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Abstract 

The Arctic is warming at twice the rate of the rest of the planet with dramatic 
consequences for Northern ecosystems. The rapid warming is predicted to cause 
shifts in plant phenology and increases in tundra vegetation productivity. Changes in 
phenology and productivity can have knock-on effects on key ecosystem functions. 
They directly influence plant-herbivore and plant-pollinator interactions creating the 
potential for mismatches and changes in food web structure, and they alter carbon 
and nutrient cycling, which in turn influence feedback mechanisms that couple the 
tundra biome with the global climate system. Improving our understanding of changes 
in tundra phenology and productivity is therefore critical to projecting not only the 
future state of Arctic ecosystems, but also the magnitude of potential feedbacks to 
global climate change. In this thesis, I combine observations from ground-based 
ecological monitoring, satellites and drones (also known as unmanned aerial vehicles 
or remotely piloted aircraft systems) to investigate how tundra plant phenology and 
productivity are changing across space and time, and to test how observational scales 
influences our ability to detect these changes.  
 
Spring plant phenology is tightly linked to temperatures, and advances in spring 
phenology are one of the most well documented effects of climate change on global 
biological systems. With rapid and near-ubiquitous Arctic warming, the absence of 
consistent trends in tundra spring phenology among sites suggests that additional 
environmental factors may exert important controls on tundra plant phenology. 
Indeed, further to temperature, snowmelt and sea-ice have been reported to strongly 
influence tundra phenology. Yet, the relative influence of these three factors has yet 
to be evaluated in a single cross-site analysis. In Chapter 2, I tested the importance 
of local average spring temperatures, local snowmelt and the timing of the drop in 
regional spring sea-ice extent as controls on variation in spring leaf out and flowering 
of 14 plant species from long-term records at four coastal sites in Arctic Alaska, 
Canada and Greenland. I found that spring phenology was best explained by 
snowmelt and spring temperature. In contrast to previous studies, sea-ice did not 
predict spring plant phenology at these study sites. This contrasting finding is likely 
explained by differences in the scale of the sea-ice measures employed. While many 
previous studies used descriptors of circum-polar sea-ice conditions that serve as 
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aggregate measures for global weather conditions, I tested for the indirect effects of 
sea-ice conditions at a regional scale. My findings (re)emphasize the importance of 
snowmelt timing for tundra spring plant phenology and therefore highlight the 
localised nature of some of the key drivers of tundra vegetation change.  
 
Discrepancies between conventional scales of observation and underlying ecological 
processes could limit our ability to explain variation in tundra plant phenology and 
vegetation productivity. In the remote biome, ground-based monitoring is logistically 
challenging and restricted to comparably few sites and small plot sizes. Multispectral 
satellite observations cover the whole biome but are coarse in scale (tens of meters 
to kilometres) and uncertainties persist in how trends in vegetation indices like the 
Normalised Differential Vegetation Index (NDVI) relate to in situ ecological processes. 
Recent advances in drone technologies allow for the collection of multispectral fine-
grain imagery at landscape level and have the potential to bridge the gap in 
observational scales. However, collecting high-quality multispectral drone imagery 
that is comparable across sensors, space and time remains challenging particularly 
when operating in extreme environments such as the tundra. In Chapter 3 of this 
thesis, I discuss the key error sources associated with solar angle, weather 
conditions, geolocation and radiometric calibration and estimate their relative 
contributions to the uncertainty of landscape level NDVI measurements at Qikiqtaruk 
in the Yukon Territory of Canada. My findings show that these errors can lead to 
uncertainties of greater than ± 10% in peak season NDVI, but also demonstrate they 
can be accounted for by improved flight planning, meta-data collection, ground control 
point deployment, use of reflectance targets and quality control. 
 
Satellite data suggest that vegetation productivity in the Arctic tundra has been 
increasing in recent decades: the tundra is greening. However, the observed trends 
show a lot of variation: although many parts of the tundra are greening, others show 
reductions in vegetation productivity (sometimes known as browning), and the 
satellite-based trends do not always match in situ records of change. Our ability to 
explain this variation has been limited by the coarse grain sizes of the satellite 
observations. In Chapter 4, I combined time-series of multispectral drone and satellite 
imagery (Sentinel 2 and MODIS) of coastal tundra plots at my focal study site 
Qikiqtaruk to quantify the correspondence among satellite and drone observations of 
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vegetation productivity change across spatial scales. My findings show that NDVI 
estimates of tundra productivity collected with both platform types correspond well at 
landscape scales (10 m – 100 m) but demonstrate that the majority of spatial variation 
in NDVI at the study sites occurs at distances below 10 m and is therefore not 
captured by the latest generation of publicly available satellite products, like those of 
the Sentinel 2 satellites. I observed strong differences in mean estimates and variation 
of vegetation productivity between the dominant vegetation types at the field site. 
When comparing greening observations over two years, I detected differences in the 
amount of variation amongst years and a within-season decline in variation towards 
peak growing season for both years. These results suggest that not only the timing, 
but also the heterogeneity of tundra landscape phenology can vary within and among 
years, and if lowered by warming could alter trophic interactions between species. 
 
The findings presented in this thesis highlight the importance of the localised 
processes that influence large-scale patterns and trends in tundra vegetation 
phenology and productivity. Localised snowmelt timing best explained variation in 
tundra plant phenology and drone imagery revealed meter-scale heterogeneity in 
tundra productivity. Research that identifies the most relevant scales at which key 
biological processes occur is therefore critical to improving our forecasts of ecosystem 
change in the tundra and resulting feedbacks on the global climate system. 
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Lay Summary 

Human-made climate change is affecting the natural environment around the world, 
but the impacts are particularly dramatic in the far north of the planet – the Arctic. 
Over the last fifty years, air temperatures in the Arctic have risen at twice the rate 
compared to the rest of the globe. The rapid warming is leading to dramatic 
consequences for the Arctic environment: Sea-ice is declining, glaciers are melting, 
and previously frozen ground is thawing. However, warming also affects Arctic plants, 
particularly in the tundra biome north of the latitudinal treeline, where extremely cold 
temperatures have previously restricted plant growth. The rapid rise in temperature is 
changing tundra plants. Warmer summers are thought to be increasing plant growth 
and warmer springs are thought to cause earlier emergence of leaves in the season. 
Such changes will not only affect the animals that rely on plants for food and shelter, 
but are also likely to result in feedbacks to the global climate, potentially accelerating 
or slowing down global warming. My thesis aims to improve our understanding of how 
the plants and their seasonal timing are changing so that we can better predict future 
changes in the ecosystems of the tundra and their knock-on effects on the global 
climate.  
 
Even though satellite observations suggest an earlier onset of spring in the Arctic, 
ground-based measurements of spring leaf out and flowering do not show consistent 
changes across the tundra. On the ground, spring is getting earlier at some locations, 
while no changes - or even delays - are observed elsewhere. The fact that tundra 
plants are not always greening up earlier is particularly surprising considering both 
the rapid warming of the tundra and the fact that tundra plants have been shown to 
change their timing of leaf out and flowering in warmer years at some sites. Other 
environmental influences must therefore also control the timing of green up and 
flowering of tundra plants. In addition to temperature, snow-melt and sea-ice 
conditions have been shown to influence the timing of spring and summer in the 
tundra. Yet, to date, no study has tested the relative influence of these three 
environmental factors on the timing of spring in one combined analysis across multiple 
sites. In Chapter 2, I use ground-based observations of spring leaf-out and flowering 
from long-term records at four tundra sites located on the coasts of Alaska, Canada 
and Greenland to test the relative influence of temperature, snowmelt and sea-ice 
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conditions on the timing of spring. My findings demonstrate that snowmelt and 
temperature, but not sea-ice conditions, are influencing tundra leaf-out and flowering. 
This analysis of tundra plants from multiple sites highlights the power of localised 
environmental influences such as snowmelt as agents of change in the tundra. 
 
Satellite observations suggest that the tundra vegetation is changing. The north of the 
planet is “greening” and spring green up is happening earlier. Though plant 
measurements on the ground generally agree with the satellites, the satellite trends 
themselves are highly varied - some parts of the tundra are getting ‘greener’ while 
others are getting ‘browner’, their ‘greenness’ is decreasing over time. The large size 
of the satellite pixels makes it difficult to interpret these changes. Pixel-widths range 
from tens of meters to 8 km (that’s two times the length of Central Park in Manhattan). 
Modern drone technology can provide high-resolution aerial imagery (5 cm drone 
pixel sizes and smaller) that allows us to bridge this gap. However, the drone 
technology is new and new procedures need to be developed to provide high-quality 
data for scientific purposes. Particularly in the extreme environments of the Arctic, 
drone data collection can be challenging. In Chapter 3 of this thesis, I estimate the 
errors in drone imagery collected in the tundra and provide guidance on how to control 
for them – for example, by suggesting best practises on how to account for changes 
in light conditions between drone surveys. In Chapter 4, I then use the newly 
developed methods to test the agreement between satellite and drone observations 
of tundra greenness in the Canadian Yukon, and to determine how seasonal changes 
in tundra landscape greenness vary in the high-resolution drone imagery. I found that 
even though drone and satellite products agree at the landscape level, a considerable 
amount of detail in variation is lost when changing resolution from drone to the satellite 
pixel sizes. Furthermore, I show that tundra landscape greenness varies considerably 
over short distances and between vegetation types, and that the landscape becomes 
more uniform in greenness as the growing season progresses. These findings allow 
us to better our predictions of future changes in the tundra landscape and the impacts 
thereof on the tundra animals that rely on the variation in plant resources for food, 
nesting and shelter. 
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Overall, the research in this thesis demonstrates that we can use high-resolution 
drone imagery to study fine-scale changes in the tundra, and that satellite and drone 
observations of tundra greenness agree at the landscape level. Furthermore, it 
highlights that there is a considerable variation in landscape greenness over short 
distances and underlines the importance of snowmelt and temperature in determining 
tundra spring leaf-out and flowering. These findings are important as they allow us to 
better understand how future seasons and greenness patterns in the tundra 
landscape will look like, whether these changes will affect the animals that rely on the 
tundra plants for food, nesting and shelter, and whether there will be any knock-on 
effects on the global climate.  
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Chapter 1 Introduction 

 
 
 

The tundra on Qikiqtaruk Herschel Island, YT, Canada. 
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Chapter 1 Introduction 

The Arctic is undergoing rapid environmental change. Surface temperatures are rising 
at twice the rate of the global average (IPCC, 2014), precipitation patterns are 
changing and sea-ice is declining (AMAP, 2017). The rapidly changing environment 
has considerable consequences for the ecosystems of the North, including those in 
the Arctic tundra. Phenology (Høye, Post, Meltofte, Schmidt, & Forchhammer, 2007; 
Zeng, Jia, & Forbes, 2013), plant community composition (Elmendorf et al., 2015; 
Myers-Smith et al., 2011) and traits (Bjorkman et al., 2018) are changing, and as a 
result vegetation productivity is thought to be increasing (Guay et al., 2014; Keenan 
& Riley, 2018; Myneni, Keeling, Tucker, Asrar, & Nemani, 1997). Tundra vegetation 
change might lead to feedbacks to the global climate system (Chapin et al., 2005; 
Ernakovich et al., 2014; Loranty & Goetz, 2012; Pearson et al., 2013) and affect 
ecosystem services with direct consequences for plant-consumer interactions in the 
tundra (Doiron, Gauthier, & Lévesque, 2015; Gustine et al., 2017; Kerby & Post, 
2013b). Improving our understanding of changes in tundra phenology and productivity 
is therefore critical to projecting the future state of Arctic ecosystems and the 
magnitude of potential feedbacks to global climate change. 
 
Evidence for tundra vegetation change comes from localised in situ observations 
(Elmendorf et al., 2015; Myers-Smith et al., 2015; Oberbauer et al., 2013) and coarse-
scale satellite data (Keenan & Riley, 2018; Myneni et al., 1997; Tucker et al., 2001; 
Zeng et al., 2013), but a discrepancy in observational-scales between the two has 
limited our ability to fully identify the key ecological processes and their mechanistic 
drivers of change (Myers-Smith et al., 2011; Raynolds, Walker, Verbyla, & Munger, 
2013; Stow et al., 2004). This thesis combines observations from ground-based 
ecological monitoring, satellites and drones (also known as unmanned aerial vehicles 
or remotely piloted aircraft systems) to investigate how plant phenology and 
productivity are changing across space, time and observational scales in the warming 
tundra biome. In this chapter, I 1) discuss the relevant background to the research 
presented in this thesis, 2) identify the knowledge gaps, 3) outline the structure of this 
thesis and the key research questions addressed, and 4) summarise the key datasets 
used.  
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Environmental and Vegetation Change in the Arctic tundra  
 
Arctic Change: Temperature, snow and ice  
The environmental change in the Arctic is rapid and influences the vegetation in 
tundra ecosystems via three main parameters: rising temperatures, changing 
precipitation / snow patterns and sea-ice decline (AMAP, 2017). The particularly high 
speed of warming compared to the rest of the globe (Figure 1-1 A) is the result of a 
complex interaction of feedback mechanisms in the region, which are collectively 
referred to as “Arctic amplification” (Serreze & Barry, 2011). Temperature directly 
affects plant metabolic rate and developmental processes and the effects of the rapid 
warming are particularly forceful in the cold ecosystems of the tundra where plant 
growth is highly temperature limited (Callaghan et al., 2005). In addition, the increase 
in temperature affects the permanently frozen soils ubiquitous throughout the biome 
(Tarnocai et al., 2009), causing thaw and erosion (AMAP, 2017), which in turn release 
carbon and nutrients from the previously frozen soil (Natali, Schuur, & Rubin, 2012; 
Schuur et al., 2009), potentially alleviating constraints on plant growth in the nutrient 
limited biome (Mack, Schuur, Bret-Harte, Shaver, & Chapin Iii, 2004). Declining snow 
fall and snow cover duration (AMAP, 2017), as well as increased rain on snow events 
(Bintanja & Andry, 2017) are extending the growing season and increase plant 
productivity, but also expose the plants to higher risk of frost damage and herbivory, 
as well as modifying water and nutrient availability (Wipf & Rixen, 2010). The dramatic 
decline of sea-ice in the Arctic ocean (Figure 1-1 B) has not only considerable effects 
on the marine (AMAP, 2017) but also the adjacent terrestrial environments, affecting 
regional temperatures (Macias-Fauria & Post, 2018) and cloud cover in the tundra, 
which is thought to be increasing, affecting heat and light availability (McGuire, III, 
Walsh, & Wirth, 2006). Overall, these environmental changes are thought to be the 
drivers behind two main lines of evidence for vegetation change that have been 
documented in the Arctic tundra, a satellite observed “greening” and variety of 
vegetation changes documented by ground-based monitoring and experiments.  
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Figure 1-1 | (A) Global and Northern Hemisphere high latitude (60-90°N) temperature 
anomalies for the years 1981-2015 relative to the 1960-1990 average. Data from the 
CRUTEMP4 dataset (Jones et al. 2012). (B) Northern Hemisphere minimum sea-ice 
extent (September mean extent) for the years 1981-2015. Data from the Sea Ice 
Index Version 3 (Fetterer et al. 2017). (C) Trends in the Normalised Difference 
Vegetation Index (NDVI) – a proxy for vegetation productivity - of the circumpolar 
Arctic (green) and two continental Arctic regions derived from the GIMMS3g product 
based on NOAA AVHRR surface reflectance measurements. Modified from (Myers-
Smith et al., 2019). 
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The Arctic is greening  
Satellite observations indicate that vegetation productivity in the high latitudes is 
increasing, and thus that the north is greening (Figure 1-1 C). These observations 
(Keenan & Riley, 2018; Myneni et al., 1997; Tucker et al., 2001) primarily include 
trends in the normalised difference vegetation index (NDV) derived from surface 
reflectance data (Tucker, 1979). Despite the Arctic wide trends, a lot of heterogeneity 
in the greening is observed at global (Guay et al., 2014), continental (Ju & Masek, 
2016) and regional extents (Lara, Nitze, Grosse, Martin, & McGuire, 2018; Miles & 
Esau, 2016; Thompson & Koenig, 2018). While some areas are greening, others 
show no trends or even declines in greenness (“browning”) (e.g. Guay et al., 2014; 
Lara et al., 2018; D. A. Walker et al., 2009). Temperature is thought to be a primary 
driver of the high latitude greening (Keenan & Riley, 2018; Reichle, Epstein, Bhatt, 
Raynolds, & Walker, 2018), but linkages to sea-ice conditions (Bhatt et al., 2010; 
Macias-Fauria, Karlsen, & Forbes, 2017), predominant vegetation types (Loranty et 
al., 2018), landforms and disturbance events (Lara et al., 2018) have also been 
reported. Explaining the heterogeneity in the satellite trends and linking it to in situ 
(ground based) observations of tundra vegetation change is one of the key challenges 
of current ecological research in the tundra biome (Myers-Smith et al., 2011).  
 
The ecology of greening and browning 
A diversity of ecological changes is thought to contribute to the mixture of greening 
and browning trends observed in satellite datasets. Amongst the changes that have 
been suggested to cause greening are: (1) colonisation of previously non-vegetated 
surfaces by vegetation (Elmendorf, Henry, Hollister, Björk, Boulanger-Lapointe, et al., 
2012), (2) increases in biomass due to changes in community composition - for 
example through the expansion of shrubs and graminoids (Elmendorf, Henry, 
Hollister, Björk, Boulanger-Lapointe, et al., 2012), and (3) increases in biomass due 
to changes in existing vegetation (Hudson & Henry, 2009) – including trait changes 
such as height, leaf area and phenology (Elmendorf, Henry, Hollister, Björk, 
Boulanger-Lapointe, et al., 2012, Helman, 2018; Steltzer & Post, 2009). The literature 
is less clear on whether browning encompasses only long-term trends or whether 
short-term events are also included (Myers-Smith et al. 2019). However, the following 
ecological changes have been linked to decreases in satellite perceived greenness 
of the Arctic: (1) loss of biomass due to extreme climate events including episodes of 
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severe cold (Bjerke et al., 2014; Bokhorst et al,. 2009; Richardson et al., 2018), (2) 
disease or herbivore outbreaks (Jepsen et al. 2013; Lund et al., 2017; Post et al., 
2008), (3) coastal erosion (Fritz et al., 2017) and degradation of permafrost (Grosse 
et al., 2016), (4) altered surface water hydrology (Nitze et al., 2017; Smith et al., 2005) 
and (5) increases in the frequency of fire or individual extreme fire events (Ju & 
Masek, 2016; Mack et al., 2011; Rocha et al., 2012). The broad variety of these 
changes underlines the complexity of Arctic vegetation change and re-emphasizes 
the need for research that identifies which of these changes will be the key processes 
in determining future Arctic ecosystems.          
 
In situ observations of tundra vegetation change 
Ground-based evidence of tundra vegetation change and its attribution to the 
environmental changes has been provided by in situ ecological monitoring 
(Elmendorf, Henry, Hollister, Björk, Boulanger-Lapointe, et al., 2012), experiments 
(Elmendorf, Henry, Hollister, Björk, Bjorkman, et al., 2012), dendroecology (Myers-
Smith et al. 2015) and repeat photography (Tape et al. 2006). Together these sources 
highlight a complexity of changes, which encompass the following overall trends: 1) 
changes in plant traits, including phenology (Høye et al., 2007; Kerby & Post, 2013a; 
Post, Kerby, Pedersen, & Steltzer, 2016; Zeng et al., 2013) and plant height 
(Bjorkman et al., 2018); 2) climate sensitivity of shrub growth (Myers-Smith et al. 
2015); 3) changes in community composition, particularly the expansion of woody 
shrubs (Myers-Smith et al., 2011; Tape, Strum, & Racine, 2006), declines of mosses, 
lichens and bare ground cover (Elmendorf, Henry, Hollister, Björk, Boulanger-
Lapointe, et al., 2012; M. D. Walker et al., 2006) and a thermophilization of tundra 
plant communities (Elmendorf et al. 2015); and 4) changes in vegetation abundance 
and productivity (Elmendorf, Henry, Hollister, Björk, Boulanger-Lapointe, et al., 2012). 
Collectively, these lines of evidence have enabled the attribution of tundra vegetation 
change to the observed warming in biome (IPCC 2014). 
 
What drives in situ observations of tundra vegetation change 
The direct effects of increasing temperatures are likely the principal driver of the 
tundra vegetation change observed in situ, but a considerable amount of 
heterogeneity in responses among species and sites (Elmendorf, Henry, Hollister, 
Björk, Bjorkman, et al., 2012) highlights the importance of interactions with other 
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environmental factors, including (amongst others) soil moisture (Bjorkman et al., 
2018; Elmendorf, Henry, Hollister, Björk, Bjorkman, et al., 2012), snow conditions 
(Wipf & Rixen, 2010; Bjorkman, Elmendorf, Beamish, Vellend, & Henry, 2015; 
Semenchuk et al., 2016), herbivory (Plante et al., 2014; Ravolainen, Bråthen, Yoccoz, 
Nguyen, & Ims, 2014; Väisänen et al., 2014), permafrost (Schuur et al., 2009), glacial 
history as well as macro- and microtopography (Lara et al., 2018; Raynolds et al., 
2013). Quantifying the relative influence of the different drivers of vegetation change 
remains an important knowledge gap in tundra ecology. 
 
No net trend in tundra plant phenology 
Advances in phenology is one of the most well documented impacts of global climate 
change on the Earth’s biota (Parmesan & Yohe, 2003; Cleland, Chuine, Menzel, 
Mooney, & Schwartz, 2007; IPCC, 2014). The direct effects of rising temperatures are 
generally considered to be the primary driver of phenological change (Menzel et al., 
2006; Sparks & Carey, 1995) and the sensitivity of plant phenology to temperature 
has been demonstrated across the tundra biome (Prevéy et al., 2017). Furthermore, 
satellite data suggest advances in spring and, to a lesser degree, delays in autumn 
phenology (Zeng, Jia, & Epstein, 2011; Zeng et al., 2013; Zhao et al., 2015). Yet, in 
situ observations show no globally coherent direction in the trends of tundra spring 
and summer phenology (Bjorkman et al., 2015; Oberbauer et al., 2013; Post et al., 
2016). This is exemplified by the International Tundra Experiment (ITEX) phenology 
control plot dataset, showing no net change in spring leave out and flowering 
phenology (Figure 1-2). While disagreement between the satellite and in situ trends 
may be partially explained by high uncertainties in satellite predictions of phenology 
(Beck et al., 2007; White et al., 2009), the absence of a coherent directional trend in 
in situ tundra phenology despite the rapid warming suggests that multiple 
environmental factors in addition to temperature may control tundra plant phenology.  
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Figure 1-2 | Histograms of change in summer temperature (A), leaf-out date (B) and 
flowering date (C) from long-term time-series in the International Tundra Experiment’s 
(ITEX) phenology control dataset (Prevéy et al., 2017) including observations from 19 
tundra species at 9 sites for leaf-out (A) and 45 species at 18 sites for flowering (B). 
Reproduced with permission from Bjorkman et al. (in prep). 

 
What environmental factors best explain tundra plant phenology? 
Three environmental factors are generally considered as important drivers of tundra 
phenology and their interactions may be the cause of the observed absence of a 
directional trend across the biome. These are temperature (Bjorkman et al., 2015; 
Oberbauer et al., 2013; Panchen & Gorelick, 2017; Wheeler, Høye, Schmidt, 
Svenning, & Forchhammer, 2015), snowmelt (Bjorkman et al., 2015; Iler, Inouye, 
Schmidt, & Høye, 2017; Semenchuk et al., 2016) and sea-ice conditions (Kerby & 
Post, 2013a; Post et al., 2016). Understanding the relative importance of the key 
drivers of tundra plant phenology is critical for predicting future plant-consumer 
interactions (Doiron et al., 2015; Gustine et al., 2017; Kerby & Post, 2013b) and 
growing season length – which itself influences key ecosystem parameters including 
vegetation productivity (Ernakovich et al., 2014). Yet the relative importance of 
temperature, snowmelt and sea-ice conditions has not been tested in one 
comprehensive multi-site and multi-species analysis. 
 
The scale gap – new methods needed! 
Our ability to scale up tundra observations of vegetation productivity and phenology 
has been limited by discrepancies in observational scale. While the grain sizes of 
satellite datasets with long-term observations are coarse - ranging from 30 meters to  
8 kilometres - in situ ecological monitoring in the tundra is logistically challenging and 
has been restricted to focal research sites and small plot sizes (Myers-Smith et al., 
2011; Raynolds et al., 2013; Stow et al., 2004). We have therefore only developed a 
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limited understanding of the hierarchical structure of the ecological processes in the 
biome (Allen & Starr, 1982). Though great progress has been made in documenting 
tundra vegetation change, we need to test the correspondence of observations across 
local, regional and global scales to be able to scale up the complexity of tundra 
vegetation change and predict its feedbacks (Ernakovich et al. 2014). Only a cross-
scale understanding of the changes will allow us to identify the key spatial and 
temporal scales at which the drivers of tundra vegetation change act and inter-act 
(Levin, 1992; Marceau, 1999; Turner, O’Neill, Gardner, & Milne, 1989). Recently 
emerging drone technologies and associated sensors have the potential to provided 
fine-grain data at landscape extents (Figure 1-3) that can bridge the gap between in 
situ observations and satellite records (Anderson & Gaston, 2013; Klosterman et al., 
2018). However, first we need to develop new methods and standardised workflows 
(sensu Aasen & Bolten, 2018) that allow us to incorporate drone-derived data in to 
our multi-scale understanding of the tundra biome. 
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Figure 1-3 | Observational scales of satellite, manned aircraft, drone and ground-
based monitoring (in situ) methods employed in tundra ecology. Satellites operate on 
large ecological extents (biome), while ground based monitoring usually only covers 
small ecological extents (<10 m is common in the Arctic). Even though optical satellite 
imagery with grain sizes finer than 10 m is available commercially, the costs can be 
high (Anderson and Gaston, 2013) especially when time-series analyses are 
conducted. Publicly available satellite imagery provided by national and international 
agencies such as NASA and the EU is currently limited to grain sizes ranging from 
tens of meters (Sentinel 2) to kilometres, exceeding the extents of ground-based 
monitoring. Airborne observations with conventional aircraft and drones have the 
potential to bridge the spatial gap between the grain sizes of publicly available satellite 
datasets and ground-based (“in situ”) observations in the Arctic. However, the 
deployment of conventional manned aircraft can be logistically challenging and costly 
(Kampe et al., 2010) particularly at high latitudes where infrastructure is sparse and 
the weather often extreme. Recently emerging drones technologies on the other hand 
can be low in cost and allow for data collection at flexible temporal intervals (Anderson 
and Gaston, 2013). Modified from: (Cunliffe, Assmann, Kerby, & Myers-Smith, 2018) 
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Uncertainties in explaining satellite greening trends – drones can help 
A central problem limiting our ability to understanding the heterogeneity in the 
greening trends (Guay et al., 2014; Reichle et al., 2018) has been the interpretation 
of NDVI values. Though generally associated with plant biomass and productivity in 
tundra ecosystems (Figure 1-4 , Blok et al., 2011; Raynolds, Walker, Epstein, Pinzon, 
& Tucker, 2012) the coarse grain sizes of the satellite observations likely integrates a 
variety of ecological processes (D. A. Walker et al., 2009) into the NDVI pixel-values 
through sub-pixel spectral mixing. Considerable disagreement between the major 
satellite platforms (Guay et al., 2014) further complicate the interpretation of high 
latitude greening trends. Differences in grain sizes, as well as spectral band width and 
position of the multispectral imaging sensors likely cause some of the disagreement 
in NDVI trends among these satellite products (Teillet, Staenz, & William, 1997; Guay 
et al., 2014). Differences in grain sizes create discrepancies between satellite 
products through the complexities in sub-pixel mixing of the spectral properties 
(Figure 1-4 A) of the diverse surfaces found in Arctic landscapes, including vegetation, 
soil and snow, as well as the non-linear behaviour of biomass-NDVI relationships 
(Figure 1-4 B, Huete et al., 2002.; Martínez-Beltrán, Jochum, Calera, & Meliá, 2009). 
Simple aggregations of finer grain products are therefore not directly comparable to 
those with larger grain sizes, unless the specific cross-product relationships have 
been explicitly determined for the landscape types under investigation (Martínez‐
Beltrán et al., 2009; Guay et al., 2014). Repeated calls for ground and cross-sensor 
validation of the satellite observations have therefore been made (Fraser, Olthof, 
Carrière, Deschamps, & Pouliot, 2011; Guay et al., 2014; Ju & Masek, 2016; Myers-
Smith et al., 2011; Raynolds et al., 2013). Novel data collection methods such as 
drone technology can be used to facilitate such validation and test the 
correspondence among in situ monitoring and satellite datasets.  
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Figure 1-4 | (A) Spectral reflectance curve examples for vegetation and soil in the 
visible and near-infrared spectrum. Data were obtained with Spectra Vista 
Corporation (Poughkeepsie, NY, USA) spectroradiometers in Scotland (vegetation) 
and the USA (soil) and are courtesy of the NERC Field Spectroscopy Facility, 
Edinburgh, UK. (B) Empirical line relationship between phytomass (kg m-2) and 
GIMMS3g NDVI for tundra vegetation determined by Raynolds et al. (2012) from 
above ground biomass samples collected across two latitudinal transects in the 
European and North American Arctic. The reflectance signature of healthy vegetation, 
characterised by a low reflectance in the red (absorption by chlorophyll) and high 
reflectance in the near-infrared (radiation by mesophyll leaf tissues), is utilised when 
calculating the Normalised Difference Vegetation Index (NDVI) as a proxy for plant 
biomass (B). Non-vegetated surfaces or unhealthy vegetation do not show this 
characteristic response (Campbell & Wynne, 2011), see for example the reflectance 
curve of soil (A). However, empirical biomass-NDVI relationships are subject to errors 
introduced by a complexity of factors, including atmospheric disturbance (Campbell 
& Wynne, 2011), and behave non-linearly due to the mathematical nature of the NDVI 
(B). A variety of alternative vegetation indices have been developed that account for 
some of these errors by including additional parts of the spectrum and the use 
different mathematical formulations that produce linear behaviours, but the NDVI is 
still frequently used due to its legacy (Campbell & Wynne, 2011). In this thesis, I only 
use the NDVI, as calibration errors restrained the outputs from the drone sensors to 
the red and near-infrared parts of the spectrum.      

