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Abstract

In the coming decades, offshore renewable energy is expected to play a crucial role

in the decarbonisation of global electricity supply essential for limiting anthropogenic

greenhouse gas emissions to an acceptable level. The cost of utilising expensive vessels

to install and maintain these marine energy devices represents a significant proportion

of their life-cycle cost and one of the major barriers to their continued development. It

is vitally important to estimate accurately these costs and attempt to reduce them as

much as possible. This thesis investigates the use of time-domain simulations of marine

operations to estimate the likely duration and manage the inherent risks of an offshore

project. The development and application of an original time-domain simulation soft-

ware are described through a case study that supported construction of a Round 3

offshore wind farm. Analysis completed in advance of the project identified the most

suitable installation strategy with a potential reduction in indicative cost of up to £6m.

Simulations performed during the project enabled the early identification of significant

deviations from initial estimates; such as the mean observed duration of a critical activ-

ity midway through the project being approximately 30% lower than initially specified,

eventually leading to a 10.8% reduction in the estimated project duration. Detailed

analysis of the operational data after project completion identified the importance of

the learning phenomenon associated with repetitions of identical operations and the

accurate representation of random delays and stoppages. Implementing the learning

factor had the effect of reducing mean project duration by 10%, while accounting for

technical downtime increased this estimate by 15%. The thesis shows that time-domain

simulations are well-suited to the development of optimal strategies for the execution of

marine operations and the subsequent minimisation of the duration and cost of offshore

projects.
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Lay Summary

The warming of the climate is undeniable and established beyond scientific doubt to

have been caused by human related greenhouse gas emissions. To reduce the likelihood

of the severe and irreversible impacts of global warming on people and ecosystems,

it is imperative that the proportion of electricity generated from renewable sources is

maximised. Offshore renewable energy refers to sustainable energy technologies located

in the marine environment such as offshore wind turbines and devices that harness

the energy of ocean waves or tides. The cost of constructing and maintaining these

devices at sea represents a significant proportion of the total cost over their lifetime.

If this promising new sector is to realise its large potential, it is vitally important to

estimate accurately the cost of these installation and maintenance operations and try

to reduce them as much as possible. This thesis proposes methods that simulate how

an offshore project would have “played out” if it had been undertaken last year, the

year before or over many historical years. These simulations use extensive records of

weather data and algorithms that represent the project operations, their costs and

their dependencies on weather and sea-state conditions. The development of a software

package that incorporates these simulations methods is described and its application

to the offshore renewable energy sector is highlighted through an industrial case study

that provided continuous support to the construction of a large European offshore wind

farm and showed that cost savings in the order of several million pounds are achievable.

The results show that the developed software and simulation methods are suitable for

estimating the likely duration of an offshore project, informing planning decisions and

subsequently minimising the cost of installation and maintenance operations.
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Chapter 1

Introduction

1.1 Background and Motivation

1.1.1 Offshore Renewable Energy and the Climate Crisis

Human-induced global warming is undeniable and represents an urgent threat to human

societies and the planet (IPCC, 2014a,b, 2018). Anthropogenic greenhouse gas emissions

are estimated to have already caused approximately 1.0◦C of warming above pre-

industrial levels (1850–1900) (IPCC, 2018). The effects of climate change on both natu-

ral and human systems are already evident around the globe and continued emission of

greenhouse gases will cause further warming and a subsequent increase in the likelihood

of extreme and irrevocable impacts on people and ecosystems (IPCC, 2014b). Pursuing

efforts to restrict global temperature rise to 1.5◦C, as agreed to by the majority of

countries in signing the 2015 Paris Agreement, is essential for limiting the risk of heavy

precipitation events; drought; local species extinction and heat-related human morbidity

and mortality (IPCC, 2018).

In mitigation pathways that achieve this 1.5◦C goal, renewable energy technologies

are projected to supply 70–85% of electricity in 2050 (IPCC, 2018). For maritime

nations such as the UK, offshore renewable energy—sourced from the marine environ-

ment and including offshore wind, wave and tidal energy technologies—can contribute

significantly to the broad mix of renewable energy sources required if fossil fuel power

generation is to be phased out entirely (ETI and UKERC, 2014; IPCC, 2014a). At

the same time, the energy trilemma demands that supply is secure and affordable as

well as sustainable, meaning that offshore renewable energy (ORE) technologies will

need continued support, research and cost-reductions if their market shares are to be

significantly increased (IPCC, 2014a).

1
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1.1.2 Offshore Operations and Metocean Conditions

The common factor that impedes all marine operations, but also presents a significant

opportunity for cost reduction and accelerating development in the ORE sector, is

limited access to offshore locations due to adverse meteorological and oceanographic

(metocean) conditions (Gintautas et al., 2016; Morandeau et al., 2013). The inherent

risks associated with working in the harsh, complex and ever-changing marine envi-

ronment are clear. These risks affect both the installation of ORE devices and the

numerous scheduled and unscheduled maintenance tasks that have to be performed to

keep the devices operational and to sustain power production (Dalgic et al., 2015a).

The cost of these components—often grouped together and referred to as installation,

operations and maintenance (IO&M) activities—is a major component of the life-cycle

cost of an offshore wind farm, the most mature and established ORE technology, and

is expected to be the same for the ORE sector in general. For offshore wind, O&M

activities typically account for between 25% and 30% of the total levelised cost of energy

(LCOE). It is estimated that the combined costs of IO&M will represent 35% and 46%

of the lifetime cost of wave and tidal energy arrays respectively (see Section 2.4.1 for

more details). It is vitally important to estimate these costs accurately and attempt to

reduce them as much as possible (Gintautas et al., 2016).

1.1.3 Time-domain Simulations and ForeCoast® Marine

Time-domain simulations (TDS) refer to the analysis of the time variation of metocean

conditions and have been proposed as a method for estimating the likely duration of an

offshore project. Indeed, their use is recommended by the DNV (Det Norske Veritas,

2010) and has been noted as the most straightforward and appropriate method for the

estimation of downtime and the detailed design of marine operations strategies (Stallard

et al., 2010). This work describes the development of a time-domain simulation model

and assesses its application to the planning, management and optimisation of operation

strategies in the ORE sector.

Specifically, the work outlines a selection of the technical methods integrated within a

metocean planning tool known as ForeCoast® Marine, a metocean risk management

software developed by JBA Consulting. The software consists of two main modules; a

metocean forecasting tool referred to as the Mission Planner and a metocean hindcast-

ing and optimisation tool known as the Gamer Mode. The Gamer Mode simulates how

a marine engineering project would have “played out” if it had been undertaken last

year, the year before or over many historical years. The Mission Planner uses forecast

metocean data to manage and track live weather risks, help anticipate adverse weather

effects and determine the best time to undertake imminent marine operations. This

project has focused on the development of the Gamer Mode module.
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1.2 Hypothesis, Aim and Objectives

The hypothesis is that time-domain simulations can be used to estimate the likely

duration of offshore operations and thus offer opportunity for project cost reduction.

The aim of this thesis is to investigate this hypothesis and appraise the use of these

simulation methods for informing planning strategies and managing the inherent risks

of an offshore renewable energy project. Significant project cost reductions can play a

critical role in the development of the promising offshore renewable energy sector and

thus in the decarbonisation of global electricity supply.

To accomplish these goals, the objectives of this thesis are as follows:

� Validate the use of time-domain simulations for modelling offshore operations by

comparing simulation results to observed operational data.

� Compare time-domain simulation theory to the alternative and well-known prob-

abilistic methods of estimating the durations of offshore operations.

� Apply the simulation theory to real life examples to assess and appraise the

suitability of time-domain simulation models for estimating accurately the likely

duration of an offshore project and informing planning strategies.

� Perform exploratory data analysis on recorded operation data with the aim of

identifying the key trends and phenomena that affect offshore operations.

� Expand the time-domain simulation theory by developing and incorporating ad-

ditional functionality that models accurately any of the phenomena identified in

the exploratory data analysis.

1.3 Thesis Outline

1.3.1 An “Analysis” Project

The industry-based research summarised in this thesis was slightly unusual as it coin-

cided with the concurrent work of fellow IDCORE student Edward Kay. Both projects

focused on the creation, development and application of the ForeCoast® Marine Gamer

Mode. The main distinction between the two projects was originally in the field of

application; this project aimed to apply the software to the wave and tidal energy

sector while the other project was to focus on offshore wind. As it transpired, the

majority of major ORE projects encountered over the placement period were in the

offshore wind sector. Subsequently, an alternative and more significant deviation in the

breakdown of work developed over time, one which allowed simultaneous work on the

same projects, while keeping the research questions distinct.

Edward Kay’s development project concentrated on the implementation and evolution

of the simulation algorithms. Ben Hudson’s analysis project focused on the quantitative
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data analysis of the raw simulation outputs, the presentation of these results to clients

and the application of the software to support the development of marine operation

strategies. The development project discusses the creation of the algorithms1 that take

the two main inputs of the software—the metocean time-series and the sequence of tasks

required to complete the offshore project—and perform the simulations that generate

the list of raw output data. The analysis project focused on taking this long list of

operation start and end times, analysing the data and producing the output graphs,

animations and summary statistics.

Despite this distinct division of work, it should be noted that the software development

was a concerted and iterative process, requiring significant collaboration and interaction

between students. Indeed, this thesis discusses the development and incorporation of

several additional methods within the Gamer Mode, including functionality for ani-

mating the outputs of the simulations; representing the random variation in operation

durations; accounting for the learning that arises after consecutive repetitions of similar

tasks and simulating random delays and stoppages that are independent of metocean

conditions. Outside of these brief forays into the world of software development, this

analysis project investigates the types of questions that time-domain simulations can

be used to answer and the implications of results on operation strategies in the ORE

sector.

1.3.2 Thesis Structure

The Prologue serves as an introduction to the theories of time-domain simulations. The

main body of the thesis then focuses on their application and is divided into three

parts—Before, During and After—that correspond to the types of analysis that can

be performed in the planning stages before operations commence, during the opera-

tional phase of a marine project and after operation completion. Finally, the Epilogue

describes the impacts of using the results of the operation duration and technical

downtime analyses as inputs to the time-domain simulation model and summarises

the major conclusions of the thesis.

While most of the analysis described in this thesis is similar to work carried out for a

client in the offshore wind energy sector, the results are different due to changes made in

the exact scenarios modelled, specific modelling assumptions (e.g. vessel charter rates,

which were not provided by the client) and other factors which have been changed to

ensure client confidentiality.

1. The state-of-the-art simulation algorithms developed as part of the developer project incorporate the
theory of time-domain simulations and the modelling technique known as Petri nets, with appropriate
representation of the stochastic weather effects. More information on Petri nets is given by Petri (1962)
and Reisig (2013).
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Prologue

A literature review is given in Chapter 2 that covers the need for renewable energy; a

brief introduction to offshore renewable energy; the importance of installation, opera-

tions and maintenance for marine projects as well as methods of estimating weather

windows.

Chapter 3 discusses time-domain simulations and alternative methods of estimating

metocean downtime. This chapter describes a validation of time-domain simulation

theory and provides a comparison of the theory to the common statistical methods.

Part I — Before

Chapter 4 describes the methods that enable the graphical animation of time-domain

simulation outputs. The strengths, weaknesses and applications of the animations are

discussed. It is shown that the animations are particularly useful for quality assurance

during model development.

The exploratory data analysis methods that have been applied to extract key insights

from the raw simulation outputs are discussed in Chapter 5. These are a selection of

the methods that have been incorporated within the developed planning software and

summarise the types of analysis that can be performed in the planning stages of a

marine project, before operations commence.

Part II — During

The application of time-domain simulations during the execution phase of a marine op-

eration is outlined in Chapter 6. The data analysis methods introduced in the previous

chapter, particularly the proposed progress plots, enable the continuous monitoring of

project performance and the early identification of significant deviations from baseline

projections.

Part III — After

Chapter 7 aims to quantify the stochastic nature of the durations of offshore operations

through the analysis of recorded data from a Round 3 offshore wind farm installation

project. The concept of a learning curve is assessed for each operation in the data-set

and the effect of this phenomenon on the representation of operation durations within

time-domain simulations is investigated.

The implementation of the stochastic learning curve model within the developed time-

domain simulation software is addressed in Chapter 8. The theory—which was only

validated and applied explicitly for the Normal distribution—is expanded to seven
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additional probability distributions. The chapter focuses on the the performance and

processing speed of the implemented sampling methods that incorporate learning.

Chapter 9 is related to the analysis and implementation of the two previous chapters

but focuses on technical downtime—the term given to unplanned and random inter-

ruptions to the operation schedule of an offshore project independent of the metocean

conditions. The chapter assesses the viability of representing the technical downtime as

the joint probability of downtime occurring, modelled by a Poisson distribution, and the

downtime duration being equal to a certain value. The implementation and evaluation

of technical downtime within the developed software are also described.

Epilogue

The combination of methods described in the preceding chapters is outlined in Chap-

ter 10, which assesses the impacts of using the finalised, expanded time-domain simu-

lation software for the planning and optimisation of marine operations in the offshore

renewable energy sector.

Finally, the conclusions of the thesis are summarised in Chapter 11.
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Chapter 2

Literature Review

2.1 Introduction

Each chapter of this thesis begins with a review of the academic literature and theo-

retical background specific to that chapter. As such, the following review is restricted

to giving a more general description of the context of the work within the offshore

renewable energy sector and the current knowledge underpinning the stated motivations

and objectives.

The requirement for sustainable forms of electricity generation and the important

role that these technologies can play in reducing global greenhouse gas emissions are

discussed in Section 2.2. Next, an introduction to offshore renewable energy (ORE)

is provided and the four most mature ORE technologies—offshore wind, tidal range,

tidal current and wave energy—are described. The current status of each technology

is outlined in detail. Section 2.4 explains the importance of installation, operations

and maintenance for the ORE sector, highlighting the large share of the life-cycle

cost of ORE projects that is attributable to these activities. Existing methods for

estimating weather downtime and weather windows are discussed in Section 2.5. Finally,

Section 2.6 discusses the most recent academic and industrial applications of time-

domain simulation theory. This final section summarises the current limitations and

knowledge gaps that have been identified in the TDS literature.

2.2 The Need for Renewable Energy

Warming of the climate system is unequivocal; the atmosphere and ocean have warmed,

the amounts of snow and ice have diminished and sea level has risen (IPCC, 2014b).

Anthropogenic greenhouse gas emissions, which have been increasing since the begin-

ning of the industrial era, are now higher than ever and the effects of these greenhouse

gases are extremely likely to have been the dominant cause of observed warming since

the mid-20th century (IPCC, 2014b). The latest estimates indicate that human-induced

warming has already reached approximately 1.0◦C above pre industrial levels (1850–

1900), with a likely range of 0.8–1.2◦C (IPCC, 2018).

9
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Changes in climate have already caused impacts on natural and human systems on all

continents and across the oceans. Continued emission of greenhouse gases will cause

further warming and long-lasting changes in all components of the climate system,

increasing the likelihood of severe, pervasive and irreversible impacts for people and

ecosystems (IPCC, 2014b). In response to this urgent threat to human societies and

the planet, an overwhelming majority of countries agreed to the 2015 Paris Agreement

and to pursue efforts to limit global temperature rise to 1.5◦C (IPCC, 2018). Restricting

global warming to this level mitigates the likely increases in heavy precipitation events

in several regions; reduces the probability of drought and associated water availability

risks; lowers the likelihood of local species extinction and limits the risk to human

health, heat-related morbidity and mortality (IPCC, 2018). If the current rate of warm-

ing of approximately 0.2◦C per decade continues, global warming is likely to reach 1.5◦C

between 2030 and 2052 (IPCC, 2018).

Reducing the carbon intensity of electricity generation is an essential component of

cost-effective mitigation strategies for limiting greenhouse gases to a level that restricts

warming to 1.5◦C (IPCC, 2014a). In pathways that achieve this critical goal, the

proportion of low-carbon electricity supply is expected to increase from the current

share of approximately 30% to between 70 and 85% by 2050 (IPCC, 2018), with

fossil fuel power generation being phased out almost entirely by 2100 (IPCC, 2014a).

Renewable energy (RE)—defined by Edenhofer et al. (2011) as any form of energy

from solar, geophysical or biological sources that is replenished by natural processes at

a rate that equals or exceeds its rate of use—is one of the main components of this

low-carbon electricity supply. There has been a dramatic growth in RE in recent years;

despite historic low oil prices between 2015 and 2017, RE technologies represented the

largest capacity additions in 2017 (Bosch et al., 2018). However, many of these RE

sectors still need support if their market shares are to be significantly increased (IPCC,

2014a).

Simultaneously, society is faced with the imbalance between the competing aims of

economics, politics and the environment, collectively known as the energy trilemma

(Heffron et al., 2015). Energy supply must be secure and affordable as well as sus-

tainable. Increasing the penetration of renewable energy can help reduce greenhouse

gas emissions and ensure reliable, timely and cost-efficient delivery of energy (Ellabban

et al., 2014).

For the UK, it is clear that the future energy system will require the deployment of

significant quantities of low-carbon power generation plant if the UK government is to

meet its legally binding carbon reduction targets for 2050 under the Climate Change Act

(ETI and UKERC, 2014). For maritime nations similar to the UK, offshore renewable

energy can play an important role in achieving the balanced portfolio of low-carbon
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technologies required to deliver the capacity and security of supply required out to

2050 and beyond (ETI and UKERC, 2014).

2.3 Offshore Renewable Energy

Offshore renewable energy (ORE) refers to any sustainable energy technology located

in the marine environment. The term encompasses both offshore wind energy and

ocean energy (OE), which aims to generate electricity from sources such as tidal range;

tidal currents; ocean currents; ocean waves; thermal differences; salinity gradients and

biomass (Borthwick, 2016; Ellabban et al., 2014). While offshore wind and tidal range

energy technologies have reached a state where they are commercially competitive

with conventional electricity sources, the remaining ORE technologies are in the pre-

commercial prototype and early demonstration stages (Ellabban et al., 2014). The

following sections summarise the current status of the most mature ORE technologies;

offshore wind, tidal range, tidal current and wave energy (Magagna et al., 2018, 2016;

Ellabban et al., 2014).

2.3.1 Offshore Wind Energy

Wind power and wind energy refer to the conversion of the kinetic energy of moving

air into electricity using wind turbine generators (WTGs). Offshore WTGs typically

consist of three blades rotating about a hub—or nacelle—and are very similar to

land-based wind turbines. In comparison to onshore wind, the offshore form of this

technology competes less with other land uses and has faced less public opposition, but

it also produces a less intermittent energy supply (Bosch et al., 2018). Additionally,

offshore farms can reach higher power densities with taller and larger turbines and fewer

constraints on size and noise pollution (Bosch et al., 2018). These reasons, together with

a growth in nameplate WTG capacity and a fall in the cost of capital, have led to rapid

developments in the now well-established offshore wind energy sector (Bosch et al.,

2018; Rodrigues et al., 2015; Dalgic et al., 2015b; Martini et al., 2018; Colmenar-Santos

et al., 2016).

Current Status and Future Projections

The growth in global cumulative offshore wind capacity is highlighted in Figure 2.1.

Between 2011 and 2017, the cumulative capacity of offshore wind grew from 4.1 GW

to 18.8 GW (GWEC, 2017). The market in 2017 was dominated by European projects,

which represented 15.8 GW of the total cumulative capacity (Wind Europe, 2018a).

The total energy produced by offshore wind turbines in Europe for the year 2017 was
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43 TWh (Wind Europe, 2018b). Globally, total offshore wind power generation in 2018

was 65.8 TWh (International Energy Agency, 2018).
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Figure 2.1: Growth of global cumulative offshore wind capacity (GW) since 2011. Data
from GWEC (2017).

The rapid growth of the offshore wind energy sector is expected to continue. Global

cumulative capacity is projected to reach 120 GW by 2030 (GWEC, 2017). The market

will continue to be dominated by European offshore wind farms. It is estimated that

cumulative capacity in Europe in 2020 will be 25 GW, accounting for 2.9 GW that

are under construction and 13.2 GW that have been consented (Wind Europe, 2017).

European projections for 2030 range between 50 and 99 GW with a central estimate of

70.2 GW (Wind Europe, 2017).

Floating Offshore

As shown in Table 2.1, the installation locations of offshore WTGs are typically classi-

fied under one of three categories according to the water depth and the corresponding

foundation technologies. Although the offshore wind market has so far been dominated

by countries with shallow water depths, falling costs and growing de-carbonisation in-

centives have resulted in several countries considering the potential of floating structures

(Bosch et al., 2018). As the “low-hanging fruit” of shallow near-shore sites is exhausted,

there will be a need to develop farms further from shore and in deeper water (James

and Ros, 2015). The associated technical challenges and cost implications of moving

further offshore, together with the possibility of unlocking near-shore deep water sites
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at a lower cost of energy than far-shore shallow water locations, have driven the interest

in floating offshore wind energy (James and Ros, 2015).

Table 2.1: Typical water depth categories for offshore WTGs and suitable foundation
technologies. Categorisation taken from Bosch et al. (2018).

Water depth range (m) Category Suitable foundation technologies

0–40 Shallow Monopile, suction bucket, tripod, jacket
40–60 Transitional Tripod, jacket, gravity base structure
60–1,000 Deep Floating

Despite its promise, full-scale prototypes of offshore WTGs are still in the early pro-

duction stage (Bosch et al., 2018). Although several cost projections suggest that

floating wind can achieve financial parity with fixed-bottom WTGs during the 2020s if

supported adequately by government (James and Ros, 2015), floating offshore wind is

likely to remain a niche sector throughout this period (GWEC, 2017).

Global Technical Potential

Several definitions of the potential energy available from RE sources and technologies

have been put forward (see, for example, Verbruggen et al., 2010). The following

definitions are those put forward by Krewitt et al. (2008);

� Theoretical potential is derived from natural and climatic parameters and can be

quantified with a reasonable accuracy but the information is of little relevance.

The theoretical potential of renewable energy sources is huge compared to global

energy demand and there are numerous constraints in their exploitation.

� Technical potential includes geographical restrictions as well as technical and

structural constraints. The value for technical potential may change over time

due to advancements in the energy conversion technologies.

� Economic potential is the technical potential that can be exploited at competitive

costs. Due to rising fossil fuel prices and reducing RE generation costs, the break

even point between RE and conventional fossil fuel technologies can change over

time.

Section 2.3 of the thesis focuses on the technical potential of ORE technologies.

Estimates of the global technical wind energy potential vary significantly. The values

range from 157,000 TWh per annum (Lu et al., 2009) to 630,000 TWh per annum

(Dupont et al., 2018). A recent study by Bosch et al. (2018) used a bottom-up approach

and characterised the capacity factors of offshore wind farms by estimating the available

wind power from high resolution global wind speed data sets. The results suggested that

the total global technical potential of approximately 330,000 TWh per annum could
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be divided between 65,000 TWh in shallow waters; 35,000 TWh in transitional waters

and 230,000 TWh in deep waters. Thus, Bosch et al. (2018) estimate that even in the

unlikely event of the complete breakdown of the floating offshore wind industry, the

technical potential is still about 100,000 TWh per annum.

Offshore Wind Energy Outlook

We have seen that the offshore wind sector has developed rapidly in the last decade,

with several projects either under construction or scheduled for completion in the next

3–4 years. The growth in cumulative capacity has been accompanied by a significant

reduction in cost. The weighted average strike price for offshore wind projects in the

UK fell from £142/MWh in 2010/11 to £62.14/MWh in 2017, while even lower strike

prices were awarded in Denmark and the Netherlands (Bosch et al., 2018). Careful

strategic planning of the installation and maintenance of these wind farms is essential

for ensuring these increasingly complex projects are delivered on time and on budget.

The management of these energy projects will become more difficult as both the physical

size of individual WTGs and the number of turbines in each wind farm increase.

Furthermore, offshore wind farms will tend to move further away from the coast and

into deeper waters, thus introducing additional challenges for electricity transmission,

installation, operations and foundation design (James and Ros, 2015). To ensure the

continued growth of the offshore wind energy sector, it is imperative that both the

financial and safety risks of these projects are managed adequately.

For the nascent floating offshore wind energy sector, the challenge for the industry is

to reduce costs from today’s expensive prototypes and demonstrators to a commercial

model where designs can be optimised and the industry can benefit from the economies

of scale needed to reduce costs (James and Ros, 2015). Leading floating concepts already

expect costs of £85–95/MWh but require further investment, development and support

mechanisms to ensure continued reductions over time (Bosch et al., 2018; GWEC, 2017).

In order for floating offshore wind technologies to be successful and the vast deep-water

resource exploited, it is essential that these costs are reduced to a level comparable to

the standard bottom-fixed configurations.

2.3.2 Tidal Range Energy

The existence of tides is due primarily to gravitational interactions between the Earth,

the Moon and the Sun that, when combined with the rotation of the Earth, produce a

twice-daily rise and fall in sea level at any particular point on the globe. Tidal range

energy generation systems use the vertical difference between the water level at these

low and high tides to generate electricity. In these systems, the water carried upstream

by the tidal flow is trapped behind a barrage across an estuary. A head of water develops
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when the tide turns and the water level on the downstream side of the barrage reduces.

The head is then used to drive the water through turbine generators and generate

electricity in much the same way as conventional hydroelectric power stations.

A variant of a tidal barrage is the concept of a tidal lagoon, which encloses a section

of coastline with a high tidal range behind a breakwater (Waters and Aggidis, 2016).

Offshore lagoons that form a complete circle are an alternative option (Waters and

Aggidis, 2016). Due to their similar modes of operation and to distinguish them from

systems using tidal currents, tidal barrage and tidal lagoon systems are often collectively

labelled tidal range systems (Boyle, 2012).

Current Schemes, Proposed Schemes and Technical Potential

Worldwide, there are five tidal range power plants of significant scale, representing a

combined installed capacity of 520 MW (Neill et al., 2018). The majority of this power

generating capacity is provided by the 240 MW La Rance tidal barrage in Brittany,

which has been operational since 1966, and the 254 MW scheme at Lake Sihwa in South

Korea, which was completed in 1994 (Neill et al., 2018). According to Wyre Energy Ltd.

(2013), the annual energy produced by these two tidal range schemes is approximately

1.1 TWh.

Several proposed tidal range energy projects have also been identified as being techni-

cally feasible. As outlined by Neill et al. (2018), the total capacity of these schemes is

125 GW, corresponding to an estimated annual output of approximately 220 TWh.

There are substantial variations in the estimates of tidal range energy potential (Neill

et al., 2018; Borthwick, 2016; Entec, 2007). Recently, Neill et al. (2018) have estimated

the global theoretical potential to be 5,792 TWh per annum. The authors also suggest

that approximately 37% of the theoretical resource is available for tidal range schemes,

which corresponds to a technical potential of 2,143 TWh. A significantly smaller es-

timate for the global tidal range energy resource of between 386 and 560 TWh per

annum is given by Entec (2007), who acknowledge the relative scarcity of sites suitable

for development. The estimated annual output of 220 TWh from the aforementioned

proposed schemes can be considered a conservative yet realistic estimate of the current

technical potential of tidal range energy.
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Tidal Range Energy Outlook

Future trends for the tidal range energy sector are difficult to predict. Physical con-

straints, costs and environmental impacts are the major barriers to development (Neill

et al., 2018). Environmental issues in particular have prevented numerous developments

from being approved (Neill et al., 2018).

Several of the proposed schemes mentioned previously are located in the UK, with

the scheme closest to commercial viability being the Swansea Bay Tidal lagoon (Neill

et al., 2018). It is difficult to assess the true environmental impacts of a large scale

tidal lagoon without observing an operational plant for an extended period of time.

As such, the Swansea Bay Tidal Lagoon was considered by many to be a “pathfinder

project”, that would pave the way for the remaining proposed lagoons (Neill et al.,

2018). With this in mind, the UK government commissioned an independent review

of tidal lagoons in February 2016. Despite the Hendry Review1 strongly advocating

the development of Swansea Bay and describing it as a “no regrets” option, the UK

government decided in late June 2018 that it would not be supporting the project. The

government review concluded that the proposed programme of lagoons did not meet

the requirements for value for money2. Consequently, without significant reductions in

capital and construction costs, it is unlikely that tidal range energy in the UK will

prosper.

2.3.3 Tidal Current Energy

It is also possible to harness the kinetic energy in the horizontal movement of the tides.

Although these tidal currents are quite low in the open sea, the speed of the tidal

ebbs and floods can be much higher when the tidal movements are concentrated by

passing through narrow channels or around islands, headlands or other topographical

constraints. Tidal current or tidal stream energy refers to the extraction of this energy

using relatively simple, submerged, wind turbine-like rotors (Boyle, 2012).

1. Charles Hendry’s independent review of tidal lagoons, 2017. See
https://hendryreview.wordpress.com [Accessed 18th January 2020]
2. Oral statement of the Rt Hon Greg Clark MP to Parliament on proposed Swansea Bay Tidal
Lagoon, 25th June 2018. See https://www.gov.uk/government/speeches/proposed-swansea-bay-tidal-
lagoon [Accessed 18th January 2020]

https://hendryreview.wordpress.com
https://www.gov.uk/government/speeches/proposed-swansea-bay-tidal-lagoon
https://www.gov.uk/government/speeches/proposed-swansea-bay-tidal-lagoon
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Current Status

The tidal current energy sector has made considerable progress in recent years and has

now reached a pre-commercial state, with fourteen tidal energy projects grid connected

and operational by the end of 2016 and an estimated installed capacity of approximately

13 MW (Magagna et al., 2016). The deployment of these first demonstration farms was

a significant milestone for the ocean energy sector and demonstrates the technological

progression that has been achieved (Magagna et al., 2016).

Scotland is currently the centre of tidal current energy development. The world’s first

grid-connected tidal array was installed by Nova Innovation in Shetland’s Bluemull

Sound (REN21, 2018; Magagna et al., 2016). Two 100 kW, direct-drive turbines were

constructed in 2016 with a third turbine added in 2017. The MeyGen tidal stream

energy project, consisting of four 1.5 MW horizontal-axis turbines, was completed and

grid-connected in early 2017 (REN21, 2018; Magagna et al., 2016). By the end of that

year, the project had generated 2.6 GWh of electricity and was close to entering its

scheduled 25-year operational phase (REN21, 2018). Finally, Orbital Marine Power3

installed their S2000 device off the coast of Orkney in 2016. This 2 MW floating

tidal stream turbine operated at full power as it underwent a test programme in 2017

(REN21, 2018). The device generated more than 1.2 GWh over the course of the year,

corresponding to 7% of the electricity demand of the Orkney Islands (REN21, 2018). An

approximate value for the total energy production by tidal current energy technologies

in 2017 can be obtained by adding the energy produced by the MeyGen project and

the Orbital Marine Power device. This results in a value of 3.9 GWh.

Technical Potential and Consented Projects

Major tidal streams have been identified along the coastlines of every continent, but

the site-specific nature of the resource makes it difficult to obtain reliable estimates

for global technical energy potential (Hannon et al., 2016). Charlier and Justus (1993)

estimate a theoretical potential of 8,800 TWh per annum in shallow coastal basins

but this includes both tidal range and tidal current resources. The European technical

potential for tidal current energy has been calculated as 48 TWh per year (CEC, 1996)

and is a more realistic estimate of practical potential.

Accounting for tidal energy projects that have obtained support through various public

funding streams, the potential for tidal current energy is 71 MW of installed capacity

by 2020 (Magagna et al., 2016). Magagna et al. (2016) estimated that this value could

increase to 600 MW if technological and financial barriers could be overcome but this

is highly unlikely at present, as we shall see in the next section.

3. Scotrenewables re-branded to Orbital Marine Power Ltd on 15th October 2018. See
https://orbitalmarine.com/news/114-press-release-rebrand [Accessed 18th January 2020]

https://orbitalmarine.com/news/114-press-release-rebrand
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Tidal Current Energy Outlook

Although the tidal current energy sector has developed significantly in recent years, the

rate of progress is still lower than expected (Magagna et al., 2016). For example, only

14 MW of ocean energy capacity had been installed in Europe by 2016. The expectation

of EU member states by this time was approximately 400 MW of additional capacity

(Magagna et al., 2016).

Besides the technical and environmental challenges, the main barrier preventing large-

scale tidal current energy uptake is the financial viability of the projects (Magagna

et al., 2018). Significant cost-reductions are therefore required in the next 10–15 years

to achieve continued growth in this sector. Magagna et al. (2018) have estimated that

the current cost of tidal energy technologies needs to be reduced by 75% to meet the

ambitious targets set out in the European Strategic Energy Technology Plan.

The challenges facing the tidal current sector are exemplified by the recent decision of

Naval Energies to cease investment in their tidal current energy company, OpenHydro4.

A facility in Cherbourg for manufacturing the 2 MW open-centre turbines developed by

OpenHydro, with a planned production capacity of 25 units per year, was completed in

June 2018. This plant was expected to launch the commercialisation of the technology

and seven of the turbines were expected for deployment at the Normandy Hydro Project

at Raz Blanchard in 2018 (REN21, 2018).

In addition to existing support systems, innovative financial instruments and R&D pro-

grammes are required to support the deployment of additional pre-commercial projects

and attract private investors (Magagna et al., 2018, 2016).

2.3.4 Wave Energy

Ocean waves—generated when the wind blows across the surface of the ocean—are

a huge, largely untapped energy resource (Drew et al., 2009). Wave power refers to

the transformation of this wave energy into useful forms such as electricity (Hussain

et al., 2017). Numerous wave energy converters (WECs) have been invented and it is

estimated that over 50 types of device are currently under development (Borthwick,

2016). WECs can be categorised by location—converters can be defined as onshore,

offshore and near-shore—and by the power take-off mechanism—categorisations include

point absorber, attenuator, oscillating water column (OWC) and submerged pressure

differential (Hussain et al., 2017).

4. See https://marineenergy.biz/2018/07/26/tides-wash-away-openhydro/ [Accessed 18th January
2020]

https://marineenergy.biz/2018/07/26/tides-wash-away-openhydro/
https://marineenergy.biz/2018/07/26/tides-wash-away-openhydro/
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Current Status

The development of wave energy has slowed down significantly in recent years and,

apart from small-scale OWC concepts, no wave energy converter has thus far been

able to deliver electricity to the grid on a continuous basis (i.e. for more than twelve

consecutive months) (Magagna et al., 2018, 2016). The commercial readiness of wave

energy is still to be proven and most of the devices are still considered to be advanced

prototypes (Magagna et al., 2016).

Several wave energy developers have exited the sector in recent years, highlighting

the risk associated with the full-scale demonstration of converters. In 2014, the sector

experienced catastrophic setbacks when the two companies considered to be at the

most advanced stage of development, Aquamarine Power and Pelamis Wave Power,

went into administration (Magagna et al., 2016). Subsequently, the present picture is

not very different from 2014.

By the end of 2016, the total amount of installed wave energy capacity was less than

1 MW (Magagna et al., 2016). Consequently, the current amount of grid-connected

energy produced by wave energy devices is negligible. It is clear that the wave energy

sector has underachieved.

Technical Potential and Consented Projects

There are various estimates of the practical wave energy resource that can be recovered.

The values range from 2,000 TWh per annum (see Thorpe (1999) and Cornett (2008))

to approximately 5,500 TWh per annum (see Pelc and Fujita, 2002).

Accounting for wave energy projects that have obtained support through various public

funding streams, the potential installed capacity for wave energy in 2020 is 37 MW (Ma-

gagna et al., 2016). This value has the potential to increase to 65 MW if technological

and financial barriers can be overcome (Magagna et al., 2016).

Wave Energy Outlook

Following the setbacks of recent years, it is critical that methods for de-risking the

demonstration phase of wave energy technologies are identified (Magagna et al., 2016).

Several national and international initiatives have been created to address this issue

and ensure tangible progress is made in alignment with available funding. Examples of

agencies that are driving these initiatives include Ocean Energy Systems (OES), Wave

Energy Scotland (WES), the Sustainable Energy Authority of Ireland (SEAI) and the

US Department of Energy (DOE) (Magagna et al., 2016).
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Technological progression is paramount for the future of the wave energy sector (Maga-

gna et al., 2016). Currently, wave energy developers and engineers are tasked with max-

imising power output; improving efficiency; reducing environmental impact; enhancing

material robustness and durability; cutting capital costs and ensuring survivability

(Borthwick, 2016). With this long list of technological deficiencies in mind, it is clear

that for the wave energy sector to have any chance of future development, the cost of

ancillary services such as installation and maintenance operations will also need to be

minimised. This thesis appraises the suitability of time-domain simulations of offshore

operations for achieving these cost reductions.

2.3.5 Offshore Renewable Energy Outlook

The estimates of global technical potential and current annual energy production for the

four offshore renewable energy sectors discussed previously are summarised in Table 2.2.

To put these values in perspective, total world electricity generation in 2015 was 24,255

TWh (International Energy Agency, 2017).

Table 2.2: Estimates of global technical potential and current annual energy production
for offshore renewable energy technologies. Energy data unit is TWh/year.

Technology Technical potential Current energy production

Offshore wind 100,000–630,000 51
Tidal range 220–560 1.1
Tidal current 48 0.004
Wave energy 2,000–5,500 ≈ 0

Total 102,268–636,108 52.1

Even if the lower estimates of technically accessible resource are assumed, the po-

tential contribution of ORE technologies to the global energy mix is significant and

considerably larger than current global energy demand. However, the current level of

energy produced by ORE technologies is virtually non-existent compared to the huge

potential resource. It is clear that rapid improvements need to be made if ORE is to

make a significant contribution to global electricity supply.

The global challenge is in extracting the energy, bringing it to shore, storing it and

exporting it cost-effectively (Borthwick, 2016). Section 2.3 has discussed the individual

challenges facing each of the offshore wind, tidal range, tidal current and wave energy

sectors. As offshore wind projects continue to move further away from the coast and

into deeper waters, careful strategic planning is required to ensure these increasingly

complex projects are delivered on time and on budget. For the developing floating

offshore wind sector, the challenge is to reduce costs from expensive prototypes to a

commercial model matching current near-shore wind energy converters. In the case
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of tidal range energy, recent government decisions in the UK have shown that unless

there are significant reductions in capital and construction costs, the sector is likely to

fail completely. The main barrier preventing large-scale tidal current energy uptake is

the financial viability of pre-commercial projects—the sector needs support to cross the

infamous “valley of Death”. For the wave energy sector that is showing some signs of life

after its recent near-death experience, it is imperative that methods for de-risking the

demonstration phase of wave energy technologies are identified. The need for reducing

the lifetime cost across all four sectors is clear.

2.4 Installation, Operations & Maintenance

Installation methods are still developing for the nascent ORE technologies and are thus

difficult to define. However, for the more mature offshore wind sector, the installation

of foundations and turbines can be broken down into the following steps, as outlined

by Lacal-Arántegui et al. (2018);

1. Mobilisation—the vessel is adapted for the upcoming operations,

2. Loadout—the turbines and/or foundations are loaded onto the installation vessel

at port,

3. Outward transit—the vessel transports to the wind farm site,

4. Installation—the turbines and/or foundations are installed,

5. Return transit—the vessel returns to port and

6. De-mobilisation—the installation equipment is removed from the vessel.

Typically, the installation vessels can carry several items per trip and thus steps 2–5

are repeated several times per wind farm (Lacal-Arántegui et al., 2018).

During the operational lifetime of an offshore wind farm, numerous scheduled and un-

scheduled maintenance tasks have to be performed to keep the turbines operational and

to sustain power production (Dalgic et al., 2015a). These tasks are collectively referred

to as operations and maintenance (O&M). Installation, operations and maintenance

are occasionally grouped together and referred to as IO&M.

2.4.1 The Cost of Installation, Operations and Maintenance

The lack of operational, commercial-scale devices and arrays for the nascent ORE

technologies makes it difficult to obtain data on the cost of IO&M activities in these

developing sectors. However, SI Ocean (2013) estimate that the combined costs of

installation and O&M will represent 35% and 46% of the lifetime cost of wave and tidal

energy arrays respectively. For the remaining technologies, and for the ORE sector in
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general, the proportion of lifetime costs pertaining to IO&M is expected to be similar

to that of offshore wind.

The installation of offshore WTGs and their foundations is estimated to contribute 10–

20% of the total capital expenditure (CAPEX) of a wind farm (Gintautas and Sørensen,

2017). Improving this installation process can help achieve the cost reductions required

to compete with conventional energy sources (Barlow et al., 2015). O&M activities

typically account for between 25 and 30% of the total levelised cost of energy (LCOE)

(Gintautas and Sørensen, 2017; Dalgic et al., 2015a; Blanco, 2009; Rodrigues et al., 2015;

Martini et al., 2018; Maples et al., 2013). The cost of O&M is estimated to be three

times higher than that of onshore wind and the main cause of this substantial difference

is the frequent need for utilising expensive transportation (Dalgic et al., 2015a; Blanco,

2009). In fact, it has been suggested that costs associated with transportation systems

can amount to 73% of total O&M costs of an offshore wind farm (Dalgic et al.,

2015a,b). Furthermore, transportation system costs can represent up to 50% of the total

installation expenditure (Gintautas and Sørensen, 2017). As wind farms begin to move

further offshore and into deeper water, these costs can be expected to rise because of the

longer travel times and harsher weather conditions that limit accessibility (Gintautas

and Sørensen, 2017).

2.4.2 Vessels for Offshore Operations

For minor maintenance tasks, current transportation options to offshore locations in-

clude small workboats such as mono-hull boats, small catamaran vessels and small

water-plane area twin hull (SWATH) vessels (Dalgic et al., 2015b). These vessels are

commonly referred to as crew transfer vessels (CTVs) (Dalgic et al., 2015b). Offshore

access vessels (OAVs) and service operation vessels (SOVs) are larger than CTVs, have

better operational capability and are typically equipped with dynamic positioning (DP)

systems and motion-compensating gangways (Dalgic et al., 2015b).

In the case of major component failures and maintenance tasks, these small maintenance

vessels are not adequate and alternative vessels are required (Dalgic et al., 2015a).

Jack-up vessels and barges currently dominate the offshore wind market (Dalgic et al.,

2015a). These vessels consist of a buoyant hull with a number of legs and are capable

of stationing their legs on the sea floor, raising their hulls above the sea-surface, thus

providing a stable platform for operations (Dalgic et al., 2015a). Leg-stabilised vessels

are similar to jack-up vessels, but do not lift the hull above the sea-surface; they instead

use their legs to stabilise the hull (Dalgic et al., 2015a). Heavy-lift vessels are designed

for the installation of pre-assembled modules for the offshore oil and gas industry and

therefore possess the highest crane capabilities in the offshore sector (Dalgic et al.,

2015a).
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The construction and installation of offshore wind farms require similar vessels to those

involved in the major maintenance tasks (Lacal-Arántegui et al., 2018). These include

jack-up barges; crane barges; cargo barges and tug boats (Lacal-Arántegui et al., 2018).

Sophisticated jack-up vessels designed specifically for the installation of offshore wind

farms are alternatively classified as turbine installation vessels (TIVs) (Lacal-Arántegui

et al., 2018).

2.4.3 Cost Reduction Opportunities

IO&M expenditure is clearly a major component of the life-cycle cost of an offshore

wind farm. A similar phenomenon can be expected for the other ORE technologies.

Reducing these costs can therefore lead to significant reductions in the overall cost of

an offshore project and consequently help to accelerate development in the ORE sector.

As noted by Barlow et al. (2018), improved management of installation logistics has

been identified as an area where substantial cost reductions can be achieved through

innovation.

Detailed and accurate estimates of the durations of offshore projects would enable

identification of the most cost-effective strategies for installing or maintaining ORE

technologies. Scenario testing, sensitivity analysis and similar methods could be used

to assess and select from a multitude of operational scenarios with the aim of reducing

the projected charter length—and thus total charter cost—of these expensive and

sophisticated vessels.

Lacal-Arántegui et al. (2018) suggest that the daily rate of a turbine installation vessel

is between 150,000 and 250,000 USD. Assuming a conversion rate of 0.76 GBP/USD,

this range corresponds to 114,000–190,000 GBP/day. For example, if it was possible to

reduce the charter length of one of these vessels for an offshore wind farm installation

project by a single week, the savings would be between approximately 800,000 and 1.3m

GBP. The potential cost savings are further highlighted by the fact that the campaign

durations of these large installations are often in the order of years and will only increase

as wind farms move into deeper waters or further offshore. Consequently, methods of

reducing these costs represent a significant opportunity for accelerating development in

the ORE sector.
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2.4.4 Quantifying Uncertainty

The percentages of life-cycle costs attributable to IO&M quoted in Section 2.4.1 are

either estimated or mean values based on the ORE sector as a whole. In reality, there is

huge uncertainty in the duration and cost estimates for a specific project or operation.

A negligible amount of offshore wind farms have reached the end of their life-cycle

(Wind Europe, 2017). Thus, it is almost impossible to know the total life-cycle cost of

O&M with great certainty. Furthermore, the duration of an installation campaign is

affected by the metocean conditions that prevail during construction and their relative

severity in comparison to the mean conditions at the project location. The installation

and maintenance cost will of course be different for every ORE project.

It would be hugely beneficial to quantify accurately these uncertainties in project

duration and cost. Stochastic estimates of campaign duration could inform planning

strategies and decision making processes, improve financial projections and help mit-

igate against the risks of working in the offshore environment. Without appropriate

probabilistic ranges of project cost, there is an increased risk of financial failure for

projects that were originally considered profitable and viable. Scenario testing methods,

similar to those mentioned in the previous section for informing strategic planning

decisions, that could also be used for the accurate quantification of uncertainty in

financial projections and project length would therefore be highly advantageous.

2.5 Weather Downtime and Weather Windows

The inherent risks associated with working in the harsh, complex and ever-changing

marine environment are clear. Limited access to offshore locations due to adverse me-

teorological and oceanographic (metocean) conditions is a common factor that impedes

all marine operations (Gintautas et al., 2016; Morandeau et al., 2013). The critical

importance of metocean conditions to the duration and success of an offshore project

is a consequence of the high weather sensitivity of the equipment and vessels used for

transportation and IO&M (Gintautas et al., 2016).

Typically, the accessibility of offshore locations is expressed in terms of weather win-

dows, during which operations can be performed, and the downtime spent waiting for

these weather windows (Gintautas et al., 2016). The subsequent sections summarise

several methods for estimating weather windows; occurrence and persistence statistics,

Markov theory, time-domain simulations, vessel response simulations and optimisation

methods.
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2.5.1 Occurrence and Persistence

Background

Historically, weather windows and weather downtime were calculated using occurrence

and persistence statistics of accessible conditions (Stallard et al., 2010; Walker et al.,

2013; Anastasiou and Tsekos, 1996; O’Connor et al., 2013). Occurrence is the probabil-

ity that an environmental parameter will be less than a threshold level (Stallard et al.,

2010). Persistence refers to the duration for which a metocean variable remains con-

tinuously below the required threshold level (Stallard et al., 2010). Detailed definitions

and examples of these two parameters are provided in Section 3.2.

Several methods for the estimation of downtime based on the probability of occurrence

and persistence of metocean conditions are available. The method proposed by Stallard

et al. (2010) and Walker et al. (2013) is outlined and assessed in Chapter 3.

Estimating Persistence

The calculation of persistence probabilities requires a long-term metocean data-set,

typically greater than 5 years (Graham, 1982). In the past, recorded metocean time-

series would have been the primary source of this data and obtaining recorded data-sets

of sufficient duration was difficult. Furthermore, persistence statistics obtained from

analysing these records can sometimes produce a misleading and inaccurate represen-

tation of the metocean climate, due to gaps in the recorded data and the relative severity

of the measurement period against the long term norm (Graham, 1982). Consequently,

several statistical methods were developed to estimate the duration of persistence

intervals from available short-term metocean data records.

Initially, empirical relationships for a basic Weibull equation were derived to predict

persistence statistics (Graham, 1982). This method was developed by Kuwashima and

Hogben (1986), who used cumulative distribution functions of significant wave height

to generate corresponding distributions of mean duration of persistence, expressed in

terms of a two-parameter Weibull distribution.

