets a good

approximation of the unknown true hypothesis.

• Robustness

Covering different local search spaces helps ensemble learning to be robust for classific-

ation. It reduces the likelihood of an unfortunate selection of a poor classifier. It also

lessens the overfitting problem.

2From [83]

12

• Flexibility

Ensemble methods adaptively train to different classification problems. For example,

boosting increasingly exposes incorrectly classified instances to each next base classifier

in its iteration process. Ensemble methods also can use any sort of base classifier and

any combination of algorithms. These features makes ensemble learning more adaptable

to various classification applications.

• Too much and too little data

Ensemble methods can be used for learning from large data. A single machine learner

cannot learn a large data easily. For ensemble learning, a large data set can be divided

into smaller data sets. Each data set is used to train a classifier in ensemble learning. The

random subspace method [45] is a representative algorithm using this approach.

Ensemble methods can learn too little data. For example, bootstrapping in bagging

method resamples data with replacement. The bootstrapped data acquires independent

sample distribution. A base classifier learns a different bootstrapped data. This brings a

more general learning pattern to a final classifier.

2.3 Service-oriented architecture

Having described the basics of ensemble learning, we now switch attention to the environment

assumed by this thesis - a service oriented architecture.

2.3.1 Services

A service is a software component that encapsulates functions and data. A service is designed

for a business functionality. Services are loosely coupled. They are accessible over a network.

They are combined and reused for different service applications. Client services communicate

with server services through interface by passing data in a well-defined and shared format.

2.3.2 Workflows

Multiple services are coordinated for a shared goal. A workflow is a dynamic set of activities

in which services participate and interact to achieve a shared goal. An executable workflow is

13

a committed coordination of services.

2.3.3 Orchestration and choreography coordinations

Service 1

Service 2 Service 3

Service orchestration Service choreography

Service 1

Service 2 Service 3

Executable
process flow

Multi-party
collabouration

Figure 2.1: Service orchestration and service choreography. Service orchestration executes

a process flow. Services in orchestration are subroutines on the flow. Service choreography

declares roles that services will take. A multi-party collaboration occurs among participating

services.

2.3.3.1 Service orchestration

Service orchestration [74] is the process of executing a coordination process for services based

on a central means of coordination.

Execution by a single orchestrator A single orchestrator specifies an execution process of

services. The orchestrator defines which service takes whatsub process. Services in orches-

tration are passive for coordination (they do not need to have an understanding of the broader

coordination process).

Orchestration languages The Business Process Execution Language (WS-BPEL3) [73] is

a representative orchestration language. The Yet Another Workflow Language (YAWL4) [95]

and the XML Process Definition Language (XPDL5) [87] are orchestration languages. These

are imperative paradigm languages.

3http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
4http://www.yawlfoundation.org/
5http://www.wfmc.org/xpdl.html

14

2.3.3.2 Service choreography

Service choreographies [74] describe required observableinteractions between services from

an external viewpoint.

Enactment Service choreographies are not executed. They are enacted.Services adopt and

perform the roles which are described in an interaction protocol. Coordination happens from

their execution of roles.

A global perspective The meaning of a global perspective in choreography coordination is

that each participating service knows its role in coordination and they collaborate for coordin-

ation. There is no central engine leading their coordination.

Choreography languages The most well-known choreography languages are Web Services

the Choreography Description Language (WS-CDL6) [49], the Web Service Choreography In-

terface (WSCI7) [3] and the Ontology Web Language for Services (OWL-S8) [60]. The Light-

weight Coordination Calculus (LCC) [78, 77] which J-model uses to describe its interaction

models is also a choreography language.

2.3.3.3 Advantages of choreography

1. Choreography is able to adapt to changing and uncertain real-world classifiers by separ-

ating role definition from the choice of agents to participate in each role.

The performances of the classifiers unpredictably change over time. They may even give

errors. The choreography system just defines high-level protocols that describe what

roles the classifiers take, what interactions they do and whothey interact with. The

actual classifiers are determined at run-time, not design-time. So the status of classifiers

can be adaptively reflected in the choreography system.

2. Choreography may handle more complex situations such as additional classifiers parti-

cipating and missing classifiers.

6http://www.w3.org/TR/ws-cdl-10/
7http://www.w3.org/TR/wsci/
8http://www.w3.org/Submission/OWL-S/

15

When new classifiers are introduced, the orchestration system needs to explicitly contain

them in the system’s centralised combining process to use them. When some classifiers

are missed, the orchestration system will experience errors because the system’s control

flow cannot proceed on run-time. An adaptive choreography system, however, has resi-

lience against these problems because other classifiers maytake over the roles that the

missing ones had have vacated.

3. Choreography may scale better to open systems.

In open systems, agents are (arguably) less likely to subscribe as a collective to central-

ised orchestration but choreography offers atake it or leave italternative to controlled

coordination that respects the autonomy of the individual agent.

A local prediction arises in each distributed classification service and a coordination of

their predictive abilities builds a global predictive ability. Service orchestration systems

preform this coordination work using a centralised controller. A centralised controller has

to contain every information for coordination and manage all of the participating classi-

fiers. This feature of service orchestration systems is not suitable for increasing number

of classifiers. Meanwhile, in service choreography systems, a coordination of distrib-

uted classifiers occurs from an enactment of participating classifiers who take their roles

defined in a interaction protocol. Classifiers who satisfy described roles work together

to be collaborative. Information for a coordination and theclassifier management also

is also distributed at each classifier. This feature makes service choreography systems

scalable to open systems.

2.4 OpenKnowledge framework

Web services are software components that are invoked through interaction protocols on the

Web. Interaction protocols are described using formalisedcoordination languages. The Open-

Knowledge framework [80] is a fully distributed choreography system based on a peer-to-peer

technology. Users publish interaction protocols calledinteraction modelson the OpenKnow-

ledge system. Programmers design and register Web serviceson the system. The OK system

provides a interaction-centred mechanism for sharing knowledge from services by sharing in-

teraction models in a peer-to-peer environment.

16

2.4.1 Service, participant and peer

We need to explicitly explain what services, participants and peers are in different contexts.

Servicesare software components on a network as we explained.Participantsare services that

take roles in workflows, coordination protocols or interaction models in OpenKnowledge. We

call participantspeerson a peer-to-peer system. The OpenKnowledge framework is a peer-to-

peer system. Services on the OpenKnowledge framework are therefore called peers.

2.4.2 Interaction models

An interaction model is a coordination protocol describingknowledge for a specific task. It is

specified using the Lightweight Coordination Calculus (LCC) language.

Definition 2.1. Example of interaction model: researcher and omicslab9

a(researcher,A) ::

null <- get_query(Query) then

a(researcher(Query,IDs,Results),A) <- getPeers(omics_lab,IDs) then

null <- visualise(Results)

a(researcher(Query,IDs,Results),C) ::

(

query(Query,ID) => a(omics_lab,_) <- IDs = [ID|RIDs] then

answer(Result) <= a(omics_lab,_) <- Results = [Result|RR] then

a(researcher(Query,RIDs,RR),C)

)

or

null <- IDs = []

a(omics_lab,L) ::

query(Query,ID) <= a(researcher,_) then

answer(Result) => a(researcher,_) <- find_hit(Query,ID,Result) then

a(omics_lab,L)

Definition 2.1 is an example of interaction model in the omicsresearch of the OpenKnowledge

project10 [1]. There are two roles ofresearcher (A) andomics lab (L). researcher (C) takes

delegation fromA for querying messages.A selects a query and gets omics labs to whom the

query will be sent.C queries to omics labs and collects their answers.L receives a query from

C and sends a hit answer back toC. A finally visualises the results.

9From [1]
10http://www.openk.org

17

2.4.3 Lightweight coordination calculus

We explain the syntax of LCC in this section. Figure 2.2 defines the syntax used in this thesis.

IM := { Clause, .. }

Clause := Role :: Def

Role := a(Type, Id)

Def := Role | Message | Def then Def | Def or Def | null <- C

Message := M => Role | M => Role <- C | M <= Role | C <- M <= Role

C := Term | not C | C and C | C or C

Type := Term

Id := Constant | Variable

M := Term

Term := Constant | Variable | P(Term, ..)

Constant := lower case character sequence or number

Variable := upper case character sequence or number

null: an event which does not involve message passing

<-, not, and, or: the normal logical connectives for implication, negation,

conjunction and disjunction

Figure 2.2: The syntax of lightweight coordination calculus

Shared interaction models are enacted by participants, called peers. The peers play roles on

interaction models. Interaction models are written in the Lightweight Coordination Calculus

(LCC). The LCC is a lightweight and executable choreographylanguage for specifying co-

ordination among multiple participants based on process calculus.

An LCC interaction model is a set of clauses. Each clause is a definition of a role. Message

passing is the only means to transfer information between roles. Sending a message may be

conditional on satisfying a constraint and receiving a message may imply constraints on the role

to accept it. Those message sending and receiving are the most basic operations. More com-

plex operations are obtained using the connectives (then and or) for sequence and choices

respectively.

18

Variables, Constants, Terms, Ids and Roles

Variables must start with an upper case letter. The scope of avariable is local to a clause.

When it is unnecessary to give a specific name to a variable, you can use an underscore,, as

the variable name. Constants must start with a lower case letter. Numbers also are constants.

Terms are either constants, variables or have the form ofP(Term, ..) where P is a non-

numerical constant. Ids are unique identifiers for peers which must be non-numerical constants.

Roles are terms that describe the types of roles played by peers in given interactions.

Message

There are two types of messages clauses. Outgoing message clauses have the form ofM =>

Role. Incoming message clauses have the form ofM <= Role. M is the content of the message.

The implication operator dominates the message operator:M => Role <- C is scoped as(M

=> Role) <- C andC <- M <= Role is scoped asC <- (M <= Role). Constraint (C)

can be attached to both incoming and outgoing forms of message clauses. More details of C

are described in the constraints section below.

Constraints

Constraints associate message passing events with conditions established by the peer. Con-

straints also may be associated with the special null event which represents an event that is not

associated with a specific message. This is frequently used in recursive role definition where

the role termination depends on a parameter to the role, rather than a specific message passing

event.

List operations

List operations are a common basis of the recursion techniques available in the LCC. The bar

(|) operation delineates the first element of a list (H, the head) from the rest of the list (T, the

tail). That isL = [H | T]. In the case that H has some value, the constraint of<- L = [

H | T] appends the value of H to the first slot of the list L. In the casethat H is not set, the

constraint of<- L = [H | T] extracts H, the value of the first element, from the list L. If

L is empty, no value of H is determined and the constraint willfail. Repeated extraction of H

19

from L and the condition that H has no value realises recursion. The constraint of<- L = []

is used to test whether L is empty or not.

Logical operators

Constraints can be connected by the logical operatorsand andor. C1 and C2 succeeds if both

constraints succeed.C1 or C2 succeeds if at least one of the constraints succeeds.

Sequence and choice

Sequence (then) and choice (or) operations determine the sequence of message clauses in a

clause. Sequence is written asE1 then E2. This sequence is completed when both E1 and E2

are completed. Choice is written asE1 or E2. This sequence is completed when either E1 or

E2 is completed.

Comments

The double slash comment,//, will make the interpreter ignore the rest of the line. The slash-

star comment will ignore everything until it meets the next start-slash.

2.5 Social reputation

2.5.1 Network effects

There are situations in which opinions or behaviours of people are affected by other people’s

opinions or behaviours. This can be for one of two reasons. First, the opinion or behaviours

are dependent on others’. Second, other people may give useful opinions or behaviours for

decision making. This can derive a different decision from decisions made by independent

individuals.

This network effect forms popularity or reputation among individuals. The degree of reputation

among them can be extremely imbalanced. The Web is the most appropriate example domain

showing the network effect. Reputation of a Web page can be measured with the number of

in-links to the Web page.

20

2.5.2 Power laws

When we measure the distribution of in-links on the Web, we notice that the distribution is dif-

ferent from a normal or Gaussian distribution. Web pages that havek in-links is approximately

proportional to 1/k2 [14]. They follows a power-law distribution. If the distribution of the Web

follows the normal distribution, the number of Web pages with k in-links should decrease ex-

ponentially ask grows large. In the power-law distribution, 1/k2 decreases much more slowly

ask increases. So we can expect that Web pages having a larger number of in-links commonly

exist on the power-law distribution than on the normal distribution. This power-law distribution

gives a quantitative form to explain why reputation among Web pages is extremely imbalanced.

2.5.3 Rich-get-richer dynamics

Normal distributions may arise from many independent random decisions of individuals. A

power-law distribution often arises from feedback by correlated decisions across individuals:

a network effect. Here we look into what occurs at the individual decision-making level for a

network effect.

Let us go back to the example of Web pages. The following11 is a simple model of creating

links among Web pages.

1. Web pages are created in order and named 1, 2, ..,N.

2. When pagej is created, the page hangs a link to an earlier Web page according to the

following probabilistic rule. Probabilityp is between 0 and 1.

(a) With probabilityp, page j chooses a pagei uniformly at random among all pages

except itself and hangs a link to the pagei.

(b) With probability 1− p, page j chooses a pagei uniformly at random among all

pages except itself and hangs a link to the page to which pagei hangs.

Pagej can hang multiple links to other pages through repeating theprocess of hanging a

link.

(b) is the key part. In (b), pagej follows pagei’s opinion about which pages the pagej will

link to. This opinion copying makes a rich page (having in-links comparatively) get richer

(to have more in-links). The degree of getting richer is proportional to the current number of

11From [28]

21

in-links. After it runs for many pages, the fraction of pageswith k in-links will be distributed

approximately according to a power law 1/kc, where the value ofc depends on the choice ofp.

2.5.4 Pareto principle and the long tail for reputation

The Pareto principle (also known as the 80-20 rule) [67] describes that roughly 80% of the

effects come from 20% of the causes. The Pareto principle is one of the instances of a power

law effect.

The long tail [2] states that a larger population rests with the tail of a probability distribution

than observed under a normal distribution. The long tail is observed in power-law distributions.

22

Chapter 3

Architectural migration

3.1 Introduction

This chapter provides a smooth architectural migration from traditional ensemble learning sys-

tems to an open and social ensemble learning architecture.

3.2 Classifier to classification service

We begin the discussion of migration by explaining how individual classifiers in ensemble

systems migrate to classification services in the J-model architecture.

23

3.2.1 Classifier

3.2.1.1 Structure

Machine learning
algorithm

Sampled
training data set

Ensemble system

Classifier

Select

Train

Call

Figure 3.1: A classifier in a traditional ensemble system

To generate a base classifier, an ensemble system selects a model. A model is one of the

machine learning algorithms. The selected model is used to do the training with a sampled

training data set. A sampled data set may be different for each selected model. The ensemble

system repeatedly generates a number of base classifiers, which become the members of an

ensemble classifier.

c=< m,T > (3.1)

A classifier in traditional ensemble learning can be represented as the tuple given in expression

(3.1). c is a classifier.m is a model andT is a sampled training data.

3.2.1.2 Properties

In traditional ensemble learning, the members of the ensemble have the following properties:

• Homogeneousm1 = m2 wherec1 6= c2

Classifiers share the same model as their default machine learning algorithm. Diversity

and accuracy among classifiers has a trade-off relationshipin ensemble learning. Pursu-

ing accuracy is normally better for performance in traditional ensemble systems because

pursuing diversity may drive an ensemble to poor classification performance.

24

• Staticc→ c over time

A classifier does not change over time. It maintains the same classification performance

during an ensemble process. New classifiers are not generated nor are existing classifiers

removed during an ensemble process after an initial generation of classifiers.

• Passive

A classifier does not have ability to communicate with the ensemble system or other

member classifiers. A classifier only reacts to requests of prediction from the centrailsed

ensemble system (Call in Figure 3.1). Its generation process also is completely controlled

by the ensemble system (SelectandTrain in Figure 3.1).

• Local

A typical traditional ensemble system is not designed for a distributed environment that

classifiers are located in different physical places.

3.2.2 Classification service

3.2.2.1 Structure

Request prediction
for example

Answer for the example

Classification service B

Classification service A

Figure 3.2: A classification service and another classification service

In our open and social ensemble learning approach, classifiers are already present before we

apply any coordination method to them. A classifier makes itself available in the form of a

service. It has two interfaces: for accepting messages fromand sending messages to other

classification services. The messages are to request predictions and to give answers for reques-

ted predictions as shown in Figure 3.2. Classification services have ability to classify (or are

25

already trained) regardless of how they got. We consider machine learning classifiers, small

reactive devices or even humans as potential classificationservices.

c=< m,T, i,o> (3.2)

A classification service can be represented as a tuple equation of (3.2). c is a classification

service.m is a model;T: a training data;i: an input interface;o: an output interface.

3.2.2.2 Properties

A classification service has completely nothing to do with a controlling ensemble system. So it

has the following properties that are different from the properties of a traditional classifier.

• Heterogeneousm1 = m2 or m1 6= m2 wherec1 6= c2

An individual classifier might have a different model from others. The classification

services available in a given environment are not chosen in advance to suit the ensemble

system.

• Dynamicc→ c′ over time

A classification service can change over time. There are cases of joining, dismissing,

pausing and updating of classification services during an ensemble process.

• Active

As we mentioned above, a classification service trains data for itself and actively com-

municates with other classification services using messages.

• Distributed

A classification service operates on a distributed network or can be on a local machine.

Message passing between services can be either over the network or within a local ma-

chine.

26

3.3 Classifier aggregation to service coordination

3.3.1 Classifier aggregation

3.3.1.1 Features on aggregation

3.3.1.1.1 Aggregating all the base classifiers A traditional ensemble method uses all its

generated classifiers as members of an ensemble classifier. The members are generated under

the supervision of the ensemble method. So it is possible to bring the best performance when

using all the classifiers as member classifiers.

C= {c1,c2, ..,cN} (3.3)

C is a set ofN generated classifiers.

M =C (3.4)

In a traditional ensemble learning, a set of member classifiers M is identical toC.

3.3.1.1.2 Simple and flat aggregation

v(C) = max
i=1,2,..,L

N

∑
n=1

cn,i (3.5)

Equation (3.5) represents majority voting that a traditional ensemble normally uses to aggregate

predictions from member classifiers.

cn,i is 1 or 0 depending on whether the classifiercn chooses the class labeli or not respectively.

The ensemble then chooses a class that receives the largest total vote inL classes.

3.3.1.2 Centralised paradigm

A centralised system means that there is only a single operation process for a task. There is no

interaction with other systems. The system freely uses its peripheral units. The units are easily

maintained.

27

A traditional ensemble system is a centralised system. It generates member classifiers. The

member classifiers do their roles as sub functions in the system. The system gathers and ag-

gregates predictions from the member classifiers. Then the system gives a final prediction

answer.

3.3.1.3 UML activity diagram

Ensemble system Classifier 1 Classifier 2 Classifier 3

Role: aggregate

Query

Answer

Query

Answer

Query

Answer

Role: predictRole: predictRole: predict

Figure 3.3: UML activity diagram of traditional ensemble aggregation

Figure 3.3 is an example of a UML activity diagram that describes a typical traditional ensemble

aggregation process. The ensemble system actor takes theaggregaterole. All of the classifier

actors take thepredict role. The ensemble system actor and the classifier actors runfrom

the beginning to the end of an aggregation process. The ensemble system actor sends query

messages to the classifier actors and gets answer messages from them serially. The ensemble

system actor controls this process centrally.

3.3.2 Service coordination

Service coordination is a means to weave predictions from classification services in our open

and social ensemble learning. Protocols coordinate the actions of classification services.

28

3.3.2.1 Service coordination and its elements

Service coordinations impose constraints on the interactions between services for particular

applications. When services are being coordinated, a coordination context propagates to the

services and by committing to participate in the interaction described by the protocol they also

accept the constraints it imposes on their roles in the protocol. Coordination context flows

by message exchange among services. We introduce the elements of service coordination and

what each element means in our classification service coordination.

• Participant

When a service is enacted in a coordination, a service is called a participant. In classific-

ation service coordination, classification services and coordinators are participants.

• Role

A classification service can take a role of predicting query and test examples. A coordin-

ator boots a coordination process and gives a final prediction answer from predictions of

classification services.

• Activity

Participants communicate with one another through messageexchange. Message sending

and accepting are activities.

• Message

Messages in classification service coordination are requests for predictions and prediction

answers.

• Coordinator

A coordinator is needed to ensure that the protocols selected by participants are made

available to the relevant participants and that the roles accepted by each participant are

discharged according to the protocol. Coordinators need not be centralised - they may be

distributed across the services or, in the most extreme case, distributed with the messages

passed between services.

• Protocol

A protocol defines roles and activities. A traditional ensemble system conceptually can

be mapped to a protocol. We script protocols with lightweight coordination language

(LCC), a service choreography language explained in Section 2.4.3 for our classification

service coordination. We call a protocol as aninteraction modelin our classification

service coordination. We show multiple actual interactionmodels for classification in

29

Chapter 6.

A particular application

Role Activity Message

=

A protocol

Participant 1
(coordinator)

Participant 2
(a classification service)

Participant 3
(a classification service)

Participant 4
(a classification service)

Figure 3.4: Classification service coordination and its elements

Figure 3.4 presents a visual organisation of the service coordination elements.

3.3.2.2 Choreography paradigm

Our classification service coordination is based on servicechoreography paradigm. No parti-

cipant controls the protocol centrally. Once an interaction model is published to participants,

participants take their roles individually and exchange messages one another as defined in the

interaction model. When message exchange is completed, theservice playing the role of co-

ordinator gives the final prediction.

30

3.3.2.3 UML activity diagram

Coordinator Classification service 1 Classification service 2 Classification service 3

Role: coordinate

Query (1)

Answer (6)

Query (2)

Answer (5)

Query (4)

Answer (3)

Role: predict

Role: predict

Classification service 4

Role: predict

Classification service 5

Figure 3.5: UML activity diagram of classification service coordination

Figure 3.5 is a simple example of a UML activity diagram that represents classification service

coordination. The coordinator actor takes thecoordinaterole and classification service actors

take thepredict role. Actors only run while they send or receive messages. Message exchange

is asynchronous. In the example, some classification services (classification services 2 and 5)

do not take any role. This might be because they cannot satisfy the required roles or that all of

the roles of the interaction model have already be taken.

3.3.2.4 Representation and features

Our open and social ensemble learning method considers all existing classification services as

potential participants for coordination.

C= {c1,c2, ..,cN} (3.6)

C is a set ofN existing classification services.

M ⊆C (3.7)

Participating classification servicesM is the same asC or is a subset ofC. This is determined

according to how many classification services satisfy rolesdefined in a coordination protocol

or how many roles a coordination protocol defines.

31

E =< IM ,M > (3.8)

An ensemble classification service can be represented as thetuple of expression (3.8).E is an

ensemble classification service andIM is an interaction model. An ensemble is an interaction

model supported by participating classification servicesM.

We can freely define interaction models to coordinate learners in an ensemble using the LCC

service choreography language. This allows complex and perhaps domain specific interactions

to be implemented as well as the standard protocols for traditional ensemble learning. It is

then the responsibility of the service enactment system to ensure, as reliably as is reasonably

possible, that the right learners adopt appropriate roles in the coordinated ensemble - leaving

engineers with the task of defining coordination rather thandefining specific ensembles each

time.

3.4 Performance boosting strategies

There are two main approaches to boost performance of an ensemble classifier in ensemble

learning. One is to prepare better base classifiers. The other is to coordinate base classifiers

better.

3.4.1 In traditional ensemble learning

In traditional ensemble learning, boosting performance isachieved by preparing better base

classifiers through generating more diverse classifiers andmore accurate classifiers. Krogh

and Vedelsby [53] have formally shown why a better ensemble classifier can be obtained from

more diverse and more accurate base classifiers. As we showedin the previous section 3.3, a

traditional ensemble method does not support complex coordinations for classifiers.

3.4.1.1 More diverse classifiers

Bagging is a representative ensemble method to build an ensemble classifier through generating

diverse base classifiers. We show the Bagging algorithm fromSection 2.2 here again to explain

how it generate diverse base classifiers.

32

Algorithm 3.1 More diverse classifiers in Bagging
Require: I (a base inducer),T (number of iterations),S(the original training set),µ (the sample

size)

1: t ← 1

2: repeat

3: St ← a sample ofµ instances fromSwith replacement.

4: Construct classifierMt usingI with St as the training set

5: t ← t + 1

6: until t > T

In line 3, a sampled data setSt is made from the original setS with replacement. Then a

classifierMt trains the sampled data setSt . From those steps, diverse base classifiers can be

generated.

3.4.1.2 More accurate classifiers

Algorithm 3.2 More accurate classifiers in Boosting
Require: I (a weak inducer),S(training set) andk (the sample size for the first classifier)

Ensure: M1,M2,M3

1: S1← Randomly selectedk< m instances fromSwithout replacement;

2: M1← I(S1)

3: S2← Randomly selected instances (without replacement) fromS−S1 such that half of them

are correctly classified byM1.

4: M2← I(S2)

5: S3← any instances inS−S1−S2 that are classified differently byM1 andM2.

6: M3← I(S3)

Boosting is an example of a method for making more accurate base classifiers. We also show

the Boosting algorithm of Section 2.2 here again to describehow it generates accurate base

classifiers.

In line 1, a sampled setS1 is made through a random instance selection. In line 2, a temporal

classifierM1 is generated fromS1. In the 3rd and 4th lines,S2 is a weighted set for misclassified

instances and another temporal classifierM2 is generated fromS2. In line 5, a more weighted

set for misclassified instancesS3 is prepared. From those steps, more accurate base classifiers

are generated.

33

3.4.2 In J-model

3.4.2.1 Recommendation of services

The first approach for boosting classification performance in J-model is to use more appropriate

classification services for classification among existing classification services. This is imple-

mented by a recommendation mechanism called the peer ranking algorithm [79, 57] that we

describe in Chapter 5 in detail.

Mt ⊆C (3.9)

Mt is a set of classification services as members of an ensemble classifier at the current inter-

actiont.

Et =< IM ,Mt > (3.10)

Et is an ensemble classifier supported byMt at thetth interaction. IfEt gives good perform-

ance,Mt gets a higher reputation for classification. IfEt gives bad performance,Mt gets a

lower reputation for classification. For each subsequent interactionMt is composed of classi-

fiers chosen to have the highest reputation. As this process iterates, we expect better member

classifiers to be identified, thus reinforcing the quality ofclassification overall.

3.4.2.2 Interaction model design

The other approach for boosting performance is to coordinate member classification services

better. This is implemented by programming a better designed interaction model for an indi-

vidual classification task.

The aggregation of a traditional ensemble learning is the simplest form of coordination. Mean-

while we can design various effective interaction models for different specific classification

purposes in J-model such as getting better specificity, achieving higher true positive rate and

reducing classification time cost. Of course we can programme more complex interaction mod-

els for a general performance measure such asaccuracyreflecting the features of a classifica-

tion data set. So interaction models are plural, not single in J-model. We suggest examples of

specifically designed interaction models in Chapter 6.

34

IM ∈ {IM1, IM2, ..} (3.11)

An interaction model to be used for a task (IM) is an instance of a source interaction model

from the set{IM1, IM2, ..}.

35

Chapter 4

J-model architecture

4.1 Introduction

In the previous chapter, we explained the relationship between traditional ensemble methods

and the J-model approach. We now describe the J-model architecture in more detail, based on

the architectural migration shown in Chapter 3.

4.2 Organisation of J-model

Open and P2P environment

Service
choreography

system

Reputation
mechanism

Interaction
processes

Unbounded
set of
data

Unbounded set of peers

Figure 4.1: J-model architecture

36

Figure 4.1 illustrates the J-model architecture and its components. J-model is a service choreo-

graphy system for coordination of services (peers in the figure) who exist in open environments.

Interaction processes defines protocols in which peers interact in a peer-to-peer manner. Repu-

tation mechanism recommends adequate peers who will participate in the choreographies. We

explain each J-model component in detail in the following sub-sections.