 
Implications of landscape-level phenology for trophic interactions 
Spatial and temporal variation in vegetation productivity can allow plant consumers 
and pollinators to maximise resource availability across the landscape – to “surf” 
resource waves (Armstrong, Takimoto, Schindler, Hayes, & Kauffman, 2016). Plant-
herbivore and -pollinator interactions may be affected through phenological mismatch 
and fluctuations in plant primary productivity (Berg et al., 2008) altering trophic 
interactions and food webs. Such mismatches could have both positive as well as 
negative effects on the vegetation itself. While mismatches in plant-herbivore 
interactions could lead to a release of grazing pressures (Miller-Rushing, Høye, 
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Inouye, & Post, 2010), asynchrony between plant and pollinator phenology could have 
determinantal effects on plant reproduction (Hegland, Nielsen, Lázaro, Bjerknes, & 
Totland, 2009). Evidence for phenological mismatch in the tundra has been observed 
for caribou (Kerby & Post, 2013b; Post et al., 2009; but see Gustine et al., 2017) and 
migratory birds such as snow geese (Doiron et al., 2015). However, few studies have 
investigated variation in tundra landscape phenology at landscape and regional 
scales (Kerby, 2015; Thompson & Koenig, 2018). Spatially explicit landscape-level 
data can be used to test the localised drivers of plant phenology and establishing 
scaling relationships (Klosterman et al., 2018; Klosterman & Richardson, 2017) and 
could be used to test the representativeness of in situ monitoring plots. As drone 
technology advances, we will be able to better link resource availability to trophic 
interactions and quantify mismatches as the tundra continues to warm. 
 
Implications for climate feedbacks 
Tundra vegetation change – observed on the ground or from satellites – is linked to 
the global climate system via positive and negative feedback mechanisms (Chapin et 
al., 2005; Ernakovich et al., 2014; Loranty & Goetz, 2012; Pearson et al., 2013). For 
example, increased plant productivity leads to increased carbon uptake in plant 
biomass (negative feedback), while taller vegetation lowers the surface albedo, 
leading to more heat to be trapped at the Earth’s surface (positive feedback) (Chapin 
et al., 2005; Pearson et al., 2013; Swann, Fung, Levis, Bonan, & Doney, 2010). 
Furthermore, slow decomposition rates have turned the tundra into an important 
carbon reservoir on the global scale (Schuur et al., 2009) with about 50% of the 
world’s soil carbon located in the tundra (Tarnocai et al., 2009), increased plant root 
activity might prime microbial activity and stimulate the release of carbon from soils 
and could therefore provide a potentially powerful positive feedback to global climate 
change (Kuzyakov, 2002; but see Lynch, Machmuller, Cotrufo, Paul, & Wallenstein, 
2018). Quantifying tundra vegetation change and identifying its drivers is the first step 
in predicting the direction and strength of the associated feedback mechanisms and 
is therefore critical to improving our projections of future impacts on the biome and 
the Earth’s system as a whole. 
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Aims and structure of this Thesis  
Overall, this thesis aims to improve our abilities to observe and understand tundra 
vegetation change across space and observational scales, with a specific focus on 
tundra productivity and phenology. In Chapter 2, I use long-term in situ records of 
phenological observations to test which environmental factors best explain variation 
in spring phenology at four coastal tundra sites across the biome. In Chapter 3 I 
develop and test a standardised method to collect time-series of fine-grain 
multispectral drone imagery to study tundra productivity. In Chapter 4, I combine time-
series of multispectral drone observations – acquired at my focal research site 
Qikiqtaruk (YT, Canada) with the methods developed in Chapter 3 - with satellite data 
to test for cross-platform correspondence of tundra greenness observations and to 
study fine-scale variation in tundra productivity across space and time (Figure 1-5). 
The specific research questions addressed in Chapter 2, 3 and 4 are outline below.  
 

 
Figure 1-5 | Diagram of the thesis structure and the main research themes addressed 
in Chapters 2, 3 and 4. Satellite symbol by ProSymbols and drone symbol by Mike 
Rowe, both reproduced under a creative-commons license from the Noun Project 
[www.thenounproject.com]. 
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Specific research questions addressed in Chapters 2, 3 and 4: 
 
Chapter 2: Snow-melt and temperature – but not sea-ice – explain variation in 
spring phenology in coastal Arctic tundra 

1) To what extent do trends in plant spring phenology vary among coastal sites 
across the tundra biome?  

2) Which environmental factors control spring flowering and green up at coastal 
tundra sites? 

 
Chapter 3: Vegetation monitoring using multispectral sensors – best practises and 
lessons learned from high latitudes 

1) What are the key error sources contributing to uncertainties in time-series of 
multispectral drone imagery of tundra vegetation? 

2) How can these errors be best accounted for? 
 
Chapter 4: Drone data reveals fine-scale variation of tundra greenness and 
phenology not captured by satellite and in situ monitoring 

1) Do observations of tundra greenness correspond between drones and 
satellites? 

2) How is fine-scale variation in tundra landscape greenness distributed across 
space? 

3) How does landscape-level variation in tundra landscape greenness change 
across the growing season? 

 
Altogether, this PhD thesis therefore contributes to three overarching research 
themes:  
 
Chapter 2: Which environmental factors best explain tundra vegetation phenology?  
Chapter 3: Can novel methods improve our ability to detect and monitor tundra 
vegetation change across multiple scales?  
Chapter 4: How does tundra vegetation productivity and phenology vary across 
space and time?  
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By addressing these questions, the research in this thesis furthers our ability to 
improve predictions of future tundra vegetation change, its implication for plant 
consumer interactions and feedbacks on global climate change. 
 
Methods and datasets 
Study Sites  
This thesis contains observations from four study sites distributed across the tundra 
biome (Figure 1-6): Qikiqtaruk – Herschel Island (YT, Canada), Alexandra Fiord (NU, 
Canada), Utqiaġvik – formerly Barrow (AK, USA) and Zackenberg (Greenland). The 
sites cover a wide geographical range and a diversity of tundra types. The vegetation 
on  Qikiqtaruk (138.91 W, 69.57 N) in the mid-Arctic is erect dwarf shrub tundra, while 
Alexandra Fiord (75.92 W, 78.88 N) on Ellesmere Island has high-Arctic tundra 
communities on glacio-fluvial sediment composed of mixtures of granitic and 
carbonate rocks, Utqiaġvik (156.62 W, 71.317 N) consists of wet meadow and heath 
tundra, and the Zackenberg (20.56 W, 74.47 N) site has high-Arctic tundra on 
noncarbonated bedrock. While in situ observations of phenology from all sites are 
included in the research of Chapter 2, Qikiqtaruk is the focal study site of Chapter 3 
and 4, and is the location where I conducted two field seasons, collecting data that 
contributed to the analysis of the two chapters. The climate at all four sites has been 
warming over the last 20 years at different rates (Figure 1-7). 
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Figure 1-6 | (A) Map of the sites studied in this thesis. Including Qikiqtaruk, YT 
Canada; Utqiaġvik, AK, USA; Alexandra Fiord, Nunavut, Canada; and Zackenberg in 
Eastern Greenland. (B) Boundaries of the tundra (green) as defined by the Circum-
polar Arctic Vegetation Map (CAVM, 2003). 

 

 
Figure 1-7 | Mean annual temperature trends for the four study sites included in this 
thesis: Alexandra Fiord on Ellesmere Island, NU, Canada; Utqiaġvik – formerly known 
as Barrow, AK, USA; Qikqitaruk – Herschel Island, YT, Canada; and Zackenberg, 
Greenland. Asterisk (*) indicates a statistically significant linear trend. 
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In situ phenology and snowmelt observations 
Phenological observations for the four research sites used in Chapter 2 were obtained 
as a subset of the most recent version of the International Tundra Experiment (ITEX) 
(Henry & Molau, 1997; Webber & Walker, 1991) phenology control dataset (Prevéy 
et al., 2017). Snowmelt observations for the study sites are also included. The subset 
contained a total of 8469 of observations for 14 species and two phenological events 
(spring green up and flowering), resulting in a total of 24 time-series of unique site-
species-phenological event combinations with an average span of 18 years. 
Additional data for 2016 was included for the Qikiqtaruk site and plot-level data added 
for the Zackenberg site. The dataset was originally compiled by Oberbauer et al. 
(2013) and updated by Prevéy et al. (2017) and is openly available via the Polar Data 
Catalogue (CCIN reference Number 12722, 
www.polardata.ca/pdcsearch/PDCSearchDOI.jsp?doi_id=12722).  
 
Weather station temperature data 
Temperature data for the analysis of the effect of the environmental predictor on 
variation in in situ phenological observations (Chapter 2), were obtained from publicly 
available weather station data at the four study sites: Environment Canada - 
Qikiqtaruk and Alexandra Fiord, NOAA Earth System Research Laboratory - 
Utqiaġvik, and Greenland Ecological Monitoring (GEM) Programme - Zackenberg. 
The temperature observations were cleaned and, in the case of Qikiqtaruk and 
Alexandra Fiord, gap filled as detailed in Chapter 2.  
 
Sea-ice concentrations from passive-microwave satellite data 
Passive-microwave satellite observations estimates of Arctic sea-ice concentrations 
from the US Defence Meteorological Satellite Program (DMSP) and NOAA Nimbus 
satellites are used to test the effect of sea-ice conditions on tundra spring phenology 
in Chapter 2. Pre-processed data was obtained from the NOAA/NSIDC Climate 
Data Record (CDR) version 3 (Meier et al., 2017; Peng, Meier, Scott, & Savoie, 
2013). 
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Multispectral Satellite Observations 
Satellite NDVI products for the tests of cross-platform correspondence of satellite and 
drone observations of tundra vegetation productivity at Qikiqtaruk (Chapter 4) were 
obtained from the following two publicly available datasets: 
 

MODIS - MOD13Q10 version 6  
NDVI values derived from 16-day composites of multispectral reflectance 
observations by the Moderate Resolution Imaging Spectrometer (MODIS) on 
the NASA Terra satellite. The data has a ground sampling distance of 250 m 
and has been highly pre-processed including atmospheric correction, 
maximum cloud free pixel selection in the 16 day composites and quality 
estimates (Didan, 2015). Pixel values of the study plots used in Chapter 4 
were obtained through the Google Earth Engine (Gorelick et al., 2017). 

 
Sentinel 2 MSI - L2A 
Multispectral imagery from the European Union’s Multispectral Imager (MSI) 
on the Sentinel 2 satellites at a 10 m ground sampling resolution. Images were 
obtained from the Copernicus Open Access Hub 
(https://scihub.copernicus.eu/) and processed to L2A bottom of the 
atmosphere reflectance products using Sen2Cor 2.4.0 (Mueller-Wilm, 2017). 

 
 
Multispectral Drone Imagery 
Within-growing season time-series of fine-grain multispectral drone imagery for 
observations of tundra greenness at Qikiqtaruk (Chapters 3 and 4) were obtained with 
Parrot Sequoia (Parrot, France - https://www.parrot.com) compact multispectral 
drone sensors mounted on light-weight multi-copter drones during the growing 
seasons of 2016 and 2017. In 2016, a Tarot 680 Pro (Tarot, Wenzhou, China - 
http://tarotrc.com) based hexa-copter was used, while the 2017 surveys were 
conducted using either a 3DR Iris Pro (3DR Robotics, Berkley, CA, USA - 
https://3dr.com/) or DJI Phantom 4 Pro (Shenzen, China - https://www.dji.com/) . Data 
was collected over two field seasons in 2016 and 2017, and post processed using 
Pix4D Desktop (Pix4D, Lausanne - https://www.pix4d.com/) to obtain surface 
reflectance maps from which the NDVI values were calculated. 
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The end of winter on Qikiqtaruk: snow, sea-ice and cold temperatures. 
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Abstract 
Changes in phenology are amongst the most well-documented effects of climate 
change on global biological systems and directly affect ecosystem functions such as 
net productivity and trophic interactions. The Arctic is undergoing dramatic 
environmental change with rapidly rising surface temperatures, accelerating sea-ice 
decline and changing snow regimes, all of which are expected to influence tundra 
plant phenology. Despite these changes, no globally consistent trends in Arctic spring 
phenology have been reported. Instead a more complicated picture is emerging: while 
spring advances are reported for some sites, others show delays or no change, 
highlighting a substantial amount of unexplained variation amongst the trends. 
Though temperature, snowmelt and sea-ice have been identified as environmental 
controls on tundra spring phenology, their relative influence across different species 
and sites has not been evaluated in a single comprehensive analysis. Here, we test 
the importance of local average spring temperatures, local snowmelt date and 
regional spring drop in sea-ice extent as controls of variation in long-term time-series 
of spring leaf out and flowering (average span: 18 years) of 14 species from the 
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International Tundra Experiment (ITEX) phenology dataset. We show that variation in 
spring plant phenology is best explained by snowmelt date and, to a lesser extent, by 
average spring temperature at four tundra sites across the Arctic coasts of Alaska, 
Canada and Greenland. In contrast to previous studies, sea-ice did not predict spring 
phenology for any species or site. Our findings highlight that tundra vegetation 
responses to global change are more complex than a direct response to warming 
temperatures and emphasize the importance of snowmelt as a local driver of tundra 
spring phenology.  
 
Introduction 
The importance of phenology and global change 
Changing phenology is considered one of the most apparent effects of climate change 
on natural systems world-wide (Cleland, Chuine, Menzel, Mooney, & Schwartz, 2007; 
IPCC, 2014; Menzel et al., 2006; Parmesan & Yohe, 2003). Phenological processes 
control ecosystem functions (Ernakovich et al., 2014; Richardson et al., 2013), are 
linked through feedbacks to the climate system (Richardson et al., 2013) and 
contribute to structuring food webs through trophic interactions (Kharouba et al., 2018; 
Visser & Both, 2005). In high latitude ecosystems, the onset of plant growth in spring 
and senescence in autumn are linked with ecosystem net productivity (Matthias 
Forkel et al., 2016; Park et al., 2016; Piao et al., 2008; Xu et al., 2013) and food 
availability for herbivores (Barboza, Van Someren, Gustine, & Bret-Harte, 2018; 
Doiron, Gauthier, & Lévesque, 2015; Gustine et al., 2017; Kerby & Post, 2013b, 
2013a; Post, Pedersen, Wilmers, & Forchhammer, 2008). Particularly for the highly-
seasonal Arctic tundra, varying phenological responses to environmental drivers 
among species or taxa yield a high potential for phenological mismatch (Doiron et al., 
2015; Kerby & Post, 2013b; Post et al., 2008). Tundra plants are temperature 
sensitive, especially at high latitudes (Prevéy et al., 2017), but no net advance in leaf 
or flowering phenology has been observed across the biome (Bjorkman, Elmendorf, 
Beamish, Vellend, & Henry, 2015; Steven F. Oberbauer et al., 2013; Post, Kerby, 
Pedersen, & Steltzer, 2016) despite Arctic surface temperatures rising at twice the 
global average (IPCC, 2014; Winton, 2006). Instead a more complex picture is 
emerging, highlighting a considerable amount of unexplained variation in phenology 
across sites, species and phenological events (Bjorkman et al., 2015; Steven F. 
Oberbauer et al., 2013; Post & Høye, 2013; Post et al., 2016; Prevéy et al., 2017).  
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Variation in plant phenology – what controls it? 
A detailed understanding of which environmental variables serve as cues for Arctic 
spring phenology is key for explaining the absence of an overall trend in phenology 
across sites despite rapid warming, and is critical for predicting future responses of 
Arctic ecosystems to the effects of climate and environmental change (Richardson et 
al., 2013). Interannual variation in tundra phenology has been attributed to variation 
in temperature (Bjorkman et al., 2015; Iler, Inouye, Schmidt, & Høye, 2017; Molau, 
Urban Nordenhäll, & Bente Eriksen, 2005; Steven F. Oberbauer et al., 2013; Panchen 
& Gorelick, 2017; Prevéy et al., 2017; H. C. Wheeler, Høye, Schmidt, Svenning, & 
Forchhammer, 2015), snowmelt (Bjorkman et al., 2015; Iler et al., 2017; Semenchuk 
et al., 2016) and sea-ice (Kerby & Post, 2013a; Post et al., 2016). To date, no study 
has combined all three environmental variables to test the degree to which snowmelt, 
temperature and sea-ice melt influence spring phenological events (leaf-out and 
flowering time) in the Arctic tundra across multiple coastal sites. 
 
Temperature as a driver 
The environmental variable most widely used to explain variation in spring 
phenological events across latitudes and seasons is temperature (Post, Steinman, & 
Mann, 2018; Thackeray et al., 2016). This includes the phenology of both Arctic and 
alpine tundra plants (Bjorkman et al., 2015; Huelber et al., 2006; Iler et al., 2017; Kuoo 
& Suzuki, 1999; Molau et al., 2005; Steven F. Oberbauer et al., 2013; Panchen & 
Gorelick, 2017; Prevéy et al., 2017; Thórhallsdóttir, 1998; H. C. Wheeler et al., 2015). 
Temperature influences phenology because plant metabolism and development 
increase in response to warmer ambient temperatures (Jones, 2013). Average 
temperatures over a predefined period (Bjorkman et al., 2015; Iler et al., 2017; 
Panchen & Gorelick, 2017; Prevéy et al., 2017) as well as cumulative temperatures 
up to the onset of a phenological event (Barrett, Hollister, Oberbauer, & Tweedie, 
2015; G. H. R. Henry & Molau, 1997; Huelber et al., 2006; Kuoo & Suzuki, 1999; 
Molau et al., 2005; Steven F. Oberbauer et al., 2013; H. C. Wheeler et al., 2015) have 
been shown to explain variation in Arctic and alpine plant phenology, and a minimum 
heat energy requirement for phenological progress has been suggested (Huelber et 
al., 2006; Molau et al., 2005). The strength of phenological responses to temperature 
within a species is not necessarily conserved across its whole range and may vary at 
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the site- (Prevéy et al. 2017) and plot-level (Post et al., 2009, Høye et al.,  2013) 
Nonetheless, in highly seasonal tundra ecosystems, temperatures are only one factor 
determining spring plant phenology. 
 
Snowmelt as a driver 
Snow distribution is a major determinant of vegetation composition in Arctic and alpine 
environments (Billings & Bliss, 1959; Molau et al., 2005; Wipf & Rixen, 2010) and 
snowmelt date has been shown to explain variation in spring phenology in both Arctic 
and alpine tundra (Bjorkman et al., 2015; Cooper, Dullinger, & Semenchuk, 2011; 
Cortés et al., 2014; Iler et al., 2017; Semenchuk et al., 2016; Sherwood, Debinski, 
Caragea, & Germino, 2017; Molau et al., 2005; Wipf, 2009; Wipf, Stoeckli, & Bebi, 
2009; but see Thórhallsdóttir, 1998). During snowmelt, tundra plants experience 
dramatic changes in their immediate environment: light availability increases and leaf 
surfaces are exposed to atmospheric temperatures and CO2 concentrations (Starr & 
Oberbauer, 2003), which in turn stimulate plant metabolic and developmental activity 
(Jones, 2013). In addition, snowmelt may act as an indicator for suitable growing 
conditions (H. C. Wheeler et al., 2015). Prior to melt, the insulation of the snow layer 
protects the plants from frost damage and desiccation (Mølgaard P. & Christensen 
K., 2003; Sherwood et al., 2017; H. C. Wheeler et al., 2015; Wipf & Rixen, 2010; Wipf 
et al., 2009) and reduces early-season herbivory (J. A. Wheeler et al., 2016), while 
after snowmelt the availability of soil moisture and nutrients is increased (Wipf & 
Rixen, 2010). Plants may therefore experience strong evolutionary pressure to adapt 
spring metabolic activity to coincide with the timing of snowmelt (Cortés et al., 2014). 
In fact, some species can begin development once the snow pack is thin enough to 
allow sufficient light and diurnal temperature variations (Larsen, Ibrom, Jonasson, 
Michelsen, & Beier, 2007; Starr & Oberbauer, 2003). Although spring temperatures 
influence snowmelt date, snowmelt is a complex function of winter precipitation, 
topography, prevailing wind conditions and radiative exposure across the landscape 
(Billings & Bliss, 1959; Bjorkman et al., 2015; Molau & Mølgaard, 1996; J. A. Wheeler 
et al., 2016), and can be partially decoupled from spring temperatures (Bjorkman et 
al., 2015; H. C. Wheeler et al., 2015). 
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Sea ice as a driver 
Variation in tundra phenology and productivity has also been attributed to sea-ice 
conditions, including the northern hemisphere annual minimum sea-ice extent and 
January mean extent (Bhatt et al., 2010; Forchhammer, 2017; Kerby & Post, 2013a; 
Macias-Fauria, Karlsen, & Forbes, 2017; Macias-Fauria & Post, 2018; Post et al., 
2013, 2016). Macias-Fauria et al. (2017) found linkages between regional sea-ice 
conditions and satellite derived early-season vegetation productivity on eastern 
Svalbard and suggested that cool sea breeze off sea-ice along the adjacent coast 
may influence land surface temperatures through cold air advection (Haugen & 
Brown, 1980). The presence of sea ice in coastal environments could also influence 
atmospheric humidity (Screen & Simmonds, 2010) and light availability through cloud 
and fog formation during spring ice melt (Tjernström et al., 2015), thus providing a 
plausible mechanism that could explain plant phenology at coastal tundra sites 
separately to the influence of sea-ice on local temperatures via sea-breeze. 
Alternatively, sea ice conditions could be an aggregate indicator of environmental 
conditions at regional scales (Kerby & Post, 2013a; Macias-Fauria & Post, 2018; Post 
et al., 2013) and may not have a direct and localised mechanistic link as a control 
over tundra plant phenology.   
 
In this study, we test the importance of temperature, snowmelt and onset of regional 
sea ice melt as controls over variation in spring plant phenology using a dataset of 
plant phenology observations on 14 species spanning up to 21 years at four coastal 
tundra sites. Specifically, we address the following three questions: (1) To what extent 
do trends in plant spring phenological events vary among sites and species? (2) How 
have the environmental conditions changed at each site over the time-period of 
monitoring? (3) What is the relative explanatory power of snowmelt date, spring 
temperatures and the date of spring drop in regional sea-ice extent in a multi-predictor 
model of spring phenology at the study sites?  Our analysis therefore allows us to test 
the strength of the statistical relationships among the three most commonly suggested 
cues for tundra spring plant phenology across tundra species and sites: temperature, 
snowmelt and sea ice, and will contribute to improved predictions of the response of 
tundra plant communities to changing growing conditions. 
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Materials and methods 
Phenological Observations 
The observations of phenology used in this paper are a subset of the most recent 
version of the International Tundra Experiment (ITEX) (G. H. R. Henry & Molau, 1997; 
Webber & Walker, 1991) phenology control dataset (Prevéy et al., 2017). The dataset 
is openly available via the Polar Data Catalogue (CCIN Reference Number 12722, 
www.polardata.ca/pdcsearch/PDCSearchDOI.jsp?doi_id=12722) and was originally 
compiled by Oberbauer et al. (2013). All observations were recorded according to 
methods outlined in the ITEX Manual (Molau & Mølgaard, 1996). See also Oberbauer 
et al. (2013) and Prevéy et al. (2017), as well as Bjorkman et al. (2015), Cooley et al. 
(2012), Hollister et al. (2005) and Schmidt et al. (2016) for site-specific descriptions 
of methods. We obtained a subset of the ITEX dataset for coastal sites by exclusion 
based on the following criteria: a) coastal proximity (less than 3 km from the sea), b) 
data record spanning more than 10 years, and c) snowmelt timing data available. Four 
sites met these criteria: Alexandra Fiord (NU, Canada), Qikiqtaruk – Herschel Island 
(YT, Canada), Utqiaġvik – formerly Barrow (AK, USA) and Zackenberg (Greenland). 
We have included additional 2016 data for the Qikiqtaruk site and plot-level data for 
the Zackenberg site. 
 
Site descriptions 
The selected sites include mid Arctic (Qikiqtaruk and Utqiaġvik) and high Arctic 
(Alexandra Fiord and Zackenberg) sites, and cover a wide geographical range (Figure 
2-1) and diversity of tundra types: Alexandra Fiord (75.92 W, 78.88 N) on Ellesmere 
Island has tundra communities on glacio-fluvial sediment composed of mixtures of 
granitic and carbonate rocks; Utqiaġvik (156.62 W, 71.317 N) consists of wet meadow 
and heath tundra; the vegetation at Qikiqtaruk (138.91 W, 69.57 N) is erect dwarf 
shrub tundra; and the Zackenberg (20.56 W, 74.47 N) site has Arctic tundra on 
noncarbonated bedrock.  
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Figure 2-1 | Locations of the four sites included in this study: Alexandra Fiord (NU, 
Canada), Qikiqtaruk (YT, Canada), Utqiaġvik (AK, USA) and Zackenberg 
(Greenland). 

 
Selected species and phenological event 
Our final subset of the ITEX data contained 14 species (Cassiope tetragona D.Don, 
Dupontia psilosantha Ruprecht, Dryas integrifolia Vahl, Dryas octopetala L., 
Eriophorum vaginatum L., Luzula arctica Blytt, Luzula confusa Lindeb., Oxyria digyna 
Hill, Papaver radicatum Rottb., Poa arctica R.Br., Salix arctica Pall., Salix rotundifolia 
Trautv., Saxifraga oppositifolia L., Silene acaulis (L.) Jacq.), which represent the 
dominant plants in the communities at the selected sites. We selected all species-
phenological event combinations that occurred in spring (mean phenological event 
occurring within 30 days of mean snowmelt at each site). For Utqiaġvik and Qikiqtaruk 
this selection resulted in 38 and 2 species-phenological event combinations 
respectively. To obtain a more balanced and biologically representative sample 
across sites, we narrowed down the Utqiaġvik subset further by selecting only species 
that make up at least 10% of the ITEX community composition plots at the site and 
extended the Qikiqtaruk dataset by one additional species whose mean phenological 
event was the next earliest in the record of the site. The final subset contained a total 
of 8469 observations for 14 species and two phenological events (spring green up 
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and flowering), resulting in a total of 24 unique site-species-phenological event 
combinations (Table 2-1). Phenological events were defined differently for each plant 
species (Molau & Mølgaard, 1996), but recorded consistently over time (Prevéy et al., 
2017). Depending on the species, ‘green up’ was defined as the date of leaf 
emergence - the date when the first leaf was visible or open, and ‘flowering’ was 
defined as the date when either the first flower was open, the first pollen was visible 
or the first anthers were exposed (Prevéy et al., 2017). 
 
Table 2-1 | Full species names, phenological event, start, end and length of time-
series in years, years with observations in the time-series and colours used for the 
site-species-phenological event combinations in the dataset. 

Site  Species 
Phenology 

Event 
Start 
Year 

End 
Year 

Time-Series 
Length (yrs.) 

Years 
with obs. 

Colour 

A
le

xa
nd

ra
 F

io
rd

 

Dryas integrifolia flowering 1993 2013 21 

21 

15  

Dryas integrifolia green up 1993 2013 14  

Luzula spp.* flowering 

flowering 

1992 2003 12 10  

Oxyria digyna 1992 2013 22 

22 

22 

22 

18 

18 

18 

18 

 

Oxyria digyna green up 1992 2013  

Papaver radicatum flowering 1992 2013  

Papaver radicatum green up 1992 2013  

Salix arctica flowering 1995 2013 19 14  

U
tq

ia
ġv

ik
 

Cassiope tetragona green up 

green up 

1997 2014 18 12  

Dupontia psilosantha 1995 2014 20 14 

14 

14 

 

Luzula arctica flowering 1994 2014 21 

21 

21 

21 

21 

 

Luzula arctica green up 1994 2014  

Poa arctica green up 1994 2014 15 

15 

15 

 

Salix rotundifolia flowering 1994 2014  

Salix rotundifolia green up 1994 2014  

Q
ik

iq
ta

ru
k Dryas integrifolia flowering 2001 2016 16 16  

Eriophorum vaginatum flowering 2002 2016 15 15  

Salix arctica green up 2001 2016 16 16  

Za
ck

en
be

rg
 

Cassiope tetragona 

flowering 1996 2011 16 16 

 

Dryas octopetala  

Papaver radicatum  

Salix arctica  

Saxifraga oppositifolia  

Silene acaulis  

    *includes L. arctica and L. confusa 
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Snowmelt dates 
Snowmelt dates were determined at the plot or site level with site-specific protocols 
based on the guidelines in the ITEX manual (Molau & Mølgaard, 1996). Alexandra 
Fiord snowmelt dates were recorded for each plot as the first day of year at which at 
least 90% of the plot was snow free. Twenty percent of the snowmelt dates at 
Alexandra Fiord were unobserved. The missing values were gap-filled as detailed in 
Bjorkman et al. (2015). Utqiaġvik snowmelt dates were based on visual observations 
of when the plot was 100% snow free or soil surface temperatures when snowmelt 
occurred in years prior to visual estimates. Snowmelt dates on Qikiqtaruk were 
determined for each monitored plant individual or plot and recorded as the first date 
in the year when the individual or plot area was >90% snow free (Cooley et al., 2012). 
Zackenberg snowmelt dates were determined by multiple visits to the designated 
plant phenology plots across the landscape. Snowmelt dates were defined as the day 
at which 50% bare-ground was first visible at a given plot (Schmidt, Hansen, et al., 
2016). As not all plant phenology plots at Zackenberg were included in the snowmelt 
observations, we used the mean snowmelt date of the monitored plots to predict 
spring phenology at the site. The variation in methods for recording snowmelt are due 
to the use of different protocols for long-term snowmelt monitoring across these sites. 
 
Spring Temperatures  
Daily average air temperatures were obtained from local weather stations (Appendix 
Table 1) and annual ‘spring’ averages calculated for each site-species-phenological 
event time-series. We defined spring average temperature as the mean daily 
temperature within a calendar year from the earliest snowmelt date on record to the 
day at which 75% of the phenological event had occurred across the whole length of 
the time-series. Each time-series therefore had its ‘own’ specific time-frame across 
which temperatures were averaged. The period was chosen to capture a static time-
window during which the plants are likely to strongly respond to ambient temperatures 
for each given phenological event. For cross-site comparison of spring temperature 
change, we calculated spring averages using same approach but applied to the 
pooled phenology time-series data for each site. These site-specific spring 
temperatures therefore represent the yearly temperatures from the day of snowmelt 
to the day when 75% of phenological events occurred within the community across 
the record of the site. 
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Day of spring drop in regional sea ice extent 
We decided to use the date of spring drop in regional sea-ice extent as it represents 
the shift from ice covered to ice “free” ocean (the minimum sea ice extent in a given 
year) in the region surrounding the study site, and hence a change in microclimatic 
conditions that may act as phenological cues to the tundra plants at our study sites. 
We hypothesised that, if sea-ice influences plant phenology due to changing light and 
moisture availability, the time point at which the system shifts its state would carry the 
highest explanatory power for spring plant phenology at the sites. If air temperatures 
alone act as the proximate cue, any influence of sea-ice on air temperatures would 
appear as an effect of temperature in our statistical analysis. We also tested the model 
using average regional sea-ice extent for the period including the months of May, 
June and July (Appendix Table 2) and found consistent results to the model with 
spring drop in sea-ice extent.  
 