A modified version of the Weibull method was proposed by Mathiesen (1994), who used

the long-term distribution of significant wave height together with the absolute rate of

change of significant wave height. However, as the rate of change of wave height can

only be obtained from a time-series, it can be argued that the original data should be

analysed directly, using time-domain methods such as those discussed in subsequent

sections (Stallard et al., 2010).

Persistence estimation methods are particularly useful when only short-term metocean

data records are available (Stallard et al., 2010). As described in the recent application
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by Walker et al. (2013), these methods enable efficient and straightforward comparisons

of site accessibility between separate project locations and seasons (Walker et al., 2013).

Recent developments in sophisticated atmospheric and ocean models—combined with

improvements in physical data measurement, collation and accessibility—have improved

the quantity, extent and quality of available metocean data-sets, thus negating the main

advantage of using persistence estimation methods. For example, the 5th generation re-

analysis (ERA5) produced by the European Centre for Medium-range Weather Fore-

casts (ECMWF) periodically uses its forecast models and data assimilation methods

to ‘reanalyse’ archived observations, creating accurate global data-sets that describe

recent history of the atmosphere and oceans (Copernicus Climate Change Service

(C3S), 2017). This data-set is freely accessible online and contains data on a regular

0.25◦ × 0.25◦ latitude-longitude grid for the entire globe. Data is currently available

between 2000 and the present day. By mid 2019, the data-set will cover the period

1950–present (Copernicus Climate Change Service (C3S), 2017).

Because there are numerous available data-sets with similar geographic coverage that

provide accurate representations of historic metocean conditions, it is preferable to

calculate the persistence statistics directly—for example, using the methods described

by O’Connor et al. (2013)—rather than use persistence estimation methods. Research

in this area should instead focus on investigating the best use of the state-of-the-art

metocean models and data-sets.

Limitations

The use of occurrence and persistence methods to estimate weather windows and

expected durations of offshore operations is not well-suited for analysing projects con-

sisting of sequential operations (Walker et al., 2013). These methods only provide

estimates of the expected value of weather downtime for a single operation. As such,

the pattern of transitions between operable sea states for successive operations that

comprise an entire project is not taken into consideration (Anastasiou and Tsekos,

1996).

Additionally, it is difficult to account for the joint probability of more than one metocean

variable (Stallard et al., 2010). A statistical approach is straightforward to apply to a

single metocean variable, but marine operations are often strongly dependent on several

metocean parameters. For example, installing a tidal turbine in an energetic tidal stream

will require benign wave and tidal current conditions. If any heavy lifting operations

are required, the project will also be dependent on wind speed.
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2.5.2 Markov Theory

Background

An alternative approach for estimating the duration of offshore operations has been

proposed by Anastasiou and Tsekos (1996) that generates probability distributions

of persistence statistics using the assumption that the sea states behave as a first

order Markov process. The Markov method establishes a transition matrix describing

the probabilities of changing from one sea state to another and uses this matrix to

estimate the persistence statistics (Stallard et al., 2010). The methodology differs from

the time-domain based Monte Carlo techniques (discussed in Section 2.5.3) because

it establishes analytically, not through simulation, the probability distribution of the

operations (Anastasiou and Tsekos, 1996).

Crucially, Markov methods are applied for a single operation, i.e. a single task or

component of a marine project. The durations of individual activities are then com-

bined according to the Probabilistic Network and Evaluation Technique (PNET), a

method well-established in the probabilistic project scheduling subject area. For a clear

introduction to the detail of the method, the reader is referred to Ang et al. (1975).

The method assumes that the duration of each critical path in an operations scenario

is normally distributed and that the mean and variance of the total duration of each is

obtained through the addition of the mean values and variances of the activities that

comprise that path (Anastasiou and Tsekos, 1996).

Advantages

One of the main advantages of the proposed Markov methodology is that it provides a

better understanding of the key factors that influence the duration of the execution of an

activity (Anastasiou and Tsekos, 1996). This is achieved by defining several “efficiency

states”that are dependent on the prevailing metocean conditions and affect the duration

required to complete an operation. For example, an efficiency state of 0.5 implies that

any operation performed in the environmental conditions defined by that efficiency

state will take twice as long to complete.

A practical advantage of the Markov methodology is that the computational time is

significantly shorter in comparison to time-domain methods (Anastasiou and Tsekos,

1996). For time-domain simulations, Anastasiou and Tsekos (1996) suggest that the

duration of an activity and vessel performance are the determining factors for the com-

putational speed and the required length of environmental data. The Markov methods

are not applied in the time-domain and so avoid these issues.

Finally, the requirements of the Markov methodology in terms of environmental input

data are limited to a relatively short record of the wave height and wind speed (Anasta-
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siou and Tsekos, 1996). However, as mentioned previously, the availability of accurate

and extensive environmental data is not as problematic now as it was in the past.

Limitations

The most significant limitation of the Markov method is that it is performed for

individual operations and it relies upon the PNET methodology to obtain estimates

of total project duration. Using the Central Limit Theorem, PNET assumes a normal

distribution for each representative path within an operations scenario. Anastasiou and

Tsekos (1996) mention that this assumption may not be accurate in certain cases,

for instance; if there are only a small number of tasks, their probability distributions

are considerably skewed or the duration of a particular activity dominates the path

duration (Anastasiou and Tsekos, 1996). In these cases, an alternative approach is

suggested where the probability distribution of the path duration is expressed in terms

of the central moments of the probability distributions of its individual activities.

Regardless of whether the basic PNET methodology or the improved central moments

method is employed, there is uncertainty in the validity of combining sequential op-

erations in this manner and assuming that their expected durations are statistically

independent. This ignores the temporal auto-correlation of metocean conditions. In

a period of particularly favourable metocean conditions, several sequential operations

may be completed in quick succession, highlighting an example when the expected

durations of successive operations are not independent. Conversely, an extensive spell

of unfavourable weather can have the opposite effect on progress. This is exaggerated by

the impact of seasonality on weather windows throughout a typical year. For example,

several subsequent instances of unexpected downtime in the calm summer months could

delay an offshore project into the more extreme weather of the winter months. As such,

although the combined use of Markov theory and PNET produces accurate estimates

of mean project duration, there is a doubt about their ability to capture the extreme

results (see Anastasiou and Tsekos, 1996). The impact of only considering the mean

values of individual operations is assessed in Chapter 3, where this strategy is compared

to the time-domain simulation methods that can consider every possible eventuality and

are thus expected to be able to capture these extreme cases more accurately.

Additionally, although the Markov method takes into account the effect of weather

on the efficiency of operations (through the pre-defined efficiency states), the random

variations in operation duration that can occur independently of metocean conditions

are not considered. Natural variations in the time required to complete a task, ignoring

weather effects, should be considered separately to the impact of weather on progress

efficiency. The Markov-PNET methodology described by Anastasiou and Tsekos (1996)

cannot account for this subtle difference. Furthermore, the methodology does not seem



2.5. Weather Downtime and Weather Windows 29

to be able to account for random instances of downtime (e.g. due to failure of equipment

or the late arrival of equipment) that can occur at any stage during an offshore project.

Conversely, it is possible to represent these phenomena within a time-domain simulation

model. Indeed, Chapters 7, 8 and 9 describe methods that enable natural variations in

task duration independent of weather effects and random instances of downtime to be

modelled.

2.5.3 Time-domain Simulations

Background

Time-domain Monte Carlo simulations have been proposed as an alternative method

for estimating weather windows and the likely duration of an offshore project (see Det

Norske Veritas, 2010; Beamsley et al., 2007; Ballard and Evans, 2014; Stallard et al.,

2010; Anastasiou and Tsekos, 1996; van der Wal and de Boer, 2004; Anastasiou and

Tsekos, 1996). Several names for the same theory can be found in the literature;

� sequential downtime analysis (SDA) (Beamsley et al., 2007; Ballard and Evans,

2014),

� time-domain simulations (TDS) (Stallard et al., 2010; Det Norske Veritas, 2010;

Morandeau et al., 2013),

� Monte Carlo simulations (MCS) (Anastasiou and Tsekos, 1996),

� time-domain Monte Carlo simulations (TDMCS) (Dalgic et al., 2015a,b),

� discrete-event simulation (DES) (Barlow et al., 2015, 2018; Muhabie et al., 2018)

and

� the scenario approach (van der Wal and de Boer, 2004).

The theory will be referred to as time-domain simulations (TDS) throughout this thesis.

TDS are powerful numerical techniques that enable the determination of the likely

duration of an offshore project. These simulations are run on a long time-series of

metocean data, defining at each time-step whether the critical conditions which allow

an activity to proceed are met or not, in which case the particular time interval counts as

downtime (Anastasiou and Tsekos, 1996). The algorithms analyse sequential activities

in this manner until the entire project is complete. An estimate of the probability distri-

bution of project duration is then determined after the execution of an adequate number

of simulation runs (Anastasiou and Tsekos, 1996). Further explanations regarding the

methodology and application of TDS are discussed in Section 3.2.
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Advantages

The limitations of the probabilistic and Markov methods described above do not apply

to the use of TDS for the analysis of offshore operations. In contrast to other weather

window analysis techniques, this method considers the sequential nature of marine

operations and the effect of small cumulative delays on the overall project completion

date (Beamsley et al., 2007). Analysing records of the time variation of metocean

conditions is the most straightforward and appropriate method for the estimation of

downtime and the detailed design of marine operation strategies (Stallard et al., 2010).

The use of TDS for the modelling and analysis of offshore operations is recommended

by the DNV (Det Norske Veritas, 2010), who note several advantages over the standard

probabilistic methods. Crucially, they emphasise the ease with which complex thresh-

olds involving several metocean parameters can be combined. Furthermore, TDS can

be easily adapted to complex operation scenarios (Anastasiou and Tsekos, 1996)

Limitations

A selection of the earliest examples of TDS methods are described by Anastasiou

and Tsekos (1996), where the main weaknesses of the technique are identified as the

relatively slow computational time and the requirement for extensive metocean time-

series. The increase in easily accessible and accurate weather data (Copernicus Climate

Change Service (C3S), 2017; Olauson, 2018; van der Wal and de Boer, 2004) and the

continued exponential growth in processing power of modern computers have addressed

these limitations. However, there is still no clear consensus on the minimum amount of

metocean data or the required number of simulation runs that need to be performed

to ensure convergence is achieved. One of the objectives of this thesis is to investigate

these TDS convergence issues. Studies are provided in Chapters 5 and 10 that assess

quantitatively the effect of both the amount of metocean data and the number of

simulations performed on the output results.

Stallard et al. (2010) also suggest that TDS are appropriate for detailed design but

may be overly complicated for the purposes of site comparison. They argue that TDS

are too time-consuming and that simpler methodologies may be more appropriate for

the purpose of site evaluation. Again, with modern computer processing power and

bespoke, efficient algorithms for applying TDS theory—such as those described in this

thesis—these speed and complexity constraints are not expected to be critical issues.
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2.5.4 Vessel Response Simulations

The methods proposed by Gintautas et al. (2016) and Gintautas and Sørensen (2017)

use a similar approach to the time-domain simulation methodology, but focus on the

simulated response of installation equipment. It is argued that the actual limitations

of offshore operations are physical in nature and related to the response of equipment

rather than simple environmental thresholds (Gintautas et al., 2016). The proposed

model presents a novel approach to weather window estimation that performs statistical

analyses on parameters such as crane wire tension and rotor assembly motions while

lifting (Gintautas et al., 2016). A hydrodynamic multi-body motion simulator is used to

generate the equipment response for a given offshore operation and the input metocean

time-series (Gintautas et al., 2016; Gintautas and Sørensen, 2017). The peak over

threshold (POT) method is then used to estimate the probability of operation failure

(Gintautas et al., 2016; Gintautas and Sørensen, 2017). The methods use ensemble

forecast metocean data and are thus focused on the estimation of weather window

immediately prior to their execution (Gintautas et al., 2016; Gintautas and Sørensen,

2017), but the methods are equally applicable to longer hindcast data-sets.

Acero et al. (2016) suggest a similar methodology to Gintautas et al. (2016) that can

be used to determine the operational limits of an arbitrary installation procedure by

identifying critical events and their respective response parameters through numerical

simulation. The determined operation limits for installation operations are still simple

metocean parameters, even though critical events and response parameters are identified

through numerical simulations (Gintautas and Sørensen, 2017; Acero et al., 2016). In

a similar manner to the time-domain simulation methodology, the operational limits of

a complete marine operation are determined by taking into account several activities,

their durations, continuity, and sequential execution (Acero et al., 2016). The developed

methodology is applicable to any marine operation for which operational limits need to

be established and used on-board as a basis for decision-making towards safe execution

of operations (Acero et al., 2016).

Time-domain simulations of the physical motions of vessels and the resulting response

of installation equipment are likely to produce more accurate results than the standard

method of using relatively simple metocean weather limits. However, the intermediate

step of performing hydrodynamic multi-body motion simulations will have a significant

impact on overall run-time and computational performance. Most of the software pack-

ages capable of performing these hydrodynamic simulations will also incur significant

financial costs. Furthermore, the hydrodynamic motion simulators require detailed

geometric models of the operations vessels being assessed. The difficulty in obtaining

these geometric vessel representations from vessel owners will introduce additional

complications.
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2.5.5 Optimisation Methods

An alternative approach often applied in the assessment of the likely cost of offshore

operations is to use optimisation methods. The aim of these models is to formulate

mathematical representations of the numerous variables and constraints associated with

an offshore project and then use numerical methods to find the optimal solution to the

formulated model. Optimisation models are used extensively for analysing various O&M

strategies over the lifetime of an ORE project and sometimes used in the investigation

of potential installation strategies (Dalgic et al., 2015a,b; Barlow et al., 2018; Sarker

and Faiz, 2017). For example, an optimisation model is proposed by Sarker and Faiz

(2017) to analyse the transportation and installation costs for turbines in an offshore

wind farm. The objective function of this model is to minimise these transportation

and installation costs (Sarker and Faiz, 2017).

In general, optimisation models are useful for providing an holistic representation of

offshore operations but they tend to simplify the effect of weather downtime and if

used in isolation do not consider the temporal, sequential nature of operations and

metocean conditions. Using the same example as above, Sarker and Faiz (2017) note

the possibility of adverse weather conditions delaying a project indefinitely but do not

include these in the study. Instead, a simple multiplier for offshore lifting operations

is applied. Sarker and Faiz (2017) also note the effect of adverse weather on the rate

of lifting operations and vessel speed and recommend further investigation of these

phenomena.

There is a class of optimisation methods that can be used in conjunction with simulation

models—for example genetic algorithms or simulated annealing techniques (Paul and

Chanev, 1998). In fact, the process of using simulation models to ask“what if“ questions

and analysing model behaviour when certain parameters are changed can be described

as a rudimentary optimisation technique. Simulation models have specific features that

make the application of classical optimisation methods difficult or even impossible (Paul

and Chanev, 1998). For instance, the model behaviour is often very complex—a result

of the highly non-linear interaction of the model parameters. Genetic algorithms are

one of the few classical optimisation methods that can solve such demanding problems

(Paul and Chanev, 1998). They can be used to find optimal solutions to the underlying

problem; something that cannot be achieved using time-domain simulations along with

a primitive trial and error optimisation method. In a similar manner, recent work by

the University of Strathclyde (see section 2.6.1) led to the development of an integrated

model that combines a simulation model and an optimisation model.
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2.6 Current Status of Time-domain Simulations

2.6.1 Recent Applications

Mermaid

Mermaid (Marine Economic Risk Management Aid) is a software package that has

been developed by Mojo Maritime Ltd. in collaboration with the University of Exeter

(Morandeau et al., 2013). The software uses the TDS approach and conforms to Det

Norske Veritas (DNV) recommended practices (Det Norske Veritas, 2010). In addition

to the accessibility of the site, Mermaid considers the severity of the metocean condi-

tions and their impact on the working efficiency of a vessel and its crew (Morandeau

et al., 2013), in a similar manner to the Markov method proposed by Anastasiou and

Tsekos (1996). Morandeau et al. (2013) state that the Mermaid software allows more

informed planning of the marine operations by identifying critical tasks in order to

avoid downtimes and minimize the overall cost.

While Morandeau et al. (2013) account for the impact that severe weather can have on

the time required to complete an operation (e.g. a task with a 50% efficiency state will

take twice as long to complete if that 50% weather threshold is exceeded), the underlying

representation of the operation duration is still a simplified, deterministic value. This

leads to a discrete probability distribution for the operation duration that is dependent

on the prevailing metocean conditions. The lack of a stochastic representation that

accounts for random variations in operation duration irrespective of weather conditions

is a potential weakness. Chapters 7 and 8 describe methods for incorporating random

variations in operation duration that are independent of prevailing metocean conditions.

Additionally, it is not clear whether the efficiency states are multiplicative. For example

if the 50% threshold limits are exceeded for two of the metocean variables under

consideration, it is unclear as to whether the efficiency is 0.25 or 0.5. Regardless, the

scalar value operation duration assumption is overly-simplified and is not supported by

any analysis of observed or recorded operational data.

Finally, the crucial effect that technical failures of vessels or equipment can have on

a project is acknowledged by Morandeau et al. (2013), but is not included in their

study. As such, this technical downtime phenomenon requires further investigation. An

assessment of observed instances of technical downtime is provided in Chapter 9, along

with a proposed method for representing the phenomenon within a TDS model.
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Shoreline

Shoreline5 is a software package that consists of an O&M Design tool for simulating

and measuring the performance of maintenance strategies for offshore wind farms

and a Construction Design tool for simulating the installation and commissioning of

offshore WTGs. The simulation engine for both of these tools uses TDS technology,

with an underlying model built on agent-based and discrete-event principles. Further

information on the software, which has developed from academic research conducted at

the University of Stavanger, and the multi-method approach combining discrete-event

and agent-based modelling is provided by Endrerud et al. (2014) and Endrerud and

Liyanage (2015).

Endrerud et al. (2014) and Endrerud and Liyanage (2015) apply the software to support

the O&M regime of an established offshore wind farm. The software is used to conduct

scenario tests and sensitivity analyses of the O&M regime, but the results presented

are limited to tabular summaries of the mean, standard deviation and standard error

of indicative metrics that are functions of the downtime results.

As with Mermaid and the work of Morandeau et al. (2013), Endrerud and Liyanage

(2015) assume the “repair time” duration required for selected maintenance tasks can

be represented appropriately by a triangular distribution. No justification for this

assumption is provided, but the benefit of defining the distribution using the maximum,

minimum and most likely values for duration is noted. Further, the potential effect of

technical downtime on offshore operations is not considered. The present work assesses

both the durations of observed offshore operation data (see Chapter 7) and recorded

instances of technical downtime (see Chapter 9). The work presented in this thesis

thus addresses this common limitation in the current literature by identifying the

most appropriate model representations for these two phenomena, informed by the

quantitative analysis of recorded operational data from an offshore project.

Endrerud and Liyanage (2015) acknowledge the scarcity of operational data and the

difficulty this creates for attempting to validate their developed methods. As such, they

rely on comparisons with similar simulation models and parameter-sensitivity analysis

to check their model validity (Endrerud and Liyanage, 2015). Explicit validation studies

for similar TDS models would thus be beneficial. Consequently, a targeted validation

study is described in Chapter 3.

5. See Shoreline website at https://www.shoreline.no/ [Accessed 18th January 2020]

https://www.shoreline.no/
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University of Strathclyde—Construction Model

Barlow et al. (2015) developed a simulation tool to model the logistics of the installation

process and to identify the vessels and operations most sensitive to weather delays.

Their software combines a logical discrete-event simulation model of the installation

of an offshore wind farm and a synthetic weather time-series model and simulates the

progress of the installation, given the defined installation scenario, subject to each

synthetic weather series (Barlow et al., 2015). The resulting analysis identified that

loading operations contribute significantly to the overall delay of the installation process

and that a non-linear relationship exists between vessel operational limits and the

duration of installation (Barlow et al., 2015).

Barlow et al. (2018) describe an integrated model that combines the simulation model

developed by Barlow et al. (2015) with a separate optimisation model. The simulation

component enables the impact of asset selection on the likely cost and duration of the

installation process to be assessed (Barlow et al., 2018). The optimisation component

provides an installation schedule that is robust to changes in operation durations due

to weather uncertainties (Barlow et al., 2018). The combined framework enhances the

individual capability of both models by feedback channels between the two, taking

advantage of the benefits of either approach.

However, the TDS component of the combined model possesses some of the common

weaknesses that have already been discussed above. Barlow et al. (2018) acknowledge

that task durations are uncertain but do not discuss their representation within the

model in detail. In Barlow et al. (2017), they recognise triangular distributions as

suitable for modelling uncertain activity durations in project scheduling problems.

Again, the intuitive definition of this distribution by the minimum, mean and maximum

task durations is noted as an additional advantage. The authors do not support the

selection of the triangular distribution with analysis of real operational data. They also

state that factors such as contingency time and random vessel failures can be considered,

but do not elaborate further.

The models developed and described by Barlow et al. (2015) and Barlow et al. (2018)

have been validated using three methods. Firstly, the software code was assessed by an

external mathematical software consultancy to ensure accuracy. Secondly, the model

was benchmarked against an industry-standard tool. Finally, multiple case studies were

performed by external industry organisations to ensure the model was fit for purpose.

Again, bespoke studies with the sole purpose of validating the model, and TDS theory,

have not been provided.

The presentation of output results in the work of Barlow et al. (2018), including multiple

box-and-whisker plots and intuitive graphical summaries, is superior to the tabular
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presentation provided by Endrerud and Liyanage (2015). Results presented in Barlow

et al. (2018) demonstrate more appropriately the visualisation capabilities and potential

applications of TDS output data.

University of Strathclyde—O&M Model

Dalgic et al. (2015a) use a time-domain Monte Carlo approach within an O&M model to

investigate optimal jack-up vessel strategies. The models can be used to assist operators

in developing long-term O&M plans and the results show that the optimal O&M cost

can be achieved by selecting the optimal chartering strategy for the jack-up vessels

(Dalgic et al., 2015a).

The methodology is further developed by Dalgic et al. (2015b) to include analysis of

environmental conditions, investigation of failures and simulation of repairs. The devel-

oped discrete-event simulation model allows the identification of favourable operating

strategies for offshore wind O&M fleets (Dalgic et al., 2015b).

The TDS components of the models developed by Dalgic et al. (2015a) and Dalgic et al.

(2015b) are quite simplistic. The sequential operations are limited to; transit, jack-up

(or crew transfer), perform O&M tasks, jack-down and return to port. Factors such as

interactions between vessels and detailed modelling of the operations required at port

are not considered. Further, single values for jack-up and replacement/repair time are

assumed. A triangular distribution is chosen to represent the mobilisation time required

for the large jack-up vessels as a stochastic variable, but no reference is made to the

possible impacts of vessel or equipment failure. In short, the TDS components of these

models are appropriate for the O&M scenarios to which they are applied, but are not

suitable for detailed and exhaustive planning of more complex projects.

Deterministic and Probabilistic Approaches

A discrete-event simulation approach is also implemented by Muhabie et al. (2018) in

their investigation of offshore wind farm installation strategies. Muhabie et al. (2018)

use two approaches; the deterministic approach, which is similar to the classical time-

domain simulation approach, and the probabilistic approach which calculates operabil-

ity probability on a monthly basis for each transport resource and activity (Muhabie

et al., 2018). The results show good agreement between the two approaches and high-

light the financial risks arising from the stochastic nature of the weather (Muhabie

et al., 2018).

Muhabie et al. (2018) note the stochastic nature of operation durations and assume they

are normally distributed with a standard deviation equal to 10% of the mean. They

also performed a sensitivity analysis on the standard deviation parameter, varying it
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between 10% and 100% in steps of 10%. Results showed that this parameter had a

negligible effect compared to the influence of the metocean data and it was proposed

that future simulations could consider the standard deviation parameters modelling

task duration to be constant.

The assumption that task durations are normally distributed is unfounded. Instead, it

can be argued that asymmetric distributions for task duration would be more applicable,

due to there being a minimum time in which that operation can be completed—a result

of the mechanical and physical constraints associated with the operation, especially

when machinery is required to perform that operation. On the other hand, one expects

that there is no definite upper limit to how long an operation can take, thus making

a distribution with a long right-hand tail more realistic. Consequently, the assumption

of a symmetric normal distribution needs to be investigated. The investigation of task

duration probability distribution described by Muhabie et al. (2018) could thus be

expanded significantly. For example, analysing variations in the selected distributions

or in all of the distribution parameters, not just the standard deviation parameter,

would be beneficial.

Interestingly, the probabilistic approach discussed by Muhabie et al. (2018) is directly

related to the monthly persistence approach discussed previously. This method uses

time-series metocean data to calculate monthly persistence probabilities for each op-

eration and then simulates these operations in turn by sampling randomly from these

persistence probabilities. For consecutive operations that cannot be interrupted, the

conditional probability of one event followed by the other is assumed.

The results of the analysis show good agreement between this probabilistic approach

and the more standard TDS approach. However, it is suggested that the probabilistic

approach may slightly underestimate the completion time of projects (Muhabie et al.,

2018). The probabilistic methods capture the mean and central values of project dura-

tion accurately but fail to represent the extreme durations. In other words, the deter-

ministic TDS approach produces a larger spread of results. Although the probabilistic

approach described by Muhabie et al. (2018) is slightly more sophisticated than the

standard persistence calculation methods (see Stallard et al., 2010; Morandeau et al.,

2013), the results suggest that TDS methods are more suited for capturing the full

range of likely project durations. A similar comparison study between the TDS and

standard persistence methods would thus be of interest. Such a study is provided in

Chapter 3.
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2.6.2 Limitations and Knowledge Gaps

The limitation common to all of the example TDS applications discussed above is the

lack of a justified stochastic representation of operation durations. Example represen-

tations that have not been substantiated sufficiently include single values; triangular

distributions and normal distributions. Several more modelling approaches for expected

task duration variation can be found in the literature. For example, a percentage

variation in task duration, either randomly assigned or based on a Rayleigh distribution,

is used by Beamsley et al. (2007), as well as a randomly selected potential delay in the

starting of a task. It is important to note the subtle difference here; a delay in starting

the task simply shifts the operation later in time whereas the variation in task duration

will increase or decrease the time required for access. Ballard and Evans (2014) define

operations by their minimum completion time together with the likely increase in dura-

tion due to delays in carrying out the task. These delays are drawn from a half-normal

distribution, under the assumption that the minimum time to complete the operation

is the most likely and that delays are defined on top of the ideal task duration. Clearly,

there is a need to assess and investigate the most suitable modelling representation for

these tasks. This is the main objective of Chapter 7. Similarly, identifying an accurate

representation of the frequency and duration of technical failures, and incorporating this

into the TDS theory, are high priorities and thus the focus of the analysis presented in

Chapter 9.

An additional feature that has so far not been mentioned is the phenomenon of learning.

The results of the optimisation study described by Sarker and Faiz (2017), which

simplifies the effect of weather and task duration, indicate that the learning rate of

performing lifting and assembly operations has a significant impact on project duration.

Sarker and Faiz (2017) assume a logarithmic learning rate and conclude that detailed

studies on the effect of this learning phenomenon would be beneficial. Consequently,

any investigations into modelling task durations should consider this learning effect.

The analysis of operational data presented in Part III of this thesis has a strong focus

on this learning phenomenon.

Finally, there is a paucity of research targeting the validation of time-domain simulation

models. Most validation studies are described qualitatively and involve comparisons

with results generated using industry-standard tools. Furthermore, while Muhabie et al.

(2018) compares TDS results to a simulated version of the persistence method, there

seems to be a lack of comparisons between TDS and the standard probabilistic methods

of estimating downtime using occurrence and persistence statistics. The next chapter of

this thesis, Chapter 3, describes both a targeted validation study of the TDS methods

and a comparison of these methods with the standard occurrence and persistence

methods.
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Time-domain Simulations

3.1 Introduction

Time-domain simulation (TDS) models can be used to estimate the durations of offshore

operations and have been proposed as an alternative to the well-known statistical meth-

ods incorporating occurrence and persistence probabilities of metocean conditions. This

chapter describes the theory and application of these two contrasting methodologies.

Specifically, this chapter serves as an introduction to the field of TDS by addressing

two of the major limitations highlighted in the Literature Review in Chapter 2.

Firstly, it has been shown that there is a lack of targeted validation studies of TDS meth-

ods in the academic and industrial literature. Several TDS implementations have been

benchmarked against existing software tools, but explicit studies comparing observed

and modelled results using TDS methods are non-existent. Thus, the first objective of

this chapter is to describe a specific validation study of TDS methods. This is achieved

using observed operation data from the construction phase of a Round 3 offshore wind

farm.

Secondly, two case studies are provided that compare the standard probability of

occurrence and persistence methods to the proposed simulation procedures. Compar-

isons of TDS and Markov-theory methods exist (see, for example, Anastasiou and

Tsekos (1996) as referenced throughout Section 2.5.2), as well comparisons of TDS

to advanced persistence-simulation methods (see Muhabie et al. (2018) as referenced in

Section 2.6.1). However to the author’s best knowledge, direct comparisons of TDS and

the original occurrence and persistence methods are not available. The second objective

is thus to assess the strengths and weaknesses of both methods.

Section 3.2 outlines the theory of the classical probabilistic methods and how they

can be used in the estimation of expected downtime for a marine operation. This

section also describes TDS and their application as an alternative estimation method,

focussing on the required inputs and simulation logic of a TDS model. Metocean

data validation methods are provided in Section 3.2.5. The reasons for choosing the

Python programming language to implement TDS theory are outlined briefly at the

39
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beginning of Section 3.3. Subsequently, the methodology of both the validation study

and the two comparative case studies are discussed. Finally, the results of the validation

and comparative studies are given in Section 3.4 before the main conclusions of this

introductory analysis are summarised.

3.2 Theoretical Background

3.2.1 Occurrence and Persistence Statistics

Conventionally, the viability of an offshore operation is determined through the calcu-

lation of the occurrence and persistence of accessible conditions (Det Norske Veritas,

2010; Stallard et al., 2010; Walker et al., 2013; Anastasiou and Tsekos, 1996; O’Connor

et al., 2013). Occurrence is defined as the probability that an environmental parameter

will be less than a threshold level (Stallard et al., 2010). For example, the probability

that the significant wave height Hs is less than a specified wave height required for

access Hac is denoted as

P (Hs < Hac) . (3.1)

An empirical cumulative distribution function (CDF), or non-exceedance probability

curve, is shown in Figure 3.1 and is based on a 10-year hindcast data-set of significant

wave height, recorded at a 3 hour time-step, for a sheltered offshore location in the

Orkney Islands (59◦N, 3◦W). The figure shows that the probability of achieving a

significant wave height of less than 1 m is just below 80%.

Persistence is defined as the duration for which a metocean variable remains continu-

ously below the required threshold level (Stallard et al., 2010). The use of persistence

statistics is recommended by Det Norske Veritas (DNV) (see Det Norske Veritas, 2010).

Following the simple example above, the probability that the significant wave height

Hs is continuously below an access wave height Hac for an event duration greater than

the required access time τac is given by

P (Hs < Hac , t ≥ τac) . (3.2)

Figure 3.2 shows the variation of the probability of persistence for access wave heights

of 1.5 m, 1.0 m and 0.5 m. The persistence example shown in Figure 3.2 corresponds

to the same data that was used for Figure 3.1. For a given access wave height, the

probability of persistence was calculated as the sum of all the weather windows greater

than the given event duration, divided by the total number of hours in the data-set

(O’Connor et al., 2013). The probability that the significant wave height will be less

than 0.5 m for a period greater than 24 hours is approximately 40%.
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Figure 3.1: Example probability of occurrence plot for significant wave height Hs.
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Figure 3.2: Example probability of persistence plot for significant wave height Hs.
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3.2.2 Estimating Downtime using Occurrence and Persistence

A methodology for the estimation of downtime based on the probability of persistence

of metocean conditions is outlined by Stallard et al. (2010) and Walker et al. (2013).

The number of access days in a given time-interval is estimated as:

Dac = DP (c, t ≥ τac) , (3.3)

where P (c, t ≥ τac) is the probability of persistence of a metocean condition c for an

operation duration greater than or equal to τac and D is the number of days in the time

interval. For example, if annual persistence statistics were being assessed, the interval

D would be set as 365 days.

An estimate of the number of accessible events with duration greater than τac in this

time interval D is given by;

Nac =
Dac

τac
, (3.4)

noting that Nac is a dimensionless quantity.

The estimated metocean downtime is obtained by calculating the mean number of days

between the periods when the operation can be carried out;

τd =
D −Nacτac

Nac
=
D −Dac

Nac
. (3.5)

The total operation time is defined as the sum of the required access time and the mean

metocean downtime;

τop = τac + τd . (3.6)

Combining Equations 3.3–3.6 leads to the simplification;

τop =
τac

P (c, t ≥ τac)
. (3.7)

The above method can also be applied using the probability of occurrence of a given

condition. In this case, the denominator of Equation 3.7 is the occurrence probability

of a given condition, P (c), and the method ignores the duration of the weather window,

τac. An example application of this alternative occurrence downtime equation can be

found in the earlier work of van der Wal and de Boer (2004).
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3.2.3 Limitations of Probabilistic Methods

The limitations of these probabilistic methods that have previously been discussed

in Section 2.5.1 are re-iterated here to help illustrate the differences between the

probabilistic approach and TDS methods. The probabilistic methods are not well-suited

for analysing projects consisting of sequential operations (Walker et al., 2013) because

they only provide estimates of the expected value of weather downtime for a single

operation, thus ignoring the transitions between operable or non-operable sea states

for the successive operations that comprise an entire project (Anastasiou and Tsekos,

1996).

Furthermore, it is difficult to account for the joint probability of more than one meto-

cean variable (Stallard et al., 2010). A statistical approach is straightforward to apply

to a single metocean variable, but marine operations are often strongly dependent on

several metocean parameters. Using the same example described in Section 2.5.1, the

installation of a tidal turbine in an energetic tidal stream that also requires heavy lifting

operations will be constrained by wave, wind and tidal current conditions.

3.2.4 Time-domain Simulations

Background

As described in detail in Chapter 2, the limitations of the probabilistic methods de-

scribed above do not apply to TDS. Analysing records of the time variation of metocean

conditions is the most straightforward and appropriate method for the estimation of

downtime and the detailed design of a marine project consisting of sequential operations

(Stallard et al., 2010). The use of TDS for the modelling and analysis of offshore opera-

tions is recommended by the DNV (Det Norske Veritas, 2010). Several advantages over

the standard statistical methods are described by (Det Norske Veritas, 2010), including

the ease with which the limits of several metocean parameters can be combined.

Simulating the marine operation over several years provides a robust statistical basis

for the estimation of downtime and likely duration of an offshore project. In contrast to

the other weather window analysis techniques discussed above, this method considers

the sequential nature of marine operations and the effect of small cumulative delays on

the overall project completion date (Beamsley et al., 2007).

The two main inputs required for a TDS analysis are (i) a metocean data time-series

and (ii) definitions of the job sequence.
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Metocean Data

The application and validity of the TDS technique is determined by the availability of

accurate and site-specific metocean data at a sufficient temporal resolution (Beamsley

et al., 2007). Temporal resolutions applied in the literature range from hourly (see

Beamsley et al., 2007) to 3-hourly (see Ballard and Evans, 2014). Most importantly,

this resolution needs to compatible with the operation with the lowest duration in the

model. For example, 3-hourly data will be unsuitable for a tidally-constrained operation

that requires a strict tidal window of 15 minutes.

Furthermore, a TDS analysis requires a sufficiently extensive metocean data-set to

ensure the validity of results (Ballard and Evans, 2014). A period of greater than 5–10

years is recommended by van der Wal and de Boer (2004), but they do not provide

a quantitative justification for this number. It is particularly important to obtain a

temporally extensive data-set capable of capturing longer-term oceanic and climate

cycles such as the North Atlantic Oscillation or El Niño Southern Oscillation. It is

also important to avoid the issue of using a metocean time-series history that was

particularly severe or benign in comparison to the long-term norm (Graham, 1982).

The analysis in Chapter 5 investigates this issue and attempts to identify the minimum

acceptable length of metocean data for a TDS study.

Hindcast data-sets are typically used as the source for metocean data in a TDS study

as they are often the only method of obtaining a suitably long time-series. Recorded

metocean data can also be used but are generally too short in duration, only available for

a limited number of locations and are difficult to obtain (Ballard and Evans, 2014). Re-

analysis data such as the 5th generation re-analysis (ERA5) produced by the European

Centre for Medium-Range Weather Forecasts (ECMWF) are an alternative option.

ERA5 periodically uses its forecast models and data assimilation methods to ‘reanalyse’

archived observations, creating accurate global data-sets that describe recent history

of the atmosphere and oceans (Copernicus Climate Change Service (C3S), 2017). This

data-set is freely available on a high-resolution latitude-longitude grid for the entire

globe. At present, approximately 18 years of data are available but the data-set is

expected to cover the period 1950–present by mid 2019 (Copernicus Climate Change

Service (C3S), 2017).
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Job Sequence

The next input requirement for a TDS model is the definition of the job sequence. This

comprises a list of marine operations that must be completed in a specified order. A

typical marine project naturally lends itself to this sequential breakdown of operations.

Each individual operation is defined by;

� its duration (typically given in hours),

� an indication of the probability distribution of operation duration (see below),

� a time-series of metocean data that represents adequately the environmental

conditions at the operation location,

� its metocean thresholds and

� its requirement for daylight working hours.

Probability Distribution of Operation Duration

Fluctuations in the durations of offshore operations due to unforeseen events, indepen-

dent of metocean conditions, are typical. TDS are capable of quantifying these effects by

employing a Monte Carlo approach (Ballard and Evans, 2014). Statistical probability

distributions give an indication of the likely range in operation duration and are essential

if a Monte Carlo analysis is required. Operation durations are determined by randomly

sampling from the input probability distribution.

The input distributions are defined in several ways in the literature, several examples of

which are given in Section 2.6. There has been no clear consensus on the best method

of representing this variability in operation duration in TDS models. This is the main

subject of investigation in Chapters 7–8.

Simulation Logic

Starting at a specified simulation start date, the TDS algorithms analyse the duration

of each operation in sequence. Using the thresholds and duration of the operation and

the associated metocean input data, the simulation model identifies when the operation

can proceed, storing the end date of that operation as well as the downtime experienced.

The system then moves through the subsequent sequential operations until the project

is complete. The above simulation is repeated a number of times for each year in the

metocean data-set.

Several recommendations on the required number of simulations are given in the lit-

erature. For example, Beamsley et al. (2007) suggest in excess of 1,000 iterations per

year, while Ballard and Evans (2014) only use 500. Chapter 5 assesses the number of

simulations per year that are required to achieve convergence of results.
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3.2.5 Metocean Data Validation Methods

Several sources of metocean data were used in the validation study described in this

chapter. It was necessary to validate a selection of these data-sets to ensure that they

represented accurately the metocean conditions experienced at the project location

for the time-interval in question. A combination of graphical and numerical statistical

methods were used to perform these metocean data validations. Time-series plots

comparing the two data-sets were the main graphical technique used in this chapter.

The numerical methods included the calculation of the following industry-standard

statistics (see, for example, Olauson, 2018; Van Os et al., 2011; Williams and Esteves,

2017; Boudière et al., 2013; Shao et al., 2018);

� Root-mean-square error (RMSE),

� Mean absolute error (MAE),

� Bias or mean error (ME),

� Correlation (Pearson’s product-moment coefficient, R) and

� Scatter index (SI).

The formulae for these statistical metrics are given below, where Oi are the observed or

measured values and Si are the simulated or predicted values of the selected parameter.

Ni is the total number of data-points in each sample.

RMSE =

√√√√ 1

Ni

Ni∑
i=1

(Si −Oi)2 . (3.8)

MAE =
1

Ni

Ni∑
i=1

|Si −Oi| . (3.9)

Bias =
1

Ni

Ni∑
i=1

(Si −Oi) . (3.10)

R =

∑Ni
i=1

(
Si − Si

) (
Oi −Oi

)√∑Ni
i=1

(
Si − Si

)2√∑Ni
i=1

(
Oi −Oi

)2 , (3.11)

where

Oi =
1

Ni

Ni∑
i=1

Oi (3.12)
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and

Si =
1

Ni

Ni∑
i=1

Si . (3.13)

SI = 100×

√
1

Ni

∑Ni
i=1 (Si −Oi)2

1

Ni

∑Ni
i=1Oi

. (3.14)

3.3 Methodology

The methodology for the initial exploration reported in this chapter is divided into three

parts. Firstly, Section 3.3.1 outlines the reasons for choosing the Python programming

language to implement the TDS algorithms described in this thesis. Secondly, the

methodology of the validation study using observed operation data from the con-

struction phase of a Round 3 European offshore wind farm is described. Finally, the

procedure for comparing TDS and the previously described probabilistic methods is

given.

3.3.1 Why Python?

The ForeCoast® Marine time-domain simulation software has been developed using the

Python programming language. The following list, selected from the benefits of Python

proposed by Oliphant (2007), outlines some of the reasons for choosing Python.

� The liberal open source licence allows the developers of Python-based applications

to decide how the software is sold, used and distributed.

� The fact that Python runs on numerous platforms avoids issues with portability.

� The language’s clean syntax allows code to be written in either a procedural or

fully object-orientated fashion.

� Python can be embedded into an existing application.

� The large number of library modules enable the construction of sophisticated

programs.

The final point listed above is crucially important. The Python-based SciPy eco-system

of open-source software (Jones et al., 2001–) for mathematics, science and engineering

has been used extensively throughout the development process. This suite of software

includes; NumPy, the fundamental package for scientific computing with Python (see

Oliphant, 2006); Matplotlib, a 2D graphics package used for application development,

interactive scripting and publication-quality image generation (see Hunter, 2007) and
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Pandas, a library of robust, easy-to-use data structures and statistical tools, initially

developed for quantitative financial applications, that help make scientific Python a

more attractive and practical statistical computing environment (see McKinney, 2010).

These packages, and several others, are referenced throughout this thesis.

3.3.2 Validating Time-domain Simulations

The validation section of this analysis compares the results of a TDS model to observed

installation data for a Round 3 offshore wind farm. The developed TDS model was used

to support the entire construction campaign but the following validation study assesses

a subset of the marine operations. Specifically, the analysis concerns the foundation

installation tasks for a selection of the wind turbine generator (WTG) locations.

Operational Data

The exact durations of the selected installation operations, omitting all weather down-

time, were extracted from the observed operational data supplied by the client. Using

realistic and representative input operation data is a pre-requisite for a successful

TDS simulation—the uncertainty associated with these durations is what necessitates

a Monte Carlo approach in a full analysis. This Monte Carlo approach is not necessary

when exact operation durations are provided, as is the case for this validation study.

If perfectly accurate metocean data were used as an input, together with the exact

operational data used in this validation, and assuming that the on-board crew followed

the prescribed metocean thresholds exactly, the TDS algorithms should produce near-

identical results to the observed installation progress.

Metocean Data

The other major requirement for the validation study was to obtain accurate repre-

sentations of the metocean conditions experienced at the key project locations and for

the time-period coinciding with the operational data records. Three project locations

were included in the TDS model; the port, a point representing the transit route and

the site. There were different limiting metocean thresholds for operations performed at

each project location and these are summarised in Table 3.1.

Table 3.1: Limiting metocean parameters for each project location.

Data-point Significant wave height Wind speed Tidal current

Port X
Transit X
Site X X X
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Telemetry data for the significant wave height and tidal current at the offshore site were

provided by the client for the appropriate time-period. These measurements were the

most accurate source of metocean data. As can be seen in Table 3.1, representations of

significant wave height for the transit route and wind speed for port and site operations

were still required.

Metocean time-series from a bespoke hydrodynamic model for the key project locations

were also provided by the client. This extensive data-set was used in the full Monte

Carlo analysis that supported the entire construction campaign and is also used in the

comparison of the probabilistic and TDS methods described in Section 3.3.3. Unfortu-

nately, the temporal range of the provided time-series did not overlap with the dates

of the observed operational data. However, the highly accurate and location-specific

client model data provided appropriate representations of the realised conditions at the

key project locations. As such, these data could be used to verify alternative metocean

data sources that did overlap with the operational period in question and could thus

be used in the validation study.

Firstly, recorded onshore wind speeds were obtained from the online database of the

national weather institute for the port location in question. In the client model, the

transit route was divided into several intermediate locations. Transit location “A” of

this model was the closest intermediate location to the port. The weather station data

was thus compared to the wind speed data record at transit location A using the

numerical and graphical techniques discussed in Section 3.2.5.

A representation of the wave conditions experienced on the transit route was obtained

from the interim European Reanalysis data-set (ERA-Interim) (see Dee et al., 2011).

ERA-Interim, created and maintained by the European Centre for Medium-Range

Weather Forecasts (ECMWF), was the predecessor to the recently published ERA5

data-set mentioned previously (see Copernicus Climate Change Service (C3S), 2017).

There was only one ERA-Interim data point in the vicinity of the transit route for this

project. Data obtained for this location were compared to the nearest location available

in the client model data-set, using the same techniques as before.

Finally, representative wind-speeds for the site location were also obtained from the

ERA-Interim data-set. The ECMWF Site location was chosen as the closest available

point in this data-set to the actual site and the same graphical and numerical compar-

ison techniques were also applied to these two data-sets.

For all three of the alternative metocean sources, data were extracted for a time period

that coincided approximately with the actual construction period but from a randomly

chosen historical year. In this case, data were extracted for 2010 and compared to the

corresponding interval from the client model data.
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Running the Simulation

Using the extracted job sequence data and the metocean data informed by the results

of the metocean validation analysis as inputs to the developed TDS model, a single

simulation of the TDS was performed. Only one simulation was required because the

exact durations and weather conditions were specified. The simulation results were then

compared to the observed data provided by the client.

3.3.3 Comparing Time-domain Simulation and Probabilistic Methods

The next section of this analysis describes two case studies that compare the results for

estimated project duration using the probabilistic methods and the TDS methods. It

has been suggested that TDS simulations are well-suited for analysing offshore projects

consisting of sequential tasks and that this is a main advantage over the standard

probabilistic methods. However, a direct comparison between these two methods has not

yet been performed. Consequently, this section aims to compare the two approaches and

analyse quantitatively the differences between the results generated by each method.

The first case study describes a hypothetical test activity and the second example uses

the operational data from the validation study described previously.

Test Activity

Details of the hypothetical test activity comprised of 5 operations are given in Table 3.2.

Metocean data obtained from the client’s bespoke hydrodynamic model were used. The

data consisted of 18 years of significant wave height (Hs), wind speed (vw) and tidal

velocity for the site location.

Table 3.2: Operation durations and thresholds for test activity comparison

Operation Duration (days) Hs limit (m) vw limit (m/s)

Op 1 0.42 1.25 14
Op 2 0.25 1.5 -
Op 3 1 1 8
Op 4 0.75 1.25 10
Op 5 0.5 2 18

Total 2.92 - -

Using the above operation thresholds and durations, together with the 18 years of

metocean data, the total operation time τop was calculated for each operation using

Equation 3.7. Note that for the occurrence probability, the denominator of Equation 3.7

is the probability of occurrence P (c). The total activity duration based on the proba-

bilistic methods was then calculated as the sum of each total operation time. For the
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TDS model, a simulation of the hypothetical activity was performed starting on each

day of the metocean time-series. This struck a balance between omitting sequences of

metocean data—if, for example, simulations were performed at intervals of a week—

and repeated counting of the same metocean data—for instance, if simulations were

performed starting at every hour of the metocean data-set.

Validation Activity

The metocean data output from the bespoke hydrodynamic model was also used for

the validation activity. However, rather than using the entire 18 years of data, time-

series for the 10 week period corresponding to the dates of the observed data-set were

extracted from each of the 18 years. The mean duration, excluding weather downtime,

of each operation in one of the main activities from the observed data-set described in

Section 3.3.2 was obtained and used as the input job sequence. Once more, Equation 3.7

was used to calculate the expected activity duration using the probability of occurrence

and persistence techniques. For the TDS model, the activity was simulated on each day

of the partitioned metocean data-set. As for the test activity, identical inputs were used

for the three methods being compared. The selection of metocean data also enabled a

viable comparison to be made with the observed data.