4.2.1 Service choreography system

The service choreography system supplies the infrastructure upon which the other parts of

interaction processes, set of peers and data and reputationmechanism work together.

The service choreography system is not executed. It is enacted. A chosen interaction process

or interaction modelfor a specific task is published (introduced in Section 3.3.2). Peers or

classification servicestake roles and exchange message with a peer to peer approach on the

interaction model (explained in Section 3.2.2). A reputation mechanism such asthe peer rank-

ing algorithmgiven in this thesis evaluates the participating peers and then recommends more

appropriate peers for the interaction model (introduced inSection 3.4.2).

4.2.2 Interaction processes

What is usually called an interaction process in service-oriented architectures is aninteraction

modelin J-model. An interaction model (IM) defines roles for classification services and what

messages they will exchange. An interaction model is sharedamong classification services.

In J-model, interaction models are specified in the lightweight coordination calculus (LCC)

language. We show definitions of interaction models for ensemble classification in Chapter 6.

4.2.3 Set of peers and data

Peers orclassification servicesare services that have the ability to perform classification. They

are not engaged with the service choreography system until an interaction model is published

among them. When an interaction model is published, each classification service takes a role in

the interaction model. Classification services may not always be machine learners. Classifiers

may include small and reactive devices or even humans.

37

Data that classification services train are also distinct from their classifiers. Data may be chan-

ging over time. Also different classification services can become engaged with the service

choreography system over time.

4.2.4 Reputation mechanism

A reputation mechanism is an algorithm to recommend more appropriate peers to the service

choreography system. An interaction model can achieve its task better with the recommended

peers. In J-model, we use as a reputation mechanismthe peer ranking algorithmdefined in

Chapter 5.

38

4.3 Discovery-enactment-analysis cycle

Subscript Peer 1

Peer 2

Peer 3

Peer 4

Peer 5

Discovery

Enactment

Analysis

Peer 1
(The coordinator)

Peer ranking service

Report

Update

Published
interaction

model

Role 1

Role 2

Role 3

Interaction
model 1

Interaction
model 1

Interaction
model 1 Publish

Published
interaction

model

Peer 1

Peer 2

Peer 3

Peer 4

Peer 5

Peer pool

Peer 1

Peer 2 Peer 3

Call and commitment

Figure 4.2: Discovery-enactment-analysis cycle in J-model architecture

We analyse the J-model architecture from an operational viewpoint (so we usephaseas a term

for individual processes in J-model). This can be divided three phases; discovery, enactment

and analysis. These operate cyclically because the peer ranking service in the analysis phase

updates the rank information for the peers.

We describes this discovery-enactment-analysis cycle with a pseudocode as follows.

39

Require: ims (a set of interaction models),peers(a pool of peers),ensemblesize(the size of

ensemble classifier) andn (the number of interactions)

// Discovery phase

Selectim In ims

Publish im To peers

// Enactment phase

Select RandomlyparticipantsSize OfensemblesizeIn peers

n Times Do

For Each role In (rolesDefined In im) Do

SelectparticipantFor role In participants

participantSubscript role

End

result← Commit participants

// Analysis phase

Report resultTo peer ranking service

peer ranking serviceRecommendparticipants

End

4.4 Training, query and test layers

We can analyse J-model based on a typical machine learning process that includes training and

testing steps. We uselayer for the individual steps instead ofphaseas we illustrate J-model

from an architectural viewpoint.

40

Discoverying peersTraining layer

Query layer

Test layer

Training
example

Peer Interaction

Ranked peers

Test
example

Query
example

Majority voting

Figure 4.3: Training, query and test layers in J-model architecture

4.4.1 Training layer

In a typical machine learning process, the training step prepares training examples and build a

model (hypothesis) that trains the training examples. In traditional ensemble learning, two or

more training sets and models are generated.

In J-model, peers are already trained classification services regardless of how and on what they

were trained. To discover peers is the training layer from a traditional viewpoint.

4.4.2 Query layer

The query layer is a unique part that is found only in J-model.This layer is mapped to the

enactment and analysis phases in Figure 4.2.

In a typical machine learning process, an original data set is split into training and test data

sets. J-model additionally needs a query data set. A query example is used to evaluate particip-

ating peers in a current interaction model. If the evaluation is a success (the interaction model

achieved its goal. e.g. giving a correct prediction for the query example), reputation of the

peers rises. We show later how the reputation distribution for peers converges through repeated

evaluation with query examples.

41

4.4.3 Test layer

In the test layer, top-ranked peers of the ensemble size thatwe set become members of an

ensemble classifier. They vote to predict answers for test examples using majority voting.

42

Chapter 5

Peer ranking service

5.1 Introduction

A peer ranking service recommends those classification services for an interaction model that

have higher success rate. This allows J-model to improve itsclassification performance.

5.2 Recommendation-evaluation-update cycle

We now describe peer recommendation in J-model focusing on the role of the peer ranking

service and the messages from and to the service.

43

Recommend

Recommendation

Evaluation

Update

Peer ranking service Peer b

Peer a

Peer c

The coordinator
peer

Peer ranking service
Report

Update

Sucess or failure

Peer a

Peer b Peer c

Result

Figure 5.1: Recommendation-evaluation-update cycle on peer ranking service

5.2.1 Recommendation phase

The peer ranking service recommends top-ranked peers basedon the rank distribution of peers

that the service maintains on their roles in interaction models with which they have previously

engaged. In Figure 5.1, Peersa, b andc in a peer pool was recommended by the peer ranking

service.

5.2.2 Evaluation phase

Recommended peers interact with one another on a interaction model for a query example. The

result is a success or failure. A success is that the interaction achieves its defined goal. We show

examples of interaction models for classification including their various goals in Chapter 6.

44

5.2.3 Update phase

The coordinator peer reports the interaction result to the peer ranking service. The peer ranking

service updates the ranking scores of the current recommended peers. The rank distribution of

peers is then re-calculated for the next recommendation phase.

5.3 Peer ranking algorithm

The peer ranking algorithm recommends peers that will take roles in an interaction model. For

query interactions, the peer ranking algorithm needs to recommend peers more exploratively

to avoid becoming stuck in a local optimum. For a test interaction, the algorithm needs to

recommend peers reflecting all the history of scores that peers have individually. This guides

that the peer ranking algorithm can suggest a global optimumor at least a better local optimum

for tests.

Algorithm 5.1 The peer ranking algorithm for query interactions
Require: P (a peer pool),T (the number of interactions),IM (interaction model),N (the en-

semble size),Q (a set of query examples)

01: C(p,⊖)← 0 for each peerp in P

(C(p,⊖) is the count of minus thatp has.)

02: t← 1

03: repeat

04: Mt ← Pick the highest rankedN peers inP based on the query rank calculationRQ

(RQ(p) =C(p,⊖). A lower value ofRQ(p) means thatp obtains a higher rank.)

05: Et ←< IM ,Mt >

06: At ← EvaluateEt with a randomly chosen query example fromQ

07: if At = success

08: Increase the count of plus that eachmi has wheremi ∈Mt

09: else ifAt = f ailure

10: Increase the count of minus that eachmi has wheremi ∈Mt

11: end if

12: t← t +1

13: until t > T

A∈ {success, f ailure}

45

Algorithm 5.1 is for recommending peers for query interactions. The algorithm evaluates an

ensemble composed of recommended peers with a query exampleat each interaction round.

Algorithm 5.2 The peer ranking algorithm for test interaction
Require: P (a peer pool),IM (interaction model),N (the ensemble size),s (a test example)

01: M← Pick the highest rankedN peers inP based on the test rank calculationRT

(RT(p) =C(p,⊖)/C(p,⊕). C(p,⊕) is the count of plus thatp has. A lower value ofRT(p) means thatp obtains

a higher rank.)

02: E←< IM ,M >

03: A← EvaluateE with s

A∈ {success, f ailure}

Algorithm 5.2 is for recommending peers for a test interaction. An ensemble composed of

recommended peers is used to predict test examples.

5.4 Examples

We show how the peer ranking algorithm works with two examples. The examples follows

changes of the rank distribution of peers. One example is under static conditions. The other

is under dynamic conditions. Under static conditions, all the peers permanently exist and their

learning status does not change while the peer ranking algorithm applies to the peers. In con-

trast to static conditions, peers can attend, dismiss and bechanged for their learning status

under dynamic conditions.

46

5.4.1 Under static conditions

Table 5.1: Peer ranking example under static conditions

of interactions Recommended peers Result of completion p0 p1 p2

Initial status - - <0, 0> (1) <0, 0> (1) <0, 0> (1)

1 p0, p1 Success <1, 0> (1) <1, 0> (1) <0, 0> (1)

2 p1, p2 Failure <1, 0> (1) <1, 1> (2) <1, 1> (2)

3 p0, p2 Success <2, 0> (1) <1, 1> (2) <2, 1> (2)

4 p0, p1 Success <3, 0> (1) <2, 1> (2) <2, 1> (2)

5 p0, p2 Failure <3, 1> (1) <2, 1> (1) <2, 2> (2)

6 p0, p1 Success <4, 1> (1) <3, 1> (1) <2, 2> (2)

7 p0, p1 Failure <4, 2> (1) <3, 2> (1) <2, 2> (1)

8 p0, p1 Failure <4, 3> (1) <3, 3> (2) <2, 2> (1)

9 p2, p1 Success <4, 3> (2) <4, 3> (2) <3, 2> (1)

10 p2, p0 Success <5, 3> (2) <4, 3> (2) <4, 2> (1)

For test p2, p0 - 3/5= 0.6 (2) 3/4= 0.75 (3) 2/4= 0.5 (1)

In this example, 10 interactions are applied for three peersof p0, p1 and p2. The first element

of a tuple is the number of pluses that a specific peer has. The second element of a tuple is the

number of minuses that a specific peer has. The rank of a specific peer is in parentheses.

Recommended peers on each interaction are selected based ontheir current rankings. For

example, after the 6th interaction finishes, p0 and p1 are recommended for the next interaction

because they are the higher ranked peers.

After all the interactions finish, p2 and p0 are recommended for test.

5.4.2 Under dynamic conditions

Table 5.2: Peer ranking example under dynamic conditions

of interactions Recommended peers Result of completion p0 p1 p2

Initial status - - <0, 0> (1) <0, 0> (1) <0, 0> (1)

1 p0, p1 Success <1, 0> (1) <1, 0> (1) <0, 0> (1)

2 p0, p2 Success <2, 0> (1) <1, 0> (1) <1, 0> (1)

3 p1, p2 Failure <2, 0> (1) <1, 1> (2) <1, 1> (2)

4 p0, p1 Success <3, 0> (1) <2, 1> (2) <1, 1> (2)

5 p0, p1 Failure <3, 1> (1) <2, 2> (2) <1, 1> (1)

6 p2, p1 Success <3, 1> (1) <3, 2> (2) <2, 1> (1)

7 p0, p1 Success <4, 1> (1) <4, 2> (2) <2, 1> (1)

8 p0, p1 Failure <4, 2> (2) <4, 3> (3) <2, 1> (1)

9 p2, p1 Success <4, 2> (2) <5, 3> (3) <3, 1> (1)

10 p0, p1 Failure <4, 3> (2) <5, 4> (3) <3, 1> (1)

For test p2, p0 - 3/4= 0.75 (2) 4/5= 0.8 (3) 1/3= 0.33 (1)

47

In this example, 10 interactions are also applied for three peers of p0, p1 and p2. We inten-

tionally made one the three peers be unavailable randomly ateach interaction (represented as

strikethrough on a peer).

For the 6th interaction, p2 and p1 are recommended although p0 has a higher ranking than p1

because p0 is unavailable. Absence of a peer at each interaction effects the rank distribution

of peers. Different peers from the static example (Table 5.1) finally can be members of an

ensemble.

5.5 Termination condition

Typically we can set when an interaction needs to finish or howmany interactions are needed

to get a good ensemble with the following two methods.

5.5.1 Number of interactions

To set the number of interactions is a static approach. Computation is terminated after the fixed

number of interactions. We can stop the convergence at the point we want. J-model, however,

might not be sufficiently converged at that point.

5.5.2 Performance metric criterion

We can set an expected performance value on a performance metric. For example, if we expect

that J-model should give 80% accuracy, we wait until J-model’s prediction converges to 80%

accuracy over an appropriate number of interactions. When an ensemble at each interaction

reaches the expected value, interaction finishes. We may getthe expected performance with

this method, but if the expected value is too strict then J-model might never converge.

48

Chapter 6

Interaction models for classification

6.1 Introduction

This chapter describes how lightweight coordination calculus (LCC) scripts interaction models

(IMs) for an open environment and shows examples for different forms of classification.

Definition 6.1. Closed simple interaction model

a(ensemble_classifier(TestExample, Peers, Result), E) ::

a(coordinator(TestExample, Peers, Answers), R) then

null <- vote(Answers, Result)

a(coordinator(TestExample, Peers, Answers), R) ::

(

ask(TestExample) => a(classifier, C) <- Peers = [C | RestPeers] then

answer(Answer) <= a(classifier, C) then

a(coordinator(TestExample, RestPeers, Answers), R) <- Answers = [Answer | RestAnswers]

)

or

null <- Peers = []

a(classifier, C) ::

ask(TestExample) <= a(coordinator(TestExample, Peers, Answers), R) then

answer(Answer) => a(coordinator(TestExample, Peers, Answers), R) <-

predict(TestExample, Answer)

Definition 6.1 is a very simple form of interaction model for ensemble classification. The IM

has three roles:ensemble classifier (E), coordinator (R) andclassifier (C). The en-

semble classifier gets prediction answers (Answers) for a test example (TestExample) from

the coordinator and calculates the voted answer (Result) from the prediction answers. The

coordinator recursively asks classifiers (Peers) to get predicted answers for the test example

49

from them. A classifier takes a message that is a request to predict an answer from the co-

ordinator. Thepredict constraint predicts an answer on the peer acting as classifier and the

classifier sends back the answer message to the coordinator.This interaction model is written

using LCC, considers the classifiers as services and runs these as decentralised processes. This

interaction model, however, is actually the same as a traditional ensemble method as far as its

behaviour is concerned. Participating classifiers are fixedand all the predicted answers from

them are just simply aggregated for the ensemble.

Definition 6.2. Closed complex interaction model

a(ensemble_classifier(TestExample, Peers, S, T, Result), E) ::

a(meta_coordinator(TestExample, S, T, Peers, Answers), M) then

null <- vote(Answers, Result)

a(meta_coordinator(TestExample, S, T, Peers, Answers), M) then

(

a(coordinator(TestExample, PPeers, PAnswers), R) <-

(S > 0 and pick_peers(T, Peers, PPeers, RestPeers)) then

a(meta_coordinator(TestExample, S1, T, RestPeers, Answers), M) <-

S1 is S - 1 and vote(PAnswers, Result) and Answers = [Result | RestAnswers]

)

or

null <- S = 0

a(coordinator(TestExample, Peers, Answers), R) ::

(

ask(TestExample) => a(classifier, C) <- Peers = [C | RestPeers] then

answer(Answer) <= a(classifier, C) then

a(coordinator(TestExample, RestPeers, Answers), R) <- Answers = [Answer | RestAnswers]

)

or

null <- Peers = []

a(classifier, C) ::

ask(TestExample) <= a(coordinator(TestExample, Peers, Answers), R) then

answer(Answer) => a(coordinator(TestExample, Peers, Answers), R) <-

predict(TestExample, Answer)

We can design a more complex coordination interaction to theclosed simple IM of Defini-

tion 6.1. LCC can programme complex interaction models thatare tuned at specific coordina-

tion strategies or for particular problem domains. Definition 6.2 shows an example of a more

complex interaction model.

The IM defines four roles:E, meta coordinator (M), R andC. The ensemble classifier role

here is a slightly modified version of E in the closed simple IMexample. The meta coordinator

which is now introduced is for more complex coordination of classifiers.R andC are the same

50

ones as in the closed simple IM example.

The ensemble classifier passes the sequence to the meta coordinator (meta coordinator(

TestExample, S, T, Peers, Answers), M)) instead of passing it to the coordinator.S

is a parameter to set the number of voters. Each voter aggregates classifier’s predictions inde-

pendently.T is the number of classifiers that give back prediction answers to a voter. Thevote

constraint of the ensemble classifier aggregates the voted answers of the voters ofM.

The meta coordinator picks classifiers (pick peers(T, Peers, PPeers, RestPeers))

and passes the sequence to the coordinator.Answers in the meta coordinator is the collec-

tion of voted answers from the coordinator with the picked classifiers.

Coordinator

<Simple IM> <Complex IM>

Meta
coordinator

Peers

Coordinator

Peers

p4

p1

p2

p3

a1

a2

a1

a2

Figure 6.1: Simple and complex interaction models

Figure 6.1 describes how the simple IM and the complex IM coordinate classifiers. In the

simple IM, the coordinator gets answers from all the peers and votes the answers. In the com-

plex IM, the coordinator gets answers fromT picked peers and votes the answersS times. The

meta coordinator getsS voted answers. In the figure,T is 2 andS is 2. [p1, p2] is a set of picked

peers and[p3, p4] is the other set of picked peers. One voted answer (a1) is from [p1, p2] and

the other (a2) is from [p3, p4].

Here we need to pay attention to those two IMs. They fix their participating classifiers (Peers)

when they are deployed at design time. This means that which classifiers will participate for the

ensemble has already been pre-determined. These IMs are fora closed classifier environment.

Instead we need other forms of interaction model that can coordinate classifiers in an open

environment. In the following section, we suggest interaction models for an open environments.

51

6.2 Open interaction models

6.2.1 Simple model (IM1)

In the open classifier environment, participating classifiers are not fixed. So we cannot determ-

ine which classifiers participate for ensemble when an IM is deployed. We can only set the

number of classifiers which will be the members of an ensembleclassifier. Actual member

classifiers are determined as they interact in the IM at run-time.

Definition 6.3. ensembleclassifier role and choosepeers constraint

a(ensemble_classifier(TestExample, N, Result, Peers), E) ::

a(coordinator(TestExample, Peers, Answers), R) <- choose_peers(N, Peers) then

null <- vote(Answers, Result)

The ensemble classifier role in Definition 6.3 takes only the number of classifiers (N)

as its parameter instead of the member classifiers themselves (Peers in the closed interac-

tion models). Actual peers are determined for their roles bythe choose peers constraint.

choose peers recommends N peers to the coordinator.

Definition 6.4. Open simple interaction model without peer ranking

a(ensemble_classifier(TestExample, N, Result, Peers), E) ::

a(coordinator(TestExample, Peers, Answers), R) <- choose_peers(N, Peers) then

null <- vote(Answers, Result)

a(coordinator(TestExample, Peers, Answers), R) ::

(

ask(TestExample) => a(classifier, C) <- Peers = [C | RestPeers] then

answer(Answer) <= a(classifier, C) then

a(coordinator(TestExample, RestPeers, Answers), R) <- Answers = [Answer | RestAnswers]

)

or

null <- Peers = []

a(classifier, C) ::

ask(TestExample) <= a(coordinator(TestExample, Peers, Answers), R) then

answer(Answer) => a(coordinator(TestExample, Peers, Answers), R) <-

predict(TestExample, Answer)

Definition 6.4 is an open interaction model example. It includesensemble classifier role of

Definition 6.3. The coordinator and classifier roles are the same as with the closed interaction

models.

Definition 6.5. peer ranker role

52

a(peer_ranker(QueryExample, QClass, N), K) ::

a(ensemble_classifier(QueryExample, N, Result, Peers), E) then

null <- update(Result, QClass, Peers)

We have designed an open interaction model that, through theN parameter, selectsN peers using

thechoose peers constraint. This selection, however, does not guarantee that the chosen peers

are appropriate members for the ensemble. The ensemble classifier from the chosen classifiers

may not give adequate classification performance becausechoose peers does not have any

criterion upon which peers to choose. Therefore we need to make choose peers get peers

based on the recommendation of the peer ranking service. As we have shown in Chapter 5, the

peer ranking algorithm iteratively assigns a measure of reputation to members of the ensemble.

Thepeer ranker role in Definition 6.5 reports the prediction results of currently chosen peers

to the peer ranking service. A query example (QueryExample) is a query for which each

chosen peer answers with a prediction of its class label.QClass is the actual or correct class

label for the query.N is the number of peers to be chosen as members.peer ranker passes

its sequence toensemble classifier with QueryExample and gets a voted answer (Result)

and the chosen peers (Peers). update constraint compares the predicted answer (Result)

with the correct class (QClass) and reports the comparison results to the peer ranking service.

peer ranker is an evaluator that evaluates the prediction from the ensemble classifier. Iterat-

ive calling ofpeer ranker updates the reputation of the classifiers in the open environment.

Consequentlychoose peers can recommend more appropriate peers.

Definition 6.6. Open simple interaction model with peer ranking (IM1)

a(ensemble_classifier(TestExample, N, Result, Peers), E) ::

a(coordinator(TestExample, Peers, Answers), R) <- choose_peers(N, Peers) then

null <- vote(Answers, Result)

a(coordinator(TestExample, Peers, Answers), R) ::

(

ask(TestExample) => a(classifier, C) <- Peers = [C | RestPeers] then

answer(Answer) <= a(classifier, C) then

a(coordinator(TestExample, RestPeers, Answers), R) <- Answers = [Answer | RestAnswers]

)

or

null <- Peers = []

a(classifier, C) ::

ask(TestExample) <= a(coordinator(TestExample, Peers, Answers), R) then

answer(Answer) => a(coordinator(TestExample, Peers, Answers), R) <-

predict(TestExample, Answer)

a(peer_ranker(QueryExample, QClass, N), K) ::

53

a(ensemble_classifier(QueryExample, N, Result, Peers), E) then

null <- update(Result, QClass, Peers)

Definition 6.6 shows all the roles that we introduced in this section in one place.

6.2.2 Complex model (IM2)

We do not need to be limited to a simple model. We can design other interaction models

that are tuned to diverse coordination strategies or particular domains in the open classifier

environment.

Definition 6.7. Open complex interaction model 1 (IM2)

a(ensemble_classifier(TestExample, N, S, T, Result, Peers), E) ::

a(meta_coordinator(TestExample, S, T, Peers, Answers), M) <- choose_peers(N, Peers) then

null <- vote(Answers, Result)

a(meta_coordinator(TestExample, S, T, Peers, Answers), M) then

(

a(coordinator(TestExample, PPeers, PAnswers), R) <-

(S > 0 and pick_peers(T, Peers, PPeers, RestPeers)) then

a(meta_coordinator(TestExample, S1, T, RestPeers, Answers), M) <-

S1 is S - 1 and vote(PAnswers, Result) and Answers = [Result | RestAnswers]

)

or

null <- S = 0

a(coordinator(TestExample, Peers, Answers), R) ::

(

ask(TestExample) => a(classifier, C) <- Peers = [C | RestPeers] then

answer(Answer) <= a(classifier, C) then

a(coordinator(TestExample, RestPeers, Answers), R) <- Answers = [Answer | RestAnswers]

)

or

null <- Peers = []

a(classifier, C) ::

ask(TestExample) <= a(coordinator(TestExample, Peers, Answers), R) then

answer(Answer) => a(coordinator(TestExample, Peers, Answers), R) <-

predict(TestExample, Answer)

a(peer_ranker(QueryExample, QClass, N), K) ::

a(ensemble_classifier(QueryExample, N, Result, Peers), E) then

null <- update(Result, QClass, Peers)

Definition 6.7 is an example of open complex IM. It has adoptedthemeta coordinator role

andS andT parameters from the open simple IM in the same way that the closed complex IM

adopted those elements. The details ofmeta coordinator, S andT are the same as with the

54

closed complex IM’s.

6.2.3 Another complex model (IM3)

Definition 6.8. Open complex interaction model 2 (IM3)

a(ensemble_classifier(TestExample, N, Ts, Result, Peers), E) ::

a(meta_coordinator(TestExample, Ts, Peers, Answers), M) <- choose_peers(N, Peers) then

null <- vote(Answers, Result)

a(meta_coordinator(TestExample, Ts, Peers, Answers), M) then

(

a(coordinator(TestExample, PPeers, PAnswers), R) <-

(Ts = [T | RestTs] and pick_peers(T, Peers, PPeers, RestPeers)) then

a(meta_coordinator(TestExample, RestTs, RestPeers, Answers), M) <-

vote(PAnswers, Result) and Answers = [Result | RestAnswers]

)

or

null <- Ts = []

Definition 6.8 is another example of an open complex IM obtained through modification of

IM2. Ts is a list of numbers. Each number indicates how many classifiers will be picked by

pick peers. The coordinator gets answers from different number of classifiers from theTs

set. This gives a different weight to each classifier’s prediction.

6.2.4 Model for specificity metric (IM4)

Definition 6.9. peer ranker role for specificity metric (IM4)

a(peer_ranker(QueryExample, QClass, N), K) ::

a(ensemble_classifier(QueryExample, N, Result, Peers), E) then

(

// case of true negative

null <- QClass = false and Result = false then

null <- update(false, false, Peers)

)

or

(

// case of false positive

null <- QClass = false and Result = true then

null <- update(false, true, Peers)

)

55

Definition 6.9 is a specified interaction model for the performance metric of specificity. The

specificity metric is defined in the section of 7.6.2.4.

peer ranker reflects the prediction result fromensemble classifier differently based on

the predicted class (QClass) and the actual class (Result). In the case of true negatives, it

updates the result positively. In the case of false positives, it updates the result negatively.

For other cases, it does not report the results to the peer ranking service because the value of

specificity is determined only by the number of true negatives and false positives following its

definition.

6.2.5 Model for high true positive rate and low false positiv e rate metrics

(IM5)

Definition 6.10. peer ranker role for high TPR and low FPR metrics (IM5)

a(peer_ranker(QueryExample, QClass, N), K) ::

a(ensemble_classifier(QueryExample, N, Result, Peers), E) then

(

// case of true positive

null <- QClass = true and Result = true then

null <- update(true, true, Peers)

)

or

(

// case of false positive

null <- QClass = false and Result = true then

null <- update(false, true, Peers)

)

Definition 6.10 is for the higher true positive rate (TPR) andthe lower false positive rate (FPR).

In the section 7.7.2.4, TPR and FPR are defined.

peer ranker updates the prediction result fromensemble classifier positively when the

actual class is the positive and the predicted class is also the positive (true positives). On

the other hand, it updates the result negatively when the actual class is the negative and the

predicted class is the positive (false positives). For other cases, it does not reflect the prediction

results.

6.2.6 Model with time constraint (IM6)

56

Definition 6.11. peer ranker role for time cost (IM6)

a(peer_ranker(QueryExample, QClass, Time, N), K) ::

null <- get_time(T1) then

a(ensemble_classifier(QueryExample, N, Result, Peers), E) then

null <- get_time(T2) then

(

null <- T2 - T1 =< Time then

null <- update(Result, QClass, Peers)

)

or

null <- update(true, false, Peers)

Prediction performance is the most fundamental evaluationmetric on machine learning includ-

ing ensemble learning. In addition to this, time cost is alsoa useful performance criterion.

Definition 6.11 is an open interaction model for time cost by re-writing thepeer ranker role.

Time is the expected time in which we want anensemble classifier to give a prediction an-

swer. If the actual time cost of anensemble classifier is higher than the expected cost,

peer ranker always updates the reputation ofPeers negatively. When the actual cost is

lower,peer ranker applies the same constraint ofupdate(Result, QClass, Peers) that

is used in all the other IMs above.Result is a voted answer from the chosen peers (Peers)

andQClass is the actual class.

6.3 Summary

All the open IMs shown so far are only some of the examples which can be written using LCC.

IMs can be freely built by modifying existing roles, adding new roles, changing parameters,

implementing other constraints or the other language elements of LCC.