The yearly spring drop in sea-ice extent was determined from the NOAA/NSIDC 
Climate Data Record (CDR) v3 Passive Microwave Sea-Ice Concentrations (Meier et 
al., 2017; Peng, Meier, Scott, & Savoie, 2013). The data are provided in the NSIDC 
polar stereographic grid (NSIDC, 2018). We calculated daily regional sea-ice extent 
for each site within a bounding box of 21 x 21 grid cells (approximately 525 km x 525 
km) centred on the cell containing the study site. We used sea ice extent, rather than 
the raw sea-ice concentrations from the passive microwave data as sea ice extent is 
more reliable during melt (Worby & Comiso, 2004). To avoid effects of land overspill 
(Cavalieri, Parkinson, Gloersen, Comiso, & Zwally, 1999), we removed all cells that 
were directly adjacent to the coastline, retaining only cells that were at least one cell 
removed from land.  Daily regional sea-ice extent was calculated as the total area of 
cells within the bounding box for which the sea-ice concentration was at least 15%. 
The day associated with the spring drop in sea ice extent for each year and region 
was then determined as the day of year (DOY) closest to the annual minimum where 
the sea-ice extent drops below 85% of the total area (Appendix Figure 1). Our 
measure therefore picks up the final melt event that leads up to the annual minimum 
sea-ice extent being reached within a given region and year. Thus, the measure 
allows for fluctuations in the regional sea-ice extent above and below the 85% mark 
in the time leading up to the final melt event.  
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Statistical analysis 
We estimated slope parameters for the temporal trends in plant phenological events 
and environmental predictors using interval-censored and Gaussian-response 
Bayesian mixed models (respectively) of the MCMCglmm package (Hadfield, 2010) 
in the R Statistical Environment version 3.4.3 (R Core Team, 2018). We carried out 
the variance partitioning of the environmental predictors on spring phenology using 
an interval-censored mixed model using the same package.  
 
Interval-censored phenology observations 
For the interval-censored models (Bjorkman et al., 2015; Hadfield, Heap, Bayer, 
Mittell, & Crouch, 2013), we defined the upper interval bound as the day of year at 
which the phenological event was first observed. Lower bounds were defined 
depending on whether prior visits to the monitored individuals / plots were recorded 
or not. For Alexandra Fiord, Utqiaġvik and Zackenberg no record of prior visits were 
available and the lower bound was set to the last day at which an observation was 
recorded at the site prior to the event. The Qikiqtaruk dataset included records of all 
dates the plots were visited, independent of whether a phenological event was 
observed or not. We used the last recorded visit prior to the observed phenological 
event to define the lower bounds of the interval at this site. For phenological 
observations where no prior date was available (i.e., at the beginning of the year) the 
lower bound was set as the minimum snowmelt date recorded at the relevant site 
across the whole study period. Average interval length between observations were 
3.2 days for Qikiqtaruk, 3.8 days for Alexandra Fiord and Utqiaġvik, and 6.5 days for 
Zackenberg. 
 
Phenology trends 
Slope estimates for trends in phenological events were determined using a separate 
model for each site-species-phenological event combination with the following 
structure: 
 

!"#$%&'(, &*+, = . + 01234 + ⍺+'(6 + 71234 + 8 

 
Where &'( and &*+ are the lower and upper bounds of the interval in which the 

phenological event occurred, with a uniform likelihood of occurrence across the 
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interval; . is the global intercept, 01234 is the slope parameter for the trend across 

years; ⍺+'(6 and 71234 are the random intercepts for plot and year respectively, and 8 

is the residual error. ⍺+'(6 , 71234 and 8 were normally distributed with a mean of zero 

and a variance estimated from the data. We included plot and year as categorical 
random intercepts to account for the replication of phenological observations at each 
plot over time and at each site in each year. 
 
Environmental predictor trends 
Trends in annual mean day of snowmelt, site-specific spring temperature and spring 
drop in regional sea-ice extent were modelled individually for each site with the 
following model formula: 
 

& = . +	01234 + 8 

 
Where & is the value of the environmental predictor for a given year; . is the global 
intercept of the model; 01234 is the slope parameter for the trend across years; and 8 

the residual error. 8 was distributed normally around zero with a variance estimated 
from the data. We did not include a random intercept for year or plot, as there was no 
within-year replication of the site-specific environmental variables.  
 
We used weakly informative priors for all parameter estimates (inverse Wishart priors 
for residual variances and normal priors for the fixed effects) when modelling the 
trends in phenological events and environmental predictors (Hadfield, 2017). 
Convergence of these models was assessed through examination of the trace plots. 
 
Prediction analysis 
We used a single global model for all site-species-phenological event combinations 
to estimate the effect of the environmental predictors on spring phenological events. 
The predictor variables were within subject mean centred for each site-species-
phenology event combination (van de Pol & Wright, 2009) and scaled by the standard 
deviation to allow for direct comparison between the effect sizes (Schielzeth, 2010). 
The model was structured as follows: 
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!"#$%&'(,:, &*+,:, = 		 .̅ +	 0̅<=(> + 0̅62?+ + 0̅:@2	 + 0̅1234																																							 

+0<=(>,: + 062?+,: + 0:@2,: + 01234,: 

							+⍺<:62 + ⍺+'(6 + ⍺1234 + ⍺<:62:1234 + 8 

 
Where &'(,: and &*+,: are the upper and lower bounds of the interval in which a 

phenological event of the site-species-phenological event combination # occurred, 
with a uniform likelihood of occurrence across the interval; .̅ the global intercept; 

0̅<=(>, 0̅62?+, 0̅:@2	and 0̅1234	 the mean slope parameters for snowmelt, spring 

temperature, day of spring drop in sea ice extent and year respectively; 
0<=(>,:,	0	62?+,:,	0:@2,: and 01234,: the site-species-phenological event specific slopes 

for snowmelt, spring temperature, onset of sea-ice melt and year respectively; ⍺<:62,  
⍺+'(6, ⍺1234 and ⍺<:62:1234 the random intercepts for site, plot, year and site-year 

interaction; 8 the residual error. The random intercepts and the residual error were 
normally distributed around a mean of zero with variances estimated from the data.  
 
For each fixed effect B, the site-species-phenological event specific effects (0C,:) were 

drawn from a normal distribution with estimated variance around the mean slope 0̅C 
of the fixed effect. We included year as a continuous predictor to account for the 
effects of variables that have changed linearly over years and were not included in 
the analysis in addition to the modelled fixed effects (Iler et al., 2017; Keogan et al., 
2018). Furthermore, we added random intercepts for plot and year to account for the 
nonindependence of plots measured repeatedly over time as well as the 
nonindependence of observations conducted in the same year at a given site. Finally, 
a year-site interaction was included to allow for the year effect to vary among locations 
(i.e., early year at Alexandra Fiord is not necessarily an early year at Qikiqtaruk). Our 
model does not allow for: 1) a correlation of responses across species at a site, 2) the 
correlation of species responses across sites, 3) the correlation of a species’ 
response across phenological events, and 4) plot-level variation in the estimated 
slope parameters. We did not consider interactions between the environmental 
predictors, as we had no a priori prediction of a consistent directional interaction effect 
that would apply across species and locations.  
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The random slope and intercept parameters of the prediction analysis model were 
estimated using an unstructured covariance matrix, which allowed for covariance 
between slopes and the intercept (Hadfield, 2017). We used weakly informative priors 
for all coefficients (parameter-expanded inverse Wishart priors for the variances and 
normal priors for the fixed effects). The prediction analysis model was run with four 
chains and convergence was confirmed through examination of the trace plots and 
Gelman-Rubin diagnostics (Gelman & Rubin, 1992).  
 
Environmental predictors were tested for multicollinearity with variance inflation 
factors using the R package usdm (Naimi, Hamm, Groen, Skidmore, & Toxopeus, 
2014) prior to execution of the model runs. The variance inflation factors for all three 
variables were below 1.27, suggesting no problems with multicollinearity. The highest 
correlation coefficient was observed between spring temperatures and drop in sea ice 
extent (-0.38). We also ran reduced models of the global model, only containing a 
single environmental predictor (Appendix Table 5), which allowed us to test for indirect 
mechanisms linking two of the environmental predictors (e.g., sea-ice and 
temperature).  
 
Due to the absence of plot-level snowmelt observations at Zackenberg the effect of 
snowmelt at the Zackenberg site is solely due to among year variation, whereas at 
Alexandra Fiord, Utqiaġvik and Qikiqtaruk the effect of snowmelt is affected by both 
among year and among plot variation. Hence, our modelled estimates of the day of 
snowmelt effect at Zackenberg may be biased up or down due to the loss of within 
site variation in snowmelt date. We also ran the model with average annual snowmelt 
values for all sites and observed comparable results to the original model with a slight 
reduction in the explanatory power for snowmelt date (Appendix Table 2). Our original 
model may therefore be underestimating the effect of snowmelt date at the 
Zackenberg site. 
 
We refer to environmental predictors and trends as ‘significant’ when the 95% credible 
interval (CI) for the corresponding parameter of the fitted models did not overlap zero. 
Code is available at the following GitHub link: (to be added at the time of publication). 
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Results 
We observed strong variation in both the timing of annual mean spring phenological 
events and their trends across the study periods for all species-phenological event 
combinations and sites (Figure 2-2). While the trends indicate that spring is advancing 
overall at Qikiqtaruk and Zackenberg, not all species or phenological events showed 
significant trends at the two sites. In addition, we found little to no evidence for 
changes in the onset of spring at Alexandra Fiord and Utqiaġvik. Estimated rates of 
change varied from an advance of 10.06 days per decade (CI: -18.77 to -1.35 for 
Cassiope tetragona flowering at Zackenberg) to a delay of 1.67 days per decade (CI: 
-2.61 to 5.86 for Oxyria digyna flowering at Alexandra Fiord), with five site-species-
phenological event combinations advancing significantly and 19 combinations 
showing no significant change (Appendix Table 3). 
  

 

Figure 2-2 | Annual mean spring phenology and trends for the species-phenological 
event combinations at Alexandra Fiord, Utqiaġvik, Qikiqtaruk and Zackenberg. Trend 
lines were fitted with Bayesian interval censored models and shaded areas indicate 
95% credible intervals. For a detailed list of the phenological event and species 
combinations monitored see Table 2-1. For graphical clarity, the credible intervals for 
the Silene acaulis flowering time-series at Zackenberg are not shown. A low number 
of plot-level estimates with high variation in trends resulted in high uncertainties of the 
model estimates for this time-series. See Appendix Figure 2 for a plot including the 
credible intervals for the S. acaulis time-series. 
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The observed trends in environmental predictors indicate notable changes in spring 
climate and environment at all sites across the study periods (Figure 2-3). Snowmelt 
dates advanced by 8.15 days per decade (CI: -16.19 to 0.31) at Qikiqtaruk and by 
10.22 days per decade (CI: -22.51 to 2.06) at Zackenberg, but the trends were 
marginally non-significant. No significant change was observed at Alexandra Fiord (-
0.61 days per decade; CI: -4.19 to 2.98) and Utqiaġvik (-1.41 days per decade; CI: -
6.24 to 3.46) (Appendix Table 4). Average spring temperatures across the site-
specific “spring” periods increased significantly at all sites during the years monitored 
respectively, with Qikiqtaruk experiencing the strongest trend of 2.30 °C warming per 
decade (CI: 0.78, 3.83) and Alexandra Fiord experiencing the weakest trend of 0.63 
°C warming per decade (CI: 0.01, 1.24) (Appendix Table 4).The date of spring drop 
in sea-ice advanced for all sites, roughly mirroring the trends in temperature with 
onset dates becoming earlier by -10.28 days per decade (CI: -56.07; 34.36 at 
Zackenberg) to -46.39 days per decade (CI: -73.21, -19.40; at Qikiqtaruk) (Appendix 
Table 4). However, the variation in onset of sea-ice melt among years was substantial 
for all sites and particularly high for Zackenberg, and only the declining trend at 
Qikiqtaruk was statistically significant. 
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Figure 2-3 | Trends in site averages for snowmelt date (A), ‘spring’ temperature (B) 
and onset of regional sea-ice melt (C) for Alexandra Fiord, Utqiaġvik, Qikiqtaruk and 
Zackenberg for the years in the phenological records. Trend lines were fitted using 
Bayesian linear models and shaded areas represent 95% credible intervals. ‘Spring’ 
temperatures represent yearly averages of daily temperatures within the site-specific 
time-frames from the earliest day-of-year of snowmelt on record to the day of year 
where 70% of the spring phenological events occurred in the pooled community 
record of a given site. Due to these site-specific time-frames Alexandra Fiord 
represents the ‘warmest’ spring temperatures despite being the northernmost site.  
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Snowmelt date consistently predicted phenology ( 

Figure 2-4 and Appendix Figure 3) with a mean scaled effect size of 3.26 (CI: 2.63 to 
3.91) - corresponding to 0.45 days advance in phenology per day advance in 
snowmelt – and an associated variance in slopes of 1.82 (CI: 0.89 to 3.55), which and 
95% of the site-species-phenology event combinations being predicted to respond in 
the range of 0.09 to 0.82 days advance in phenology per day advance in snowmelt. 
Temperature explained variation in spring phenology for some, but not all, species-
phenological event combinations with a mean scaled effect size of -2.21 (CI -3.04 to 
-1.39) and associated slope variance of 3.15 (CI: 1.51 to 6.10), which corresponds to 
2.39 days advance in phenology per °C  increase and 95% of the site-species-
phenological event combinations being predicted to respond in the range of 6.16 days 
advance to 1.38 delay in phenology per °C increase. The spring drop in regional sea-
ice extent was a poor predictor in all cases with a mean scaled effect size of -0.01 
(CI: -0.94 to 0.91) and associated slope variance of 0.81 (CI: 0.28 to 1.83), which 
corresponds to less than 0.01 days advance per day delay in regional drop in sea ice 
extent and 95% of the site-species-phenological event combinations being predicted 
to respond in the range of 0.07 days advance to 0.07 days delay per day delay in 
regional drop in sea ice extent. These findings are in broad agreement with the 
coefficients from the reduced models that tested each environmental predictor 
separately (Appendix Table 5). 

 
Variation in phenological events of only one species-phenological event combination 
(Dryas integrifolia flowering at Qikiqtaruk) was not significantly explained by snowmelt 
date, with the 95% confidence intervals overlapping zero for the posterior distributions 
for all three slope parameters (Figure 4 and Appendix Table 6). Eleven out of the 
twenty-four species-phenological event combinations were significantly explained by 
temperature: all Alexandra Fiord species-phenological event combinations, Salix 
arctica green up at Qikiqtaruk, Cassiope tetragona and Salix arctica flowering at 
Zackenberg (Appendix Table 6). Finally, the model highlighted a fair amount of 
unexplained variance among unique site-year combinations (9.40, CI: 5.58 to 14.72), 
which corresponds to 95% of site-year combinations being in the range of +/- 6.01 
days from the predicted values.  
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Figure 2-4 | Scaled effect sizes, grouped by the environmental predictors (date of 
snowmelt, average spring temperature and date of spring drop in regional sea-ice 
extent), for all species-phenological event combinations at Alexandra Fiord, 
Utqiaġvik, Qikiqtaruk and Zackenberg. Error bars represent 95% credible intervals. 
Effect sizes and credible intervals were estimated using a Bayesian mixed model. 
Environmental predictors were within-subject mean centred and scaled by the 
standard deviation (date of snowmelt: 7.20, spring temperature: 0.92 and spring drop 
in regional sea-ice extent: 26.90).  

 
Discussion 
Our test of the importance of temperature, snowmelt and drop in spring sea ice extent 
as controls over coastal Arctic tundra plant phenology highlight three main findings: 
1) Trends in spring phenology were highly variable among species across these four 
sites emphasizing the substantial heterogeneity in plant phenological response 
across tundra plant communities. 2) While all sites experienced pronounced 
advances in spring temperatures and onset of regional sea-ice melt, spring phenology 
did not advance at all sites. Instead spring phenology advanced only at those sites 
with advancing snowmelt (Qikiqtaruk and Zackenberg) and only for some species-
phenological event combinations at these sites. 3) Localised snowmelt was best at 
predicting variation in spring phenology at the coastal Arctic sites, suggesting that it 
is a key cue for spring leaf-out and early season flowering in coastal tundra plant 
communities. Our findings confirm that timing of snowmelt (Bjorkman et al., 2015; 
Cooper et al., 2011; Cortés et al., 2014; Iler et al., 2017; Kankaanpää et al., 2018; 
Molau et al., 2005; Semenchuk et al., 2016; Sherwood et al., 2017; Thórhallsdóttir, 
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1998; Wipf, 2009; Wipf et al., 2009) rather than a localised influence of sea ice (Kerby 
& Post, 2013a; Macias-Fauria et al., 2017; Post et al., 2016) has important control 
over spring plant phenology in coastal tundra ecosystems. Furthermore, our results 
indicate that temperature, despite being the primary driver of spring plant phenology 
in temperate regions (Cleland et al., 2007; Thackeray et al., 2016; Wolkovich et al., 
2012), holds less explanatory power for spring phenology in snow-dominated coastal 
tundra ecosystems of the Arctic.  
 
Snowmelt needs to be included when studying tundra phenology in a global change 
context 
Our results highlight the importance of considering local snow conditions in addition 
to temperature when studying and predicting responses of tundra plant phenology to 
global climate change. To date, snowmelt has yet to be incorporated into pan-Arctic 
syntheses investigating tundra plant phenology in response to global change 
(Oberbauer et al., 2013; Prevéy et al., 2017). Snowmelt is also notably absent in multi-
biome studies, particularly those that include phenological observations from both 
tundra and temperate regions (Post et al., 2018; Wolkovich et al., 2012; Xu et al., 
2013). Excluding snowmelt from any analysis that includes tundra spring plant 
phenology may lead to inaccurate estimates of phenological responses to global 
change in tundra ecosystems. However, obtaining reliable local snowmelt data can 
be logistically challenging, particularly as most field sites are only visited after the 
onset of melt and may not have historical snowmelt records. Auto-camera systems 
(phenocams) could assist in the collection of snowmelt data at a site or plot level in 
the absence of field teams (Andresen, Tweedie, & Lougheed, 2018; Brown et al., 
2016a; Linkosalmi et al., 2016; Westergaard-Nielsen et al., 2017) and satellite data 
can be used for post-hoc estimations of snowmelt dates at coarser temporal and 
spatial scales (Dozier, 1989; Hall, Riggs, & Salomonson, 1995). Thus, we advocate 
the inclusion of snowmelt in future studies of the drivers of phenology change within 
the tundra biome. 
 
Influence of snowmelt highlights importance of landscape-level heterogeneity in 
phenology 
The high explanatory power of snowmelt date in this study and its inherently high 
spatial variability highlight the need to consider landscape heterogeneity in tundra 
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phenology analyses (Kankaanpää et al., 2018). Landscape heterogeneity in 
phenology integrates a diversity of plant phenological responses and environmental 
controls (Armstrong, Takimoto, Schindler, Hayes, & Kauffman, 2016). Different plant 
species, populations and individuals differ in their phenology and as communities 
change across the landscape, so does community-level phenology (CaraDonna, Iler, 
& Inouye, 2014; Cleland et al., 2007; Klosterman et al., 2018; Wolkovich, Cook, & 
Davies, 2014). Furthermore, the environmental controls on phenology also vary 
substantially across the landscape. For example, snowmelt in the Arctic and alpine 
tundra is a complex function of winter and spring atmospheric temperatures, 
precipitation, topography, solar radiation and wind velocity (Billings & Bliss, 1959; 
Bjorkman et al., 2015; Cortés et al., 2014; Liston, Mcfadden, Sturm, & Pielke, 2008; 
Molau et al., 2005; Sturm et al., 2001; H. C. Wheeler et al., 2015). Particularly the 
interplay of micro-topography, radiation and wind can cause highly localised variation 
in snowmelt at plot and even sub-plot scales (Cortés et al., 2014; Sturm et al., 2001). 
Individuals and groups of the same species may not only experience differences in 
the environmental cues they experience across the landscape, but have also been 
shown to vary in the relative strength of their phenological responses to these cues 
at the plot level (Post et al., 2009, Høye et al., 2013), likely due to localised 
interactions and additional environmental influences (Høye et al., 2013). Thus, the 
locality and distribution of phenological monitoring plots and observations of 
environmental variables need to encompass this variation in the landscape, if we want 
to obtain representative estimates of species and community spring phenological 
events and their drivers at any given site. Emerging technologies such as phenocams 
(Andresen et al., 2018; Linkosalmi et al., 2016; Richardson et al., 2018), fine-scale 
aerial imagery from drones (Klosterman et al., 2018) and spatiotemporal modelling of 
snow properties (Pedersen, Liston, Tamstorf, Westergaard-Nielsen, & Schmidt, 2015) 
may help facilitate phenological monitoring at the spatial and temporal scales and 
extents required to understand landscape and community-level phenological change. 
 
Spring drop in sea ice extent did not explain variation in phenology 
The spring drop in sea ice extent did not explain spring phenology at the coastal 
tundra sites in our dataset. As this was the case for the models that included spring 
drop in sea-ice as the only environmental predictor (Appendix Table 5) as well as for 
the model containing all three environmental predictors, our findings suggest that 
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there is neither a direct or indirect mechanism linking spring drop in sea-ice to spring 
phenology at our study sites. Though we were not able to test directly, we found no 
particular evidence that the sea-breeze mechanism proposed by Haugen & Brown 
(1980) and observed by Macias-Fauria et al. (2017) or other indirect sea ice drivers 
have a significant impact on plant spring phenology across our study sites.  
 
The majority of previous studies that have attributed spring phenology variation and 
plant productivity to sea-ice used large-scale integrative measures such as annual 
minimum global sea-ice extent (Bhatt et al., 2010; Forchhammer, 2017; Kerby & Post, 
2013a; Post et al., 2013, 2016). Phenology has previously also been linked to other 
integrative global measures such as ENSO or the North Atlantic Oscillation (NAO) 
(Chmielewski & Rötzer, 2001; D’Odorico, Yoo, & Jaeger, 2002; Forchhammer, Post, 
& Stenseth, 1998; Scheifinger, Menzel, Koch, Peter, & Ahas, 2002). Though the 
integrative measures may correlate well with plant phenology in these cases, our 
findings highlight the value of statistical analysis that test predictors directly 
associated with plausible localised ecological mechanisms. We believe that such 
tests are critical steps to disentangling the complexity of plant phenological responses 
observed in the tundra biome. We thus advocate for more studies that test localised 
controls on plant phenology across spatial and temporal scales in tundra ecosystems 
and beyond. 
 
The challenges of measuring localised sea ice conditions 
Determining regional and interannual variation in the onset of sea ice melt can be 
challenging due to the lack of locally collected data. Globally available satellite 
products such as the passive microwave data set used in this study (Peng et al., 2013) 
struggle to detect the ice edge during the melt period (Comiso & Nishio, 2008; Worby 
& Comiso, 2004) and suffer from land spill-over in cells adjacent to the coast-line 
(Cavalieri et al., 1999). More accurate manually interpreted datasets based on a 
mixture of data sources (including optical satellite data) such as those developed by 
national agencies for navigational purposes could be used, but are often available 
only for recent years (Canadian Ice Service, 2009) and/or are regionally limited 
(http://polarview.met.no). We chose the passive microwave satellite data to estimate 
the timing of drop in spring sea-ice extent as no other data were available for the 
entire time-period and geographical extent of our study at a daily resolution. Due to 
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our cautious pre-processing procedure, our measure of onset of sea-ice melt from the 
NOAA/NSIDC climate data record likely is a conservative estimate and might mask 
out some of the fine-scale temporal and spatial variation in the sea-ice conditions in 
the different study regions. Thus, we caution that the interannual variation in regional 
sea-ice extent may not be entirely comparable to higher-resolution temperature (site 
level) and snowmelt estimates (site to plot level) used in this study. With advances in 
technology and growing interest in the northern maritime regions, higher quality sea-
ice data are becoming increasingly available (see for example Macias-Fauria et al., 
2017), and we encourage future studies to repeat our analyses using such data 
products.   
 
Photoperiod as a control on spring phenology 
Our study was not able to address the separate effect of photoperiod as a control on 
spring phenology because of the lack of temporal variation required for an analysis 
such as we have employed here. Arctic and alpine plant phenology can be sensitive 
to photoperiod as suggested by common garden experiments (Bennington et al., 
2012; Bjorkman, Vellend, Frei, & Henry, 2017; Parker, Tang, Clark, Moody, & Fetcher, 
2017) and demonstrated in growth chamber experiments (Heide, 1989, 1992; Keller 
& Körner, 2003). Keller and Körner (2003) found long day requirements for flowering 
in 54% of the 20 studied alpine plant species and estimated a minimum day length 
requirement of about 15 h for plants adapted to their study site in the central Alps in 
Europe. It is therefore likely that minimum daylight requirements were met at all our 
study sites prior to snowmelt: Alexandra Fiord, Barrow and Zackenberg already 
experienced 24 hours of daylight two weeks prior to the minimum snowmelt date on 
record, and Qikiqtaruk experienced 14.5 hours of daylight with no night and only 
astronomical twilight at this time. However, increases in day length beyond the 
minimum requirement may accelerate development and phenology of Arctic and 
alpine plants (Keller & Körner, 2003) and dual requirements based on interactions of 
temperature and photoperiod have been documented in other studies (Heide, 1989). 
Thus, understanding the interactive nature of photoperiod and environmental cues on 
phenology, particularly in the context of range expansions with warming from lower 
latitudes with stronger diurnal light variation to high latitudes, remains a future 
challenge for tundra plant ecology. 
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Phenology, trophic interactions and ecosystem change 
Tundra plant phenology impacts ecosystem functions such as net primary productivity 
(Matthias Forkel et al., 2016; Piao et al., 2008; Xu et al., 2013) thereby creating 
feedbacks to the global climate system (Richardson et al., 2013). Our study 
underlines the importance of localised snowmelt dates for spring plant phenology in 
coastal tundra ecosystems. Snow cover is projected to decrease across the Arctic 
(AMAP, 2017), but predicted changes in snow conditions differ in direction and 
magnitude amongst regions and seasons with the highest declines in snow cover 
expected for warmer coastal areas and during spring (AMAP, 2017). Locally reduced 
spring snow cover could increase also the susceptibility of plants to freezing events 
and further affect plant productivity, community composition and evolution through 
plant health and mortality (Bokhorst, Bjerke, Street, Callaghan, & Phoenix, 2011; 
Cortés et al., 2014; Jonas, Rixen, Sturm, & Stoeckli, 2008; Phoenix & Bjerke, 2016; 
J. A. Wheeler et al., 2016; Wipf & Rixen, 2010).  
 
Tundra plant phenology influences resource availability for secondary consumers 
(Barboza et al., 2018; Doiron et al., 2015; Gustine et al., 2017; Kerby & Post, 2013b) 
and asynchronous shifts between interacting species due to climate change could 
result in trophic mismatches (Doiron et al., 2015; Kerby & Post, 2013b, 2013a; 
Schmidt, Mosbacher, et al., 2016). Reduced spring snow cover could decrease spatial 
variation in snowmelt timing and thus lessen the extent of landscape-scale 
heterogeneity in plant phenology, with potentially detrimental impacts on consumers, 
as these may rely on temporal and spatial variation in their food sources to maximise 
energy intake across the season (Armstrong et al., 2016; Moorter et al., 2013). This 
interaction between spatial and temporal patterning and trends in trophic mismatches 
has only rarely been explored in the tundra and other ecosystems (Bischof et al., 
2012; Burgess et al., 2018; Sawyer & Kauffman, 2011). A comprehensive 
understanding of the mechanistic drivers of plant phenology and how they change is 
therefore key to our ability to predict and manage the consequences of future 
environmental change in tundra ecosystems and beyond (Kharouba et al., 2018; 
Richardson et al., 2013; Thackeray, 2016; Thackeray et al., 2016; Wolkovich et al., 
2014) 
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Conclusions 
The Arctic is warming more rapidly than any other region of the planet (IPCC, 2014), 
with well documented consequences for tundra plant communities, including changes 
in community composition (Elmendorf, Henry, Hollister, Björk, Bjorkman, et al., 2012; 
Elmendorf, Henry, Hollister, Björk, Boulanger-Lapointe, et al., 2012; Elmendorf et al., 
2015; Ernakovich et al., 2014), trophic mismatch (Doiron et al., 2015; Gustine et al., 
2017; Kerby & Post, 2013b, 2013a; Post et al., 2008) and altered plant phenology 
(Høye, Post, Meltofte, Schmidt, & Forchhammer, 2007; Post et al., 2018). Our findings 
suggest that snowmelt and temperature, but not spring drop in sea-ice extent are the 
dominant cues for spring phenology in coastal Arctic plant communities that 
experience short growing seasons and persistent snow cover. Later snowmelt 
therefore can delay phenology, even when air temperatures are advancing over time. 
These results highlight the growing evidence that tundra vegetation responses to 
rapid environmental change are more complex than a simple response to increasing 
temperatures and help explain the variation in phenological trends seen across the 
tundra biome. Thus, to understand and predict future tundra vegetation change and 
associated feedbacks on the global climate system, we require localised tests of the 
specific influences of mechanistic drivers of change. Our study illustrates the value of 
long-term monitoring programmes (sensu Post & Høye, 2013; Schmidt, Christensen, 
& Roslin, 2017) and cross-site data syntheses for quantifying site- and species-
specific responses to environmental change. Only with quantitative tests carried out 
on comprehensive cross-site datasets, can we attribute variation in plant phenology 
to localised environmental cues and improve our predictions of tundra ecosystem 
responses to global change. 
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– best practices and lessons learned from high latitudes 

 
 
 

 
The author retrieving a drone after a successful flight on Qikiqtaruk. 
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Abstract 
Rapid technological advances have dramatically increased affordability and 
accessibility of Unmanned Aerial Vehicles (UAVs) and associated sensors. Compact 
multispectral drone sensors capture high-resolution imagery in visible and near-
infrared parts of the electromagnetic spectrum, allowing for the calculation of 
vegetation indices such as the Normalised Difference Vegetation Index (NDVI) for 
productivity estimates and vegetation classification. Despite the technological 
advances, challenges remain in capturing high-quality data, highlighting the need for 
standardized workflows. Here, we discuss challenges, technical aspects and practical 
considerations of vegetation monitoring using multispectral drone sensors and 
propose a workflow based on remote sensing principles and our field experience in 
high-latitude environments, using the Parrot Sequoia (Pairs, France) sensor as an 
example. We focus on the key error sources associated with solar angle, weather 
conditions, geolocation and radiometric calibration and estimate their relative 
contributions that can lead to uncertainty of greater than ±10% in peak season NDVI 
estimates of our tundra field site. Our findings show that these errors can be 
accounted for by improved flight planning, meta-data collection, ground control point 
deployment, use of reflectance targets and quality control. With standardized best 
practice, multispectral sensors can provide meaningful spatial data that is 
reproducible and comparable across space and time. 
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Introduction 
Aerial imagery collected with drones is increasingly recognised by the ecological 
research community as an important tool for monitoring vegetation and ecosystems 
(Anderson and Gaston 2013, Salamí et al. 2014, Cunliffe et al. 2016, Pádua et al. 
2017, Torresan et al. 2017, Manfreda et al. 2018). Rapid advances in technology have 
resulted in increasing affordability and use of light-weight multispectral sensors for 
drones for a variety of scientific applications. Despite the increased presence of 
drone-sensor derived products in the published literature, standardized protocols and 
best practices for fine-grain multispectral drone-based mapping have yet to be 
developed by the ecological research community (Manfreda et al. 2018). In this 
methods paper, we lay out the challenges of collecting and analysing multispectral 
data acquired with drone platforms and propose common protocols that could be 
implemented in the field, drawing from examples of applying drone technology to 
research in high-latitude ecosystems. The concepts developed herein are aimed at 
researchers with limited prior experience in remote sensing and spectroscopy, 
providing the tools and guidance needed to plan high quality drone-based 
multispectral data collection.  
 