3.4 Results and Discussion

3.4.1 Validating Time-domain Simulations

Metocean Data Validation

The numerical results of the metocean data validation for each of the three data-set

are shown in Table 3.3. Graphical results are shown in Figures 3.3–3.5.

Table 3.3: Statistical validation results for metocean time-series comparison.

Wind speed—port Significant wave height—transit Wind speed—site

RMSE 2.25 m/s 0.53 m 1.67 m/s
MAE 1.77 m/s 0.43 m 1.31 m/s
Bias 0.03 m/s -0.36 m 0.21 m/s
R 0.81 0.64 0.86
SI (%) 30.95 52.62 20.28

The observed weather station data and the wind speed data from the client model at

the port location showed good agreement. The bias between the client model and the

weather station data was 0.03 m/s. The high correlation factor, low scatter index and
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Figure 3.3: Comparison of weather station and client model wind speeds for the port.

visual agreement evident in Figure 3.3 suggest that the weather station data represent

adequately the wind conditions at port and can be used in the TDS model.

Similarly, the results for the wind speed at the site location show an acceptable agree-

ment. The numerical results show an even lower scatter index of 20.3% and a higher

correlation coefficient of 0.86. The graphical comparison in Figure 3.4 supports the nu-

merical results and shows that the ECMWF wind speed data for the site is appropriate.

Conversely, the results for significant wave height at the transit location highlight a

large discrepancy between the client model data and the ECMWF wave data. The large

negative bias statistic of -0.36 m, together with the visual comparison in Figure 3.5,

show that the ECMWF data underestimate the client model data they are modelling.

The numerical validation results for significant wave height are lower in absolute terms

(0.53 m for RMSE and 0.43 m for MAE) in comparison to the wind speed results but

this is attributable to the long-term absolute values of both variables. More importantly

in this case, the statistics for correlation of the wave data are much lower (0.64)

and the scatter index is significantly higher (over 50%), indicating a more substantial

discrepancy.

The discrepancy in results is thought to be attributable to the nature of the transit route

between port and site, which consisted of a sheltered section and an exposed section.

The closest ECMWF data point to the transit route was located in the sheltered section

of this transit. Transit location B in the client model is also located in the sheltered
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Figure 3.4: Comparison of ECMWF and client model wind speeds for the site.

section of the transit, but is slightly more exposed than the ECMWF transit location.

It is thus understandable that using this point and the ECMWF data would have

underestimated the metocean conditions experienced on the sheltered section of the

transit.

Furthermore, a representation of the more energetic wave climate of the exposed section

of the transit was also required. The wave climate in this second leg of the route was

expected to be very similar to the wave regime at the site. Consequently, the transit

operation in the TDS validation model was split into two legs. The first data-point

used the wave heights and wind speeds of the ECMWF transit location and the second

data-point used the telemetry data for the site location.

The four data-points used in the validation model are shown in Table 3.4, along

with the source of metocean data for each of the three metocean parameters. The

representation of the metocean conditions for the transit operation is not as accurate

as the other locations, due to the slight mismatches between the ECMWF data location

and the actual point it represents. However, the described metocean data was the most

accurate data available. Additionally, the representation of the site conditions is the

critical location—because the majority of operations, and those with the most stringent

metocean thresholds, all take place at the site—and there is high confidence in these

metocean data-sets.
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Figure 3.5: Comparison of ECMWF and client model significant wave heights speeds for
the transit.

Table 3.4: Selected sources of metocean data for validation study.

Data-point Significant wave height Wind speed Tidal current

Port - Weather station data -
Transit 1 ECMWF transit - -
Transit 2 Telemetry site - -
Site Telemetry site ECMWF site Telemetry site

TDS Validation

Figure 3.6 shows the durations required to complete successive project milestones for the

observed operational data and the results produced by the TDS model. The comparison

shows good agreement between the two data-sets, with the simulation results predicting

slightly more optimistic progress than the observed data. By the end of the validation

period, with a duration of just under 8 weeks, the deviation between the observed data

and the simulated results was 1.5 days. Figure 3.7 shows the variation of the deviation

between the observed and modelled results. The deviation is calculated as the simulated

milestone completion date minus the observed milestone completion date, i.e. a negative

deviation indicates that the simulation completed a milestone earlier than the actual

data. The maximum deviation result over the entire validation period was -4.6 days. The

mean deviation over the entire period was -1.7 days. Importantly, the random scatter

of the deviation values implies that there is no systematic error being introduced in
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the simulation model; there is no evidence for progressive underestimation of the time

taken to complete successive milestones. The results show an acceptable validation of

the TDS theory; if accurate metocean and operational data are provided, the simulation

will generate precise estimates of project duration.
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Figure 3.6: Validation curve showing progression of milestones over time.
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Figure 3.7: Deviation between simulation results and observations for validation study.
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There are several probable explanations for the small discrepancies that can be seen in

the results. The most obvious is that the metocean data used in the simulation was not

perfectly representative of the actual metocean conditions. As outlined previously, the

metocean data used for the transit location was not perfectly representative.

The other explanation is related to one of the major limitations of the current TDS

model. Currently, operational decisions are based on the input metocean data, typically

hindcast data, which is also assumed to be the actual representation of the metocean

conditions. As such, the system essentially has perfect knowledge of future metocean

conditions and it never makes a “wrong” decision. In reality, operational decisions

are based on metocean forecasts and there will be times when the decision is made

to halt operations based on the most recent forecast data, but the actual metocean

conditions that arise would have allowed operations to continue. Conversely, the decision

may be made to proceed with operations and the realised weather results in the

operation failing. The latter of these two scenarios is accounted for in the model.

Interruptible operations can proceed until adverse metocean conditions are encountered

and recommence after the conditions have passed. For non-interruptible operations, the

entire duration of adverse weather is counted as downtime. However, the former scenario

is not considered in the current TDS implementation. Consequently, the simulation

model can be viewed as being slightly optimistic. This offers a possible explanation for

the discrepancies shown in Figures 3.6 and 3.7. Future work should incorporate archived

forecast data in the model, in addition to the hindcast data that represents the realised

weather. Operational decisions would then be based on the imperfect archived forecast

data. This functionality would account for the human element that arises when making

important decisions in the marine environment.

3.4.2 Comparing Time-domain Simulation and Probabilistic Methods

Test Activity

Figure 3.8 shows a box-and-whisker plot of activity duration for the two probabilistic

methods and the results from the TDS model. The box represents the inter-quartile

range (IQR). The whiskers represent the minimum and maximum observed values.

Box-and-whisker plots are discussed in detail in Section 5.2.2.

As expected, the persistence method is predicting larger activity durations than the

occurrence method because of the additional duration constraint. More importantly,

both methods produce lower mean duration estimates than the TDS model. The mean

simulation value is over double that predicted by the probability of occurrence. Also,

the median TDS projection is slightly greater than the mean duration obtained from

persistence methods. The results support the theory proposed by Beamsley et al.

(2007) that the standard probabilistic methods ignore the sequential nature of marine
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Figure 3.8: Comparison of probabilistic and TDS methods—test activity. Whiskers
represent the minimum and maximum simulated values of the TDS results.

operations and the effect of small cumulative delays on the overall project completion

date.

Additionally, the TDS model is capable of identifying the range in activity durations,

rather than returning a single estimate of the mean value. The TDS results imply that

there is just over a 25% chance that the duration of the activity will be less than

that predicted by the probability of occurrence. Conversely, the worst case scenario,

corresponding to the maximum value returned by the simulation results, indicates that

an activity that should take just under 3 days could take approximately 70 days if the

worst possible start date was chosen.

Validation Activity

Figure 3.9 shows a similar box-and-whisker plot of activity duration for the three

analysis methods, with the data normalised to the mean activity duration of the

observed results including metocean downtime. The comparison shows similar results

to the test activity. The occurrence and persistence methods are predicting activity

durations that are approximately 20% less than the observed value, while the mean

result from the TDS model is approximately equal to the observed mean.

The figure also includes a box-and-whisker plot of the observed data. This plot shows

the spread of recorded activity durations for the specific period in which the operations
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Figure 3.9: Comparison of probabilistic and TDS methods—validation activity. Whiskers
represent the minimum and maximum values. The observed data shows the variation in
the actual activity duration extracted from the observed installation data obtained over the
10-week campaign. The left-hand plot shows the results of the three methods using 18
instances of the equivalent 10-week period extracted from the metocean re-analysis data.

took place, while the calculated results show the estimates based on the partitioned

re-analysis metocean data-set. In other words, the observed results show the variation

in the actual activity duration as measured during the construction campaign. The

calculated results are based on 18 instances of the equivalent 10-week period extracted

from the historic re-analysis metocean data-set. As such, the underlying metocean data

for the left- and right-hand side plots are different. The purpose of including the

observed data is not to make a direct comparison between the two sets of results, but

to show the variation that occurred in a single campaign and how this compares to

the results produced by each calculation method when using an extensive metocean

data-set. The TDS model yields a stochastic set of results that encloses the spread

in observed activity duration while the probabilistic methods only offer a single mean

value that gives no indication of the likely range of possible durations.

The operations involved in the chosen activity were all relatively short (in the order

of hours) and had relatively lenient thresholds. This explains why the occurrence and

persistence results are nearly identical. It also explains why the P0, P25 and P50 activity

durations calculated by the TDS analysis are all equal to a value of 0.784, which is equal

to the mean activity duration excluding metocean downtime.
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The validation activity results reaffirm one of the major benefits of using TDS for

estimating project durations of offshore operations. Half of the simulated activities

are predicting durations slightly lower than the occurrence and persistence methods.

However the maximum simulated value shows that the duration could be almost 5

times the observed mean duration. The results show that TDS models can be used to

obtain realistic, probabilistic estimates of project duration and thus contribute to the

quantification of the inherent risks of working in the offshore environment.

3.5 Conclusions

The aim of this chapter was to address two of the major limitations associated with

TDS theory; firstly, to perform a specific validation analysis of the TDS methods using

observed data and, secondly, to assess the differences between the standard probabilistic

methods for estimating downtime and the results obtained from a TDS model.

The validation study in this chapter compared the results of a bespoke TDS model

to observed operation data from an offshore wind farm construction project. For the

8 week validation period of this study, the mean deviation between simulated and

observed milestone completion dates was 1.7 days. By the end of this 8 week period, the

difference between simulated and observed results was 1.5 days. The validation study

showed that if accurate metocean and operational data are provided, TDS models can

produce precise estimates of project duration.

The results of two comparative case studies that assessed the differences between

standard statistical methods and TDS theory support the idea that the classical prob-

abilistic methods ignore the sequential nature of marine operations and the effect that

small cumulative delays can have on the overall progression of the project. Results

from both scenarios have shown that the conventional methods tend to underestimate

metocean downtime and mean project duration.

Crucially, the analysis in this chapter has shown that TDS models can be used to

generate probabilistic estimates of the duration of offshore operations. For a hypothet-

ical test activity, occurrence and persistence methods predicted a mean duration of

approximately 5 and 6.5 days respectively. A quarter of the TDS simulations resulted

in an activity duration less than that estimated using the occurrence downtime method.

Conversely, the mean TDS result of approximately 10 days was almost double the mean

occurrence result and the maximum value returned by the TDS model indicated that an

activity that should take 3 days (without weather downtime) could take up to 70 days.

These probabilistic estimates of downtime that can be obtained from a TDS model are

useful in the planning stages of a marine project and help assess the inherent risks of

working in the harsh and complex marine environment.
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Chapter 4

Animating the Outputs of

Time-domain Simulations

4.1 Introduction

Time-domain simulation (TDS) models are not exempt from George Box’s well-known

statistical aphorism that “all models are wrong but some are useful”. It is crucially

important to ensure that the developed simulation models are as representative of

the planned offshore operations as possible. Reducing the possibility of model error

and significant misinterpretation of model logic and results is imperative. Ensuring the

model is fit for purpose is a particularly difficult task when using the standard TDS

outputs which typically consist of extensive lists of activity completion times. This

chapter describes methods that enable for the first time the graphical animation of

TDS outputs. Typical outputs from the developed animation module are provided that

aid the visualisation of a hypothetical offshore wind farm construction project. The

possibility of incorporating the animation functionality within quality assurance (QA)

procedures is also discussed. One of the aims of this chapter is to provide a quantitative

indication of the impact that TDS animations can have on the TDS modelling process.

Section 4.2.1 provides the overall strategy behind the development of the animation

module and describes the two Python tool-kits that have been integrated within the

TDS animation module; the basemap and animation packages. The specific methods

required to convert TDS output data into an animated video are then discussed in

Section 4.2.2. Typical animation outputs are described in Section 4.3 using results from

a hypothetical offshore wind farm simulation. Finally, Section 4.4 provides a discussion

on the animation module, focussing on the potential incorporation of TDS animations

within QA procedures and the quantification of the scale and impact of the developed

methodology.
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4.2 Methodology

The methodology described in this chapter is divided into two parts. Section 4.2.1

discusses the general strategy for animating TDS, specifically the two software packages

that are used within the animation module. The methods developed for converting

the standard tabular output of TDS into an animated video are then described in

Section 4.2.2.

4.2.1 Strategy

Matplotlib is a 2D graphics package for the Python programming language that is used

for application development, interactive scripting and publication-quality image gener-

ation across user interfaces and operating systems (Hunter, 2007). It is one of the most

important libraries in the SciPy ecosystem of open-source software for mathematics,

science and engineering (Jones et al., 2001–).

Two “sub-packages” within the Matplotlib library have been used in the development of

the animation functionality for TDS. The basemap1 tool-kit is a library for plotting 2D

data on map projections in Python. The animation2 functionality enables the creation

of videos based on the standard plotting techniques within the library. As shown in

Figure 4.1, the developed animation functionality combines these two packages with

the standard outputs obtained from TDS.

Matplotlib:
animation

Matplotlib:
basemap

Time-domain
simulations

TDS animation
module

animation.mp4

Figure 4.1: Structure of the time-domain simulation animation module.

1. see https://matplotlib.org/basemap/. Accessed 18th January 2020.
2. see https://matplotlib.org/api/animation api.html. Accessed 18th January 2020.

https://matplotlib.org/basemap/
https://matplotlib.org/api/animation_api.html
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Basemap

The basemap tool-kit enables data to be plotted on several map projections using the

standard Matplotlib plotting techniques. It allows coastlines, political boundaries and

rivers to be drawn in several resolutions and also supports annotations (Hunter, 2007).

Figure 4.2 shows an example figure generated using the basemap tool-kit. To produce

this figure, the Mercator projection was chosen and the lower left and upper right

coordinates were specified for the desired extent of the map. The coastline resolution

was set to intermediate. Additionally, the latitude and longitude of four locations were

specified and plotted on the map.

Cork

Edinburgh

Liverpool

Skipton

Figure 4.2: Example basemap figure.

Animation

In its simplest form, the Matplotlib animation algorithm is a simple for-loop that creates

several successive plots and adds these together to generate the output animation. The

methodology is shown in the flowchart in Figure 4.3. The artist function takes the

frame number, fa, as an argument and returns information on every artist that is

being animated. An artist refers to any component of the plot that will change during

the animation. The total number of frames must also be specified.
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Start

fa = 1

fa ≤ frames ?

Artist
function g(fa)

Draw all data

Add to
animation

fa += 1

Save animation

Finish

Yes

No

Figure 4.3: Simple form of animation algorithm.

In reality, most animations will use blitting to dramatically improve computational

performance. Blitting is an old technique in computer graphics that takes an existing

figure and blits artists on top of the original image (Sanchez and Canton, 2007). The

flowchart in Figure 4.4 describes the animation algorithms used when blitting is enabled.
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Start

Draw static
canvas

fa = 1

fa ≤ frames ?

Artist
function g(fa)

Restore
static canvas

Draw artists

Add to
animation

fa += 1

Save animation

Finish

Yes

No

Figure 4.4: Animation algorithm when blitting is enabled.
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The static canvas that is generated at the start of the animation loop includes all the

stationary features of the animation—the features that do not change. For each frame,

this static canvas is restored before the dynamic or animated artists are drawn on

top of these stationary features. Thus, with blitting enabled, the animation algorithm

only re-draws the features that are changing at each frame, leading to dramatic im-

provements in performance (Hunter, 2007). This is particularly important for the TDS

animation module due to the combination of the basemap and animation tool-kits.

Plotting the detailed coastlines, which typically are drawn at the maximum resolution,

requires significant processing time. Re-drawing the basemap for every frame of the TDS

animations would significantly increase the processing time of the animation scripts.

Example Animation

To demonstrate the application of the animation algorithm, consider a simple example

of a vessel transiting from Cork to Liverpool. The static canvas in this case is the

example basemap shown previously in Figure 4.2. The vessel, assumed to be the LÉ

Niamh3, is the dynamic feature and is represented as an annotated circular marker.

The artist function returns the latitude and longitude of four intermediate points on

the transit route, corresponding to the four frames that will be plotted to demonstrate

the animation functionality. The coordinates for this example transit operation are

given in Table 4.1. The table also shows the corresponding figure reference for each

frame.

Table 4.1: Latitude and longitude coordinates of each frame in example animation.

Frame Latitude Longitude Figure

1 51.67 N 7.89 W Figure 4.5
2 52.08 N 6.00 W Figure 4.6
3 53.61 N 4.88 W Figure 4.7
4 53.50 N 3.45 W Figure 4.8

The resulting animation can be imagined as the progression of images from Figure 4.5

to Figure 4.8. Although not shown in the process flowchart in Figure 4.4, the frame-

rate—the number of frames shown per second of the animation—is an important input

parameter to the Matplotlib animation function. To obtain a “smooth” animation, the

number of frames—and thus the number of intermediate locations—and the frame-rate

should be increased. As such, Figures 4.5–4.8 can be seen as “snapshots” of the full

output animation.

3. LÉ stands for Long Éireannach, which is the Gaelic term for ‘Irish ship’ and is the designation given
to ships in the Irish Naval Service.
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LÉ Niamh

Cork

Edinburgh

Liverpool

Skipton

Figure 4.5: Example animation—frame 1.

LÉ Niamh

Cork

Edinburgh

Liverpool

Skipton

Figure 4.6: Example animation—frame 2.
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LÉ Niamh

Cork

Edinburgh

Liverpool

Skipton

Figure 4.7: Example animation—frame 3.

LÉ Niamh

Cork

Edinburgh

Liverpool

Skipton

Figure 4.8: Example animation—frame 4.
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4.2.2 Time-domain Simulation Animation Methods

This section describes the three critical methods required to create an animated video

of an offshore operation using the tabular output data of TDS. These methods involve

(i) mission selection, (ii) data processing and (iii) creating the background maps.

Mission Selection

A typical TDS model will run multiple iterations of a project simulation. Most of the

data analysis is performed on the entire ensemble of mission results. However, as the

animations are typically used for quality assurance (QA) purposes and because the

animations are trying to capture accurately the sequential nature of the operations, the

animation module requires iterations to be analysed independently.

Thus, one of the required inputs to the animation module is the desired percentile of

the simulation results that is to be animated. The total duration of each iteration is

calculated and the iteration with a total duration closest to the specified percentile

is extracted. This single mission iteration is then used as the main input file to the

animation methods.

Data Processing

The raw output data from a TDS model summarise the milestone activities completed

by each vessel. A simplified example of a typical TDS output file is shown in Table 4.2.

Note that a full analysis can include multiple vessels performing separate or concurrent

operations. Therefore, a full output list will contain an additional column specifying

the vessel that is performing each activity. Alternatively, each vessel—also referred to

as a resource—can be viewed as having an associated output data file similar to that

shown in Table 4.2.

Table 4.2: Example of typical TDS output data in tabular form.

Activity Start date End date Location

Mobilise 10/07/2020 07:30 10/07/2020 09:00 Port
Transit to site 10/07/2020 09:00 10/07/2020 11:43 WTG 1
Inspect turbine 10/07/2020 11:43 10/07/2020 14:32 WTG 1
Re-locate 10/07/2020 14:32 10/07/2020 14:47 WTG 2
Inspect turbine 10/07/2020 14:47 10/07/2020 17:31 WTG 2
...

...
...

...
Transit to port 12/09/2020 17:07 12/09/2020 19:53 Port
Demobilise 12/09/2020 19:53 12/09/2020 20:29 Port

The objective of the artist function in the TDS animation module is to return the

coordinates of each vessel as a time-series. The frames of the animation correspond to
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successive entries in the time-series. Consequently, the data must be converted from

the standard TDS output format, shown in Table 4.2, to a time-series for each vessel,

an example of which is shown in Table 4.3.

Table 4.3: TDS output data converted to time-series format required for animation module.

Vessel 1 Vessel 2

Date-time Activity Lat Lon Activity Lat Lon

10/07/2020 07:30 Mobilise 51.67 N 7.89 W Mobilise 53.50 N 3.45 W
10/07/2020 07:45 Transit 51.68 N 7.88 W Transit 53.49 N 3.46 W
10/07/2020 08:00 Transit 51.69 N 7.87 W Transit 53.48 N 3.47 W
10/07/2020 08:15 Transit 51.70 N 7.86 W Transit 53.47 N 3.48 W
...

...
...

...
...

...
...

12/09/2020 20:30 Demobilise 53.50 N 3.45 W Demobilise 51.67 N 7.89 W

Further complications arose due to the potential difference in duration of transiting

activities and operational activities. For marine operations, a transit duration in the

order of several hours leading to an operation that requires a number of days or weeks

to complete is quite probable. Assuming there is a constant interval between successive

time-series entries (15 minutes in Table 4.3, for example), it is likely that the animation

will play too quickly to capture the transit activities or too slowly to demonstrate

progress for the operational activities. Thus, it was important to be able to re-sample

the time-series data by one of two separate intervals; one corresponding to transit

activities and the other corresponding to operational activities.

Another important step in the methodology is the processing of feature data. A feature

is any important location that will be included in the animation, e.g. the port and

site locations and the positions of individual wind turbine generators (WTG). Features

can be static or dynamic, depending on whether their visual representation can change

throughout an animation. Dynamic feature data are also given a status. For an off-

shore wind construction project, the WTG features may have three statuses—planned,

in construction and constructed—and each of these statuses will have an associated

marker symbol, colour and size. Dynamic feature data are processed by identifying the

completion time of key milestone activities in the TDS output data.
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Creating the Background Map

The typical relative distance between the port and site locations compared to the

distances between the locations of interest at the site itself necessitated two maps to be

drawn for the animations. The main map is the larger of the two and is a zoomed-out

view of the total extent of the marine operation. The mini map is a zoomed-in view of

the offshore site that shows the results of the simulation at a finer detail. The zoomed

inset axes method in Matplotlib (Hunter, 2007) was used to create the mini map.

Additionally, the development of what is termed the time-slider enabled the clear

visualisation of the progression of simulation time in the animations. Initial versions

of the animation showed the simulation time as a dynamic legend outside of the main

map boundary. It was difficult to observe simultaneously the animated resources and

the simulation time as a dynamic text legend. The time-slider was developed to address

this issue and enable a visual representation of the progression of simulation time. The

time-slider moves along the date-time axis from left to right as the animation progresses.

An example background map that includes all three of the above components is shown in

Figure 4.9. Hypothetical port, site and WTG locations are plotted as example features.

Port

Site

Nov ‘20 Dec ‘20 Jan ‘21 Feb ‘21 Mar ‘21 Apr ‘21 May ‘21

01-Nov-20

Figure 4.9: Example background map with main map, mini map and time slider below.
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4.3 Animation Case Study

Typical outputs of the developed TDS animation module are presented in this section

using simulated results for a hypothetical offshore wind farm construction project. The

simulation model is based on completed analyses and results of a planned European

wind farm but the number of vessels used, number of turbines and the project locations

and coastlines have all been altered. In the project, a heavy lift vessel and a barge are

used to install a wind farm consisting of 38 WTGs. The barge can carry a maximum

of 4 WTGs, meaning that 10 loadouts are required. The background map and feature

locations used in the project are the same as shown previously in Figure 4.9. Several

frames have been selected from the animation to describe the animated output video.

These screenshots are shown in Figures 4.10–4.18. They show how the animation module

can provide clear and intuitive visualisations of the TDS results. The applications,

strengths and weaknesses of these animations are discussed in the following sections.

Port

Site

Barge

Loadout

Nov ‘20 Dec ‘20 Jan ‘21 Feb ‘21 Mar ‘21 Apr ‘21 May ‘21

08-Nov-20

Heavy Lift

Waiting

Figure 4.10: Animation case study frame 1—the animation begins on the 8th November
2020 with the heavy lift vessel waiting at the first WTG location and the barge finishing
its first loadout at the hypothetical port.
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Port

Site
Barge

Transit

Nov ‘20 Dec ‘20 Jan ‘21 Feb ‘21 Mar ‘21 Apr ‘21 May ‘21

09-Nov-20

Heavy Lift

Waiting

Figure 4.11: Animation case study frame 2—the barge is shown midway through its transit
to site on the 9th November after completing its loadout operation.

Port

Site

Nov ‘20 Dec ‘20 Jan ‘21 Feb ‘21 Mar ‘21 Apr ‘21 May ‘21

10-Nov-20

Heavy Lift

Install WTG

Barge

Unload

Figure 4.12: Animation case study frame 3—the barge unloads the first WTG at the first
turbine location and the heavy lift vessel commences the installation process.
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Port

Site

Nov ‘20 Dec ‘20 Jan ‘21 Feb ‘21 Mar ‘21 Apr ‘21 May ‘21

11-Nov-20

Heavy Lift

Relocate

Barge

Relocate

Figure 4.13: Animation case study frame 4—the symbol of the first WTG changes to a
turbine once it is fully installed and both vessels relocate to the next turbine.

Port

Site

Nov ‘20 Dec ‘20 Jan ‘21 Feb ‘21 Mar ‘21 Apr ‘21 May ‘21

12-Nov-20

Heavy Lift

Install WTG

Barge

Unload

Figure 4.14: Animation case study frame 5—the vessels begin the installation of the second
WTG.
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Port

Site
Barge

Transit

Nov ‘20 Dec ‘20 Jan ‘21 Feb ‘21 Mar ‘21 Apr ‘21 May ‘21

23-Nov-20

Heavy Lift

Waiting

Figure 4.15: Animation case study frame 6—this frame skips forward to the 23rd November,
when the first cycle is complete and the barge has to return to port to loadout the next 4
WTGs.

Port

Site

Barge

Loadout

Nov ‘20 Dec ‘20 Jan ‘21 Feb ‘21 Mar ‘21 Apr ‘21 May ‘21

25-Nov-20

Heavy Lift

Waiting

Figure 4.16: Animation case study frame 7—while the barge completes the second loadout,
the heavy lift vessel remains at site at the fifth WTG location.
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Port

Site

Nov ‘20 Dec ‘20 Jan ‘21 Feb ‘21 Mar ‘21 Apr ‘21 May ‘21

19-Apr-21

Heavy Lift

Install WTG

Barge

Unload

Figure 4.17: Animation case study frame 8—this frame skips forward several months to
the end of the construction phase where both vessels are installing the final WTG.

Port

Site
Heavy Lift

Transit

Barge

Transit

Nov ‘20 Dec ‘20 Jan ‘21 Feb ‘21 Mar ‘21 Apr ‘21 May ‘21

21-Apr-21

Figure 4.18: Animation case study frame 9—the heavy lift vessel and barge are shown on
the final return transit with the wind farm fully constructed.
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4.4 Discussion

4.4.1 Visualising Complex Projects

The genesis of the animation module stems from exchanges with a client involved in a

major offshore construction project in the UK. This project involved the coordination

of over 10 offshore vessels and several contractors for a construction period in the

order of years. The timing of the project and organisation of the various construction

team members were crucially important, both for the appropriate planning of con-

current operations and the financial implications of the charter length of each vessel.

The animated TDS output results served as a sophisticated project management tool

that incorporated weather downtime effects and highlighted bottlenecks and physical

constraints that may otherwise have been missed.

Of major concern for this particular construction project was the physical space avail-

able at the port loadout berths. There were several limitations on the number and

composition of vessels that could dock at the port simultaneously. For example, heavy

lift vessel “A” may have been able to fit at the berth alongside two barges, but the

larger, more sophisticated heavy lift vessel “B” may have only allowed space for one

more additional vessel. In this way, the animations provided a clear visualisation of the

causes that led to vessels having to wait at port, which were difficult to describe using

standard graphical or tabular results.

After this proof of concept, the animation module was used for several offshore re-

newable energy projects. For example, the animation module has also been applied to

several projects assessing potential O&M strategies for constructed offshore wind farms.

In this case, the colours of the turbine symbols correspond to their status at each time

step; WTGs can be active, scheduled for preventative maintenance or shut-down in the

case of corrective maintenance. For certain projects, a revenue counter was added to the

animated plots that showed the cumulative values of ideal revenue, lost revenue—from

off-line turbines—and actual revenue at each time-step. For these O&M projects, the

animations help to visualise clearly the relative benefits and weaknesses of alternative

maintenance strategies.

Client feedback has revealed one of the major benefits of the animated TDS outputs

is that they provide added confidence in the simulation models and the corresponding

results. The animated visualisations of a project have helped assure clients that the

simulation model is working correctly. The success of the animation module has led to

the animations being included in the standard list of outputs provided to clients.
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4.4.2 Quality Assurance

Perhaps the most important use of the animations is during the internal quality assur-

ance (QA) process carried out for new projects. Typographical and work-flow errors are

common during the initial configuration of a TDS model for an offshore project, due

to the large quantity of .CSV files, text files and process flow-charts required as model

inputs. While it can be difficult to discover errors in the extensive list of key milestone

activities, these subtle mistakes, omissions and anomalies are clearly identifiable in the

animated outputs. Consequently, the TDS animation module increases the efficiency

and speed of the project configuration process, leading to subsequent improvements in

accuracy and productivity. The animated TDS outputs have thus become an integral

step in the QA procedure for every new project.

The animations can also be used as a QA process that links the developer of the model

and the end-user. The incorporation of the animations module in this type of QA

procedure is illustrated in the flow chart in Figure 4.19. Previously the model logic

could only be checked via the manual calculation of the weather windows for all of the

sequential operations within a randomly selected mission iteration. It is still necessary

to perform this check of the simulation logic on the final output results, but the use of

the animation module avoids the need for time-consuming manual checks throughout

the initial project configuration process.

4.4.3 Impact of Animation Module

This section describes a case study partially informed by simulations completed for

an offshore wind farm construction project. The objective is to provide indicative

quantifications of the impact that the animations can have on the modelling process

and on simulation results.

In offshore construction projects, it is common for there to be regulations on certain

coincident operations. For example, the focus of one particular study assessed the

impact of regulations that forbade multiple vessels from conducting piling operations

at the same time. The reason for implementing this ban was to minimise the effect of

noise pollution on marine animals. For projects located in the near-shore region, the

effect of noise pollution on humans is another contributing factor.

Another example, previously mentioned in Section 4.4.1, is the constraint relating to

the physical space available at port loadout berths. This can often lead to restrictions

on coincident port operations. In this case, the size of the berths at one port meant

that loadout operations could not be carried out concurrently by multiple vessels. This

case study assesses the impact of both these types of coincident operation.



4.4. Discussion 81

Start

Model
configuration

Run animation

Internal review

Proceed?

External review

Proceed?

Perform
full analysis

Yes

Yes

No

No

Figure 4.19: QA procedure showing the role of the animation module.
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There are two ways in which the animation functionality described in this chapter can

help to identify errors relating to these coincident operations. Firstly, a breakdown in

communication between the developer of the TDS model and the client or end-user

can often mean that these types of assumptions are omitted or forgotten. Secondly,

errors can be introduced in the model configuration process through the typographical

and work-flow errors mentioned previously. The incorporation of the animation module

within the internal and external QA processes (see Figure 4.19) greatly increases the

likelihood of finding these modelling errors before the final simulations are performed.

To obtain an indicative quantification of the effect that these errors can have on model

results, a retrospective assessment of the impact of coincident operation constraints was

performed. The results pertain to the piling installation phase for a European offshore

wind farm. For this particular project, there was no ban on coincident operations.

However, the impact of a potential ban on concurrent tasks was assessed by extracting

the duration of coincident operations, for both piling operations and port loadout

operations, from the simulation results. These durations are shown in Table 4.4 along

with the duration of coincident operations expressed as a percentage of the total

duration of the piling campaign. Finally, two indicative cost parameters are calculated

based on the vessel day-rates suggested by Lacal-Arántegui et al. (2018). They suggest

a range of 150,000–250,000 USD for a turbine installation vessel. Assuming a conversion

rate of 0.76 GBP/USD, this range corresponds to a low estimate of 114,000 GBP/day

and a high estimate of 190,000 GBP/day. These two day rates were used to obtain

indicative cost estimates for coincident operations.

The results show that the duration of coincident operations is not substantial in relation

to the total duration of the piling campaign. For the P50 results, the combined duration

of coincident piling and port operations is 82 hours, which represents 2.73% of the total

duration of the piling phase. In the P90 scenario, the combined duration is 144 hours;

4.8% of the total duration of this phase of the project. The results for absolute duration

also suggest the model is more sensitive to the restriction on port operations than it is

to coincident piling operations.

Crucially, the results also show the potential cost implications of failing to identify

erroneous modelling assumptions or omissions. For instance, imagine if coincident op-

erations were not allowed for this particular project but that this assumption had been

excluded erroneously from the simulation model. In this case, the median value for

project cost would have been underestimated by approximately £400,000–£650,000. In

the worst-case scenario, the discrepancy in project cost would have been approximately

£1m. Note that this retrospective analysis assumes that the delay that would have been

introduced is identical to the duration of coincident operations. As will be discussed

further in Section 6.3.1, this would not necessarily be the case and a more accurate anal-
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Table 4.4: Indicative case study results for the duration and cost of coincident operations.

P10 P50 P90

Duration of coincident operations (hours)

Port operations 16 63 117
Piling operations 6 20 32
Combined 35 82 144

Percentage duration of piling phase (%)

Port operations 0.53 2.10 3.89
Piling operations 0.19 0.67 1.06
Combined 1.16 2.73 4.79

Indicative cost of coincident operations
Low vessel rate (thousand GBP)

Port operations 76 299 555
Piling operations 27 95 152
Combined 166 390 684

Indicative cost of coincident operations
High vessel rate (thousand GBP)

Port operations 127 499 925
Piling operations 44 158 253
Combined 277 649 1,140

ysis would require simulations with and without the coincident operation constraint,

but it does give an approximate indication of the impact of incorrect assumptions.

The animation module enables easy identification of these modelling and configuration

errors and omissions. It also improves communication between the model developers

and end-users. The results of the case study quantify the scale and impact of model

error that can be avoided through the use of the developed animation functionality.

4.4.4 Weaknesses and Future Work

Despite the use of blitting, the performance of the animation module is not optimal. The

run-times required to generate the animated outputs can be quite long. For a moderately

complex model, it can take between 5–10 minutes to generate an animated video with

a duration of approximately 2–3 minutes. This performance is adequate when a subset

of operations is being animated and the desired output animation is quite short, which

is often the case. However, if a long animation is required, for example showing the

entire O&M campaign for the lifespan of an offshore wind farm, then this performance

is unsuitable.

The need to process the data before creating the animation does not have a significant
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effect on performance but it can introduce new errors that are not present in the raw

TDS outputs. This is particularly counter-productive when using the animations for the

QA process. Minimal development is required to enable the outputs of the TDS to be

formatted in the appropriate time-series structure. In fact, early versions of the software

produced outputs in the required format. The increasing number of simulations required

for the Monte Carlo method necessitated the re-structuring of the outputs into the key

milestone activities described previously. Enabling the output results to be formatted as

time-series would eliminate the need to process the data before running the animation

module, thus greatly simplifying the methodology. It might even be possible to generate

animations as the simulations are running, which would further improve the QA process.

Using a bespoke graphics and animation package would solve the performance issues

mentioned above. Preliminary investigations have focussed on the use of Blender, which

is an open-source software package for production quality 3D graphics, modelling and

animation (Kent, 2013; Hess, 2010). Crucially, the software uses a Python application

programme interface (API) for scripting (Kent, 2013; Hess, 2010) which would facili-

tate integration with the TDS software. Furthermore, using Blender, or an equivalent

software package, would improve the visual appearance of the animations, which was

not of primary concern during development.

4.5 Conclusions

A method for animating the outputs of a TDS model has been developed. Selected

animation results from a hypothetical offshore wind farm construction project have

been presented that show how the developed module can provide clear and intuitive

visualisations of the simulated results.

The animation module has been used to support several marine projects, including

construction and O&M campaigns for offshore renewable energy farms. The animated

outputs enable clear comparisons to be made between various offshore strategies. Fur-

thermore, the animations can be used to support the project management of complex

projects involving multiple vessels and contractors.

TDS animations have been shown to enable easy identification of modelling and config-

uration errors and omissions. They also improve communication links between model

developers and end-users. The incorporation of the animation functionality as a QA

method within the model configuration process eliminates the need for time-consuming

manual checks of tabular output data.

Finally, an indicative case study has highlighted the potential cost implications of failing

to identify erroneous modelling assumptions or omissions. If the analysis in this chapter
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described a model that mistakenly omitted restrictions on coincident piling and port

operations, the median value for total project cost would have been underestimated

by between £400,000 and £650,000. In the hypothetical worst-case scenario, the piling

installation project was likely to have been about 5% longer and £1m more expensive

than the simulation results suggested.





Chapter 5

Time-domain Simulation Outputs

and Data Analysis Methods

5.1 Introduction

This chapter discusses the exploratory data analysis and visualisation methods that

have been developed to extract key insights from the raw output of the TDS models.

These methods are described through the scenario tests and associated analysis that in-

formed the installation strategy for a Round 3 offshore wind farm construction project.

The primary objective of this chapter is to describe and appraise the types of analysis

that can be performed in the planning stages prior to the commencement of a marine

project. A new graphical output technique referred to as a progress plot is described.

An additional objective of the present analysis is to quantify the number of simulations

and years of metocean data that are required to achieve satisfactory convergence of

TDS results. As outlined in Chapter 2, there is no general consensus on convergence

issues in the literature.

The technical background to the exploratory data analysis methods is given in Sec-

tion 5.2, including discussions on classical box-and-whisker plots and rangefinder box-

plots. A description of the Round 3 offshore wind farm construction project, the var-

ious scenarios that were tested, the configuration of the bespoke simulation model,

the convergence tests and the quantitative data analysis methods can be found in

Section 5.3. The results of the scenario testing and other analyses are described in

Section 5.4, while the alternative scenarios that were tested and additional outputs

omitted from the analysis are outlined in Section 5.5. Finally, Section 5.6 summarises

the main conclusions of the chapter.

87
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5.2 Technical Background

The following methods can be found in any introductory textbook on exploratory data

analysis (EDA) and statistical analysis (e.g. see Wilks, 2011).

5.2.1 Quantiles and the Inter-quartile Range

Many summary statistical measures rely on the use of sample quantiles, sometimes

referred to as fractiles, which are essentially equal to the more familiar term percentile.

A sample quantile, qp, is a number having the same units as the data, which exceeds

that proportion of the data given by the subscript p, with 0 ≤ p ≤ 1. Equivalently, the

sample quantile qp is identical to the (p× 100)th percentile of the data-set.

Robust statistical methods are those that are insensitive to particular assumptions

about the overall nature of the data (Wilks, 2011). A resistant method is not unduly

influenced by a small number of outliers (Wilks, 2011). The inter-quartile range (IQR)

is a common, simple, robust and resistant measure of the spread of a data sample. The

IQR is the difference between the upper and lower quartiles;

IQR = q0.75 − q0.25 . (5.1)

5.2.2 Box-and-whisker Plots

The box-and-whisker plot, also referred to simply as the boxplot, is a widely used

tool introduced by Tukey (1977). The simplest form consists of a plot of five sample

quantiles—the minimum, the lower quartile, the median, the upper quartile and the

maximum—and presents a quick sketch of the distribution of the underlying data. An

example of this form of the boxplot (labelled as the “min/max whiskers” method) is

shown in Figure 5.1. The boxplot describes a set of 250 values sampled randomly from

a standard normal distribution.

A shortcoming of the simple min/max whiskers boxplots is that they generalise the

information about the tails of the data (Wilks, 2011). Several refinements of the simple

boxplot exist that provide more detail in the tails of the distribution. For example, a

schematic plot (Tukey, 1977) is identical to the simple boxplot except that extreme

points considered to be sufficiently unusual are plotted individually. Four dividing lines

for the classification of these sufficiently unusual extrema are defined:

Upper outer fence = q0.75 + 3 IQR (5.2)

Upper inner fence = q0.75 + 1.5 IQR (5.3)

Lower inner fence = q0.25 − 1.5 IQR (5.4)

Lower outer fence = q0.25 − 3 IQR . (5.5)



5.2. Technical Background 89
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Figure 5.1: Example box-and-whisker plot variations for a normal distribution.

Typically, points between the inner and outer fences are plotted as circles, as shown in

the middle boxplot of Figure 5.1. Data lying outside the outer fences are plotted with

a different symbol, typically an asterisk, but examples of these data are not included

in Figure 5.1. Alternatively, the whiskers can be set to extend to specific quantiles. For

example, Figure 5.1 shows the common case of drawing the whiskers between q0.05 and

q0.95.

Box-and-whisker plots can convey a surprisingly large amount of information at a glance

(Wilks, 2011). For example, Figure 5.1 shows the data are clearly concentrated about

0, as expected for a standard normal distribution; visualises the full range of the data

and indicates the data are nearly symmetrical—the median is near the centre of the

box, the mean and median are approximately equal and the whiskers are of comparable

length (Wilks, 2011).

To further illustrate the graphical box-and-whisker technique, the same three plots

were re-created using 250 random samples from a Weibull distribution with a shape

parameter of 1.5 (Chapters 7 and 8 focus on theoretical probability distributions and

describe the Weibull distribution in more detail). The resulting boxplots are shown in

Figure 5.2.

The data suggest a tendency towards positive skewness (i.e. the right tail of the data

is longer) as indicated by the inequality of the upper and lower whisker lengths. The

effect of this positive skewness on the sample mean is evident in the discrepancy between
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Figure 5.2: Example box-and-whisker plot variations for a Weibull distribution with a shape
parameter of 1.5.

the mean and median values of the data-set. Figure 5.2 also highlights the difference

between the boxplot variations. Values in the sampled data-set below the 5th percentile

(or q0.05) are shown as outliers using the “quantiles” method but these data points fall

within the lower inner fence as shown in the middle boxplot.

Identical data-sets have been used in each of Figures 5.1 and 5.2 to compare separate

boxplot techniques. However, it is important to note that a primary use of box-and-

whisker plots is in the simultaneous graphical comparison of several distinct batches of

data (Wilks, 2011). As such, they are well-suited for comparing different scenarios that

are being tested using TDS methods.

5.2.3 Rangefinder Boxplots

Bi-variate boxplots are an extension of the original box-and-whisker plots and are

useful when analysing two-dimensional variability (Becketti and Gould, 1987). For the

proposed progress plots discussed in Section 5.3.4, a method of dealing with these two-

dimensional variables is crucial. Several bi-variate boxplots have been proposed; for

example relplots and quelplots (Goldberg and Iglewicz, 1992), bagplots (Rousseeuw

et al., 1999) and the related theory of highest density regions (HDR) (Hyndman, 1996)

Rangefinder boxplots are the easiest to construct and are used throughout this thesis.

The rangefinder boxplot contains precisely the same information as the standard box-
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plots for both of the variables displayed (Becketti and Gould, 1987). Typically, the

rangefinder boxplot is superimposed on a scatterplot and consists of six line segments.

The two central line segments intersect at the cross-median values. The vertical line

segments cover the IQR of the variable measured on the vertical axis. Similarly, the

horizontal line segments cover the IQR of the variable measured on the horizontal axis.

Finally, the upper and lower horizontal line segments are drawn at the upper and lower

adjacent values of the vertical axis—that is, at the points where the whiskers would

terminate—and the right and left vertical line segments mark the upper and lower

adjacent values of the horizontal axis (Becketti and Gould, 1987).

The construction method for a rangefinder boxplot is shown in Figure 5.3. The data are

correlated X and Y points that have been sampled randomly from a bi-variate normal

distribution. The individual boxplots for the X and Y data are shown above and to the

right of the figure respectively and illustrate the construction of the rangefinder line

segments. In this example, the whiskers are drawn between the 5th and 95th percentile

and a circular marker for the cross-median values has been added.

−3 −2 −1 0 1 2
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4
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Figure 5.3: The rangefinder boxplot and its construction. Box-and-whiskers to the right
and above show the equivalent single-variable boxplot for the Y and X variables respectively.
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5.3 Methodology

5.3.1 Project Description

The industrial project used to demonstrate the data analysis methods and typical TDS

outputs concerns the construction phase of a Round 3 offshore wind farm (OWF). As

detailed in Section 2.4, the installation of an OWF can be broken down into the se-

quential steps of mobilisation, loadout, outward transit, installation, return transit and

de-mobilisation. It is common for construction to be further divided into a foundation

phase, when the foundations and transition pieces (TPs)—that connect the foundation

to the wind turbine tower—are installed, and a WTG phase, when the wind turbines

themselves are assembled on the previously-installed foundations. Each of these two

phases will consist of the same six steps mentioned above. ForeCoast® Marine was used

to assist both phases of the offshore wind farm in question, but the present analysis

focuses on the WTG phase.

One turbine installation vessel (TIV), henceforth referred to as the baseline vessel, had

already been chartered for a duration of 245 days (relative to the commencement of the

WTG phase). The objective of the analysis was to assess various strategies for chartering

an additional TIV. Delays in the foundation phase had resulted in greater uncertainty

in the possibility of finishing the construction of the OWF within the agreed charter

duration of the baseline vessel. Thus, the aims of the work were to assess whether a

second vessel was required and if so, help inform the selection of the second vessel and

the appropriate charter length. The charter start date for each of the additional WTG

installation vessels was 92 days after the start of the WTG phase. The objective was

to finish the installation of the entire OWF within a duration of 245 days at a minimal

project cost.

Note that the 245 day charter period for the baseline vessel, that would have led to

additional fees if exceeded, represents a constraint in this analysis. There may have

been more optimal solutions available if this constraint had been relaxed. For example,

three installation vessels may have comlpeted the project in a much shorter time and

have resulted in a lower total project cost. However the 245 day charter period was a

key assumption in this analysis and ignoring it was outside the scope of the work.
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5.3.2 Scenario Details

Six scenarios were simulated in addition to the baseline scenario in which no additional

installation vessel was chartered—the business-as-usual scenario. Charter durations of

90 and 120 days were considered for three separate TIVs (Vessels A, B and C). The

resulting six scenarios are shown in Table 5.1.

Table 5.1: Summary of simulation scenarios.

Second vessel

Scenario name Name Charter duration (days)

Baseline - -
A90 Vessel A 90
A120 Vessel A 120
B90 Vessel B 90
B120 Vessel B 120
C90 Vessel C 90
C120 Vessel C 120

The characteristics of each TIV are summarised in Table 5.2. WTG capacity refers to

the number of WTGs that can be loaded onto the vessel at one time and is thus inversely

proportional to the number of cycles required to complete the installation programme.

Transit durations have been normalised with respect to that of the baseline vessel. The

variations in the significant wave height (Hs) and tidal current (vtc) thresholds are

listed for the appropriate operations.

Table 5.2: Summary of key vessel characteristics. Hs = Significant wave height. vtc = tidal
current. Note that costs are indicative only.

