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Lay Summary

When we get sick, we take a medicine, usually in form of pills, to get relief.
A pill just contains a simple drug which has shown a good e�ect to beat a
speci�c disease. However, to understand which drug should be used and how
should it be, it is not an easy task. In particular, to get to the �nal �pill
stage� it could take up to 25 years of intensive and expensive research. This
work is trying to improve the �drug research� to get more accurate and fast
results, leading to a quicker �pill� creation and a less expensive research.

In order to help the research, this thesis proposes a variety of protocols to
compute in a more accurate and more robust way the �free energy� of a drug,
namely how a drug could be e�cacious against a speci�c target-disease. The
protocols are presented in a logical way, from the easier to the harder �free
energy� problems.
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Abstract

The main theme of this work is the design and development of new molecu-
lar simulation protocols, to achieve more accurate and reliable estimates of
free energy changes for processes relevant to the structure-based drug design.
The works starts with an insight into the reproducibility problem for alchem-
ical free energy calculations. Even if simulations are run with similar input
�les, the use of di�erent simulation engines could give di�erent free energy
results. As part of a collaborative e�ort, the implementation details of AM-
BER, GROMACS, SOMD and CHARMM simulation codes were studied and
free energy protocols for each software were validated to converge towards a
reproducibility limit of about 0.20 kcal·mol−1 for hydration free energies of
small organic molecules.

Following, new simulation methods for the estimation of lipophilicity co-
e�cients (log P and log D) for drug like molecules were developed and vali-
dated. log P values were computed for a dataset of 5 molecules with increas-
ing �uorination level. Predictions were in line with the experimental mea-
sures and the simulations also allowed new insights into the water-solute in-
teractions that drive the partitioning process. Then, as part of the SAMPL5
challenge, log D values for 53 drug-like molecules were computed. In this
context two di�erent simulation models were derived in order to take into
account the presence of protonated species. The results were encouraging
but also highlighted limits in alchemical free energy modelling.

As an additional task of the SAMPL5 contest, three di�erent protocols
were validated for predicting absolute binding a�nities for 22 host-guest sys-
tems. The �rst model yielded a free energy of binding based on free energy
changes in solvated and complex phase; the second added the long range
dispersion correction to the previous model; the third one used a standard
state correction term. All three protocols were among the top-ranked sub-
mission in SAMPL5, with a correlation coe�cient R2 of about 0.7 against
experimental data.

Finally, the origins and magnitude of the �nite size artefacts in alchemical
free energy calculations were investigated. Finite size artefacts are especially
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predominant in calculations that involve changes in the net-charge of a so-
lute. A new correction scheme was devised for the Barker Watts Reaction
Field approach and compared with the literature. Hydration free energy cal-
culations on simple ionic species were carried out to validate the consistency
of the scheme and the approach was further extended to host-guest binding
a�nities predictions.
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Chapter 1

Introduction

1.1 The drug discovery process

The history of modern drug discovery starts in 1856, when an English stu-
dent, William Henry Perkins, tried to synthesize quinine from allytoluidine,
an aniline derivative. Despite all his e�orts, the experiment ended up in a
dark substance that was able to turn fabrics purple: the tyrian purple [1],
the very �rst synthetic dye. Perkins understood the importance of his dis-
covery and he rapidly established his own factory on the following year. At
the same time other companies were founded, trying to optimize Perkins'
reaction to develop new possible synthetic dyes. As a result, the continuous
research for synthetic dyes led to a rapid development and demand of organic
chemists, who could discover novel reactions through the application of re-
search. The rise of German economics enabled Germany to lead this �eld,
investing capitals in dye industries. Thus, between 1858 and 1862 factories
such as Bayer, Ciba, Sandoz and Farbenfabrikent Hoechst appeared. At that
point many companies realized that their chemists not only could produce
dyes but could also look for organic molecules that could be employed as
possible drugs. As a matter of fact, dyes showed anti-bacterial properties,
as Domagh [2] discovered with Protosil, a red dye which could be used to
�ght against streptococcal bacteria. Therefore, dyes were initially used as
drug prototypes and, after a few years, drug research became a completely
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independent process from its origin [3]. In Britain, France and Canada the
dye-companies focused on the extraction of alkaloids from plants, which could
have therapeutic e�ects on sick people. Seminal e�orts for de�ning the very
�rst drug-design process, were achieved by Ehrlich [4]. Ehrlich was able to
synthesize the �rst synthetic drug, an arsenic compound to treat syphilis and
with his research team he laid the foundations for the �rst reliable biological
screening and evaluation procedures. The greatest result of this early drug
discovery challenges arrived at the end of the 1930s, when a Scottish scien-
tist, Alexander Fleming, building on works of Florey and Chain, discovered
penicillin. Penicillin was the �rst synthetic drug, made available on a large
scale, which helped soldiers during the Second World War against bacterial
infections. In spite of this success, most of these drug design studies were
carried out without knowing the chemical structure and properties of the
biological targets and many times serendipity was the key of success [1].

After the Second World War medicinal chemistry experienced a radical
change. Between 1950 and 1970, researchers focused their attention on un-
derstanding, in vivo, the mode of action of possible drug candidates. In
the late 1960s, Beecham and P�zer found new molecules with similar phar-
macokinetic properties to penicillin, such as sulfactams or clavulanates [5].
Starting from these compounds and following di�erent pathways, it was pos-
sible to develop new drugs with di�erent therapeutic e�ects (hypoglycaemic
agents, diuretics, antihypertensive etc). However, even if experiments on an-
imals were giving promising results, many times scientists were struggling to
understand and deal with the pharmacokinetics e�ects in human bodies. -
absorption, distribution, metabolism and excretion (ADME).

During the 1980s continuous technological development brought the drug
discovery process into a new era. In particular, the advent of computa-
tional chemistry gave bene�cial e�ects to drug design. For the very �rst time
it was possible to understand the atomic details of protein-ligand interac-
tions, thanks to the seminal works by Martin Karplus and Andrew McCam-
mon [6, 7]. Additionally, combinatorial chemistry made possible the creation
of large libraries of possible drug candidates and Quantitative Structure-
Activity Relationship(QSAR) methods facilitated the idealization of new
compounds [8].

The endless progress of hardware resources led to nowadays, with the
advent of graphical cards for scienti�c calculations and the creation of super-
computing facilities [9], which enable simulations of very large biomolecular
systems [10, 11, 12] and accelerate the drug screening process. In parallel,
the advent of more sophisticated biophysical essays has brought to a more
e�cient in vitro sampling of the chemical space. As a result, in the last
20 years, drug discovery has become an intersection among several scienti�c
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disciplines, such as genomics, proteomics, physical and organic chemistry,
computer science and pharmacology.

All these features led to the de�nition of a �critical path� of action [13]
for the development of new drugs, shown in �g. 1. The critical path divides
the drug discovery process into two main stages: an initial basic research and
subsequent clinical development and approval.

The basic research stage can be subdivided into three major steps:

• a pure biological research, where a biomolecular target is identi�ed
and, wherever possible, the target structure is solved by using crys-
tallographic or nuclear magnetic resonance (NMR) techniques. After
the identi�cation of the biomolecular target a library with thousands
of possible drug candidates is created;

• a molecular-prototype design and discovery phase. One of the leading
approaches at this stage, which will be the central part of this thesis,
performs an initial docking screening process of the molecular libraries.
Then, free energy simulations are run to understand the binding a�ni-
ties of drug candidates. These studies allow the de�nition of a lead
compound and its optimization, through iterative computational pro-
cedures;

• the preclinical development,where a small batch of compounds are op-
timised to improved diverse drug-like properties (ADME)

All these steps require between 6 and 9 years of work [14], accounting for
at least US $ 32 billion per year in the R&D pharmaceutical industry [15].
In spite of such a great �nancial investment, the pharmaceutical industry
is facing the �Eroom's law� [16], shown in �g. 2. An inverse proportional
relationship is observed between the number of new drugs approved by the
US Food and Drug Administration (FDA) per billion of US $ spent on the
R&D pharmaceutical research. The total R&D spending was doubled to US
$65 billion over the period 2000-2010, with very small number of approved
drugs (less than 1 per year per US $ billion spending.). As a matter of fact,
new drugs must be more e�ective than those currently on o�er in order to
be approved, which puts the R&D pharmaceutical sector under pressure to
look for new methodologies, which could enhance the basic research stage.

To alleviate this problem, a signi�cant amount of computational research
is focused on the optimization stage of the Structure Based Drug Design pro-
cess (SBDD) [17, 18, 19]. SBDD is a promising paradigm for drug-design,
where ligands are created based on the structural information from experi-
mental data. The most promising hit molecules, that typically come from a
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Figure 1: Critical path for the drug discovery process [13]. The process
starts with the biological research, where a biological target is identi�ed.
Whenever possible a library of thousands of compounds against this target is
screened. Then, the prototype design stage uses tools from physical sciences,
such as computational chemistry, to forecast drug properties and to de�ne
lead compounds. In this stage, drugs undergo a lead optimization process,
which should give a few lead compounds (around 5 molecules) ready for
the clinical stage. The preclinical development is needed to understand the
ADME properties of drug candidates, before authorizing the compounds for
the human trials. The last part of the drug discovery process are devoted to
the clinical development, which follow three phases where drugs are tested
on larger and larger number of volunteers. The very last step is the approval
by a drug administration organization, such as the FDA, and the launch on
the market. The overall process takes approximately 15 years on average.

high throughput or biophysical assay, undergo a hit to lead stage, where a
limited optimization is done to increase the drug-target a�nity. Then, once
potential drugs are found, molecules are extensively and iteratively optimized
in the lead optimization stage, trying to enhance the ADME properties whilst
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maintaining the potency. Correct predictions at the hit to lead and lead opti-
mization stage would be bene�cial for the basic research stage, leading to less
expenses for the pre-clinical trial stage and less time consumed for the whole
critical path. To reach this desired outcome, it is important to understand
exactly the chemical problem involved and how computational methods can
help in this process.

An important aspect in the lead optimization is the exact in silico es-
timation of the protein-ligand binding a�nity, which can be retrieved from
the experimental dissociation constant Kd:

PL� P + L

Kd = [P ][L]
[PL]

(1.1)

where P is the target protein, L the drug candidate, [PL] is the equilibrium
concentration of the complex species, [P ] and [L] the equilibrium concen-
tration of the protein and ligand respectively. Kd can be computationally
estimated through the calculation of the Gibbs free energy of binding:

∆G = kBT ln
Kd

C0

(1.2)

where the ∆G denotes the change of free energy upon binding, kB is the
Boltzmann constant, T is the temperature and C0 the standard state con-
centration (usually 1 M).

Many techniques have been developed to compute eq. 1.2. As an exam-
ple Åqvist modelled the protein ligand binding by introducing the Linear
Interaction Energy method (LIE) [20]. In this model, the linear response
theory for electrostatics forces [21] is employed, to compute the free energy
of binding of a ligand. A drawback of this technique is the di�culty in esti-
mating empirical parameters which govern the overall protein-ligand binding
prediction.

Another popular technique is the Molecular Mechanics Poisson Boltz-
mann Surface Area (MM-PBSA) [22]. MM-PBSA exploits molecular dy-
namics and Poisson Boltzmann calculations to retrieve the free energy of
binding of eq. 1.2. A problem of the MM-PBSA is the use of an implicit sol-
vent, thus possible water mediated behavior in the protein-ligand association
may be not detected.

Finally, a very popular and promising technique, which will be employed
and studied in this thesis, is the alchemical free energy calculation. The
alchemical approach exploits Zwanzig and Kirkwood ideas [23, 24], to com-
pute the free energy of binding as a free energy for changing a molecule
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from an initial to a �nal end state [25]. Aldeghi et al. [26] have employed
alchemical free energy calculation to compute eq. 1.2 for a set of diverse
inihibitors binding to bromodomain protein 4 (BRD4), achieving an accu-
racy of 0.6 kcal·mol−1. Furthermore, the authors have shown how this level
of accuracy ccan be achieved in pseudo-prospective approach. Chodera et
al. [27] have proved the potential of alchemical free energy calculation for
drug-discovery purposes. In particular, authors have predicted the a�nities
for kinase mutations binding to Abl, a major target in chronic myelogenous
leukemia (CML). Additionally, these calculations have shown an accuracy
of about 1 kcal·mol−1 in predicting the resistance for eight FDA-approved
kinase inhibitors across 144 clinically identi�ed kinase point mutations. Fi-
nally, by correctly mixing experimental bio asseys and alchemical free energy
calculations, Jorgesen [28] have shown how alchemical free energy calcula-
tions can be pivotal in the lead optimization phase, helping in the synthesis
of non-nucleoside inihibitors for HIV-1 reverse transcriptase (NNRTIs). Six
compounds are reported with an association constant of 20 nM for protection
of human MT-2 cells against the cytopathogenicity of HIV-1.

1.2 Statistical mechanics concepts: ensemble

and free energy

Thermodynamic quantities, such as the Gibbs free energy in eq. 1.2, can
be interpreted from an atomistic point of view, adopting the concept of
ensemble. The ensemble idea was initially developed by Boltzmann and
Gibbs [29, 30, 31] and it refers to a collection of systems (or particles), that
share common macroscopic properties. Boltzmann and Gibbs stated that
each thermodynamic property of a macroscopic system, like pressure, can
be computed as an average from the mechanical property arising in each
ensemble's particles [32, 33]. Indeed, if we consider an ensemble, at any mo-
ment in time, each of the total N particles has a given momentum p and
position q and Hamiltonian function H(q,p). The entire set of N positions
and momenta de�nes a precise point in a (qN ,pN) multidimensional space
Γ(qN ,pN), called phase space. The entire collection of particles adopting a
particular conformation through time described an imaginary curve in the
phase space, called trajectory [34]. Rather than focusing on the time evolu-
tion of the trajectory, thus on each single particle mechanics, statistics can
be employed to extract the thermodynamic properties of the system. In this
way, it is possible to describe the ensemble behavior by means of a distribu-
tion function P(Γ), which allows to compute the average properties of the
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ensemble, namely the average macroscopic thermodynamic state. Mathe-
matically, the Liouville thereom and Birkho� theorem assure that along the
trajectory the ensemble averages can be performed at any point in time and
that these averages are ergodic, so the time average of a function along a
trajectory is related to the ensemble average [35]. Hence, the aim of statis-
tical mechanics is the correct description and computation of an ensemble
probability function, in order to retrieve the macroscopic thermodynamic
quantities of a system.

One of the most important ensemble is the canonical ensemble. This
ensemble is characterized by a number of N of particles, it is coupled with
a thermal bath to keep a constant temperature T and the entire system has
a �xed volume V . The ensemble has a total energy E, described by the
Hamiltonian function H(qN ,pN), given as the sum of all the N particles of
the entire ensemble. The total energy of the system is not �xed, so all the
possible energy states of the energy spectrum should be considered to make
some evaluation on the macroscopic thermodynamic state of this ensemble.
In the canonical ensemble it is possible to prove that the probability of a
particle to be in a state j, described by a speci�c set of position qN and
momenta pN and a total energy of Hj is:

Pj(Γ) =
e−βHj(q

N ,pN )∫ ∫
e−βH(qN ,pN )dqNdpN

(1.3)

where β= 1
kBT

and kB is the Boltzmann constant (1.38064852×10−23 J
K
). The

denominator of eq. 1.3 is called partition function and is often indicated as
QNV T . The partition function is the sum over all the possible energy states of
the ensemble. The knowledge of this function is pivotal in statistical physics,
as from there any thermodynamic property of a system can be computed.As
an example the average energy Ē:

Ē = kBT
2

(
∂ lnQNV T

∂T

)
(1.4)

Moreover, QNV T is linked to the Hemlholtz free energy ANV T as:

ANV T = −kBT ln(QNV T ) (1.5)

Eq. 1.5 is known as the fundamental equation of statistical mechanics. The
passage from the Hemlholtz free energy ANV T to the Gibbs free energy GNPT ,
described in eq. 1.2 can be done by translating the canonical ensemble con-
cepts into the isothermal-isobaric ensemble. In this ensemble the pressure p
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is �xed, rather than the volume V , and the partition function can be de�ned
as:

∆NPT =

∫ ∫ ∫
e−βH(qN ,pN )e−βpV V NdqNdpNdV (1.6)

From here, it is possible to derive the Gibbs free energy:

GNPT = −kBT ln ∆NPT (1.7)

QNV T , and ∆NPT , can be further developed under the classical approxi-
mation [36]1:

QNV T =
1

N !

1

h3N

∫ ∫
e−βH(qN ,pN )dqNdpN (1.8)

where the term 1
N !

takes into account that fermions (e.g. electrons) are indis-
tinguishable, 1

h3N described the quantum mechanical origin of each particle,
where h is the Plank's constant ( 6.62×10−34 J

s
). Decomposing the Hamilto-

nian of eq. 1.8 into potential energy term U(qN) and kinetic energy K(pN):

QNV T =
1

N !

1

h3N

∫ ∫
e−β(U(qN )+K(pN ))dqNdpN

=
1

N !

1

h3N

∫
e−β(U(qN )dqN

∫
e−β(K(pN ))dpN

= Qid · ZNV T

(1.9)

Qid indicates the analytical integral evaluation of the kinetic part:

Qid =
V N

N !Λ3N
(1.10)

where Λ = h2

(2πmkBT )1/2 is the de Broglie wavelength, m the mass of each
particle. ZNV T is the con�gurational integral :

ZNV T =

∫
e−βU(qN )dqN (1.11)

For a isothermal-isobaric ensemble, eq. 1.11, can be written as:

ZNPT =

∫ ∫
e−βU(qN )+pV dqNdV (1.12)

Thus, by determining the potential energy of the system it is possible to solve
the con�gurational integral and retrieve the Gibbs free energy. To solve this
problem numerically, molecular dynamics techniques are employed, which
allow to sample the potential energy landscape of the molecular system.

1For the ease of notation only QNV T will be considered here
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1.3 Classical potentials

The potential energy function of a system, U(qN) is usually a high-multi di-
mensional function, very complicated to compute with quantum mechanical
techniques (ab-initio). Help comes from the Born-Oppenheimer approxima-
tion. In this approximation, the electron density is supposed to be instanta-
neously �xed from changes in nuclei's positions, as the electrons move much
faster than the nuclei [37, 38]. From the Born-Oppenheimer approximation,
the Schrödinger equation can be re-written in terms of nuclei interactions.
This allows to describe the nuclear system as a simple classical mechanics
system, making use of the Hamiltonian function:

1

2
mi

(
∂ri
∂t

)2

+ Ui(ri) = Etot(ri) (1.13)

where the subscript i-th denotes the i-th nucleus of the system, characterized
by a mass mi, a coordinates vector ri, a kinetic energy 1

2
mi

(
∂ri
∂t

)2
, and a

nucleus-nucleus interaction potential energy function Ui(ri).
As a consequence, classical mechanics can be employed to describe the

nuclei's motions and interactions in a biomolecular system. However, appro-
priate energy functions U(ri) parameters, called force �eld, must be chosen
to describe the i-th nucleus interactions. The most employed force �eld sep-
arates molecular interactions into two factors: bonded terms and non-bonded
terms. Bonded terms describe molecules' internal degree of freedom and can
be subdivided into:

• bonded interactions (or stretching) between two atoms

• angle interactions (or scissoring) between three atoms

• dihedral interactions between four connected atoms

The stretching interaction is usually modelled as a harmonic potential ap-
proximation. In this approximation, two bonded atoms can be considered as
two masses linked by a spring to each other. The spring gives rise to vibra-
tional degrees of freedom, which are a function of the internuclear distance
of the two atoms. Thus, the potential energy can be written as a function of
the square of the displacement from the equilibrium length:

Ubond(r) =
1

2
kb(req − r)2 (1.14)

where kb is the spring constant in kcal mol−1Å−2, req is the equilibrium bond
length and r the current length.
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A similar description can be achieved for the scissoring motion [39]:

Uangle(θ) = kθ(θeq − θ)2 (1.15)

where kθ is the angle force constant, de�ned in kcal·mol−1rad−2, θeq and θ
are the equilibrium angle and the current angle.

Finally, the four atom interactions, are described by means of dihedral
angles and modelled through a Fourier cosine series:

Udihedral(φ) =
nmax∑
n=1

kφ [1 + cos(nφ− δ)] (1.16)

where again kφ described the sti�ness of the dihedral harmonic oscillator
and the term [1 + cos(nφ− δ)] comes from the Fourier cosine series, where
n is the multiplicity and the

∑nmax
n=1 is extended up to all the multiplicities

employed, φ is the actual dihedral degree and δ is a shift term. Eq. 1.16 can
be tuned to correctly model the energy barriers in molecules. In particular,
for a carbon-carbon bond with sp3 hybridization, it is possible to model the
presence of minima in π/3, π and −π/3 and maxima in 2π/3, 0 and −2π/3,
by selecting kφ=1, n=3 and δ=0.

The non-bonded interactions are usually modelled with functions inversely
proportional to the distance between two atoms. In particular, two main
terms can be described: the dispersion interactions and the Coulombic inter-
actions. The former are known also as van der Waals or London dispersions,
which are implemented with the Lennard-Jones potential, or 6-12 potential
[40]:

UvdW(r) =
N∑
i=1

N∑
j=i+1

4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]

(1.17)

where εij is called well depth, in kcal·mol−1 and it describes the interaction
potential energy minimum, while σij is the collision diameter, namely the
minimum distance with the interaction potential equal to zero. The subscript
ij denotes that σ and ε must be computed as a product of two di�erent
atoms, i and j, van der Waals potential terms. In practice, εij and σij are
usually computed through the Lorentz-Berthelot mixing rules [40]. εij is
the geometric mean between the i-th atom and j-th one ε values ( εij =√
εi × εj). Instead, for σij an arithmetic mean is used: σij =

σi+σj
2

. The 6-12
potential �nely describes the dispersion interactions : at very short distances
a repulsive behavior is dominating between the two atoms, as their electronic
clouds are overlapping one another. As atoms get farther and farther they
experience a temporary attraction, since the electrons in the two adjacent
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atoms occupy positions that allow the formation of a instantaneous dipole.
Finally, for long distances the energy of interaction of two molecules will tend
asymptotically to zero.

Finally, the electrostatic long-range interactions are modelled through the
Coulombic potential:

UCoulomb(r) =
N∑
i=1

N∑
j=i+1

qiqj
4πε0εrrij

(1.18)

where qi and qj are the partial charges of atoms i and j, ε0 is the vacuum
dielectric constant (8.85418 × 10−12 F·m−1), εr the medium relative per-
mittivity and rij the distance between atoms. The calculation of eq. 1.18
involves a O(N2) operations, which is computationally expensive. To allevi-
ate this cost two main techniques are often employed: Reaction Field (RF)
and Lattice Sum (LS) simulations [41, 42]. Both models rely on the use of
radii of cuto�, namely the electrostatic interactions are computed within a
cuto� length, in order to alleviate the computational cost. Speci�cally, the
RF models the �long-range� Coulombic interactions as a static response of
a uniform dielectric continuum. The very �rst treatment was done by Lars
Onsager [43] and successively extended by Kirkwood [44]. Generally a RF
Coulombic potential has the form:

UCoulomb−RF (r) =
1

4πε0
H(RC − r)

(
r−1 +

αr2

2R3
− α + 2

2R

)
(1.19)

whereH(RC−r) is the Heaviside function (H(RC−r) = 1 if r < RC , H(r) =
0 otherwise), ε0 is the permittivity of vacuum,and RC is a cuto� distance.
This distance de�nes a cuto� sphere, within which the Coulombic interactions
generated by solutes' charge are accounted (r−1 term). The polarization
arising from the molecules beyond the cuto� are modeled through a dielectric
response, described by the parameter α. α is determined by the relative
dielectric permittivity εs of the medium surrounding the cuto� sphere for
each particle through:

α =
2(εs − 1)

2εs + 1
(1.20)

The advantage of RF methods is a straightforward implementation and the
decrease of the computational cost from O(N2) to O(n2) (n << N). LS
techniques , like the particle-particle particle-mesh (P3M) and the particle-
mesh Ewald (PME) [45]. relies on the use of the Fast Fourier Transform [46]
for the long-range interactions and they reduce the Coulombic computational
cost to O(N logN). Generally, LS divides the Coulombic contribution into
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three terms: direct space sum, reciprocal space sum and self-energy term:
Udir = 1

2

∑N
i=1

∑N
j=i+1 qiqj

erfc(γrij)

rij
if rij < RC

Urec = 1
2πV

∑N
i=1

∑N
j=i+1 qiqj

∑
k6=0

e(−(πk/γ)2+2πik·(ri−rj))

m2 if rij > RC

Uself = − γ√
π

∑N
i=1 qi

(1.21)
where i and j run over all the N particles of the system, k denotes the
integer wave vectors, ri is the position of the i-th particle, while rij is the
distance between particles i and j, V is the volume of the periodic cell,
γ =

√
− log(2δ)/RC where δ is a tolerance parameter and erfc denotes the

error function. In the direct space sum all the pairs that are further apart
than the cuto� distance RC are ignored. The ignored terms are computed
in the reciprocal space. The e�ciency of LS methods is paid by a more
complicated computational implementation.

The long range electrostatic and van der Waals interactions are often
coupled with periodic boundary conditions (PBC). PBC are used to avoid
problems with boundary e�ects, which strongly in�uences the properties of
the whole system [47]. The aim of a molecular simulation is to study a
macroscopic system, while computational techniques can only simulate a
small box of few nanometers edges. Thus, PBC tries to mimic a macroscopic
system by replicating the computational box in the x, y and z directions,
with the same molecular feature for each box. Any change taking place
in the reference box will be replicated in all the other boxes, generating a
homogeneous systems, where there is no boundary or surface. If any molecule
leaves the box along one direction (e.g. z), an image of that molecule will
enter into the box from the opposite direction (e.g.−z), to maintain the
number of molecules constant.

Hence, potential energy U(r) can be computed from force �eld parameters
as:

U(r) =
∑
bonds

1

2
kb [req − r]2 +

∑
angles

1

2
kθ [θeq − θ]2 +∑

dihedrals

kφ [1 + cos(nφ− δ)]2 +

N∑
i=1

N∑
j=i+1

[
qiqj

4πε0εrrij
+
σ12
ij

r12
ij

−
σ6
ij

r6
ij

] (1.22)
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1.4 Barker-Watts Reaction Field

Given the importance of the Barker-Watts Reaction Field for this work, a
general derivation of eq. 1.19 is given. In 1936, Lars Onsager [43] developed
a scheme to treat the electrostatic contributions for a dipole immersed in
a dielectric, which is called reaction �eld. The derivation assumes a dipole
of moment µ immersed in a spherical cavity with radius RC , from now on
called radius of cuto�, surrounded by a uniform dielectric material of constant
εs. The dipole is supposed to be rigid and its shape does not in�uence the
electrostatic potential. It follows that the total electrostatic potential ψ(r),
as a function of the position vector r, must satisfy the Laplace equation:

∆ψ(r) = 0 (1.23)

where ∆ = (∂
2ψ(r)
∂x

2
, ∂

2ψ(r)
∂y

2
, ∂

2ψ(r)
∂z

2
) denotes the Laplacian operator.

The electrostatic potential ψ(r) can be decomposed into two functions
R(r) and Θ(θ). R(r) denotes the radial electrostatic component, which de-
pends on the vector position only, and Θ(θ) is the angular contribution, which
takes into account all the rotational degrees of freedom θ. A known solution
for R(r) and Θ(θ) is based on the use of spherical harmonics [48] :

ψ(r, θ) =
∞∑
l=0

(
Alr

l +
Bl

rl+1

)
Pl(cos θ) (1.24)

where the sum is extended to all the l-th terms, Al and Bl are constants
to be determined by imposing boundary conditions, Pl(cos θ) denotes the
l-th Legendre polynomial. Additionally, ψ(r, θ) is given by the sum of two
contributions: ψin(r, θ) which described the electrostatic potential inside the
solute and ψout(r, θ) which gives a description of the potential outside the
solute. For these two elements the following conditions are present in the
system: {

limr→0 ψin(r, θ) = µ cos θ
4πε0r2

limr→∞ ψout(r, θ) = 0
(1.25)

where µ cos θ
4πε0r2 is the dipole electrostatic potential, ε0 the vacuum permittivity.

ψin(r, θ) and ψout(r, θ) can be expressed in a general form using eq. 1.24:
ψin(r, θ) = µ cos θ

4πε0r2 +
∑∞

l=0Alr
lPl(cos θ)

ψout(r, θ) =
∑∞

l=0
Bl
rl+1Pl(cos θ)

(1.26)

Additionally, along the spherical cavity, the following conditions must be
satis�ed:
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• The potential is continuous across the boundaries :

ψin(RC , θ) = ψout(RC , θ) (1.27)

• The normal component of the dielectric displacement across the surface
is continuous:

∂ψin(RC , θ)

∂r
= εs

∂ψout(RC , θ)

∂r
(1.28)

Eq. 1.27 and 1.28 can be solved for all the spherical harmonic of the
general electrostatic potential, eq. 1.26. For l = 0 a trivial solution is found,
which coincides with the dipole electrostatic potential. For all the terms
l ≥ 1 it is possible to write from eq. 1.27:

µ cos θ
4πε0R2

C
+ A1RC cos θ = B1

R2
C

cos θ if l = 1

AlR
l
C = Bl

Rl+1
C

if l 6= 1

(1.29)

which gives B as a function of A:
B1 = µ

4πε0
+ A1R

3
C if l = 1

Bl = (R2l+1
C )Al if l 6= 1

(1.30)

Thus from condition 1.28, the electric displacement becomes:
− µ

2πε0R3
C

+ A1 = − 2εs
R3
C
B1

AllR
l−1
C = −εs(l + 1) Bl

Rl+2
C

(1.31)

Substituting eq. 1.30 into eq. 1.31:
A1 = − µ

2πε0R3
C

(
εs−1
1+2εs

)
Al = Bl = 0

(1.32)

From this solution, B1 can be expressed as:

B1 =
µ

4πε0
− µ

2πε0

(
εs − 1

1 + 2εs

)
=

µ

2πε0

(
1

2
− εs − 1

1 + 2εs

)
=

µ

4πε0

(
3

1 + 2εs

) (1.33)
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Combining eq. 1.32 and eq. 1.33 ψin(r, θ) and ψout(r, θ) can be expressed
as: 

ψin(r, θ) = µ cos θ
4πε0r2

{
1 + 2 r3

R3
C

(
εs−1
1+2εs

)}
ψout(r, θ) = µ cos θ

4πε0r2

(
3

1+2εs

) (1.34)

Thus, combining the terms of eq. 1.34, the reaction �eld electrostatic
potential ψ(r, θ) is:

ψ(r, θ) =
µ cos θ

4πε0r2

{
1 + 2

r3

R3
C

(
εs − 1

2εs + 1

)
+

3

2εs + 1

}
(1.35)

In particular, µ cos θ
4πε0r2 models the induced polarization due to the dipole, the

term µ cos θ
4πε0r2 2 r3

R3
C

εs−1
2εs+1

is called Onsager reaction �eld and it measures the elec-
tric �eld which acts upon the dipole as a result of the electric displacements
induced by its own presence and µ cos θ

4πε0r2
3

2εs+1
is the external moment of the

immersed dipole and it determines the force which the dipole exerts upon
a distant charge in the dielectric. Eq. 1.35 can be extended for polyatomic
systems as:

ψ(r, θ) =
N∑
i

N∑
j>i

qiqj
4πε0r2

{
1 + 2

r3

R3
C

(
εs − 1

2εs + 1

)
+

3

2εs + 1

}
(1.36)

where N is the total number of atoms in the system.
Barker and Watts [49] implemented the reaction �eld approach for the

�rst time, to study dielectric properties of water models in Monte Carlo sim-
ulations. One of the advantages of the reaction �eld scheme is it is easiness of
implementation in molecular dynamics routines. Furthermore, the inclusion
in a cuto�-based Coulombic equation of the reaction �eld and dielectric polar-
ization onto the dipole improves the simulated properties over straight-cuto�
truncation methods and signi�cantly reduces the straight-cuto� artefacts.

1.5 Molecular Dynamics

Molecular dynamics (MD) is an integration technique, which solves Newton's
equations of motion, eq. 1.13, for each atom of the system, and it allows to
sample the potential energy landscape of a biomolecule. A good de�nition
for MD is given by Frenkel and Smith [40]

�Molecular Dynamics simulations are in many respects very sim-
ilar to real experiments. When we perform a real experiment [...]
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we prepare a sample of the material that we wish to study. We
connect this sample to a measuring instrument, and we measure
the property of interest during a certain time interval [...] In a
Molecular dynamics simulation, we follow exactly the same ap-
proach. First, we prepare a sample: we select a model system
consisting of N particles and we solve Newton's equations of mo-
tion for this system until the properties of the system no longer
change with time�

The practical implementation of a molecular dynamics engine follows
these steps:

1. Selection of initial random velocities for all i-th atoms of the system,
drawn from the Maxwell-Boltzmann distribution [40]

p(vi) =
(

mi
2πkBT

)1/2

e
−β

(
miv

2
i

2

)
where mi is the mass of the i-th atom

and vi its velocity vector;

2. Evaluation of the potential energies U(r) for the entire system;

3. Evaluation of the force acting on each atom, as Fi = −∇iUi(r) where
∇i denotes the gradient with respect to i = x, y, z;

4. Integration of Newton's equation of motion;

5. Update all the atomic positions and restart from step 1.

For the last step, a large class of algorithms is available. A popular one is
the Verlet algorithm [50], which derives the positions at time t+ ∆t without
using the velocities, as:

r(t+ ∆t) ' 2r(t)− r(t−∆t) +
f(t)

m
∆t2 (1.37)

where r(t) are the actual particles' positions, r(t−∆t) the positions at a t−∆t
time and ∆t is the timestep, typically about 1 or 2 fs. For all the simulations
described in this work, the velocity Verlet algorithm, which provides both
the atomic positions and velocities at the same instant of time:


r(t+ ∆t) = r(t) + v(t)∆t+ f(t)∆t2

2m
+ O(∆t3)

v(t+ ∆t) = v(t) + ∆t
2m

(f(t+ ∆t) + f(t)) + O(∆t3)

(1.38)
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where O(∆t3) denotes all the series terms with index greater than 2. In
practice, eq. 1.38 is split in three parts:

v(t+
∆t

2
) = v(t) +

f(t)∆t

2m

r(t+ ∆t) = r(t) + r(t+
∆t

2
)∆t

v(t+ ∆t) = v(t+
∆t

2
) +

f(t+ ∆t)∆t

2m

(1.39)

where the �rst equation computes the half-step velocity, using the informa-
tion retrieved from step at time t. This is allows the calculation of positions
at time t+ ∆t. Finally, from the new atomic positions de�ned by r(t+ ∆t)
the half-step velocity is updated to the full velocity v(t+ ∆t). Although this
approach may seem tricky at a �rst glance, it guarantees a lower memory
usage than eq. 1.37.