Multispectral imagery is widely used in satellite- and airplane-based remote sensing 
and has many benefits for vegetation monitoring when compared to conventional 
broad band visible-spectrum imagery. Including near-infrared parts of the spectrum, 
certain vegetation indices (VIs) can be calculated that allow for more detailed spectral 
discrimination among plant types and development stages. Such VIs can be highly 
useful for estimating biological parameters such as vegetation productivity and the 
leaf-area index (LAI; e.g. see Aasen et al. 2015, Wehrhan et al. 2016), and for the 
purpose of vegetation classification (Juszak et al. 2017, Ahmed et al. 2017, Müllerová 
et al. 2017, Samiappan et al. 2017, Dash et al. 2017). Particularly in remote high-
latitude ecosystems, where satellite records suggest a ‘greening’ of tundra 
ecosystems from NDVI time series (Fraser et al. 2011, Guay et al. 2014, Ju and 
Masek 2016), multispectral drone monitoring could play an important role in validating 
satellite remotely-sensed productivity trends (Laliberte et al. 2011, Matese et al. 
2015). 
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A variety of multispectral camera and sensor options are available and have been 
deployed with drones. These range from modified off-the-shelf digital cameras 
(Lebourgeois et al. 2008, for examples see Berra et al. 2017, Müllerová et al. 2017), 
to compact purpose-built multi-band drone sensors such as the Parrot Sequoia 
(Ahmed et al. 2017, Fernández-Guisuraga et al. 2018) and the MicaSense Red-Edge 
(Samiappan et al. 2017, Dash et al. 2017). The Parrot Sequoia and MicaSense Red-
Edge sensors are compact bundles (rigs) of 4-5 cameras with Complementary Metal-
Oxide-Semiconductor (CMOS) (Weste 2011) sensors, a type of imaging sensor 
commonly found in phones and digital single lens reflex (DSLRs) consumer cameras. 
Each camera in the rig is equipped with an individual narrow-band filter that removes 
all but a discrete section of the visible and/or near-infrared parts of the spectrum 
(Table 3-1). New multispectral camera and sensor options continue to be released as 
technologies develop rapidly, yet many common considerations exist with the use of 
these type of sensors for the collection of vegetation monitoring data that we describe 
below. 
 
The purpose-made design of the recent generation of multiband drone sensors 
provide many improvements that increase the ease of use, quality and accuracy of 
the collected multispectral aerial imagery. These include: precise co-registration of 
bands, characterised sensor responses, well defined narrow bands, sensor attitude 
correction, ambient light sensors, geo-tagged imagery, and seamless integration into 
photogrammetry software such as Pix4Dmapper (Pix4D SA, Lausanne, Switzerland) 
and PhotoScan Pro (Aigsoft, St. Petersburg, Russia). Despite these advances, 
acquiring multispectral drone imagery that is comparable across sensors, space, and 
time requires careful planning and best practices to minimise the effect of 
measurement errors caused by three main sources 1) differences among sensors and 
sensor units, 2) changes in ambient light (weather and position of sun), and 3) 
spatially-constraining the imagery (Kelcey and Lucieer 2012, Turner et al. 2014, 
Salamí et al. 2014, Aasen et al. 2015, Pádua et al. 2017).  
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Table 3-1 | Band wavelengths (nm) of the Parrot Sequoia and MicaSense Red-Edge 
Sensors with comparable Sentinel, Landsat, MODIS and AVHRR bands (Barnes et 
al. 1998, NOAA 2014, Barsi et al. 2014, European Space Agency 2015, MicaSense 
2016a, 2016b). Vegetation indices such as the NDVI, derived from the read and near-
infrared bands, can be notably affected by differences in spectral bandwidth. For the 
NDVI the position of the red band has been found to be of particular importance 
(Teillet 1997).   

Sensor Blue Green Red Red-Edge Near-Infrared 

Parrot Sequoia - 530 - 570 640 - 680 730 - 740 770 - 810 

Mica Sense RedEdge 465 - 485 550 - 570 663 - 673 712 - 722 820 - 860 

Sentinel 2 (10 m) 457.5 - 522.5 542.5 - 577.5 650 - 680  784.5 - 899.5 

Sentinel 2 (20 m)    

697.5 - 712.5 

(Band 5) 

732.5 - 747.5 

(Band 6) 

773 - 793 

(Band 7) 

838.75 -891.25 

(Band 8b) 

 
With the goal of collecting comparable and reproducible drone imagery in mind, we 
discuss the fundamental technical background of multispectral drone sensors 
(Section 1), outline the proposed workflow for data collection and processing (Section 
2) and conclude by reviewing the most important steps of the protocol in more detail 
(Section 3-6). These perspectives emerged from protocols originally developed for 
the High Latitude Drone Ecology Network (HiLDEN – arcticdrones.org) and build on 
examples drawn from data collected with a Parrot Sequoia at our focal study site 
Qikiqtaruk – Herschel Island (QHI), Yukon Territory, in north-western Canada and 
processed in Pix4Dmapper. Nonetheless, much of the discussed content should 
transfer directly to other multispectral drone sensors, including the MicaSense 
RedEge and Tetracam products, as well as to a lesser degree modified conventional 
cameras. 
 
Technical Background on Multispectral Drone Sensors (Section 1) 
A fundamental aim of vegetation surveys with multispectral drone sensors is to 
measure surface reflectance across space for two or more specific bands of 
wavelengths (e.g. the red and near-infrared bands), which then serve as a base for 
calculating VIs (such as the NDVI) or to inform surface cover classifications. 
Reflectance is the fraction of incident light reflected at the interface of a surface. VIs 
enhance the characteristic electromagnetic reflectance signatures of different 
surfaces (such as bare ground, sparse or dense vegetation), whereas classifications 
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often partition images based on these differences. Leaf structure and chlorophyll 
content influence the spectral signatures of plants, and VIs transform spectra-specific 
variability into single variables that can be related to other measures of vegetation 
productivity and leaf area index (LAI) (Tucker 1979, Guay et al. 2014, e.g. see Aasen 
et al. 2015). In practice, drone-based reflectance maps are usually created by 
collecting many overlapping images of an area of interest, which are then combined 
into a single orthomosaic (map) with a photogrammetry software package (such as 
Pix4Dmapper or Agisoft PhotoScan). 
 
Reflectance is not directly measured by multispectral imaging sensors, instead they 
measure at-sensor radiance, the radiant flux received by the sensor (Figure 3-1). 
Surface reflectance is a property of the surface independent on the incident radiation 
(ambient light), whereas at-sensor radiance is a function of surface radiance (flux of 
radiation from the surface) and atmospheric disturbance between surface and sensor 
(see Wang and Myint 2015 for a detailed discussion). Surface radiance itself is highly 
dependent on the incident radiation, and disturbance between surface and sensors is 
often assumed to be negligible for drone-based surveys (Duffy et al. 2017). At-sensor 
radiance measurements are stored as arbitrary digital numbers (DN) in the image files 
for each band at a determined bit depth. Without modification, the DNs may serve as 
a proxy for relative differences of surface reflectance during the ambient light 
conditions of a particular survey, but if absolute surface reflectance measurements 
are desired - e.g. for cross site, sensor or time comparison - a conversion 
(“calibration”) of the digital numbers into absolute surface reflectance values is 
essential (Figure 3-1).  
 
There are several ways to convert image DNs into absolute surface reflectance, but 
the most common is the so-called empirical line approach: Images of surfaces with 
known reflectance are used to establish an assumed linear relationship (empirical 
line) between image DNs and surface reflectance under the specific light conditions 
of the survey (Laliberte et al. 2011, Turner et al. 2014, Wang and Myint 2015, Aasen 
et al. 2015, Wehrhan et al. 2016, Ahmed et al. 2017, Crusiol et al. 2017, Dash et al. 
2017). Additionally, information from incident light sensors, such as the Parrot 
Sequoia sunshine sensor may be incorporated to account for changes in irradiation 
during the flight. We would like to highlight here that this is not a calibration of the 
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sensor itself, but a calibration of the output data. Practical aspects of radiometric 
calibration are discussed later in Section 6. 
 

 
Figure 3-1 | Simplified flow of information from surface radiance to reflectance maps 
using multispectral drone sensors. Surface radiance is measured as at-sensor 
radiance for each band by the drone sensor and saved as digital numbers (DNs) in 
an image file. Image DNs are then converted (“calibrated”) into reflectance values 
using an image of a reflectance standard acquired at the time point of the survey. The 
resulting reflectance maps for each of the sensor’s bands can then be used to 
calculate vegetation indices or as direct inputs for classification. Drone symbol by 
Mike Rowe from the Noun Project (CC-BY, http://thenounproject.com). 

 
The relationship between DN and the surface reflectance value of a pixel is also 
influenced by the optical apparatus and the spectral response of the sensor, which 
require additional corrections (see Kelcey and Lucieer 2012 and, Wang and Myint 
2015 for in-depth discussions). For the latest generation of sensors (e.g. MicaSense 
RedEdge and Parrot Sequoia) the processing software packages (such as 
Pix4Dmapper) automatically apply these corrections and little input is required from 
the user in this respect. Instructions on how to carry out the calibrations manually has 
been made available by some manufacturers (Parrot 2017a, Agisoft 2018, MicaSense 
2018c) and may be used by advanced users to develop their own processing 
workflow. However, understanding the principles of these corrections and why they 
are required can be helpful to all users when planning multispectral drone surveys 
and handling the data outputs.  
 
Firstly, the optical apparatus (i.e. filters and lenses) distort the light on its way to the 
sensor and therefore influence the relative amount of radiation reaching each pixel. 
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Effects such as vignetting - pixels on the outsides of the images receive less light than 
those in the centre of the image (Kelcey and Lucieer 2012) – can produce desirable 
aesthetic effects in conventional photography, but bias data in different parts of the 
images when mapping surface reflectance. Converting the DNs of all pixels the same 
way would incorrectly estimate reflectance values towards the extremes of each 
image. This can be corrected for if the effects of the optical apparatus of the sensor 
have been characterised sufficiently (Kelcey and Lucieer 2012, Salamí et al. 2014).  
 
Secondly, the relationship between DN and radiant flux is dependent on the sensitivity 
of the CMOS sensor unit in the specific band of the spectrum, the shutter speed, as 
well as the aperture and ISO value (signal current amplification at the sensor pixel 
level) settings during image capture. In the case of the Parrot Sequoia, this 
relationship is a linear function for which the parameters are characterised for each 
individual sensor unit at production. This is one of the major advantages of using 
purpose-built sensors such as the Parrot Sequoia and alike over modified consumer 
cameras. The relevant parameters of this relationship can be extracted from the 
image EXIF tags and applied to each image to obtain arbitrary reflectance values 
common to all Sequoias. These arbitrary reflectance values can then be converted 
into absolute reflectance using a standard of known reflectance (see Parrot 2017c).  
 
When using Pix4Dmapper for processing Parrot Sequoia or MicaSense RedEdge 
data these corrections are automatically carried out by the software (Pix4d Personal 
Communication June 2017). Apart from defining the radiometric calibration image to 
establish the empirical line relationship, no additional input is required. The exact 
algorithms of Pix4Dmapper are proprietary and will likely remain a black box to the 
scientific community and may change between software versions. To the best of our 
knowledge, at this time, there is no open source software currently available with the 
same scope and ease of handling of Pix4Dmapper for processing multispectral drone 
data. During the completion of this manuscript, radiometric calibration features have 
been added to recent releases of Agisoft PhotoScan Pro (St. Petersburg, Russia), a 
similar proprietary photogrammetric software (Agisoft 2018).  
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Box 1 | Quick Glossary 
 

Multispectral Drone Sensor 
• A light-weight camera rig with at least two digital imaging sensors that capture monochromatic imagery in well-

characterised and narrow bands of the electromagnetic spectrum. Often include bands outside the visible 
spectrum. Used to determine surface reflectance across space. 

Surface Reflectance 
• Proportion of electromagnetic radiation reflected by a surface. Here specifically, the proportion of 

electromagnetic radiation reflected by a surface within narrow bands of the electromagnetic spectrum. 

Vegetation Index (VI) 
• Mathematical transformation of surface reflectance values across multiple bands to allow for the estimation of 

vegetation productivity and surface cover type classifications. 

Digital Number (DN) 
• Sensor-specific value used to denote strength of radiant flux to a sensor pixel. Arbitrary in nature, it requires 

knowledge of sensor response, optical apparatus and ambient light conditions to allow for conversion into 
surface reflectance values.  

Ground Sampling Distance (GSD) 
• Distance between pixel centres or pixel-width measured on the ground of a digital aerial image. 

Ground Control Points (GCPs) 
• Artificial or natural features with (often very accurately) known locations used to geo-rectify aerial imagery.  

Structure from Motion (SfM) 
• Computational technique (computer vision) that uses relative positions of pixels from overlapping imagery of 

the same scene obtained at different angles to construct 3D models and composite orthomosaic images.  

Orthomosaic 
• Mosaic of geometrically corrected (orthorectified) images so that scale is uniform across the mosaic from a 

nadir perspective (viewer 90° above viewing plane). 

Reflectance Map 
• Orthomosaic of monochromatic imagery in a specific spectral band obtained with a multiband drone sensor. 

Pixel values contain (often radiometrically calibrated) surface reflectance values (ranging from 0 to 1). Can be 
used to calculate maps of vegetation indices.  
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Data collection and processing – Workflow overview (Section 2) 
Specific research questions and scientific objectives should be used to determine the 
exact methods used and the data outputs required from a multispectral drone survey 
(Figure 3-2). However, using a standardized workflow will help users avoid common 
pitfalls that affect data quality, and thus ensure repeatable and comparable data 
collection through time and across sites. We suggest starting by identifying the spatial 
and temporal scales required to address the research questions and scientific 
objectives (Step 1). Explicit consideration of scale is critical to the quantification and 
interpretation of any environmental pattern (Turner et al. 1989, Levin 1992), thus 
particular attention is required when planning drone surveys due to the scale-
dependent nature of these inherently spatial data and its associated errors.  
 
The selected spatial and temporal scales, together with the capabilities of the drone 
platform form the basis for flight planning (Step 2). Flight paths and image overlap 
(Section 3), as well as weather conditions and solar position (Section 4) are especially 
important to consider when planning multispectral drone surveys because of their 
impact on mosaicking and radiometric calibration. Once the flight plan is established, 
ground control points (GCPs) and radiometric in-flight targets need to be deployed on 
site, their locations determined with a high-accuracy global navigation satellite 
systems (GNSS) device (e.g. a survey-grade GPS receiver), and radiometric 
calibration imagery taken (Steps 3 and 4). We will discuss practical aspects of GCPs 
deployment and radiometric calibration in the final two sections (Section 5 and 6, 
respectively).  

 
Once pre-flight preparations are completed, the drone is launched and the image data 
collected (Step 5). Though this may sound straight forward, in practice this can be 
challenging. Technical issues such as aircraft material failure, weather impacts on 
realized vs. planned flight path, and/or compass issues are not uncommon. Operator 
skill and logistical experience in the field should not be discounted, particularly when 
operating in extreme environments such as those found in the high latitudes (Duffy et 
al. 2017). Manufacturer guidance, online discussion boards and email lists (such as 
the HiLDEN network: arcticdrones.org) can provide help and information on these 
technical problems. Upon completion of the flight, image data can be retrieved from 
the sensors and transferred to a computer for processing. We recommend backing 
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up the drone / sensor memory after every flight to reduce the risk of data loss due to 
hardware failure and crashes.  

 
Figure 3-2 | Overview of the proposed workflow for scientific data collection using 
multispectral drone sensors and guide to the sections of this publication. Flight 
planning is discussed in Sections 3 (Image Overlap and Ground Sampling Distance) 
and Section 4 (Weather and Sun) of this manuscript. Geo-location and use of ground 
control points (GCPs) in Section 5 and Radiometric Calibration in Section 6.  
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Processing will vary with the type of sensor / software that is used. Figure 3-2 outlines 
the core steps when processing Parrot Sequoia data with Pix4Dmapper Desktop. The 
initial processing step (Step 6) creates a rough model of the area surveyed using 
Structure from Motion – Multiview Stereo algorithms (SfM-MVS) (Westoby et al. 
2012). The user then manually places GCP markers for improving estimates of the 
camera positions and lens model parameters (Step 7) and carries out the radiometric 
calibration (Step 8). These inputs are then incorporated by the software in a final 
processing step (Step 9), producing reflectance map and VI map outputs.  
 
We suggest a final quality control step (Step 10) to assess the accuracy of the geo-
location and radiometric calibration of the outputs, before using them in the analysis 
to answer the research questions. We also highlight that drone surveys can produce 
large amounts of data that can create challenges for data handling and archiving. It 
is helpful to produce a storage and archiving plan before data collection begins, test 
flights can provide valuable insights on data volume expectations for the project.  
 
Flight planning and overlap (Section 3) 
A well-designed flight plan ensures that the full extent of the area of interest is covered 
at the appropriate grain size to fulfil the scientific objectives of the survey. The 
capabilities of drone and sensor, the terrain and meteorological conditions, as well as 
local regulations will constrain what is practically achievable. Flight planning software 
and manufacture guidance can assist, and a wealth of information on flight planning 
and practise is available on the internet, including guidance on the legal aspects of 
operating drones in different jurisdictions. Furthermore, pre-flight site visits (“recces”) 
can be highly valuable for identifying obstacles and can inform about topographic 
constraints that may affect flight planning and geolocation. Here, we will focus on two 
aspects of mission planning particularly important for multispectral surveys: 1) image 
overlap - the proportion of overlap between neighbouring individual images in the pool 
of images covering the area of interest; and 2) spatial grain size or ground sampling 
distance (GSD) - the width of the ground area represented by each pixel in the 
imagery. Both are closely linked to, and limited by, flight height and speed, as well as 
sensor size, resolution, focal length and trigger rate. 
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Image overlap influences the percentage of pixels captured near to nadir view angles 
(sensor at 90° above surface of interest). Vegetative surfaces do not have lambertian 
reflectance properties; i.e., they do not reflect light evenly in all directions, instead 
their reflectance is a function of both angle of incident light and angle of view. These 
relationships can be complex and are commonly described with so called bidirectional 
reflectance distribution functions (BRDFs) (Kimes 1983, for example Bicheron and 
Leroy 2000). For multispectral drone surveys, non-uniform reflectance functions pose 
a challenge as they hamper the comparison of pixels captured at different angles of 
view (Aasen and Bolten 2018).  
 
When obtaining surface reflectance imagery with wide-angled lenses, as those 
employed in many drone sensors, pixels near to the edges of the image have viewing 
angles notably different from 90° (up to 32° different for the Parrot Sequoia and up to 
23.6° for the MicaSense RedEdge-M). If a nadir angle of view (observer 90° above 
observed point) is assumed for these pixels the reflectance values in the extremes of 
the image maybe under or overestimated. High amounts of image overlap (75% - 90% 
front lap and side lap) ensure that the whole area of interest is captured by pixels 
taken at near-nadir view. During processing these pixels can then be preferentially 
selected as best estimates for surface reflectance at nadir view. Pix4Dmapper carries 
out such a selection when creating reflectance maps (Pix4D Personal 
Communication, June 2017). 
 
We recommend a minimum of 75% of for multispectral flights for both side- and front-
lap (also recommended by MicaSense 2018a). Greater overlap might not always be 
better as there are penalties for very high amounts of overlap, affecting data storage 
and processing requirements. However, imagery can be thinned to reduce excessive 
overlap at the processing stage. We found that 80% overlap worked well for our data 
collection in low canopy tundra environments, in this case all parts of the area 
surveyed are within 10% of the image centre (near nadir-view for a stabilised sensor) 
in at least one image and support reliable reconstructions and good quality reflectance 
map outputs using Pix4Dmapper.  
 
If high amounts of side- and front-lap are not achievable due to limitations of the 
aircraft or shutter speed of the sensor (e.g., due to high flight speeds and wide turns 
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required by fixed-wing aircraft), adding cross-flight lines to the flight plan (Figure 3-3 
A) or repeating the flight plan twice with a slightly shifted grid of the same orientation 
may be two of the many possible solutions. This will allow the coverage of larger 
proportions of the surveyed area at near-nadir angles and may reduce BRDF effects. 
In the case of the Parrot Sequoia, the RGB camera can also be disabled to increase 
trigger rates for the monochromatic multiband imagery. If problems occur with 
reconstruction of uniform vegetated surfaces or because of complicated terrains, two 
diagonal cross-flight lines may be added to the flight plan (Figure 3-3 B), this provides 
additional coverage of the area and may result in improved reconstructions. 
 

 
Figure 3-3 | A) Lawn-mower flight pattern (black) with perpendicular flight lines (pink) 
to achieve higher overlap and reduce BRDF effects when overlap is limited by aircraft 
or sensor triggering speed, and B) Lawn-mover pattern flight path (black) with 
additional diagonal flight lines (blue) that may aid reconstruction. 

 
The ground sampling distance has a strong influence on the signal to noise ratio. GSD 
is a function of flight altitude, sensor resolution and optics. Imagery of vegetated 
surfaces at very small GSDs may contain a lot of noise due to non-uniform reflectance 
functions and movement of plant parts, such as leaves, between image acquisitions. 
High amounts of noise hamper key-point matching during SfM-MVS model 
reconstructions and can reduce the quality of reflectance map outputs, resulting in 
artefacts, blurry patches and distorted geometry. Pix4D recommends a GSD of 10 cm 
or coarser for densely vegetated areas (Pix4D 2018a). Nonetheless, we obtained 
consistently good results with slightly finer (5 cm) and coarser (15 cm) GSDs for the 
tussock sedge and shrub tundra vegetation types at our field site QHI in Arctic Canada 
during the data collection campaigns in 2016 and 2017.  
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When selecting a GSD it is particularly important to consider the scientific objectives 
of the survey and factor in the scale at which reflectance varies across the area of 
interest: If the objective is to monitor the distribution of large shrubs, then a larger 
GSD might be sufficient with the added benefits of reduced noise, the potential to 
cover larger areas due to higher flight altitudes, less required data storage and faster 
processing times. In contrast, if the objective is to monitor distribution of small grass 
tussocks, a smaller GSD might be required with potential penalties due to increased 
noise in the imagery and reduction in area that can be covered.  
 
Weather and Sun (Section 4) 
Weather and sun are additional factors that influence drone-captured multispectral 
imagery quality. Most drones will be unable to operate in high winds and rain; but 
cloud cover and solar position also influence the spectral composition of the ambient 
light and shadows, thus affecting image acquisition with multispectral drone sensors 
(Salamí et al. 2014, Pádua et al. 2017) . Variation in solar angle may introduce 
variation in VI estimates even within a single day or flight period (Figure 3-4). 
Radiometric calibration of the imagery (Section 6) is a key tool to account for the 
majority of this variation, but additional steps during flight planning and in-field data 
collection can be taken to control for some of these factors. 
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Figure 3-4 | Effect of diurnal solar variation on measured landscape scale mean NDVI. 
A) Time of day vs. solar elevation for Qikiqtaruk – Herschel Island on 3rd of August 
2016 with time-points of repeat surveys shown in B. Light-grey dashed line shows the 
solar elevation curve for the 18th September 2016, illustrating similar magnitudes of 
seasonal and diurnal variation across the season at high latitude studies sites such 
as Qikiqtaruk. B) Effect of solar elevation on mean NDVI for repeat flights of sites on 
the 3rd of August 2016 on Qikiqtaruk – Herschel Island, highlighting the impact of solar 
angle and clouds on the mean NDVI values despite radiometric calibration in Pix4D 
mapper. Bars represent the standard deviation from the mean NDVI (5 cm GSD), 
illustrating within-site variation at the two 1-ha sites. Absolute differences between 
highest and lowest solar elevation are just above 0.02 NDVI. Thin stratus cloud cover 
for all flights except for the flight closest to peak solar elevation (37.22°) at site 2, with 
low dense cloud, potentially explaining its outlier character. 

 
To minimise variations in solar angle, flights should be conducted as close to solar 
noon as possible. As a rule of thumb, we recommend a maximum of 2-3 hours 
before and after solar noon. Seasonal and diurnal variation in solar angle and 
position can be calculated using solar calculators (such as 
https://www.esrl.noaa.gov/gmd/grad/solcalc/index.html). At high latitude sites, solar 
angle will vary across the year in more dramatic ways than at lower latitudes, 
whereas lower latitudes experience stronger variation in diurnal angle. On clear 
days, solar position also determines the size and direction of shadows cast on the 
landscape by micro- and macro-variation in topography (i.e. furrows and ridges, 
vegetation and hills) (Figure 3-5).  
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Figure 3-5 | RGB photographs of different cloud and sun angle conditions and their 
effect on scene illumination. A) “Popcorn” clouds casting well delimitated shadows 
across the landscape. B) Thin continuous stratus scattering light, resulting in even 
illumination of the scene and reduced shadows. C) Low solar angle interacting with 
microtopography, casting shadows across the landscape. D) Fog blurring the imagery 
and causing uneven illumination.  

 
Under clear sky conditions, sun glint and hotspots can be present in the imagery, 
creating radiometric inaccuracies and potential issues for photogrammetric 
processing. Some efforts have been made towards detecting and mitigating these 
effects through post-processing of the imagery, and the relative position of sun and 
aircraft can be incorporated during flight planning to reduce their impact (Ortega-Terol 
et al. 2017). However, due to the low solar angles, sun glint and hotspots are less of 
a problem at high latitudes.  
 
We recommend recording sky conditions during the flight (Table 3-2) to account for 
cloud-induced changes in the spectral composition of light and avoiding days where 
scattered cumulus clouds (“popcorn-clouds”) are partially shading survey area(s) 
(Figure 3-5). The collection of additional meteorological observations such as wind 
speed (may impact movement of vegetation), temperature and presence of dew/snow 
may be helpful to account for additional sources of variation in surface reflectance 
estimates.  
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Table 3-2 | Sky-Codes for qualitative classification of cloud related ambient light 
conditions. Table courtesy of NERC Field Spectroscopy Facility, Edinburgh UK (2018) 
based on work by Milton et al. (2009). See also WMO Cloud Identification Guide 
(World Meteorological Association 2017). 

Sky-Code Condition 

0 Clear sky 

1 Haze 

2 Thin cirrus – sun not obscured 

3 Thin cirrus – sun obscured 

4 Scattered cumulus – sun not obscured 

5 Cumulus over most of sky – sun not obscured 

6 Cumulus – sun obscured 

7 Complete cumulus cover 

8 Stratus – sun obscured 

9 Drizzle 

 
 
Geolocation and Ground Control Points (Section 5) 
Accurate geolocation is essential when the image data is: part of a time-series, 
combined with other sources of geo-referenced data such as satellite or ground-
based observations, or used to build structural models. Photogrammetry software 
packages commonly use two sources of geolocation information: the coordinates of 
the of the camera during each image capture as recorded by the sensor or drone, 
and/or coordinates of ground control points (GCPs) identified in the imagery. Two 
problems complicate the accurate geolocation of multispectral imagery products: 1) 
The accuracy of image geo-tags may be insufficient (at best ca. ± 2-3 m horizontally) 
for some applications, and 2) conventional GCP designs can be difficult to identify in 
the low-resolution monochromatic images. 
 
The accuracy of geo-tags is limited by the low precision of common drone / sensor 
GNSS modules. On-board differential positioning systems can be deployed for high 
accuracy direct georeferencing of the images, but integration can be time consuming 
and the modules may increase the cost of the aircraft system considerably (Ribeiro-
Gomes et al. 2016). A common and practical alternative for the generation of sub-
meter geo-located reflectance maps is to incorporate GCPs in the photogrammetry 
process, whose location is determined in-field with a high accuracy survey grade 
GNSS.  
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When mapping with the Parrot Sequoia and processing with Pix4D, we recommend 
the use of around five GCPs well distributed across the area of interest (Harwin et al. 
2015; Pix4D 2018b). More may be required for large sites (>1 ha) or sites with varying 
topography, but higher numbers might not substantially improve geolocation (Pix4D 
2018b). We tested the influence of number of GCPs and marking effort (images 
marked per GCP) on 2D geolocation accuracy for small (1 ha) and flat tundra plots 
and found rapidly diminishing improvements in geolocation accuracy beyond 4 GCPs 
marked on 3 images each (Figure 3-6 A). Additional GCPs not included in 
constraining the photogrammetric reconstructions should be used to assess the 
accuracy of each reconstruction (Step 10), we recommend at least one additional 
independent GCP for this purpose. 
 