57

Chapter 7

Experiments

7.1 General methodology

7.1.1 Binary class data

We only consider binary class data sets for our experiments.Binary class data is easier to

measure and analyse than data for multi-class problems. In addition, some machine learning

algorithms such as SVM [23] and boosting cannot easily address multi-class problems.

7.1.2 Training, query and test examples

We split each data set into three sets of examples for training, query and test. Training and

test examples have the same role as in traditional machine learning. Query examples are for

the peer ranking interaction that allows each peer to assessthe reputation of other peers. In

machine learning experiments, training and test examples are typically split by about a 9:1

ratio. Learners are trained sufficiently before testing. Query examples also have the same

relationship for splitting. Learners needs to be trained sufficiently in querying. We separated

each whole data set into training, query and test examples by9:0.5:0.5 ratio respectively.

7.1.3 Base classifiers for pool preparation

We used 8 machine learning algorithms as templates for generating pool members (Table 7.1).

Each pool member needs to have a different training status for diversity. We achieved this by

58

setting different initial points on learning with random number seeds. The 8 learner templates

are all ensemble learning algorithms. We set the number of base classifiers as one for all of

them (original default: 10). The templates are then no longer ensemble methods (they are

simple learners as J-model takes the responsibility for coordinating the ensemble).

Through the two modifications, we can fairly compare J-model’s performance with other en-

semble methods. Detailed learning parameters are also described in Table 7.1. Weka [44], a

machine learning framework, was used for pool preparation.

7.1.4 Static and dynamic conditions

J-model can do its interaction both under static and dynamicservice conditions. Under static

conditions, the classifier pool status does not change during interactions. Dynamic conditions

permit several statuses such as classifier attending, missing or updating. We set 25% randomly

selected classifiers from the pool to miss in every interaction for our experiments. Making a

portion of classifiers miss is easier for conducting experiments under a controlled condition

than taking attendance or update of classifiers. In addition, missing classifiers can give a more

direct effect for dynamicity of classifiers. The portion of 25% was estimated as a reasonable

level of this effect (this being a reasonably challenging number of missing classifiers that we

would hope not to exceed in practice).

7.2 System implementation for experiments

We explain how our entire implemented system is assembled together for experiments from a

classifier pool to an LCC interpreter.

Weka
framework

Controller

Peer ranking algorithm
for query interaction

LCC
interpreter

generate_peer_pool()

references_for_peers

references_to_supporting_peers

result

interaction_model

query_example

Figure 7.1: A system implementation for query interaction

59

Figure 7.1 shows the system implementation. The system is composed of three components; the

Weka machine learning framework, a controller and an LCC interpreter. The Weka framework

is being developed at the University of Waikato and an LCC interpreter named LiJ1 is being

developed by Nikolaos Chatzinikolaou. Both of the components are implemented with Java

programming language. We implemented a controller to control the learning process and wrap

the two other components and JRuby programming language wasused to call Java classes

natively. The peer ranking algorithm is an object in the controller component.

For query interactions, initially, the controller calls Weka to make Weka to generate a pool

of classifiers. Weka returns references to generated peers to the the peer ranking algorithm

through the controller. The controller calls the LCC interpreter with parameters of references

to supporting peers (recommended peers), the definition of an interaction model and a query

example. The LCC interpreter returns a prediction result tothe controller and the controller

applies the result to the peer ranking algorithm. Calling the LCC interpreter occurs multiple

times according to the number of interactions we set.

Controller

Peer ranking algorithm
for test interaction

LCC
interpreter

references_to_supporting_peers

result

interaction_model

test_example

Figure 7.2: A system implementation for test interaction

Figure 7.2 shows how the system works for a test interaction.For tests, the controller and

the LCC interpreter are used. The controller calls the LCC interpreter with parameters of

references to recommended peers, the definition of an interaction model and a test example.

The LCC interpreter gives a prediction result. We calls the LCC interpreter multiple times

according to the number of test examples we have.

1http://sourceforge.net/projects/lij/

60

7.3 Peer separation from the pool

7.3.1 Introduction

We wish to know the extent to which better peers are separatedfrom the other peers in the

pool by interactions. Better peers are more appropriate ones for specific interaction results.

The experiment of peer separation was accomplished with three sub experiments. First, we

traced how many selections each peer get over interactions in the section 7.3.3.1. Second, we

confirmed that more selected peers are higher ranked ones in the section 7.3.3.2. The peer

ranking algorithm is designed to give more weight to better peers. Third, we investigated how

much the gap is between higher ranked ones of 20% and lower ranked ones of 80% in the

section 7.3.3.3. Experiments are executed under the staticconditions and dynamic conditions

described in Section 7.1.4.

7.3.2 Experimental setup

7.3.2.1 Data sets

Table 7.2: breast-cancer, kr-vs-kp and labor data sets

Name Instances Attributes Categorical

(symbolic)

attributes

Numerical

attributes

Missing

values

Classes Class ratio (majority

class %)

breast-cancer 286 9 9 0 Yes 2 201:85 (70.28)

kr-vs-kp 3196 36 36 0 No 2 1669:1527 (55.22)

labor 57 16 8 8 Yes 2 20:37 (64.91)

We showed the result with the three standard data sets in Table 7.2. Each data set varies from

the other standard benchmark data sets according to the properties given in the table.

7.3.2.2 Pool size and ensemble size

We experimented with pool sizes of 8, 16 and 32 (these being representative of the range of

pool sizes we might expect to find in practice). Ensemble sizes are determined following the

usual ratio of higher ranked peers which is up to 20%. So the ensemble size of 2 in the pool

size of 8; 2 and 3 in 16; 2, 3 and 6 in 32 were chosen.

61

7.3.2.3 Choice of IM

Interaction model 1 (Definition 6.6) was used.

7.3.2.4 Number of interactions

We ran each experiment for 300 interactions (this providingwhat we assumed to be a reasonable

length of time in which to construct ensembles via interaction)

7.3.3 Results under static conditions

7.3.3.1 Number of peers being selected over interactions

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

90

100
<Pool size 8, Ensemble size 2>

Interactions

of

 b
ei

ng
 s

el
ec

te
d

0 50 100 150 200 250 300
0

10

20

30

40

50

60
<Pool size 16, Ensemble size 2>

Interactions

of

 b
ei

ng
 s

el
ec

te
d

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80
<Pool size 16, Ensemble size 3>

Interactions

of

 b
ei

ng
 s

el
ec

te
d

0 50 100 150 200 250 300
0

5

10

15

20

25

30

35
<Pool size 32, Ensemble size 2>

Interactions

of

 b
ei

ng
 s

el
ec

te
d

0 50 100 150 200 250 300
0

5

10

15

20

25

30

35

40
<Pool size 32, Ensemble size 3>

Interactions

of

 b
ei

ng
 s

el
ec

te
d

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80
<Pool size 32, Ensemble size 6>

Interactions

of

 b
ei

ng
 s

el
ec

te
d

Figure 7.3: Number of peers being selected over interactions with breast-cancer under static

conditions

62

0 50 100 150 200 250 300
0

20

40

60

80

100

120

140

160

180

200
<Pool size 8, Ensemble size 2>

Interactions

of

 b
ei

ng
 s

el
ec

te
d

0 50 100 150 200 250 300
0

20

40

60

80

100

120

140

160
<Pool size 16, Ensemble size 2>

Interactions

of

 b
ei

ng
 s

el
ec

te
d

0 50 100 150 200 250 300
0

20

40

60

80

100

120

140

160
<Pool size 16, Ensemble size 3>

Interactions

of

 b
ei

ng
 s

el
ec

te
d

0 50 100 150 200 250 300
0

5

10

15

20

25

30

35

40

45
<Pool size 32, Ensemble size 2>

Interactions

of

 b
ei

ng
 s

el
ec

te
d

0 50 100 150 200 250 300
0

5

10

15

20

25

30

35

40

45

50
<Pool size 32, Ensemble size 3>

Interactions

of

 b
ei

ng
 s

el
ec

te
d

0 50 100 150 200 250 300
0

20

40

60

80

100

120
<Pool size 32, Ensemble size 6>

Interactions

of

 b
ei

ng
 s

el
ec

te
d

Figure 7.4: Number of peers being selected over interactions with kr-vs-kp under static condi-

tions

0 50 100 150 200 250 300
0

50

100

150

200

250

300
<Pool size 8, Ensemble size 2>

Interactions

of

 b
ei

ng
 s

el
ec

te
d

0 50 100 150 200 250 300
0

50

100

150

200

250

300
<Pool size 16, Ensemble size 2>

Interactions

of

 b
ei

ng
 s

el
ec

te
d

0 50 100 150 200 250 300
0

50

100

150

200

250

300
<Pool size 16, Ensemble size 3>

Interactions

of

 b
ei

ng
 s

el
ec

te
d

0 50 100 150 200 250 300
0

20

40

60

80

100

120

140
<Pool size 32, Ensemble size 2>

Interactions

of

 b
ei

ng
 s

el
ec

te
d

0 50 100 150 200 250 300
0

20

40

60

80

100

120

140

160

180

200
<Pool size 32, Ensemble size 3>

Interactions

of

 b
ei

ng
 s

el
ec

te
d

0 50 100 150 200 250 300
0

50

100

150

200

250

300
<Pool size 32, Ensemble size 6>

Interactions

of

 b
ei

ng
 s

el
ec

te
d

Figure 7.5: Number of peers being selected over interactions with labor under static conditions

Figures 7.3, 7.4 and 7.5 show the change of peers on how many they are selected by the peer

ranking algorithm over interactions under static conditions. Different coloured lines in these

graphs are different peers. Each data set showed somewhat different separation behaviours.

In breast-cancer, the amount of separation between peers inthe early stage remains relatively

63

constant with gaps between the peers becoming gradually bigger over more interactions. kr-

vs-kp showed a weeding-out of peers. While the interaction proceeds, some peers are cut from

the selection (these are the horizontal lines in the graphs). labor showed an extreme case of

separation. More selected peers in the early stage suppressall the other peers. This means that

only the more selected ones are selected continually and theother ones do not have a chance to

be selected. This separation among the peers is fixed at a veryearly stage.

7.3.3.2 Score over interactions

In the previous section 7.3.3.1, we gave the total number of peers being selected on each peer

without considering plus-scored and minus-scored counts separately. In this section, we con-

sider these values separately by calculating values ofplus counts−minuscounts.

0 50 100 150 200 250 300
−5

0

5

10

15

20

25

30

35

40
<Pool size 8, Ensemble size 2>

Interactions

S
co

re

0 50 100 150 200 250 300
−10

−5

0

5

10

15

20

25

30
<Pool size 16, Ensemble size 2>

Interactions

S
co

re

0 50 100 150 200 250 300
−5

0

5

10

15

20

25

30

35

40
<Pool size 16, Ensemble size 3>

Interactions

S
co

re

0 50 100 150 200 250 300
−5

0

5

10

15

20
<Pool size 32, Ensemble size 2>

Interactions

S
co

re

0 50 100 150 200 250 300
−5

0

5

10

15

20
<Pool size 32, Ensemble size 3>

Interactions

S
co

re

0 50 100 150 200 250 300
−5

0

5

10

15

20

25

30

35
<Pool size 32, Ensemble size 6>

Interactions

S
co

re

Figure 7.6: Score over interactions with breast-cancer under static conditions

64

0 50 100 150 200 250 300
0

20

40

60

80

100

120

140

160

180

200
<Pool size 8, Ensemble size 2>

Interactions

S
co

re

0 50 100 150 200 250 300
0

20

40

60

80

100

120

140

160
<Pool size 16, Ensemble size 2>

Interactions

S
co

re

0 50 100 150 200 250 300
−20

0

20

40

60

80

100

120

140

160
<Pool size 16, Ensemble size 3>

Interactions

S
co

re

0 50 100 150 200 250 300
−5

0

5

10

15

20

25

30

35

40

45
<Pool size 32, Ensemble size 2>

Interactions

S
co

re

0 50 100 150 200 250 300
0

5

10

15

20

25

30

35

40

45

50
<Pool size 32, Ensemble size 3>

Interactions

S
co

re

0 50 100 150 200 250 300
0

20

40

60

80

100

120
<Pool size 32, Ensemble size 6>

Interactions

S
co

re

Figure 7.7: Score over interactions with kr-vs-kp under static conditions

0 50 100 150 200 250 300
−50

0

50

100

150

200

250

300
<Pool size 8, Ensemble size 2>

Interactions

S
co

re

0 50 100 150 200 250 300
−50

0

50

100

150

200

250

300
<Pool size 16, Ensemble size 2>

Interactions

S
co

re

0 50 100 150 200 250 300
−50

0

50

100

150

200

250

300
<Pool size 16, Ensemble size 3>

Interactions

S
co

re

0 50 100 150 200 250 300
−20

0

20

40

60

80

100

120

140
<Pool size 32, Ensemble size 2>

Interactions

S
co

re

0 50 100 150 200 250 300
−50

0

50

100

150

200
<Pool size 32, Ensemble size 3>

Interactions

S
co

re

0 50 100 150 200 250 300
−50

0

50

100

150

200

250

300
<Pool size 32, Ensemble size 6>

Interactions

S
co

re

Figure 7.8: Score over interactions with labor under static conditions

The results in all the data sets above show that more frequently selected peers have more plus

scores than the others. The ranking order of each peer in the figures here completely matchs

with the orders in Figure 7.3, 7.4 and 7.5 above. This confirmsthat more selected peers actually

get higher ranking.

65

7.3.3.3 Average scores of higher 20% and lower 80% scored pee rs over interactions

This experiment explores how much the gap changes between higher scored peers and lower

scored peers over interactions.

0 50 100 150 200 250 300
−5

0

5

10

15

20

25

30

35

40
<Pool size 8, Ensemble size 2>

Interactions

A
ve

ra
ge

 s
co

re

0 50 100 150 200 250 300
−5

0

5

10

15

20

25
<Pool size 16, Ensemble size 2>

Interactions

A
ve

ra
ge

 s
co

re

0 50 100 150 200 250 300
−5

0

5

10

15

20

25

30
<Pool size 16, Ensemble size 3>

Interactions

A
ve

ra
ge

 s
co

re

0 50 100 150 200 250 300
−2

0

2

4

6

8

10

12

14
<Pool size 32, Ensemble size 2>

Interactions

A
ve

ra
ge

 s
co

re

0 50 100 150 200 250 300
−2

0

2

4

6

8

10

12

14

16

18
<Pool size 32, Ensemble size 3>

Interactions

A
ve

ra
ge

 s
co

re

0 50 100 150 200 250 300
−5

0

5

10

15

20

25

30
<Pool size 32, Ensemble size 6>

Interactions
A

ve
ra

ge
 s

co
re

Higher scored peers Lower scored peers Difference between averages

Figure 7.9: Average scores interactions with breast-cancer under static conditions

0 50 100 150 200 250 300
0

20

40

60

80

100

120

140

160

180

200
<Pool size 8, Ensemble size 2>

Interactions

A
ve

ra
ge

 s
co

re

0 50 100 150 200 250 300
0

20

40

60

80

100

120
<Pool size 16, Ensemble size 2>

Interactions

A
ve

ra
ge

 s
co

re

0 50 100 150 200 250 300
−20

0

20

40

60

80

100

120

140

160
<Pool size 16, Ensemble size 3>

Interactions

A
ve

ra
ge

 s
co

re

0 50 100 150 200 250 300
−5

0

5

10

15

20

25

30

35
<Pool size 32, Ensemble size 2>

Interactions

A
ve

ra
ge

 s
co

re

0 50 100 150 200 250 300
0

5

10

15

20

25

30

35

40

45

50
<Pool size 32, Ensemble size 3>

Interactions

A
ve

ra
ge

 s
co

re

0 50 100 150 200 250 300
0

20

40

60

80

100

120
<Pool size 32, Ensemble size 6>

Interactions

A
ve

ra
ge

 s
co

re

Higher scored peers Lower scored peers Difference between averages

Figure 7.10: Average scores interactions with kr-vs-kp under static conditions

66

0 50 100 150 200 250 300
0

50

100

150

200

250

300
<Pool size 8, Ensemble size 2>

Interactions

A
ve

ra
ge

 s
co

re

0 50 100 150 200 250 300
−20

0

20

40

60

80

100

120

140

160
<Pool size 16, Ensemble size 2>

Interactions

A
ve

ra
ge

 s
co

re

0 50 100 150 200 250 300
0

20

40

60

80

100

120

140

160

180

200
<Pool size 16, Ensemble size 3>

Interactions

A
ve

ra
ge

 s
co

re

0 50 100 150 200 250 300
−10

0

10

20

30

40

50

60

70

80
<Pool size 32, Ensemble size 2>

Interactions

A
ve

ra
ge

 s
co

re

0 50 100 150 200 250 300
−10

0

10

20

30

40

50

60

70

80

90
<Pool size 32, Ensemble size 3>

Interactions

A
ve

ra
ge

 s
co

re

0 50 100 150 200 250 300
−50

0

50

100

150

200

250
<Pool size 32, Ensemble size 6>

Interactions

A
ve

ra
ge

 s
co

re

Higher scored peers Lower scored peers Difference between averages

Figure 7.11: Average scores interactions with labor under static conditions

In breast-cancer, the blue line (the average score of 20% higher ranked peers) and the red line

(the average score of 80% lower ranked peers) ascend with increasing interactions. The gap

between them gradually increases at the same time. We can seethat the green line (difference

between averages) ascends over interactions. The gradientof the green line, however, becomes

flatter after some point during interaction. In kr-vs-kp, the blue and red lines also ascend with

increasing interactions. However the gradient of the blue line becomes steeper after some point

while the red line becomes flatter. The gap becomes bigger over interactions. labor showed

an extreme case. 80% lower scored peers hardly got any scores. 20% higher scored peers got

almost all scores.

67

7.3.4 Results under dynamic conditions

7.3.4.1 Number of peers being selected over interactions

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

90
<Pool size 8, Ensemble size 2>

Interactions

of

 b
ei

ng
 s

el
ec

te
d

0 50 100 150 200 250 300
0

10

20

30

40

50

60
<Pool size 16, Ensemble size 2>

Interactions

of

 b
ei

ng
 s

el
ec

te
d

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80
<Pool size 16, Ensemble size 3>

Interactions

of

 b
ei

ng
 s

el
ec

te
d

0 50 100 150 200 250 300
0

5

10

15

20

25

30

35

40
<Pool size 32, Ensemble size 2>

Interactions

of

 b
ei

ng
 s

el
ec

te
d

0 50 100 150 200 250 300
0

10

20

30

40

50

60
<Pool size 32, Ensemble size 3>

Interactions

of

 b
ei

ng
 s

el
ec

te
d

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80
<Pool size 32, Ensemble size 6>

Interactions

of

 b
ei

ng
 s

el
ec

te
d

Figure 7.12: Number of peers being selected over interactions with breast-cancer under dynamic

conditions

0 50 100 150 200 250 300
0

20

40

60

80

100

120

140

160

180

200
<Pool size 8, Ensemble size 2>

Interactions

of

 b
ei

ng
 s

el
ec

te
d

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

90

100
<Pool size 16, Ensemble size 2>

Interactions

of

 b
ei

ng
 s

el
ec

te
d

0 50 100 150 200 250 300
0

20

40

60

80

100

120

140
<Pool size 16, Ensemble size 3>

Interactions

of

 b
ei

ng
 s

el
ec

te
d

0 50 100 150 200 250 300
0

5

10

15

20

25

30

35

40
<Pool size 32, Ensemble size 2>

Interactions

of

 b
ei

ng
 s

el
ec

te
d

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80
<Pool size 32, Ensemble size 3>

Interactions

of

 b
ei

ng
 s

el
ec

te
d

0 50 100 150 200 250 300
0

20

40

60

80

100

120
<Pool size 32, Ensemble size 6>

Interactions

of

 b
ei

ng
 s

el
ec

te
d

Figure 7.13: Number of peers being selected over interactions with kr-vs-kp under dynamic

conditions

68

0 50 100 150 200 250 300
0

20

40

60

80

100

120

140

160

180

200
<Pool size 8, Ensemble size 2>

Interactions

of

 b
ei

ng
 s

el
ec

te
d

0 50 100 150 200 250 300
0

50

100

150
<Pool size 16, Ensemble size 2>

Interactions

of

 b
ei

ng
 s

el
ec

te
d

0 50 100 150 200 250 300
0

20

40

60

80

100

120

140
<Pool size 16, Ensemble size 3>

Interactions

of

 b
ei

ng
 s

el
ec

te
d

0 50 100 150 200 250 300
0

50

100

150
<Pool size 32, Ensemble size 2>

Interactions

of

 b
ei

ng
 s

el
ec

te
d

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80
<Pool size 32, Ensemble size 3>

Interactions

of

 b
ei

ng
 s

el
ec

te
d

0 50 100 150 200 250 300
0

20

40

60

80

100

120
<Pool size 32, Ensemble size 6>

Interactions

of

 b
ei

ng
 s

el
ec

te
d

Figure 7.14: Number of peers being selected over interactions with labor under dynamic condi-

tions

Satisfactory peer separation occurred all over the data sets and various pool/ensemble sizes like

the separation under the static condition. It means that J-model is robust for peer separation

under dynamic conditions.

Additionally, there is a difference compared with the results of the static conditions. As re-

marked in the cases of kr-vs-kp and labor, the lower scored peers that were certainly suppressed

under static conditions shown in Figure 7.4 and 7.5 (they hadmuch lower scores than the higher

scored peers had) are less suppressed under dynamic conditions (they have more opportunity to

get scores). This shows that the higher scored peers have less opportunity to get scores under

dynamic conditions as well.

69

7.3.4.2 Score over interactions

0 50 100 150 200 250 300
−5

0

5

10

15

20

25

30

35
<Pool size 8, Ensemble size 2>

Interactions

S
co

re

0 50 100 150 200 250 300
−10

−5

0

5

10

15

20

25

30
<Pool size 16, Ensemble size 2>

Interactions

S
co

re

0 50 100 150 200 250 300
−10

−5

0

5

10

15

20

25

30
<Pool size 16, Ensemble size 3>

Interactions

S
co

re

0 50 100 150 200 250 300
−5

0

5

10

15

20

25

30
<Pool size 32, Ensemble size 2>

Interactions

S
co

re

0 50 100 150 200 250 300
−10

−5

0

5

10

15

20

25

30

35

40
<Pool size 32, Ensemble size 3>

Interactions

S
co

re

0 50 100 150 200 250 300
−5

0

5

10

15

20

25

30

35
<Pool size 32, Ensemble size 6>

Interactions

S
co

re

Figure 7.15: Score over interactions with breast-cancer under dynamic conditions

0 50 100 150 200 250 300
0

20

40

60

80

100

120

140

160

180

200
<Pool size 8, Ensemble size 2>

Interactions

S
co

re

0 50 100 150 200 250 300
−20

0

20

40

60

80

100
<Pool size 16, Ensemble size 2>

Interactions

S
co

re

0 50 100 150 200 250 300
0

20

40

60

80

100

120

140
<Pool size 16, Ensemble size 3>

Interactions

S
co

re

0 50 100 150 200 250 300
−5

0

5

10

15

20

25

30

35

40
<Pool size 32, Ensemble size 2>

Interactions

S
co

re

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80
<Pool size 32, Ensemble size 3>

Interactions

S
co

re

0 50 100 150 200 250 300
−20

0

20

40

60

80

100

120
<Pool size 32, Ensemble size 6>

Interactions

S
co

re

Figure 7.16: Score over interactions with kr-vs-kp under dynamic conditions

70

0 50 100 150 200 250 300
0

20

40

60

80

100

120

140

160

180
<Pool size 8, Ensemble size 2>

Interactions

S
co

re

0 50 100 150 200 250 300
−20

0

20

40

60

80

100

120

140

160
<Pool size 16, Ensemble size 2>

Interactions

S
co

re

0 50 100 150 200 250 300
−20

0

20

40

60

80

100

120

140
<Pool size 16, Ensemble size 3>

Interactions

S
co

re

0 50 100 150 200 250 300
−20

0

20

40

60

80

100

120

140

160
<Pool size 32, Ensemble size 2>

Interactions

S
co

re

0 50 100 150 200 250 300
−10

0

10

20

30

40

50

60

70

80
<Pool size 32, Ensemble size 3>

Interactions

S
co

re

0 50 100 150 200 250 300
−20

0

20

40

60

80

100
<Pool size 32, Ensemble size 6>

Interactions

S
co

re

Figure 7.17: Score over interactions with labor under dynamic conditions

The ranking orders matched with the peer orders shown in Section 7.3.4.1.

7.3.4.3 Average scores of higher 20% and lower 80% scored pee rs over interactions

0 50 100 150 200 250 300
−5

0

5

10

15

20

25

30

35
<Pool size 8, Ensemble size 2>

Interactions

A
ve

ra
ge

 s
co

re

0 50 100 150 200 250 300
−5

0

5

10

15

20

25
<Pool size 16, Ensemble size 2>

Interactions

A
ve

ra
ge

 s
co

re

0 50 100 150 200 250 300
−5

0

5

10

15

20

25

30
<Pool size 16, Ensemble size 3>

Interactions

A
ve

ra
ge

 s
co

re

0 50 100 150 200 250 300
−2

0

2

4

6

8

10

12

14

16
<Pool size 32, Ensemble size 2>

Interactions

A
ve

ra
ge

 s
co

re

0 50 100 150 200 250 300
−5

0

5

10

15

20
<Pool size 32, Ensemble size 3>

Interactions

A
ve

ra
ge

 s
co

re

0 50 100 150 200 250 300
−5

0

5

10

15

20

25

30
<Pool size 32, Ensemble size 6>

Interactions

A
ve

ra
ge

 s
co

re

Higher scored peers Lower scored peers Difference between averages

Figure 7.18: Average scores interactions with breast-cancer under dynamic conditions

71

0 50 100 150 200 250 300
0

20

40

60

80

100

120

140

160

180

200
<Pool size 8, Ensemble size 2>

Interactions

A
ve

ra
ge

 s
co

re

0 50 100 150 200 250 300
−10

0

10

20

30

40

50

60

70

80
<Pool size 16, Ensemble size 2>

Interactions

A
ve

ra
ge

 s
co

re

0 50 100 150 200 250 300
0

20

40

60

80

100

120
<Pool size 16, Ensemble size 3>

Interactions

A
ve

ra
ge

 s
co

re

0 50 100 150 200 250 300
0

5

10

15

20

25

30

35
<Pool size 32, Ensemble size 2>

Interactions

A
ve

ra
ge

 s
co

re

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70
<Pool size 32, Ensemble size 3>

Interactions

A
ve

ra
ge

 s
co

re

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

90

100
<Pool size 32, Ensemble size 6>

Interactions

A
ve

ra
ge

 s
co

re

Higher scored peers Lower scored peers Difference between averages

Figure 7.19: Average scores interactions with kr-vs-kp under dynamic conditions

0 50 100 150 200 250 300
0

20

40

60

80

100

120

140

160

180
<Pool size 8, Ensemble size 2>

Interactions

A
ve

ra
ge

 s
co

re

0 50 100 150 200 250 300
−20

0

20

40

60

80

100

120

140

160
<Pool size 16, Ensemble size 2>

Interactions

A
ve

ra
ge

 s
co

re

0 50 100 150 200 250 300
−20

0

20

40

60

80

100
<Pool size 16, Ensemble size 3>

Interactions

A
ve

ra
ge

 s
co

re

0 50 100 150 200 250 300
−10

0

10

20

30

40

50

60
<Pool size 32, Ensemble size 2>

Interactions

A
ve

ra
ge

 s
co

re

0 50 100 150 200 250 300
−10

0

10

20

30

40

50
<Pool size 32, Ensemble size 3>

Interactions

A
ve

ra
ge

 s
co

re

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70
<Pool size 32, Ensemble size 6>

Interactions

A
ve

ra
ge

 s
co

re

Higher scored peers Lower scored peers Difference between averages

Figure 7.20: Average scores interactions with labor under dynamic conditions

Overall, the gradients of increase are less sharp than the gradients of the static results. The

difference gaps, however, increased.