Because Newton's equation of motion conserves the total energy, MD
simulations naturally form the NV E ensemble. Algorithms that connect
the system to a thermostat or barostat allow the sampling of the NV T or
NPT ensemble. For NV T ensembles is necessary to control the system's
temperature. The temperature is related to the kinetic energy:

N∑
i=1

1

2
miv

2
i (t) =

3

2
NkBT (t) (1.40)

thus, to keep constant the temperature to a value Tref , it is possible to scale
the velocities by a factor ν:

N∑
i=1

1

2
mi(νvi(t))

2 =
3

2
NkBTref (1.41)

Thus, the scaling factor ν will be equal to:

ν =

√
Tref
T (t)

(1.42)

where T (t) is the current temperature at the step at time t. However, this
scheme would be not really useful, as there would be no kinetic energy �uc-
tuations. Eq. 1.42 can be modi�ed, by supposing the system is coupled to a
thermal bath [51] with a temperature Tbath = Tref . In this case the scaling
factor ν is equal to:

ν =

√
1 +

∆t

τ

(
Tbath
T (t)

− 1

)
(1.43)
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where τ is a parameter that describes how tightly the system is coupled to
the bath, Tbath is the bath temperature, while ∆t denotes the time di�erence
between the steps. Another approach is the Andersen thermostat [52]. In this
case the system is coupled to a thermal bath by randomly selecting a subset
of particles at the beginning of each MD step, whose velocities are scaled.
This thermostat re�ects random collisions between the system's particles and
the heat bath. The probability that a given particle is selected at time given
a time step ∆t is:

PAndersen = 1− e−f∆t (1.44)

where f is the collision frequency. Then, each component of the particle
velocity is set to:

vi(t) =

√
kBT

m
R (1.45)

where R is a random number chosen from a normal distribution with mean
of zero and variance one.

To keep the pressure constant the volume needs to be controlled. For a
molecular system, the pressure can be monitored using the virial thereom [53]

P =
2

3V (t)
〈
N∑
i=1

1

2
mivi(t)

2〉 − 〈
N∑
i=1

N∑
j=i+1

dU(rij
drij

rij〉 (1.46)

where V (t) is the system volume at time t, 〈
∑N

i=1
1
2
mivi(t)

2〉 is the average
kinetic energy of the system at time t,〈

∑N
i=1

∑N
j=i+1

dU(rij)

drij
rij〉 is the virial

coe�cient, which expresses the average force acting on atoms i and j. The
control onto the virial coe�cient allows to keep constant the pressure to a
value Pref . As an example, the Berendsen barostat [54] controls the pressure
P of the system starting from the pressure rate equation:

dP (t)

dt
=
Pref − P (t)

τ
(1.47)

where τ is the barostat relaxation time constant (usually 10 ps). For each
MD step the volume is scaled by a factor η:

η(t) = 1− ∆t

τ
γ(Pref − P (t)) (1.48)

where γ = 1
kBT

〈U(r)2〉−〈U(r)〉2
〈U(r)〉 is the isothermal compressibility of the system.

The scaling factor η can be isotropic, thus the same scaling is applied for
x, y and z directions of the unit cell, otherwise anisotropic. γ is usually a
speci�c constant, which is often referred to the liquid water compressibility.
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Another popular barostat is the Monte Carlo barostat [55, 56]. At regular
intervals the box is scaled by a factor s:

s =

(
V (t) + δV

V (t)

)1/3

(1.49)

where V (t) + δV is the proposed new volume and V (t) the current volume
size. The change in volume is accepted or rejected based on the weight
function:

∆W = ∆U(r) + P (t)δV −NkBT ln

(
V + δV

V

)
(1.50)

where ∆U(r) is the change in potential energy from the volume change, P (t)
is the system pressure, N is the number of molecules in the system. If ∆W ≤
0 the change is accepted, if ∆V > 0 the change is accepted with probability
e
− ∆W
kBT . Monte Carlo barostat tends to be less computationally expensive

than Berendsen barostat, since the virial coe�cient is not computed. Other
methodologies to keep temperature and pressure constant in MD simulations
are the Parrinello-Rahman barostat [57] and extended systems thermostat
and barostat [58].

Finally, it is often necessary to apply constraints on the solutes' atoms
(e.g. SHAKE [59], SETTLE [60] and LINCS [61]), to allow the use of larger
integration time step. As a matter of fact bond oscillations have a relatively
high frequency and low amplitude, which would oblige the integration time
step to be 1 fs or less. However, replacing the bond vibrations with holonomic
constraints allow the integration time step to be at least 2 fs, halving the
computational cost of the molecular dynamics.

1.6 Alchemical free energy calculations

According to eq. 1.7, the Gibbs free energy could written as:

GNPT = −kBT lnZNPT

= kBT ln
1

ZNPT

= kBT ln
N !h3N∫ ∫

e−β(U(qN )+pV )dqNdV

(1.51)

It follows that the computation of GNPT would require the sampling of the
phase space of a system using MD simulations. As a matter of fact eq. 1.51
can be computed as an ensemble average. Considering the equality:

1 =
1

(8π2V )N

∫ ∫
e−β(U(qN )+pV )eβ(U(qN )+pV )dqNdV (1.52)

29



where the constant factor 1
(8π2V )N

arises from a total integration on the trans-
lational and rotational degrees of freedom on the phase space, eq. 1.51, can
be expressed as:

GNPT = kBT ln
N !h3N

(8π2V )N

∫ ∫
eβ(U(qN )+pV )e−β(U(qN )+pV )dqNdV∫ ∫

e−β(U(qN )+pV )dqN

= kBT ln
N !h3N

(8π2V )N

∫ ∫
eβ(U(qN )+pV )P(Γ)dqNdV

= kBT ln
N !h3N

(8π2V )N
〈eβ(U(qN )+pV )〉

(1.53)

However, estimation of the free energy through the ensemble average in
eq. 1.53 is not feasible with MD simulations. MD simulations are rarely
able to sample high energy con�gurations, which make a large contribution
to the ensemble average due to the sign of the potential energy in the expo-
nential [62]. Furthermore, given the presence of many high energy states in
a molecular system, the direct estimation of the free energy for a molecule
using eq. 1.53 results in a vain task.

To solve this complicated task, eq. 1.53 can be reformulated, focusing
on the calculation of the free energy di�erences between thermodynamic
states. This can be done with the Zwanzig relation [23] also called free
energy perturbation (FEP) [25]. Employing statistical mechanics, the free
energy change for a thermodynamic system changing from a state A to a
�nal state B, can be expressed as:

∆G = −kBT ln
ZN+B
NPT

ZN+A
NPT

(1.54)

where ZN+X
NPT is the isothermal-isobaric con�gurational integral for a system

with N solvent molecules and, for instance here, a solute in a chemical state
X=A or B. Eq. 1.54 can be expanded as:

∆G = −kBT ln

∫ ∫
e−β(UB(qN )+pV )dqNdV∫ ∫
e−β(UA(qN )+pV )dqNdV

(1.55)

Since the potential energy function for both states can be written as:

∆U(qN) = UB(qA
N)− UA(qB

N) (1.56)

where UA(qA
N) is the potential energy function for the system A (or reference

system), UB(qB)N the potential energy for molecule B (or target system),
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eq. 1.55 can be rewritten as:

∆G = −kBT ln

∫ ∫
e−β(UB(qN )+PV )dqNdV∫ ∫
e−β(UA(qN )+PV )dqNdV

= −kBT ln

∫ ∫
e−β(∆U(qN )e−β(UA(qN )+PV )dqNdV∫ ∫

e−β(UA(qN )+PV )dqNdV

= −kBT ln

∫ ∫
e−β(∆U(qN )PA(qN , V )dqNdV

= −kBT ln〈e−β(∆U(qN ))〉A

(1.57)

where 〈...〉A denotes the ensemble average over the con�gurations samples
from the reference state system A. This approach was �rst introduced by
Zwanzig [23]. Thus, any free energy ∆G (e.g. due to binding or hydration),
between two molecular states A and B is the Boltzmann weighted probability
of the di�erence ∆U(qN) of the potential energies for A and B. Computa-
tionally, FEP can be run in a molecular dynamic simulation for a system
A, where at each step the di�erence in potential energy between the end
states is computed and stored. Eq. 1.57 can be also reversed to compute the
backward transformation, from B to A:

∆G = −kBT ln〈eβ(∆U(qN ))〉B (1.58)

However, this method su�ers from numerical issues due to an asymmetry
in the convergence properties [63] of eq. 1.57 and eq. 1.58. As described
by Wu and Kofke [63, 64] eq. 1.57 has to show a decent overlap between
the probable con�gurations in the phase space of molecule A and B to work
properly.

Considering �g. 3 it is possible to have three scenarios:

1. A and B share common con�gurations with high probability;

2. A and B's have a partial overlap between con�gurations;

3. A and B's do not share any similar con�guration;

In the �rst case, �g 3A, the FEP equation can work properly for the trans-
formation A→B, giving accurate results. However, when performing the
reverse transformation, B→A, FEP could show some inconsistent results, as
the important con�gurations of A may be not be a subset of the important
con�gurations of B. In the case of partial overlap, �g 3B, both transforma-
tions will result in a inconsistent free energy estimation. Depending on how
much of the important con�gurations are shared in the overlap, in this case
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Figure 3: Free energy perturbation requires an overlap between the so-
lutes'phase spaces. A) molecules A and B phase spaces overlap, in particular
B is a subset of the phase space of A - meaning that both molecules can adopt
similar con�guration with high probability; B) molecules A and B shares a
common subset; C) molecules A and B phase spaces do not overlap.

there could be a systematic o�set in the free energy estimations. Finally,
FEP fails to give reasonable results, within a reasonable amount of comput-
ing time, if there is no overlap between molecules con�gurations, as all the
con�guration sampled in one system are not important con�gurations in the
other phase space system. However, it is important to remark that both in
the case of partial overlap and no overlap for an ideal in�nite sampling the
free energy will tend to be asymptotically correct.

An alternative to equation 1.57 is the multistage calculation. In this
case, the transformation A→B, or the backward B→A, is subdivided into
intermediate simulations, where the force �eld parameters of the initial state
are coupled to λ, de�ned in [0...1]. λ gradually modi�es the initial state
force �eld parameters into the �nal state one, passing through alchemical
intermediates. These intermediates behave as a continuum between the two
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end states, but they do not need to have a physical meaning.
The free energy changes can be computed with the �nite di�erence ther-

modynamic integration [65]. For each MD step in a simulation carried on at
λi, a di�erence between potential energies at λi and λi + ∆λ is evaluated, to
collect two free energy terms as :

∆G(λi → λi + ∆λ) = −kBT ln〈e−β(U(λi+∆λ)−U(λi))〉λi

∆G(λi → λi −∆λ) = −kBT ln〈e−β(U(λi−∆λ)−U(λi))〉λi

(1.59)

Then, a free energy gradient at λi is retrieved with �nite di�erences:

∂G

∂λi
=

∆G(λi → λi + ∆λ)−∆G(λi → λi −∆λ)

2∆λ
(1.60)

where ∆λ is a control parameters for the gradient calculation (usually 0.01).
Once all the MD simulation at each λ are done, all the gradients are collected
and the �nal free energy change is computed by thermodynamic integration:

∆GX =

∫ λ=1

λ=0

∂G

∂λ
dλ (1.61)

where the integral is performed across all the gradients values.
A further development of the multistage approach is the use of ther-

modynamic cycle, shown in �g. 4. The thermodynamic cycle relies on the
de�nition of free energy as a state function. Indeed, the free energy variation
along a closed thermodynamic path must be equal to zero. Furthermore,
thermodynamic cycles are reversible, which guarantees to consider forward
and backward transformations. The use of free energy calculation with ther-
modynamic cycle allows the computation of free energy quantities that may
be compared to experimental values. The transformation is performed be-
tween two phases p1 and p2, e.g. the hydration free energy will be computed
between a vacuum and a solvated phase, giving a total free energy change
∆Gp1 and ∆Gp2 respectively. Thus, the free energy ∆G can be computed as
the di�erence of the two legs of the thermodynamic cycle:

∆G = ∆Gp2 −∆Gp1 (1.62)

Computationally, this approach can be implemented with a single topology
paradigm, which makes use of a common topology �le that may describe the
two molecules.

A common computational problem that arises in this type of simulation
is the so-called �end-point catastrophes� [62]. At the end states some atoms
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Figure 4: Thermodynamic cycle for a relative alchemical free energy calcu-
lation. Molecule end states are simulated between two phases, p1 and p2 (e.g.
vacuum and solvated phases). Coupling the force �eld parameter of A to λ,
the molecule can be transformed into its �nal state B. Each transformation
is associated with a free energy change ∆Gp1 and ∆Gp2. The desired free
energy is computed from the di�erence of the two vertical legs of the cycle:
∆G = ∆Gp2 −∆Gp1 = ∆GB −∆GA

may become �non-interacting�, as for methane to ethanol transformation. In
this case, the inter-atomic interactions may be unstable, due to the presence
of steric clashes, leading to numerical instabilities. To prevent this situation,
a soft core potential energy function is introduced in the MD engine:

Usoft(λ) = (1− λ)4εij

[(
σ12
ij

(λδσij+r2
ij)

6

)
−
(

σ6
ij

(λδσij+r2
ij)

3

)]
+

(1−λ)nqiqj

4πε0
√

(λ+r2
ij)

(1.63)

where δ and n are the soft core parameter for softening the Lennard-Jones
and Coulombic interactions. It is clear that when the distance between atoms
is zero (steric clashes ) the potential is numerically computable, due to the
presence of λδσij.
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Figure 5: Thermodynamic cycle for absolute free energy calculation with
the double annihilation scheme. The solute A is simulated in two phases
p1 and p2 (e.g. solvated and complex phase). Initially, a discharging step
is carried on by switching o� A's partial charges, giving a total free energy
changes ∆Gq=0

p1 and ∆Gq=0
p2 . Subsequently, A's van der Waals parameters

are turned o�, retrieving free energy changes ∆GvdW=0
p1 and ∆GvdW=0

p2 . The
absolute free energy ∆G can be computed from the two legs of the cycle. In
the case of host-guest system, a standard state correction may be necessary,
∆G◦rest, giving a standard free energy ∆G◦.

A special case transformation is when a solute A is mutated into a �non-
interacting� molecule, as if it were in an ideal thermodynamic state, as shown
in �g. 5, in which special considerations - binding or hydration - may apply
(e.g. standard states if molality of process changes). In particular, this
approach is called double annihilation scheme, which is often employed to
compute absolute binding or hydration free energies [66, 67]. The double
annihilation transforms the initial molecule A into an ideal thermodynamic
state B, where the molecule does not have any interactions with the surround-
ing environment. Initially, molecule A's partial charges are switched o� in a

35



discharging step, giving a free energy change ∆Gq=0
p1 and ∆Gq=0

p2 from phases
p1 and p2 respectively. Following, the van der Waals terms of A's atoms are
turned o� in the vanishing step, resulting in free energy changes ∆GvdW=0

p1

and ∆GvdW=0
p2 . The �nal free energy ∆G (e.g. free energy of binding) is

computed as:

∆G = (∆Gq=0
p2 + ∆GvdW=0

p2 )− (∆Gq=0
p1 + ∆GvdW=0

p1 ) (1.64)

In the case of free energy of binding calculations for host-guest systems,
eq. 1.64 can be decomposed into con�gurational integrals, giving:

∆Gbind = −kBT ln
Zq=0
G ZvdW=0

G ZHGZ
q=0
HG

ZGZ
q=0
G Zq=0

HGZ
vdW=0
HG ZH

= −kBT ln
ZHG
ZHZG

(1.65)

where Zq=0
G and ZvdW=0

G denote the con�gurational integral of the guest in the
solvated phase for the discharging and vanishing step respectively, while Zq=0

HG

and ZvdW=0
HG are the isothermal-isobaric con�gurational integral for the guest

in the complex phase for the discharging and vanishing step respectively.
This expression for the binding free energy contrasts with standard binding
free energy, usually de�ned from experimental measurements [67]:

∆G◦bind = −kBT ln
ZHG

ZGZH

V

V ◦
(1.66)

where V is the volume available to the guest in the bound phase and V ◦

denotes the reference standard volume, typically 1 M (or 1660 3). Compu-
tationally, the standard state can be retrieved by applying a standard state
correction. Usually, in the vanishing step the guest is restrained in the vicin-
ity of the host. This procedure ensures that the guest would not drift o�
from the host's cavity, which could dramatically slow down the convergence
of the computed free energy change. Depending on the type of restraint,
it can be shown that the correction term is proportional to V

V ◦ , namely the
ratio between the volume explored by the guest in the binding pocket, that
can be computed numerically. Thus, the standard binding free energy can
be eventually computed as:

∆G◦bind = (∆Gq=0
p2 + ∆GvdW=0

p2 )− (∆Gq=0
p1 + ∆GvdW=0

p1 ) + ∆Grestr (1.67)

1.6.1 Outline of the thesis

Alchemical free energy calculations rely on a solid mathematical and physical
background, which is appealing for the development of robust computational
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methods that may assist the drug discovery process. There is hope that
alchemical methods can reduce the time and costs needed to carry out pre-
clinical drug discovery research by reducing the number of compounds that
have to be synthesized. However, it is currently hard to translate the �al-
chemical science� into a robust engineering tool, that can be used routinely
to obtain accurate and reliable free energy estimations. The main goal of this
thesis is to examine in depth the alchemical free energy calculation protocols,
to make them better suited for high-throughput work�ows.

Chapter 2 will discuss to what extent alchemical free energy calculations
are reproducible between di�erent simulation engines. As a result from a
collaborative e�ort, SOMD [68, 69], GROMACS [70], CHARMM [71] and
AMBER [72, 73] were employed to compute relative hydration free energies
for a small dataset of organic molecules, which was considered as a reference
to understand the limit of reproducibility of free energy calculations. Code
speci�c implementation details in the free energy algorithm were studied and
new protocols to enhance reproducibility were validated.

Chapter 3 will deal with the validation of protocols for lipophilicity coe�-
cient measures. logP was computed with alchemical free energy calculations
for 5 di�erent molecules, with an increasing �uorination level. Computational
models not only were able to retrieve the experimental trend, but they also
gave structural insights into the solvation process. Then, logD coe�cients
were computed for 53 drug-like molecules in the context of the SAMPL5 [74]
blind challenge. Two di�erent models were considered in order to take into
account the possible presence of protonated species in solvated phases.

As an extension of the SAMPL5 challange, chapter 4 will treat the vali-
dation of protocols for host-guest binding a�nities predictions [75]. In this
case, three di�erent free energy models were compared with respect to exper-
imental data, de�ning the best protocol of simulation for accurate binding
a�nities calculations.

Finally, chapter 5 will deal with �nite size artefacts in alchemical free
energy calculations. These artefacts arise when changes in the net-charge
of a solute are performed during an alchemical simulation. This problem is
well known since the early 1980s, when FEP were applied to polar solvent
calculations [76, 77]. Further development for the sodium ion was done by
Kastenhölz and Hünenberger [78, 79, 80]. Recently, Rocklin and Reif [81, 82]
assessed protocols of simulation to correct for these problems. However,
a full understanding and development for the Barker Watts reaction �eld
approach [49] does not exist yet. This study will draw a comparison between
all the various correction scheme, delineating the best procedures to avoid
�nite size artefacts in the context of binding free energy calculations.

Finally, chapter 6 will draw a summary and conclusions for all the �ndings
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of the thesis, assessing to what extent alchemical free energy calculation are
ready for molecular drug design.
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Chapter 2

Reproducibility of Free Energy

Calculations Across Di�erent

Molecular Simulation Software

This chapter explores the reproducibility problem in alchemical free energy
calculations. Relative alchemical free energies of hydration for a dataset of
small organic molecules were computed using AMBER, CHARMM, GRO-
MACS and SOMD, to validate and understand to what extent alchemical
free energy calculations are reproducible. Achieving an acceptable level of
reproducibility requires considerable attention to package�speci�c details and
simulation protocols. It is hoped that the work reported here will lead to
new benchmarks for the computational community to validate new and fu-
ture versions of software for free energy calculations.

2.1 Introduction

The calculation of free energies via molecular simulations [83, 84, 85, 86, 87]
has been particularly attractive as it promises to circumvent certain limita-
tions of experimental approaches. Speci�cally, biomolecular processes can be
understood at the atomic level and computational techniques could lead to
a cheaper and more time e�ective drug discovery process, especially if they
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can predict the properties of new molecules before their synthesis. Thus, a
multitude of methods have been devised to make reversible work estimates
accessible through computation.

Among all the possible computational techniques, the alchemical free en-
ergy calculations have been applied in various forms for several decades now
since the early days of computer simulation [88, 89, 90, 91, 92, 25]. The
alchemical method has gained renewed attention in recent years both in
academia and pharmaceutical industry. One reason for this success is that
alchemical calculations are �rmly rooted in statistical thermodynamics and
they could give asymptotically correct free energy estimates, namely they are
correct for a given potential energy function in the limit of su�cient simula-
tion time [93, 94, 95, 83]. The name �alchemical� comes from the nonphysical
intermediates that often need to be created to obtain reliable estimates of
free energy di�erences between physical end states, and because parts or all
of a molecule may e�ectively appear or disappear in a transformation.

As explained in chapter 1 section 1.5, the alchemical free energy simula-
tions rely on the concept of thermodynamic cycles [92]. As the free energy
is a state function, the sum of free energy changes computed around any
closed cycle must be zero. This also implies that the reversible work can
be computed along conveniently chosen legs of the cycle, even if the cycle is
arti�cial. For example, �g. 1 shows that the relative free energy of hydra-
tion can be computed along the vertical legs of the cycle, that is, following a
non-physical but computationally more e�cient calculation rather than the
horizontal legs of moving a molecule from the gas phase to the liquid phase.

In the context of drug design, one of the most popular alchemical tech-
nique in use do the relative alchemical free energy calculations (RAFE). In
this case there is a mutation between two end states molecules as shown
in �g. 1. Computationally RAFEs are thought to be less demanding than
absolute alchemical free energy calculations, as they typically require fewer
shorter simulations to yield converged free energy changes. Therefore, it
is without surprise that this approach has recently gained increased attrac-
tion in the computation of relative free energies of binding between small
molecules, e.g. drug or lead like molecules and biomolecules [96, 97].

RAFEs can be calculated by making use of the so�called single topology
method. Single topology means that there is only one connected represen-
tation of the molecule to be transformed into another molecule. Atoms of a
given type are directly transformed, typically by linearly scaling the force �eld
parameters, into atoms of a di�erent type. The single topology method o�ers
a straightforward route to implement RAFE calculations.[98, 62, 25, 99] In
typical implementations, a certain number of non-interacting �dummy� atoms
must hold the place of disappearing/appearing atoms in order to balance the
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Figure 1: Thermodynamic cycle to compute the relative free energy of hy-
dration ∆Ghyd = ∆GB−∆GA = ∆Gwat−∆Gvac for two molecules A and B.
The example is for ethanol → methane transformation. Alchemical simula-
tions are performed along the non-physical vertical legs, while the horizontal
legs illustrate the physical process of moving a molecule from vacuum to sol-
vated phase. For some transformation, as in ethanol→methane, some atoms
may become non-interacting ( light red atoms in methane molecule).

number of atoms in both end states.
Generally, modern MD software (e.g. AMBER, [72] CHARMM, [71] GRO-

MACS, [70] and SOMD. [68, 69]) support relative free energy calculation in
a single topology paradigm [100]. However, in spite of this rigorous back-
ground, consistency and reproducibility are a matter of concern. The re-
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producibility of free energy results among computer codes must be ensured,
to allow a robust use of free energy calculations in molecular design prob-
lems. However, a systematic study of this problem in the alchemical context
is missing. Recent related e�orts have been reported by Shirts et al. [101]
and by Hasse et al. [102]. The former study compares absolute free energy
results for host-guest systems in the context of the SAMPL5 challange.This
study is limited to compare the Coulombic potential di�erences that arise
between AMBER [72], CHARMM [71], GROMACS [70], LAMMPS [103]
and DESMOND [104] which, ultimately, lead to a di�erent free energy value.
Hasse's study went further, comparing liquid densities across DLPOLY [105],
GROMACS [70] and NAMD [71]. Di�erently from this work, the aim of
Hasse's paper is to highlight how achieving a good reproducibility of results
can be quite a complicated and surprising task.

Given the importance for the drug discovery process, it is critical that
free energy changes computed with di�erent simulation software should be
reproducible within statistical error, as this otherwise limits the transferabil-
ity of potential energy functions and the relevance of properties computed
from a molecular simulation to a given package. This is especially impor-
tant as the community increasingly combines or swaps di�erent simulation
packages within work�ows aimed at addressing challenging scienti�c prob-
lems [106, 107, 108, 109, 110].

This work assesses to what extent alchemical free energy calculations
are reproducible among the packages AMBER, CHARMM, GROMACS and
SOMD. The relative hydration free energies of a set of small organic molecules
was taken as a reference to understand the reproducibility issue. A discus-
sion about the obtained result with these packages will be reported, along
with recommendation regarding simulation protocols, setup procedures and
analysis techniques. Along with the predicted free energy values the ex-
perimental results are presented to allow the reader a comparison in terms
of accuracy between the di�erent codes. However, it is necessary that this
study is focused onto the concept of reproducibility rather than precision
and accuracy with respect to experimental data. This work is a result of a
collaborative e�ort among the CCPBioSim (H. Loe�er), the University of
California Irvine (D. Mobley and Guilherme Duarte Ramos Matos, the uni-
versity of Chicago (B. Roux and D. Suh) and the university of Edinburgh. I
personally contributed with SOMD simulations and to all the analyses.
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2.2 Methods

One practical challenge is that the free energy methodologies used in one MD
program are not always available in another package, or the same function-
ality is provided via di�erent algorithms (e.g. algorithms for pressure and
temperature scaling, integrators, etc). To circumvent some of these practical
problems, relative free energies will be compared via three protocols:

1. In the �uni�ed protocol� relative free energies are computed by scaling
together all force �eld parameters i.e. partial charges, van der Waals
parameters, and bonded parameters vary simultaneously along the al-
chemical path;

2. In the �split protocol� relative free energies are calculated by scaling
separately the van der Waals parameters and the partial charges;

3. In the �absolute protocol� relative hydration free energies are retrieved
as a the di�erence between two calculated absolute hydration free en-
ergies.

The following subsection will give initially an insight into the technical imple-
mentation of alchemical free energy calculations for AMBER, GROMACS,
CHARMM and SOMD. Then, the relative free energy setup for each software
will be discussed.

2.2.1 Alchemical Free Energy Implementations

One of the key di�erence in the free energy implementations among the four
MD codes is the softcore potential [111, 112]. This can be generally written
as a function of Coulombic and van der Waals terms:

V = 4εij(1− λ)

[(
σij
rLJ

)12

−
(
σij
rLJ

)6
]

+ (1− λ)n
qiqj

4πε0rCoul
(2.1)

where εij and σij are the van der Waals parameters for the well-depth and
equilibrium distance respectively, λ is the alchemical coupling parameter, rLJ
and rCoul are modi�ed distance parameters, which are de�ned di�erently for
each software, as well as the Coulombic power n, qi and qj are the i-th and
j-th atom partial charge, ε0 the dielectric permittivity in vacuum. Details
for rLJ , rCoul and n are given in table 1 for each software.

Another di�erence is how codes are scaling the force �eld parameters.
It is possible to have two methodologies: �parameter scaling� and �energy
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scaling� [99]. In the former case each parameter is scaled individually, e.g.
in the case of a harmonic bond or angle term, the force constant and the
equilibrium distance/angle are scaled individually. In the latter case, the
total energy is scaled, all at once, or, equivalently for each individual force
�eld contribution. While free energy is a state function that depends only on
the end points, the pathways taken by the two methods through state space
or alchemical space are di�erent.

AMBER. This code uses a hybrid dual/single topology approach. All
terms are energy scaled. The perturbed group must be entirely duplicated,
i.e. for sander this means two topology �les with one end state each, and for
pmemd both end states in one topology �le. The code loads two separate input
topologies that describe the end states of interest and allows users to map
atoms between the two end�states that will share the same coordinates for the
free energy calculation. Evaluation of the interactions involving these atoms
as a function of the coupling parameter is done by default via linear scaling
of the energy and forces of the end�states. Alternatively the user can request
the use of a softcore potential. The non�bonded interactions of atoms that
are not paired between the end�states are handled with a softcore potential.
In addition, bonded terms involving di�erent unpaired atoms are ignored.
This in e�ect amounts to de�ning unpaired atoms as dummy atoms in one of
the end�states. This approach will be called �implicit dummy protocol� since
the procedure is handled automatically by the software through analysis of
the end�state topologies rather than via explicit de�nition of dummy atoms
in an input topology.

The code cannot handle bond length changes involving a constraint.
There is only one global λ for parameter transformation. Protocols that cou-
ple only some parameters (split protocol) must be emulated through careful
construction of topologies. For instance one can keep the LJ and bonded
terms �xed at the initial state for a charge transformation. The setup for the
two end�states must therefore use identical atom types with only the charges
varying.

Alternatively it is possible for the user to construct an input topology of
a single molecule that explicitly contains dummy atoms such that the desired
end�states can be simulated. This is a similar approach to that employed by
SOMD and GROMACS, and this will be called �explicit dummy protocol�.

CHARMM. The PERTmodule duplicates the topology similarly to sander
but mapped atoms are given in the topology only once. The module requires
balancing with explicit dummy atoms. All energy terms are linearly scaled
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by the coupling parameter λ. The PSSP softcore potential is applied to all
atoms in the perturbed group, whose parameters can be found in tab 1. The
code can handle constraints of changing bond lengths in the perturbed group
but this may cause incorrect results with PSSP softcores.There is only one
global λ for parameter transformation, however, the scripting facilities in
CHARMM allow run time modi�cation of topologies e.g. by setting charges
or LJ parameters to arbitrary values.

GROMACS. This code uses a single topology description. Bonded terms
are strictly parameter�scaled, which requires proper balancing of multi�term
dihedrals, i.e. each individual term in the Fourier series must have an equiv-
alent in both end states. If the term does not exist it must be created
with parameters zeroing its energy. The softcore potential applies to dummy
atoms only determined from atoms having zero LJ parameters in the end
states. The code allows changing bond lengths involving constraints within
the perturbed group but this can lead to instabilities and wrong results.
There are separate λs for LJ, Coulomb and bonded parameters (and some
other possible terms in the potential) which allows easy implementation of
split protocols.

SOMD. SOMD is a software built by linking Sire and OpenMM molecular
simulation libraries. [68, 69] This code uses a single topology description. The
alchemical state is constructed at run time from an input topology together
with a �patch� (list of force �eld parameters to be modi�ed). All dummy
atoms needed to describe the transformation must be present in the initial
state. Bond and angle terms are parameter�scaled while the dihedral term is
energy�scaled. The softcore potential applies to atoms that become dummy
atoms in one end�state. Dummy atoms are speci�ed by a keyword in the
patch �le. The code cannot handle constraints of changing bond lengths in
the perturbed group. There is only one global λ for parameter scaling. Sep-
arated protocols (see below) must be emulated through careful construction
of the patch �le.

2.2.2 RAFE Setup

The initial setup for all relative free energy simulations has been carried out
with the tool FESetup (version 1.2). [109]. FESetup is a perturbed topol-
ogy writer for AMBER, CHARMM, GROMACS, SOMD and NAMD [113].
The tool makes use of a maximum common substructure search algorithm
to automatically compute atoms that can be mapped, i.e. atoms that have
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a direct relationship to an equivalent atom in the other state � atoms under-
going atom type conversion or modi�cation. The only current limit is that
rings are required to be preserved [114]. With this strategy, a single topol-
ogy description is achieved: any atom that does not match is made a dummy
atom. FESetup allows equilibration of the solvated simulation systems and
ensures that �forward� and �backward� simulations have the same number of
total atoms. With SOMD the mass of each perturbed atom is taken as the
mass of the heavier end�state atom (e.g. a hydrogen atom that is perturbed
to a carbon atom has an atomic mass of 12 amu at all lambda values). The
other codes use the atom masses of the initial state (AMBER, CHARMM)
or allow the user to de�ne how masses vary as a function of lambda (GRO-
MACS). The tool creates all input �les with control parameters, topologies
and coordinates as required for RAFE simulations. Full details on FESetup
can be found in [109].

Figure 2 shows all 18 transformations considered in the present study.
In the limit of su�cient sampling, RAFE simulations should not depend on
the �forward� and �backward� direction of change with respect to the cou-
pling parameter λ. However to test for possible discrepancies, both direction
simulations have been run.

The ethane → methanol transformation is traditionally regarded as a
standard test for RAFE simulations [25, 115]. The other transformations are
centered around mutations from and to methane, and are meant to mimic
components of typical transformations that could be attempted in the con-
text of protein�ligand binding calculations. The 2�cyclopentanylindole to
7�cyclopentanylindole (2�CPI to 7�CPI) transformation has been added to
include both deletion as well as insertion of sub�parts of the perturbed group
in one transformation, an aspect not tested by the other transformations. For
neopentane → methane two alternative mappings have been considered, see
Figure 2. One mapping has methane matched to a terminal methyl and
the other one has the methane carbon matched with the central carbon in
neopentane. The �rst approach will be called �terminally mapped� and the
second one �centrally mapped�. The choice of the current dataset was moti-
vated by keeping the focus on probing for reproducibility among various MD
packages, with rigid and neutral molecules to minimize statistical sampling
errors, and avoid di�culties with charged particles [81, 116]. The force �eld
was chosen to be GAFF (version 1.8), [117] utilizing AM1/BCC charges for
the solute [118, 119] and TIP3P for the solvent. [120] Charges were com-
puted with the antechamber program and missing bonded and vdW terms
were generated with the parmchk2 program, both from the AmberTools16
distribution.

While the MD packages principally allow a �one�step� transformation [121],
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x 2 

Figure 2: The thermodynamic cycles considered in this study. To compute
the free energy of hydration, all pair�wise transformations have to be car-
ried out once in solution and once in vacuum. Green and blue colours in
neopentane show two alternative mappings for methane.

that is with both LJ and Coulombic parameters varied simultaneously (uni-
�ed protocol), it has also been proposed that carrying out a split protocol
may be more e�cient. [122, 123, 124] In such a protocol the charges are trans-
formed linearly between the end states followed by a mutation of the van der
Waals parameters using a softcore potential on the LJ term only. [111, 112].
It is important to note that in the split protocol, charges have to be switched
o� before LJ parameters (and vice versa for the transformation in opposite
direction) to avoid collapse of other atoms, e.g. solvents, onto a �naked�
charge[125, 126, 121].

The production simulations were run at 298K and 1.0 bar. Atomic masses
were not changed along the alchemical transformations as this would a�ect
only the kinetic energy, and would not contribute to the free energy change.
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AMBER. The AMBER16 program was used for this set of free energy
calculations. Typically 11 windows were used for charge mutations and 21
windows for vdW mutations. In some instances, steep variations in gradi-
ents were observed with this protocol and additional windows were added to
obtain smoother integration pro�les. The starting coordinates were usually
taken directly from the pre�equilibrated setup step. In a very few cases it
was necessary to use coordinates from the end of the simulation at a nearby
λ state because of simulation instabilities. This happened in transformations
with a larger number of dummy atoms. Absolute transformations were car-
ried out using a one step protocol featuring 21 windows initially. For some
perturbations additional windows were run in regions where the free energy
gradients varied sharply. Each window was simulated for 2.5 ns, with the
�rst 0.2 ns discarded prior analysis.

Water hydrogens (TIP3P) were constrained with SHAKE. None of the
atoms in the perturbed group where constrained and hence the time step
was set to 1 fs. An alternative protocol with SHAKE on bonds that do not
change during transformation and a time step of 2 fs was also tested (see
SOMD protocol below).