 
Figure 3-6 | A) Ground Control Point (GCP) marker placement effort and mean 
geolocation accuracy for eight reflectance maps (red and near-infrared bands) 
collected at four sites on Qikiqtaruk – Herschel Island. Insert shows data on finer scale 
excluding the “no GCPs” data point. Images were captured with a Parrot Sequoia at 
5 cm per pixel GSD and processed in Pix4D. Error bars indicate standard deviation 
of the sites from the grand mean. Marking effort was staggered by incorporating 0, 3, 
4 or 10 GCPs and increasing the number of images marked per GCP from low (3 
images per GCP) to high (8 images per GCP). The relationship suggests diminishing 
returns for efforts of more than 3 GCPs, with a potential optimum effort-return ratio for 
4 GCPs marked at low effort (accuracy approx. 7 x GSD). Sites are 1 ha in size and 
composed of graminoid dominated tundra on predominantly flat terrain with medium 
amounts of variation in altitude (max 30 m). GCP locations were determined with a 
survey grade GNSS with a horizontal accuracy of 0.02 m. GCP marker dimensions 
were 0.265 m x 0.265 m (ca. 5 x 5 GSD) and made from soft plastic or plastic fibres 
with a black and white triangular sand-dial pattern. Marker contrast was uneven 
across the monochromatic imagery, resulting in sometimes difficult to distinguish 
markers. We estimate marker centres were manually identified to ca. two pixels (0.05-
0.10 m). Geolocation accuracy of the reflectance maps was assessed by visually 
locating centre points of 13 GCPs on the final reflectance map outputs in QGIS (QGIS 
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Development Team 2017), this included all GCPs incorporated in the processing. For 
each reflectance map, the mean absolute distance between visually estimated and 
computed position was calculated. B) GCP marker placement effort and mean 
accuracy of co-registration of red and near-infrared reflectance maps from the four 
sites as in A). The same methods were employed, except the co-registration accuracy 
was measured as the mean absolute distance between the visually determined 
locations of the 13 GCPs. The resulting relationship suggests a benefit of including 
GCPs, but we found no evidence for an improvement with effort of marker placement 
beyond three GCPs at this flat tundra site. 

 
The compact size and power requirements limit the spatial resolution of CMOS 
imaging sensors used in multi-camera rigs such as the Parrot Sequoia. This, 
combined with the reduced spectral bandwidth, can cause difficulties when identifying 
GCPs in the monochromatic single-band imagery. To achieve maximum visibility of 
the GCPs, we suggest using square targets composed of four alternating black and 
white fields arranged in a checkerboard pattern (Figure 3-7 A) with an overall side 
length of 7-10x the GSD. The choice of material is important, as white areas of the 
targets need to reflect strongly across the whole spectrum of the sensor 
independently of the angle of view (near-lambertian), while black areas should have 
a low reflectivity to provide a strong contrast. What appears distinctly black and white 
to the human eye may have similar reflectance properties in the NIR. In our 
experience, painted canvas and sailcloth are suitable materials that are affordable, 
readily available and reasonably light. We also achieved good results success with 
vinyl flooring tiles; however, these can be heavy and therefore impractical in remote 
field conditions. We strongly recommend testing the visibility of the targets using the 
multispectral sensors prior field deployment.  
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Figure 3-7 | A) Parrot Sequoia near-infrared image of 0.6 m x 0.6 m GCP on grass. 
This GCP is made from self-adhesive vinyl tiles obtained in a local hardware store. 
Ground sampling distance: approx. 0.07 m per pixel. Image curtsey of Tom Wade and 
Charlie Moriarty, The University of Edinburgh. B) Chequerboard pattern suggested 
for improved visibility of GCP in coarse resolution Parrot Sequoia imagery. Aligning 
the chequerboard pattern with the sensor orientation can further aid visibility. 

 
Accurate co-registration of pixels among bands is essential when calculating VIs 
(Turner et al. 2014). Incorporating GCPs in the processing can aid in constraining the 
relative shifts between the bands. However, we found that increasing the effort in GCP 
placement (number of GCPs and images marked per GCP) in Pix4D for Parrot 
Sequoia imagery had little impact on constraining the co-registration between bands. 
High degrees of co-registration (1-2 pixels) were achieved even with the lowest effort 
of marker placement (Figure 3-6 B). Turner et al. (2014) reported similar levels of co-
registration accuracy between reflectance maps of bands collected with a multiband 
Tetracam mini-MCA (GSD 0.03 m / pixel) at moss sites in Antarctica. 
 
Radiometric calibration (Section 6) 
The aim of the radiometric calibration is to convert at-sensor radiance (in form of DNs) 
into absolute surface reflectance values, accounting for variation caused by 
differences in ambient light due to weather and sun, and between sensors types and 
units (Kelcey and Lucieer 2012). The relationship (empirical line) between image DN 
values and surface reflectance is established from a sample of pixels covering areas 
of known reflectance, theoretically this could be a naturally occurring homogeneous 
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area in the area of interest measured with a field spectrometer, but artificial standards 
(“reflectance targets”) of known reflectance are more commonly used to carry out the 
calibration. 
 
When processing Parrot Sequoia outputs in Pix4Dmapper a single image is used to 
calibrate each band (Step 8). A single image is sufficient to establish the empirical 
line if the sensor response is known and linear (Wang and Myint 2015), as is the case 
for the Parrot Sequoia (Parrot 2017c). The calibration is carried out by manually 
selecting the area of the reflectance target on the calibration image (Figure 3-8) and 
assigning the known reflectance value of the target. In our experience, a larger 
sample of pixels produces better calibration results, i.e. the more pixels that are taken 
up by the reflectance target the better. Sample size is likely to be of importance here 
as it mitigates for variations caused by the inherent noise across the image stemming 
from the sensor, illumination of the target, and bleeding effects from adjacent non-
target surfaces. These findings are consistent with advice from Pix4D (2018b) and 
MicaSense, who recommend at least 1/3 of the total image footprint to be covered by 
the calibration area of the reflectance target (MicaSense 2018b).  
 
Calibration images can be collected either before, after or during the flight. For pre- 
and post-flight calibration, drone and sensor are held manually above the target and 
images for all bands are acquired (Step 4). In-flight calibration targets are placed 
within the area of interest and calibration images acquired during the survey. In-flight 
targets need to be sufficiently large to ensure a good sample of pixels. Especially 
when operating in remote areas, weight and size of targets may be limited and quality 
in-fight calibration imagery can be difficult to obtain. Nonetheless, smaller in-flight 
reflectance targets (about 100+ pixels = 10+ x 10+ GSD) can be of great use for 
quality control of the final reflectance map output (see for example Aasen et al., 2015) 
and may serve as an emergency back-up should pre-/post-flight calibration imagery 
fail. It is important that both in-flight and pre-/post- flight reflectance targets are placed 
as level as possible to ensure even illumination of the target surface. 
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Figure 3-8 | Parrot Sequoia pre-flight radiometric calibration image of a MicaSense 
Ltd. (Seattle, WA, USA) reflectance target in the near-infrared band. Red box: surface 
with known reflectance value used for calibration. 

 
We recommend always obtaining both pre-/post-flight calibration imagery of a 
reflectance target and, if possible, the use of at least two in-flight reflectance targets 
for quality control and redundancy. Avoiding overexposure (saturated sensor) and 
shading of all reflectance targets is critical as this will render the images unusable for 
radiometric calibration. The Parrot Sequoia has a calibration image acquisition feature 
for pre-/post-flight calibration accessible via the Wi-Fi interface, which obtains a 
bracketed exposure reducing the risk of over-exposure. 
 
When taking pre-/post-flight calibration imagery, ensure that as little radiation as 
possible is reflected onto the target by surrounding objects, including the person 
taking the calibration picture. Avoiding bright clothing and taking the image with the 
sun to the photographer’s rear while stepping aside to avoid casting a shadow over 
the target may reduce the risk of contamination by light scattered from the body (see 
MicaSense 2018b and, Pix4D 2018b for additional guidance). Aasen and Bolten 
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(2018) observed notable errors introduced to their calibration imagery by the presence 
and position of the person / drone in the hemisphere above the target, suggesting that 
the development of reliable calibration methods requires further attention. 
 
It is key that all reflectance targets employed have homogenous and near-lambertian 
reflectance properties. For pre-/post-flight imagery, we recommend medium sized 
(approx. 15 x 15 cm) Polytetrafluoroethylene (PTFE) based targets, such as 
Spectralon (Labsphere 2018), Zenith (Sphereoptics 2018) or similar, due to their 
durability, off-the shelf calibration and ease of maintenance. Durability and ease of 
maintenance are particularly important when working in environments with harsh 
climates. We experienced substantial degradation in commercially manufactured 
reflectance targets over a single field season (3 months), likely due to exposure to 
dust, insects, moisture and temperature fluctuations experienced in the Arctic tundra 
(Figure 3-9). For larger targets used in-flight, we recommend tarpaulins made of 
canvas, sailcloth, felt or similar materials (see Ahmed et al. 2017, Crusiol et al. 2017, 
Mosaic Mill Ltd. 2018). A variety of other materials have also been successfully 
employed as reflectance targets (Laliberte et al. 2011, Turner et al. 2014, Wang and 
Myint 2015, Aasen et al. 2015, Wehrhan et al. 2016, Dash et al. 2017).  
 
Target maintenance and quality control is essential (also discussed by Wang and 
Myint 2015). Changes in target reflectance can have notable effects on the calibration 
outputs (Figure 3-10). It is key to handle targets as carefully as possible to avoid 
surface degradation. We recommend regular cleaning according to manufacturers’ 
guidance and frequent re-measurement of reflectance values. Field spectroscopy 
facilities can provide assistance and expertise in obtaining and maintaining targets. 
Re-measurement of the reflectance values can be carried out in-field prior each flight 
(e.g. Laliberte et al. 2011). However, this might not always be feasible when operating 
in remote areas, in which case careful handling, maintenance and measurements of 
reflectance values before and after a field season may have to suffice.  
 



 98 

 
Figure 3-9 | Decrease in reflectance values of three reflectance targets before and 
after a three-month field season in the Arctic tundra on Qikiqtaruk – Herschel Island. 
Loss in reflectance is likely due to degradation in the harsh environmental conditions 
(dust, insect debris, moisture and temperature fluctuations). Across the field seasons 
in 2016 and 2017 we saw 4-10% reduction in reflectance across targets from different 
suppliers, composed of different materials. 

 
Optical filters directly affect the radiation reaching the sensor and influence the 
relationship between surface radiance and image DN, see Kelcey and Lucieer (2012) 
for further discussion. It is therefore essential that all radiometric calibration imagery 
and survey photographs are consistently taken either with or without the removable 
filter. The Parrot Sequoia is shipped with a protective lens cover (a clear filter), which 
can be useful when operating in difficult terrains such as the tundra where rough 
landings are possible, which could scratch the sensor lenses. Parrot does not 
characterise the transmissivity of the protective lens covers shipped with the Sequoia. 
As the presence / absence of filters is difficult to detect post hoc during automated 
processing (such as online cloud services), Parrot recommends refraining from using 
them during multispectral data acquisition flights (Parrot 2017b). 
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Figure 3-10 | Mean NDVI value for three graminoid tundra sites (1 ha each) on 
Qikiqtaruk – Herschel Island based on red and near-infrared reflectance maps 
calibrated with three different reflectance values for the reflectance target No. 1 
(Figure 3-9): before and after degradation, and the average between the two values. 
Surveys where flown at the beginning of the season when little to no degradation of 
the target is expected to have occurred. Before and after values differ by about 0.015 
in absolute NDVI, suggesting an overestimation of NDVI when after values are used 
for the early season surveys. 

 
We measured the transmissivity of the filters shipped with two Sequoias obtained in 
2016 (Figure 3-11). We observed a small reduction in transmitted radiation across all 
four bands (see also Figure 3-12), and a small effect of angle of view across the 
horizontal field of view on the radiation transmitted in the near-infrared band. These 
findings suggest that the protective lens cover may be used with little to no effect on 
the final reflectance map outputs, if the filter is applied consistently for all flights under 
comparison. 
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Figure 3-11 | Transmissivity of Parrot Sequoia Lens-Protector filter across the a) 
horizontal and b) vertical field-of-view of the Sequoia Sensor. The overall small 
reductions in transmitted light and the small effect of angle across field-of-view 
suggest that little to no impact on reflectance map outputs acquired with the filter can 
be expected. 

 

 
Figure 3-12 | Raster plot (A) and histogram (B) of pixel by pixel differences in NDVI 
values of a homogenously illuminated integrating sphere with and without the Parrot 
Sequoia protective lens cover. Margins in the raster plot show mean differences for 
the pixel columns and rows respectively. 

 
Estimated combined error 
We estimate that the combined effect of the main sources of error discussed in this 
manuscript – if not properly accounted for - could be as much as 0.094 in magnitude 
for landscape level estimates (1 ha mean) in NDVI for the drone surveys conducted 
with a Parrot Sequoia at 5 cm GSD at our Arctic research site Qikiqtaruk during the 
2016 field campaign (Figure 3-13). This combined error equates to approximately 10-
13% of the peak growing season NDIV (0.60 - 0.68) of the tussock-sedge and dryas-
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vetch tundra types at the site. These estimates highlight the importance of controlling 
for these sources of error, by carrying out radiometric calibration, surveying at 
constant solar angles, monitoring reflectance target degradation and using the 
protective lens cover consistently. Nonetheless, a notable error will remain even if 
everything except cloud conditions is controlled for, we estimate that our ability to then 
confidently detect change in landscape scale (1 ha) mean NDVI is limited to 
differences above 0.02 - 0.03 in absolute magnitude across space and time. 
 

 
Figure 3-13 | Estimated effects of the five main sources of errors discussed in this 
manuscript on the mean NDVI of 1 ha tundra plots on Qikiqtaruk surveyed in 2016 
with a Parrot Sequoia at 50m flight altitude (5 cm GSD). The five sources of error sum 
up to a combined error of 0.094 NDVI (assuming the mean error for cloud cover 
variation) and were calculated as: 1) The estimated average deviation from the 
calibrated mean NDVI compared to a survey without radiometric calibration carried 
out. 2) The deviation in estimated mean NDVI when comparing clear sky to 
continuous cloud cover conditions (lower error bar: thick stratus, upper error bar: thick 
cumulus) even if radiometric calibration is carried out. 3) The estimated deviation of 
mean NDVI caused by changes in solar elevation from solar noon to evening during 
peak growing season at our field site in the Arctic (about 20° drop – roughly equivalent 
to the difference between start/end and mid growing season) even if radiometric 
calibration is carried out. 4) The estimated effect of target degradation on mean NDVI 
across a three-month field season. 5) The error introduced by the protective lens 
cover if used and removed inconsistently between flights in comparison. These 
estimates are based on both data presented in this manuscript and manuscripts in 
preparation. We would like to urge caution when transferring these estimates to other 
sensors / set ups and ecological systems. The estimates are presented here with the 
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purpose of giving the reader a feel for the relative importance of the sources of error 
discussed in this manuscript. 

 
Conclusions 
Vegetation monitoring using drones could provide key datasets to quantify vegetation 
responses to global change (Anderson and Gaston 2013, Salamí et al. 2014, 
Torresan et al. 2017). However, accurately quantifying and accounting for the 
common sources of error and variation in multispectral data collection is a key part of 
the workflow for scientific applications (Aasen et al. 2015, Manfreda et al. 2018). As 
technologies advance and our understanding of multispectral drone products 
increases we may be able to better quantify the sources of error and improve our 
measures to account for them; however, it is critical that the drone data collection of 
today is done as cautiously and rigorously as possible as it will provide the baseline 
for future ecological monitoring studies. 
 
The rapid and ongoing development of drone and sensor technology (Anderson and 
Gaston 2013, Pádua et al. 2017) has made the collection of multispectral imagery 
with drones accessible to many ecological research projects, even those operating 
with small budgets. Despite the plug-and-play nature of the latest generation of 
multispectral sensors, such as the Parrot Sequoia and the MicaSense RedEdge, a 
handful of factors require careful consideration if the aim is to collect high-quality 
multispectral data that is comparable across sensors, space and time. For example, 
variation in ambient light and sensors require radiometric calibration of the imagery, 
and ground control points may be necessary to achieve accurate geolocation of 
reflectance and vegetation index maps (Kelcey and Lucieer 2012, Turner et al. 2014, 
Salamí et al. 2014, Aasen et al. 2015, Pádua et al. 2017).  
 
Standardized workflows for multispectral drone surveys that incorporate flight 
planning, the influence of weather and sun, as well as aspects of geolocation and 
radiometric calibration will produce data that is comparable across different study 
regions, plots, sensors and time. We encourage drone survey practitioners in the field 
of ecology and beyond to incorporate these methods and perspectives in their 
planning and data collection to promote higher data quality and allow for cross site 
comparisons. Standardised procedures and practises across research groups (e.g., 
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those developed by the HiLDEN network) have the potential to provide highly-
valuable baseline data that can be used to address urgent and emerging topics, such 
as identifying the landscape patterns and processes of vegetation responses to global 
change at high latitudes and across the world’s biomes.  
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Chapter 4 Drone data reveals fine-scale variation of tundra 
greenness and phenology that is missed by satellite and in 
situ monitoring 

 
 
 

Drone images of the Herschel (left) and Komakuk (right) vegetation types. 
Supervisor Isla H. Myers-Smith (top left) at the ground control station. 
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Abstract  
The Arctic is undergoing rapid environmental change with dramatic consequences for 
tundra vegetation. Satellite observations suggest that tundra vegetation productivity 
is increasing (greening) and that the growing season is becoming longer. Vegetation 
productivity and phenology are key components of the tundra ecosystems, influencing 
ecosystem function and providing potential feedbacks to the global climate system. 
Despite the overall greening trend, a large amount of unexplained spatial variation 
persists in the amount of greening and phenological changes. Our ability to explain 
this variation and the underlying ecological processes causing it has been limited by 
the coarse grain sizes of satellite observations. Here, we combine a novel dataset of 
within-growing season time-series of fine-grain multispectral drone imagery from two 
years (2016 and 2017) with MODIS and Sentinel 2 satellite data to quantify the 
correspondence amongst platforms and study the fine-scale distribution of vegetation 
greenness at our study site in the Canadian Arctic across space and time. Our results 
show cross-platform correspondence of drone and satellite measures of tundra 
greenness at the landscape-scale for our eight 1 ha plots at the field site in both years, 
but highlight a notable loss of variation when aggregating from fine-grain drone 
(approx. 0.05 m) to medium-grain satellite pixel sizes (10 m), potentially obscuring 
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key ecological variation in productivity and phenology. For example, the observed 
fine-scale variation (sub-metre) in tundra greenness at our field site likely reflects 
ecological variation in productivity caused by large tussock sedges, microtopography 
and disturbances. Finally, our time-series analysis shows a decline of landscape-level 
variation in greeness over the course of the growing season, suggesting that not only 
the timing, but also the heterogeneity of tundra landscape productivity can vary within 
and amongst years. If with warming, tundra phenological heterogeneity is reduced at 
an earlier point in the growing season, interactions between the tundra plants and 
their consumers may be affected. Overall, our findings illustrate the potential for 
multispectral drone imagery to provide fine-grain measures at landscape-level extent 
that can bridge the gap between satellite and in situ measures of tundra vegetation 
greenness and phenology. 
 
Introduction 
The Arctic is undergoing rapid environmental change, surface temperatures are rising 
at twice the rate then the rest of the globe (IPCC, 2014) with dramatic consequences 
for tundra vegetation. Satellite observations show increases in tundra vegetation 
productivity or “greening” (Guay et al., 2014; Keenan & Riley, 2018; Myneni, Keeling, 
Tucker, Asrar, & Nemani, 1997) and changes in growing season phenology (Zeng, 
Jia, & Epstein, 2011; Zeng, Jia, & Forbes, 2013; Zhao et al., 2015) over the recent 
decades. Tundra vegetation productivity and phenology influence ecosystem function 
through carbon and nutrient cycles with potential feedbacks on the global climate 
system (Chapin et al., 2005; Ernakovich et al., 2014; Loranty & Goetz, 2012; Pearson 
et al., 2013; Richardson et al., 2013) and have direct impacts on plant-consumer and 
-pollinator interactions (Barboza, Van Someren, Gustine, & Bret-Harte, 2018; Doiron, 
Gauthier, & Lévesque, 2015; Gustine et al., 2017; Kerby & Post, 2013a, 2013b; Post, 
Pedersen, Wilmers, & Forchhammer, 2008). Yet the satellite greening trends and 
phenology measures calculated across different platforms do not always correspond 
(e.g. Guay et al., 2014) and repeated calls for ground validation have been made 
(Fraser, Olthof, Carrière, Deschamps, & Pouliot, 2011; Guay et al., 2014; Ju & Masek, 
2016; Stow et al., 2004).  
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Satellites show heterogenous greening of the tundra 
Long-term time series of satellite observations suggest the Arctic has been 
undergoing greening over recent decades. Observations are mainly based on 
changes in surface reflectance derived Normalised Difference Vegetation Index 
(NDVI) (Tucker, 1979) and were first recognised at the turn of the millennium (Myneni 
et al., 1997; Myneni, Tucker, Asrar, & Keeling, 1998; Tucker et al., 2001). More recent 
studies have confirmed the Arctic wide trends (Bhatt et al., 2010; Guay et al., 2014; 
Keenan & Riley, 2018; Zhu et al., 2016), but also highlight a notable amount of 
variation at global (Bhatt et al., 2010; Guay et al., 2014; Tucker et al., 2001), 
continental (Fraser et al., 2011; Jia, Epstein, & Walker, 2003, 2009; Ju & Masek, 
2016) and regional scales (Lara, Nitze, Grosse, Martin, & McGuire, 2018; Macias-
Fauria, Forbes, Zetterberg, & Kumpula, 2012; Miles & Esau, 2016; Raynolds, Walker, 
Verbyla, & Munger, 2013; Thompson & Koenig, 2018; Vickers et al., 2016; Walker et 
al., 2009) including many areas that show either no trends in NDVI or even significant 
“browning” (e.g. Guay et al., 2014; Lara et al., 2018; Walker et al., 2009) and a recent 
slowdown of the arctic wide greening trend has been suggested (Bhatt et al., 2013).  
 
What explains satellite trends 
Satellite greening trends of the tundra have been linked directly to trends in 
temperatures (Bhatt et al., 2013; Keenan & Riley, 2018; Raynolds, Comiso, Walker, 
& Verbyla, 2008; Vickers et al., 2016) and indirectly to changes in sea-ice conditions 
(Fauchald, Park, Tømmervik, Myneni, & Hausner, 2017; Macias-Fauria et al., 2012; 
Walker et al., 2009). Furthermore, tundra vegetation changes reported by in situ 
(ground-based) studies support the overall greening trend: Tundra vegetation 
community composition is changing (Elmendorf et al., 2012, 2015) including the 
expansion of more productive shrubs (Myers-Smith, Forbes, et al., 2011; Tape, 
Hallinger, Welker, & Ruess, 2012; Tape, Strum, & Racine, 2006), and vegetation 
height is increasing in many communities across the biome (Bjorkman et al., 2018). 
Yet few studies have been able to directly link on-the-ground ecological changes to 
satellite trends in NDVI (Macias-Fauria et al., 2012; Pattison, Jorgenson, Raynolds, 
& Welker, 2015; Walker et al., 2009).  
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Growing season phenology - how is it changing? 
Satellite observations of tundra growing season phenology have suggested advances 
in the start and delays in the end of the growing season, and associated increases in 
growing season length have been reported (Zhou et al., 2001; Zeng et al., 2011, 2013; 
but see White et al., 2009). However, no coherent directional trend of phenological 
change has been reported from long-term in situ phenological observations across 
the biome (Chapter 2): while spring and summer advances have been reported for 
some locations (Høye, Post, Meltofte, Schmidt, & Forchhammer, 2007; Kerby & Post, 
2013a; Post, Kerby, Pedersen, & Steltzer, 2016) others show no evidence or delays 
(Bjorkman, Elmendorf, Beamish, Vellend, & Henry, 2015; Oberbauer et al., 2013; 
Prevéy et al., 2017). Little is known about in situ trends of autumn phenology in the 
tundra (Gallinat, Primack, & Wagner, 2015; Prevéy et al., 2017; Myers-Smith et al., 
2018). Snowmelt, temperature and sea-ice have been identified as drivers of in situ 
phenology in the tundra (Bjorkman et al., 2015; Post et al., 2016; Prevéy et al., 2017; 
Semenchuk et al., 2016), but few studies have attributed variation in regional and 
landscape level phenology to environmental factors (Kerby, 2015, 2015; Macias-
Fauria et al., 2012; Miles & Esau, 2016) or ground validated satellite-derived 
phenology (Beck et al., 2007; Gamon, Huemmrich, Stone, & Tweedie, 2013; White et 
al., 2009). Furthermore, the importance of heterogeneity in tundra phenology for 
plant-consumer and -pollinator interactions is poorly understood (Armstrong, 
Takimoto, Schindler, Hayes, & Kauffman, 2016; Kerby, 2015).  Frequent cloud cover 
within the short growing seasons of the Arctic complicates time-series analysis based 
on optical satellite imagery and increases uncertainties in the derived predictions of 
start, peak and end of season (Gamon et al., 2013; Jia et al., 2003, 2009; Stow et al., 
2004).  
 
The scale discrepancy problem and the ecology of NDVI 
A major problem in linking satellite observed trends of tundra greenness and 
phenology to in situ observations and ecological processes is the discrepancy in 
scales between the two types of observations (Myers-Smith, Forbes, et al., 2011; 
Raynolds et al., 2013; Stow et al., 2004; Woodcock & Strahler, 1987): While satellite 
datasets with long-term records are limited by their moderate- to coarse-grain sizes, 
ranging from 30 m (Landsat) to 250 m (MODIS) and 8 km (AVHRR-GIMMS3g), in situ 
ecological monitoring in tundra ecosystems is logistically challenging and therefore 
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restricted to few sites in the biome and small plot-scales (plot sizes of one square 
metre or below are common, see for example Molau & Mølgaard, 1996). The 
interpretation of satellite-scale NDVI is furthermore complicated by methodological 
artefacts and uncertainties about the ecological meaning of the trends in the 
vegetation index. Though overall related to the amount of photosynthetically active 
biomass (Blok et al., 2011; Raynolds, Walker, Epstein, Pinzon, & Tucker, 2012), long-
term coarse-scale observations of NDVI may be subject to errors relating to sensor 
calibration (Martínez‐Beltrán, Jochum, Calera, & Meliá, 2009; Teillet, Staenz, & 
William, 1997) and non-linearity of the vegetation index (Huete et al., 2002; Martínez‐
Beltrán et al., 2009), while spectral mixing at the sub-pixel level integrates a 
complexity of ecological processes (Huemmrich et al., 2010; Loranty et al., 2018; 
Walker et al., 2009) and may cause contradicting trends in tundra NDVI from satellite 
observations at different spatial grain sizes (Pattison et al., 2015). Recently emerging 
drone technologies and associated sensors allow for the collection of fine-grain 
multispectral imagery at landscape scales that has the potential to bridge the scale-
gap between satellite and ground-based observations (Anderson & Gaston, 2013; 
Klosterman et al., 2018; Klosterman & Richardson, 2017).  
 
Novel drone data to study variation in greenness 
In this study, we combine a novel data set of twelve within-growing season time-series 
of fine-grain drone-derived tundra greenness of two years (2016 and 2017) with 
medium- to coarse- grain satellite observations to test the correspondence between 
drone and satellite datasets and asses how fine-scale variation in tundra greenness 
is distributed across space and time at our study site in the mid-Arctic of Canada. 
Specifically, we address the following four questions: (1) How well do satellite and 
drone measures of tundra greenness correspond? (2) How is fine-grain variation in 
tundra greenness distributed across space? (3) Does local spatial variation in tundra 
greenness increase or decline across the growing season? And, (4) are the trend 
estimates in variation over time influenced by the scale of observation? Our analysis 
therefore allows us to validate satellite derived landscape estimates of vegetation 
greenness with fine-grain drone data and describe spatial and temporal variation in 
tundra productivity at grain sizes and extents that were not previously accessible.  
 
  



 116 

Methods 
Site description 
The research for this study was conducted on Qikiqtaruk – Herschel Island (138.91 
W, 69.57 N). The island is located in the Beaufort Sea along the coastline of the Yukon 
North Slope in the Yukon Territory, Canada. It was formed as a push moraine by the 
Laurentide Ice Sheet and the soils are composed of glacial and marine deposits (Burn 
& Zhang, 2009). Continuous ice-rich permafrost underlies the active layer top-soils 
and is subject to frequent disturbance, such as soil creep and thaw slumping (Obu et 
al., 2015). Climate and vegetation are currently undergoing pronounced changes: 
Ground-based observations show autumn warming, increases in shrub and graminoid 
abundance, decline of bare ground cover, advancement of spring and a lengthening 
of the growing season (Myers-Smith et al., 2018); and satellites demonstrate a 
greening of the landscape (Fraser et al., 2011). 
 
The vegetation of Qikiqtaruk has been described as shrub tundra (Myers-Smith, Hik, 
et al., 2011) and is characteristic for the lowlands of the North-Slope of the Yukon 
Territory and adjacent Alaska. The two most common plant communities on the island 
are found in the “Herschel“ and “Komakuk” vegetation types (Obu et al., 2015; Smith, 
Kennedy, Hargrave, & McKenna, 1989). Herschel vegetation is dominated by the 
tussock forming sedge Eriophorum vaginatum L. with varying cover of Salix pulchra 
Cham.. Komakuk vegetation is found on previously disturbed ground and is 
characterised by the ubiquitous presence of Dryas integrifolia Vahl., the willow Salix 
arctica Phall., various grass species including Arctagrostis latifolia. (R.Br.) Griseb. and 
forb species including Lupinus arcticus S. Wats. (Myers-Smith, Hik, et al., 2011). The 
Komakuk vegetation type has greater cover of bare ground relative to the Herschel 
vegetation type. 
 