Vessel

Baseline Vessel A Vessel B Vessel C

WTG capacity 8 11 8 9
Outward transit (normalised duration) 1 1 1 1.3
Return transit (normalised duration) 1 1 1 1.25
Jacking operations Hs limit (m) 1.5 1.75 1.5 1.4
Jacking operations vtc limit (m/s) 0.82 1 0.82 1
Reposition operation Hs limit (m) 1.5 2.5 1.5 1.5
Outward transit Hs limit (m) 2.65 3.5 2.75 2.5
Enter harbour Hs limit (m) 3 - 3 3
Indicative cost (GBP/day) 140,000 190,000 140,000 160,000

Charter rates for the vessels were not provided by the client—the industrial analysis

focused on the durations of operations, activities and the project as a whole (see
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Section 5.3.4). However, to reflect the true cost-benefit nature of the analysis, and

help demonstrate the full capabilities of the software, indicative costs were assumed

for each vessel. Lacal-Arántegui et al. (2018) state that the daily rate of a turbine

installation vessel is between 150,000 and 250,000 USD. Assuming a conversion rate

of 0.76 GBP/USD, this range corresponds to 114,000–190,000 GBP/day. Because it

is a state-of-the-art TIV—as evidenced by its higher metocean thresholds and WTG

capacity—the upper limit of this range was assumed to represent the cost of Vessel A.

As noted by Lacal-Arántegui et al. (2018), the charter cost of an installation vessel is

proportional to its capacity—a vessel that can carry two full turbine sets should be

cheaper than a vessel capable of transporting ten turbine sets each trip. Consequently,

estimates for the charter cost of the other three vessels were obtained by multiplying

the assumed charter cost of Vessel A by the ratio of WTG capacities of each vessel.

It is noted that the vessel charter rate assumptions are quite simplistic and that actual

rates are subject to large and frequent variations. However, the constant charter rate

assumptions made here are necessarily simplistic for this analysis and a detailed vessel

cost analysis would be outside the scope of the research.

Vessel A is clearly the superior vessel in terms of performance. However, this straight-

forward example highlights the difficulty that can arise in developing appropriate op-

erational strategies. It is unclear whether the increased charter cost of Vessel A will be

compensated by its superior performance and expected reduction in project duration.

An intuitive assessment of Vessel C’s performance is even more difficult because it

has both favourable and unfavourable performance characteristics in comparison to the

baseline vessel. Specifically, Vessel C has an additional capacity for one extra WTG

and a higher tidal current threshold of 1 m/s but is slower and has more stringent

significant wave height and wind speed thresholds.

5.3.3 Simulation Configuration

Job Sequence and Assumptions

Job sequence data was provided by the client in the form of Excel files and were

converted to the appropriate flow-chart and .CSV format required as input to the TDS

software. Figure 5.4 shows the model representation of the activities that comprise the

WTG installation phase, which follows the typical sequence for wind farm installation

campaigns discussed in Section 2.4. In the flowchart, nv is a resource parameter—it is

associated with a single vessel—corresponding to the number of turbines currently on-

board that vessel; the related variable Nv is the WTG capacity of the vessel mentioned

previously; nt is a global simulation parameter corresponding to the total number of

WTGs installed and Nt is the total number of WTGs that need to be installed.
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Figure 5.4: Representation of simulation model for WTG installation phase of demonstra-
tion project. nv = number of turbines currently onboard vessel. Nv = WTG capacity of the
vessel. nt = total number of WTGs installed. Nt = total number of WTGs that need to be
installed.
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Each of the seven activities in the flow-chart in Figure 5.4 is comprised of a set of oper-

ations defined by their durations and thresholds. Single values—the best estimates—of

operation durations were provided by the client. To enable a Monte Carlo analysis, a

triangular distribution was assumed for each operation with the most likely duration

set equal to the specified single value. The minimum and maximum parameters of

the triangular distribution were set equal to 80% and 120% of this most-likely value.

These percentage variations were chosen arbitrarily but it should be noted that this

critical modelling assumption will be addressed in subsequent chapters. Specifically, the

primary objective of Chapter 7 is to quantify this variability in operation durations.

Each vessel performs a job sequence identical to the one summarised by the activity

flow-chart shown in Figure 5.4. The only differences for each vessel are the metocean

thresholds for the operations specified in Table 5.2, along with the number of WTGs

installed per cycle and the vessel transit speeds. The simulation logic does not allow

simultaneous loadout operations at the port, reflecting the spatial limitations at the

harbour in question.

For each year of metocean data and each Monte Carlo iteration, the simulation proceeds

as follows;

1. The baseline vessel commences operations at the given start date (corresponding

to the relative WTG phase duration of 0 days).

2. After a duration of 92 days, the second vessel begins its installation campaign.

3. The second vessel continues to work until its charter end date is reached (either

182 or 212 days after the beginning of the WTG installation phase, depending

on the scenario). It was assumed that a new loadout and installation cycle would

commence no later than 20 days before the charter end date of the second vessel,

corresponding to the estimated time it would take for the baseline vessel to

loadout, install 8 turbines and return to port.

4. The baseline vessel will continue to work after this date until all the WTGs have

been installed (this may exceed the agreed 245 day charter date for the baseline

vessel).

Metocean Data

Metocean data were provided by the client for six locations; one for the OWF site and

five that divided the transit route into approximately equal sections. The time-series

data were 18 years in length and had a temporal resolution of 1 hour. Time-series of

significant wave height, tidal current and wind speed (measured at a height of 82 m)

were provided. The proximity of the first point on the transit route to the port location

justified the representation of both locations by the same data.
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5.3.4 Quantitative Data Analysis Methods

Quantitative Variables

Two quantitative variables are used predominantly in the analysis; project duration

and total vessel duration, both measured in days. Project duration is calculated as the

difference between the start and end dates of each simulation.

This variable describes the end date of the WTG installation phase, but it does not

account for the individual working time of each TIV. Individual vessel durations are

thus calculated as the difference between the start and end date of each resource. The

total vessel duration is then found by summing the duration values for each vessel

involved in construction.

It is important to remember that this is a cost-benefit analysis—the major project

objective is to complete the installation within a duration of 245 days at minimal project

cost. If the total project cost was unimportant, TDS would not be needed to inform the

decision to charter Vessel A. Indicative costs can be obtained for each scenario based on

the assumed charter rates and the charter durations of each vessel and each scenario.

The indicative nature of this additional quantitative variable should be emphasised—it

does not include any additional cost components. However, the variable is useful for

comparative analyses because most of the other cost components are expected to be

independent of the scenario being tested (e.g. the capital cost of the WTGs, electrical

cables, sub-station infrastructure and ancillary equipment).

Convergence Testing

The number of simulations required to obtain satisfactory convergence of simulation

results was analysed by performing 600 simulations of the baseline scenario for the

appropriate start date of each year of metocean data, leading to a total number of

10,800 simulations. A qualitative, graphical convergence analysis (e.g. see Ballio and

Guadagnini, 2004) was performed on the project duration variable described above.

This consisted of plotting the cumulative mean and cumulative standard deviation

of project duration against the number of simulations performed. Note that for the

baseline scenario, which uses a single installation vessel, the project duration is equal

to the total vessel duration. The convergence analysis is split into three sections; one

focuses on the effect of metocean data-set length; the second examines the Monte Carlo

variation of operation duration and the final section assesses the combined effect of both

phenomena. Further details on each specific analysis method are given in Section 5.4.1.
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Scenario Testing

For each scenario and key quantitative variable discussed above, a box-and-whisker plot

was generated using the technical methods discussed in Section 5.2. The whiskers of

each boxplot are drawn between the 0.05 and 0.95 quantiles. Outliers are omitted.

Progress Plots

This thesis proposes a graphical assessment method, referred to as a progress plot, that

is related to the standard box-and-whisker plot. The construction of the progress plot

is illustrated in Figure 5.5. This example uses fabricated data to aid the explanation of

progress plot construction.

Firstly, the milestone activities that are being assessed must be selected. The selection

of milestone activity or activities is entirely at the user’s discretion. For example, the

milestone activity list could include the loadout, transit and installation activities.

Conversely, the completion of the return transit activity could be set as the sole

milestone, in which case the progress variable equates to the cycle time. In this analysis,

the Install WTG activity is chosen as the progress plot variable.

Once the milestone activity is selected, the completion time of successive instances of

those activities are extracted from the raw TDS output data. The duration required

to complete sequential milestone activities is then calculated for each simulation. Sub-

sequently, the progress plot can be viewed as a horizontal box-and-whisker plot of the

durations required to complete consecutive milestone activities. This is shown in the

top panel of Figure 5.5.

Progress lines are then drawn through the appropriate points of the horizontal box-

and-whiskers. The resulting progress plot is shown in the bottom panel of Figure 5.5.

The area between the P5 and P95 progress lines is shaded to show the 90% range of

milestone durations. Typically, the horizontal axis of a progress plot shows the expected

date-time based on the proposed construction start date. The examples in the present

analysis show the milestone duration in days.
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Figure 5.5: Stages in the construction of a progress plot.
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In projects involving several vessels, the progress plots can be plotted individually or

as a combined total. Individual progress plots for each vessel are complicated by the

potential variation in the share of WTGs installed by each vessel—the quantity of

WTGs required to be installed by the first vessel is directly related to the number

installed by the second vessel during its charter period. To account for this two-

dimensional variability, rangefinder boxplots can be added to the progress plot that

simultaneously describe the number of WTGs installed and the corresponding milestone

duration for each vessel.

In this bi-variate scenario, it is important to note that above a certain number of

installations, the sample size will begin to diminish. For example, at least 43 WTGs

may be installed by a single vessel in each of 1,000 simulations performed for a given

scenario. Due to the observed metocean conditions and sampled operation durations,

the number of simulations in which the same vessel completes 44 installations may fall

to about 950, thus reducing the number of simulations in the sample set for milestones

greater than 43. This can lead to anomalies in the progress lines when, continuing the

previous example, the P95 duration for completing WTG number 44 is lower than the

duration for WTG number 43, so that the P95 progress line appears to go backwards in

time. To avoid this problem, a method that will be referred to as the Delta-T method is

used to calculate the quantiles of milestone progression. Again using the example above,

the quantile calculation is performed on the 950 simulations for installation numbers

44 and 43. The difference between these two durations is calculated and added to the

previous point in the progress line. Note that this method requires a full ensemble for the

first milestone to calculate the standard quantile values. If the number of simulations

remains constant, the Delta-T method for calculating the progress lines is identical to

the standard quantile calculation for each milestone number. The resulting progress

lines are only drawn to the 0.05 quantile, which is the beginning of the rangefinder

boxplot that describes the bi-variate end-point of each vessel.

Figure 5.6 shows the combined progress-rangefinder plot and a comparison of the

Delta-T and standard quantile calculation methods. An example of the anomalies that

can arise when using the standard methods is evident at milestone number 60. The

predominant effect is on the upper-whisker progress line, where the Delta-T method

has the effect of ignoring the anomaly but continuing the slope of the standard progress

line. The figures also shows the minimal differences that arise in the remaining quantile

progress lines.
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Figure 5.6: Progress plot with rangefinder boxplot for final installation.

Seasonal Variations

An alternative simulation procedure can be used to generate seasonal variation results.

Up until now, the logic has been to simulate the entire construction phase, consisting

of several repeated installation cycles, starting the simulation on a given start date

of each year in the metocean data series. A different approach is to simulate a single

cycle at a much higher frequency. Specifically, the time taken for the baseline vessel to

loadout, transit to site, install 8 WTGs and return to the port was simulated, beginning

at midnight on every date in the metocean time-series. As this type of analysis is more

focused on metocean effects, a Monte Carlo approach was not used in this instance—a

single simulation was run each day and the single values for operation durations were

used. The resulting TDS outputs allowed the seasonal variations in expected activity

duration to be assessed. Activity duration results were attributed to the month in which

the activity began.



102 Time-domain Simulation Outputs and Data Analysis Methods

5.4 Results and Discussion

5.4.1 Convergence Testing

The baseline scenario was simulated 600 times for each of the 18 years of metocean

data. Numerous simulations performed on the start date of the final year of metocean

data were unable to complete the entire project within that year. This result gives an

early indication that the baseline scenario of using a single TIV will not be sufficient for

completing the project within the objective time-scale of 245 days. For the convergence

analysis, every simulation that started in this final metocean year was removed from

the data-set. Consistently selecting only the simulations that managed to complete the

project in this final year—the “good” operational simulations—would have biased the

results. Consequently, the total number of simulations performed was 10,200.

The results from the 600 simulation runs for each of the 17 years can be visualised as

a table similar to that shown in Table 5.3, which shows the simulated project duration

in days, categorised by year and simulation number. This table is useful for explaining

the calculation methods of the next three sections.

Table 5.3: Template of simulated results for project duration (in days) categorised by
simulation number and metocean year.

Simulation Year 1 Year 2 . . . Year 16 Year 17

1 418.6 301.1 . . . 293.5 389.7
2 418.4 301.1 . . . 336.5 389.8
...

...
...

. . .
...

...
599 421.1 301.1 . . . 335.5 389.8
600 418.3 301.2 . . . 335.5 389.9

Metocean Convergence

Firstly, the effect of metocean data-set length on simulation convergence was assessed

by calculating the cumulative mean and cumulative standard deviation for each row

of the simulated results as visualised in Table 5.3. Before calculating the mean and

standard deviation of each row, the order of the years was randomised. The cumulative

mean and standard deviation for each of these 600 subsets is plotted as a function of the

number of years simulated in Figure 5.7. The figure also shows the mean and standard

deviation of all 10,200 simulations.
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Figure 5.7: Convergence of simulation results categorised by number of metocean years.

The importance of maximising the number of distinct metocean years in the simulation

model is highlighted in the results for both the mean and standard deviation. The range

in mean project duration is approximately 275–425 days if only one metocean year is

included. By including all 17 of the applicable years, the range in mean project duration

reduces to 345-355 days. Similarly, the standard deviation, which varies between 0 and

100 days if only one year is considered, converges to a value of approximately 40 days.

The metocean convergence results informed the scenario tests described in Section 5.4.2

which consequently performed simulations using the entire metocean data-set.
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Operation Duration Convergence

The impact of Monte Carlo variation of operation duration on simulation convergence

is assessed by calculating the cumulative mean for each column of the simulated results

as represented by Table 5.3. The order does not need to be randomised because the

Monte Carlo variation of operation duration is inherently random. Figure 5.8 shows the

convergence of mean project duration for each of the 17 metocean years plotted against

the number of simulations per year.
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Figure 5.8: Convergence of simulation results categorised by number of simulations per
metocean year.
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The separation of the results into distinct metocean “bins” again highlights the im-

portance of maximising the extent of the metocean data-set. There are some initial

transients for about the first 50 simulations of each year but the results show that

the mean project duration is far more sensitive to the specific metocean year being

simulated than the number of Monte Carlo iterations performed.

For each metocean subset, the deviation of the cumulative mean from the mean of all

simulations in that subset was calculated. This is also plotted against the number of

simulations per year and shown in the bottom panel of Figure 5.8. The figure shows

that the initial transients have converged after approximately 300 simulations per year.

Crucially, the deviation from the mean is relatively small after the initial fluctuations;

at a value of 100 simulations per year, the deviation from the mean varies between -1.5

and +1 days.

General Convergence

A general convergence test of the simulation results is obtained by plotting the cumu-

lative mean and standard deviation against the number of simulations (on a log-scale)

for all 10,200 results. This can be viewed as an assessment of the combined effect of

the two phenomena discussed previously. The results, shown in Figure 5.9, suggest

that convergence is achieved after approximately 1,000 simulations. This corresponds

to running approximately 60 simulations per year. This parameter is used for the

remainder of the analysis in this chapter.

The critical importance of a sufficiently extensive metocean data-set is again highlighted

in Figure 5.9. The first 17 points of both plots correspond to the cumulative mean and

standard deviation of the first row of values in Table 5.3. In other words, the first 17

points correspond to the convergence based on running a simulation for each year in

the metocean data-set. Clearly, the results have already begun to converge after these

17 simulation results. The remaining fluctuations as the results continue to converge

can be attributed to the Monte Carlo variations in operation duration.

The results of the convergence tests have highlighted the benefits of maximising the

extent of metocean data used in TDS. Methods such as the Markov-chain model (e.g.

see Hagen et al., 2013) that can be used to generate synthetic metocean time-series from

smaller, potentially insufficient metocean data-sets would thus be of significant interest.

Future work should focus on appraising the application, suitability and accuracy of these

types of methods within TDS models.
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Figure 5.9: General convergence of simulation results.

5.4.2 Scenario Testing

Boxplots of the simulated results for project duration and total vessel duration for all

seven scenarios are given in Figure 5.10. To ensure a fair comparison with the baseline

scenario, which was unable to complete the installation project in the final year of

metocean data, simulations commencing in the 18th metocean year were also omitted

for each of the six additional scenarios.
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Figure 5.10: Boxplots of project duration and total vessel duration for all seven scenarios.
Whiskers represent 5th and 95th percentiles.

Project Duration

For the baseline scenario, 95% of the simulations resulted in a project duration of

greater than 294 days. The mean and median project durations were approximately

350 days and the upper limit was just under 420 days. Thus, it is clear that without an

additional installation vessel, it is extremely unlikely that the construction project can

be completed within the agreed charter date of the baseline vessel. Conversely, for every

scenario that uses an additional vessel, the mean and median project duration values

fall to a value of approximately 200 days. Additionally, the spread of possible results

reduces dramatically upon procurement of an additional TIV, as shown by the reduction
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in the IQR compared to the baseline. As expected, if the planning objective concerned

only the minimisation of project duration, the results show that the procurement of

Vessel A for a duration of 120 days is the most sensible option.

Interestingly, the TDS results imply that procuring an additional vessel for only 90

days may not be adequate. The P95 value of each of the 90-day scenarios are greater

than the critical 245 days. Experience has shown that many firms make decisions based

on a 90 or 95 percent chance of occurrence. Abiding by this rule, the results show that

the secondary vessel, regardless of which vessel is selected, should be chartered for the

longer duration of 120 days.

Unexpectedly, the P95 project duration of scenario A1 was larger than that of scenario

C1, despite the superiority of Vessel A. Further investigation into the raw simulation

output data revealed that the P25 value for the number of WTGs installed by the

secondary vessel was 33 for scenario A1 and 36 for C1. This slightly counter-intuitive

result can be attributed to the modelling assumption that a new cycle would commence

no later than 20 days before the charter end date of the second vessel. For the “bad”

years, this meant that fewer WTGs were installed by Vessel A in scenario A1, which

completed 3 cycles of 11 turbines, than by Vessel C in scenario C1, which completed 4

cycles of 9 turbines. Subsequently, the baseline vessel had more installations to complete

in these“bad”years and the corresponding project durations were larger for scenario A1

than for C1. It is expected that an improved modelling assumption that allowed vessels

to load out a fraction of their capacity depending on its remaining charter duration

would have improved the accuracy of the results and potentially led to a P95 duration

of less than 245 days for scenario A1.

Total Vessel Duration

The scenario results depicted in the bottom panel of Figure 5.10 show that the total

vessel duration for the baseline scenario is significantly greater than the total vessel

durations for every other scenario that simulated the project with an additional vessel.

Again, this result can seem counter-intuitive at first, but can be explained by the timing

of the construction project. In the baseline scenario, the construction phase runs into

the winter months and the associated adverse metocean conditions. The subsequent

instances of weather downtime can be avoided by chartering an additional vessel. The

results imply that it is better to charter two vessels during the calm summer months

than it is to charter a single TIV for a longer duration. Seasonal aspects of planning

marine operations are discussed further in Section 5.4.4.

A similar phenomenon is evident in the relationship between the 90- and 120-day

scenarios of each vessel. The results for each quantile and mean duration for the 120-day

scenarios are less than or approximately equal to the equivalent 90 day scenario. This is
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because the reduction in duration of the baseline vessel in each scenario is greater than

the increase in operation time of the secondary vessel. Subsequently, the total vessel

duration is lower when using two vessels.

Indicative Costs

The previous sections outlined the necessity for procuring a secondary vessel and the

reasoning for selecting a charter duration of 120 days. Because this is a cost-benefit

analysis, the focus now turns to the financial implications of vessel selection and how

this decision can be informed by the TDS results. Using the assumed charter rates and

charter durations of each vessel discussed in Section 5.3.2, the indicative cost of each

scenario can be calculated. The results are given in Table 5.4.

Table 5.4: Summary of charter durations and indicative costs for each scenario.

Charter duration (days) Indicative cost (£m)

Scenario Vessel 1 Vessel 2 Vessel 1 Vessel 2 Total

Baseline 245 - 34.30 - 34.30
A1 245 90 34.30 17.10 51.40
A2 245 120 34.30 22.80 57.10
B1 245 90 34.30 13.00 46.90
B2 245 120 34.30 17.00 51.10
C1 245 90 34.30 14.40 48.70
C2 245 120 34.30 19.20 53.50

The indicative cost of the baseline scenario is £34.3m, but the above results have shown

that this will almost certainly result in exceeding the agreed charter length and incur

a financial penalty on top of any additional charter cost. Following the convention of

making operational decisions based on a minimum chance of occurrence of 95%, the

question becomes a simple case of selecting the lowest cost scenario from A2, B2 and

C2. Based on the assumed charter rates, the results show that scenario B2 is £2.4m

less than the next cheapest alternative and plausible scenario, C2.

The P95 project duration values were 210 days for scenario A2 and approximately 220

days for scenarios B2 and C2. The indicative cost of scenario A2 is £6m greater than

that of scenario B2. It is expected that this additional cost could not be justified for

achieving only a 10 day reduction in the P95 project duration, especially considering

the standard deviations for the simulation results of scenarios A2 and B2 are 10.3 and

13.5 days respectively.

Finally, the possibility of the P95 project duration for scenario A1 being reduced

below the critical 245 days through improvements in the modelling assumptions was
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previously discussed. The results suggest that Scenario B2 would still be preferential in

this eventuality due to scenario A1 being £300,000 more expensive than scenario B2.

5.4.3 Progress Plots

Combined Progress

Progress plots for the total milestones completed by both installation vessels were

generated for the Baseline, B1 and B2 scenarios and are shown in Figure 5.11. The

rangefinder boxplot is not required when the combined progress is assessed because

the total number of WTGs installed does not change. The figure follows the format

described in Section 5.3.4 and summarised graphically in Figure 5.6—the P50 progress

is plotted as a solid line, the P25 and P75 progress as dashed lines and the 90% range

as a shaded region.
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Figure 5.11: Progress plots for total milestones completed for Baseline, B1 and B2
scenarios.

Because the secondary vessel does not begin its charter until 90 days after the baseline

vessel, the progress plots are identical for about the first 100 days of the project. After

this time, the impact of chartering the second vessel can be seen in the sharp increase

of the progress gradient for scenarios B1 and B2, in comparison to the uniform slope of

the single vessel in the baseline scenario. Similarly, scenarios B1 and B2 are identical

until just over 80% of the milestones have been completed. It is at this point that

certain simulations in the B1 scenario begin to reach the end of their charter date.
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Consequently, the difference between scenarios B1 and B2 is only evident in the last

20% of milestone completion progress.

Another benefit of acquiring a second TIV is the increased confidence achieved in

the simulation results, as highlighted by the reduced spread of progress projections.

Focusing on the baseline scenario, the spread of results remains relatively constant

up until approximately 200 days. After this time which coincides with the beginning

of winter and the associated adverse metocean conditions, the spread of simulation

results grows continuously. In the end, the range for the project completion date is

over 100 days. Conversely, the effect of the second vessel beginning its charter at the

start of the calmer summer months leads to a high confidence in the simulation results

between approximately 40 and 80% of milestone completion for scenarios B1 and B2. As

discussed above, the spread increases for the final 20% of milestones in scenario B1 as

Vessel B reaches the end of its charter date. Nevertheless, the differences between the P5

and P95 project duration values for the Baseline, B1 and B2 scenarios are 125, 87 and

42 days respectively. In fact the 90% confidence ranges for B1 and B2 are comparable

to the 50% confidence range—the difference between the P25 and P75 durations—of

the baseline scenario (68 days). It is clear then that the additional vessel leads to a

significant reduction in the uncertainty of expected project duration.

Interestingly, the progress plots highlight the fact that in the “good” years—for P25

durations and below—the B1 and B2 scenarios are identical. In fact, there is a 75%

chance that the short charter duration scenario of B1 will complete the project within

a period of 233 days. These types of statistical insights are invaluable in the planning

stages of large marine construction projects. As stated previously, this probability level

is expected to be too low for most clients in the offshore renewable energy sector.

Individual Vessel Progress

Progress plots for the percentage of milestones completed by each vessel are shown in

Figure 5.12. The top panel summarises the results for scenario B1 and the bottom panel

refers to scenario B2.

Due to the assumption that vessels will begin a new cycle no later than 20 days before

their charter end date, the counts of WTGs installed by each vessel fall into discrete

bins. This is the reason for the slightly peculiar appearance of the rangefinder boxplots.

For example in scenario B1; the P5, P25, P50 and P75 values for the percentage of

installations completed by Vessel B are all equal to 27.6%. These values align with the

P25, P50, P75 and P95 values for the baseline vessel of 72.4%. Similarly, the P95 value

for Vessel B of 34.5% corresponds to the P5 value for the baseline vessel of 65.5%. These

results imply there is a 95% chance that the share of WTG installations between the
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vessels in scenario B1 will be approximately 72/28%. There is a 5% chance that Vessel

B will outperform and increase its percentage share to 34.5%.
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Figure 5.12: Individual progress plots for total milestones completed by each vessel for
scenarios B1 (top panel) and B2 (bottom panel).

The main purpose of this figure is to compare the two B scenarios and to illustrate the

effect that the increased charter duration of the additional vessel has on the operational

duration of the baseline vessel. By increasing the charter length of Vessel B by 30 days,

the expected number of installations completed by this vessel increases by about 6.9%.

This means that the baseline vessel has to install about 7% fewer turbines and is thus

expected to finish its installation programme earlier. Consequently, the expected value

and uncertainty in the overall project end date is reduced significantly.
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5.4.4 Seasonal Variation

Figure 5.13 shows the results of the alternative analysis that assesses the seasonal

variations of the time to complete a single cycle of the installation process. In this case,

the whiskers are drawn between the minimum and the maximum values of simulated

cycle duration. As expected, and has already been shown in the preceding results, the

cycle duration is much lower in the calm summer months than in the winter. The

ideal month for performing an installation cycle is July, with a mean and median

duration of under 20 days. For October through January, the mean cycle duration rises

to approximately 35 days. Crucially, the maximum value for all four of these months

show that a single cycle can take over 60 days.
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Figure 5.13: Monthly variation of duration to complete a single cycle of the WTG
installation process. Whiskers drawn to minimum and maximum values.

This type of analysis can be repeated for entire construction projects and sometimes

leads to more unexpected and surprising results than the example shown above. For

instance, a large offshore construction project expected to take over two years to

complete was analysed in the same manner and the results showed a similar trend to

that shown in Figure 5.13, but shifted horizontally—the optimal start date of the project

was in November. The reason for this counter-intuitive result was that this start date

ensured a critical phase of the installation project, with particularly stringent metocean

thresholds, coincided with the calmest metocean month. Identifying the start date

that ensures the correct alignment of this activity with the most favourable metocean

conditions would have been difficult without the use of TDS.
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5.5 Further Analysis

The scenarios and example outputs discussed previously represent a small fraction

of the analysis that can and has been performed using the developed TDS model.

Section 5.5.1 briefly describes some alternative scenarios that were tested for the same

OWF installation project and Section 5.5.2 outlines additional outputs that have not

been described.

5.5.1 Alternative Scenarios

As stated previously, the foundation phase of the OWF construction project was also

supported. The piling operations in this phase were of particular importance to the

overall success of the offshore project. Previous geological surveys had identified several

foundation locations susceptible to a pile-refusal. The turbine mono-piles are usually

driven into the sea-bed. In the case where this hammering operation is impossible due

to the sea-bed conditions, a more expensive and specialised procedure is required that

drills the mono-piles into the ground. Crucially, this operation necessitates additional

equipment to be fitted onto the installation vessels. The TDS software enabled a

sensitivity analysis on the number of pile-refusal occurrences and the subsequent effect

on project duration.

Additionally, an environmental ban prohibited piling operations during the spawning

seasons of several fish species. This constraint became a crucial factor in the project

strategy and execution. The baseline vessel was also involved in the foundation phase

but required a complete refit of equipment before commencing its WTG installations.

The simulations showed that the project was hugely sensitive to the baseline vessel

completing its portion of mono-pile and transition piece installations before the be-

ginning of one of these environmental bans. The risk of missing this window and the

knock-on effect for the remaining WTG phase was significant. The TDS model was able

to highlight this crucial project target. Another model scenario quantified the amount

of time that would be saved if a ban that prohibited coincident piling by more than

one TIV was removed.

Finally, a safe-haven analysis assessed the cost-benefit of obtaining an additional berth

at a port location located approximately halfway between the loadout port and the

OWF site. The increase in operational time attributed to this second port berth—in

the order of a few days—and the subsequent reduction in project cost did not justify

the cost of the additional berth.
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5.5.2 Additional Outputs

The Monte Carlo approach of the simulation software is well-suited for sensitivity

analyses of the model input parameters. The scenario mentioned previously that varied

the number of pile-refusal occurrences is one particular example of this. Equally, the

main analysis assessing vessel and charter duration options can be viewed as a sensitivity

analysis of the operational thresholds, the WTG capacity and the cost of the installation

vessels. However, a more typical and comprehensive sensitivity analysis can also be

performed by varying the numerous input parameters to the model and analysing the

sensitivity of the three quantitative variables to these inputs. This method can identify

the operations and metocean thresholds that have the most significant effect on project

duration.

Two methods have been used to produce Gantt charts—a useful organisational tool

common in project management—from the raw TDS output results. The first is to

produce the Gantt chart itself; a graph similar to a horizontal barplot or a horizontal

box-and-whisker plot showing the duration of key activities. Alternatively, the time-

series output data can be formatted so that it can be imported easily into a specific

project management software. This requires a template that maps the formatted output

.CSV to the appropriate columns in the software data-frame structure. This process

has been completed for Microsoft Project and Primavera project management software.

Crucially, the TDS Gantt charts consist of probabilistic, metocean-dependent estimates

of task durations.

The animations discussed in Chapter 4 are used primarily for internal and external

quality assurance reviews. However, the animations can also be used as an additional

TDS output. These animated outputs are less appropriate for the type of scenario

comparison discussed in this chapter and more suited to the identification of bottlenecks

or previously-unknown project constraints.

The wide range of potential outputs discussed in this chapter highlights one of the

biggest strengths of TDS for the planning and optimisation of offshore operation strate-

gies. There is an extensive list of outputs that can be created and scenarios that can

be tested. Moreover, the presentation of results—and indeed the simulation models

themselves—can be tailored specifically to user requirements, with very little difficulty.

Time-domain Monte Carlo simulations are capable of answering general questions about

an entire offshore project, as well as zooming-in on the smallest details in a particular

strategy. This flexibility is one of the major benefits of using TDS.
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5.6 Conclusions

This chapter has shown that the use of TDS enables the marginal benefits of various

offshore operation scenarios to be compared and helps identify and assess the most

appropriate strategy for a specific marine project. Consequently, these simulation tools

can help minimise the cost and mitigate the inherent risks of offshore operations.

The developed metocean planning tool has been used to support several marine projects,

predominantly in the offshore renewable energy sector. The analysis has focused on the

application of the simulation theory in the development of optimal installation strategies

for a Round 3 offshore wind farm. Specifically, results from a bespoke model were used in

the planning stages of the project to assess whether an additional installation vessel was

required to complete construction within a period of 245 days. The results suggested

that a secondary vessel was essential and that a charter duration of 120 days was

required to achieve this objective. Based on the financial implications of the resulting

indicative costs—calculated using assumed charter rates—and project durations, the

analysis showed that the selection of the turbine installation vessel that resulted in

the lowest indicative cost would lead to a saving of £6m in comparison to the most

expensive scenario.

Convergence testing of the simulation outputs has revealed that obtaining a sufficiently

extensive metocean data-set is critical for ensuring consistency and confidence in the

results. For the specific project outlined in this chapter, it has been shown that the

mean and standard deviation of project duration results are significantly more sensitive

to the number of metocean years used as an input to the model than the number

of Monte Carlo iterations that are performed for each year. Furthermore, for this

particular simulation model, a minimum of 1,000 simulations is recommended to achieve

an acceptable convergence in the mean and standard deviation of output results.

A graphical output referred to as a progress plot has been proposed. These graphs

combine an alternative representation of a horizontal boxplot for consecutive mile-

stone completion times with a rangefinder boxplot that describes the variation in both

expected completion time and the number of milestones completed. The plots are

beneficial for scenario testing and for assessing project progress when multiple vessels

are assigned to the same task. One of the main benefits of these proposed graphical

summaries—and one of the reasons for why they became known as progress plots—is

their application in the continuous monitoring of project progress that will be discussed

in the next chapter.

The results described in this chapter represent only a small percentage of the possible

scenarios that can be assessed. Selected additional outputs and scenario tests for this

specific project were discussed qualitatively in Section 5.5. This versatility is one of
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the greatest strengths of using time-domain simulations in the planning of offshore

operations; the models, analysis methods and presentation of results can be adapted

and configured, readily and easily, to meet the particular requirements of the project.
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Chapter 6

Continuous Project Monitoring and

Progress Updates

6.1 Introduction

The previous chapter discussed the application of TDS in the planning stages of a

marine project. It is also possible to apply these methods throughout the operational

phase of these campaigns. This chapter describes how the developed simulation meth-

ods and in particular, the previously proposed progress plots can be used to provide

continuous updates on project performance and make projections using the most up-

to-date observed installation data available. An example application of how TDS were

used in this manner is described for the WTG installation phase of the offshore wind

farm described in Chapter 5. The development and application of a continuous project

monitoring methodology and associated summary report known as a weekly update are

discussed. Indicative values for the charter rates of turbine installation vessels (TIVs)

are used to quantify the financial impacts of deviations between original and updated

simulation projections. The benefit of iterative updates of model inputs based on the

analysis of observed operation duration data is assessed.

This chapter is divided into two parts. Sections 6.2 and 6.3 discuss the continuous

monitoring of project progress using TDS theory. The methodology for the generation

of these weekly updates is discussed in Section 6.2. Two example weekly update results

are then described in Section 6.3. The second part of the chapter (Sections 6.4 and

6.5) concerns the analysis of observed operation durations and the potential of using

the results of this analysis to update continuously the simulation model inputs. The

methods for analysing the operation durations at an approximate half-way stage of the

wind farm construction project are outlined in Section 6.4. Section 6.5 discusses the

results of the analysis and appraises their impact on the project outlook.

121
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6.2 Weekly Update Methodology

Chapter 5 discussed how the developed TDS models were used to assess various opera-

tion strategies before the commencement of an offshore wind farm installation project.

Vessel B was selected as the secondary WTG installation vessel and chartered for a

duration of approximately 120 days. JBA Consulting were subsequently contracted to

monitor the performance of this vessel and the baseline vessel for the entirety of the

WTG installation campaign. To facilitate this, a recurrent simulation procedure and a

summary report of results that became known as the weekly updates were developed.

Every Friday throughout the WTG installation phase the procedure consisted of the

following steps, which will be expanded in Sections 6.2.1–6.2.4;

1. The observed installation data from the previous week were collated.

2. The model inputs were updated and the new simulations were performed.

3. The TDS output data were analysed.

4. The weekly progress report and associated output files were created and dis-

tributed to the relevant personnel.

6.2.1 Collating Observed Data

Observed installation data was provided by the client on a daily basis in the form of

daily progress reports (DPRs) that describe the operations completed on a given day

by a specific vessel. The first step in the creation of the weekly progress and projection

reports was to collate this data. This involved extracting the cumulative number of

WTGs installed by each TIV over the course of the week and identifying the most recent

operation completed by each vessel. Incoming data were also examined to identify any

exceptional events and unplanned decisions or movements that deviated significantly

from the original strategies and modelling assumptions.

6.2.2 Updating and Running the Simulation Model

Each week, the simulation model was updated to reflect the cumulative number of

WTGs installed by each vessel and the most recently completed operations. The up-

dated scenario was then simulated assuming a model start date equal to the date on

which the simulation was being performed—ensuring the projections were based on the

prevailing status of the installation operations.
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6.2.3 Analysing the Updated Simulation Results

Project Summary and Deviations

In addition to the summary of the cumulative installations completed by the two TIVs,

the progress deviations between the baseline simulations and the actual installation data

were computed. The baseline simulation refers to the original simulation performed

before the beginning of the WTG phase. Deviations in the number of installations

and in the schedule—the time-difference between the end-date of the most recently

completed activity and the corresponding completion time of that activity in the base-

line simulation—were calculated. These deviations were calculated for the P5, P25,

P50, P75 and P95 percentile values of the baseline simulation results. For the schedule

deviations, linear interpolation was used to find the exact percentile value. For the

completed number of WTGs, which can only be an integer number, the value closest to

the exact percentile value was selected. In the present analysis, the number of WTGs

installed are expressed as a percentage of the total number of turbines to be constructed.

Progress Plots and Projection Ranges

A specialised version of the progress plots described in Chapter 5 were developed for the

weekly updates—in fact their use in the weekly updates is one of the primary reasons

for why they are referred to as progress plots. Progress plots for the baseline projection

are drawn in light shade. Observed installation data are plotted as individual markers

over these baseline projections. Finally, the progress plot of the prevailing projections

is added, showing the most recent simulation results starting from the current date.

The projection ranges corresponding to the rangefinder boxplots for each vessel (see

Sections 5.2.3 and 5.3.4) are also calculated and tabulated.

The deviations in vessel charter duration between the original and updated projections

are used to calculate indicative values for the deviations in projected cost. The charter

rate of 140,000 GBP/day discussed previously in Section 5.3.2 is used to obtain values

for this deviation in indicative cost parameter. Values for each TIV and the combined

total are calculated.

Gantt Charts

The TDS output data were manipulated to match the format required for inputs to

the Primavera project management software. These charts were used for short-term

project planning of the upcoming week of operations. Gantt charts were requested for

representative P50 and P90 model scenarios for each vessel.
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6.2.4 Creating and Dispatching the Weekly Progress Report

A two-page weekly progress report was created in LATEX that summarised all of the

above-mentioned output results. In addition to the summary project information, de-

viations, progress plots and projection ranges discussed above, a headline messages

section was added that described any major discussion points or anomalies in the

data. An automated procedure was developed that generated the progress plots, weekly

update report and .CSV files for the Gantt charts. The results were distributed to the

client every Friday of the installation campaign.

6.2.5 Example Weekly Update Scenarios

Two examples are given that describe representative results obtained from these weekly

update analyses. Example A relates to simulations performed after a period of 70 days

from the beginning of the WTG installation phase. This corresponded to the Baseline

Vessel commencing its third loadout activity, after having successfully completed its

first two cycles.

Example B describes the weekly update performed 98 days after the commencement

of WTG construction. This corresponds to the Baseline Vessel commencing its fifth

loadout activity. Note that in this example, Vessel B will have been operational for 6

days and is expected to be close to completing its first WTG installation. For both

of these scenarios, the resulting deviations, progress plots and updated projections are

calculated as described above.

6.3 Example Weekly Update Results

Before presenting the two weekly update examples, it is useful to revisit the results for

project duration and the percentage of WTGs allocated to each vessel for the original

simulation performed before the installation phase began. The rangefinder boxplot

results of scenario B2, first shown in Figure 5.12, are thus tabulated in Table 6.1.

The data illustrate the initially counter-intuitive result that the P5 of baseline vessel

installs (62.1%) corresponds to the P95 number installed by Vessel B (37.9%). For 95%

of the simulations, the percentage installed by Vessel B is lower than 37.9%. The 5%

of simulations greater than this value correspond to the 5% of simulations where the

baseline vessel share of installations is lower than 62.1%.

Note that these baseline values for vessel duration are used to calculate the deviations

in indicative cost. The difference between these baseline durations and the updated

projection durations are multiplied by the assumed indicative charter rate of 140,000

GBP/day to calculate the change in project cost.
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Table 6.1: Percentage share of installations and vessel duration for baseline scenario.

Baseline Vessel Vessel B

Percentile Installs (%) Duration (days) Installs (%) Duration (days)

P5 62.1 176.1 34.5 176.7
P25 65.5 182.7 34.5 183.8
P50 65.5 186.4 34.5 187.5
P75 65.5 199.1 34.5 203.6
P95 65.5 218.7 37.9 214.7

6.3.1 Example A—70 days

The resulting progress plot for the weekly update example computed after 70 days

of installation progress is shown in Figure 6.1. As mentioned previously, the progress

plot and rangefinder boxplot for the original simulation are plotted in light shade. The

observed installations and results of the latest projection are then added to the plot.

It can be seen that the observed progress tracked the P25–P75 projections for the first

three installations accurately but is offset by a large delay after this third installation.

This delay corresponds to an unexpected stoppage and failure of equipment in the

observation records of the baseline vessel. Although instances of technical downtime

(see Chapter 9) were analysed in certain scenarios in the planning stage of this project,

this particular instance was far greater than expected and accounted for in any prior

analysis. The knock-on effect of this small delay of approximately 15 days is evident

in the end dates of both installation vessels and in the allocation of the installations

between the two vessels. These updated projections are summarised in Table 6.2, along-

side the deviations between the observed data and the original simulations. Positive

deviations imply that actual progress is ahead of the original projections.

The delay after the third milestone has resulted in actual progress falling behind the

original simulation projections. Specifically, when compared to the median simulation

results, the baseline vessel has installed approximately 7% fewer turbines and has fallen

about 18 days behind schedule. Compared to the worst case simulation scenario (P5

for installs and P95 for schedule), the vessel has installed 3.4% more and is 14.3 days

ahead. Progress has fallen behind in the remaining 95% of simulation results.

The effect of this delay on the updated projections is clear. The P50 end dates have

increased from 186.4 and 187.5 days to 202.5 and 202.8 days for the baseline vessel and

Vessel B respectively. Furthermore, while the original simulations showed that there

was a 95% chance that the baseline vessel would complete 65.5% of the total WTG

installations, there is now only a 25% chance that the vessel will complete more than

this percentage. There is a 5% chance that the percentage completed will drop to 58.6%.
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Figure 6.1: Example weekly update progress plot after 70 days.

Table 6.2: Summary of deviations and updated projections for weekly update after 70 days.
Positive values for the deviation between observed data and original simulations indicates
that actual progress is ahead of projections. Positive deviations in projected indicative cost
suggest that the updated indicative cost estimates are greater than the original projections.

P5 P25 P50 P75 P95

Deviation from original simulations

Baseline Vessel
Installs (%) 3.4 -6.9 -6.9 -9.5 -13.7
Schedule (days) -28.5 -26.7 -18.1 -15.1 14.3

Updated projections

Baseline Vessel
Installs (%) 58.6 62.1 62.1 65.5 65.5
Duration (days) 184.5 193.4 202.5 227.7 260.7

Vessel B
Installs (%) 34.5 34.5 37.9 37.9 41.4
Duration (days) 187.8 195.5 202.8 207.7 215.2

Deviations in projected indicative cost (£m)

Baseline Vessel 1.18 1.50 2.25 4.00 5.88
Vessel B 1.55 1.64 2.14 0.57 0.07
Total 2.73 3.14 4.40 4.58 5.95

The corresponding increase in the proportion to be installed by Vessel B is evident in
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the rangefinder boxplot and in Table 6.2. Crucially, the P95 project end date—the latter

of the two vessel end dates—has increased from 218.7 days in the original simulations

to 260.7 days following the poor initial performance. The weekly update results after 70

days thus imply that there is a risk of the baseline vessel exceeding its previously-agreed

charter duration.

The effect of the delay after the third installation has a significant effect on projected

indicative cost. There is a 90% chance that there will be an increase in total vessel

charter cost of between £2.73m and £5.95m. The median estimate for this increase in

cost is £4.4m. This example highlights the effect that random stoppages and equipment

failures can have on project duration and cost estimates.

The P75 and P95 values for the deviation in indicative cost for Vessel B are lower than

the P50 value because of the limited charter duration of this vessel. For the baseline

results in these worst case scenarios, the second vessel has to work for the majority

of this charter duration. In other words, there is a limit to the possible increases in

duration (and thus indicative cost) for Vessel B.

Of critical importance is the discrepancy between the duration of the unexpected delay

and the change in the estimated total vessel duration and indicative project cost. The

delay was approximately 15 days in length. However, the knock-on effect of this delay

increased the P50 duration of the Baseline vessel by 16.1 days and Vessel B by 15.3

days, leading to a total increase of 31.4 days and an increase in indicative cost of

£4.4m. If the unexpected delay was simply added to the original total vessel duration,

then the increase in indicative project cost should have been approximately £2m. The

actual increase is twice this amount. The results show that an unexpected stoppage

or delay cannot simply be added to the total project duration. This is because of the

temporal variability of metocean conditions. For example, a significant delay in the

calm summer months is exacerbated by having to complete these operations during the

harsher weather typical in the winter months. This example shows how TDS models

can be used to assess the impacts of these complexities and non-linearities.

6.3.2 Example B—98 days

The progress plots, deviations and updated projections for Example B are shown in

Figure 6.2 and Table 6.3. The weekly update after 98 days shows that the baseline vessel

has improved its performance relative to its progress after its first 70 days of operation

and that the observed results show greater adherence to the original simulations results

than was the case for Example A.

The median deviations now show that the actual progress is only 4.3% behind in terms

of installations and 12.5 days behind in terms of schedule—an improvement from the
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Figure 6.2: Example weekly update progress plot after 98 days.

situation after 70 days. Furthermore, 6.9% more installations have been completed than

in the worst case simulation scenario and progress is about 15 days ahead in this case.

The improvement in progress has not been enough to offset the large delay observed

between the third and fourth installations; the median vessel end dates are still later

than the original predictions and the P50 allocation of WTGs to the baseline vessel

is still 62.1%. However, the P95 project end date has now reduced from 260.7 days in

the weekly update of Example A to 228.3 days—within the critical charter duration of

245 days for the baseline vessel. Sections 6.4 and 6.5 investigate the causes behind the

improved operational performance of the two TIVs.

The effect of the observed improvement in installation rate can also be seen in the

updated indicative cost projections. For the best case scenario (P5), the increase in

cost has dropped from £2.73m to £2.53m. Furthermore, the results suggest a dramatic

reduction in the P95 results from approximately £6m to £1m. The median deviation

in projected indicative cost is now £2.5m, falling by about £2m in comparison to

Example A projections. Additionally, the change in indicative cost for Vessel B in the

P95 scenario is negative, indicating that the upper range of projected duration and

cost of the second vessel has fallen. However, despite the significant improvement in

construction performance of the TIVs between examples A and B, the effect of the

large delay after the third installation still has a notable effect on the total indicative

cost of the project.
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Table 6.3: Summary of deviations and updated projections for weekly update after 98 days.
Positive values for the deviation between observed data and original simulations indicates
that actual progress is ahead of projections. Positive deviations in projected indicative cost
suggest that the updated indicative cost estimates are greater than the original projections.

P5 P25 P50 P75 P95

Deviation from original simulation

Baseline Vessel
Installs (%) 6.9 -1.7 -4.3 -6.9 -6.9
Schedule (days) -25.8 -17.4 -12.5 -7.1 15.3

Updated projections

Baseline Vessel
Installs (%) 62.1 62.1 62.1 65.5 65.5
Duration (days) 183.2 188.0 194.5 212.4 228.3

Vessel B
Installs (%) 34.5 34.5 37.9 37.9 37.9
Duration (days) 187.7 194.5 197.2 204.2 211.9

Deviations in projected indicative cost (£m)

Baseline Vessel 0.99 0.74 1.13 1.86 1.34
Vessel B 1.54 1.50 1.36 0.08 -0.39
Total 2.53 2.24 2.49 1.95 0.95

6.3.3 Weekly Update Discussion

The early identification of significant discrepancies between estimated and observed

results can inform planning decisions and strategies. For example, the significant ran-

dom delay observed after the installation of the third WTG introduced the risk of

the project end date exceeding the previously-agreed charter duration. Without the

improvement in installation rate evident after this delay, it may have been necessary

to charter a third TIV to ensure that construction was completed within the allocated

time period. Conversely, if observed progress had been better than expected, it may

have been possible to reduce the charter duration of one or both of the TIVs. The

weekly update results show that the continuous use of TDS models throughout the

operational phase of an offshore project can support these key strategic decisions.