The temperature was controlled through a Langevin thermostat with a
friction constant of 2.0ps−1 and pressure rescaling through a Monte Carlo
barostat with 100 steps between isotropic volume change attempts.

Long�range electrostatics in solution was handled with Particle Mesh
Eward (PME) and an atom�based cuto� of 8.0Å for the real-space Coulomb
and vdW interactions. No cuto� was used for the vacuum simulations.

A Long Range Correction (LRC) term for truncated vdW interactions is
applied during the MD simulations.

CHARMM. The version c40b1 was used for this set of free energy calcula-
tions. The PERT module was used to handle the alchemical transformations.

For the three protocols considered (split, uni�ed and absolute), 21 evenly
spaced windows were used and all windows were run for 1.5 ns with a timestep
of 1 fs. Most windows used the same pre-equilibrated con�guration. A few
windows at the end-points (involving hydrogen being transformed to heavy
atom or vice versa) were unstable due to steric clashes with starting coor-
dinates and were equilibrated using 0.1 fs to 0.5 fs. Only water hydrogens
(TIP3P) were constrained with SHAKE. Conditions of constant tempera-
ture and pressure control were maintained using the Berendsen weak cou-
pling method, with a compressibility of 4.63× 10−5 atm−1 and temperature
and pressure coupling constants of 5.0 ps−1.

Long�range electrostatics in solution was handled with PME to order 6
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with a cuto� of 12.0Å for the real-space Coulomb and vdW interactions.
No cuto� was used for the vacuum simulations. No LRC term was applied
during the alchemical MD simulations but a solute-solvent LRC term was
included in post-processing to calculate the �nal free energy.

The PSSP softcore potential function was used for the perturbed atoms.
The PERT module currently does not currently support the force switch-
ing (option VFSwitch) for LJ potentials with softcores. The CHARMM
PARAM27 force �elds, however, is parameterized to use force switching [71].
Accordingly, we used the potential switching only (option VSwitch) with an
inner cuto� of 10Å and outer cuto� of 12Å.

GROMACS. GROMACS version 4.6.7 was used to carry out this set of
free energy calculations.

For the split and uni�ed protocols 31 and 16 λ states were adopted, re-
spectively, and simulated for 4.2 ns with time steps of 1.0 fs in water and
vacuum. In the absolute protocol 20 alchemical steps were used both for the
discharging and vanishing steps [127, 128] run for 5 ns. All the free energies
were calculated from Langevin dynamics at 298K. A friction coe�cient of
1.0 ps/matom was used, where matom is the the mass of the atom. No holo-
nomic bond or angle constraints were used. A Parrinello�Rahman barostat
with τp = 10 ps and compressibility equal to 4.5× 10−5 bar−1 was used.

Two methods were used to calculate electrostatic interactions: Particle
Mesh Ewald (PME) and charge group-based Reaction Field with a dielectric
of 78.3, as implemented in the software. PME calculations were of order
6 and had a tolerance of 1.0× 10−6, with a grid spacing of 1.0Å. We set
the real-space electrostatic and vdW cuto�s to 10.0Å; a switch was applied
to the latter starting at 9.0Å. A cuto� 50.0Å was used for the vacuum
simulations.

A Long Range Correction (LRC) term for truncated vdW interactions was
applied during the MD simulations.All transformations required the use of
softcore potentials to avoid numerical problems in the free energy calculation.
We chose the 1�1�6 softcore potential for LJ terms (α=0.5 and σ=0.3) for
atoms whose parameters were being perturbed and used the default softcore
Coulomb implementation in paths where charges, LJ, and bonded terms
were modi�ed together, but no soft core potentials were applied to Coulomb
interactions when electrostatic interactions were modi�ed separately.

SOMD. This set of free energy calculations was carried out with SOMD
from the Sire 2016.1 release. [68, 69]

Each alchemical transformation was divided into 17 evenly spaced win-
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dows and simulated for 2 ns each both in water and in vacuum. The absolute
hydration free energies were computed by annihilating non-bonded interac-
tions of the solute in two steps. In the �rst step the free energy change for
discharging the solute was computed. In the second step the free energy
change for turning o� the Lennard-Jones terms of the discharged solute was
computed. Each step was carried out using 17 evenly spaced windows.

The starting coordinates for each window were obtained by energy mini-
mization of the same pre-equilibrated con�guration generated by FESetup.

A velocity-Verlet integrator was employed with a 2 fs time step. Only
bonds involving hydrogens which are not alchemically transformed were con-
strained. This approach is referred as the �unperturbed H bond constraint
protocol�. Temperature control was achieved with the Andersen thermo-
stat, [52] with a stochastic collision frequency of 10 ps−1. A Monte Carlo
barostat assured pressure control, with isotropic box edge scaling moves at-
tempted every 25 time steps.

A shifted atom�based Barker�Watts reaction �eld, [49] with a dielectric
constant of 78.3 was adopted for the solution phase simulations with a cuto�
of 10Å. A similar cuto� was used for LJ interactions. The reaction �eld was
not employed in the vacuum legs, where a Coulombic potential without cuto�
was used. A protocol to account for the di�erent treatment of intramolecular
electrostatics in vacuum and solution is described in the supporting informa-
tion.

The softcore parameters were set to default values for all the transfor-
mations, speci�cally n = 0 for Coulombic interactions and α = 2.0 for the
LJ potential [129]. Additionally, an end-point correction for truncated VdW
potentials was applied by post-processing of end-state trajectories [130, 131].
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Table 1: Summary of the technical details for the relative hydration free
energy calculations carried out with the various codes.

AMBER CHARMM GROMACS SOMD
Version AMBER16 c40b1 4.6.7 2016.1
Module pmemd, sander PERT gmx somd-freenrg

Protocol Split protocol Uni�ed protocol Split protocol Uni�ed protocol

Number of λ windows
11 (charge mutations)
21 (vdW mutations)

21 evenly spaced
31 (charge mutations)
31 (vdW mutations)

17 evenly spaced

Starting coordinates FESetup pre-equilibration FESetup pre-equilibration FESetup pre-equilibration FESetup pre-equilibration
Simulation length per window 2.5 ns 1.5 ns 4.2 ns 2 ns
Timestep 1 fs 1 fs 1 fs 2 fs
Electrostatic method PME PME PME atom based RF
Solvated phase cuto� 8 12 10 10
Vacuum phase cuto� no cuto� no cuto� 50 no cuto�
Constraint none none none H-bonds not perturbed
LRC corrections during MD Post-processing during MD Post-processing
Barostat Monte Carlo Berendsen Parrinello-Rahman Monte Carlo
Thermostat Langevin Berendsen Langevin Andersen

Soft core parameters

rLJ = (2σ6
ijλ+ r6

ij)
1/6

rCoul = (βλ+ rpij)
1/p

n = 1

rLJ = (2λ+ r2
ij)

1/2

rCoul = (βλ+ r2
ij)

1/2

n = 1

rLJ = (2σ6
ijλ+ r6

ij)
1/6

rcoul = rLJ

n = 1

rLJ = (2σijλ+ r2
ij)

1/2

rCoul = (λ+ r2
ij)

1/2

n = 1
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2.2.3 Free Energy Estimations

The thermodynamic integration method (chapter 1, section 1.5) was used to
compute relative hydration free energies, as this is supported by all the tested
MD packages �out�of�the�box�. Equation 2.2 computes the free energy as

∆G =

∫ λ=1

λ=0

∂G

∂λ
dλ (2.2)

where ∂G
∂λ

denotes a collected free energy gradient for each simulated phase.
For all the softwares the alchemical analysis tools [132] is employed to
solve eq. 2.2, performing a cubic spline interpolation across all the gradients
values.

All RAFE simulations were run in triplicate in forward as well as back-
ward direction for a total of 6 simulations per mutation. The �nal hydration
free energy ∆GHYD was computed as the average for each direction sepa-
rately. For comparison the absolute (standard) hydration free energies for all
molecules in Figure 2 was also computed.

To estimate the reliability and convergence of the results, the standard
error of the mean (SEM) has been calculated. The SEM is de�ned as

SEM∆GHYD =
σ√
n

(2.3)

where σ is the sample standard deviation and n = 3 is the number indepen-
dent simulations run.

The mean unsigned error (MUE) was also employed to compare data sets.

MUE =
1

N

N∑
i=1

|yi − xi| (2.4)

where N is the total number of samples, yi and xi are the i�th data to be
compared.
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2.3 Results

Absolute hydration free energies have been considered as the standard refer-
ence of comparison, since for the present dataset they can be calculated with
high precision [128]. Prior work has successfully compared calculated abso-
lute hydration free energies across GROMACS and DESMOND codes. [133]

Table 2 summarizes results for the absolute hydration free energies. The
precision of the calculated free energies is similar between AMBER, CHARMM
and GROMACS, whereas the SOMD free energies are less precise. This may
re�ect di�erences in the lambda schedules and length of trajectories between
the di�erent codes. Nonetheless the standard errors are typically well under
0.1 kcal·mol−1, thus it becomes meaningful to investigate small di�erences of
a few tenths of kcal·mol−1 between codes.

The ∆GHYD obtained with the various MD packages in this way agree
quite well given statistical errors, although some larger deviations are appar-
ent as well. GROMACS predicts a smaller ∆GHYD for methanol by about
0.2 kcal·mol−1. Similarly, there are some small discrepancies in the toluene,
2�methylfuran and 2�methylindole cases, where CHARMM produces slightly
smaller ∆GHYD . These small discrepancies may be due to the di�erences
in calculated water densities between CHARMM and other codes (typically
smaller by ca. 0.01 g·cm−3). The largest deviation can be found for one of
the largest molecules (7�CPI) with the AMBER result being less negative
than with the other MD packages by 0.4�0.8 kcal·mol−1. This particular
discrepancy does not correlate with signi�cant variations in density between
AMBER and other codes.

As an additional check densities in the fully decoupled states have been
computed and compared with a pure TIP3P water box density (0.980 g·cm−3)
[134]. The average densities across all simulations are 0.980±0.002 g·cm−3,
0.973±0.002 g·cm−3, 0.970±0.002 g·cm−3, 0.976±0.003 g·cm−3 for AMBER,
CHARMM, GROMACS and SOMD respectively. AMBER and GROMACS
show higher densities presumably because a LRC term was applied during
the MD simulations, whereas LRC terms for SOMD and CHARMM are only
applied via post-processing of trajectories.

Table 3 shows the MUE between SOMD, GROMACS, AMBER and
CHARMM. CHARMM produces �gures that agree the most with other MD
packages. The largest di�erence reaches 0.2 kcal·mol−1 for SOMD and GRO-
MACS. Variabilities between the codes may be partly explained by di�erences
in densities due to di�erent treatments of long range electrostatics and vdW
interactions.

Having established the predictive value from absolute transformations
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Table 2: Absolute hydration free energies obtained from AFE calculations,
in kcal·mol−1, end-state densities, in g·cm−3, and experimental absolute hy-
dration free energy, extract from [127]. Uncertainties on the last decimal
are given in parenthesis.

Solute AMBER CHARMM GROMACS SOMD ∆Gexp
HY D

Free energy Density Free energy Density Free energy Density Free energy Density
(kcal·mol−1) (g·cm−3) (kcal·mol−1) (g·cm−3) (kcal·mol−1) (g·cm−3) (kcal·mol−1) (g·cm−3) kcal·mol−1

methane 2.47±0.01 0.986±0.001 2.48±0.01 0.977±0.001 2.44±0.01 0.987±0.001 2.52±0.02 0.982±0.001 2.00±0.60
methanol -3.73±0.01 0.988±0.001 -3.72±0.01 0.980±0.001 -3.51±0.01 0.988±0.001 -3.70±0.05 0.987±0.001 -5.10±0.60
ethane 2.50±0.01 0.988±0.001 2.50±0.01 0.979±0.001 2.48±0.01 0.988±0.001 2.56±0.01 0.984±0.001 1.83±0.60
toluene -0.72±0.01 0.991±0.001 -0.64±0.01 0.983±0.001 -0.72±0.01 0.991±0.001 -0.55±0.02 0.989±0.001 -0.90±0.20
neopentane 2.61±0.01 0.990±0.001 2.58±0.02 0.981±0.001 2.58±0.01 0.990±0.001 2.71±0.06 0.987±0.001 2.51±0.60
2-methylfuran -0.49±0.02 0.991±0.001 -0.42±0.01 0.983±0.001 -0.51±0.01 0.991±0.001 -0.39±0.02 0.989±0.001 NA
2-methylindole -6.24±0.01 0.993±0.001 -6.06±0.01 0.984±0.001 -6.35±0.01 0.993±0.001 -6.06±0.04 0.990±0.001 NA
2-CPI -6.05±0.02 0.995±0.001 -6.18±0.04 0.992±0.001 -6.54±0.01 0.994±0.001 -6.14±0.09 0.991±0.001 NA
7-CPI -5.66±0.03 0.995±0.001 -6.28±0.03 0.982±0.001 -6.52±0.02 0.995±0.001 -6.10±0.01 0.992±0.001 NA

Table 3: MUE, in kcal·mol−1, between relative free energies obtained with
the absolute protocol for the SOMD, GROMACS, AMBER and CHARMM
packages.

Package GROMACS AMBER CHARMM

SOMD 0.20±0.03 0.13±0.04 0.08±0.02
GROMACS 0.19±0.01 0.15±0.01
AMBER 0.12±0.01
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the ∆GHYD from relative mutations were computed. Table 4 summarizes
the results for the four MD packages. Again the data is from the recom-
mended protocol for each package (see detailed discussions in the following
subsections).

Firstly, the internal consistency of the di�erent codes with the computed
absolute hydration free energies was computed. For each software, the num-
ber of times a calculated relative free energy deviates from the di�erence in
reference absolute hydration free energies by more than 0.1 kcal·mol−1 was
counted. According to this criterion, the AMBER explicit implementation
is the least consistent (10 deviations), followed by AMBER implicit (6 de-
viations), SOMD (6 deviations), CHARMM (5 deviations), GROMACS (5
deviations). The perturbations that give a discrepancy are not the same
across codes, for instance methane->toluene with AMBER explicit deviates
from the reference absolute hydration free energies by 0.33 kcal·mol−1, but
at most 0.04 kcal·mol−1 with other codes. SOMD and GROMACS show de-
viations of ca. 0.25 kcal·mol−1 for methanol->methane but this is not the
case for AMBER (implicit or explicit) or CHARMM.

Next, the consistency between forward and backward transformations in
relative hydration free energies was compared. Again counting the number of
deviations that exceed 0.1 kcal·mol−1 indicates that AMBER explicit is the
least consistent (3 deviations), followed by AMBER implicit (2 deviations),
CHARMM (2 deviations), GROMACS (1 deviation), SOMD (1 deviation).
The largest deviation is observed with AMBER implicit for 2-methylindole
<-> methane (0.36 kcal·mol−1).

Then, a comparison between the relative free energies predicted by all the
packages was drawn. CHARMM tends to show relative free energies with
smaller values for a number of transformations: neopentane, 2�methylfuran
and 2�methylindole. SOMD displays smaller values ∆GHYD for the methanol
and toluene transformations. The largest discrepancy, however, is in the
neopentane transformation with central mapping where AMBER with im-
plicit dummy atoms is about 0.5 kcal·mol−1 higher and CHARMM about 0.2
kcal·mol−1 lower than the other two codes. The terminal mapped neopen-
tane case reveals AMBER to be in line with GROMACS and SOMD while
CHARMM's results deviate further. AMBER deviates also quite strongly
from the other codes in the cyclopentanylindole cases.

The MUEs of the relative free energy simulations are presented in Ta-
ble 5. They are on average slightly larger than the MUEs from the absolute
simulations (Table 3) and reach 0.26 kcal·mol−1 for AMBER compared with
CHARMM.

To further understand the correctness of the transformations, table 6

shows the computed cycle closure errors for the cycle ethane→ methanol
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Table 4: Comparison of relative free energies of hydration for various MD
packages as obtained from absolute (AFE) and relative (RAFE) transforma-
tions via uni�ed or split protocols. The values deduced from AFE trans-
formations (given in the �rst row) were taken from Table 1. Similarly the
experimental values can be computed as a di�erence from absolute hydration
free energies.

Transformation1 AMBER2 CHARMM3 GROMACS2 SOMD3 ∆Gexp
HY D

implicit4 explicit4

AFE ethane methane -0.02±0.01 -0.03±0.01 -0.04±0.01 -0.05±0.02
RAFE ethane methane +0.02±0.01 -0.13±0.02 +0.09±0.02 -0.04±0.02 0.04±0.02 0.16
RAFE methane ethane +0.00±0.03 +0.19±0.03 +0.04±0.01 +0.02±0.01 -0.01±0.06 -0.16
AFE methanol methane +6.20±0.01 +6.20±0.02 +5.95±0.01 +6.21±0.06
RAFE methanol methane +6.19±0.01 +6.20±0.02 +6.18±0.01 +6.20±0.01 +5.99±0.05 7.09
RAFE methane methanol -6.20±0.03 -6.15±0.01 -6.21±0.01 -6.20±0.01 -5.97±0.04 -7.09
AFE ethane methanol -6.22±0.01 -6.22±0.02 -5.98±0.01 -6.26±0.05
RAFE ethane methanol -6.20±0.01 -6.27±0.01 -6.25±0.01 -6.19±0.01 -6.09±0.03 -6.93
RAFE methanol ethane +6.20±0.01 +6.25±0.01 +6.28±0.01 +6.19±0.01 +6.09±0.02 6.93
AFE toluene methane +3.19±0.01 +3.12±0.01 +3.16±0.01 +3.07±0.03
RAFE toluene methane +3.24±0.02 +3.39±0.02 +3.04±0.02 +3.21±0.01 +2.89±0.09 2.88
RAFE methane toluene -3.42±0.03 -3.52±0.03 -3.09±0.02 -3.20±0.01 -3.06±0.02 -2.88
AFE neopentane methane -0.13±0.02 -0.11±0.02 -0.14±0.01 -0.19±0.06
RAFE neopentane5 methane 0.32±0.04 -0.03±0.06 -0.35±0.01 -0.15±0.02 -0.20±0.05 -0.52
RAFE methane5 neopentane -0.25±0.03 -0.07±0.03 +0.24±0.02 +0.16±0.05 +0.13±0.05 0.52
RAFE neopentane6 methane -0.13±0.01 -0.12±0.02 -0.56±0.02 -0.14±0.01 -0.11±0.01 -0.52
RAFE methane6 neopentane +0.13±0.03 +0.12±0.03 +0.40±0.02 +0.18±0.03 +0.10±0.06 0.52
AFE 2�methylfuran methane +2.96±0.02 +2.90±0.01 +2.95±0.01 +2.90±0.03
RAFE 2�methylfuran methane +3.09±0.01 +3.10±0.01 +2.84±0.03 +2.93±0.05 +2.92±0.05 NA
RAFE methane 2-methyfuran -3.10±0.03 -3.15±0.03 -2.84±0.02 -2.96±0.01 -2.83±0.03 NA
AFE 2�methylindole methane +8.72±0.01 +8.53±0.02 +8.79±0.02 +8.57±0.03
RAFE 2�methylindole methane +8.78±0.03 +8.78±0.04 +8.49±0.01 +8.73±0.03 +8.64±0.06 NA
RAFE methane 2-methylindole -9.14±0.02 -9.13±0.03 -8.56±0.02 -8.74±0.01 -8.67±0.08 NA
AFE 2�CPI 7�CPI +0.39±0.04 -0.11±0.04 +0.02±0.05 +0.08±0.14
RAFE 2�CPI7 7�CPI +0.36±0.03 +0.63±0.06 -0.01±0.01 -0.01±0.03 -0.11±0.07 NA
RAFE 7�CPI7 2�CPI -0.34±0.05 -0.50±0.03 -0.04±0.01 +0.20±0.04 +0.01±0.08 NA

1 The values deduced from the AFE absolute of Table 1 are given �rst.
2 split protocol.
3 uni�ed protocol.
4 using either the implicit or the explicit dummy atom approach.
5 central mapping.
6 terminal mapping.
7 partial re/discharge i.e.
only the charges of the appearingand the disappearing rings are switched

Table 5: MUE, in kcal·mol−1, comparing relative free energies from relative
simulations between SOMD, GROMACS, AMBER and CHARMM.

Package GROMACS AMBER CHARMM

SOMD 0.11±0.01 0.23±0.01 0.15±0.01
GROMACS 0.16±0.01 0.13±0.01
AMBER 0.26±0.01
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Table 6: Cycle closure errors, in kcal·mol−1, for ethane→ methanol →
methane → ethane

Package and Protocol Closure Error

AMBER implicit 0.07 ± 0.04
AMBER explicit 0.02 ± 0.05
GROMACS split reaction �eld 0.05 ± 0.02
GROMACS uni�ed reaction �eld 0.13 ± 0.03
GROMACS split PME 0.04 ± 0.01
GROMACS uni�ed PME 0.18 ± 0.03
CHARMM 0.01 ± 0.03
SOMD -0.11 ± 0.08

→ methane → ethane. Uncertainties were estimated by propagating un-
certainties from the individual perturbations. AMBER explicit dummy and
CHARMM are the only protocol consistent within uncertainty estimates, but
the deviations observed with the other protocols are small. The largest dis-
crepancy is observed with the GROMACS uni�ed PME protocol, with the
error just under 0.2 kcal·mol−1.

Finally, table 7 reports whether the codes reproduced consistent changes
in mean box volumes between forward and backward transformations. Gen-
erally codes present a consistency among volumes values. GROMACS gives
the most precise volume changes, whereas SOMD gives the least precie vol-
ume changes. This could indicate the barostats used by the di�erent simula-
tion packages relax volume �uctuations with di�erent e�ciency, or that they
sample di�erent volume �uctuations.
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Table 7: Changes in volumes, in Å3, for selected perturbations across pack-
ages

transformation AMBER CHARMM GROMACS SOMD

methane ethane 38±6 24±3 31±3 61±25
ethane methane -29±7 -30±4 -28±3 -50±30
ethane methanol -33±9 -36±2 -36±5 -66±36
methanol ethane 38±8 37±3 36±5 46±31
methane methanol -5±11 -9±2 -3±5 11±20
methanol methane 8±10 1±2 4±3 27±16
methane toluene 93±11 89±3 110±2 120±56
toluene methane -106±8 -89±8 -113±3 -145±23
methane 2-methylindole 164±11 64±3 142±3 140±22
2-methylindole methane -138±8 -120±7 -139±5 -166±45
methane neopentane 99±9 90±2 115±4 117±50
neopentane methane -105±11 -100±2 -114±4 -68±43

2.3.1 AMBER

Using AMBER for RAFE simulations has revealed several problems with the
implementation. Some bugs were identi�ed and the developers have �xed
those for AMBER16, e.g. energy minimization in sander led to diverged
coordinates for mapped atoms. For a single topology description, however,
it is necessary to have the same coordinates. Other issues are that vacuum
simulations can only be carried out with the sander program because pmemd
cannot handle AFE simulations in vacuum as of this writing. A disadvan-
tage of sander is that it cannot be used to simulate the λ end points, [135]
such that the TI gradients need to be extrapolated (minimum and maximum
allowed λs are 0.005 and 0.995). Also, sander considers the whole system
as the perturbed region while pmemd restricts this to a user chosen atom
selection. This has obvious implications for performance [135].

In contrast to the other three codes, AMBER does not yield correct rela-
tive free energies with the uni�ed protocol, i.e when all force �eld parameters
are scaled simultaneously as shown in Table 8.

The issue becomes apparent when more than a few dummy atoms are
involved, while the uni�ed protocol works for the smaller transformations.The
split RAFE protocol and absolute free energies, however, are very close to
the other MD packages as demonstrated in Table 9.

End point geometries appear to be another issue with AMBER simula-
tions in both solution and vacuum. This is most obvious in the neopentane
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Table 8: Comparison between split and uni�ed protocol in AMBER. The
values for the split protocol highlights inconsistencies in the code in bold
font. All the values are in kcal·mol−1.

split protocol uni�ed protocol ∆Gexp
HY D

transformation ∆GHYD ∆GHYD

ethane methane 0.02 -0.07 0.16
methane ethane 0.01 -0.01 -0.16
methanol methane 6.19 6.23 7.09
methane methanol -6.19 -6.31 -7.09
ethane methanol -6.20 -6.24 -6.93
methanol ethane 6.19 6.19 6.93
toluene methane 3.24 5.64 2.88
methane toluene -3.42 −5.61 -2.88
neopentane1 methane 0.31 7.26 -0.52
methane1 neopentane -0.25 −7.04 0.52
neopentane2 methane -0.13 0.94 -0.52
methane2 neopentane 0.12 −0.96 0.52
2-methylfuran methane 3.08 3.14 NA
methane 2-methylfuran -3.10 −2.15 NA
2-methylindole methane 8.77 11.13 NA
methane 2-methylindole -9.13 -8.98 NA

1 central mapping.
2 terminal mapping.
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Table 9: Comparing AMBER results for simulations with various split pro-
tocols.The emphasis is here on the data with SHAKE enabled and a time step
of 2 fs (last column). Implicit, explicit and absolute protocols had SHAKE
disabled and a time step of 1 fs. All the values are in kcal·mol−1

implicit explicit absolute SHAKE1

transformation ∆GHYD ∆GHYD ∆GHYD ∆GHYD

ethane methanol -6.20±0.01 -6.27±0.01
-6.22±0.01 -6.18±0.01

methanol ethane -6.20±0.01 -6.25±0.01
toluene methane 3.24±0.02 3.39±0.02

3.19±0.01 3.27±0.03
methane toluene 3.42±0.03 3.52±0.03
neopentane methane2 0.32±0.04 -0.03±0.06

-0.13±0.02

0.35±0.02
methane neopentane2 0.25±0.03 -0.07±0.03
neopentane methane3 0.13±0.01 -0.12±0.02
methane neopentane3 -0.13±0.03 -0.12±0.03
1 implicit dummy atom protocol with δt =2 fs and SHAKE on all H�bonds
except perturbed bonds.

2 central mapping.
3 terminal mapping.

→ methane test case with central mapping. As a matter of fact, the methane
end state exhibits incorrect distances between the carbon and the four at-
tached hydrogens of approximately 1.23 Å. This value is about 1.12 Å for
the terminal dummy atoms in the other test cases but still higher than the
expected 1.09 Å on average. Such an error depends on the number of dummy
atoms immediately surrounding the central atom.

Furthermore, a constraint check was carried out. SHAKE was explicitly
deactivated for all bonds in the perturbed region in these protocols. Table 9
shows selected results for transformations with SHAKE enabled for all bonds
to hydrogens except those bonds that change bond length during transfor-
mation. The time step has been increased from 1 fs as used in the other three
protocols to 2 fs. As the results are essentially the same as the non�SHAKE
simulations, this SHAKE protocol appears to be a viable solution to increase
the performance of RAFE simulations. We have repeated this protocol with
AMBER in response to the results obtained with SOMD using this implemen-
tation. From a practical point of view, AMBER uses an atom-based mask for
bond SHAKEs such that the mask must be set for the hydrogens in question
while the same is not possible for their non�H counter�part in the other state
because all bonds emanating from this atom would be a�ected. In general,
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the free energies computed with each approach are in good agreement with
each other and with the results of the other MD packages There are, however,
a few notable deviations. Neopentane → methane with central mapping dif-
fers from the result with terminal mapping by about 0.4 kcal·mol−1. The
terminal mapping and the free energies from the explicit dummy simulations
are, however, consistent with the absolute transformations (Table 2).
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2.3.2 CHARMM

A few bugs not previously reported in CHARMM c40b1 were found and
careful alchemical free energy (AFE) setup was needed to produce robust
and accurate results. The PERT module does not allow a hydrogen bond
constraint (SHAKE) to be applied on the perturbed region, and this requires
end point λ to be equilibrated carefully. These windows at end-point λ were
started with their own equilibration using timesteps of 0.1 fs to 0.5 fs before
the production run. The VSwitch option was used to apply a switching
function to the potential since that option cannot be applied to forces for
calculations run with the PERT module.

The PSSP softcore potential function cannot handle Long-Range Cor-
rection (LRC) correctly. This e�ect is not clearly shown when the initial
and �nal states are comparable in size, but the deviation becomes larger
for perturbations that involve large changes in solute size, or for absolute
alchemical free energy calculations. It is necessary to disable the LRC to ob-
tain consistent free energies from relative and absolute alchemical free energy
calculation protocols.

Table 10 shows the relative free energies obtained from CHARMM simu-
lations. While results from all three protocols (split, uni�ed, absolute) seem
to be in good agreement with each other, the split-protocol results are more
precise due to the additional amount of data generated. It is notable that the
split-protocol results are more similar to the ones obtained by other MD pack-
ages (i.e. neopentane and toluene), but the relative-uni�ed results are more
consistent with the CHARMM absolute simulations (e.g. 2-methylindole).
Overall, the relative free energies obtained by these three di�erent protocols
are in good agreement with those reported for the other MD packages (Tables
1 and 3).
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Table 10: Results for CHARMM simulations with split and uni�ed protocols
for relative alchemical free energy and uni�ed protocol for absolute values.
All the values are in kcal·mol−1.

transformation
split uni�ed absolute(uni�ed)

∆GHYD ∆GHYD ∆GHYD

ethane methane -0.09±0.01 -0.09±0.02
-0.03±0.01

methane ethane 0.04±0.01 0.04±0.01
methanol methane 6.20±0.01 6.18±0.01

6.20±0.01
methane methanol -6.30±0.01 -6.21±0.01
ethane methanol -6.21±0.01 -6.25±0.01

-6.22±0.02
methanol ethane 6.25±0.01 6.28±0.01
toluene methane 3.22±0.01 3.04±0.02

3.12±0.01
methane toluene -3.28±0.01 -3.09±0.02
neopentane methane1 -0.29±0.01 -0.35±0.01

-0.11±0.02methane neopentane1 0.15±0.01 0.24±0.02
neopentane methane2 -0.42±0.01 -0.56±0.02
methane neopentane2 0.31±0.01 0.40±0.02
2-methylfuran methane 2.87±0.01 2.84±0.03

2.90±0.01
methane 2-methylfuran -2.93±0.01 -2.84±0.02
2-methylindole methane 8.88±0.01 8.49±0.01

8.53±0.02
methane 2-methylindole -8.81±0.01 -8.56±0.02
2-CPI 7-CPI -0.08±0.01 -0.01±0.01

-0.11±0.04
7-CPI 2-CPI -0.01±0.01 -0.04±0.01
1 central mapping.
2 terminal mapping.
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Table 11: Relative hydration free energies obtained from GROMACS sim-
ulations, in kcal·mol−1.

split1 uni�ed2 absolute3

RF PME RF PME RF PME
transformation ∆GHYD ∆GHYD ∆GHYD ∆GHYD ∆GHYD ∆GHYD

ethane methane -0.02±0.01 -0.03±0.02 -0.02±0.01 -0.03±0.01 -0.06±0.01 -0.04±0.01
methane ethane 0.01±0.02 0.02±0.01 0.05±0.02 0.01±0.02
methanol methane 6.16±0.01 6.20±0.01 7.30±0.02 7.38±0.01 5.77±0.01 5.95±0.01
methane methanol -6.17±0.01 -6.20±0.01 -7.09±0.02 -7.17±0.02
ethane methanol -6.12±0.01 -6.18±0.01 -7.11±0.01 -7.21±0.02 -5.83±0.01 -5.98±0.01

methanol ethane 6.12±0.01 6.19±0.01 7.34±0.01 7.40±0.01
toluene methane 3.22±0.01 3.21±0.01 3.23±0.01 3.22±0.01 2.97±0.01 3.16±0.01

methane toluene -3.25±0.01 -3.20±0.01 -3.22±0.01 -3.21±0.01
neopentane methane4 -0.10±0.01 -0.15±0.02 -0.08±0.02 -0.18±0.03 -0.18±0.01 -0.14±0.01

methane neopentane4 0.11±0.02 0.16±0.05 0.00±0.03 0.18±0.03
neopentane methane5 -0.11±0.01 -0.13±0.01 -0.14±0.01 -0.14±0.01

methane neopentane5 0.10±0.03 0.18±0.03 0.09±0.01 0.15±0.02
2-methylfuran methane 2.99±0.01 2.93±0.05 3.05±0.01 3.00±0.01 2.87±0.01 2.95±0.01

methane 2-methylfuran -3.00±0.01 -2.96±0.01 -3.05±0.01 -3.01±0.01
2-methylindole methane 8.71±0.02 8.73±0.03 8.73±0.01 8.80±0.03 8.44±0.02 8.79±0.02

methane 2-methylindole -8.73±0.03 -8.74±0.01 -8.30±0.02 -8.77±0.04
2-CPI 7-CPI -0.07±0.02 -0.03±0.03 -0.10±0.05 -0.20±0.10 -0.02±0.05 0.02±0.02
7-CPI 2-CPI 0.12±0.06 0.20±0.04 0.04±0.06 0.14±0.09

1 results obtained from alchemical transformations with electrostatic and
bonded scaling separate from vdW parameter change.

2 results obtained from alchemical transformation with all parameters scaling
together.

3 results obtained from absolute free energy calculations.
4 central mapping.
5 terminal mapping.

2.3.3 GROMACS

Table 11 lists the relative free energies obtained from GROMACS simula-
tions. Relative free energies are in good agreement with each other and
with ∆GHYD obtained from the other software used in this study (Tables 2
and 4). A noteworthy exception is the di�erence between the uni�ed and
split results of methane → methanol and its reverse process. This was in-
vestigated further with additional split protocol simulations using Coulomb
softcore potentials (Table 12).

There is a di�erence of approximately 1.5 kcal·mol−1 between the split
protocol without Coulomb softcore potentials and both protocols that use
it. Deeper analyses suggest that softening of the electrostatic interactions
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Table 12: ∆GHYD results in di�erent scenarios with or without Coulomb
softcore potentials, in kcal·mol−1.

without Coulomb softcore with Coulomb softcore absolute
RF PME RF PME RF PME

Transformations ∆GHYD ∆GHYD ∆GHYD ∆GHYD ∆GHYD ∆GHYD

ethane methane -0.02±0.01 -0.04±0.02 -0.03±0.04 -0.02±0.04 -0.06±0.01 -0.04±0.01
methane ethane 0.01±0.02 0.02±0.01 0.01±0.04 0.02±0.04
methanol methane 6.16±0.01 6.20±0.01 7.32±0.03 7.42±0.04 5.77±0.01 5.95±0.01
methane methanol -6.17±0.01 -6.20±0.01 -7.14±0.03 -7.21±0.03
ethane methanol -6.12±0.01 -6.18±0.01 -6.15±0.02 -6.21±0.02 -5.83±0.01 -5.98±0.01
methanol ethane 6.12±0.01 6.19±0.01 6.15±0.02 6.21±0.02
toluene methane 3.22±0.01 3.21±0.01 3.22±0.04 3.21±0.04 2.97±0.01 3.16±0.01
methane toluene -3.25±0.01 -3.20±0.01 -3.27±0.04 -3.22±0.04
neopentane methane1 -0.10±0.01 -0.15±0.02 -0.13±0.08 -0.13±0.08 -0.18±0.01 -0.14±0.01
methane neopentane1 0.11±0.02 0.16±0.05 0.12±0.08 0.15±0.08
neopentane methane2 -0.12±0.01 -0.13±0.01 -0.10±0.04 -0.13±0.04
methane neopentane22 0.10±0.03 0.18±0.03 0.08±0.06 -0.15±0.06
2-methylfuran methane 2.99±0.01 2.93±0.05 3.07±0.03 3.02±0.04 2.87±0.01 2.95±0.01
methane 2-methylfuran -3.00±0.01 -2.96±0.01 -3.08±0.03 -3.02±0.04
2-methylindole methane 8.71±0.02 8.73±0.03 8.79±0.04 8.82±0.05 8.44±0.02 8.79±0.02
methane 2-methylindole -8.73±0.03 -8.74±0.01 -8.79±0.05 -8.81±0.06
2-cyclopentanylindole 7-cyclopentanylindole -0.07±0.02 -0.03±0.03 -0.12±0.03 -0.14±0.05 -0.02±0.05 0.02±0.02
7-cyclopentanylindole 2-cyclopentanylindole 0.12±0.06 0.20±0.04 -1.20±0.20 -1.50±0.10

1 central mapping.
2 terminal mapping.
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requires adjustments in the λ-distance between states in the rapidly varying
part of the ∂G/∂λ. A variant that combined the bonded terms with the vdW
transformation did not change this result. Thus, the split protocol without
Coulomb softcore potentials was found to be the most e�ective way to cal-
culate relative free energies with the current GROMACS implementation.