72

7.4 Peer convergence to optima

7.4.1 Introduction

We showed that the participating peers are separated based on their scores over interactions in

Section 7.3. The higher scored ones compose the ensemble. Inthis section, we investigated

how common higher scored peers would be selected after repeated trials using different initial

selections of peers. This confirms that converged peer groups (local or global optimas) can be

obtained from different starting points.

7.4.2 Experimental setup

We fixed the number of interactions at 200 (which we expected to be enough for convergence).

This value is based on the results of the number of peers beingselected and score over in-

teractions in Section 7.3. In those results, the separationbecome mature at least after 200

interactions.

We set 20, 40, 60, 80 and 100 trials for repetition. Each trialstarts from different peers which

were randomly chosen.

73

7.4.3 Results under static conditions

1 2 3 4 5 6 7 8
0

5

10

15

20

25

30

35

40

45

50
<Pool size 8, Ensemble size 2>

Peer

of

 b
ei

ng
 c

on
ve

rg
ed

0 2 4 6 8 10 12 14 16 18
0

5

10

15

20

25
<Pool size 16, Ensemble size 2>

Peer

of

 b
ei

ng
 c

on
ve

rg
ed

0 2 4 6 8 10 12 14 16 18
0

5

10

15

20

25

30

35

40

45
<Pool size 16, Ensemble size 3>

Peer

of

 b
ei

ng
 c

on
ve

rg
ed

0 5 10 15 20 25 30 35
0

5

10

15
<Pool size 32, Ensemble size 2>

Peer

of

 b
ei

ng
 c

on
ve

rg
ed

0 5 10 15 20 25 30 35
0

2

4

6

8

10

12

14

16

18

20
<Pool size 32, Ensemble size 3>

Peer

of

 b
ei

ng
 c

on
ve

rg
ed

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35
<Pool size 32, Ensemble size 6>

Peer

of

 b
ei

ng
 c

on
ve

rg
ed

20 trials 40 trials 60 trials 80 trials 100 trials

Figure 7.21: Number of peers being converged at 200 interactions with breast-cancer under

static conditions

1 2 3 4 5 6 7 8
0

10

20

30

40

50

60
<Pool size 8, Ensemble size 2>

Peer

of

 b
ei

ng
 c

on
ve

rg
ed

0 2 4 6 8 10 12 14 16 18
0

5

10

15

20

25

30

35
<Pool size 16, Ensemble size 2>

Peer

of

 b
ei

ng
 c

on
ve

rg
ed

0 2 4 6 8 10 12 14 16 18
0

5

10

15

20

25

30

35

40
<Pool size 16, Ensemble size 3>

Peer

of

 b
ei

ng
 c

on
ve

rg
ed

0 5 10 15 20 25 30 35
0

2

4

6

8

10

12

14

16

18

20
<Pool size 32, Ensemble size 2>

Peer

of

 b
ei

ng
 c

on
ve

rg
ed

0 5 10 15 20 25 30 35
0

5

10

15

20

25
<Pool size 32, Ensemble size 3>

Peer

of

 b
ei

ng
 c

on
ve

rg
ed

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35
<Pool size 32, Ensemble size 6>

Peer

of

 b
ei

ng
 c

on
ve

rg
ed

20 trials 40 trials 60 trials 80 trials 100 trials

Figure 7.22: Number of peers being converged at 200 interactions with kr-vs-kp under static

conditions

74

1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80
<Pool size 8, Ensemble size 2>

Peer

of

 b
ei

ng
 c

on
ve

rg
ed

0 2 4 6 8 10 12 14 16 18
0

10

20

30

40

50

60

70
<Pool size 16, Ensemble size 2>

Peer

of

 b
ei

ng
 c

on
ve

rg
ed

0 2 4 6 8 10 12 14 16 18
0

10

20

30

40

50

60
<Pool size 16, Ensemble size 3>

Peer

of

 b
ei

ng
 c

on
ve

rg
ed

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

40

45
<Pool size 32, Ensemble size 2>

Peer

of

 b
ei

ng
 c

on
ve

rg
ed

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

40

45
<Pool size 32, Ensemble size 3>

Peer

of

 b
ei

ng
 c

on
ve

rg
ed

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

40

45

50
<Pool size 32, Ensemble size 6>

Peer

of

 b
ei

ng
 c

on
ve

rg
ed

20 trials 40 trials 60 trials 80 trials 100 trials

Figure 7.23: Number of peers being converged at 200 interactions with labor under static con-

ditions

Each peer had a different frequency of being converged. For example, in the results of breast-

cancer; pool size 8; ensemble size 2, peers 2, 3, 4, 6 and 7 weremore frequently converged

than the other peers on 20 trials. On 100 trials, peers 3, 6 and7 finally got almost all selections.

The results showed two features of the convergence of peers.

• Fixation - The peers who have greater frequency on a small number of trials relatively

match with the peers who have greater frequency on a larger number of trials. This

means that more frequently converged peers on a small numberof trials might also be

more frequently converged ones on a larger number of trials.For example, in Figure 7.23,

peer 5 and 7 show this tendency.

• Acceleration - The number being converged is accelerated with more trials. Those peers

that have more frequency get more frequency.

75

7.4.4 Results under dynamic conditions

1 2 3 4 5 6 7 8
0

10

20

30

40

50

60
<Pool size 8, Ensemble size 2>

Peer

of

 b
ei

ng
 c

on
ve

rg
ed

0 2 4 6 8 10 12 14 16 18
0

5

10

15

20

25

30
<Pool size 16, Ensemble size 2>

Peer

of

 b
ei

ng
 c

on
ve

rg
ed

0 2 4 6 8 10 12 14 16 18
0

5

10

15

20

25

30

35

40

45

50
<Pool size 16, Ensemble size 3>

Peer

of

 b
ei

ng
 c

on
ve

rg
ed

0 5 10 15 20 25 30 35
0

2

4

6

8

10

12

14

16

18
<Pool size 32, Ensemble size 2>

Peer

of

 b
ei

ng
 c

on
ve

rg
ed

0 5 10 15 20 25 30 35
0

5

10

15

20

25
<Pool size 32, Ensemble size 3>

Peer

of

 b
ei

ng
 c

on
ve

rg
ed

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35
<Pool size 32, Ensemble size 6>

Peer

of

 b
ei

ng
 c

on
ve

rg
ed

20 trials 40 trials 60 trials 80 trials 100 trials

Figure 7.24: Number of peers being converged at 200 interactions with breast-cancer under

dynamic conditions

1 2 3 4 5 6 7 8
0

10

20

30

40

50

60
<Pool size 8, Ensemble size 2>

Peer

of

 b
ei

ng
 c

on
ve

rg
ed

0 2 4 6 8 10 12 14 16 18
0

5

10

15

20

25

30
<Pool size 16, Ensemble size 2>

Peer

of

 b
ei

ng
 c

on
ve

rg
ed

0 2 4 6 8 10 12 14 16 18
0

5

10

15

20

25

30

35

40
<Pool size 16, Ensemble size 3>

Peer

of

 b
ei

ng
 c

on
ve

rg
ed

0 5 10 15 20 25 30 35
0

2

4

6

8

10

12

14

16

18
<Pool size 32, Ensemble size 2>

Peer

of

 b
ei

ng
 c

on
ve

rg
ed

0 5 10 15 20 25 30 35
0

5

10

15

20

25
<Pool size 32, Ensemble size 3>

Peer

of

 b
ei

ng
 c

on
ve

rg
ed

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35
<Pool size 32, Ensemble size 6>

Peer

of

 b
ei

ng
 c

on
ve

rg
ed

20 trials 40 trials 60 trials 80 trials 100 trials

Figure 7.25: Number of peers being converged at 200 interactions with kr-vs-kp under dynamic

conditions

76

1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80

90

100
<Pool size 8, Ensemble size 2>

Peer

of

 b
ei

ng
 c

on
ve

rg
ed

0 2 4 6 8 10 12 14 16 18
0

10

20

30

40

50

60

70
<Pool size 16, Ensemble size 2>

Peer

of

 b
ei

ng
 c

on
ve

rg
ed

0 2 4 6 8 10 12 14 16 18
0

10

20

30

40

50

60

70
<Pool size 16, Ensemble size 3>

Peer

of

 b
ei

ng
 c

on
ve

rg
ed

0 5 10 15 20 25 30 35
0

10

20

30

40

50

60
<Pool size 32, Ensemble size 2>

Peer

of

 b
ei

ng
 c

on
ve

rg
ed

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

40

45

50
<Pool size 32, Ensemble size 3>

Peer

of

 b
ei

ng
 c

on
ve

rg
ed

0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

70
<Pool size 32, Ensemble size 6>

Peer

of

 b
ei

ng
 c

on
ve

rg
ed

20 trials 40 trials 60 trials 80 trials 100 trials

Figure 7.26: Number of peers being converged at 200 interactions with labor under dynamic

conditions

Under dynamic conditions, the results of convergence showed the same features as the results

under static conditions.

7.4.5 Conclusion

The experiment on the peer separation showed that J-model separates peers which provide the

higher success rate than the other peers from the peer pool when taking roles in the interac-

tion model of of Definition 6.6. The other experiment on peer convergence showed that the

separated peers persistently converge to optima on severaltrials.

7.5 Learning curves

7.5.1 Introduction

Learning curves help our understanding of a connection between an ensemble of selected peers

and its ability for classification. A learning curve describes what classification performance

77

an ensemble gives over interactions. Through performance change in a learning curve, we can

trace the classification ability of an ensemble.

7.5.2 Experimental setup and methods

We composed an ensemble classifier of highly scored peers according to each ensemble size.

We traced the classification ability of an ensemble over 600 interactions. 600 interactions

are sufficient to enable J-model to get to a stable phase. We measured values in every 10

interactions.

We showed the results about 10 sub-data sets for each experiment. A sub data set is one of the

10 folded data sets of the original data set.

We performed these experiments of getting learning curves under static conditions. As shown

in the previous experiments in Section 7.3, peers in a pool were separated well into higher

scored and lower scored peers under both of static and dynamic conditions and higher scored

peers also converged to global optimas under both of the conditions in Section 7.4. For this

reason, experiments under static conditions remove the need for extra experiments under dy-

namic conditions.

We showed representative results with three data sets of breast-cancer, kr-vs-kp and labor.

Among different 13 benchmark data sets, breast-cancer, kr-vs-kp and labor gave patterns of

a learning curve respectively.

7.5.3 Results

The results can be analysed according to several viewpointson the sequences of interactions:

the initial status, the early steps, the middle and latter steps and the change through them.

78

7.5.3.1 breast-cancer

1
2

3
4

5
6

7
8

9
10

0
100

200
300

400
500

600

0

10

20

30

40

50

60

70

80

90

100

Fold

<Pool size 8, Ensemble size 2>

Interactions

A
cc

ur
ac

y
(%

)

1
2

3
4

5
6

7
8

9
10

0
100

200
300

400
500

600

0

10

20

30

40

50

60

70

80

90

100

Fold

<Pool size 16, Ensemble size 2>

Interactions

A
cc

ur
ac

y
(%

)

1
2

3
4

5
6

7
8

9
10

0
100

200
300

400
500

600

0

10

20

30

40

50

60

70

80

90

100

Fold

<Pool size 16, Ensemble size 3>

Interactions

A
cc

ur
ac

y
(%

)

1
2

3
4

5
6

7
8

9
10

0
100

200
300

400
500

600

0

10

20

30

40

50

60

70

80

90

100

Fold

<Pool size 32, Ensemble size 2>

Interactions

A
cc

ur
ac

y
(%

)

1
2

3
4

5
6

7
8

9
10

0
100

200
300

400
500

600

0

10

20

30

40

50

60

70

80

90

100

Fold

<Pool size 32, Ensemble size 3>

Interactions

A
cc

ur
ac

y
(%

)

1
2

3
4

5
6

7
8

9
10

0
100

200
300

400
500

600

0

10

20

30

40

50

60

70

80

90

100

Fold

<Pool size 32, Ensemble size 6>

Interactions

A
cc

ur
ac

y
(%

)

Figure 7.27: Learning curves of breast-cancer

• Initial - The experiment starts from random points.

• Early - There is fluctuation.

• Middle and latter - The change becomes more stable although there remains fluctuation.

The fluctuation is less serious and frequent than it is in the early steps.

• Change - It is difficult to say precisely how the accuracy increases over interactions.

There are, however, some ensembles that maintain their higher accuracies.

79

7.5.3.2 kr-vs-kp

1
2

3
4

5
6

7
8

9
10

0
100

200
300

400
500

600

88

90

92

94

96

98

100

Fold

<Pool size 8, Ensemble size 2>

Interactions

A
cc

ur
ac

y
(%

)

1
2

3
4

5
6

7
8

9
10

0
100

200
300

400
500

600

88

90

92

94

96

98

100

Fold

<Pool size 16, Ensemble size 2>

Interactions

A
cc

ur
ac

y
(%

)

1
2

3
4

5
6

7
8

9
10

0
100

200
300

400
500

600

88

90

92

94

96

98

100

Fold

<Pool size 16, Ensemble size 3>

Interactions

A
cc

ur
ac

y
(%

)

1
2

3
4

5
6

7
8

9
10

0
100

200
300

400
500

600

88

90

92

94

96

98

100

Fold

<Pool size 32, Ensemble size 2>

Interactions

A
cc

ur
ac

y
(%

)

1
2

3
4

5
6

7
8

9
10

0
100

200
300

400
500

600

88

90

92

94

96

98

100

Fold

<Pool size 32, Ensemble size 3>

Interactions

A
cc

ur
ac

y
(%

)

1
2

3
4

5
6

7
8

9
10

0
100

200
300

400
500

600

88

90

92

94

96

98

100

Fold

<Pool size 32, Ensemble size 6>

Interactions

A
cc

ur
ac

y
(%

)

Figure 7.28: Learning curves of kr-vs-kp

• Initial - The experiment starts from random points.

• Early - There is serious fluctuation.

• Middle and latter - The change becomes stable.

• Change - The accuracy increases over interactions and almost all ensembles keep their

higher accuracies.

80

7.5.3.3 labor

1
2

3
4

5
6

7
8

9
10

0
100

200
300

400
500

600

0

10

20

30

40

50

60

70

80

90

100

Fold

<Pool size 8, Ensemble size 2>

Interactions

A
cc

ur
ac

y
(%

)

1
2

3
4

5
6

7
8

9
10

0
100

200
300

400
500

600

0

10

20

30

40

50

60

70

80

90

100

Fold

<Pool size 16, Ensemble size 2>

Interactions

A
cc

ur
ac

y
(%

)

1
2

3
4

5
6

7
8

9
10

0
100

200
300

400
500

600

0

10

20

30

40

50

60

70

80

90

100

Fold

<Pool size 16, Ensemble size 3>

Interactions

A
cc

ur
ac

y
(%

)

1
2

3
4

5
6

7
8

9
10

0
100

200
300

400
500

600

0

10

20

30

40

50

60

70

80

90

100

Fold

<Pool size 32, Ensemble size 2>

Interactions

A
cc

ur
ac

y
(%

)

1
2

3
4

5
6

7
8

9
10

0
100

200
300

400
500

600

0

10

20

30

40

50

60

70

80

90

100

Fold

<Pool size 32, Ensemble size 3>

Interactions

A
cc

ur
ac

y
(%

)

1
2

3
4

5
6

7
8

9
10

0
100

200
300

400
500

600

0

10

20

30

40

50

60

70

80

90

100

Fold

<Pool size 32, Ensemble size 6>

Interactions

A
cc

ur
ac

y
(%

)

Figure 7.29: Learning curves of labor

• Initial - The experiment starts from random points.

• Early - There is fluctuation.

• Middle and latter - The change becomes stable or circulating.

• Change - Many ensembles keep their higher accuracies and some ensembles show cycle

changes.

7.5.4 Conclusion

The accuracy changes showed somewhat different aspects fordifferent data sets. But they have

common features. First, they become more stable over interactions. Second, they retain their

higher accuracies over interactions.

81

7.6 Benchmark comparisons

7.6.1 Introduction

We compared J-model’s classification performance with other representative ensemble meth-

ods including AdaBoost, Bagging, Decorate [63], LogitBoost [36], RandomCommittee [58],

RandomForest [12], RandomSubSpace and RotationForest [81].

7.6.2 Experimental setup

7.6.2.1 Benchmark data sets

Table 7.3: Benchmark data sets

Index Name Instances Attributes Categorical

(symbolic)

attributes

Numerical

attributes

Missing

values

Classes Class ratio (majority

class %)

1 breast-cancer 286 9 9 0 Yes 2 201:85 (70.28)

2 breast-w 699 9 0 9 Yes 2 458:241 (65.52)

3 credit-a 690 15 9 6 Yes 2 307:383 (55.51)

4 credit-g 1000 20 13 7 No 2 700:300 (70.00)

5 diabetes 768 8 0 8 No 2 500:268 (65.10)

6 heart-statlog 270 13 0 13 No 2 150:120 (55.56)

7 hepatitis 155 19 13 6 Yes 2 32:123 (79.35)

8 ionosphere 351 34 34 0 No 2 126:225 (64.10)

9 kr-vs-kp 3196 36 36 0 No 2 1669:1527 (55.22)

10 labor 57 16 8 8 Yes 2 20:37 (64.91)

11 mushroom 8124 22 22 0 Yes 2 4208:3916 (51.80)

12 sonar 208 60 0 60 No 2 97:111 (53.37)

13 vote 435 16 16 0 Yes 2 267:168 (61.38)

The 13 benchmark data sets [34] were selected based on the variety of their properties and

considering the size. All data sets are binary class problems.

7.6.2.2 J-model settings

Pool preparation

• Base classifiers - We generated members of the pool using the classifier templates defined

in Table 7.1.

82

• Pool size - We set the pool size as 64 for comparison experiments.

Ensemble size We set the ensemble size as 10. 10 is about 20% of the pool size 64.

Interaction models We used the interaction models of IM1, IM2, IM3, IM4 and IM6 defined

in Chapter 6.

Number of interactions We fixed the number of interactions as 200.

7.6.2.3 The other representative algorithms

We compared J-model’s performance with other 8 traditionalensemble methods including Ada-

Boost, Bagging, Decorate, LogitBoost, RandomCommittee, RandomForest, RandomSubSpace

and RotationForest. All the ensemble methods used 10 for their ensemble sizes.

7.6.2.4 Evaluation technique

10-fold cross validation We used 10-fold cross validation to generalise the analysisresults

to independent data sets.

Performance metrics

• Accuracy(ACC) - (TP+TN)/(P+N)

• Sensitivity or recall -TP/P= TP/(TP+FN)

• Specificity -TN/N = TN/(FP+TN)

• F-measure - 2× precision×recall
precision+recall . F-measure is a weighted average of the precision and

recall.

• Area under curve (AUC) - AUC is the area under the ROC curve.

• Time - Time cost for training and testing. Time for training means how much time a

model needs to be trained with a training data set. Time for test indicates how much time

a trained model requires to classify test examples.

83

P: the positives, N: the negatives

TP: true positives, FP: false positives, TN: true negatives, FN: false negatives

Precision: TP/(TP+ FP). Precision is the fraction of retrieved instances that are relevant

while recall is the fraction of relevant instances that are retrieved.

ROC: receiver operating characteristic. ROC curve is a graphical plot of the true positive rate

(sensitivity) vs false positive rate (1 - specificity) for a binary classifier. ROC analysis provides

tools to select possibly optimal models and is related in a direct and natural way to const/benefit

analysis of diagnostic decision making.

7.6.3 Results

Table 7.4 shows the comparison results for all the benchmarkdata sets.

Table 7.4: Benchmark comparison results

Data set Ensemble algorithm Performance metrics

Accuracy (%) Sensitivity Specificity F-measure AUC Time fortraining; time for test (seconds)

breast-cancer J-model (IM1) 72.095 (11.158) 0.721 (0.112) 0.499 (0.151) 0.686 (0.123) 0.689 (0.169) 6.611; 0.078

J-model (IM2) 70.714 (11.901) 0.707 (0.119) 0.483 (0.162) 0.668 (0.135) 0.688 (0.206) -

J-model (IM3) 67.905 (11.903) 0.679 (0.119) 0.436 (0.136) 0.641 (0.121) 0.682 (0.158) -

J-model (IM4) 67.952 (12.566) 0.679 (0.126) 0.450 (0.151) 0.642 (0.131) 0.638 (0.182) -

J-model (IM6) 68.048 (9.415) 0.680 (0.094) 0.425 (0.156) 0.626 (0.119) 0.656 (0.190) 6.624; 0.015

AdaBoostM1 70.283 (9.165) 0.703 (0.092) 0.544 (0.135) 0.688 (0.091) 0.716 (0.117) 0.218; 0.005

Bagging 68.879 (6.733) 0.689 (0.067) 0.386 (0.079) 0.634 (0.072) 0.649 (0.119) 0.540; 0.006

Decorate 73.461 (7.370) 0.735 (0.074) 0.535 (0.108) 0.715 (0.080) 0.654 (0.120) 1.204; 0.002

LogitBoost 72.401 (8.031) 0.724 (0.080) 0.518 (0.117) 0.700 (0.089) 0.694 (0.119) 0.341; 0.006

RandomCommittee 67.562 (7.770) 0.676 (0.078) 0.452 (0.102) 0.651 (0.079) 0.633 (0.129) 0.248; 0.007

RandomSubSpace 70.998 (3.993) 0.710 (0.040) 0.367 (0.078) 0.630 (0.058) 0.663 (0.110) 0.184; 0.016

RotationForest 73.485 (7.432) 0.735 (0.074) 0.470 (0.106) 0.694 (0.086) 0.669 (0.120) 2.668; 0.051

RandomForest 69.286 (6.325) 0.693 (0.063) 0.486 (0.098) 0.672 (0.067) 0.654 (0.093) 0.090; 0.002

breast-w J-model (IM1) 96.572 (3.790) 0.966 (0.038) 0.962 (0.057) 0.966 (0.038) 0.995 (0.008) 3.859; 0.031

J-model (IM2) 96.572 (3.332) 0.966 (0.033) 0.958 (0.056) 0.965 (0.034) 0.996 (0.004) -

J-model (IM3) 96.286 (4.247) 0.963 (0.042) 0.953 (0.066) 0.963 (0.043) 0.995 (0.007) -

J-model (IM4) 96.857 (3.928) 0.968 (0.039) 0.960 (0.056) 0.968 (0.040) 0.996 (0.006) -

J-model (IM6) 95.714 (4.651) 0.957 (0.046) 0.945 (0.066) 0.957 (0.047) 0.993 (0.012) 4.378; 0.000

AdaBoost 94.849 (2.943) 0.948 (0.029) 0.936 (0.046) 0.948 (0.030) 0.989 (0.009) 0.232; 0.001

Bagging 95.563 (2.963) 0.956 (0.030) 0.953 (0.041) 0.956 (0.030) 0.988 (0.011) 0.319; 0.002

Decorate 95.704 (3.733) 0.957 (0.037) 0.946 (0.050) 0.957 (0.038) 0.990 (0.010) 3.195; 0.001

LogitBoost 95.708 (2.020) 0.957 (0.020) 0.946 (0.026) 0.957 (0.020) 0.992 (0.007) 0.345; 0.000

RandomCommittee 95.994 (2.540) 0.960 (0.025) 0.951 (0.047) 0.960 (0.026) 0.988 (0.013) 0.268; 0.004

RandomSubSpace 94.849 (2.727) 0.948 (0.027) 0.947 (0.043) 0.949 (0.027) 0.982 (0.020) 0.249; 0.007

RotationForest 97.137 (1.696) 0.971 (0.017) 0.975 (0.016) 0.972 (0.017) 0.988 (0.012) 1.519; 0.064

RandomForest 96.137 (2.219) 0.961 (0.022) 0.958 (0.027) 0.961 (0.022) 0.987 (0.014) 0.281; 0.004

credit-a J-model (IM1) 88.000 (4.572) 0.880 (0.046) 0.879 (0.046) 0.880 (0.046) 0.930 (0.035) 8.397; 0.031

J-model (IM2) 87.714 (3.626) 0.877 (0.036) 0.876 (0.035) 0.877 (0.036) 0.939 (0.035) -

J-model (IM3) 87.714 (3.393) 0.877 (0.034) 0.875 (0.035) 0.875 (0.035) 0.930 (0.036) -

J-model (IM4) 89.429 (3.143) 0.894 (0.031) 0.891 (0.030) 0.894 (0.031) 0.932 (0.032) -

J-model (IM6) 87.143 (3.441) 0.871 (0.034) 0.874 (0.034) 0.871 (0.034) 0.938 (0.028) 8.630; 0.015

AdaBoost 84.638 (2.913) 0.846 (0.029) 0.844 (0.025) 0.846 (0.029) 0.932 (0.022) 0.185; 0.000

Bagging 84.928 (4.546) 0.849 (0.045) 0.851 (0.045) 0.850 (0.045) 0.914 (0.031) 0.570; 0.000

Decorate 85.942 (3.433) 0.859 (0.034) 0.855 (0.038) 0.859 (0.034) 0.919 (0.025) 3.906; 0.004

LogitBoost 84.928 (3.562) 0.849 (0.036) 0.852 (0.032) 0.849 (0.035) 0.936 (0.022) 0.273; 0.000

RandomCommittee 83.478 (3.502) 0.835 (0.035) 0.830 (0.042) 0.834 (0.036) 0.899 (0.035) 0.379; 0.005

RandomSubSpace 86.522 (4.895) 0.865 (0.049) 0.856 (0.052) 0.864 (0.049) 0.919 (0.034) 0.490; 0.004

RotationForest 85.652 (3.333) 0.857 (0.033) 0.855 (0.032) 0.856 (0.033) 0.918 (0.030) 6.605; 0.125

RandomForest 85.072 (3.726) 0.851 (0.037) 0.849 (0.036) 0.851 (0.037) 0.912 (0.031) 0.333; 0.003

credit-g J-model (IM1) 73.200 (5.154) 0.732 (0.052) 0.531 (0.080) 0.712 (0.056) 0.769 (0.071) 19.358; 0.000

J-model (IM2) 73.200 (4.833) 0.732 (0.048) 0.550 (0.080) 0.716 (0.051) 0.758 (0.077) -

84

J-model (IM3) 71.600 (6.248) 0.716 (0.062) 0.520 (0.094) 0.697 (0.066) 0.746 (0.080) -

J-model (IM4) 74.400 (6.800) 0.744 (0.068) 0.566 (0.089) 0.730 (0.069) 0.749 (0.089) -

J-model (IM6) 71.800 (5.618) 0.718 (0.056) 0.510 (0.081) 0.696 (0.057) 0.731 (0.088) 19.982; 0.015

AdaBoost 69.500 (2.655) 0.695 (0.027) 0.452 (0.068) 0.662 (0.042) 0.725 (0.049) 0.316; 0.000

Bagging 74.900 (4.826) 0.749 (0.048) 0.571 (0.077) 0.734 (0.051) 0.776 (0.058) 1.054; 0.001

Decorate 72.900 (3.673) 0.729 (0.037) 0.562 (0.063) 0.717 (0.039) 0.737 (0.032) 6.838; 0.006

LogitBoost 70.800 (4.045) 0.708 (0.040) 0.484 (0.057) 0.683 (0.042) 0.731 (0.054) 0.394; 0.001

RandomCommittee 73.900 (4.784) 0.739 (0.048) 0.555 (0.078) 0.723 (0.053) 0.762 (0.068) 0.516; 0.009

RandomSubSpace 73.800 (3.059) 0.738 (0.031) 0.440 (0.053) 0.685 (0.040) 0.756 (0.054) 0.787; 0.007

RotationForest 74.900 (3.300) 0.749 (0.033) 0.580 (0.052) 0.736 (0.034) 0.778 (0.058) 17.996; 0.277