A significant advantage of TDS and the weekly update progress reports documented

here is the speed with which the simulations and subsequent analysis could be per-

formed. In the case of this particular project, the DPRs arrived between approximately

approximately 08:00 and 09:00 each morning. Every Friday, it was possible to collate the

data, update the models, run the simulations, analyse the simulation results, generate

the weekly report and provide it to the client in time for their weekly progress meeting

at midday each Friday. This enabled key decision makers and project managers to
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use the latest projections—typically made 1–2 hours previously—to inform operational

decisions for the days and week ahead.

One of the major benefits of using TDS for continuous project monitoring is the ability

to identify significant deviations from baseline projections. For instance, Example A

suggests that the occurrence of a large random stoppage in installation progress could

have increased indicative cost estimates by up to £6m. Subsequent weekly update

simulations account for the effect of this random stoppage. However, the results also

highlight the need for incorporating an accurate model of the probability of occurrence

and duration of these instances of random downtime. The incorporation of these random

stoppages in the TDS model is discussed in Chapter 9.

In a similar manner, the performance of the baseline vessel highlighted in the weekly

updates between 70 and 98 days was greater than expected and necessitated a de-

tailed analysis of the recorded operation durations to date. The updated projection of

Figure 6.1 showed that there was only a 5% chance that 27.6% of the total number

of milestones could be completed by a duration of 100 days. The observed installation

data 28 days later in Example B show that this percentage of total milestones was com-

pleted within approximately 95 days. Actual installation progress has outperformed the

best-case simulation scenario. The weekly updates helped to identify this discrepancy.

Sections 6.4 and 6.5 describe the analysis of the available operation duration recorded

up to this point in an attempt to diagnose this issue.

6.4 Operation Duration Analysis Methodology

Operation duration data for the 98 days were extracted from all the DPRs obtained

during this period. The mean of each operation was calculated and compared with the

operation durations used in the original simulation model. Mean values for the Loadout

and Install WTG activities were also obtained, by summing the mean durations of the

individual operations that comprise each activity.

The input operation data to the simulation was then updated to reflect any discrep-

ancies between the observed durations and those assumed originally in the model.

Two simulations were performed to assess the effect of the updated operation duration

input data; one for the entire installation campaign, starting at a duration of 0 days,

and a second using the start-date and installation status of Example B, 98 days after

the commencement of the construction campaign. These simulation results were then

compared to the equivalent simulations performed with the original operation durations.
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6.5 Example Operation Duration Analysis Results

6.5.1 Operation Duration Comparisons

The results of the operation duration analysis are summarised in Table 6.4, which shows

the ratio of the updated operation durations to the original operation durations. Results

for the transit operations are not shown because these differences were negligible and

these operation durations were not updated. Although there is significant variation in

the individual operations that comprise the loadout activity, the ratio for the total

activity duration is nearly 1, highlighting the accuracy of the initial estimates for

the time to loadout a set of WTGs. Conversely, the observed time to install a single

WTG, based on the first 98 days of operation, was just under 70% of the duration

specified in the original model. Considering that this activity is repeated on numerous

occasions throughout the construction campaign, this over-estimate of activity duration

is expected to have a significant effect on the simulation results. This discrepancy

explains how the observed installation progress between days 70 and 98 was able to

surpass the best case simulation projection made in Example A.

Table 6.4: Ratios of observed operation durations after 98 days to the original operation
durations used in the simulation.

Loadout Install WTG

Operation Ratio Operation Ratio

Positioning 0.415 Between locations 0.690
Backloading 1.823 Jack-up 0.445
Loading blades 1.165 Preparing to install 0.800
Loading towers 0.552 Installing tower 0.776
Loading nacelles 1.679 Installing nacelle 1.295
Seafastening 0.822 Installing blade 1 0.858

Installing blade 2 0.629
Installing blade 3 0.665
Finishing installation 10.92
Jack-down 0.205

Activity total 1.014 Activity total 0.687

The results show that the duration of the finishing installation operation—which in-

cludes tasks such as the seafastening of equipment—is approximately 11 times greater

than originally specified. In this case, the original estimate of operation duration was

15 minutes. As such, the large ratio of 10.92 only corresponds to an observed operation

duration of approximately 2.7 hours. The results for the jack-up and jack-down opera-

tions of 0.445 and 0.205 are the lowest ratios obtained for the install WTG activity and

are expected to have a much greater impact on the simulation results, due to the strict
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metocean thresholds associated with these two tasks—they are two of the operations

most affected by the tidal current.

6.5.2 Updated Simulation Results

The observed mean operation durations were incorporated within an updated simula-

tion model. Figure 6.3 shows a comparison of the resulting progress plots of the original

and updated operation durations for the two starting points described previously.
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Figure 6.3: Comparison of projections with original and updated input operation durations.
Top panel shows simulations at a starting point of 0 days. Bottom panel shows simulations
at a starting point of 98 days.

The top panel shows the results of the two simulation models performed on the start
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date of the construction phase. The bottom panel shows the results starting on day 98

and with 27.6% of the WTG installations complete. Note that the top panel is entirely

academic. The orange progress plot showing the results when the updated operation

duration are used as an input could not have been obtained without the observed

installation data that are also shown on the plot. This figure is included to show an

additional comparison of the two input data-sets that were used and to highlight how

well the actual progress fits within the two sets of model predictions.

The updated operation durations are seen to have a significant impact on projected

progress in both panels of Figure 6.3. Both comparisons show a much steeper progress

gradient and a subsequent reduction in expected end date for the simulations with

the updated input operation data. For the simulations with a starting point based

on Example B, the median project duration has fallen from 204 days to 182 days—

a reduction of 10.8%. For both simulation starting points, the P50 project end date

calculated using the new operation data is earlier than the P5 simulation result for the

original operation durations.

6.5.3 Updated Simulation Discussion

The example described above shows the impact that slight discrepancies in model inputs

can have on the simulation results. This in turn highlights the advantage of continually

monitoring project progress and the improvements in progress projections that can be

achieved through iterative updating of simulation input data. The analysis presented

here showed that the mean time for installing a single wind turbine was approximately

30% lower than initially specified. Updating the input operation data to reflect these

changes resulted in the median project duration decreasing by 10.8%. If operational

data similar to the DPRs described previously are available during the operational

phase of a project, the task duration input data can be continuously updated based

on the analysis of the incoming performance data. As the project progresses, more

operational data will be obtained and analysed, leading to more precise estimates of

mean operation duration values. This will in turn lead to more accurate and reliable

simulation models and predictions of future progress.

This thesis is divided into three main parts; Before, During and After. The next chapter

of this thesis, Chapter 7, is the first “after” chapter and discusses the operation duration

analysis completed after the entire wind farm installation project had been completed.

This analysis is an extension of the operation duration analysis discussed above that

was performed approximately half-way through the installation process. The accuracy

of representative operation durations that can be obtained is dependent on the length

of the available data-set. Logically, the best representation will be obtained after the

completion of the entire project. However, while the narrative of this thesis focuses on
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the application of TDS before, during and after an entire offshore project, it is equally

plausible to apply the theory before, during and after a specific date or key project

milestone. The example in this chapter has described how TDS can be applied in this

cyclical manner, throughout the entire offshore project.

The updated operational data have emphasised the importance of the accurate incor-

poration of random failures and stoppages in the simulation model. Despite the use of

an extensive metocean data-set and representative operation duration input data, the

top panel of Figure 6.3 shows that some of the observed installation data points are

quite close to the P95 simulation results for the updated operation duration progress

plot. This implies that the occurrence of large instances of random stoppages are not

adequately represented in the simulations. Chapter 9 investigates the occurrence of

these instances of technical downtime and discusses their implementation in the TDS

model.

The present analysis has only compared the mean durations of operations and activities.

The relationship between operation duration and the number of times that operation is

repeated has not been assessed in this chapter. However, this relationship and specifi-

cally the concept of learning curves is assessed in Chapter 7. As will be shown, learning

is an important factor that affects the duration of successive offshore operations. This

learning effect will have contributed somewhat to the discrepancy between the observed

mean operation durations and those specified for the original simulations. It also pro-

vides an additional explanation as to how the observed installation progress between

days 70 and 98 was able to surpass the best case simulation projection made in Example

A. The reader is referred to Chapter 7 for the detailed investigation of this learning

phenomenon.

6.6 Conclusions

Time-domain simulations performed during the operational phase of a marine renewable

energy project enable the continuous monitoring of project performance and the early

identification of significant deviations from baseline projections and planned schedules

of work. These deviations can be random or systematic in nature and examples of both

errors are evident in the application to the offshore wind farm construction project

discussed above. The early identification of similar discrepancies between estimated and

observed results can be used to inform planning decisions and strategies throughout an

offshore project.

The large instance of random downtime that occurred in the case study is an example

of the stochastic deviations that can arise. This particular discrepancy delayed the
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median charter end dates of both vessels by approximately 16 days and increased the

median indicative cost of the project by £4.4m. In the worst case scenario, the increase

in indicative cost was approximately £6m. The analysis identified that there can be a

discrepancies between unexpected stoppages or delays and the knock-on effect on total

project duration and cost, due to the temporal variability of metocean conditions. In

this case, a delay of about 15 days increased the total vessel duration of the project by

31.4 days. TDS models can be used to assess the sensitivity of the project to random

failures or delays. Such unexpected stoppages and their effect on estimates of project

duration are accounted for through the continuous updating of the starting point of

recurrent simulations. However, the analysis has identified that the quantification of

these random interruptions and their implementation within the TDS models need to

be addressed.

The inadequate representation of operation durations in the simulation model is an

example of the systematic errors that continuous project monitoring can help to iden-

tify. In this case, realised installation progress outperforming the best-case simulation

projections led to the detailed analysis of recorded operation durations. The subsequent

results showed significant discrepancies between the initial estimates and the mean

values of operation duration observed in the first half of the offshore project. Most

significantly, the mean duration required to complete a single WTG installation was 30%

lower than initially specified. Implementing the updated operation input data in the

model had a significant impact on the simulation results—there was a 10.8% reduction

in the remaining project duration—and ensured a more accurate representation of

the activities being simulated. This highlights the potential improvements in progress

projections that can be achieved through iterative updating of simulation input data.

If a source of operational data is available, applying TDS in this cyclical manner will

yield continual improvements in the accuracy and reliability of simulation models and

subsequent predictions of future progress.

The speed with which the simulations and subsequent analysis can be performed is

one of the major advantages of TDS methods. In the industrial application discussed

in this chapter, the entire process—from receipt of the most recent observations to

the distribution of the weekly update results—took between 3–4 hours. This meant

that critical planning and operational decisions were informed by simulation results

modelled on the immediate status of operations. The newly-proposed progress plots

proved well-suited for summarising progress to date, deviations from planned schedules

and the results of the latest simulations each week.
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Chapter 7

Operation Duration Analysis

7.1 Introduction

The three main input data requirements for time-domain Monte Carlo simulations of

offshore projects are (i) an appropriate metocean time-series data-set, (ii) representa-

tive estimates of operation durations and (iii) the metocean thresholds for each opera-

tion. Input specifications for the rate of occurrence and duration of random, technical

failures and unplanned events are also important but these are addressed separately

in Chapter 9. Accurately incorporating the variability of operation durations is an

essential requirement for producing realistic predictions of the range of likely project

duration. This chapter aims to quantify the stochastic nature of task durations through

the analysis of recorded operation data that have been obtained for a Round 3 offshore

wind farm installation project. Specifically, the presence of a learning curve is assessed

for each operation in the observed data-set and the effect of this learning phenomenon

on the representation of operation durations within TDS is investigated. It should be

noted that this chapter focuses on the analysis and quantification of the learning factor

using observed operation data. Chapter 8 describes the implementation of a subsequent

learning module within the time-domain simulation software and Chapter 10 assesses

the impacts of incorporating this module.

Section 7.2 describes the theoretical background to the methods used throughout the

analysis. Firstly, standard methods for fitting parametric probability distributions to

sample data are described. Subsequently, the fundamental learning curve theory is

introduced. Non-linear curve fitting methods are also discussed, before an applicable

stochastic learning curve model is explained. A description of the raw data is given in

Section 7.3, touching on the data extraction methods that were developed and some

of the issues with this process. A preliminary assessment of the presence of learning

is presented in Section 7.4 before the methodology for the full analysis is outlined in

Section 7.5. Finally, the results of the full operation duration analysis are presented and

discussed in Section 7.6, before the main conclusions are summarised in Section 7.7.

139
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7.2 Theoretical Background

7.2.1 Distribution Fitting

Fitting parametric probability distributions to sample data is a common task in statis-

tics that involves the selection of a specific probability distribution to model the random

variable in question, as well as the identification of the parameter estimates for the cho-

sen distribution. Model selection typically requires an iterative process of distribution

choice, parameter estimation and quality of fit assessment. There are several common

procedures for performing this iterative analysis, such as those outlined by Delignette-

Muller et al. (2015) and Wilks (2011). The distribution fitting methodology in this

chapter closely follows that recommended by Delignette-Muller et al. (2015).

Candidate Distributions

Typically, it is necessary to select a pre-defined list of appropriate candidate distri-

butions before performing the parametric fitting procedure. If possible, the choice of

candidate distributions should be guided by the knowledge of the stochastic process

governing the modelled variable (Delignette-Muller et al., 2015). Here, the modelled

variable is the duration required to complete an offshore operation. As such, probability

distributions must be left-bounded at a minimum value of 0 to be considered viable. In

other words, the probability of negative instances of operation duration must be 0 for

any appropriate candidate distribution.

Furthermore, the physical limits of the personnel performing the offshore operations, as

well as the machinery and equipment employed, suggest that a minimum duration (> 0)

exists for each operation. To account for this, the selected distributions are expressed

in both their variable location and fixed location forms. The location parameter, a,

of a distribution has the effect of translating, or shifting, the probability distribution

function on the horizontal axis (Natrella, 2010; Forbes et al., 2011). The fixed location

form of the distribution fixes this location parameter to be equal to 0. The variable

location form allows this parameter to vary (Jones et al., 2001–).

It is common for a skewed, or asymmetric, distribution to have one tail of the distri-

bution considerably longer or drawn out relative to the other tail (Natrella, 2010). A

right-skewed distribution is one in which the tail is on the right side. Skewed data often

occur due to lower or upper bounds on the data. Specifically, data that have a lower

bound, such as the operation duration variable in this analysis, are typically skewed

right (Natrella, 2010). It makes sense that a theoretical distribution chosen to model

the amount of time taken to complete an offshore operation, typically requiring the use

of some form of machinery, would have a minimum possible value (i.e. be left-bounded)
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and a non-negligible probability of durations greater than the most common value (i.e.

be a right-skewed distribution).

As such, appropriate candidate distributions for modelling the duration of offshore

operations had to be left-bounded at a minimum value; eliminate the possibility of

returning negative operation durations and have a skewed right-hand tail. Seven of the

most common distributions that satisfied these assumptions were chosen and are shown

in Table 7.1. For each of the selected distributions, there is a variable location form and

a corresponding fixed location specified with the suffix -a0. Consequently, a total of 14

probability distributions are tested throughout this analysis.

Table 7.1: Selected candidate distributions for the analysis of operation durations.

Variable location Fixed location Reference(s)

Burr Burr-a0 Burr (1942)
Exponential Exponential-a0 See statistics text e.g. Forbes et al. (2011)
Gamma Gamma-a0 See statistics text e.g. Forbes et al. (2011)
Loglogistic Loglogistic-a0 Jones et al. (2001–); Burr (1942)
Lognormal Lognormal-a0 See statistics text e.g. Forbes et al. (2011)
Pareto Pareto-a0 See statistics text e.g. Forbes et al. (2011)
Weibull Weibull-a0 See statistics text e.g. Forbes et al. (2011)

The Burr distribution refers to the Burr Type XII distribution, which is the twelfth

cumulative distribution function (CDF) given by Burr (1942). The Loglogistic distri-

bution is referred to as the Fisk distribution in economics and is a special case of the

Burr Type XII distribution where the second shape parameter, k, is equal to 1 (Jones

et al., 2001–). The majority of distributions listed in Table 7.1 are explained in more

detail in Chapter 8.

Maximum Likelihood Estimation

Maximum likelihood estimation (MLE) is a versatile method that is used to fit a

parametric distribution to sample data. Wilks (2011) defines the likelihood as a measure

of “the degree to which the data support particular values of the parameter(s)”. A

Bayesian interpretation defines the likelihood of a parameter value, given a data sample,

as the probability of the data given the parameter value. The likelihood function is

notationally similar to the probability density function (PDF) and the two are easily

confused. For clarity, the PDF describes a function of the data for fixed values of the

parameters, while the likelihood is a function of the unknown parameters for fixed

values of the data (Wilks, 2011).
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The likelihood function, L(θ), is defined by Delignette-Muller et al. (2015) as:

L(θ) =
N∏
j=1

f(xj |θ) , (7.1)

where xj are the N observations of variable X, θ refers to the distribution parameters

and f(.|θ) is the density function of the parametric distribution.

MLE seeks to identify the values of the distribution parameters that maximise the

likelihood function. As such, the maximum likelihood estimators are the most probable

values for the parameters, given the observed data (Wilks, 2011). It is generally more

convenient to work with the logarithm of the likelihood function (termed the log-

likelihood function) because this simplifies the mathematical differentiation procedures.

Because the logarithm is a strictly increasing function, the same parameters will max-

imise both the likelihood and the log-likelihood functions (Wilks, 2011). The analysis

in this chapter follows the convention of maximising the log-likelihood function.

There are many methods for maximising the log-likelihood function for a given data

sample and probability distribution. The Nelder-Mead method (Nelder and Mead,

1965), also referred to as the downhill simplex method, is used throughout the analysis.

The method is described in detail by Nelder and Mead (1965) and Wright (1996).

Graphical Assessment of Goodness-of-fit

Goodness-of-fit refers to the closeness of fitted distributions to underlying data. Graph-

ical assessments of goodness-of-fit are important, even if formal goodness-of-fit tests

are to be conducted, for verifying that the theoretical probability model provides

an adequate description of the sample data. As opposed to a formal test, graphical

comparisons of the fitted distribution and the data can help identify the specific nature

of the problem and diagnose where and how the theoretical representation may be

inadequate (Wilks, 2011).

Throughout this chapter, four classical goodness-of-fit plots are used (see, e.g. Cullen

and Frey, 1999; Delignette-Muller et al., 2015):

� a density plot comparing the histogram of the empirical distribution and the

density function of the fitted distribution,

� a cumulative distribution function (CDF) of both the empirical distribution and

the fitted distribution,

� a Q-Q plot of empirical quantiles against the theoretical quantiles and

� a P-P plot of the empirical distribution function at each data point against the

fitted distribution function.
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The density plot and the CDF plot are considered the classical goodness-of-fit plots.

The Q-Q and P-P plots are complementary and can be very important in some cases;

the Q-Q plot emphasises the lack-of-fit at the distribution tails, while the P-P plot

emphasises the lack-of-fit at the centre of the distribution (Delignette-Muller et al.,

2015). The units of the x-axes of the density and CDF plots and both axes of the Q-Q

plot are the same as the units of the data, which in this case is hours. All other axes

are probabilities. The units of the axes for all the Q-Q plots presented in this thesis are

the same. An example of the four goodness-of-fit plots is given in Figure 7.1.
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Figure 7.1: Fitted Burr-a0 distribution for an example operation. The units of the x-axes
of the density and CDF plots and both axes of the Q-Q plot are hours.

This figure shows a Burr-a0 distribution fitted to the recorded duration data (in hours)

for one of the operations in the installation campaign of the wind farm that is being

analysed. The goodness-of-fit plot indicates an adequate fit for this operation. The

density plot and the CDF plot show good agreement and the data follow the lines of
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unit slope in the Q-Q and P-P plots. The example also shows the tendency of the Q-Q

plot to accentuate the tails of the distribution.

For the CDF, Q-Q and P-P plots, the probability plotting position has been defined

using Filliben’s estimate (Filliben, 1975). For the histograms in the density plots, the

bin width (or number of bins) is calculated as the maximum of the Sturges (Sturges,

1926; Scott, 2009) and Freedman-Diaconis (Freedman and Diaconis, 1981) estimators.

This compromise avoids the conservative behaviour of Freedman-Diaconis and Sturges

for small and large data-sets respectively. Both the probability plotting position and

histogram bin width selection methods have been chosen as they are the recommended

methods within the SciPy Python package (Jones et al., 2001–), which has been used

throughout the data analysis.

Goodness-of-fit Statistics

Formal, quantitative tests of goodness-of-fit statistics are proposed, in addition to the

graphical methods described previously, to compare fitted distributions (Wilks, 2011;

Delignette-Muller et al., 2015). These goodness-of-fit statistics measure the distance

between the fitted parametric distribution and the empirical distribution. Typically,

three goodness-of-fit statistics are considered; Cramer-von Mises, Kolmogorov-Smirnov

and Anderson-Darling (Delignette-Muller et al., 2015).

The Anderson-Darling statistic is particularly suited for risk assessment as it equally

emphasises the centre and tails of a distribution (Delignette-Muller et al., 2015). For this

reason, and as it is commonly used to select the best distribution among selected candi-

dates (Delignette-Muller et al., 2015), the Anderson-Darling statistic is used throughout

the analysis. The computational formula for the Anderson-Darling statistic, as defined

by D’Agostino and Stephens (1986) and Delignette-Muller et al. (2015), is

A.D. = −N − 1

N

N∑
j=1

(2j − 1) log(Fj (1− FN+1−j)) , (7.2)

where A.D. is the Anderson-Darling statistic, xj are the N observations of the contin-

uous variable X arranged in ascending order and Fj , F (xj) is the fitted cumulative

distribution function evaluated at xj .

The Anderson-Darling statistic, as well as the other two statistics mentioned above, do

not consider the number of parameters of the distribution—termed the complexity of a

model. Thus, these statistics can systematically promote the selection of more complex

distributions (Delignette-Muller et al., 2015). Two classical penalty-based criteria based

on the log-likelihood are recommended to account for these issues; the Akaike infor-

mation criterion (AIC) (Akaike, 1974) and the Bayesian information criterion (BIC)
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(Schwarz, 1978). These two criteria are not considered in the main methodology due

to the importance of the location parameter mentioned previously. The AIC and BIC

could continually promote the fixed location form of a distribution over the variable

location form. This would contradict the previously-stated hypothesis regarding the

nature of the random variable being analysed—that there is a minimum duration (> 0)

associated with each operation.

However, the penalty-based criteria are useful when comparing two distinct distribu-

tions. For one of the example results discussed in Section 7.6.1, the BIC was used as an

additional comparative measure. The formula for the BIC given by Schwarz (1978) is

BIC = log(N)K − 2 log(L̂) , (7.3)

where L̂ is the maximised value of the likelihood function, K is the number of param-

eters estimated by the model and N is the number of observations in the sample.

7.2.2 Learning Curves

Background

A learning curve (LC) is a mathematical description of workers’ performance in repet-

itive tasks. As repetitions take place, workers tend to demand less time to perform

tasks due to familiarity with the operation and tools, and because shortcuts to task

execution are found (see, e.g. Anzanello and Fogliatto, 2011). Alternatively, the LC

can be defined as a model of the continual reduction in unit cost or labour that occurs

with increasing cumulative production (Vigil and Sarper, 1994). Crucially, the theory

assumes that the task is identical for each repetition that takes place.

The theory of the LC was first proposed by Wright (1936) who observed how the as-

sembly cost of aeroplanes decreased as repetitions were performed. Wright (1936) noted

that as the quantity of units manufactured doubles, the number of labour hours required

to produce a single unit decreases at a constant rate (Yelle, 1979). Wright’s model, also

referred to as the “Log-linear Model”, the related Crawford model (Crawford, 1944) and

their modifications are still the most tested and validated models available today (see,

e.g. Yelle, 1979; Tilindis and Kleiza, 2017).
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Classical Learning Curve Models

There is a subtle but significant difference between the two classical LC models. Wright’s

model describes the reduction in cumulative average duration, while Crawford’s model

describes the reduction in unit duration. As such, both models have the common

mathematical form (see Anzanello and Fogliatto, 2011);

y = C1s
m , (7.4)

where C1 is the time to produce the first unit and m is the slope of the LC on a log-scale

(−1 < m < 0), referred to as the learning slope. In Wright’s model, y is the average

time of all units produced up to the sth unit. In Crawford’s model, y is the processing

time of the sth unit (see Tilindis and Kleiza, 2017).

As outlined by Anzanello and Fogliatto (2011), Wright’s model can be modified to

obtain an equation for the total time to produce s units, yt, as follows:

yt = ys ,

=⇒ yt = C1s
m+1 . (7.5)

Subsequently, a transformation equation for the unit duration based on Wright’s cu-

mulative model, yu, can be obtained:

yu = yt − yt−1 ,
=⇒ yu = C1s

m+1 − C1(s− 1)m+1 ,

=⇒ yu = C1[s
m+1 − (s− 1)m+1] . (7.6)

In log-linear form, Equation 7.4 can be written as

ln y = lnC1 +m ln s . (7.7)

The learning rate, φ, is the percentage of y labour hours required to produce unit 2s.

Thus, letting

ys1 = C1s1
m ,

ys2 = C1s2
m

and

s2 = 2s1 ,
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the learning rate, φ, becomes

φ =
ys2
ys1

,

φ =

(
s2
s1

)m
,

φ = 2m . (7.8)

Subsequently,

m =
lnφ

ln 2
. (7.9)

As cumulative production doubles, the time required to produce a unit is reduced by a

constant percentage, known as the progress ratio, L, defined as

L = 1− φ . (7.10)

Modified Models

Several modifications to the basic mathematical form exist. A thorough description of

the most important of these modifications is given by Anzanello and Fogliatto (2011).

The most common log-linear model modifications are summarised here.

The Stanford-B model incorporates workers’ prior experience, represented by the pa-

rameter B:

y = C1(s+B)m . (7.11)

DeJong’s model incorporates an ‘incompressibility factor’, M , that describes the frac-

tion of the task executed by machinery (0 ≤M ≤ 1):

y = C1[M + (1−M)sm] . (7.12)

The S-curve model resulted from merging DeJong’s and Stanford-B’s models:

y = C1[M + (1−M)(s+B)m] . (7.13)

Finally, the Plateau model introduces an additive constant C that describes the steady-

state performance:

y = C + C1s
m . (7.14)
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Figure 7.2 gives a comparison of the LC profiles generated by the models described

above. This figure has been generated using the following parameters;

C1 = 200 ,

m = −0.5 ,

B = 5 ,

M = 0.1

and

C = 50 .
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Figure 7.2: Example comparison of log-linear learning curve models.

The linear relationship of Wright’s model is evident when plotted on a log-scale as
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in the bottom panel of Figure 7.2. The effect of prior experience can be seen in the

early stages of learning for the Stanford-B model. The benefits of previous experience

diminish as more units are produced and the Stanford-B model approximates Wright’s

model.

The important concept of steady-state performance can be seen in the Plateau model.

For offshore operations, it is clear that there will be some minimum time to complete

each operation. In the DeJong model, it is assumed that no learning will take place for

the portion of the task that is executed by machinery. As such, the DeJong model, as

well as the related S-Curve model, also ‘plateau’ at a level corresponding to the fraction

of work performed by machinery.

7.2.3 Learning Curve Model Fitting

Non-linear Least Squares

When fitting a LC to observed data, the LC parameters can be estimated through

a non-linear optimization routine aimed at minimising the sum of squares error (see,

e.g. Anzanello and Fogliatto, 2011). Linear regression is a method for analysing data

described by models which are linear in the parameters, whereas non-linear regression

refers to models that are non-linear in the parameters (see, e.g. Bates and Watts, 1988).

The standard non-linear regression model, as defined by Ruckstuhl (2010); Bates and

Watts (1988); Baty et al. (2015), is of the form

yi = f(xi; θv) + ε , ε ∼ N (0, σ2) , (7.15)

with yi as the response (dependent variable), xi as the independent variable, θv as the

vector of model parameters characterising the relationship between x and y through the

expectation function f and ε as the residual error term that is assumed to be normally

distributed, centred around 0 and with unknown variance (σ2). Non-linear models are

defined as those where at least one of the derivatives of the expectation function, with

respect to the parameters, depends on at least one of the parameters (Bates and Watts,

1988).

As is the case for linear regression calculations, the principle of least squares is applied

to get estimates for the parameters θv. The sum of the squared deviations

S(θv) :=
N∑
i=1

(yi − ηi(θv))2 , with ηi(θv) := f(xi; θv) , (7.16)

should thus be minimised (Ruckstuhl, 2010; Bates and Watts, 1988; Baty et al., 2015).

Replacing f(xi; θv) with ηi(θv) is reasonable as [xi, yi] is given by the measurement
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or observation of the data and only the parameters (θv) remain to be determined

(Ruckstuhl, 2010).

For non-linear regression, the minimum of the squared sum S(θv), and thus the estima-

tion, cannot be given explicitly as in linear regression; iterative numeric procedures are

required (Ruckstuhl, 2010). The Gauss-Newton Algorithm (see Ruckstuhl, 2010; Bates

and Watts, 1988) is used throughout this analysis when performing the non-linear

optimisation. This iterative algorithm uses a linear approximation to the expectation

function to improve continually an initial guess for the parameters (Bates and Watts,

1988).

The initial parameter estimates are crucial for non-linear regression and need to be rel-

atively close to the unknown parameters to avoid convergence problems (Anzanello and

Fogliatto, 2011; Baty et al., 2015). For the basic LC model, as defined in Equation 7.4, a

sensible estimate for C1 is the recorded operation duration of the first unit. Furthermore,

the slope of the LC is defined on −1 < m < 0 and thus an initial parameter of -0.5

is reasonable. By selecting the initial parameter estimates as above, convergence issues

should be avoided.

Assessment of LC Model Fit

Several authors have made use of the coefficient of determination (R2) as an assessment

of a non-linear model’s goodness-of-fit (see Anzanello and Fogliatto, 2011). However,

it has long been known within the mathematical literature that the coefficient of

determination is an inadequate measure for the goodness-of-fit in non-linear models

(Spiess and Neumeyer, 2010).

Instead, the goodness-of-fit is assessed as recommended by Baty et al. (2015). Firstly,

the fit is inspected graphically by comparing the fitted curve to the raw data and

ensuring the results are sensible. As well as the best-fit curve, confidence bands and

prediction bands are calculated and shown on the plot. Confidence bands indicate the

location of the ideal function values and thus the expected learning curve parameters.

Prediction bands indicate the regions where future observations will lie. In other words,

prediction bands take into account not only the uncertainty of the true position of the

LC, as for the confidence bands, but also the random error, or scatter, around the

curve (Ruckstuhl, 2010). The methods for approximating the confidence and prediction

bands outlined by Bates and Watts (1988) and Ruckstuhl (2010) are used in this

analysis. Examples of confidence and prediction bands can be found throughout the

results section of this chapter (e.g. see Figure 7.8).

In addition to the graphical methods above, 95% t-based confidence intervals (CIs)

are calculated for the parameters. The related t-test statistics for evaluating the null
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hypothesis that the model parameters are equal to 0, along with the corresponding p

values calculated using a t-distribution as a reference, are also used to assess the LC

model fit. More information on these methods is provided by, for example, Baty et al.

(2015). For the basic LC model defined in Equation 7.4, the slope of the LC, m, is of

primary concern. If the hypothesis test fails to reject the null hypothesis that m = 0,

this shows that at the assumed significance level, α, the test fails to show that there is

learning present.

7.2.4 Stochastic Learning Curve Model

Contrary to the majority of LC models, in which learning is treated as a deterministic

phenomenon, Globerson and Gold (1997) address the stochastic nature of learning and

treat it as a random process. It is argued that ignoring the randomness of the process

will introduce significant errors to the model. This section summarises the methods

proposed by Globerson and Gold (1997), who developed analytic expressions for the

expected value, variance, coefficient of variation and probability density function (PDF)

of the process as a function of the task repetition number.

Statistical Analysis of the LC Model

The analysis starts with the following equation:

ys = y1s
m , (7.17)

which is identical in form to Equation 7.4, but is stochastic in nature. The factor y1 is

defined as the performance time of the first iteration. Performance time is equivalent

to the previously mentioned unit duration, y, in Crawford’s LC model. Here, it is a

random variable with:

E[y1] = the expected value of y1 ,

σy1
2 = Var[y1] = the variance of y1 ,

CVy1 =
σy1

E[y1]
= the coefficient of variation of y1 and

fy1(y1) = the PDF of y1 .
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The parameter ys is defined as the performance time of the sth iteration and is a random

variable with:

E[ys] = the expected value of ys ,

σys
2 = Var[ys] = the variance of ys ,

CVys =
σys

E[ys]
= the coefficient of variation of ys and

fys(ys) = the PDF of ys .

As before, s refers to the unit number and the parameter m is the slope of the LC,

also referred to as the parameter of reduction. Although the parameter of reduction is a

random variable, Globerson and Gold (1997) assume that it is deterministic. This does

not eliminate the deviation of the parameter, but merely adds it to the deviation of ys.

Using Equation 7.17 together with standard rules for the expected value and variance

of a random variable, it follows that:

E[ys] = E[y1s
m] = E[y1]s

m (7.18)

and

Var[ys] = Var[y1s
m] = Var[y1](s

m)2 (7.19)

or

σys
2 = σy1

2(s2m) . (7.20)

Consequently,

σys = σy1s
m . (7.21)

The coefficient of variation of ys, CVys , is found by substituting Equation 7.18 and

Equation 7.21 into the definition for the coefficient of variation:

CVys =
σys

E[ys]
=

σy1s
m

E[y1]sm
=

σy1
E[y1]

= CVy1 . (7.22)

This means that the coefficient of variation around the learning curve is constant and

equal to the coefficient of variation around the first cycle (Globerson and Gold, 1997).
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Probability Density Function Expression

The derivation of an exact expression for the PDF as a function of the number of

repetitions of a task requires the use of a fundamental theorem proposed by Papoulis

(1965). When a function g(x) is performed on a random variable x, the random variable

y = g(x) is created. The random variable y is defined indirectly by the random variable

x and the function g(x). In this case, the aim is to find the probability density function

of y, given the probability density function of x and the function g(x).

The fundamental theorem given by Papoulis (1965) states that if the nr real roots of

y = g(x) are denoted by xi,

y = g(xi) , i = 1 , 2 , . . . , nr , (7.23)

it follows that

fy(y) =

n∑
i=1

fx(xi)

|g′(xi)|
, (7.24)

where g′(x) is the derivative of g(x).

Relating the above theorem to Equation 7.17,

ys = g(y1) = y1s
m , (7.25)

fys(ys) ≡ fy(y) and (7.26)

fy1(.) ≡ fx(.) . (7.27)

As Equation 7.17 has a single solution for every ys, it can be re-written as

y1 = yss
−m . (7.28)

The derivative of g(y1) is

g′(y1) = sm . (7.29)

Using the fundamental theorem from Equation 7.24:

fys(ys) =
fy1(yss

−m)

sm
= s−mfy1(yss

−m) . (7.30)

As described by Globerson and Gold (1997), Equation 7.30 implies that as the factor

s−m increases (as more repetitions are completed), the probability density function

“shrinks” on the duration axis and its peak reaches a higher value on the probability

axis.
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Validation for Normal Distribution

A useful validation of the theory applied to data that follow a normal distribution, as

summarised by Globerson and Gold (1997), is described in full here. Assuming that y1

is normally distributed with y1 ∼ N (µ1, σ1
2), then the PDF of y1, as defined by Wilks

(2011), is

fy1(y1) =
1√

2πσ12
e
−

(y1 − µ1)2
2σ12 . (7.31)

Equation 7.30 can be used to obtain an expression for the PDF of ys:

fys(ys) = s−m
1√

2πσ12
e
−

(yss
−m − µ1)2
2σ12 , (7.32)

=
1√

2πσ12s2m
e
−

(ys
2s−2m − 2yss

−mµ1 + µ1
2)

2σ12 . (7.33)

Focusing on the exponent of the exponential:

(ys
2s−2m − 2yss

−mµ1 + µ1
2)

2σ12
≡ (ys

2s−2m − 2yss
−mµ1 + µ1

2)

2σ12
s2m

s2m
,

=
ys

2 − 2yss
mµ1 + µ1

2s2m

2σ12s2m
,

=
(ys − smµ1)2

2σ12s2m
.

Returning to Equation 7.33,

fys(ys) =
1√

2πσ12s2m
e
−

(ys − smµ1)2
2σ12s2m . (7.34)

Comparing Equation 7.34 to the PDF of ys with ys ∼ N (µs, σs
2),

fys(ys) =
1√

2πσs2
e
−

(ys − µs)2
2σs2 , (7.35)

it is clear that

σs
2 = σ1

2s2m , (7.36)

σs = σ1s
m (7.37)
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and

µs = µ1s
m . (7.38)

Therefore, the “nature” of the PDF remains the same over the entire learning curve.

Figure 7.3 shows an example of the stochastic LC model for a normal distribution with

µ1 = 3.5, σ1 = 1 and m = −0.5, for the first four iterations of a task (s = [1, 2, 3, 4]).

These figures show that as the number of repetitions of the task increase, both the mean

and variance of the distribution decrease. In other words, the average task duration

decreases and the probability of that duration occurring increases—the PDF becomes

‘peakier’.
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Figure 7.3: Stochastic LC example for normal distribution.

Estimating Statistical Characteristics

To use the method described in the previous section, the statistical characteristics

(the PDF, expected value, variance and coefficient of variation) need to be estimated.

Globerson and Gold (1997) outline two methods to do this; one for the multiple data-set

model and one for the single data-set model.

Multiple data-sets are generated when several organisational systems, or individuals,

work independently on identical products. These means there are multiple data-points
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available for each repetition of the task. In this case, standard probability distribution

fitting methods can be used to obtain the distribution for each repetition.

However, organisations and individuals often work on just a single item at a time, mean-

ing that there is only one data point for each repetition (Globerson and Gold, 1997).

As this is the case for the analysis of offshore operation durations, the transformation

methods outlined by Globerson and Gold (1997) are required.

To derive the transformation equation used by Globerson and Gold (1997), first assume

that a LC has been fitted to sample data and the parameter m has been determined.

Then consider the recorded data point at operation iteration n that has a duration of

yn. Assuming that the learning slope m remains constant, it follows that

yn = Cn→1n
m ,

where Cn→1 is the duration of the nth unit transformed to s = 1.

Subsequently, the operation duration transformed to an arbitrary cycle number κ is

yn→κ = Cn→1κ
m =

yn
nm

κm ,

=⇒ yn→κ = yn

(κ
n

)m
, n = 1 , 2 , . . . , N , (7.39)

where N is the number of recorded data points.

The transformation method is illustrated in Figure 7.4. The mathematical manipula-

tions generate a distribution around the κth cycle, which enables the calculation of the

required statistical parameters.

There are four steps required to estimate the statistical characteristics for the single

data-set model:

1. Determine the learning slope parameter m using standard curve fitting techniques

on the recorded data points. (Note that Globerson and Gold (1997) propose the

use of linear regression applied to the logarithm of the data for this step. Ruck-

stuhl (2010) warns that a linearisation of the regression function can introduce

significant errors to the model. Consequently, the analysis in this chapter applies

the non-linear least square methods described previously.)

2. Transform the data to an arbitrary cycle number, κ, using Equation 7.39.

3. Determine the expected value, variance and coefficient of variation of the trans-

formed data-set.

4. Fit a suitable probability density function to the transformed data-set. This step

is performed using the methods described in Section 7.2.1.

Once these statistical characteristics have been estimated for the chosen κ, the charac-
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Figure 7.4: Transformation method for operation durations.

teristics for any arbitrary unit number, s, can be calculated.

7.3 Description of Raw Data

7.3.1 Data Extraction

Raw operation duration data was provided in the form of daily progress reports (DPRs)

that detail the exact durations of the offshore operations completed on a given day by

a specific vessel. Each DPR was provided in Extensible Markup Language (XML) file

format. A Python script was created that extracted the operation duration data from

each XML file and saved the data from all the reports to a single Comma Separated

Variable (CSV) file. This process of retrieving data from unstructured data sources for

further data processing is known as data extraction.

7.3.2 Miscellaneous Operations

Ambiguity in the categorisation of certain operations in the recorded data-set compli-

cated the data collation process. These miscellaneous operations were either categorised

under alternative headings or excluded entirely in particular DPRs. For example, there

is evidence for four operations that were completed at the end of the loadout activity

and before departing port for the wind farm; “Preparing to leave”, “Sea-fastening”,
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“Fix cranes” and “Recover gangway”. Sometimes all four of these operation durations

were recorded, on other occasions the “Preparing to leave” operation was omitted

and frequently “Preparing to leave” was the only operation that was recorded. To

ensure consistency in the analysis, these four operations were combined into a single

“Prepare to leave” operation by summing any of the four operations that were recorded

in the DPRs. The summation of these operations introduces an averaging effect and

ignores the variation within the individual operations that would ideally be categorised

independently. However, this categorisation was considered the most appropriate for

analysing the incomplete data-sets of the individual operations.

Several groups of operations had to be combined in this manner but each of these

operations was similar to the example described above, with durations in the order of

1–2 hours. All of the critical operations, such as the installation of blades, towers and

nacelles, were appropriately documented. As such, any errors introduced by combining

groups of operations in this manner are expected to be insignificant.

To avoid this problem in the future, a systematic procedure for recording operation

duration data is recommended. Enforcing a strict electronic template, for example a

simple spreadsheet in which the operations are selected from a drop-down menu rather

than manually typed, removes the possibility of ambiguity in the documentation of

operation duration data and ensures accurate measurements. These changes would

significantly improve the efficiency, ease and accuracy of the analysis methods discussed

in this chapter, thus enhancing the representation of operation durations in time-domain

simulations and the ensuing results.

Presumably, such a system already exists in industry—a similar procedure may even

have been configured for the construction project in question—and the problem is

with the implementation and enforcement of the recording processes. In this case, the

recommendation is to focus on the adoption of these systems by the relevant personnel,

through a combination of improved training, communication and regulation.

7.3.3 Categorising Data

The data in the DPRs included weather downtime and technical downtime. Weather

downtime refers to any periods where operations had to be paused as a result of

the limiting metocean conditions. Technical downtime, which is discussed in detail

in Chapter 9, refers to any unexpected downtime that arises independently of the

metocean conditions. For example, this includes downtime due to the mechanical failure

of a critical piece of installation equipment or machinery. The operational components

of the data were extracted by omitting instances of weather downtime and technical

downtime.
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Two vessels were used in the installation campaign. Although these vessels were iden-

tical in terms of their performance characteristics, it was important to categorise the

data by vessel because the LC theory pertains to the personnel carrying out the task

and assumes that there is no learning phenomenon associated with machinery.

To reflect the representation of the project in the simulation software, the tasks in

the DPRs were categorised into major activities, each comprising several operations.

Namely, the installation campaign was categorised into loadout, transit and WTG

installation activities.

The sample size for each operation in the data-set can vary. The first reason for this

is due to the uneven split of the total number of WTGs between the two vessels; the

Baseline vessel (see Chapter 5) installed 62.1% of the total number of turbines and

Vessel B installed the remainder. Secondly, the DPRs recorded the majority of loadout

operations as the time to load all of the turbine components for that particular cycle.

For example, the time taken to load the nacelles on to the vessel was categorised as

the total time to load all 8 nacelles as opposed to the individual loading time for

each nacelle. Thirdly, the cyclical nature of the installation procedure naturally affects

the number of repetitions of certain operations. For example, the vessels only have to

perform several loadout operations but numerous WTG installations. It was possible

to group each data-set into one of two categories based on its sample size; none of

the operations had sample sizes between 9 and 38. Thus, a small sample was defined

that includes all data-sets with less than 9 observed durations and a large sample was

defined that includes data-sets with 38 or more samples.

7.4 Preliminary Analysis

Initial investigations analysed the duration data of the WTG installation activity to

assess the presence of learning. The total time to complete each WTG was obtained by

summing the durations of the individual operations that comprise this activity. Best-fit

LCs for both the unit duration (Crawford’s model) and the cumulative average duration

(Wright’s model) of this activity were obtained using the Gauss-Newton Algorithm

discussed in Section 7.2.3 to perform the non-linear curve fitting.

The results are shown in Figure 7.5 for the Baseline vessel and in Figure 7.6 for Vessel

B. Data have been normalised with respect to the maximum installation time recorded

for each vessel. Both figures clearly show that learning is an observable phenomenon

for the WTG installation activity. The stochastic nature of the learning phenomenon

is evident in both figures, particularly the scatter of the unit duration data around the

Crawford model fits, but the general trend is clear.
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Figure 7.5: Learning curves for WTG installation activity comparing the raw data to both
Crawford’s and Wright’s best-fit models—Baseline vessel.
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Figure 7.6: Learning curves for WTG installation activity comparing the raw data to both
Crawford’s and Wright’s best-fit models—Vessel B.
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For Vessel B, the normalised installation duration for WTG number 12 is significantly

removed from the LC model fit. Further investigation of the raw data identified that

the durations required to jack-up and jack-down at this specific turbine were far greater

than the average time to complete these operations. This may have been because the

sea floor conditions at this particular turbine made it more difficult to achieve a secure

connection during jacking operations. The prevailing tidal current conditions when

performing these operations may have also affected the activity durations.

Grouping the individual operations that comprise an activity introduces an averaging

effect to the analysis. The extremely good fit between the cumulative average duration

data and the best-fit Wright LC for both vessels, particularly the baseline vessel, is

explained by the fact that it is the cumulative average of data that has essentially

already been averaged through this grouping process. Nonetheless, the preliminary

results demonstrate clear evidence of learning and encourage further investigation.

7.5 Methodology

The main objective of this chapter is to determine the presence of learning and identify

the most appropriate probability distribution for each operation in the observed data-

set. The flowchart in Figure 7.7 summarises the key components of the methodology.

7.5.1 Non-linear Curve Fitting and Determination of Learning

The Crawford model, relating to the unit duration of the raw data, is used in the

analysis because this is the method recommended in the stochastic LC model proposed

by Globerson and Gold (1997). As per the analysis of the WTG installation activi-

ties in Section 7.4, the Gauss-Newton Algorithm was used to perform the non-linear

curve fitting. The assessment of the LC model fits follows the methods described in

Section 7.2.3 and is summarised again here.

The fit is assessed graphically by comparing the fitted curve to the raw data, as well as

showing the 95% confidence and prediction bands. The t-based 95% confidence intervals

for the LC parameters are also calculated. Crucially, the t-test statistics for evaluating

the null hypothesis that the learning slope m is equal to 0 and the corresponding p

value are calculated. The presence of learning is assessed at a standard significance

level of α = 0.05, although this selection is addressed in more detail in Section 7.6.1.
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Figure 7.7: Methodology for the analysis of operation durations and determination of
learning. The dashed components of the flow chart represent the individual methods
contained within the ‘determine learning’ and ‘select best fit’ decision blocks, as discussed
in Sections 7.5.1 and 7.5.2 respectively.
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7.5.2 Probability Distribution Fitting and Best-fit Selection

The probability distribution fitting procedure is only performed for the large sample

(N > 38) because the small sample size (N < 9) was inadequate for the application

of the distribution fitting methods. The method of maximum likelihood estimation

(MLE), as described in Section 7.2.1, was used to fit the probability distributions to

the sample data for each of the 14 candidate distributions.

The first step required in selecting the most appropriate probability distribution was to

remove any of the fitted distributions that resulted in a negative location parameter. As

discussed previously, any distribution that can produce negative operation durations

should be omitted. For each of the fitted distributions in this new subset of results, the

Anderson-Darling statistic was calculated using Equation 7.2. The three distributions

that resulted in the lowest values for the Anderson-Darling statistic were selected for

further investigation. A graphical assessment of these three fitted distributions was

performed, using the classical goodness-of-fit plots described in Section 7.2.1, to verify

that the theoretical distribution was adequate.