Additionally it is worth mentioning is that relative free energy simulations
that feature alchemical transformations of a hydrogen atom into a heavy
atom will crash if the bond involving the hydrogen atom is constrained with
algorithms such as SHAKE or LINCS. Successful simulations require turning
o� the bond constraint and decreasing the time step to 1 fs. Alternative
protocols that require some scripting and changes in the topology �le could
be pursued in the future. For instance 2 fs constraints protocols similar to
those used in SOMD or AMBER in this study could be implemented via the
de�nition of a new atom type for alchemically perturbed hydrogen atoms.
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Table 13: Final relative free energy of hydration ∆GHYD estimations and
standard error for SOMD unperturbed hydrogen bonds protocol, RAFE,
compared with relative free energy of hydration computed from absolute
free energy simulations, RAFE-absolute. All the values are in kcal·mol−1

RAFE RAFE-absolute
transformation ∆GHYD ∆GHYD

ethane methane 0.01±0.05 0.04±0.02
methane ethane -0.04±0.02 0.04±0.02
methanol methane 5.99±0.05 6.21±0.05
methane methanol -5.97±0.04 -6.21±0.05
ethane methanol -6.09±0.03 -6.26±0.05
methanol ethane 6.09±0.02 6.26±0.05
toluene methane 2.89±0.09 3.06±0.03
methane toluene -3.06±0.02 -3.06±0.03
neopentane methane1 -0.20±0.05 -0.19±0.06
methane neopentane1 0.13±0.05 0.19±0.06
neopentane methane2 -0.11±0.01 -0.19±0.06
methane neopentane2 0.10±0.06 0.19±0.06
2-methylfuran methane 2.92±0.05 2.90±0.03
methane 2-methyfuran -2.83±0.03 -2.90±0.03
2-methylindole methane 8.64±0.06 8.57±0.03
methane 2-methylindole -8.67±0.08 -8.57±0.03
2�cyclopentanylindole 7�cyclopentanylindole 0.11±0.07 0.08±0.14
7�cyclopentanylindole 2�cyclopentanylindole 0.01±0.08 0.08±0.14
1 central mapping.
2 terminal mapping.

2.3.4 SOMD

Table 13 compares relative free energy of hydration ∆ GHYD according to
the protocol with unperturbed H bond constraints, with relative ∆GHYD

obtained from two absolute free energy calculations.
Overall for the unperturbed H bonds constraint a very good agreement

is observed between both absolute and relative calculations (R2=0.99±0.01
and MUE = 0.10±0.03 kcal·mol−1), highlighting internal consistency within
SOMD.

To achieve this level of reproducibility within SOMD it was crucial to pay
close attention to constraints. Speci�cally, bonds that involve unperturbed
hydrogen atoms are constrained. Bonds involving hydrogen atoms that are
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Table 14: Relative free energy of hydration ∆GHYD computed with all bond
constraints, All bonds, no constraints, None, and unperturbed hydrogen bond
constraint, unpert H bonds. All the values are in kcal·mol−1

All bonds None unpert H bonds
transformation ∆GHYD ∆GHYD ∆GHYD

ethane methane -0.48±0.01 -0.18±0.04 0.01±0.05
methane ethane 0.49±0.01 0.01±0.02 -0.04±0.02
methanol methane 6.06±0.01 6.49±0.01 5.99±0.05
methane methanol -6.08±0.01 -6.15±0.01 -5.97±0.04
ethane methanol -6.22±0.01 -6.14±0.03 -6.09±0.03
methanol ethane 6.23±0.01 6.09±0.01 6.09±0.02
toluene methane 3.73±0.27 3.09±0.06 2.89±0.09
methane toluene -3.79±0.03 -3.07±0.06 -3.06±0.02
neopentane methane1 -2.09±0.01 -0.14±0.14 -0.20±0.05
methane neopentane1 2.04±0.01 0.01±0.06 0.13±0.05
neopentane methane2 -0.48±0.01 -0.14±0.06 -0.11±0.01
methane neopentane2 0.59±0.02 0.14±0.06 0.10±0.06
2-methylfuran methane 3.38±0.02 2.81±0.03 2.92±0.05
methane 2-methyfuran -3.40±0.03 -2.89±0.06 -2.83±0.03
2-methylindole methane 9.29±0.06 8.72±0.05 8.63±0.06
methane 2-methylindole -9.10±0.04 -8.61±0.04 -8.67±0.08
1 central mapping.
2 terminal mapping.

perturbed to a heavy element are unconstrained. Additionally the atomic
mass of the perturbed hydrogen atom is set to the mass of the heavy atom
it is perturbed to. Bonds involving hydrogen atoms that are perturbed to
another hydrogen atom type are constrained. We stress that it is accept-
able to arti�cially increase the atomic mass of hydrogen atoms because the
calculated excess free energy changes do not depend on atomic masses.

This protocol suppresses high frequency vibrations in �exible bonds in-
volving hydrogen atoms, thus enabling a time step of 2 fs, whilst giving es-
sentially negligible errors due to the use of constraints for perturbed bonds.
This is apparent from the comparison with the absolute hydration free energy
calculations. Additionally, the protocol yields relative hydration free energy
very similar (MAE = 0.09 kcal·mol−1) to those computed from simulations
where no constraints are applied on the solutes and a timestep of 1 fs is used,
table 14
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By contrast, a protocol that constrains all bonds in a solute leads to sig-
ni�cant di�erences with the absolute hydration free energies. For instance
neopentane→methane (centrally mapped) gives a RAFE ∆GHYD=2.04±0.01
kcal·mol−1 whereas the absolute hydration free energy calculations give
∆GHYD=-0.19±0.06 kcal·mol−1.

This discrepancy occurs because in the SOMD implementation, the ener-
gies of constrained bonds are not evaluated, but the calculation of the energies
of the solute at perturbed λ values is carried out using the coordinates of the
reference λ trajectory. This leads to a neglect of contributions of the bonded
term (and associated coupled terms) to the free energy change. The e�ect is
more pronounced for perturbations that feature a large change in equilibrium
bond lengths, such as those where a hydrogen atom is perturbed to/from a
heavy atom.

The reaction �elds implemented in SOMD and GROMACS di�er some-
what (atom-based shifted Barker Watts, [49] vs group based switched Barker
Watts), but nevertheless SOMD and GROMACS RF produce comparable
results with a MUE of 0.18 kcal·mol−1. Overall, the SOMD free energy es-
timations are in good agreement with the other MD packages, as the MUE
suggests (see Table 5). For the methane → neopentane transformations
SOMD yields consistent results between central and terminal mappings, as
shown in Table 13. Reaction �eld and GROMACS PME results are in good
agreement. All SOMD RAFE simulations were carried out with simultaneous
transformation of Lennard-Jones, charges, and bonded terms. This suggests
that the failure of the GROMACS �uni�ed protocol� in some instances may
be due to di�erences in the softcore Coulomb implementations.
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2.4 Discussion and Conclusions

This study addressed whether contemporary MD packages such as AMBER,
CHARMM, GROMACS and SOMD are able to reproduce relative alchem-
ical free energies of hydration for a set of neutral small organic molecules,
given a pre�de�ned force �eld. Establishing a simulation protocol that leads
to consistent results across codes has been cumbersome due to technical dif-
�culties encountered with every code. The MD codes have a wide range
of options and setup features which makes it di�cult for the inexperienced
user to decide on the most appropriate ones. All the dataset input �les,
setup, simulations and analyses shown in this work are freely available at
https://github.com/halx/relative-solvation-inputs .

The computed free energies appear to be in reasonably good agreement
with each other (see Tables 2 and 4). The average MAE between all codes
0.14 kcal·mol−1 for absolute free energies and 0.17 kcal·mol−1 for relative free
energies. This can be interpreted as the current �limit of reproducibility� for
the alchemical relative hydration free energy for a small dataset of neutral
molecules. There is some doubt, however, over the AMBER results because
the particular version of the tested software cannot reproduce the correct end-
point geometries. This is particularly evident in the neopentane to methane
case with central mapping where also the relative free energies are clearly
di�erent from the other packages. These issues may re�ect a bug in the
AMBER package but it was impossible to isolate it.

It was not possible to de�ne a universal protocol that could be recom-
mended for use with all four codes. Uni�ed protocols do not appear to work
with AMBER and GROMACS, while SOMD and CHARMM had no prob-
lem in this regard. It was not clear where the problem may lie, e.g. only
with the vacuum leg of the thermodynamic cycle. In the case of AMBER the
vacuum simulation has currently been done with the separately developed
sander module. The problem may be a consequence of the di�erent softcore
functions used in these MD packages but further investigations are needed
to resolve this issue.

The unperturbed H bond protocol is an interesting alternative which
applies constraints to all non�transforming bonds and thus allowed us to
increase the time step to 2 fs. The split protocol was found to work well
for all codes. It appears to be the most e�cient approach for GROMACS
as shown with the methanol to methane case because the uni�ed protocol
produces a less smooth function [136]. A complete separation of λs may
not be necessary though as a certain degree of overlap between vdW and
Coulumb λ may be a viable solution [137] for equilibrium AFEs.
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Comparison between codes is hampered by several factors. Firstly, the
codes use di�erent simulation algorithms e.g. electrostatics are handled dif-
ferently in vacuum i.e. in�nite cuto� vs. reaction �eld. Temperature and
pressure control, time step integrators, etc. are other examples. But the
data here suggest that, if there are any systematic errors introduced through
these algorithms, then they are small. It is reassuring that AFEs for the
systems tested here show only a small dependence on MD protocol decisions
(provided a correct implementation).

More speci�cally, various issues with current code bases have been re-
vealed through this work. Constraints in connection with varying bond
length can cause errors with GROMACS, just as masses must not be al-
lowed to vary in RAFE simulations, both to avoid crashes and incorrect
results from the software. CHARMM has issues with constraints and the
PSSP softcores, and the PERT module cannot make use of the force switch
as it is now standard for CHARMM force �elds. Care must be taken when
using the LRC long range correction keyword to avoid producing inconsistent
results. AMBER's problem with end point geometries and uni�ed protocols
has been pointed out above.

Another practical issue is the complex setup associated with the split
protocol. For instance in GROMACS it is necessary to carry out two sep-
arate simulations per λ because discharging and recharging groups cannot
be selected separately. λ paths as implemented in GROMACS could also be
bene�cial for other codes as they make the setup of split protocols easier.
The alternative we have used in codes lacking this feature is to mimic this
protocol through careful constructions of topologies via scripting.

The primary focus of this work was to achieve low statistical errors to
establish if codes are able to reproduce free energies. The protocols e�-
ciency for each software was not investigated in details, as this would require
further, complicated studies. For absolute calculations the most demand-
ing protocol and most precise protocol is GROMACS (200 million aggregate
time�steps per solute, average SEM 0.01 kcal·mol−1), the least demanding
protocol is CHARMM (31.5 million time�steps per solute, average SEM 0.015
kcal·mol−1). SOMD's aggregate time�steps is comparable to CHARMM
(34 million time�steps) but the free energies are less precise (average SEM
0.045 kcal·mol−1 ). For relative calculations, the least demanding protocol
is SOMD (17 million time�steps), but this is also the least precise (average
SEM 0.05 kcal·mol−1). Remarkably the most demanding protocol (GRO-
MACS 197.4 million time�steps, average SEM 0.02 kcal·mol−1) is less precise
than CHARMM that used fewer time�steps (31.5 million time-steps, aver-
age SEM 0.01 kcal·mol−1). Further work should be pursued to understand
what algorithmic details in the various implementations are important for
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the e�ciency of the free energy calculations.
Beyond careful protocol validation, further automation of alchemical free

energy studies will also decrease user errors, and thus increases reproducibil-
ity. Various attempts in this direction are currently underway for both ab-
solute and relative setups [138, 139, 140, 108, 141, 142, 109]. To conclude,
it is hoped that this study will contribute to improve best practices in the
computational �eld, to improve the transferability of alchemical free energy
calculation protocols across software. Reproducibility is crucial to enable
robust use of alchemical free energy methods in molecular design.
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Chapter 3

Alchemical free energy protocols

for lipophilicity coe�cients

estimation

The work presented in this chapter was inspired by two publications [143,
144], where alchemical free energy calculations were used to predict the
lipophilicity coe�cients of drug-like molecules. In [143], AFE were em-
ployed to predict changes in logP for the increased �uorniation of cyclohexyl
ring. The decrease in logP was correctly predicted by AFE and, unlike em-
pirical logP estimators, atomistic details from molecular simulations could
explain the causes of such a trend. In [144] alchemical free energy calcu-
lations were employed to estimate distribution coe�cients, logD, which are
a natural extension of the logP. In particular, logD requires considerations
about the protomeric and tautomeric states of a molecule in di�erent aque-
ous and organic phases. This chapter indicates how alchemical free energy
methods may be used to predict the lipophilicity of drug-like molecules.

3.1 Introduction

Absorption and distribution are two pivotal indicators in medicinal chem-
istry, assessing the e�ectiveness of a drug candidate molecule. The former
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gives an indication on the drug's bioavailability and how the compound can
travel through the bloodstream, before being taken up by the target cells.
The distribution points out how the drug can pass through di�erent cells
compartments and how the molecule is distributed through the body. Only
molecules with favourable absorption and distribution pro�les may be pro-
gressed towards clinical studies of drug e�cacy. Thus, knowing in advance
these features is pivotal in the decision-making of pre-clinical drug discovery.

A cheap experimental test, to predict absorption and distribution prop-
erties for drug candidates, is the logP measurement [145, 146]. The logP is
the logarithm based 10 of the ratio of un-ionized species between an organic
phase, e.g. octanol, and an aqueous, calculated as [147, 148, 149, 150]:

logP = log
[A]o
[A]w

, (3.1)

where [A]o is the concentration of the solute in the organic phase, and [A]w
the concentration in the water phase. Classically, logP is determined by using
the shake-�ask method [147]. A drug candidate is dissolved in a �ask con-
taining organic solvent and water by shaking. Eventually, the concentration
of the solute in each solvent is measured with UV/Vis spectroscopy [151].
Another methodology makes use of a high-performance liquid chromatogra-
phy [152]. The logP is determined by measuring the retention time with
similar compounds with known logP valus [153].

The logP neglects the presence of possible mixtures of protomeric and
tautomeric states for a molecule A. Therefore, the distribution coe�cient,
or logD, can be de�ned:

logD = log

(∑Nq
i

∑Ntaut
j [Aj]

o
i∑Nq

k

∑Ntaut
l [Al]wk

)
(3.2)

where the sums are extended over all the possible protonation (Nq) and
tautomeric state (Ntaut) i and j in the organic phase, and k and l in water
phase, for a molecule A.

Given the fundamental role of logP and logD measurements, it is without
surprise that the medicinal chemistry community is trying to achieve such
predictions by means of computational techniques. Remarkable results have
been obtained by QSAR, such as ChemAxon [154], MolInspiration [155],
ALogPs [156], that are readily available to the community via web-server.
However, such methodologies do not give insights about the possible interac-
tions that drug-like molecules establish with the surrounding environment.
For this reason, �trajectory-based� methods, such as alchemical free energy
(AFE) molecular dynamics, can be valuable to forecast logP and logD values.
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Unfortunately, logP predictions by molecular simulations can be fairly
di�cult. Indeed, simulations may be strongly in�uenced by the correct force
�eld model of the organic solvent [157, 158, 159]. logD predictions are more
complex, since protonated and tautomerization states of a molecules should
be consider. Additionally, a drug like molecule may present multiple distinct
protomeric and tautomeric states at the same pH, creating ambiguity for the
selection of a correct model of each species. Finally, the presence of charged
species could give rise to the well-known �nite size artifacts [80, 82, 81], which
should be corrected to retrieve an accurate logD estimation.

Thus, the aim of this chapter is to devise a suitable protocol for logP
and logD estimations, along with an assessment of current limitations in the
context of AFE calculations. logP were computed for a set of �ve molecules,
shown in �g. 1,which have shown interesting peculiarities in logP trends [143,
160].

Figure 1: Series of bicyclic rings studied for logP calculations. A: cy-
clohexylbenzene, B: biphenyl, C:2,3-di�uoro-1,1'-biphenyl, D: 2,3,5-di�uoro-
1,1'-biphenyl and E: 2,3,5,6-di�uoro-1,1'-biphenyl.

logD estimations were considered as part of the 5th Statistical Assessment
of the Modeling of Proteins and Ligands (SAMPL). The experimental mea-
surements were carried out at Genentech, according to Lin and Pease [161,
162] for 53 drug-like molecules, shown in �g. 2, 3, 4. The choice of using
trajectory based alchemical methods was partially motivated by the pre-
viously reported success with simple molecules such as ca�eine (080) that
were treated with general molecular mechanics force �elds [163]. To push the
limit of molecular simulation protocols the dataset also included large and
chemically complex molecules such as rifampicin (083) or reserpine (065),
�g. 4.

75



Figure 2: SAMPL5 distribution coe�cient molecules batch 0. The chemical
structures were created with OBabel [164].
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Figure 3: SAMPL5 distribution coe�cient molecules batch 1. The chemical
structures were created with OBabel [164].
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Figure 4: SAMPL5 distribution coe�cient molecules batch 2. The chemical
structures were created with OBabel [164].
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3.2 Methods

3.2.1 Computing lipophilicity coe�cients with alchem-

ical free energy calculations

The partition coe�cient logP and the distribution coe�cient logD are de�ned
by eqs. 3.1 and 3.2 respectively. Considering only the partition coe�cient
for sake of simplicity, it is possible to show a relationship between solvation
free energies and lipophilicity values. Referring to a standard concentration
of 1 M, both solvation free energy in organic phase, ∆Go, and in water phase,
∆Gw, can be written as:

∆Go = −kBT ln
[A]o

1M

∆Gw = −kBT ln
[A]w

1M

(3.3)

where kB is the Boltzmann constant, T the temperature, [A]o the concentra-
tion of a generic molecule A in the organic phase and [A]w is the concentration
of molecule A in water phase. By isolating the single concentrations, eq. 3.3
can be written as:

e−β∆Go = [A]o

e−β∆Gw = [A]w
(3.4)

where β = 1
kBT

. Substituting eq. 3.4 into eq. 3.1, the logP for molecule A
can be expressed as:

logP = log e−β(∆Go−∆Gw) (3.5)

Employing the logarithmic properties, the relation between solvation free
energies and logP can be retrieved:

logP = −∆Go −∆Gw

kBT2.303
(3.6)

where the factor 2.303 comes from the log e. A similar derivation can be done
for logD calculations, which it is the key equation for using alchemical free
energy calculations in lipophilicity calculations.

To compute each solvation free energy in eq. 3.6, the double annihilation
method [66, 67], shown in �g. 2, was employed. Each individual solvation
free energies can be computed as:

∆Gsolv = (∆Gelec
solv + ∆GvdW

solv )− (∆Gelec
vac + ∆GvdW

vac ) + ∆GFUNC , (3.7)
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where solv is either the organic or water phase. ∆Gelec
solv and ∆Gelec

vac are the
discharging step excess free energy change, in either solvent and vacuum
respectively. The vanishing free energies in solvent and vacuum are given by
∆GvdW

solv and ∆GvdW
vac . The correction term ∆GFUNC is used to account for

using Barker-Watts reaction �eld (BWRF) electrostatics in the water and
cyclohexane phase. Indeed, in both solvated phases, the system's Coulombic
interactions are calculated based on BWRF. Thus, two di�erent dielectric
constant are adopted for water and organic phase simulations. However,
for simulations in vacuum a reaction-�eld is inappropriate and instead a
Coulombic potential without cuto�s was employed. Because a reaction-�eld
is applied to all intra and intermolecular pairwise interactions, this leads to
an inconsistent description of the intramolecular electrostatic interactions of
the solute in the solvated and vacuum simulations.

Therefore, to enable meaningful comparisons, ∆GFUNC corrects the in-
tramolecular Coulombic interactions consistently between solvated and vac-
uum legs of the thermodynamic cycle depicted in �g. 2. The ∆GFUNC term
is obtained via post-processing the λ = 0.0 trajectories of the discharging
step of a solvated simulation and use of the Zwanzig relation [23]:

∆GFUNC = −β−1 ln〈exp[−β(Uic,nc(r)− Uic,sim(r))]〉sim, (3.8)

where Uic,nc(r) is the solute intramolecular electrostatic potential that de-
pends on the coordinates r of the solute and Coulomb law, Uic,sim(r) is the
intramolecular electrostatic potential term as computed during the simula-
tion with a BWRF cuto�.

Finally, although logP for molecules in �g. 1 were carried out in octanol
as organic phase, cyclohexane was chosen as a solvent for these simulations.
Firstly, cyclohexane highly simpli�es the problem, as it prevents for the pres-
ence of water molecules in the organic phase. Furthermore, analysing 85
molecules from the Minnesota database [165], it is possible to highlight an
almost linear relationship between logP values calculated using octanol and
logP values calculated with cyclohexane, as �g. 6 shows.

3.2.2 All-neutral and the two-species model for logD

logD values may be also estimated with the double annihilation technique.
Here, two models were devised to compare logD calculations. The �rst model,
all-neutral, neglects all the possible protonated species and reduces the cal-
culation of logD to a logP simulation, where free energy of solvation are
retrieved from eq. 3.7. Although the all-neutral model can be thought as
a rough approximation, given the small number of ionisable species in the
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Figure 5: Thermodynamic cycle for log D calculation. First the atoms'
partial charges are turned o� retrieving ∆Gelec

w , ∆Gelec
vac and ∆Gelec

cyc in water,
vacuum and cyclohexane phase respectively. Then, van der Waals terms are
switched o� and ∆GvdW

w , ∆GvdW
vac and ∆GvdW

cyc are calculated in each phase.
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Figure 6: Relationship between logP values experimentally computed using
octanol as organic phase (logPoct) and cyclohexane (logPcyc). The grey line
assumes a perfect correlation and the yellow shaded interval corresponds to
an error of 1 logP.
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SAMPL5 dataset, it is expected that logP and logD would coincide for the
majority of molecules. The second model, two-species, was derived to con-
sider the presence of charged species at pH 7.4 for ionisable species. In par-
ticular, due to the di�cult task of modelling correctly all the possible proto-
nated state of a single molecule, only the two major species were considered.
In this way it is possible to split the protonation state of a molecule into a
dominant charged species, which re�ects the majority of charged species at
pH 7.4, and a neutral one. Generally, assuming all activity coe�cients to be
unity, the distribution coe�cient logD is given by eq. 3.2. The concentration
of the most populated species in water phase at pH 7.4 is given by:

[A]domw = f chemicalize(Adom)× [A]tot, (3.9)

where f chemicalize(Adom) is the fraction of the dominant species [A]domw pre-
dicted by ChemAxon [154] at pH 7.4 and [A]tot is set to 1 M by convention.
Note that the fraction of dominant species is determined by considering po-
tentially multiple equilibria between di�erent charged states and tautomers.
For each [A]domw it is assumed that there exists only another one species in
solution, which is the [A]domw conjugate pair [A]conw . If there are multiple ion-
isable sites, [A]conw is taken to be the conjugate pair that is expected to have
the highest population on the basis of the pKa values of each ionisable site.
Thus:

[A]conw = 1− [A]domw (3.10)

Considering only these two species, the logD can be simpli�ed as:

logD = log

(
[A]cono + [A]domo

[A]conw + [A]domw

)
(3.11)

With the knowledge of [A]conw and [A]domw an e�ective pKaeff can be de�ned
as:

pKaeff = pH − log
[A]domw

[A]conw
(3.12)

where for simplicity it was assumed that the dominant form is the base
and the conjugate form the acid. Although [A]domw and [A]conw are conjugate
pairs, the term pKaeff is used since the term f chemicalize(Adomw ) was derived
by considering the co-existence of more than two species. Thus rearranging
eq. 3.12 it is possible to express [A]domw and [A]conw as:

[A]domw = (10−pKa
eff+pH)

[A]conw = (10−pH+pKaeff )

(3.13)
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Eq. 3.13 allows to de�ne the logD, eq. 3.11 as:
logD = log

(
[A]cono +[A]domo

[A]conw +[A]domw

)
= log

(
[A]cono

[A]conw +[A]domw
− [A]domo

[A]conw +[A]domw

)
= log

(
[A]cono

[A]conw +10−pKaeff+pH [A]conw
+ [A]domo

[A]domw +10−pH+pKaeff [A]domw

) (3.14)

Now, recognizing that 10−pKa
eff+pH = 10−pKa

eff

10−pH
and 10−pH+pKaeff = 10−pH

10−pKaeff
,

eq. 3.14 can be simpli�ed as:

logD = log

(
PAcon

(
1

1 + 10−pkaeff

10−pH

)
+ PAdom

(
1

1 + 10−pH

10−pKaeff

))
(3.15)

where PAcon = [A]cono
[A]conw

and PAdom = [A]domo

[A]domw
. For molecules with a single

ionisable site and no alternative tautomeric forms pKaeff = pKa and if
PAcon >> PAdom eq. 3.15 is further simpli�ed to a more commonly used ap-
proximation [166]:

logD = log

(
PAcon

(
1 +

10−pKa

10−pH

)−1
)

(3.16)

3.2.3 logP simulations setup

logP were estimated for molecules shown in �g. 1. Starting from the SMILE
string [167, 168], each molecule was converted into a pdb format with ob-
abel [164]. Then, a GAFF AM1-BCC parametrization was performed with
Antechamber, module of AmberTools16 [73]. Experimental logP measure-
ments were carried on with 1-octanol as organic phase. As organic solvent
cyclohexane was chosen to study the logP trend computationally. Employ-
ing tleap package, each compound was solvated in GAFF cyclohexane and
TIP3P water [120] cubic boxes, setting the minimum distance between solute
and box walls to 20.0 Å. Then, all the systems were energy minimized with
100 steps of steepest descent algorithm and equilibrated. Firstly, the water
molecules were equilibrated in a NVT ensemble for 200 ps at 298 K, followed
by a NPT simulation for further 200 ps at 1 atm with AmberTools module
Sander. Finally, a molecular dynamics simulation in NPT ensemble was run,
to reach the �nal desired density (0.7 g · cm−3 for cyclohexane and 1g · cm−3

for water).
Alchemical free energy calculations were run for 11 equidistant λ windows,

both for the discharging and vanishing steps. Each λ window lasted for 2 ns,
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employing a velocity-Verlet integrator in the MD, with a time step of 2 fs.
Simulations were performed in a NPT ensemble and temperature control was
achieved with an Andersen thermostat with a coupling constant of 10 ps−1.
Pressure control was maintained by a Monte Carlo barostat, with isotropic
scaling every 100 fs. Periodic boundary conditions were imposed with a 12
Å cuto� for the non-bonded interactions, using a shifted atom-based Barker
Watter reaction �eld, with a dielectric constant of 82.0 for TIP3P water and
1.0 for GAFF cyclohexane. All solute's bonds were constrained.

3.2.4 logD simulations setup

All molecules were parameterized with the general Amber force �eld
(GAFF) [117], solvated in cubic boxes of TIP3P water molecules [120] and
GAFF cyclohexane. Solutes were initially energy minimized for 100 cycles by
using the steepest descent method with harmonic positional restraints and
a restraint force constant of 10 kcal·mol−1 Å−2 applied to the whole water
molecules or cyclohexane molecules respectively. Secondly, a NVT equilibra-
tion of 200 ps at 298 K, following a NPT equilibration at 1 atm with Amber
module Sander[73] were carried out. Finally, a 2 ns simulation in the NPT
ensemble was run with SOMD (rev 15.1) [68, 69], to reach a �nal density of 1
g/cc and 0.7 g/cc for water and cyclohexane respectively. Then, coordinate
�les were retrieved with CPPTRAJ [169]. From the mol2 �le the topology
and the coordinates for vacuum simulations were created with the help of
tleap. For the two-species model, the pKa and protonated states of each
molecule was computed with ChemAxons [154] at pH 7.4. Then, Antecham-
ber 14 [73] was run to obtain AM1-BCC charges [118]. In the case of charged
species the molecules were then re-solvated and underwent the same proce-
dure as described above for the uncharged species.

Each discharging step was divided into nine equidistant λ windows. For
the vanishing step, 11 equidistant λ windows were used, and an additional
window was added at 0.950, to capture large �uctuations in the free energy
changes towards the end of the decoupling process. Each λ window was run
for 2 ns in the organic and aqueous phase, except molecules 007, 013, 019,
024, 042, 056, 065, 071, 088, and 092, whose vanishing step lasted for 6 ns,
to improve the precision of the computed free energy changes. Additionally,
for vacuum simulation each λ window was run for 0.8 ns. A velocity-Verlet
integrator was employed with a time step of 4 fs using a hydrogen mass
repartitioning scheme (HMR) [170] by constraining all bonds. All simula-
tions were performed at 298 K and 1 atm in a NPT ensemble, using an

85



atom-based Barker Watts reaction �eld[49] with a dielectric constant of 78
for the water phase and a dielectric constant of 1.0 for the cyclohexane phase.
The non-bonded interactions cuto� was set to 12 Å and periodic boundary
conditions were imposed. Andersen thermostat with a coupling constant of
10 ps−1[52] assured the temperature control, while a Monte Carlo barostat
was used for pressure control, attempting isotropic box edge scaling every 25
time steps.

3.2.5 Alchemical free energies estimations

To ensure accuracy and consistency of logP and logD calculations, all solva-
tion free energies in water and cyclohexane were computed twice assigning
di�erent initial molecular velocities, drawn from the Maxwell-Boltzmann dis-
tribution. All solvation free energies were estimated by using MBAR [171].
Thus, the computed lipophilicity coe�cients are reported as the average of
the two independent simulations and statistical uncertainties were computed
as:

err(∆G) =
σ√
n
, (3.17)

where σ is the standard deviation of both runs and n=2, unless otherwise
stated. These are the error bars reported in the results section.

Insights into the statistical distribution of the logD estimations of the
correlation coe�cient, R2, mean unsigned error, MUE and Kendall τ were
retrieved with a bootstrapping scheme. Each data point was modelled with
a normal distribution with its mean given by the computed free energy and σ
the associated computed error. Ten thousand samples were then drawn from
the arti�cial normal distribution for each data point and correlated with the
experimental values, giving a distribution of R2, MUE and Kendall τ . This
�nal statistical distributions may not be symmetric around the mean and
uncertainties in the dataset metrics are reported with a 95% con�dence in-
terval written in the follow way −z < µ < z, where −z is the lower bound
and z the upper bound of the con�dence interval and µ the mean of the
distribution. All simulation input �les and post processing scripts needed for
reproducing the results as well results �les can be found in a github reposi-
tory https://github.com/michellab/Sire-SAMPL5.
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3.3 Results

3.3.1 logP results
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Figure 7: The positive y-axis depicts a comparison between the calculated
(cyan) and measured (blue) logP for compounds A, B, C, D and E, de-
picted in �g. 1. The negative y-axis shows calculated solvation free energy
in cyclohexane, ∆Go (red), and aqueous, ∆Gw (yellow) phases.

Fig. 7 and tab. 1 show a comparison of the calculated lipophilicity co-
e�cient, logPpred, and the experimental measure, logPexp, as well as the
estimated solvation free energy in water phase, ∆Gw and in the organic-
cyclohexane phase, ∆Go. Overall, the logP calculations are in good agree-
ment with the experimental data trend, with a Kendall tau of 0.5±0.1 and
mean unsigned error of 0.77±0.07 logP units. Increased �uorination tends
to decrease logP values. The use of trajectory-based simulations allows to
investigate the origin of this decrement. Such a trend is mainly due to a
more rapid decrease in the hydration free energies, passing from -2.49±0.08
kcal·mol−1 for molecule B to -5.15±0.27 kcal·mol−1 for molecule E. There
are less variations in solvation free energy in cyclohexane, where all the
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�uorinated compounds (C, D and E) show an average value of about -7.5
kcal·mol−1.

Therefore, further insights were pursued to help rationalise the calcu-
lated di�erences in hydration free energies, by using grid-cell theory (GCT)
analyses of the MD simulation trajectories [172, 173, 174, 175]. GCT is an
MD trajectory post-processing method that spatially resolves the water con-
tribution to enthalpies, entropies and free energies of hydration for small
molecules, host/guests and protein-ligands complexes.

Fig. 8 depicts the spatially resolved hydration thermodynamics around
the non-�uorinated cyclohexane A and the tetra�uorinated cyclohexane E.
Comparison of the water density contours show water structuring above and
below the π-cloud of the phenyl ring due to the expected weak hydrogen
bonding interactions in this region. In addition, the �uorine atoms in E

induce further structuring of water around the cyclohexyl moiety, with a
more pronounced e�ect around the hydrogen face of the cyclohexane (pan-
els 1 and 2). Owing to the di�erent polarities of the cyclohexyl ring in E,
water near the �uorine-face preferentially orients hydrogen atoms towards
the ring, whereas water near the hydrogen-face preferentially orients oxygen
atoms towards the ring. Water near the hydrogen-face is more enthalpically
stabilised and entropically destabilised with respect to bulk, whereas the en-
ergertics are not signi�cantly di�erent from the bulk in the vicinity of the
�uorine face (panels 3-4 and 5-6). Overall, favourable enthalpic contributions
o�set unfavourable entropic contributions for water near the hydrogen face
and water in this region makes additional favourable contributions to the
hydrtaion free energy (panels 7-8). Therefore, the decreased lipophilicity of
A with respect to E is attributed to enhanced hydrogen bonding interactions
between water and the hydrogen face of the all-cis tetra�uorcyclohexane ring.
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Figure 8: Spatial resolution of hydration thermodynamics around molecules
A and E. Panels 1 and 2 show isocontours for density (red: ρwat > 2.33 bulk
density, blue: ρwat < 0.5 bulk density). Panels 3 and 4 show isocontours
for regions where water is enthalpically stabilised with respect to bulk water
(red: ∆Hw < 0.0055 kcal·mol−1 Å−3). Panels 5 and 6 show isocontours for
regions where water is entropically destabilised with respect to bulk water
(blue: −T∆Sw > 0.0033 kcal·mol−1 Å−3). Panels 7 and 8 show isocontours
for regions where water is more stable than bulk water (red: ∆Gw < 0.0055
kcal·mol−1 Å−3).
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Table 1: Comparison between the predicted logPpred and the experimental
measures, logPexp, along with their standard errors, σerr for molecules A, B,
C, D and E, shown in �g. 1. ∆Go and ∆Gw are the solvation free energy
in cyclohexane and the hydration free energy respectively, along with their
standard errors, expressed in kcal·mol−1.