RandomForest 72.500 (2.500) 0.725 (0.025) 0.526 (0.060) 0.705 (0.034) 0.749 (0.043) 0.443; 0.005

diabetes J-model (IM1) 74.723 (6.747) 0.747 (0.068) 0.660 (0.111) 0.737 (0.075) 0.799 (0.063) 6.195; 0.016

J-model (IM2) 74.730 (5.648) 0.747 (0.057) 0.661 (0.091) 0.739 (0.063) 0.795 (0.083) -

J-model (IM3) 74.210 (6.035) 0.742 (0.061) 0.673 (0.108) 0.735 (0.069) 0.801 (0.071) -

J-model (IM4) 73.434 (7.448) 0.734 (0.074) 0.663 (0.124) 0.727 (0.083) 0.796 (0.076) -

J-model (IM6) 73.441 (4.807) 0.734 (0.048) 0.628 (0.081) 0.721 (0.055) 0.778 (0.081) 7.157; 0.000

AdaBoost 74.351 (4.490) 0.744 (0.045) 0.654 (0.083) 0.735 (0.050) 0.805 (0.058) 0.206; 0.001

Bagging 74.481 (3.126) 0.745 (0.031) 0.661 (0.060) 0.738 (0.034) 0.822 (0.045) 0.844; 0.002

Decorate 73.833 (5.944) 0.738 (0.059) 0.653 (0.079) 0.732 (0.061) 0.803 (0.054) 2.860; 0.002

LogitBoost 74.086 (2.714) 0.741 (0.027) 0.649 (0.053) 0.734 (0.030) 0.813 (0.039) 0.272; 0.001

RandomCommittee 73.973 (4.199) 0.740 (0.042) 0.652 (0.059) 0.733 (0.042) 0.785 (0.046) 0.875; 0.009

RandomSubSpace 74.614 (4.811) 0.746 (0.048) 0.626 (0.068) 0.732 (0.050) 0.812 (0.040) 0.517; 0.004

RotationForest 76.177 (5.178) 0.762 (0.052) 0.662 (0.062) 0.753 (0.052) 0.821 (0.045) 2.440; 0.060

RandomForest 73.841 (4.259) 0.738 (0.043) 0.640 (0.063) 0.729 (0.044) 0.778 (0.039) 0.797; 0.003

heart-statlog J-model (IM1) 80.714 (7.178) 0.807 (0.072) 0.793 (0.100) 0.800 (0.080) 0.854 (0.098) 2.919; 0.000

J-model (IM2) 81.428 (7.284) 0.814 (0.073) 0.802 (0.090) 0.810 (0.076) 0.862 (0.083) -

J-model (IM3) 81.428 (8.571) 0.814 (0.086) 0.811 (0.094) 0.811 (0.087) 0.840 (0.098) -

J-model (IM4) 82.143 (12.877) 0.821 (0.129) 0.804 (0.127) 0.814 (0.133) 0.881 (0.062) -

J-model (IM6) 80.714 (11.974) 0.807 (0.120) 0.801 (0.124) 0.803 (0.121) 0.840 (0.103) 3.308; 0.000

AdaBoost 80.000 (4.743) 0.800 (0.047) 0.795 (0.067) 0.796 (0.052) 0.886 (0.055) 0.081; 0.001

Bagging 78.889 (8.772) 0.789 (0.088) 0.779 (0.088) 0.786 (0.089) 0.886 (0.050) 0.255; 0.001

Decorate 75.185 (6.839) 0.752 (0.068) 0.746 (0.073) 0.748 (0.071) 0.843 (0.074) 1.594; 0.001

LogitBoost 82.222 (7.182) 0.822 (0.072) 0.814 (0.086) 0.819 (0.077) 0.888 (0.054) 0.122; 0.001

RandomCommittee 80.370 (7.417) 0.804 (0.074) 0.793 (0.080) 0.800 (0.079) 0.873 (0.064) 0.180; 0.001

RandomSubSpace 82.963 (4.743) 0.830 (0.047) 0.814 (0.060) 0.825 (0.051) 0.908 (0.050) 0.195; 0.001

RotationForest 84.074 (7.417) 0.841 (0.074) 0.838 (0.079) 0.838 (0.078) 0.897 (0.041) 1.413; 0.043

RandomForest 78.148 (5.092) 0.781 (0.051) 0.772 (0.056) 0.779 (0.052) 0.861 (0.054) 0.162; 0.002

hepatitis J-model (IM1) 83.750 (11.250) 0.838 (0.113) 0.515 (0.353) 0.803 (0.140) 0.818 (0.205) 2.041; 0.000

J-model (IM2) 81.250 (10.078) 0.813 (0.101) 0.357 (0.280) 0.761 (0.126) 0.835 (0.151) -

J-model (IM3) 80.000 (12.748) 0.800 (0.127) 0.488 (0.313) 0.765 (0.147) 0.810 (0.243) -

J-model (IM4) 81.250 (12.809) 0.812 (0.128) 0.442 (0.329) 0.771 (0.148) 0.796 (0.214) -

J-model (IM6) 82.500 (10.000) 0.825 (0.100) 0.446 (0.279) 0.785 (0.119) 0.849 (0.151) 2.383; 0.000

AdaBoost 82.542 (5.850) 0.825 (0.058) 0.618 (0.161) 0.818 (0.057) 0.878 (0.076) 0.057; 0.000

Bagging 83.167 (5.320) 0.832 (0.053) 0.393 (0.183) 0.785 (0.076) 0.825 (0.120) 0.134; 0.000

Decorate 84.500 (8.656) 0.845 (0.087) 0.682 (0.150) 0.844 (0.081) 0.847 (0.101) 0.968; 0.001

LogitBoost 81.917 (6.186) 0.819 (0.062) 0.558 (0.182) 0.805 (0.071) 0.841 (0.098) 0.058; 0.000

RandomCommittee 84.583 (6.308) 0.846 (0.063) 0.589 (0.163) 0.834 (0.059) 0.853 (0.093) 0.088; 0.001

RandomSubSpace 80.667 (2.669) 0.807 (0.027) 0.293 (0.123) 0.743 (0.040) 0.804 (0.159) 0.112; 0.001

RotationForest 81.917 (6.788) 0.819 (0.068) 0.600 (0.178) 0.814 (0.066) 0.838 (0.125) 0.970; 0.032

RandomForest 82.583 (5.836) 0.826 (0.058) 0.441 (0.223) 0.788 (0.076) 0.827 (0.100) 0.081; 0.000

ionosphere J-model (IM1) 93.333 (4.157) 0.933 (0.041) 0.886 (0.074) 0.931 (0.044) 0.987 (0.013) 9.080; 0.000

J-model (IM2) 93.889 (6.310) 0.939 (0.063) 0.905 (0.081) 0.938 (0.064) 0.970 (0.035) -

J-model (IM3) 93.889 (2.992) 0.939 (0.030) 0.897 (0.051) 0.938 (0.031) 0.968 (0.046) -

J-model (IM4) 94.444 (2.484) 0.944 (0.025) 0.917 (0.037) 0.944 (0.025) 0.966 (0.049) -

J-model (IM6) 93.333 (5.984) 0.933 (0.060) 0.909 (0.084) 0.932 (0.061) 0.965 (0.051) 10.043; 0.000

AdaBoost 90.897 (3.950) 0.909 (0.040) 0.847 (0.063) 0.906 (0.042) 0.953 (0.040) 0.508; 0.001

Bagging 90.897 (4.152) 0.909 (0.042) 0.876 (0.067) 0.907 (0.043) 0.936 (0.052) 1.039; 0.001

Decorate 90.603 (2.548) 0.906 (0.025) 0.878 (0.035) 0.905 (0.025) 0.947 (0.043) 8.462; 0.002

LogitBoost 91.175 (4.491) 0.912 (0.045) 0.884 (0.061) 0.911 (0.045) 0.951 (0.041) 0.464; 0.000

RandomCommittee 92.603 (3.625) 0.926 (0.036) 0.905 (0.044) 0.926 (0.036) 0.976 (0.017) 0.494; 0.000

RandomSubSpace 92.881 (2.622) 0.929 (0.026) 0.887 (0.035) 0.927 (0.027) 0.969 (0.031) 0.719; 0.003

RotationForest 94.603 (2.294) 0.946 (0.023) 0.924 (0.036) 0.946 (0.023) 0.977 (0.023) 4.837; 0.119

RandomForest 92.889 (3.634) 0.929 (0.036) 0.914 (0.042) 0.929 (0.036) 0.952 (0.029) 0.440; 0.000

kr-vs-kp J-model (IM1) 99.375 (0.484) 0.994 (0.005) 0.993 (0.005) 0.994 (0.005) 0.999 (0.002) 40.541; 0.000

J-model (IM2) 99.250 (0.673) 0.993 (0.007) 0.992 (0.007) 0.993 (0.007) 0.999 (0.001) -

J-model (IM3) 99.438 (0.438) 0.995 (0.004) 0.994 (0.005) 0.995 (0.004) 0.998 (0.004) -

J-model (IM4) 99.437 (0.710) 0.994 (0.007) 0.994 (0.007) 0.994 (0.007) 0.998 (0.003) -

J-model (IM6) 99.437 (0.337) 0.994 (0.003) 0.994 (0.004) 0.994 (0.003) 1.000 (0.001) 42.797; 0.000

AdaBoost 93.836 (1.341) 0.938 (0.013) 0.936 (0.013) 0.938 (0.013) 0.955 (0.009) 0.904; 0.003

Bagging 99.124 (0.460) 0.991 (0.005) 0.991 (0.005) 0.991 (0.005) 0.999 (0.000) 4.050; 0.008

Decorate 99.312 (0.590) 0.993 (0.006) 0.993 (0.006) 0.993 (0.006) 0.998 (0.002) 36.469; 0.012

85

LogitBoost 93.805 (1.347) 0.938 (0.013) 0.935 (0.013) 0.938 (0.013) 0.976 (0.008) 0.939; 0.008

RandomCommittee 98.936 (0.659) 0.989 (0.007) 0.989 (0.007) 0.989 (0.007) 0.998 (0.002) 1.255; 0.021

RandomSubSpace 96.059 (2.007) 0.961 (0.020) 0.959 (0.021) 0.960 (0.020) 0.992 (0.005) 4.525; 0.024

RotationForest 99.219 (0.864) 0.992 (0.009) 0.992 (0.009) 0.992 (0.009) 0.998 (0.002) 36.417; 0.962

RandomForest 98.811 (0.501) 0.988 (0.005) 0.987 (0.005) 0.988 (0.005) 0.999 (0.002) 0.995; 0.014

labor J-model (IM1) 86.667 (16.330) 0.867 (0.163) 0.783 (0.299) 0.827 (0.216) 0.800 (0.332) 0.994; 0.000

J-model (IM2) 86.667 (16.330) 0.867 (0.163) 0.783 (0.299) 0.827 (0.216) 0.950 (0.150) -

J-model (IM3) 86.667 (16.330) 0.867 (0.163) 0.783 (0.299) 0.827 (0.216) 0.850 (0.320) -

J-model (IM4) 90.000 (15.275) 0.900 (0.153) 0.850 (0.263) 0.873 (0.197) 0.900 (0.300) -

J-model (IM6) 86.667 (22.111) 0.867 (0.221) 0.833 (0.269) 0.823 (0.286) 0.850 (0.320) 1.072; 0.000

AdaBoost 87.333 (16.180) 0.873 (0.162) 0.843 (0.225) 0.858 (0.183) 0.913 (0.142) 0.017; 0.000

Bagging 86.333 (16.428) 0.863 (0.164) 0.812 (0.216) 0.840 (0.193) 0.919 (0.168) 0.041; 0.000

Decorate 88.000 (10.873) 0.880 (0.109) 0.862 (0.139) 0.875 (0.111) 0.950 (0.083) 0.280; 0.001

LogitBoost 89.667 (13.536) 0.897 (0.135) 0.853 (0.214) 0.880 (0.163) 0.988 (0.037) 0.023; 0.001

RandomCommittee 89.667 (11.299) 0.897 (0.113) 0.853 (0.154) 0.889 (0.118) 0.975 (0.075) 0.035; 0.001

RandomSubSpace 79.333 (21.333) 0.793 (0.213) 0.757 (0.264) 0.762 (0.244) 0.892 (0.146) 0.045; 0.000

RotationForest 89.667 (13.536) 0.897 (0.135) 0.853 (0.214) 0.880 (0.163) 0.931 (0.144) 0.452; 0.138

RandomForest 88.000 (13.182) 0.880 (0.132) 0.820 (0.215) 0.861 (0.159) 0.908 (0.187) 0.033; 0.000

mushroom J-model (IM1) 100.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 121.649; 0.000

J-model (IM2) 100.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) -

J-model (IM3) 100.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) -

J-model (IM4) 100.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) -

J-model (IM6) 99.975 (0.074) 1.000 (0.001) 1.000 (0.001) 1.000 (0.001) 1.000 (0.000) 120.344; 0.000

AdaBoost 96.197 (0.564) 0.962 (0.006) 0.963 (0.006) 0.962 (0.006) 0.995 (0.001) 1.861; 0.011

Bagging 100.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 3.683; 0.009

Decorate 100.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 32.022; 0.036

LogitBoost 98.227 (0.427) 0.982 (0.004) 0.983 (0.004) 0.982 (0.004) 0.998 (0.001) 1.806; 0.011

RandomCommittee 100.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 0.754; 0.016

RandomSubSpace 100.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 2.927; 0.051

RotationForest 100.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 142.115; 3.062

RandomForest 100.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 0.782; 0.013

sonar J-model (IM1) 84.364 (12.141) 0.843 (0.122) 0.850 (0.124) 0.842 (0.123) 0.899 (0.097) 9.346; 0.015

J-model (IM2) 81.364 (15.626) 0.814 (0.156) 0.816 (0.156) 0.811 (0.160) 0.912 (0.100) -

J-model (IM3) 77.636 (12.755) 0.776 (0.128) 0.777 (0.137) 0.776 (0.128) 0.885 (0.096) -

J-model (IM4) 78.727 (13.967) 0.787 (0.140) 0.786 (0.141) 0.784 (0.144) 0.898 (0.097) -

J-model (IM6) 79.545 (10.002) 0.795 (0.100) 0.794 (0.100) 0.795 (0.100) 0.887 (0.095) 9.261; 0.000

AdaBoost 71.667 (10.315) 0.717 (0.103) 0.713 (0.100) 0.708 (0.110) 0.861 (0.075) 0.492; 0.000

Bagging 77.833 (10.164) 0.778 (0.102) 0.769 (0.103) 0.774 (0.103) 0.884 (0.063) 1.134; 0.000

Decorate 78.333 (7.957) 0.783 (0.080) 0.781 (0.084) 0.781 (0.080) 0.902 (0.045) 7.366; 0.002

LogitBoost 79.286 (9.417) 0.793 (0.094) 0.792 (0.094) 0.790 (0.097) 0.887 (0.070) 0.507; 0.001

RandomCommittee 84.095 (7.211) 0.841 (0.072) 0.839 (0.074) 0.839 (0.074) 0.929 (0.040) 0.288; 0.000

RandomSubSpace 77.952 (7.893) 0.780 (0.079) 0.773 (0.073) 0.776 (0.081) 0.868 (0.074) 0.667; 0.000

RotationForest 80.810 (7.917) 0.808 (0.079) 0.800 (0.080) 0.804 (0.082) 0.903 (0.071) 4.713; 0.228

RandomForest 80.738 (7.156) 0.807 (0.072) 0.815 (0.075) 0.807 (0.072) 0.911 (0.054) 0.248; 0.000

vote J-model (IM1) 95.909 (3.776) 0.959 (0.038) 0.959 (0.042) 0.959 (0.038) 0.984 (0.029) 2.579; 0.000

J-model (IM2) 95.455 (4.545) 0.955 (0.045) 0.956 (0.046) 0.955 (0.045) 0.990 (0.017) -

J-model (IM3) 95.455 (3.521) 0.955 (0.035) 0.951 (0.041) 0.955 (0.035) 0.985 (0.028) -

J-model (IM4) 95.000 (4.288) 0.950 (0.043) 0.943 (0.053) 0.950 (0.043) 0.982 (0.030) -

J-model (IM6) 95.455 (4.545) 0.955 (0.045) 0.956 (0.046) 0.955 (0.045) 0.989 (0.018) 2.529; 0.000

AdaBoost 95.407 (3.233) 0.954 (0.032) 0.953 (0.033) 0.954 (0.032) 0.991 (0.009) 0.055; 0.002

Bagging 95.872 (3.349) 0.959 (0.033) 0.956 (0.034) 0.959 (0.033) 0.984 (0.020) 0.187; 0.001

Decorate 94.704 (2.731) 0.947 (0.027) 0.947 (0.026) 0.947 (0.027) 0.988 (0.015) 1.204; 0.001

LogitBoost 95.412 (3.058) 0.954 (0.031) 0.956 (0.034) 0.954 (0.030) 0.992 (0.008) 0.073; 0.003

RandomCommittee 96.321 (2.345) 0.963 (0.023) 0.957 (0.027) 0.963 (0.023) 0.988 (0.013) 0.147; 0.002

RandomSubSpace 95.867 (2.667) 0.959 (0.027) 0.961 (0.029) 0.959 (0.027) 0.989 (0.008) 0.158; 0.001

RotationForest 96.094 (3.091) 0.961 (0.031) 0.956 (0.034) 0.961 (0.031) 0.991 (0.007) 1.459; 0.071

RandomForest 95.867 (2.863) 0.959 (0.029) 0.950 (0.035) 0.959 (0.029) 0.988 (0.014) 0.126; 0.002

We only measure time cost for J-model (IM1), J-model(IM6) and the other ensemble methods

as we focus on the decreased test time cost of J-model (IM6).

86

7.6.3.1 Interaction model 1

Table 7.5: Standing of J-model (IM1) out of 9 ensemble classifiers on 13 data sets

Data set Performance metrics

Accuracy Sensitivity Specificity F-measure AUC

breast-cancer 4th 4th 4th 5th 3rd⋆

breast-w 2nd⋆ 2nd⋆ 2nd⋆ 2nd⋆ 1st⋆

credit-a 1st⋆ 1st⋆ 1st⋆ 1st⋆ 3rd⋆

credit-g 5th 5th 5th 5th 3rd⋆

diabetes 2nd⋆ 2nd⋆ 3rd⋆ 3rd ⋆ 7th

heart-statlog 4th 4th 5th 4th 8th

hepatitis 3rd ⋆ 3rd ⋆ 6th 6th 8th

ionosphere 2nd⋆ 2nd⋆ 5th 2nd⋆ 1st⋆

kr-vs-kp 1st⋆ 1st⋆ 1st⋆ 1st⋆ 1st⋆

labor 7th 7th 8th 8th 9th

mushroom 1st⋆ 1st⋆ 1st⋆ 1st⋆ 1st⋆

sonar 1st⋆ 1st⋆ 1st⋆ 1st⋆ 5th

vote 3rd ⋆ 3rd ⋆ 2nd⋆ 3rd ⋆ 8th

Table 7.5 summarise the standing of J-model when comparing with the 8 traditional ensemble

methods. The stars besides the rankings are marked only for the 1st, the 2nd or the 3rd standing.

J-model got 9 starts out of 13 data sets foraccuracy. When we notice the 1st and the 2nd

standings, J-model got 7 starts. J-model got 9 stars for sensitivity (7 starts of the 1st and the

2nd); 7 (6) for specificity; 8 (6) for F-measure and 7 (4) for AUC.

7.6.3.2 Interaction model 2

The prediction performance is generally equivalent with orworse than J-model(IM1). We,

however, noticed that J-model(IM2) shows better performance than J-model(IM1) for AUC.

7.6.3.3 Interaction model 3

J-model(IM3) showed that it is not better than J-model(IM1)at all. J-model(IM3) turned out to

be an ineffective strategy for classification.

7.6.3.4 Interaction model 4 for higher specificity

IM4 is a specially designed interaction model for specificity. J-model(IM4) is better on credit-a,

credit-g, diabetes, heart-statlog, ionosphere, labor (6 data sets); equivalent on breast-w, kr-vs-

87

kp, mushroom (3 data sets); worse on breast-cancer, hepatitis, sonar, vote (4 data sets) when

comparing with J-model(IM1) for specificity.

Table 7.6: Standing of J-model (IM4) out of 9 ensemble classifiers for specificity

Data set Specificity

breast-cancer 7th

breast-w 2nd⋆

credit-a 1st⋆

credit-g 3rd⋆

diabetes 1st⋆

heart-statlog 4th

hepatitis 6th

ionosphere 2nd⋆

kr-vs-kp 1st⋆

labor 5th

mushroom 1st⋆

sonar 5th

vote 9th

Table 7.6 shows the standing of J-model(IM4) compared with the other 8 traditional ensemble

methods. Stars are also marked for the 1st, the 2nd or the 3rd standing.

7.6.3.5 Interaction model 6 for lower test time cost

Interaction model 6 was designed to reduce the test time cost. In Table 7.4, the test time costs

of J-model(IM1) and J-model(IM6) are compared. In J-model(IM6), the test time was dramat-

ically reduced than J-model(IM1) although J-model(IM6) somewhat sacrificed its performance

on the other performance metrics. The observation error canbe ignored if it is less than 0.015

seconds because the JRuby implementation on IntelR© Core
TM

2 Duo CPU 2.67 GHz could not

measure the time difference within 0.015 seconds. When comparing with the other ensemble

methods, J-model(IM6) could not provide lower test time costs. This is because the test time

costs of the other ensemble methods are already very small.

7.6.4 Conclusion

We applied several interaction models on J-model to benchmark data sets and compared their

classification performance with other traditional and representative ensemble methods.

88

The results of IM1 showed that J-model(IM1) has better prediction performance than the others

even though J-model uses non boosted classifiers from the pool. The traditional ensemble

methods boost their performance through special mechanisms to get better accuracy and more

diversity among the base classifiers.

IM2 showed better performance for a specific metric, AUC. IM2was not designed for AUC

intentionally, but it worked well for AUC. IM3 also was not designed for a specific metric.

IM3, however, did not work well for any of the metrics. IM4 wasdesigned intentionally for the

specificity metric. It showed better results for specificitythan IM1 gave and than the traditional

ensemble methods did. IM6 is for reducing the time cost. It also worked for its purpose.

7.7 Realistic problem - virtual screening

7.7.1 Introduction

The experiments so far are on benchmark problems. We also applied J-model to solve a realistic

problem. The virtual screening problem that we chose as a realistic problem has many more

instances and attributes than the benchmark data sets. Moreover the virtual screening data set

has highly imbalanced classes.

89

Virtual screening of bioassay data

Biological target
(bioassay)

Bind

Library of compunds

c1: active

c2: inactive

c3: inactive

c5: inactive

c4: inactive

ex) drug

Figure 7.30: Selection of compounds against a biological target in virtual screening

Virtual screening [98] is the computational screening of chemical compounds. It complements

the high-throughput screening (HTS) process and is used to aid the selection of compounds.

Highly-imbalanced data

The major challenge that we contact when we use machine learning techniques for bioassay

virtual screening is that the data is highly-imbalanced. The data has a low ratio ofactive

compounds toinactivecompounds. The ratio is 1 active compound to 1000 inactive compounds

on average [10]. Standard techniques are not very effectiveat building predictive models in this

situation. We aim to find a robust and versatile classifier forimbalanced bioassay data.

90

7.7.2 Experimental setup

7.7.2.1 The PubChem bioassay data sets

Table 7.7: PubChem bioassay data sets

Index Assay Screening type Compounds Attributes Active:inactive Minority (active) class %

1 AID362 Primary 4279 144 60:4219 1.40

2 AID604 Primary 59788 154 212:59576 0.35

3 AID456 Primary 9982 153 27:9955 0.27

4 AID688 Primary 27198 154 248:26941 0.91

5 AID373 Primary 59788 154 62:59726 0.10

6 AID746 Primary 59788 154 366:59422 0.61

7 AID687 Primary 33067 153 94:32973 0.28

8 AID746&AID1284 Primary and confirmatory 59784 154 57:59727 0.10

9 AID604&AID644 Primary and confirmatory 59782 154 67:59715 0.11

10 AID373&AID439 Primary and confirmatory 59795 154 13:59782 0.02

11 AID687&AID721 Primary and confirmatory 33046 153 21:33046 0.06

12 AID1608 Confirmatory 1033 154 68:965 6.58

13 AID644 Confirmatory 206 100 67:139 32.52

14 AID1284 Confirmatory 362 103 57:305 15.75

15 AID439 Confirmatory 69 81 13:56 18.84

16 AID721 Confirmatory 94 87 21:73 22.34

The PubChem bioassay data sets [7] are highly-imbalanced bioassay data from different types

of screening using high-throughput screening (HTS) technology. The data sets are 16 small to

medium size ones. They have varying sizes and active classes. Table 7.7 shows a summary of

the data sets used for study.

7.7.2.2 J-model settings

7.7.2.2.1 Pool preparation

7.7.2.2.1.1 Base classifier

• For non cost-sensitive version - RandomForest using the setting value in Table 7.1.

• For cost-sensitive version - RandomForest using the setting value in Table 7.1. We set

cost matrices for it using the misclassification costs for false negatives in Table 7.8.

91

Table 7.8: Misclassification costs for false negatives of J-model

Assay J-model

AID362 3000

AID604 50000

AID456 100000

AID688 8000

AID373 600000

AID746 18000

AID687 60000

AID746&AID1284 600000

AID604&AID644 900000

AID373&AID439 None

AID687&AID721 500000

AID1608 150

AID644 None

AID1284 8

AID439 None

AID721 None

7.7.2.2.1.2 Misclassification costs We set the misclassification cost of the cost-sensitive

J-model when its FPR reaches about 20%. 20% FPR is an appropriate stop of permission. We

did not set any cost for the assays indicated byNone. On those assays, J-model shows results

of under 20% FPR without cost setting.

7.7.2.2.1.3 Pool size We set the pool size of 64.

7.7.2.2.2 Ensemble size We set the ensemble size of 10

7.7.2.2.3 Choice of IM The bioassay classification should handle the problem of highly-

imbalanced ratio of active and inactive classes. We used IM5of Definition 6.10 to achieve

higher TPR and lower FPR.

7.7.2.2.4 Number of interactions

• For non cost-sensitive version - We set 10000 interactions.This very high number was

because active classes have very much smaller numbers than inactive ones. Enough

interactions gives an opportunity to an ensemble to converge more toward the active

classes. The more the ensemble takes active classes repeatedly, the more it becomes

sensitive to the active classes.

92

• For cost-sensitive version - 200 interactions. Because thepool is composed with cost-

sensitive RandomForests, we can set a much smaller number ofinteractions.

7.7.2.3 The other algorithms

7.7.2.3.1 Algorithms We re-used cost-sensitive Naive Bayes, cost-sensitive Random Forest,

cost-sensitive SVM and cost-sensitive C4.5 whose results already have published in [86] for

comparison with J-model. We also showed results of normal Random Forest.

Table 7.9: Misclassification costs for false negatives of the other CSC classifiers

Assay Naive Bayes Random Forest SMO J48

AID362 40 3000 150 285

AID604 40 Out of memory 250 650

AID456 18 100000 200 1000

AID688 34 Out of memory 78 220

AID373 20 Out of memory 2000 3000

AID746 25 Out of memory 100 450

AID687 50 Out of memory 250 680

AID746&AID1284 100 Out of memory 1000 1900

AID604&AID644 70 Out of memory 750 1500

AID373&AID439 70 Out of memory 9000 9500

AID687&AID721 700 Out of memory 6702 1900

AID1608 2 75 5 25

AID644 None None None None

AID1284 None 8 2.7 2

AID439 None None None None

AID721 None None None None

7.7.2.3.2 Misclassification costs Classifiers give large variability following what misclas-

sification costs are set. Table 7.92 shows the setting values of misclassification costs for the

false negativesin order to achieve the maximum number oftrue positiveswith a false positive

rate of fewer than 20% for each classifier. Random Forest classifiers require larger memory

than the other classifiers. It utilises the bagging technique. In our results table,out of memory

indicates that Random Forest could not be used for the experiments.