7.5.3 Monte Carlo Validation

The final method for determining the best-fit distribution consisted of a Monte Carlo

validation procedure. The purpose of this procedure was to ensure that both the centre

and spread of the results obtained using the sampling methods were appropriate. Monte

Carlo simulations were performed that replicated the manner in which the probability

distributions and learning curves for operation durations are implemented within the

time-domain simulation software. These implementation methods are discussed in detail

in Chapter 8.

For each operation, a single Monte Carlo run consisted of sampling from the appropriate

distribution N times, where N is the sample size of recorded observations for that

particular operation. The minimum, median, mean and maximum duration of the

simulated values were recorded for each Monte Carlo run, as well as the sum of

all the durations in the sample. 10,000 Monte Carlo simulations were performed for

each operation. The 2.5th percentile (P2.5), median (P50), mean and 97.5th percentile

(P97.5) values of the 10,000 samples were then calculated for each of the five statistical

categories. Finally, the ratios between the Monte Carlo results and the minimum,

median, mean, maximum and total values of the observed data were calculated. The

ratios of Monte Carlo results to observed data should be roughly equal to 1 for the

mean and P50 categories, the P2.5 ratios should be less than 1 and the P97.5 ratios

should be greater than 1.

When there is no significant evidence for learning, the probability distribution remains
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stationary throughout the analysis. When learning is present and the analysis is being

performed on the transformed operation duration data, the probability distribution

varies with each successive sample—see Section 7.2.4 for further details. Consequently,

for data-sets with no evidence of learning, the Monte Carlo validation simulations assess

the accuracy and suitability of the fitted distributions. For the case when there is

evidence for learning, the Monte Carlo validation simulations assess both the stochastic

LC model and the chosen theoretical probability distribution. The methods for sampling

from the varying probability distribution governed by Equation 7.30 are described in

Chapter 8.

As shown in Figure 7.7, the Anderson-Darling statistic is the most critical test for

assessing the distribution fit. The graphical assessment and the Monte Carlo simulations

are used to identify significant anomalies. If any discrepancies arise from these two

secondary methods, the distribution with the next lowest Anderson-Darling score is

assessed. This process continues until all three assessment methods are passed.

7.6 Results and Discussion

The results section is divided into three parts. Section 7.6.1 describes three example

operations from the WTG installation activity; one operation for which the presence

of learning was most evident, one which clearly showed a lack of learning and a

third example where the results were inconclusive. This section also describes several

interesting anomalies highlighted by the analysis. Section 7.6.2 provides a more general

overview and summary of the results. Section 7.6.3 describes two further applications

of the proposed operation duration analysis methods.

7.6.1 Selected Results

Summaries of the numerical results for both the non-linear curve fitting and the prob-

ability distribution fitting are shown in Tables 7.2 and 7.3 respectively for the three

selected examples. These are referenced throughout Section 7.6.1.

Example 1—Installing Blade 1

The first example describes the operation, completed by the baseline vessel, in which

the first blade of each WTG is lifted from the jack-up vessel and connected to the

previously installed nacelle. This operation was selected to demonstrate the presence of

learning because it resulted in the lowest p value (3.68E-20) for the learning slope of all

the operations in the WTG installation activity data-set. Figure 7.8 shows the graphical

comparison of the raw unit duration data and the best-fit LC for this operation.
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Table 7.2: Summary of curve fitting results for the learning slope parameter m.

Example 1 Example 2 Example 3
Installing Blade 1 Between Locations Installing Blade 2

Estimate -0.356 -0.096 -0.081
Standard Error 0.028 0.137 0.0398
t-statistic -12.892 -0.703 -2.036
p value 3.68E-20 0.486 0.048
Lower CI (2.5%) -0.411 -0.374 -0.162
Upper CI (97.5%) -0.301 0.181 -0.0007

Table 7.3: Calculated values for the Anderson-Darling statistic (AD) for the three most
suitable fitted distributions for each example operation.

Example 1 Example 2 Example 3
Installing Blade 1 Between Locations Installing Blade 2

Distribution AD Distribution AD Distribution AD

Burr-a0 0.189 Burr 0.267 Burr-a0 0.657
Loglogistic-a0 0.245 Burr-a0 0.286 Weibull-a0 0.658
Gamma-a0 0.280 Loglogistic 0.413 Loglogistic-a0 1.278

Despite the scatter of the raw data around the best-fit LC, there is clear evidence of

learning for this particular operation. The estimate for the learning slope of -0.356,

corresponding to a learning rate of approximately 78%, is the second steepest result in

the WTG installation activity data-set1. This means that every time the cumulative

number of installed WTGs doubles, the time required to install the first blade of each

turbine reduces by about 22%. The first WTG installation duration of 10.7 hours is

approximately four times greater than the mean of the entire sample (2.64 hours). The

figure also shows that the learning has plateaued at some stage between WTG numbers

30 and 40.

There is an indication of heteroscedasticity in the data shown in Figure 7.8. For the

first 20 WTG installations, the data-points tend to fall below the best-fit LC. For

WTG numbers greater than about 55, there is a tendency for the data to fall above the

trend line. There are many potential reasons for these differences in variability around

the Crawford model fit. The effect of prevailing metocean conditions is of particular

interest. Although recorded instances of weather downtime have been omitted from

the observed operation durations, the metocean conditions experienced at the time of

operating can still impact the duration. The present analysis does not take account

of the metocean conditions experienced and this may explain some of the variations

1. The steepest result in the data-set, for the jacking-down operation for Vessel B, corresponded to a
learning slope of -0.37288 and a learning rate of 77%.
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Figure 7.8: Graphical assessment of LC fit for Example 1.

evident in Figure 7.8. Future work should normalise the observed operation durations

with respect to the prevailing wind, wave and tidal current conditions. This might

explain some of the larger variations around the underlying learning trend in the data.

Several of the outliers in Figure 7.8 can also be explained by the prevailing weather

conditions, reinforcing the need to perform the normalisation process mentioned above.

For instance, the two outliers below the 95% prediction band for installation numbers

2 and 6 correspond to operations that were performed in very low wind speeds; 0 m/s

and 4 m/s respectively. Conversely, two of the installations that lie above the prediction

band, for WTG numbers 4 and 69, experienced weather conditions that were very close

to the limiting threshold for crane operations. The additional remarks section of the

DPR for installation number 69 stated that the prevailing wind speeds were “right on

the limit”.

Unlike the other outliers, the reason for the particularly large duration of the first

installation was unrelated to the prevailing weather conditions. In this case, there

was a prolonged spell of technical downtime (see Chapter 9) immediately prior to the

operation which neccessitated additional tasks to be completed for the installation of

this first blade. These additional tasks were not required for any other iterations of this

task and were perhaps categorised incorrectly as being components of this operation.

As shown in Table 7.2, the statistical fitting results for the learning slope corroborate

the graphical assessment. The narrow confidence interval (CI) shows a 95% chance that
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m is between -0.411 and -0.301. Most importantly, the p value is essentially equal to 0,

implying the null hypothesis that the learning slope is equal to zero can be rejected. In

other words, the null hypothesis that there is no learning is rejected.

As there is significant evidence for learning, the raw data were transformed to the 1st

cycle using the fitted value for m and Equation 7.39. Table 7.3 shows that the three

distributions that resulted in the lowest calculated values for the Anderson-Darling

statistic were the Burr-a0, Loglogistic-a0 and Gamma-a0 distributions. The comparison

of the fitted distributions to the transformed data-set is shown in Figure 7.9.
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Figure 7.9: Goodness-of-fit plot for transformed data and fitted distributions for Example
1—data in hours.

Figure 7.9 shows that all three of the distributions are an excellent fit for the trans-

formed values of operation duration. It is difficult to compare the distributions graphi-

cally, such is their proximity to the raw data and each other. However the main purpose

of these goodness-of-fit plots is to compare potential candidate distributions. This makes
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it easier to identify the most suitable distribution. In this case, the fitted Burr-a0

distribution is marginally more accurate for the tails of the distribution, as emphasised

by the Q-Q plot.

The results of the Monte Carlo validation procedure for the Burr-a0 distribution are

shown in Table 7.4. The samples from the fitted distribution accurately capture the

centre of the observed data, as shown by ratios approximately equal to 1 for the P50 and

mean Monte Carlo categories. Further, the Monte Carlo results for the maximum and

sum of operation durations for installing the first blade are appropriately distributed

around the recorded values. However, the results show that the minimum recorded

duration for the operation is larger than the envelope of minimum values predicted by

the Monte Carlo simulations. This implies that the fitted distribution, together with

the stochastic learning curve algorithms, do not quite capture the left-hand tail of the

data. Despite this small inconsistency, the fitted Burr-a0 distribution is considered an

appropriate fit for the installation of the first blade for the baseline vessel. The absolute

differences for this minimum category of less than 1 hour are deemed acceptable on the

basis that this represents less than approximately 6% of the total time taken to complete

a single WTG installation.

Table 7.4: Monte Carlo validation results for the fitted Burr-a0 distribution in Example
1—data in hours.

Minimum Median Mean Maximum Sum

Observed data

1.42 2.3 2.635 10.7 189.7

Monte Carlo simulation results—Burr-a0

P2.5 0.537 2.162 2.525 6.126 181.807
P50 0.973 2.351 2.700 8.635 194.428
Mean 0.960 2.353 2.702 8.910 194.576
P97.5 1.313 2.561 2.891 13.461 208.146

Ratio of Monte Carlo: Observed data—Burr-a0

P2.5 0.378 0.940 0.958 0.573 0.958
P50 0.685 1.022 1.025 0.807 1.025
Mean 0.676 1.023 1.026 0.833 1.026
P97.5 0.925 1.114 1.097 1.258 1.097
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Example 2—Between Locations

The second example concerns the operation where Vessel B transits between WTGs

after completing an installation. This operation was chosen as the clearest example of

a lack of learning because it resulted in the largest p value (0.486) for the learning

slope of all the operations in the WTG installation activity data-set. The graphical

comparison of the raw unit duration data and the best-fit LC for this operation is shown

in Figure 7.10. The figure shows that even the best-fit curve is quite flat, m = −0.096,

reflecting the lack of learning evident in the raw data. Furthermore for early WTG

installations, the lower curve of the 95% confidence band is positively sloping and the

95% prediction band is predicting negative operation durations.

As with Example 1, it would be beneficial to assess the impact of normalising the data

in Example 2 with respect to the prevailing metocean conditions to see if this reduced

the variation around the mean duration for this operation.
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Figure 7.10: Graphical assessment of LC fit for Example 2.

The graphical evidence for a lack of learning is reflected in the statistical results shown

in Table 7.2. The upper value of the 95% confidence interval (CI) for the learning slope

m is positive (+0.181). As discussed in Section 7.2.2, this parameter is restricted to

−1 < m < 0 in the LC model. As such the upper 97.5% confidence interval for this

parameter indicates that the operation durations increase with unit number. Crucially,

the p value for the hypothesis test is 0.486, meaning the null hypothesis that the learning

slope is equal to zero cannot be rejected.
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The fact that this transiting operation shows no evidence for learning can be seen as

a validation of the analysis. For short transits between WTG locations, it is plausible

that not much learning is possible. This task is constrained by the physical limits of the

vessel and by the required transiting distance. In fact, there is a legitimate argument

that this particular operation should not have been included in the learning analysis

because there are minor variations in the transit distances between each turbine. This

means that the tasks being analysed are not identical, invalidating one of the major

assumptions of the LC theory. Future work could investigate if normalising the transit

duration with respect to the distance travelled affects the LC analysis. The varying

distances between turbine locations might also explain the outlier evident for the 10th

iteration of this operation.
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Figure 7.11: Goodness-of-fit plot for raw data and fitted distributions for Example 2—data
in hours.

As there is no learning for this operation, the candidate probability distributions are
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fitted to the raw data. Table 7.3 shows that the Burr, Burr-a0 and Loglogistic distri-

butions resulted in the lowest calculated values for the Anderson-Darling statistic.

The comparison of the fitted distributions to the raw data-set is shown in Figure 7.11.

Each of the four plots suggest that the Burr, Burr-a0 and Loglogistic distributions

are adequate fits for this operation, despite the slight discrepancy at durations of

approximately 2 hours. There is also quite a significant discrepancy at the uppermost

quantile, as shown in the Q-Q plot. This discrepancy is lowest for the Burr distribution.

The results of the Monte Carlo validation procedure for the Burr distribution are shown

in Table 7.5. Once again, the results show that the samples from the fitted distribution

capture accurately the centre of the observed data, as shown by ratios approximately

equal to 1 for the P50 and mean Monte Carlo results. In contrast to the results

for Example 1, the Monte Carlo simulations show that the fitted Burr distribution

accurately captures the spread around the recorded minimum value for this operation.

The only area of concern is the fact that the P97.5 value for the maximum duration

from the Monte Carlo simulations is nearly 5 times greater than the observed maximum.

However, the fact that the P97.5 ratio for the sum of all durations is only 1.715 suggests

that this large maximum value does not have too significant an impact on the total

time spent on this operation over the entire project.

Table 7.5: Monte Carlo validation results for the fitted Burr distribution in Example 2—
data in hours.

Minimum Median Mean Maximum Sum

Observed data

0.58 1.03 1.426 7.12 54.18

Monte Carlo simulation results—Burr

P2.5 0.450 0.933 1.113 2.404 42.285
P50 0.603 1.064 1.413 5.854 53.692
Mean 0.600 1.073 1.516 9.554 57.616
P97.5 0.730 1.267 2.445 35.097 92.903

Ratio of Monte Carlo: Observed data—Burr

P2.5 0.775 0.906 0.780 0.338 0.780
P50 1.040 1.033 0.991 0.822 0.991
Mean 1.034 1.041 1.063 1.342 1.063
P97.5 1.259 1.230 1.715 4.929 1.715
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Example 3—Installing Blade 2

The third and final example concerns the installation of the second blade of each

WTG by Vessel B. This operation was chosen as a less conclusive example because the

calculated p value for the learning slope was 0.048, the closest to the chosen significance

level of 0.05 in the data-set. The graphical comparison of the raw data and the fitted

LC is shown in Figure 7.12. This figure highlights the fact that the estimated learning

slope is quite small; the curve is quite flat.
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Figure 7.12: Graphical assessment of LC fit for Example 3.

There are two points below the 95% prediction band that are significantly smaller than

the mean operation duration. The second of these outliers, for WTG number 29, may

be explained by the fact that that this operation was interrupted by an instance of

technical downtime. The durations that were logged for this particular operation were

categorised as 10 minutes of performing the task, followed by 50 minutes of technical

downtime and a final 10 minutes of operation time. The random stoppage may have

led to errors in the recording of this operation. There is no obvious explanation for

the first outlier for installation number 14. The prevailing weather conditions were not

particularly benign—the wind speeds were recorded as 10 m/s. The only abnormal

characteristic of this particular data-point is that the operation took place around

midnight. This meant that the operation duration data were split across two separate

DPRs which, in a similar manner to the outlier for WTG number 29, may have led to

an incorrect record of this particular operation. Though neither of these outliers can be

explained by the impact of the prevailing weather, it would still be beneficial to assess
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the effect of metocean conditions on the other operation duration data-points.

The p value for the learning slope of 0.048 implies the null hypothesis that the learning

slope is equal to 0 can be rejected, but a selection of the other graphical and numerical

results can be interpreted differently. For example, the lower curve of the 95% confidence

band is slightly upward sloping for the first few WTG installations. Furthermore, the

upper value of the 95% confidence interval of -0.0007, as shown in Table 7.2, indicates

negligible learning—this learning slope corresponds to a learning rate of 99.95%.

In the WTG installation activity data-set, there were 4 operations that resulted in

p values of between 0.01 and 0.05. Each of these operations were completed by Ves-

sel B, indicating that the smaller sample size for the second vessel may affect the

determination of learning. More importantly, the lower curves of the 95% confidence

bands were positively sloping at early WTG installations for 3 of these 4 operations.

Additionally, the upper values of the 95% confidence intervals for the learning slope

were all greater than -0.008 for the same 3 operations, indicating negligible learning.

These results suggest that a significance level of 0.01 may have been appropriate for

the determination of learning.

Nevertheless, the hypothesis test at a significance level of 0.05 was selected as the

critical test of determining the presence of learning. Consequently, the raw data were

transformed to the first cycle using Equation 7.39 and the candidate probability dis-

tributions were fitted to this transformed data-set. The calculated Anderson-Darling

results show that the most appropriate distributions are the Burr-a0, Weibull-a0 and

Loglogistic-a0 distributions.

The goodness-of-fit plots comparing the three selected distributions to the transformed

data for Example 3 are shown in Figure 7.13. The figure, corroborating the statistical

goodness-of-fit results, shows that the third choice Loglogistic-a0 distribution should be

disregarded. The CDF and Q-Q plots show a significant discrepancy at the right-hand

tail of this distribution that is not evident for the other two distributions.

Interestingly, the fitted Burr-a0 and Weibull-a0 distributions look identical in Fig-

ure 7.13. The Burr distribution approaches the Weibull distribution as the second

shape parameter k →∞ (Tadikamalla, 1980; Rodriguez, 1977). The fitted distribution

parameters for the two models in Table 7.6 show that k ≈ 1, 000 for the Burr-a0

distribution, explaining why these fitted distributions are so similar. The BIC scores

for the two fitted distributions were calculated and these are also shown in Table 7.6.

As expected, the BIC score for the Weibull-a0 is lower, due to the fact that it has

one less model parameter than the Burr-a0 distribution and they both produce similar

maximum log-likelihood values.
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Figure 7.13: Goodness-of-fit plot for transformed data and fitted distributions for Example
3—data in hours.

Table 7.6: Fitted distribution parameters and goodness-of-fit statistics for the Monte Carlo
validation results for the Burr-a0 and Weibull-a0 distributions in Example 3.

Burr-a0 Weibull-a0

Location parameter (a) 0 0
Scale parameter (b) 7.090 1.730
Shape parameter 1 (c) 4.897 4.892
Shape parameter 2 (k) 999.464 -
Anderson-Darling statistic 0.657 0.658
Bayesian information criterion (BIC) 52.475 48.682
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Table 7.7: Monte Carlo validation results for the fitted Burr-a0 and Weibull-a0 distributions
in Example 3—data in hours.

Minimum Median Mean Maximum Sum

Observed data

0.33 1.325 1.263 1.92 55.57

Monte Carlo simulation results—Burr-a0

P2.5 0.299 1.157 1.175 1.699 51.701
P50 0.582 1.268 1.263 1.932 55.557
Mean 0.575 1.268 1.263 1.950 55.556
P97.5 0.816 1.378 1.350 2.302 59.379

Ratio of Monte Carlo: Observed data—Burr-a0

P2.5 0.906 0.874 0.930 0.885 0.930
P50 1.763 0.957 1.000 1.006 1.000
Mean 1.743 0.957 1.000 1.016 1.000
P97.5 2.472 1.040 1.069 1.199 1.069

Monte Carlo simulation results—Weibull-a0

P2.5 0.296 1.158 1.173 1.696 51.622
P50 0.580 1.268 1.262 1.929 55.522
Mean 0.574 1.267 1.262 1.949 55.516
P97.5 0.818 1.375 1.349 2.315 59.346

Ratio of Monte Carlo: Observed data—Weibull-a0

P2.5 0.897 0.874 0.929 0.883 0.929
P50 1.758 0.957 0.999 1.005 0.999
Mean 1.740 0.956 0.999 1.015 0.999
P97.5 2.479 1.038 1.068 1.206 1.068

The Monte Carlo validation results for both distributions are shown in Table 7.7.

As expected, the results for both distributions are very similar. The only remarkable

results, common to both distributions, are the ratios for the mean and P50 values for

the minimum duration category, which are all approximately 1.75. These slightly high

values imply that the fitted distributions routinely predict marginally larger minimum

duration values for this operation. This phenomenon is somewhat understandable, as

Figure 7.13 shows that none of the fitted distributions model adequately the left-hand

tail of the transformed data. Still, both distributions are considered adequate because

the deviation in the absolute values are minimal. Each of the three distribution fitting

assessment methods show that the Burr-a0 and Weibull-a0 distributions are viable

candidates for this operation. Based on the additional scores from the BIC calculations,

the Weibull-a0 is selected as the most representative parametric model.
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Further Investigation of Blade Installation Operations

Surprisingly, the results from Examples 1 and 3 show significant evidence of learning for

the installation of the first turbine blade for the baseline vessel, but the determination

of learning for the installation of the second blade by Vessel B was inconclusive. Further

investigation of this unusual phenomenon revealed that at a significance level of 0.05,

there was evidence of learning for the installation of the first and third blades for

both vessels but no evidence of learning for the installation of the second blade for the

baseline vessel. Crucially, for this second vessel with a larger sample size, the hypothesis

test clearly indicated no learning with a p value of 0.178.

As mentioned previously, the DPRs categorise the tasks completed on a given day into

activities comprised of several operations. There is an additional column in the DPRs

that can record short comments that provide further details on the components of

each operation. The curious discrepancy between the installation duration for the wind

turbine blades was investigated by assessing these additional comments.

The analysis showed that the operations corresponding to the installation of blades 1

and 3 included additional tasks relating to the rigging and de-rigging of the installation

equipment on the vessel—different tools are required for installing the tower, nacelle and

blades. Understandably, these rigging and de-rigging operations were unnecessary for

the second turbine blade. The analysis suggests that these rigging operations are more

susceptible to learning than the actual lifting and installation of the turbine blades. In

other words, the discrepancies in the results are attributed to the classification of the

constituent tasks of each operation, rather than any operational differences between

the installation of each blade.

Ideally, the analysis of the operation durations could have been analysed at a finer

resolution, taking into account the constituent tasks of each operation. However, the

unstructured and variable nature of the additional comments in the DPRs necessitated

this task to be completed manually for the entire data-set. Future work could focus on

this higher resolution analysis.

Reiterating the recommendation made in Section 7.3.2 for the improved structuring of

these recorded observation data, an alternative solution is to increase the resolution,

or granularity, of the recorded offshore tasks. For example, the discrepancy in blade

installation operations may have been avoided by the introduction of additional rigging

and de-rigging operations as part of the WTG installation activity.
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Stochastic LC Model Visualisation

It is useful to visualise the results using the fitted distribution parameters and learning

slope parameter. Figure 7.14 shows the variation of probability density function with

unit number for Example 1, calculated using Equation 7.30. The figure shows similar

trends to that of the theoretical plot in Figure 7.3. As more units are completed, both

the expected value and the variance decrease—the PDF becomes ‘peakier’. As expected,

the change in shape of the PDF is much more significant between units 1 and 35 than

between units 35 and 70—the mode for units 1, 35 and 70 are 7.95, 2.25 and 1.75 hours

respectively.

0 3 6 9 12 15 18 21

Operation duration (hours)

0.0

0.2

0.4

0.6

0.8

P
ro

b
ab

il
it

y
d

en
si

ty

s = 1

s = 35

s = 70

Figure 7.14: PDFs as a function of unit number for fitted Burr-a0 distribution for Example
1—2d.

The same data and trends are shown in three dimensions (3D) in Figure 7.15, which

includes a PDF for each of the WTG installations completed by the baseline vessel. This

figure is particularly useful for visualising how the stochastic LC model can be imple-

mented within the time-domain simulation software. Assuming that each operation in

the simulation model is associated with a similar plot and noting that the software has

continuous access to the current operation and WTG number, the operation duration

sampling procedure can be viewed as a simple case of cycling through the appropriate

3D plot for the given operation, selecting the appropriate PDF based on the WTG

number and randomly sampling from that distribution.

Figure 7.15 demonstrates how the stochastic learning curve method is well-suited for

representing the operation duration inputs to time-domain Monte Carlo simulations.
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Figure 7.15: PDFs as a function of unit number for fitted Burr-a0 distribution for Example
1—3d.

The method allows a probability density function to be specified for each consecutive

repetition of an operation, accounting for the presence of learning. Specifying the input

data for an operation with no learning is achieved by simply defining a single probability

distribution.

Another benefit of the described LC method is that it can be implemented regardless of

the prior knowledge of the user. If no prior data exist for related projects or if the user

only has an intuitive knowledge of the expected learning rates, then the progress ratio

L, as defined in Equation 7.10, can be specified. This intuitive parameter corresponds

to the percentage reduction in duration that can be expected when the number of units

completed doubles.

Alternatively, an experienced user with confident estimates of the statistical charac-

teristics can choose the learning rate explicitly. Thus, regardless of the accuracy and

confidence of input data, the stochastic LC model ensures a constant, statistically sound

method for the random sampling of operation durations that incorporates the crucial

learning phenomenon. Chapter 8 focusses on the implementation and evaluation of the

stochastic LC model within the ForeCoast® Marine Gamer Mode.
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Further Anomalies

Two further operations showed the same phenomenon observed in Example 3 where the

Burr and Weibull fits resulted in near-identical distributions. These two operations were

the installation of the third blade for Vessel B and the finishing installation operation for

the baseline vessel. In contrast to Example 3, the Anderson-Darling statistics favoured

the less complex Weibull model for both of these operations.

For four of the analysed operations, the ratios of Monte Carlo simulated values to

observed data for the minimum durations were greater than 1 for all four of the Monte

Carlo statistical measures, implying that the fitted distributions never sampled values

as low as the minimum observed duration. For two of these four operations—installing

the second blade for the baseline vessel and preparing to install for Vessel B—the

issues did not arise in the Monte Carlo validation for the second ranked distributions

according to the Anderson-Darling statistics, which were subsequently chosen as the

most appropriate distributions. For the other two operations—installing the third blade

for vessels 1 and 2 respectively—the same issue arose for all three of the distributions

with the lowest Anderson-Darling statistic scores. In these two cases, as in Example

3, the absolute deviations between the minimum simulated and observed data were

insignificant. Consequently, the distributions with the lowest Anderson-Darling score

were used as normal. The chosen distributions for every operation are summarised in

Section 7.6.2.

Finally, for the best-fit Loglogistic distribution for the jack-down operation for the

baseline vessel, the P97.5 ratio for the maximum durations was 11.121. The observed

maximum duration was 3.83 hours but the 97.5th percentile of the maximum durations

from the Monte Carlo simulations was 147.439 hours. This ratio was considered too high

and a duration of nearly 150 hours, considering the mean observed duration was 1.363

hours, was considered inappropriate. The problem did not arise for the distribution

with the second lowest Anderson-Darling statistic, the Lognormal distribution. The

P97.5 ratio for the maximum duration of this distribution of 3.601 was deemed more

appropriate and the Lognormal fit was subsequently chosen.

7.6.2 Results Summary

Determination of Learning

A summary of the results for the determination of learning is given in Table 7.8. For

the large sample, the majority of operations in the data-set show significant evidence

for learning, regardless of the inclusion or exclusion of transit operations. For the small

sample, the percentage of operations that showed learning is much smaller and varies

between 14.3% and 28.6%. For the combined data-set, exactly half of the operations
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showed signs of learning when the transit operations are included and this rises to

between 56.3% and 62.5% when transit operations are removed.

Table 7.8: Summary of results for the determination of learning.

Small Sample Large Sample Total

Including Transit Operations

Baseline vessel
Count of Learning Operations 2 8 10
Total Number of Operations 10 10 20
Percentage Learning Operations (%) 20.0 80.0 50.0

Vessel B
Count of Learning Operations 2 8 10
Total Number of Operations 10 10 20
Percentage Learning Operations (%) 20.0 80.0 50.0

Total
Count of Learning Operations 4 16 20
Total Number of Operations 20 20 40
Percentage Learning Operations (%) 20.0 80.0 50.0

Excluding Transit Operations

Baseline vessel
Count of Learning Operations 1 8 9
Total Number of Operations 7 9 16
Percentage Learning Operations (%) 14.3 88.9 56.3

Vessel B
Count of Learning Operations 2 8 10
Total Number of Operations 7 9 16
Percentage Learning Operations (%) 28.6 88.9 62.5

Total
Count of Learning Operations 3 16 19
Total Number of Operations 14 18 32
Percentage Learning Operations (%) 21.4 88.9 59.4

The minimum number of data-points in the large sample is 38, while the sample size

of the small data-set varies between 4 and 9. It is possible that the small sample data-

sets are not sufficiently large for the accurate quantification of learning. For example

in Figure 7.12, it is hard to detect learning based on the first 9 units. It is only with

the consideration of the 40+ data samples that the weak evidence for learning becomes

clearer.

Conversely, if clear learning is evident for an operation, the trends should be most

evident for the earliest unit numbers, as in Figure 7.8, where it is clear, even after 9

units, that the installation durations are decreasing. Consequently, it is difficult to say

whether the lack of learning for the small sample is attributed to the smaller sample size
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or that the operations in this data-set tend not to be affected by learning. Regardless,

there is more confidence in the results for the large sample.

The argument was put forward in Section 7.6.1 that it may not be appropriate to

include transit operations in the learning analysis. This is because the operations are

not identical for each repetition—the distances that need to be travelled are constantly

varying. This theory is corroborated by the fact that of the 8 transit operations in the

data-set, only 1 of these operations showed evidence for learning.

Considering the above discussion, the greatest confidence is in the results for the large

sample excluding transit operations. Of these operations, 88.9% showed significant

evidence for learning. Even if the small sample is included, the percentage of total

operations for which learning is a factor remains high at 59.4%.

Table 7.9: Comparison of learning results between vessels. The learning rate (φ) is shown
for the operations for which there is strong evidence of learning.

Baseline vessel Vessel B

p value φ (%) p value φ (%)

Small Sample

Positioning 0.686 No learning 0.734 No learning
Backloading 0.070 No learning 0.804 No learning
Loading blades 0.398 No learning 0.759 No learning
Loading towers 0.071 No learning 0.008 79
Loading nacelles 0.033 86 0.025 90
Seafastening 0.465 No learning 0.861 No learning
Departing port 0.466 No learning 0.128 No learning
Outward transit 0.007 93 0.945 No learning
Return transit 0.720 No learning 0.681 No learning
Dynamic positioning trial 0.297 No learning 0.765 No learning

Large Sample

Between locations 0.132 No learning 0.486 No learning
Jack-up 0.0006 92 0.0006 90
Preparing to install 0.0002 89 0.454 No learning
Installing tower 1.31E-06 90 8.48E-06 87
Installing nacelle 2.26E-10 87 0.034 93
Installing blade 1 3.68E-20 78 0.0002 89
Installing blade 2 0.178 No learning 0.048 95
Installing blade 3 3.29E-11 88 0.018 94
Finishing installation 3.53E-06 87 0.043 92
Jack-down 0.0003 85 0.0004 77

Because both vessels involved in the wind farm installation project were essentially

identical and completed exactly the same tasks, it is possible to compare the learning
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results of both vessels for each operation in the data-set. The results in Table 7.9 show

that in each of the large and small samples, there are only two operations with discrep-

ancies in the determination of learning. This means that of the 20 operations analysed,

only 20% of them produced alternative results for the two vessels. Additionally, one

of these four operations that shows a discrepancy is the installation of blade 2, which

could easily be classified as an operation with no learning, as described for Example

3 above. The agreement between the two vessels is particularly interesting in relation

to one of the main assumptions of the learning curve theory; that learning is a human

factor and it arises as workers become more familiar with the task they are repeating.

That only 20% of the analysed operations showed discrepancies in the determination of

learning suggest that the nature of the operation being performed also has an impact

on the presence of learning.

Probability Distribution Fitting

A summary of the selected probability distributions for the large sample, categorised

by whether the data has been transformed due to the presence of learning, is given

in Table 7.10. The results show that the Burr-a0 distribution is the most commonly

selected probability distribution for modelling both the raw data and the transformed

data. The proportions of operations represented by the Burr-a0 distribution are 56.25%,

50% and 55% for the learning, no learning and total categories respectively.

Table 7.10: Summary of the selected probability distributions for raw and transformed
data—separated fixed location and variable location forms.

Transformed Data Raw Data Total

Count Percent (%) Count Percent (%) Count Percent (%)

Burr-a0 9 56.25 2 50 11 55
Lognormal 2 12.5 0 0 2 10
Weibull-a0 2 12.5 0 0 2 10
Burr 1 6.25 1 25 2 10
Loglogistic 1 6.25 1 25 2 10
Weibull 1 6.25 0 0 1 5

Table 7.11 shows the same results but combines the fixed location and variable location

versions of each distribution, rather than keeping them separate as in Table 7.10. The

proportions of operations represented by either the Burr or Burr-a0 distributions are

thus 62.5%, 75% and 65% for the learning, no learning and total categories respec-

tively. The Weibull, Lognormal and Loglogistic distributions are the next most viable

distributions for modelling the operation duration data.
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Table 7.11: Summary of the selected probability distributions for raw and transformed
data—combined fixed location and variable location forms.

Transformed Data Raw Data Total

Count Percent (%) Count Percent (%) Count Percent (%)

Burr 10 62.5 3 75 13 65
Weibull 3 18.75 0 0 3 15
Lognormal 2 12.5 0 0 2 10
Loglogistic 1 6.25 1 25 2 10

Table 7.12 shows the three distributions that resulted in the lowest Anderson-Darling

statistics for both vessels and for each operation. The empty cells in the table correspond

to the discrepancies in the determination of learning discussed previously. The distribu-

tion that was selected in each case, which was not always the first-ranked distribution

for reasons mentioned previously, is highlighted in italics.

While the presence of learning for identical operations completed by each vessel was

shown to be comparable in the previous section, there are more discrepancies with

regard to the selection of probability distribution. There are 8 instances where com-

parative operations exist between the two vessels. Of these 8, only 1 operation resulted

in the exact same distribution—the installation of the nacelle. If the fixed location and

variable location versions of each distribution are considered equivalent, the number of

operations with the same distribution increases to 3. Further, the best-fit Weibull-a0

distribution for the installation of the third blade for Vessel B has been shown to be

identical to the fitted Burr-a0 distribution for this operation, adding another operation

that resulted in the same distribution for each vessel. Consequently, at most there is a

50% agreement for the selected probability distribution between vessels for the analysed

operations. These results are more consistent with the underlying theory that learning

is a human factor. While the previous section showed that certain operations might

be more susceptible to learning than others, the discrepancy in model selection for

identical operations suggests that the exact shape of the learning curve is dependent

on the people who perform the tasks.

The results offer a different perspective when looking at the top three distributions for

each operation. The Burr or Burr-a0 distributions are ranked first or second for 19 of

the 20 operations and ranked third in the remaining operation. This implies that the

Burr distribution can be used to represent accurately every operation in the data-set.

Furthermore, the Loglogistic or Loglogistic-a0 distributions are viable candidate models

for 16 of the 20 operations and are consistent for identical operations completed by each

vessel.
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Table 7.12: Comparison of selected probability distributions for operations completed by
each vessel. Selected distributions in italics.

Anderson-Darling rank

First Second Third

Baseline vessel

Raw data
Between locations Burr-a0 Loglogistic Loglogistic-a0
Preparing to install - - -
Installing blade 2 Burr-a0 Loglogistic Loglogistic-a0

Transformed data
Jacking up Lognormal Burr-a0 Weibull
Preparing to install Burr-a0 Burr Weibull
Installing tower Burr-a0 Burr Weibull
Installing nacelle Burr-a0 Loglogistic Loglogistic-a0
Installing blade 1 Burr-a0 Loglogistic-a0 Gamma-a0
Installing blade 2 - - -
Installing blade 3 Burr-a0 Loglogistic-a0 Weibull-a0
Finishing installation Weibull Burr-a0 Burr
Jacking down Loglogistic Lognormal Burr-a0

Vessel B

Raw data
Between locations Burr Burr-a0 Loglogistic
Preparing to install Loglogistic-a0 Burr-a0 Gamma-a0
Installing blade 2 - - -

Transformed data
Jacking up Burr-a0 Loglogistic Loglogistic-a0
Preparing to install - - -
Installing tower Loglogistic Burr-a0 Lognormal
Installing nacelle Burr-a0 Loglogistic Loglogistic-a0
Installing blade 1 Burr Loglogistic Loglogistic-a0
Installing blade 2 Burr-a0 Weibull-a0 Loglogistic-a0
Installing blade 3 Weibull-a0 Burr-a0 Loglogistic-a0
Finishing installation Burr-a0 Loglogistic Loglogistic-a0
Jacking down Burr-a0 Loglogistic Loglogistic-a0

Interestingly, 13 of the 20 selected distributions relate to the fixed location versions,

rejecting the proposition of a minimum duration greater than 0 for each operation.

The sample size for each operation may be insufficient for capturing this hypothetical

minimum value. However, the analysis also shows that there are only 5 instances where

the top 3 distributions are all fixed location versions of the distribution. In other words,

75% of the operations can be appropriately modelled by parametric distributions with

a minimum value.
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7.6.3 Further Applications

Iterative Updating of Input Data

A major benefit of the presented operation duration analysis method is the possibility of

iteratively updating the input data for ongoing projects. If progress updates, similar to

the DPRs described previously, are available during the operational phase of a project,

the task duration input data can be continuously updated based on the analysis of the

incoming performance data.

In an identical manner to the progress plots and weekly updates discussed in Chapter 6,

the operation duration analysis then becomes a cyclical simulation process. As the

project progresses, more operational data will be obtained and analysed, leading to

more accurate estimates of the operation duration probability distributions and learn-

ing parameters. This will in turn lead to more accurate and reliable simulations and

predictions of future progress.

This iterative procedure of updating the input data has been implemented successfully

for several ForeCoast® Marine projects. The example described in detail in Chapter 6

is perhaps the best demonstration of the benefits of this type of analysis. Significant

deviations between the simulations and actual performance were identified approxi-

mately halfway through the campaign. A detailed analysis of the operational data

received up to that point revealed that the original estimates of project duration slightly

overestimated the time it was taking to complete specific tasks. Specifically, the mean

duration required to complete a single WTG installation was 30% lower than initially

specified. Updating the input data for the constituent operations reduced the project

duration estimates by 10.8% and ensure a more accurate representation of the activities

being simulated for the remainder of the campaign.

Building an Operations Database

Jablonowski et al. (2011) have stated that it is possible to estimate the LC for prospec-

tive marine operations with some certainty in the cases where comparable operations

exist. Similarly, prior knowledge of the expected value and variance of the duration

of historic operations can be used to estimate the durations of similar tasks in the

future. At present it is impossible, due to the lack of adequate operational data from

comparable projects, to assess the validity of these phenomena. Future work should

focus on determining the viability of using duration and learning statistics from one

project for similar operations in a completely distinct project.

Thus, it is worthwhile to develop a database of operational characteristics using avail-

able performance data. Correctly categorising this data is of extreme importance. For

example, an offshore WTG can be installed in myriad ways, so it is essential to categorise
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the data based on criteria such as the size and type of turbine; the size and type of

installation vessel and the site conditions that include water depth, wave climate and

tidal regime.

The benefits of continually expanding this database of carefully categorised observed

operation data are twofold. Firstly, it will enable the comparison of operation dura-

tion and learning statistics between projects. On the other hand, regardless of these

comparative analysis results, the expertise obtained from developing this operational

database will undoubtedly improve the general representation of input operation data

in time-domain Monte Carlo simulations.

7.7 Conclusions

A stochastic learning curve model that treats the phenomenon of a learning curve as

a random process has been described. The model allows a probability density function

for operation duration to be defined for consecutive repetitions of an offshore operation,

assuming that there is a reduction in these durations due to this learning curve effect.

Thus, this stochastic model is well-suited for representing the operation duration inputs

to time-domain Monte Carlo simulations for offshore operations.

The stochastic learning curve theory and standard probability distribution fitting tech-

niques have been used to analyse recorded operation duration data for the construction

of a Round 3 offshore wind farm. The results show that learning is an observable

phenomenon for the majority of operations in the data-set. Specifically, of the 18 WTG

installation operations that were analysed, 16 showed evidence of learning. In other

words, learning was observed for just under 90% of recorded operations.

The effect of learning on operation duration can be significant. For the installation of

the first blade by the Baseline vessel (the operation with the second largest result for

learning slope), the learning rate was approximately 78%. This means that the time

required to complete this operation reduced by about 22% every time there was a

doubling of the cumulative number of WTGs installed.

The Burr Type XII distribution has been identified as the distribution that most

suitably models the operation duration data, regardless of the presence of learning. The

Burr distribution resulted in the best-fit distribution for 65% of the analysed operations.

Furthermore, the Burr family of distributions were ranked in the top 2 most suitable

distributions for 19 of the 20 operations that were analysed and in the top 3 for every

operation in the data-set. The Loglogistic, Weibull and Lognormal distributions were

also identified as applicable theoretical representations for modelling operation duration

data.
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It is recommended to extend the analysis discussed in this chapter by normalising the

observed operation durations with respect to the prevailing wind, wave and tidal current

conditions. This may help explain some of the larger variations around the underlying

learning trends. It might also account for some of the heteroscedasticity that can be

seen in certain results. Future work should investigate these possibilities.

The method of analysing performance data throughout the operation phase of a project

is recommended. Estimates for the expected value, variance and learning slope of the

operation data can be iteratively updated as the campaign progresses, leading to a

continual improvement of project progress predictions.

The possibility of using previously determined duration and learning statistics for

comparable operations in a prospective marine operation has been discussed. To help

evaluate the validity of this statement, the continued development of a knowledge

database of operational data using available performance data is recommended.

Finally, enforcing a systematic procedure for recording operation duration data, that

categorises the tasks comprising an offshore activity at a sufficient resolution, is recom-

mended and will help expand this operational knowledge database.





Chapter 8

Incorporating Learning in

Time-domain Simulations

8.1 Introduction

This chapter describes the implementation of the stochastic learning curve model

discussed in the previous chapter within the developed time-domain simulation soft-

ware. Specifically, the analysis attempts to expand the validation of the established

learning curve theory—which was only validated and applied explicitly to the Normal

distribution—to seven additional probability distributions. The objective is to develop

and incorporate computationally efficient, intuitive and comprehensive procedures for

the generation of random samples of operation duration that account for the learning

phenomenon. There is a focus on the performance and processing speed of the sampling

methods due to the importance of these aspects in Monte Carlo simulations.

The theoretical background is given in Section 8.2, which summarises the important

definitions for statistical distributions, describes the two proposed sampling methods for

implementing the learning curve model and introduces the additional distributions that

will be investigated. The methodology applied to each of the additional distributions is

briefly explained in Section 8.3, along with the details of the performance tests used to

analyse each new sampling method. Section 8.4 describes the validation and derivation

of the sampling methods for each of the seven distributions and summarises the results

of the performance tests. Finally, the implementation of the developed methods within

the simulation software is outlined in Section 8.5 and the conclusions are summarised

in Section 8.6.

189
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8.2 Theoretical Background

8.2.1 Statistical Distributions and Parameters

Most standard statistical distribution can be defined by a set of parameters. Although

the detailed choice of parameters that appear in a distribution function is somewhat

arbitrary, three basic parameters are typically defined (Forbes et al., 2011);

1. The location parameter, a, is the horizontal distance to the location point (usually

the lower or mid-point) of the range of the random variable.

2. The scale parameter, b, determines the scale of measurement of the probability

distribution.

3. The shape parameter, c, determines the shape of the distribution function.

Generally, the symbols a, b, and c will be used to denote the location, scale and

shape of the distribution throughout this chapter. Other symbols may be used where

alternative conventions have been established. Furthermore, statistical distributions can

have more than one shape parameter. For example, the Burr Type XII distribution (see

Section 8.4.6) is defined by a location parameter a, a scale parameter b and two shape

parameters; c and k.

8.2.2 Implementing the Stochastic Learning Curve Model

The stochastic learning curve (LC) model, proposed by Globerson and Gold (1997) and

described in Chapter 7, defines formulae for the expected value, variance and probability

density function (PDF) of a statistical distribution as a function of the task repetition

number s. To implement this model within the time-domain Monte Carlo simulation

software, additional methods are required that enable values to be sampled randomly,

and efficiently, from these varying probability distributions. This chapter investigates

two approaches; (i) a method that will be referred to as parametric sampling and (ii)

the well-known inverse transform sampling method.

Parametric Sampling

Numerous statistical software packages are available that enable random samples to be

drawn from a statistical distribution if the parameters of that distribution are known.

Thus, a straightforward implementation of the LC model is possible if equations for

the distribution parameters as a function of the task repetition number are obtained.

Globerson and Gold (1997) described the implementation for the Normal distribution,

which is defined by its location parameter µ, and its scale parameter σ, equal to the

standard deviation of the distribution (Forbes et al., 2011). The expected value of the

Normal distribution is equal to the location parameter µ and its variance is equal to
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the square of the scale parameter (σ2). Consequently, the parameters of the Normal

distribution are defined at each task repetition number by the mean and variance (see

Equation 7.37 and Equation 7.38). Globerson and Gold (1997) state that their method

is applicable for any probability distribution and outline a theoretical validation for the

Normal distribution (see Section 7.2.4).

The standardised form of a distribution has a location parameter equal to 0 and a scale

parameter equal to 1 (Natrella, 2010). Several formulae exist for converting from the

standardised form to the generalised form where alternate location and scale parameters

are specified. The formula for converting between the standardised and generalised form

of the PDF, as described by Natrella (2010); Jones et al. (2001–); Forbes et al. (2011);

Oliphant (2006), is

f(x; a , b) =
1

b
f

(
x− a
b

; 0 , 1

)
, (8.1)

where a and b are the location and scale as defined previously and f(x) is the PDF.

Crucially, the location and scale parameters affect the distribution in a known way.

As outlined by Oliphant (2006); Jones et al. (2001–), if y is a number drawn from a

distribution with PDF fy(y), then

x = by + a (8.2)

is a number drawn from a distribution with

fx(x) =
1

b
fy(y)

(
x− a
b

)
. (8.3)

Equation 7.30, describing the PDF as a function of the task repetition number in the

stochastic LC model, can be re-written as

fs(x; as , bs) = s−m f1
(
xs−m; a1 , b1

)
, (8.4)

where fs and f1 are the PDFs of the sth and 1st iterations respectively; s is the

task repetition number; m is the learning slope; as and bs are the location and scale

parameters of the sth unit and a1 and b1 are the location and scale parameters for the

1st unit. The shape parameter(s) are not included in the formula but are represented

within the PDFs.

Combining Equation 8.1 and Equation 8.4 demonstrates that the learning factor sm
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alters the location and scale parameters of the distribution;

fs(x; as , bs) =
s−m

b1
f1

(
xs−m − a1

b1
; 0 , 1

)
,

fs(x; as , bs) =
1

b1sm
f1

(
x− a1sm
b1sm

; 0 , 1

)
. (8.5)

Furthermore, comparing Equation 8.5 and the normal expression for fs;

fs(x; as , b1) =
1

bs
fs

(
x− as
bs

; 0 , 1

)
, (8.6)

shows that

bs = b1 s
m (8.7)

and

as = a1 s
m . (8.8)

The stochastic LC model thus implies that the ‘nature’ of the distribution, correspond-

ing to the shape parameter(s), remains constant as the task repetition number varies,

but the location and scale parameters are multiplied by a factor of sm. Consequently, the

parameters of the distribution are known for each iteration and the optimised sampling

methods within standard statistical software packages can be employed.

It is common for statistical software packages to only compute the standardised form

of probability distributions (Natrella, 2010). For example, the NumPy Python package

(Oliphant, 2006) only implements optimal sampling methods, predominantly based

on the algorithms described by Devroye (1986), for distributions in their standardised

form. Conversely, packages such as SciPy (Jones et al., 2001–) allow the full, generalised

distribution to be defined. Often, as is the case with the SciPy package, the distributions

first need to be initialised—a step when the parameters are explicitly defined—before

random samples can be generated. The methods in NumPy (Oliphant, 2006) avoid

these initialisation stages and act as simple functions that accept the distribution shape

parameters as input arguments and return the random variable directly.
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Inverse Transform Sampling

Inverse transform sampling is a method for generating non-uniform, pseudo-random

numbers (Devroye, 1986). Most statistical software packages use this method—or ac-

curate approximations to the underlying theory—to implement random sampling func-

tionality for a large proportion of distributions (Lemieux, 2009; Devroye, 1986). The

inversion principle states that if Y is a random variable with a standard uniform

distribution, Y ∼ U(0, 1), and if X is a continuous random variable with cumulative

distribution function FX , then the random variable FX
−1(Y ) has the same distribution

as X (Devroye, 1986). As such, the inverse transform sampling method can be broken

down into two steps:

1. Generate a random number u from the standard uniform distribution, u ∼ U(0, 1).

2. Compute the value x such that FX(x) = u or x = FX
−1(u).

The value x is thus a random number drawn from the distribution FX . Inverse transform

sampling is only applicable for distributions that have closed-form expressions for their

cumulative distribution functions (CDFs). The CDFs of certain distributions, such as

the Normal and Gamma distributions are not invertible and thus the inversion principle

cannot be applied directly (Lemieux, 2009).