Compound ∆Go ± σerr ∆Gw ± σerr logPpred ± σerr logPexp ± σerr
A -8.59±0.14 -4.22±0.07 3.20±0.16 5.14±0.01
B -6.79±0.13 -2.49±0.08 3.15±0.04 3.88±0.01
C -7.83±0.08 -2.69±0.12 3.77±0.05 3.42±0.01
D -8.20±0.04 -4.27±0.13 2.88±0.12 2.73±0.01
E -7.90±0.23 -5.15±0.27 2.01±0.03 2.68±0.01

3.3.2 logD results

Fig. 9 and 10 show the performance of all neutral and two species models
respectively with respect to the experimental values, along with the deter-
mination coe�cient R2, MUE and Kendall τ . Solvation free energies for the
whole dataset of �g. 2, 3, 4 are reported in the appendix in tab. 2 and
tab. 3.

The all-neutral model was applied for all the 53 molecules of the SAMPL5
dataset. There is an acceptable agreement with the experimental trend, as
highlighted by the Kendall τ = 0.41±0.03, with a MUE of 2.20±0.08 logD
units. The high MUE is due to 19 ionisable species, like molecules 075 and
083. As an example, the all-neutral model predicts a logD for molecule
075 of 3.00±0.71, which contrasts the experimental value of -2.80±0.30, and
for molecule 083 a logD 7.95±1.20 (-1.90±0.40 experimentally). This last
molecules is particularly challenging, since it likely adopts multiple protona-
tion states at pH 7.4, thus the high discrepancy with respect to the experi-
mental value may be due to the large size and number of functional groups
present in 083. Considering only the 19 ionisable molecules, the all-neutral
shows a high MUE (2.66±0.13 logD units), highlighting the limits of this
approach to the logD calculation.

Additionally, the all-neutral model consistency and reproducibility was
compared with all-neutral results run by the Mobley group (UCI) [74]. The
same input �les were used, but free energy calculations were performed
with software GROMACS [176]. Fig. 11, 12 and 13 compares SOMD
and GROMACS logD, hydration free energies and solvation free energies
in cyclohexane respectively. Comparing the logD predictions, a fair agree-
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Figure 9: Scatter plot of the computed logD for molecules modelled as
neutral, all-neutral, in water and in cyclohexane, R2, MUE (in logD units)
and Kendall τ values are given with 95 % con�dence intervals. The grey line
assumes a perfect correlation and the yellow shaded interval corresponds to
an error of 1 logD.
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Figure 10: Scatter plot of the computed logD for molecules modelled as
neutral, two-species, in water and in cyclohexane, R2, MUE (in logD units)
and Kendall τ values are given with 95 % con�dence intervals. The grey line
assumes a perfect correlation and the yellow shaded interval corresponds to
an error of 1 logD.
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ment is observed with R2=0.61±0.06 and the mean unsigned deviation MUD
= 0.85±0.09 logD units. As explained before, molecule 083 is an out-
lier in SOMD predictions, however for GROMACS the predicted logD was
1.21±0.09, which is closer to the experimental value. The next outlier is
molecule 017, which shows SOMD logD = 3.7± 0.9 and GROMACS logD =
6.25± 0.04, followed by 082, SOMD logD = 3.6± 0.1 and GROMACS logD
= 6.56±0.05. Additionally, comparing the solvation free energy between
SOMD and GROMACS, di�erences in cyclohexane solvation free energy for
082 and 017 are present. In particular, 082 is the largest outlier, with
an absolute di�erence between SOMD and GROMACS predictions of 4.2
kcal·mol−1, while 017 shows a di�erence of 3.3 kcal·mol−1. Nonetheless, the
free energy predictions are overall in better agreement, with R2=0.94±0.02
and MUE=0.75±0.09 kcal·mol−1 of hydration free energy and R2=0.85±0.01
and MUE= 1.01±0.09 kcal·mol−1 for solvation free energy in cyclohexane. In
the GROMACS protocol, the alchemical free energies were computed with 20
λ windows, both for the discharging and vanishing step, and using PME [177]
for electrostatics calculations. In contrast, SOMD uses 9 λ windows for the
discharging step and 12 for the vanishing one, along with a Barker-Watts
atom based reaction �eld [49]. These protocol di�erences may be the source
of variability.

Thus, the two-species model was employed for the prediction of actual
logD values. Considering the co-existence of two states for ionisable molecules,
gives a remarkable improvement in the logD predictions with respect to the
all-neutral model. All the statistical estimators improve, R2 = 0.42±0.06,
Kendall τ= 0.52±0.03 and MUE improves by 0.22 logD units. Considering
ionisable molecules only, MUE is improved by 0.66 logD units, equivalent to
0.90 kcal·mol−1 in the di�erence of solvation free energies, along with a R2=
0.52±0.07 and Kendall τ= 0.57±0.06. As in the all neutral model, molecule
083 is an outlier, with a predicted logD of 7.94±0.4. However unlike for
the all-neutral model, the logD value for molecule 075 is more accurate (
0.72±0.70 vs 3.00±0.71). Again, the possible presence of multiple ionisable
sites makes di�cult to model rigorously the partitioning process with AFE
calculations.

To test the utility of using an e�ective pKa in the two species model,
estimations for charged molecules were compared by application of eq. 3.16.
For the 19 protonated molecules considered, the two-species model obtained
a MUE = 2.1 logD units, while eq. 3.16 gives a MUE = 2.3 logD units. This
is due to 5 molecules that have a di�erent pKa and e�ective pKa values,
owing to the co-existence of multiple protomers and tautomers at pH 7.4
(010, 011, 015, 060, 063). For these 5 molecules the two-species model
performs well with a MUE = 1.0 logD units, which is signi�cantly better
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Figure 11: Comparison between SOMD and GROMACS logD estimations,
both based on considering all the 53 molecules as neutral. The MUE is given
in logD units, while the shaded yellow area is ± 1 logD deviation bound.
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Figure 12: Comparison between SOMD and GROMACS ∆Gw estimations,
both based on considering all the 53 molecules as neutral. MUE is given in
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Figure 13: Comparison between SOMD and GROMACS ∆Go estimations,
both based on considering all the 53 molecules as neutral. MUE is given in
kcal·mol−1 while the shaded yellow area is ± 1 kcal·mol−1 deviation bound.

96



than the MUE = 2.4 given by eq. 3.16. However, given the small size of the
dataset, it is not possible to assert whether the improvements are statistically
signi�cant.
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3.4 Conclusion

AFE were employed to estimate lipophilicity coe�cients for a dataset of drug
like molecules, as shown in �g. 2, 3 and 4. logP were estimated for 5 bicyclic
rings rings, which show an increase in hydrophilicity as �uorination increases.
AFE were able to reproduce the experimental trend, by modelling the logP
process as a transfer from aqueous phase to cyclohexane-organic phase, using
a double annihilation technique. Furthermore, MD analyses suggest that the
decreased lipophilicity of molecules were due to enhanced hydrogen bonding
interactions of water molecules with the hydrogen face of the cyclohexane
ring, with respect to bulk water. Additionally, the orientation of the water
molecules near the cyclohexane face of the ring was consistent with the hy-
drogen bond donor ability of the polar hydrogens on the cyclohexane ring.
This contrasts with the energetics of water near the �uorine face of the ring
which are comparable to bulk water. Finally, this study shows how AFE can
improve logP estimations with respect to QSAR techniques, giving insights
about the atomistic behavior and interactions.

Modelling more complex molecules, such as those in SAMPL5 ( �g. 2, 3
and 4) highlighted more di�culties for AFE methods. Two models were con-
sidered: all-neutral model, which do not take into account the presence of
ionized molecules at pH 7.4, and two-species, which considers the co-existence
of at least of two species for ionisable species. Simulated logD values show a
low correlation with experimental data for the all neutral model, especially
for highly complicated system such as molecules 083 and 075. A similar
statistical trend was found by Bannan et al [74], which approximate all the
molecules as neutral as well. An improvement is shown for the two species
model, achieving a R2 of 0.42±0.04 and lowering the MUE to 1.98±0.19 logD
units. Comparing the two-species model to other participants submissions,
results are encouraging, since the model is among the top ranked submis-
sions in terms of MUE. The best predictions were achieved by COSMO ap-
proach [178, 179] and the 3D-RISM [180, 181]. This further suggests that
quantum-based methods are more re�ned and tuned to correctly forecast
lipophilicity coe�cients with respect to trajectory-based models. Further in-
spection of the results demonstrated that the contribution of charged species
(PAdom) to the predicted logD values was negligible. While this suggests that
the evaluation of vacuum to cyclohexane transfer free energies of charged
species are unnecessary, it will be interesting to evaluate this assertion in
more complex scenarios where for instance charged solutes partition into cy-
clohexane together with clusters of water molecules, as tested by Bannan
et al. [74]. The approach could be further generalised to handle more com-
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plex molecules that adopt multiple charge states, but a drawback is that the
results depend on the values of ionisation and tautomerisation equilibrium
constants. Consequently, robust predictions will require accurate computa-
tion of vacuum to solvent transfer free energies, and also pKa constants.

A major problem for the MD models is the pKa estimation. Indeed, many
of the molecules in �g. 2, 3 and 4 could adopt multiple protonation states
in aqueous solution at pH 7.4. A third source of error was introduced by the
present of �nite size electrostatics artefacts, which arises when a net charges
are perturbed between the two end states of alchemical free energy calcula-
tions. A test to correct for these errors was done for the 19 ionisable species,
but not considered due to the preliminary stage of this approach. On one
side, the correction terms were meaningful for hydration free energy estima-
tions. On the other side, cyclohexane correction terms were underestimated.
A possible explanation is that GAFF force �eld as used here is unbalanced
and favors solvation of solutes in a non-polar solvent.

In conclusion, predictions of lipophilicity coe�cients can be done by using
AFE techniques. However, e�orts should be devoted to improve models for
logD estimations. In particular, attention should be focused on pKa correc-
tions and polarisable force-�elds for modelling transfer between polar/non-
polar solvents. It would be useful to devise a new dataset, to enable testing
and training the accuracy and robustness of molecular simulation protocols.
This could be carried out by separating existing datasets into compounds
predicted to adopt a single protomer/tautomer form in aqueous and organic
phases, and ionisable compounds that may adopt multiple charged states. In
the �rst case, logD and logP would be equivalent and their evaluation would
not require pKa considerations. Ideally, force �elds validated on this cate-
gory of compounds could be then combined with pKa estimators, to address
the more challenging situation where multiple species contribute to a logD
value.
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3.5 Appendix

Table 2: all-neutral hydration free energies and logD values. molecule de-
notes the molecule number (�g. 2, 3 and 4, ∆Gw is the hydration free energy,
∆Go the solvation free energy in cyclohexane, logD the predicted distribution
coe�cient while logDexp is the experimental value. σ denotes the standard
error for each quantity. All the free energy values are in kcal·mol−1.

molecule ∆Gw σw ∆Go σo logD σlogD logDexp σlogDexp

002 -10.72 0.04 -13.92 0.41 2.35 0.43 1.40 0.30
003 -9.44 0.04 -11.98 0.14 1.86 0.14 1.90 0.10
004 -9.18 0.49 -15.31 0.01 4.49 0.01 2.20 0.30
005 -14.01 0.05 -15.66 0.08 1.21 0.08 -0.86 0.09
006 -9.61 0.18 -11.65 0.03 1.49 0.03 -1.02 0.09
007 -9.05 0.07 -14.86 0.73 4.25 0.76 1.40 0.30
010 -14.10 0.19 -13.05 0.28 -0.77 0.29 -1.70 0.40
011 -11.39 0.09 -13.18 0.43 1.32 0.45 -2.96 0.08
013 -18.02 0.43 -18.94 0.03 0.68 0.03 -1.50 0.40
015 -14.09 0.06 -12.75 0.25 -0.98 0.26 -2.20 0.30
017 -8.93 0.43 -13.98 1.66 3.70 1.72 2.50 0.30
019 -14.81 0.73 -17.31 0.53 1.83 0.55 1.20 0.40
020 -18.89 0.75 -23.62 0.19 3.47 0.20 1.60 0.30
021 -9.05 0.28 -13.79 0.10 3.47 0.10 1.20 0.30
024 -17.45 0.06 -18.59 0.02 0.83 0.02 1.00 0.40
026 -13.35 0.00 -10.92 0.19 -1.78 0.20 -2.60 0.10
027 -15.59 0.11 -12.26 0.20 -2.44 0.20 -1.87 0.07
033 -10.92 0.53 -15.46 0.01 3.32 0.01 1.80 0.20
037 -17.44 0.41 -11.15 0.54 -4.61 0.56 -1.50 0.10
042 -14.89 0.20 -16.24 0.13 0.99 0.13 -1.10 0.30
044 -14.20 0.32 -18.11 0.01 2.86 0.01 1.00 0.40
045 -13.86 0.01 -10.93 0.02 -2.14 0.02 -2.10 0.20
046 -12.95 0.03 -15.64 0.15 1.97 0.16 0.20 0.30
047 -11.13 0.02 -15.45 0.13 3.16 0.14 -0.40 0.30
048 -16.37 0.07 -17.23 0.22 0.63 0.23 0.90 0.40
049 -9.49 0.03 -12.77 0.08 2.40 0.08 1.30 0.10
050 -10.71 0.03 -12.82 0.02 1.54 0.03 -3.20 0.60
055 -10.58 0.25 -10.21 0.03 -0.27 0.03 -1.50 0.10
056 -8.99 0.40 -12.40 0.45 2.49 0.46 -2.50 0.10
058 -10.84 0.00 -12.07 0.36 0.90 0.38 0.80 0.10
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059 -10.88 0.11 -10.00 0.00 -0.64 0.00 -1.30 0.30
060 -17.03 0.14 -12.82 0.08 -3.08 0.08 -3.90 0.20
061 -8.43 0.27 -11.29 0.01 2.10 0.01 -1.45 0.09
063 -16.89 0.34 -12.55 0.21 -3.18 0.22 -3.00 0.40
065 -24.52 0.34 -29.11 0.19 3.36 0.19 0.70 0.20
067 -8.98 0.18 -14.10 0.03 3.75 0.04 -1.30 0.30
068 -10.96 0.06 -16.39 0.54 3.97 0.56 1.40 0.30
068 -10.96 0.06 -16.39 0.54 3.97 0.56 1.40 0.30
069 -13.14 0.84 -17.60 0.49 3.26 0.51 -1.30 0.30
070 -15.37 0.31 -13.37 0.00 -1.47 0.00 1.60 0.30
071 -12.27 0.35 -12.94 0.32 0.49 0.33 -0.10 0.50
072 -7.48 0.34 -12.46 0.24 3.65 0.24 0.60 0.30
074 -21.16 0.07 -16.83 0.09 -3.17 0.10 -1.90 0.30
075 -10.44 0.93 -14.53 0.04 3.00 0.04 -2.80 0.30
080 -17.27 0.06 -12.17 0.38 -3.73 0.40 -2.20 0.20
081 -22.33 0.85 -14.10 0.05 -6.02 0.05 -2.20 0.30
082 -8.04 0.39 -12.90 0.19 3.56 0.20 2.50 0.40
083 -31.92 1.28 -42.77 0.35 7.95 0.37 -1.90 0.40
084 -11.98 0.15 -16.45 0.26 3.27 0.27 -0.00 0.20
085 -16.09 0.00 -13.24 0.05 -2.08 0.05 -2.20 0.40
086 -14.90 0.07 -19.26 0.31 3.19 0.32 0.70 0.20
088 -13.50 0.02 -12.96 0.96 -0.40 0.99 -1.90 0.30
090 -10.80 0.10 -16.67 0.30 4.30 0.31 0.80 0.20
092 -22.43 0.66 -25.47 0.25 2.23 0.25 -0.40 0.30
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Table 3: two-species hydration free energies and logD values. molecule
denotes the molecule number (�g. 2, 3 and 4, concentration is the con-
centration of the �charged� species and the neutral counterpart, ∆Gw is the
hydration free energy, ∆Go the solvation free energy in cyclohexane, logP is
the logP for the speci�c species, pKaeff is the e�ective pKa (eq. 3.12), logD-
pKa is the distribution coe�cient computed with eq. 3.16, two − species
denotes the two-species model logD prediction, logDexp is the experimental
distribution coe�cient. σ denotes the standard error for each quantity. All
the free energy values are in kcal·mol−1.

molecule concentration ∆Gw σw ∆Go σo logP pKa pKaeff logD-pKa two-species logDexp σlog Dexp

010 0.68 −14.10 0.19 −13.05 0.28 −0.77 4.60 5.24 −3.57 −2.94 −1.70 0.40
010 charged 99.32 −79.57 0.20 −52.96 0.32 −19.49
011 0.05 −11.39 0.09 −13.18 0.43 1.32 3.31 4.10 −2.78 −1.99 −2.96 0.08
011 charged 99.95 −70.30 0.19 −49.27 0.41 −15.40
015 0.48 −14.09 0.06 −12.75 0.25 −0.98 3.73 5.08 −4.65 −3.30 −2.20 0.30
015 charged 99.52 −69.54 0.06 −47.25 0.09 −16.32
017 45.78 −8.93 0.43 −13.98 1.66 3.70 7.30 7.33 3.34 3.36 2.50 0.30
017 charged 54.22 −63.54 0.54 −47.28 0.74 −11.91
026 0.31 −13.35 0.00 −10.92 0.19 −1.78 4.90 4.89 −4.28 −4.29 −2.60 0.10
026 charged 99.69 −79.68 0.05 −50.74 0.71 −21.19
037 9.87 −16.50 0.13 −10.84 0.25 −4.15 8.36 8.36 −5.15 −5.15 −1.50 0.10
037 charged 90.13 −110.99 0.52 −42.56 1.01 −50.11
060 0.83 −17.03 0.14 −12.82 0.08 −3.08 1.36 5.32 −9.12 −5.16 −3.90 0.20
060 charged 99.17 −78.51 0.04 −52.11 0.04 −19.34
061 23.25 −8.43 0.27 −11.29 0.01 2.10 7.92 7.92 1.47 1.47 −1.45 0.09
061 charged 76.75 −62.49 0.00 −38.08 0.04 −17.88
063 36.58 −16.89 0.34 −12.55 0.21 −3.18 9.90 7.64 −5.68 −3.62 −3.00 0.40
063 charged 63.42 −70.08 0.20 −39.12 2.35 −22.67
065 55.73 −24.52 0.34 −29.11 0.19 3.36 7.30 7.30 3.10 3.10 0.70 0.20
065 charged 44.27 −61.08 0.88 −52.47 0.88 −6.30
067 0.54 −8.98 0.18 −14.10 0.03 3.75 9.67 9.67 1.48 1.48 −1.30 0.30
067 charged 99.46 −52.83 0.05 −34.40 0.37 −13.50
069 66.16 −13.14 0.84 −17.60 0.49 3.27 7.11 7.11 3.09 3.09 −1.30 0.30
069 charged 33.84 −53.61 0.35 −41.17 1.11 −9.11
070 0.43 −6.24 0.13 −13.37 0.00 5.22 9.76 9.77 2.86 2.86 1.60 0.30
070 charged 99.57 −51.37 0.47 −32.91 0.16 −13.52
072 3.30 −7.48 0.34 −12.46 0.24 3.65 8.87 8.87 2.17 2.17 0.60 0.30
072 charged 96.70 −52.38 0.20 −33.37 0.01 −13.91
075 0.54 −10.44 0.93 −14.53 0.04 3.00 9.60 9.67 0.80 0.73 −2.80 0.30
075 charged 99.46 −54.26 0.35 −34.66 0.60 −14.35
081 0.54 −22.33 0.85 −14.10 0.05 −6.02 9.60 9.67 −8.23 −8.29 −2.20 0.30
081 charged 99.46 −63.27 0.20 −35.91 0.46 −20.03
082 4.14 −8.04 0.39 −12.90 0.19 3.56 8.76 8.77 2.18 2.18 2.50 0.40
082 charged 95.86 −50.83 0.44 −33.39 0.82 −12.77
084 18.45 −11.98 0.15 −16.45 0.26 3.27 8.05 8.05 2.53 2.54 0.00 0.20
084 charged 81.55 −48.96 0.20 −36.16 0.25 −9.37
086 2.22 −14.90 0.07 −19.26 0.31 3.19 9.00 9.04 1.58 1.54 0.70 0.20
086 charged 97.78 −58.93 0.51 −40.54 0.72 −13.47
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Chapter 4

Alchemical free energy protocols

for host-guest binding free energy

predictions

This chapter is mainly adapted from the paper: �Blinded prediction of host-
guest standard free energies of binding in the SAMPL5 challenge� [131]. As
part of the SAMPL5 contest, 22 host guest systems were studied and three
alchemical free energy models,model A,model B andmodel C, were evaluated.
Model A yields a free energy of binding based on computed free energy
changes in complex and solvated phases; model B adds long range dispersion
corrections to the previous protocol; model C takes into account standard
state correction. Results for each host-guest systems based on models A, B
and C are analyzed and compared with other SAMPL5 submissions.

4.1 Introduction

Accurate and reliable predictions of binding a�nity for drug-like molecules,
interacting with target-protein, is one of the major objective for computer-
aided drug design (CADD). Robust and consistent predictions could enhance
and accelerate the early stage drug discovery, reducing costs and time of
experimental assays on candidate ligands [182]. Unfortunately, despite sev-
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eral e�orts to improve the reliability of protein-ligand binding predictions,
CADD methodologies still su�er from systematic errors, such as sampling
error [183], inaccurate potential energy functions [184] and presence of �nite
size e�ects [81].

Before proceeding with accurate protein-ligand binding a�nity calcula-
tions, alchemical free energy calculations are tested and validated with host-
guest case studies. Host-guest systems can be regarded as toy model for
protein-ligand binding, where there are fewer degrees of freedom with re-
spect to protein-ligand case [185, 186, 187, 188, 173], which could allow a
systematic study of alchemical free energy parameters.

For these reasons host-guest simulations were included in the Statistical
Assessment of the Modeling of Proteins and Ligands (SAMPL) [189, 190,
191] project, a community-wide blinded predictions challenge to evaluate the
reliability of computational methods used by the computational chemistry
community.

In 2015 we took part in the �fth edition of SAMPL (SAMPL5). In this
context the binding free energies for a dataset of 22 guests and three di�er-
ent host molecules were requested. The hosts were two octa-acid hosts, OA
and TEMOA, and a cucurbituril clip, CBC, as shown in Fig. 1. Speci�cally,
OA [192] has four �exible propionate side chains bearing two rotatable single
bonds each, while, TEMOA contains four additional methyl groups, which
alter the shape and depth of the hydrophobic cavity. Both system are rigid
basket shaped hosts. CBC [193] is an acyclic molecular clip, chemically re-
lated to the cucurbiturils. It is made of two glycoluril units, each with four
sulfonate solubilizing groups. Unlike OA and TEMOA, CBC is a more �exi-
ble host, which has shown a high binding a�nity for ferrocene, adamantane
and bicyclooctane guests [194].

As regards the free energy techniques adopted for previous SAMPL edi-
tions, various computational methods have been tested to predict host-guest
binding free energy, ranging from quantum chemical [195, 196, 197] to molec-
ular mechanical approaches [198, 199]. Molecular dynamics (MD) or Monte
Carlo (MC) simulations are frequently carried out to estimate the ensemble
averages that yield standard free energies of binding and di�erent approx-
imations lead to various ways of estimating free energies of binding from
molecular simulations trajectories, e.g. free energy perturbations (FEP) [25],
�nite di�erence thermodynamic integration (FDTI) [65], or end-states only
variants such as MM-PBSA [200].

To predict standard free energies of binding for these 22 host-guest com-
plexes a trajectory based alchemical free energy approach was employed.
The aim of this study was to examine robust alchemical free energy pro-
tocols which make use of the general Amber force�eld (GAFF) [117]. The
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Figure 1: A): Octa-acid systems OA and TEMOA and their respective
six guests, plus SAMPL 4 guest O1. B): Cucurbituril clip CBC and its ten
guests.

validation is carried out by comparing computed binding energies with ex-
perimental data, for three di�erent variants of a double annihilation method-
ology for binding free energy predictions. Additionally, these three models
were compared to other SAMPL5 submissions. The choice of GAFF was mo-
tived by recent successes obtained by Mishra [201] and Aldeghi [26]. GAFF
is not guaranteed to be the most accurate force-�eld, but it remains an at-
tractive choice due to the ease of parameters generation, especially given the
limited time available in SAMPL between datasets release and deadline for
predictions submissions.

4.2 Theory: binding free energy models

As already mentioned in chapter 1 section 1.5, the free energy of binding
∆Gbind can be computed from alchemical free energy calculations as:

∆Gbind = −kBT ln
ZHG

ZGZH
, (4.1)

where kB is the Boltzmann constant, T the temperature, ZHG, ZG and ZH

are the isothermal-isobaric con�gurational integral of the complex, the guest
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and host respectively, while the solvent component has been taken out from
eq. 4.1 for the sake of simplicity. To evaluate the expression of eq. 4.1, the
double annihilation technique [66, 67] can be used by means of a thermody-
namic cycle, as depicted in �g. 2. First the guest's partial charges are turned
o� both in water and in the host-guest-complex phase (discharging step),
giving the discharging free energy change ∆Gsolv

elec and ∆Ghost
elec respectively.

Secondly, the guest is fully decoupled from the solvent or host, switching o�
the van der Waals terms (vanishing step), ∆Gsolv

vdW and ∆Ghost
vdW . The discharg-

ing and vanishing steps are usually performed with a series of intermediate
simulations that depend on a coupling parameter λ ∈ [0, 1]. Closure of the
thermodynamic cycle in Fig 2 shows that in the double annihilation technique
the free energy of binding ∆Gbind is given as:[62]

∆Gbind = (∆Gsolv
elec + ∆Gsolv

vdW )− (∆Ghost
elec + ∆Ghost

vdW ). (4.2)

In the above calculations an empirical distance-restraint term is added to
the potential energy function. This is done to prevent the non-interacting
guest from drifting out of the host cavity, which leads to slow convergence
of free energy changes computed via molecular simulations. A �at-bottom
restraining potential is used between one atom of the guest, chosen to be
the one closest to the center of mass, and four equivalent carbon atoms of
the host. The restraint potential for atom j of the guest is based on work
presented in [173] and takes the following form:

U restr(dij) =

Nhost∑
i=1

{
0 if |dij −Rij| ≤ Dij

κij (|dij −Rij| −Dij)
2 if |dij −Rij| > Dij

, (4.3)

where U restr(dij) is the potential energy of the restraint as a function of
the distance between the i-th guest atom and j host atoms dij = ||rj − ri||
where || ◦ || denotes a 2-norm, Dij is the restraint deviation tolerance, Rij

the reference distance between host and guest atom, κij the restraint force
constant, andNhost the number of host atoms that contribute to the restraint.
Free energies of binding computed according to eq. 4.2, will be referred to as
model A.

Model A neglects the contribution of long range dispersions interactions,
since the potential energy function is evaluated with non-bonded cuto�s.
Following work from Shirts et al. [130], it is possible to introduce a long range
dispersion correction term to the free energy of binding as a post processing
step of the simulation trajectories. This leads to a corrected free energy of
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Figure 2: Thermodynamic cycle for free energy of binding calculation. First,
a fully interacting ligand is simulated in water phase (top left), then charges
and Lennard-Jones terms are switched o� sequentially, resulting in a fully
non interacting ligand in water (bottom left). The same transformation is
performed in the complex, passing from a fully interacting ligand (top right)
to a dummy ligand (bottom right). The bottom middle step is concerned
with the evaluation of a free energy change associated with introduction of
a host-guest restraining potential in the complex simulations. This term is
neglected in model A and model B, and numerically evaluated with respect
to standard state conditions in model C. Consequently model A and model
B yield a free energy of binding ∆Gbind, whereas model C yields a standard
free energy of binding ∆G0

bind.
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binding ∆Gbind,LJRC , or model B, given by:

∆Gbind,LJLRC = (∆Gsolv
elec + ∆Gsolv

vdW )

− (∆Ghost
elec + ∆Ghost

vdW )

+ (∆Ghost
LJLRC −∆Gsolv

LJLRC).

(4.4)

The Lennard-Jones dispersion correction ∆GX
LJLRC can be computed making

use of the Zwanzig relation [23] in the following way:

∆GX
LJLRC = −β−1 ln〈exp[−β(ULJ,long(r)− ULJ,sim(r)]〉X + ULJ,ana, (4.5)

where X= host or solv, β = 1
kBT

, ULJ,long is the Lennard-Jones energy com-
puted for a �long� cuto� and ULJ,ana is an analytical correction for extend-
ing the long cuto� to in�nity. The long range correction ULJ,long is esti-
mated in a post processing step of the vanishing step λ = 0 and λ = 1
trajectories, by extending the domain of the typical Lennard-Jones cuto�
radius in the simulations to a radius which covers the entire box. To de�ne
this long cuto�, the minimum box length in all directions min(Lx, Ly, Lz)
in the input coordinates is calculated, and the new cuto� radius is set to
rc, long = 0.95 min(Lx, Ly, Lz)/2 to allow for some �uctuations in box size
during the simulation. This allows an averaging over the whole trajectory
of the additional contribution of the long range potential ULJ,long, with re-
spect to the simulated Lennard-Jones term ULJ,sim. This correction, however,
does not account for an in�nitely large box size giving rise to an analytical
correction over an in�nite domain, which is an additive constant given below:

ULJ,ana = 8πρ
N∑
i=1

εiσ
3
i

[
1

9

(
σi
RC

)9

− 1

3

(
σi
RC

)3
]

(4.6)

where N is the number of solute's atoms, ρ is the solvent density in mol·Å−3,
assuming an isotropic solvent, εi =

√
εiεsolv is the resulting Lennard Jones

well depth for the i-th solute's atom and the solvent εsolv value, in kcal·mol−1

and similarly σi = 0.5×(σi+σsolv) is the Lennard-Jones distance, in Å, for the
i-th solute's atom and the solvent σsolv value. Lennard-Jones parameters for
the solvent are those of the oxygen atom of the TIP3P water model [120]. It
is implicitly assumed that the radial distribution function g(r)=1 for RC > r.

Both model A and model B lack a well de�ned reference state in their
de�nition of the free energy change upon binding of the guest molecules.
Therefore a third model is proposed to enable a standard state de�nition.
For this purpose the standard state correction is added to the free energy of
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binding given by eq. 4.4. The standard free energy of binding is given by:

∆G◦bind = (∆Gsolv
elec + ∆Gsolv

vdW )

− (∆Ghost
elec + ∆Ghost

vdW )

+ (∆Ghost
LJLRC + ∆Gsolv

LJLRC) + ∆G◦restr,

(4.7)

where ∆G◦restr accounts for the introduced �at-bottom restraint. Considering
the cycle in �g. 2, the restraint free energy change can be computed as:

∆G◦restr = −kBT ln

(
ZH◦◦Gideal,solv
ZH,solvZGgas

)
, (4.8)

where ZH◦◦Gideal,solv is the con�guration integral for the restrained decoupled
guest bound to the host, ZH,solv is the con�guration integral for the solvated
host and ZGgas is the con�guration integral for the guest in an ideal thermo-
dynamic state. Assuming that the restraint potential is independent from
the solvent and host degrees of freedom, the contribution of the all degrees
of freedom but those of the guest cancel out and eq.4.8 simpli�es to:

∆G◦restr = −kBT ln

(
Z◦◦Gideal,solv

ZGgas

)
, (4.9)

where Z◦◦Gideal,solv is the con�guration integral for the decoupled guest. Be-
cause the guest has no intermolecular interactions in both thermodynamic
states de�ned in eq. 4.9, and because the restraint does not hinder rotational
motions, internal and rotational contributions to the con�guration integrals
cancel out and the only term left is the translational contribution to the con-
�guration integral. For ZGgas a standard volume V ◦ =1660 Å3·molecule−1 (1
M)is used. Hence, eq. 4.9 simpli�es to:

∆G◦restr = −kBT ln

(
V restr

V ◦

)
, (4.10)

where the restraint volume V restr is given by:

V restr =

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
dxj dyj dzj exp(−βU(di1, . . . , diNhost)). (4.11)

V restr can be calculated by numerically integrating eq. 4.11. In this contex,
initially the coordinates of the host-guest complex in the generated trajec-
tory at λ = 1 of the vanishing step are aligned onto the �rst frame of the
trajectory. Then, the average coordinates of each of the four host atoms
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used for the restraint were computed. Next, a grid spacing and an integra-
tion domain are de�ned. The grid spacing is set to 0.1 Å and the integration
domain is de�ned by the rectangular cuboid that is given by the minimum
and maximum coordinates of the four de�ned host atoms with an additional
bu�er around the bounding domain of ± 5 Å. Numerical integration is then
performed via multidimensional trapezoidal rule.

4.2.1 Host-Guest simulation set-up

Guests input �les were created using tleap. Force �eld parameters and
molecules' library �les were extracted from the provided topologies using
the python module parmed [73]. Thus, guests were solvated in a rectangular
cuboid box of TIP3P water molecule [120], with a minimum distance between
the solute and the box of 12 Å. Ions were added to neutralize the overall
charge of the box. Then, solutes were energy minimized with a maximum of
100 steps of steepest descent gradient. Next, solutes were restrained with a
force constant of 10 kcal·mol−1·Å−2, to allow water to equilibrate in an NVT
ensemble at 298 K. Finally, a NPT equilibration for 200 ps at 1 atm was done
using Amber MD module Sander [73], followed by a 2 ns NPT simulation run
with SOMD (rev. 2015.0.0) [68, 69], to reach a �nal water density of about 1
g/cm3. The �nal coordinate �les were retrieved with CPPTRAJ [169]. The
same protocol for preparation and equilibration was used for the host-guest
system �les.
Additionally a reference system, OA-O1 was taken from the SAMPL4 [202]
challenge and set-up from scratch. Guest O1 was obtained from the modi�ca-
tion of compound G6 using Maestro (v.10.1.012, rel 2015-1, Schrödinger) [203]
and further parametrized using AM1-BCC charges [118] using Antechamber
14 [73]. Complex and water phase systems were created with tleap, according
to the above protocol.

4.2.2 Alchemical free energy production simulations

For the discharging steps nine equidistant λ windows were selected for the
host-guest complex and the guest in water phases. For the vanishing step 12
and 18 equidistant windows were used for octa-acid guests and CBC guests
respectively. The reasoning behind these di�erent choices was that the CBC
guests were larger and more �exible systems than octa-acids, therefore a
denser number of λ windows was deemed necessary to guarantee a good over-
lap of the potential energy distributions of neighbouring λ windows [204]. All
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simulations were run for 8 ns. A velocity-Verlet integrator was used with a
time step of 4 fs using a hydrogen mass repartitioning (HMR) scheme [170]
and all bonds were constrained. Every simulation was performed in an NPT
ensemble and temperature control was achieved with an Andersen Thermo-
stat with a coupling constant of 10 ps−1 [52]. Pressure was maintained by a
Monte Carlo barostat that attempted isotropic box edge scaling every 100 fs.
Periodic boundary conditions were imposed with a 12 Å atom-based cut-o�
distance for the non-bonded interactions, using a shifted Barker Watts reac-
tion �eld [49] with dielectric constant of 78.3. In the host-guest complex the
guest molecules were restrained according to eq. 4.3. The parameters were
Rij = 5 Å, Dij = 2Å and κij = 10 kcal·mol−1· Å−2.