2From [86]

93

7.7.2.4 Evaluation technique

7.7.2.4.1 Split into train and test examples We split a assay data set to the train examples

and test examples. The ratio is 80% (train) and 20% (test) of the total examples.

7.7.2.4.2 Performance metrics

• True Positives (TP) - In the bioassay case, active compoundscorrectly classified as active.

• False Positives (FP) - Inactive compounds incorrectly classified as active.

• False Negatives (FN) - Active compounds incorrectly classified as inactive.

• True Negatives (TN) - Inactive compounds correctly classified as inactive.

• True Positive Rate (TPR) -TPR= TP/P = TP/(TP+FN). P is the positive (active)

classes. The higher TPR value is preferred.

• False Positive Rate (FPR) -FPR= FP/N = FP/(FP+TN). N is the negative (inactive)

classes. The lower FPR value is preferred.

• Accuracy(ACC) - Accuracyis not a major performance metric for this sort of classifica-

tion. We, however, include the results ofaccuracyfor reference.

7.7.3 Results

Table 7.10: Virtual screening results

Assay Algorithm Performance metrics

TP FN FP TN TPR (%) FPR (%) Accuracy (%)

AID362 CSC Naive Bayes 9 3 161 683 75.00 19.08 80.84

CSC Random Forest 10 2 159 685 83.33 18.84 81.19

CSC SMO 9 3 126 718 75.00 14.93 84.93

MetaCost J48 9 3 124 720 75.00 14.69 85.16

Random Forest 1 11 1 843 8.33 0.12 98.60

J-model (Non-CS,IM5,10000) 3 3 0 422 50.00 0.00 99.30

J-model (CS,IM5,200) * 5 1 82 340 83.33 19.43 80.61

AID604 CSC Naive Bayes 23 19 2202 9713 54.76 18.48 81.43

CSC Random Forest - - - - - - -

CSC SMO 27 15 2453 9462 64.29 20.59 79.36

MetaCost J48 21 21 2401 9514 50.00 20.15 79.74

Random Forest 4 38 3 11912 9.52 0.03 99.66

J-model (Non-CS,IM5,10000) 0 21 0 5958 0.00 0.00 99.65

J-model (CS,IM5,200) * 15 6 1214 4744 71.43 20.38 79.60

AID456 CSC Naive Bayes 3 2 296 1695 60.00 14.87 85.07

CSC Random Forest 2 3 370 1621 40.00 18.58 81.31

CSC SMO 3 2 133 1858 60.00 6.68 93.24

MetaCost J48 2 3 312 1679 40.00 15.67 84.22

Random Forest 0 5 0 1991 0.00 0.00 99.75

J-model (Non-CS,IM5,10000) 0 2 0 996 0.00 0.00 99.80

J-model (CS,IM5,200) * 2 0 217 779 100.00 21.79 78.26

94

AID688 CSC Naive Bayes 15 35 1048 4340 30.00 19.45 80.08

CSC Random Forest - - - - - - -

CSC SMO 12 38 1094 4294 24.00 20.30 79.18

MetaCost J48 8 42 1104 4284 16.00 20.49 78.93

Random Forest 0 50 0 5388 0.00 0.00 99.08

J-model (Non-CS,IM5,10000) 0 25 2 2692 0.00 0.07 99.01

J-model (CS,IM5,200) 6 19 551 2143 24.00 20.45 79.04

AID373 CSC Naive Bayes 9 3 2146 9799 75.00 17.97 82.03

CSC Random Forest - - - - - - -

CSC SMO 9 3 1966 9979 75.00 16.46 83.53

MetaCost J48 9 3 1732 10213 75.00 14.50 85.49

Random Forest 0 12 0 11945 0.00 0.00 99.90

J-model (Non-CS,IM5,10000) 1 5 1 5972 16.67 0.02 99.90

J-model (CS,IM5,200) * 5 1 1200 4773 83.33 20.09 79.91

AID746 CSC Naive Bayes 31 42 2462 9422 42.47 20.72 79.06

CSC Random Forest - - - - - - -

CSC SMO 39 34 2085 9799 53.42 17.54 82.28

MetaCost J48 46 27 2412 9472 63.01 20.30 79.60

Random Forest 11 62 6 11878 15.07 0.05 99.43

J-model (Non-CS,IM5,10000) 5 32 1 5941 13.51 0.02 99.45

J-model (CS,IM5,200) * 32 5 1221 4721 86.49 20.55 79.49

AID687 CSC Naive Bayes 8 10 1251 5344 44.44 18.97 80.93

CSC Random Forest - - - - - - -

CSC SMO 6 12 1213 5382 33.33 18.39 81.48

MetaCost J48 5 13 1298 5297 27.78 19.68 80.18

Random Forest 0 18 1 6594 0.00 0.02 99.71

J-model (Non-CS,IM5,10000) 0 9 0 3298 0.00 0.00 99.73

J-model (CS,IM5,200) * 4 5 585 2713 44.44 17.74 82.16

AID746&AID1284 CSC Naive Bayes 31 42 2462 9422 42.47 20.72 79.06

CSC Random Forest - - - - - - -

CSC SMO 39 34 2085 9799 53.42 17.54 82.28

MetaCost J48 46 27 2412 9472 63.01 20.30 79.60

Random Forest 1 10 1 11944 9.09 0.01 99.91

J-model (Non-CS,IM5,10000) 1 5 1 5971 16.67 0.02 99.90

J-model (CS,IM5,200) * 4 2 1031 4941 66.67 17.26 82.72

AID604&AID644 CSC Naive Bayes 6 7 1542 10401 46.15 12.91 87.04

CSC Random Forest - - - - - - -

CSC SMO 10 3 1422 10521 76.92 11.91 88.08

MetaCost J48 7 6 1453 10490 53.85 12.17 87.80

Random Forest 1 12 0 11943 7.69 0.00 99.90

J-model (Non-CS,IM5,10000) 0 6 0 5972 0.00 0.00 99.90

J-model (CS,IM5,200) * 4 2 1302 4670 66.67 21.80 78.19

AID373&AID439 CSC Naive Bayes 1 1 279 11678 50.00 2.33 97.66

CSC Random Forest - - - - - - -

CSC SMO 1 1 1059 10898 50.00 8.86 91.14

MetaCost J48 2 0 2111 9846 100.00 17.65 82.35

Random Forest 1 1 0 11957 50.00 0.00 99.99

J-model (Non-CS,IM5,10000) 0 1 0 5979 0.00 0.00 99.98

J-model (CS,IM5,200) 0 1 0 5979 0.00 0.00 99.98

AID687&AID721 CSC Naive Bayes 2 2 959 5650 50.00 14.51 85.47

CSC Random Forest - - - - - - -

CSC SMO 2 2 1484 5125 50.00 22.45 77.53

MetaCost J48 2 2 625 5984 50.00 9.46 90.52

Random Forest 0 4 0 6609 0.00 0.00 99.94

J-model (Non-CS,IM5,10000) 0 2 0 3305 0.00 0.00 99.94

J-model (CS,IM5,200) * 1 1 218 3087 50.00 6.60 93.38

AID1608 CSC Naive Bayes 3 10 37 156 23.08 19.17 77.18

CSC Random Forest 4 9 16 177 30.77 8.29 87.86

CSC SMO 4 9 17 176 30.77 8.81 87.38

MetaCost J48 2 11 39 154 15.38 20.21 75.73

Random Forest 0 13 1 192 0.00 0.52 93.20

J-model (Non-CS,IM5,10000) 0 6 0 97 0.00 0.00 94.17

J-model (CS,IM5,200) 1 5 17 80 16.67 17.53 78.64

AID644 CSC Naive Bayes 5 8 11 17 38.46 39.29 53.66

CSC Random Forest 3 10 2 26 23.08 7.14 70.73

CSC SMO 3 10 5 23 23.08 17.86 63.41

MetaCost J48 5 8 8 20 38.46 28.57 60.98

Random Forest 3 10 2 26 23.08 7.14 70.73

J-model (Non-CS,IM5,10000) 3 4 1 13 42.86 7.14 76.19

J-model (CS*,IM5,200) * 3 4 0 14 42.86 0.00 80.95

95

AID1284 CSC Naive Bayes 3 8 16 45 27.27 26.23 66.67

CSC Random Forest 5 6 11 50 45.45 18.03 76.39

CSC SMO 4 7 8 53 36.36 13.11 79.17

MetaCost J48 6 5 8 53 54.55 13.11 81.94

Random Forest 3 8 2 59 27.27 3.28 86.11

J-model (Non-CS,IM5,10000) 3 3 2 28 50.00 6.67 86.11

J-model (CS,IM5,200) * 4 2 5 25 66.67 16.67 80.56

AID439 CSC Naive Bayes 2 0 3 8 100.00 27.27 76.92

CSC Random Forest 1 1 2 9 50.00 18.18 76.92

CSC SMO 1 1 1 10 50.00 9.09 84.62

MetaCost J48 1 1 2 9 50.00 18.18 76.92

Random Forest 1 1 2 9 50.00 18.18 76.92

J-model (Non-CS,IM5,10000) 1 0 1 5 100.00 16.67 85.71

J-model (CS*,IM5,200) * 1 0 1 5 100.00 16.67 85.71

AID721 CSC Naive Bayes 0 4 4 10 0.00 28.57 55.56

CSC Random Forest 0 4 3 11 0.00 21.43 61.11

CSC SMO 0 4 2 12 0.00 14.29 66.67

MetaCost J48 0 4 2 12 0.00 14.29 66.67

Random Forest 0 4 3 11 0.00 21.43 61.11

J-model (Non-CS,IM5,10000) 0 2 2 5 0.00 28.57 55.56

J-model (CS*,IM5,200) 0 2 2 5 0.00 28.57 55.56

The values of TP, FN, FP and TN on J-models can be considered tobe half that of the other

algorithms. The reason is that J-model splits the original test set into the query set and J-model’s

test set.

7.7.3.1 Results of Random Forest

Random Forest showed extremely low performance on the bioassay data sets. It nearly cannot

give the correct answers about true positives. Random Forest is useless as a classifier for the

bioassay problem. This non cost-sensitive Random Forest (an original Random Forest labelled

Random Forest in Table) can be viewed as a baseline for performance compared with the results

of non-CS and CS J-models. This is because both of non-CS and CS versions of J-model filled

their classifier pools with the Random Forest template classifiers.

7.7.3.2 Results of non-CS J-model

We applied J-model of the interaction model 5. The pool was composed with classifiers trained

without cost sensitivity. We set the number of interactionsas 10000 to give J-model great

opportunity of exploration for true positives.

The performance became higher than the performance of Random Forest. But the performance

was much lower than the other cost-sensitive algorithms of CSC Naive Bayes, CSC Random

Forest, CSC SMO and MetaCost J48.

96

7.7.3.3 Results of CS J-model

We set just 200 interactions for J-model of IM5 because we filled in the pool with cost-sensitive

classifiers. J-model got the 1st standing for three fourth ofthe assays (12 times out of 16 assays)

among 5 cost-sensitive algorithms. J-model got 2nd for AID688 and AID604&AID644; 4th

for AID1608; the last for AID373&AID439.

7.7.4 Conclusion

The issue that is how to deal with highly imbalanced data is a major challenge in machine

learning research [19, 104]. The issue arises in many real-world domains where the target

examples are rare in the data.

Cost-sensitive J-model showed very good performance for the imbalanced data. The pool mem-

bers which J-model used were just cost-sensitive classifiers. They are not boosted classifiers by

the traditional ensemble algorithms.

Cost-sensitive J-model interacted just 200 times. With a small number of interactions, J-model

could achieve good performance.

As we can see in the case of cost-sensitive Random Forest, cost-sensitive Random Forest could

not give results because it ran out of memory. J-model did notsuffer from this space complexity

problem as J-model does not need extra memory space for the ensemble.

97

Table 7.1: Base classifier templates for pool generation

Classifier template Options of classifier template [setting value] Filter options of classifier template [setting value] Base classifier of the template Options of base classifier [setting value]

AdaBoostM1 · Percentage of weight mass to base training on [100] DecisionStump

Bagging · Size of each bag, as a percentage of the training set size

[100]

REPTree · Set minimum number of instances per leaf [2]

· Set minimum numeric class variance proportion of train

variance for split [0.0010]

· Number of folds for reduced error pruning [3]

· Maximum tree depth [1]

Decorate · Desired size of ensemble [1]

· Factor that determines number of artificial examples to

generate. Specified proportional to training set size [1.0]

J48 · Set confidence threshold for pruning [0.25]

· Set minimum number of instances per leaf [2]

LogitBoost · Percentage of weight mass to base training on [100]

· Number of folds for internal cross-validation [0]

· Number of runs for internal cross-validation [1]

· Threshold on the improvement of the likelihood

[1.7976931348623157E308]

· Shrinkage parameter [1.0]

DecisionStump

RandomCommittee RandomTree · Number of attributes to randomly investigate [0]

· Set minimum number of instances per leaf [1.0]

RandomForest · Number of features to consider [0]

RandomSubSpace · Size of each subspace [0.5] REPTree Same with REPTree for Bagging

RotationForest ·Minimum size of a group of attributes [3]

·Maximum size of a group of attributes [3]

· Percentage of instances to be removed [50]

Filter specification [PrincipalComponents]

· Retain enough PC attributes to account for this proportion

of variance in the original data [1.0]

· Maximum number of attributes to include in transformed

attribute names [5]

· Maximum number of PC attributes to retain [1]

J48 Same with REPTree for Decorate

98

Chapter 8

Discussion

8.1 Balance between exploration and exploitation

We defined the rank calculation for query interaction in Algorithm 5.1. The peer ranking ser-

vice recommends supporting peers based on this rank calculation for query interactions. The

definition that we set is the following.

RQ(p) =C(p,⊖) (8.1)

This definition (8.1) was designed to promote exploration among peers and exploitation of

higher scored peers. It is sensitive to the number of minusesof each peer.

RQ(p) = 1− (C(p,⊕)−C(p,⊖)) (8.2)

We can try to apply another definition of rank calculation forquery interaction instead of (8.1).

The definition (8.2) considers both the number of pluses and minuses of each peer to calculate

rank. It looks reasonable because it reflects both sides of scores (plus and minus). When a peer

gets more pluses for queries, the peer has the higher rank.

There is, however, a serious defect when this definition (8.2) is applied to the ranking process.

Figure 8.1, 8.2 and 8.3 show the results of the number of peer being selected over interactions

when we apply (8.2).

99

0 50 100 150 200 250 300
0

50

100

150

200

250

300
<Pool size 8, Ensemble size 2>

Interactions

of

 b
ei

ng
 s

el
ec

te
d

0 50 100 150 200 250 300
0

50

100

150

200

250

300
<Pool size 16, Ensemble size 2>

Interactions

of

 b
ei

ng
 s

el
ec

te
d

0 50 100 150 200 250 300
0

50

100

150

200

250

300
<Pool size 16, Ensemble size 3>

Interactions

of

 b
ei

ng
 s

el
ec

te
d

0 50 100 150 200 250 300
0

50

100

150

200

250

300
<Pool size 32, Ensemble size 2>

Interactions

of

 b
ei

ng
 s

el
ec

te
d

0 50 100 150 200 250 300
0

50

100

150

200

250

300
<Pool size 32, Ensemble size 3>

Interactions

of

 b
ei

ng
 s

el
ec

te
d

0 50 100 150 200 250 300
0

50

100

150

200

250

300
<Pool size 32, Ensemble size 6>

Interactions

of

 b
ei

ng
 s

el
ec

te
d

Figure 8.1: Number of peers being selected over interactions with breast-cancer using rank

calculation (8.2)

0 50 100 150 200 250 300
0

50

100

150

200

250

300
<Pool size 8, Ensemble size 2>

Interactions

of

 b
ei

ng
 s

el
ec

te
d

0 50 100 150 200 250 300
0

50

100

150

200

250

300
<Pool size 16, Ensemble size 2>

Interactions

of

 b
ei

ng
 s

el
ec

te
d

0 50 100 150 200 250 300
0

50

100

150

200

250

300
<Pool size 16, Ensemble size 3>

Interactions

of

 b
ei

ng
 s

el
ec

te
d

0 50 100 150 200 250 300
0

50

100

150

200

250

300
<Pool size 32, Ensemble size 2>

Interactions

of

 b
ei

ng
 s

el
ec

te
d

0 50 100 150 200 250 300
0

50

100

150

200

250

300
<Pool size 32, Ensemble size 3>

Interactions

of

 b
ei

ng
 s

el
ec

te
d

0 50 100 150 200 250 300
0

50

100

150

200

250

300
<Pool size 32, Ensemble size 6>

Interactions

of

 b
ei

ng
 s

el
ec

te
d

Figure 8.2: Number of peers being selected over interactions with kr-vs-kp using rank calculation

(8.2)

100

0 50 100 150 200 250 300
0

50

100

150

200

250

300
<Pool size 8, Ensemble size 2>

Interactions

of

 b
ei

ng
 s

el
ec

te
d

0 50 100 150 200 250 300
0

50

100

150

200

250

300
<Pool size 16, Ensemble size 2>

Interactions

of

 b
ei

ng
 s

el
ec

te
d

0 50 100 150 200 250 300
0

50

100

150

200

250

300
<Pool size 16, Ensemble size 3>

Interactions

of

 b
ei

ng
 s

el
ec

te
d

0 50 100 150 200 250 300
0

50

100

150

200

250

300
<Pool size 32, Ensemble size 2>

Interactions

of

 b
ei

ng
 s

el
ec

te
d

0 50 100 150 200 250 300
0

50

100

150

200

250

300
<Pool size 32, Ensemble size 3>

Interactions

of

 b
ei

ng
 s

el
ec

te
d

0 50 100 150 200 250 300
0

50

100

150

200

250

300
<Pool size 32, Ensemble size 6>

Interactions

of

 b
ei

ng
 s

el
ec

te
d

Figure 8.3: Number of peers being selected over interactions with labor using rank calculation

(8.2)

In each figure above, always, the same peers are repeatedly selected over interactions except

in very early steps. The other peers cannot be selected at all. There is no exploration among

peers, only exploitation for the specific peers.

The reason why the other peers cannot be selected is that the scores of the specific peers (higher

scored peers) are never under the scores of the lower scored peers. For example, peer 1 (having

70% accuracy) and peer 2 (having 70% accuracy) on average get7 pluses and 3 minuses for

queries for the first 10 interactions. They continually get+4 on 10 interactions,+8 on the

next 10 interactions and so on. They always are selected by the rank calculation because they

always have the highest scores and repeated selections reinforce this. The lower scored peers

have no chance to be selected. The following graphs of 8.4, 8.5 and 8.6 show this problem

more apparently.

101

0 50 100 150 200 250 300
−20

0

20

40

60

80

100

120
<Pool size 8, Ensemble size 2>

Interactions

S
co

re

0 50 100 150 200 250 300
−20

0

20

40

60

80

100

120
<Pool size 16, Ensemble size 2>

Interactions

S
co

re

0 50 100 150 200 250 300
−10

0

10

20

30

40

50

60

70

80

90
<Pool size 16, Ensemble size 3>

Interactions

S
co

re

0 50 100 150 200 250 300
−5

0

5

10

15

20

25

30

35

40
<Pool size 32, Ensemble size 2>

Interactions

S
co

re

0 50 100 150 200 250 300
−10

0

10

20

30

40

50

60
<Pool size 32, Ensemble size 3>

Interactions

S
co

re

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80
<Pool size 32, Ensemble size 6>

Interactions

S
co

re

Figure 8.4: Score over interactions with breast-cancer using rank calculation (8.2)

0 50 100 150 200 250 300
0

50

100

150
<Pool size 8, Ensemble size 2>

Interactions

S
co

re

0 50 100 150 200 250 300
0

50

100

150

200

250

300
<Pool size 16, Ensemble size 2>

Interactions

S
co

re

0 50 100 150 200 250 300
0

50

100

150

200

250

300
<Pool size 16, Ensemble size 3>

Interactions

S
co

re

0 50 100 150 200 250 300
0

50

100

150

200

250
<Pool size 32, Ensemble size 2>

Interactions

S
co

re

0 50 100 150 200 250 300
0

50

100

150

200

250
<Pool size 32, Ensemble size 3>

Interactions

S
co

re

0 50 100 150 200 250 300
0

50

100

150

200

250

300
<Pool size 32, Ensemble size 6>

Interactions

S
co

re

Figure 8.5: Score over interactions with kr-vs-kp using rank calculation (8.2)

102

0 50 100 150 200 250 300
−50

0

50

100

150

200

250

300
<Pool size 8, Ensemble size 2>

Interactions

S
co

re

0 50 100 150 200 250 300
0

20

40

60

80

100

120
<Pool size 16, Ensemble size 2>

Interactions

S
co

re

0 50 100 150 200 250 300
0

50

100

150

200

250

300
<Pool size 16, Ensemble size 3>

Interactions

S
co

re

0 50 100 150 200 250 300
0

20

40

60

80

100

120
<Pool size 32, Ensemble size 2>

Interactions

S
co

re

0 50 100 150 200 250 300
0

50

100

150

200

250

300
<Pool size 32, Ensemble size 3>

Interactions

S
co

re

0 50 100 150 200 250 300
0

20

40

60

80

100

120
<Pool size 32, Ensemble size 6>

Interactions

S
co

re

Figure 8.6: Score over interactions with labor using rank calculation (8.2)

Therefore we need to refine rank calculation to allow more exploration. That definition must

address several defects that a simple ranking for more exploration might have. One of the

defects is that a definition always explores all peers but it does not maintain exploitation for

higher scored peers. Another defect is that a new definition may need more time to finish a peer

separation than a reasonable time. Last, we might have less confidence about higher scored

peers because the ability of the peers has not been repeatedly verified with enough queries. The

most extreme definition of this sort of a simple exploration is visiting all of peers randomly.

In the next section, we discuss better techniques of exploring peers and exploiting higher scored

peers as realised in our initial definition of rank calculation of (8.1).

8.2 More exploration on less accurate ensembles and more

exploitation on more accurate ensembles

8.2.1 More frequent moving on less accurate ensembles

According to the rank calculation for query interaction in Algorithm 5.1, the peer ranking

algorithm recommends supporting peers. Current supporting peers might be changed if the

previous supporting peers predicted a wrong answer.

103

Let us assume that the potential accuracy value of a current ensemble is 0.3. This ensemble clas-

sifier is a less accurate ensemble classifier. Based on the rank calculation for query interaction,

the chance that the ensemble is selected again on the next interaction round is small because

the ensemble has less possibility to give a correct prediction for a current query example.

This means that the ensemble selection might move from a lessaccurate ensemble to another

ensemble rapidly. This feature makes J-model explore more less accurate ensembles.

8.2.2 More opportunities to be confident on more accurate ens embles

Let us assume that the potential accuracy value of a current ensemble is 0.7. This ensemble

classifier is a more accurate ensemble classifier. Based on the rank calculation for query in-

teraction, the chance that the ensemble is selected again onthe next interaction round is large

because the ensemble has more possibility to give a correct prediction for a current query ex-

ample.

This means that the ensemble selection might stay with the current ensemble for the next in-

teraction round. A more accurate ensemble still has greaterprobability over interactions. It

means that J-model has more opportunities to be confident of the performance of the ensemble

because the ensemble is frequently confirmed with queries.

8.2.3 Under dynamic condition

We experimented the peer separation under dynamic conditions in Section 7.3.4. The separa-

tion process in the figures looked more noisy than the processunder static conditions.

The dynamic condition we set in Section 7.1.4 makes 25% randomly selected classifiers from

the pool miss in every interaction. When this is applied to higher scored peers, they become to

be confirmed with queries less frequently (so there is less exploitation). When this condition

is applied to lower scored peers, the selection which would have been on them moves to other

peers more rapidly (so there is more exploration). Those twotendencies made the separation

under dynamic conditions more noisy.

104

8.3 Big falls in learning curves

On the learning curve experiment of kr-vs-kp (Figure 7.28),we can see that some of the learning

curves have big falls. The big falls only occur in early interactions.

We might guess that the reason is that the test examples are too small.Accuracyis calculated as

how many corrections there are out of the total tests. The small size makes big gaps among the

values foraccuracy. However, that reasoning is not applicable on the case of kr-vs-kp. First,

kr-vs-kp has enough instances (3196 instances). Second, the big falls appear only in early

interactions and the gaps of falls decrease after that or arebeing removed.

We suggest more likely reasons. First, in the early interaction phase, historical verification on

current higher scored peers with queries is not firmly established. So a discontinuous move

from the current group of higher scored peers to a new group ofdifferent higher scored peers

might result in a sudden and big fall of accuracy in a learningcurve. Second, especially in

kr-vs-kp, the big falls look dramatic because the average accuracy of prediction in kr-vs-kp

is very high (it is over 97%). So this makes the big falls look extreme on small changes of

performance.

8.4 Cyclic curves in learning curves

We could see several cyclic curves in the labor experiment (Figure 7.29). The reason that they

occur can be explained as follows.

The size of the query data set for labor is very small. Total instances are just 57. J-model adapts

to this very small number of queries for an ensemble with the same queries frequently being

used for validating an ensemble. If the ensembleA gives an wrong answer, another ensembleB

is recommended by the peer ranking algorithm. IfB gives an wrong answer, recommendation

then moves toA cyclically. This is definitely a bad thing under static conditions (so we should

avoid this sort of circulating) but it might sometimes be useful under dynamic conditions (eg.

if the learners might independently improve performance between steps in the cycle).

105

8.5 Accuracy of the pool in J-model

J-model separates optimal peers for better classification from a peer pool. A peer pool is com-

posed of diverse classification services. We showed that J-model gives better performance in

the benchmark experiments of the section 7.6. Its performance is from non-boosted (not inten-

tionally tuned to training examples) member classifiers.

However, in the experiment of a realistic classification problem in Section 7.7, the pool that

was composed of only non-tuned peers (non-CS J-model of Section 7.7.3.2) could not give a

good performance even though we set the enough number of interactions as high as 10000.

We could confirm that diversity in a pool is essential for performance but minimal quality

among classifiers in the pool is also needed for boosting performance. So we needed cost-

sensitive classification services as pool members and couldget a good performance from them.

8.6 Appropriate ensemble size

We used 20% of a pool size as an ensemble size for the benchmarkand the realistic classific-

ation problems. Our choice of ensemble size is based on the Pareto principle. The principle

states that roughly 80% of the effects come from 20% of the causes for many events. This

effect sometimes is identified in multi-agent systems, for example in SugarScape [29] which

simulated wealth distribution.

However, it is interesting to consider what happens if we vary the ratio of ensemble to pool size.

Let us see what happens if the ensemble size is too small or toobig. When the size is small, the

search space will be large. This means that J-model is likelyto visit many candidate ensembles

in a pool. So its search space in this respect is larger. Peer separation and its convergence to an

optima in J-model are based on the history of getting scores of peers. In a big search space, we

will need more interactions to get enough scoring history.

If the ensemble size is big, the search space will be small. This means that the number of

candidate ensembles is small. So J-model needs less time to search but the size of ensembles

obscures differences between peers. In this case, the scoring history on peers may not be

distributed properly to discriminate the peers.

106

8.7 Minimal parameterisation

Learning parameters influence the performance and effectiveness of machine learning. These

parameters make the individual machine learning systems adapt to the particulars of a training

set. Tuning parameters, however, is an expensive and complex task.

The parameters that J-model has are the ensemble size and thenumber of interactions. A pool

is given as an environment and an interaction model defines the system of agent coordination

upon which J-model works. The ensemble size is determined bythe Pareto principle. So we

have one parameter that needs to be tuned, the number of interactions.