As an example, consider the exponential distribution with CDF

y = F (x) = 1− e−λx for x ≥ 0 . (8.9)

The inverse function can be obtained by solving y = F (x):

x = F−1(y) = − 1

λ
ln(1− y) . (8.10)

Figure 8.1 shows the transformation method for λ = 0.5. A sample of 10 evenly-spaced

points on [0, 1] are substituted into Equation 8.10, to obtain the corresponding x-

values. The figure shows that many of the points are transformed to a point close to 0,

while only a few are transformed to high values of x. This is the expected result for an

exponential distribution.

8.2.3 Cumulative Distribution Function

It is possible to derive a relationship for the variation of the cumulative distribution

function (CDF) with the task repetition number using the equation derived by Glober-

son and Gold (1997) for the PDF. Equation 8.4 can be simplified as

fs(x) = s−mf1(s
−mx) . (8.11)
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Figure 8.1: Inverse transform sampling method.

Using the standard rule for integration that∫
f(qx) dx =

1

q
F (qx) +Q (8.12)

where f(x) is the PDF, F (x) is the CDF and q and Q are constants, the equation for

the CDF can be derived:

Fs(x) =

∫ x

−∞
fs(x) dx ,

Fs(x) =

∫ x

−∞
s−mf1(s

−mx) dx ,

Fs(x) = s−m
∫ x

−∞
f1(s

−mx) dx ,

=⇒ Fs(x) = F1(s
−mx) (8.13)

Applying the theory of inverse transform sampling:

x = Fs
−1(y) ,

s−mx = F1
−1(y) ,

=⇒ x = Fs
−1(y) = smF1

−1(y) . (8.14)



8.2. Theoretical Background 195

8.2.4 Selected Distributions

The five candidate distributions that were ranked in the top three distributions ac-

cording to the Anderson-Darling statistic, as summarised in Table 7.12, are included

for analysis, along with the Beta-PERT and Triangular distributions. The Beta-PERT

(Program Evaluation and Review Technique) distribution has received significant at-

tention since it was first proposed by Malcolm et al. (1959). The distribution is a

transformation of the four-parameter Beta distribution (Forbes et al., 2011) and is par-

ticularly suitable for simulation methods that model variable activity times—especially

when there is no data available to which a distribution can be fitted and when subjective

knowledge of the process under study is required (Farnum and Stanton, 1987). Similarly,

the Triangular distribution (Kotz and Van Dorp, 2004; Forbes et al., 2011) is defined

by the minimum, maximum and most common values and is often used in simulation

models and risk assessment.

Consequently, this chapter focuses on the following statistical distributions;

1. Gamma,

2. Lognormal,

3. Beta-PERT,

4. Triangular

5. Weibull,

6. Burr and

7. Loglogistic.

8.3 Methodology

The analysis of each of the statistical distributions listed above is divided into five

categories; (i) distribution definitions, (ii) theoretical validation, (iii) derivation of

the inverse transform sampling formula, (iv) empirical validation and (v) performance

testing. The derivation of the inverse transform sampling formula is only possible for

those distributions that have closed-form expressions for their CDFs. Specifically, these

derivations are not included for the Gamma, Lognormal and Beta-PERT distributions.

8.3.1 Distribution Definitions

The parameters and PDF of each distribution are defined. If applicable, the definition

for the CDF is also given. As far as possible, the statistical distribution definitions

follow the conventions of Forbes et al. (2011).
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8.3.2 Theoretical Validation

In a similar manner to the validation of the theory for the Normal distribution described

by Globerson and Gold (1997), a theoretical validation of the stochastic LC model

is outlined for each distribution. The purpose of these mathematical descriptions is

to confirm that the shape of the distribution remains constant as the task repetition

number varies, but the location and scale parameters are multiplied by a factor of sm.

8.3.3 Derivation of Inverse Transform Sampling Formula

The inverse transform sampling method is used to derive an equation that enables

random sampling from the specified distribution. Crucially, the derived equations in-

corporate the learning curve phenomenon and require the task repetition number s and

the learning slope m as arguments.

8.3.4 Empirical Validation

The derived sampling methods are validated empirically for a hypothetical set of

distribution and learning parameters. 10,000 random samples are generated using the

developed sampling methods and normalised histograms of these data are plotted

against the theoretical PDFs calculated using Equation 7.30. As in Chapter 7, the

histogram bin widths are calculated as the maximum of the Sturges (Sturges, 1926;

Scott, 2009) and Freedman-Diaconis (Freedman and Diaconis, 1981) estimators.

For the parametric sampling method, the NumPy package is used to generate a random

sample from the standardised form of the appropriate distribution. The value is then

transformed to the appropriate task repetition number using Equation 8.2 where b =

bs = b1s
m and a = as = a1s

m. For the inverse transform sampling method, the derived

equations developed as per Section 8.3.3 are used directly. For the Gamma, Lognormal

and Beta-PERT distributions, only the parametric sampling methods are used because

the inversion principle is not applicable. The Burr and Loglogistic distributions are

not available in the NumPy package so only the inverse transform sampling method is

applied in these cases. The impact of their availability is appraised in the results section

(8.4.8). Both sampling methods are used for the Triangular and Weibull distributions.
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8.3.5 Performance Testing

Finally, the computational performance of the sampling methods are assessed, assuming

the same hypothetical set of distribution and learning parameters used for the empirical

validation. The performance tests emulate the implementation of the sampling proce-

dures within the time-domain simulations that is discussed in Section 8.5. A single

simulation consists of generating 100 samples corresponding to successive iterations

of a hypothetical operation. 10,000 of these simulations are performed. Following con-

ventions for profiling code and measuring average run-times (see notes on the timeit

module in McKinney, 2012; Lutz, 2013), this entire procedure is repeated three times

for each sampling method and the fastest of these is recorded.

Three sampling methods are assessed in the performance tests. The standardised para-

metric sampling method follows the procedure described in Section 8.3.4 where the

NumPy package (Oliphant, 2006) is used to sample from the standardised form of

the distribution and Equation 8.2 is used to transform the data according to the

task repetition number. Similarly, the inverse transform sampling method uses the

formulae derived in Section 8.3.3. The third method, referred to as the generalised

parametric sampling method, uses the SciPy package (Jones et al., 2001–) and specifies

the generalised distribution for each iteration of the operation. As mentioned previously,

these generalised distribution methods require the distributions to be initialised for each

task repetition. For the performance tests, this initialisation stage is not included in the

function being analysed. The Python script that implements these performance tests is

documented in Appendix A.

8.4 Validations, Derivations and Results

8.4.1 Gamma Distribution

Distribution Definitions

The Gamma distribution is defined by its location parameter a, its scale parameter

b > 0 and its shape parameter c > 0 (see, e.g. Forbes et al., 2011). The PDF of the

Gamma distribution is given by

f(x) =
1

Γ(c) bc
(x− a)c−1 e

−
(x− a)

b , (8.15)

where Γ is the gamma function.
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Theoretical Validation

An equation for the PDF of the sth unit can be obtained using Equation 8.4:

fs(x) = s−mf1(s
−mx) ,

=
s−m

Γ(c1) b1
c1

(
s−mx− a1

)c1−1 e−(s−mx− a1)
b1 ,

=
1

Γ(c1) b1
c1 sm

(
x− a1sm

sm

)c1−1
e
−

(x− a1sm)

b1sm ,

=
1

Γ(c1) (b1sm)c1
(x− a1sm)c1−1 e

−
(x− a1sm)

b1sm . (8.16)

Comparing Equation 8.16 to Equation 8.15 evaluated at fs(x; as, bs, cs), shows that

as = a1s
m ,

bs = b1s
m

and

cs = c1 .

Empirical Validation

The empirical validation for the Gamma distribution shown in Figure 8.2 was generated

assuming that a1 = 2, b1 = 0.5, c1 = 6.3, s = 10 and m = −0.15. The figure shows an

adequate validation of the parametric sampling method for the Gamma distribution.

8.4.2 Lognormal Distribution

Distribution Definitions

A Lognormal distribution is the continuous probability distribution of a random variable

whose logarithm is normally distributed (see Forbes et al., 2011). It is defined by its

location parameter a, its scale parameter ω > 0 and its shape parameter σ > 0. An

alternative parameter µL is defined that is the mean of the logarithm of the random

variable X and is related to the scale parameter by ω = eµL and µL = lnω. The shape

parameter σ is the standard deviation of the logarithm of the random variable X. The

scale parameter ω is usually given the symbol m (see Forbes et al., 2011), but this has

been changed to avoid confusion with the learning slope m.
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Figure 8.2: Empirical validation of parametric sampling method for the Gamma distribution.

The PDF of the lognormal distribution, as defined by Forbes et al. (2011), is

f(x) =
1

(x− a)σ
√

2π
e
−

(
ln
x− a
ω

)2

2σ2 . (8.17)

Theoretical Validation

An equation for the PDF of the sth unit can be obtained using Equation 8.4:

fs(x) = s−mf1(s
−mx) ,

=
s−m

(s−mx− a1)σ1
√

2π
e
−

(
ln
s−mx− a1

ω1

)2

2σ12 ,

=
1

(x− a1sm)σ1
√

2π
e
−

(
ln
x− a1sm
ω1sm

)2

2σ12 . (8.18)
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Comparing Equation 8.18 to Equation 8.17 evaluated at fs(x; as, σs, ωs), shows that

as = a1s
m ,

ωs = ω1s
m

and

σs = σ1 .

Empirical Validation

The empirical validation for the Lognormal distribution shown in Figure 8.3 was gen-

erated assuming that a1 = 2, σ1 = 0.4, µ1 = 1.1, s = 10 and m = −0.15. The figure

shows an adequate validation of the parametric sampling method for the Lognormal

distribution.
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Figure 8.3: Empirical validation of parametric sampling method for the Lognormal
distribution.
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8.4.3 Beta-PERT Distribution

Distribution Definitions

The Beta-PERT distribution (for example, as discussed by Forbes et al. (2011); Malcolm

et al. (1959); Farnum and Stanton (1987); Littlefield Jr and Randolph (1987) and

Davis (2008)) has three parameters; a is the location parameter, equal to the minimum

possible value; b is the maximum possible value and ν is the most likely or modal value.

The scale parameter is equal to b − a. The distribution has two shape parameters, α

and β, which are defined below. The PDF of the Beta-PERT distribution is given by

f(x) =
(x− a)α−1(b− x)β−1

B(α, β)(b− a)α+β−1
, (8.19)

where B(α, β) is the beta function,

α =
4ν + b− 5a

b− a (8.20)

and

β =
5b− a− 4ν

b− a . (8.21)

As part of the definition and derivation of the Beta-PERT distribution (see, e.g. Mal-

colm et al., 1959; Farnum and Stanton, 1987; Littlefield Jr and Randolph, 1987; Davis,

2008), the formula for the expected value is

E[X] =
a+ 4ν + b

6
= µ . (8.22)

Theoretical Validation

An equation for the PDF of the sth unit can be obtained using Equation 8.4:

fs(x) = s−mf1(s
−mx) ,

= s−m
(s−mx− a1)α1−1(b1 − s−mx)β1−1

B(α1, β1)(b1 − a1)α1+β1−1 ,

=
(x− a1sm)α1−1(b1s

m − x)β1−1

sm B(α1, β1)(b1 − a1)α1+β1−1 sm(α1−1) sm(β1−1)
,

=
(x− a1sm)α1−1(b1s

m − x)β1−1

B(α1, β1)(b1 − a1)α1+β1−1 (sm)α1+β1−1 ,

=
(x− a1sm)α1−1(b1s

m − x)β1−1

B(α1, β1)(b1sm − a1sm)α1+β1−1 . (8.23)
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Comparing Equation 8.23 to Equation 8.19 evaluated at fs(x;αs, βs, as, bs), shows that

as = a1s
m ,

bs = b1s
m ,

αs = α1

and

βs = β1 .

Equation 8.22 can be used to derive an expression for the modal parameter ν. Starting

with the relationship given in Equation 7.18;

µs = E[Xs] = E[X1]s
m = µ1s

m

=⇒ as + 4νs + bs
6

=
a1 + 4ν1 + b1

6
sm ,

=⇒ a1s
m + 4cs + b1s

m = a1s
m + 4ν1s

m + b1s
m ,

=⇒ νs = ν1s
m .

The relationship for the scale parameter also follows from the above validation;

bs − as = b1s
m − a1sm ,

bs − aa = (b1 − a1)sm .

Empirical Validation

The empirical validation for the Beta-PERT distribution shown in Figure 8.4 was

generated assuming that a1 = 1, b1 = 9, ν1 = 5, s = 10 and m = −0.15. The figure

shows an adequate validation of the parametric sampling method for the Beta-PERT

distribution.

8.4.4 Triangular Distribution

Distribution Definitions

Similar to the Beta-PERT distribution, the Triangular distribution has three parame-

ters; a is the location parameter, equal to the minimum possible value; b is the maximum

possible value and ν is the most likely or modal value. The scale parameter is equal to
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Figure 8.4: Empirical validation of parametric sampling method for the Beta-PERT
distribution.

b− a. The PDF of the Triangular distribution is given by

f(x) =


2(x− a)

(b− a)(ν − a)
, if a ≤ x ≤ ν

2(b− x)

(b− a)(b− ν)
, if ν ≤ x ≤ b .

(8.24)

Theoretical Validation

If as ≤ x ≤ νs;

fs = s−mf1(s
−mx) ,

=
2s−m(s−mx− a1)
(b1 − a1)(ν1 − a1)

,

=
2(x− a1sm)

smsm(b1 − a1)(ν1 − a1)
,

=
2(x− a1sm)

(b1sm − a1sm)(ν1sm − a1sm)
. (8.25)
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If νs ≤ x ≤ bs;

fs = s−mf1(s
−mx) ,

=
2s−m(b1 − xs−m)

(b1 − a1)(b1 − ν1)
,

=
2(b1s

m − x
smsm(b1 − a1)(b1 − ν1)

,

=
2(b1s

m − x)

(b1sm − a1sm)(ν1sm − a1sm)
, (8.26)

Comparing Equations 8.25 and 8.26 to Equation 8.24 evaluated at fs(x; as, bs, νs), shows

that

as = a1s
m ,

bs = b1s
m

and

νs = ν1s
m .

Similar to the Beta-PERT distribution, the scale parameter of the Triangular distribu-

tion is

bs − as = b1s
m − a1sm ,

bs − aa = (b1 − a1)sm .

The shape parameter is defined by Jones et al. (2001–) as the distance between the

minimum a and the mode ν divided by the scale b− a;

c =
ν − a
b− a . (8.27)

Consequently,

cs =
νs − as
bs − as

,

=
ν1s

m − a1sm
b1sm − a1sm

,

=
ν1 − a1
b1 − a1

,

=⇒ cs = c1 .
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Inverse Transform Sampling Function

Kotz and Van Dorp (2004) have already derived the inverse CDF for the Triangular

distribution;

x = F−1(y) =

a+
√
y(ν − a)(b− a), if 0 ≤ y ≤ c

b−
√

(1− y)(b− ν)(b− a), if c ≤ y ≤ 1 .
(8.28)

Applying Equation 8.14, the sampling function for the Triangular distribution for any

task repetition number is given by

x = smF1
−1(y) , (8.29)

where

F1
−1(y) =

a1 +
√
y(ν1 − a1)(b1 − a1), if 0 ≤ y ≤ c1

b1 −
√

(1− y)(b1 − ν1)(b1 − a1), if c1 ≤ y ≤ 1 .
(8.30)

Empirical Validation

The empirical validation for the Triangular distribution shown in Figure 8.5 was gener-

ated assuming that a1 = 1, b1 = 9, ν1 = 5, s = 10 and m = −0.15. The figure shows an

adequate validation for both the parametric and inverse transform sampling methods

for the Triangular distribution.

8.4.5 Weibull Distribution

Distribution Definitions

The Weibull distribution is defined by its location parameter a, its scale parameter η

and its shape parameter γ (Forbes et al., 2011). The PDF of the Weibull distribution

is

f(x) =
γ (x− a)γ−1

ηγ
e
−
(
x− a
η

)γ
. (8.31)

The Weibull distribution CDF is given by

F (x) = 1− e
−
(
x− a
η

)γ
. (8.32)
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Figure 8.5: Empirical validation of parametric and inverse transform sampling methods for
the Triangular distribution.

Theoretical Validation

An equation for the PDF of the sth unit can be obtained using Equation 8.4:

fs(x) = s−mf1(s
−mx) ,

=
s−m γ1 (s−mx− a1)γ1−1

η1γ1
e
−

s−mx− a1
η1

γ1
,

=
γ1 (x− a1sm)γ1−1

η1γ1 sm sm(γ1−1)
e
−
(
x− a1sm
η1sm

)γ1
,

=
γ1 (x− a1sm)γ1−1

(η1sm)γ1
e
−
(
x− a1sm
η1sm

)γ1
. (8.33)

Comparing Equation 8.33 to Equation 8.31 evaluated at fs(x; as, ηs, γs), shows that

as = a1s
m ,

ηs = η1s
m
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and

γs = γ1 .

Inverse Transform Sampling Function

Using Equation 8.13,

y = Fs(x) ,

= F1(s
−mx) ,

= 1− e
−

s−mx− a1
η1

γ1
. (8.34)

Following the inversion principle and solving for x;

1− y = e
−

s−mx− a1
η1

γ1
,

ln(1− y) = −
(
s−mx− a1

η1

)γ1
,

(− ln(1− y))
1
γ1 =

s−mx− a1
η1

,

=⇒ x = sm
(
η1 (− ln(1− y))

1
γ1 + a1

)
. (8.35)

Empirical Validation

The empirical validation for the Weibull distribution shown in Figure 8.6 was generated

assuming that a1 = 0.5, η1 = 1, γ1 = 2, s = 10 and m = −0.15. The figure shows an

adequate validation for both the parametric and inverse transform sampling methods

for the Weibull distribution.

8.4.6 Burr Type XII Distribution

Distribution Definitions

The Burr Type XII distribution is defined by its location parameter a, its scale parame-

ter b and two shape parameters; c and k (Burr, 1942). The PDF of the Burr distribution

is

f(x) =
ck

b

(
x− a
b

)c−1 (
1 +

(
x− a
b

)c)−k−1
. (8.36)



208 Incorporating Learning in Time-domain Simulations

0.0 0.5 1.0 1.5 2.0 2.5 3.0

x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

P
ro

b
ab

il
it

y
d

en
si

ty

Theoretical PDF fs(x)

Parametric sampling

Inverse transform sampling

Figure 8.6: Empirical validation of parametric and inverse transform sampling methods for
the Weibull distribution.

The CDF of the Burr distribution is

F (x) = 1−
(

1 +

(
x− a
b

)c)−k
. (8.37)

Theoretical Validation

An equation for the PDF of the sth unit can be obtained using Equation 8.4:

fs(x) = s−mf1(s
−mx) ,

=
s−mc1k1

b1

(
s−mx− a1

b1

)c1−1 (
1 +

(
s−mx− a1

b1

)c1 )−k1−1
,

=
c1k1
b1sm

(
x− a1sm
b1sm

)c1−1 (
1 +

(
x− a1sm
b1sm

)c1 )−k1−1
. (8.38)

Comparing Equation 8.38 to Equation 8.36 evaluated at fs(x; as, bs, cs, ks), shows that

as = a1s
m ,

bs = b1s
m ,

cs = c1
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and

ks = k1 .

Inverse Transform Sampling Function

Using Equation 8.13,

y = Fs(x) ,

= F1(s
−mx) ,

= 1−
(

1 +

(
s−mx− a1

b1

)c1 )−k1
. (8.39)

Following the inversion principle and solving for x;

1− y =

(
1 +

(
s−mx− a1

b1

)c1 )−k1
,

(1− y)
− 1
k1 =

(
1 +

(
s−mx− a1

b1

)c1 )
,

(
(1− y)

− 1
k1 − 1

) 1
c1 =

s−mx− a1
b1

,

=⇒ x = sm
(
b1

(
(1− y)

− 1
k1 − 1

) 1
c1 + a1

)
. (8.40)

Empirical Validation

The empirical validation for the Burr distribution shown in Figure 8.7 was generated

assuming that a1 = 0.5, b1 = 1.5, c1 = 8, k1 = 0.5, s = 10 and m = −0.15. The figure

shows an adequate validation for the inverse transform sampling method for the Burr

distribution.

8.4.7 Loglogistic Distribution

Distribution Definitions

The Loglogistic distribution, also known as the Fisk distribution, is defined by its

location parameter a, its scale parameter b and shape parameter c. The Loglogistic

distribution is a equal to the Burr Type XII distribution when the second shape

parameter of the Burr distribution k = 1 (Jones et al., 2001–; Burr, 1942). As such, the
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Figure 8.7: Empirical validation of inverse transform sampling method for the Burr
distribution.

PDF and CDF follow directly from Equations 8.36 and 8.37;

f(x) =
c

b

(
x− a
b

)c−1 (
1 +

(
x− a
b

)c)−2
.

=

c

b

(
x− a
b

)c−1
(

1 +

(
x− a
b

)c)2 . (8.41)

F (x) = 1−
(

1 +

(
x− a
b

)c)−1
,

=

1 +

(
x− a
b

)c
− 1

1 +

(
x− a
b

)c ,

=
1

1 +

(
x− a
b

)−c . (8.42)

The theoretical validation is identical to that previously described for the Burr distri-
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bution with k = ks = k1 = 1 and thus is not presented.

Inverse Transform Sampling Function

Using Equation 8.13,

y = Fs(x) ,

= F1(s
−mx) ,

=
1

1 +

(
s−mx− a1

b1

)−c1 . (8.43)

Using the inverse transform sampling method and solving for x;(
s−mx− a1

b1

)−c1
=

1

y
− 1 ,

s−mx− a1
b1

=

(
1− y
y

)− 1
c1

,

s−mx− a1 = b1

(
y

1− y

) 1
c1

,

=⇒ x = sm

(
b1

(
y

1− y

) 1
c1

+ a1

)
. (8.44)

Empirical Validation

The empirical validation for the Loglogistic distribution shown in Figure 8.8 was gener-

ated assuming that a1 = 0.5, b1 = 1.5, c1 = 8, s = 10 and m = −0.15. The figure shows

an adequate validation for the inverse transform sampling method for the Loglogistic

distribution.

8.4.8 Performance Testing

The performance test results for the three sampling methods are summarised in Ta-

ble 8.1. The standardised parametric and inverse transform sampling methods are far

superior to the generalised parametric methods. The range in simulation time for the

standardised parametric and inverse transform sampling methods is 0.721–1.94 seconds

while the range for the generalised parametric results is 24.5–35.1 seconds. Considering

the tests measure the simulation time of a single operation, this discrepancy in results is

significant. On average, the run-times for the generalised parametric sampling methods
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Figure 8.8: Empirical validation of inverse transform sampling method for the Loglogistic
distribution.

are 23 times slower than the equivalent inverse transform and standardised paramet-

ric sampling implementations. Noting the importance of computational efficiency and

speed in Monte Carlo simulation procedures, the standardised parametric and inverse

transform sampling methods are strongly recommended. Additionally, the results shown

in Table 8.1 do not take into account the initialisation stage that is required for the

generalised case but not for the other two methods.

Table 8.1: Performance test results—simulation time measured in seconds.

Sampling method

Standardised Inverse Generalised
Parametric Transform Parametric

Gamma 1.94 - 27.2
Lognormal 1.41 - 27.8
Beta-PERT 0.985 - 31.0
Triangular 0.924 1.45 24.5
Weibull 1.38 1.8 29.3
Burr - 0.856 35.1
Loglogistic - 0.721 30.0

Interestingly, the SciPy package used to implement the generalised parametric methods

is essentially a“wrapper”around the NumPy methods used to perform the standardised

parametric sampling. The longer simulation times are thought to be related to the
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additional error checks and function calls that are required for each random sample

in the generalised case. As such, slightly poorer performance was expected for the

generalised parametric methods, but not to the extent shown in the performance test

results. Consequently, while it may be more convenient in terms of explicitly defining the

distribution for each task repetition, the direct methods are preferable when optimising

computational speed is the main objective.

For the Triangular and Weibull distributions, the performance test results reveal that

the standardised parametric methods outperform the inverse transform sampling meth-

ods. This is believed to be due to the presence of the if decision block in the inverse

CDF formula for the Triangular distribution (see Equation 8.30) and the natural

logarithm in the equation for the Weibull distribution (see Equation 8.35). The NumPy

package uses optimal sampling methods described by Devroye (1986) and Oliphant

(2006) that avoid these marginally more computationally expensive calculations. For

example, Devroye (1986) describes a method for sampling from a Weibull distribution

by inverting an exponential random variate. For the Triangular distribution there are

methods such as the ‘One Line method’ (Devroye, 1996) and the ‘MINMAX’ method

(Stein and Keblis, 2009). Despite the standardised parametric methods outperforming

the inverse transform methods in the two cases that can be compared, the inverse

transform sampling method is still recommended alongside the standardised parametric

procedures. The results for both methods are comparable and the two fastest simulation

times correspond to the inverse transform sampling method for the Burr and Loglogistic

distributions.

8.5 Implementation

8.5.1 User Inputs

The input data required for each of the statistical distributions incorporated within the

time-domain simulation software are summarised in Table 8.2. The tick-marks represent

mandatory fields. Optional inputs are marked with a star.m is the learning slope defined

previously in Chapter 7. Alternatively, the learning rate φ (see Equation 7.8) can be

specified by the user. S is the task repetition number corresponding to the distribution

parameters defined for each operation. It is crucially important to specify the iteration

at which the distribution parameters are defined. The location and scale parameters of

the 1st unit are required for the implementation of the stochastic LC model. Thus, if a

value of S > 1 is selected, then the distribution parameters for the 1st iteration need

to be calculated using Equations 8.7 and 8.8.

Two additional options are included alongside the seven statistical distributions de-

scribed previously; Single Value and Uniform. The ability to specify a single value for
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Table 8.2: Required input data for implemented distributions. X= required, ? = optional,
m = learning slope, S = task repetition number corresponding to the defined distribution
parameters.

Distribution Shape 1 Shape 2 Loc Scale Min Mode Max m S

Gamma X X X ? ?
Lognormal X X X ? ?
Beta-PERT X X X ? ?
Triangular X X X ? ?
Weibull X X X ? ?
Burr X X X X ? ?
Loglogistic X X X ? ?
Single Value X ? ?
Uniform X X

operation durations is important when users are confident in their single point estimates

and do not wish to represent task length as a stochastic phenomenon. Furthermore,

the Single Value option is beneficial when conducting quality assurance (QA) checks

on model results or developing a new simulation feature. Additionally, a Uniform

distribution can be specified when every value in the range between the minimum and

maximum parameters is equally likely to occur. The Single Value option—although not

a theoretical statistical distribution in its own right—is a particular case of the Uniform

distribution with its minimum parameter equal to its maximum parameter.

It is assumed that there is no observable learning phenomenon for any operation that

does not specify a value for the learning slope or learning rate. Equally, specifying m = 0

or φ = 1 implies that there is no learning present. In these situations, the simulation

software samples from the same distribution irrespective of the task repetition number.

8.5.2 Sampling Procedure

The sampling procedures for each statistical distribution within the time-domain simu-

lation software are summarised in Table 8.3. The sampling methods are defined along-

side the NumPy functions used to generate the corresponding random numbers and the

equations used to transform the data to the appropriate operation iteration. The sam-

pling methods have been selected according to the performance test results summarised

in Table 8.1. The methods within the NumPy random number generator functions are

explained in detail by Oliphant (2006) and Jones et al. (2001–).

The transformation equations for the Beta-PERT and Triangular distributions require

slight modifications to Equation 8.2. The scale parameter of these distributions is

the distance between the maximum and minimum values of the distribution; b − a.
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Table 8.3: Input parameters and sampling procedure for implemented distributions.

Distribution Sampling Method Random Number Generator Equation

Gamma Standardised parametric numpy.random.gamma 8.2
Lognormal Standardised parametric numpy.random.lognormal 8.2
Beta-PERT Standardised parametric numpy.random.beta 8.2
Triangular Standardised parametric numpy.random.triangular 8.2
Weibull Standardised parametric numpy.random.weibull 8.2
Burr Inverse transform numpy.random.random 8.40
Loglogistic Inverse transform numpy.random.random 8.44
Single Value - - 7.4
Uniform - numpy.random.uniform -

Consequently, Equation 8.2 becomes

x = (b− a)y + a (8.45)

where b = bs = b1s
m and a = as = a1s

m. Similarly, for generating random samples

from the Lognormal distribution using NumPy it is slightly more efficient to specify the

mean of the logarithm of the random variable and consequently transform the equation

using Equation 8.2 with the scale parameter b1 = 1. These subtle difference can be seen

in the Python script that implements the performance tests in Appendix A.

Learning can be still be incorporated for operations defined by a Single Value and in

this case, the simulation model becomes a direct implementation of the deterministic

learning curve model discussed in Section 7.2.2. It is not appropriate to implement the

learning phenomenon for an operation that is uniformly distributed.

A three-dimensional visualisation of the stochastic LC model within the time-domain

simulation software was provided in Section 7.6.1 (see Figure 7.15). The methods

summarised in Table 8.3 describe the actual implementation of these methods. The

probability distribution for each repetition of an operation, corresponding to the indi-

vidual PDFs in the 3D plot, are fully defined by the random number generator functions

and associated transformation equations listed in Table 8.3.
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8.6 Conclusions

The stochastic learning curve theory has been expanded through the application of the

proposed methods to seven additional probability distributions. The established theory

stated that the ‘nature’ of the distributions remains constant as successive iterations of

an operation are completed. This analysis has shown that the shape parameters of the

statistical distribution remain constant as the task repetition number increases, while

the location and scale parameters are scaled by the learning factor sm. This hypothesis

has been validated both theoretically and empirically for all seven of the additional

distributions.

Three methods for the generation of random samples of operation duration that ac-

count for the learning phenomenon have been described. On average, sampling from

distributions in their standardised form, where the location and scale parameters are

0 and 1 respectively, and subsequently transforming the data using the learning factor

and distribution parameters, is approximately 20–25 times faster than the equivalent

generalised sampling methods which define each distribution parameter for every task

repetition number. The third method of inverse transform sampling has been applied to

the four applicable distributions and shows comparable performance to the standardised

parametric sampling procedure. These two methods are strongly recommended for use

within Monte Carlo simulations because of their superior computational performance,

which is such a critical requirement for TDS.

Finally, the incorporation of the derived methods within the developed TDS software

has been outlined. The stochastic learning curve model is well-suited to Monte Carlo

simulations of offshore operations as it implements well-known, statistically sound

techniques, while remaining intuitive and comprehensive to users of the software. The

methods described in this chapter enable the stochastic learning curve methodology to

be implemented within a TDS model. Chapter 7 provided evidence of this phenomenon

for the majority of operations required to construct an offshore wind farm. The meth-

ods facilitate computationally-efficient sampling of random values from a theoretical

probability distribution. These methods are also applicable for the representation of

technical downtime within TDS models, which is the subject of the next chapter.



Chapter 9

Technical Downtime

9.1 Introduction

Technical downtime is the term given to unplanned and random interruptions to the

operation schedule of an offshore project that are independent of the metocean con-

ditions. Accounting for these unexpected stoppages, delays and failures is essential if

accurate and reliable estimates of project duration are to be made using TDS. The

aim of this chapter is to assess the viability of representing technical downtime as

the joint probability of (i) downtime occurring and (ii) the downtime duration being

equal to a certain value. This representation is assessed through the analysis of observed

instances of technical downtime for an offshore wind farm construction project. Methods

of implementing technical downtime within TDS models are also described and assessed.

The impacts of incorporating technical downtime in the simulation algorithms are then

assessed in detail in Chapter 10.

Firstly, the theoretical background to the analysis is described. Section 9.2.1 defines

what is meant by technical downtime and suggests a method for its representation,

while Section 9.2.2 describes the Poisson distribution and its applicability for modelling

the probability of occurrence of technical downtime. The methodology is outlined in

Section 9.3. The data extraction and categorisation procedures are briefly mentioned

before the three main analysis methods are described that assess (i) the probability of

occurrence of technical downtime; (ii) the fitted distributions for downtime duration

and (iii) the combination of occurrence and duration probabilities. The results are

summarised and discussed in Section 9.4, before the implementation of the proposed

method is described and appraised in Section 9.5.

217
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9.2 Theoretical Background

9.2.1 Technical Downtime

Technical downtime refers to any unexpected downtime that arises independently of

metocean conditions. The term covers a broad range of unplanned stoppages and

random delays that can include time lost due to breakdown of equipment, periods

spent waiting for pilots and unplanned mechanical and electrical (M&E) works. Cru-

cially, the representation of technical downtime within time-domain simulations differs

significantly from the sampling methods for operation durations because the probability

of occurrence of these random stoppages needs to be taken into account, in addition to

the stochastic nature of the downtime duration.

Consequently, it was decided to assess the representation of technical downtime as

the joint probability of (i) technical downtime occurring at a specific time and (ii)

the distribution function of downtime duration, assuming that downtime has occurred.

The Poisson distribution was proposed to represent the probability of occurrence of

technical downtime.

9.2.2 Poisson Distribution

As outlined by Wilks (2011), the Poisson distribution describes the number of discrete

events occurring in a series, or a sequence, and pertains to data that can take on only

non-negative integer values. The sequence is typically understood to be in time. The

individual events being counted are independent in the sense that they do not depend

on whether or how many other events may have occurred elsewhere in the sequence.

Poisson events occur randomly, but at a constant rate. As such, the distribution has a

single parameter, µp, that specifies the average occurrence rate. The probability mass

function of the Poisson distribution, as defined by, for example, Wilks (2011) is

f(kp;µp) = Pr(X = kp) =
µp

kpe−µp

kp!
for kp = 0, 1, 2, . . . , (9.1)

where e is Euler’s number (e = 2.718...) and kp! is the factorial of kp.

The Poisson distribution can be fitted to a sample of data by finding a specific value

for the single parameter µ that makes Equation 9.1 behave as similarly as possible to

the data-set. As outlined in Wilks (2011), this is especially straightforward using the

method of moments because the single parameter is the mean number of occurrences

per unit time, which can be estimated directly as the sample average.
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9.2.3 Distribution Fitting

The distribution fitting methods used to analyse technical downtime durations follow

those described previously in Chapter 7. The candidate distributions, implementation

of maximum likelihood estimation, graphical goodness-of-fit assessment and statistical

goodness-of-fit tests used in this chapter are identical to those described in Section 7.2.1.

9.3 Methodology

9.3.1 Data Extraction

Instances of technical downtime were specifically categorised in the daily progress

reports (DPRs) received for the offshore wind construction project described previously

in Chapter 7. The occurrences and durations of these technical downtime instances were

extracted in a similar manner to the data extraction procedures outlined in Section 7.3.

9.3.2 Categorising Data

The average occurrence rate can be defined in several ways; as the number of instances

per activity, per vessel or even as the total number of occurrences over the entire

project. As previously discussed, the project can be divided into four activities; loading

out at port, transiting to site, installing a group of eight WTGs and transiting to port.

Because significantly different types of random stoppages can occur for each of these

activity types, this analysis quantifies the average rate as the number of occurrences

per activity.

The probability of occurrence of technical downtime is assumed to be negligible for

transit operations. Any technical faults in the tools or equipment will not be discovered

until the vessel has safely jacked-up at site or at port because the majority of equipment

is securely fastened before commencing any transit operations. This assumption is

corroborated by the observed data—there were no recorded instances of technical

downtime during any of the 30 transit operations.

It is still desirable to categorise the data in a manner that maximises the sample size.

As the two vessels involved in this construction project were essentially identical, it

was decided to combine the occurrence and duration data for both vessels into a single

data-set for each of the applicable activities. Consequently, the analysis of technical

downtime was performed on two data-sets; one for the loadout activity and one for the

WTG activity. This categorisation impacted the implementation of technical downtime

in the TDS software that will be discussed in Section 9.5.
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9.3.3 Probability of Occurrence

The average occurrence rate is calculated for each data-set using the definition from

the previous section—the total number of occurrences divided by the number of times

that activity was performed. Furthermore, a comparative graph is plotted for each

activity showing the theoretical and empirical probability mass functions (PMFs).

The theoretical PMFs are calculated using Equation 9.1 with the calculated average

occurrence rates. The empirical PMFs are calculated using

Pr(X = kp) =
cp
Ap

for kp = 0, 1, 2, . . . , (9.2)

where cp is the number of times the occurrences are equal to kp and Ap is the number

of times the activity was performed, referred to as the activity count.

9.3.4 Duration Distribution Fitting

Fitted probability distributions for technical downtime duration, assuming that down-

time has occurred, are obtained using the method of maximum likelihood estimation

described in Section 7.2.1. Subsequently, the selection of the best-fit distribution for

the technical downtime durations follows the methods described in Section 7.5 for the

analysis of operation durations when there is no learning present. In summary, the

procedure consists of three steps;

1. The three distributions that resulted in the lowest values for the calculated

Anderson-Darling statistic are selected.

2. The classical goodness-of-fit plots are generated for these top three distributions.

3. A Monte Carlo validation is performed, that emulates the sampling methods

within the time-domain simulation software, for each of the three distributions.

9.3.5 Combined Occurrence and Duration Validation

A second Monte Carlo validation procedure is performed that assesses both the fitted

Poisson distribution and the chosen probability distribution for downtime duration.

The procedure is similar to the first Monte Carlo validation and only differs in relation

to the sample size in each of the Monte Carlo runs. In the first Monte Carlo assessment,

the number of samples that are drawn is equal to the sample size of the raw data, thus

ensuring a fair comparison between the statistics calculated using the raw data and

those based on the simulation results. In the secondary Monte Carlo validation test,

the fitted Poisson distribution is used to generate the total number of occurrences of

downtime that occur in each Monte Carlo run. The number of samples drawn from

the probability distribution for this particular run is then set equal to the Poisson-

generated number of occurrences. As such, the combined Monte Carlo approach assesses



9.3. Methodology 221

the representation of technical downtime as the joint probability of downtime occurring

and the distribution function of downtime duration. For this second method, the number

of occurrences of technical downtime is recorded in addition to the minimum, mean,

median and maximum durations recorded for each Monte Carlo run as before.

9.4 Results and Discussion

9.4.1 Probability of Occurrence

The average occurrence rate was 0.638 for the WTG installation activity and 1.769

for the Loadout activity. The comparison of the theoretical and empirical PMFs are

shown in Figures 9.1 and 9.2 for the WTG and Loadout activities respectively. The

results show good agreement between the theory and raw data, particularly for the

WTG activity. Significant discrepancies are evident for the Loadout activity at k = 2

and k = 3. The discrepancies may be attributed to the smaller sample size of the

Loadout activity (less than 15 samples) in comparison to the WTG activity (over 100

samples). Nevertheless, both fitted distributions show appropriate representations for

the probability of occurrence of technical downtime.
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Figure 9.1: Theoretical and empirical probability mass functions (PMFs) for WTG activity.
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Figure 9.2: Theoretical and empirical probability mass functions (PMFs) for Loadout
activity.

9.4.2 Duration Distribution Fitting

The mean duration of technical downtime was 9.2 hours for the WTG installation

activity and 12.2 hours for the loadout activity. In both cases, the majority of occur-

rences were quite small; 95% of the occurrences were less than 30 hours. However,

large instances of technical downtime were also observed, with three instances greater

than 100 hours and the largest duration occurrence resulting in 236 hours of random

downtime.

Table 9.1 shows the lowest three Anderson-Darling statistics calculated for the WTG

and Loadout activities. The results show that the fitted Burr-a0 distribution is the most

appropriate distribution for both activities.

Table 9.1: Calculated values for the Anderson-Darling statistic for the WTG and Loadout
activities.

WTG Loadout

Distribution Anderson-Darling Distribution Anderson-Darling

Burr-a0 0.145 Burr-a0 0.304
Burr 0.152 Loglogistic-a0 0.304
Loglogistic-a0 0.465 Lognormal 0.344

The goodness-of-fit plots for the relevant distributions are shown in Figures 9.3 and 9.4.
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The P-P plots for both activities show that there is excellent agreement for the centre of

the distributions. The remaining plots show significant deviations at the right-hand tail

of each of the fitted distributions, indicating that none of the distributions are accurately

capturing the extreme values of downtime duration that have been observed. Most of the

examples of the poorly-modelled instances of technical downtime with larger durations

were related to the breakdown or malfunctioning of technical installation equipment on

board the turbine-installation vessels.
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Figure 9.3: Goodness-of-fit plot for technical downtime durations of WTG activity—data
in hours.

The results of the Monte Carlo validation of the fitted distributions for the WTG

activity are summarised in Table 9.2. The table shows the ratio of the Monte Carlo

results to the observed data for each of the analysed distributions. The objective of

these tests is to assess the accuracy and spread of the chosen representations of technical

downtime duration. As it is only the ratios that are shown in the table the mean sample
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Figure 9.4: Goodness-of-fit plot for technical downtime durations of Loadout activity—
data in hours.

category of each run is omitted, as it is equal to the ratio for the sum category.

The results indicate that the Loglogistic-a0 is the only suitable distribution and that

both the Burr-a0 and Burr distributions are inappropriate because of their tendency to

sample extremely large values of downtime duration. For the Burr-a0 representation of

the WTG activity, the P97.5 ratio for the maximum value sampled in each of the Monte

Carlo runs was approximately 187. This corresponds to a duration of 44,000 hours or 5

years—for a single instance of technical downtime. Clearly, this is an unacceptably large

duration, especially considering that approximately 250 of the 10,000 simulations that

were performed in this case resulted in a greater value. The tendency to sample such

enormous values of downtime duration distorts the results for both the mean downtime

and the total downtime in each run. Furthermore, similar trends are evident for the

generalised Burr distribution—the mean ratio for the maximum value sampled in this
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Table 9.2: Monte Carlo validation results for fitted distributions of technical downtime
durations for WTG activity—observed data in hours.

Minimum Median Maximum Sum

Observed data (hours)

0.033 1.192 235.750 677.850

Ratio of Monte Carlo: Observed data—Burr-a0

P2.5 0.191 0.661 0.164 0.355
P50 1.438 0.961 1.775 1.398
Mean 1.619 0.990 94.171 33.792
P97.5 4.152 1.470 186.843 69.033

Ratio of Monte Carlo: Observed data—Burr

P2.5 0.772 0.670 0.147 0.337
P50 1.606 1.000 1.401 1.185
Mean 1.790 1.026 259.754 91.291
P97.5 3.848 1.542 123.713 45.635

Ratio of Monte Carlo: Observed data—Loglogistic-a0

P2.5 0.021 0.722 0.085 0.275
P50 0.517 1.099 0.427 0.587
Mean 0.704 1.126 1.803 1.084
P97.5 2.440 1.673 9.473 3.955

case is approximately 260.

The phenomenon is not evident for the fitted Loglogistic-a0 distribution. For each of

the minimum, median, maximum and sum categories, the Monte Carlo results show

an acceptable variation around the statistics based on the observed data. Crucially,

the P97.5 ratio for the maximum value sampled is approximately 9.5. This value is

still quite high, corresponding to a duration of nearly 2,240 hours or approximately 3

months, but is a more plausible upper value to the potential range.

The Monte Carlo validation results for the Loadout activity, summarised in Table 9.3,

show similar trends to the WTG activity. The Burr-a0 distribution shows significantly

large ratios for the maximum and total sample categories. The ratios, and corresponding

durations, are not as large as for the WTG activity, but the Loglogistic-a0 distribution

results are more reasonable and capture a more appropriate range of sampled values

about the observed durations. Additionally, the results show that the Lognormal dis-

tribution is another viable candidate model.

The Monte Carlo validation results, as well as the CDF and Q-Q goodness-of-fit plots,

show that the Loglogistic is the most conservative of the probability distributions

with respect to the sampling of large duration values. For both activities, the fitted
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Table 9.3: Monte Carlo validation results for fitted distributions of technical downtime
durations for Loadout activity—observed data in hours.

Minimum Median Maximum Sum

Observed data (hours)

0.383 2.483 187.533 279.983

Ratio of Monte Carlo: Observed data—Burr-a0

P2.5 0.146 0.485 0.059 0.221
P50 0.737 0.855 0.449 0.728
Mean 0.801 0.912 16.639 11.666
P97.5 1.823 1.684 29.687 20.897

Ratio of Monte Carlo: Observed data—Loglogistic-a0

P2.5 0.034 0.528 0.049 0.214
P50 0.436 0.977 0.190 0.464
Mean 0.545 1.030 0.506 0.685
P97.5 1.652 1.825 2.493 2.262

Ratio of Monte Carlo: Observed data—Lognormal

P2.5 0.979 0.385 0.073 0.242
P50 1.066 0.813 0.402 0.733
Mean 1.110 0.903 0.863 1.080
P97.5 1.500 1.996 4.236 3.809

Loglogistic distribution is the model that yields the least accurate representation of

the observed extreme data-points. However, the results also show that the Loglogistic

distribution ensures that these large values are still being accurately represented, whilst

avoiding the excessive quantity of unrealistically large samples that are obtained when

using the Burr distributions.

9.4.3 Combined Occurrence and Duration Validation

The Monte Carlo results for the combined probability of occurrence and probability

density function for downtime duration are shown in Table 9.4 and Table 9.5 for the

WTG and Loadout activities respectively. Once again, the results show the ratios of

the Monte Carlo results to the observed data for each of the analysed distributions.

Since the number of samples drawn from the duration probability distribution in this

case corresponds to the number sampled from the Poisson distribution, the mean ratio

is not identical to the sum ratio and is thus included in the analysis.

The number of occurrences of technical downtime is adequately represented by the

Poisson distribution. The range of ratios for the number of occurrences is 0.770–1.23

for the WTG activity and 0.609–1.435 for the Loadout activity. The same trends of
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Table 9.4: Combined occurrence and duration Monte Carlo validation results for the WTG
activity—observed data in hours.

Occurrences Minimum Median Mean Maximum Sum

Observed data (hours)

74 0.033 1.192 9.160 235.750 677.850

Ratio of Monte Carlo: Observed data—Burr-a0

P2.5 0.784 0.188 0.658 0.340 0.151 0.319
P50 1.000 1.440 0.967 1.345 1.680 1.356
Mean 1.001 1.627 0.991 30.501 89.537 32.157
P97.5 1.230 4.149 1.469 69.060 194.423 70.296

Ratio of Monte Carlo: Observed data—Burr

P2.5 0.770 0.778 0.669 0.339 0.144 0.319
P50 1.000 1.625 0.998 1.200 1.393 1.199
Mean 0.998 1.818 1.025 67.032 197.819 69.708
P97.5 1.230 3.883 1.541 47.152 125.124 45.164

Ratio of Monte Carlo: Observed data—Loglogistic-a0

P2.5 0.784 0.024 0.723 0.280 0.086 0.261
P50 1.000 0.513 1.099 0.582 0.423 0.585
Mean 1.001 0.715 1.125 1.966 4.258 1.942
P97.5 1.230 2.492 1.673 4.331 9.657 4.192

Section 9.4.2 can be seen in the sampling results of technical downtime duration. The

Burr distributions are inappropriate because of their tendency to sample extremely large

values of downtime duration. The Loglogistic-a0 is more appropriate in this regard and

is thus recommended as the modelling distribution for both activities. The Lognormal

distribution is a viable model for the Loadout activity but preference is given to the

Loglogistic distribution because of the statistical goodness-of-fit results.