4.2.3 Estimation of free energy changes for models A,

B and C

Individual free energy contributions from the discharging and vanishing steps
were estimated by using multistate Bennett's acceptance ratio (MBAR) [171].
To estimate accuracy and consistency of the computed binding free energy
from eq. 4.2, each simulation was repeated twice from the same initial co-
ordinates, using di�erent initial assignments of velocities drawn from the
Maxwell-Boltzmann distribution. Final binding free energies are reported as
the average of both runs and statistical uncertainties were calculated accord-
ing:

err(∆G) =
σ√
n
, (4.12)

where σ is the standard deviation of both runs and n=2 unless otherwise
mentioned.

The computed binding free energies with each model are then compared to
experimental values considering three di�erent measures: the determination
coe�cient R2, mean unsigned error (MUE) and Kendall τ . To gain insight
into the distribution of the three di�erent measures a bootstrapping scheme
is used in which each computational free energy point is considered to be a
normal distribution with its mean given by the computed free energy and
σ the associated computed error. One million samples are then drawn from
the arti�cial normal distributions for each data point and correlated with the
experimental values, giving rise to a distribution of R2, MUE and Kendall
τ . The resulting distributions are typically not symmetric around the mean
and uncertainties in the dataset metrics are reported with a 95% con�dence
interval.
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4.2.4 Host-guest experimental setup

The hosts octa-acid (OA) and the tetra-endo-methyl octa-acid (TEMOA)
�g. 1, are water soluble deep-cavity cavitands, containing a hydrophobic
binding pocket and an exterior coating of eight carboxylic acid groups ar-
ranged in a square anti-prism array [205]. Both octa-acid systems have a
well-de�ned binding pockets formed by eight aromatic rings, whose hydrogen
atoms are projected into the midsection of the cavity and act as weak hydro-
gen bond donors [206]. Experimental binding a�nities were measured by Dr.
Bruce Gibb, from Gibb laboratory, with NMR for guests G1, G2, G3 and
G5, while for G4 and G6 ITC was used. All the NMR spectra were recorded
at 25◦C, with the exception of TEMOA-G4 which was carried out at 5◦C.
The NMR titrations were done in 10 mM phosphate bu�er (pH=11.3) and
the corresponding association constant Ka were estimated from the standard
titration and curve �tting process. ITC measurements for OA-G4, OA-G6
and TEMOA-G6, were performed in 50 mM phosphate bu�er (pH=11.5) at
25◦C. From curve �tting the binding isotherms were processed and a binding
free energy estimated. The high basic pH = 11.3 - 11.5 was chosen in order
to have a good host solubility.

CBC is composed of a central methylene-bridged glycoluril dimer, two
dialkoxnaphthalene sidewall and four sodium sulfonate solubilizing groups,
�g. 1. By virtue of the conformational constraints of the polycyclic ring
system, comprising seven membered rings, CBC is constrained to adopt a
C-shape with nearly parallel aromatic walls, separted by ∼7Å [207]. In this
case, NMR and UV/VIS and �uorescence spectroscopy titrations were carried
on by the Isaacs laboratory. In particular CBC-G1, CBC-G2 and CBC-G3
were studied with NMR, in a sodium phosphate bu�er of 20 mM. CBC-G4,
CBC-G5, CBC-G6, CBC-G7, CBC-G8 and CBC-G9 were measured with
UV/VIS, since the association constant Ka exceeded the 1H NMR range
(Ka ≤104M−1). CBC-G10 was instead measured with �uorenscence spec-
troscopy which provide a reliable measure of the a�nity of the 1-methylene
blue (G10) complex. Additional tests were made with UV/VIS titration,
which displayed a well de�ned 1-methylene blue complex of 1:1 stoichiome-
try.

All the experimental standard data, standard free energy of binding ∆G◦,
its uncertainty σ and the association constant Ka for each host-guest system,
are reported in table 1.
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Table 1: Experimental measurements for the three host-guest systems, OA,
TEMOA and CBClip. For each host the ligand name, mol, is reported along
with the technique used, the bu�er concentration (mM), the standard free
energy of binding ∆G◦bind in kcal·mol−1 and the uncertainty σ, and the asso-
ciation constant Ka in M−1.

OA
mol Technique bu�er ∆G◦bind ± σ Ka

G1 NMR 10 -5.39±0.01 5.0±0.1×103

G2 NMR 10 -4.73±0.01 1.3±0.1×103

G3 NMR 10 -4.49±0.01 5.1±0.1×103

G4 ITC 50 -9.36±0.01 7.4±0.1×106

G5 NMR 10 -4.50±0.01 1.9±0.1×103

G6 ITC 50 -5.33±0.01 8.1±0.1×103

TEMOA
mol Technique bu�er ∆G◦bind ± σ Ka

G1 NMR 10 -5.47±0.01 6.9±0.7×103

G2 NMR 10 -5.25±0.01 4.9±0.3×103

G3 NMR 10 -5.73±0.01 2.3±0.6×104

G4 NMR 10 -2.40±0.01 5.5±0.2×10
G5 NMR 10 -3.90±0.01 7.3±0.3×102

G6 ITC 50 -4.52±0.01 2.0±0.1×103

CBC
mol Technique bu�er ∆G◦bind ± σ Ka

G1 NMR 20 -5.84±0.01 1.9±0.1×104

G2 NMR 20 -2.52±0.01 70±8.0
G3 NMR 20 -4.02±0.01 8.8±0.5×102

G4 UV/VIS 20 -7.25±0.01 2.0±0.1×105

G5 UV/VIS 20 -8.54±0.01 1.8±0.2×106

G6 UV/VIS 20 -8.68±0.01 2.2±0.2×106

G7 UV/VIS 20 -5.18±0.01 6.2±0.2×103

G8 UV/VIS 20 -6.18±0.01 3.3±0.2×104

G9 UV/VIS 20 -7.40±0.01 2.6±0.1×105

G10 Fluorescence 20 -10.38±0.1 3.9±0.2×107
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4.2.5 Statistical comparison with other submissions

A statistical comparison based on correlation coe�cient, R2, and root-mean-
square error, RMSE, was made between SOMD and other participants pre-
dictions for OA, TEMOA and CBC. The statistical analysis was carried on
by Yin et al. [75]. To determine how each calculation method perform an
uncertainty in RMSE and R2 was computed with bootstrap resampling with
replacement, as described above.
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Table 2: Comparison of the binding free energy ∆Gbind of models A, B and
standard binding free energy of ∆G◦bind of model C with respect to experi-
mental data, Experimental, for the SAMPL4 OA-O1 complex.

OA-G1
model A model B model C ∆G◦bind
-6.1±0.5 -6.1±0.5 -4.4±0.5 -3.7

4.3 Results

4.3.1 Host-Guest binding free energy predictions

To test the precision and accuracy of the models A,B, C, the free energy
of binding of guest O1 to host OA, adopted from SAMPL4, was retrospec-
tively predicted. Table 1 compares the results with experimental data [202].
Both models A,B yield a similar free energy of binding ∆Gbind = -6.1 ±
0.5 kcal·mol−1. This is because the long-range corrections for Lennard-Jones
interactions implemented in model B produce a negligible correction term
of 0.03 kcal·mol−1. By contrast, the addition of a standard state correction
in model C leads to standard free energy of binding of ∆G◦bind=-4.4 ± 0.5
kcal·mol−1 which is in good agreement with the experimental data of ∆G◦bind
= -3.7 kcal·mol−1.

Thus, blinded predictions were performed for each SAMPL5 host-guest.
Fig. 3 contrasts the predictive power of the di�erent models against the
experimental data, released after submission of the predictions, while �g. 4
compares the statistical signi�cancy of all the three modes, in terms of R2,
MUE and Kendall τ . For the complete dataset, all three models yield a
similar R2 value of ca. 0.64< 0.70< 0.75. Furthermore, Models A,B have a
similar MUE 4.3< 4.5< 4.7 kcal·mol−1, whereas model C is statistically more
accurate, with a MUE of 3.20< 3.39< 3.57 kcal·mol−1. The accuracy of the
predictions for the three di�erent hosts was also considered individually and
summarised in table 3. As judged by the MUE measures, the models perform
better across the octa-acid systems than for CBC. In particular, model C
gives the best predictions compared to A and B for octa-acid systems, with
a MUE of 1.79< 2.16< 2.52 kcal·mol−1 and 1.42< 1.72< 2.02 kcal·mol−1 for
OA and TEMOA respectively. R2 is on average slightly higher for both octa-
acid hosts (R2: 0.77< 0.87< 0.93. model C for OA and R2: 0.52< 0.74<
0.93, model C for TEMOA) than CBC (R2=0.69< 0.76< 0.82) for models
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A, B and C, but the trend is not strong given statistical uncertainties.
Next, attention focused on the guests whose predictions exhibited the

largest discrepancy with experimental data. For octa acid systems, guest
G5 is the greatest outlier, with an underestimation in ∆G◦bind of about -3.2
kcal·mol−1 and -2.8 kcal·mol−1 for OA and TEMOA respectively. A similar
trend was found also by other participants, which make use of GAFF and MD
approaches [75, 208]. Yin et al. found a �ipping motion in the four benzoic
acid around the OA cavity entrance toward the guest, which characterize
part of the all OA conformations in complex phase,. This, however, was not
found analyzing the λ = 0.0 discharging step SOMD trajectories.

Additionally, the validity of the G5 binding mode was evaluated. For this
purpose, G5 was rotated by approximately 180◦ degrees about its centre of
mass, such that the amine group pointed towards the bottom of the host
cavities.Then, calculations were repeated using these new coordinates after
solvent equilibration. Binding free energy predictions from model C obtained
for this alternative binding mode were poor: ∆G◦bind=1.8±0.1 kcal·mol−1 and
16.7±0.1 kcal·mol−1 for OA and TEMOA respectively, so that the original
binding mode is more likely. Finally, it is worth mentioning that Sderhjelm
et al. [208] have achieved a good agreement with experimental data for G5
molecules, but only after analysis of 70 ns of molecular dynamics and adding
an empirical correction for the presence of �nite size artefacts. This suggests
that the presence of �nite size artefacts and sampling could have biased G5
simulations results.

An intersting guest is G4, which shows a high binding a�nity for OA but
very low for TEMOA, regardless the two host molecules are quite similar.
Predictions re�ect the experimental trend, recognizing G4 as a nM compound
for OA and a mM compound for TEMOA. Furthermore, as revealed in the
experimental study [205], G4 is freer to tumble in the OA host cavity. In
this way, the G4 molecule may explore the binding cavity of OA, till the
bromine is able to form halogen-hydrogen interactions at the midsection of
the OA host molecule, where benzoic protons are present. Di�erently, for
TEMOA-G4 systems, the presence of methyl branches at the rim of the host
cavity may prevent the guest to tumble freely with an entropic penalty for
the guest.

For the CBC host, the MUE is about 4.8< 5.1< 5.4 kcal·mol−1 for all
models, despite of a reasonable correlation coe�cient R2= 0.65< 0.76< 0.81.
In particular, model C performs better than A and B, but large errors are
present for a series of guests. As depicted in table 3, the guests G2 and
G3 are predicted to bind substantially worse than what is observed in ex-
periments. As a matter of fact, these two molecules are made of linear
�exible alkyl chains, containing several positively charged ammonium groups
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B)

C)

Figure 3: Comparison of the binding free energy ∆Gbind of A): model A,
B): model B and C): model C for all the host-guest systems with respect
to experimental data. The red line indicates ideal correlation between ex-
periments and computational results and the yellow shaded region gives a
binding free energy error bound of 1 kcal·mol−1. OA systems are colored in
blue, TEMOA in green and CBC in red. Error bars denote ± eq 4.12.
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Figure 4: Statistical signi�cance for model A, model B, model C for A): R2;
B): MUE and C): Kendall τ , for all the dataset of host-guest systems. The
overlap between notches points out a statistical similarity for model A and
model B, while model C is signi�cantly better for R2 and MUE with respect
to these two previous models .
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Table 3: Calculated binding free energy, in kcal·mol−1,experimental binding
free energy ∆G◦exp determination coe�cient R2, mean unsigned error (MUE),
in kcal·mol−1, model A, B and C. Uncertainties in the calculated individual
binding free energies are the standard error of the mean. Dataset metrics are
given with a 95% con�dence interval.

OA
∆Gbind A ∆Gbind B ∆G◦bind C ∆G◦exp

G1 -8.58±0.31 -8.60±0.35 -6.94±0.30 -5.39±0.01
G2 -6.91±0.22 -6.89±0.15 -5.23±0.15 -4.37±0.01
G3 -9.05±0.19 -8.93±0.18 -7.28±0.14 -4.49±0.01
G4 -14.31±1.32 -14.45±1.18 -12.79±1.18 -9.36±0.01
G5 -8.73±0.36 -8.73±0.37 -7.71±0.37 -4.50±0.01
G6 -7.88±0.10 -7.82±0.10 -6.16±0.10 -5.33±0.01

MUE 3.33< 3.73<4.01 3.37<3.72<4.07 1.79<2.16<2.52
R2 0.83<0.91<0.96 0.83<0.91<0.96 0.77<0.87<0.93

TEMOA
∆Gbind A ∆Gbind B ∆G◦bind C ∆G◦exp

G1 -8.38±0.11 -8.44±0.03 -6.78±0.03 -5.47±0.01
G2 -9.21±0.74 -9.26±0.68 -7.59±0.67 -5.25±0.01
G3 -9.10±0.03 -9.09±0.01 -7.42±0.01 -5.73±0.01
G4 -5.01±0.01 -5.04±0.21 -3.36±0.21 -2.40±0.01
G5 -8.41±0.74 -8.36±0.81 -6.69±0.81 -3.90±0.01
G6 -7.30±0.17 -7.29±0.16 -5.61±0.16 -4.52±0.01

MUE 3.08<3.38<3.67 3.09<3.39<3.69 1.42<1.72<2.02
R2 0.51<0.73<0.93 0.52<0.74<0.92 0.52<0.74<0.93

CBC
∆Gbind A ∆Gbind B ∆G◦bind C ∆G◦exp

G1 -7.52±0.44 -7.37±0.40 -6.16±0.41 -5.84±0.01
G2 -0.08±0.05 -0.02±0.05 1.17±0.06 -2.52±0.01
G3 0.06±0.02 0.21±0.04 1.49±0.03 -4.02±0.01
G4 -11.42±0.15 -11.32±0.19 -10.11±0.19 -7.25±0.01
G5 -15.41±0.28 -15.30±0.34 -14.05±0.37 -8.54±0.01
G6 -18.65±0.23 -18.46±0.20 -17.16±0.23 -8.68±0.01
G7 -13.64±1.21 -13.50±1.22 -12.32±1.23 -5.18±0.01
G8 -4.43±1.10 -4.40±1.09 -3.07±1.11 -6.18±0.01
G9 -16.28±0.08 -16.20±0.05 -14.96±0.05 -7.40±0.01
G10 -18.61±0.21 -18.56±0.22 -17.30±0.23 -10.38±0.01

MUE 5.38<5.65<5.94 5.32<5.60<5.88 4.82<5.12<5.41
R2 0.70<0.76<0.81 0.70<0.76<0.82 0.69<0.76<0.82
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( +2e for G2, +4e for G3), which likely results in electrostatics artefacts
for the binding free energy estimation. By contrast, G4, G5, G6, G7, G9
and G10 are predicted to bind signi�cantly better than what observed in
reality. These compounds are made of conjugated aromatic rings. At pH 7.4
they could adopt multi-protonation states, as suggested from pKa calcula-
tions [154]. Thus, it is unclear whether the discrepancies are due to force
�eld parametrization and modelling errors or �nite-size e�ects.

4.3.2 Comparison with other participants submissions

As a separate issue, the reproducibility of standard free energies of bind-
ing was evaluated by comparing the results from model C with those re-
ported by the Gilson lab (UCSD) for the octa-acid hosts [75]. The same
input �les were used, but the free energy calculations were performed with
the pmemd.cuda program from AMBER 14 [209], and a di�erent potential
of mean force based 'attach-pull-release' (APR) methodology. [210] Figure
5 shows that a good agreement is observed between both OA and TEMOA
hosts, with a mean unsigned di�erences of about 0.4 kcal·mol−1 in the former
case and 0.6 kcal·mol−1 for the latter. At �rst glance this level of variability
seems reasonable given the typical statistical uncertainties of each method-
ology. Nonetheless closer inspection indicates that OA-G5, TEMOA-G5 and
TEMOA-G4 show signi�cant discrepancies. Since the model C standard
free energies of binding were only estimated from two repeats a concern
was that the error estimates were not reliable. To test this two additional
repeats were performed for these systems. The standard free energies of
binding obtained from four repeats of model C are: ∆G◦bind(SOMD, OA-
G5)= -6.9±0.1 , ∆G◦bind(SOMD, TEMOA-G4)= -3.4±0.2 , ∆G◦bind(SOMD,
TEMOA-G5)= -6.5±0.3 kcal·mol−1 respectively. The results were statisti-
cally identical to those obtained from two repeats (table 1) for TEMOA-G4
and TEMOA-G5, but not OA-G5. Personal discussions with the Gilson lab
prompted additional APR calculations which produced revised values for
∆G◦bind(APR, TEMOA-G4)= -4.3±0.3 kcal·mol−1, and ∆G◦bind(APR, OA-
G5)= -4.5±0.5 kcal·mol−1. Additionally, �g. 6 compares model A, model
B and model C with other SAMPL5 submissions. Overall, explicit solvent
based methods show a greater reliability over electronic structures schemes.
In particular, APR attains on average a correlation coe�cient R2 ∼ 0.8±0.2
for octa acid systems, with a RMSE ∼ 0.8±0.2 kcal·mol−1 for OA and
1.6±0.6 kcal·mol−1 for TEMOA. Another explicit solvent methodology, em-
ploying GAFF parametrization and TIP3P water model was based on meta-
dynamic approach [211, 208]� achieved a good R2 ∼ 0.7±0.3 for OA along
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A)

B)

Figure 5: A Comparison between standard binding free energies computed
with model C (blue) and with the attach-pull-release method (red) for A)
OA and B) for TEMOA.
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with RMSE∼0.9±0.3 kcal·mol−1. Due to the narrow range of experimental
results in TEMOA, metadynamics, as APR, show a performance deterio-
ration, with R2 ∼0.3±0.3 and RMSE∼1.6±0.5. Finally, fair results were
reached by TI/HBAR methods, based on CGENFF force �eld parametriza-
tion [212] and MD simulations with TI [24] and HBAR [213] free energy
estimations. Overall, the correlation ranges in 0.4<R2<0.7 and the 1.3<
RMSE< 1.9 kcal·mol−1 for OA, while for TEMOA the R2 is about 0.4±0.3
and 2.0< RMSE< 3.1 kcal·mol−1. An encouraging results was gained by the
structure based �Movable type� protocols MovTyp-1 and MovTyp-2 [214].
MovTyp simulates local partition functions using Monte Carlo integration
and use a statistical potential, KECSA [215], to calculate each atom pairwise
probability distribution. On average MovTyp attains a good R2 ∼ 0.7±0.3
and RMSE ∼ 1.0±0.2 kcal·mol−1, while for TEMOA R2 decays to 0.5±0.3
and RMSE∼3.1±1.0 kcal·mol−1. On the other side, pure electronic structure
based methods, fail to achieve a good correlation and RMSE for octa acid
system. The three set of predictions � DLPNO-CCSD(T), DFT/TPSS-n and
DFT/TPSS-c [216] � are generated with a dispersion-corrected density func-
tional theory calculation, in conjuction with the COSMO-RS continuum sol-
vation model [217]. DLPNO-CCSD(T) adopts the DLPNO-CCSD(T) level of
theory, combined with COSMO-RS. Both DLPNO and DFT methods show
a very low correlation for octa acid system, R2 ∼0.4±0.3, and a high RMSE,
which is on average about 5.0 ±1.0 kcal·mol−1.

For the CBC, fewer submission were done. In this case there is no a clear
comparison for GAFF TIP3P based methods. however, model A, model B
and model C perform the best in terms of R2 ( 0.7 ±0.2), while the RMSE
is high, ranging from 5.7 to 6.4 kcal·mol−1. Better results in terms of RMSE
were retrieved only by the MovTyp-1 algorithm, 3.5±0.7 kcal·mol−1, and
TI-dock methods [218], RMSE∼3.6±0.7 kcal·mol−1, although a null corre-
lation R2 ∼ 0.1 ±0.1 was obtained. The worse performance of free energy
methods in CBC simulation could be due to the acyclic aspect of this host,
which confers more �exibility, which could slow down the convergence of the
calculated free energy changes.
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Figure 6: Comparison of SOMD model A, model B, model C submission
with respect to other SAMPL5 participants estimations, in terms of RMSE,
in kcal·mol−1on the left , and R2 coe�cient,on the right, for all the entire
OA dataset. In red model A, model B and model C, the dashed black line on
the RMSE plot denotes 1 kcal·mol−1
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4.4 Conclusions

In the context of the SAMPL5 challenge, the binding free energies for 22
host-guest systems, OA, TEMOA and CBC were computed using variation
of alchemical free energy models (model A, B and C ). SOMD predictions
were among the top-ranked SAMPL5 submissions with respect to R2 metric
( �g. 6. ) This result was unexpected given the size of the guests that was
deemed large for an absolute binding free energy calculation, suggesting that
longer per-λ simulation time than what was used here would be necessary.
Factors that may have contributed to this outcome include the relative rigid-
ity of some of the guests (e.g. OA and TEMOA), the rapid relaxation of the
hosts upon guest decoupling. Encouragingly the results were also reasonably
predictive, at least as judged by correlation with experiment (R2 0.65 < 0.70
< 0.74). Nevertheless, systematic errors are present and the same models
do not fare as well when ranked according to a mean unsigned error metric.
Model B yields results that are identical to model A since the Long-range
correction for missing dispersion interactions is essentially negligible. This
was surprising, given previous reports, that showed signi�cant contribution
to standard free energies of binding [130]. For the systems considered here
it seems that the simulation cuto�s used were su�cient to include most of
the guest-host dispersion interactions. Satisfactorily, addition of a standard
state correction term in model C systematically improves agreement with ex-
perimental data. In addition the computed standard free energies of binding
for model C agree well with those produced independently by members of
the Gilson lab (UCSD) using a di�erent code and methodology. It is well
known that the computation of free energies of solvation of charged solutes
via molecular simulations is typically a�ected by signi�cant �nite-size ef-
fects [79, 80, 82, 81]. Given the broad range of net charges in the guests
considered here it is perhaps surprising that encouraging R2 values were
obtained. For the host-guest binding energies reported here errors due to
�nite-size electrostatics is mitigated since partial error compensation occur
between the simulations of the solvated guest and the host-guest complex.
However it seems reasonable to anticipate that the signi�cant MUE values
would be decreased with the use of suitable schemes to reduce or eliminate
�nite-size errors. Other areas were further improvement could be sought for
this dataset include the explicit consideration of multiple tautomeric forms
of the guests, as well as a more systematic evaluation of alternative potential
energy functions.
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Chapter 5

Electrostatic �nite size artifacts

in alchemical free energy

calculations

It is well known that absolute alchemical free energy calculations of charged
molecules and relative alchemical free energy calculations that involve a
change of net charge are a�ected by �nite size artefacts. These artefacts
are mainly due to e�ective Coulombic potentials and their associated param-
eters (e.g. cuto�, box size and periodic boundary conditions). This chapter
explores correction protocols for these artefacts. A �rst protocol, adapted
from works of Rocklin and Reif [81, 82], was developed for Barker Watts Re-
action Field (BWRF) atomistic cuto� based simulations. A second approach
makes use of alchemical counterions to keep a net-charge balance during
the simulations. The hydration free energy of small organic charged species
was computed to validate the former protocol. Then, both approaches were
tested in binding free energy calculations using the OA and CBClip host-
guest dataset of SAMPL5.
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5.1 Introduction

Accurate and reliable protein-ligand binding free energy estimations would
be bene�cial for the drug discovery process. This would allow to enhance
the screening of drug candidates and reduce the cost of the basic research
stage. Over the past decades many free energy techniques have been de-
vised [83, 84, 85, 86]. In particular the alchemical free energy calculations
have shown signi�cant success and a great potential in host-guest binding
a�nities studies [201, 219, 131]. However, the accuracy of the alchemi-
cal free energy calculations is always limited by force �eld errors [95, 184],
sampling [183, 220] and methodological problems, such as the use of con-
straints [99, 221].

Beyond these issues, �nite size artefacts [78, 81, 222, 82] constitute an-
other major source of error. These artefacts a�ect both absolute and relative
alchemical free energy calculations, when a charged solute is alchemically
perturbed to a di�erent net charge end state. The use of e�ective Coulombic
potentials, along with cuto� lengths, periodic boundary condition and ap-
proximated solvent models introduces an o�set potential in the simulation
cell, which makes the simulated model deviate from a realistic conditions.

Historically, these artefacts are well known since the 1970s, thanks to
seminal works of Neumann and Steinhauser [76, 223, 224], which stated the
in�uence of boundary conditions and �ctitious Coulombic potentials for di-
electric constant calculations. Neumann's formulations were further devel-
oped by Hummer [225, 226, 227] focusing the attention on the problem of
ionic species hydration free energy calculation. Although the computation of
hydration free energy for ionic species seems an easy task, alchemical tech-
niques fail to give a reasonable answer with errors ranging between 20 and
40 kcal·mol−1. In 2006 these works were revisited by Kastenholz and Hü-
nenberger [79, 80], which designed a correction protocol for ionic hydration
free energies calculations run with Lattice Sum and Reaction Field meth-
ods. Later on, Rocklin [81] and Reif [82] sought to extend Kastenholz and
Hünenberger's protocol to protein-ligand binding calculations by devising an
analytical-numerical correction scheme.

These last two contributions fully de�ned the �nite size artefacts as arising
from distinct problems:

• Errors arising from Coulombic potential approximations [49, 41], such
as cuto�-scheme, along with the presence of boundary conditions. The
use of these approximation induces a �ctitious polarization around the
solutes, which are not identical to ideal Coulombic polarizations;

• The solvent model does not re�ect the real macroscopic bulk proper-
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ties (e.g. di�erence in dielectric constant). Thus, each solvent model
would introduce a di�erent polarization around the net-charged so-
lute, di�erent from the real case scenario. Furthermore, for lattice sum
scheme (e.g. Particle Mesh Ewald (PME) methods), arti�cial interac-
tions between solutes and theirs periodic copies are present, as well as
for solvent molecules, resulting in an undersolvation e�ect;

• charge sorting errors due to the speci�c convention for summing up
the contributions of solvent charges to the Coulombic potential at the
cuto�. This error generates a further polarization to the solute, which
is not present in a real system.

• The presence of e�ective Coulombic potentials give rise to spurious
interactions between host and guest atoms.

In this chapter, these artefacts will be discussed in the context of the
Barker-Watts Reaction Field atom-based scheme (BWRF), which is used by
SOMD. In the section 5.2 the theoretical derivation of the BWRF scheme
and its Poisson-Boltzmann correction scheme will be presented. To further
validate the BWRF correction approach, the Rocklin methodology [81] for
PME-based simulation will be introduced. A third scheme, employed only
for host-guest binding free energy calculations, which makes use of alchemical
counterions to balance the total net-charge along the alchemical transforma-
tion will be discussed. Section 5.4 will show the validation of the results for
charged species solvation free energies. Thus, BWRF and Rocklin correc-
tion schemes will be extended to the case of host-guest binding free energy
simulations and compared with the alchemical counterions approach.

5.2 Theory

5.2.1 Free energy correction terms for the BWRF ap-

proach

Fig. 1 shows the three correction terms, according to the BWRF frame-
work, to deal with the �nite size artefacts, to correct a periodic and e�ective
Coulombic simulation box to a non-periodic and in�nite electrostatic system.
∆GPOL corrects for the polarization e�ects due to the use of e�ective Coulom-
bic potentials and periodic boundary conditions. Furthermore, ∆GPOL cor-
rects also for the incorrect dielectric properties of the solvent model employed
(e.g. TIP3P water [120] has a dielectric constant of 82 [228], while the ex-
perimental value is 78.3). ∆GPSUM takes into account the charge sorting
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Figure 1: The three correction terms ∆GPOL, ∆GPSUM and ∆GDIR al-
lows to pass from a periodic and e�ective Coulombic simulation box to a
non-periodic Coulombic and in�nite extended system. ∆GPOL accounts for
polarization e�ects, considering an in�nitely long system; ∆GPSUM corrects
for solvent polarization artefacts arising at the cuto�; ∆GDIR correct for
host-guest electrostatic interactions.

problem, due to solvent molecules at the cuto� sphere. ∆GDIR corrects for
spurious host-guest interactions, due to the use of e�ective Coulombic po-
tential.

∆GPOL is computed as:

∆GPOL = ∆GNP −∆GRF (5.1)

where ∆GNP is the electrostatic charging free energy due to Coulombic in-
teractions under non-periodic conditions, ∆GRF is the electrostatic charging
free energy for BWRF simulations under PBC. Both ∆GNP and ∆GRF are
computed from complex phase and solvated phase with implicit solvent cal-
culations. ∆GNP is estimated using APBS software [229]. The implicit
solvent linear Poisson-Boltzmann (PB) equation:

∆ε(r)Φ(r) = −4πρ(r) + 4π

∑
i c
∞
i z

2
i q

2Φ(r)

kBT
λ(r) (5.2)

is solved through an adaptive multi-level �nite element approach both for the
complex and solvated phases. In eq. 5.2, ε(r) denotes the dielectric �eld as a
function of the vector position r, ρ(r) the charge density in space, c∞i is the
concentration of an ion i at an in�nite distance from the solute, zi the i-th ion
valency, q the proton charge (1.60217 × 1019 C), kB the Boltzmann constant,
T the temperature and λ(r) is the accessibility to ions at point r. The use
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of the linearized PB equation is justi�ed by studies made by Fogolari et
al. [230, 231], which have shown that the electrostatic potential Φ(r) from the
linearized PB equation is close to the solution obtained from solving the pure
non linear equation for most of the biological relevant cases. As described in
[82], there is a self Coulombic term included in the potential Φ(r). To cancel
out this contribution, Φ(r) is computed as a di�erence between the potential
generated by the solutes in presence of a dielectric and a vacuum reference
potential, whose dielectric constant ε is set to 1. Once Φ(r) is estimated, the
electrostatic free energy at λ = 0.0, ∆GNP−λ=0.0 can be estimated as:

∆GNP−λ=0.0 =
1

2

N∑
i=1

qiΦ(ri) (5.3)

where the sum is extended to all the N solutes' atoms, qi is the i-th atom's
partial charge and Φ(ri) refers to the electrostatic potential at the atom
positions. Similarly, by setting guest's atoms charges to zero, it is possible to
compute ∆GNP−λ=1.0. Considering the complex phase, HG, and the solvated
phase, G, simulations, the �nal ∆GNP is equal to:

∆GNP = (∆GG
NP−λ=0.0 +∆GG

NP−λ=1.0)−(∆GHG
NP−λ=0.0−∆GHG

NP−λ=1.0) (5.4)

where ∆GG
NP−λ=0.0 and ∆GG

NP−λ=1.0 are the electrostatic free energies for the
solvated guest at λ = 0.0 and 1.0, while ∆GHG

NP−λ=0.0 and ∆GHG
NP−λ=1.0 are

the electrostatic free energies for the host-guest system at λ = 0.0 and 1.0.
∆GRF is computed using a custom code kindly provided by P. Hünen-

berger [232, 233] and modi�ed accordingly. The code computes the electro-
static potential ΦRF (r) mimicking implicit solvent BWRF simulation condi-
tions under periodic boundary condition for the complex and solvated phase.
The �nal potential is retrieved by solving the fundamental electrostatic equa-
tions [234]: 

E(r) = V(r) +
∫ ∫ ∫

<3 T(r)P(r)dr

P(r) = ε0 [ε(r)− 1]E(r) = ε0(εs − 1)H(r)E(r)

(5.5)

where E(r) is the electric �eld, as a function of the atoms' coordinates r,
V(r) is the vacuum �eld, namely the �eld generated by the solute's atoms
partial charges under the BWRF,

∫ ∫ ∫
<3 is a volume integral, P(r) is the

polarization �eld. T(r) = (3rij,α × rij,β − r2
ijδα,β)r−5

ij is the dipole-dipole in-
teraction tensor, where α and β = x, y, z, rij is the distance between dipole
i and dipole j and δα,β is the Kronecker delta (. The second equation de-
scribes the polarization �eld as a function of ε0, the vacuum permittivity, ε(r)
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dielectric vector and H is the Heaviside function, which evaluates 0 inside
the reference solute molecule and 1 outside. To account for the presence of
PBC in the simulation, eq. 5.5 are solved in the reciprocal space using the
Fast Fourier Transform (FFT) [46]. Since, neither E(r) nor P(r) are known
initially, the code computes the overall electric �eld in the space, by itera-
tively calculating the vacuum �eld inside the solute in such a way that the
overall electric �eld inside the solute becomes zero. To obtain an accurate
description of the electrostatic potential, the entire space is subdivided into a
grid domain of Nx ·Ny ·Nz points. Once the electrostatic �eld is computed, it
is possible to retrieve the polarization �eld and, eventually, the electrostatic
potential as:

ΦRF (r) =

∫ ∫ ∫
<3

t(r)P(r)dr (5.6)

where t(r) = −rij,α × r−ij3 is the charge-dipole interaction tensor, evaluated
for all the solute charges. As per the non-periodic electrostatic potential,
ΦRF (r) contains a self Coulombic term, which is subtracted by a vacuum
reference potential. Finally the solvation free energy contribution at λ = 0.0,
given by a BWRF potential under PBC, is computed as:

∆GRF−λ=0.0 =
1

2

Natoms∑
i

qiΦRF (ri) (5.7)

where N is the total number of solute's atoms (Natoms) and ΦRF (ri) refers
to the electrostatic potential at the atoms'site ri. Similarly for ∆GNP−λ=1.0,
∆GRF−λ=1.0 is computed by setting guest'atoms charges to zero. ∆GRF is
thus equal to:

∆GRF = (∆GG
RF−λ=0.0 + ∆GG

RF−λ=1.0)− (∆GHG
RF−λ=0.0−∆GHG

RF−λ=1.0) (5.8)

where ∆GG
RF−λ=0.0 and ∆GG

RF−λ=1.0 are the electrostatic free energies for the
solvated guest at λ = 0.0 and 1.0, while ∆GHG

RF−λ=0.0 and ∆GHG
RF−λ=1.0 are

the electrostatic free energies for the host-guest system at λ = 0.0 and 1.0.
The radius of cuto� present in the BWRF equation, eq. 1.36, de�nes

a cuto� sphere. At the boundaries of the sphere it is possible to compute
the Coulombic contribution with two di�erent approach: an atom-based or
P-summation approach and a group-based or M-summation method [235].
As �g. 2 shows, the former approach computes the charges contribution
consider only those atoms within the radius of cuto�, which may cause a
split of solvent molecules at the boundaries. The second method computes
charges' contributions considering the molecules in the vicinity of the cuto�
as a unique entity, even if some atoms may lie beyond the cuto� radius. Both
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summation schemes may give raise to �ctitious polarization onto the solute's
atoms. In SOMD the BWRF computes charges based on the P-summation
scheme, thus a correction ∆GPSUM is devised.