We set the number of interactions as 200 when we experimentedwith J-model for the bench-

mark and realistic classification problems in Chapter 7. Thevalue was determined based on the

results of Section 7.3. Higher scored peers were separated from other peers and they normally

kept their dominance over the other peers after at least 200 interactions had been done. This,

however, is a heuristic approach to determining the proper number of interactions. It would

be useful to have an automatic method for predicting the number of interactions needed for

stability.

We suspect that a general and effective basis for this will beto measure change of the gap

between average scores of the higher scored peers and the lower scored peers as shown in

Section 7.3.3.3 and 7.3.4.3, since this gives us an indirectmeasure of their performance. If

we use performance as a measure for the termination condition, the number of interactions is

automatically determined when J-model gets to an expected performance.

8.8 Conclusion

In this chapter, we have discussed issues being categorisedto three groups. First, we suggested

discussions about what features on a reputation mechanism should be required in our architec-

ture in Section 8.1 and 8.2. Second, we explained why big falls and cyclic curves appear in

learning curves and the meaning of those in Section 8.3 and 8.4. Last, we discussed for how

J-model can give better prediction results on the quality ofclassifier pool, appropriate ensemble

sizes and setting the number of interactions in Section 8.5,8.6 and 8.7.

107

Chapter 9

Related work

9.1 Distributed ensemble classification

Distributed ensemble classification is a research sub-domain for solving classification problems

in distributed data mining. Distributed ensemble classification is implemented by applying

traditional ensemble methods straightforwardly to distributed environments or building smarter

versions of ensemble methods for distributed environments.

9.1.1 Distributed data mining

The development of information and communication technologies has brought us a large num-

ber of different and distributed computing devices and datasources. The Internet, geograph-

ically distributed information systems such as the earth observing system of NASA1, sensor

networks, gridsare examples of such distributed environments.

When we apply a traditional (centralised) knowledge discovery process to distributed environ-

ments, it requires us to gather all the distributed sources within a central repository for central

processing. This is neither effective nor feasible for several reasons: storage cost, communic-

ation cost, computational cost, and private and sensitive data issues. Distributed data mining

(DDM) includes algorithms, methods and systems that efficiently discover knowledge in dis-

tributed environments.

In DDM, discovering knowledge takes place in each local or distributed site and then global

1http://eos.gsfc.nasa.gov/

108

knowledge is integrated from the local knowledge at a globallevel. There are two different ap-

proaches to synchronising global knowledge among local sites. One approach is that a global

site sends global knowledge back to local sites, so that theyare updated with the global know-

ledge. The other approach is that local knowledge is broadcast to all other local sites, so that

they share global knowledge which we hope will converge overtime.

9.1.2 Distributed classification

Approaches for distributed classification are mostly inspired from ensemble methods such as

Stacking [103], Voting [50, 54] and Boosting. Some approaches to apply ensemble methods

to distributed environments are straightforward. The other approaches use smarter methods to

reduce communication and coordination costs.

Chan and Stolfo [18] applied Stacking ensemble method to DDMthrough adopting their meta-

learning technique. Their meta-learning technique is to construct a meta-level training data set

through combining distributed training examples. Their methodology showed better perform-

ance for a number of domains. Knowledge Probing [40] uses an independent data set called

the probing set on the meta-learning technique of Chan and Stolfo. The probing set is used to

select an appropriate ensemble model for a problem.

Several techniques have been suggested for building a single classifier from local classifiers

which have been trained on an individual distributed set. Hall, Chawla and Bowyer [42, 43]

suggested a technique of assembling a decision tree with distributed sub decision trees repres-

ented as rule sets. Each sub decision trees learns disjoint data. The rule combination continually

takes the union of the distributed rule sets resolving any conflicts.

Fan, Stolfo and Zhang [32] introduced d-sampling AdaBoost which is an extended version of

AdaBoost for DDM. At each boosting round, an individual weaklearner in a distributed site

trains its local data set. Then a distribution of weightsDt is calculated from the results of

the current round andDt is applied to all the distributed data sets. Experiments showed that

their DDM version of AdaBoost gives comparable or better performance than a single machine

learning algorithm trained with the union of distributed data in most cases. However it gave

comparable performance to a single classical boosting algorithm only in limited cases. Laz-

arevic and Obradovic [55] presented a distributed boostingalgorithm in which weak learners

of distributed sites learns in parallel at each round. Weak learners share their localDts by

broadcasting the local values one another. Their experiments showed that the algorithm brings

109

comparable or slightly better classification performance than a single boosting algorithm with

the union of distributed data sets.

9.2 Agent-based distributed data mining

Agent-based distributed data mining research started fromthe motivation for bringing benefits

such as abilities to solve autonomy and scalability problems that the agent technology can give

to distributed data mining.

9.2.1 Introduction

Distributed data mining research has taught us that cooperation among distributed data mining

processes may give effective mining results without using centralised data mining approaches.

This naturally led us to adopting the agent technology for the development of cooperative DDM

called agent-based DDM. Agent-based DDM provides the inherent feature of agents of being

autonomous and adaptive. These features are intended to solve autonomy and scalability prob-

lems of DDM. Agents perform various mining operations instead of humans and computing

devices that are operated by humans and collaborate with other agents. Agent-based DDM

systems aim to cope with data mining tasks in distributed, heterogeneous and massive data

environments.

9.2.2 Benefits from agents for DDM

The following items are benefits that data mining agents (DM agents) give for DDM.

• Autonomy of data source

A DM agent is a modular process in a data management system. A DM agent accesses

data sources and gathers knowledge from the data sources under given constraints with

autonomy.

• Scalable DDM

For massive distributed data, a DDM system can let DM agents take each distributed data

set and perform data mining in their local sites. Then their mined data are merged in the

original DDM system.

110

• Multi-strategy DDM

There are cases where we wish to obtain greater effectiveness for complex data mining

tasks by combining DM agents using different strategies forindividual complex tasks

instead of applying a single strategy.

• Collaborative DDM

There may be conflicting combinations among DM agents who learned their local data

independently. Collaborative DM agents have ability to negotiate their own opinions

with each other and may give a collaborated global opinion.

• Dynamicity in open distributed data environments

Open distributed data environments in which the availability of data sites must be con-

sidered and their content may change at any time have issues of how to discover and select

relevant data sources for performing DM tasks. DM agents canbe used under these con-

ditions. DM agents adaptively select data sources based on their selection criteria such

as availability, quality, form and network load of data sources.

9.2.3 Learning strategy for agent-based DDM

Several systems have been suggested for agent-based data mining. These systems can be cat-

egorised according to their learning strategy into three types of central learning, meta learning

and hybrid learning. Meta-learning and hybrid-learning DMsystems are more appropriate for

distributed data mining because central-learning systemsgather data at a central site and build

a single model.

9.2.3.1 Meta-learning strategy

Meta-learning methods have been used particularly for classification and regression tasks [96,

9]. For classification tasks, a meta-learning method has three main steps. In the first step, it

generates classifiers at each site using machine learning algorithms for classification. Next, it

gathers the generated classifiers at a central site. In the last step, it builds the final classifier

(meta-classifier) through combining the gathered classifiers.

One of the most well known agent-based meta-learning approaches is the METAL project2.

This project is for helping users to gain a ranking of suitability among DM algorithms through

2http://www.metal-kdd.org

111

an on-line advisory system. AgentDiscover, a multi-agent system for knowledge discovery and

data mining (KDD) [75], was introduced. It uses task-based reasoning for problem solving.

The most mature agent-based meta-learning systems are JAM and BODHI. Both of the systems

are intended for data classification.

JAM [89] is a Java-implemented multi-agent system designedbased on meta-learning DDM.

JAM agents learn heterogeneous databases using different machine learning algorithms such as

Ripper, CART, ID3, C4.5, Bayes and WEPBLS. JAM agents may be resident in a single site

or imported agents from other peer sites in the system. JAM offers a group of meta-learning

agents which combines multiple classifier agents at different sites into a meta-classifier. In

many cases. these meta-classifiers give improved predictive accuracy.

BODHI [48] is a framework for performing collective DM taskson heterogeneous data such

as supervised inductive distributed function learning andregression. BODHI guarantees to get

a correct local and global data model with low network communication load. The framework

provides message exchange and runtime environments for mobile agents running at each local

site. The mining process is distributed to the local sites and agents move between the sites on

demand. Each agent transports its state, data and knowledge. A central facilitator agent has a

responsibility of initialising and coordinating the communication and control flow among the

agents.

9.2.3.2 Hybrid-learning strategy

A hybrid-learning method combines local and remote learning for building a model [94]. Pa-

pyrus [5] is an example of hybrid-learning systems. Papyrusis a specialised DDM system for

clusters of heterogeneous data sites and meta-clusters. Itsupports several sorts of predictive

models including C4.5. In contrast to JAM and BODHI, Papyruscan not only move models

from site to site, but can also move data when a suggested strategy requires. Each cluster has

one primary node with which agents access and control clusters. The overall clustering task

is coordinated in a central root site or across a distributednetwork of cluster access points in

a peer-to-peer manner. Papyrus supports various model combination methods and a special

markup language is used to describe the meta-description ofdata, models and intermediate

results.

112

9.3 Collaborative multi-agent learning

Multi-agent learning is a technique to build complex multi-agent systems in a dynamic en-

vironment. Collaborative multi-agent learning is a special type of multi-agent learning. In

collaborative multi-agent learning, agents work togetheras a group to improve their accuracy

at a given learning task.

9.3.1 Multi-agent learning

Multi-agent learning has been defined as learning through the interaction between multiple

intelligent agents [47]. This multi-agent learning was developed from our attempt to build

complex multi-agent systems that operate in dynamic environments. It is extremely difficult to

design complex multi-agent systems with robustness in advance. This difficulty naturally led

us to develop multi-agent systems that adapt and learn through experience.

Multi-agent learning is different from standard machine learning. Standard machine learning

methods work under assumption that a single learner or agenthas all relevant knowledge loc-

ally. In multi-agent systems, this assumption is not available. Relevant knowledge such as

training experience and background information is distributed among agents in a multi-agent

systems. Also domain constraints such as privacy and cost may require a multi-agent approach.

9.3.2 Collaborative multi-agent learning

Collaborative multi-agent learning is a special type of multi-agent learning, in which agents

work together as a group or team to improve their accuracy at agiven learning task. Agents

actively communicate or interact with one another during the learning process in order to be

collaborative. The main issue in the interaction is how agents learn accurately without exposing

their knowledge to a central agent.

Collaborative multi-agent leaning is basically differentfrom ensemble learning such as bag-

ging and boosting. Ensemble learning methods combine the predictions fromN independent

learners through voting schemes. Variance across learnershelps to improve overall accuracy.

This ensemble learning approach, however, will not work properly when a target problem can-

not be learnt by individual member classifiers. Meanwhile, collaborative learning allows a

group of learners to learn those sorts of target problems. Incollaborative learning, a distributed

113

situation is assumed.

9.3.3 Research on collaborative multi-agent learning

Weiß and Dillenbourg [101] express an important opinion that the true potential for multi-

agent learning is obtained through dynamic forms of interactivity. This opinion offers a general

perspective across the multi-agent learning research domain.

Many existing works of collaborative learning were performed on collective versions of rein-

forcement learning. Weiß [100] and Tan [91] independently pointed that collaborative learning

can be improved through information exchange between agentand Tan additionally sugges-

ted social adaptation of agents for the improvement. Whitehead and Ballard [102] provided a

learning architecture based on mutual observation.

A large number of other works have suggested collaborative versions of Q learning since the

works of Weiss, Tan and Whitehead. Clouse [22] showed that collaborative improvement can

be achieved through letting agents ask for help with one another. Chalkiadakis and Boutilier

[17] suggested a collaborative model to explore the space ofsolutions. Szer and Charpillet [90]

defined an algorithm to broadcast intermediate learning results and investigated effects that the

circulation of different quantities of information makes.Vu, Powers and Shoham [97] studied

agent coordination. Their results explore the minimum levels of performance in each agent

needed for their collaboration.

There is a notable work on collaborative multi-agent learning that is not based on reinforcement

learning. Prasad [76] redesigned collaborative multi-agent learning as a parametric problem.

A group of agents cooperatively searches a composite searchspace. To goal is to find globally

optimal solutions. Agents share their local data with one another when conflicts arise. This

information is reused during search rounds.

Some researchers studied collaborative multi-agent learning through linking with other ma-

chine learning techniques. Modi and Shen [66] suggested a distributed collaborative learning

algorithm for classification in situations where some of theinformation is privately closed.

Ontañón and Plaza [69] proposed cooperation techniques for case-based reasoning. Nunes and

Oliveira [68] provided an advice exchange system where the circulation of information occurs

among agents having different learning algorithms. Graçaand Gaspar [39] gave the results

of the performance of opportunistic non-learning agents that receive information from learn-

ing agents. They concluded that agents having different tasks and roles can improve global

114

performance.

9.4 Open multi-agent systems

Researches on open multi-agent systems are for providing multi-agent systems working with

open, dynamic and heterogeneous agents.

9.4.1 Introduction

In recent years, open multi-agent systems (OMASs) have gained importance in the study of

distributed AI. Agents participating in OMAS may proactively join and leave the system at any

time and they may independently have been implemented by different designers.

A main problem in OMAS is how to coordinate the ability of these open, dynamic and het-

erogeneous agents. Additionally, the agent coordination may not possible to be designed at

design time. This coordination has a intrinsic feature of being arranged at runtime. According

to characteristics of systems, two different sorts of coordination approaches are applicable re-

spectively. First, methods to prescribe and enforce behaviour of each agent are applicable if a

system has an explicit global goal to achieve and there exists an authority enabling to enforce

the prescribed behaviour. Second, societal structures canbe applied if a system does not have

any global goal or an authority. In such systems, agents interact with one another and a more

efficient behaviour can be obtained through their coordination of interactions for a global goal.

This brings the difficult task of how to decide which agents anagent interacts with.

9.4.2 Research on open multi-agent systems

Most work has used prescriptive structures in order to regulate OMAS. Artikis [4] introduced an

infrastructure for dynamic protocol specifications where aspecification may change at runtime

by agents participating in an OMAS.

Notable works based on structural adaptation have been suggested. Kota, Gibbins and Jennings

[52] provided a decentralised approach for structural adaptation. Their method realised an

implicit adaptation of agents for their structural relationship by which task allocation processes

improve.

115

There exist many works by which a MAS changes its organisation during execution. Deloach,

Oyenan and Matson [25] provided a framework in which a MAS organisation re-organise at

runtime. Dignum, Dignum and Sonenberg [26] and Wang, Liang and Zhao [99] also presented

re-organisation of organisation structures.

Hübner, Vercounter and Boissier [46] suggested a collective process reputation for trust man-

agement by coordination artifacts publishing and providing objective evaluations that agent

calculate.

9.5 Service choreography workflows

We now provide an overview of workflow technology for coordinating distributed services. We

focus on a choreography approach because it is more adaptiveand scalable for changing and

uncertain services.

9.5.1 Introduction

Workflow technology is one of the major approaches for coordinating distributed services as a

group. In service-oriented architectures, services are loosely coupled and independent from one

another and accordingly they offer a greater degree of flexibility and scalability for evolving ap-

plications. Coordination of services is appropriate when ashared goal can be achieved through

collaboration of the services.

9.5.2 Service orchestration and service choreography

There are two main architectural approaches in which workflows are executed; service orches-

tration and service choreography. This criterion specifieswhether workflow is executed in a

centralised (orchestration) or a distributed (choreography) manner.

In service orchestration, a single process (the process acts as a controller) executes the activities

and the other passive processes (services) are called by thesingle process. Service orchestration

workflows are defined through orchestration languages such as WS-BPEL, YAWL and XPDL.

In service choreography, the activities are executed by active participating services that commu-

nicate or interact via messages with one another. Emergent collaboration among them naturally

116

arises. Service choreography workflows are described through choreography languages such

as WS-CDL, WSCI and OWL-S.

9.5.3 Choreography languages

WS-CDL, WSCI and OWL-S are XML-based languages and they support WSDL3 [21, 20]

which is the founded standard to describe Web services.

9.5.3.1 WS-CDL

The Web Service Choreography Description Language (WS-CDL) describes peer-to-peer col-

laborations of Web services. This description defines the common behaviour of participating

services and the ordered message interchanges. In WS-CDL, the collaboration between Web

services arises by the ordering and constraint rules with which services agree. The elements in

WS-CDL are as follows.

• Role - A role enumerates a potential behaviour of a participant within an interaction.

• Channel - A channel specifies where and how information between participants is ex-

changed.

• Relationship - A relationship identifies the mutual obligations that have to be implemen-

ted to succeed.

9.5.3.2 WSCI

The Web Service Choreography Interface (WSCI) describes the interface of a Web service

in a choreographed interaction. This interface declares the flow of messages exchanged by

the Web service. One WSCI interface defines the observable behaviour of one Web service.

Temporal and logical dependencies in the flow of messages represent this behaviour. A WSCI

choreography consists of a set of interfaces.

3http://www.w3.org/TR/wsdl

117

9.5.3.3 OWL-S

The Ontology Web Language for Services (OWL-S) was developed to support the concept

of Semantic Web from the DARPA Agent Markup Language (DAML4). The purpose of this

ontology language is to automate the discovery, invocation, composition, interoperation and

monitoring of Web services. The ontology proposed by OWL-S is designed to provide three

essential sorts of information about services.

• Service profile - what the service provides (for being discovered)

• Service process model - how the service is used (for being used)

• Service grounding - how to access the service (for being used)

9.6 Ensemble selection

Ensemble selection aims to reduce ensemble sizes prior to classifier combination. Ensemble

selection decreases computational overhead from a large number of member classifiers and may

acquire better predictive performance from classifiers having various predictive performance

levels.

9.6.1 Introduction

Ensemble methods typically have two phases for learning: the generation of multiple classifi-

ers and their combination. Ensemble selection is an additional intermediate phase to reduce the

ensemble size prior to combination. Ensemble selection gives us two benefits: efficiency and

predictive performance. Managing a large number of member classifiers in an ensemble brings

computational overhead such as large memory requirements and computational cost. Ensemble

selection can reduce this computational overhead. Member classifiers might be composed of

both high and low predictive performance models but low predictive performance models can

badly affect the performance of an ensemble. Ensemble selection removes these low perform-

ing models.

4http://www.daml.org/

118

9.6.2 Ensemble selection algorithms

Ensemble selection methods that have been proposed so far can be categorised into four cat-

egories: search-based, clustering-based, ranking-basedand other methods.

9.6.2.1 Search-based methods

Search-based methods are the most direct approach for ensemble selection. They heuristically

select different classifier subsets in the classifier searchspace based on some metric and each

candidate is evaluated. Search-based methods can be divided to greedy search and stochastic

search based on the search paradigm.

Greedy search The greedy search paradigm is the most popular category of ensemble se-

lection. Greedy search tries to find a globally best classifier subset by searching the classifier

subset space.

In the research of Fanet al. [31], Martı́nez-Muñoz and Suárez [61], Caruanaet al. [16] and the

Reduce-Error Pruning with Backfitting method [62], forwardselection was used for searching

the classifier subset space [59].

Backward elimination was used in the AID thinning and concurrency thinning algorithms [6].

Stochastic search Stochastic search gives a chance to select a random ensemblecandidate

for a next round. This helps ensemble selection process to avoid getting stuck in local optima.

The GASEN-b algorithm [107] applied a genetic algorithm (GA) to perform stochastic search

in the space of classifier subsets. A bit string represents anensemble. One bit indicates a clas-

sifier. Corresponding bits determine which classifiers become members of an ensemble. The

operations of GP such as crossover and mutation are applied to ensembles. The performance

of an ensemble is evaluated as the fitness value.

Partalaset al. [72] employed Q-learning for stochastic search. In Q-learning, selectingn

classifiers for an ensemble is transformed into letting an agent learn an optimal policy of taking

n actions of including or excluding classifiers.

119

9.6.2.2 Clustering-based methods

Clustering-based methods have two-step stages. The first step is to apply a clustering algorithm

to discover sets of classifiers that look giving similar predictions. The second step is to prune

each cluster separately.

Giacinto, Roli and Fumera [38] applied Hierarchical Agglomerative Clustering (HAC). It was

required to define a distance metric between classifiers to use this clustering algorithm. They

defined this metric as the probability of the coincident error level between classifiers and used

a validation set to calculate the error levels. In pruning within a cluster, a single representative

cluster is selected. The selected classifier has the maximalaverage distance from all other

clusters. For making an ensemble from the selected classifiers pruned in the individual clusters,

all the combinations of the selected classifiers are evaluated using a validation set based on

majority voting as the combination method. The combinationthat has achieved the highest

classification accuracy becomes the final ensemble.

Lazarevic and Obradovic [56] used thek-means algorithm to make clusters of classifiers. In

this method, to determine the value ofk (the number of clusters) is an issue. They continually

increased the number of clusters until diversity among clusters began to decrease to solve the

given problem. They then pruned classifiers of each cluster based on a pre-defined threshold of

classification accuracy.

Fu, Hu and Zhao [37] also used thek-means algorithm for clustering classifiers. They pruned

each cluster by selecting a single classifier that has the highest classification accuracy as Giacinto,

Roli and Fumera did and determined the number of clusters as Lazarevic and Obradovic did.

9.6.2.3 Ranking-based methods

Ranking-based methods give an order to classifiers in an ensemble according to some evalu-

ation metric and select classifiers based on the order.

In the Orientation Ordering algorithm [62], classifiers gettheir orders based on the angle

between their signature vector and reference vector. The signature vector of a classifierc is

a |D|-dimensional vector. Each element has the value+1 if c(xi) = yi and−1 if c(xi) 6= yi . x is

a validation example,y is an actual class value andi is an index of an example in a validation

set. The reference vector is a vertical vector of an ensemblesignature vector which is an aver-

age signature value of all classifiers in an ensemble. Classifiers whose angle is less thanπ/2

120

become the members of a final ensemble.

9.6.2.4 Other methods

Two sorts of approaches that do not belong to the three categories above have been introduced.

The first approach [93, 92] is based on statistical procedures for directly selecting a subset

of classifiers. The other approach [106] is based on semi-definite programming (SDP), more

specifically quadratic integer programming.

9.7 Social reputation mechanisms

Social reputation mechanisms are used to improve the reliability and performance of electronic

societies through rating reputation of the members.

9.7.1 Introduction

The research on computational reputation mechanisms is a discipline that has gained significant

attention in recent years. Its aim is to increase the reliability and performance of introduced

electronic communities.

There are two sorts of social evaluations; local (subjective) reputation and global reputation.

In local reputation, reputation inferences are performed from the perspective of another agent

and thus each agent in the network may have multiple reputation values. Local reputation

is subjective by nature. Mechanisms such as ReGreT [85], RepAge [84], Sierra-Debenham

model [88], AFRAS [15] and FIRE [27] are based on local reputation. In global reputation, the

reputation of each agent is computed from the perspective ofthe whole network and thus each

agent is associated to a single reputation value. An individual agent has a public reputation in

the community. Examples that follow global reputation are online auctions such as eBay5 and

Amazon Auctions6, laboratory models such as Sporas [105], and Web related algorithms such

as PageRank [13], HITS [51] and TrustRank [41].

5http://www.eBay.com
6http://auctions.amazon.com

121

9.7.2 Mechanisms based on global reputation

9.7.2.1 Online reputation mechanisms

eBay and Amazon Auctions are representative examples of online marketplaces using reputa-

tion mechanisms. On eBay, the reputation mechanism is basedon the ratings that users add

after the completion of a transaction. The user can choose one of the three possible values:

positive (1), negative (−1) or neutral (0). The reputation value is calculated as the sum of those

ratings in the last six months. Amazon Auctions use a mean value as the reputation value.

9.7.2.2 Sporas

Sporas is an evolved version of the online reputation mechanisms. Sporas has two main fea-

tures for handling reputation. First, only the most recent rating between two users is used

for computing the reputation value. Second, users having a very high reputation are likely to

maintain their ratings while users having a low reputation obtain big rating changes. Sporas

measures the reliability of the users’ reputation based on the standard deviation of reputation

values. Sporas is more robust to changes of the user behaviour and the reliability measure helps

the reputation value more usable.

9.7.2.3 Link-based algorithms

There are many link-based algorithms for finding authoritative, influential, central and reput-

able nodes on a network. These algorithms can generally be applied to any sort of network.

9.7.2.3.1 PageRank The PageRank algorithm is inspired from how the number of citations

determine the relevance of a paper in the scientific community. PageRank conceptually maps a

link from a PageA to a pageB into a vote of the pageA for the pageB. The formula to calculate

the PageRank value of the page is the following7:

PR(pi) =
1−d

N
+d ∑

p j∈M(pi)

PR(p j)

L(Pj)
(9.1)

7From http://en.wikipedia.org/wiki/PageRank

122

p is a Web page.N is the total number of pages.M(pi) is the set of pages that link topi . L(Pj)

is the number of outbound links on pagep j . d is a damping factor.

9.7.2.3.2 HITS The HITS algorithm also considers the relevance of a Web pagebased on its

links, like PageRank. However, this algorithm only use a subset of pages instead of using any

page that links to the target page.Authoritypages andhubpages are the selected pages to be

used. The Web page authors provide an algorithm to determineanauthoritypage that is linked

from many good pages. Authors also define ahub page that has links to many authoritative

pages.

123

Chapter 10

Conclusions

We live in an environment in which things are being generatedin greater numbers and are con-

necting one another much more frequently, faster and broader than before. Things are autonom-

ous, adaptive and communicative with sensing and processing. We can call thesesmart objects.

Examples of smart objects are wireless sensors, ambient communication devices, household

appliances and mobile medical devices.

We know that a higher degree ofsmartnesscan be derived from interoperation of those smart

objects. The higher degree of smartness is obtained throughshared knowledge.

Our J-model architecture provides a practical platform to share one form of valuable knowledge

among smart objects that perform classification.

10.1 Hypothesis confirmation

We now return to our original hypotheses in the introductionchapter and check whether the

research hypotheses of this thesis have been confirmed.

The hypotheses, which we introduced in Section 1.3, are

1. J-model’s prediction performance approaches the performance of traditional ensemble

methods.

2. J-model’s prediction performance approaches the performance of traditional ensemble

methods in practical time.

3. J-model is applicable to realistic learning problems.

124

4. Minimal parameterisation is required for J-model prediction.

Each hypothesis has been confirmed as follows.

1. In the experiments of the section 7.6, we compared J-model’s prediction performance

with other representative ensemble methods on the metrics of accuracy, sensitivity, spe-

cificity, F-measure and the area under curve (AUC) using standard machine learning

benchmark data sets. The results showed that J-model’s performance is comparable to

the performances of the other traditional ensemble methods.

2. In the benchmark comparisons in Section 7.6, we commonly set 200 as the number of

interactions. The number of interactions we set was determined based on the peer sep-

aration experiments of Section 7.3. After 200 interactions, peers were reliably separated

from each other and their score orders became stable. 200 interactions finishes within

one second of physical time in the benchmarks. This is a practical time for us to get

classification results.

Formally, J-model’s time complexity for coordination isO(N2). As shown in a pseudo-

code representing an ensemble coordination process of J-model in Section 4.3, J-model’s

coordination process has two loops of an outer and an inner ones. The outer loop is for

the number of interactions and the inner loop is for the size of an ensemble (the number

of roles defined in an interaction model is the same as the sizeof an ensemble as each

member of an ensemble takes its corresponding role). This time complexity analysis

supports that J-model’s coordination process is competitive.

3. We applied J-model to virtual screening classification problem in Section 7.7. The res-

ults for true positive rates on these highly imbalanced datasets was remarkably success-

ful. The results was obtained by using 200 interactions. J-model did not suffer from a

memory space problem for these large size data sets. This tells us that J-model is applic-

able to realistic learning problems.