Study design 
In 2016, we established four research sites on the south-east corner of Qikiqtaruk 
(Figure 4-1). At each site two 100 m x 100 m (1 ha) plots were set up, one in the 
Herschel and one in the Komakuk vegetation type. The plots were approximately 
north-south oriented and generously staked out to account for measurement error in 
the field. The maximum distance between two sites is 2.74 km and the plots at each 
site are on average 300 m apart. The sites varied somewhat in altitude and 
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topographic location: Collinson Head (73 m), Bowhead Ridge (82 m) and Hawk Ridge 
(79 m) are located on ridge tops, whereas Hawk Valley (63 m) is located on a shallow 
north facing slope (Komakuk plot) and a valley bottom (Herschel plot). All plots are 
relatively level and show little variation in terrain across each plot. The mean 
altitudinal range within a plot is 5.0 m with a maximum range of 8.7 m for the Hawk 
Valley Komakuk plot. 

 
Figure 4-1 | Map of the study sites and paired Herschel and Komakuk vegetation plots 
on Qikiqtaruk – Herschel Island in the Canadian Yukon. The map is projected in UTM 
Zone 7N, WGS84. Latitude and longitude coordinate pairs are shown for ease of 
interpretation. Shoreline data provided by the GSHHG:  
http://www.soest.hawaii.edu/wessel/gshhg/ (Wessel & Smith, 1996). 
  



 118 

Satellite data acquisition 
Moderate Resolution Imaging Spectrometer Vegetation (MODIS) images were 
obtained through the Google Earth Engine (Gorelick et al., 2017). We used the 
MOD13Q1 Terra v6 vegetation index product (Didan, 2015) with pixel sizes of 250 m 
pixel. The MOD13Q1 product provides 16-day composite vegetation index values with 
quality scores on a per pixel basis. We extracted the NDVI values for the pixels 
containing each plot for the two study periods (May to September 2016 and May to 
September 2017) and discarded all values with a quality score (Summary QA) of -1 
(no data) or 3 (cloudy). The MODIS NDVI is calculated from the MODIS bands 1 
(near-infrared) and 2 (red), which cover the wavelengths of 841 nm – 876 nm and 620 
nm – 670 nm respectively. 
 
Sentinel 2 L1C products were obtained by querying the Copernicus Open Access Hub 
(https://scihub.copernicus.eu/) for all accessible imagery during the two study periods 
(same as MODIS) and downloading the resulting tile bundles (2016) or tiles (2017). 
For each image / acquisition day, the tile containing Qikiqtaruk and the surrounding 
area (T07WET) was then processed to the L2A product using Sen2Cor 2.4.0 (Mueller-
Wilm, 2017). We retained all L2A rasters with 10 m resolution (Band 1, 2, 3 and 8), 
applied the L2A cloud mask and created true colour composites for each image. We 
further inspected all true colour images manually for cloud contamination not detected 
by the cloud mask and discarded all images where the study area was cloudy or 
partially cloudy, 78% of the satellite imagery for the 2016 period and 74% for the 2017 
period had to be discarded due to cloud contamination. The resulting dataset 
contained 9 cloud-free L2A - 10 m resolution - 4-band images for 2016 and 15 for 
2017. 
 
The sentinel imagery was further processed by clipping to the 10 x 10 cells of the 
sentinel grid that had the highest overlap with the plot area established on the ground. 
The coordinates for the extents of the plots can be found in Appendix Table 7. Pixel 
by pixel NDVI values were then calculated for each Sentinel image and each plot 
using the rasters of band 8 (near-infrared, 784.5 nm - 899.5 nm) and band 4 (red, 650 
nm - 680 nm). 
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Drone imagery  
Multispectral drone imagery of the plots were obtained using Parrot Sequoia (Paris, 
France) compact multispectral sensors mounted on multi-rotor drone platforms during 
spring to early autumn (June – August) in 2016 and 2017. All 2016 flights were 
conducted with a Tarot 680 Pro based hexa-copter and the same Parrot Sequoia 
sensor unit (#1), which was mounted on the drone with a gimbal to stabilise the sensor 
for image acquisition at nadir. The 2017 surveys were carried out with two different 
quad-copter platforms and two Sequoia units. Three-quarters of the surveys in 2017 
were flown with a 3DR Iris+ and the remaining quarter with a DJI Phantom 4 Pro. On 
both platforms the Sequoia units were not stabilised, and the image acquisition angle 
was therefore affected by the drone’s attitude. All but four flights in 2017 were 
conducted with the Sequoia unit (#1) used for the 2016 surveys. A second, different 
Sequoia sensor unit (#2), was used for surveying the Site 1 Herschel and Komakuk 
plots on the 24 June 2017 and 9 July 2017. 
 
Surveys were conducted with a lawn-mower flight pattern at an altitude of 50 m, which, 
for the Parrot Sequoia sensor, resulted in ground sampling distances between 0.05 
m and 0.06 m. Images were acquired with a minimum of 75% forward and side overlap 
and in 2016 the plot areas marked on the ground were overshot generously. The 2017 
surveys were carried out with a lower overshoot and the resulting rasters might 
therefore be subject to larger edge-effects. Flight times ranged between 5-17 minutes 
depending on the platform, flight plan and weather conditions. All survey flights were 
conducted as close to solar noon as possible. In 2016, the average difference to solar 
noon between the time of the survey and solar noon was 2 hours 47 min (maximum 
6 hours 42 min) and in 2017 the mean 2 hours 15 min (maximum 6 hours 15 min). 
 
The Parrot Sequoia imagery from each survey flight was processed in the 
photogrammetry software Pix4D Desktop 4.0.21 (Pix4D SA, Lausanne, Switzerland) 
to generate co-registered reflectance maps for each sensor band (red, green, blue 
and near-infrared). We used the Pix4D Desktop agMultispectral template with the 
“merge reflectance map tiles” option set to true. Radiometric calibration and 
geolocation with ground control points (GCPs) were carried out using the respective 
routines in Pix4D Desktop. Pre- and post-flight imagery of a pre-calibrated reflectance 
panel was acquired for each survey. A MicaSense (Seattle, USA) reflectance panel 
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was used in 2016 and SpereOptics (Herrsching, Germany) Zenith Lite panels were 
used in 2017. Panel reflectance for the Sequoia bands was measured pre- and post-
season and the average reflectance between those two time points were used to carry 
out the radiometric calibration. 
 
Thirteen GCP targets were deployed in each plot and their horizontal and vertical 
position measured to a horizontal accuracy of ±0.02 m using a survey-grade RTK-
GNSS system in the middle of each field season. We used 4-6 of the GCPs to 
geolocate the imagery in Pix4D Desktop, placing markers on a minimum of three 
images per band per GCP. Higher marking efforts resulted in diminishing returns in 
geo-location accuracy, partially due to the at times poor visibility of the GCP targets 
in the monochromatic imagery (Chapter 3). We estimate that the co-registration 
between the reflectance maps of the four bands lies between 1-2 pixels for any given 
survey (Chapter 3) and an average horizontal geo-location accuracy of a set of co-
registered reflectance maps to be between 0.1 and 0.3 m (2-6 x GSD). 
 
The drone reflectance maps were cropped to the extent of the plots covered by the 
10 x 10 subset of the sentinel grid (Appendix Table 7) Depending on the next step in 
the statistical analysis (see below), reflectance maps were then either a) not further 
processed, b) resampled to the 10 m cell size of the sentinel grid or c) resampled to 
1 m, 5 m, 10 m, 20 m and 30 m cell sizes. Finally, pixel-by-pixel NDVI values were 
calculated from the native or resampled reflectance maps using the red (640 nm - 680 
nm) and near-infrared (770 nm - 810 nm) bands of the Parrot Sequoia. 
 
We carried out a total of 122 drone surveys across the two field-seasons. However, 
we did not use all drone surveys in our analyses due to overexposed radiometric 
calibration imagery, including all the 2016 imagery obtained for Hawk Valley (Site 3) 
and Hawk Ridge (Site 4). We retained two flights without calibration imagery for the 
Collinson Head Herschel and Komakuk plots obtained at peak growing season in 
2016 for which we only used the mean NDVI and standard deviation in the analysis. 
We estimate an associated error of about 5% in the NDVI plot mean for those 
surveys due to the lack of calibration (Chapter 3). Our final dataset included 68 
surveys: 19 in 2016 and 49 in 2017 (Table 4-1). 
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Table 4-1 | Number of drone surveys / time-points included in the time-series for each 
plot-site combination in the 2016 and 2017 growing seasons. 

Site Name Vegetation Type No. flights 2016 No. flights 2017 

Collinson Head (Site 1) 
Herschel 6 7 

Komakuk 5 7 

Bowhead Ridge (Site 2) 
Herschel 4 6 

Komakuk 4 6 

Hawk Valley (Site 3) 
Herschel - 5 

Komakuk - 6 

Hawk Ridge (Site 4) 
Herschel - 6 

Komakuk - 6 

 
Correspondence between drone and satellites 
To test the correspondence between the landscape-level estimates of tundra 
vegetation greenness between the drone and satellite products, we calculated the 
mean NDVI values from the drone and Sentinel imagery for each 1 ha plot and time-
point and visually compared their correspondence across the growing season with 
the MODIS pixel values containing each plot. We then plotted the Sentinel and drone 
rasters, native and resampled to the sentinel grid, for direct visual comparison. We 
further obtained histograms and summary statistics of the NDVI distributions to 
assess the change in grain size from the native to resampled drone raster and for 
direct comparison of the two with the Sentinel NDVI maps. 
 
Finally, we tested the correlation between Sentinel and re-sampled 10 m drone pixel 
values. For this, we first created a subset of the 2017 imagery for all drone and 
sentinel images that were acquired within 48 hours from each other and then 
modelled the relationship between the NDVI rasters using a Bayesian linear mixed 
model. We used a mixed model to allow - and test for - an effect of plot vegetation 
type (Herschel or Komakuk), Sentinel satellite id (2A or 2B) and day difference 
between image drone and sentinel image acquisition (-2 days to +2 days) on the 
statistical relationship. Specifically, we modelled the relationship using the following 
formula: 
  



 122 

 
EFGHI4(=2 = µ	 + 	bJKLMNOPQRPOS +	aT2U.61+2 +	a<2=6.:I+aI:WW. 

bJKLMNOPQRPOS: XYZ. [&\Y +															 

bJKLMNOPQRPOS: ]Y"[. #^ +																			 

bJKLMNOPQRPOS: ^#$$. +	e																				  

 
Where EFGHI4(=2 is the pixel value of the resampled 10 m drone pixel, µ the global 
intercept; bJKLMNOPQRPOSthe slope value for the linear relationship between the drone 

pixel and the corresponding sentinel pixel; aT2U.61+2 ,a<2=6.:I  and aI:WW. the fixed 

intercepts for vegetation type, sentinel satellite id and difference in acquisition data 
between drone and sentinel imagery;  bJKLMNOPQRPOS: XYZ. [&\Y, bJKLMNOPQRPOS: ]Y". #^ and 

bJKLMNOPQRPOS: ^#$$. the interactions between vegetation type, Sentinel id and difference 

in acquisition date and the continuous predictor – the Sentinel pixel NDVI value; and 
e the residual error. e	was distributed normally with a variance estimated from the 
data. We used weakly informative priors for all parameter estimates: inverse Wishart 
priors for the residual variance and normal priors for the fixed effects (Hadfield, 2017). 
We were unable to model random intercepts or slopes as there was insufficient 
replication in the auxiliary predictors (including difference in acquisition date and plot 
id) for the model to converge. 
 
Fine-scale variation across space 
To study the fine-scale distribution of variation in vegetation greenness across space, 
we first selected six drone NDVI maps at native grain-size from the Bowhead Ridge 
(Site 2) 2017 time-series: three maps from each vegetation type obtained at the 
beginning peak and end of the growing season (26 June, 27 July and 9 August 2017 
respectively). We then obtained variograms and model fits for the NDVI rasters using 
the gstat package of the statistical computing environment R and calculated the mean 
range estimate of all variogram model fits. We were unable to fully sample the large 
native grain-size drone rasters (up to 4 million cells) for the variograms due to 
computational limitations. Instead we obtained variogram estimate based on a 
random sample of 5% of the cells in each rasters. Semi-variance of NDVI was 
estimated for bin-widths of 0.15 m for all point-pair distances up to 15 m and bin-
widths of 3 m for all point-pair distances up to 45 m. A minimum sample of 1.6 million 
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point-pairs (mean: 39 million) per bin was obtained to estimate the semi-variance of 
the 0.15 m bins, and a minimum sample of 430 million point-pairs (mean: 666 million) 
per bin was used to estimate the semi-variance of the 3 m bins. The variogram-model 
fit function of the gstat package automatically chooses the best model of fit. In all 
cases a spherical model provided the best fit. The model parameters (range, nugget, 
sill) were extracted and the mean range for the three rasters calculated.  
 
Variation across the growing season 
To assess the variation in tundra greenness across the growing season we analysed 
the trends over time in the standard deviation of plot-level NDVI for the time-series in 
2016 (4 time-series) and 2017 (8 time-series). For each plot and time-point of 
observation the standard deviation of NDVI in the 1 ha plot was calculated. We then 
fitted a Bayesian linear mixed model to test for a trend over time. We hypothesised 
potential effects of vegetation type and year on the intercept of the model, and fitted 
the model with the following formula: 
 

_FJKLM = 	. +	0I31	(W	1234 +	7T2U.61+2 + 71234 + 8 

 
Where _FJKLM is the standard deviation in NDVI across a plot; . is the global intercept; 
0I31	(W	1234 the slope between the day of year and the standard deviation in NDVI; 

7T2U.61+2 and 71234	the fixed intercepts for vegetation type and year; and 8 the residual 

error. e	was distributed normally with a variance estimated from the data. We used 
weakly informative priors for all parameter estimates: inverse Wishart priors for the 
residual variance and normal priors for the fixed effects. 
 
We repeated the above analysis with the coefficient of variance instead of the 
standard variation and obtained comparable results, and tested for an effect of 
vegetation type on 0I31	(W	1234  (veg. type:day of year interaction), but found no 

significant effect. 
 
Influence of grain size on trends in variation 
In our final analytical step, we tested whether the trend in standard deviation across 
the growing season was affected by grain size. We repeated the analysis for the 
previous section using the drone NDVI map resampled to the five cell sizes: 1 m, 5 
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m, 10 m, 20 m and 30 m. In addition to vegetation type and year we modelled a fixed 
intercept for grain size and a day of year:grain size interaction to test for an effect of 
grain size on the slope of the relationship:  
 

_FJKLM = 	. +	0I31	(W	1234 + 7T2U.61+2 + 71234 + 7U43:=	<:`2 + 

0I31	(W	1234: Zab#"	]#cY + 	8.																							 

 
Where _FJKLM is the standard deviation in NDVI across a plot; . is the global intercept; 
0I31	(W	1234 the slope between the day of year and the standard deviation in NDVI; 

7T2U.61+2 , 71234	and 7U43:=	<:`2	the fixed intercepts for vegetation type, year and grain 

size; 0I31	(W	1234: Zab#"	]#cY the interaction between grain size and the slope; and 8 

the residual error. e	was distributed normally with a variance estimated from the data. 
We used weakly informative priors for all parameter estimates: inverse Wishart priors 
for the residual variance and normal priors for the fixed effects. 
 
Data handling and packages 
All data handled and analysis was carried out in the R statistical environment (version 
3.4.2). Clipping , resampling, summary statistics and general spatial data handling 
was performed with the raster version 2.5-8 (Hijmans, 2016), sp version 1.2-5 (R. S. 
Bivand, Pebesma, & Gomez-Rubio, 2013; Pebesma & Bivand, 2005) and rgdal 
version 1.2-15 (R. Bivand, Keitt, & Rowlingson, 2017) packages. Raster visualisations 
were created with rasterVis version 0.41 (Perpiñán & Hijmans, 2018) and the gstat 
version 1.1-6 (Gräler, Pebesma, & Heuvelink, 2016; Pebesma, 2004) package was 
used obtain variograms and model fits. General data visualisations were created 
using ggplot2 version 2.3.0.0 (Wickham, 2016). Finally, the MCMCglmm package 
(version 2.25) was used for Bayesian linear mixed modelling. Model convergence was 
confirmed through examinations of the trace plots. We refer to effects as “significant” 
if the 95% credible intervals do not overlap zero. 
 
Results 
Correspondence across platforms at landscape level 
Landscape-scale estimates of tundra greenness of our study plots corresponded well 
between the satellite and drone platforms in the 2016 and 2017 growing seasons, 
even though the time-series suggest a small offset between the drone and satellite 
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mean NDVI estimates of the 1 ha tundra plots (Table 4-2 and Figure 4-2 A). The July 
mean NDVI for the Herschel and Komakuk vegetation types showed stark differences 
in landscape-level greenness between the two vegetation types in the 2017 growing 
season, but no clear difference was observed in the 2016 growing season (Figure 4-
2 B). July landscape-level greenness in 2017 was notably higher for the Komakuk 
plots than the Herschel plots (Figure 4-2 B). When resampling the native grain-size 
drone rasters to the 10-m Sentinel grid a substantial amount of variation in NDVI was 
lost (Figure 4-3). Nonetheless, we observed a strong linear relationship between 
Sentinel pixel NDVI values and the NDVI values of the re-sampled 10 m drone rasters 
(Figure 4-4). The intercept (and slope of this relationship were significantly dependent 
on the vegetation type, the specific Sentinel satellite from which the imagery were 
obtained and the acquisition time difference in days between the drone and Sentinel 
image (Appendix Table 8). 
 
Table 4-2 | Difference in July plot-level NDVI between the three sensing platforms 
(drone, Sentinel and MODIS) for the 1 ha study plots on Qikiqtaruk. Drone and 
Sentinel observations represent July mean NDVI values of the plots, whereas the 
MODIS observations represent the July mean NDVI value of the MODIS pixels 
containing the plots.  

Platform Comparison Difference in July Plot NDVI Standard Deviation in July Plot NDVI 
Drone to MODIS -0.060 0.026 
Drone to Sentinel -0.066 0.017 

Sentinel to MODIS -0.006 0.026 
 
 
 
 
  



 126 

 
 

Figure 4-2 | A) Time-series of drone, Sentinel 2 and MODIS estimates of landscape 
greenness of the four one-hectare plots in the two vegetation types (Herschel and 
Komakuk) on Qikiqtaruk across the growing seasons of 2016 and 2017. Drone and 
Sentinel observations represent site-averages in NDVI, whereas the MODIS 
observations represent the NDVI value of the MDIS pixel containing each respective 
plot. B) Drone-derived mid-season NDVI estimates for the Herschel and Komakuk 
vegetation types in 2016 and 2017. Values and error bars represent the mean and 
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associated standard error for all drone surveys conducted over the 1 ha vegetation 
plots during the month of July in the respective year. Growing-season NDVI curves 
are shown for illustrative purposes and represent a simple quadratic model fit of the 
plot-level NDVI from all sensors and the day of year (doy): NDVI = adoy2 + bdoy + g. 
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Figure 4-3 | Spatial variation and pixel-by-pixel differences in NDVI for the Bowhead 
Ridge (Site 2) Herschel (A) and Komakuk (B) plots as observed by drone and Sentinel 
2A on the 17 July 2017. Drone reflectance maps were re-sampled to the 10 m Sentinel 
2 grid prior calculation of the NDVI for the pixel-by-pixel comparisons. Ten-metre 
resolution NDVI maps are shown with two colour-scales to visualise the reduced pixel-
by-pixel variation in the coarser grain rasters. Histograms and standard deviation 
visualise variation for each NDVI map. True colour orthomosaics are shown for 
illustrative purposes. RGB imagery was obtained on the same date with the native 
DJI Phantom 4 Pro camera and subsequently processed with Pix4D Desktop. 
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Figure 4-4 | Pixel by pixel comparison between Sentinel 2 L2A pixel values and 
resampled drone data for our study sites on Qikiqtaruk in 2017. Drone red and near-
infrared drone reflectance maps were re-sampled from their native (approximately 
0.05 m) ground sampling distance to match the Sentinel grid with a 10 m grain size. 
All Sentinel-drone pixel pairs were matched from images acquired less than 48 hours 
apart. We estimated slope and intercept of the linear relationship using Bayesian 
mixed models, testing for the effect of day difference in acquisition time (days), 
vegetation type (Herschel and Komakuk) and Sentinel satellite platform (Sentinel 2A 
and 2B). All of these factors had a significant effect on intercept and slope (Appendix 
Table 8). Here, we show a simpler version of the linear model for graphical clarity, 
which includes only the effect of vegetation type on intercept and slope of the 
relationship (Appendix Table 9). The dataset contained a total of 68 drone surveys 
with nine distinct Sentinel image and drone survey date-pairs obtained from up to four 
plots per vegetation type. 

 
Fine-scale variation in landscape greenness  
Semi-variance of vegetation greenness for the Herschel and Komakuk vegetation 
plots at Bowhead Ridge (Site 2) derived from the native-scale drone rasters steadily 
increased from zero to about a half of a metre distance and levelled off thereafter 
(Figure 4-5). The spherical variogram models confirmed the visual trend and returned 
a mean range of 0.52 m (Figure 4-5 B). We found no notable difference in the 
behaviour of NDVI semi-variance with distance for both vegetation types but generally 
observed lower semi-variance values for the Herschel vegetation type (Figure 4-5). 
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Likewise, the NDVI semi-variance pattern was consistent among different time-points 
of the growing season, though overall semi-variance decreased with progression of 
the season in 2017 (Figure 4-5). 
 

 
Figure 4-5 | A) Variograms and model fits of drone derived NDVI maps with ground 
sampling distances of approximately 0.05 m for the Herschel and Komakuk vegetation 
plots at Bowhead Ridge (Site 2) on three time-points during the growing season of 
2017.  B) Close up of the semi-variograms and model fits for bin distances below 1 
m. 

 
Variation across the growing season 
We observed a decline in standard deviation of NDVI derived from the native-scale 
drone imagery for all plots across the growing season of both years (Figure 4-6). The 
slopes of linear mixed models were statistically significant with significant effects for 
the intercept for vegetation type and year (Appendix Table 10). No significant 
interaction between vegetation type and the slope of the relationship was observed 
(Appendix Table 11). We also tested the relationship using the coefficient of variation 
instead of the standard deviation and obtained comparable results (Appendix Table 
12). Four of the 12 time-series showed a notable dip in standard deviation in the 
middle of the growing season (Figure 4-6 B).  
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Figure 4-6 | (A) Change in the standard deviation of NDVI for 1 ha plots surveyed with 
drones at a ground sampling distance of approximately 0.05 m for the Herschel and 
Komakuk vegetation types in the years 2016 (4 time-series) and 2017 (8 time-series). 
See Appendix Table 10 for slope and intercept estimates. (B) Two time-series in each 
year showed a pronounced dip in the standard deviation at peak-growing season: The 
time-series of the Collinson Head (Site 1) Herschel plot in 2016 (purple) and 2017 
(dark blue), as well as the time-series of the Collinson Head (Site 1) Komakuk plot in 
2016 (light blue) and the Hawk Valley (Site 3) Herschel plot in 2017 (green). The 
remaining time-series are shown in light grey. 

 
Influence of grain size on trends in variation 
The slope of the linear trend in the standard deviation of plot-level NDVI across the 
growing season was not affected by grain size (Figure 4-7). We found no significant 
effect of the grain size on the slope of the linear mixed model (Appendix Table 13). 
For all grain sizes the slope declined as the growing seasons progressed. 
Nonetheless, the standard deviation decreased with grain size (Figure 4-7), which 
was also confirmed by a mixed model analysis, for which grain size and vegetation 
type significantly affected the intercept of the relationship if a grain size:slope 
interaction was not included (Appendix Table 14). Year did not significantly impact the 
intercept with or without interaction.  
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Figure 4-7 | Influence of grain size on the trends in standard deviation of NDVI across 
the growing seasons for the 1 ha plots in the drone dataset. The drone reflectance 
map rasters were resampled to 5 different cell sizes (1 m, 5 m, 10 m, 20 m and 30 
m), the NDVI calculated and the standard deviation determined. Trend lines represent 
Bayesian linear mixed model fits with fixed intercept estimates for vegetation type 
(Herschel and Komakuk) and the years 2016 (A and C) and 2017 (B and D) for the 
five cell sizes indicated by colour. See Appendix Table 14 for the posterior parameter 
estimates of the model. The slightly lowered trendline for the 1 m cell size is likely 
caused by the tendency of generalised mixed models to pull the effect sizes of 
extreme groupings towards the overall mean effect.     

 
Discussion 
Our analysis of correspondence between drone and satellite measures of tundra 
productivity, and study of fine-grain variation of tundra productivity highlight the 
following main findings: (1) Drone and satellite derived measures of tundra 
productivity correspond well at the landscape level (grain sizes of 10 m - 100 m). 
However, a substantial amount of variation is lost when the fine-scale drone data is 
aggregated to the grain sizes of even the most high-resolution satellite products that 
are publicly available, such as those from the Sentinel 2 satellites. (2) Tundra 
vegetation productivity in the 1 ha study plots at our field site is auto-correlated for 
distances below 0.5 m, but variation plateaus just above this distance and increases 
very little or not at all for distances of up to 45 m thereafter. (3) We observed a 



 133 

significant decline in the variation of tundra greenness across the growing season of 
both studied years. (4) This trend in standard deviation was not affected by variation 
in grain sizes for grain sizes up to 30 m. Our findings therefore validate landscape-
level measures of vegetation productivity derived from coarse-grain satellite data but 
highlight a substantial amount of spatial and temporal variation in tundra vegetation 
greenness at fine-scales, currently not captured by publicly available satellite 
products. Understanding plant phenology trends at finer resolutions, and also the 
changing heterogeneity of phenology, will be key for understanding of how tundra 
ecosystems will respond as the climate continues to warm. 
 
Correspondence across platforms at landscape level 
Drone and satellite measures of landscape-level tundra greenness corresponded well 
and so did pixel by pixel comparisons of Sentinel L2A products and resampled drone 
NDVI. Whereas these findings validate the landscape-level measures of tundra 
vegetation greenness for our study plots across the platforms, the observed offset 
(approximately 0.06 for July-mean plot-level NDVI) between drone and satellite NDVI 
and the random variation over time indicated in imagery from all platforms underline 
the broader challenges of cross-platform comparison of NDVI values. Despite being 
a normalised ratio, absolute NDVI values are not necessarily directly comparable 
across platforms and time-points of acquisition due to a variety of error sources 
associated with the underlying reflectance measurements, which apply to both drone 
(Chapter 3; Aasen & Bolten, 2018; Aasen, Burkart, Bolten, & Bareth, 2015) and 
satellite derived NDVI measurements (Fan & Liu, 2016; Martínez‐Beltrán et al., 2009; 
Teillet et al., 1997).  
 
The main error sources complicating comparisons of NDVI values across sensors, 
space and time are (in no particular order): atmospheric disturbance and solar 
illumination, differences in optical apparatus between sensors, calibration accuracies, 
differences in spectral bands and ground sampling distance, spatial integration of 
reflectance measurements across different grain sizes, as well as image geometry, 
geolocation and co-registration between bands (Fan & Liu, 2016; Martínez‐Beltrán et 
al., 2009; Teillet et al., 1997). We accounted for these error sources through 
standardising our drone data acquisition method (Chapter 3) and using post 
processed satellite products that include atmospheric corrections and cross sensor 
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calibration such as the MOD13Q1 and Sentinel L2A products, but caution that some 
error will remain in our analysis. With the rapid development of drone technologies 
and sensors, we advocate for continued cross-platform and sensor comparisons 
using improved and standardized methods between drone- and satellite-derived 
measures of tundra vegetation greenness.  
 
Loss of variation with increasing grain size 
A notable amount of variation was lost when resampling the drone data to coarser 
grain sizes and comparing the native resolution drone NDVI maps to the Sentinel 
products. The loss of variation and diversity with increasing grain size is a classic 
phenomenon well discussed in the ecological and geographic literature (Jelinski & 
Wu, 1996; Marceau, 1999; Turner, O’Neill, Gardner, & Milne, 1989; Woodcock & 
Strahler, 1987) and often referred to as the “scale problem” component of the 
modifiable area unit problem (MAUP) (Openshaw & Taylor, 1981). Our study provides 
yet another example and demonstrates that this problem also applies when shifting 
from fine-grain drone imagery to medium grain satellite-based measurements of 
tundra vegetation greenness. However, whether this loss of variation and hence 
information matters is highly dependent on the ecological phenomena under 
consideration (Levin, 1992; Marceau, 1999; Turner et al., 1989). As a first step to 
finding an answer to this question, we investigated how fine-scale variation in 
vegetation greenness on Qikiqtaruk is spatially structured in the two studied 
vegetation types. 
 
Spatial structure of vegetation greenness on Qikiqtaruk 
Our findings suggest that the maximum in spatial variation of tundra greenness for 
the Herschel and Komakuk vegetation types on Qikiqtaruk is reached at distances of 
just over half a metre. In our study plots, little to no additional spatial variation was 
observed for distances greater than half a metre and notable auto-correlation in 
vegetation greenness was found for distances shorter than a half of a metre.  These 
findings correspond well with the ecological structure of the two tundra vegetation 
types: Tussock sedges and ice-wedge polygons dominate the structure of the 
Herschel vegetation type at small scales, while soil disturbances create characteristic 
patterning of the Komakuk vegetation over short distances, but beyond this both 
vegetation types are homogenous (Obu et al., 2015; Smith et al., 1989). Tussock 
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sedge diameter commonly ranges between 0.1 m and 0.3 m (see for example Mark, 
Fetcher, Shaver, & Iii, 1985) and ice-wedge polygons harbour characteristic plant 
communities on their rims and troughs with widths of 0.0 m – 1.0 m (Fritz et al., 2016). 
Komakuk vegetation is commonly found on gently sloping uplands or gentle slopes 
and the soil is subject to slow downslope movements and gelifluction (Obu et al., 
2015). Active layer disturbances lead to a distinctive pattern of alternating vegetation 
and elongated bare-ground patches perpendicular to the slope with approximate 
dimensions of 0.3 m – 0.5 m width and 0.4 – 1.0 m length. Thus, for both of the 
dominant vegetation types at this site, vegetation and disturbance patterning create 
variation in tundra greenness at scales of less than a metre. 
 