Crucially, the results show that the method of representing technical downtime as

the joint probability of downtime occurring, using the Poisson distribution, and the

distribution function of downtime duration assuming downtime has occurred, using the

fitted Loglogistic-a0 and Lognormal distributions, is appropriate, representative and

suitable for implementation within time-domain simulations of offshore operations.
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Table 9.5: Combined occurrence and duration Monte Carlo validation results for the
Loadout activity—observed data in hours.

Occurrences Minimum Median Mean Maximum Sum

Observed data (hours)

23 0.383 2.483 12.173 187.533 279.983

Ratio of Monte Carlo: Observed data—Burr-a0

P2.5 0.609 0.149 0.482 0.210 0.051 0.173
P50 1.000 0.753 0.852 0.711 0.433 0.724
Mean 1.002 0.820 0.914 6.902 10.229 7.382
P97.5 1.435 1.933 1.695 22.106 31.238 22.088

Ratio of Monte Carlo: Observed data—Loglogistic-a0

P2.5 0.609 0.033 0.504 0.214 0.046 0.171
P50 1.000 0.431 0.978 0.458 0.184 0.462
Mean 0.998 0.554 1.027 0.721 0.566 0.727
P97.5 1.435 1.766 1.846 2.207 2.370 2.218

Ratio of Monte Carlo: Observed data—Lognormal

P2.5 0.609 0.980 0.384 0.237 0.068 0.196
P50 1.000 1.066 0.812 0.735 0.393 0.738
Mean 1.000 1.115 0.920 1.082 0.863 1.087
P97.5 1.435 1.524 2.079 3.972 4.264 3.915

9.5 Implementation

In the time-domain simulation software, technical downtime is implemented on an

activity level. This means that an optional average occurrence rate of technical downtime

and the statistical distribution and parameters of downtime duration can be set for any

activity in the simulation model.

In the software, a project is defined as a set of activities, each comprising several

operations. In the most simplistic case, the simulation logic evaluates each activity in a

specified order. The evaluation procedure for each operation involves the comparison of

the metocean thresholds of that operation to the metocean time-series at the appropri-

ate simulation time. As discussed in Chapter 8, each operation will have an associated

statistical distribution. At each evaluation step, an operation duration will be sampled

from this distribution—using the same computationally-efficient methods described in

Chapter 8—and this value will be used, together with the operation thresholds and

metocean time-series, to determine the end date of that particular operation. The

simulation software moves on to the next operation in the activity and continues in

this manner until all the activities are complete. An example of the simulation work-

flow for this simplistic case is shown in the left-hand column of Table 9.6.
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Table 9.6: Implementation of technical downtime within time-domain simulations. The
left-hand column shows the standard list of operations that must be completed in order.
The right-hand side column shows the list of activities and operations after the instances
of technical downtime have been sampled and inserted randomly into the list as proxy
operations.

Activity A Activity A

Operation A1 Operation A1
Operation A2 Technical Downtime A1
Operation A3 −→ Operation A2

... Operation A3

... Technical Downtime A2

...
...

Operation Ax Operation Ax

Activity B Activity B

Operation B1 Operation B1
Operation B2 Operation B2
Operation B3 −→ Operation B3

...
...

Operation Bx Operation Bx

Activity C Activity C

Operation C1 Technical Downtime C1
Operation C2 Operation C1
Operation C3 −→ Operation C2

... Technical Downtime C2

... Technical Downtime C3

... Operation C3

...
...

... Operation Cx

Operation Cx Technical Downtime Cx

An additional step in the simulation logic is required for activities specified with

technical downtime. At the beginning of the evaluation procedure for these types

of activities, a random sample is drawn from the Poisson distribution defined for

that activity. This returns the number of occurrences of technical downtime for this

particular iteration. Next, a list of instances of technical downtime is created with the

same number of instances as the previously sampled number of occurrences. These

instances of technical downtime are then randomly inserted into the list of operations

for the activity in question. An example of this process is shown in Table 9.6.

Crucially, these instances of technical downtime are proxy operations. In the same way

that each operation has a sampling method with an associated statistical distribution,

so too does each technical downtime instance have an equivalent sampling method,
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which uses the technical downtime distribution parameters specified as an input for

that activity. As such, the simulation model processes each member of an activity in

an identical fashion, regardless of whether it is an operation or an instance of technical

downtime.

As shown in Table 9.6, it is possible, and often quite probable, that no instances of

technical downtime are added to the operation list, as is the case for the example

activity B. Equally, it is plausible that successive instances of technical downtime are

added to the operation list as seen for Activity C.

A major shortcoming of this approach is that it does not enable technical downtime

to occur during an operation. Incorporating technical downtime on an operational level

would be more realistic—several observations of this phenomenon are evident in the

DPR records. For example; a minor malfunction in the components of the on-board

crane during a lifting operation. Implementing methods that can interrupt operations

is considerably more complex than the implementation described above, particularly in

relation to the simulation algorithms for operations that cannot be interrupted and need

to be completed in a single weather window. Work is currently progressing on developing

this functionality. Its implementation, although more realistic, is not expected to have

a significant effect on simulation results. This is because several thousand simulations

of the project are being performed and the precise position of instances of technical

downtime within the project work flow is of minor importance. The critical functionality

is that random stoppages can now be introduced.

9.6 Conclusions

This chapter has shown that the occurrence of random delays and stoppages—often

referred to as technical downtime—is an observable phenomenon when conducting off-

shore operations and that these delays can have a significant impact on project duration

and cost. For the offshore wind farm installation data that were analysed, the observed

average occurrence rate of technical downtime was 0.638 per WTG installation activity

and 1.769 per loadout activity. The mean duration of technical downtime was 9.2

hours for the WTG installation activity and 12.2 hours for the loadout activity. While

the majority of observed occurrences of technical downtime were less than 30 hours,

larger occurrences of downtime were also quite common. There were 3 observations of

stoppages greater than 100 hours and the largest example of random failure resulted in

236 hours of downtime.

The hypothesis was put forward that instances of technical downtime could be modelled

as the joint probability of downtime occurring—assuming a Poisson distribution—and
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the downtime duration being equal to a certain value, assuming a standard statistical

distribution. The analysis of the observed technical downtime data from the offshore

wind farm construction project has shown that this method is realistic, representative

and appropriate for implementation within time-domain simulations of offshore opera-

tions. For both of the analysed data-sets, corresponding to the installation of the WTGs

and the loading of the installation vessels at port, the Loglogistic distribution has been

shown to be the most suitable distribution for representing the durations of technical

downtime.

The analysis has demonstrated the importance of additional validation tests for the

assessment of fitted statistical distributions. The candidate distributions were assessed

using a Monte Carlo validation procedure that emulated the implementation method

within the time-domain simulation software. These tests showed that the fitted dis-

tribution with the best goodness-of-fit score showed a tendency to sample extreme

values of downtime duration. The analysis has highlighted the benefit of assessing fitted

distributions in a manner that reflects their implementation within the proposed model.

Finally, a method of incorporating the proposed representation of technical downtime

within a time-domain simulation model has been described and appraised. When each

activity is simulated, the occurrence of technical downtime is modelled by sampling from

a Poisson distribution using the previously discussed average occurrence rates. For each

simulation, the resulting number of technical downtime instances are inserted randomly

into the list of operations that need to be completed. The computationally-efficient

methods for sampling durations from probability distributions that were discussed in

Chapter 8 are then used to sample the durations of technical downtime. Future work

should focus on the ability of interrupting operations with technical downtime which is

a shortcoming of the current implementation.
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Chapter 10

Completing the Cycle

10.1 Introduction

This penultimate chapter assesses the impacts of using the results of the operation

duration and technical downtime analyses as inputs to the time-domain simulation

model. Obtaining such accurate and specific representations of operational data prior

to the commencement of an offshore project is highly unlikely—perhaps the expansion

of a large operational database discussed in Chapter 7 will make it more likely—but

the analysis can be used to answer several important questions. The chapter assesses

whether the inclusion of learning and technical downtime affect the rate of convergence

of simulation results; investigates the impact of representative operation duration prob-

ability distributions, the learning curve phenomenon and technical downtime on the

simulation results; and compares the simulation results obtained when using the before,

during and after model configurations.

The methodology is outlined in Section 10.2 including sections on the scenario details

and simulation configuration; the convergence testing methods; the impact of technical

downtime and representative operation duration distributions and the comparison of the

before, during and after scenarios. The corresponding results and discussion for each of

these sections are given in Section 10.3. This subsection also includes additional results

and discussion around failed missions—in which simulations are unable to complete the

project due to the lack of metocean data (Section 10.3.1). Finally, the main conclusions

of the chapter are given in Section 10.4.

10.2 Methodology

10.2.1 Scenarios and Simulation Configuration

To assess both the individual and combined effect of learning and technical downtime on

simulation results, six simulations were performed. These simulations are summarised

in Table 10.1 and the reasons for their selection are outlined in this subsection.

235
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In the “no learning” scenario (NL), the operation durations are represented by a tri-

angular distribution, with the minimum, modal and maximum values set equal to the

sample minimum, mode and maximum durations from the observed data-set for the

entire construction phase. The NL S1 and NL S100 scenarios use the shape of the

best-fit distribution for each operation as detailed in Chapter 7. In these scenarios, S

corresponds to the task repetition number for which the distribution parameters are

defined but, as shown in Table 10.1, these two scenarios do not include the learning

phenomenon. As such, the shapes of the operation distributions in these two cases are

set equal to the results of the operation duration analysis but the location and scale

parameters are set equal to the results for the 1st operation iteration in the case of

NL S1 and the 100th operation iteration in the case of NL S100. In other words, NL

S100 assumes the probability distribution of each iteration of an operation is equal to

the steady-state distribution—assuming steady-state is reached after approximately 100

iterations of each operation. Note that approximately 100 repetitions were completed in

the offshore wind farm construction project that has informed the analysis in previous

chapters. Conversely, NL S1 assumes the probability distribution of each operation is

equal to the distribution for the first iteration of that operation, as suggested by the

results of Chapter 7. This scenario is included to enable a comparison with the NL S100

scenario—it is expected to over-estimate operation durations significantly. Finally, the

implementation of learning and technical downtime in the appropriate scenarios is as

outlined in Chapters 7 and 9 respectively.

Table 10.1: Scenario descriptions for the impact of learning and technical downtime on the
simulation model. S refers to the task repetition number for which the operation distribution
parameters are defined.

Scenario Description Triangular Best-fit Learning Technical
distribution distribution downtime

NL No learning X
TD Technical downtime X X
NL S1 No learning

X
S = 1

NL S100 No learning
X

S = 100
L Learning X X
L&TD Learning and

X X X
technical downtime

For each of the scenarios listed above, 600 simulations were performed for the project

start date on each of the 18 years of metocean data. This led to a total of 10,800

simulations for each scenario. The number of simulations performed per year was

increased in comparison to the majority of analysis in Chapter 5, to assess the impact
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of learning and technical downtime on the simulation convergence rate.

10.2.2 Convergence Testing

To assess the impact of the learning and technical downtime modules on simulation

results, the qualitative convergence methods proposed by Ballio and Guadagnini (2004)

and applied in Chapter 5 were applied to the no learning (NL), technical downtime

(TD), learning (L) and learning and technical downtime (L&TD) scenarios. The analysis

consisted of calculating the cumulative mean and standard deviation for successive

simulations and plotting this against the number of simulations performed.

10.2.3 The Impact of Learning and Technical Downtime

Box-and-whisker plots were used to compare the simulation results for each of the six

scenarios described above. Additionally, progress plots were generated to assess further

the results of selected scenarios. Progress plots were created for both the combined

milestone completion parameter and for the progress of individual vessels.

10.2.4 Comparison of Before, During and After Scenarios

Finally, box-and-whisker plots and combined milestone progress plots were produced

for the learning and technical downtime (L&TD) scenario—also referred to as the after

scenario. These results were compared to those obtained when using the simulation

models before and during the offshore wind farm construction. In this case, the during

scenario refers to the simulation model that incorporated the results of the operation du-

ration analysis completed approximately half-way through the installation campaign—

see Chapter 6 for more details.

10.3 Results and Discussion

10.3.1 Failed Missions

There is a possibility that certain simulations will not be able to finish all of their

operations and activities within the limited quantity of input metocean data These

failed missions have already appeared in Chapter 5; for the baseline scenario which

only used a single vessel, a significant proportion of simulations that started in the final

year of metocean data were unable to complete the entire project. For that baseline

scenario, any simulation that started in this final year was omitted from the analysis

to avoid introducing bias to the simulation results.
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With the inclusion of technical downtime and probability distributions of operation

duration that can potentially result in extremely large durations, there is an increased

probability that more simulations—even those that commence in the earliest years of

the metocean dataset—will fail. Consequently, a counter of the number of failed missions

was implemented in the simulation model. This failed mission counter was useful for

assessing the extent to which large samples of technical downtime or operation duration

were affecting simulation results.

Table 10.2 shows the number of failed missions for each of the tested scenarios and

the percentage of total missions (10,8000) that this represents. The number of failed

missions in each scenario is slightly different but this is not expected to have a significant

effect on results due to the low percentage of total simulations in each case.

Table 10.2: Results for the total number of failed missions in each scenario.

Scenario Number of failed missions Percent of total simulations (%)

NL 0 0
TD 53 0.5
NL S1 2 0.02
NL S100 0 0
L 1 0.01
L&TD 44 0.4

10.3.2 Convergence Testing

The cumulative mean and standard deviation of project duration for the NL, TD, L

and L&TD scenarios are shown in Figure 10.1. For the two cases without technical

downtime—the learning and no learning scenarios—the mean project duration con-

verges after about 1,000 simulations (for further details see the original convergence

reults in Chapter 5 where the smaller range of the vertical axis shows the convergence

after 1,000 simulations more clearly). Conversely, the addition of technical downtime

has led to large spikes in the cumulative mean and standard deviation of project

duration and has increased the number of simulations required for convergence to the

total number of simulations performed—approximately 10,800. There are significant

fluctuations in the cumulative standard deviation values right up to the last simulation

that was performed. The results imply that if technical downtime is incorporated in

the simulation model, the number of simulations that should be performed to ensure

convergence should be increased by an order of magnitude—from 1,000 to 10,000. The

incorporation of learning, although it clearly affects the final results, does not have an

effect on the rate of convergence of the simulations.

The order of the simulations in the cumulative mean and standard deviation calculation

is important. As explained in Section 5.3.4 for the general convergence tests, the first
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18 simulations of Figure 10.1 correspond to the simulations performed in each of the

18 years of metocean data. The convergence over these points give an indication of the

variation that can be expected due to the metocean data experienced. Comparing these

fluctuations to the magnitude of the jumps when technical downtime is introduced, the

relative influence of large instances of random failures and stoppages is clear. It should

be noted that the duration of simulation number 9 of the L&TD scenario, that caused

the cumulative mean project duration to increase from approximately 187.5 days to

350 days, is in the top 5% of all simulated project durations and is thus considered

an outlier. The clear separation of results according to scenario shown in Figure 10.1

also provide early indications of the effect of learning and technical downtime on the

simulation results.
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Figure 10.1: The effect of learning and technical downtime on simulation convergence.
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10.3.3 The Impact of Learning and Technical Downtime

Figure 10.2 shows box-and-whisker plots for the six scenarios that were tested. Com-

parisons of simulated project duration and total vessel duration are shown, together

with the corresponding recorded values. The whiskers extend to the 0.05 and 0.95

quantiles for all of the boxplots in this chapter. As alluded to previously, the potential

for sampling extremely large instances of technical downtime and operation duration

has led to several exceptionally large project duration estimates. The inclusion of these

outliers distorts the figures, making it impossible to assess the P5–P95 range of results,

and are thus omitted from subsequent box-and-whisker plots.
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Figure 10.2: The effect of learning and technical downtime on project duration and total
vessel duration. Whiskers extend to the 5th and 95th percentile values. Outliers are omitted.
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Impacts of Learning

The effect of learning can be seen by comparing the learning and learning plus tech-

nical downtime scenarios to the equivalent scenarios excluding learning—scenarios NL

and TD respectively. Understandably, the scenarios that exclude learning yield more

pessimistic projections of campaign duration. In other words; if learning is assumed,

the simulation model will result in lower estimates of project duration. Specifically,

introducing the learning phenomenon reduces the mean project duration by 19.4 days

when technical downtime is omitted—a reduction of 10%—and by 17.5 days when

technical downtime is included—corresponding to a reduction of 8%. Using the pre-

viously discussed indicative charter rate for a turbine installation vessel of 140,000

GBP/day (see Section 5.3.2), the corresponding estimate for the reduction in project

cost is £2.5–2.7m. Furthermore, the P5–P95 range for scenario NL is approximately

1.5 times greater than the range in the equivalent learning scenario. Again, this is an

intuitive result; both the spread and mean value of operation durations decrease as

more iterations are completed if learning is assumed, while the range and expected

value of operation durations are defined by a constant triangular distribution in the

case of scenario NL.

Scenarios NL S1 and NL S100 used the shape parameter(s) of the best-fit distributions

suggested by the analysis in Chapter 7, but assume there was no learning. NL S1

assumed the location and scale parameters corresponding to the durations required for

the first iteration of each operation. NL S100 assumed a“steady-state”value, in this case

taken to be the parameters for the 100th iteration. As expected, NL S1 over-estimates

and NL S100 under-estimates both the project duration and total vessel duration. The

ranges of results for these two scenarios are also the furthest from the observed values

of both project duration and total vessel duration, suggesting that if learning is to be

omitted, it is recommended to assume a simple triangular distribution based on the

minimum, mode and maximum of the sample data. Future work could investigate the

use of the beta-PERT distribution with the same parameters or the best-fit distribution

obtained if learning is ignored.

Impacts of Technical Downtime

Comparing scenario TD to NL and scenario L&TD to L shows the increase in project

duration that is likely to occur when technical downtime is added to the simulation

model. Excluding learning, the mean project duration increases by 28.2 days, or 14.6%,

when technical downtime is added. Including learning, the mean duration increases by

30.1 days, equivalent to an increase of 17.4%. These larger estimates of project duration

correspond to an increase in indicative project cost of between £3.9m and £4.2m. The

increase in P95 duration for both scenarios is even more significant; from 213 to 275 days
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with no learning and from 186 to 246 days with learning—an increase of about 60 days

in each case, translating to an increase in project cost of £8.4m. The more significant

impact on larger percentile values is to be expected—in the worst simulations, the

sampled values for random stoppages will tend to be largest. Interestingly, the inclusion

of technical downtime leads to highly skewed distributions for project duration and

total vessel duration results. For the two scenarios that include technical downtime,

the mean project duration is approximately equal to the P75 value. The presence of

extreme outliers, as discussed in the convergence test results and attributed to large

instances of technical downtime, affects the skewness of the simulation results.

Combined Impacts

The results show that only three of the scenarios produce 90% probability ranges that

contain the observed result; the no learning scenario, the technical downtime scenario

and the learning and technical downtime scenario. The fact that the P95 learning

without technical downtime scenario result is lower than the observed durations implies

that—for this particular project—the incorporation of random failures and stoppages is

more important than representing accurately the learning phenomenon. The remaining

analysis in this section focuses on the comparison of the TD and L&TD scenarios

as these are believed to be the most accurate simulation models; the mean project

duration of the L&TD scenario is almost identical to the observed result—which is

understandable considering the representative and specific model inputs used in the

simulation—while the P50 value of the TD scenario is the closest to the recorded project

duration and this scenario resulted in the only set of duration estimates with a 50%

probability range that contained the observed value. The results show that the decision

to include learning and technical downtime is critical; recalling that clients often make

their operational decisions on P90/P95 probability levels, the inclusion or exclusion of

learning in this case would have changed the decision on whether the chosen scenario

was sufficient to complete the installation project within a duration of 245 days.

Figure 10.3 shows the combined vessel progress plots for both the TD and L&TD

scenarios, along with the progression of observed installation durations. The progress

plots for both scenarios capture the progress gradient of the observed installations

accurately and the observed installations fall within the 90% range of both models.

Once more, this accuracy should be noted with the caveat that both models incorporate

the results from the analysis of observed installation durations. It is more interesting to

assess the difference between the two scenarios. The actual installation durations that

transpired fall more accurately within the centre of the range of the TD scenario, but is

this the more accurate model? Is the model that excludes learning more accurate—the

actual installation progress transpired as predicted by the median projections—or is the
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full model including learning more representative and the actual construction process

experienced a “P75” year?

The detailed investigation of Chapter 7 has shown with great certainty that learning is

an observable phenomenon for many of the operations in the offshore project. Monte

Carlo validation tests have shown that the implementation of the stochastic learning

curve theory in the simulations has modelled this learning factor accurately. This

suggests that the L&TD simulation model is the more representative and other factors

contributed to the relatively larger installation durations that transpired.
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Figure 10.3: Combined vessel progress plots for the TD and L&TD scenarios.

There are several potential explanations for why the observed data closely follows
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the P75 projection of the L&TD scenario. As discussed in Chapter 9, it is quite

difficult to capture the distribution of technical downtime durations. For both Loadout

and Install WTG activities, there is a peak in the distribution at low durations, but

several extreme values in the right-hand tail have also been recorded. The implemented

method captures specific instances of extreme durations—the presence of extremely

large outliers discussed above proves this—but the sampling frequency of these large

durations, in the order of 100–300 hours, may be too low. As such, the representation of

technical downtime might under-estimate the durations of random stoppages and fail-

ures. Unfortunately, the most suitable method of investigating this further is to expand

the database of observed operation data as discussed in Chapter 7. This would help

assess whether the durations of technical downtime in this project were representative

or exceptional, but additional data were unavailable for analysis.

Perhaps the most critical component of the time-domain simulations that has not yet

been mentioned and a potential explanation of the discrepancy between the observed

data and the simulation model is the actual metocean data that was experienced during

construction. A very simple explanation for this discrepancy is that the operation dura-

tions and technical downtime were represented adequately, but the particular metocean

conditions that were experienced during the installation campaign were approximately

25% worse than average. Future work could further investigate this hypothesis by

obtaining accurate representations of the actual weather conditions experienced during

construction and re-run the simulations with this single time-series of metocean data.

Removing the variation attributable to the metocean conditions would enable a more

definitive analysis of the representation of operation durations and technical downtime.

For future projects, it is extremely easy to run both the TD and L&TD scenarios

as a type of sensitivity analysis. Subsequently, the scenario excluding learning can be

viewed as a pessimistic projection while the scenario including learning becomes a

more optimistic estimate. Regardless, both scenarios produce accurate estimates of

installation progress. Further evidence of this is provided through the individual vessel

progress plots shown in Figure 10.4.

Both scenarios predict the same P5–P95 range in allocation of WTG installations but

the median number installed by the baseline when learning is excluded is slightly less

than predicted by the simulation that includes learning—further confirmation that the

TD scenario is more pessimistic than the the L&TD scenario.

Interestingly, the individual vessel progress plots highlight another large instance of

technical downtime that is less obvious in the combined progress plots. For Vessel B,

another prolonged random stoppage is evident between the third and fourth milestone

completed by this vessel. This occurrence supports the theory discussed above that the

sampling frequency of large instances of technical downtime may be too low.
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Figure 10.4: Individual vessel progress plots for the TD and L&TD scenarios.

10.3.4 Comparison of Before, During and After Scenarios

This section describes the comparison of results obtained from the simulation models

used before, during and after the construction of the offshore wind farm. Figure 10.5

shows the combined progress plots for the three scenarios and Figure 10.6 shows box-

and-whisker plots for the project duration and total vessel duration. The boxplots show

a more detailed summary of the range of results for the final milestone completion

durations shown in the progress plots. As with the previous section, outliers are not

shown in the boxplots due to the presence of extreme values in the case of the after

scenario.
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Figure 10.5: Combined progress plots for the before, during and after scenarios.

The three progress plot serves as a summary of the work completed throughout the wind



10.3. Results and Discussion 247

farm construction. The top panel shows the simulation results before the assembly of the

WTG components on the pre-installed turbine foundations. These results suggest that

these initial projections were quite accurate—the observed data follow approximately

the P75 progress projection. However, the analysis of Chapter 6 highlighted significant

discrepancies between the estimates of operation duration used as inputs and the

mean values of the observed data at an approximate half-way stage of the project.

Furthermore, this initial model did not include an accurate representation of technical

downtime, which was shown in the early stages of construction to be a critical factor

to the success of the project. As such, the over-estimates of operation duration and the

omission of technical downtime effectively cancelled each other out. Thus, the perceived

accuracy of the before simulations was achieved somewhat accidentally.

First impressions of the during scenario results would suggest that the representation

is inferior to the before scenario. However, the representation of operation durations

in the during scenario incorporates the differences between model inputs and observed

operation data obtained for the first half of the project and is thus expected to be

more accurate than the equivalent before representation. Crucially, the during scenario

does not include an accurate representation of technical downtime and this is believed

to be the biggest factor in the significant deviation between the observed results and

projections. What isn’t shown in the middle panel of the progress plots is the projection

made at the half-way stage of the project that would have taken into account all the

random stoppages and failures that had arisen up to that point. The estimate of progress

that would have been produced if the during model inputs were used from the start of

the project are shown here, primarily to emphasise the need for the technical downtime

module as part of the simulations.

The effect of incorporating technical downtime, along with accurate models of the

learning curve phenomenon for consecutive operation iterations, is shown in the after

scenario results. As expected, the range of simulation results shown in the bottom panel

of Figure 10.5 contain the observed milestone completion data and capture accurately

the eventual progress gradient. Importantly, the P5–P95 range of results has increased in

comparison to the before scenario, due to the added technical downtime module and the

increased potential for large operation duration samples for those best-fit distributions

that did not have an upper limit. The increased range is particularly evident for the final

milestone duration which corresponds to the project duration and total vessel duration

summarised in Figure 10.6. In the worst case P95 scenario, the project duration is just

under 250 days. Conversely, the best case P5 scenario suggests that the construction

project will be complete within approximately 170 days.
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Figure 10.6: Comparison of project duration and total vessel duration for the before,
during and after scenarios. Whiskers extend to the 5th and 95th percentile values. Outliers
are omitted.

This thesis has shown that the addition of a technical downtime module and a stochastic

learning curve model for operation durations have improved the representation of

operations for this particular offshore wind farm construction project. Future work

needs to assess the viability of using the developed models and analysis results obtained

from this specific project in alternative offshore projects. The methods are expected to

be transferable across projects but the same cannot be said for the model inputs. Are the

learning rates, average occurrence rates of technical downtime and selected operation

duration probability distributions valid for different vessels, technicians and projects?
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Ignoring the obvious variation between installation and maintenance activities for wave,

wind and tidal devices, there is enormous scope within the offshore wind sector alone.

Varying WTG sizes and installation methods may have a significant impact on the

application of the model inputs derived in this thesis. Applying the same methods to

several distinct offshore wind farm construction projects would help provide the answer

to these questions.

10.4 Conclusions

The analysis in this chapter has shown that if accurate representations of operation

durations are used as inputs, time-domain simulation models can generate accurate

stochastic predictions of project progress. Although it is improbable that such precise

and specific representations of operational data will be available prior to the commence-

ment of an offshore project, the analysis can be viewed as a validation of the underlying

simulation theory. This is in line with comparable findings in Chapter 3.

Incorporating accurate and representative models of the random technical failures and

stoppages that can arise during an offshore project is essential if accurate predictions

of total project duration are to be made. In the example described in this chapter

and based on the modelling methods described in Chapter 9, the inclusion of technical

downtime increased the mean project duration by between 28–30 days, equating to

14.6–17.4% and potential increases in project cost of approximately £4m. Under the

P95 worst-case scenario, the project duration increases by approximately 60 days and

the indicative project cost by over £8m.

Similarly, implementing the learning curve phenomenon addressed in Chapter 7 can

have a dramatic effect on simulation results. Based on the examples described above,

the inclusion of learning reduced the mean project duration by an average of about

18.5 days, or between 8–10%. This corresponds to estimated increases in project cost

of £2.5–2.7m. Accounting for the learning factor of certain operations has also been

shown to reduce the total range of project duration and total vessel duration.

The benefits of implementing representative models of operation duration and techni-

cal downtime have been highlighted. However, there is a recommendation for further

research to assess the viability of applying the derived results for this particular project

to similar but separate offshore construction projects.





Chapter 11

Conclusions

11.1 Aim and Objectives

The aim of this thesis was to appraise the use of time-domain simulations of offshore

operations to estimate the likely duration of offshore projects and inform planning

decisions in the offshore renewable energy sector. The research intended to investigate

the suitability of these simulation methods for estimating and minimising the cost

of installation and maintenance activities for marine renewable energy devices, in an

attempt to support the continued growth of these promising technologies.

While most of the analysis presented in this thesis was similar to work carried out for a

client in the offshore wind energy sector, the results were different due to changes made

in the exact scenarios modelled, specific modelling assumptions (e.g. vessel charter rates,

which were not provided by the client) and other factors which have been changed to

ensure client confidentiality.

11.2 Investigating and Validating Time-domain Simulations

One of the major shortcomings in the literature was the lack of research targeting the

validation of time-domain simulation theory. This thesis has validated the use of TDS

for modelling offshore operations by comparing the results of a bespoke TDS model to

observed operation data from an offshore wind farm construction project. Validation

results showed that if accurate metocean and operational data are provided, TDS

models can produce precise estimates of project duration. The discrepancy between the

simulated and observed completion date, for a project that took 8 weeks to complete,

was 1.5 days. On average, the deviation between simulated and observed milestone

completion dates was 1.7 days, with the simulation under-predicting observed durations.

A comparison of the results obtained from the time-domain simulation model and from

using the classical probabilistic methods of occurrence and persistence supports the idea

that the probabilistic methods ignore the sequential nature of marine operations and the

effect that small cumulative delays can have on the overall progression of the project.

251
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It has been shown that the conventional methods tend to underestimate metocean

downtime and mean project duration. TDS models generate probabilistic estimates of

the duration of offshore operations that are useful in the planning stages of a marine

project and help assess the inherent risks of working in the harsh and complex marine

environment. For a hypothetical test activity, occurrence and persistence methods pre-

dicted a mean duration of approximately 5 and 6.5 days respectively. The probabilistic

TDS results implied that there was a 25% chance that the activity duration would

be less than that estimated using the occurrence method. Conversely, the mean of the

TDS simulations was nearly double the mean occurrence result and the maximum value

simulated by the TDS model suggested an activity that would take 3 days to complete

without weather downtime could potentially take up to 70 days.

11.3 Animating the Outputs of Time-domain Simulations

A method for animating the outputs of a TDS model has been developed. Selected

results from a hypothetical offshore wind farm construction project have demonstrated

how the animations provide clear and intuitive visualisations of simulation results. The

animated outputs enable comparisons to be made between various offshore strategies

and can support the project management of complex projects involving multiple vessels

and contractors.

The incorporation of the animation functionality as a quality-assurance method within

the model configuration process eliminates the need for time-consuming manual checks

of tabular output data. Additionally, TDS animations enable easy identification of

modelling and configuration errors and omissions. They also improve communication

links between model developers and end-users. An indicative case study has highlighted

the potential cost implications of failing to identify erroneous modelling assumptions

or omissions. If restrictions on coincident piling and port operations were accidentally

omitted, the median value for total project cost would have been underestimated by

£400,000—£650,000. In the hypothetical worst-case scenario, the piling installation

project was likely to have been about 5% longer and £1m more expensive than the

simulation results suggested.
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11.4 Simulation Outputs and Data Analysis Methods

Time-domain simulations can be used to generate probabilistic estimates of the duration

of offshore operations. In turn, this enables the marginal benefits of various scenarios

to be compared and helps identify and appraise the most appropriate and cost-effective

strategy for a specific project. These scenario testing methods were described through

an industrial case study that aimed to develop optimal installation strategies for a

Round 3 offshore wind farm. Specifically, a bespoke TDS model was used to assess

whether an additional installation vessel was required to complete construction within

a period of 245 days. The results suggested that a secondary vessel was essential and

that a charter duration of 120 days was required to achieve this objective. Simulations

were also performed to compare three alternative turbine installation vessels and to

identify the most appropriate and cost-effective secondary installation vessel. The total

indicative project costs of selecting secondary vessel A, B or C were £57.1m, £51.1m

and £53.5m respectively. The selection of Vessel B was thus expected to save between

£2.4m and £6m.

Convergence testing of the simulation outputs revealed that obtaining a sufficiently

extensive metocean data-set is critical for ensuring consistency and confidence in the

results. The work has shown that the simulation results are significantly more sensitive

to the number of metocean years used as an input to the model than the number

of Monte Carlo iterations that are performed for each year. For this particular case

study and TDS model, a minimum of 1,000 simulations is recommended to achieve an

acceptable convergence in the mean and standard deviation of output results.

A graphical output referred to as a progress plot has been proposed. These graphs

combine an alternative representation of a horizontal boxplot for consecutive mile-

stone completion times with a rangefinder boxplot that describes the variation in both

expected completion time and the number of milestones completed. The plots are

beneficial for scenario testing and for assessing project progress when multiple vessels

are assigned to the same task.

11.5 Progress Updates and Continuous Monitoring

Time-domain simulations can be performed during the operational phase of a marine

renewable energy project. This enables the continuous monitoring of project perfor-

mance and the early identification of significant deviations from baseline projections

and planned schedules of work. In turn, these deviations can be used to inform planning

decisions and strategies throughout an offshore project.
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The delivery of weekly updates to the construction team throughout the installation

phase of a Round 3 offshore wind farm was used to illustrate the continuous project

monitoring process. This highlighted one of the major advantages of the TDS method;

the speed with which the simulations and subsequent analysis can be performed. The

entire process—from receipt of the most recent observations to the distribution of the

weekly update results—took between 3–4 hours. This meant that critical planning and

operational decisions were informed by simulation results modelled on the immediate

status of operations. Additionally, the newly-proposed progress plots proved well-suited

for summarising progress to date, deviations from planned schedules and the results of

the latest simulations each week.

Continuous monitoring of project progress enabled the identification of one particular

random delay in project progress that had a significant impact on expected results. This

discrepancy delayed the median charter end dates of both vessels by approximately 16

days and increased the median indicative cost of the project by £4.4m. In the worst-

case scenario, the increase in indicative cost was £6m. Although subsequent weekly

updates accounted for the effects of this random stoppage, the analysis helped identify

the major limitation of the software not being able to represent adequately these

large instances of technical downtime. The analysis also highlighted the possibility of

discrepancies between unexpected stoppages and the knock-on effect on total project

duration and cost, due to the temporal variability of metocean conditions. For example,

in the described case study a delay of 15 days during the relatively “calmer” summer

weather led to an in increase in total vessel duration of 31.4 days—twice the original

delay.

Continuous project monitoring also enables the identification of systematic errors in the

simulation model. Realised installation progress outperforming the best-case simulation

projections prompted the critical exploration of observed data. The resulting analysis

showed that the mean duration required to complete a single WTG installation was

30% lower than initially specified. Subsequent implementation of the updated operation

input data in the model led to a 10.8% reduction in the remaining duration of the

project. This demonstrates how TDS can be applied in a cyclical manner, leading to

continuous improvements in subsequent predictions of future progress.
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11.6 Operation Duration Analysis

Observed operation data recorded throughout the installation phase of a Round 3

offshore wind farm were analysed. Preliminary investigations led to the hypothesis that

the phenomenon of learning was a critical factor that affects the durations of consecutive

offshore operations. Subsequent analyses confirmed this hypothesis and identified the

stochastic learning curve theory as an appropriate model. The theory is well-suited

for representing the operation duration inputs in time-domain simulations of offshore

operations because it allows a probability density function for operation duration to be

defined for consecutive task repetitions, assuming that there tends to be a reduction in

consecutive durations due to the learning curve effect.

The analysis of observed operation durations has shown that learning is an observable

phenomenon for the majority of operations in the data-set. Of the 18 turbine installation

tasks that were analysed, 16 showed evidence of learning—90% of recorded operations.

The effect of learning on the duration of operations can be significant. For the instal-

lation of the first blade of each wind turbine, the learning rate was 78%, meaning that

the time required to complete this operation reduced by 22% every time there was a

doubling of the cumulative number of turbines installed.

The Burr Type XII probability distribution has been identified as the distribution

that most suitably models the durations of offshore wind farm installation operations,

irrespective of the presence of learning. This distribution resulted in the best-fit for 65%

of the analysed operations while the Burr family of distributions were ranked in the

top 2 most suitable distributions for 19 of the 20 operations that were analysed and in

the top 3 for every operation in the data-set.

Finally, the analysis of performance data throughout the operational phase of a project

can yield continually improving estimates of expected value, variance and learning

parameters. This procedure is recommended and, as with the weekly progress updates,

is expected to lead to continuous improvements in project progress predictions.

11.7 Incorporating Learning within Time-domain Simulations

The expansion of the underlying stochastic learning curve theory—which was only

validated and applied explicitly to the Normal distribution—has been expanded through

the application of the proposed methods to seven additional probability distributions.

The analysis has shown that the shape parameters of the statistical distribution remain

constant as the task repetition number increases, while the location and scale param-

eters are multiplied by the learning factor. This hypothesis has been validated both

theoretically and empirically for all seven of the additional distributions.
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Three methods for generating random samples of operation duration, accounting for

the learning phenomenon, and their implementation within the developed time-domain

simulation software were compared. To achieve the requisite computational performance

for the Monte Carlo methods, it is recommended to use either inverse transform sam-

pling methods or to sample from standard probability distributions and subsequently

transform the data using the appropriate learning and distribution factors. These

methods are approximately 20–25 times faster than the equivalent generalised sampling

methods that were tested. The incorporation of these methods and the recommended

stochastic learning curve theory within a TDS model has also been outlined.

11.8 Technical Downtime

This work has shown that the occurrence of random delays and stoppages—often

referred to as technical downtime—is an observable phenomenon when conducting

offshore operations and that these delays can have a significant impact on project

duration and cost. For the two analysed data-sets, corresponding to the installation

of the WTGs and the loading of the installation vessels at port, the average technical

downtime occurrence rates per activity were 0.6 and 1.8 respectively. The mean dura-

tions of the downtime experienced for each activity were approximately 9 and 12 hours.

While the majority of observed technical downtime durations were less than 30 hours,

several records of significant stoppages were also observed. For example, there were 3

observations of delays greater than 100 hours and the largest example of random failure

resulted in 236 hours of downtime.

The hypothesis that technical downtime can be modelled as the joint probability of

downtime occurring and the downtime duration being equal to a certain value as

modelled by a standard statistical distribution has been proposed. Analysis has shown

that this hypothesis is appropriate and that the proposed methodology is realistic,

representative and appropriate for implementation within time-domain simulations

of offshore operations. The thesis has described the implementation of the proposed

representation of technical downtime within the time-domain simulation software, thus

addressing one of the major limitations of the simulation software identified by the

weekly progress updates discussed above. The Poisson distribution is recommended for

modelling the probability of occurrence of technical downtime and the Loglogistic prob-

ability distribution has been identified as the most suitable for representing downtime

durations.
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11.9 Limitations and Future Work

11.9.1 Normalising the Observed Operation Data

The investigation of the learning phenomenon in Chapter 7 should be extended by

normalising the observed operation durations with respect to the prevailing wind, wave

and tidal current conditions. This may help explain some of the larger variations around

the underlying learning trends. It might also account for some of the heteroscedasticity

that can be seen in certain results. Investigating the effect of this normalisation process

is recommended as future work.

11.9.2 Forecast Uncertainty

One of the major limitations of the current simulation model is that operational de-

cisions are currently based on the input metocean data, which is also assumed to be

the actual representation of the metocean conditions. In reality, operational decisions

are made using imperfect metocean forecasts and there are occasions when the decision

is made to suspend operations on account of the most recent weather forecast. On

occasions, the actual metocean conditions that transpire are such that the planned

operation could have been completed. This scenario cannot be represented by the

simulation model in its current form, which can thus lead to under-estimates of project

duration, or slightly optimistic projections.

To address this issue, future development should incorporate an additional represen-

tation of the weather forecast, on which the operational decisions should be based.

This would ensure that key decisions are made using imperfect forecasts and account

for the human element that arises when making important decisions in the marine

environment.

11.9.3 Building an Operations Database

The analysis presented in this thesis has focused on one offshore renewable energy

project in particular. At present, the results of the learning curve parameters, selected

probability distributions and representation of technical downtime have only been veri-

fied and assessed using this single project. It is imperative that the viability of applying

these derived results to similar but distinct projects is assessed. Several authors have

suggested that transferring derived results between analogous projects in this manner

is possible, but the lack of adequate operational data from comparable operations has

prevented this assessment.

The development of an operational database would help obtain these comparable data.

Subsequently, the validity of transferring learning curve parameters, probability dis-

tributions and technical downtime representations between similar offshore operations
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could be investigated in detail. For this reason, the continued expansion of such a

database is highly recommended.

11.9.4 Markov Chain Weather Models

The convergence testing of simulation model results highlighted the importance of

metocean data in obtaining accurate and reliable simulation results. As far as possible,

the extent of metocean data should be maximised. For instance, even the 18 years of

weather data used for the majority of analysis in this thesis is sub-optimal. However, it

is difficult to obtain the requisite quantity of data. A Markov-chain weather model that

can generate synthetic metocean time-series from smaller, insufficient data-sets would

be beneficial. Future work should focus on appraising the application, suitability and

accuracy of these types of methods within TDS models.

11.10 Completing the Cycle—Impact and Applications

Using the operation duration, learning curve and technical downtime analysis results

from the case study as inputs to the simulation model—duly noted as an unrealistically

accurate and case-specific representation—demonstrated that time-domain simulation

models can produce accurate stochastic predictions of the likely duration of offshore

projects if representative operation durations and metocean data are used as inputs.

This is in line with the comparable findings discussed in the targeted validation study.

Incorporating accurate and representative models of the random technical failures and

stoppages that can arise during an offshore project is essential if accurate predictions

of total project duration are to be made. The inclusion of technical downtime increased

mean project duration by between 28–30 days, equating to 14.6–17.4% and an additional

indicative cost of £3.9–4.2m. In the P95 scenario, project duration increased by 60 days

and indicative cost by £8.4m. Implementing the learning curve phenomenon reduced

the mean project duration by an average of about 18.5 days, or between 8–10%,

corresponding to a decrease in indicative cost of £2.5–2.7m.

11.11 Final Summary

This work has shown that time-domain simulations of offshore operations can be used to

estimate the likely duration, manage the inherent risks and inform planning strategies

of offshore projects. Consequently, these methods can be used to reduce the costs of in-

stallation, operations and maintenance tasks. The incorporation of the TDS algorithms

within JBA Consulting’s metocean planning software has been described. The case
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study describing the use of TDS to support the construction of a Round 3 offshore wind

farm has shown that cost savings in the order of several million pounds are achievable.

Scenario testing conducted before construction, continuous project monitoring during

installation and detailed analysis of operational data after project completion have

helped demonstrate the benefits and application of time-domain simulations. The use

of TDS for modelling offshore operations is expected to help contribute to the growth

of the promising offshore renewable energy sector.
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Appendix A

Performance Test Python Scripts

1 import numpy as np

2 from scipy import stats

3

4

5 """

6 Example %timeit usage in Python Console

7

8 %timeit -n 1 gamma_parametric()

9 """

10

11 A = 0.5

12 B = 1.5

13 C = 8.

14 D = 0.5

15 M = -0.15

16 S = range(1, 101)

17 MC = range(10000)

18 # Beta-PERT parameter calculations

19 Mu = (A + 4.0 * C + B) / 6.0

20 Alpha = 6.0 * (Mu - A) / (B - A)

21 Beta = 6.0 * (B - Mu) / (B - A)

22 # Triangular parameter calculations

23 C_strd = (C - A) / (B - A)

24 # Frozen distribution initialisation

25 GammaDists = \

26 [stats.gamma(C, loc=A * (s_i ** M),

27 scale=B * (s_i ** M)) for s_i in S]

28 LognormDists = \

29 [stats.lognorm(C, loc=A * (s_i ** M),

30 scale=np.exp(B) * (s_i ** M)) for s_i in S]
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31 BetaPertDists = \

32 [stats.beta(Alpha, Beta, loc=A * (s_i ** M),

33 scale=(B - A) * (s_i ** M)) for s_i in S]

34 TriangDists = \

35 [stats.triang(C_strd * (s_i ** M), loc=A * (s_i ** M),

36 scale=(B - A) * (s_i ** M)) for s_i in S]

37 WeibullDists = \

38 [stats.weibull_min(C, loc=A * (s_i ** M),

39 scale=B * (s_i ** M)) for s_i in S]

40 BurrDists = \

41 [stats.burr12(C, D, loc=A * (s_i ** M),

42 scale=B * (s_i ** M)) for s_i in S]

43 LoglogisticDists = \

44 [stats.fisk(C, loc=A * (s_i ** M),

45 scale=B * (s_i ** M)) for s_i in S]

46

47

48 """ Gamma distribution """

49

50

51 def gamma_parametric():

52

53 for mc in MC:

54 for s_i in S:

55 u = np.random.gamma(C, 1)

56 x = (s_i ** M) * ((u * B) + A)

57

58

59 def gamma_parametric_generalised():

60

61 for mc in MC:

62 for d in GammaDists:

63 x = d.rvs()

64

65

66 """ Lognormal distribution """

67

68

69 def lognorm_parametric():
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70

71 for mc in MC:

72 for s_i in S:

73 u = np.random.lognormal(B, C)

74 x = (s_i ** M) * (u + A)

75

76

77 def lognorm_parametric_generalised():

78

79 for mc in MC:

80 for d in LognormDists:

81 x = d.rvs()

82

83

84 """ Beta-PERT distribution """

85

86

87 def beta_pert_parametric():

88

89 for mc in MC:

90 for s_i in S:

91 u = np.random.beta(Alpha, Beta)

92 x = (s_i ** M) * ((u * (B - A)) + A)

93

94

95 def beta_pert_parametric_generalised():

96

97 for mc in MC:

98 for d in BetaPertDists:

99 x = d.rvs()

100

101

102 """ Triangular distribution """

103

104

105 def triangular_parametric():

106

107 for mc in MC:

108 for s_i in S:
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109 u = np.random.triangular(0, C_strd, 1)

110 x = (s_i ** M) * ((u * (B - A)) + A)

111

112

113 def triangular_inverse_transform():

114

115 for mc in MC:

116 for s_i in S:

117 u = np.random.random()

118 if u < C_strd:

119 f = A + np.sqrt(u * (C - A) * (B - A))

120 else:

121 f = B - np.sqrt((1 - u) * (B - C) * (B - A))

122 x = (s_i ** M) * f

123

124

125 def triangular_parametric_generalised():

126

127 for mc in MC:

128 for d in TriangDists:

129 x = d.rvs()

130

131

132 """ Weibull distribution """

133

134

135 def weibull_parametric():

136

137 for mc in MC:

138 for s_i in S:

139 u = np.random.weibull(C)

140 x = (s_i ** M) * ((u * B) + A)

141

142

143 def weibull_inverse_transform():

144

145 for mc in MC:

146 for s_i in S:

147 u = np.random.random()
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148 f = (B * ((-1 * (np.log(1 - u))) ** (1/C)) + A)

149 x = (s_i ** M) * f

150

151

152 def weibull_parametric_generalised():

153

154 for mc in MC:

155 for d in WeibullDists:

156 x = d.rvs()

157

158

159 """ Burr distribution """

160

161

162 def burr_inverse_transform():

163

164 for mc in MC:

165 for s_i in S:

166 u = np.random.random()

167 f = (B * ((((1 - u) ** (-1./D)) - 1) ** (1./C))) + A

168 x = (s_i ** M) * f

169

170

171 def burr_parametric_generalised():

172

173 for mc in MC:

174 for d in BurrDists:

175 x = d.rvs()

176

177

178 """ Loglogistic distribution """

179

180

181 def loglogistic_inverse_transform():

182

183 for mc in MC:

184 for s_i in S:

185 u = np.random.random()

186 f = (B * (u/(1 - u)) ** (1./C)) + A
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187 x = (s_i ** M) * f

188

189

190 def loglogistic_parametric_generalised():

191

192 for mc in MC:

193 for d in LoglogisticDists:

194 x = d.rvs()
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