4. We discussed the parameterisation issue of J-model in Section 8.7 of the discussion

chapter. J-model required only the number of interactions as a parameter and the value

of the interaction parameter might be able to be determined automatically.

10.2 Contributions to knowledge

The key contributions of this thesis are as follows:

125

• First, we showed that service choreography coordination can be an effective ensemble

learning process for classifiers in an open context. In experiments, its classification res-

ults are better than the results from traditional ensemble methods and they are given in

practical time.

• Second, we gave more attention to task-oriented machine learning as distinct from pre-

vious passive learning techniques. Learning tasks are implemented by designing interac-

tion models.

• Third, we designed a reputation mechanism showing network effects and a power-law

distribution for machine learning. The mechanism recommends more appropriate classi-

fiers from a classifier pool. Formally, we defined the peer ranking algorithm suitable for

general machine learning classification. It is robust for classification services in an open

context and decides reputation of services based on the result of interaction. The peer

ranking mechanism is general and independent of the design of individual interaction

models or classifiers.

10.3 Weaknesses on our work

Despite of contributions of our work, there remains weak points on our achievements as fol-

lows:

• We chose a heuristic selection approach for the number of interactions.

As we discussed this problem in Section 8.7, we need an automatic method that adapt-

ively determines the appropriate number of interactions atruntime. This issue is essential

because the number of interactions determines the degree ofconvergence of an ensemble.

If the convergence is premature, a less verified ensemble might be selected as a final en-

semble classifier. Meanwhile, if the convergence is too mature with an excess number of

interactions, a selected ensemble might be over-fitted to query examples.

• A single peer ranking service might not be appropriate for a huge classifier pool.

We used a single peer ranking service to calculate ranks of peers. The single peer ranking

service might encounter a problem if it should give ranks fora huge number of peers

because requirements of the service for memory and time may be a bottleneck in our

architecture.

126

This problem can be solved by using multiple peer ranking services. Each service takes

one of the peer clusters. A global rank can be calculated by merging local ranks that

individual peer ranking services calculated for their peerclusters.

10.4 Future work

10.4.1 Adaptive parameterisation

We discussed J-model’s parameterisation issues in the discussion chapter (Section 8.7). In the

section, we suggested that the number of interactions whichis needed for enough peer separ-

ation can be determined based on the size of query examples and changes of the gap between

average scores of the higher scored peer and the lower scoredpeers. J-model could be made

more sensitive to what happens during its interactions, forexample by adjusting the selection

balance among peers. That is, we have a plan to make J-model itself adjust its parameters

adaptively and automatically at run-time.

10.4.2 General peer ranking algorithm

We evaluated J-model with standard machine learning benchmark data sets in Section 7.6 and

a realistic classification problem of virtual screening in Section 7.7. The results showed that

J-model gives good prediction performance. We will evaluate J-model with other realistic prob-

lems. The peer ranking algorithm of J-model is generally applicable at least for the problems

that we used in this thesis. We would like to measure how well the peer ranking algorithm

works for further realistic problems. If the ranking algorithm does not show sufficient perform-

ance for a broader range of problems, we need to adjust the ranking algorithm (for example

by adaptive parameterisation) so that the ranking algorithm gives balanced exploration and ex-

ploitation and network effects and a power-law distribution for peers across many classification

problems.

10.4.3 Regression, clustering and reinforcement learning

We utilised J-model for classification problems. We expect that we can expand the application

of J-model to other sorts of machine learning such as regression and clustering problems and

127

reinforcement learning. J-model is a general ensemble learning architecture. So we expect

that J-model can be applied to such learning problems simplythrough preparing an appropriate

classifier pool and specified interaction models without changing any architectural components

of J-model or re-defining the peer ranking algorithm.

10.4.4 Mathematical analysis

We would like to deepen our understanding of J-model’s learning process by the peer rank-

ing algorithm through the development of a more extensive abstract study of its mathematical

properties. We think that random process theory can be one ofthe most appropriate candidates

for this purpose. Through analysing J-model learning mathematically, we can understand its

learning process at a precise and fundamental level and the understanding may help us to be

able to design better J-model learning.

128

Bibliography

[1] J. Abian, M. Atencia, P. Besana, L. Bernacchioni, D. Gerloff, S. Leung, J. Magasin,

A.P. de Pinninck, X. Quan, D. Robertson, et al. Bioinformatics interaction models.

Deliverable D6.3, OpenKnowledge, 2008.

[2] C. Anderson.The long tail: Why the future of business is selling less of more. Hyperion

Books, 2008.

[3] A. Arkin, S. Askary, S. Fordin, W. Jekeli, K. Kawaguchi, D. Orchard, S. Pogliani,

K. Riemer, S. Struble, P. Takacsi-Nagy, et al. Web service choreography interface

(WSCI) 1.0. Standards proposal by BEA Systems, Intalio, SAP, and Sun Microsystems,

2002.

[4] A. Artikis. Dynamic protocols for open agent systems. InProceedings of The 8th

International Conference on Autonomous Agents and Multiagent Systems-Volume 1,

pages 97–104. International Foundation for Autonomous Agents and Multiagent Sys-

tems, 2009.

[5] S. Bailey, R. Grossman, H. Sivakumar, and A. Turinsky. Papyrus: a system for data

mining over local and wide area clusters and super-clusters. In Proceedings of the 1999

ACM/IEEE conference on Supercomputing (CDROM), Supercomputing ’99, New York,

NY, USA, 1999. ACM.

[6] R.E. Banfield, L.O. Hall, K.W. Bowyer, and W.P. Kegelmeyer. Ensemble diversity meas-

ures and their application to thinning.Information Fusion, 6(1):49–62, 2005.

[7] E.E. Bolton, Y. Wang, P.A. Thiessen, and S.H. Bryant. Pubchem: integrated platform of

small molecules and biological activities.Annual Reports in Computational Chemistry,

4:217–241, 2008.

[8] K.D. Borne. Astroinformatics: A 21st century approach to astronomy.Arxiv preprint

arXiv:0909.3892, 2009.

129

[9] J. Botı́a, A. Gómez-Skarmeta, M. Valdés, and A. Padilla. Metala: A meta-learning ar-

chitecture.Computational Intelligence. Theory and Applications, pages 688–698, 2001.

[10] D. Bradley. Dealing with a data dilemma.Nature Reviews: Drug Discovery, 7:632–633,

2008.

[11] Leo Breiman. Bagging predictors.Machine Learning, 24(2):123–140, 1996.

[12] Leo Breiman. Random forests.Machine learning, 45(1):5–32, 2001.

[13] S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine.

Computer networks and ISDN systems, 30(1-7):107–117, 1998.

[14] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tomkins,

and J. Wiener. Graph structure in the web.Computer networks, 33(1):309–320, 2000.

[15] J. Carbo, JM Molina, and J. Davila. Trust management through fuzzy reputation.Inter-

national Journal of Cooperative Information Systems, 12(1):135–155, 2003.

[16] R. Caruana, A. Niculescu-Mizil, G. Crew, and A. Ksikes.Ensemble selection from lib-

raries of models. InProceedings of the twenty-first international conference on Machine

learning, page 18. ACM, 2004.

[17] G. Chalkiadakis and C. Boutilier. Coordination in multiagent reinforcement learning:

a bayesian approach. InProceedings of the second international joint conference on

Autonomous agents and multiagent systems, pages 709–716. ACM, 2003.

[18] Philip Chan and Salvatore J. Stolfo. Toward parallel and distributed learning by meta-

learning. InIn AAAI Workshop in Knowledge Discovery in Databases, pages 227–240,

1993.

[19] N.V. Chawla, N. Japkowicz, and A. Kotcz. Editorial: special issue on learning from

imbalanced data sets.ACM SIGKDD Explorations Newsletter, 6(1):1–6, 2004.

[20] R. Chinnici, J.J. Moreau, A. Ryman, and S. Weerawarana.Web services description

language (WSDL) version 2.0 part 1: Core language.W3C Recommendation, 26, 2007.

[21] E. Christensen, F. Curbera, G. Meredith, S. Weerawarana, et al. Web services description

language (WSDL) 1.1, 2001.

[22] J.A. Clouse. Learning from an automated training agent. In Adaptation and Learning in

Multiagent Systems, 1996.

130

[23] C. Cortes and V. Vapnik. Support-vector networks.Machine learning, 20(3):273–297,

1995.

[24] J.A.N. de Caritat Marquis de Condorcet.Essai sur l’application de l’analysèa la prob-

abilité des decisions. De l’imprimerie royale, 1785.

[25] S.A. Deloach, W.H. Oyenan, and E.T. Matson. A capabilities-based model for adaptive

organizations.Autonomous Agents and Multi-Agent Systems, 16(1):13–56, 2008.

[26] Virginia Dignum, Frank Dignum, and Liz Sonenberg. Towards dynamic reorganization

of agent societies. InIn Proceedings of Workshop on Coordination in Emergent Agent

Societies, pages 22–27, 2004.

[27] T. Dong-Huynha, N. Jennings, and N. Shadbolt. Fire: An integrated trust and reputa-

tion model for open multi-agent systems. InECAI 2004: 16th European Conference

on Artificial Intelligence, August 22-27, 2004, Valencia, Spain: including Prestigious

Applicants [sic] of Intelligent Systems (PAIS 2004): proceedings, volume 110, page 18.

Ios Pr Inc, 2004.

[28] D. Easley and J. Kleinberg.Networks, crowds, and markets. Cambridge Univ Press,

2010.

[29] J.M. Epstein and R. Axtell.Growing artificial societies: social science from the bottom

up. The MIT Press, 1996.

[30] T. Erl. Service-oriented architecture. Prentice Hall, 2004.

[31] Wei Fan, Fang Chu, Haixun Wang, and Philip S. Yu. Pruningand dynamic scheduling

of cost-sensitive ensembles. InEighteenth national conference on Artificial intelligence,

pages 146–151, Menlo Park, CA, USA, 2002. American Association for Artificial Intel-

ligence.

[32] Wei Fan, S.J. Stolfo, and J. Zhang. The application of adaboost for distributed, scalable

and on-line learning. InProceedings of the fifth ACM SIGKDD international conference

on Knowledge discovery and data mining, pages 362–366. ACM, 1999.

[33] J. Ferber. Multi-agent systems: an introduction to distributed artificial intelligence.

Addison-Wesley Longman Publishing Co., Inc., 1999.

[34] A. Frank and A. Asuncion. UCI machine learning repository, 2010.

131

[35] Yoav Freund and Robert E. Schapire. Experiments with a new boosting algorithm. In

Thirteenth International Conference on Machine Learning, pages 148–156, San Fran-

cisco, 1996. Morgan Kaufmann.

[36] J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical view

of boosting (with discussion and a rejoinder by the authors). The annals of statistics,

28(2):337–407, 2000.

[37] Q. Fu, S.X. Hu, and S.Y. Zhao. Clustering-based selective neural network ensemble.

Journal of Zhejiang University-Science A, 6(5):387–392, 2005.

[38] Giorgio Giacinto, Fabio Roli, and Giorgio Fumera. Design of effective multiple classifier

systems by clustering of classifiers. InProc. of ICPR2000, 15th Int. Conference on

Pattern Recognition, pages 3–8, 2000.

[39] P.R. Graça and G. Gaspar. Using cognition and learningto improve agents’ reactions. In

Adaptive agents and multi-agent systems, pages 239–259. Springer-Verlag, 2003.

[40] Yike Guo and Janjao Sutiwaraphun. Probing knowledge indistributed data mining.

In Proceedings of the Third Pacific-Asia Conference on Methodologies for Knowledge

Discovery and Data Mining, PAKDD ’99, pages 443–452, London, UK, UK, 1999.

Springer-Verlag.

[41] Z. Gyöngyi, H. Garcia-Molina, and J. Pedersen. Combating web spam with trustrank. In

Proceedings of the Thirtieth international conference on Very large data bases-Volume

30, pages 576–587. VLDB Endowment, 2004.

[42] Lawrence O. Hall, Nitesh Chawla, and Kevin W. Bowyer. Combining decision trees

learned in parallel. InIn Working Notes of the KDD-97 Workshop on Distributed Data

Mining, pages 10–15, 1998.

[43] Lawrence O. Hall, Nitesh Chawla, and Kevin W. Bowyer. Decision tree learning on

very large data sets. InIn IEEE Conference on Systems, Man and Cybernetics, pages

2579–2584, 1998.

[44] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I.H. Witten. The weka

data mining software: an update.ACM SIGKDD Explorations Newsletter, 11(1):10–18,

2009.

[45] Tin Kam Ho. The random subspace method for constructingdecision forests.IEEE

Transactions on Pattern Analysis and Machine Intelligence, 20(8):832–844, 1998.

132

[46] J. Hübner, L. Vercouter, and O. Boissier. Instrumenting multi-agent organisations with

artifacts to support reputation processes.Coordination, Organizations, Institutions and

Norms in Agent Systems IV, pages 96–110, 2009.

[47] Michael N. Huhns and Gerhard Weiss. Guest editorial.Machine Learning, 33(2-3):123–

128, 1998.

[48] H. Kargupta, D.H. Byung-Hoon, and E. Johnson. Collective data mining: A new per-

spective toward distributed data analysis. InAdvances in Distributed and Parallel Know-

ledge Discovery, 1999.

[49] N. Kavantzas, D. Burdett, G. Ritzinger, T. Fletcher, Y.Lafon, and C. Barreto. Web

services choreography description language version 1.0.W3C Working Draft, 17:10–

20041217, 2004.

[50] Josef Kittler, Mohamad Hatef, Robert P. W. Duin, and Jiri Matas. On combining clas-

sifiers. IEEE Transactions on pattern analysis and machine intelligence, 20:226–239,

1998.

[51] J.M. Kleinberg. Authoritative sources in a hyperlinked environment.Journal of the ACM

(JACM), 46(5):604–632, 1999.

[52] R. Kota, N. Gibbins, and N.R. Jennings. Self-organising agent organisations. InPro-

ceedings of The 8th International Conference on AutonomousAgents and Multiagent

Systems-Volume 2, pages 797–804. International Foundation for Autonomous Agents

and Multiagent Systems, 2009.

[53] A. Krogh and J. Vedelsby. Neural network ensembles, cross validation, and active learn-

ing. Advances in neural information processing systems, pages 231–238, 1995.

[54] Ludmila I. Kuncheva.Combining Pattern Classifiers: Methods and Algorithms. Wiley-

Interscience, 2004.

[55] Aleksandar Lazarevic and Zoran Obradovic. The distributed boosting algorithm. In

Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, pages 311–316. ACM Press, 2001.

[56] Aleksandar Lazarevic and Zoran Obradovic. Effective pruning of neural network classi-

fier ensembles. InNeural Networks, 2001. Proceedings. IJCNN’01. International Joint

Conference on, volume 2, pages 796–801. IEEE, 2001.

133

[57] Siu-wai Leung, Xueping Quan, Paolo Besana, Qian Li, Mark Collins, Dietlind Gerloff,

and Dave Robertson. Openknowledge for peer-to-peer experimentation in protein iden-

tification by ms/ms.Automated Experimentation, 3(1):3, 2011.

[58] Milde M. S. Lira, Ronaldo R. B. de Aquino, Aida A. Ferreira, Manoel A. Carvalho,

Otoni Nóbrega Neto, and Gabriela S. M. Santos. Combining multiple artificial neural

networks using random committee to decide upon electrical disturbance classification.

In IJCNN, pages 2863–2868, 2007.

[59] D.D. Margineantu and T.G. Dietterich. Pruning adaptive boosting. InMachine Learning-

International Workshop then Conference, pages 211–218. Morgan Kaufmann Publishers

Inc., 1997.

[60] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, S. McIlraith, S. Narayanan,

M. Paolucci, B. Parsia, T. Payne, et al. Owl-s: Semantic markup for web services.W3C

Member submission, 22:2007–04, 2004.

[61] Gonzalo Martı́nez-Muñoz and Alberto Suárez. Aggregation ordering in bagging. In

Proc. of the IASTED International Conference on Artificial Intelligence and Applica-

tions, pages 258–263. Citeseer, 2004.

[62] Gonzalo Martı́nez-Muñoz and Alberto Suárez. Pruning in ordered bagging ensembles.

In Proceedings of the 23rd international conference on Machine learning, ICML ’06,

pages 609–616, New York, NY, USA, 2006. ACM.

[63] P. Melville and R.J. Mooney. Constructing diverse classifier ensembles using artifi-

cial training examples. InInternational Joint Conference on Artificial Intelligence,

volume 18, pages 505–512. DTIC Document, 2003.

[64] M. Minsky. The society of mind. Simon and Schuster, 1988.

[65] Thomas M. Mitchell.Machine Learning. McGraw-Hill, Inc., New York, NY, USA, 1

edition, 1997.

[66] P.J. Modi and W.M. Shen. Collaborative multiagent learning for classification tasks. In

Proceedings of the fifth international conference on Autonomous agents, pages 37–38.

ACM, 2001.

[67] M.E.J. Newman. Power laws, Pareto distributions and Zipf’s law. Contemporary phys-

ics, 46(5):323–351, 2005.

134

[68] L. Nunes and E. Oliveira. Cooperative learning using advice exchange.Adaptive agents

and multi-agent systems, pages 560–560, 2003.

[69] S. Ontañón and E. Plaza. A bartering approach to improve multiagent learning. InPro-

ceedings of the first international joint conference on Autonomous agents and multiagent

systems: part 1, pages 386–393. ACM, 2002.

[70] David Opitz and Richard Maclin. Popular ensemble methods: An empirical study.

Journal of Artificial Intelligence Research, 11:169–198, 1999.

[71] N.C. Oza and K. Tumer. Classifier ensembles: Select real-world applications.Informa-

tion Fusion, 9(1):4–20, 2008.

[72] I. Partalas, G. Tsoumakas, I. Katakis, and I. Vlahavas.Ensemble pruning using rein-

forcement learning.Advances in Artificial Intelligence, pages 301–310, 2006.

[73] J. Pasley. How bpel and soa are changing web services development.Internet Comput-

ing, IEEE, 9(3):60–67, 2005.

[74] C. Peltz. Web services orchestration and choreography. Computer, 36(10):46–52, 2003.

[75] D. Pop, V. Negru, and C. Sandru. Multi-agent architecture for knowledge discovery. In

Symbolic and Numeric Algorithms for Scientific Computing, 2006. SYNASC’06. Eighth

International Symposium on, pages 217–226. IEEE, 2006.

[76] M.V.N. Prasad, S.E. Lander, and V.R. Lesser. Cooperative learning over composite

search spaces: Experiences with a multi-agent design system. In Thirteenth National

Conference on Artificial Intelligence (AAAI-96), 1996.

[77] Dave Robertson. Multi-agent coordination as distributed logic programming.Logic

programming, pages 77–96, 2004.

[78] Dave Robertson. A lightweight coordination calculus for agent systems.Declarative

agent languages and technologies II, pages 109–115, 2005.

[79] Dave Robertson. Webs of interactions: Exploring peer ranking via simulation in open-

knowledge. Technical report, School of Informatics, The University of Edinburgh, 2009.

[80] Dave Robertson et al. Open knowledge: Semantic webs through peer-to-peer interaction.

openknowledge manifesto. Technical report, Information Engineering and Computer

Science, The University of Trento, 2006.

135

[81] J.J. Rodriguez, L.I. Kuncheva, and C.J. Alonso. Rotation forest: A new classifier en-

semble method.Pattern Analysis and Machine Intelligence, IEEE Transactions on,

28(10):1619–1630, 2006.

[82] L. Rokach. Ensemble-based classifiers.Artificial Intelligence Review, 33(1):1–39, 2010.

[83] L. Rokach.Pattern classification using ensemble methods, volume 75. World Scientific

Pub Co Inc, 2010.

[84] J. Sabater, M. Paolucci, and R. Conte. Repage: Reputation and image among limited

autonomous partners.Journal of Artificial Societies and Social Simulation, 9(2), 2006.

[85] J. Sabater and C. Sierra. Regret: reputation in gregarious societies. InProceedings of

the fifth international conference on Autonomous agents, pages 194–195. ACM, 2001.

[86] Amanda Schierz. Virtual screening of bioassay data.Journal of Cheminformatics,

1(1):21, 2009.

[87] R.M. Shapiro. Xpdl 2.0: Integrating process interchange and bpmn.Workflow Hand-

book, pages 183–194, 2006.

[88] Carles Sierra and John Debenham. An information-basedmodel for trust. InProceed-

ings of the fourth international joint conference on Autonomous agents and multiagent

systems, AAMAS ’05, pages 497–504, New York, NY, USA, 2005. ACM.

[89] S. Stolfo, A.L. Prodromidis, S. Tselepis, W. Lee, D.W. Fan, and P.K. Chan. Jam: Java

agents for meta-learning over distributed databases. InProceedings of the 3rd Interna-

tional Conference on Knowledge Discovery and Data Mining, pages 74–81, 1997.

[90] D. Szer and F. Charpillet. Coordination through mutualnotification in cooperative mul-

tiagent reinforcement learning. InProceedings of the Third International Joint Confer-

ence on Autonomous Agents and Multiagent Systems-Volume 3, pages 1254–1255. IEEE

Computer Society, 2004.

[91] M. Tan. Multi-agent reinforcement learning: Independent vs. cooperative agents. In

Proceedings of the tenth international conference on machine learning, volume 337.

Amherst, MA, 1993.

[92] Grigorios Tsoumakas, Lefteris Angelis, and Ioannis Vlahavas. Selective fusion of het-

erogeneous classifiers.Intell. Data Anal., 9(6):511–525, November 2005.

136

[93] Grigorios Tsoumakas, Ioannis Katakis, and Ioannis Vlahavas. Effective voting of het-

erogeneous classifiers. InIn Proceedings of the 15th European Conference on Machine

Learning, pages 465–476, 2004.

[94] A. Turinsky, R. Grossman, et al. A framework for finding distributed data mining

strategies that are intermediate between centeralized strategies and in-place strategies.

In Proceedings of Workshop on Distributed and Parallel Knowledge Discovery at KDD-

2000, pages 1–7, 2000.

[95] W.M.P. van der Aalst and A. H. M. Ter Hofstede. Yawl: Yet another workflow language.

Information Systems, 30:245–275, 2003.

[96] R. Vilalta, C. Giraud-Carrier, P. Brazdil, and C. Soares. Using meta-learning to support

data mining.International Journal of Computer Science and Applications, 1(1):31–45,

2004.

[97] T. Vu, R. Powers, and Y. Shoham. Learning against multiple opponents. InProceedings

of the fifth international joint conference on Autonomous agents and multiagent systems,

pages 752–759. ACM, 2006.

[98] W.P. Walters, M.T. Stahl, and M.A. Murcko. Virtual screening-an overview.Drug Dis-

covery Today, 3(4):160–178, 1998.

[99] Z.G. Wang, X.H. Liang, and Q.P. Zhao. Adaptive mechanisms of organizational struc-

tures in multi-agent systems.Agent Computing and Multi-Agent Systems, pages 471–

477, 2006.

[100] Gerhard Weiß. Learning to coordinate actions in multi-agent systems. Inin Proceedings

of the 13th International Conference on Artificial Intelligence, pages 311–316. Morgan

Kaufmann, 1993.

[101] Gerhard Weiß and Pierre Dillenbourg.What is ’multi’ in multi-agent learning?, pages

64–80. Pergamon Press, Oxford, 1999.

[102] S.D. Whitehead and D.H. Ballard.A study of cooperative mechanisms for faster rein-

forcement learning. University of Rochester, Department of Computer Science,1991.

[103] David H. Wolpert. Stacked generalization.Neural Networks, 5:241–259, 1992.

[104] Q. Yang and X. Wu. 10 challenging problems in data mining research.International

Journal of Information Technology & Decision Making, 5(4):597–604, 2006.

137

[105] G. Zacharia, A. Moukas, and P. Maes. Collaborative reputation mechanisms for elec-

tronic marketplaces.Decision Support Systems, 29(4):371–388, 2000.

[106] Yi Zhang, Samuel Burer, and W. Nick Street. Ensemble pruning via semi-definite pro-

gramming.J. Mach. Learn. Res., 7:1315–1338, December 2006.

[107] Z.H. Zhou and W. Tang. Selective ensemble of decision trees.Rough Sets, Fuzzy Sets,

Data Mining, and Granular Computing, pages 589–589, 2003.

138

	PhD coversheet April 2012
	thesis_JinhanKim_final
	Introduction
	Motivation
	Objectives
	Research hypothesis
	Thesis structure

	Background
	Services in open context
	Ensemble methods
	Concept
	Algorithms
	Advantages

	Service-oriented architecture
	Services
	Workflows
	Orchestration and choreography coordinations

	OpenKnowledge framework
	Service, participant and peer
	Interaction models
	Lightweight coordination calculus

	Social reputation
	Network effects
	Power laws
	Rich-get-richer dynamics
	Pareto principle and the long tail for reputation

	Architectural migration
	Introduction
	Classifier to classification service
	Classifier
	Classification service

	Classifier aggregation to service coordination
	Classifier aggregation
	Service coordination

	Performance boosting strategies
	In traditional ensemble learning
	In J-model

	J-model architecture
	Introduction
	Organisation of J-model
	Service choreography system
	Interaction processes
	Set of peers and data
	Reputation mechanism

	Discovery-enactment-analysis cycle
	Training, query and test layers
	Training layer
	Query layer
	Test layer

	Peer ranking service
	Introduction
	Recommendation-evaluation-update cycle
	Recommendation phase
	Evaluation phase
	Update phase

	Peer ranking algorithm
	Examples
	Under static conditions
	Under dynamic conditions

	Termination condition
	Number of interactions
	Performance metric criterion

	Interaction models for classification
	Introduction
	Open interaction models
	Simple model (IM1)
	Complex model (IM2)
	Another complex model (IM3)
	Model for specificity metric (IM4)
	Model for high true positive rate and low false positive rate metrics (IM5)
	Model with time constraint (IM6)

	Summary

	Experiments
	General methodology
	Binary class data
	Training, query and test examples
	Base classifiers for pool preparation
	Static and dynamic conditions

	System implementation for experiments
	Peer separation from the pool
	Introduction
	Experimental setup
	Results under static conditions
	Results under dynamic conditions

	Peer convergence to optima
	Introduction
	Experimental setup
	Results under static conditions
	Results under dynamic conditions
	Conclusion

	Learning curves
	Introduction
	Experimental setup and methods
	Results
	Conclusion

	Benchmark comparisons
	Introduction
	Experimental setup
	Results
	Conclusion

	Realistic problem - virtual screening
	Introduction
	Experimental setup
	Results
	Conclusion

	Discussion
	Balance between exploration and exploitation
	More exploration on less accurate ensembles and more exploitation on more accurate ensembles
	More frequent moving on less accurate ensembles
	More opportunities to be confident on more accurate ensembles
	Under dynamic condition

	Big falls in learning curves
	Cyclic curves in learning curves
	Accuracy of the pool in J-model
	Appropriate ensemble size
	Minimal parameterisation
	Conclusion

	Related work
	Distributed ensemble classification
	Distributed data mining
	Distributed classification

	Agent-based distributed data mining
	Introduction
	Benefits from agents for DDM
	Learning strategy for agent-based DDM

	Collaborative multi-agent learning
	Multi-agent learning
	Collaborative multi-agent learning
	Research on collaborative multi-agent learning

	Open multi-agent systems
	Introduction
	Research on open multi-agent systems

	Service choreography workflows
	Introduction
	Service orchestration and service choreography
	Choreography languages

	Ensemble selection
	Introduction
	Ensemble selection algorithms

	Social reputation mechanisms
	Introduction
	Mechanisms based on global reputation

	Conclusions
	Hypothesis confirmation
	Contributions to knowledge
	Weaknesses on our work
	Future work
	Adaptive parameterisation
	General peer ranking algorithm
	Regression, clustering and reinforcement learning
	Mathematical analysis

	Bibliography