The marked differences between the Komakuk and Herschel vegetation types in their 
July mean NDVI values in the 2017 growing season demonstrate that there is 
variation in vegetation greenness amongst the vegetation types at the landscape level 
and corresponds well satellite derived vegetation type classifications of the island 
previously conducted (Obu et al., 2015). The absence of a clear difference in 
greenness between the two vegetation types in 2016 could be an artefact of the 
smaller sample size in that year or may suggests that differences between the 
vegetation types could be subject to inter-growing season variation. A multi-year 
satellite-based analysis or repeated drone surveys with a larger extent could be used 
to test how generalizable the vegetation type differences are at this site and to 
understand the spread of variation in greenness values among sites and community 
types across the tundra biome.   
 

The observed decline in variation in NDVI within the 1 ha study plots over the progress 
of the growing season highlights that landscape phenology does not only relate to 
variation in distinct events amongst years, but that there are also temporal-patterns 
in the degree of spatial variation within the landscape (Armstrong et al., 2016; Kerby, 
2015; Klosterman et al., 2018). The start of season for both of our study years was 
very similar (ground-based observations of Salix arctica spring leaf out on Qikiqtaruk 
show 5 days difference between 2016 and 2017) and indeed we did not detect any 
significant influence of year on the slope of the decline in standard deviation with the 
progression of the growing season. However, it is plausible that there are stark 
differences in the timing of when the minimum in variation is reached among 
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extremely early and late years and further exploration using an extended time-series 
would be warranted .  
 
The onset of the growing season on Qikiqtaruk has been advancing (Myers-Smith et 
al., 2018; Chapter 2) and should this trend continue, the minimum in variation of 
vegetation greenness might be reached notably earlier in the year. Variation in the 
timing of the heterogeneity in plant phenology could alter plant consumer and 
pollinator interactions that rely on spatial variation in resources or “resource waves” 
across the landscape (Armstrong et al., 2016; Kerby, 2015). Indeed, lemming species 
in the Canadian Arctic (Rodgers & Lewis, 1986) and mammalian herbivores in 
Greenland (Klein & Bay, 1994) have been shown to change their home ranges 
according to the seasonal availability of their preferred food sources. Furthermore, 
multi-level trophic interactions in the tundra can be strongly related to snow conditions 
(Berg et al., 2008) which themselves can be highly localised (Pedersen et al., 2018). 
The ability of drone technologies to unpick fine-scale spatial and temporal variation in 
tundra vegetation greenness demonstrated by our study therefore provides novel 
opportunities to investigate plant-herbivore interactions in the tundra landscape. 
 
We did not observe an influence of vegetation type on the slope of the decline in 
variation of NDVI across the growing season, suggesting that this trend holds true at 
the landscape level at our field site independent on vegetation type. However, the 
absolute magnitude of variation in NDVI (intercept) between the two vegetation types 
differed significantly. Vegetation indices such as the NDVI reflect plant community 
composition and surface cover diversity (for example, Campbell and Wynne, 2011; 
Gould, 2000) and the higher variation in NDVI of the Komakuk vegetation type could 
be explained by the higher diversity in plant species and increased bare soil cover 
compared to the Herschel vegetation type dominated by almost continuous growth of 
tussocks sedges. In addition, the species specificity of tundra plant phenological 
responses (Chapter 2) would suggest that higher species diversity would correlate 
with a higher variation in trends of vegetation greenness over small spatial scales. 
Further investigations using quadratic or polynomial models fitted to time-series of 
fine-grain drone data could improve our understanding of how species diversity 
influences trends and variation in vegetation greenness across the growing season in 
the tundra landscape. 
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Overall, our study underlines that drone technologies can transform the way we study 
landscape phenology (Anderson & Gaston, 2013; Klosterman et al., 2018; Klosterman 
& Richardson, 2017). Particularly in the tundra, where the plants are small in size and 
important environmental factors such as snow cover, carbon, nutrient and water 
availability vary over short distances (Hubbard et al., 2013; Muster, Langer, Heim, 
Westermann, & Boike, 2012; Wainwright et al., 2015), uncovering patterns in the fine-
scale variation of phenology and greenness is key to improving our understanding of 
the mechanistic basis for landscape-scale productivity to improve predictions of future 
tundra vegetation change. Our ability to study the tundra landscape at sub-metre grain 
sizes had previously been limited by the available observational methods. Drone 
studies of tundra vegetation patterns and processes will likely play a critical role in 
improving our understanding of the hierarchical structure of the ecosystems of the 
north (sensu Allen & Starr, 1982). 
 

Conclusions 
The Arctic is undergoing rapid environmental change (IPCC, 2014) with dramatic 
consequences for the ecosystems. In situ observations demonstrate changes in 
tundra community composition (Elmendorf et al., 2015; Ernakovich et al., 2014; 
Myers-Smith, Forbes, et al., 2011), plant height (Bjorkman et al., 2018) and altered 
phenology (Høye et al., 2007; Post, Steinman, & Mann, 2018) while satellite 
observations suggest a highly heterogenous increase in vegetation productivity with 
variation in trends across the tundra and between satellite platforms (Guay et al., 
2014; Keenan & Riley, 2018), as well as longer growing season caused by earlier 
onsets of spring and delayed onset of autumn (Zeng et al., 2011, 2013; Zhao et al., 
2015). However, uncertainty remains in which ecological processes are responsible 
for the heterogeneity in these satellite trends and what causes disagreement across 
platforms (Guay et al., 2014; Zeng et al., 2013). Scale-discrepancies and 
methodological differences have complicated our ability to link in situ variation to the 
medium - coarse grain satellite data (Guay et al., 2014; Myers-Smith, Forbes, et al., 
2011; Stow et al., 2004; Woodcock & Strahler, 1987).  
 
Our findings demonstrate high cross-platform correspondence of drone and satellite 
measures of tundra greenness at the landscape-scale for our field site Qikiqtaruk, but 
also show a notable offset (approximately 0.06 for mean July plot-level NDVI) 
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between drone and satellite data. We observed a loss of variation in tundra greenness 
when aggregating from fine-grain drone (approx. 0.05 m) to medium-grain satellite 
pixel sizes (10 m). While the studied vegetation types were homogenous in vegetation 
greenness at the landscape scale (metres to tens of metres) we observed notable 
fine-scale variation below the grain sizes (sub-metre) of the most recent generation 
of publicly available satellite products, caused in part by variable bare-ground, 
vegetation cover and ice-wedge polygonal terrain. Our time-series analysis 
suggested a cross-growing season decline of landscape-level variation within the 
vegetation types, which if altered by climate change could impact plant-consumer 
interactions.  
 
Our study illustrates the potential for drone derived observations to bridge the gap 
between satellite-derived landscape-level and small-scale in situ observations of 
vegetation productivity and phenology. Particularly in the tundra, where growth and 
variation occur at small scales, fine-resolution drone data can assist in advancing our 
understanding of the ecosystem and biome-wide processes that govern changes in 
vegetation productivity and phenology, and therefore will likely play a critical role in 
improving our forecasts of future tundra ecosystems and their feedbacks to global 
climate change.  
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The Arctic willow Salix arctica Pall. in autumn colours on Qikiqtaruk. 
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Chapter 5 Discussion 

The Arctic is warming at twice the rate than the rest of the globe and the rapid increase 
in temperatures is causing pronounced changes in the ecosystems of the north 
(IPCC, 2014). Particularly, the vegetation in the tundra is responding, often in rapid 
and dramatic ways (Elmendorf et al., 2015; Guay et al., 2014; Høye, Post, Meltofte, 
Schmidt, & Forchhammer, 2007; Myers-Smith et al., 2011). Tundra vegetation change 
could result in feedbacks to the global climate system (F. Stuart Chapin, Shaver, 
Giblin, Nadelhoffer, & Laundre, 1995; Ernakovich et al., 2014; Loranty & Goetz, 2012) 
and could alter key plant-herbivore and pollinator interactions (Doiron, Gauthier, & 
Lévesque, 2015; Kerby & Post, 2013b; Post, Pedersen, Wilmers, & Forchhammer, 
2008). Predicting the future of the tundra biome and its role in the global system 
requires improved knowledge of the links between tundra vegetation change and the 
resulting changes to ecosystem functions. Recently emerging drone technology and 
associated sensors now allow us to map vegetation productivity of tundra landscapes 
at higher levels of detail (Anderson & Gaston, 2013; Fraser, Olthof, Lantz, & Schmitt, 
2016; Klosterman & Richardson, 2017). Drone technology therefore enables us to 
bridge the gap between conventional medium- to coarse-grain satellite observations 
and in situ monitoring, and enhances our ability to observe ecosystem changes at 
multiple scales. In this thesis I combined data from all three sources to contribute to 
our understanding of how tundra plant phenology and productivity are changing 
across space, time and observational scales, and to further our ability to predict the 
future tundra and its role in the planetary system. My main findings were (see also 
Figure 5-1): 
 
Chapter 2: 

1. Trends in spring phenology at the studied coastal tundra sites in Alaska, 
Canada and Greenland show varied directional changes, mirroring the 
absence of a globally coherent directional trend across the tundra biome.  
 

2. Localised snowmelt and regional temperature – but not sea-ice – are best at 
explaining spring plant phenology in the studied coastal tundra communities. 
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Chapter 3: 
1. The key error sources associated with multispectral drone surveys of tundra 

greenness include solar angle, weather conditions, geolocation and 
radiometric calibration. Cumulatively they can lead to uncertainties of greater 
than ± 10% in peak season NDVI of one-hectare tundra plots on Qikiqtaruk.  
 

2. The key error sources can be accounted for by improved flight planning, 
meta-data collection, ground control point deployment, use of reflectance 
targets and quality control. 

 
Chapter 4: 

1) Observations of tundra greenness on Qikiqtaruk correspond well between 
drone and satellites at landscape-scales (10 m – 100 m), but considerable 
variation is lost when aggregating from fine-grain drone (approx. 0.05 m) to 
medium-grain satellite pixel sizes (10 m). 

 
2) The maximum in spatial variation of tundra greenness within the one-hectare 

study plots on Qikiqtaruk is reached at distances of just over half a metre, 
little to no additional spatial variation was observed for greater distances. 
The fine-scale variation in tundra greenness likely reflects ecological 
variation in productivity caused by large tussock sedges, microtopography 
and disturbances. 

 
3) Landscape-level variation in greenness in the one-hectare tundra plots 

declined over the course of the growing seasons in 2016 and 2017. Thus, 
spatial heterogeneity of tundra greenness varies across the growing season, 
and if affected by warming trends in heterogeneity could shift over time. 
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Figure 5-1 | Updated flow diagram of the thesis. Illustrating the main findings of the 
research in Chapters 2,3 and 4. Satellite symbol by ProSymbols and drone symbol 
by Mike Rowe, both reproduced under a creative-commons license from the Noun 
Project [www.thenounproject.com]. 
 
In the remainder of this chapter, I discuss the implications of the main findings and 
highlight associated future research needs. First, I focus on the influence of localised 
and regional drivers on tundra plant phenology. Second, I elaborate on how drones 
can bridge the scale gap between satellite and in situ observations. Third, I discuss 
the fine-scale variation in tundra productivity and phenology and how this influences 
our understanding of key ecological processes. Finally, I conclude by considering the 
findings in the context of scale and its importance for ecological research in the tundra 
and beyond. 
 
Localised and regional drivers of tundra phenology 
Spring phenology influenced by localised snowmelt and regional temperature 
Using long-term records of in situ phenological observations, my findings indicate the 
importance of both highly localised (snowmelt) and regional (temperature) 
environmental factors as controls on spring phenology in coastal Arctic tundra 
systems (Chapter 2). Local snow conditions have been recognised early as an 
important influence on key parameters of tundra ecosystems (Billings & Bliss, 1959; 
Molau, 1993), and more recently the impact of snow conditions on productivity 
(Thompson & Koenig, 2018), biodiversity (Niittynen, Heikkinen, & Luoto, 2018) and 
phenology (Bjorkman, Elmendorf, Beamish, Vellend, & Henry, 2015; Semenchuk et 
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al., 2016) has been demonstrated. However, the influence of snowmelt has also been 
shown to become less important as the summer progresses, when air temperatures 
are considered to exert more control (Bjorkman et al., 2015; Molau, 1993). By 
demonstrating the importance of localised snowmelt and regional temperature for the 
timing of spring at multiple sites across the biome (Chapter 2), my findings re-
emphasize that both act as key drivers for tundra spring phenology. 
 
The scale at which environmental data are collected can influence the estimated 
strength of the ecological relationships under statistical investigation. When testing 
the influence of temperature on tundra plant phenology, temperature is generally 
measured at regional to landscape levels (Bjorkman et al., 2015; Oberbauer et al., 
2013; Panchen & Gorelick, 2017; Post, Steinman, & Mann, 2018) under the 
assumption that regional temperature is highly corelated with the microclimate that 
the tundra plants experience. This assumption is generally not made when 
considering snow conditions or snow melt (Bjorkman et al., 2015; Semenchuk et al., 
2016), as a high variation across the landscape is expected. However, tundra plants 
are small in stature, microclimate therefore likely plays an important role in controlling 
individual plant responses to changing conditions. High-resolution observations of 
microclimate combined with observations of phenological variation of tundra 
vegetation based on fine-grain landscape phenology data such as produced in 
Chapter 4, will allow us to explicitly test the strength of regional versus microclimate 
variation as predictors of tundra phenology. Despite the improvements in our 
understanding of spring and summer phenology and the roles of snowmelt and 
temperatures as driver thereof, three important additional research areas in the field 
of tundra phenology remain (Figure 5-2): autumn phenology (Gallinat, Primack, & 
Wagner, 2015), the influence of photo-period (Richardson et al., 2013) and the 
interactions of above and below ground phenological processes (Blume‐Werry, 
Wilson, Kreyling, & Milbau, 2016; Eisenhauer et al., 2018). 
  



 157 

 
Figure 5-2 | Conceptual heat-map of the relative importance of the key environmental 
drivers of tundra plant phenology in spring, summer and autumn. Question marks 
highlight limitations to our understanding and illustrate future research needs. Below 
ground processes that could influence above ground phenology include for example, 
temporal variation in soil temperature, moisture availability and active layer depth.  

 
Tundra autumn phenology 
Little is known about the drivers of autumn phenology in the tundra and around the 
globe (Gallinat et al., 2015). Few studies have used in situ observations to test for 
trends of late-season phenology in the tundra (Bjorkman et al., 2015; Myers-Smith et 
al., 2018) and the majority of trends have been reported from satellite derived end-of-
season phenology metrics (Garonna, de Jong, & Schaepman, 2016; Zeng, Jia, & 
Epstein, 2011; Zeng, Jia, & Forbes, 2013) associated with high uncertainties (Beck et 
al., 2007; White et al., 2009). Likewise, the drivers of late-season tundra phenology 
are little understood, though an important influence of photoperiod has been 
suggested (Gallinat et al., 2015). The emerging drone technologies provide an 
excellent opportunity to test the influence of photoperiod on autumn senescence in 
the tundra: If photoperiod is the key driver of senescence, a homogenous response 
across the landscape could be hypothesised. My findings indicate that variation in 
tundra greenness at Qikiqtaruk is indeed low at the beginning of autumn (Chapter 4), 
which would support this hypothesis. Combined with in situ measurements of 
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senescence and coarse grain satellite data, extended drone observations in the 
autumn season could be used to further test the uniformity of phenological responses 
across the landscape, at regional scales and for the tundra biome as a whole 
(Klosterman et al., 2018; Klosterman & Richardson, 2017).  
 
Photoperiod as a driver of phenology 
Photoperiod in addition to temperature is thought to be a key controlling factor of 
tundra plant phenology (Bjorkman et al., 2015; Huelber et al., 2006; Kremers, 
Hollister, & Oberbauer, 2015; Oberbauer et al., 2013; Panchen & Gorelick, 2017; 
Wipf, 2009). For example, the interaction between photoperiod has been suggested 
to explain non-linear responses in the phenology of tundra plants to temperature (Iler, 
Høye, Inouye, & Schmidt, 2013). Day length can be 24 hours during midsummer in 
the Arctic (Chapter 2), but changes in the spectral composition of light could be 
sensed by the plants and rapid changes in day and night patterns occur in the 
shoulder seasons. And indeed a few common garden (Bennington et al., 2012; 
Bjorkman, Vellend, Frei, & Henry, 2017; Parker, Tang, Clark, Moody, & Fetcher, 2017) 
and laboratory experiments (Heide, 1989, 1992; Keller & Körner, 2003) have 
highlighted the sensitivity of tundra plant phenology to photoperiod or light quality. 
However, more experimental work is needed to determine the magnitude of influence 
and the specific mechanistic cues of light variation, particularly on late season 
phenology (Gallinat et al., 2015) 
 
Below and above ground phenology  
Recent studies have highlighted important knowledge gaps in our understanding of 
below ground phenology and its relationship with above ground processes in tundra 
ecosystems and beyond (Blume‐Werry et al., 2016; Eisenhauer et al., 2018). Blume-
Werry et al. (2016) demonstrated a later peak in below-ground biomass and a notably 
extended below-ground growing season in their tundra study system. Particularly in 
the Arctic where over 80% of the plant biomass has been shown to be below ground 
(Iversen et al., 2015; Mokany, Raison, & Prokushkin, 2006), additional attention on 
the phenology of plant below-ground processes is required to fully understand the 
implications of environmental change in the tundra (Blume‐Werry, 2016). In the 
context of this thesis, research is needed to understand the interactions of below-
ground processes on above ground phenology (Eisenhauer et al., 2018), particularly 
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in the tundra where soil temperatures and active layer depth are highly important at 
influencing water and nutrient ability (Dafflon et al., 2017; Hubbard et al., 2013; 
Wainwright et al., 2015). Fine-grain drone data (Chapter 4) could assist in studying 
the interaction of above-ground phenology and the - often highly varied - below-
ground conditions.  
 
Regional and localised influences on tundra phenology 
The importance of localised snowmelt and regional temperature on tundra plant 
phenology (Chapter 2) highlight the need to improve our abilities to forecast local 
snow conditions and regional temperatures in the tundra with future climate change. 
Climate models are good at predicting future temperature change under different 
emission scenarios; however, uncertainties persist in modelling localised snowfall 
(AMAP, 2017; Bintanja & Andry, 2017; Bokhorst et al., 2016). More studies are 
needed that use predictions of future snow scenarios (Niittynen et al., 2018) and study 
the influence of landscape heterogeneity of snowfall and its influence on tundra 
vegetation change (Thompson & Koenig, 2018). My results indicated the absence of 
an effect of regional sea-ice conditions on spring phenology (Chapter 2) despite other 
studies suggesting a link between circum-Arctic sea-ice and localised tundra plant 
phenology (Kerby & Post, 2013a; Post, Kerby, Pedersen, & Steltzer, 2016). The 
contrasting effect of regional and circum-Arctic sea-ice measures further underlines 
the importance of identifying the key scales at which environmental influences on 
tundra phenology act and suggests that more sophisticated approaches are needed 
to unravel the teleconnections that may link regional sea-ice conditions to local 
climate and hence the arctic biota on adjacent coastal lands (Macias-Fauria, Forbes, 
Zetterberg, & Kumpula, 2012; Macias-Fauria, Karlsen, & Forbes, 2017; Macias-Fauria 
& Post, 2018). 
  
Drones can bridge the scale gap between satellite and in situ observations 
High-quality data collection with drones is challenging 
I synthesised the challenges associated with collecting high-quality drone 
observations that are comparable across platforms, space and time in extreme 
environments such as those of the high-latitude tundra (Chapter 3). I identified the 
key error sources associated with solar angle, weather conditions, geolocation and 

radiometric calibration and estimated that they can lead to uncertainties of up to ±10% 
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in the mean NDVI of the 1 ha tundra study plots on Qikiqtaruk – Herschel Island in 
the Canadian Arctic. However, I also demonstrated that we can control for error using 
best practice (Box 1 – Key recommendations for high-latitude drone ecologists 
collecting time-series data with multispectral drone sensors). High sensitivity of multi-
temporal multi- and hyperspectral drone observations to error sources have also been 
documented by other research groups (Aasen & Bolten, 2018; Aasen, Burkart, Bolten, 
& Bareth, 2015) and our call for the coordination and uptake of best practises and 
standardised methods for monitoring tundra vegetation using compact multispectral 
drone sensors have been echoed for the wider field of drone spectroscopy by Aasen 
and Bolten (2018). Ongoing development of methods and coordination between 
ecologists using drones for vegetation surveys in ecology is required in the light of the 
continuous advancement in drone technology and sensors. 
 
Development of best-practises for collecting accompanying ground data 
A critical next step forward for the ecological community utilising drones for vegetation 
monitoring will be the development of best-practises for the collection of high-quality 
ground-based observations that accompany the optical drone data. Without 
accompanying plot-based observations our ability to make well founded ecological 
inferences based on drone data products will be highly limited. Techniques to acquire 
these data may make use conventional vegetation monitoring approaches, including 
point-framing (e.g. Myers-Smith et al., 2018), destructive biomass sampling 
techniques (Raynolds et al., 2012), as well as phenology (Chapter 2) and trait 
measurements (Bjorkman et al., 2018), but could also use field spectroscopy (Díaz-
Delgado et al., 2019) and novel approaches utilising ground-based photography 
combined with emerging machine learning techniques or virtual point framing 
methods (Liu and Treitz, 2016). During the field work for this thesis, ground-validation 
data was collected for all drone surveys conducted for Chapter 4 in the form of 
phenology stage observations as well as leaf- and stem-growth increments, but time-
constraints prevented the incorporation of this data into the chapter prior the deadline 
of this doctoral project. Whether or not these collected data and methods were useful 
will therefore require further investigation.  
 
Box 1 | Key recommendations for high-latitude drone ecologists collecting time-series 
data with multispectral drone sensors. (Overleaf)  
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Survey and plot design 
• Identify the right plot size. 

The plot size will need to be large enough to contain the variation in the tundra landscape under study and small 
enough to allow for the limitations of the drone platforms available.  

• Factor in the time it will take to survey it. 
Survey length will limit the amount of repeat surveys that can be achieved within a day. Longer surveys may be 
subject to increased variation in light conditions, which can be difficult to control for.  

• Design the flight plans so that there is a comfortable overshoot of the target area. 
Collecting data beyond the target area will reduce edge-effects. 

Repeat measurements 
• Keep the time of day as consistent and as close to solar noon as possible.  

This may affect the number of plots that can be surveyed in any one day.  

• Estimate the number of flights that can be done in a week. Factor in the weather. 
Weather conditions including wind, rain, fog, cloud cover, etc. can vary substantially day to day, particularly in 
harsher climates and thus can limit the number of repeat measurements possible. 

• Develop a triage system.  
If multiple plots are involved, decided on which one(s) will be prioritised if the weather is suitable, establish the 
minimum required to answer the research question and focus on obtaining this, everything else is a bonus. 

Redundancy in technology 
• Use as simple a drone system as possible.  

When working in remote areas, maintenance can be difficult. Employing drone systems that are easy to use and 
maintain is key to efficient and productive data collection. 

• Ensure you have redundancy on all fronts including drones and sensors.  
Even the best pilots experience mechanical failures and/or crashes due to material failure and unexpected 
behaviour particularly at high latitude sites. Compass systems get confused closer to the magnetic north pole 
and weather conditions can be harsh. Deploying multiple drone systems will allow data collection to continue in 
the event of loss of functionality in a platform or sensor.  

Radiometric calibration and quality control 
• Combine pre-/post- and inflight targets. 

Incorporate multiple sets of information within multispectral data collection to assess spectral accuracy and 
changes to light conditions throughout the flight. This is key to ensuring high-quality data collection. 

• Use inflight targets with multiple reflectance values (e.g. canvas). 
These are invaluable for testing the accuracy of your radiometric calibration. Measure with a field spectrometer 
in the field if available, but be aware of the extra work involved. 

• Handle your targets carefully and carry out regular maintenance. 
Spectral targets get dirty over time. The more carefully they are handled and maintained, the higher the quality 
of the calibration data.  

Geo-location 
• Geo-location with differential GNSS is essential. 

Use Ground Control Points (GCP) whose locations is measured with a survey grade RTK dGNSS system. Use 
six GCPs to start with, but test how many are actually needed if the landscape is heterogeneous. Alternatively, 
on-board dGNSS may reduce the need for GCPs; but if it fails, in situ GCPs will maintain the quality of the data. 

Collect Meta-data 
Time and date, weather, sensor, aircraft and pilot are the minimum of meta data to collect. Without detailed 
records of the flight conditions, data cannot be compared across time and across sites. 

Data Storage 
Expect to produce a lot of data (in the order of TBs for a single campaign), develop a system to store and 
handle data efficiently. 

Do not underestimate the amount of work involved! 
Hardware maintenance, surveys, calibrations, data processing and analysis take a lot of time. If you’re new to 
drone data collection, do not underestimate the number of hours required to get up and running. 
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Drones and satellites correspond at a landscape level 
I demonstrated correspondence between landscape level measures of satellite and 
drones (Chapter 4). The cross-validation of the medium-grain satellite observations 
gives us added confidence in their measures of tundra greenness at the landscape 
level. In addition, is shows that drones can provide fine-grain observations at 
landscape extents that are directly comparable to satellite data, therefore 
demonstrating that they could be used to link plot-scale observations to satellite 
observations (Anderson & Gaston, 2013) in the tundra. However, we observed an 
offset between drone and satellite greenness: drone-derived July mean plot NDVI 
(one-hectare) was on average about 0.06 lower than Sentinel and MODIS satellite 
NDVI estimates (Chapter 4). The exact mechanistic reason for this offset between 
drone and satellite data remains unknown but may relate in part to landscape-level 
heterogeneity (Kerby et al. unpublished – cross-site drone synthesis). Furthermore, 
the ability of satellite data to capture localised tundra greenness may not extrapolate 
to coarse grained satellite observations such as the GIMSS (8 km) products derived 
from the AVHRR sensors (see for example Pattison, Jorgenson, Raynolds, & Welker, 
2015). Thus, future work should continue to test the correspondence of observations 
between the various drone and satellite products available. Such tests should include 
a variety tundra locations (see https://arcticdrones.org/), only by studying 
homogenous and heterogeneous tundra sites, with markedly different vegetation 
communities, can we begin to understand the importance of landscape-level 
covariates on Arctic greening patterns at the tundra biome scale.  
 
Establishing the link: in situ – drones – satellites 
Linking in situ via fine-grain drone observations to the landscape scale and then 
connecting them to regional and global-scale satellite measurements will be a critical 
step in identifying the key drivers in the complexity ecological processes integrated in 
the observed trends of satellite vegetation indices over time (Walker et al., 2009). 
Furthermore, linking ground-based, satellite and drone observations will allow us to 
identify and characterise characterising scale-dependent phenomena (Levin, 1992; 
Marceau, 1999; Turner, O’Neill, Gardner, & Milne, 1989) and hence improve our 
abilities capture tundra vegetation change and the associated feedbacks at landscape 
to biome scales (Ernakovich et al., 2014). Further to the multispectral methods 
presented in this thesis (Chapters 3 and 4), RGB imagery from drones can monitor 
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the timing of flowering within the landscape (Hill et al., 2017) and structure-from-
motion data can be used to quantify changes in vegetation canopy structure (Fraser 
et al., 2016). Phenocam imagery (Andresen, Tweedie, & Lougheed, 2018; Linkosalmi 
et al., 2016; Richardson et al., 2018) could complement conventional in situ 
observations and integrate well with the image based observations for satellites and 
drones (Kerby, 2015). By combining data collection across scales, key ecological 
processes can be captured in ways that were previously not possible and will allow 
us to better understand and predict responses of tundra ecosystems to global change.  
 
Drones reveal fine-scale variation in tundra productivity and phenology 
Fine-scale variation in vegetation productivity is missed by satellite data 
I reveal that key fine-scale variation in tundra productivity on Qikiqtaruk is not captured 
by satellite observations (Chapter 4). Fine-scale variation in tundra NDVI has also 
been observed with a tram-mounted spectrometer at a site with similar tussock-sedge 
vegetation on the North-Slope of Alaska (Gamon et al., 2013). The small-scale 
variation in the tundra types of the North Slope in the Yukon and Alaska likely reflects 
microtopography (Gamon, Huemmrich, Stone, & Tweedie, 2013; Wainwright et al., 
2015) and localised disturbance processes (Obu et al., 2015) which are not captured 
in medium-grain satellite time series. Three key questions emerge from these 
findings: 1) Do patterns of fine-scale heterogeneity of vegetation greenness in relation 
to microtopography hold true for other tundra ecosystems and across the biome as a 
whole? 2) Does this variation capture the key ecological processes that govern 
landscape-level variation in plant phenology? 3) If so, are the small-scale variation 
observations required to appropriately estimate the landscape-level processes or are 
approximations using coarse-scale data sufficient? Finally, it remains to be shown 
whether we can use the uncovered fine-scale variation to quantify the mechanistic 
processes leading to tundra vegetation change and greening that we have previously 
been unable to detect. For example, does the loss of small bare ground patches 
(Myers-Smith et al., 2018) with warming, caused by reductions in localised 
cryoturbation (Obu et al., 2015), contribute significantly to the greening observed on 
Qikiqtaruk? Drone data provides a new way to sense the land-surface at fine-scales 
and thus opens a new window on the global change responses of tundra ecosystems. 
 
Decline in variation across the growing season 
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My results indicate a decline in the variation of vegetation productivity across the 
growing season (Chapter 4). This finding suggests that plant resources such as 
mature leaves, flower pollen or fruits become more homogeneously available across 
the growing season when approaching the period of peak biomass. The change in 
landscape variation of productivity over time might influence plant herbivore and 
pollinator interactions that are dependent on resource heterogeneity across the 
landscape (Armstrong, Takimoto, Schindler, Hayes, & Kauffman, 2016; Kerby, 2015; 
Richardson et al., 2018). Little is known about how herbivores and pollinators utilise 
landscape heterogeneity in tundra ecosystems and beyond (Armstrong et al., 2016) 
and more research is needed on which animals and insects “surf” resource waves 
across tundra landscapes. Time-series of drone surveys open up novel opportunities 
to study heterogeneity in the availability of tundra resources and how this might 
influences trophic interactions in a warming tundra biome. 
 