A)                 B)

Figure 2: Di�erence between P-summation and M-summation. P-
summation sums up electrostatic contributions for all the single atoms within
the cuto� radius; M-summation scheme considers the electrostatic contribu-
tions for entire molecules, whose atoms may lie at the boundary of the cuto�
length.

In literature studies [226, 227] the solvent molecules at the cuto� are
assumed to be in an orientational disorder limit (ODL) distribution. The
combination of the electrostatic description of a solvent molecule and the sta-
tistical properties of the ODL distribution allows to devise ∆GPSUM . Solvent
molecules can be described by a charge distribution τ(ξ), where ξ denotes
the distance from the center of the distribution within a sphere of radius R
de�ned by the solvent radius. τ(ξ) is overall neutral over the spatial extent
and it vanishes beyond a distance R:

4π
∫∞

0
dξξ2τ(ξ) = 0

τ(ξ) = 0 for ξ > R

(5.9)
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The charge distribution τ(ξ) can be described as an isotropic quadrupole
(IQ) [234] with magnitude:

γ = 4π

∫ ∞
0

ξξ4τ(ξ) (5.10)

where γ coincides with the quadrupole moment trace of the charge distribu-
tion. Thus, the electrostatic potential generated by this charge distribution
within the solvent radius can be computed as:

Φ(r) =

∫ ∞
r

drE(r) (5.11)

where E(r) = ε−1
0 r−2

∫ r
0
dξξ2τ(ξ) is the radial electric �eld, as a function of

the radial coordinate r. Considering an integration over the spherical volume
4
3
πR3 around the center of the distribution τ(ξ), the electrostatic potential

generated by a solvent molecule at R can be computed as a function of the
quadrupole moment trace, eq. 5.10:

Φ(R) = (−6ε0)−1γ (5.12)

Now, eq. 5.12 can be coupled with the con�gurational canonical distribu-
tion PODL for ODL molecules. PODL can be divided in a positional contri-
bution S and orientational one Θ:

PODL = pS(S)pΘ(Θ) (5.13)

where pS(S) ∼ V −1, where V is the volume available to the water molecules,
and pΘ(Θ) ∼ (4π)−1 in a spherical domain. As a consequence, it is now
possible to compute the isotropically average charge distribution of solvent
molecules in ODL con�guration as:

τ(ξ) = (4π)−1

n∑
i=1

qir
−2
i δ(ξ − ri) (5.14)

where the sum is extended up to all the n solvent molecules at the inter-
face, δ(ξ − ri) is the Kronecker delta. This distribution satis�es the electro-
neutrality condition, eq. 5.9 and its magnitude is given by the quadrupole
moment trace γ. Thus, the polarization issues due to summation scheme at
the cuto� sphere gives a contribution equal to ΦODL = (6ε0)−1γρ, where ρ is
the solvent number density.

The ODL potential ΦODL can be used to compute the correction term
∆GPSUM in presence of a BWRF, which, for a single ion, has the form:

∆GPSUM = −qI
2(εs − 1)

2εs + 1

(
1− R3

I

R3
C

)
ΦODL − qI

3

2εBW + 1
ΦODL (5.15)
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where qI is the ionic charge, εs is the solvent dielectric constant, the term
−qI 2(εs−1)

2εs+1

(
1− R3

I

R3
C

)
ΦODL represents the interaction between the ionic charge

and the ODL potential, due to the reaction �eld, and the additional factor
R3
I

R3
C

takes into account the presence of the ion in the cuto� sphere. The

term −qI 3
2εBW+1

ΦODL denotes the interaction between the ionic charge and
the ODL potential, due to the forces exerted upon the dipole form the con-
tinuum electrostatic environment. Eq. 5.15 can be extended to polyatomic
systems [82]:

∆GPSUM = −QG
2(εs − 1)

2εs + 1
ΦODL

〈Nw(Rc)〉
4
3
πR3

C

+QG
3

2εs + 1
ΦODL (5.16)

where 〈Nw(RC)〉 is the average number of water molecules within the cuto�
sphere and QG the solute's net-charge.

Finally, ∆GDIR treats the host-guest direct interactions only, which are
a�ected by an o�set due to the e�ective Coulombic potential in use:

∆GDIR = Udir
NP − Udir

RF (5.17)

Udir
NP is the pure Coulombic potential between host's and guest's atoms, while

Udir
RF the reaction �eld Coulombic potential of interaction.
Hence, considering all the correction terms, the �nal charging correction

free energy contribution is:

∆GCOR = (∆GHG
POL + ∆GHG

PSUM + ∆GHG
DIR)− (∆GG

POL + ∆GG
PSUM) (5.18)

where HG denotes the calculations in the complex phase, G in the solvated
phase.

5.2.2 Correction scheme for the PME approach

Lattice sum methods [41, 40, 46], like particle-particle particle mesh (P3M)
or Particle Mesh Ewald (PME), are widely used nowadays in computer sim-
ulations. The advantage of these methodologies is the use of the reciprocal
Fourier transform to compute the long range electrostatic interactions, en-
hancing the convergence of calculations with respect to direct calculations.
However, the reciprocal space treatment makes the computational imple-
mentation more complicated and further �nite size artefacts are introduced.
Rocklin et al. [81] developed an analytical and numerical scheme for the cor-
rection of �nite size artefacts for lattice-sum based molecular simulations.
This correction approach will be named from now on as the PME correction
scheme.

Rocklin corrections can be enlisted as:
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• Correction for periodicity-induced net-charge interactions. When lattice-
sum schemes are coupled with PBC conditions, spurious interactions
arise between the host-guest system reference computational box when
a solutes present a net-charge. The correction term ∆GNET can be
estimated as:

∆GNET (L) = − ψLS
8πε0

[
(QH +QG)2 −Q2

P

] 1

L
(5.19)

where L is the is the dimension of the unit cell, supposing to be the
same length in x,y and z directions, ψLS = −2.837297 is the Wigner
integration constant [236], QH is the protein/host net charge, QG the
ligand/guest net charge. When simulations are carried out with neu-
tralizing counterions QH = 0 and the same is done for the solvated
guest simulations

• Correction for periodicity-induced net-charge undersolvation. In lattice-
sum simulations the solvent in the periodic replicas of the compu-
tational box is perturbed by the periodic copies of the solute, being
unavailable for the solvation of the solute itself in the reference compu-
tational box. In this case, a correction term ∆GUSV can be retrieved
as :

∆GUSV (L) =
ψLS
8πε0

(
1− 1

εs

)[
(QH +QG)2 −Q2

P

] 1

L
(5.20)

where εs is the solvent dielectric permittivity. ∆GUSV di�ers from
∆GNET by a factor εs. For polar solvent, such as water, the contribu-
tion given by ∆GUSV + ∆GNET could be negligible, while this is not
possible for organic solvent simulations.

• The charge sorting correction term for PME is ∆GDSC :

∆GDSC(L) = −γQG

6ε0

Ns

L3
(5.21)

where γ is the quadrupole moment trace of the solvent model, QG the
ligand charge and Ns the number of solvent molecules in the simulation
box.

• Correction for the residual integrated potential e�ects. This term re-
�ects similar polarization issues encountered in BWRF and it takes into
account the o�set potential introduced by the presence of net-charges of
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the solutes. The treatment is again related to the quadrupole-moment
trace of the solute, giving a term ∆GRIP :

∆GRIP (L) = [(IH + IG)(QH +QG)− IHQH ]
1

L3
(5.22)

where IH and IG are the spatial integral of the electrostatic potential
under non-periodic boundary conditions due to the protein/host and
ligand/guest charges respectively, evaluated using APBS [229]. In the
case where no protein is present in the simulation box IP = 0.

5.2.3 Correction scheme with alchemical counterions

Fig. 3 shows a third approach to correct for the �nite size artefacts. This
scheme relies on the use of alchemical counter ions, in order to conserve the
system electro-neutrality during the alchemical transformation of the solute
and it was used for BWRF simulations only. Once the molecule is fully
decoupled, after the vanishing step, each counter ion is switched on, going
through a reverse vanishing and a reverse discharging step. The correction
term ∆Gcounterions

COR can be retrieved from the thermodynamic cycle:

∆Gcounterions
COR =

n∑
i=1

(∆Gwat
ioni
−∆Ghost

ioni
)

=
n∑
i=1

(∆Gsolv
ioni−elec + ∆Gsolv

ioni−vdW )− (∆Ghost
ioni−elec + ∆Ghost

ioni−vdW )

(5.23)
where the sum is extended up to all the n counter-ions, ∆Gwat

ioni
is the free

energy change for turning on the van der Waals and charges of the i-th ion
in the solvated phase, ∆Ghost

ioni
is the free energy change for the i-th ion in the

bound phase. ∆Gsolv
ioni−elec and ∆Gsolv

ioni−vdW are the reverse-discharging and
reverse-vanishing free energy changes in solvated phase respectively, while
∆Ghost

ioni−elec and ∆Ghost
ioni−vdW are the reverse-discharging and reverse-vanishing

free energy changes in the complex phase.
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∆G°bind

∆G°rest

ion-vdW∆Gsolv

ion-elec∆Gsolv

ion-vdW∆Ghost

vdW∆Gsolv
vdW∆Ghost

ion-elec∆Ghost

Figure 3: Thermodynamic cycle for the alchemical counterions approach.
Once the guest's van der Waals parameters are switched o�, ∆Gsolv

vdW in the
solvated phase and ∆Ghost

vdW in the complex phase, n ions' interaction param-
eters are turned on. In this case, the cycle shows the transformation of two
ions to keep the net-charge balance in the simulated box. Firstly, in a de-
vanishing step two ions van der Waals terms are turned on, giving two free
energy changes ∆Gsolv

ion−vdW and ∆Ghost
ion−vdW in the solvated and complex phase

respectively. Then, ions' partial charges are switched on, giving ∆Gsol
ion−elec

and ∆Ghost
ion−elec free energy changes in solvated and complex phase respec-

tively. The cycle is closed by computing the standard state term ∆G◦rest.

136



5.3 Methods

Na+

ACE                     MAM     

CAPO                CNEG                  CPOS

OA                           CBC

Figure 4: Dataset employed to study the �nite size artefacts. Sodium
ion, Na+, hydration free energy was computed as an initial benchmark for
BWRF and PME correction schemes. Acetate (ACE) and methylammonium
(MAM) molecules solvation discharging free energy were computed both for
BWRF and PME approaches. The BWRF correction terms were compared
with Reif and Oostenbrink results [82], for the complex of ACE and MAM
with CAPO, CPOS and CNEG. Finally, BWRF and PME correction schemes
were extended to deal with SAMPL5 OA and CBC dataset (refer to �g. 1
chapter 4 for guest structures).
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5.3.1 Sodium ion

The sodium ion hydration free energy was computed as a benchmark test to
to validate and assess the accuracy of BWRF and PME correction schemes.
This test was done for di�erent box sizes and cuto� lengths. Initially, sodium
ion was solvated into a �small� cubic box, with an average edge size of 30Å.
Next, sodium ion was placed in a �medium� size box, with an average dimen-
sion of 43Å. Finally, a third box of 61Å edge was created.

For each system the tleap [73] module of AmberTool16 was employed.
Joung and Cheatham [237] parameters were used to parametrize the sodium
ion charges and van der Waals terms. TIP3P water molecules [120] were
selected along with the iso option to have the most similar edge lengths in
each direction. Then an energy minimization of 100 steps with the steepest
descent method was done using AmberTools module sander. Following a
NVT equilibration at 298 K and a NPT equilibration at 1 atm both for 200
ps. Finally, 2 ns simulations were run in the NPT ensemble using SOMD
(rev. 15.1) [69] to reach a �nal density of 1 g/cc and to obtain a fully
equilibrated simulation box. The �nal coordinate �les were retrieved with
CPPTRAJ [169].

The hydration free energy ∆Ghyd of each system was computed for two
non-bonded interaction cuto� lengths: one at 10 Å and another one at 12 Å
both with BWRF and PME framework. Each simulation was 2 ns long and
11 equidistant λ windows were employed for both the discharging and the
vanishing step. All the water molecules' bonds were constrained, a Monte
Carlo barostat was adopted to keep the pressure constant with moves at-
tempted every 50 fs, along with an Andersen thermostat to keep constant
the temperature to 298 K. The water reaction �eld dielectric constant was
set to 82.0. Each free energy change was estimated with MBAR [171]. Two
independent runs were done and the ∆GHYD was taken as an average of both
runs. The standard error was computed as:

err∆Ghyd =
σ√
2

(5.24)

where σ is the standard deviation between the two calculated hydration free
energies.

5.3.2 Acetate, methylammonium and functionalized

fullerene

Following Reif and Oostenbrink algorithm [82], acetate (ACE) and methy-
lammonium (MAM) solvation discharging free energies were computed and

138



corrected with BWRF and PME correction schemes, in order to have a mean-
ingful comparison with literature results. For consistency with the Reif paper,
the GROMOS 53A6 force �eld parameters [238] were used to parametrized
the ACE molecule. Starting from the pdb format �le of acetate, created
with Maestro (v.10.1.012, rel 2015-1, Schrödinger) [203], charges were as-
signed using AmberTools 16 module Antechamber based on the AM1-BCC
method [118], creating a mol2 �le of the ACE molecule. Then, the mol2
�le was loaded in tleap and placed in a TIP3P water box [120]. The same
protocol was done for the MAM molecule, however the GAFF force �eld
parameters [117] were employed. The same equilibration protocol used in
sec. 5.3.1 was followed for both molecules. The initial, ACE box had a size
of 37.48×37.79×37.70 Å edge and MAM a box size of 38.71×37.09×37.22
Å. The solvation discharging free energies were computed as a di�erence be-
tween a solvated phase and vacuum phase discharging free energy step. An
average value for the solvation discharging free energy was computed from
two independent simulations and the standard error computed according to
eq. 5.24. Thus, the same free energy parameters of sec. 5.3.1 were selected
both for ACE and MAM calculations.

Then, the BWRF correction terms were compared with Reif [82] results
for three functionalized fullerene cavities: a neutral one (CAPO), a positively
charge one (CPOS) and a negatively charged (CNEG). CAPO fullerene was
created starting from a mol2 �le, parametrized with GAFF atom type and
neutral carbon atoms using Antechamber. Thus, employing AmberTool 16
module parmchk and tleap the topology and the coordinates �le of the neu-
tral cavity were created. Using Maestro, a pdb format �le of the bound
host-guest system was saved. Thus, the topology and coordinates �le were
written using tleap, loading the new pdb �le along with the force �eld in-
formation of the guest molecule and CAPO fullerene. The same approach
was used for CPOS and CNEG. The parameters for the functionalized moi-
eties of CPOS and CNEG, were retrieve from MAM and ACE molecules
respectively. Due to the absence of hydrogen atoms in CPOS and CNEG
moieties, the atoms' partial charges were re-scaled accordingly, in order to
have a total net charge of +1e and -1e respectively. The correction terms
were computed as an average between two replicates simulations and the
standard error was estimated with eq. 5.24. The free energy parameters were
the same of sec. 5.3.1, but with a non-bonded cuto� set to 14 Å.

5.3.3 SAMPL5 host-guest systems: OA and CBC

Correction schemes were applied to correct for host-guest binding free energy
cases. The CBC and OA host-guest dataset from SAMPL5 were selected as
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test cases for this study (�g. 1.1 chapter 4). The CBC system �les were cre-
ated from scratch, in order to have the same box size between complex phase
and solvated phase simulations. Solvated phase simulation �les were created
from complex phase topology and coordinate �les. Thus, the host molecule
was removed from the system and CBC heavy atoms were substituted with
water molecules. Then, the new solvated guest was re-equilibrated according
to the protocol of sec. 5.3.1. OA dataset was considered as a further exten-
sion of this study and the same input �les of the SAMPL5 challenge were
used. In this case complex phase box edges di�er from the solvated ones.

The choice of these two datasets was motived by three reasons. First,
the OA host-guest system is a very rigid host system interacting with guests
whose charges are between -1 e and +1 e. This aspect re�ects some of the
systems used in literature [81, 82]. Secondly, the CBClip was thought to be a
more complex case, due to its high �exibility and highly charged guests. As
a matter of fact, CBC guest show a variety of charges ranging from -2 e (G7)
up to +4 (G3)-4e (G3). These features make the CBC dataset an interesting
case for the validation and application of the correction schemes. Third, the
di�erent box sizes between complex and solvated phases in OA dataset could
shed light onto size e�ects in the BWRF and PME correction schemes.

5.3.4 Correction schemes implementations

The BWRF correction free energies can be computed by using the Sire com-
mand somd-coultailcorrection. This script loads the λ = 0.0 discharging
step trajectory of solvated guest and complex phase with mdtraj [239] mod-
ule. For each frame the atomic coordinates are read and copied into a Sire
molecular system. Firstly the BWRF Poisson calculation is performed. In
the �rst section of the Poisson solver input �le the number of grid points
(Nx, Ny and Nz) is speci�ed. Then, the maximum number of iterations for
the electric �eld to converge is set to 200, with a convergence limit set to
10−3kJ·mol−1·nm−1·e−1. In the second section of the input �le, the solute
atoms' coordinates, radius and atomic partial charge are written. For each
atom the radius is computed as:

rLJ =
1

2
(σ2)

1
6 + srad (5.25)

where σ is the Lennard-Jones distance parameter and srad is the solvent
probe radius, �xed to 1.4Å supposing water molecules as solvent.

Following, the PB calculation is performed with APBS. In the APBS
input �le the solute's atoms coordinates are written in XML format, along
with their partial charges and radius (computed according to eq. 5.25). For
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each PB calculation, the same grid dimension and grid spacing as in the
BWRF Poisson routine are employed. The grid is centered onto the solute
coordinates and the linear Poisson Boltzmann equation option is selected
(lpbe). The equation is solved under multiple Debye-Hückel boundary con-
ditions (mdh). The solute dielectric constant pdie was set to 2.0 according
to literature [81] values, while the solvent dielectric sdie was set to 82 for
solvated phase calculations. A cubic B-spline discretization was selected, to
have the biomolecular charges mapped onto the nearest and next-nearest
neighbor grid point.

Thus, the term ∆GPSUM is computed according to eq. 5.16. The ∆GDIR

term is computed only for host-guest systems. For each trajectory frame,
the di�erence between the host-guest Coulombic potential and the BWRF
electrostatic potential is computed.

Finally, all the free energy terms employed for the calculation of ∆GCOR

are written onto a text �le, to further check if any problem has arisen during
the calculation. The �nal correction term is computed from the average value
of all the ∆GPOL, ∆GPSUM and ∆GDIR values.

For the PME simulation OpenMM 7.0 [69] was employed. The python
module parmed was used to load the topology and coordinate �le of each
system. Then, a reference OpenMM system was created, by imposing con-
straints to all bonds, rigid water molecules and non bonded interactions
cuto�. Then, for any λ window the solute atoms partial charges were scaled
accordingly. For each iteration, a selected number of steps of MD were run
onto the system. Following, the current system coordinates were copied onto
all the other thermodynamic λ state and their potential energy values were
retrieved and saved in a text �le. After all the λ windows have been run,
pymbar was used to estimate the electrostatic free energy change.

The counterions approach was run with SOMD only. Each studied host-
guest system was re-created, preserving the original box size dimension but
introducing as many non-interacting ions as the total solute net-charge.
Then, since it is currently not technically possible to run multiple alchemical
transformations at the same time in SOMD, two di�erent sets of simulations
were carried out. The �rst set was done for decoupling the guest's atoms,
both in complex and solvated phase. In the second set of simulations, as
many simulations as the total number of non-interacting counterions were
run. Here, each single ion was perturbed from a non-interacting ideal state
to a fully interacting state through a de-vanishing and charging step, with
an ad-hoc morphing �le.
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5.4 Results and discussion

5.4.1 Sodium ion hydration free energy

The sodium ion �small�, �medium� and �big� box sizes created in tleap are
depicted in tab. 1, while the best protocol results for the hydration free
energy under BWRF and PME correction schemes are shown in tab. 2 and
3 respectively. In particular, for the PME approach a grid of 257 points in
each direction was employed as done by Rocklin [81], while for the sodium ion
BWRF correction a grid of 65 points gave a reasonable free energy correction.

The BWRF electrostatic potential shows a strong dependence on box sizes
and cuto� lengths, as re�ected by the raw hydration free energies ∆Graw

hyd . In-
deed, raw values vary from -62.81±0.01 kcal·mol−1 to -67.84±0.02 kcal·mol−1.
This increment is counter balanced by the correction term ∆GPOL which
gives a contribution due to polarization errors between -25 and -19 kcal·mol−1.
The �nal corrected hydration free energy estimations more consistent with
each other, within �uctuations of maximum 1.66 kcal·mol−1 . The correction
scheme brought an improvement in terms of standard deviation, passing from
2.18 kcal·mol−1 to 1.61 kcal·mol−1

PME replicates the trend observed with BWRF results. PME raw hy-
dration free energies exhibit a low standard deviation, 0.49 kcal·mol−1. The
free energy di�erence between the small box at 10 Å cuto� and the big box
at 12 Å cuto� is about 0.7 kcal·mol−1 with an underestimation against the
experimental value of about 10 kcal·mol−1 [240, 241, 242]. In this case, the
charge sorting problem is the major source of errors, with an average cor-
rection ∆Gdsc of -16.4 kcal·mol−1 for each system. The �nal hydration free
energy ∆Gcorr

hyd is -104.87±0.39 kcal·mol−1 on average. Both for BWRF and
PME schemes the ∆Gcorr

hyd is in better agreement with the experimental value
(-99 kcal·mol−1) than the raw simulation results. kcal·mol−1 [242, 241, 240].

The grid size and dielectric constant sensitivity of the PB and Poisson
solvers were tested both for BWRF and PME correction schemes. Overall,
results are consistent one another with di�erences less than 1 kBT and values
were not reported in this thesis.
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Table 1: tleap box edges length Lx, Ly and Lz in Å for the three sodium
ion systems called �small�, �medium� and �big�.

Lx Ly Lz
small 25.29 25.58 25.79

medium 43.44 43.65 43.77
big 61.49 61.99 61.62

Table 2: Sodium ion hydration free energy results the BWRF approach
corrected with the Poisson scheme (sec. 5.2.1). box size denotes the edges
length of each simulated box, cuto� is the cuto� length employed for the
non-bonded interactions, ∆Graw

hyd is the raw hydration free energy from the
PME discharging and vanishing simulation, ∆GPOL, ∆GDIR and ∆GPSUM

are the correction terms explained in sec. 5.2.1. ∆Gcorr
hyd is the �nal corrected

hydration free energy. µ ± σ indicates the average and standard deviation
of ∆Graw

hyd and ∆Gcorr
hyd values. All the values are in kcal·mol−1 and standard

errors are computed with eq. 5.24.

Sodium ion BWRF
box size cuto� ∆Graw

hyd ∆GPOL ∆GDIR ∆GPSUM ∆Gcorr
hyd

small 10A -62.81±0.01 -25.78±0.01 0.00±0.00 -15.58±0.01 -104.16±0.02
12A -66.24±0.01 -22.32±0.01 0.00±0.00 -15.73±0.03 -104.33±0.01

medium 10A -63.64±0.01 -26.85±0.01 0.00±0.00 -15.68±0.01 -106.17±0.01
12A -67.57±0.04 -23.02±0.02 0.00±0.00 -15.72±0.06 -106.31±0.07

big 10A -63.73±0.02 -23.05±0.14 0.00±0.00 -15.73±0.03 -102.50±0.20
12A -67.84±0.02 -19.28±0.03 0.00±0.00 -15.70±0.04 -102.80±0.04

µ± σ -65.30±2.18 -104.73±1.61
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Table 3: Sodium ion hydration free energy results the PME approach with
Rocklin correction scheme. box size denotes the edges length of each sim-
ulated box (refer to tab. 1), cutoff is the cuto� length employed for the
Coulombic non-bonded interactions, ∆Graw

hyd is the raw hydration free energy
from the PME discharging and vanishing simulation, ∆Gnet, ∆Gusv, ∆Gdsc

are the Rocklin correction terms, as explained in sec. 5.2.2, and ∆Gcorr
hyd is the

�nal corrected hydration free energy. µ ± σ indicates the average and stan-
dard deviation of ∆Graw

hyd and ∆Gcorr
hyd values. All the values are in kcal·mol−1

and standard errors are computed with eq. 5.24.

Sodium ion PME
box size cuto� ∆Graw

hyd ∆Gnet ∆Gusv ∆Grip ∆Gdsc ∆Gcorr
hyd

small 10A -87.98±0.26 0.01±0.01 -0.01±0.01 0.08±0.01 -16.54±0.03 -104.58±0.23
12A -87.66±0.02 0.01±0.01 -0.01±0.01 0.08±0.01 -16.52±0.02 -104.25±0.04

medium 10A -88.98±0.04 0.01±0.01 -0.01±0.01 0.02±0.01 -16.25±0.03 -105.36±0.01
12A -88.68±0.31 0.01±0.01 -0.01±0.01 0.02±0.01 -16.31±0.02 -105.11±0.29

big 10A -88.60±0.03 0.01±0.01 -0.01±0.01 0.02±0.01 -16.24±0.01 -104.98±0.02
12A -88.60±0.09 0.01±0.01 -0.01±0.01 0.02±0.01 -16.21±0.01 -104.97±0.06

µ± σ -88.41±0.49 -104.87±0.39

5.4.2 Polyatomic molecules: acetate and methylammo-

nium

In this case the solvated phase discharging free energy change was compared
between BWRF and PME for di�erent cuto� lengths, because it was tech-
nically challenging to implement a soft-core vanishing step into the PME
code.

Tab. 4 shows BWRF solvated phase discharging free energy estimations
and the correction terms. As for the sodium ion case, the solvated phase
discharging free energy ∆Graw

chg is in�uenced by the cuto� length, with an
average values between the three systems of -76.76±3.58 kcal·mol−1 and -
41.78±3.57 kcal·mol−1 for ACE and MAM respectively. The correction terms
show an improvement in the discharging free energy, reducing the standard
deviation to 0.56 kcal·mol−1 for ACE and to 0.43 kcal·mol−1 for MAM. In
the end, ACE solvated phase discharging free energy have an average value
of about -80 kcal·mol−1, while MAM a ∆Gcorr

chg of -78.35±0.43 kcal·mol−1.
Tab. 5 reports the solvated phase discharging free energy for the PME

approach with Rocklin correction scheme. As before PME seems to be cuto�
independent with an average ∆Graw

chg of -97.19±0.48 kcal·mol−1 for ACE and
-62.12±0.27 kcal·mol−1 for MAM. The correction scheme reduces further the
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standard deviation from of ∆Graw
chg for ACE, passing from 0.48 kcal·mol−1 to

0.34 kcal·mol−1 for ACE, while MAM deviation remains stationary. The �nal
solvated phase discharging free energies are in line one another and with the
BWRF results.

To check further the consistency and sensitivity of the BWRF correction
scheme, ACE and MAM solvated phase discharging free energy corrections
were evaluated for three di�erent number of points per grid, whose values
were suggested by APBS developers: 65, 97 and 129 (tab. 6). Overall, no
appreciable di�erences can be highlighted for �ner grid spacing in APBS
and Poisson solvers, which proves the consistency and of reliability of the
correction scheme. In particular, both ACE and MAM have a small di�erence
of about 1 kcal·mol−1 between the corrected discharging free energy at 10
Å cuto� and 65 grid points and simulations at 14 Å cuto� and 129 grid
points, with values ranging between -80.26±0.06 and -81.45±0.09 kcal·mol−1

for ACE and -77.87±0.04 and -78.64±0.09 kcal·mol−1 for MAM.
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Table 4: ACE and MAM solvated phase discharging free energy estimations
for the BWRF approach. mol indicates the investigated system, cuto� the
cuto� length for the system, ∆Graw

chg is the solvated phase raw discharging
free energy change, ∆GPOL, ∆GPSUM , ∆GDIR, are the BWRF correction
terms, while ∆Gcorr

chg is the corrected solvated discharging free energy. µ± σ
indicates the average and standard deviation of ∆Graw

chg and ∆Gcorr
chg values. All

the values are in kcal·mol−1 and standard errors are computed with eq. 5.24.

BWRF solvated discharging free energy
mol cuto� ∆Graw

chg ∆GPOL ∆GPSUM ∆GDIR ∆Gcorr
chg

ACE 10A -73.04±0.05 -23.05±0.03 15.83±0.01 0.00±0.00 -80.26±0.03
ACE 12A -77.08±0.01 -19.50±0.02 15.68±0.02 0.00±0.00 -80.90±0.01
ACE 14A -80.18±0.03 -16.92±0.02 15.71±0.08 0.00±0.00 -81.38±0.12
µ± σ -76.76±3.58 -80.84±0.56
MAM 10A -38.06±0.02 -24.14±0.01 -15.68±0.04 0.00±0.00 -77.87±0.07
MAM 12A -42.10±0.05 -20.59±0.03 -15.70±0.11 0.00±0.00 -78.38±0.03
MAM 14A -45.19±0.03 -18.04±0.04 -15.60±0.09 0.00±0.00 -78.82±0.15
µ± σ -41.78±3.57 -78.35±0.43

Table 5: ACE and MAM solvated phase discharging free energy estimations
for the PME approach. mol indicates the investigated system, cuto� the
cuto� length for the system, ∆Graw

chg is the solvated phase raw discharging free
energy change, ∆GNET , ∆GUSV , ∆GRIP , ∆GDSC are the Rocklin correction
terms, while ∆Gcorr

chg is the corrected solvated discharging free energy. µ± σ
indicates the average and standard deviation of ∆Graw

chg and ∆Gcorr
chg values. All

the values are in kcal·mol−1 and standard errors are computed with eq. 5.24.

PME solvated discharging free energy
mol cuto� ∆Graw

chg ∆GNET ∆GUSV ∆GRIP ∆GDSC ∆Gcorr
chg

ACE 10A -96.97±0.59 -0.01±0.01 0.01±0.01 -2.64±0.01 16.24±0.60 -83.36±0.60
ACE 12A -97.28±0.29 -0.01±0.01 0.01±0.01 -2.64±0.01 16.29±0.28 -83.64±0.28
ACE 14A -97.62±0.07 -0.01±0.01 0.01±0.01 -2.63±0.01 16.22±0.07 -84.04±0.08
µ± σ -97.19±0.48 -83.68±0.34
MAM 10A -61.83±0.18 -0.01±0.01 0.01±0.01 -2.41±0.01 -14.77±0.18 -79.03±0.19
MAM 12A -62.37±0.11 -0.01±0.01 0.01±0.01 -2.41±0.01 -14.78±0.11 -79.57±0.11
MAM 14A -62.17±0.01 -0.01±0.01 0.01±0.01 -2.41±0.01 -14.74±0.04 -79.32±0.04
µ± σ -62.12±0.27 -79.30±0.27
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Table 6: Solvated phase discharging free energy for ACE and MAM
molecules with BWRF correction approach for a di�erent number of points
per grid. mol denotes the system under investigation, Grid size is the num-
ber of points of the grid for the x, y and z direction, Spacing is the spacing
between grid points in Å, cuto� is the cuto� length employed in the sim-
ulation, ∆Graw

chg the raw solvated discharging free energy, ∆GPOL, ∆GPSUM

and ∆GDIR are the correction terms in the BWRF scheme and ∆Gcorr
chg is the

corrected solvated discharging free energy.

mol Grid size Spacing Cuto� ∆Graw
chg ∆GPOL ∆GPSUM ∆GDIR ∆Gcorr

chg

ACE 65 0.58×0.58×0.58 10Å -73.04±0.05 -23.05±0.03 15.83±0.01 0.00±0.00 -80.26±0.06
97 0.39×0.39×0.39 -73.04±0.05 -23.28±0.01 15.83±0.01 0.00±0.00 -80.49±0.05
129 0.29×0.29×0.29 -73.04±0.05 -23.15±0.01 15.83±0.01 0.00±0.00 -80.36±0.05

ACE 65 0.58×0.58×0.58 12Å -77.08±0.01 -19.50±0.02 15.68±0.02 0.00±0.00 -80.90±0.03
97 0.39×0.39×0.39 -77.08±0.01 -19.61±0.09 15.75±0.10 0.00±0.00 -80.94±0.13
129 0.29×0.29×0.29 -77.08±0.01 -19.59±0.03 15.75±0.10 0.00±0.00 -80.92±0.10

ACE 65 0.58×0.58×0.58 14Å -80.18±0.03 -16.92±0.02 15.71±0.08 0.00±0.00 -81.39±0.09
97 0.39×0.39×0.39 -80.18±0.03 -17.10±0.01 15.71±0.08 0.00±0.00 -81.57±0.09
129 0.29×0.29×0.29 -80.18±0.03 -16.98±0.01 15.71±0.08 0.00±0.00 -81.45±0.09

MAM 65 0.60×0.57×0.57 10Å -38.06±0.02 -24.14±0.01 -15.68±0.04 0.00±0.00 -77.87±0.04
97 0.40×0.38×0.38 -38.06±0.02 -23.94±0.01 -15.68±0.04 0.00±0.00 -77.67±0.04
129 0.30×0.29×0.29 -38.06±0.02 -23.97±0.01 -15.68±0.04 0.00±0.00 -77.70±0.04

MAM 65 0.60×0.57×0.57 12Å -42.10±0.05 -20.59±0.03 -15.70±0.11 0.00±0.00 -78.38±0.12
97 0.40×0.38×0.38 -42.10±0.05 -20.48±0.08 -15.70±0.11 0.00±0.00 -78.27±0.14
129 0.30×0.29×0.29 -42.10±0.05 -20.48±0.08 -15.70±0.11 0.00±0.00 -78.27±0.14

MAM 65 0.60×0.57×0.57 14Å -45.19±0.03 -18.04±0.04 -15.60±0.09 0.00±0.00 -78.82±0.10
97 0.40×0.38×0.38 -45.19±0.03 -17.82±0.01 -15.60±0.09 0.00±0.00 -78.61±0.10
129 0.30×0.29×0.29 -45.19±0.03 -17.85±0.01 -15.60±0.09 0.00±0.00 -78.64±0.09

5.4.3 Functionalized fullerene correction terms

To further test the consistency of the BWRF correction terms, ∆GPOL,
∆GPSUM and ∆GDIR values were compared with Reif and Oostenbrink re-
sults [82] for the functionalized fullerene system, as shown in tab. 7 and
8. All the free energy correction terms are in line with Reif calcualtions.
∆GPOL is consistent for all the host-guest systems complex and solvated
phases, with a maximum discrepancy of 0.8 kcal·mol−1 with respect to Reif's
results. ∆GPSUM di�ers of about 1 kcal·mol−1 with respect to Reif results,
but this is likely due to the use of a di�erent water model (TIP3P in BWRF
simulations and SPC in Reif simulations). Finally, ∆GDIR values are in
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agreement with Reif calculations for all the charged host-guest systems.