Fine-scale variation in tundra phenology 
Finally, the fine-scale variation and dynamics in tundra productivity over time (Chapter 
4) and the importance of the highly-localised snowmelt as a driver of spring phenology 
(Chapter 2) raise the question of how fine-scale variation in phenology is distributed 
across the tundra landscape. Time-series of fine-grain drone data such as those 
presented in this thesis now allow us to describe tundra variation in phenology at 
meter and sub-meter scales and identify its association with the ecological drivers and 
causes (Klosterman et al., 2018; Klosterman & Richardson, 2017). Quadratic or 
double logistic growing season curves such as those common in satellite phenological 
studies (Beck, Atzberger, Høgda, Johansen, & Skidmore, 2006; White et al., 2009; 
Zeng et al., 2011) could be fitted to the NDVI time-series on a pixel-by-pixel basis or 
to aggregations of the data (e.g. with a one metre cell size to account for uncertainties 
associated with the geo-location of the individual images). Combined with ground-
based phenological observations of green up and senescence, such an analysis 
would allow us to quantify how representative long-term in situ observations of plot 
and individuals are of the variation in phenology across the landscape. Finally, an 
aggregation analysis (Jelinski & Wu, 1996; Kerby, 2015; Turner et al., 1989) of this 
data would allow us to test for scale dependency of the observations to identify scale 
thresholds and indicate which data products are required (drone and/or satellite) for 
the quantification of key variation in tundra landscape phenology (Figure 5-3). Thus, 
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fine-scale observations of tundra phenology obtained with drones can provide us with 
new perspectives on scale-dependent process in tundra ecosystems and beyond. 
 

 
Figure 5-3 | Conceptual illustration of the loss of variation in tundra landscape 
phenology across scales. 

 
Conclusions 
Localised processes influencing large-scale patterns 
Overall, the research presented in this PhD highlights how localised processes can 
influence large-scale patterns and trends of plant phenology and productivity in tundra 
ecosystems. This is particularly exemplified by the influence of highly localised 
snowmelt on tundra phenology across Arctic coastal tundra sites (Chapter 2). The 
fine-scale variation in tundra productivity observed with drone data (Chapter 4) further 
suggests that we have yet to uncover all of the localised processes that mediate 
tundra greenness. Understanding at which scales the key ecological processes and 
phenomena work and how they interact across scales is critical for obtaining a 
comprehensive understanding of the hierarchical organisation of the planet’s 
ecosystems (Allen & Starr, 1982; Levin, 1992; Marceau, 1999). Revealing the 
hierarchical structure of tundra ecosystem responses to global change is particularly 
required if we want to better predict their feedbacks to the global climate system (F. 
S. Chapin et al., 2005; Ernakovich et al., 2014). 
 
Drones help to identify the relevant scales of ecological processes 
Identifying the right scale at which to observe ecological phenomena is a challenge 
with no simple solution (Levin, 1992), yet it can be tackled by studying systems across 
a variety of scales (Levin, 1992; Marceau, 1999; Marceau & Hay, 1999). Previously, 
we were limited in our ability to link in situ observations to global satellite measures 
due to the coarse-grained nature of the satellite observations. Emerging technologies 
such as true colour and multispectral drone imagery can fill this scale gap (Anderson 
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& Gaston, 2013; Klosterman et al., 2018). My PhD research demonstrates that drones 
can be used to obtain fine-grained observations of tundra productivity and phenology 
at landscape-level extents that are directly comparable to global-scale satellite data. 
This fine-scale landscape-level data can be used to test the mechanisms of 
vegetation change and quantify their influences on ecosystem functions and climate 
feedbacks. By combining in situ, satellite and drone data, we can therefore overcome 
scale issues in the observation of ecological phenomena and processes such as 
those involved in tundra vegetation change and better predict their role in global 
climate change. 
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Appendix for Chapter 3 
Appendix Table 1 | Daily air temperature weather station data sources 

Site Source 

Alexandra Fiord 

Alexandra Fiord climate station ambient air temperature (1.5 m).  

 

(Bjorkman et al., 2015) 

 

Utqiaġvik  

Utqiaġvik - Barrow ambient air temperature (2 m), hourly observations averaged to daily means 

 

NOAA Earth System Research Laboratory  

Global Monitoring Division  

 

https://www.esrl.noaa.gov/gmd/obop/brw/ 

 
(NOAA ESRL Global Monitoring Division, 2018) 

 

Qikiqtaruk 

Environment Canada Qikiqtaruk - Herschel Island weather station (ID 1560) Daily mean air 

temperatures gap filled with Environment Canada Komakuk weather satiation daily means (ID 10822), 

located at approx. distance to Qikiqtaruk: 50 km 

 

http://climate.weather.gc.ca/historical_data/search_historic_data_e.html  

 

Zackenberg 

Greenland Ecological Monitoring Programme, Climate Basis Zackenberg, air temperature (2 m) hourly 

data averaged to daily means.  

 

http://data.g‐e‐m.dk. 
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Appendix Table 2 | Slope parameter and random intercept estimates with associated 95% credible intervals for the original prediction model, the 
model using site-averages of snowmelt instead of plot-level snowmelt observations for Alexandra Fiord, Utqigavik and Qiqkitaruk, as well as the 
model using average regional spring sea-ice extent (May – July) instead of date of drop in regional spring sea-ice extent.  

 

 
Slope Parameters 

 
Snowmelt Parameter Temperature Parameter Sea-Ice Parameter Year (cont.) 

Model Mean l-95% CI u-95% CI Mean l-95% CI u-95% CI Mean l-95% CI u-95% CI Mean l-95% CI u-95% CI 

Original Model 3.26 2.62 3.91 -2.21 -3.03 -1.39 -0.01 -0.94 0.91 -0.09 -1.29 1.08 

Snowmelt Site Averages 2.99 2.04 3.99 -2.44 -3.17 -1.69 -0.14 -1.06 0.77 0.08 -1.14 1.25 

Regional Sea-Ice Extent (May-July avg.) 3.17 2.54 3.82 -2.07 -2.84 -1.31 -0.21 -1.23 0.78 -0.20 -1.37 0.91 
             

 
Random Intercepts 

 
Site Plot Year Site: Year Interaction 

Model Mean l-95% CI u-95% CI Mean l-95% CI u-95% CI Mean l-95% CI u-95% CI Mean l-95% CI u-95% CI 

Original Model 153.30 0.08 968.94 21.45 17.15 26.67 2.12 0.00 8.03 9.40 5.58 14.72 

Snowmelt Site Averages 280.26 0.00 1081.50 30.09 23.90 36.47 2.56 0.00 7.32 9.21 4.91 14.02 

Regional Sea-Ice Extent (May-July avg.) 140.00 0.00 530.64 21.69 17.07 26.55 2.00 0.00 6.31 9.36 5.21 13.98 
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Appendix Figure 1 | Daily regional sea-ice extent in km2 (black lines) and the day of spring drop in regional sea ice extent (red dots – drop below 
85% leading up to annual minimum) for Alexandra Fiord, Utqiaġvik, Qikiqtaruk and Zackenberg determined from NOAA/NSIDC CDR v3 sea-ice 
concentrations. The sea-ice extent represents the total area of cells with sea-ice concentrations larger than 15% in the 525 km x 525 km bounding 
box of the polar stereographic grid centred on the respective site. Due to Alexandra Fiord’s position along the Nares Strait between Ellesmere 
Island and Greenland, the total area of open sea in the bounding box is approximately 1/10 of the area at other sites. 
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Appendix Table 3 | Slope estimates for trends in the site-species-phenological event combinations, credible intervals, effective sample sizes, 
pMCMC and estimated change per decade. 

 

Site Name Species 
Phenology 

Event 
Slope 

Lower 

95% CI 

Upper 

95% CI 

eff. sample 

size 
pMCMC 

Change 

days/decade 

Alexandra 

Fiord 

Dryas integrifolia flowering 0.12 -0.42 0.65 99806 0.63 1.23 

Dryas integrifolia green up -0.16 -0.64 0.32 99700 0.48 -1.61 

Luzula spp.* flowering -0.30 -2.16 1.49 99700 0.71 -3.03 

Oxyria digyna flowering 0.05 -0.41 0.51 99700 0.81 0.54 

Oxyria digyna green up 0.17 -0.26 0.59 50512 0.42 1.67 

Papaver radicatum flowering 0.16 -0.31 0.62 99700 0.49 1.56 

Papaver radicatum green up -0.15 -0.58 0.30 99700 0.47 -1.52 

Salix arctica flowering -0.10 -0.59 0.40 100843 0.65 -1.05 

Utqiaġvik 

Cassiope tetragona green up -0.34 -1.22 0.55 99700 0.42 -3.39 

Dupontia psilosantha green up -0.09 -0.58 0.39 101160 0.69 -0.92 

Luzula arctica flowering -0.10 -0.63 0.43 99700 0.69 -0.99 

Luzula arctica green up -0.11 -0.56 0.38 96585 0.63 -1.06 

Poa arctica green up -0.34 -0.84 0.18 100062 0.18 -3.35 

Salix rotundifolia flowering -0.17 -0.68 0.34 99700 0.48 -1.71 

Salix rotundifolia green up -0.32 -0.87 0.24 99700 0.24 -3.16 

Qikiqtaruk 

Dryas integrifolia flowering -0.36 -0.76 0.04 99700 0.08 -3.60 

Eriophorum vaginatum flowering -0.57 -1.57 0.42 99700 0.24 -5.69 

Salix arctica green up -0.96 -1.83 -0.09 99700 0.03 -9.61 

Zackenberg 

Cassiope tetragona 

flowering 

-1.01 -1.88 -0.14 99700 0.03 -10.06 

Dryas octopetala -0.92 -1.61 -0.24 98227 0.01 -9.23 

Papaver radicatum -0.85 -1.67 -0.03 99700 0.04 -8.48 

Salix arctica -0.65 -1.37 0.07 99700 0.07 -6.50 

Saxifraga oppositifolia -0.43 -0.90 0.04 99700 0.07 -4.28 

Silene acaulis -0.55 -0.95 -0.16 99700 0.01 -5.47 

179 



 180 

Appendix Figure 2 | Annual mean spring phenology and trends for the species-phenological event combinations at Alexandra Fiord, Utqiaġvik, 
Qikiqtaruk and Zackenberg with added credible intervals for Silene acaulis flowering. Trend lines were fitted with Bayesian interval censored 
models and shaded areas indicate 95% credible intervals. This figure is identical to 

Figure 2-2 in the main manuscript except for the added credible intervals for S. acaulis flowering.  
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Appendix Table 4 | Slope estimates for trends in the environmental predictors, credible 
intervals, effective sample sizes, pMCMC and estimated change per decade (days/decade for 
snowmelt and spring drop in regional sea-ice extend, °C per decade for temperature) of all 
sites. 

 

Site Name Predictor Slope 
Lower 

95% CI 

Upper 

95% CI 

eff. sample 

size 
pMCMC 

Change 

unit/decade 

Alexandra Fiord 

Sea-Ice -1.51 -3.80 0.76 499700 0.18 -15.09 

Snowmelt -0.06 -0.42 0.30 502333 0.72 -0.61 

Temperature 0.06 0.00 0.12 504651 0.05 0.63 

Utqiaġvik 

Sea-Ice -1.08 -2.38 0.22 495574 0.09 -10.83 

Snowmelt -0.14 -0.62 0.35 499700 0.54 -1.41 

Temperature 0.05 -0.03 0.12 501721 0.22 0.46 

Qikiqtaruk 

Sea-Ice -4.64 -7.32 -1.94 499700 0.00 -46.39 

Snowmelt -0.82 -1.62 -0.03 499700 0.04 -8.15 

Temperature 0.23 0.08 0.38 499700 0.01 2.30 

Zackenberg 

Sea-Ice -1.03 -5.61 3.44 503032 0.63 -10.28 

Snowmelt -1.02 -2.25 0.21 499700 0.10 -10.22 

Temperature 0.06 -0.03 0.15 499700 0.18 0.59 
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Appendix Figure 3 | Means (black lines) and estimated posterior distributions for the scaled 
effect sizes of the three environmental predictors (snowmelt, spring temperature and spring 
drop in regional sea-ice extent) across all site-species-phenological event combinations in the 
dataset. These posterior distributions demonstrate that overall snowmelt was best at 
explaining variation in spring phenology, whereas temperature explained variation for some 
site-species-phenological event combinations and sea-ice was a poor explanatory factor. See 
also the site-species-phenological event estimates in  

Figure 2-4. The back transformed (unscaled) posterior estimates for the mean slope 
parameters and associated variances are: snowmelt date mean slope: 0.45 (CI: 0.37 to 0.54) 
and variance: 0.25 (CI: 0.12 to 0.49); spring temperature mean slope: 2.39 (CI: -3.30 to -1.51) 
and variance: 3.42 (CI: 1.64 to 6.63); drop in regional sea-ice extent mean slope: >-0.01 (CI: 
-0.14 to 0.13) and variance: 0.12 (CI: 0.04 to 0.27).
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Appendix Table 5 | Slope parameter and random intercept estimates for the single environmental predictor models. The models were run with a 
lower number of iterations than the original model (20,000 instead of 1,200,000), which still ensured sufficient effective sample sizes for the slope 
parameters of interest but resulted in reduced confidence in the intercept estimates due to lower effective sample sizes for these effects.  

 
 

Slope Parameters  

Environmental Predictor 
Environmental Predictor Year (continuous) 

Mean l-95 CI% u-95% CI Mean l-95% CI u-95% CI 

Snowmelt 3.36 2.78 3.97 -0.93 -1.90 0.15 

Spring Temperature -2.46 -3.17 -1.69 -0.53 -1.82 0.79 

Spring Drop in Sea-Ice -0.33 -1.59 1.18 -1.81 -3.44 -0.33 

Regional Sea-Ice Extent (May-July avg.) -0.39 -1.89 1.17 -1.84 -3.39 -0.32 
    

      
 

Random Intercepts 

Environmental Predictor 
Site Plot ID Year (factor) Year (site) 

Mean l-95% CI u-95% CI Mean l-95% CI u-95% CI Mean l-95% CI u-95% CI Mean l-95% CI u-95% CI 

Snowmelt 5.27 0.00 4.13 21.16 

29.78 

29.46 

29.59 

16.59 25.88 0.11 0.00 0.29 13.35 8.75 19.03 

Spring Temperature 9.64 0.00 33.63 23.84 36.21 0.00 0.00 0.00 22.98 15.37 32.08 

Spring Drop in Sea-Ice 3.14 0.00 1.87 23.35 35.63 0.10 0.00 0.39 31.36 20.16 43.65 

Regional Sea-Ice Extent (May-July avg.) 6.33 0.00 19.23 23.82 36.40 0.00 0.00 0.00 31.91 20.39 43.60 
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Appendix Table 6 | Estimated mean scaled and back-transformed (unscaled) effect 
sizes with associated 95% credible intervals for snowmelt, temperature and spring 
drop in sea-ice extent for all site-species-phenological event combinations. Unscaled 
effect sizes for snowmelt, temperature and drop in regional sea ice extent represent 
day advance/delay in phenology per (i) day change in snowmelt date, (ii) °C spring 
temperature change and (iii) day change in drop in regional sea-ice extent. 
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Predictor Site Name Species 
Phenology 

Event 

Effect Size 

(Scaled) 

Lower 

95% CI 

Upper 

95% CI 

Effect Size 

(back transf.) 

Lower 95% CI 

(back transf.) 

Upper 95% CI 

(back transf.) 

Snowmelt 

Date 

Alexandra 

Fiord 

Dryas integrifolia flowering 4.24 2.82 5.67 0.59 0.39 0.79 

Dryas integrifolia green up 4.34 2.94 5.75 0.60 0.41 0.80 

Luzula spp.* flowering 3.83 1.87 5.79 0.53 0.26 0.80 

Oxyria digyna flowering 2.55 0.96 4.14 0.35 0.13 0.58 

Oxyria digyna green up 4.12 2.58 5.68 0.57 0.36 0.79 

Papaver radicatum flowering 2.64 1.17 4.12 0.37 0.16 0.57 

Papaver radicatum green up 2.82 1.4 4.24 0.39 0.19 0.59 

Salix arctica flowering 3.38 1.76 5.01 0.47 0.24 0.70 

Utqiaġvik 

Cassiope tetragona green up 2.78 1.09 4.48 0.39 0.15 0.62 

Dupontia psilosantha green up 4.14 2.27 6.04 0.58 0.32 0.84 

Luzula arctica flowering 2.86 1.39 4.33 0.40 0.19 0.60 

Luzula arctica green up 2.95 1.5 4.42 0.41 0.21 0.61 

Poa arctica green up 3.53 2.07 5 0.49 0.29 0.69 

Salix rotundifolia flowering 4.06 2.54 5.58 0.56 0.35 0.78 

Salix rotundifolia green up 5.04 3.54 6.57 0.70 0.49 0.91 

Qikiqtaruk 

Dryas integrifolia flowering -0.35 -1.84 1.11 -0.05 -0.26 0.15 

Eriophorum vaginatum flowering 4.15 2.6 5.71 0.58 0.36 0.79 

Salix arctica green up 2.43 0.86 3.98 0.34 0.12 0.55 

Zackenberg 

Cassiope tetragona 

flowering 

3.79 2.16 5.41 0.53 0.30 0.75 

Dryas octopetala 3.33 1.63 5.03 0.46 0.23 0.70 

Papaver radicatum 3.91 2.13 5.69 0.54 0.30 0.79 

Salix arctica 3.61 2 5.21 0.50 0.28 0.72 

Saxifraga oppositifolia 2.16 0.24 4.05 0.30 0.03 0.56 

Silene acaulis 2.01 0.22 3.76 0.28 0.03 0.52 
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Predictor Site Name Species 
Phenology 

Event 

Effect Size 

(Scaled) 

Lower 

95% CI 

Upper 

95% CI 

Effect Size 

(back transf.) 

Lower 95% CI 

(back transf.) 

Upper 95% CI 

(back transf.) 

Spring 

Temperature 

Alexandra 

Fiord 

Dryas integrifolia flowering -3.99 -5.79 -2.26 -4.34 -6.29 -2.46 

Dryas integrifolia green up -3.98 -5.78 -2.25 -4.33 -6.28 -2.45 

Luzula spp.* flowering -5.09 -7.65 -2.64 -5.53 -8.32 -2.87 

Oxyria digyna flowering -3.32 -5.23 -1.47 -3.61 -5.68 -1.60 

Oxyria digyna green up -2.67 -4.53 -0.86 -2.90 -4.92 -0.93 

Papaver radicatum flowering -5.53 -7.4 -3.73 -6.01 -8.04 -4.05 

Papaver radicatum green up -4.45 -6.28 -2.68 -4.84 -6.83 -2.91 

Salix arctica flowering -2.16 -4.05 -0.32 -2.35 -4.40 -0.35 

Utqiaġvik 

Cassiope tetragona green up -1.02 -3 0.98 -1.11 -3.26 1.07 

Dupontia psilosantha green up -0.72 -2.74 1.31 -0.78 -2.98 1.42 

Luzula arctica flowering -1.1 -2.98 0.81 -1.20 -3.24 0.88 

Luzula arctica green up -0.74 -2.54 1.11 -0.80 -2.76 1.21 

Poa arctica green up -0.72 -2.51 1.1 -0.78 -2.73 1.20 

Salix rotundifolia flowering -0.48 -2.31 1.38 -0.52 -2.51 1.50 

Salix rotundifolia green up -0.52 -2.36 1.35 -0.57 -2.57 1.47 

Qikiqtaruk 

Dryas integrifolia flowering -0.73 -2.6 1.16 -0.79 -2.83 1.26 

Eriophorum 

vaginatum 
flowering -0.46 -2.24 1.32 -0.50 -2.43 1.43 

Salix arctica green up -2.48 -4.34 -0.61 -2.70 -4.72 -0.66 

Zackenberg 

Cassiope tetragona 

flowering 

-2.47 -4.72 -0.22 -2.68 -5.13 -0.24 

Dryas octopetala -0.93 -3.25 1.4 -1.01 -3.53 1.52 

Papaver radicatum -2.52 -5.07 0.01 -2.74 -5.51 0.01 

Salix arctica -3.58 -5.86 -1.34 -3.89 -6.37 -1.46 

Saxifraga oppositifolia -1.03 -3.55 1.51 -1.12 -3.86 1.64 

Silene acaulis -2.26 -4.73 0.2 -2.46 -5.14 0.22 
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Predictor Site Name Species 
Phenology 

Event 

Effect Size 

(Scaled) 

Lower 

95% CI 

Upper 

95% CI 

Effect Size 

(back transf.) 

Lower 95% CI 

(back transf.) 

Upper 95% CI 

(back transf.) 

Spring drop in 

sea-ice Extent 

Alexandra 

Fiord 

Dryas integrifolia flowering -0.09 -1.83 1.65 0.00 -0.07 0.06 

Dryas integrifolia green up 0.71 -1.01 2.44 0.03 -0.04 0.09 

Luzula spp.* flowering -0.77 -2.87 1.26 -0.03 -0.11 0.05 

Oxyria digyna flowering 0.52 -1.27 2.33 0.02 -0.05 0.09 

Oxyria digyna green up -0.08 -1.85 1.69 0.00 -0.07 0.06 

Papaver radicatum flowering 0.81 -0.96 2.59 0.03 -0.04 0.10 

Papaver radicatum green up -0.25 -1.98 1.48 -0.01 -0.07 0.06 

Salix arctica flowering -0.65 -2.45 1.13 -0.02 -0.09 0.04 

Utqiaġvik 

Cassiope tetragona green up -0.76 -3.03 1.39 -0.03 -0.11 0.05 

Dupontia psilosantha green up 1.22 -0.88 3.44 0.05 -0.03 0.13 

Luzula arctica flowering -0.02 -2.07 2.03 0.00 -0.08 0.08 

Luzula arctica green up 0.27 -1.74 2.31 0.01 -0.06 0.09 

Poa arctica green up -1.45 -3.58 0.57 -0.05 -0.13 0.02 

Salix rotundifolia flowering 1.08 -1.03 3.33 0.04 -0.04 0.12 

Salix rotundifolia green up -0.63 -2.78 1.45 -0.02 -0.10 0.05 

Qikiqtaruk 

Dryas integrifolia flowering 0.03 -2.08 2.16 0.00 -0.08 0.08 

Eriophorum 

vaginatum 
flowering 0.02 -1.99 2.04 0.00 -0.07 0.08 

Salix arctica green up -0.07 -2.05 1.91 0.00 -0.08 0.07 

Zackenberg 

Cassiope tetragona 

flowering 

-0.04 -1.9 1.83 0.00 -0.07 0.07 

Dryas octopetala -0.37 -2.23 1.46 -0.01 -0.08 0.05 

Papaver radicatum -0.43 -2.39 1.49 -0.02 -0.09 0.06 

Salix arctica -0.01 -1.83 1.81 0.00 -0.07 0.07 

Saxifraga oppositifolia 0.26 -1.85 2.4 0.01 -0.07 0.09 

Silene acaulis 0.39 -1.51 2.32 0.01 -0.06 0.09 
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Appendix for Chapter 4 

 

Appendix Table 7 | Coordinates for the extent of the Herschel and Komakuk 
vegetation plots based on the Sentinel grid. Coordinates are given in WGS84 UTM 
Zone 7N (EPSG:32607).  

Site Name Vegetation Type Min x Max x Min y Max y 
Collinson Head 
(Site 1) 

Herschel 583120 583220 7719870 7719970 
Komakuk 583000 583100 7720060 7720160 

Bowhead Ridge 
(Site 2) 

Herschel 582860 582960 7720410 7720510 
Komakuk 582790 582890 7720760 7720860 

Hawk Valley 
(Site 3) 

Herschel 580910 581010 7720890 7720990 
Komakuk 581010 581110 7720630 7720730 

Hawk Ridge 
(Site 4) 

Herschel 580730 580830 7721390 7721490 
Komakuk 580590 580690 7721100 7721200 

 

 
Appendix Table 8 | Posterior parameter estimates for the Sentinel vs. resampled 10 
m drone pixel model including estimates for the effect on intercept and interaction 
effects on the slope for vegetation type, Sentinel id and the difference in days between 
drone and sentinel images. 

Model parameter Posterior mean Lower 95% CI Upper 95% CI Eff. sample size pMCMC 

Intercept (µ) -0.020 -0.029 -0.011 4700 < 2 x 10-4 

Slope (!"#$%&$#') -0.944 -0.930 -0.958 4700 < 2 x 10-4 

Veg. type Intercept (()#*.%,-#) -0.026 -0.030 -0.022 4700 < 2 x 10-4 

Sentinel ID Intercept ((/#$%.&0) -0.094 -0.082 -0.107 4700 < 2 x 10-4 

Diff. Days Intercept ((0&11) -0.065 -0.042 -0.089 4700 < 2 x 10-4 

b
23456789:87;

: =>?. @AB> -0.012 -0.005 -0.018 4700 < 2 x 10-4 

b
23456789:87;

: C>D@. EF -0.128 -0.146 -0.110 4700 < 2 x 10-4 

b
23456789:87;

: FEGG -0.167 -0.199 -0.134 4700 < 2 x 10-4 

Residual Variance (e) 0.00069 0.00067 0.00071 4700 NA 

 

Appendix Table 9 | Posterior parameter estimates for the reduced sentinel vs. 
resampled 10 m drone pixel model including only estimates for the effect on intercept 
and interaction effects on the slope for vegetation type, utilised for visualisation 
purposes only in Figure 4-4. 

Model parameter Posterior mean Lower 95% CI Upper 95% CI Eff. sample size pMCMC 

Intercept (µ) -0.019 -0.008 -0.030 4921 0. 000851 

Slope (!"#$%&$#') -0.847 -0.831 -0.865 4934 < 2 x 10-4 

Veg. type Intercept (()#*.%,-#) -0.079 -0.061 -0.096 4700 < 2 x 10-4 

b
23456789:87;

: =>?. @AB> -0.109 -0.133 -0.083 5240 < 2 x 10-4 

Residual Variance (e) 0.00160 0.00155 0.00165 0.00160 NA 
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Appendix Table 10| Posterior parameter estimates for the linear mixed models of 
trends in the standard deviation in NDVI of native grain-size drone raster across the 
growing seasons, including fixed intercept estimates for vegetation type and year. 
Trend lines are visualised in Figure 4-6. 

Model parameter Posterior mean Lower 95% CI Upper 95% CI Eff. sample size pMCMC 

Intercept (µ) -0.1331 -0.0995 -0.1681 1700 < 6 x 10-4 

Slope (!0H,	J1	,#HK) -0.0003 -0.0005 -0.0001 1700 < 6 x 10-4 

Veg. type Intercept (()#*.%,-#) -0.0148 -0.0097 -0.0192 1404 < 6 x 10-4 

Year Intercept ((,#HK) -0.0060 -0.0115 -0.0005 1700 0.0329 

Residual Variance (e) 0.00010 0.00006 0.00014 1700 NA 

 
Appendix Table 11 | Posterior parameter estimates for the linear mixed models of 
trends in the standard deviation in NDVI of native grain-size drone raster across the 
growing seasons, including fixed intercept estimates for vegetation type and year, and 
an interaction between slope and vegetation type.  

Model parameter Posterior mean Lower 95% CI Upper 95% CI Eff. sample size pMCMC 

Intercept (µ) -0.1480 -0.1024 -0.1939 1527 < 6 x 10-4 

Slope (!0H,	J1	,#HK) -0.0004 -0.0006 -0.0002 1525 < 6 x 10-4 

Veg. type Intercept (()#*.%,-#) -0.0139 -0.0839 -0.0480 1700 0.6906 

Year Intercept ((,#HK) -0.0059 -0.0113 -0.0001 1700 0.0447 

b
0H,	J1	,#HK

: =>?. @AB> -0.0001 -0.0002 -0.0005 1700 0.3776 

Residual Variance (e) 0.00010 0.00007 0.00014 1700 NA 

 

 

Appendix Table 12 | Posterior parameter estimates for the linear mixed models of 
trends in the coefficient of variance for the NDVI of native grain-size drone raster 
across the growing seasons, including fixed intercept estimates for vegetation type 
and year, and an interaction between slope and vegetation type. 

Model parameter Posterior mean Lower 95% CI Upper 95% CI Eff. sample size pMCMC 

Intercept (µ) 0.4234 0.3273 0.5260 1700 < 6 x 10-4 

Slope (!0H,	J1	,#HK) -0.0015 -0.0020 -0.0010 1700 < 6 x 10-4 

Veg. type Intercept (()#*.%,-#) -0.0864 -0.2323 0.0446 1700 0.219 

Year Intercept ((,#HK) -0.0058 -0.0180 0.0051 1700 0.322 

b
0H,	J1	,#HK

: =>?. @AB> 0.0005 -0.0002 0.0012 1700 0.131 

Residual Variance (e) 0.00045 0.00030 0.00062 1823 NA 
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Appendix Table 13 | Posterior parameter estimates for the linear mixed models of 
effect of grain size on the trends standard deviation of NDVI across the growing 
seasons, including fixed intercept estimates for vegetation type and year, and an 
interaction between grain size and slope. 

Model parameter Posterior mean Lower 95% CI Upper 95% CI Eff. sample size pMCMC 

Intercept (µ) -0.050030 -0.037550 -0.062110 1974 < 6 x 10-4 

Slope (!0H,	J1	,#HK) -0.000100 -0.000156 -0.000035 1939 0.00118 

Grain size Intercept ((*KH&$	/&L#) -0.000472 -0.001212 -0.000271 1700 0.23059 

Veg. type Intercept (()#*.%,-#) -0.009118 -0.007915 -0.010160 1700 < 6 x 10-4 

Year Intercept ((,#HK) -0.000180 -0.001509 -0.001069 1506 0.78 

b
0H,	J1	,#HK

: ?MNED	CEO> -0.000001 -0.000004 -0.000003 1700 0.75412 

Residual Variance (e) -0.000027 -0.000023 -0.000032 1700 NA 

 

 
Appendix Table 14 | Posterior parameter estimates for the linear mixed models of 
effect of grain size on the trends standard deviation of NDVI across the growing 
seasons, including fixed intercept estimates for vegetation type and year with no 
interaction between grain size and slope. 

Model parameter Posterior mean Lower 95% CI Upper 95% CI Eff. sample size pMCMC 

Intercept (µ) -0.05171 -0.04292 -0.05938 1877 < 6 x 10-4 

Slope (!0H,	J1	,#HK) -0.00011 -0.00015 -0.00007 1896 < 6 x 10-4 

Grain size Intercept ((*KH&$	/&L#) -0.00059 -0.00065 -0.00055 1700 < 6 x 10-4 

Veg. type Intercept (()#*.%,-#) -0.00910 -0.00783 -0.01014 1700 < 6 x 10-4 

Year Intercept ((,#HK) -0.00024 -0.00164 -0.00094 1387 0.74 

Residual Variance (e) -0.000027 -0.000023 -0.000031 1700 NA 
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