Table 7: Functionalized fullerene charging corrections results for the
BWRF scheme of SOMD. Guest denotes the guest molecule, ACE or
MAM, Host if the simulation refers to the complex phase simulation with
a fullerene (CAPO), negatively charged fullerene (CNEG) and positively
charged fullerene (CNEG) host, ∆GPOL, ∆GPSUM and ∆GDIR are the
SOMD BWRF correction values. All the free energy terms are in kcal·mol−1

and errors were estimated according to eq. 5.24

Guest Host ∆GPOL ∆GPSUM ∆GDIR

ACE CAPO -16.37±0.01 15.03±0.03 -0.01±0.01
CNEG -49.34±0.11 15.29±0.04 34.18±0.01
CPOS 15.71±0.13 14.99±0.01 -35.09±0.01

MAM CAPO -16.32±0.01 -14.81±0.05 0.00±0.00
CNEG 16.52±0.01 -15.08±0.09 -34.78±0.01
CPOS -49.94±0.18 -14.88±0.14 34.05±0.02

Table 8: Functionalized fullerene charging corrections results for the BWRF
scheme computed by Reif and Oostenbrink [82]. Guest denotes the guest
molecule, ACE or MAM, Host if the simulation refers to the complex phase
simulation with a fullerene (CAPO), negatively charged fullerene (CNEG)
and positively charged fullerene (CNEG) host, ∆GPOL, ∆GPSUM and ∆GDIR

are the BWRF correction values. All the free energy terms are in kcal·mol−1

while errors were not provided in the original paper

Guest Host ∆GPOL ∆GPSUM ∆GDIR

ACE CAPO -16.90 16.11 0.00
CNEG -50.22 16.18 34.23
CPOS 16.68 16.23 -34.63

MAM CAPO -17.04 -16.20 0.00
CNEG 16.68 -16.18 -34.68
CPOS -50.17 -16.30 34.03
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5.4.4 OA host-guest binding free energy

Given the consistency shown by the BWRF correction scheme, the OA host-
guest system was studied. Even though the host is relatively rigid, the BWRF
correction scheme fails to give accurate free energy estimations (tab. 9). If on
one side negatively charged guests (G1, G2, G4 and G6) present a correction
term of about -1 kcal·mol−1, positively charged molecules (G3 and G5) are
subjected to an underestimation in binding of about 10 kcal·mol−1. The
statistical analysis clearly indicates that corrected standard free energies of
binding ∆G◦corr−bind have an increment of 3 kcal·mol−1 in the MUE with
respect to the raw standard binding free energy results, along with a low
correlation with R2=0.63±0.07 and τ=0.58±0.05

Rocklin corrections, tab. 10 gives a useful comparison, to understand
whether the BWRF is wrong. In this case, the vanishing free energy change
was taken from the BWRF simulations, which seems to be a reasonable ap-
proximation as the electrostatic term in this case is reduced to zero. However,
also in this case the correction scheme fails to give an accurate estimation.
For all the guest systems and overestimation is present in the correction
terms, with a maximum binding free energy of -25.29±0.40 kcal·mol−1 for G3
and 13.54±0.18 kcal·mol−1 for G6. Statistically, PME results are worse than
BWRF ones, with a MUE of 14.17±0.12 kcal·mol−1 and lower R2 (0.30±0.06)
and τ (-0.19±0.10).

Di�erently from the BWRF and PME schemes, the alchemical counteri-
ons corrections range between -1 and +1 kcal·mol−1, as depicted in tab. 11.
This results in a similar statistical behavior to the raw predictions, with a
R2 0.85±0.05, MUE = 2.63±0.11 kcal·mol−1 and τ=0.48±0.12.
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Table 9: BWRF binding free energies for the OA dataset of SAMPL5 (�g
1.1 chapter 4). mol indicated the host-guest complex, phase the complex or
solvated simulated phase, ∆Graw

chg is the raw discharging free energy, ∆GPOL,
∆GPSUM and ∆GDIR are the BWRF correction terms, ∆GLJ is the van-
ishing step free energy change, ∆G◦raw−bind is the standard raw binding free
energy, ∆G◦corr−bind is the standard binding free energy corrected for the �-
nite size artefacts. Standard state correction magnitude are 1.65 kcal·mol−1

on average. ∆G◦exp is the experimental binding free energy. All the values
are in kcal·mol−1 and standard errors are computed with eq. 5.24.

BWRF OA binding a�nities
mol phase net charge ∆Graw

chg ∆GPOL ∆GPSUM ∆GDIR ∆GLJ ∆G◦raw−bind ∆G◦corr−bind ∆G◦exp
OA-G1 complex −1 58.20±0.12 -240.27±1.29 12.17±0.01 191.68±0.64 12.79±0.39 -6.92±0.44 -7.89±0.11 -5.39±0.01

solvated −1 65.04±0.01 -18.94±0.04 15.46±0.03 -31.98±0.01 -2.63±0.11
OA-G2 complex −1 19.92±0.02 -237.05±0.35 12.19±0.05 192.29±0.03 8.79±0.23 -5.26±0.32 -6.30±0.92 -4.73±0.01

solvated −1 28.00±0.04 -18.76±0.21 15.50±0.02 -28.27±0.01 -6.20±0.04
OA-G3 complex 1 32.71±0.01 200.10±0.62 -12.15±0.04 -198.71±0.79 6.60±0.09 -7.68±0.12 3.03±0.52 -4.49±0.01

solvated 1 37.34±0.28 -19.17±0.01 -14.97±0.04 12.67±0.01 -7.37±0.19
OA-G4 complex −1 46.48±0.93 -233.99±0.52 12.01±0.08 200.33±0.33 5.74±0.44 -12.67±1.89 -16.80±1.21 -9.36±0.01

solvated −1 51.80±0.01 -18.31±0.04 15.21±0.02 -14.41±0.01 -13.90±0.13
OA-G5 complex 1 8.06±0.03 203.41±0.01 -12.08±0.03 -204.15±2.31 6.40±0.35 -7.08±0.52 4.59±1.96 -4.50±0.01

solvated 1 14.03±0.02 -18.93±0.01 -15.07±0.01 9.51±0.01 -8.31±0.17
OA-G6 complex −1 16.77±0.09 -237.45±0.73 12.23±0.01 181.80±0.69 6.59±0.06 -6.23±0.15 -7.64±0.23 -5.33±0.01

solvated −1 23.23±0.01 -19.54±0.91 15.60±0.18 -38.84±0.01 -7.75±0.09
R2 0.80< 0.85< 0.91 0.56< 0.63< 0.70
MUE 2.00< 2.12< 2.24 5.04< 5.15< 5.27
τ 0.46< 0.60< 0.73 0.46< 0.58< 0.73

Table 10: PME binding free energies for the OA dataset of SAMPL5 (�g
1.1 chapter 4). mol indicated the host-guest complex, phase the complex or
solvated simulated phase, ∆Graw

chg is the raw discharging free energy, ∆GNET ,
∆GUSV , ∆GRIP and ∆GDSC are the PME correction terms, ∆G◦raw−bind is
the standard raw binding free energy, ∆G◦corr−bind is the corrected standard
binding. ∆G◦exp is the experimental binding free energy. All the values are
in kcal·mol−1 and standard errors are computed with eq. 5.24.

PME OA binding a�nities
mol phase ∆Graw

chg ∆GNET ∆GUSV ∆GRIP ∆GDSC ∆G◦raw−bind ∆G◦corr−bind ∆G◦exp
OA-G1 complex 72.87±0.89 0.01±0.01 -0.01±0.01 14.68±0.04 15.62±0.03 -9.39±0.08 12.21±0.01 -5.39±0.01

solvated 78.90±0.14 0.01±0.01 -0.01±0.01 -4.11±0.01 12.81±0.01
OA-G2 complex 84.64±0.42 0.01±0.01 -0.01±0.01 15.95±1.92 15.59±0.01 -7.82±0.33 12.40±2.27 -4.73±0.01

solvated 91.81±0.39 0.01±0.01 -0.01±0.01 -4.89±0.01 16.22±0.02
OA-G3 complex -62.54±0.34 0.01±0.01 -0.01±0.01 -14.45±0.05 -15.58±0.05 -9.17±0.69 -25.29±0.40 -4.49±0.01

solvated -57.75±1.03 0.01±0.01 -0.01±0.01 -3.14±0.01 -10.78±0.01
OA-G4 complex 68.28±0.17 0.01±0.01 -0.01±0.01 14.60±0.10 15.57±0.05 -14.17±0.06 5.52±0.14 -9.36±0.01

solvated 73.73±0.61 0.01±0.01 -0.01±0.01 -4.17±0.02 14.64±0.04
OA-G5 complex -34.54±0.81 0.01±0.01 -0.01±0.01 -14.42±0.18 -15.65±0.07 -9.34±0.24 -20.21±1.54 -4.50±0.01

solvated -29.18±1.35 0.01±0.01 -0.01±0.01 -3.84±0.01 -15.36±1.90
OA-G6 complex 111.48±0.99 0.01±0.01 -0.01±0.01 14.64±0.09 15.63±0.01 -8.11±0.13 13.54±0.18 -5.33±0.01

solvated 117.70±0.87 0.01±0.01 -0.01±0.01 -3.89±0.02 12.50±0.05
R2 0.81< 0.86< 0.91 0.23< 0.29< 0.35
MUE 4.03< 4.14< 4.26 14.05< 14.17< 14.29
τ 0.33< 0.48< 0.60 -0.30< -0.20< -0.01
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Table 11: BWRF simulations for the OA Clip dataset of SAMPL5 (�g
1.1 chapter 4) with the alchemical counterions approach. mol indicates
the host-guest complex, ∆G◦raw−bind is the raw standard binding free energy,
∆G◦corr−bind is the standard binding free energy corrected for the �nite size
artefacts. ∆G◦exp is the experimental binding free energy. All the values are
in kcal·mol−1 and standard errors are computed with eq. 5.24.

mol ∆G◦raw−bind ∆G◦corr−bind ∆G◦exp
OA-G1 −7.15±0.41 −6.82±0.33 −5.39±0.01
OA-G2 −6.44±0.26 −6.67±0.51 −4.73±0.01
OA-G3 −8.12±0.09 −7.83±0.13 −4.49±0.01
OA-G4 −12.12±0.19 −12.25±0.22 −9.36±0.01
OA-G5 −8.17±0.34 −7.89±0.37 −4.50±0.01
OA-G6 −7.34±0.29 −7.43±0.19 −5.33±0.01
R2 0.80< 0.85< 0.91 0.79< 0.85< 0.90
MUE 2.00< 2.12< 2.24 2.51< 2.63< 2.74
τ 0.46< 0.60< 0.73 0.33< 0.48< 0.60

5.4.5 CBC host-guest binding free energy

As for the OA systems, the BWRF correction gives overestimated correction
terms, tab. 12. On average the total correction is about -7 kcal·mol−1 for
most of the system, while it is +13 kcal·mol−1 for G7 guest. Statistically, the
corrected binding free energies ∆G◦corr−bind are less precise and accurate than
the raw standard ones ∆G◦raw−bind, with an increment of about 4 kcal·mol−1

in the MUE (9.40±0.50 kcal·mol−1).
The statistical accuracy of predictions is even worse for the case of PME

predictions, as tab. 13 shows. Also in this set of simulations the vanishing
step was run with SOMD under BWRF. Although the ∆G◦raw−bind statistics
is roughly similar to the BWRF one, again the corrected ∆G◦corr−bind gets less
precise with an increment of 5 kcal·mol−1 in the MUE (9.38±0.50 kcal·mol−1).
Also for PME simulations the correction schemes gives unreasonable free
energies corrections ranging between -7 to +7 kcal·mol−1.
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Table 12: BWRF binding free energies for the CBC dataset of SAMPL5
(�g 1.1 chapter 4). mol indicates the host-guest complex, phase the com-
plex or solvated phase, ∆Graw

chg is the raw discharging free energy, ∆GPOL,
∆GPSUM and ∆GDIR are the BWRF correction terms, ∆GLJ is the vanishing
step free energy change, ∆G◦raw−bind is the standard raw binding free energy,
∆G◦corr−bind is the standard binding free energy corrected for the �nite size
artefacts. ∆G◦exp is the experimental binding free energy. All the values are
in kcal·mol−1 and standard errors are computed with eq. 5.24.

BWRF CB7Clip binding a�nities
mol phase net charge ∆Graw

chg ∆GPOL ∆GPSUM ∆GDIR ∆GLJ ∆G◦raw−bind ∆G◦corr−bind ∆G◦exp
CBC-G1 complex 2 26.64±0.01 170.10±0.19 -25.58±0.02 -260.97±0.50 2.39±0.01 -8.50±0.05 -17.79±0.58 -5.84±0.01

solvated 2 24.68±0.02 -75.69±0.05 -31.48±0.01 0.00±0.00 -5.40±0.01
CBC-G2 complex 2 34.92±0.12 171.17±1.02 -25.81±0.10 -262.27±2.36 2.19±0.34 -1.90±0.18 -8.37±2.40 -2.52±0.01

solvated 2 36.40±0.01 -78.61±0.15 -31.84±0.11 0.00±0.00 -2.42±0.01
CBC-G3 complex 4 17.67±0.28 216.50±0.84 -51.35±0.05 -513.28±0.51 5.64±0.08 -6.06±0.45 -13.03±0.25 -4.02±0.01

solvated 4 19.13±0.02 -279.00±0.19 -62.17±0.20 0.00±0.00 -3.10±0.02
CBC-G4 complex 1 105.90±0.12 101.66±0.29 -12.61±0.01 -127.30±0.16 -2.46±0.67 -11.19±0.82 -16.58±0.49 -7.25±0.01

solvated 1 102.99±0.02 -17.80±0.02 -15.06±0.14 0.00±0.00 -12.04±0.04
CBC-G5 complex 2 11.31±0.01 101.16±0.18 -12.59±0.07 -125.91±0.05 -12.92±0.23 -13.80±0.18 -18.88±0.18 -8.54±0.01

solvated 2 7.90±0.02 -17.34±0.04 -14.92±0.07 0.00±0.00 -24.54±0.04
CBC-G6 complex 2 -2.95±0.01 169.22±0.44 -25.59±0.03 -244.88±0.09 -8.60±0.28 -17.47±0.10 -24.34±0.20 -8.68±0.01

solvated 2 -6.67±0.01 -63.88±0.11 -30.50±0.09 0.00±0.00 -23.56±0.16
CBC-G7 complex −2 171.78±0.05 -278.21±0.67 26.78±0.04 234.21±0.71 -9.36±1.08 -15.37±1.23 -2.08±0.64 -5.18±0.01

solvated −2 170.40±0.13 -60.74±0.36 30.23±0.06 0.00±0.00 -24.64±0.10
CBC-G8 complex 1 -38.98±0.02 97.25±0.14 -12.39±0.01 -119.35±0.04 -39.69±1.20 -4.42±1.21 -7.80±0.85 -6.18±0.01

solvated 1 -41.98±0.02 -16.22±0.01 -14.90±0.05 0.00±0.00 -42.33±0.06
CBC-G9 complex 1 -17.54±0.01 102.31±0.06 -12.70±0.02 -126.81±0.24 -6.33±0.72 -15.47±0.78 -20.03±0.18 -7.40±0.01

solvated 1 -21.48±0.01 -17.45±0.01 -15.20±0.09 0.00±0.00 -19.09±0.06
CBC-G10 complex 1 -6.14±0.01 99.84±0.29 -12.52±0.02 -126.72±0.11 -9.65±0.04 -17.86±0.05 -24.70±0.25 -10.38±0.01

solvated 1 -14.12±0.01 -17.42±0.01 -15.15±0.09 0.00±0.00 -20.85±0.01
R2 0.55< 0.64< 0.73 0.47< 0.57< 0.66
MUE 4.75< 5.09< 5.43 8.93< 9.38< 9.84
τ 0.68< 0.76< 0.82 0.73< 0.78< 0.82

As for the OA dataset, the alchemical counterions approach, tab. 14,
gives much better results than the Poisson based calculations. In this scheme,
corrections are ranging between -2 and -1 kcal·mol−1. In particular, the coun-
terions calculations perform very well for highly charged guests molecules, as
for G2 (+2e), whose ∆G◦corr−bind = −1.84±0.01 kcal·mol−1 is in line with re-
spect to the experimental value of −2.50±0.07 kcal·mol−1, and for G3 (+4e)
(∆G◦corr−bind = −4.52 ± 0.24 kcal·mol−1 and -4.02±0.03 kcal·mol−1 experi-
mentally). Overestimation in ∆G◦corr−bind are still present for G9 and G10
guests ( -15.16±0.46 kcal·mol−1 and -17.57±0.05 kcal·mol−1 respectively).
The alchemical counterions approach achieves a lower MUE with respect
to the raw estimations(4.70±0.26 kcal·mol−1) and is overall superior to the
other correction approaches.

152



Table 13: PME binding free energies for the CBC dataset of SAMPL5 (�g
1.1 chapter 4). mol indicated the host-guest complex, phase the complex or
solvated simulated phase, ∆Graw

chg is the raw discharging free energy, ∆GNET ,
∆GUSV , ∆GRIP and ∆GDSC are the PME correction terms, ∆G◦raw−bind is
the standard raw binding free energy, ∆G◦corr−bind is the corrected standard
binding. ∆G◦exp is the experimental binding free energy. All the values are
in kcal·mol−1 and standard errors are computed with eq. 5.24

PME CB7Clip binding a�nities
mol phase ∆Graw

chg ∆GNET ∆GUSV ∆GRIP ∆GDSC ∆G◦raw−bind ∆G◦corr−bind ∆G◦exp
CBC-G1 complex 116.99±0.01 0.01±0.01 -0.01±0.01 -17.04±0.02 -31.4±0.02 -7.62±0.02 -15.43±0.02 -5.84±0.01
CBC-G1 solvated 117.16±0.01 0.01±0.01 -0.01±0.01 -8.68±0.0 -31.95±0.02
CBC-G2 complex 102.92±0.01 0.01±0.01 -0.01±0.01 -14.27±0.16 -31.4±0.06 -1.86±0.34 -6.76±0.52 -2.52±0.01
CBC-G2 solvated 105.42±0.01 0.01±0.01 -0.01±0.01 -8.69±0.03 -32.08±0.02
CBC-G3 complex 170.32±0.01 0.01±0.01 -0.01±0.01 -28.03±0.03 -62.64±0.09 -4.38±0.08 3.41±0.32 -4.02±0.01
CBC-G3 solvated 174.60±0.01 0.01±0.01 -0.01±0.01 -34.61±0.16 -63.85±0.03
CBC-G4 complex -50.98±0.01 0.01±0.01 -0.01±0.01 -8.63±0.01 -15.71±0.01 -11.85±0.67 -18.03±0.71 -7.25±0.01
CBC-G4 solvated -53.70±0.01 0.01±0.01 -0.01±0.01 -2.19±0.01 -15.97±0.01
CBC-G5 complex 9.58±0.01 0.01±0.01 -0.01±0.01 -8.64±0.01 -15.66±0.01 -14.88±0.23 -21.06±0.24 -8.52±0.01
CBC-G5 solvated 6.45±0.01 0.01±0.01 -0.01±0.01 -2.19±0.01 -15.93±0.01
CBC-G6 complex 6.52±0.01 0.01±0.01 -0.01±0.01 -16.90±0.08 -31.29±0.02 -18.80±0.28 -26.60±0.76 -8.68±0.01
CBC-G6 solvated 2.59±0.01 0.01±0.01 -0.01±0.01 -8.55±0.01 -31.84±0.03
CBC-G7 complex 6.21±0.01 0.01±0.01 -0.01±0.01 -17.18±0.01 -31.32±0.02 -17.74±1.08 -25.87±1.60 -5.18±0.01
CBC-G7 solvated 3.06±0.01 0.01±0.01 -0.01±0.01 -8.55±0.02 -31.83±0.01
CBC-G8 complex 6.67±0.01 0.01±0.01 -0.01±0.01 -17.18±0.01 -31.33±0.01 -7.91±1.20 -16.07±1.26 -6.18±0.01
CBC-G8 solvated 2.29±0.01 0.01±0.01 -0.01±0.01 -8.55±0.01 -31.80±0.03
CBC-G9 complex 6.91±0.01 0.01±0.01 -0.01±0.01 -16.88±0.10 -31.25±0.01 -17.28±0.72 -25.02±1.06 -7.40±0.01
CBC-G9 solvated 2.94±0.01 0.01±0.01 -0.01±0.01 -8.55±0.01 -31.84±0.01
CBC-G10 complex 42.57±0.01 0.01±0.01 -0.01±0.01 -8.69±0.01 -15.69±0.01 -12.16±0.04 -18.44±0.19 -10.38±0.01
CBC-G10 solvated 34.90±0.01 0.01±0.01 -0.01±0.01 -2.18±0.01 -15.92±0.01
R2 0.38 < 0.44< 0.50 0.35 < 0.41< 0.48
MUE 4.68 < 4.99< 5.30 10.76< 11.19< 11.62
τ 0.51 < 0.59< 0.64 0.46< 0.53< 0.60
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Table 14: BWRF simulations for the CB7 Clip dataset of SAMPL5 (�g
1.1 chapter 4) with the alchemical counterions approach. mol indicates
the host-guest complex, ∆G◦raw−bind is the raw standard binding free energy,
∆G◦corr−bind is the standard binding free energy corrected for the �nite size
artefacts. ∆G◦exp is the experimental binding free energy. All the values are
in kcal·mol−1 and standard errors are computed with eq. 5.24.

mol ∆G◦raw−bind ∆G◦corr−bind ∆G◦exp
CBC-G1 −8.52±0.02 −7.99±0.04 −5.84±0.01
CBC-G2 −1.93±0.13 −1.84±0.01 −2.52±0.01
CBC-G3 −6.00±0.35 −4.52±0.24 −4.02±0.01
CBC-G4 −11.28±0.59 −11.25±0.62 −7.25±0.01
CBC-G5 −13.78±0.14 −13.57±0.15 −8.54±0.01
CBC-G6 −17.37±0.08 −16.67±0.41 −8.68±0.01
CBC-G7 −15.45±0.92 −14.79±1.10 −5.18±0.01
CBC-G8 −4.32±0.81 −4.10±0.74 −6.18±0.01
CBC-G9 −15.46±0.52 −15.16±0.46 −7.40±0.01
CBC-G10 −17.93±0.04 −17.57±0.05 −10.36±0.01
R2 0.55< 0.64< 0.73 0.59< 0.66< 0.74
MUE 4.75< 5.09< 5.43 4.43< 4.70< 4.96
τ 0.68< 0.76< 0.82 0.73< 0.77< 0.82
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5.5 Conclusions

Free energy calculations of charged species are a frequent task in the drug de-
sign process. These calculations are usually carried on with periodic bound-
ary conditions and e�ective Coulombic potentials. Furthermore, solvent
models may not re�ect exactly the physical properties of the bulk solvent.
All these approximations could a�ect the free energy calculation with the
introduction of a bias potential which hinders a proper comparison with ex-
periments. Throughout this chapter a correction scheme was introduced for
BWRF based simulations. This scheme was then compared with Rocklin ap-
proach [81] for PME simulations. Finally, for host-guest systems, simulations
with alchemical counterions were run to retrieve corrected free energies and
establish a comparison with the BWRF and PME corrections.

Results were encouraging for hydration free energy calculations. Tests
on sodium ion assured the consistency and reliability of BWRF and PME
correction schemes. Overall, the estimated hydration free energies were in
line with experimental values (∆Ghyd

corr = −104 kcal·mol−1 on average). The
solvation discharging free energy for acetate (ACE) and methylammonium
(MAM) gave a further validation for BWRF and PME schemes. Further-
more, ACE and MAM systems were used to check the BWRF correction
terms sensitivity to the number of grid points. It was found that variation
in grid points do not in�uence the total free energy correction and all the
values converge towards similar values.

The extension of these two schemes to the binding free energy for OA and
CBC systems from SAMPL5 was problematic. In both cases the BWRF and
PME scheme fail to give reasonable binding free energies. In particular, the
BWRF attained a worse MUE for both host-guest systems (MUE 5.2±0.1
kcal·mol−1 for OA and MUE 9.4±0.5 kcal·mol−1 for CBC). PME simulations
showed a even more serious discharging free energy correction.

On the contrary, the BWRF alchemical counterions simulations gave more
promising results to correct �nite size artefacts in host-guest systems. For
the OA dataset results were in line with the raw binding free energy esti-
mations (MUE = 2.6±0.1 kcal·mol−1, R2 = 0.8±0.1 and τ=0.5±0.1) and
a sensible improvement of about 0.5 kcal·mol−1 was attained for the CBC
with respect to the raw binding vaules. Although these results show a better
trend with experimental data, further testing should be carried out to check
the convergence properties of this approach.

The aim of this work was to show the reliability of the current correc-
tion schemes for alchemical free energy simulations of charged species. For
the very �rst time a BWRF atom-based cuto� correction scheme was imple-
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mented and tested. Although a good agreement with literature studies, the
BWRF correction approach failed to give reasonable values for the host-guest
binding a�nity calculations. This outcome could highlight the presence of
a �aw in the theoretical framework. As a matter of fact, literature stud-
ies [81, 26, 243] lack of tests on highly charged host-guest systems. Guests
usually bear a net-charge ranging from -1 e to +1 e and host has a rigid
structure. Additionally, as regards the BWRF group-based cuto� correction
scheme of Reif and Oostenbrink [82], the cuto� dependence of the Poisson
solver was not investigated and the study is limited to arti�cial host-guest
systems, which do not have experimental data. These aspects make the in-
vestigation upon SAMPL5 host-guest system complicated and impossible to
rely on model validation with experimental data. Therefore further work
should be carried out on new host-guest datasets to delineate a proper com-
parison between correction schemes, achieving a complete evaluation of the
e�ciency of Poisson-Boltzmann solvers. As a �rst step, neutral and rigid
host with highly charged guests should be studied and compared with exper-
imental value, in order to shed light on the limits of these correction schemes.
After this step, the correction approach may be extended to highly charged
host-guest system, allowing a classi�cation of the all possible study cases.

Then, attention should be devoted to the force �eld parametrization.
As a matter of fact, this study was focused on the use of GAFF [117] for
host-guest systems parametrization, di�erently from literature studies. Since
GAFF tends to be highly transferable between molecular models, the general
force �eld may be already empirically account for a correction term for the
�nite size artefacts. As an example, the OA dataset shows a hydrophobic
binding cavity. For all the guest molecules the raw binding free energy is
in line with the experimental trend, while the PB correction results in an
underestimation in binding.

Finally, this work could be further developed in terms of software devel-
opment. Initially, the OpenMM PME script should be extended with the
implementation of the soft-core potential, to compute the vanishing free en-
ergy changes. This would give a more meaningful comparison with BWRF
raw free energy estimations. Furthermore, these simulations could help to
understand the possible GAFF parametrization e�ect on host-guest binding
calculations, comparing Rocklin correction scheme with the BWRF atom-
based cuto� corrections. Secondly, Sire core libraries should be extended to
deal with multi-alchemical systems at the same time. This approach would
be greatly bene�cial for the alchemical counterions scheme, avoiding the cre-
ation of multiple simulations �les and ad-hoc morphing �les. This would
reduce the presence of errors introduced by the user in the creation of the
input �les. Lastly, further test should be carried out on the BWRF-Poisson
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solver code and Sire BWRF correction code, to isolate possible bug which
may a�ect the �nal correction estimation.
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Chapter 6

Conclusions

Alchemical free energy calculations (AFE) are a promising technique that
could be bene�cial for the hit-to-lead and lead optimization stage in the
drug discovery process. Although AFE have known a great success in phar-
maceutical industries in the last decades, the reproducibility of results, the
presence of �nite size artefacts and the lack of robust protocols make these
calculations far form being a reliable engineering tool that could be routinely
used. Thus, this work presented a deep analysis of speci�c AFE hurdles with
the hope that protocols and methods could be further extended in the future,
and cover more relevant case studies for the medicinal chemistry.

Initially, chapter 2 showed to what extent AFE calculations are repro-
ducible among di�erent molecular simulation codes. Through a large scale
collaborative e�ort with H. Loe�er (CCPBiosim), D. Mobley and G. Ratos
(UCI), B. Roux and D. Suh (UCHI) and our group in Edinburgh, the relative
hydration free energies for a small dataset of organic molecules was computed
to assess the reproducibility between AMBER, GROMACS, CHARMM and
SOMD. The simulation package results proved that it was impossible to
de�ne a universal simulation protocol, but speci�c protocols for each soft-
ware were devised, achieving a reproducibility-limit of 0.2 kcal·mol−1. The
reproducibility was mainly hindered by speci�c details of the AFE imple-
mentations,. For instance the electrostatic contribution in vacuum phase, or
the di�erent way the reaction �eld was implemented (e.g. SOMD and GRO-
MACS). Furthermore, for SOMD the use of all-bonds constraints mainly
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a�ected the free energy predictions, with discrepancies between absolute and
relative free energy calculations. This suggested a new constraint scheme,
where only the perturbed covalent hydrogen bonds were constrained, to main-
tain an integration time step of 2 fs. Beyond the protocol validation and code
analysis, this work could be employed as a new validation test for existing
and future versions of molecular simulation codes, in order to improve the
transferability of AFE protocols among di�erent codes. This work could be
further extended to investigate the reproducibility of solvation free energies
for charged molecules. It would also be desirable to proceed with a study of
reproducibility for host-guest systems. All these e�orts would facilitate the
creation of a reproducible alchemical free energy work�ows.

Then, chapter 3 introduced new simulation protocols for lipophilicity co-
e�cients estimations employing AFE techniques. In the �rst part, AFE were
used to compute the experimental log P of �ve molecules with an increas-
ing �uorine content. As a result, AFE were able to mimic the experimental
trend (τ 0.50±0.10 and MUE 0.77±0.07 log P units), and trajectory analysis
allowed to understand the molecular interactions that drove the partition-
ing process. As an extension of the log P calculations, two AFE protocols
were devised to predict log D values for 53 small drug-like molecules for the
blinded challenge SAMPL5. The �rst protocol, all-neutral model, considered
all the molecules as neutral species. This model achieved a reasonable MUE
2.20±0.08 log D units, but it failed to predict log D for ionisable species.
Thus, the two-species model was devised, to assume the co-existence of two
species in organic and aqueous phases for ionisable molecules. This model
lowered the MUE to 1.98±0.19 log D units and retrospectively it was among
the top-ranked submission of SAMPL5. In spite of this success, the two-
species protocol could be further tuned to achieve more reliable and accurate
estimations to match QSAR accuracy. Future work and e�orts should be
devoted to consider all the possible protonated and tautomeria states of a
molecule. Secondly, tests should be run to understand the in�uence on the
log D values for cases where a water molecule migrate into the organic phase
together with the solute and viceversa. Finally, a detailed analysis should be
carried out to understand the in�uence of the �nite size artefacts, and of the
force �eld parametrization onto the solvation free energy estimates. As part
of an experimental study, it would be extremelly useful to devise datasets
that enable testing of all these sources of errors. As rough sketch such a
dataset should consists of a batch of non-ionisable compounds where the
predictions of log D = log P , which could be used to ensure any force�eld.
Once this is established more complicated systems with multiple equilibria
of di�erent species can then be tackled.

Another validation of AFE protocols was presented in chapter 4, where
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three di�erent simulation strategies for host-guest binding a�nities predic-
tions were used. Model A computed the free energy of binding as a di�erence
of free energy changes between complex and solvated phases; Model B added
the long-range dispersion interactions corrections to model A; model C added
a standard state for each host-guest system to the previous model. All the
three protocols were among the top-ranked submissions of SAMPL5 for R2

metrics. Model C was the best predictor with a MUE= 3.39±0.18 kcal·mol−1

and R2 =0.69±0.05. In addition, the standard binding free energy predic-
tions were reproducible with results produced by Gilson lab (UCSD) using
a di�erent code and methodology. This study has already led to further de-
velopments, thanks to the SAMPL6 challenge in 2018. Model C values were
improved through a regression protocol, that could correct the free energy
estimations from systematic errors such as errors for �nite size artefacts and
force �eld parametrization. Results showed a more accurate binding free en-
ergy estimations with MUE < 1.0 kcal·mol−1 for OA and TEMOA. There is
hope that this protocol could be further enhanced by considering the pres-
ence of a phosphate bu�er in the experimental setup, studying its in�uence
on the free energy estimations.

Finally, chapter 5 presented the �nite size artefacts problem in AFE cal-
culations. For the �rst time a correction scheme for BWRF atom-based simu-
lations was devised and compared with literature protocols, which makes use
of PME and BWRF group-based approaches. Initially, the BWRF was vali-
dated for hydration free energy estimations of the sodium ion, with analyses
carried out for di�erent box sizes and cuto� lengths. Once the consistency
of the BWRF results was tested, the correction scheme was applied to poly-
atomic species, such as acetate and methylammonium, in order to correct
the solvation discharging free energies. Results were consistent with one an-
other and in line with literature values. Hence, the BWRF was tested for
host-guest binding free energy predictions, using the OA and CBC dataset
of SAMPL5 as case study. In this occasion the BWRF scheme failed to
give a reasonable result, with overestimations in binding and inconsistency
with experimental results. To further understand the �nite size magnitude
in host-guest systems a protocol, which makes use of alchemical counterions
to keep the net-charge constant in the simulated box, was tested. The al-
chemical counterion approach gave better results than the raw free energy
estimation and the BWRF correction protocols, showing a good agreement
with experimental results in both dataset. Although the BWRF scheme was
unsuccessful, this study indicated several paths to follow to achieve a com-
plete understanding of the �nite size problem. First, this work presented new
tests for �nite size correction schemes and it pointed out a limit of literature
correction schemes for host-guest cases. The work used a dataset with pecu-
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liarities still unexplored in literature, such as the presence of a very �exible
host molecule and highly charged guests. There is hope that the alchemical
counterion approach could also be extended and implemented in the SOMD
code, to deal with more alchemical transformation at the same time, in order
to have an easier simulation setup and maybe more consistent results with
respect to the BWRF correction approach. Finally, the in�uence of GAFF
force �eld on the �nite size artefacts should be investigated both in the host-
guest case and in the solvation free energy simulations, to understand to
what extent GAFF can correct these errors and how the BWRF correction
scheme could be modi�ed.

Finally, the reader may wonder why musical scores are present at the be-
ginning of each chapter. These are all Bach compositions, which guided me
throughout the writing-up of this thesis. Each musical score has a peculiarity
which re�ects the subject presented and discussed in each chapter. The in-
troduction was combined with the �rst Aria of the Goldberg variations. This
piece re�ects a smooth introduction into the AFE problems and it presents
also technical di�culties, which could re�ect the (sometimes) complicated
nature of the statistical mechanics. The second chapter is described by the
English Suite no. 2. This piece uses the same notes for the right hand and
left hand and it was felt appropriate to introduce the concept of reproducibil-
ity. The Passacaglia in C minor was chosen for the third chapter, to show
the complicated nature of the log D estimations. Beyond the two hands, this
score has a part for the pedal, which is necessary to give the right emphasis
and power to the composition. Thus, the pedal cannot be neglected when the
composition is played, as the protonated and tautomeric states of a molecule
could not be neglected to predict the correct log D value. Chapter 4 was
described by the Prelude in C minor from the Partita no. 2, as this is an
example of the standard use of the counterpoint, widely used during Bach's
era, which re�ects the use of standard state correction for host-guest binding
a�nities. Given the more complicated discussion of chapter 5, the third part
of the Fantasia BWV 542 was selected, to give the idea of a complicated
subject and study such as the �nite size problem. Finally, the conclusions
are described by the Prelude no. 2 in C minor BWV 847, which is a versatile
composition, used countless times to play variations onto Bach music. This
symbolizes the variations and future studies that can be taken starting from
the protocols presented throughout this thesis.
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